

Input Space Partitioning and Other Heuristics for Minimizing the

Number of Corner Simulations During Design Verification

by

Oleg Oleynikov

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Department of Electrical and Computer Engineering

University of Alberta

© Oleg Oleynikov, 2017

ii

Abstract

The continuing reduction in the feature sizes of the latest CMOS (Complementary Metal-

Oxide-Semiconductor) technologies allow faster, more compact, and more energy-efficient

integrated circuits (ICs). On the downside, the performance of each transistor becomes harder and

harder to characterise accurately as smaller transistors are more affected by smaller errors during

production process. This tendency makes it more difficult for IC designers to perform an important

part of the production flow – design verification (DV) – to ensure their circuits will always behave

as required by the specifications, and thus ensure a satisfactory yield of the product. The traditional

way of doing DV, corner analysis, requires simulating the circuit for random combinations of

expected device parameters (i.e., corners) that affect circuit behaviour. When transistors were

larger and more predictable, it was sufficient to simulate them at a smaller number of corners,

ranging from five to up to, at worst, several dozen. Now, that number can be greater than one

thousand. The corners are tested in a simulator, like Simulation Program with Integrated Circuit

Emphasis (SPICE), and it takes significant processing power and time to simulate all the corners

as required by DV, significantly extending the time for design iterations and IC production.

However, it is not strictly required to simulate all the corners. IC designers really only require the

worst-case corner, the corner at which the characteristic is the closest to failing the specifications.

If it is possible to locate that worst-case corner before every corner has been simulated, a

significant amount of time and resources can be saved. Surrogate function modelling techniques,

like Gaussian Process Regression (GPR), provide relatively cheap estimates of function values at

a set of test points based on the observations from a set of training points. In addition to the

estimates, GPR also provides uncertainties in the estimates, which allows judging the confidence

of the resulting Gaussian Process Model (GPM) in deciding if the current known maximum is the

global maximum. This easily translates to corner analysis, by representing the characteristic of a

circuit as a function dependent on the combination of inputs (corners). A previous student, Michael

Shoniker, took the first steps in this problem in his Master of Science thesis. This thesis builds on

his work by overcoming some weaknesses of Shoniker’s approach, analysing the benchmark

datasets, and analysing own generated datasets to learn what output behaviours make circuits

difficult to verify.

iii

Acknowledgements

This work is the result of a research supervised by Dr. Bruce Cockburn and Dr. Jie Han. I

am incredibly grateful to them for all their help and support throughout the time it took to conduct

this research. Special thanks also go to Manish Rana, whose deep knowledge in the subject and

the ability to explain the relevant concepts in an accessible language were invaluable to my own

understanding of the problem, and Solido Design Automation for their continued cooperation in

the project. I would also like to thank my parents for their moral support and everyone who has

shared any knowledge with me.

The research was supported by the Natural Sciences and Engineering Research Council

(NSERC) of Canada (NSERC STPGP 447513 or Project No. RES0018685).

iv

Table of Contents

Chapter 1: Introduction ..1

1.1 Introduction ...1

Chapter 2: Background and Overview ..4

2.1 Background on Process Variations ...4

2.1.1 Sources of Variation ..4

2.1.2 Effects of PVT Variations ...5

2.2 Background on Design Verification ...6

2.2.1 Early Design Verification ..6

2.2.2 The Need for More Variation-aware Design Techniques6

2.2.2.1 Monte-Carlo Analysis ...7

2.2.2.2 Design of Experiments ..7

2.3 Review of Previous Work .. 12

2.3.1 Discussion of the Framework Setup ... 12

2.3.2 Overview of Gaussian Process Regression ... 15

2.3.2.1 General Overview of GPR .. 15

2.3.2.2 Bayesian approach .. 19

2.3.2.3 Best Linear Unbiased Prediction ... 22

2.3.3 The Iterative Framework of Michael Shoniker ... 25

2.4 Related Work ... 31

2.4.1 Similar Research ... 31

2.4.2 Other Function Optimisation Techniques ... 32

2.4.3 Formal Verification ... 33

2.4.4 Rare-Event Failure Estimation ... 34

v

2.4.5 Applications in Other Fields of Engineering .. 34

Chapter 3: Deeper Look into Benchmark Datasets ... 35

3.1 Shapes of Datasets ... 35

3.2 Overfitting and Underfitting ... 39

3.3 Flat Functions .. 40

3.4 Spikes and Ridges .. 43

3.5 Conclusions ... 44

Chapter 4: Pruning Singular Points ... 46

4.1 The Problem of Termination .. 46

4.1.1 Premature Termination .. 46

4.1.2 Understanding the Meaning of the σ-threshold .. 49

4.1.3 Terminating Execution on a Point-by-Point Basis 51

4.1.3.1 The Naïve Algorithm .. 52

4.1.3.2 Experiments with a Stricter Termination Threshold 53

4.1.3.3 Neighbourhood Effects and Hybrid Termination 58

4.2 Chapter Discussion .. 60

Chapter 5: Pruning Groups of Points .. 62

5.1 k-means Clustering on Input Values ... 62

5.1.1 A Straightforward Approach.. 62

5.1.2 A More Structured Initial Training Set .. 68

5.1.3 Experiments with Preprocessing .. 70

5.2 Clustering Based on Learned Information about the Function 71

5.2.1 Clustering on Output Values .. 71

5.2.2 Clustering Based on the Outputs of Points in the Initial Training Set 72

5.2.3 Clustering Based on the Performance of the Dataset Under Analysis 74

vi

5.3 Discussion ... 79

Chapter 6: Building Hard Datasets .. 81

6.1 Sources of Difficulty in the Datasets .. 81

6.1.1 Observations from the Provided Datasets... 81

6.1.2 Creating Difficult Datasets .. 81

6.1.3 Comparison with an Industrial Tool ... 91

6.2 Discussion ... 95

Chapter 7: Conclusions and Future Work ... 96

7.1 Main Contributions .. 96

7.2 Future Work .. 98

References.. 101

vii

List of Tables

Table 2.1 23 Full-Factorial Design for Three Factors ...8

Table 2.2 Factorial Effects of a 23 Full-Factorial Design for Three Factors9

Table 2.3 23-1 Partial-factorial Design with Key I=ABC .. 10

Table 2.4 Plackett-Burman Design for up to 11 Input Dimensions, m=12.................................. 12

Table 3.1 Information about the Inputs and Outputs of the Available Datasets 36

Table 3.2 Results of Michael Shoniker's Original Algorithm ... 37

Table 3.3 Results of Allowing Noisy Predictions in GPM for the shift_reg Dataset 39

Table 3.4 Summary of Several Sampling Procedures of Functions Generated by a Phase Detector

Circuit ... 41

Table 3.5 Unique Values of the Input Dimensions for the Different Sampling Methods of the Phase

Detector Functions... 42

Table 4.1 Results of Applying a Safeguard Against Premature Termination 49

Table 4.2 Dependence of σeff on the Number of Corners in a Dataset to Produce the Target 3-Sigma

Confidence .. 52

Table 4.3 Results of Applying Pointwise Termination of Datasets ... 53

Table 4.4 Results of Stricter Threshold Simulations .. 56

Table 4.5 Results of Neighbourhood Termination ... 58

Table 4.6 Performance after Applying a Standardisation Preprocessing Step 59

Table 4.7 Results of the Hybrid Termination Heuristic .. 60

viii

Table 5.1 Average Speedups for Achieving 4-sigma Confidence when Applying Clustering with

Cluster Pruning .. 67

Table 5.2 Relative Runtime of Algorithm to 10-sigma Convergence ... 68

Table 5.3 Average Speedup for Achieving 4-sigma Confidence using a Plackett-Burman Design

for the Initial Training Set.. 69

Table 5.4 Average Speedup for Achieving 4-sigma Confidence using a Plackett-Burman Design

for the Initial Training Set and Quadratic Expansion of Input Features 70

Table 5.5 Results of Clustering on Outputs using the Original Training Set Design 71

Table 5.6 Results of Clustering on Outputs using a Plackett-Burman Design as the Initial Training

Set ... 72

Table 5.7 Results of Clustering on the Initial Training Set Generated by Shoniker’s Initial Design,

with an Extra Randomised Set for Every Cluster ... 73

Table 5.8 Results of Clustering on the Initial Training Set Generated by the Original Heuristic,

with an Extra Plackett-Burman Design Added into Every Cluster 74

Table 5.9 Results of Splitting the Datasets into Two and Three Clusters if they have not Converged

after 40% of the Corners have been Simulated ... 76

Table 5.10 Results of Not Discarding Safe Points, Clustering at Half, Expanded Extra Training Set

and Increasing Termination Threshold for Clusters to 6-sigma....................................... 77

Table 5.11 Results of 8-sigma Termination Rule for Subclusters ... 78

Table 5.12 Relative Increases of Training Set Sizes in Case of Clustering 78

Table 5.13 Report for not Adding Extra to the Training Set, if it Increases by More Than 20 Percent

 .. 79

Table 6.1 Truth Table for the Glitch Eraser Circuit .. 84

Table 6.2 The Fifteen Highest Values and the Lowest Value of the custom_sa Dataset 88

ix

Table 6.3 Results of Applying Standardised Preprocessing (Section 4.1.3.3) on the Custom

Circuits .. 89

Table 6.4 Results of Applying the Final Pointwise Neighbourhood Termination Heuristic (Section

4.1.3.3) on the Custom Circuits.. 89

Table 6.5 Results of Applying Clustering on the Randomised Initial Training Set (Section 5.2.2)

with Randomised Initial Training Set for Each Cluster; Results for 2 and 3 Clusters 89

Table 6.6 Results of Applying Clustering on the Randomised Initial Training Set (Section 5.2.2)

with Randomised Initial Training Set for Each Cluster; Results for 4 and 5 Clusters 90

Table 6.7 Results of Applying Clustering on the Randomised Initial Training Set (Section 5.2.2)

with a Plackett-Burman Design for the Initial Training Set for Each Cluster; Results for 2

and 3 Clusters .. 90

Table 6.8 Results of Applying Clustering on the Randomised Initial Training Set (Section 5.2.2)

with a Plackett-Burman Design for the Initial Training Set for Each Cluster; Results for 4

and 5 Clusters .. 90

Table 6.9 Results of Applying Clustering Based on the Performance of Datasets, Final Version

(Section 5.2.3), for 4, 5 and 6 Clusters ... 90

Table 6.10 Results of Applying Straightforward Clustering (Section 5.1.1) with a Randomised

Initial Training Set for Each Cluster, for 2, 3 and 4 Clusters .. 90

Table 6.11 Results of Applying Straightforward Clustering (Section 5.1.1) with a Randomised

Initial Training Set for Each Cluster, for 5 and 6 Clusters .. 91

Table 6.12 Results of Applying Straightforward Clustering (Section 5.1.2) with a Plackett-Burman

Design for the Initial Training Set for Each Cluster, for 2, 3 and 4 Clusters 91

Table 6.13 Results of Applying Straightforward Clustering (Section 5.1.2) with a Plackett-Burman

Design for the Initial Training Set for Each Cluster, for 5 and 6 Clusters 91

Table 6.14 Results of Analysis by Industrial Tool ... 92

x

Table 6.15 Best Results of the Best Algorithms as Applied on the Custom Datasets 92

xi

List of Figures

Figure 2.1 Illustration of Central Composite Designs for the Two-Dimensional Case 11

