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Abstract

Traditionally cognitive psychology has used a set of qualitative and quantitative
procedures to formalize investigative strategies of cognitive processes. More recently the
modeling of cognitive processes by computer simulation has become an important addition
to these strategies by providing another set of investigative procedures for understanding
cognition. The goal of this thesis is to extend our knowledge of the use of computational
cognitive modeling to issues of concept attainment.

This thesis is divided into three major parts. Chapter 2 examines the role of
computational cognitive modeling in researching cognitive processes. The evolution of the
field of cognitive science and the major types of computational techniques used to model
cognition are described in this Chapter. The Chapter concludes that computational cognitive
modeling has the potential to provide a more detailed understanding of conceptual
development, an area which is of special concern in educational psychology.

In Chapter 3 Bruner, Goodnow, and Austin’s (1956) research on concept
attainment is re-examined from a connectionist perspective. A network was constructed
which associates positive and negative instances of a concept with their corresponding
attribute values. Two methods were used to help preserve the ecological validity of the
input: (a) closely mapping the input to the actual visual stimuli, and (b) structuring the
output layer based on Gagne’s (1962; 1985) work on human concept learning. This
resulted in the addition of output units referred to as artribute context constraints. These
units required the network to demonstrate the identification of attributes both relevant and
irrelevant to the task of classification. Furthermore these additional output units guided the
network in constructing a faster and more generalizable representation than those networks
in which the constraints were absent.

Chapter 4 analyzes the internal structure of the connectionist networks constructed

in Chapter 3 to model Bruner et al.’s (1956) concept attainment task. The networks’ hidden



cellular responses were examined using graphical and singular value decomposition. This
examination was carried out on the dynamic and final state data produced by the network. It
was concluded that constrained networks learned a set of rules which produced greater

discrimination among exemplars without any loss to correct categorization.
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Chapter 1

1. Intreduction

In this thesis three issues are examined with respect to computational cognitive
modeling. The first issue concerns the implications such models have for research in
learning and education. Central to this issue is the role of computational modeling in
furthering our understanding of a given cognitive phenomenon under investigation.

The second issue addresses the actual building of such models. Computational
cognitive models take a wide variety of forms (Simon & Halford, 1996). The model’s
architecture can greatly influence its performance and thus affect the results provided by the
model. In contrast to the first issue discussed, where results from computational models are
used to inform the researcher, it may be the case that existing theoretical knowledge (e.g.,
Gagne’s (1984) instructional theory) can significantly contribute to the actual structural
design of the model. Therefore, how a model is built is just as important as the reasons
why such a model is built.

The final issue examined in this thesis concems the internal representations
generated by the computational model. Assuming that a particular cognitive phenomenon is
chosen to be modeled (issue one) and given a particular modeling architecture (issue two),
what do the representations produced by the model look like? In other words, at some level
of analysis, the representations instantiated by the model must be interpreted and made
explicit to the investigator. An understanding of the model’s process of constructing this
representation is therefore an essential part of the investigative procedure.

All three of the above issues are, to a large extent, issues of cognitive science.
Furthermore they follow the historical trend in psychological research of formalization
(Gardner, 1985; Johnson-Laird, 1988). The relationship between research in cognitive
science and educational psychology is still in its infancy. The work in this thesis represents
an effort to demonstrate that the relationship is maturing—especially with respect to the
computational modeling of learning and development processes. What follows in this
introduction is: (a) a general perspective on computational cognitive modeling, and (b) an
explanation of the thesis format.

1.1 A general perspective on computational model building

Models may lead to theories or may be derived from theories but in all cases models
(computational or otherwise) share the common goal of attempting to formalize an



-
explanation of a phenomenon (Churchland, 1986). Cognitive models vary with the
methods used to build them and to interpret their outcomes. Figure 1 shows a diagram that
provides a general description of cognitive model building with respect to the model’s
degree of granularity. The concept of granularity refers to the increasing degree of precision
and explicitness in which the phenomenon is described by the model. Precision means the
accuracy of the explanation whereas explicitness indicates the clarity of the explanation. To
some extent there is always a tradeoff between the two. Assuming it is possible to produce
a function (computation) which describes an overall information processing system (IPS)
(Turing, 1936)—such a functional description should not obscure the internal relationships
between different states of the system (Marr, 1982). Although it might be argued that a
mathematical description of a phenomenon represents the finest level of granularity, with
respect to cognition, it can also be argued that such descriptions must be formalized as part
of the total human information processing system (Klahr, 1992). Therefore mathematical
descriptions embedded within an overall computational system are viewed as being a more
precise and explicit method of modeling cognition.

Figure 1 is divided along three continuums. One continuum, Y, outlines general
modeling approaches. At a coarse level of granularity modeling approaches take the form of
verbal or written descriptions. Ascending on this continuum towards a finer level of
granularity involves a process of numerical formalization and computational simulations. A
physical (neurological) instantiation of the actual phenomenon represents the finest level of
model building. Within each approach constraints on the modeling can take on many forms
(environmental, biological, logical, mathematical). Regardless of which form, adherence to
these constraints is intended to increase the model’s validity. In this sense adherence to
constraints helps prevent the model from being easily falsifiable.

A second continuum, X, outlines some of the pragmatic techniques used to build
models. Model building techniques take many forms from textual descriptions to flow-
charts and decision trees. At a finer degree of granularity both rules and numerical
formalization overlap to form a computational explanation of a given cognitive
phenomenon. This type of model building is often referred to as symbolic artificial
intelligence and connectionism.

The third continuum, Z, concerns the granularity of interpretation for the model’s
behavior. In the simplest terms it involves comparing the model’s performance with data
obtained from qualitative and quantitative investigations. Moving along the continuum
involves first defining the physical and environmental structural assumptions of the model.
For example, what is the structure of the input, what is the structure of the output, and how
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does the actual model reflect the actual IPS being_modeled. Finally, the model's

representation must be given an interpretation.

Fine‘ Grain
Fine Gnin
Physical
) understanding the model’s process of
Computational constucting a representation
Numeriaal comparison of the model’s physical andenvionmental
structwral assumptions to the eal world
Writien comparison of the model’s peformance
with results dedved from quantitative and
Verbal qualitative investigaions
X - ® Fine Grain
Textual Flow-chart Dedsion Symbolic  Comnectionist
tree

Coarse Grmain 7 Y

Figure 1: Dimensions of granularity used in cognitive modeling.

In summary, the concept of granularity outlines a general framework in which to
view computational cognitive modeling. The three issues discussed in this thesis can
analogously be placed along a coarse to fine grain continuum. That is, issue one presents
the “big picture” view of the relationship between computational modeling and education,
issue two looks at the influence instructional theory can have on the structure of
computational models, and issue three examines the representations formed by the model.

1.2 Overview of the thesis

The purpose of this work reported here was to develop the role of computational
modeling in educational research. It is hoped that results from this thesis will demonstrate
the importance of computational cognitive modeling in educational research.

Chapter 2 outlines the role of computional modeling in the context of cognitive
science and educational research. It describes the two basic computational modeling
architectures, symbolic artificial intelligence and connectionism. Finally it focuses on the
implications connectionist modeling can have in areas of learning and development.
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Chapter 3 recasts Bruner, Goodnow, and Austin’s (1956) classic concept
attainment task in a connectionist framework. A network was constructed which associates
positive and negative instances of a concept with their corresponding attribute values. Two
methods were used to help preserve the ecological validity of the input: (a) closely mapping

the input to the actual visual stimuli; and (b) structuring the output layer based on Gagne's
(1962; 1985) work on human concept learning, which lead to the addition of attribute

context constriants.
Chapter 4 presents an analysis of the network representations formed by the

network during learning. A variety of mathematical, statistical, and graphical techniques are
used to provide an interpretation to the internal network weight space for various network
configurations. Specific attention is given to the effects of attribute context constraints on

the network’s process of representation intantiation.
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Chapter 2

2. The Implications of computational cognitive modeling

Recently research in cognitive science has drawn the attention of people in the field
of education (Elman, Bates, Johnson, Karmiloff-Smith, Parisi, & Plunkett, 1996;
Schneider & Graham, 1992; Simon & Halford, 1996b). This research is directed at
understanding processes of the mind.! Clearly, any field that offers insight into such
processes has implications for furthering our understanding of learning and development,
issues that lay at the center of education. At the core of research in cognitive science is the
designing and building of computational models of mental phenomena. Although modeling
is often deemed to be important, it is not always obvious: (a) What constitutes a
computational cognitive model? (b) Where do these models fit in the overall framework of
research? (c¢) How are such models constructed? (d) Why these models are potentially
significant for educational researchers? This chapter attempts to answer these questions and
provide a rationale for computational cognitive modeling? in the context of educational
research.

The chapter is organized as follows: Section one briefly reviews the traditional
approaches to educational research and postulates a position computational cognitive
modeling might occupy relative to such approaches. The second section addresses some of
the definitional issues in cognitive science and includes a more specific definition of a
cognitive scientist that is intended to describe what a typical researcher in the field of
cognitive science does. The third section describes the position of cognitive science in
relation to the disciplines of philosophy, psychology, and neuroscience, and emphasizes
the interdisciplinary relationship among different levels of explanations of understanding
the mind. The fourth section explains why cognitive processes can be viewed as
computational processes and realized in the form of computer programs. The fifth section
examines the two most prevalent forms of computational cognitive modeling architectures,
symbolism (symbolic artificial intelligence), and connectionism (artificial neural networks
or paralle] distributed processing). To gain insight into the discipline of cognitive science it
is necessary to have an understanding of these cognitive modeling architectures and their

IThe concept of mind is a nebulous one. In the context of this paper the termn mind refers to the mental
processes concerned with learning, cognition, knowledge representation, and development.
2The term comuptational cognitive modeling refers to the simulation of cognitive processes by a computer

program.
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associated techniques. The final section describes examples of cognitive-modeling
which are directly related to educational research issues such as child development and
concept formation. Emphasis will be given to models which are realized within a

connectionist framework.

2.1 Educational research

The domain of educational research is generally placed within the broader category
of social science research. Within this context two general methodological approaches
predominate: quantitative and qualitative research (Borg & Gall, 1989). Traditionally,
quantitative approaches to research design and data collection have been the mainstay of
educational research. Essentially quantitative research involves the use of numbers to help
measure, interpret and describe the phenomenon under investigation. A variety of analytical
techniques are employed by quantitative researchers to collect and process data. Basically
these techniques can be grouped into the following two categories: (a) descriptive and
correlational studies that attempt to demonstrate relationships among variables, or (b)
experimental studies that attempt to demonstrate a cause-and-effect relationship between
two or more phenomena.

Quantitative research is concerned with instrumentation, validity and reliability, and
design controls that emphasize methods which minimize threats to the internal and external
validity of the study. For example, Campbell and Stanley’s (1963) classic work describes
twelve threats to internal and external validity in experimental and quasi-experimental
research designs and explains how such threats may be controlled (e.g., various
configurations for experimental and control groups). Data gathered in quantitative research
studies are often analyzed using statistical procedures such as multiple regression or
analysis of variance. The end results of such studies are usually predictive models or
inferential conclusions about a population based on findings from a sample.

Qualitative research is usually associated with textual or narrative descriptions of a
phenomenon. For example, a qualitative researcher might use analytical techniques often
associated with ethnographic research or with case studies. The process of data collection
relies heavily on both the subjects’ and researchers’ perceptions and interpretations of
environmental events that develop in a natural context. The credibility of qualitative
research is determined by the degree to which conclusions are thought to be believable.
Qualitative research methodology has become increasingly popular in the educational
community over the last twenty years (Frankel & Wallen, 1993).
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Often qualitative and quantitative approaches to research are mistakenly
interpreted to be mutually exclusive. This is not the case as many studies mix both
approaches during the course of an investigation (Wiersma, 1995). For example,
researchers might combine the techniques from verbal protocol analysis with assessment
instruments to collect both narrative and quantifiable descriptions of a problem solving
task. Overall, educational research presently employs varying degrees of both quantitative
or qualitative methodologies and, to a large extent, educational researchers have borrowed
and adapted quantitative and qualitative analytical research techniques from the disciplines
of Anthropology, History, Science, Psychology, and Sociology. Furthermore they have
relied heavily on measurement and statistical procedures for the collection and interpretation
of data (Borg & Gall, 1989).

2.1.1 Role of cognitive science in educational research

Given the present approaches to educational research, two questions appear to be
most relevant with respect to research in Cognitive Science: (a) What analytical techniques
does the field of cognitive science have to offer educational research? (b) How might such
techniques be assimilated and accommodated into the existing framework of qualitative and
quantitative research methodologies?

Unfortunately the answer to the first question does not come in the form of a set of
analytical procedures that can be readily applied, as is often the case with statistical
techniques. The analytical techniques employed by cognitive scientists are far from “cook
book™ in nature, and require the researchers to have some understanding of computation
and its relationship to the cognitive phenomena under investigation. The computational
aspects of the cognitive scientist’s work are realized in the form of computer simulations.
Even experienced educational researchers of cognitive phenomena can be confounded by
the technical language of computer science that is often used to describe such simulations.
As a result, a “communication gap” often exists between cognitive scientists and the more
traditional researchers involved in the study of cognitive processes.

Almost fifteen years ago Bower and Hilgard (1981), in their chapter on
Information-Processing Theories of Behavior, referred to such a gap as “serious” but then
suggested that this gap appears to be closing over time. It appears their early assessment of
the gap closing may have been somewhat optimistic.3 Part of the reason for the gap not

3t is interesting to note that Bower and Hilgard's (1981) chapter on information processing (IP) is almost
entirely composed of descriptions of IP models along with their associated computer simulations.
Although, somewhat dated, their account of the relationship between IP models and computer simulation
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closing has to do with the unprecedented growth in the computational power available

to construct computer simulations. This power has often resulted in exceedingly
complicated computer simulations being constructed, like the SOAR type models proposed
by Newell (1990). Further exacerbating this gap has been the development of a wide
variety of different approaches to computational cognitive modeling. For example, at the
time of their writing Bower and Hilgard discuss information processing models with
respect to the early computer simulation work of Newell and Simon (1956; 1972). Work of
this type is often referred to as “symbolic artificial intelligence” or “production rule-based
reasoning” (Luger & Stubblefield, 1989) and represents only one approach to modeling
cognitive behavior. Recent advances in cognitive modeling techniques have resulted in the
development of brain-like connectionist models such as the Paralle] Distributed Processing
(PDP) models of Rumelhart and McClelland (1986b), along with a variety of other types of
neural network models (Hecht-Nielsen, 1990). Although a good deal of learning effort is
still required by researchers interested in using specific cognitive modeling techniques—
much insight can be gained by describing the premises of such techniques and their method
of implementation.

One way to approach answering the second question regarding the relationship
between computational modeling and existing forms of educational research (qualitative and
quantitative) is to view each methodology as sharing some aspects of the other. Figure 2
presents a three dimensional view of the possible relationship between qualitative,
quantitative, and computational modeling. The black circle is positioned to indicate that the
three methodologies may share varying degrees of overlap with respect to how they
investigate and explain a given phenomenon. More importantly, results from research using
any or all of the methodologies can act as constraints on further research and thereby guide

investigative procedures.

computational
modeling

A

0 qualitative

X

~ quantitative

models is still highly relevant and informative.
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Figure 2: A three dimensional view of the relationship between qualitative, quantitative, and

computational modeling research methodologies.

With respect to Figure 2 computational models can be viewed as formalized models of
specific cognitive phenomena. The words formalized models are emphasized for the

following two reasons:

1. Constraints. Both qualitative and quantitative research results act as constraints
with respect to computational models. Constraints can be viewed as behavioral
assumptions under which the model must function. For example, Inhelder and Piaget
(1958) first postulated a qualitative description of how children attempt to solve a balance
scale problem. Their research observations provided important insight into our
understanding of the development of children’s deductive reasoning. Siegler (1976) later
hypothesized four rules children might use to solve the same balance scale problem. Siegler
used an experimental (quantitative) procedure, rule assessment method, to develop a more
formal understanding of the children’s balance scale problem solving approach at different
developmental stages. Building on this work, Klahr and Siegler (1978) built a computer
simulation (production rule-based reasoning system) which embodies the rules identified
by Siegler. Langley (1987) later modified the work of Klahr and Siegler by constructing a
computer model, referred to as an adaptive production system, that was concerned with
explaining the transition between rule stages. More recently, McClelland and Jenkins
(1991) constructed a connectionist network that exhibits the same rule based behavior on
the balance scale task first postulated by Siegler.

The path from Inhelder and Piaget (1958) to McClelland and Jenkins (199 1) depicts
a continuum of research endeavors designed to formalize an explanation of children’s
reasoning during a problem solving activity. The computational model appears as the final
step in this process and represents a system that behaves similarly to the observed human
behavior under investigation. In other words, such models can be viewed as having the
capability to describe, predict, and algorithmically represent, specific human behaviors.

2. Mathematical. Computational models are composed of representations that are
grounded in logical reasoning (deductive or inductive logic) or numerical values
(parameters or coefficients) and thus rely on computable procedures to describe cognitive
phenomena. In 2 mathematical sense, the act of building a computational model, in the form
of a computer simulation, is a formal representation process that can be described in terms

of computable procedures.
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2.2 Cognitive science

The field of cognitive science has been gradually developing for the past 40 years
and involves the integration of ideas from a number of disciplines. The major contributors
to this trend are from the fields of neuroscience, psychology, computer science (artificial
intelligence), philosophy, anthropology and linguistics (Gardner, 1985). An obvious
question is, “what exactly is cognitive science?” Ironically, many researchers within the
field often find themselves asking the same question.

One of the problems in trying to pin down a clear definition of cognitive science is
its interdisciplinary nature. This is further confounded by the rapid growth of research in
the associated disciplines of computer science and neuroscience. The field is truly a victim
of the current phenomenon colloquially referred to as the ‘information explosion.’ One of
the consequences of the information explosion is that the terminology used by the cognitive
scientist appears somewhat ill-defined and context sensitive.

Such ambiguity of definition can also be traced to the different backgrounds of the
researchers in cognitive science. A review of the literature failed to provide a single,
unambiguous definition. For example, in the Dictionarv_of Psychology (Reber. 1985)

cognitive science is defined as:

A newly coined name for the cluster of disciplines that studies the huran
mind. The term refers to an amalgamation; it is an umbrella term which
includes a host of once disparate approaches such as cognitive psychology,
epistemology, linguistics, computer science, artificial intelligence,
mathematics and neuropsychology. (p. 130)

This definition is somewhat lacking in that it gives little insight into what a cognitive
scientist actually does. Howard Gardner’s (1985) classic book The Mind’s New Science,
provides a more precise definition:

I define cognitive-science as a contemporary, empirically based effort to
answer long-standing epistemological questions—particularly those
concerned with the nature of knowledge, its components, its sources, its
development, and its deployment. (p. 6)
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Gardner continues, later in the book, to offer a much richer and, of course, much
longer conceptual definition of cognitive science, based on the philosophical and scientific
disciplines from which it is derived. Gardner offers five distinguishing features of
cognitive science, many of which have been discussed in one form or another by other
cognitive scientists (Collins & Smith, 1988; Johnson-Laird, 1988: Posner, 1989).

1. Representations. An essential feature of cognitive science is that there exists a
“level of representation” at which mental states can be formalized with representational
entities such as symbols, rules, logic, or numerical values. These entities are used to
construct cognitive models of processes that are usually postulated to exist in the input and
output flow charts of cognitive psychology. The appropriate representational level at which
to model the phenomenon being investigated is a critical issue for any cognitive scientist
(Marr, 1982; Newell, 1982; Smolensky, 1988).

2. Computers. The development of the first primitive computers in the 1930s and
1940s had a significant influence on how psychologists believed the mind might operate
(Pylyshyn, 1989). In this context the computer was viewed as a metaphor for how the
mind might function. This idea led to the development of information processing
psychology later called cognitive psychology (Collins & Smith, 1988). For many cognitive
scientists building a computer model of cognitive processes is central to their research
work. Initially this was often left to the field of artificial intelligence. More recently, the
distinction has blurred between the artificial intelligence researcher who is interested in
building systems that claim to account for human processes, and the cognitive scientist.
More and more universities are developing programs of study in cognitive science—so
much so that cognitive science can now be said to have absorbed many of the artificial
intelligence researchers from computer science who are interested in studying human
cognitive processes.

3. De-Emphasis on_Affect, Context, Culture, and History. Traditionally, cognitive
scientists have tended to factor out the elements of context, culture and history. To build
operational computational models which attempt to account for the cognitive processes, one
must constrain these models within a pragmatic realm. One would like to avoid trying to
explain everything because in doing so one explains nothing (i.e., essentially attempting to

account for too many variables).

4. Belief in Interdisciplinary Studies. As indicated above, cognitive science is

influenced by a number of research disciplines. This mixture of ideas allows for the
development of more powerful insights into cognitive phenomena in the sense that it
considers research results obtained in a variety of contexts. Complex processes are often
understood at a multitude of levels each of which provides its own explanatory power. For
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example, the biochemist is interested in the microlevel of chemical energy
transformation that occurs in Kreb's cycle to produce Adenosine Tri Phosphate (ATP) from
glucose. Meanwhile at a macro level a coach is interested in an energy efficient diet which
maximizes athletic performance. Furthermore by working from an interdisciplinary
perspective, one is more likely to induce explanations which are constrained by the
knowledge accumulated from other related disciplines. An important belief among many
cognitive scientists is that efforts to explain cognitive processes must be embodied in a
constraint satisfaction relationship between various research disciplines (Churchland &
Sejnowski, 1992).

5. Rootedness in Classical Philosophical Problems. Like any discipline cognitive
science appeals to philosophical explanations for reasons of justification and as a starting
point for initial research inquiries (Fetzer, 1991). For example, questions such as: Why do
we think? How do we think? What is the nature of knowledge? These are philosophical
questions of the epistemological workings of the mind that date back to ancient Greece.
According to Gardner (1985) these questions appear as relevant for the present day
cognitive scientist as they were for Plato and Aristotle.

2.2.1 The cognitive scientist

The above features provide a general perspective on cognitive science but lack the
specific details of what a cognitive scientist actually does. In order to understand a
cognitive scientist’'s work one needs to consider the mind as though it were a
“computational device” (Churchland & Sejnowski, 1992; Johnson-Laird, 1988: Pylyshyn,
1989; Simon & Kaplan, 1989). It then follows that: (a) computational cognitive models can
formalize abstract ideas such as learning, knowledge representation, concept formation,
and development, so that a representational approach to mental states and processes can be
instantiated in a computational world; and (b) computational models offer insight in mental
processes not available through other avenues of research. For example, in the study of
development, Simon and Halford (1996a) make the following statement in support of
computational models:

Microgenetic methods involve high-density observations of children’s
behavior over an extended period of time and were found to be effective in
providing insights into behavioral changes the children exhibit. However,
the mechanisms responsible for those changes are not available to
inspection. They can only be inferred from the effects they have on the
initial competence of the children as a consequence of observed activities.
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What is missing from the microgenetic approach, but present in a

running computer model, is a physical embodiment of the actual
representations and processes with a lid one can open and look inside. This
enables the theorist to unequivocally state what the set of mechanisms are

that transform the initial representations into those that support the target
behavior. So, whereas microgenetic or other kinds of longitudinal
methodology may track the time and experience aspect of cognitive change

very closely, they do not provide direct access to candidate mechanisms of
change—for us, the objects of greatest interest. (p. 13)

In summary, a somewhat restrictive definition of a cognitive scientist is proposed:
A cognitive scientist is a person who builds cognitive-models. in_the form of computer
programs. and where these models are constrained by knowledee from any discipline
which has gathered data (qualitative, quantitative, and physical) with respect to how mental
processes may operate. The idea of constraining these computational models with
knowledge from other disciplines is important and represents the primary vehicle for the
integration of educational research and cognitive science. The more research data that
provides constraints for the model, the greater the model’s explanatory power. Building
precise cognitive models of mental processes allows researchers to go beyond the
observational level of investigation. Essentially, the work of a cognitive scientist is directed
at providing a more precise accounting of the observable data and to help deal with the
common problem of neuroscience and psychology research of being ‘data rich and theory
poor’ (Churchland & Sejnowski, 1992).

2.3 The cognitive science level of explanation

Theoreticians in philosophy, psychology, and neuroscience have postulated a wide
range of ideas for understanding the mind. Essentially these theoretical approaches can be
envisaged as representing a particular general level of explanation of the mind. Selecting the
correct level at which to postulate an explanation of the mind is a critical factor in
determining the richness and applicability of the explanation. For example, there is little
doubt that neurological and biochemical factors ultimately underlie the functioning of the
mind—at the same time this may not always be the most appropriate level to explain a given
mental phenomenon (e.g., the semantic meaning of a visual representation).



15

Two features appear to be significant when selecting a level: (a) the pragmatic
functional value of the explanation, and (b) the elegance of the explanation. Pragmatic
functional value means that the explanation embodies predictive power such that over time
causal relationships, within and between phenomena, are relatively invariant. The notion of
having an elegant explanation is subjective and depends on the context and constraints
which encompass the phenomenon being explained. The key feature of an elegant
explanation is the degree to which the explanation makes the phenomenon explicit, in other
words, understandable and simple. An example of both a pragmatic and elegant
explanation, in the context of mathematics, would be the use of row reduction to obtain a
solution to a set of simultaneous linear equations. For this type of problem the constraints
are well defined by the mathematical rules of linear algebra and the explanation clearly
identifies the phenomenon of a linear relationship among equations.* Analogously, in the
context of genetics, a high school student may be asked to work out a pea plant inheritance
problem using the simple Punnet square method. The problem is constrained by a well
known procedural methodology and by the initial parameters. The pea plant level of
explanation of inheritance is pragmatic, in that the causal relationships of pea plant
inheritance are relativity invariant and the method proves to be a good predictive model of
inheritance outcomes. Furthermore, the Punnet square explanation is elegant in that it easily
conveys the phenomenon of inheritance.

There will always be arguments over the robustness and depth of understanding an
explanation can provide. The reason for this is primarily attributable to the degree of insight
any given explanation can provide. One can always question whether a higher degree of
insight can be obtained by appealing to lower (more micro) levels of explanation at the cost
of giving up the generality of the explanation. For example, some developmental
psychologist might postulate, at a general level, that development occurs in a series of
stages (Bruner, Olver, & Greenfield, 1966; Piaget, 1954; Vygotsky, 1934/1986). Others
might take a more detailed analysis of the developmental process and postulate explanations
that developmental change is not discrete but continuous (Eimas, 1994; Siegler, 1995). Still
others may study specific changes to the neural structure of the brain to account for the
developmental process (Greenough, Black, & Wallace, 1987).

Clark (1993), a modern day connectionist philosopher, states the following with

respect to explanations:

* The solution set should be a point at which all other equation lines (planes or hyperplanes) intersect
assuming the problem is well formed (non-singular).
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Explanation, it seems, is a many-leveled thing. A single phenomenon may
be subsumed under a panoply of increasingly general explanatory schemas.
On the swings and roundabouts of explanation, we trade the detailed
descriptive and explanatory power of lower levels for a satisfying width of
application at higher levels. And at each such level there are virtues and
vices; some explanations may be available only at a certain level; but
individual cases thus subsumed may vary in ways explicable only by
descending the ladder of explanatory generality. (p. 42)

The following discussion expands upon the notion of levels of explanation as they
pertain to understanding the mind. Three major premises underlie this discussion: (a) the
influence of science and technology are major factors in pursuing a reductionist explanation
of the mind, (b) there is a co-evolution of research at each respective level, and (c) all levels
are subject to the constraining knowledge obtained at other levels. These themes are
essentially a synthesis of ideas taken from the works of Newell (1982), Marr (1982),
Churchland (1986b), and Smolensky (1988).

2.3.1 General levels: philosophy, psychology, neuroscience

Figure 3 shows the three disciplines of philosophy, psychology, and neuroscience
that have traditionally been responsible for generating theories of the mind which can be
considered to occupy different levels of explanation. Figure 3 also illustrates an
evolutionary trend toward reductionistic investigative inquiries. Reductionism is highly
correlated with the use of a formalized approach to explain a phenomenon, such as those
used in science. Essentially, reductionism maintains that a complex phenomenon (system)
can be best understood by breaking the phenomenon into its fundamental elementary parts
and studying these parts separately. The bold arrow, on the right-hand side, in Figure 3,
highlights this underlying reductionist research trend both within and between the three

disciplines.
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Figure 3: Three levels of explanations of the mind viewed as a reductionist continuum.

2.3.1.1 Philosophy

The contributions of philosophy represent the starting point from which lower level
inquiries in the areas of psychology and neuroscience can be derived and influenced.
Philosophy is deemed to be the most general level at which to discuss theories of the mind
because it relies less on the formal scientific method to substantiate many of its arguments.
On the other hand, philosophy provides a framework, often in the context of logic, from
within which certain avenues of research may be worth pursuing.

Many different kinds of philosophical theories have been proposed, with respect to
the mind, such as Cartesian dualism, materialism, and functionalism (Churchland, 1986b;
Lavine, 1984). Early philosophical ideas of the mind were grounded in epistemology and
typically resulted in subjective qualitative investigations (Gardner, 1985). René Descartes
postulated a theory of a spilt between mind and body, that is referred to as Cartesian
psychophysical dualism. According to Lavine (1984):

Cartesian psychophysical dualism may be defined as the doctrine that reality
consists of two kinds of substances, mental and physical, and that the one
kind of substance can never be shown to be a form of, or reduced to, the
other. So for psychophysical dualism, mind can never be shown to be
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derived from, or a form of, or a function of, or reducible to, matter. (p.
122)

In Descartes’ view, the mind, unlike the body, was thought to be a rational entity
that did not avail itself to decomposition in the same way as a physical entity. Descartes
viewed the act of thinking and the representation of knowledge as a logical process that
could be explained by intuition and deductive reasoning.

In contrast to Descartes many philosophers proposed an alternative philosophical
stance referred to as “materialism.” Moody (1993) describes materialism in the following

way:

...there are not two categories of things in the world [mind and body] but
only one: material, or physical, things. Everything that happens in the
universe involves physical objects. forces, and processes, and nothing
stands outside of that totality of physical interactions. For all physical
phenomena, physical causes must be sought and can, in principle at least,
be found. (p. 31)

Materialistic philosophy offers the possibility of understanding the processes of the
mind with respect to how such processes are carried out in the physical substrate from
which they are assumed to have arisen. Furthermore, without a materialistic philosophical
viewpoint, most of present day psychological and neuroscience research would be deemed
useless.

Materialism represents a class of theories, and a subclass called “functionalism”,
has direct implications for computational cognitive modeling (Memmi, 1990). This theory
states that “mental states are just functional states of a complex system” (Moody, 1993, p.
43). Functional states have a cause and effect relationship between each other. Two
systems (e.g., computer and human) can be viewed as functionally equivalent if they
process the same input and produce the same output. Functionalism has proven to be an
important philosophical perspective for cognitive modeling research using the symbolic
techniques of artificial intelligence (Pylyshyn, 1989). Memmi (1990) describes the
theoretical perspective of functionalism that underlies this symbolic modeling assumption:

..the conviction that the level of symbolic representations is the appropriate
level of description. Representations and their manipulation are thus not
only necessary but also sufficient for the explanation of cognitive processes.
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The way in which representations are implemented is basically
irrelevant, and mental operations can be carried out equally well by
computers or by brains. The usual analogy is that only software is
important, not the hardware. Physical reductionism is considered
uninteresting because it won't tell us anything worthwhile about cognitive

functions. (p. 118)

The symbolic representations referred to by Memmi and the causal relationships that can
occur between such representations is discussed in more detail in the section concerned
with symbolic artificial intelligence. Suffice it to say these symbolic representations are
realized in the rules of formal logic that are often used by philosophers to describe a
reasoning process.

The three theories, Cartesian Dualism, Materialism, and Functionalism can be
organized in keeping with the reductionist trend as illustrated in Figure 3. For example, the
use of propositional logic in conjunction with functionalist theory can be viewed as part of
this reductionist trend to decompose the human reasoning processes into a formal system,
with the prospect of making these reasoning processes explicit. The use of formal logic
makes a description of reasoning specific and reproducible (Haugeland, 1985).

2.3.1.2 Psychology
The psychological level of explanation is essentially an outgrowth of the

philosophical level (Hothersall, 1990). Psychology attempts to formalize the investigative
procedures used to study mental processes by the inclusion of scientific methods to control
the experimental approaches. A formal scientific approach to research is by its very nature
reductionist because it constrains the investigative parameters and requires that procedural
steps be identified such that the experimentation process is reproducible.s

The reductionist trend in psychology can be classified chronologically into the
following four general psychological theories: (a) introspection, (b) behaviorism (c),
cognitive psychology, and (d) cognitive science. Each manifests itself as an outgrowth of
its predecessor. Only the first three theories will be reviewed, since cognitive science was

discussed previously.

5 The chronological order of the scientific method is usually: (a) identification of the problem, (b) definition
of the problem. (c) formulation of hypotheses, (d) projection of consequences. and (e) testing of hypotheses
(Frankel & Wallen, 1993).
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Introspection of mental processes is a self-observational approach to data
collection which dominated early (pre 1900s) forms of mental investigation (Hothersall,
1990). Subjects involved in introspection experiments would be shown objects, such as a
chair, and asked to report their immediate experiences with regard to height, colour, and
structure of the chair. The idea was that an introspective researcher could gain insight into
how the subject’s consciousness might be organized (Schunk, 1996). Introspective
experimenters had to undergo rigorous training in how to conduct interviews and gather
data. Although introspection generated a wealth of intuitive data on the mind’s operations,
models based on this approach were unreliable and of little pragmatic research value.

Behaviorism grew out of psychology’s frustration with the introspective method.
Watson (1913), one of the founders of behaviorism, wrote:

Psychology as the behaviorist views it is a purely objective natural science.
[ts theoretical goal is the prediction and control of behavior. Introspection
forms no essential part of its method nor is the scientific value of its data
dependent upon the readiness with which they lend themselves to

introspection in terms of consciousness. (p. 158)

Behaviorism represents a further attempt to formalize the field of psychology by
using a more rigorous scientific approach to gather precise measurements of behavior.
Early behaviorists employed the investigative method of “Stimulus-Response™ (S-R) to
collect experimental data. In its extreme form, behaviorism claimed “thought processes are
really motor habits in the larynx” (Watson, 1913 , p. 174) and mental processes as being
habits of language. What behaviorism lacked was an explanation of mental states and
processes which accounted for these observed behaviors.

Cognitive psychology (information processing) emerged as a challenge to
behaviorism and attempts to more accurately account for mental events, representations,
and processes (Bruner, Goodnow, & Austin, 1956; Miller, Galanter, & Pribram, 1960;
Newell & Simon, 1956). Behaviorism came to be viewed as a theory which lacks
reasonable explanations for cognitive processes such as perception, attention, concept
formation, and some forms of learning. The information processing metaphor for the mind
became the dominant paradigm during the post W.W.II period and is currently the mainstay
of psychological research programs at most universities. This theory is derived from the
computer model of information processing and both the computer scientist and cognitive
psychologist talk in terms of input, output, long term memory, working memory, encoding
(representations), and so forth. Information—objects with meaning/content—are processed
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by the mental act of generating states (hypothesis) and moving through these states
(evaluating these hypothesis). Essentially, a cognitive psychologist postulates a functional
organization (system), usually outlined in the form of flow-charts, that attempts to explain
how various mental processes interact.

Much of cognitive psychology research is geared toward quantitative experimental
design and thus purports to measure some psychological phenomena, (e.g., how many
pieces of information can a person hold in working memory). In general, experimental
methods of cognitive psychology can be thought of as a coarse grain approach in the study
of observed behaviors. For example, Piaget’s classical experiments on the concept of
conservation suggest that children appear to progress through four distinct developmental
stages. More recently, information processing theories of child development have focused
on such things as memory limitations, representation of information, and transformation of
representations (Siegler, 1991). Furthermore, there appears to be a good deal of empirical
evidence to support the notion of both serial and parallel processing of information
(Massaro & Cowan, 1993). .

The three psychological theories of introspection, behaviorism, and cognitivism are
shown in Figure 3 as being organized along a top-down reductionist continuum. Each
psychological theory postulates models of observable behavior. Following the
reductionism trend, these models become increasingly more explicit with respect to their
descriptive power. In other words, such models may offer a greater level of predictive and
explanatory power with respect to the observable behavior they attempt to describe.

2.3.1.3 Neuroscience
Research indicates that the brain is an extremely complex interconnected structure

estimated to contain between 1010 to 10!2 individual neural processing units (Sejnowski &
Churchland, 1989). Broadly speaking there appear to be three major properties of brain
structure, (a) regional or functional components (modules) within which there are both
local interactions of elements within a region or function and global interactions among
elements between regions or functions, (b) learning involves structural neural changes, (c)
there are genetically pre-specified structures and operations which are relatively invariant
over time (Churchland & Sejnowski, 1992; Crick & Asanuma, 1986; Fischler & Firschein,
1987; Kolb & Whishaw, 1990; Luria, 1980; Posner, Peterson, Fox, & Raichle, 1988).
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There are many areas of neuroscienceS research such as brain measurements
(PET-scans), cellular measurements (single cell activity levels), and molecular
measurements (electrochemical synaptic connections). One promising area of neuroscience
research is that of lesioning neural structures (Sejnowski & Churchland, 1989). Lashley
(1929), was one of the first to use the techniques of surgical lesioning on the neural tissue
in rats as means of understanding their behavior. Studies of brain injured patients are
illustrative of the notion that damage to the central nervous system can supply valuable
behavioral data on mental operations (Shallice, 1988). More recently, neuroscientists have
attempted to understand the overall processes of the brain by the use of various non-
intrusive techniques, among them positron emission tomography (PET-scans).
Interestingly these PET-scans show that functionally distinguishable subprocesses (e.g.,
lexical tasks) are separately localized in the brain (Posner, et al., 1988).

In general, work in neuroscience represents a fine grain approach to the study of
structural change. For example, early researchers like Hebb (1949) argued that leaming
involved physical changes at the neural level. Greenough, Black, and Wallace (1987) have
proposed that mammalian brain development relies on two plasticity components: (a)
experience-expectant (the brain is prewired to expect certain information storage to occur
during specific points in the developmental process), and (b) experience-dependent (the
generation of new synaptic connections in response to the occurrence of environmental
events that need to be remembered). Understandably, many neuroscientists adhere to the
purely reductionist approach to understanding a psychological phenomenon. As Black

(1991) states:

the scientific concept, psychologic modularity, appears to have a
molecular, cellular, and systems reality. Subsequently we examine whether
psychologic organization and functions can be driven “down” to the
physical level. Indeed, psychology is not separable from the physical.
Psychologic modular organization arises from physical modular
organization. To wunderstand mechanisms governing psychologic
modularity, we must understand the physical modularity upon which

psychology is based. (p.21)

6 The term neuroscience refers the class of research areas which attempts to identify the link between
physical brain or neural activity and observed behavior. Subclasses include research areas such as

ncuropsychology, and cognitive neuroscience.
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Neuroscience is considered, for this discussion, to be the lowest level of
reductionism. At this level the explanation of the processes of the mind are subjected to
rigorous scientific investigation using techniques from chemistry, biology and physics.
Such theoretical investigations contribute a wealth of data on the structure and function of
the physical systems assumed responsible for mental processes such as visual perception
(Fischler & Firschein, 1987).

Figure 3 also shows connecting arrows pointing both upward and downward
between the boxes which enclose each of the disciplines. These connecting arrows
represent the flow of knowledge between each of the three disciplines. For example,
knowledge acquired by researchers at the neuroscience level can flow upward to the
philosophical level and vice-versa. Knowledge obtained from a certain discipline may or
may not have an effect on research at another level. Some researchers may choose to ignore
research findings from other disciplines because they find them irrelevant or confounding.
On the other hand, knowledge from one level may have significant influence on research at
other levels. As a result, the second perspective that Figure 3 conveys is that research at
different levels co-evolves; no one discipline is immune from the influences of the other.
Modifications to existing disciplines can result in new theories being created and older ones
disappearing. According to Churchland and Sejnowski (1992) “the hallmark of co-
evolution of theories is that research at one level provides correction, constraints, and
inspiration for research at higher levels and at lower levels” (p. 1l). To formulate an
explanation of the mind is difficult enough and disregarding results from other disciplines
only makes such an explanation less robust and more easily falsifiable. The arrows linking
the three disciplines in Figure 3 are labeled “Top-Down Bottom-Up Constraints™ to indicate
the constraining space of explanations each discipline imposes on the other.

2.3.2 Where does cognitive science fit?

As Miller, Galanter and Pribram (1960) point out, it is the dash between S-R that
required further explanation, and cognitive psychology is essentially an atternpt to posit
such an explanation. Cognitive psychology operates under two basic assumptions. First,
thought involves the concept of mental states. Second, the mind can be viewed as an
information processing system that actively processes these mental states. Figure 4 shows a
general concept map to which a cognitive psychologist would likely subscribe.
Information, in the form of external events, acts as input. This input is processed by the
information processing “black box” which produces the resulting output. The black box
can be viewed as holding processes such as short term memory, long term memory,
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working memory, knowledge representation schemes (procedural and declarative
knowledge), and executive control. Other processes assumed to be executed in the black
box include attention, perception, and language development. Black box models of
cognitive processes are usually expressed in terms of flow charts designed to describe how

the processing actually occurs.

Cognitive Psychology's
Information Processing

Black Box

Models are instantiated
and often based on
quantitative approaches (e.g.,

Factor Analysis)

Postulated mental
processes of the
mind assumed to
occur here and

are offen described

\ with flow charts.

Figure 4: General cognitive psychology paradigm
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A typical cognitive psychology experiment collects data using measurement tools
purporting to assess the underlying cognitive processes in question (e.g., visual search
reaction time). Based on a data analysis two things usually result: (a) modify or support an
existing model of processes in the black box, (b) postulate a new black box model. The
goal of such models is to provide cognitive psychologists with an element of predictive
power in their explanation of observable behavior. For example, results from a study
measuring cognitive processing skills in mathematics may allow an educational
psychologist to formulate an intervention strategy (Carr & Jessup, 1995). The effectiveness
of the intervention strategy is again the subject of another cognitive psychology experiment.

In most cognitive psychology theories an explanation regarding how cognitive
processes function usually stops at the black box level. The underlying cognitive processes
are thus made explicit only in the flow-chart sense. As Quinlan (1991) states:

...cognitive psychology [has] flourished as a discipline centred on the flow-
diagram conceptions of internal representations and processes. Work in
mainstream cognitive psychology typically dwelt on a limited aspect of adult
performance and in a rush to posit the next boxes-and-arrows model of this
aspect of cognition, many simply ignored problems about how the putative
systems might have developed. (p. 38)
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Figure 5 shows the classic and often referenced black box information processing model
developed by Broadbent (1958). At the time, use of such a block diagram was considered a
novel approach to summarizing an information processing theory (Johnson-Laird, 1988).
According to Broadbent, information is seen as flowing through channels. An overload of
information, such as too many voices being heard at the same time, results in the use of a
selective filter that focuses attention. Although Broadbent’s model has been revised based
on further experimental findings (Treisman, 1964), the use of control engineering type
flow-charts to specifically represent cognitive processes has remained unchanged to this

day.
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Figure 5: Broadbent's information processing flow chart

Based on Broadbent’s notion of sensory (visual, auditory) information processing
Figure 6 shows a recent black box model developed by Das, Naglieri, and Kirby (1994).
Das et al.’s model is used to explain their version of cognitive processing and is said to be a
diagrammatic representation of the relationship between planning, attention, and
simultaneous and successive processes (PASS). The PASS model is typical of the present
day black-box models and has recently received attention in educational psychology circles
(Languis & Miller, 1992). The Das et al. model is based on the results from factor analysis
studies and takes into account the neuropsychological work of Luria (1980). Therefore,
unlike Broadbent’s model, the PASS model considers an additional bottom-up constraint
by including evidence from the neuroscience level. This is an attempt by the PASS
developers to argue for a higher degree of validity for their model.
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Figure 6: PASS model of information processing

Model building of the type suggested by Broadbent or Das et al. suggests, based on
some experimental results, that it is highly likely that cognitive processes are present in the
dash between S-R. Furthermore, flow-chart models of this type are an obvious attempt to
further formalize our understanding by postulating relationships between specific cognitive
processes. This formalization, as means of achieving more explanatory power, is part of
the reductionist tendency of gaining greater insight into a phenomenon by breaking it into
further sub-components.

Are these black box models a satisfactory explanation of the cognitive processes
resident in the mind? For example, with respect to the Das et al. (1994) model, how do
hypothetical constructs such as “simultaneous™ and “successive™ encoding of knowledge
acually work? Over 20 years ago, Newell (1973) asked similar questions when
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commenting on a series of papers given by some of the leading cognitive psychologists
of that time (Chase, 1973). Newell stated, “this phenomenon of simultaneous versus
sequential grouping has occasioned some hundreds of papers over the intervening years
[1958-1973], in an attempt to clarify the issues (was it channel switching or not?)” (p.
290). Furthermore, Newell was also frustrated with the flow-chart approach to describing
the underlying cognitive processes. As an alternative he advocated the notion of “complete
processing models” in the form of computer simulations, whereby “theory, embodied in
the simulation, actually carries out the experimental task™ (p. 301). Newell goes on to say:

As I noted earlier, the attempts in some of the other papers to move toward a
process model by giving a flow diagram... seem to me not to be tight
enough. Too much is left unspecified and unconstrained... [and] these flow
diagrams are not sufficient to perform their tasks. That flow diagrams may
leave something to be desired as a scheme for cumulating knowledge might
be inferred from a comparison of Donald Broadbent’s two books (1958 and
1971), both of which contain flow diagrams representing what is known (at
each respective date) about short-term memory and the immediate
processor. (Newell, 1973, p. 301)

Newell’s notion of using computer modeling as a means to build more precise
models of mental processes was supported by several other researchers (Hunt, 1962;
Minsky, 1968; Nilsson, 1971; Schank, 1973). Making flow-chart models more
accountable in the implementation sense (computer program) has become an essential theme
in cognitive science. The computer is viewed as a tool that allows researchers to construct
cognitive models, where such models are often constrained by empirical results from
cognitive psychology. Therefore, computational cognitive modeling can be viewed as an
attempt to break open the information processing black box and examine the cognitive
processes from a computational perspective. It is this black box accountability process

which forms the foundation of a cognitive scientist’s work.
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Figure 7: Expanded “levels of explanation™ of the mind

Looking back on the definition of a cognitive scientist that was given earlier, the
central argument is that a cognitive scientist builds computational models of cognitive
processes. To accept this research approach, one must also accept Turing’s (1936) notion
of computability, which will be explained in some detail in section four. If one accepts the
notion that the processes of the mind can be realized computationally the next step is to seek
the appropriate level at which this explanation should reside.

Figure 7 is a modified version of Figure 3 presented earlier. Two more boxes have
been added; one is labeled “Cognitive Science” and placed between neuroscience and
psychology. The arrows pointing right connect the two most prevalent associated theories
“Symbolism™ and “Connectionism.” These theories represent further sub-levels of
explanation within cognitive science. Thus notions of levels of explanation are equally as
important within cognitive science as they are within philosophy, psychology, or
neuroscience. The top-down and bottom-up arrows, as before, show the movement of
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research knowledge between major research disciplines. Another box containing the
label “Computer Science” appears to the left of the cognitive science box.

As shown by the position of cognitive science in Figure 7, it is deemed to be a more
reductionistic approach to understanding the mind than psychology. As Sejnowski and
Churchland (1989) point out:

Assuming that there are a number of levels of organization in nervous
systems, such that cognitive science specifically addresses higher levels
whereas neuroscience typically addresses lower levels, we can acknowledge
this joint effort by saying that the goal is to figure out how the mind-brain
works. In this sense, an ultimate goal is the reductive integration of the
psychological and neurobiological sciences, and thus cognitive neuroscience
is a genuinely interdisciplinary undertaking (LeDoux and Hist 1986).
Reduction here does not entail elimination, any more than the reduction of
chemistry to physics entails the elimination of chemical principles. On the
contrary, an integrative reduction between theories at different levels can
provide insights that enrich the principles at both levels (Churchland 1986).
(p- 344)

The reasons for placing computer science to the left of cognitive science are
twofold. First, the research themes in computer science rarely have anything to do with
understanding how the mind works. In fact, most computer scientists, with the exception
of some in Artificial Intelligence, care little about understanding the mind. The second and
main reason is the impact that computer science has had on investigative procedures into
understanding mental processes. This impact can be felt within all four disciplines:
philosophy, psychology, cognitive science, and neuroscience. In this respect computer
science can be seen as a type of ‘back seat driver’ in the “mind investigation” game. For
example, few of the scientific experiments in neuroscience could be accomplished without
the aid of computer technology. PET-scans or analyzing data from a single cell experiment
would be unthinkable without the use of a computer and the associated programs. In the
field of philosophy the impact of computer science has been tremendous (Dreyfus, 1979;
Fetzer, 1991; Moody, 1993). Winograd and Flores (1987) call into question the validity of
any computational process of cognition based on the traditional philosophical stances of
hermeneutics (the study of interpretation) and phenomenology (the philosophical
examnination of the foundations of actions).
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Obviously psychology has been dramatically altered by developments in
computer science. But it is the link between cognitive science and computer science which
is the strongest. According to Pylyshyn (1989), a “principle characteristic that distinguishes
cognitive science from more traditional studies of cognition within psychology is the extent
to which it has been influenced both by the ideas and techniques of computing” (p- 51).
Without the general notion of computation of an effective procedure (a computer program)
it would be virtually impossible to talk about a field of cognitive science.

The concept of levels of explanation will be revisited in the context of symbolic and
connectionist cognitive-modeling. Selecting the correct level to model a process is
extremely important and will have direct impact on the explanatory nature of the model
(Dinsmore, 1992a).

2.3.3 Models in general

Two important but often overlooked questions should be asked. The first is, why is
it important to build models? The second is, at what level should one choose to model
something? Churchland and Sejnowski (1992) address these very questions. With respect
to the first question. models help to organize data and to postulate an explanation of the
phenomenon being investigated. Furthermore, a quantitative model is appealing because
assumptions can be rigorously analyzed as to their truth value. More importantly, models
will increase believability as they survive tough experimental tests (Churchland, 1986a).
This notion of believability is extremely important “in the pioneering days of a discipline,
when data are relatively sparse, progress is closely tied to ruling out a class of models and
hypotheses” (Churchland & Sejnowski, 1992, p. 6).

The second question regarding what level one should choose to model something,
is somewhat more difficult to answer. Deciding on the appropriate level of explanation
depends largely on the goals one is trying to achieve. If you are a philosopher it would be
highly unlikely that you would attempt to build models at the level of neuroscience.
Likewise, most neuroscientists would hesitate to argue philosophical models with
philosophers. Mendel's early ideas about pea plant inheritance might be considered a high
level explanation of heredity. On the other hand, Watson and Crick’s research on the
structure of DNA could be considered a lower level explanation of heredity. Both are
attempts to help describe the process of inheritance using entirely different approaches.
These researchers were constrained by the limits of their knowledge, techniques, and the
tools available during their investigations. What appears to be fundamentally important is
that research at higher levels should not contradict what is known at a lower level
(Sejnowski & Churchland, 1989). Mendel’s theories were developed long before Watson
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and Crick discovered the structure of DNA. In a real sense Mendel’s theory was at the
mercy of Watson and Crick’s discovery. Had something totally different been discovered
which contradicted Mendel’s observational research, our ideas regarding Mendelian
genetics would have required reassessment.

Figure 7 outlined different levels of explanations which take the form of theories. If
the ability to explain a set of phenomena means that one can describe, predict and control
such phenomena with a high degree of certainty and accuracy (Borg & Gall, 1989), then
one would assume theories of mind are backed by an array of models, all of which attempt
to do just that. For example, how should we approach building a model which makes
explicit these mysterious mechanisms embodied in Piaget’s theory of a dynamic system?
As corollaries to this: (a) What possible constraints does the model need to account for?,
(b) Where should these constraints be in the model?, and (c) How should these constraints
function in the model?

Recently, a number of individuals have advocated dynamic-modeling as a paradigm
for investigating cognitive developmental change (Howe & Rabinowitz, 1994; Thelen &
Smith, 1994). The advocates of dynamic-modeling describe this approach with terms like
chaos theory, non-linear dynamics, and self-organization (Barton, 1994). The form these
models often take are non-linear mathematical equations. A model at this level is analogous
to the general linear modeling system employed in statistics and more familiar to
educational researchers. The difference is that non-linear equations offer a more ‘powerful’
representational approach with respect to classification and should in general out perform
linear statistical regression with respect to prediction (Hecht-Nielsen, 1990).

In the context of the PASS information processing model postulated by Das et al.
(1994), suppose the linear modeling (factor analysis) is replaced with a more robust
mathematical modeling technique employed in dynamic-modeling. What is gained? Has the
level of explanation changed? The predictive power should be at least equal to or greater
than before. In other words, a change in the mathematical analysis of the data may provide
more support for the PASS model. On the other hand, the level of explanation of the
underlying phenomena has in one small sense changed, but in one large sense not changed.
The act of switching from linear mathemathics to non-linear mathemathics can be viewed as
a step toward reductionism (this is the change). Simply put, the nonlinear approach is more
exact (granular). What has not changed is our understanding of the processes
(simultaneous and successive) as outlined by the PASS model flow-charts. How these
processes might actually function still remains obscure. The point is that nonlinear
dynamic-modeling must be embedded at the level of explanation of cognitive science, in
other words, part of a computational cognitive model.



2.4 The mind as a computational entity

Theories of the mind should not take so much for granted that their content
is obscure. A useful constraint is to express them in a computable form,
because the mathematics of computation was originally developed to show
what could be computed starting from principles that are entirely transparent
(Johnson-Laird, 1988 : p. 37).

Johnson-Laird’s argument suggest that any theory of the mind should be expressed
in computational form because it makes the theory explicit. Why should anyone accept his
conclusion? This section will outline a number of early arguments that help to provide
support for Johnson-Laird’s statement.