Figure 2.2 Demonstration of Gaussian Process Regression for the Function f(x) = x*sin(x) 16

Figure 2.3 Comparison of Different Kernels for GPR .. 17

Figure 2.4 Demonstration of the Convergence Criteria for Different k-sigma Confidences 27

Figure 2.5 Illustration of the Q-function for Sigma Levels from 0 to 5.0 28

Figure 3.1 Shapes of Select Output Functions ... 38

Figure 4.1 Undesired Dislocation of the 4-Sigma Confidence Line .. 47

Figure 4.2 Distribution of Ratios of New and Old Maxima .. 47

Figure 4.3 The Number of Unsimulated Corners at Confidence σi Required to Have the Same

Confidence as One Corner at 3-Sigma Level .. 51

Figure 4.4 Unsafe Positions of the Global Max Relative to the σeff Confidence Line 55

Figure 4.5 Relative Positions of Global Maxima Estimates for scale=0.85 and kpointwise=8.5 57

Figure 5.1 Fractions of Simulated Corners vs. Mean Squared Errors of Predictions for the (a) delay,

(b) fall_time, and (c) rise_time Outputs of the shift_reg Datasets 63

Figure 5.2 Demonstration of the Benefits of Separating the Input Space into Clusters 64

Figure 5.3 Shapes of the Output Distributions of the Four k-means Clusters of the fall_time

Function .. 65

Figure 5.4 Shapes of the Output Distributions of the Four k-means Clusters of the rise_time

Function .. 66

Figure 6.1 Basic Functionality of a Phase Detector Circuit .. 82

xii

Figure 6.2 Functionality of the Phase Detector Circuit ... 83

Figure 6.3 Glitch Eraser Circuit Diagram .. 85

Figure 6.4 Functionality of the Glitch Eraser Circuit ... 85

Figure 6.5 Distributions of the Output Functions of a Uniformly Random Dataset 86

Figure 6.6 Distributions of the Output Functions of the phase_det_up Dataset 86

Figure 6.7 Distributions of the Output Functions of the phase_det_down Dataset 86

Figure 6.8 Distribution of the Output Function of the custom_sa Dataset 87

Figure 6.9 Distributions of the Output Functions of the glitch_erase Dataset 87

Figure 6.10 Results of Informed Clustering, 7 Clusters, on the glitch_erase Dataset 93

Figure 6.11 Results of Informed Clustering, 5 Clusters, on the phase_det_down Dataset 93

Figure 6.12 Results of Informed Clustering, 8 Clusters, on the phase_det_up Dataset................ 93

Figure 6.13 Convergence Plot of the max_y1 Output of the glitch_erase Dataset 94

Figure 6.14 Convergence Plot of the min_y2 Output of the glitch_erase Dataset 94

xiii

List of Acronyms

BLUP Best Linear Unbiased Prediction

BTI Bias Temperature Instability

CCC Central Composite Circumscribed Design

CCD Central Composite Design

CCF Central Composite Faced Design

CCI Central Composite Inscribed Design

CMOS Complementary Metal-Oxide-Semiconductor

CPU Central Processing Unit

DACE Design and Analysis of Computer Experiments

DLL Delay Locked Loop

DoE Design of Experiment

DV Design Verification

FF Fast-fast Process Corner

FS Fast-slow Process Corner

GND Ground Voltage

GP Gaussian Process

GPM Gaussian Process Model

GPR Gaussian Process Regression

HCI Hot Carrier Injection

IC Integrated Circuit

MAP Maximum-A-Posteriori Estimate

xiv

MCMC Markov Chain Monte Carlo

MOS Metal-Oxide-Semiconductor

MSE Mean Square Error

NMOS N-channel Metal-Oxide-Semiconductor

PMOS P-channel Metal-Oxide-Semiconductor

PVT Process Voltage Temperature

RBF Radial Basis Function

RSM Response Surface Model/Methodology

SBS Sequential Backward Selection

SED SED Systems (Saskatoon)

SF Slow-fast Process Corner

SFS Sequential Forward Selection

SPICE Simulation Program with Integrated Circuit Emphasis

SR-L1 Sparse Regression L1-norm

SRAM Static Random-Access Memory

SS Slow-slow Process Corner

SUS Subset Simulation

TT Typical-typical Process Corner

VDD Supply Voltage Level

VLSI Very-Large-Scale Integration

WCSS Within Cluster Sum of Squares

1

Chapter 1: Introduction

1.1 Introduction

The electrical and computer engineering industry has been growing extremely fast for

dozens of years (Moore’s Law [1]). Much of that growth is explained by the continued ability of

semiconductor process engineers to decrease the size of transistors, allowing the number of

transistors per economical chip to be doubled roughly every 18 months, following Moore’s Law.

Using smaller feature size technologies not only allows for faster switching performance in each

particular transistor, it also allows more of them to be packed into integrated circuits (ICs) of the

same area and for roughly the same cost in high production volumes. The downside to this,

however, is the fact that when shrinking their size, the actual performance of transistors becomes

more and more difficult to control precisely [2]. In other words, the most recent technologies are

more prone to variations caused by the production process and the statistics of the dopant atoms

in the critical regions of the transistors, and consequently it is more difficult to assure the correct

performance of all of the manufactured circuits in the chips. Therefore, the problem of accounting

for process variations in integrated circuits is becoming increasingly important in circuit design.

To test an IC design for correctness with respect to the intended behaviour specifications,

it is standard procedure to perform a series of simulation tests on the circuit over sets of

representative operating conditions, so-called corner analysis or design verification (DV). These

tests produce results that must comply with the specifications for the design. With the latest

technologies, DV could require verification for thousands of corners [3][4]. As such, there would

be great benefit to developing a way to save time on this important part of integrated circuit

development flow.

In theory, DV does not necessarily require simulating each corner, however. The primary

task is to ensure that the circuit complies with the performance specifications, which really means

it is sufficient to only simulate the corner with the worst performance – the worst-case corner. This

observation underlines the potential benefits of being able to find the worst-case corner for every

specified behaviour. Simulating each corner, usually in a simulator like Simulation Program with

Integrated Circuit Emphasis (SPICE)[5] can take a significantly long time. In general, DV does

2

not possess any a priori knowledge of the circuit under analysis: the only information supplied to

the DV algorithm is the set of corners at which the designer expects correct performance from

every function representing key circuit output characteristics, such as the propagation delays of a

signal going from one input of the circuit to each of the outputs. Thus, the problem of selecting a

set of worst-case corners can be viewed as the problem of optimising an expensive unknown

(black-box) function over a common-sampled discrete domain. The problem of optimising

expensive arbitrary functions has long been a topic of research, with most approaches looking at

this problem from two perspectives: exploration and exploitation[6]. With exploration, the primary

goal is to learn the larger scale shape of the function to build a satisfactory model that can then be

used as the basis for taking exploitation actions. With exploitation, the focus is shifted to finding

the optimum over the most likely input regions, identified with the help of the function model. If

the model is good, then the found optimum should indeed be the best-case or worst-case estimate.

However, if the function model is found to be poor, then we must attempt to improve the model.

Maintaining a balance between exploration and exploitation is critical to successful optimisation

of arbitrary functions.

This thesis project is a continuation of the work of a previous MSc student Michael

Shoniker [7]. That work made great use of Gaussian Process Regression (GPR), a general function

modelling technique that provides both an estimation of the function value at any point in the input

domain, as well as a measure of the uncertainty of the predicted function value. Having this model

of the function under analysis allows us to construct algorithms that can take into account the

confidence of estimated function values to decide whether a suspected function maximum can be

confidently concluded to be the true global function maximum. The approach to optimisation is

split into three separate stages that try to strike good balance between exploration and exploitation:

the initial exploration phase, selection of corners to simulate next, and requirements for

termination. For almost all cases, only a fraction of the total number of input corners will actually

be selected for simulation. The information given by the Gaussian Process Model (GPM) that is

built on the basis of the simulated corners is often enough to decide either that (a) a corner should

be selected for simulation, or (b) it is unlikely to be the global optimum, and thus can be safely

ignored. Applying this to the DV process would help to reduce the time from design to

manufacture, as the time to simulate process corners is usually the major factor in the time delay

cost of design verification.

3

The rest of this thesis is structured as follows. Chapter 2 summarises the work done by

Michael Shoniker, and reviews the relevant theory behind the concepts used in this project.

Chapter 3 takes a deeper look into the circuit datasets provided to us by our industrial partner and

outlines some key problems with analysing them in the context of this project. Chapter 4 details

the exploration of just how sure we, as researchers, can be of the expected performance of our

developed algorithm and gives some thoughts on how to compensate for the downsides to existing

approaches; the chapter also explores an alternative convergence procedure. Chapter 5 attempts to

learn how the search for the function maximum can be improved by adopting a divide-and-conquer

approach, providing an alternative view on exploration and next corner selection. Chapter 6

reviews and summarises our insight into what function characteristics tend to make a dataset

difficult to analyse. Finally, Chapter 7 summarises the thesis research and proposes directions for

future work.

4

Chapter 2: Background and Overview

2.1 Background on Process Variations

2.1.1 Sources of Variation

Variations in the properties of semiconductor devices must be carefully considered when

designing IC systems so that the yield of manufactured devices will be acceptably high. The

variations can affect every aspect of performance, most importantly, those related to timing and

power consumption. There are several kinds of variation, the most important being the process

(transistor), voltage and temperature variations. These variations are often called PVT variations

by IC designers.

Process variations arise inevitably from the production techniques used to manufacture

CMOS (Complementary Metal-Oxide-Semiconductor) transistors and other semiconductor

components (e.g., capacitors, resistances, and interconnecting conductors)[3]. Variations are

introduced for the gate oxide thickness[8], the length of the channel, statistically inevitable

fluctuations in doping concentrations of the channel region under the gate[9], line-edge and line-

width roughness[10], and variations in the overall quality of the wafer[11]. Process variations

affect the threshold voltage required for a transistor to switch from the isolated to the conductive

state, the speed of formation of the conductive channel (and thus the switching speed), and the

effects of parasitic resistances and capacitances.

Voltage variations arise from device variations in the power supply (VDD) circuits. A higher

voltage means faster transistor switching, but also higher power consumption. A lower voltage not

only makes the circuits slower, it also increases the chance of failure (not switching) for transistors

in the circuit. Finally, temperature variations affect the mobility of charge carriers and hence the

conductivity of transistors, with lower temperatures generally resulting in faster performance.

With time, transistor properties degrade and aging processes, like Hot Carrier Injection

(HCI) and Bias Temperature Instability (BTI), have bigger deleterious effects[12]. With the

shrinking linewidths sizes in the newer semiconductor processes, interconnect variations are also

becoming more noticeable in the performance of designs[13].

5

Finally, the design of an IC itself can make variations in signal timing have significant

effects on the performance of circuits. For example, flip-flop behaviour is very reliant on the timing

of the clock signal with respect to control and data input signals. For example, the clock arriving

too early or too late might result in setup and hold time violations. In a circuit that contains multiple

flip-flops, internal race conditions can cause drastic changes in output behaviour as a result of PVT

variations.

2.1.2 Effects of PVT Variations

PVT variations can have profound effects on the behaviour and performance of ICs. The

wider distributions in semiconductor device properties mean that not only the designers should be

more mindful of the challenges that arise when optimising for power, clock, and interconnect

distributions, but the modelling of the devices themselves becomes more and more complex[14].