2.4.1 Five early developments that influenced cognitive science

During the years surrounding World War IT the human mind began to be viewed as
an information processing system. The basis for this view is generally attributed to the
development of computer technology in both Great Britain and United States during the
war. The link between humans as processors of information and the mind as a
computational device is obviously quite close, as Kenneth Craik (1943) pointed out in his

book the Nature of Explanation:

My Hypothesis then is that thought models, or parallels, reality—that its
essential feature is not “the mind,” “the self,” “sense-data,” nor propositions
but symbolism, and that this symbolism is largely of the same kind as that
which is familiar to us in mechanical devices which aid thought and
calculation. (p. 57)

A number of key events occurred to help solidify the view that the mind could be
conceived as having a computational structure. The following discussion will describe five
important developments often cited in the literature. These are by no means the only
significant events but in hindsight it is easy to see their impact. Figure 8 gives a timeline of

events and individuals primarily responsible for them.
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Figure 8: Chronology of developments prior to cognitive science

2.4.1.1 Turing machine

The early work of a young British mathematician named Alan Turing (1936) is
primarily responsible for our ideas of what tasks can and cannot be accomplished by a
computing device (Barwise & Etchemendy, 1993; Fischler & Firschein, 1987). All
subsequent research on the relationship between computing and mental processes can be
traced to Turing’s original ideas on computability.

In 1936 Turing postulated the idea of a “Turing Machine,” which is functionally
equivalent to any modern day computer. Any process which can be called an effective
procedure can be realized by his machine. An effective procedure is a set of rules (e.g., a
computer program) which tells a device precisely what operations to perform in a stepwise
fashion (Fischler & Firschein, 1987).

More precisely, an effective procedure can be viewed as a computational task. A
computation is the evaluation of some function y = f(x), where x represents the input of
data and y represents (set equal to) the function’s desired output. Furthermore, x and y can
be defined to represent all sorts of things like numbers, words, symbols, objects, or
events. The function f(x) can be further decomposed into a sequence of steps. Any
computable function is one that can be computed by a program in a finite number of steps,
as a result one could refer to the function as being calculably deterministic. Therefore, if
f(x) is a computable function (effective procedure) it can be computed in a finite number of
elementary operations. A Turing machine can execute any computable function.

The Turing Machine contains two essential elements of any computer: (a) memory,
and (b) processor (see Figure 9). The Turing machine consists of a one-dimensional tape
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which is of infinite length (memory). The tape is divided into square boxes. The
machine has a read-write head so it can only read or write into each square. The Turing
machine can carry out four basic operations: (a) it can erase a 0 and replace it with 1, (b) it
can erase a 1 and replace it with a 0, (c) the read-write head can move one square left, and
(d) the read-write head can move one square right. This version of the Turing machine uses
a binary symbol structure as its means of representing information. What is important here
is the notion that simple symbols (1 and 0) can be used to form a representation of a given
concept. The letters of the alphabet could be considered an analogous type of
representational symbol system but with more symbols (Barwise & Etchemendy, 1993).

Processor

ﬂ Read-write head

Tape
Memory

Figure 9: Simple Turing Machine

The Turing machine’s instructions are controlled by a “state table” stored in rows.
Each row contains five elements which comprise a single instruction. The instructions can
be viewed as a condition action relationship and can be generalized as a rule: IF condition
THEN action. The condition is determined by two things, the state of the machine and the
symbol on the tape. The action is one of the four basic operations described above. Turing
showed that a state table could be created which would solve any problem such as addition,
subtraction, multiplication, and division. More complex problems could be represented in a
simplified form. “Think of it this way: If a given task can be specified in a finite set of
completely unambiguous instructions—also known as an algorittm—then a Turing
machine can do it” (Moody, 1993 : p. 63). In other words, this simple machine could
execute a program which is equivalent to that of any of today’s computers.

The entire program (set of instructions) of the Turing machine can be represented
by a single binary number. Thus a complete description of any Turing machine can be
provided in one number. Turing proved it possible to construct a “Universal Machine” that
could decode the binary number and thus simulate the operation of a Turing machine. A
modern day digital computer is such a universal machine and can simulate any Turing
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machine. By the same token anything that can be computed by a digital computer can

be computed by a Turing machine. Turing postulated that a simple Turing machine can
compute any computable function, but not every function is computable. Gédel (1931)
showed that there was no test to determine when a computable function would halt or
whether it would continue computing forever. Furthermore, certain computable problems
are classed as “difficult” in the sense that one would require an infinite amount of time and
space (memory) to solve them. These types of problems are referred to as “computationally
intractable™ because their solution time grows exponentially relative to the size of the
problem (Garey & Johnson, 1979).

A major notion in cognitive science is that the mind is a symbolic processing system
and that a Turing machine can also be represented as a symbolic system. The postulated
link between the Turing machine and the human mind is that they both represent symbolic
processing systems (Simon & Kaplan, 1989).

The importance of Turing’s work had a significant effect on the researchers of
1940s and 1950s. Gardner (1985) makes the following statement with respect to Putnam's
(1960) interpretation regarding the significance of Turing’s work:

...the development of Turing-machine notions and the invention of the
computer helped to solve—or to dissolve—the classical mind-body
problem. It was apparent that different programs, on the same or on
different computers, could carry out structurally identical problem-solving
operations. Thus, the logical operations themselves (the “software™) could
be described quite apart from the particular “hardware” on which they
happened to be implemented. Put more technically, the “logical description”
of a Turing machine includes no specification of its physical embodiment.

The analogy to the human system and to human thought processes
was clear. The human brain (or “bodily states”) corresponded to the
computational hardware; patterns of thinking or problem solving (“mental
states”) could be described entirely separately from the particular
constitution of the human nervous system. Moreover, human beings, no
less than computers, harbored programs; and the same symbolic language
could be invoked to describe programs in both entities. (p. 31)

2.4.1.2 Linking neural structure and computation: McColloch and Pitts

The Turing machine as described above was a fascinating theoretical device which
inspired the development of the digital computer some years later. While Turing’s focus
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was strictly one of theoretical computation, McColloch and Pitts (1943) were interested

in the link between the neural structure of the brain and computational theory. McColloch
and Pitts wondered how simple logical operations could be executed by a neuron and how
entire logical processes could be realized in networks of neurons. They developed a
representational scheme for showing how propositional logic (where statements are either
TRUE or FALSE) could be realized at the neural level. Although the logical operations they
investigated may appear somewhat simple (Boolean AND and OR), it was their analogy to
how such logical functions could be mapped to nerve cell firings which proved significant
(see Figure 10). McColloch and Pitts’ believed higher level processes could emerge out of
primitive logical events. Their ideas about neuron functionality are correlated, as closely as
possible, to their theoretical computational model of a neuron. Quinlan (1991) summarizes
McColloch and Pitts ideas regarding the properties this computational model of the neuron
should have: (a) the activity level of the neuron should be all or none, (b) in order to excite
the neuron there must be a fixed number of synapses excited during a critical time period,
(c) the only significant delay is synaptic delay, (d) an inhibitory synapse that is excited will
prevent excitation of a neuron at that time, and (e) there is no structural change among the

neurons’ interconnections.

Neuron

Compute
logical
functions

z  Output

Figure 10: McColloch & Pitts’ neuron

The all or none threshold level approach is ideal to model propositional logic where
the binary state is either true (activated) or false (not activated). McColloch and Pitts were
able to show that 14 of a possible 16 two-value propositional functions could be realized
with their simple neural structure. Their work would prove to have a tremendous impact on
psychologists interested in studying the mind in a computational form. Some years later,
Miller, Galanter and Pribram (1960) noted the following:

...McColloch and Pitts had invented a formal representation of neural nets
and used it to establish that any function that could be described logically,
strictly, and unambiguously in a finite number of words could be realized
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by such nets. That is to say, they showed that their neural nets
comprised a Turing machine. This formalization made possible some very
sophisticated analyses of neurological functions and properties even before
they were simulated by computers. The speculations about neural nets were
widely publicized and seem to have had a stimulating effect on neurology
and neurophysiology. We have every reason to expect great strides forward
in this field. (p. 49)

Whereas Turing was able to theoretically show the power of computational devices,
McColloch and Pitts were able to demonstrate how the brain, composed of neurons, could
also computationally realize logical functions (Gardner, 1985).

2.4.1.3 von Neumann

Both the work of Turing and that of McColloch and Pitts had a significant effect on
John von Neumann’s (1963) work. In 1945 von Neumann proposed a computer design
which incorporated a stored program. A stored program is one which resides within the
computer’s own internal memory. The computer could be visualized as performing
different instructions without having to be rewired by hand, which was the common
method of inputting instructions in early computing devices (Williams, 1985). The
importance of this is easy to overlook today but for the first time a computer could be
conceived as executing its own program. It now became possible, to some degree, to
separate the programming of the computer from computer physical operations. This led to
numerous breakthroughs in the development of so called “high level” computer languages.
According to Gardner (1985), it was not clear whether von Neumann realized how
powerful such systems would be in helping to solve difficult problems. Today’s
conventional computers are based on the von Neumann architecture.

The instruction set of a typical von Neumann computer included: (a) arithmetic
operations (addition, subtraction, multiplication, and division); (b) logical operations
(AND, OR, NOT); (c) comparison operations (e.g., less than or equal to, greater than or
equal to); (d) branching operations (jump from one instructional sequence to another); and
(e) data-shifting operations (move data from one set of memory locations to another).
These basic sets of instructions operate on binary representations in a rule processing
manner and give the computer its symbolic rule processing character.

Researchers now had two ways to realize the possibility of a Turing machine: (a) a
digital computer of the type proposed by von Neumann which could carry out a Turing’s
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‘effective procedure’, and (b) the neural system of the brain in the form of all-or-none
logic neurons described by McColloch and Pitts.

2.4.1.4 Linking neural structure with learning: Hebb

Unlike McColloch and Pitts who were interested in the relationship between logic
and neural structure, Donald Hebb (1949) was interested in the relationship between
psychological processes and neural structure. Hebb does make reference to some of
McColloch’s work on visual-area cells but not to cells as logical neurons. Hebb was
primarily interested in accounting for memory in terms of structural and metabolic changes
at the junctions between cells. More importantly, Hebb emphasized that simultaneous and
sequential associations are extremely important in how neural cell assemblies develop.
Hebb proposed the following law which was quickly adopted by modern day researchers
working on connectionist models: “When an axon of cell A is near enough to excite a cell B
and repeatedly or persistently takes part in firing it, some growth process or metabolic
changes takes place in one or both cells such that A’s efficiency, as one of the cells firing
B, is increased” (Hebb, 1949 , p. 62).

Hebb believed that “cell-assemblies” were the foundation for more complicated
associative networks. According to Hebb two important things happened to the brain as a
function of time: (a) the structure changed during exposure to external events in the world,
and (b) the learning capacity changed. Therefore, the brain was viewed at the neural level
as being a dynamic entity where earlier learning affects later learning.

Hebb’s ideas are important for two reasons. First he emphasized that the structure
and function of the brain, at a neural level, provided important insight into how the mind
might actually work. Second, the link between development and learning, at the neural
level, are major factors to be considered when modeling mental processes. Although Hebb
really didn’t view the mind as a computational device, the obvious link between his work
and McColloch and Pitts would later prove to be a critical piece of information for
connectionist cognitive modelers’ (Caudill & Butler, 1990).

2.4.1.5 Newell and Simon

According to Gardner (1985) a conference held at the Massachusetts Institute of
Technology in the summer of 1956 was a watershed in the development of cognitive
science. It was at this conference that the theories of “information processing psychology™
(cognitive psychology) began to take shape. Gardner (1985, p. 29) goes on to reference a
quote from Newell and Simon some sixteen years later:
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One can date the change roughly from 1956: in psychology, by the
appearance of Bruner, Goodnow, and Austin’s Study of Thinking and
George Miller’s “The magical number seven”; in linguistics, by Noam
Chomsky’s “Three models of language™; and in computer science, by our
own paper on the Logical Theory Machine. (Newell & Simon, 1972, p. 4)

The “Logical Theory Machine” was essentially a program known as “Logic Theorist.” The
goal of this program was to discover proofs to theorems in propositional logic (Newell,
Shaw, & Simon, 1959). In their description of the Logic Theorist, Newell and Simon
(1972) discuss how they employed axioms, definitions, and rules described in the Principia
Mathematica of Whitehead and Russell (1950). The program would execute an axiomatic
inference type of reasoning (deduction) and could discover a number of proofs for many of
Whitehead’s and Russell’s theorems. What is important about their work was that Newell
and Simon were able to use symbols to represent elementary facts (axioms), and rules
(inference procedures) to represent relationships between these facts. Computers couid be
shown to: (a) follow rules, (b) deduce how facts about the world affect each other, and (c)
what results when facts change. In other words, computers could be viewed as simulating
logical thinking (Dreyfus & Dreyfus, 1985, p. 53).

The use of a computer program to automate theorem-proving is the first “real” (in
the computer program sense) attempt to build a computational model of a reasoning
process. This would have a tremendous impact on the field of psychology because it
demonstrated that mental processes could be explicitly represented. With respect to Newell
and Simon’s work, Miller, Galanter, and Pribram (1960) make the following comment:

It is impressive to see, and to experience, the increase in confidence
that comes from the concrete actualization of an abstract idea—the kind of
confidence a reflex theorist must have felt in the 1930’s when he saw a
machine that could be conditioned like a dog. Today, however, that
confidence is no longer reserved exclusively for reflex theorists. Perhaps
some of the more fanciful conjectures of the “mentalist” should now be
seriously reconsidered. Psychologists have been issued a new license to
conjecture. What will they do with it? Will the new ideas be incorporated
into the existing theory? Or will it be easier to begin afresh?

A major impetus behind the writing of this book [Plans and the
Structure of Behavior] has been the conviction that these new ideas are
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compatible with, and provide extensions of, familiar and established

psychological principles. (p. 56)

The simulation of logical thinking is the central theme in the development of “symbolic
artificial intelligence” which is discussed in the next section.

Another significant development directly linked to Newell and Simon’s work was
the use of “think-aloud” protocols to investigate human subjects’ ability to solve logic
problems (Moore & Anderson, 1954). Researchers thus began to compare the results of
human experimental data on logical problem solving with the approach used in the Logic
Theorist. The link between human reasoning and machine reasoning was undeniable and
formed the first clear case where the human brain could be envisioned as an information
processing system similar to that of a machine (Newell, Shaw, & Simon, 1958).

2.4.2 Computational cognitive modeling

This section began with a quote from Johnson-Laird regarding the use of
computational models in the study of the mind. To support Johnson-Laird’s quote, the
work of several early researchers, which helped to shape the foundation for the view of the
mind as a computational entity, was reviewed. To provide a detailed account of the
intervening years between the work of Newell and Simon (1958), and Johnson-Laird’s
(1988) quote would require describing a sequence of computer programs and hardware
devices which attempt to model cognitive processes. A somewhat better approach is to
examine the two most prevalent theories of cognitive modeling: (a) symbolism (which can
be envisioned as following the research trend of Turing to von Neumann to Newell and
Simon), and (b) connectionism (which can be envisioned as following the research trend of
Turing to McColloch and Pitts to Hebb).

The connectionist approach assumes that cognitive processes can be simulated, on a
computer, by the interaction among abstract neuron-like elements. Rumelhart (1989) states
the following with respect to the connectionist research paradigm:

Our strategy has thus become one of offering a general and abstract model
of the computational architecture of brains, to develop algorithms and
procedures well suited to this architecture, to simulate these procedures and
architecture on a computer, and to explore them as hypotheses about the
nature of the human information-processing system. We say that such
models are peurally inspired, and we call computation on such a system
brain-style computation (p. 134).
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The intent of connectionist modelers is to replace the traditional computer metaphor (serial
processing system) view of information processing psychology with the brain metaphor
(parallel processing system). Both the computer metaphor and the brain metaphor can be
thought of as different levels at which to seek explanations for cognitive processes. In other
words, they represent different cognitive-modeling approaches (Dinsmore, 1992b).

The computer metaphor level is often referred to as “symbolic cognitive modeling.”
Symbolic cognitive models are usually constructed as hierarchical rule-based computer
programs (Newell & Simon, 1972).7 The program manipulates strings of symbols (input)
in a serial fashion to produce output. The symbols are discrete objects like the letter “A”
(i.e., there is no notion of an approximate representation for the letter A). The rules, which
manipulate symbols, are almost always preprogrammed by hand as opposed to being
learned. Furthermore, the symbolic level of explanation presents a definite distinction
between the hardware and software. In other words, symbolic representations allow
cognitive processes to be abstracted to a functional level independent of the hardware on
which they are implemented. This means that the biological neural architecture, from which
higher level cognitive processes must emerge, is of little or no concern for symbolic

cognitive modeling (Simon, 1992).
It seems somewhat fitting to end this section with a final comment from

Johnson-Laird (1988), with whom the section began:

Students of the mind do not always know that they do not know what they
are talking about. The surest way to find out is to try to devise a computer
program that models the theory. A working computer model places a
minimal reliance on intuition: the theory it embodies may be false, but at
least it is coherent, and does not assume too much. Computer programs
model the interactions of fundamental particles, the mechanisms of
molecular biology, and the economy of the country. (p. 52).

"Traditionally the field of artificial intelligence is based on the use of symbolic level explanations of
intelligent phenomena. e.g., a computer program which plays chess. As a result, educational researchers,
applying artificial intelligence techniques to computer-based instructional systems, have almost entirely
relied on the symbolic cognitive-modeling techniques (Ohlsson, 1988; Wenger, 1987).
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2.5 Symbolism

The traditional approach to modeling cognition by computer simulations is referred
to as symbolic artificial intelligence (symbolism). Two main tenets are central to this
modeling approach: (a) the notion of symbols as a form of representation, and (b) the
computer architecture as a metaphor for the brain. Essentially a symbol is something which
stands for something else. For example, 3 is a symbol which represents the numeric
concept of the quantity 3, while dog is a complex symbol which represents a physical class
of objects. The basic idea is that a symbol designates something. According to Newell and
Simon (1976) “symbols lie at the root of intelligent action, which is, of course, the primary
topic of artificial intelligence” (p. 114). In Newell and Simon’s (1972) view, it is the
computer’s ability to interpret symbols and symbol structures that allows for the
instantiation of intelligent behavior, human problem solving to be specific, on a physical
computing device. Furthermore, they postulate the abstract idea of a physical symbol
system which is somewhat analogous to physical computer architecture or von Neumann
architecture. A physical symbol system consists of the following components: (a) the
means to store symbols and symbol structures (expressions); (b) a set of processes to
manipulate the symbol structures located in memory; (c) a means of controlling the
interpretation for a given symbol structure, (usually in a sequential manner); and (d) a way

of dealing with input and generating output.

A system which can understand a given symbolic representation can be considered
a physical symbol system. Words on paper would not be a physical symbol system even
though they are syntactically made up of symbols and can be interpreted by the reader as
having semantic content. Readers are considered to be the physical symbol system because
they supply an interpretation to the input of words (symbols).

Two problems exist in postulating how the computer would carry out a similar
interpretation process. First, the computer must have a set of rules that would operate on
the symbol structures contained on the paper, i.e., words and sentences. This set of rules
would be the program which defines how the computer would behave in the context of
reading this paper. Where does such a program come from? According to Newell and
Simon (1972) “as inductive scientists, we must discover this program in order to describe a
human solving a problem” (p. 31). Second, the computer must have a set of primitive rules
to begin the interpretation process. The complete set does not have to be present and the
primitive set can be enhanced as a function of the program the computer actually interprets.

In keeping with this theme, Newell and Simon (1976, p. 116) postulate The

Physical Symbol System Hypothesis, that simply states, “a physical symbol system has the
necessary and sufficient means for general intelligent action” (p. 116). What they believe is
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that any system which demonstrates intelligent behavior can be shown, at some level of
analysis, to be a physical symbol system.

Overall the two most prevalent symbolic modeling approaches are: (a) logic based
(i.e., represent and manipulate symbolic structures using formal logic syntax and logical
inference procedures); and (b) rule based or production systems (i.e., represent and
manipulate symbolic structures by satisfying condition-action rules). The two approaches
are closely related. In logic based systems, propositions (true or false) are stated with
respect to relationships in the real world, such as “New York is a dangerous place.” This
proposition can be given symbolic designations and inference procedures (e.g., deductive
reasoning) could be applied to manipulate symbolic structures so that truth relationships are
preserved (Dinsmore, 1992b). The following deductive reasoning approach could be

implemented given this simple symbolic structure:

city(New York)
city(X) -> dangerous(X)

thus by deductive reasoning X is assigned the value New York and it follows that:

dangerous(New York)

meaning, New York is dangerous. This piece of knowledge could then be added to the
overall knowledge base of the system.

A production system consists of a set of rules (symbolic structures) called
productions which are reducible to logical relationships. Productions consist of a
condition-action relationship that defines a piece of problem-solving knowledge. The total
set of rules in a production system is referred to as the system’s rule base. Production
systems usually contain an initial set of facts (truths, givens). The total set of facts in a
production system is referred to as the system’s fact base. In somewhat more familiar
terms, the rule base can be considered as procedural knowledge and the fact base as
declarative knowledge. The total set of rules and facts form a substantial part of the
production system’s knowledge base (i.e., its knowledge representation scheme). The
production system works by interpreting rules sequentially whereby the rule interpretation
process is viewed as the inference engine which drives the system towards a solution state.
[f the condition matches some symbolic structure an action will happen that manipulates a
symbolic structure. For example, using the following condition-action rule:



Condition Action

[F city(X) THEN dangerous(X)

would add the dangerous(X) fact to the system’s knowledge base, where X can be
instantiated to any appropriate symbolic type. For example, X can be from the class of city
types and the symbol structure “New York™ would represent a valid instantiation for

variable X.

2.5.1 Symbolic level of explanation

In the classical view of symbolism both minds and computers operate on
representations that are symbolic. Pylyshyn (1989 : p. 57) summarizes the classical view as
having the following three distinct levels of organization:

1. Knowledge level: How knowledge is used by either human or computer to
achieve goals.

2. The symbol level: The structure of semantic knowledge in its symbolic form.

3. Physical level: For the system to function it must be realized in a physical form
either biological or as a computer.

These levels define the cognitive architecture of the system and closely resemble Marr’s
(1982) three levels discussed in the section on connectionism.

The relationship between the knowledge level and symbol level is very important. It
may appear that the medium of symbolic computation is a practical approach to knowledge
representation given the typical von Neumann computer. Unfortunately the symbolic level
of analysis doesn’t describe what symbolic structures should be used. More importantly,
the combination of symbolic structures together with logic may appear to be a good way to
represent and reason about certain aspects of the world, but neither symbolic structures nor
logic describe how to organize one’s knowledge or how to reason when solving a problem
(Jackson, 1990 : p. 131). In Newell’s (1982) classic paper entitled the Knowledge Level
he proposed the following hypothesis:

The Knowledge Level Hypothesis. There exists a distinct computer systems

level, lying immediately above the symbol level, which is characterized by
knowledge as the medium and the principle of rationality as the law of
behavior. (p. 99)
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Here the concept of rationality refers to the idea that intelligent systems in pursuit of
satisfying goals will take known actions that help to attain such goals. The idea is that
“knowledge” is the vehicle for moving through various states to achieve this goal. In this
sense knowledge is characterized by what it does and not how it is represented. Thus the
knowledge level provides the capability to constrain the space of possible solutions within
the knowledge representation reasoning framework, such that a system can achieve its
goal. The relationship between the knowledge level and the symbol level is best stated in
the following quote by Newell (1982):

Knowledge, the medium at the knowledge level. corresponds at the symbol
level to data structures plus the processes that extract from these structures
the knowledge they contain. To ‘extract knowledge’ is to participate with
other symbolic processes in executing actions, just to the extent that the
knowledge leads to the selection of these actions at the knowledge level.
The total body of knowledge corresponds, then, to the sum of the memory
structure devoted to such data and processes. (p.113)

In other words, knowledge, represented by symbols, is manipulated during the reasoning
process of problem solving such that a symbolic solution is formed. Thus the reasoning
process is embodied in the symbols and their manipulation during problem solving.
Finally, symbolic modelers view the actual neural level of analysis of cognition as
providing little insight into how models should be built. As Simon (1992) points out,
“explanation of cognitive processes at the information processing (symbolic) level is largely
independent of explanation at the physiological (neurological) level that shows how the
processes are implemented” (p. 153). The idea is that higher level theories of cognition
represent parsimonious explanations of lower level neural details. In other words, it is still
possible to carry out a reduction of abstract symbolic explanations to the neural level of
explanation. According to Simon (1992) this means that research on cognition “does not
have to stand still with breathless expectation until neurophysiology completes its work... it
can proceed with its task of explaining thought processes at the level of symbol systems”

(p. 153).

2.5.2 General features of the symbolic approach

A number of recent theories about cognition that are grounded in symbolic
modeling are candidates for what Newell calls “unified theories of cognition,” for example,
Newell's SOAR (1990) or Anderson’s ACT* (1990). Such theories could fill volumes
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with details and discourage even a veteran researcher from further investigation. Bower
and Hilgard (1981) cite the following quotation by W. R. Reitman (1964) which is still
applicable some 30 years later for those who want to explore the details of either Newell's
or Anderson’s modeling approach:

The description of a recent version of the Newell, Shaw, and Simon
General Problem-Solving program (GPS) runs to more than 100 pages and
even so covers only the main details of the system. Furthermore, the
discussion assumes a knowledge of Information Processing Language V
(IPL-V), the computer language in which it is written. Finally, the
appendix, which simply names the routines and structures employed, takes
another 25 pages. Unless one is familiar with similar systems, a thorough
grasp of the dynamic properties of so complex a model almost certainly
presupposes experience with the running program and its output. (p. 4)

As a result, understanding a given cognitive modeling approach depends on a given
problem context, knowledge domain, representation scheme (e.g., semantic net,
production system, or logical inference) and to some degree the computer language used to
implement the model.

The following two assumptions are made in order to simplify the explanation of the
symbolic approach: (a) the context is that of solving a problem, and (b) a rule-based
approach is employed as the primary vehicle for knowledge representation. One popular
approach advocated by Newell and Simon (1972) is called the means-ends analysis to
problem-solving. The central idea is that any problem solving task involves a start state and
a goal state. Every step, from start to goal, involves reducing the distance between the start

and the goal (see Figure 11). The approach to problem solving is then one of moving
through a series of sub-goals, often called a search space in the anificial intelligence

literature, to reach a goal.
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Goal State

Figure 11: Typical search space

Problem-solving involves the application of knowledge to prune the size of the
search space down to a manageable size and to construct a path from the start to the goal.
For example, imagine a robot that must navigate through a maze filled with obstacles. The
robot begins at one end of the maze with the goal of getting out. Each step in the search for
the exit can be viewed as representing a state in the robot’s search space. The possible
number of states will depend on many factors, like the size of the maze, number of
obstacles, complexity of the maze and so forth. The means-ends approach to solving this
problem would suggest that with every step the distance between the ‘start state’ and the
‘goal state’ would be reduced. This would involve the robot having a comparison measure
such as the current distance from its position to the goal. A simple measure of distance is a
straight line between two points. The robot would, at each step in the search space compare
the new current distance to that of the old current distance to see if it had been reduced.