In general, wider distributions also tend to reduce our confidence that each manufactured

instance of a design will have the correct behaviour. For example, when looking at the statistical

timing analysis of circuit blocks, larger parameter variations cause less certainty in determining

the critical path of a signal[15]. This requires that the circuit must be designed to function correctly

with worst-case PVT variations in mind.

Sometimes due to variation effects established designs become less desirable in complex

systems. For example, the Static Random-Access Memory (SRAM) cell, a high-speed volatile

memory design that is widely used in ICs, is defined by the stability of operations. With increasing

variability and decreasing power supply levels, the classical 6T design[16], an SRAM cell built

using six transistors, becomes less and less stable against noise and other transients in the

surrounding interconnect. An SRAM must be extremely reliable as millions of them are used in

each chip. Therefore, degrading reliability means new robust designs need to be developed. For

example, a more stable 8T-SRAM design[17] has gained favour over the traditional 6T-SRAM

design. The 8T-SRAM scales to small technologies much better than the 6T-SRAM, and thus it is

becoming widely used in industry.

6

Integrated circuit designers have developed a variety of techniques for evaluating the

effects of process variations on circuit behaviour. Some of these techniques, ranging from simple

to complex verification methodologies, will be described next.

2.2 Background on Design Verification

2.2.1 Early Design Verification

Up until the last several semiconductor generations, to ensure effective design verification

against PVT variations, it was sufficient to verify circuit behaviour at the nominal and extreme

(but still acceptable) conditions, usually SS, SF, TT, FS, and FF, where S (for slow), F (for fast),

and T (for typical) denote the relative switching speeds of the NMOS or PMOS transistors (N-

channel and P-channel Metal-Oxide-Semiconductor, respectively)[18]. The assumption was that

if the circuit passes the TT condition test as well as the edge cases (SS, SF, FS, and FF), then the

circuit behaviour of manufactured devices would correspond to the specifications at all other legal

conditions. While it was recognised that such models do not give the most accurate estimates of

performance over all possible PVT conditions, they still could be used to ensure satisfactory yield

at production. These strategies were widely used in practice as the technologies were predictable

enough that even the most rigorous algorithms would require only a few more verification

simulations [19].

2.2.2 The Need for More Variation-aware Design Techniques

With further shrinking of transistor sizes, however, it was noticed that the effects of PVT

variations became more significant [20][21][22][23]. The latest technologies also require a

relatively large number of corners to be simulated to test completely [24]. One reason is that over

several generations, the absolute effect of process variations introduced by manufacturing stages

contributes more variation to the device performance in relative terms. So, for example, the

thickness of the gate oxide can vary by the thickness of several atom layers. However, as the

thickness of the gate oxide is itself only roughly a dozen atoms thick, the relative effect of the

thickness variation is big. Another example is that the number of doping atoms has also decreased

significantly with the smaller transistor channel volumes in the newest technologies, and so the

inevitable statistical fluctuations in the exact number of doping atoms in the channel region makes

7

a bigger difference. As such, with time grew the need for more precise statistical modelling of

circuit response[25].

2.2.2.1 Monte-Carlo Analysis

The most reliable and straightforward way to ensure the correctness of a circuit at all PVT

conditions is to perform a Monte-Carlo analysis[26]. Monte-Carlo analysis generates a huge

number of random corners and simulates each of them to receive a response. In its most expensive

form, the parameters of each device are varied randomly over distributions. From a sufficiently

large number of simulations, bell curve distributions are constructed and the likelihood that a

response variable will lie within under a certain range is estimated.

With more sources of parameter variations, however, the number of corners to be simulated

with Monte-Carlo analysis grows very fast. More complex designs require more optimized power

supply, resulting in multiple power supplies, each of which has its own variation. IC designers

sometimes have a choice in which type of transistors to use, prioritising speed of switching or

power consumption. Finally, increased variability of separate parameters makes the general

performance distributions less linear. Thus, more simplified and less expensive approaches to DV

are used.

2.2.2.2 Design of Experiments

Design of Experiments (DoE) is a method for choosing the most informative set of input

conditions of a process over a space of possible operating conditions so that the performance of

the process can be assessed and then optimised [27]. In this project’s problem, the theory of DoE

can be applied to select the set of PVT corners at which a design needs to be verified. The datasets

used for analysis in this work were themselves generated from full-factorial DoE designs, by our

industrial collaborator, SED Systems (Saskatoon).

The main goal of DoE is to quantify both the effects of each input (factor) on the output

(observation or response) as well as the effects of pairwise and high-order interactions among these

inputs. The most reliable way to estimate these effects is to perform a full-factorial design. A full-

factorial design sweeps through every possible combination of input parameters, given the finite

8

sets of values that each input parameter can assume. As such, the size of a full-factorial design

(i.e., the number of corners to test) is equal to the product of the number of possible values that

each input can adopt. So, for example, if there are n dimensions, and each one can take one of ki

values, then the total size of a full-factorial design will be equal to ∏ 𝑘𝑖
𝑛
𝑖=1 corners. Clearly, the

size of a full-factorial design grows exponentially in the number n of independent parameters.

Consider an experiment with three factors A, B and C, which take on one of two possible

values throughout the experiment. There are various ways of choosing those two values for an

input that might have three or more possible levels of discrete values, or a continuous range of

values. Following established convention[27], the high value and the low value of each factor (or

input) are denoted simply as + and -, respectively. Then, a full factorial experiment can be

summarised as shown in Table 2.1. Note that the entries in the Response Value column use a

special DoE notation, rather than a standard algebraic notation. For example, (1) denotes the

response when all the inputs are at their low level, while ac means that factors A and C are at their

high levels, while B is at its low level.

A B C
Response

Value

- - - (1)

+ - - a

- + - b

- - + c

+ + - ab

+ - + ac

- + + bc

+ + + abc

Table 2.1 23 Full-Factorial Design for Three Factors

Then, to estimate the effect on the response of each factor and all possible interactions

among the factors, a linear combination of responses needs to be taken. For example, to estimate

the overall effect of factor A, all that needs to be done is to subtract the average response of all the

observations where A was at its low level (denoted as �̅�𝐴− in the equation below) from the average

of all the observations where A was at its high level (denoted as �̅�𝐴+ in the equation below). The

same logic applies to factors B and C. Mathematically, the effect of A is

𝐴 = �̅�𝐴+ − �̅�𝐴− =
𝑎 + 𝑎𝑏 + 𝑎𝑐 + 𝑎𝑏𝑐

4
−
(1) + 𝑏 + 𝑐 + 𝑏𝑐

4
 (2. 1)

9

To estimate the effect of two-factor interactions, for example AB, all that is needed is to

subtract the average of the responses for the runs where A and B were at different levels (denoted

�̅�𝐴⊕𝐵 in the equation below) from those responses where A and B were at the same level (denoted

�̅�𝐴⇔𝐵 in the equation below).

𝐴𝐵 = �̅�𝐴⇔𝐵 − �̅�𝐴⊕𝐵 =
𝑎𝑏𝑐 + 𝑎𝑏 + 𝑐 + (1)

4
−
𝑏𝑐 + 𝑏 + 𝑎𝑐 + 𝑎

4
(2. 2)

Finally, the tri-factor interaction is defined as the difference between the AB interaction at

different levels of C.

𝐴𝐵𝐶 = �̅�𝐴𝐵
𝐶+
− �̅�𝐴𝐵𝐶− =

𝑎𝑏𝑐 + 𝑐 − 𝑎𝑐 − 𝑏𝑐

4
−
(1) + 𝑎𝑏 − 𝑎 − 𝑏

4
 (2. 3)

A partial-factorial design, on the other hand, does not require that its corners assume every

possible value but instead considers just enough corners to give an idea about the contribution of

each input dimension to the value of the function under analysis. The result is a more compact

design, but one that cannot distinguish between certain combinations of effects. For example,

consider the partial-factorial design in Table 2.3. The design is generated using the key I=ABC.

The key (also called the defining relation) is the combination of factors that is used to generate the

partial-factorial design. The choice of + and – is particularly useful here as using the algebraic

multiplication operation on these signs will produce a “key” column. Table 2.2 demonstrates this

rule. The key is then used to extract the combinations of factors A, B and C that result in a + in the

column of Table 2.2 for the key. So, for example, with key I=ABC, Table 2.3 is produced for the

partial-factorial design.

A B C AB AC BC ABC

- - - + + + -

+ - - - - + +

- + - - + - +

- - + + - - +

+ + - + - - -

+ - + - + - -

- + + - - + -

+ + + + + + +

Table 2.2 Factorial Effects of a 23 Full-Factorial Design for Three Factors

10

A B C
Response

Value

+ - - a

- + - b

- - + c

+ + + abc

Table 2.3 23-1 Partial-factorial Design with Key I=ABC

This design is compact but has disadvantages. For example, to calculate the effect of factor

A, following the procedure described in the preceding paragraphs, one needs to calculate the

following

𝐴 =
𝑎 + 𝑎𝑏𝑐

2
−
𝑏 + 𝑐

2
=
1

2
(𝑎 − 𝑏 − 𝑐 + 𝑎𝑏𝑐) (2. 4)

Then, to calculate the effect of the two-factor interaction BC, the formula is

𝐵𝐶 =
𝑎𝑏𝑐 + 𝑎

2
−
𝑏 + 𝑐

2
=
1

2
(𝑎 − 𝑏 − 𝑐 + 𝑎𝑏𝑐) (2. 5)

which is exactly the same effect as 𝐴. So, in essence, by performing these calculations, the designer

really gets information on the combined effects of A and BC, that is A + BC, meaning that for the

key I=ABC, the effects of A and BC are aliased. And, indeed, Table 2.2 shows that the values in

the columns A and BC have the same values in every row where the column ABC is positive. For

a more in-depth discussion of partial-factorial designs, refer to [27].

Full-factorial and partial-factorial designs, however, do not have to be defined over only

two levels. By generating samples that adopt one of a number of intermediate values along one or

more input dimensions, DoE analysis makes possible a more complicated and also likely more

accurate model of a function. This leads to pk designs, where p ≥ 2 is the number of levels in an

input dimension. Note that for pk designs the number of corners grows extremely fast with the

number p of extra levels and the number k of extra dimensions. To correctly represent a strongly

non-linear function, thousands of simulations would likely be required, greatly increasing the time

required for design verification. This problem has a solution, presented in the previous work on

the subject, and described in Section 2.3.

A central composite design (CCD) is often used to construct quadratic response surface

models[28]. In addition to the points selected by a full factorial or a fractional factorial design, it

also includes a collection of “star points”, corners that are located either at the centre of the faces

11

of the partial or full factorial hypercube design (thus generating a central composite faced design

(CCF)) or equidistantly from each other and the factorial hypercube on a sphere encircling the

factorial hypercube design. The number of star points is equal to the number of faces of the

hypercube, or twice the number of factors. Designers differentiate between the circumscribed

(CCC) and the inscribed (CCI) central composite designs. The difference between them is that

CCC goes beyond the defined boundaries of the experiment, while CCI stays within them. Also,

the hypercube of the factorial design occupies the entire defined space in a CCC design, whereas

in a CCI design it is constructed so that the encircling sphere is within the boundaries. The star

points provide information about the curvature of the response functions, which is used to build a

quadratic response surface model (RSM). Figure 2.1 illustrates the structures of CCC, CCF and

CCI designs on a two-dimensional example.

Figure 2.1 Illustration of Central Composite Designs for the Two-Dimensional Case

Yet another interesting design that will be used later in the thesis project is the Plackett-

Burman design. This design minimizes the variance of observations for every input dimension

with the smallest number of samples[29]. Specifically, the number of samples in the design is

always a multiple of four. A Plackett-Burman design of size m can cover between m-4 and m-1

input dimensions. Such compactness requires the assumption that the effect of interactions

between factors (that is, input dimensions) is weak or negligible. However, as an initial assumption

concerning the dataset for the GPM, this assumption is as good as any. As such, a Plackett-Burman

design has the potential to be very helpful at this stage of the algorithm. A representation of a

Plackett-Burman design is provided in Table 2.4.

In Table 2.4, the rows represent samples in the design, and columns represent the extreme

values (+ for high and - for low) that the input dimension attains in each sample. In a Plackett-

Burman design, every pair of high and low levels (that is ++, +-, -+, and --) is repeated the same

CCC
CCF CCI

12

number of times for m-1 samples, the one sample left out having every input dimension at the high

level. Also, any subset of columns is itself a valid Plackett-Burman design. Removing rows 9

through 12 (as well as removing between four and seven columns) from Table 2.4 will represent a

Plackett-Burman design for a 4- to 7-factor experiment, depending on the number of columns

removed.

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

1 + - + + + - - - + - -

2 - + + + - - - + - - +

3 + + + - - - + - - + -

4 + + - - - + - - + - +

5 + - - - + - - + - + +

6 - - - + - - + - + + +

7 - - + - - + - + + + -

8 - + - - + - + + + - -

9 + - - + - + + + - - -

10 - - + - + + + - - - +

11 - + - + + + - - - + -

12 + + + + + + + + + + +

Table 2.4 Plackett-Burman Design for up to 11 Input Dimensions, m=12

In this work, the industrial circuit datasets supplied to us by our sponsor (Solido Design

Automation) are full-factorial with respect to a sampled input space. At the same time, these

datasets completely define the search space for the algorithm, and the performance of the algorithm

is defined by how many points from that search space can be safely omitted from being selected

for precise simulation when searching for the global maximum value. Sometimes, it will be

necessary to construct a DoE design on top of the search space defined by another DoE design in

order to get a first understanding of a subset of the original input space. The exact procedures for

that will be described in the relevant later sections of this thesis.

2.3 Review of Previous Work

2.3.1 Discussion of the Framework Setup

Design of Experiment techniques, briefly described in Section 2.2.2.2, are intended to

obtain an informative set of function values as the basis for an initial function model. Other factors

(e.g., foundry specifications) provide an input grid with pi ≥ 2 of levels along each i-th PVT

13

dimension, located on the defined step size along the dimension. The choice of the input grid can

have important implications on function modelling.

Note that for conventional PVT corner simulations, the input domain of the functions is

represented as discrete, rather than continuous. The values not sampled by the input grid are

assumed to be easily interpolated by, for example, a simple linear or quadratic Response Surface

Model (RSM)[28]. However, this is not always a correct assumption. An unlucky design could

miss a high value region, or introduce a sudden perceived discontinuity in the modelled function,

something simple linear or quadratic RSMs cannot interpolate accurately. As most of the datasets

provided for the project are from unknown circuits, the datasets must be assumed to be error-free

samples of the circuit output functions and that the full-factorial design is a perfectly sampled

representation of those functions. The commercial tool provided by our industrial partner, Solido

Design Automation, allows the designer to specify their own DoE for the FastPVT design

verification, which has the same functionality explored in this project, and the reader will

understandably want to see comparisons with FastPVT. Therefore, this assumption is valid for

application in the industry. Lastly, it can be noted that the algorithms presented in this work do not

need to be constrained by an input grid as Gaussian Process Regression can give an estimate of

the value and uncertainty in the value for any set of inputs, even ones that are off the defined grid.

While going off a given input grid is not a goal of the research, it could be an interesting direction

for future work.

An additional constraint on the research problem is that each function is a-priori assumed

to be an arbitrary, expensive-to-evaluate black-box function. This means that nothing is known

about it or its internal structure, and each evaluation at any input point requires significantly more

time than it takes to construct the mathematical model of the function. This also means that the

primary goal is then to minimise the number of samples (that is, function evaluations) of the black-

box function. As such the primary metric of each version of the algorithm is the speedup, defined

as the total number of points in the input domain divided by the number of samples required to

declare a point as the global optimum.

As a simplifying approximation, any operation during the modelling and optimisation of a

black-box function can be categorised as either an exploration action or an exploitation action.

Exploration means that the focus is placed on increasing the knowledge of the larger-scale

14

properties of the function, such as establishing the general range of possible function values or

narrowing down the likely optimum regions. Exploitation means that the amassed knowledge is

used to place the computational focus on the most promising region. So, for example, once the

confidence threshold in a certain subregion of the search space is reached, the exploitative action

would be to focus on exploring this subregion. As the algorithm proceeds, there is less and less

distinction between these two notions. Clearly ensuring a good balance between exploration and

exploitation is critical to successful optimisation.

Another way to look at the differences between exploration and exploitation is to say that

exploration involves unbiased sampling over less well-known input regions (at least initially),

whereas exploitation is biased sampling where the bias is controlled by heuristic rules. With this

point of view, an interesting discussion can be had on the trade-off between randomness and

determinism. On the one hand, deterministic solutions will lead to consistent and reproducible,

possibly even better, results. For example, as will be explored in this thesis, having a deterministic

solution to the initial exploration stage often leads to faster and in most cases more accurate

convergence to the global maximum (see Section 5.1.2). On the other hand, incorporating some

randomness allows traps created by deterministic rules to be avoided. So, as will be demonstrated,

while a deterministic initial exploration phase leads to faster and more accurate convergence most

of the times, the other times the results are unacceptably worse than the true global maximum. And

as effective exploitation depends on the result of the knowledge gained from exploration,

randomness indirectly affects that part of optimisation as well.

Finally, while optimising the cost of building mathematical models is not a concern of this

project, there are still a few points to consider. First, it might be possible to take advantage of the

computational capability available to run the algorithms. Taking advantage of multithreading, for

example, might be beneficial to simulating several points or optimising several subregions at once,

while taking the same total processing time as for a serial implementation. Another thing to

consider would be how well the assumptions work together, whether some of the new ones might

contradict or exclude the assumptions that were made earlier. Such insights can form the basis for

developing new heuristics. However, having many heuristics might make termination of the

algorithm less optimal, for example if there are no clearly defined rules on when one heuristic

should be applicable over another. To limit such downsides, it would be beneficial to develop

15

heuristics that are applied based on the gathered information on the dataset during the course of

execution.

2.3.2 Overview of Gaussian Process Regression

Gaussian Process Regression (GPR), also known as kriging, is a regression (function

fitting) technique that makes use of Gaussian Processes (GPs). A Gaussian Process is defined to

be a statistical distribution over a number of samples where each sample is represented by a

Gaussian random variable and any finite number of the samples has a jointly Gaussian distribution

[30]. A D-dimensional GP has samples 𝑿 ∈ ℝ𝐷 where 𝐷 > 1. Kriging was originally developed

for the purposes of mining engineering, with the primary task being to approximate how much

material (gold ore, in the original problem) was present in an area based on the a-priori spatial

distribution of a few known samples in the area[31]. The description of GP in Section 2.3.2.2 is

valid for the implementation of the python package sckit-learn, version 0.18.0 and above. The

version of the package used in the project is 0.16.1, and is described in Section 2.3.2.3. The

difference between the two implementations is primarily in the way the variances of the predictions

are estimated, and are explained in more detail towards the end of their respective sections.

2.3.2.1 General Overview of GPR

A GP is completely defined by the mean and covariance functions, which together

represent the target function 𝑓(𝑿). The mean function 𝜇(𝑿) is usually 0, and the covariance

function is generated from the so-called kernel function of the Gaussian Process Model (GPM).

The mean 𝜇() and covariance 𝑘() functions, respectively, are defined as follows:

𝜇(𝑿) = 𝐸[𝑓(𝑿)] (2. 6)

𝑘(𝑿,𝑿′) = 𝐸[(𝑓(𝑿) − 𝜇(𝑿))(𝑓(𝑿′) − 𝜇(𝑿′))] (2. 7)

where 𝐸[𝑓(𝑿)] denotes the expected values of the Gaussian process 𝑓(𝑿)~𝐺𝑃(𝜇(𝑿),𝑘(𝑿,𝑿′))

where 𝑿 ∈ ℝ𝐷 and 𝑿′ ∈ ℝ𝐷 are any two input points.

For discrete datasets, covariance functions are replaced with covariance matrices 𝛴 whose

entries correspond to the values of the covariance function for pairs of points. Covariance functions

16

themselves are generated from the kernel functions by changing the varying parameters of the

kernel (also called hyperparameters). Kernel functions specify the prior distributions over the

training points, and the posterior distributions over the test points, with information available from

the training points. Essentially, what this means is that for each test point, we can draw the

distribution, with mean and variance, of the random variable corresponding to the optimised

function value at nearby input points. This information can be used not only to predict function

values, but it also gives an easy way to estimate the confidence in each prediction (see Figure 2.2,

generated using scikit-learn 0.16.1).

Figure 2.2 Demonstration of Gaussian Process Regression for the Function f(x) = x*sin(x)

In Figure 2.2, the red dots are the training points (known function values or function

samples) that are used to construct the GPM. The shaded blue region shows the 95% likelihood

region of the values of the posterior distributions (functions) generated from the absolute

exponential kernel based on the observed values of the training points that go through the training

points.

The absolute exponential kernel function was used to construct Figure 2.2. This kernel

defines functions that expect discontinuities or sudden changes in values and instantaneous slopes

of the tangents. Contrast to this with the Radial Basis Function (RBF) kernel, which generates

infinitely differentiable (i.e., smooth) functions. Some other examples of kernels are the rational

17

quadratic and the squared sine exponential kernels. Figure 2.3 (generated in scikit-learn 0.18.1)

illustrates the differences between the four kernels.

Figure 2.3 Comparison of Different Kernels for GPR

The mathematical definitions of the kernels are the following[32]. The RBF kernel is

defined as

18

𝑘(𝑥𝑖, 𝑥𝑗) = exp (−
1

2
𝑑 (
𝑥𝑖
𝑙
,
𝑥𝑗
𝑙
)
2

) (2. 8)

where 𝑥𝑖 and 𝑥𝑗 are the input values of any two points, 𝑑() is the function of distance between the

points, and 𝑙 is the length scale that defines the extent of interaction between two points. The

absolute exponential kernel is defined similarly to RBF, except it only takes the distance between

the points, rather than the square of the distance

𝑘(𝑥𝑖, 𝑥𝑗) = exp (−
1

2
𝑑 (
𝑥𝑖
𝑙
,
𝑥𝑗
𝑙
)) (2. 9)

The rational quadratic kernel is defined as follows

𝑘(𝑥𝑖, 𝑥𝑗) = (1 +
𝑑(𝑥𝑖, 𝑥𝑗)

2

2𝛼𝑙2
)

−𝛼

(2. 10)

where the new parameter 𝛼, called the scale mixture, defines how much effect the distance between

these two points should influence the predictions and uncertainties for the points. Finally, the

squared sine exponential kernel is defined as

𝑘(𝑥𝑖, 𝑥𝑗) = exp

(

−2

(

sin (

𝜋
𝑝 ∗ 𝑑

(𝑥𝑖, 𝑥𝑗))

𝑙

)

2

)

(2. 11)

where 𝜋 is the irrational constant and 𝑝 is the periodicity parameter that defines how soon the

pattern of the output function will start repeating.