In essence the robot’s state space search strategy is very simple and based on three
1deas: (a) starting state; (b) termination test, that is, has the goal been reached; and (c) set of
operations that can be applied to move from state to state. One of the key factors that can
greatly influence the effort required to solve the state space search problem is the selection
of a good representation. Suppose we have the following problem; a child is in a room
containing a chair and a bunch of cookies hanging from the ceiling just out of reach. Given
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these simple constraints what set of actions would the child take to get the cookies?8
The answer appears to be relatively simple, the child walks over to the chair, pushes it
under the cookies, climbs on the chair, and grabs the cookies. There is a start state (the
child is in some position in the room) and a goal state (the child has the cookies). The state
space is any other possible states between the start state and the goal state. What would
these other possible states be? The child could at any time walk anywhere in the room, that
alone would generate an infinite number of states in the search. To analyze this state space
search problem we require a more formal representation of the problem. A simple method
would be to constrain the number of possible actions the child could carry out. For
example, the following four actions would be sufficient: (a) move to another room location
{MoveTo}, (b) push the chair to a new location in the room {PushChair}, (c) climb on top
of the chair {ClimbChair}, (d) grab the cookies {GrabCookies}. The bracketed terms
formally define the operators for each action.

At the start state, assuming the child is not standing by the chair, the set of possible
operators the child can apply consists of one {MoveTo}. By applying the MoveTo operator
the child can change her physical location in the room to another position. One could
imagine there could be an infinite number of positions in a room. Assuming the child uses
the MoveTo operator and goes to the chair, two other operators are added to the set of
possible operators {MoveTo, PushChair, ClimbChair}. The child can now move to
another location (apply the MoveTo operator) or push the chair to a new location (apply the
PushChair operator) or climb up on the chair (apply the ClimbChair operator). If the child
pushes the chair underneath the cookies then all operators are available {MoveTo,
PushChair, ClimbChair, GrabCookies}. The child is now in a position to climb the chair
and grab the cookies. Figure 12 shows the simple state space required to solve this problem

given our constrained representation of operations.

MoyeTo

room
ocatio

ClimbgChair

MoveTo ClimbChair GrabCookies

GrabChokies

Figure 12: State space search for the child and cookie problem

8 This problem is very similar to the *Monkey and Banana” problem see Nilsson (1971).
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The following state table (see Table 1) could be used to map out the possible states.

Table 1: State table of child and cookies problem

State Operator Location of Location of On top of chair | Has cookies
applied child chair

0 MoveTo a room location  a room location i No No

I MoveTo a room location { a room location i No No

n GrabCookies a room location { a room location § Yes Yes

Writing the computer model of this problem simply involves specifying the rules
required to get the cookies. The important point here is that knowledge required to specify
the symbolic structure of the rules and their execution, would constitute the problem
solving algorithm. Such knowledge is said to reside at the knowledge level (Newell,

1982).

2.5.3 Heuristics

A variety of methods have been employed to search a given state space for possible
solution states. For example, in the child and cookies problem it appears easy to see, given
the problem context (a room, a child, a chair, cookies hanging from ceiling), that the
solution is obvious. That is, if the child knows that pushing the chair undemeath the
cookies creates a situation whereby she can stand on the chair and grab the cookies then the
solution is straightforward. Suppose, on the other hand, the child is blind. She may still
possess the knowledge that pushing the chair underneath the cookies would allow her to
reach the cookies, but to accomplish this she first has to locate (search) the chair, then push
it undemeath the cookies (search), then stand up on the chair (again this is a search because
for every new position she pushes the chair she stands up to feel if the cookies are there)
and finally grab for the cookies. The number of possible states in the search space could
grow very large before the child got the cookies. What the child requires is some “rule of
thumb” (i.e., a heuristic for cutting down the search space).

Returning to the problem of the robot navigating the maze of obstacles, assume the
robot is blind. How could it be guided to search more efficiently? One approach is to give
the robot a heuristic to apply to help prune the number of states. For example, a very
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simple heuristic called hill-climbing involves applying a function to determine how well

the search process is going (Luger & Stubblefield, 1989). This would involve generating a
state(s) in the search (the set of positions the robot could move to based on a given location
in the room) and then evaluating the positions with respect to: (a) if the position is the goal
state then quit; or (b) if any state in the set of possible states is better than the current state,
select that state (i.e., move to that position). The problem with hill climbing is that one may
encounter a Jocal maxima on route to the goal. At a local maximum the robot has moved to
a point in the maze where no further positions exist which are better than its current
position and the goal state has not been reached. To solve this problem a list must be kept
of the previous states (memory) which the robot could return to and resume a different
search path. The best approach would be for the robot to return to a state which it had not
visited but that represents the next best state. In the case of the blind child trying to find the
cookies, one possible heuristic might be “directional sense of smell.” This might help her to
find the cookies but finding the chair will still prove difficult. If no heuristic is available the
child will be left with little alternative but to carry out an exhaustive search of the room.

2.5.4 Expert systems

State space search is a valuable conceptual device of symbolic modeling. Much of
the research work in artificial intelligence really amounts to developing better search
strategies in specific problem domains like medical diagnosis. The area of expert systems
research involves making domain knowledge explicit in an attempt to prune the number of
states during search (Jackson, 1990; Luger & Stubblefield, 1989).

Expert systems are required, using their own knowledge or in conjunction with
input from the user, to solve either part or all of a problem. Jacob, Gaultney and Salvendy
(1986) identify two important questions when considering any expert system for use in
problem solving: (a) How close does the system’s decision-making (reasoning) outcomes
approximate those of the expert? (b) How reliable is the knowledge in the knowledge base?

With respect to the first question, often there is a vast amount of knowledge the
expert must assess before coming to a conclusion. The expert can often quickly eliminate
irrelevant information and reduce the problem “search space” to the most relevant set of
alternatives. This process of efficiently pruning the problem search space has proven to be
a difficult task for expert system designers. For example, early systems like MYCIN
(Cendrowska & Bramer, 1984) used a combination of heuristics or certainty factors
(mathematical calculations), and both rule and premise ordering to solve the search space
pruning problem (Clancey, 1983). Expert systems like R1 (McDermott, 1982) prune the
search space with each step toward the goal, but no backtracking is allowed: as a result, the
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path from initial state to goal may not be optimal. R1 also requires that all information
must be present at the initial state for it to generate a solution path. The DENDRAL system
(Buchanan & Feigenbaum, 1978) used a weak method, “generate-and-test”, along with
input from the user, to prune the search space. Davis (1980) proposed a difficult to
implement, “meta-knowledge™ reasoning strategy to deal with problems containing vast
amounts of knowledge sources. According to Jacob et al. (1986), “these efforts to achieve
decision-making efficiency in expert systems are similar to selective perception which
humans use to evaluate subsets of the large volume of data ” (p. 136). This implies that the
reasoning strategy employed by many expert systems may be subject to the same biases
associated with deductive reasoning (e.g., confirmation bias). As Evans (1989) states, “the
major cause of bias in human reasoning and judgment lies in factors which induce people to
process the problem information in a selective manner” (p. 19).

The second question indicates that decisions from an expert system can only be as
good as the knowledge base from which they are derived. Essentially, this means both the
procedural and declarative knowledge must be “complete” and “unbiased” (Jacob, et al.,
1986). The creation of complete and unbiased knowledge is difficult given that scientists
often construct different points of view, even when exposed to the same evidence (Carrier
& Wallace, 1989). Furthermore, in designing an expert system, the knowledge engineer
(KE) must acquire the “expertise” from the subject matter expert. If the KE fails to identify
certain biases of the expert, then these biases will be incorporated into the system.
Obviously, there is a probability these biases may degrade the performance level of the

expert system and thus result in error (Silverman, 1992).

2.5.5 Bias in human reasoning

One problem with modeling cognition based on logic is that humans exhibit a good
deal of bias during problem-solving tasks. For example, Wason’s (1966) selection
reasoning task is a classic demonstration of how errors in human’s deductive reasoning
strategy may arise due to confirmation bias—which is the tendency to seek evidence to
confirm one’s theories (Evans, 1989). Although the task appears at the outset to be simple,
the majority of subjects propose an incorrect solution. In this problem task subjects are
shown a set of 4 cards lying on a table; each card has a capital letter on one side and a
number on the other. Two cards are lying with their letters face up (letters A and D), while
the other two are lying with their numbers face up (numbers 3 and 7). The subjects are then
told that the experimenter has the following rule in mind: “IF there is an A on one side of
the card, THEN there is a 3 on the other side of the card.” The subjects are asked to
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determine which cards need to be turned over to find out whether the rule is true or
false. Wason (1966) found that most subjects would say either the A card alone, or both A
and 3 cards. The correct answer is A and 7 or all four cards, depending on the
interpretation of the problem. Figure 13 shows the logical combination associated with each
card where the rule is of the general form “If p then q.”

Facing
Sides A D 3 7
p -p q -gq
VAN /\ /\ /\
sides q q q =q ) -p p -p
Evaluations T F ? ? T 9 F 9

Figure 13: The logical structure and possible consequences of IF p THEN q are associated
with the face up cards A, D, 3, and 7 (boxes). Adapted from Evans (1989) and where T
(true), F (false), ? (irrelevant), and - (not).

In this form p represents A and —p represents anything other than A (i.e., not A)
and q represents 3 and —q represents any number other than 3 (i.e., not 3). To solve the
task one must realize that the rule will be false if A is with a number other than 3 and that it
is necessary to show any condition which might make this condition false. Notice in Figure
13 that only two cards lead to a false result p (card showing A) and —~q (card showing 7).
Wason (1966) concluded that subjects are exhibiting confirmation bias because their errors
suggest they were finding evidence which *“confirms” rather than “disconfirms” the rule.
Figure 13 clearly shows that card A and card 3 (i.e., p and q) lead to true, while any card

combination containing -p is irrelevant (?).

2.6 Connectionism

In recent years there has been an explosion in the use of cognitive modeling
techniques employing connectionist architecture. Schneider (1987) suggests that
connectionism may represent a paradigm shift for psychological researchers, similar to the
move from behaviorism to cognitive psychology. Connectionism goes by several names:
neural networks, parallel distributed processing (PDP), and auto-associative memory.
Connectionist modeling views information processing as occurring through the interaction
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of a large number of simple processing units linked together in a network architecture
(Quinlan, 1991). These links between processing units contain weights which specify the
strength of the connection and represent the system’s stored knowledge. Knowledge can be
viewed as distributed throughout the network in the form of weights. The network typically
learns by processing examplars (input) paired with desired output and modifying the
weights through the use of an error-correcting algorithm. Essentially the network, once
trained, can provide the desired output for a given input.

From a general perspective connectionism offers the possibility of modeling
cognitive processes based on the notion of “biological plausibility” (Rumelhart, 1989).
Biological plausibility refers to using computational models that have brain-like neural
network architecture. In keeping with this brain-like metaphor, processing units in a
connectionist network correspond to cell neurons. The electrochemical activation potential
in a neural cell corresponds to the mathematical activation value of a connectionist
processing unit. The connections between processing units correspond to synapses and
connection weights to synaptic strengths. Underlying this formalism the brain is perceived

as a dynamic functioning system based on locally-associated cells, each of which is
assigned a specific property (Luria, 1980). This means that every behavioral or cognitive
process is the result of a coordination of many different components in localized regions of

the brain all dynamically interacting.
2.6.1 Connectionist level of explanation

2.6.1.1 Marr’s view

According to Marr (1982), any levels of explanation of a complex information
processing system (IPS) should be related so when viewed holistically they comprise a
cohesive structure. Thus, Marr’s is a general approach applicable to either symbolic
(Pylyshyn, 1989) or connectionist modeling (Dawson, in Press). Marr proposed three
levels of analysis a cognitive scientist could employ when attempting to formulate an

explanation of an information processing problem (see Table 2).

Table 2: Marr's Computational Levels of Analysis

Computational theory

Representation and algorithm

Hardware implementation

What is the goal of the
computation, why is it
appropriate, and what is the logic
of the strategy by which it can be
carried out?

How can this computational
theory be implemented? In
particular, what is the
representation for the input and
output, and what is the algorithm
for the transformation?

How can the representation and
algorithm be realized physically?
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Two key concepts are important for understanding the three levels: (a) representation, and
(b) process. According to Marr, “a representation is a formal system for making explicit
certain entities or types of information, together with a specification of how the system
does this” (p. 20). For example, the alphabet is a representation (symbols) and the
specification (rules) for putting letters together into words comprises a formal system. Marr
restricts the meaning of process to “machines that carry out information processing tasks”
(p. 22). The description of process involves the relationship between the three levels of
analysis. One begins by analyzing the problem from a computational perspective, meaning
a broad outline of what and why the IPS is carrying out a given task. The second level
involves the how level of analysis. Essentially this means, given some representation like a
dot pattern that represents the letter A, what algorithm might be used to recognize this
pattern? The last level is simply, on what platform (physical instantiation) should this
algorithm be implemented?

Marr’s perspective is a top down approach to problem decomposition often used by
computer scientists, that is, break the problem into smaller and smaller sub-problems. That
being the case Marr believes that explanations for certain phenomena may only be available
at one or two of the levels. For example, findings from neuroscience are directly tied to the
physical properties that occur at the cellular level.

There are various interpretations to Marr’s theoretical approach to understanding an
IPS. Marr himself held the perspective that the computational level was the most important
in understanding such a system. In other words, “an algorithm is likely to be understood
more readily by understanding the nature of the problem being solved than by examining
the mechanism (and the hardware) in which it is embodied” (p. 27). In contrast the
following statement made by the connectionist modelers Rumelhart and McClelland
(1986¢) emphasizes the importance of the implementation level in modeling:

We believe that PDP models are generally stated at the algorithmic level and
are primarily aimed at specifying the representation of information and the
processes or procedures involved in cognition. Furthermore, we agree with
Marr’s assertions that “each of these levels of description will have their
place” and that they are “logically and causally related.” Thus, no particular
level of description is independent of the others. There is an implicit
computational theory in PDP models as well as an appeal to certain
implementational (physiological) considerations. We believe this to be
appropriate. It is clear that different algorithms are more naturally
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implemented on different types of hardware and, therefore, information

about the implementation can inform our hypotheses at the algorithmic level.

[underlining added] (p. 122)

Clearly, Marr’s top-down approach to understanding information processing
functions may not be the starting point for uncovering representations and algorithms.
Many recent connectionist modelers have doubts as to whether Marr’s levels of analysis is
appropriate given the brain levels of organization (Churchland & Sejnowski, 1989). That
being said, any algorithm must still be capable of realizing the what and why of the

computational level.

2.6.1.2 Smolensky’s view

Unlike Marr, who approaches issues of level of analysis from a general IPS
perspective, Smolensky (1988) is more specific. Smolensky suggests that cognitive
modeling can be viewed at three levels: (a) symbolic, (b) subsymbolic (connectionism), (c)
neural level (brain). The subsymbolic level is viewed as being much closer to the neural
level than is the symbolic level. In Smolensky’s view the symbolic approach represents too
high a level of abstraction on which to model cognition. The basis for his argument stems
from the fact that symbolic models “have taken structure from the syntax of formal
languages, and their content from the semantics of natural language” (p. 4). Knowledge
(rules and facts), formalized in linguistic structures and represented by symbols, is viewed
as cultural knowledge. At one level humans are considered to be conscious rule interpreters
that sequentially process this cultural knowledge. “In short, when people (e.g., novices)
consciously and sequentially follow rules (such as those they have been taught), their
cognitive processing is naturally modeled as the sequential interpretation of a linguistically
formalized procedure” (p. 4). Smolensky argues that one problem with formalizing
knowledge symbolically is that it offers a poor representation for an individual’s “intuitive”
knowledge. Facts and rules are thought of as explicit knowledge, while intuitive
knowledge is viewed as implicit. For example, novice versus expert problem solving is not
just a matter of the experts having more rules and facts (explicit knowledge) at their
disposal. If that were the case, creating a reasonably good Expert System would be far less
difficult than it is (Jackson, 1990).

Smolensky suggests that the subsymbolic level is a more appropriate way to model
intuitive thought because it is based on sets of dynamic continuous variables (weights) and
nonlinear equations (activation equations). Subsymbolic systems are thus continuous
whereas symbolic systems are viewed as discrete systems. The nonlinear approach to
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knowledge representation appears to capture a part of the “nebulous™ reasoning space
between two discrete rules. As a result, subsymbolic systems subsume the symbolic, that
is, a symbolic system is reducible (within a degree of approximation) to a subsymbolic
system.

The relationship between the neural level and the subsymbolic level is addressed by
Smolensky in the following two ways: (a) syntactically, (b) semantically. From a semantic
perspective there is little that can presently be said because so little is known about the
relationship between higher cognitive functions and neural structure. In this sense,
relatively precise subsymbolic modeling (i.e., closer one-to-one mappings between brain
and the model) of higher level cognitive functions (e.g., language) is still far from being a
reality. Therefore, if one views the subsymbolic model’s architecture (syntactic description)
as “well-suited” for describing general neural processes, than “the best subsymbolic
models of a cognitive process should one day be shown to be some reasonable higher-level
approximation to the neural system supporting that process” (p. 10). This is much like
Mendel’s explanation of pea plant inheritance being a reasonable approximation of the
inheritance model postulated much later by Watson and Crick. Smolensky provides a
general comparison between the brain structure and the subsymbolic paradigm (see Table
3). The “+” symbol indicates the two systems closely approximate one another, the *“-”

symbol indicates a weak approximation.

Table 3: Brain vs. Connectionist model

Cerebral cortex Connectionist dynamical systems

State defined by continuous numerical variables | +

(potentials. synaptic areas....) (activations. connection strengths)

State defined by continuous numerical variables

State variables change continuously in time + State variables change continuously in time
Interneuron interaction parameters changeable; seat | + Interunit interaction parameters changeable; seat of
of knowledge knowledge

Huge number of state variables Large number of state variables

High interactional complexity (highly
nonhomogeneous interactions)

High interactional complexity (highly
nonhomogeneous interactions)

Neurons located in 3-d space

have dense connectivity to nearby neurons;

have geometrically mapped connectivity to distant
neurons

Units have no spatial location
uniformly dense

connections

Synapses located in 3-d space

Connections have no spatial location

Distal projections between areas have intricate
topology

Distal projections between nodes pools have simple
topology

Distal interactions mediated by discrete signals

All interactions nondiscrete

Intricate signal integration at single neuron

Signal integration is linear

Numerous signal types

Single signal type
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In sum, Smolensky helps to clarify the relationship between traditional Al symbolic
techniques, connectionist modeling techniques, and the brain’s actual implementation.
Essentially this provides a degree of justification relative to the position occupied by the

connectionist level of explanation in Figure 7.
2.6.1.3 Churchland’s and Sejnowski’s view

It would be very convenient if we could understand the nature of cognition
without understanding the nature of the brain itself. Unfortunately, it is very
difficult if not impossible to theorize effectively on these matters in the
absence of neurobiological constraints (Sejnowski & Churchland, 1989, p.

343).

Humans often build models based on observations of real world phenomena and in
the process often come to a better understanding of the phenomena. A classic example is
the airplane that models the flying capabilities of creatures like birds. Humans can’t fly like
birds but can observe birds in action, thus they realize that flight is possible, and then
attempt to build a flying device. In order to fly, a bird must deal with the constraints of
nature, for example gravity and air friction. Early attempts to build flying machines
produced devices which had no more chance of flying than humans would if they just
started flapping their arms. What was needed was the right level of representation
(explanation) which satisfies enough (minimum set) of the constraints to get the flying
device off the ground. An understanding of these constraints can often be expressed in
terms of mathematical equations that help to predict behavior (e.g., Bernoulli’s equations
that are often used to describe the flow of air over a wing, or Newtonian laws of gravity),
and allow for the designing, building, testing, and refining of models.

Computational models that employ the brain type architecture as a metaphor are
crude attempts to model cognitive processes by incorporating bottom-up constraints from
the field of neuroscience. As Churchland and Sejnowski (1992) state, “emergent properties
[such as vision or cognition] are high-level effects that depend on lower-level phenomena”
(p. 2). Furthermore, “unless our theorizing is geared to mesh with the neurobiological data,
we risk wasting our time exploring some impossibly remote, if temporarily fashionable,
corner of computational space” (Churchland & Sejnowski, 1989, p. 45).

To emphasize this point Churchland and Sejnowski (1992) provide an excellent
example from the work of Selverston and Moulins (1987) who did extensive research on
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the stomatogastric ganglion of the spiny lobster. They thoroughly studied all 28
network neurons responsible for muscular control of the teeth of the gastric mill which
grinds food during digestion, and compiled a detailed description of the electrochemical and
connectivity patterns of the 28 neurons. Stomatogastric ganglion research is well
documented in neurobiology, and if the purely neuroscience approach to understanding a
phenomenon works anywhere, one would expect it to work here (Churchland &
Sejnowski, 1992).

The spiny lobster’s network of neurons produces a muscular rhythmic pattern
during the food grinding process. What appears to be lacking is a complete understanding
of how the network functions holistically to generate the rhythmic pattern. In other words,
somehow all the neurons in the network function together to produce a rhythm or change a
rhythm under various biochemical states. So while overall properties of the network may
rely on specific properties of individual neurons it appears to be combinations of these
properties that account for the complex dynamics of the system. “What the stomatogastric
ganglion seems to be telling us is that we need to figure out the interactive principles
governing the system, and that although interactive hypotheses should be constrained by
microlevel data, their job is to characterize higher level features™ (Churchland & Sejnowski,
1992, p. 5). Churchland and Sejnowski conclude as Marr did that microlevel data are
necessary to understand the system but not sufficient. As Marr’s (1982) states:

There must exist an additional level of understanding at which the character
of the information processing tasks carried out during perception are
analyzed and understood in a way that is independent of the particular
mechanisms and structures that implement them in our heads. This was
what was missing—the analysis of the problem as an information
processing task. Such analysis does not usurp an understanding at other
levels—of neurons or of computer programs—but it is a necessary
complement to them, since without it there can be no real understanding of

the function of all those neurons. (p. 19)

Selverston (1988) postulates a computational neural network model as a way to
explain the overall rhythmic patterns of the stomatogastric ganglion. Thus Selverston’s
conclusion is that the level of explanation appears to lie just above that of neuroscience,
(i.e., at the cognitive science level in the form of a connectionist model). The details
obtained by neuroscience researchers help in the construction of more biologically plausible
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computational models. Without these low level details an explanation of the
phenomenon may be impossible to construct in an abstract representational form.

One of the main tenets of Churchland and Sejnowski’s work is that a good model
will be constrained by research results from neuroscience as well as those from cognitive
psychology. “Consequently, cross-disciplinary research, combining constraints from
psychology, neurology, neurophysiology, linguistics, and computer modeling, is the best
hope for the co-evolution that could ultimately yield a unified, integrated science of the
mind-brain” (Churchland & Sejnowski, 1989, p. 45). Thus connectionist models should
incorporate both top-down psychological and bottom-up neuroscience constraints. The
importance of top-down constraints, in the form of data gathered from observable
psychological phenomena, should not be overlooked. Research at a higher level of
explanation in experimental psychology is significant because it can determine what needs
to be explained at lower levels. With respect to modeling Churchland and Sejnowski
(1992) provide the following words of advice for connectionist modelers:

Every level needs models that are simplified with respect to levels below it,
but modeling can proceed very well in parallel, at many levels of
organization at the same time, where sensible and reasonable decisions are
made about what detail to include and what to ignore. There is no decision
procedure for deciding what to include, though extensive knowledge of the
nervous systemn together with patience and imagination are advantageous.
The best directive we could come up with is the woefully vague rule of
thumb: make the model simple enough to reveal what is important, but rich
enough to include whatever is relevant to the measurements needed. (p.

137)
2.6.2 Connectionist systems details

There are a wide variety of architectures and leaming techniques used by
connectionist modelers (Gallant, 1993; Hecht-Nielsen, 1990; Lippmann, 1987; Rumelhart
& McClelland, 1986b). The purpose of this section is to provide a brief overview of the
general connectionist framework. What follows is a basic description of the most typical
type of network architecture, and most often cited network learning procedures.
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2.6.2.1 Basic description of connectionist systems
A network consists of a set of autonomous processing cells that are joined by directed arcs.
This pattern of connectivity can be thought of as the network topology. Figure 14 shows a

very simple network consisting of two cells.

Cell 1 Cell 2
Output
wij )

Figure 14: Simple two-cell connectionist network

Between each of the cells there is a weight value wj; that indicates the influence
(effect) cell j (cell 1) will have on cell i (cell 2). Thus, w2 = 3, would mean that cell | has
a weighted influence of 3 on cell 2. A positive weight value indicates reinforcement
between two cells while a negative weight value will indicate inhibition. Initially, network
weights are assigned randomly. These weights are adjusted through a process of training
using a leamning rule. The final values of all the weights in the network will determine how
the network will behave; as a result, these final weights values are analogous to a computer
program. For example, given an untrained network and a set of weights from a trained
network, and assuming the networks both have the same configuration, we could assign
the weights from the trained network to the untrained network and have a fully operational
connectionist network. This would be exactly the same as writing a computer program on
one machine and executing it on a different machine. In psychological terms the weights of
the network represent a learned knowledge base. Thus network weights and knowledge

representation can be viewed as being synonymous.

Networks usually consist of at least two or more layers of cells with one layer being
the input layer and another the output layer (see Figure 15). The output layer is the source
of output for the entire network and all lower layers are linked in some way to the cells of
the output layer. Cells between the input and output layers are called hidden layer cells
because they are hidden from the external world of input and output.® In a massively

9 To be consistent the input layer is counted as a layer, thus the network in Figure 14 consist of three
layers.
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parallel network, as is Figure 15, all cells at one layer are connected to all other cells at

the next highest layer.
Output Layer

Hidden Layer

Input Layer

Figure 15: Typical three-layer network

Information the network receives is represented as numerical data, usually in the form of
binary numbers (zeros and ones), and enters the network via the input layer cells. This
begins a chain of events which spreads (propagates) throughout the network. The end
result is a set of numerical values produced by the output cell(s). A network where all cells
are linked together such that the spreading effect occurs in one direction (acylic fashion
from input cells to output cells) is usually referred to as a feed-forward network. !0
Generally a typical cell in a connectionist network can be viewed in two parts.
Figure 16 shows a generalized representation of a connectionist cell, in which the lower
part of the cell receives input from other cell(s). The input received from all lower level
connecting cells is combined at the input part of the cell. The output part of the cell takes the
combined input and transforms it in such a way to produce an activation value (output) for
the cell. This activation value is then passed forward to all cells connected at the next higher
level. At each cell at the next higher level the activation value is uniquely weighted

depending upon the cell to which the connection is made.

10Another type of network design that has received a great deal of attention is called a recurrent network. In

these networks the cells can feed back into themselves or back to cells in a previous layer. These types of
networks are usually employed to represent temporal relationships between patterns (Elman, 1990).
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Figure 16. Typical processing cell in a connectionist network connected between input and

output cells.

In sum, Rumelhart and McClelland (1986) define a connectionist network to
contain the following eight properties: (a) a set of processing cells; (b) a state of activation
where each processing cell changes its state through time, (c) an output function for each
cell; (d) there is a pattemn of connectivity among cells where each connection is weighted;
(e) a rule is required to propagate values through the network; (f) an activation rule is
necessary to define a cell’s activation state; (g) the weights between cells are modified as a
function of a learning rule; and (h) the network must function in an environment meaning
the set of inputs it must process. This set of properties is used widely by other researchers
in the connectionism field when discussing network architecture.

2.6.2.2 Network learning

The majority of network learning consists of making systematic changes to the
weights in order to improve the network’s performance. Improving the network
performance means improving the response of the network to a class of inputs. Although
there are a variety of ways in which networks can learn (Gallant, 1993; Hecht-Nielsen,
1990) this section will examine only three approaches to learning grounded in the ideas of
associative learning. The first is often call Hebbian leaming which is attributed to the work
of Hebb (1949) and better known as Hebb’s rule.

The second approach to leamning is called the delta rule and was developed to
overcome some of the limitations of Hebbian learning (Rosenblatt, 1958; Widrow & Hoff,
1960). The final approach to learning is the generalized delta rule or learning by error back
propagation (Rumelhart, Hinton, & Williams, 1986). All three are linked to one another by
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the same line of mathematical reasoning, that being network output error minimization.
In this sense all networks are looking for an optimal solution, if one exists, within a given

degree of tolerance.

2.6.2.2.1 Pattern associators

One way to view weight adjustments is as changes to the memory structure.
Information is stored in the weighted connections. In this context the relationship between
weights and output can be viewed as a form of associative memory. Associative memories
lie at the centre of much of the connectionist research efforts (Brown, Hulme, & Dalloz,
1996). An associative memory system would store information by associating it to or
correlating it with other information in memory. Most models of associative memory can
recall information based on limited noisy input. Humans exhibit features of associative type
memory all the time. For example, with only a small piece of information many of us can
reconstruct events from the past. This reconstructive nature of memory is an important
feature of associative memory. Furthermore, associative memories are robust in the sense
that their performance does not degrade appreciably if some of the interconnections
between associations are damaged (Caudill & Butler, 1990). This robustness is often
referred to by connectionists as graceful degradation.

Pattern associators are the simplest associative memories used by connectionist
models. They consist of an input layer of cells and an output layer of cells. Linking these
two layers is a set of modifiable weights. No hidden layer exists in this system. Figure 17

shows a typical pattern associator.

Output Layer

Input Layer

Figure 17: A typical pattern associator connectionist network

Normally the procedure is to take a set of input patterns (exemplars) and train the
network to associate it with a corresponding set of output patterns. Learning in a system
such as this requires weights to be updated so that when an input pattern is presented to the
network it produces the correct output. It is important to recognize that the network does
not contain internal replicas of the output for each given input. The only stored information
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(memory) the network contains is in the values of weights. More formally, McClelland

et al. (1986) state that pattern associators are “models in which a pattern of activation over
one set of units [input cells] can cause a pattern of activation over another set of units
[output cells] without any intervening units to stand for either pattern as a whole” (p. 33).
In other words, a pattern associator need not contain a specific cell that represent a concept
(e.g., dog). In this sense memories are reconstructed by transforming input patterns as a
function of the weighted connections (Quinlan, 1991). This is also true for three layer

networks.

2.6.2.2.2 Hebb’s rule

The main idea of the pattern associator is, given a set of input patterns and a set of
target output patterns, the network can be trained to associate a given input to its target
output. In this scenario there is a one-to-one relationship between the input and output
patterns. If the network has properly learned the associations between input and output, it
will be able to generate the correct output for each associated input. The simultaneous
presentation to the network of input and desired output patterns (supervised learning) is a
critical sequence of information in the training of the network.

Interestingly, one of the ways weighted connections can be learned was suggested
by Hebb (1949). Hebb’s law, discussed previously, was quickly adopted by connectionist
researchers seeking a way to implement learning into the pattern associator. Hebbian
learning or Hebb’s rule, is probably the most often employed concept by connectionist
modelers (Caudill & Butler, 1990). A typical connectionist version of Hebb’s rule is:
“When unit A and unit B are simultaneously excited, increase the strength of the connection
between them.” (McClelland & Rumelhart, 1986, p. 36).

According to McClelland and Rumelhart (1989), if the connection is positive the
change between cells is excitatory, and if the connection is negative, the change between
cells is inhibitory. Notice this interpretation adds a significant component to Hebb's law
(i.e., the concept of inhibition). Hebb ignored the inhibition process and his account of
learning was based only on the neural growth resulting from the excitation between two
cells. His explanation was a simple feed-forward spreading activation account of learning at
the cell level. Furthermore, according to Quinlan (1991), Hebb's rule doesn’t account for
two constraints. First, modem neurophysiological findings suggest localized
electrochemical changes within the cell are very important. Second, attempts to simulate
Hebb’s rule directly as stated on the computer have failed because weights between cells
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can rise to infinity. This poses a problem for a computational system that is trying to
account for the learning process within finite limits.

There are a variety of ways that have been proposed to mathematically formalize
Hebb's rule (McClelland & Rumelhart, 1989). The simplest one is that a change in the
weight can be based on the product of input and output patterns along with the product of a
learning parameter. This learning parameter is usually 1/n where n is the number of input
cells. More formally, Hebb's rule can be stated by the simple mathematical expression:

Aw; = €(input; X output;),

where Aw;; is the change in weight, i is the ith element of the input vector, j is the

corresponding j element of the output vector, and € is the learning parameter.

A well known limitation of adjusting weights in a pattern associator using Hebb’s
rule is that the input patterns must be orthogonal to each other. It can be shown that a
system such as this can leamn to correctly classify only those input vectors which are
orthogonal to one another. From a mathematical perspective two vectors are said to be
orthogonal if their dot product is 0. This means that all vectors in the input set must be at
right angles to each other. Input patterns which are similar to other inputs (not at right
angles) could not be classified into their own separate categories. From a statistical
perspective, if two standardized variables X and Y are correlated their respective vectors
must have an angular relationship less than or greater than 90°. On the other hand, if X and
Y are completely uncorrelated their angular relationship must be exactly 90°.

2.6.2.2.3 Delta rule learning

An attempt to overcome the limitations of requiring that input patterns be orthogonal
is embodied in delta rule learning. A constraint for delta-rule learning is that all input
patterns (vectors) form a linearly independent set, meaning there is no vector in the set of
input vectors which is a linearly weighted sum of the other vectors in the set. The idea is to
adjust the weights so that they will reduce the difference or error between the output from
the network and the target to be learned, in other words:

error = target - output activation
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Such a system is guaranteed to find a set of weights that correctly classifies a linearly
independent set of input patterns. The set of problems which can be solved by a network
system using the delta rule are known as linearly separable problems. Essentially what this
means is that there exists a plane or hyperplane which can be used to categorize a given
input in the space of all possible inputs. For example, the two layer network using the delta
rule cannot solve the Boolean function “exclusive or” (XOR) because there is no line which
can divide the function space to produce the right answer. Figure 18 shows the simple
Boolean functions AND, OR, and XOR (i.e., this or that but not both). Notice for the two
functions AND and OR a line can be drawn to carry out the correct categorization.

OR
(0,1) (L1)
® ®

® ® ®
(0,0 (1,0) (1,0)

Figure 18: Representation of the separation of the Boolean functions (AND, OR, XOR).

2.6.2.2.4 Generalized delta rule

Minsky and Papert (1969) showed mathematically that one and two layer networks
could never solve problems that were not linearly separable. In other words, non-linear
problems like the XOR classification problem could not be solved in a two-layer network
using the delta rule. In real life most problems are not linearly separable because there is no
single line which can be drawn between many phenomena. Thus Minsky and Papert’s
solution asserted that networks could not be used for non-linear problems because they
could not see any way in which weights of a network of three or more layers could be
updated, the main reason being there was no way of knowing what the desired output
should be for the middle layers of the network. As a result, updating the weights between
the inputs and hidden layers was thought to be impossible.

The development of the generalized delta rule (or back propagation training
algorithm) was important because it demonstrated that there is a procedure which can
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update the weights in the multilayer networks to solve non-linear problems. Over 80%
of all current connectionist projects make use of this algorithm (Caudill & Butler, 1992).
Although the origins of the algorithm are contested, much of the reason for its success and
popularity can be traced to the PDP research group in San Diego (Rumelhart & McClelland,
1986b).

Back propagation modifies the network in a two step process, (a) input is presented
to the network and flows throughout the network exactly as it did in Figure 15, and (b) the
error result for output cells is calculated between the desired output and current output
exactly the same way as was done with the delta rule, but in this case a function of the error
is propagated back through all layers of the network for corrective adjustment of the
weights. Thus all the weights of the network are updated.

One important factor was that Rumelhart et al. (1986) made the activation function
of each cell a continuous non-linear function. The most often used function is the logistic

function or S shaped function:

activation ;=

-t

l+e

where x; is the weighted sum of inputs at cell j. The desirable feature of the logistic function
is that it is fairly easy to calculate the rate of change (slope) at any point in the function
because it is easy to find the derivative. What one wants to know is how the rate of change

of any weight in the network will affect the amount of error in the output. The detailed
calculations of how the weights between layers are updated can be found in Rumelhart et
al. (1986). It can be shown by mathematical proof that networks of this type will converge
to a solution, if such a solution exists, by the method of gradient descent (Rumelhart, et al.,
1986, p. 322). The gradient descent approach to problem solving is the reverse of the hill-
climbing approach discussed previously in the context of mean-ends analysis. Essentially
the idea of learmning by gradient descent is one of adjusting the weights in the network to
minimize the error between desired output and actual output. This concept is exactly the
same as in the delta rule. The difference is that gradient descent, using the back propagation
algorithm, can modify the weights between more than one layer, thereby overcoming
Minsky and Papert’s problem of non-linearity. The gradient descent method via
back-propagation is not without problems. For example, the system could fall into a local
minima before reaching its goal of a global minima and thus produce a solution that is not
optimal. A number of methods have been suggested to overcome this problem (Dawson &
Schopflocher, 1992).




68

2.6.2.2.5 A simplified explanation of back propagation

The idea behind the back propagation algorithm is to calculate an error between
network output and the correct answers for a given examplar, each time propagating a
function of the error back through the network, and making the required changes to
network weights. The ultimate goal is to minimize the calculated error squared.

To understand how the back propagation algorithm works in a connectionist
network with hidden units, consider a network that is to be trained to recognize a
representation of the concept ‘dog.” Suppose the input patterns (representations) are
comprised of two numbers, O and 1. Therefore, four possible input patterns exist: [0,0];
{0,1]; [1,0]; and [1,1]. If the network is given either pattem [1,0] or [0,1] then it is to
respond ‘dog’ (i.e., TRUE). If the network is given either pattern [0,0] or [1,1] it is to
respond ‘not dog’ (i.e., FALSE).

The input layer of the network is given the input patterns one at a time. Each value
in the input pattern is then linked to an input cell in the network. These input cells are then
linked to cells in the hidden layer; the hidden layer cells can be linked to other hidden layers
or directly to the output cells. Figure 19 shows a simple network consisting of three layers.
The network activity spreads from the input layer forward to each higher layer in the
network in a sequential fashion. At each layer all cells simultaneously calculate their input
activity and their output activation. The final result of the forward spread will be the
activation of the output cell. At this point the activation value produced by the output cell
will be compared to the desired output for the given input pattern. The resulting difference
between the desired output and the network output will be the network error. This begins
the back propagation process because a function of the error produced by the network is
propagated backwards through the network—this may be thought of as the network trying
to adjust itself based on feedback. The aim is to adjust the weights in such a way that when
the same input patiern is presented to the network again the resulting output produced by
the network will be closer to the desired output. Therefore each weight is adjusted after
each input to minimize the error at the network’s output.

Examining Figure 19 the input patterns are ‘not dog’ [0,0], ‘dog’ [0,1], ‘dog’
[1,0], and ‘not dog’ [1,1]. On top we see the desired output ‘dog’ [1], and ‘not dog’ [0],
corresponding respectively to each input. Suppose the first input pattern for ‘not dog’ [0,0]
enters the network through input cells 1 and 2. Suppose the output layer’s only output cell
(Cell 5) produces a value of 0.5 after forward spreading activation. The desired output is 0
so the error is O - 0.5 which is -0.5. Therefore, a function of -0.5 is propagated back
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through the network and used to adjust the weights. This process of presenting the
input and calculating error will continue until the network has achieved an acceptable level
of error, in other words the network is trained to recognize the input patterns as either ‘dog’

or ‘not dog.’

Desired output corresponding
to each input pattemn

not dog dog not

dog dog Compute the error from the

)] 1] (1] (0] difference between the desired
— output and actual output.

Qutput
layer
Forward Backward
Spreading Hidde Propagation
Activation l n of weight changes
ayer based on error
Input
layer
not dog [0 0]
dog [0 t Input Patterns
(bg [1 0]
not dog [1 1]

Figure 19: Three layer network illustration to learn the concept ‘dog’ using back

propagation.

2.7 Computational modeling examples related to educational research

This section reviews a number of computational models that have strong ties to
educational research particularly in the area of development. The importance of
developmental theory and its relevance to educational pedagogy is well documented
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(Thomas, 1985). What appears to be of most significance is that computational models
may offer insight into the transition mechanisms that underlie the developmental process
(Elman, et al., 1996; Simon & Halford, 1996b). For educators, this knowledge should
allow for a greater understanding of why certain experiences produce cognitive change.
Furthermore, precise knowledge of how developmental transitions occur should allow
educators to design better instructional interventions to promote such transitions.

The application of computational modeling to study of developmental change is still
very much in its infancy (Klahr, Langley, & Neches, 1987; Simon & Halford, 1996b).
Although symbolic models of cognitive development have been proposed (Ling &
Marinov, 1993; Schmidt & Ling, in press) such models do not attempt to offer the same
level of explanation as those that employ a connectionist framework. Some have argued
that differences between the two modeling approaches appears to be narrowing (Dinsmore,
1992b; MacWhinney, 1993) or at one level (Turing machine) there is no difference between
either form of modeling (Honavar, 1994). Nevertheless, there are clearly implementation
and information processing details that separate the two approaches.

2.7.1 Supporting arguments for connectionist modeling of development

Connectionist models offer a profound opportunity to investigate a number of
issues fundamental to developmental psychology (Bechtel & Abrahamsen, 1991: Plunkett
& Sinha, 1992; Schyns, 1991; Shultz, 1991; Siegler, 1991). Bates and Elman (1993)
indicate the significance of such models with respect to developmental issues:

This is the first precise, formal embodiment of the notion of emergent
form—an idea that stood at the heart of Piagét’s theory of change in
cognitive systems. As such, connectionist systems may have the very
property that we need to free ourselves from the Nature-Nurture
controversy. New structure can emerge at the interface between ‘“nature”
(the initial architecture of the system) and “nurture” (the input to which that
system is exposed). These new structures are not the result of black magic,
or vital forces. They are the result of laws that govern the integration of
information in non-linear systems.[underline added] (p. 15)

Bechtel and Abrahamsen (1991) argue the field of developmental psychology can
benefit from four features present in connectionist modeling: (a) a representation of rules
which is more robust than that of symbolic modeling, (b) the internal layer of connectionist
networks are highly adaptive, (c) the internal units of a network impose a structure of
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multiple constraints that are satisfied to achieve the best overall solution, and (d) the
model is resistant to damage in a similar manner to the actual neural structure (i.e., graceful
degradation). Bechtel and Abrahamsen’s conclusion is that connectionist models offer
multiple constraints that may provide researchers with new interpretations of traditional
developmental constructs and data. Similar conclusions have been stated by other
connectionist researchers working on developmental problems (Elman, et al., 1996;
Plunkett & Marchman, 1990; Shultz, 1991).

The final chapter of Siegler’s (1991) book Children’s Thinking offers support for a
connectionist modeling approach in the study of development. In it Siegler outlines a
number of future challenges that confront researchers in the field of child development. The
first two challenges, central to understanding children’s thinking, are “What develops?”
and “How does development occur?” According to Siegler, these are the two most
important questions faced by developmental psychologists and are fundamental to
understanding what the research is all about. Siegler suggests that what is required to
further our understanding of children’s thinking is new theories of cognitive development
on the same scale as those first postulated by Piaget. Furthermore these theories must be
both “broadly applicable and precisely stated” (p. 335). He continues by saying that
“perhaps the single greatest obstacle to generating more advanced theories of what develops
and how development occurs is our underdeveloped knowledge of the change processes.
Many current hypotheses about developmental mechanisms seem to be generally in the
right direction, but are too imprecise to generate satisfying predictions or explanations™ (p.
336).

For a model to qualify as a theory of developmental change mechanisms the
following three components have been suggested as being important (Simon & Halford,
1996a). One is that a model should be capable of simulating the same knowledge and
competence of humans on a given task. The second is that specific mechanisms that
transform representations into more advanced representations need to be explicit. Finally,
the behavior being modeled should account for the same intermediate outputs, both mental
and physical, that occurred during observation.

From a general perspective Siegler (1991) identifies four classes of change
processes as being highly relevant to understanding developmental change:

1. Automatization: Mental procedures are optimized so that other mental resources
are utilized more effectively. Important issues related to automatization are parallel
processing, and increases in both processing speed (time) and capacity (space).

2. Encoding: Conceptual entities (e.g. objects, events) are encoded into some type
of internal representation with shared features and relations. Of primary concemn for the
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encoding process are issues such as discrimination, assimilation, and critical feature
identification.

3. Generalization: The ability to extrapolate knowledge to novel situations.
Basically this involves the process of inductive or analogical reasoning.

4. Strategy construction: The linking of various processes that adjust to the
constraints for a given task. Related issues involve such things as rule formation, executive
processing, and accommodation.

With respect to these four change processes Siegler states that one major issue
future researchers should be concerned with is the construction of precise models of how
various aspects of these four change processes may operate. He then states that, “one
particularly promising effort to specify how change mechanisms operate involves
connectionist_models” (p. 338). Siegler continues to describe MacWhinneys, et al.’s
(1989) connectionist model of how children acquire a particular aspect of German
grammar. He concludes that MacWhinneys et al.’s work “illustrates how very-specific
analyses of change mechanisms can yield broadly applicable conclusions about cognitive
growth” (p. 342).

A major concern for connectionist modelers is the isomorphic relationship between
the connectionist cognitive-model and theoretically defined developmental stages such as
those of Piaget (McCloskey, 1991; Raijmakers, Koten, & Molenaar, 1996; Robinson,
1992). For example, Siegler’s notion of precise models of change, relative to the four
change processes he described, can be said to be a basis for an isomorphic relationship. In
other words, the concept of model-precision is directly tied to the level of understanding
one has in the temporally based interpretation of the model’s process of representation
instantiation. The more explicit (formal) one’s understanding of the model, the better one
can judge the model’s reliability and validity relative to its structural and environmental
constraints. In this sense, connectionist models offer the possibility of being analyzed at a
more detailed level of specificity than flow chart or decision tree models that are often based
on traditional statistical studies of cognitive psychology. In summary, McClelland and
Jenkins (1991) state,

The exploration of connectionist models of human cognition and
development is still at an early stage. Yet already these models have begun
to capture a new way of thinking about processing, about learning and, ...,
about development. Several further challenges lie ahead. One of these is to
build stronger bridges between what might be called cognitive-level models
and our evolving understanding of the details of neuronal computation.
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Another will be to develop more fully the application of cognitive
models to higher-level aspects of cognition. The hope is that the attempt to
meet these and other challenges will continue to lead to new discoveries
about the mechanism of human thought and the principles that govern their
operation and adaptation to experience. (p. 71)

Both of the above challenges are directly related to the task of constructing connectionist
cognitive models of development within the framework of top-down and bottom-up

constraints.

2.7.2 Connectionist models of developmental processes

The application of connectionism to modeling the study of cognitive development
has generally been concerned with: (a) connectionist models of language acquisition, and
(b) connectionist models of stage-like concept acquisition. These two lines of connectionist
research show a great deal of overlap and both emphasize the importance of understanding
how a system will change over time. It is interesting to note that these two lines of research
address the same two factors (conceptual thought and language) that underlie Vygotsky's
(1934/1986) hypothetical model of cognitive growth. Table 4 shows a number of models

designed to study development processes.

2.7.2.1 Modeling Siegler’s rules for the balance scale problem

According to McClelland and Jenkins (1991) diverse developmental phenomena
such as failures of conservation and compensation, progressive differentiation of
knowledge, and U-Shaped learning curves in language are the result of a basic learning
principle. This learning rule can be stated as follows: “Adjust the parameters of the mind in
proportion to the extent to which their adjustment can produce a reduction in the
discrepancy between expected and observed events” (p. 45).

It is assumed that this principle operates continuously on different tasks and
throughout the cognitive system. In this sense, the learning principle “might well be seen as
capturing the residue of Piaget’s accommodation process, in that accommodation involves
an adjustment of mental structures in response to discrepancies™ (p. 45). McClelland and
Jenkins state that a connectionist system using the back-propagation of error algorithm

represents a system that implements this learning principle.
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Table 4. Connectionist models of cognitive development

Authors Purpose Network Architecture
Rumelhartand To develop a simulation which could Pattern associator network trained with the
McClelland reproduce the rules children are said to delta-rule. Used a probabilistic activation
(1986a) acquire during the learning of English past threshold function.
tense verbs.
Plunkett and Similar to the work of Rumelhart and Three layer network where all units of each
Marchman McClelland (1986a). To simulate the layer connected with the units above
(1990) rules children are said to acquire during the (feed-forward). The network is trained
leaming of past tense. using the back-propagation learning
algorithm.

McClelland and To model the same rule characteristics that Three layer network configured in a

Jenkins Siegler (1981) described children are said nonstandard feed-forward structure. The

(1991) to use when solving the balance scale network is trained using the back
problem. propagation learning algorithm.

Plunkett and To model concept formation and Four layer feed-forward network using

Sinha (1992)  vocabulary growth. back-propagation of error.

Schyns (1991) To model the process of concept Both unsupervised [a variant of Kohonen
acquisition found in young children. The  (1982) competitive network] and
main thrust of the work was on the supervised learning [pattern associator
categorization of prototypes. network] were implemented in two

separate modules.!!

Shultz (1991) To model cognitive development of Cascade-Correlation learning network

Siegler’s rule stages that children employ  which employs a combination delta-rule
when solving the balance scale problems.  and a varient of back-propagation.

As support for their assumptions McClelland and Jenkins constructed a
connectionist network that appears to demonstrate the same rule based behavior that
children use when solving Piaget’s balance scale problem (Siegler, 1976; Siegler, 1981).
The balance scale problem involves children deciding which side of a fulcrum (containing
equal number of equally spaced pegs on each side) would go down based on the weight
and position of metal disks which are placed on the fulcrum pegs. Figure 20 shows a

typical setup of the balance scale.

Il Supervised learning involves comparing the network's output to the desired output and taking the
difference (error) to adjust the weights. Unsupervised learning involves no performance evaluation and the
network self-organizes based on a clustering of patterns. (Gallant, 1993, p. 6-7)
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Figure 20: The balance scale with 5 pegs on each side. The left side has 3 metal disks on
middle peg. The right side has 5 metal disks on the second peg from the fulcrum.

Siegler (1976) proposed the four rules that children ages five to 17 may use when
attempting to solve the balance scale problem. These rules have been rewritten in symbolic
form using the following abbreviations: LW (left weight), RW (right weight), LD (left
distance), and RD (right distance).

Rule I
if LW = RW then PREDICT BALANCE
else if LW # RW then PREDICT HEAVIEST SIDE DOWN

Rule 2:
if LW # RW then PREDICT HEAVIEST SIDE DOWN
else if LW = RW then PREDICT WEIGHT FARTHEST FROM FULCRUM

DOWN

Rule 3:
if LW =RW and LD = RD then PREDICT BALANCE

else if LW # RW or LD # RD then
if LD =RD then PREDICT HEAVIEST SIDE DOWN
else if LW > RW and LD > RD then PREDICT LEFT SIDE DOWN
else if LW < RW and LD < RD then PREDICT RIGHT SIDE DOWN

else GUESS
Rule 4: (Replace GUESS in rule 3 with the following:)

else if (LW * LD) = (RW * RD) then PREDICT BALANCE
else if (LW * LD) > (RW * RD) then PREDICT LEFT SIDE DOWN
else PREDICT RIGHT SIDE DOWN
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Learning to solve the balance scale task may involve two stage transitions, pre-
operational stage to concrete operational stage and from the concrete operational to the
formal operational (Raijmakers, et al., 1996). In other words, Siegler’s four rules are a
formal representation of this stage transition process. Siegler used the rule-assessment
methodology with six types of problems to categorize the children’s responses as being one
of the four rules. The rule-assessment methodology attempts to classify answer patterns
numerically based on the problem subjects are given.

Figure 21 shows that the connectionist network designed by McClelland and
Jenkins (1991) to handle this problem was defined as a three layer feed forward
architecture composed of 20 inputs units, 4 hidden units, and 2 output units (each
representing one side of the fulcrum). The network was trained using the back propagation
algorithm. The training set was composed of 625 exemplars and each epoch was defined to
be a 100 random samples from the training set. Each exemplar (input pattern) was made up
of two parts, one for weight, and one for distance. These parts are further subdivided into
two more parts based on the fulcrum position (left or right side). For example, the weight
side has ten inputs, five are used to describe the weight on the left side the other five are
used to describe the weight on the right side. The target patterns were mapped to output
units on the basis of which side of the fulcrum had the greatest torque (if both sides were
balanced then the activation levels were assumed to be the same). After each epoch the
network was tested on a 24 item test taken from one of Siegler’s experiments.

Output units

Hidden units

Q0O @0 O L [JN BN N ele)

©Coo0eo0 g o0 eooo Distance Input units

Weight

Figure 21: A diagram of the network used by McClelland and Jenkins (1991)

Two important assumptions were made by the modelers. The first is that
environmental input is biased so that the weight dimension received more emphasis. This
assumption was based on the idea that children have more experience with the weight
dimension than the distance dimension. The second assumption is that weight and distance
are viewed as separate concepts and analyzed separately. This means the model itself is
required to combine both dimensions during the learning phase. Both of these assumptions
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appear necessary for the model to exhibit stage-like developmental performance during
its learning phase. McClelland and Jenkins suggest that future research is required to
determine how variations on these assumptions might change the model’s performance.

Overall McClelland and Jenkin’s model appears to demonstrate analogous
transitional behavior of rule learning behavior for children between the ages of 5 - 17.
(Siegler, 1976). That is after 100 epochs the simulation exhibited different stages of
development that could be closely mapped to the four rules children appear to acquire
between the ages of 5 to 17. A distinction between the final two rule stages was difficult to
establish because there appeared to be a shifting back and forth between these two stages.
According to McClelland and Jenkins, Siegler also noticed this stage shifting behavior.