The top left part of Figure 2.3 shows how regression is performed using the absolute

exponential kernel (which is obtained through setting the hyperparameter ν=0.5 for the Matern

kernel [30]) on the function 𝑓(𝑥) = 𝑥 ∗ sin ((𝑥 − 2.5)2). The top row shows 20 samples from the

prior (uninformed) distributions. From those samples, it can be seen what kind of functions the

GPM will use to model 𝑓(𝑥). The bottom row shows the final results of the regression. The thick

solid black line is the predicted mean function 𝜇(𝑿) (compared to the thick dashed red line of the

true function to be predicted), and the thin lines are the posterior (informed) functions. The top

right part of Figure 2.3 shows the same information produced by applying the RBF kernel. Notice

19

how the samples of that kernel are much smoother than those of the absolute exponential. As the

function to be modelled is itself a smooth one, RBF gives a smaller uncertainty for its prediction

compared to that of the absolute exponential even if the mean predicted functions are similarly

accurate in their predictions of the true function. The squared sine exponential and the rational

quadratic kernels (bottom left and right, respectively) also show smooth predictions but provide

more uncertainty and, in the case of squared sine exponential, less accurate predictions. It is

interesting to note that for this function for this collection of samples and unrestricted ranges of

the length scale and the periodicity, the squared sine exponential produces the exact same

predictions and uncertainties (as well as the same posterior samples) as the RBF kernel. It is unwise

to have unrestricted hyperparameters as it takes a long time to finalise the model.

2.3.2.2 Bayesian approach

The approach implemented in scikit-learn 0.18.0 and above follows that of Gaussian

Process for Machine Learning[30]. According to that approach, a function is modelled in the form

𝑦 = 𝑓(𝒙) + 𝜀, where 𝑓(𝒙) = 𝒙𝑇𝒘 is the function model, 𝒘 is the weight vector, meaning the

function model is represented as a linear combination of its inputs, and 𝜀 ~ 𝑁(0, 𝜎𝑛
2) is the

Gaussian independent and identically distributed error with zero mean and variance 𝜎𝑛
2. Given the

set of input points 𝑋, and the weights 𝒘, the likelihood of observing the number 𝑛 outputs 𝒚 for a

joint Gaussian process is the product of the likelihood of observing a separate instance 𝑦𝑖 of 𝒚.

𝑝(𝒚|𝑋,𝒘) = ∏𝑝(𝑦𝑖|𝑋, 𝒘) = ∏
1

√2𝜋𝜎𝑛2
exp (−

(𝑦𝑖 − 𝒙𝑖
𝑇𝒘)2

2𝜎𝑛2
)

𝑛

𝑖=1

𝑛

𝑖=1

𝑝(𝒚|𝑋,𝒘) =
1

(2𝜋𝜎𝑛2)
𝑛
2

exp (−
1

2𝜎𝑛
2
|𝒚 − 𝑋𝑇𝒘|2) = 𝑁(𝑋𝑇𝒘, 𝜎𝑛

2𝐼) (2. 12)

where 𝐼 is the identity matrix and | ∙ | is the L2 norm (the Euclidean length of a vector). Thus, the

total likelihood is also Gaussian distributed.

 In Bayesian models, we learn the likelihood of an event based on observations (posterior

likelihood) by first defining a prior likelihood (the best guess for the likelihood of the event) and

20

the likelihood of observing the targets given the inputs and the weights (in this case, Equation

2.12). Then, the following formula is applied.

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑝𝑟𝑖𝑜𝑟

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

which translates to regression as

𝑝(𝒘|𝒚, 𝑋) =
𝑝(𝒚|𝑋, 𝒘)𝑝(𝒘)

𝑝(𝒚|𝑋)
(2. 13)

essentially defining how likely it is that the weights 𝒘 are to give the right linear coefficients for

the 𝑓(𝒙) = 𝒙𝑇𝒘 model based on the observed targets 𝒚. The prior (uninformed) distribution of the

weights 𝒘, 𝑝(𝒘), is usually taken as a zero-mean Gaussian distribution 𝒘 ~ 𝑁(𝟎, 𝛴𝑝), where 𝛴𝑝

is the prior covariance matrix, which is generated from the kernel (see Figure 2.3 and the related

discussion). The marginal likelihood is marginalization of the likelihood over the weights 𝒘 to

give the likelihood independent of the weights’ probability

𝑝(𝒚|𝑋) = ∫𝑝(𝒚|𝑋, 𝒘)𝑝(𝒘)𝑑𝒘 (2. 14)

 Then, the distribution of the model at a test point 𝒙∗ given the observations 𝒚 at training

points 𝑋 is given by

𝑝(𝑓∗|𝒙∗, 𝑋, 𝒚) = ∫𝑝(𝑓∗|𝒙∗, 𝒘) 𝑝(𝒘|𝒚, 𝑋)𝑑𝒘

𝑝(𝑓∗|𝒙∗, 𝑋, 𝒚) = 𝑁 (
1

𝜎𝑛2
𝒙∗
𝑇 (
1

𝜎𝑛2
𝑋𝑋𝑇 + 𝛴𝑝

−1)
−1

𝑋𝒚, 𝒙∗
𝑇 (
1

𝜎𝑛2
𝑋𝑋𝑇 + 𝛴𝑝

−1)
−1

𝒙∗) (2. 15)

is also Gaussian distributed with the mean and variance as specified in Equation 2.15.

In all figures in Figure 2.3, the shaded region corresponds to the 68.3% likelihood region,

which can also be called the 1-sigma confidence region. The mean functions are linear

combinations of the priors or posteriors, which are samples of the kernel. For a continuous

functional optimisation, it can be said that the regression task of a GPM is to find the best linear

combination of the posterior functions. A better linear combination is assumed to have a larger log

likelihood. Also note that the parameters, like length_scale, changed between the top and bottom

21

figures. The parameter length_scale governs to the length scale of the kernel, and defines the extent

of interaction between the uncertainties of any two points. Having an overly small length scale

tends to give myopic estimates, meaning that the uncertainty rises too quickly with the distance

between the test point and the closest training point. Conversely, having an overly big length scale

would mean that there is too little effect of the distance between test and training points on the

uncertainties, and as a result the uncertainties are too similar for every test point. Thus, optimising

the length scale is a very important part of regression. The process of regression goes on until the

log likelihood does not rise any more. The log likelihood in this case is a measure of how much

the model is confident in its current selection of hyperparameters, and is the natural logarithm of

the likelihood of a set of parameters. For a set of hyperparameters 𝜃 given observations 𝑋, the

likelihood is defined as

𝐿(𝜃|𝑌, 𝑋) = 𝑃(𝑌|𝜃, 𝑋) (2. 16)

where 𝑃(𝑌|𝜃, 𝑋) is the probability of having observations 𝑌 given the chosen hyperparameters 𝜃

and inputs 𝑋. From another point of view, the likelihood (and consequently the log likelihood) is

a measure of the validity of the hyperparameters 𝜃, given by the evidence 𝑌. For GPR, the log

likelihood is given by

log𝑃(𝒚|𝑋) = −
1

2
𝒚T(𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼) −1𝒚 −
1

2
log|𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼| −
𝑛

2
log(2𝜋) (2. 17)

where 𝒚 is the observed function values (training samples), 𝐾(𝑋,𝑋) is the covariance (also known

as Gram) matrix, generated from the covariance (kernel) function with set hyperparameters for the

input values of the observed values 𝑋, 𝜎𝑛
2 is the square of the allowed noise level, and 𝑛 is the

number of observations (training samples)[30]. The covariance matrix 𝐾(𝑋, 𝑋) is calculated as

𝐾(𝑋,𝑋) = 𝚽(X)TΣ𝑝𝚽(X) (2. 18)

where Σ𝑝 is the prior covariance matrix and 𝚽(X) is the collection of projected inputs X, the

projection function being defined as the kernel with the set θ of hyperparameters, and each entry

of 𝐾(𝑋,𝑋) is equal to

𝑘(𝒙, 𝒙∗) = 𝜑(𝒙)
TΣ𝑝𝜑(𝒙∗) (2. 19)

22

To produce the mean estimates and the variance, the covariance function with the

hyperparameters that lead to the highest log likelihood is used to calculate the following for each

test point 𝒙∗:

𝑓∗̅ = 𝐾(𝑋, 𝒙∗)
T(𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼)−1𝒇 (2. 20)

𝕍[𝑓∗] = 𝑘(𝒙∗, 𝒙∗) − 𝐾(𝑋, 𝒙∗)
T(𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼)−1𝐾(𝑋, 𝒙∗) (2. 21)

here 𝑓∗̅ is the predicted mean value at 𝒙∗, as before, 𝒇 is the true values of the training points, 𝕍[𝑓∗]

is the predicted variance (also equal to the square of the predicted standard deviation at 𝒙∗), and

𝜎𝑛 is the allowed noise in the model. The square of 𝜎𝑛 is multiplied by the identity matrix 𝐼 to have

the same dimensions as 𝐾(𝑋,𝑋), adding the square of the noise magnitude to the main diagonal

of the covariance matrix to model noisy observations.

2.3.2.3 Best Linear Unbiased Prediction

In the implementation of scikit-learn 0.16.1, the BLUP for every point is calculated

instead[33], adapted from the MATLAB software package DACE (Design and Analysis of

Computer Experiments)[34]. Best linear unbiased prediction means that the predicted mean of the

function is a linear combination of the posterior functions, the expected difference between the

predicted values and the true values is 0 (i.e., the prediction is unbiased), and the selected linear

combination of the posterior functions minimises the variance (mean squared error) of the

predictions, so it is the best fit. The conditions give a constrained minimisation problem to find the

linear coefficients 𝑎(𝑋) of the linear combination:

𝑎(𝑋∗) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑎(𝑋)𝐸[(𝐺(𝑋) − 𝑎(𝑋)
𝑇𝑦)2]

𝑠. 𝑡. 𝐸[𝐺(𝑋) − 𝑎(𝑋)𝑇𝑦] = 0 (2. 22)

for the multi-objective function to be predicted 𝐺(𝑋) and the observed values (i.e., training

samples) 𝑦. The error in the predictions is equal to

�̂�(𝑋) − 𝑦(𝑋) = 𝑎(𝑋)𝑇𝑦 − 𝑦(𝑋) = 𝑎(𝑋)𝑇(𝐹𝛽 + 𝑍) − (𝑓𝑇𝛽 + 𝑧)

�̂�(𝑋) − 𝑦(𝑋) = 𝑎(𝑋)𝑇𝑍 − 𝑧 + (𝐹𝑇𝑎(𝑋) − 𝑓)𝑇𝛽 (2. 23)

23

where 𝐹 is the set of projections of the training points into the kernel space, 𝑓 is the projection of

the single test point under consideration into the kernel space (both of them together are equivalent

to 𝚽(X) in Section 2.3.2.1), 𝛽 is the set of linear coefficients for the projections, and 𝑍 is the

collection of regression errors 𝑧 at every test point. For the unbiased predictor, 𝐹𝑇𝑎(𝑋) − 𝑓 = 0.