A variety of interpretive approaches were used to substantiate the isomorphic
relationship between Siegler’s experimental conclusions and the connectionist models of
overt behavior. One method involves evaluating output activation levels, on a test set of
exemplars, at various epoch points during training. For example, at 20 epochs the model
exhibited an earlier developmental rule type behavior (only considering the dimension of
weight), and between epoch 20 and 40 there appears to be gradual leaming of the next
developmental level of rule type behavior (an understanding of the concept of distance in
relation to weight). McClelland and Jenkins also provided detailed examples of how the
connectionist weights between input to hidden and hidden to output changed during the rule
learning process. In other words they attempted to illustrate a temporally based
understanding of how the network’s representation changes by a detailed analysis of the
network’s weight changes. A visual diagram of the weight changes depicts the magnitude
of their adjustments over time (see McClelland and Jenkins 1991, p. 59). Also shown are
changes in the hidden and output activation values with respect to time. A graphical
representation, comparing the network’s performance to that of the children, shows a
consistent relationship between the network’s rule learning behavior and age group use of
rules. These approaches to network interpretation are significant in supporting the
following claim that their model appears to capture the stagewise qualitative progression,
“while at the same time exhibiting an underlying continuity which accounts for gradual
change in readiness to move on to the next stage” (McClelland & Jenkins, 1991).

Shultz and Schmidt (1991) also used a connectionist network to model cognitive
development on the balance scale problem. In their particular modeling task they employed
the Cascade-Correlation algorithm developed by Fahlman and Lebiere (1990). According to
Gallant (1993) this algorithm falls into the general class of constructive algorithms that
attempt to transform the difficult process of building a network into a simpler problem of
single-cell learning. Cascade-Correlation starts with an initial baseline network topology of
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input and output units and adds additional hidden units until the network leams to solve

the problem.!? Shultz and Schmidt suggest that the Cascade-Correlation method offers a
more natural interpretation of cognitive developmental phenomena because qualitative
changes are reflected in a dynamic method of network construction while quantitative
changes are reflected in the changes of weights. In a series of experiments Shultz and
Schmidt were clearly able to distinguish Siegler’s four developmental rules. They used
Hinton diagrams (Hinton, 1989) to display the weight changes at specific epochs as the
network developed (added more units) and learned the balance scale rules.

2.7.2.2 Modeling English past tense acquisition

Rumelhart and McClelland (1986a) designed a connectionist network to account for
the three sequential stages of past tense use of English by children. These three stages were
identified by Brown (1973) and can be summarized as follows:

1. In stage one the children frequently learn to use a small number of irregular past
tense verbs correctly (e.g. came, got, and went). The conclusion is that children simply
know the right form of the verb.

2. In stage two children begin to acquire the past tense rule, i.e. add -ed to the stem
of the verb. During this stage children often incorrectly add the -ed ending to verbs which
have an irregular past tense (e.g. comed) or even to the irregular form itself (e.g. camed).
This process is referred to as “overgeneralization” of a rule and the children thus appear to
exhibit regression in their linguistic performance.

3. In stage three both the irregular and regular forms of the verb are used correctly.
This means the children have regained the correct irregular verb performance and also
understand the context of when to apply the past tense rule.

Overall the three stages produced a type of learning behavior often characterized in
the form of a U-shaped curve. In other words children move from correct irregular verb
use, to incorrect regular verb use, and then back again to correct irregular verb use.

Rumelhart and McClelland (1986a) constructed a simple pattern associator network
(i.e., containing only input and output layers) and used a logistic probability function
(Boltzman machine) to determine if a unit should be turned on (threshold unit activation). A
version of the delta rule was used to train the network. A set of 506 English verb exemplars
were selected and divided into three input sets: (a) ten high frequency verbs of which eight
are irregular verbs, (b) 410 medium-frequency verbs of which 76 are irregular verbs, (c)

I2Assuming that such a solution exists.
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86 low frequency verbs of which 14 are irregular verbs. At different epoch points
during the learning phase the verb sets were introduced to the network. Rumelhart and
McClelland used a set of graphs to describe the percentage of correct features for regular
and irregular verbs at various epoch training points. These graphs indicate a three stage U-
shaped learning curve of the type exhibited by children.

Building on the work of Rumelhart and McClelland (1986), Plunkett and
Marchman (1990) were also able to demonstrate U-shaped learning of English past tenses
without any discontinuities in the network training regime. In other words, unlike
Rumelhart and McClelland, different sets of input patterns were not introduced at different
epoch training points. Instead Plunkett and Marchman ran a series of simulations using an
incremental epoch expansion learning schedule (i.e., they trained their network on a subset
of data and gradually expanded to include the complete data set). This method allows for a
continuous increase in the network’s knowledge base without undergoing major
disruptions in learning. Interestingly Plunkett and Marchman make the following statement

with respect to how pre-existing knowledge influences learning:

Several prominent theories of cognitive development have explored the
relationship between the current knowledge state of the child and the nature
of the problem domain to which the child is exposed with respect to
determining the child’s success or failure. For example, Piagét [1953]
introduces the notion of moderate novelty to summarize the finding that
children display the most advancement in those conditions where new
problems only exert moderate demand on their current knowledge state.
Incorporating slightly different components, Vygotsky [1962] utilizes the
notion of the zone of proximal development for similar purposes. In these
simulations, the interaction between the current knowledge state of the
network, as encoded in the weight matrix, and the nature and size of the
problem space to which the network is exposed can be seen to account for
many of the observed behaviors. Networks, like children, appear to benefit
from a moderate novelty effect, such that if the initial knowledge state of
the network is undifferentiated with respect to the problem at hand (e.g., a
random weight configuration), overall performance is enhanced if the
learning set is initially restricted and then gradually expanded. (p. 15)

This suggests that expansion training procedures can be viewed as setting into place a
cognitive schema of domain knowledge that makes network learning easier (Rumelhart &
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McClelland, 1986a). Unfortunately, Plunkett and Marchman indicate that the expansion
training procedure is not well understood.

The importance of having a dynamic external environment in the form of an
expansion training environment should not be overlooked. Bechtel and Abrahamsen (1991)
point out that Neisser (1976) argued for the integration of the dynamic environmental
stimuli with a dynamic information processing system. From the connectionist prespective
the network is dynamic but the inputs have an invariant structure and enter the network
either randomly or sequentially. “There is nothing inevitable about this arrangement,
however; network processing of dynamic input patterns is an area that is ripe for
exploration” (Bechtel & Abrahamsen, 1991, p. 267 ). Plunkett and Marchman’s (1990) use
of the expansion training procedure, partially addresses this concern of trying to understand
a dynamic input environment. Furthermore, expansion training procedures also offer the
possibility of linking the following two educational issues to connectionist modeling: (a)
hierarchically structured pedagogical environment models of the type proposed by Gagne
(1962; 1979), and (b) the influence of pre-existing knowledge schema on problem solving.
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Chapter 3

3. Recasting Bruner in a connectionist framework

3.1 Introduction

An examination of any educational learning theory textbooks usually reveals
sections covering Vygotsky’s (1934/1986) and Bruner’s theories (Bruner, 1966; Bruner,
Goodnow, & Austin, 1956; Bruner, Olver, & Greenfield, 1966) concerning learning and
development. Often cited is Vygotsky’s postulated Zone of Proximal Development that
represents the degree of possible learning students can achieve in a suitable instructional
environment. Bruner (1966) suggested the idea of discovery leamning where students
inductively reason from specific instances to form rules and concepts.

Both Vygotsky and Bruner argued that children pass through specific stages of
conceptual development. From Vygotsky’s (1934,1986) perspective, the early stages of
concept development involves the creation of unorganized-heaps where objects are
randomly associated together. Eventually, according to Vygotsky, children begin to form
more complex factual relationships between objects. These relationships develop into
higher level conceptual representations directly linked to the acquisition of language skills.
Bruner et al. (1966) viewed conceptual development as occurring in three representational
stages: enactive (representation in the muscles), iconic (mental images), and symbolic
(letters, words). Bruner believed that these conceptual stages develop sequentially and
remain throughout our lives. Although currently the stage theory of conceptual
development is not believed to occur the way Vygotsky, Bruner or even Piaget suggested
(Eimas, 1994), at a gross level of analysis it still remains a formative measure of the
developmental progress (Siegler, 1995).

Many of the conclusions arrived at by Vygotsky and Bruner were grounded in the
empirical experimental results from using conceptual learning tasks. Much of their work
concerned such fundamental questions as: (a) What is a concept? (b) Why do we need
concepts? (c) How do we form concepts? and (d) What is the relationship between
concepts and reasoning? Answers to such questions have been shown to be of importance
with respect to understanding conceptual development in children (Siegler, 1991) and
adults (Smith & Medin, 1981). Furthermore, concept representation “remains as a
cornerstone issue in all aspects of cognitive science” (Medin, 1989, p. 1469).

Of particular importance is the experimental process utilized by both Bruner and
Vygotsky. For Bruner et al. (1956), Vygotsky’s (1934/1986) early research on conceptual
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development provided fundamental insight into how a researcher could approach the
study of such a topic. More specifically, Bruner et al. (1956, p. 41) mention Vygotsky's
“block test” as being one of the ways an experimenter can study concept attainment tasks.
Vygotsky’s test involved a sorting task whereby small wooden blocks that varied in size,
shape and color were organized into groups based on nonsense labels. Essentially, the test
was designed to study one’s ability to induce conjunctive concepts (AND relationship
between attributes). Bruner et al. (1956) expanded on Vygotsky’s work and developed an
experimental procedure to explore two additional types of conceptual induction tasks: (a)
disjunctive concepts (OR relationship between attributes), and (b) relational concepts (a
specifiable relationship between attributes). Thus many of Vygotsky’s ideas on concept
learning are subsumed within Bruner et al.’s (1956) later research.

The research described here will re-examine Bruner et al.’s (1956) experimental
techniques on concept attainment by using techniques of connectionist modeling.
Connectionist models are based on an analogy of the network of interconnections, between
neurons, within the brain. Like the brain, connectionist models involve parallel processing
of interconnected units, whereby learning occurs through the strengthening or weakening
of these connections (Quinlan, 1991). In essence, the connectionist modeling approach
offers cognitive researchers microlevel models of postulated cognitive processes (Simon &
Halford, 1996a).

The ideal underlying premise of connectionist modeling assumes that there exists an
isomorphic relationship between Bruner et al.’s (1956) theory of concept learning and its
connectionist model counterpart. This assumption may not be the case. It may be that such
models produce phenomena that are not directly explainable with respect to the theory being
modeled. In general there are two possibilities for such results: (a) the model may be
deemed a less than adequate representation of the theory; or (b) the theory, on which the
model is based, is inadequate to explain the phenomenon in question. In either case, the
connectionist model can assist in the interpretation of performance at a level of analysis
below the flow-chart and decision tree descriptions of a process (Klahr, 1992).

Essentially, the role of a connectionist model is to make processes (e.g., concept
attainment) more explicit for investigation. At a coarse level of analysis this involves
comparing the model’s performance with empirical data, whereas at a fine level of analysis
this involves an interpretation of how the model comes to represent the process being
studied. An important aspect of the fine level of analysis is the underlying structural
assumptions used by the model to instantiate its representation. These assumptions can be
viewed as methods to preserve the model’s ecological validity. As a result, in addition to
recasting Bruner et al.’s (1956) classic study of concept attainment in a connectionist
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model, the implications of educational learning theory for connectionist model building
will be examined with respect to improving the model’s ecological validity. Specifically, it
will demonstrate how Gagne’s (1962; 1984; 1985) work can be used to build certain
structural assumptions of the model.

The chapter is organized as follows: The second section reviews the nature of
concepts, how concepts might be learned, and an example of a connectionist model of
concept learning. Section three examines Bruner et al.’s (1956) classic study in concept
attainment and its relationship to inductive hypothesis generation. Section four describes a
connectionist model of Bruner et al.’s (1956) concept attainment task and describes initial
empirical results from the model. Section five presents an argument for restructuring the
network based on these initial results and Gagne’s theory of concept learning. Section six
describes the experimental results obtained from the restructured network model. The final
section suggests the implications this work has for educational research.

3.2 Nature of concepts

Smith (1988) points outs that “the notion of a concept is essential for understanding
thought and behavior” (p. 19). Basically concepts can be viewed as mental representations
of classes and one of their most important purposes is that of cognitive economy (Bruner,
et al., 1956; Rosch, 1988). By mentally structuring the world into classes or categories we
reduce the amount of information that must be processed and thereby conserve our
cognitive resources. If we were not capable of forming categories the problem of
remembering each individual instance of every object or experience would place our
cognitive processing system into a state of computational overload. As a result, conceptual
development is directly tied to our ability to categorize, where a concept functions as a
categorization device (Smith & Medin, 1981).

The simplest way to view the research on major theories of concepts is
chronologically. According to Medin (1989), there have been two important shifts with
respect to theories of concepts. The first shift was from the so-called *classical view™ to
that of *“probabilistic theories.” The second shift is from probabilistic theories to
“theory-based” theories.

The classical view asserts that examples of a category share necessary and sufficent
properties and that these properties can be used to determine if a concept belongs in a given
category. In their classical form, concepts exist as dictionary definitions. For example, an
island is a body of land surrounded by water. An island has two properties: (a) land, and
(b) surrounded by water. Each of these properties is necessary because something can’t be
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an island without being both a piece of land and being surrounded by water. The two
properties are jointly sufficient, that is, if something is a piece of land and surrounded by
water it must be an island. Although both Vygotsky and Bruner tend to present the classical
view of conceptual theory (Siegler, 1991), an entire chapter of Bruner et al.’s (1956) book
is devoted to the idea that some concepts are represented probabilistically.

Smith and Medin (1981) identified three problems with the classical view. First, it
is often difficult to identify a set of defining features. For example, a person may say
“made of leather” is a defining property of ice skates but not all ice skates are made of
leather. Second, people don’t often refer to the dictionary definition to define a concept;
instead, they base the notion of a concept on the extent to which the instances are “typical”
of a concept. For example, people rate an apple as being more typical of the concept “fruit”
than they would an olive. Finally, there are cases where category membership is unclear
and a dictionary definition is not suffice, (e.g., is a clock a piece of furniture?).

The weakness in the classical view of concepts gave way to the probabilistic view
that states categories are fuzzy entities that are composed from correlated values of
attributes (Rosch, 1975; Rosch, 1988). That is, categories represent concepts with respect
to the degree that features of a concept share common characteristics. One perspective of
the probabilistic view is that mental representations exist in the form of prototypes. A
prototype is the most representative instance of a concept, meaning it has the most typical
attributes. The basic notion underlying the probabilistic view is that people classify things
according to the central tendency of features (e.g., a robin is more birdlike than a penguin).
This helps to overcome the classification problem of what might constitute a “typical”
concept for a given category like fruit. (Bruner (1956), on page 64-65, also provides an
early account of the notion of a typical representation.) Problems with the probabilistic
view concern determining what constitutes a feature and the similarity between two
features. For example, for the concept “beautiful face™: (a) What are the features? (b) How
similar (highly correlated) will these agreed upon features be for a group of beautiful faces?

In the theory-based view, categories represent causal relationships between states of
an organized system. The theory-based view advocates analyzing the relational properties,
rather than the features, when forming categories. For example, a concept that has the
following properties: children, pets, photographs, and rare books, might make sense only
when one creates a category called “things to get when the house is on fire” (Barsalou,
1983). Interestingly, Kiel (1987) points out that both Vygotsky and Bruner also noticed the
shifts in children from the probabilistic view to the theory-based view.

In summary, the three major theories regarding the nature of concepts offer insight
into how concepts might be understood. It appears Bruner et al.’s (1956) early work on the
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nature of concepts addressed all three of these theorical issues. This indicates the
significant insight these early researchers had and the importance of their experimental

techniques and analysis.

3.2.1 Concept learning from an instructional perspective

Concept learning refers to forming representations to identify attributes, generalize
them to new examples, and discriminate examples from nonexamples (Schunk, 1996, p.
218). Gagne (1985; 1979) developed a view of learning and instruction that makes concept
learning one of the central issues. According to Dick and Carey (1985), Gagne asks the
question “What does the student already have to know how to do so that, with a minimal
amount of instruction, this task can be learned?” (p. 48). In answering this question Gagne
(1962; 1985) developed the notion of “instructional learning hierarchies.” A learning
hierarchy is composed of instructional objectives and a set of prerequisite relationships
connecting the objectives. Support for learning hierarchies can be found in a meta-analysis
study by Horon and Lynn (1980) who reviewed 15 studies that compared the effectiveness
of learning hierarchies in the sequencing of objectives. They concluded such hierarchies
increase achievement and reduce learning time.

With respect to concept learning, the question becomes what prerequisite
capabilities must learners have to discriminate among stimulus attributes to determine their
relevancy in the context of learning new concepts. Gagne (1985) identifies the domain of
intellectual skills as having an important effect on the learning outcomes related to concepts,
rules, and problem solving. At the most complex level intellectual skills are synonymous
with procedural knowledge as described by Anderson (1993). The following set of seven
prerequisite categories are said to comprise the domain of intellectual skills, ranging from
least complex to most complex.

1. stimulus-response connection: A single connection is formed between a stimulus

and a response.
2. chaining: This involves linking individual stimulus-response elements into a

sequence.
3. making verbal associations: Connecting verbal stimulus-responses in a sequence.
4. making discriminations: “A capability of making different responses to stimuli
that differ from each other along one or more physical dimension” (Gagne & Briggs, 1979,
p. 63).
5. learning concepts: “A capability that makes it possible for an individual to
identify a stimulus as a member of a class having some characteristics in common, even
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though such stimuli may otherwise differ from each other markedly” (Gagne & Briggs,
1979, p. 64).

6. leamning rules: The leamner is able to respond with regularity to different
situations with a class of relationships among classes of objects and events.

7. solving problems: The ability to combine simple rules to form complex ones and
then use these rules to solve problems.

Note that for Gagne (1985) a key step prior to learning concepts is learning to make
discriminations between different members of a particular collection. Thus two different
kinds of learning may occur when the learner is confronted with a set of stimulus objects.

As Gagne states:

In some circumstances of discrimination learning, the leammer may have to
acquire a response that differentiates (by name or otherwise) the stimulus
features of a single member of a set from those of other members of a set,
making a different response to each. Having previously learned to make
these distinctions, the learner may be required to acquire the capability of
responding to the set of stimuli as a class and distinguishing members of the
class from non-members; this is what is meant by “learning a concept.” Of
course, the learner may be required to respond to a stimulus set in both
these ways on different occasions, and such a response is perfectly possible
(p- 90).

Discrimination learning often involves having the learner identify distinctive features of
stimulus objects. Individuals learn differential responses to distinguishing characteristics of
objects like shapes, sizes, colors, and textures (Gagne, 1985, p. 91). The following three
stage model, presented by Gagne (1985, p. 97), describes the nature of discrimination
learning and its relationship to concept learning that follows from it.

1. In the first stage a stimulus feature is presented as an instance of the concept
along with a noninstance. The learner demonstrates the ability to make the discrimination
between two stimuli such as curved line vs. a straight line.

2. During the second stage, referred to as the generalization stage, the learner
identifies instances from noninstances. For example, a straight line paired with different
curved lines.

3. Finally, in stage three, the stimulus features such as a curved and straight line are
varied across dimensions and presented as instances and non-instances of a class. For
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example, if straightness is the concept to be attained non-instances would be
nonstraight lines.

Throughout the learning process, reinforcement is used for responding correctly.
To test that the concept has been attained the learner is asked to identify whether novel
instances are part of the concept category.

Gagne’s (1985) ideas on concept learning are analogous to those of Klausmeier
(1992) who postulates a four stage approach for concept learning: (a) concrete, (b) identity,
(c) classificatory, and (d) formal. Each stage in the model is a prerequisite for the later stage
and is based on the interaction between development, experience, and instruction. At the
concrete level the context and spatial orientation remains the same such that two items
shown at different times can be recognized as the same. This requires the learner to
discriminate the item based on defining attributes. For example, two rectangles shown at
different times would still be recognized as rectangles.

When two items can be recognized as being the same, even if they are observed
from different perspectives, the learner is said to be at the identity level. This stage involves
the process of generalization. For example, a rectangle presented at different orientations is
still recognized as a rectangle.

Formation at the classificatory level means that two items can be recognized as
being equivalent. For example, a large rectangle is conceptually the same as a small
rectangle.

Finally, the formal level requires the learner to recognize concept instances from
noninstances, name the concept and defining attributes, and indicate why certain attributes
separate the concept from closely related concepts. At this stage, cognitive processes such
as evaluating, hypothesizing, and inductive reasoning are important.

In either case, for both Gagne (1985) and Klausmeier (1992), concept learning is
an outgrowth of a sequential process whereby subordinate objectives (feature
discrimination) must be mastered prior to superordinate objectives (attainment of concept).
More specifically recognizing a concept instance from non-instance involves discrimination
(identifcation) of attributes. As will be shown, such an approach can have important
implications for designers of connectionist concept attainment networks. A fundamental
question for network designers is what prerequisite skills (critical subordinate skills) must
the network either have or learn in order to solve a concept attainment problem?

3.2.2 Connectionist approach to modeling concepts
Traditionally, concept learning has been an important area of research in cognitive
science (Bower & Clapper, 1989). If concepts are “essentially pattern-recognition devices”
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(Smith & Medin, 1981, p. 8), then connectionist modeling is ideally suited for the
study of concepts (Clark, 1993). Connectionist modeling of concept learning has been
done with both supervised (Gluck & Bower, 1988; Plunkett & Sinha, 1992) and
unsupervised (Carpenter & Grossberg, 1988; Schyns, 1991) networks. What follows is a
more detailed example of one connectionist model used to study concept learning.!3

3.2.2.1 Plunkett and Sinha

Plunkett and Sinha (1992) built a connectionist model of concept formation and
vocabulary growth that attempts to provide insight into further understanding semantic
development in early childhood. The model is build on the premise that vocabulary growth
depends on the formation of non-linguistic categories but the “structure of the vocabulary
of the language being acquired plays the role of highlighting which categories should be
semantically represented” (Plunkett & Sinha, 1992, p. 229). Such ideas have long been
associated with the work of Vyogtsky (1934/1986).

The model built by Plunkett and Sinha (1992) was derived from earlier network
modeling work done by Chauvin (1988) and by experimental procedures and results
described by Posner and Keele (1968; 1970). The goal of the network is to associate labels
(nonsense labels) and images (dot patterns). Thirty-two randomly generated dot pattern
images were formed and designated as prototypes. Each prototype contained nine dots. No
prototype pattern had more than two dots in common with any other prototype. From each
prototype six distorted images were created by randomly moving each of the nine dots by a
specified distance. Some dot patterns were more distorted than others. A total of 192 image
patterns were created from the original 32 prototypes, providing 32 categories with six
entries in each. The original dot images were preprocessed by a mathematical function that
mapped a 2,100 pixel image into 171 retinal units (Plunkett & Sinha, 1992, p. 230). In
doing this transformational mapping the 171 retinal units were encoded into a dot
neighboring relationship not present in the original image. The underlying goal was to
preserve the two dimensional bit image in a one dimensional input vector. In other words,
the input image data is represented in a compressed format to reduce network input.

The labels for the prototypes were constructed as 32 element bit vectors (one for
each category) with only a single bit set on. The relationship between the prototype

I3 The topic of connectionist networks will not be reviewed here. For an introduction to connectionist
modeling in education see Schneider and Graham (1992); for an introduction to connectionism or neural
networks in general, see Rumelhart and McClelland (1986), Hecht-Nielsen (1990). or Gallant (1993); for
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categories and label was completely arbitrary. All label vectors were orthogonal to
ensure a linear mathematical relationship of zero.

The four layer network architecture used by Plunkett and Sinha (1992) is shown in
Figure 22. The network consists of two separate sets of input units, one called retinal units
(for dot images), and the second called label units (for label vectors). The network task is
simple yet non-trivial. The network must reproduce the input vectors at the output units.
The non-trivial task involves the intermediary representations that must be instantiated
inside the network for an association to be formed between input and output. The first
hidden layer receives input from two separate channels. On one channel, 32 hidden units
receive input from the 171 retinal units. On another channel, 32 hidden units receive input
from the label input units. Fifty hidden units at the second hidden layer combine the input
from both channels coming from the first hidden layer. Finally, the output layer is exactly
the same as the input layer. It is composed of two separate output channels, one of retinal
units (171) and the other of label units (32).

Figure 22: The four layer network architecture used by Plunkett and Sinha (1992).

Training the network involves three phases. In the first phase the retinal input
vector is presented to the network. The output from the network’s retinal output units is
compared to the input representation and an error measure is calculated (oniy for the retinal
output units). Using a back propagation algorithm, the internal network weights are
updated (only for the retinal channel). In the second phase the exact same procedure is
repeated on the label channel (i.e., input the label vector, calculate error, update weights on

information on the relationship between connectionism to psychology see Quinlan (1991), Bechtel and
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label channel). The final phase involves presenting both input vectors (label and image)
simultaneously and updating all internal network weights. This sequence is repeated for all
image/label pairs. Each image/label pair is randomly chosen. The network is never trained
on the prototype image, only the distorted images. The network learning process can be
viewed as a cyclic process, going from image learning then to label learning, and finally to
the association (learning) between image and label.

Results from the network’s performance appear to demonstrate three properties of
human concept formation and vocabulary growth: (a) prototype extraction, (b) vocabulary
growth spurt , and (c) comprehension/production asymmetry. In the case of prototype
extraction, the network performance compared favorably with results from earlier human
studies. In these studies subjects were able to categorize prototypes that were never seen
during category formation (Posner & Keele, 1968; Posner & Keele, 1970). Similarly, the
network was able to correctly categorize the prototype images (activate the appropriate label
output units) when these images were presented to the network after training. What the
network is actually doing is extracting the “central tendency” for each of the category
clusters of distorted irages.

A second interesting phenomenon was the network’s tendency to undergo
vocabulary growth spurts. Results from network output indicate that at a fairly early time
during training (between 20-30 epochs)!4 the network’s ability to activate the correct label
(for a given image input) unexpectedly increases. This parallels research findings that show
children typically undergo a dramatic increase in vocabulary growth at a point during their
second year (Bates, Bretherton, & Snyder, 1988).

A third phenomenon produced by the network is comprehension/production
asymmetry. Comprehension is defined as the network’s ability to activate the appropriate
retinal image when presented with label input. Production is defined as the network’s
ability to activate the appropriate label when presented with retinal image at input.
According to Plunkett and Sinha (1992) this type of asymmetry between comprehension
and production has been documented in studies of children. The simulations produced a
higher comprehension rate than production rate during network learning. In other words,
mapping the label to the image is much easier for the network to learn than mapping image
to label. In network terms, this has do with the fact that label vectors are orthogonal
whereas the retinal vectors for a given prototype are correlated (thus harder to distinguish
for category membership).

Abrahamsen (1991), or Simon and Halford (1996b).
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An interesting result reported from the simulation is that the network took a

longer period of time to discover categories when label input is not present during training.
This indicates that the categories can developed without labels but that the use of labels
speeds up category learning. As Plunket and Shina (1992, p. 237) point out, this supports
Vygotsky’s (van der Veer & Valsiner, 1991) interactional account of semantic development
between concept formation and language growth. The authors indicate that other simulation
results suggest the creation of idiosyncratic categorizations as postulated by Vygotsky but
that little is presently known about such processes and more experimental investigations
with children in naturalistic settings is required.

3.3 Bruner’s classic study of concept attainment

In 1956, Bruner, Goodnow, and Austin published a book entitled A Study of
Thinking, the goal of which was to postulate ideas regarding the human processes of
categorization and conceptualizing. According to Bruner et al., learning to categorize
objects is directly tied to the act of concept attainment. “Attainment refers to the process of
finding predictive defining attributes that distinguish exemplars from nonexemplars of the
class one seeks to discriminate” (Bruner et al., 1956 , p. 22). Thus concept attainment
involves the act of forming a hypothesis with respect to how an object should be
categorized. “To categorize is to render discriminably different things equivalent, to group
the objects and events and people around us into classes, and to respond to them in terms
of their class membership rather than their uniqueness™ (Bruner et al., 1956 , p. 1). The
identity of a concept and its classification into a distinct category depends on the way
different attributes of a concept are defined and combined. Bruner et al. define an attribute
as “any discriminable feature of an event that is susceptible of some discriminable variation
from event to event” (p.26). Bruner et al.’s definition of a concept “is the network of
inferences that are or may be set into play by an act of categorization™ (p. 244) and closely
resembles a number of the recent theory-based aspects of conceptual theory (see Medin
1989, p. 1475). In this sense, a concept is viewed as a way of reasoning about an object or
event with respect to its category membership. In other words, a concept can be viewed as
a reasoning chain of hypothesis formation and hypothesis evaluation, very similar to
Newell and Simon’s (1972) state space search, Gagne’s (1984) learning outcomes category
of intellectual skills, and Anderson’s (1993) view of problem solving.

14 One epoch is the presentation of all the exemplars in the training set to the network.
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As noted earlier, the basis for Bruner et al.’s (1956) view of concepts was

grounded in their experimental studies that built upon the earlier work of researchers like
Vygotsky. Bruner et al. (1956, p. 42) used a set of 81 cards (much like playing cards) to
study concept attainment. Their cards consisted of four attributes, each of which varied on
three values. Figure 23 illustrates the card set that was used by Bruner et al. as the generic
stimuli. The four attributes and their associated values are (a) object shape (cross, circle,
square); (b) color (green, black, red); (c) number of objects (one, two, or three); and (d)
number of borders (one, two, or three). Thus each card instance combined four attributes
and varies in accordance with the values. A category or a concept is defined with respect to
a subset of cards, where each card shares a specific set of attribute values. Participants
were told to discover the concept (induce a hypotheses) that would best describe a subset of
instances. A simple task might involve giving individuals both positive and negative card
instances to see if they were able to infer a hypotheses that defined a conceptual relationship
between the instances. In other words, the individual would postulate a possible concept
(hypothesis) based on the finite amount of information that was extracted from a subset of
cards taken from the domain of 81 cards. Because the stimuli used were generic (cards) the
concepts were artificial, meaning they did not exist beyond the population of 81 cards.
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Figure 23: The set of 81 cards used by Bruner et al. (1956) to study concept attainment.
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Each instance in the array consists of a combination of attributes and their respective
values. Columns -3 are green, columns 4-6 are black, and columns 7-9 are red.

How attributes are combined to generate inferential hypotheses is directly linked to
the conceptual category types available. Bruner et al. (1956) describe three basic category
types:

1. conjunctive concepts: The joint presence of attributes values (e.g, cards that
contain one object and that object is square).

2. disjunctive concepts: Either the joint presence of attribute values or the presence
of either one of the attribute values independently (e.g., three red circles or three borders of
any color).

3. relational concepts: This is defined by the specific relationship between attributes

(e.g., cards with fewer borders than objects).

3.3.1 Anderson’s example

Figure 24 is adopted from Anderson (1990, p. 307) and contains a hypothetical
sequence of instances that could be presented to individuals. The three columns represent
the three category types, conjunctive in column one, disjunctive in column two, and
relational in column three. The positive and negative instances of a concept would be
presented to participants one at a time. For example, reading columns one from top to
bottom, the first card (concept instance) presented to an individual is a positive instance of
the concept. That card contains crosses (X), is colored green (G), has two objects (2) and
one border (1) producing the acronym XG21.!5 The second card (SR21) represents a
negative instance, the third card (XG12) is also a negative instance and so on. With only
two positive instances and three negative instances the individual should have enough
information to formulate the hypothesis for the conjunctive concept, two objects and
crosses. The second column shows the disjunctive concept, two borders or circles. Finally
the third column shows the relational concept, number of objects must equal number of
borders.

Bruner et al.’s (1956) experimental procedure involved having participants discover
primarily conjunctive and disjunctive concepts. Very little work was done on relational

15 The following acronym coding scheme for the cards is used: For attribute shape: Circle (C). Square (S). Cross
(X); for attribute golor: Green (G), Black (B). Red (R): for attribute gumber of objects: One (1). Two (2), Three (3):
for attribute pumber of borders: One (1), Two (2). Three (3). The order of the acronym is shape. color. number of
objects. and number of borders.
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concepts. To make the task easier the experimenter would often tell the individual the

type of concept and the number of attribute values.
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Figure 24: Three examples of concepts categories suggested by Anderson (1990).

A plus (+) indicated the card is a positive instance of the concept, a minus (-) indicates a

negative instance.

3.4 Modeling Bruner’s concept attainment task

Modeling Bruner et. al.’s (1956) concept attainment task was approached in the

following way:

1. The three subsets of cards in Figure 24 were identified as the input exemplars for

the network. These examples were selected for initial investigation because: (a) they are
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general enough to convey the negative/positive instance relationship of the intended
concepts; and (b) there is a specific example for each of the category types (AND, OR, and
RELATIONAL).

2. The “real world” visual representation of the cards was then mapped into a
mathematical representation that was suitable for network input. Considering the type of
task and the procedure used by Bruner et al. (1956), it would important that such a
mapping not interfere with the way the cards were to be presented to the network model.

3. A network architecture was then proposed that would accept the exemplar card
sets as input and learn the concept attainment task.

4. The network was then trained on an exemplar subset to an acceptable level of
conceptual representation.

5. The trained network’s behavior was then evaluated on the degree of concept
attainment achieved.

3.4.1 Network Input

The approach undertaken was to map an input representation scheme for the 81
cards (visual stimuli) that attempts to preserve as much of the cards’ real world
representation as possible. The intention was to have an input representation which closely
matched that of the cards observed by an individual (as described by Bruner et al. 1956)
and thus to increase the level of ecological validity during the experimental process (Bracht
& Glass, 1968). In other words, the independent variables (the properties of the cards)
were explicitly described for the network input to minimize the differences between their
real world form and their network input form.

To accurately reproduce the cards illustrated on page 42 of Bruner et al.’s (1956)
book, each pixel was mapped one-to-one to cells in a 2-dimensional numeric array. The
size of the array was 26 vertical pixels by 44 horizontal pixels for a total of 1144 pixels.
The corresponding numeric array thus had 1144 cells, where colored pixels green, red and
black were assigned the values of 0.25, 0.5, and 0.75 respectively. All other cells
contained values of 0.0. As an example, the card XR22 of Figure 25 shows a one-to-one
mapping between the picture representation and its corresponding numeric array. The
numeric array that designates this card is made up of 0.5 in all the cells that contain red
pixels. The outside border, row 1 columns ! - 44, row 26 columns 1-44, column | rows
1-26, and column 44 row 1-26, all had 0.5 values. The inside border, row 3 columns 3-
41, row 23 columns 3-41, column 3 rows 3-23, column 41 rows 3-23 also contain values
of 0.5. The cross shapes were mapped to their respective X,Y positions inside the borders
and also contain the 0.5 values. This same mapping procedure was used on all 81 cards.
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Figure 25. A numeric array representing the card XR22. The value of 5 (actually 0.5)

represents a red pixel of the card and a value of O represents white pixels.

3.4.2 Basic network architecture

architecture was constructed where each unit in a given layer

A three layer network

was connected to all units in the layer above (multilayer feed forward Parallel Distributed

Processing design). Figure 26 shows the initial physical structure of this network designed

to learn the conjunctive concept task described in Figure 24. Note the network contains one

output unit, five hidden units, and 1144 input units. The input values to each unit in the

network, with the exception of the input units, and the activation values for the hidden and

output units were computed using the following functions respectively:

unit; = z w;a; + bias,

J

In these equations, j ranges over the number of units sending input to unit; . The value of

wjj is the connection weight value to unit i from the unit j and aj is the activation level at

unit j. The value of the bias is represented by bias;. A standard back propagation of error

correction algorithm was used to train the network connection weights (Rumelhart, Hinton,

& Williams, 1986). Connection weights were assigned randomly between +1.0 and -1.0.

Momentum was set to 0.0 and the bias value was turned off. The learning rate was set to
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1.0. The network error output for each exemplar was monitored after a set number of

epochs (e.g., 50) until an acceptable convergence value was reazhed. Three networks were
constructed, one for each exemplar set in Figure 24 (AND, OR, and RELATIONAL). The
difference between the networks were the number of hidden units and the number of
training epochs required to reach convergence. The input exemplars were selected
sequentially in accordance with their position in Figure 24. Each input exemplar consisted
of 1144 inputs (see section 3.4.1). The complete simulation including data plots was coded

using the Mathematica® programming language (Wolfram, 1991).!6

Instance

Output
Unit

Hidden
Units

[nput
1144 Units

Figure 26. A three layer network structure used to study Bruner et al.’s (1956) conjunctive
concept attainment task. Note the output layer contains only one output unit.

3.4.3 Initial results from network with one output unit

Empirical results demonstrated that early versions of the network, using one output
unit (see Figure 26) to classify cards as either a positive or negative instances, provided a
poor model of concept attainment. Figure 27 shows a graph of the root mean square (RMS)
error for the network learning the conjunctive concept (two and cross) in Figure 24.

16 M:uhgmg;jgg@) is an excellent tool 1o both construct connectionist models and to study their functional
properties through the use of data visualization (Freeman, 1994).
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Figure 27. RMS error for the one output unit.

The x-axis indicates the number of training epochs. The y-axis indicates the RMS
error at each epoch. Note the error rate falls quickly and levels off at point 0.05 until 180
epochs where it falls quickly toward convergence. The minimal acceptable RMS error is
often selected 0.01, for the total responses given at the output layer, after one epoch
(McClelland & Rumelhart, 1989). When this network was presented with a novel card
representing the concept (a card not in the training set), it would sometimes fail to classify it
as a positive instance. For example, the histograms in Figure 28 show the output unit
response for this network when presented the nine cards, from the 8! card population, that
represent the conjunctive concept two and cross. The x-axis on each histogram indicates the
output unit number (in this case there is only one). The y-axis indicates the output unit
response. The target response output of such a network is 1.0 for a TRUE instance or 0.0
for a FALSE non-instance. Note that cards XG21 and XB23 are part of the training set and
for this reason produce a value close to 1.0. On the other hand, of the seven remaining
novel cards, three (XG22, XR22, XB22) were classified as being a negative instance of
the concept. These results indicated the network was not being trained on a target output
that reflected the implicit properties of the concept attainment task being modeled.
Therefore, it appears that association among the input stimuli (the numerical array that
uniquely defines each card) and instance values, were not being established with generality.
If their association had been adequately established, exemplars XG22, XR22, and XB22
would have had response outputs approaching 1.0. In this sense, the hidden layer unit
weights must converge so that the functional relationship between the input and output

units is effective over cards beyond the training set.
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Figure 28. The output unit response for each of the nine cards that contain the concept two

and cross.

3.5 Expanding network output for attribute context constraints

Appealing to Gagne’s (1962; 1984; 1985) theory on concept learning discussed
earlier, subordinate objectives should be mastered prior to higher level objectives.
Specifically, the learning of concepts requires that a learner be capable of making
discriminations. Within the Bruner et al.’s (1956) card set these discriminations are viewed
as the attributes shape, color, number of borders, and number of objects. To successfully
model the concept attainment task either: () apriori attribute discrimination knowledge must
be present in the model, or (b) the capability of acquiring discrimination knowledge
simultaneously during concept learning must be present in the model. The goal of the
network is to instantiate a model that can attain the inherent concept category (conjunctive,
disjunctive, or relational) defined by a set of input instances like those shown in Figure 24.
When such a network model is presented with a novel instance of the concept it can
“inductively reason™ (in the generalization sense) the instance’s truth value. In sum,
Gagne’s ideas suggest that concept attainment could not be achieved until a sufficient level
of attribute discrimination knowledge is present in the model.

The intention is to have additional output units satisfy Gagne’s (1985) criteria by
providing evidence of attribute discrimination during network learning. The idea of
employing additional output units to improve network learning has previously been used in
engineering to increase the probability of the network finding a good representation and to
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reduce network learning time; the process is sometimes referred to as “injection of
hints” or “extra output learning” (Suddarth, Sutton, & Holden, 1988; Yu & Simmons,
1990).17 Essentially, the idea is to provide additional output units that express some
knowledge of the problem. No modification of the network algorithm or error correction is
required. For example, Gallmo and Carlstrom (1995) found training is faster and
generalization is better (lower probability of getting trapped in local minima) for a
multilayer network solving the XOR problem using AND as an extra target. Thus, while
the network is learning to classify a card as either a positive or negative concept instance, it
must simultaneously learn to make the necessary discriminations between the attribute
values associated with the card instances. In a psychological context, extra output units can
be viewed as attribute context constraints'8 that must also be learned in association with
either a positive or negative concept instance.

Given that a network is a function learning device (Hecht-Nielsen, 1990) and that
the input data, which describes the function, is seldom complete, the network’s output is
most often an approximation of the true mathematical function. Following the rationale
used by Gallmo and Carlstrom (1995) to support the inclusion of extra output units, let F
denote the function that describes the concept being attained by the network. The set of 81
cards describes the population from which all possible concepts are derived. In Bruner et
al.'s (1956) task a single concept is defined as a subset of positive and negative card
instances. The complete function definition of the concept F would require all 81 cards to
be identified as positive and negative instances with respect to the concept.

Given that the network is only presented with a subset of instances the function
produced by the network is an approximation of F, let {f} be the set of possible functions
that are approximations for F. In other words, for a given subset of card instances defined
as input training set T, the network will converge on one of the possible functions defined
in {f}. Convergence is achieved when the network error value reaches an acceptable level.
This indicates the concept, as defined in T, has been learned. The possible size of {f} may

17 It should be noted that increasing the number of output units does not increase the representational power
of the network. The representational power of the network resides in the number of hidden units. Any
multilayer network trained using the back propagation algorithm can behave as a universal function
approximator, meaning it can represent any function to any degree of accuracy if given a sufficient number
of hidden units (Hornik, Stinchcombe, & White, 1989). Therefore, given a finite training set, the extra
outputs may assist in finding a good representation from the set of possible representations.

I8 Analogously one can view these constraints as being similar to the constraint that eigenvectors of a
matrix be found conditional upon being normalized, the difference being that these attribute constraints have
a psychological basis and are not strictly formalized to an absolute value, such as 1.0 of a normalized
vector, nor is the solution non-unique.
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be large and some elements of {f} appear to be good function approximations (i.e.,
representing global minima in the error space). This may not be true because T is defined
as a subset of the card population and thus the chosen element from {f} may only reflect a
global minima with respect to this limited subset. The ability to generalize across the entire
card population may not be resident in the chosen element from {f}. That is the network’s
conceptual representation may be false (i.e., the network has a misconception).

For example, assume the five cards for the conjunctive concept in Figure 24 is used
to defined T. The concept to be attained is conjunctive—number of objects is two and these
objects must be crosses. A network trained on T will produce TRUE for a positive card
instance in T and FALSE for a negative card instance in T. To test network concept
attainment a novel card instance is presented to the network (a card from the population not
in T). Failure to correctly classify this card as either TRUE (instance) or FALSE (non-
instance) would indicate the network’s lack of concept attainment (generalization). Such
was the case for early versions of the network that compared the output from one unit

against positive and negative targets.

Attribute Context Constraints

Output
Units

Hidden
Units

Input
1144 Units

Figure 29. A three layer constrained network structure used to study Bruner et al.’s (1956)
conjunctive concept attainment task. Note the addition of the extra output units to classify
the card according to the attributes associated with the output instance unit.

To achieve a better network representation more knowledge of the input must be

reflected in the output. Let T’, T”, T, and T”” be duplicate sets of T, where T’ is
defined as the training set for the color function, C (red, green, black). T* is defined as the

training set for the shape function, S (cross, square, circle). T*” is defined as the training
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set for the number of boarders function, B (three). T”” is defined as the training set for

number of objects function, O (three). Analogous to the relationship between F and the set
{f}, let {c}, {s}, {b}, and {o} denote the sets of function approximations the network can
implement to satisfy C, S, B, and O respectively.

Given that all these functions F, C, S, B, and O are defined by the same training
set T the network structure can be modified to accommodate the simultaneous learning of
these functions by extending the output layer. For the output layer in Figure 29 the first unit
provides evidence for the instance value, F, and the remaining eight provide evidence for
attributes (C, S, B, O). In this sense, the attribute output units have a natural association
with the instance output unit. Note the internal hidden unit structure is not changed but the
network is forced to learn all these functions simultaneously (see Figure 30) such that the

intersection (i.e., {f} N {s} N {c} N {b} N {o}) of all functions define the set of

approximations that best describe the concept being attained. These extra output functions
can be viewed as additional attribute constraints that must be learned in the context of
positive and negative card instances in order to achieve concept attainment. The intersection
reflects a subfunction that satisfies these attribute constraints. The network is directed to
converge on the functional intersection and to instantiate a better model of concept
attainment. This means it should be more capable of generalizing to novel instances. As a
result, context dictates the type of attributes that can be used to constrain the space of
representations so that the network can find a good representation. Note the number of
hidden units in Figure 29 remains the same as in Figure 26, only the output layer has been

restructured.

Figure 30. The relationship between attribute subfunctions and the instance function. The
intersection defines a set of more robust concept attainment models.
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The specific target output representation, a binary string, consists of nine output

units that uniquely symbolize the positive or negative card instance and its attributes. A
target output representation for a given card is constructed in a two-step process. First, one
binary value is used to designate the truth or falsity of a concept instance. In other words, a
TRUE concept instance is the binary number 1, and a FALSE concept instance is the binary
number 0. Second, a string of binary vectors, one for each of the card’s attribute values,
were concatenated together to comprise the remaining eight output units. Table 5 shows
the four attributes and their associated values that can be combined to form the attribute
context constraints. Below each value in the table is the binary code which symbolizes its
respective value. Using this coding scheme, the target output representation for card XR22
in Figure 25, (assuming it represents a positive instance) is as follows: The first target
element (reading left to right) for output unit one is the binary value 1. The next eight
values, required to complete the target, are constructed by concatenating the 2 bits for each
of shape (01), color (10), number (10), and borders (10), to produce the following unique
vector 101101010.

Table 5. Coding scheme for attribute context constraints

Attributes Values
Shape Cross Circle Square
01 10 11
Color Green Red Black
0l 10 11
Number One Two Three
01 10 11
Borders One Two Three
01 10 11

3.5.1 Network training with attribute context constraints

The network was trained in the same manner as descibed in section 3.4.2. That is,
the five cards in Figure 24 defining the conjunctive concept were used to train the attribute
context constrained network to an acceptable error convergence rate (less than 0.01%
RMS). In this case the target output had nine output values to match at the output layer. For
example, the network was presented with a card instance XG21 (the first card) and the
output produced by the network was compared against its associated target bit string
(101011001). Table 6 shows the target output for the five cards that were presented to the
network. As mentioned previously, the back propagation algorithm was used to adjust the
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weights of the network during training. The same random number seed was used to
initialize the network weights.

Once the network was trained it was tested using card instances outside the training
set. In other words, the network was tested with cards not in the training subset but from
within the Bruner et al. (1956) card universe. These selected cards included both positive
instances and negative instances from the training set.

Table 6. Description of the cards and their associated target output for training set.

Target Output Units 1-9
1 2 3 4 5 6 7 8 9

Card description Instance  Shape Color Number  Borders

Green with two crosses and
one border. (XG21) I 0 1 0 1 I 0 0 I

Positive instance +

Red card with two squares
and one border. (SR21) 0 1 1 1 0 1 0:0 1

Negative instance -

Green card with one cross
and two borders. (XG12) 0 0 1 0 1 0 l 1 0

Negative instance -

Red card with three squares
and three borders. (SR33) 0 1 1 1 0 I | 1 1

Negative instance -

Black card with two crosses
and three borders. (XB23) 1 0 1 l 1 1 0 \ 1

Positive instance +

3.5.1.1 Speed of learning and categorization of concept instances

This section examines the speed at which the attribute constrained network learned,
and the degree to which the instances and attributes in the training subset were also learned.
Figure 31 shows a set of RMS error graphs for the nine output units at various epochs (10,
30, and 140 respectively). Each RMS error line in the graphs are labeled in accordance with
their respective position in the output target, i.e., output unit one (instance unit) is labeled
1, output units two and three (shape units) are labeled 2 and 3, and so forth. When the
results from Figure 31 to those in Figure 27 are compared, it is clear that the attribute
context constraints helped the network to learn faster (i.e., the constrained network reached
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the same RMS error in approximately 140 epochs that was reached in 180 epochs in the
unconstrained network). The output for cell one (instance unit) has a higher error rate than
the output units for the attributes. As network learning proceeds the attributes are leamed at
a faster pace than are the instance/non-instance relationships. Thus leamning the attributes
appears to have the effect of reducing the instances’ unit error rate. Note that the card
attributes were learned sooner than instance as would be expected of a hierarchy in which
knowledge of attributes is a prerequsite.

Pms error at epoch 10

\

0.25

epoch
20 40 60 80 100 120 140

Figure 31. RMS error for the nine output units at three different epoch points.

Figure 32 shows the set of five histograms (one for each card in the examplar
training set) that indicate the nine output units responses after training. As described earlier,



116
the y-axis shows the output reponse level (from 0.0 to 1.0) for the output units and the
x-axis shows the individual histogram bars for each of the nine output units. A comparison
can be made between the histogram bars produced by each card and their respective target
as described in Table 6.

R XG21 Rep SR21 Rt XG12
1 1
0.8 0.8
0.6 0.6
04 0.4
0.2 0.2
QOutCell OutCell OutCell
123456789 1 23456789 123456789
Resp  SR33 Resp  ¥B23
1 !
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
QutCell OutCell
123456789 123456789

Figure 32. The output responses for the five exemplar training set cards.

In Figure 32 for the card XG21, the first bar represents output cell one and is very
close to 1.0. This indicates that the network identifies XG21 as a positive instance of the
concept. This is also the case for the card XB23. In other words, in both cases (XG21 and
XB23) the first output unit responded TRUE for the concept two and cross. The remaining
eight output units describe the card attributes: shape (units two and three), color (units four
and five), number (units six and seven), and borders (units eight and nine). The network
learned that SR21, XG12, and SR33 are negative instances, as shown by the value of the
first output unit of their respective histograms (these values are close 0.0). Figure 32 also
shows that attributes shape, color, number and borders were correctly identified. These
results are summarized in Table 7.
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Table 7. Training set cards and learned instances and attributes

Card Instance Shape Color Number Borders
XG21 V&) ) v v )
SR21 V) v ) v v
XGi12 V) v v v v
SR33 V() ) v ) )
XB23 v+ v v v J

3.5.1.2 Categorization of constraint attributes

Using the final weights obtained, the network was presented with all the cards from
the Bruner et al. (1956) card set that contained the concept two and cross. In each case the
network categorized them to be true instances of the concept. Figure 33 shows the nine
plots for each of the cards that contain the concept two_and cross. For the purposes of
intrepreting the heights of the bars in each plot, the position is taken that the response
values represent the degree of certainty that the network developed that the output is 1.0 for
a given output cell. For example, XR22 has a “degree of certainty” of 0.75 that the output
is truly 1.0, i.e., a positive instance.!® These results are summarized in Table 8. Thus the
network was able to generalize (inductively reason in the Bruner et al. 1956 sense) to novel
card instances never before seen with a higher rate of accuracy than without the attribute
context constraints. Note that the three cards not learned previously are now learned when
the attribute constraints are added (compare Figure 28 with Figure 33). Similar results were
obtained for the disjunctive concept set in Figure 24. The level of ecological validity has
increased for two reasons: (a) generalization to the card population is better, and (b) the
response at the output layer provides a more valid description of what has been learned
with respect to the input representation.

19 The term degree of certainty cannot be interpreted as a true statistical probability.
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Figure 33. The output responses for all nine cards Bruner et al.’s card set that contain the

concept two and cross.

Table 8. Network response to instance and attributes for cards in Figures 32, 33, 34.

Card Instance Shape Color Number Borders
XG21+* v (+) v v v v
XG22 v (+) v ¥ vV ?
XG23 v v x v v
XR21 ) v x v v
XR22 v+ v x v ?
XR23 v (+) v x v v
XB21 e v x v v
XB22 V) v x v x
XB23* v+ V v v v
SR22 V(=) v ¥ v x
CR23 X (=) x ? v v

* Training set card.

? Low certainty on one of two outputs

The network was then presented with cards that contained squares and it classified

them as negative concept instances. For example, Figure 34 shows the output for card
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SR22 which was typical for cards that represent negative instances. The network
solution was then tested with cards that contain two circles. Figure 35 shows the typical
output units response for cards with two circles (in this case the CR23 card). The results
for the cards SR22 and CR23 are summarized in Table 8. The network generalized card
CR23 to be a true instance of the concept but with less certainty than the positive instance
of the concept (see Figure 32). In other words, the concept two and circle reflects a positive
instance of the hypothesized concept. This result appears counterintuitive given that the
concept of the network was assumed to be two and cross. The network’s behavior would
indicate a type of overgeneralizing to unseen instances that are closely related to the concept
class. Note that the visual stimuli (CR23) contained a shape (a circle) never before seen by
the network during training. Also note that these circles are in the context of similar
surrounding attributes for training set cards SR21 and SR33 that are negative instances,
and for training set card XB23 that is a positive instance. In this situation the network
appears to recognize a novel unseen instance as a previously learned one and classifies it as
part of the concept class. Over generalization of a visual prototype is not uncommon for
human infants. For example, Bomba and Siqueland (1983) found that 3-4 month olds
exhibited overgeneralized behavior in the context of prototype dot image patterns. Table 8
also indicates that the attribute of color was in error for most cards representing a positive
instance and which were not in the training set. Black and red were incorrectly categorized
twice, and green once. Borders also showed incorrect categorization, but not to the same
extent as color. The attributes of shape and number had almost no errors of categorization.

Further interpretation of network behavior and a more detailed analysis of the
internal weight space representation is presented in the next chapter.

Resp SR22

OuCell
1 2 3 4 H 6 7 8

Figure 34. The output responses for the red card with two squares and two borders.
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Figure 35. The output responses for the red card with two circles and three borders.