And so, the mean squared error (MSE) in the predictions (which for unbiased predictors is equal

to the variance) is calculated as

𝜎(𝑋) = 𝐸 [(�̂�(𝑋) − 𝑦(𝑋))
2
] = 𝐸[(𝑎(𝑋)𝑇𝑍 − 𝑧)2] = 𝐸[𝑧2 + 𝑎(𝑋)𝑇𝑍𝑍𝑇𝑎(𝑋) − 2𝑎(𝑋)𝑇𝑍𝑧]

𝜎(𝑋) = 𝜎2(1 + 𝑎(𝑋)𝑇𝑅𝑎(𝑋) − 2𝑎(𝑋)𝑇𝑟) = 𝜎2(1 + 𝑎(𝑋)𝑇(𝑅𝑎(𝑋) − 2𝑟)) (2. 24)

where 𝜎 is the MSE of the predictions for the training points (i.e., the process variance), and 𝑅 is

the symmetric correlation matrix (equivalent to the noisy covariance matrix 𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼 in

Section 2.3.2.2) with entries 𝑟 (equivalent to 𝐾(𝑋, 𝒙∗) in Section 2.3.2.2) that define the similarity

of the predictions and the errors between two different points in the input space.

The goal of the BLUP is to minimize the MSE of the predictions subject to the constraints

in Equation 2.22. For that, the method of Lagrange multipliers is used and the Lagrangian function

is constructed

𝐿(𝑎(𝑋), 𝜆) = 𝜎2(1 + 𝑎(𝑋)𝑇𝑅𝑎(𝑋) − 2𝑎(𝑋)𝑇𝑟) − 𝜆𝑇(𝐹𝑇𝑎(𝑋) − 𝑓) (2. 25)

where 𝜆 is a Lagrange multiplier. Then, the gradient is 𝐿′(𝑎(𝑋), 𝜆) = 2𝜎2(𝑅𝑎(𝑋) − 𝑟) − 𝐹𝜆, and

the system of equations is constructed

{
2𝜎2(𝑅𝑎(𝑋) − 𝑟) − 𝐹𝜆 = 0

𝐹𝑇𝑎(𝑋) − 𝑓 = 0
(2. 26)

 Substituting �̃� = −
𝜆

2𝜎2
 into Equation 2.26 leads to the following matrix

[
𝑅 𝐹
𝐹𝑇 0

] [
𝑎(𝑋)

�̃�
] = [

𝑟
𝑓(𝑋)] (2. 27)

and finally, we solve for �̃� and 𝑎(𝑋) to get

�̃� = (𝐹𝑇𝑅−1𝐹)−1(𝐹𝑇𝑅−1𝑟 − 𝑓) (2. 28)

𝑎(𝑋) = 𝑅−1(𝑟 − 𝐹�̃�) (2. 29)

24

 Having 𝑎(𝑋), and remembering that 𝑅 and 𝑅−1 are symmetric, we can substitute 𝑎(𝑋) to

find the expression for the mean function of the prediction

�̂�(𝑋) = 𝑎(𝑋)𝑇𝑦 = (𝑟 − 𝐹�̃�)
𝑇
𝑅−1𝑦

�̂�(𝑋) = 𝑟𝑇𝑅−1𝑦 − (𝐹𝑇𝑅−1𝑟 − 𝑓)𝑇(𝐹𝑇𝑅−1𝐹)−1𝐹𝑇𝑅−1𝑦 (2. 30)

 Note that, as 𝑅 is equivalent to 𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼, and from Equation 2.23, 𝑅𝑎(𝑋) = 𝑟 − 𝐹�̃�.

𝑟 is also equivalent to 𝐾(𝑋, 𝒙∗) in Section 2.3.2.2, so we arrive at a somewhat similar, but different

expression as Equation 2.20 for the mean prediction. Finally, substituting Equation 2.29 into

Equation 2.24, we get

𝜎(𝑋) = 𝜎2(1 + 𝑎(𝑋)𝑇(𝑅𝑎(𝑋) − 2𝑟)) = 𝜎2 (1 + (𝐹�̃� − 𝑟)
𝑇
𝑅−1(𝐹�̃� − 𝑟))

𝜎(𝑋) = 𝜎2 (1 + (𝐹�̃� − 𝑟)
𝑇
𝑅−1(𝐹�̃� − 𝑟)) = 𝜎2(1 + �̃�𝑇𝐹𝑇𝑅−1𝐹�̃� − 𝑟𝑇𝑅−1𝑟) (2. 31)

 Substituting 𝑢 = 𝐹𝑇𝑅−1𝑟 − 𝑓(𝑋) into Equation 2.31 to keep consistent with [33] and [34],

we get the following for the MSE

𝜎(𝑋) = 𝜎2(1 + 𝑢𝑇(𝐹𝑇𝑅−1𝐹)−1𝑢 − 𝑟𝑇𝑅−1𝑟) (2. 32)

 The process variance 𝜎2 is found from the generalized least squares fit analysis and is equal

to

𝜎2 =
1

𝑚
(𝑦 − 𝐹𝛽∗)𝑇𝑅−1(𝑦 − 𝐹𝛽∗) (2. 33)

where 𝑚 is the number of samples and 𝛽∗ is the same as in Equation 2.19, and is equal to

(𝐹𝑇𝑅−1𝐹)−1(𝐹𝑇𝑅−1𝑦). That expression for 𝛽∗ also appears in Equation 2.30, which signifies that

the mean prediction of the BLUP approach is the same as that of linear regression in the kernel

space.

 The difference between the Bayesian approach of conditioning the prior distributions on

the observations in Section 2.3.2.2 and the BLUP approach in this section is primarily in the fact

that the BLUP estimate for the variance (MSE) explicitly depends on the values of the training

points 𝑦, while the Bayesian approach depends less directly through conditioning the covariance

matrix on the observations. As such, the variance is more constrained by the observations for

25

BLUP, and, if the GPM is not confident in the mean function, the variances calculated in that way

are smaller. Since this project was a continuation of a previous work, it was decided to keep using

the 0.16.1 version of the scikit-learn package to expand on the heuristics developed there. The

previous work is summarized in Section 2.3.3.

2.3.3 The Iterative Framework of Michael Shoniker

For this project, it was found empirically that the absolute exponential kernel worked the

best when using the scikit-learn 0.16.1 implementation of kriging[33]. This might be explained by

the fact that the datasets provided are discrete, and thus are likely to appear irregular to the model,

with discontinuities and sudden changes in values. For greater generality, the absolute exponential

kernel is used, even if the underlying function is smooth. This would mean that, for example, the

RBF kernel would lead to overly confident predictions. Additionally, the expressive capacity of

the absolute exponential kernel is objectively higher than that of RBF. RBF will always try to

predict smooth functions, which may result in overly complex models which might change a lot

from iteration to iteration. In addition to choosing the kernel, the previous work by Michael

Shoniker, developed a set of rules and heuristics empirically using the same set of benchmark

circuits used in this thesis. These rules saved an average of 78.9% of the simulations before being

confident in finding the true global maximum[7]. Shoniker’s algorithm is reviewed below.

Following the framework described in [35], the problem is partitioned into three parts: (1)

selection of the initial training set, (2) selection of points to simulate in the next iteration of the

algorithm, and (3) the termination decision. The purpose of the initial training set is to provide a

good starting point (that is, a good initial model of the function) for the algorithm. A good initial

training set should be large enough to be a representative sample to direct early exploration of the

input domain, but should also be compact enough that there is still significant opportunity to save

on the number of points to be simulated before the algorithm is terminated. After a series of tests,

Shoniker decided that the initial training set should be constructed the following way. The total

size of the initial training set is equal to m = max(0.01*N, 2*n), where N is the total number of

points in the total dataset, and n is the number of input dimensions. The initial design includes the

mean point (the central point) of the input space, and then adds to it a set containing every extreme

point. An extreme point is one that has at least one of its input values equal to an extreme (i.e.,

26

smallest or biggest) value that can be assumed for the input dimension. If the number of extreme

points is bigger than m-1, then m-1 points out of all of the extreme points are selected at random

for the initial training set. If, however, there are fewer than m-1 extreme points, then all extreme

points are selected for the initial training set, and more points are selected at random from the rest

to raise the total number of points in the initial training set to m.

The second step, next corner selection, is executed as follows. With each algorithm

iteration after selecting the initial training set, a GPM is constructed, and a mean predicted value

ŷ and a standard deviation value 𝜎 are generated for each test (unsimulated) point. These values

are used to construct scatter plots, where the standard deviation values are plotted against the

corresponding mean predicted values (see Figure 2.5). From each such plot, the upper convex hull

is constructed, and every point that lies on the hull is selected as one of the training points for the

next round of simulations. The reason the points on the upper convex hull are selected is that it

was found that these points are most likely to become the true maximum (because they have large

predicted values and predicted errors), and by selecting multiple points on the hull the selection

heuristic ensures diversity in the search and counteracts against too much greed in the search

algorithm.

The third and final step of the algorithm is the termination decision. If each training point

is indeed a Gaussian random variable, then the probability that the variable assumes a value bigger

than ŷ + k*σ is described by the single-tailed cumulative probability Q(𝑘) of the Gaussian

distribution with mean of ŷ and standard deviation 𝜎[36]. The plot of the Q-function is provided

in Figure 2.5. Thus, if we have a known current simulated maximum value of ŷmax? and for a certain

test point it is true that, for example, ŷmax? = ŷtest + 3*σtest, then there is a 1 − Q(3) = 0.99865

probability that the test point has a smaller value than ŷmax?. Then, it was decided that the algorithm

has a 3-sigma confidence that the current maximum is the true maximum if, for every test point, it

is true that ŷmax? ≥ ŷtest + 3*σtest. Graphically, this is represented if every test point on the scatter

plot lies below the straight line going from the current simulated maximum with slope -k, the line

representing the k-sigma confidence of termination to the true maximum (see Figure 2.4).

In Figure 2.4, an intermediate state in the search is shown for the delay output function of

the shift_reg dataset. The figure shows a scatter plot each point’s predicted value versus the

corresponding uncertainty. The straight lines starting at the left of the figure are the termination

27

lines, with the magnitude of the slope being equal to the sigma-confidence level (i.e., the

coefficient factor of the σ value). The termination lines go from the current known maximum, and

the dataset has not terminated even to 1-sigma confidence level as not every point is located below

the top straight line. As soon as every point is predicted to be below a termination line with slope

-k, it is said that the k-sigma confidence has been reached and the algorithm is terminated for that

sigma level. The red point in the red circle between the 3-sigma and the 4-sigma termination lines

is the prediction of the true global maximum for this particular circuit. On the figure, the global

maximum is predicted to have the value of approximately 1.22e-8 and uncertainty of

approximately 1.5e-10 units, when the true value is 1.32e-8, so GPM misses that prediction by

approximately 7 sigma at that stage of the algorithm.

Figure 2.4 Demonstration of the Convergence Criteria for Different k-sigma Confidences

The green multi-segment line enveloping all the points at the top right is the upper convex

hull. It goes from the point with the highest predicted value to the point with the highest predicted

uncertainty. The perpendicular red line going from the 3-sigma termination line points to the corner

farthest from the termination line. This is the worst-case corner for the 3-sigma termination rule,

and in an earlier version of Shoniker’s algorithm it would be the only point selected for next step

Most Likely Point to Exceed ymax for k=3

Standard Deviation

Predicted Values

28

simulation. After Shoniker tried several such termination rules (6-sigma and 9-sigma), he found

that taking all the points from convex hull makes termination faster and more accurate, possibly

because the corners on the upper convex hull essentially account for every such termination rule,

from 0-sigma up to an arbitrarily-high-sigma rule. After selecting the next corners for simulation

and after building a new GPM that accounts for the newly selected corners, it is desirable that all

the corners move towards the lower left corner of the figure, to accelerate termination. This,

however, is not always the case. It is sometimes possible that selecting the corners on the convex

hull significantly changes the understanding of the dataset by the model, which often produces

drastically different predicted values and increases uncertainties.

Figure 2.5 Illustration of the Q-function for Sigma Levels from 0 to 5.0

Shoniker found that it was useful to make certain modifications, however, as the iterative

algorithm would often converge to an incorrect identification of the global maximum, getting stuck

in a local optimum. The selected modifications were to increase the uncertainty in the predictions

for function values, by introducing a so-called three-step amplification procedure and the

application of a heuristic boosting factor. The need for a three-step amplification procedure arose

from noting that GPR would often underestimate the value of points near the current maximum.

After conducting a number of experiments, Shoniker decided that every point within one

29

manhattan step away in the input space from the current maximum would have its uncertainty (as

predicted by the latest GPM) amplified by 25%, and every point two manhattan steps away from

the current maximum would have its uncertainty amplified by 15%. To take a manhattan step

means to change one and only one value of the inputs to a value right next to the former value on

the defined grid. The difference between the old and the new input corners is then defined as on

manhattan step, regardless of the Euclidean distance in the input space. This would also serve as

an incentive for the algorithm to more thoroughly explore the region close to the current maximum

to make it less likely that a true global function maximum will be missed.

The need for the global boosting factor arose from observing that for certain datasets (e.g.,

circuit shift_reg) many more points would not be within a certain number of standard deviations

from their true values. In other words, GPMs systematically underestimate the uncertainty for the

predicted functions. So, for example, it would be expected that the true value of a point would lie

within ±3*σ of the actual function value approximately 99.73% of the time. For shift_reg outputs,

however, that was not the case, and so it was decided to empirically boost the uncertainty for all

points to bring the fraction of estimations being within the true values to the expected rates. A

strategy was adopted to modify a well-known 10-fold cross-validation technique[37] to find by

how many standard deviations exactly predictions from GPR miss their true values. Ten cross-

validation folds would be constructed and for each cross-validation run, 9 of the folds would serve

as the training set and the last fold would be used as the test set. Then, for each point in the test set

it would be recorded by how many standard deviations the mean estimate missed the true value.

After each cross-validation run is complete, the largest miss is divided by 3, and the resulting ratio

becomes the boosting factor. Finally, as it was noted that at the beginning of this procedure the

fraction of the corners within ±3*σ of the true value would still be less than expected, the boosting

factor is multiplied by a further factor of 1.25 if less than 25% of the corners in the dataset have

been simulated. The boosting factor is then multiplied by the uncertainty estimation of each test

point to produce the final 𝜎𝑡𝑒𝑠𝑡_𝑓𝑖𝑛𝑎𝑙 . The complete expression for 𝜎𝑡𝑒𝑠𝑡_𝑓𝑖𝑛𝑎𝑙 is

𝜎𝑡𝑒𝑠𝑡𝑓𝑖𝑛𝑎𝑙 = {
1.25 ∗ 𝑏𝑜𝑜𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝜎𝑡𝑒𝑠𝑡 , 𝑁𝑐𝑜𝑟𝑛𝑒𝑟𝑠 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 ≤ 0.25 ∗ 𝑁𝑐𝑜𝑟𝑛𝑒𝑟𝑠 𝑡𝑜𝑡𝑎𝑙
𝑏𝑜𝑜𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝜎𝑡𝑒𝑠𝑡 , 𝑁𝑐𝑜𝑟𝑛𝑒𝑟𝑠 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 > 0.25 ∗ 𝑁𝑐𝑜𝑟𝑛𝑒𝑟𝑠 𝑡𝑜𝑡𝑎𝑙

(2. 34)

With the higher uncertainty, the algorithm takes several more iterations to terminate.

30

As doing cross-validation is time and resource consuming, it would be done only

occasionally, after successive 10% increments of the total set simulated. It was noted that the

boosting factor grows roughly linearly, and so it was decided to linearly interpolate the factor in-

between cross-validation procedures. Finally, to perform cross-validation immediately after

selecting the initial training set, the minimal number of points in the training set was bounded from

below at 10 points, and so the size of the initial training set became m = max(0.01*N, 2*n, 10).

This allowed a significant increase in accuracy of the predictions made by the algorithm, at the

cost of lower speedups. The results of the final algorithm by Shoniker are presented in Table 3.2.

Before starting new work on the project, we included one small modification. For many

datasets, one or more input dimensions had only one unique value. In this work, these dimensions

were removed, as they would not be of any benefit to the accuracy of predictions, and they would

introduce unnecessary work for the algorithm. One significant factor that would change with this

is the number of points in the initial training set. This way, the number of ways to choose the initial

training set is slightly reduced. Since selection of the initial training set is the biggest source of

variance in the reported results, the results are thus more stable with the modification.

This change, however, adds an additional point of consideration. A dataset used in

Shoniker’s work, mux, lost half of its input dimensions, going from eight to four. Therefore, the

size of the initial training set dropped from sixteen to ten. An unwelcome consequence from this

was losing approximately 30% in accuracy of termination in two of the output functions, qtran and

qtran0. This cast doubts on whether it was smart to remove the static dimensions. Looking at this

from the other perspective, however, is it smart to leave those dimensions in? If such static

dimensions should be allowed, then the selection of the initial training set according to Shoniker’s

selection procedure would not depend on the structure of the dataset in the input space. This would

make the size of the initial training set rather arbitrary, which would introduce additional problems

for the algorithm, particularly in the number of corners it takes to simulate to terminate to an

answer.

It is worth noting that the two output functions that lost in accuracy have the exact same

structure, and, in addition to that, have three non-adjacent values, which are the maximums, that

are 161 times bigger than the next biggest value. Such spikes, which are not even located on a

ridge, are impossible to predict, and, in the worst case, the only sure way to catch them is to perform

31

the exhaustive full-factorial simulation. All three values could potentially be selected for the initial

training set, and thus without removing the static dimension the algorithm is much “luckier”. This

luck, however, is different from the intentional randomness introduced in the flow of the algorithm,

such as the selection of the initial training set. This randomness in Shoniker’s algorithm was

intended to provide more diversity to the results of applying the algorithm, as well as give a higher

probability to not use a wrong model for functions that are not well modelled by the GPM. With

the outputs of the mux dataset, simulating more points in the unbiased stage makes it closer to pure

luck. As such luck is the only way that could help in the situations when an output has an isolated

spike, it was decided to remove mux dataset from analysis in this work as including it would distort

the true performance of the algorithms presented in this work. No algorithm can deterministically

find a truly worst-case isolated spike in the output function. The dataset will be analysed separately

in Chapter 3. Isolated spikes are an interesting structure in some datasets and, unfortunately, this

is a valid problem that IC designers have to deal with.

2.4 Related Work

2.4.1 Similar Research

Related work was done by Dr. Xin Li’s group at Carnegie Melon University (Dr. Li is

currently working in Duke University). This work concerns statistical modelling[38][39][40] and

incorporating the models into production flow to optimise production[41][42]. Although this work

is not directly applicable to this project, it could indicate several directions for future work, and

could demonstrate how these concepts are applied in production flow.

Some of this work is extremely close to the subject of this project, and thus it will be

reviewed in detail. For example, in [38], a process is described that translates the problem of

extracting the worst-case corners by formulating it as quadratically constrained quadratic

programming with the help of a quadratic response surface model based on a DoE design, and then

converts it to a convex semi-definite programming problem for extra efficiency. This approach

works if a quadratic response surface model is an accurate model for the circuit, which is not

always the case. Also, for our problem, the DoE design is the only input.

32

In [39], a way is presented to approximate the performance of circuits that are highly

influenced by variability as the linear combination of a set of basis functions. The coefficients for

the linear regression come from Maximum A Posteriori (MAP) estimates based on the (prior

Laplacian-distributed) errors of the regression model. The error distribution is then itself

approximated as a Gaussian kernel density distribution. As a result, the modelling is more precise

than the SR-L1 methodology (sparse regression method with L1-norm) on which the approach is

based. This approach is interesting in its use of kernels that are linear combinations of Gaussian

distributions. Some of these ideas can be used to build more suitable kernels for GPR based on the

initial training set; however, building a good representation would require a large fraction of the

small datasets, and thus it is inapplicable for this project.

In [40], the authors suggest an approach to model the response of circuits as linear surfaces

at subdivided patches of the grid, essentially performing piecewise linear approximation of the

surface. As a result, they get an accurate representation of the response function. This is applied to

two common circuits, a 6T SRAM cell and a two-stage operational amplifier, and the results are

within a few percent of the true response functions. However, these also require a thousand pre-

selected corners to build, which is not always possible in this project. Additionally, if the bitcell

and opamp1 datasets provided for this project are indeed functions of an SRAM cell and an

operational amplifier, then the tested circuits in [40] are not so difficult to model, as Shoniker’s

algorithm has no trouble with any of the functions in the two datasets. Finally, an error of several

percent is still too imprecise for the purposes of this project.

2.4.2 Other Function Optimisation Techniques

There are several widely accepted function optimisation techniques, like gradient

descent[43], hill climbing[44], and simulated annealing[45]. Like all general function optimisation

techniques, they are not guaranteed to find the global optimum, and are vulnerable to getting stuck

in a local optimum.

For example, gradient descent looks at the gradient (e.g., the slope) of the cost function at

the present point, and selects the next sample in the direction of the biggest change (steepest

descent). The risk here is that the final answer for the lowest point of the cost function is very

dependent on the starting point from which the descent started. Some modifications were proposed

33

to increase the probability of not getting stuck in a local minimum. For example, a momentum

term, which takes into account the previous values of the cost function, can be included. Another

option, multi-start strategies, avoid local optima by starting the search at different points. These,

however, still do not guarantee convergence to the global minimum for any reasonable time. Hill

climbing is similar to gradient descent, except that it optimises in one direction at a time, and has

the same problems as gradient descent.

Simulated annealing attempts to increase the probability of finding the global maximum,

but it still cannot be guaranteed to do so, and may only find a local maximum. The possible changes

in the state of the system at a point in time for simulated annealing are affected by its temperature

parameter. The temperature parameter is lowered in steps as the simulation proceeds and affects

the probability that a higher cost next state will be selected instead of a lower cost state. The

process starts at a random reference point, and then a random sample is selected, the distance in

the input space between the reference point and the sample depends on the temperature. At the

beginning when the temperature is high, the next sample is allowed to be far from the reference,

whereas at the end when the temperature is low, the selection is less likely to explore regions far

from the current candidate. Then, the sample is evaluated. If the value of the cost function at the

sample is higher than reference, the sample is selected as the new reference. If it is not higher, the

sample can still be chosen as the new reference, with probability that exponentially decays with

decreasing temperature. This allows for more thorough exploration phase at the beginning of the

algorithm. However, the maximum found with simulated annealing is still vulnerable to

converging to a local optimum. Simulated annealing struggles with flat functions, of which we

have found several in our industrial benchmarks.