3.5.2 Summary of results for constrained and unconstrained networks

Although it might be expected that the constrained network takes more presentations
to reach a given level of categorization than an unconstrained network because more
calculations are involved in learning a larger number of attributes, the results indicate the
opposite. The constrained network took less time to learn the appropriate categorizations of
instances and attributes than the unconstrained network took to learn the categorization of
instance only. The results also indicate that the constrained network had better capacity to
generalize to card instances not seen previously. The latter is indicated by comparing the
instance output for cards XG22, XR22, and XB22 having positive instances in Figures 28
and 32. Even though the attributes exhibited in the training card set were correctly learned
by the constrained network, when the network was presented with previously unseen
positive instances having different combinations of attributes, the network showed the
greatest number of errors for color, and a lower degree of certainty for borders for some
exemplars. No errors of categorization appeared for the attributes of shape and number.
The network is thus able to discriminate on the critical concept features of “number of
objects” and “shape” that define the concept instance. Furthermore the constrained network
over generalized the concept by categorizing circles as crosses.

3.6 Conclusion

Traditionally experimental methods in psychology have attempted to limit the effects
of extraneous variables in an effort to increase validity. Network models of cognitive
processes often make various assumptions regarding the structure and function of the
input. These assumptions can directly impact the ecological validity of the network and

influence the network performance.
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Two ways of preserving network ecological validity were investigated. The
first involves structuring the input to reflect the “real world” objects used during the
experimental procedures with subjects. In this case a mapping strategy was developed to
retain, as much as possible, the visual representation of the actual Bruner et al. (1956) card
set.

The second method is influenced by Gagne’s (1985) work that suggests
discrimination learning plays a significant role in the conceptual development of humans.
To address this issue of discrimination learning the number of units in the output layer was
expanded to include constraints for a given set of attributes in a given context (thus the
phrase “attribute context constraints™). These attribute context constraints direct the network
towards a better overall representation by allowing for a higher level of generalization to the
overall card population of exemplars. A suggested reason for the success of these attribute
context constraints is the functional relationship formed between the input and output
layers. Another added benefit of using these constraints appears to be an increase in the
speed of network learning.

The role of extra output units to direct network learning is largely unexplored in the
context of connectionist modeling of concepts. For example: Can attribute context
constraints be used in other connectionist studies of concepts? How does the internal
structure (hidden weight space) of the network change as extra output units are added? (see
Chapter 4). Furthermore, attribute context constraints offer the possibility of experimenting
with Gagne’s (1962) learning hierarchies, which are an important component of many
pedagogical strategies. Thus knowledge from instructional theory, in the form of attribute
context constraints, can play an important role in defining the physical structure of the
network.

Finally, the results indicate a connectionist network can be constructed to solve
Bruner et al.’s (1956) concept attainment task. Further research would be a more detailed
connectionist investigation of Bruner et al.’s work, namely modeling the strategies people
employ to determine the relevant features of a concept. That is, given that networks can be
structured to achieve the goal of concept attainment, do they implement similar types of
strategies that people do?
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4. Network Analysis

4.1 Introduction

There appear to be a number of alluring reasons for using the connectionist
approach to model cognitive processes. The most obvious allure is the notion that such
models are peurally plausible (Rumelhart & McClelland, 1986). A second, and one which
is closely linked to issues of development, is that such models form internal representations
based on learned experiences. That is, over some period of time, a connectionist mode! will
develop a representation which map inputs (real word experiences) to outputs (actions
taken with respect to real world experiences). The observed behavior of such a model may
appear, on the surface at least, to be remarkably similar to that of the actual observed
cognitive behavior. But on what grounds can such an jsomorphic relationship be
substantiated? Herein lies a major area of concermn for many connectionist modelers.
Essentially, this concern amounts to trying to understand the network’s internally formed
representation both during its formation and in its final form (Robinson, 1992).

The problem of network interpretation stems from the fact that knowledge is
distributed across weights associated with cells and from the nonlinear properties used to
form this weight space over time (epochs). Furthermore, such a system forms a knowledge
representation structure based on the training set (input) and the starting state of the
weights; however, both of these may vary in their initial form. Currently, there is no
generally agreed upon form of network analysis. Thus research into understanding the
internal workings of the network is exploratory and must be tailored specifically to the task

being modeled.
A number of techniques have been used to make some sense of the network’s

internal structure formed during learning. An important factor that can contribute to our
interpretation of a network is to create a visual depiction of the internal network
representation (Hunka & Carbonaro, to appear). Hinton (1986) suggested one could infer
certain facts about weight data by visualizing the data in a diagrammatic fashion, often
referred to as “Hinton Diagrams.” One underlying problem with this approach is that a one-
to-one mapping must be known between input exemplar and the associated cell’s weight
vector. For simple feed forward networks with two layers the mapping between exemplar
and weights is obvious. Unfortunately, this mapping becomes more complex with the
addition of hidden layers. This is because the hidden layer calculates a response vector (that
1s mapped against the next higher level set of weights) and it becomes difficult to determine
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the interpretation between this hidden layer activation vector and the original input
exemplar.

Another analytical technique which appears to be effective in understanding the
solution structure of the network is a statistical analysis of the activation patterns for hidden
response cells and the internal weight space (Hanson & Burr, 1990; Shultz & Elman,
1993). Hanson and Burr (1990) suggest two reasons for analyzing the network’s

representation using statistical techniques:

First, there is a similarity between the multivariate analysis of data (or
psychometric modeling) and the learning/representation relationship in nets.
An understanding of the net’s internal representation could make a
contribution to psychological theory too. Using nets that learn is like doing
exploratory data analysis (Tukey, 1977). Moreover, a judicious and critical
analysis of the net’s representation can reveal what it has discovered
through exposure to data. The second reason for analyzing what nets leam
is that learning deserves study in its own right. Analyzing what the net
computes after learning provides a simple empirical way of exploring the
intimate relationship between learning and representation. (p. 482)

Hanson and Burr outline specific types of multivariate analysis (cluster analysis) and more
exploratory type techniques such as factor analysis or multidimensional scaling for network
interpretation.

One qualifier when using linear modeling statistical methods to analyze the
networks representation is that such representations are often formed nonlinearly. For
example, in a simple two layer type network statistical techniques may be quite suitable for
the interpretation of the representation because decision boundaries are linear (Lippmann,
1987). In such cases the functions to be learned are said to be linearly separable (Minsky &
Papert, 1969). More complex three layer networks might require nonlinear decision regions
and involve nonlinear interrelationships among hidden cell values (McClelland &
Rumelhart, 1989). These nonlinear interrelationships are not well suited for multivariate
analysis which assumes linear relations among variables. For example, “if we associate
variables with [network] cells in a multivariate analysis such as factor analysis, it is quite
possible that the interaction between the weights or activation of two cells will be
nonlinear” (Hanson & Burr, 1990, p. 488).

More recently, Berkeley et al. (1995) have attempted to overcome some of the
limitations and difficulties associated with multivariate analysis by using banded density
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plots. Banded density plots are graphical representations that reflect the hidden cell
activation levels for the patterns used to train the network. The bands can be mapped back
to the input patterns in such a way that specific features of these patterns can be defined
with respect to the type of bands they produce. The banding technique thus provides a
simple means of interpreting the network’s representational validity in the context of both
architectural and environmental constraints.20

According to Berkeley et al. (1995) the use of bands to interpret trained network
structure has two advantages over the multivariate approach: (a) it incorporates an aspect of
nonlinearity because it works with the hidden cell activation levels, and (b) it avoids the
artifact type assumptions (e.g., factor rotation) and instead relies on the natural clustering
produced by the network.

In all of the above cases, the analysis was performed on the network’s final state.
In contrast, McClelland and Jenkins (1991) used diagrams to plot the dynamic learning
performance of the network at various stages during the development of the network’s
representation. A key part of their visual analysis is the plotting of graphs that show the
epoch by epoch performance. Their intent was to demonstrate the model’s stage-like
conceptual performance on the Piagetian balance scale problem. Thus an understanding of
dynamic network learning becomes important when the model concerns issues of
development.

In many network interpretations there is an assumption that networks develop their
own rule-based knowledge. In this sense rules are inherently developed during the network
learning process and are embodied in the weights and nonlinearity used to modify the
weights over time. In contrast, the traditional symbolic Al approach used rules which were
explicitly defined for the model (Jackson, 1990). Defining the isomorphic relationship
between the connectionist cognitive model and the theoretically defined conceptual task
(such as Bruner et al.’s 1956) involves a process of making these inherent rules more
explicit. This chapter attempts to interpret the inherently developed rules for both
constrained and unconstrained networks used to model Bruner et al.’s concept attainment
task.

This chapter is divided into the following sections: Section two examines the
dynamic learning aspect of the network model. Section three analyzes the final state of the

20The banding interpretation technique appears to perform better when networks are defined using the value
unit architecture (Dawson & Schopflocher, 1992). Such networks replace the logistic activation function
with a non-monotonic activation function.
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network. The final section provides a summary of the conclusions derived from these

analyses.
Attribute Context Constraints
[ inintais ity Sadnlaied G d A ]
1
Instance N
Output
Unit
Hidden
Units
Input
1144 Units 14

Figure 36: The two networks used to model Bruner's et al. (1956) concept attainment task.

4.2 The Bruner concept attainment task

Bruner, Goodnow, and Austin’s (1956) research on concept attainment was re-
examined from a connectionist perspective. Bruner et al. (p. 42) used a set of cards to
study concept attainment consisting of four attributes, each of which varied on three values:
shape (cross, circle, square); color (green, black, red); number of objects (one, two, or
three); number of borders (one, two, or three). Each card instance combines one value of
each of the four attributes. A category or a concept (conjunctive, disjunctive, and relational)
is defined with respect to a subset of cards that share a common set of attribute values.

Two different PDP network models of the Bruner et al.’s (1956) concept attainment
task were develop to compare the use of attribute context constraints.2! These constraints
are based on Gagne’s (1985) theory of concept leaming and require a learner to make
discriminations to identify distinctive features of stimulus objects. Essentially these
constraints resulted in the addition of extra output cells that help guide the network in
constructing a better representational model than those models in which the constraints
were absent. Figure 36 shows these two models. The structure of input and hidden layers
are the same for each model. The output layers are different. The left model is
unconstrained and contains only one output cell, the right model contains an additional
eight outputs that are used to define the attribute context constraints. In both models
network learning requires the card to be classified as either a positive or negative concept
instance but the constrained network is also required to simultaneously learn to make the

21 See Rumelhart and McClelland (1936) for a detailed explanation of PDP networks.
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necessary discriminations among the attribute values associated with the card instances.
The network models were trained on the set of card instances shown in Figure 37 using the
standard back propagation error correction algorithm (Rumelhart, Hinton, & Williams,
1986). The same initial set of starting weights was use in both cases.

A conjunctive concept, to be attained by the model, is identified in this card set as
two and crosses. Only the conjunctive concept type was explored in this analysis. In Figure
37 the plus (+) designates the card is a positive concept instance and the minus (-)
designates the card is a negative concept instance. Network input was constructed using a
one-to-one mapping between each card’s visual representation and a 2-dimensional numeric
array. This array had 1144 cells, where colored pixels green, red and black were assigned
the values of 0.25, 0.5, and 0.75 respectively (white pixel values were 0.0).

Conjunctive Concept

Card 1 Green g |+

Card 2 Red - . -

Card 3 Green E]’ .
Card 4 Red .

Card 5 Black +

Figure 37: The set of card instances used as input data for the models.

The unconstrained network reached an acceptable level of convergence after 200
epochs whereas the constrained network reached convergence after only 140 epochs. The
following sets of data were saved for network analysis: (a) the set of responses at both
hidden and output layer for each exemplar during all epochs, and (b) the set of weights for
hidden and output layers after each epoch. As a result, a large data set is generated for each
epoch during network training. This was especially the case for the set of weights at the
hidden layer given that there are 1144 input cells that resulted in a set of 5720 individual
weights that needed to be saved after each epoch. Thus, for 200 epochs more than

approximately one million numbers were saved.



131

4.3 Interpretation of the networks dynamic learning

The interpretation of dynamic leaning focused on the changes of the cellular
responses at both hidden and output layer. In this context dynamic learning refers to the
changes in cellular response values that occurred during the epoch by epoch performance of
the network with respect to the input exemplars.

4.3.1 Hidden layer responses

The responses produced at the hidden layer are shown in the set of graphs in Figure
38. The left side shows the responses given for the five hidden cells in the unconstrained
network. The right side shows the five hidden cell responses for the constrained network.
The y-axis of each graph indicates the response level of the hidden cell. Not all graphs
show the same scale of response values but all graphs must have responses within the
range of 0.0 to 1.0. The x-axis of each graph indicates the number of epochs. In Figure 38
Each colored line designates one exemplar in the set of 5 cards for the conjunctive concept.
Table 9 shows the mapping scheme between colored lines and the cards in Figure 37.

Table 9: Mapping between colored lines and card exemplars.

Colored lines Card exemplar
Black 1
Blue 2
Green 3
Sky Blue 4
Red 5

The end points of each colored line in the graph also show the exemplar number.
The cells generally show faster convergence for the constrained network than for the
unconstrained network with the exception of cell 4 in the constrained network in which the
response for exemplar 4 took more than 120 epochs before it converged. Cell 2 in the
constrained network converged almost completely after 30 epochs whereas in the
unconstrained network convergence did not begin until 180 epochs. At that point exemplars
I, 2, and 5 began to separate themselves out. Also note that exemplar 3, in cell 5 of the
constrained network, converged faster and achieved a higher response value than it did in

hidden cell 5 of the unconstrained network.



132

One way to view the output response at the hidden layer is as a set of rules that
was developed during network learning. An individual hidden cell will respond (produce
output) in accordance with its own rule when the cell is presented with an exemplar. For
example, the response pattern for hidden cell 4 in the unconstrained network (see Figure

38) can be rewritten in rule form as:

IF (exemplar one OR exemplar five) THEN cell response is approximately 1.0
ELSE cell response is approximately 0.0

Viewed in this context all cells can be said to have developed their own rule-based response
pattern to network input. One problem with understanding network functionality at this
level is that cell rules are developed both: (a) nonlinearly, and (b) in parallel with all other
cells. Thus it is the total combination of all cells that forms an N-dimensional space that
reflects the nonlinearity of these inherently formed rules. A 3-D plot can be used to
demonstrate this nonlinear parallel formation of rules between cells. The three axes are
labeled after each hidden cell they represent. Each axis indicates the range of response
values for its respective hidden cell. Figure 39 shows the joint responses of three cells (2, 4
and 5) for each exemplar over 200 epochs. Clearly these responses to exemplars form
nonlinear patterns. Exemplar 1 and 5 converge in the same general area of the 3-space and
represent positive instances of the concept. Exemplars 2, 3, and 4 appear closer together
diagonally across and represent negative concept instances. Contrasting Figure 39 with
Figure 40 shows the 3-D plot for hidden cells 2, 3, and 4. In this case the negative concept
instances appear clearly separate from each other but the positive instances converge on
almost the same spot.

The reason for selecting these two sets (unconstrained and constrained) of three
cells for plotting is based on a qualitative assessment of the set of the unconstrained
network graphs show in Figure 38. For example, in the case of the unconstrained networks
both cells 1 and 3 appear to output values close to 0.0 and seem to respond similarly to all
exemplars. Therefore they were deemed to be of less significance in the separation of the

exemplars for network convergence.

4.3.2 Output layer responses

Figure 41 shows an early convergence of the responses for the nine output cells in
the constrained network. Figure 42 shows that exemplar 2 required 180 epochs to reach
convergence. The unconstrained network cell in Figure 42 and cell 1 of the constrained
network in Figure 41 are both required to make the same separation between exemplars. In
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the constrained network exemplar 2 begins convergence at 20 epochs as opposed to the
unconstrained network where it requires 180 epochs to reach the same state. The problem
the unconstrained network had was to classify card 2 (negative instance), which differed in
color and shape only from the card 1 (positive instance). In other words, the unconstrained
network which is not required to demonstrate leamning of color, border, etc., encounters
difficulty classifying closely related exemplars of differing instance.
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Figure 38: Response migration for hidden cells in constrained and unconstrained networks.
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Hidden Cell Response

Figure 39. Hidden cells 2, 3 and 5 for responses in the unconstrained network.

Hidderi Cell Response

Figure 40. Hidden cells 2, 3 and 4 responses the constrained network.



Y
Cell: 1 Qutput for epochs={1, 140)

20 40 60 80 100 120 140

b4
Cell: 2 Output for epochs={1, 140}

]
N .'.,zv.,‘.‘ﬁ;.:‘ag-prl,s-,a»\n ~—

epochs

Y
Cell: 6 Output for epochs={1, 140}

b4
Cell: 7 Qutput for epochs={l, 140)
- ;:;\}fﬂ\'.’{x’!ﬂwm

t

©C 0 © 0 0 & o

Y
Cell: 4 Output for epochs={1, 140}

! e S e ey

b 4
Cell: S Output for epochs={1, 140}

20 40 60 80 100 120 140

.
4 +
C NNy

epochs
0

epochs

20 40 60 80 100 120 140

Y
Cell: 8 Output for epochs=(1, 140}

epochs

100 _1oq “1do

T Y
2L 40 60 80
—

|

Y
Cell: 9 Output for epochs={1, 140}

Figure 41: Response migration for output cells in constrained network.

136



137

Y
Cell: 1 Qutput for epochs={1, 200}

- epochs

o
N
[N

——

Figure 42: Response migration for output cell in unconstrained network.

4.4 Network’s final state

The network’s final state is reflected in the total set of weights and the final set of
responses produced by each exemplar of the training set. The analysis of the network’s
final state was restricted to the set of response values produced at the hidden layer on the

last epoch.
The analysis technique used here was to perform a singular value decomposition on

a data matrix of hidden cell response patterns by exemplars. For the conjunctive concept in
Figure 37, the matrix of order (5,5) was resolved into its components (eigenvalues and

eigenvectors) by:
D=UT'W

where D is of order N hidden responses and n exemplars, U are the left eigenvectors of
order (N,n), I' is a diagonal matrix of eigenvalues of order (n,n) and W are right

eigenvectors of order (n,n). The left eigenvectors are parameters descriptive of the hidden
cells while the right eigenvectors describe the exemplars. The resolution of the data matrix
into additive components can be represented by the following:

D= U,I\W, + UJ,W, + UT,W, + .. + U W,

Thus matrix D is the sum of an orthogonal set of components. Examination of the
eigenvalues can provide information on which components are most significant in
accounting for the best least squares estimate of D, i.e., which subset of orthogonal
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components of U and W can closely estimate D. Given the final state of responses in
the unconstrained network, Figure 43 shows the result of plotting the largest three principal

components of W (i.e., I'*W) based on the largest three eigenvalues (1.74, 1.32, and

0.42) and indicates the dimensions by which the hidden layer discriminates among the
exemplars.

The three axes are labeled for each of the principal components and indicate the
range of component values. Most notably, exemplars 2, 3, and 4 are clustered to the left
and define those instances that are negative, while exemplars 1 and 5 are clustered to the
right and define instances that are positive. Exemplars 2 and 4 cluster in the bottom right
hand corner, both contain square shapes and are colored red. Exemplar 3 is in the upper left
quadrant and contains two borders and one cross.

Figure 44 shows the Varimax rotation of the principal components. In this case the
negative exemplars (2, 3, and 4) are clearly separate at opposite ends from the positive
exemplars (1, and 5). Note that exemplar 3 remains quite distinct after Varimax and
exemplar 2 and 4 remain close together.

Figure 45 shows the results of plotting the largest three orthogonal components
based on the largest three eigenvalues (2.56, 1.54, and 1.27) for the constrained network.
As was the case in the unconstrained network it indicates the dimensions by which the
hidden layer discriminates among the exemplars. In this case the three negative exemplars
are more widely dispersed in comparison to the unconstrained network, whereas the
positive exemplars (1 and 5) are close together as was the case for the unconstrained
network. After Varimax rotation, exemplars | and 5 are distinguishable from exemplars 2,
3, and 4 on the first dimension with the former having high values (approximately 0.8) and
the latter values closer to 0.0. On the second dimension, negative exemplars 2, 3, and 4
receive values in the range 0.4 to 0.8, while the positive exemplars are close to 0.0. The
third dimension identifies most markedly the negative exemplar 4 from the remaining
exemplars.

This analysis suggest quite clearly that the constrained network provides a greater
degree of differentiation among the negative exemplars, with less separation between the
positive exemplars. For example, exemplar 4 has the attributes red, three borders, and three
squares, and is the most different of the negative exemplars. However, the positive
exemplars are collectively distinguishable from the negative exemplars. Thus singular value
decomposition proved to be a valuable technique for interpreting hidden cell responses with
respect their input exemplars.
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Figure 43. First 3 principal components of hidden responses for unconstrained network.
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Figure 44. Varimax rotated principal components of hidden responses for unconstrained
network.



Figure 46. Varimax rotated principal components of hidden responses for constrained
network.
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4.5 Discussion and conclusion

This chapter began by alluding to the difficulties of substantiating an isomorphic
relationship between observed behavior and the connectionist network used to model these
behaviors. The difficulty in establishing this isomorphic relationship is based on three
assumptions: (a) the physical structure of the model, (b) the learning mechanisms and the
representations these mechanisms construct, and (c) the environmental input.
Understanding any of these three assumptions is an exploratory process. The work in this
Chapter offers some possibilities of understanding network representation from both a
dynamic and final state perspective. This investigation is grounded in the task being
modeled, in this case the Bruner et al.’s (1956) concept attainment task. A major outcome
of modeling this task proved to be the structural difference between constrained and
unconstrained networks. Thus the analysis presented in this chapter centered on the internal
representational differences between the two structurally different models.

The environmental conditions, in this case the input exemplars and the presentation
of these exemplars, closely resemble their respective real world counterparts. From a
dynamic perspective it appears the network leamed faster with constraints because the
constraints helped it to separate the exemplars and construct a better internal categorization
process. Analysis of both hidden and output cellular responses support this conclusion.
The hidden layer also developed its own unique response rule-space in which to classify
the exemplars. The 3-D plots for dynamic learning demonstrate the highly complex
nonlinear nature of rule formation. These plots also show that constrained networks are
better able to clearly distinguish between negative and positive instances and define a
sounder conceptual definition. This supported empirical results that demonstrated
constrained networks performed better on generalization tasks.

It appears that the rules at the hidden layer for constrained networks show a much
clearer separation of the exemplars than is the case for the unconstrained networks. Thus it
was not the case that both networks converged on the same set of rules at the hidden layer
even though the initial starting weights were the same for both networks. Both networks
reached convergence at different points in time but more importantly it appears the
constrained network did so because it better developed a representational model which
reflected the association between instance values and the attributes used to define these
instance values. This separation was clearly visible from the singular value decomposition
of hidden layer responses that showed the constrained network had greater discriminatory
power between exemplars without any loss to the positive concept. More importantly this
supports the argument in the previous chapter that extra output cells (attribute context
constraints), having a functional relationship to the input, can direct the network to form a
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better internal representation (see section 3.5). In other words the rule space developed
for the constrained network produced a functional approximation (a global minima) that
better reflected the concept attainment task.

Overall the analysis presented in this chapter focused entirely on the cellular
responses given at both the hidden and output layers. This type of analysis is only one of
many possible interpretations and based on supporting the use of attribute context
constraints for modeling concept attainment tasks. The area that is not discussed is the
analysis of the weight space. As mentioned previously, the larger size of the input array
produced a hidden-layer weight matrix which proved difficult to analyze and presents a

definite area for future research.
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Chapter 5

S. Overview

This closing chapter is meant to tie together the three major pieces of work
presented in this thesis. The work in Chapter 2 was designed to show the implications
computational modeling can have for work in the field of Education. Chapter 3 re-examined
Bruner, Goodnow and Austin’s (1956) classic research on concept attainment from the
connectionist perspective. In Chapter 4 the research focused on developing interpretations
of the connectionist models presented in Chapter 3. The obvious link between the work in
these chapters is the use of computational modeling as a vehicle for furthering our
understanding of the cognitive process under investigation.

Essentially computational modeling offers the opportunity to investigate cognitive
phenomena not available in the more traditional forms of quantitative and qualitative
research. The development of computational cognitive modeling has evolved during the
past 40 years out of the advances made in computer technology, psychology, and
neuroscience. Two general forms of computational modeling, symbolic artificial
intelligence and connectionism, were discussed in Chapter 2 and it was argued that
connectionist modeling is the more reductionist of the two. In this sense, connectionist
modeling appeals to those researchers who would like to constrain their models with
information provided by neuroscience. The discussion, at the conclusion Chapter 2, of the
connectionist model built to study Inhelder and Piaget’s (1958) balance scale task, is a
good example of how connectionism can be used to investigate a cognitive phenomenon.

In Chapter 3 Bruner et al.’s (1956) research concept attainment was selected for
connectionist modeling because of the influence this work has had on the area of learning
theory. In particular, Bruner’s pedagogical strategies of spiral curriculum and discovery
learning have had a profound effect on the field of education (Schunk, 1996). More
recently it has been pointed out that Bruner’s (1985) theory of discovery leamning (derived
from his early research) is very similar to the theories of constructivism and situated
cognition (Brown, Collins, & Duguid, 1989). In all these theories the leamner discovers
concepts, builds representations of the world, and implicity invents rules. The research
presented in Chapter 3 used connectionist modeling to provide further insight into the
Bruner et al. (1956) task. Results indicate that the learning of attributes plays a significant
role in affecting the speed at which concepts can be attained and the degree to which these
learned concepts can be generalized. To support this claim the argument is made that



145
attribute context constraints (expressed in the form of extra output units) can guide the

network to construct a more robust conceptual representation. Empirical results
substantiated this argument.

Chapter 4 explored the network’s representational “response space” by comparing
the responses produced by two structurally different connectionist models. Both of these
models were derived from the research work done in Chapter 3. The results from this
chapter demonstrated that a response space forms a unique set of rules and that these rules
reflect the importance of how additional constraints at the output level can significantly
improve the performance of the connectionist model with respect to the task being

investigated.

5.1 Final thoughts

In essence the work described in thesis, while emphasizing the important
implications computational modeling can have for researching cognitive processes,
demonstrates the difficulties of modeling and understanding a complex process such as
concept attainment. For example, the work of Bruner et al. (1956) is multifaceted and
results discussed in this thesis only provide an initial step toward enlightening our
understanding of their work through the use of connectionist modeling.

In a recent book entitled Rethinking Innateness: A Connectionist Perspective on
Development (Elman, Bates, Johnson, Karmiloff-Smith, Parisi, & Plunkett, 1996) the
authors express three reasons why connectionist modeling is important. First, computer
models of this type impose a degree of precision which can reveal logical discrepancies in
the theory we are attempting to model. A verbal description of the hypotheses lacks the
rigorous definition obtained in a connectionist model. Second, the non-linear nature and
distributed representations offered by connectionist models can provide empirical results,
regarding the hypotheses that would otherwise be unattainable. Third, such models
construct representations at a level of detail that is normally not available for investigation.
Such accessibility is not usually possible when studying humans. According to Elman et al.
(1996), “with humans, we can usually only guess at the nature of the mechanism
responsible for a behavior by inference, but with the simulation we can directly inspect the
network in order to understand the solution” (p. 45). In the final analysis, computational
modeling affords researchers of cognition the opportunity to move beyond the limits

defined by qualitative and quantitative procedures.
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