2.4.3 Formal Verification

Formal verification is application of logical operations to exhaustively prove that a system

corresponds to a set of constraints. Formal verification can be for both software[46] and

hardware[47][48][49][50] systems. These methods are exhaustive, but also take a long time to

develop the mathematical tools, and are generally circuit specific[51], and cannot be applied to

arbitrary black-box functions. As this project requires a universal method of finding the worst-case

estimation of a black box function, none of the formal verification strategies can be applied.

34

2.4.4 Rare-Event Failure Estimation

In cases when extreme reliability is required, a designer needs to apply so-called rare-event

failure estimation techniques. Typically, such requirements would be applicable either to

components that are used in huge numbers, like SRAM cells[52], or to complex systems for the

purposes of verification[53]. A common approach here is subset simulation (SUS), where corners

are chosen iteratively, selected by Markov Chain Monte Carlo (MCMC)[54], in order to calculate

the probability of failure in a given subset[55]. Then, a subset of the previously selected subset of

corners is selected, and the probability of failure within that subset is estimated again, giving the

conditional probability of failure for the current subset. The eventual probability of failure is equal

to the product of the conditional probabilities of failure for each subset.

The rare-event failure estimation approach could potentially be applied here if a high-sigma

termination threshold is defined, and the search space is regenerated after each convergence. This

could prove to be an attractive area of further research.

2.4.5 Applications in Other Fields of Engineering

The function optimisation problem considered in this thesis does not necessarily need to

be applied only to the design verification of integrated circuits. In fact, process optimisation is a

very important problem for a number of engineering disciplines, for example process optimisation

in chemical engineering [56][57][58][59][60], where the exact proportions of reactants, as well as

the process conditions, like pressure and temperature, need to be optimised subject to constraints

for the maximum yield of the desired product.

35

Chapter 3: Deeper Look into Benchmark Datasets

3.1 Shapes of Datasets

The datasets supplied to us by Solido Design Automation provided a variety of functions,

supposedly from real industrial circuits, for us to explore using different candidate algorithms for

minimal worst-case corner selection. We do not know how the datasets were produced, and we

can only guess at the characteristics that the functions model from the names of the datasets and

the functions. Table 3.1 summarises the output functions available to us.

Dataset Input Unique Values Output Min, Max, Mean, and Median Values

bitcell

Model_set ff, fs, sf, ss, tt
blwm 0.2241, 0.5775, 0.385958333333, 0.3862

HI 0.9, 1.0, 1.1

LO 0
blwm_mv 224.1108, 577.5151, 385.956115, 386.1763

Temperature -25, -50, 0, 100, 125, 25.0, 50, 75

charge_pump1

Model_set ff, ss, tt
boostcr 0.7993, 0.8132, 0.805446759259, 0.8052

Temperature -25, -40.0, 0, 100, 125, 25, 50, 75

gnd 0 eq_error 0.000897, 0.0774, 0.017937125, 0.011055

hvnn_fs_vnds -40
holdcrd 0.917, 0.9347, 0.92617962963, 0.9262

vcc 2.4, 2.5, 2.6

vcce 1.5
holdcru 0.9229, 0.938, 0.930111111111, 0.93005

vin 26

vv3 2.4, 2.5, 2.6 ovdrive 1.712, 2.031, 1.88417592593, 1.8855

charge_pump2

Model_set ff, ss, tt
boostcr 0.7945, 0.815, 0.804158641975, 0.8044

Temperature -25, -40, 0, 25, 50, 75

gnd 0 eq_error
-0.001558, 0.1231, 0.0158857746914,

0.0069705

hvnn_fs_vnds -40
holdcrd 0.9148, 0.9372, 0.925291975309, 0.92495

vcc 2, 2.5, 3

vcce 1.4, 1.6 holdcru 0.9207, 0.9426, 0.930122222222, 0.92995

vin 26
ovdrive 1.535, 2.142, 1.8972345679, 1.912

vv3 2.4, 2.5, 2.6

sense_amp1

Model_set ff, fs, sf, ss, tt SAspeed
3.476866e-11, 1.370766e-10, 6.147855625e-

11, 5.548009e-11

Temperature -25, -50, 0, 100, 125.0, 25, 50, 75 glitch_senout
0.003463692, 0.1749941, 0.061537111925,

0.038181035

bidirection_flag 0 maxout
0.540016, 0.5408317, 0.5402601125,

0.540239

k 0.9

offset
-0.001171875, 0.008422852,

0.001993560785, 0.001785278
preext_flag 0

saebgn 1.00E-11

saewid 7.9e-10, 8.1e-10, 8e-10 rslt
-1.080105e-05, 0.0002046455, 1.4537917e-

05, -5.1428055e-06

slwrt 2.00E-11 sen_dip
0.540016, 0.5408317, 0.5402601125,

0.540239

vs 0 sen_dip_pctg 0.3990759, 0.3999823, 0.399711, 0.3997345

36

Dataset Input Unique Values Output Min, Max, Mean, and Median Values

bias_gen

Model_set ff, ss, tt

bgr_m51_v145 1.143, 1.198, 1.17404166667, 1.1745

bgr_m51_v150 1.153, 1.198, 1.17566666667, 1.1745

bgr_m51_v155 1.158, 1.199, 1.17641666667, 1.1745

Temperature -25, -50, 0, 100, 125, 25.0, 50, 75

bgr_m51_v180 1.16, 1.201, 1.177, 1.1745

bgr_m51_v195 1.16, 1.201, 1.17729166667, 1.175

bgr_m51_v25 1.16, 1.202, 1.177875, 1.1755

bgr_m51_v27 1.161, 1.203, 1.17816666667, 1.176

vcc_ext 2.8, 2.9, 3.0, 3.1, 3.2

bgr_m51_v30 1.161, 1.203, 1.17841666667, 1.176

bgr_m51_v33 1.161, 1.204, 1.178875, 1.1765

bgr_m51_v36 1.162, 1.204, 1.17929166667, 1.177

opamp1

Model_set ff, ss, tt

dc_gain 32.7, 35.16, 34.0946666667, 34.125

Temperature -25, -50, 0, 100, 125, 25.0, 50, 75

psweep 1

vcc 2

vm 0.005

vref 1.23, 1.24, 1.25, 1.26, 1.27

shift_reg

Model_set ff, fs, sf, ss, tt
delay

9.421e-09, 1.322e-08, 1.15065518519e-08,

1.1515e-08 Temperature -25, -50, 0, 100, 125, 27.0, 50, 75

vin_ac 0.05
fall_time

2.004e-10, 4.25e-09, 1.33582814815e-09,

1.097e-09 vvcc 3.2, 3.3, 3.4

vvdd 1.4, 1.5, 1.6
rise_time

3.672e-10, 4.032e-09, 1.08265601852e-09,

8.8495e-10 vvref 1.6, 1.65, 1.7

buffer_chain

Model_set ff, fs, sf, ss, tt Tf4_5
3.332e-11, 1.635e-10, 6.78230183435e-11,

6.119e-11

Temperature -25, -50, 0, 100, 125, 25, 50, 75

Tr4_5
2.984e-11, 1.519e-10, 6.4019688716e-11,

5.792e-11 cl
1.8E-015, 1.9E-015, 2.1E-015,

2.2E-015, 2E-015

in_slew 1.1E-010, 1E-010, 9E-011
avg_slew 30.0797, 114.8954, 56.5462939411, 52.2514

myvdd 0.9, 1, 1.1

tp 0.00000002
avgdly4_5 31.5795, 157.7366, 65.9213255142, 60.1182

tstart 0.000000001

tstep 1.00E-12 fslew
2.7e-11, 1.061e-10, 5.18013618677e-11,

4.758e-11

tstop 0.0000001 rslew
3.316e-11, 1.237e-10, 6.12911839911e-11,

5.599e-11

Table 3.1 Information about the Inputs and Outputs of the Available Datasets

Table 3.1 summarises what inputs the datasets have, the possible input values, and gives

brief information about the outputs. It is interesting to note from the output information that there

is sometimes a significant difference between the mean and the median values of the output

function. One might expect the distribution to be close to being uniform or Gaussian, meaning

there will not be a big difference between the mean and the median. However, if the median is

significantly lower than the mean, this indicates that the average of the function is skewed by the

higher values, potentially indicating the presence of significant excursions or spikes in the

responses of the function. Looking at the difference between the extremal values also might give

interesting insights as a function that has a small difference between the minimum and the

37

maximum values (i.e., relatively flat functions) might make it difficult for the GPM to properly

model all the small variations, which might be significantly affected by noise at the time of

measurement.

The results achieved by Shoniker’s final algorithm for the 4-sigma termination rule are

provided in Table 3.2. The table shows results for 4-sigma confidence bound for a number of test

circuits provided by our industrial partner Solido Design Automation. The average speedup is

4.74x, with the speedup defined as

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑝𝑜𝑖𝑛𝑡𝑠

𝑃𝑜𝑖𝑛𝑡𝑠 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑓𝑖𝑛𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑚𝑎𝑥
(3.1)

Circuit Name Type of Set
Initial Train-

ing Set Size

Corners to Find

Fmax

Corners Until

Termination for each

output

Min., Max. and Mean

Speed-Ups

shift_reg Full Factorial 14 of 1080 84-306 478, 988, 1047 1.03, 2.25, 1.46

buffer_chain Full Factorial 20 of 1799 29-45 159, 104, 134, 99, 365, 121 4.93, 18.18, 13.32

bitcell Full Factorial 10 of 120 12 26, 26 4.61, 4.61, 4.61

charge_pump1 Full Factorial 16 of 216 4-23 38, 41, 43, 45, 50 4.32, 5.68, 5.02

charge_pump2 Full Factorial 16 of 324 8-23 53, 56, 61, 68, 71 4.56, 6.11, 5.31

sense_amp Full Factorial 20 of 120 1-7 34, 51, 81, 37, 35, 81, 114 1.05, 3.53, 2.37

bias_gen Full Factorial 10 of 120 1
40, 41, 38, 36, 37, 38, 37,

37, 37, 37
2.93, 3.33, 3.18

op_amp Full Factorial 12 of 120 1 46 2.61, 2.61, 2.61

Table 3.2 Results of Michael Shoniker's Original Algorithm

Each of the functions in Table 3.2 terminated with 100% accuracy. Accuracy is defined as

the fraction of runs of the algorithm for which the true global maximum was found. So, for

example, if in a test of 100 runs of the algorithm on an output function, 95 runs terminate to the

correct worst-case corner (meaning that 5 times out of 100 an incorrect worst-case corner was

chosen), the accuracy of the algorithm on this function is 95%. 100 trials were performed for every

entry in Table 3.2. In each trial, a different initial training set is selected according to Michael

Shoniker’s randomized design (see Section 2.3.3). The results are averaged to produce the values

in the column “Corners Until Termination for each output”.

Some of the functions were very easy to search for the maxium value, while others turned

out to be a challenge. Of course, in order to understand how to improve the algorithm, it is

important to first understand why some of the functions are more difficult than the others, and then

try to come up with a way to generalise and leverage that insight. Looking at the ordered histogram

38

distribution of the output values of the most challenging functions might provide some insight into

this problem.

Figure 3.1 Shapes of Select Output Functions

The histograms in Figure 3.1 are for the hard fall_time and rise_time functions of the

shift_reg benchmark dataset, the outputs of the mux dataset with three sudden spikes, and the very

flat sen_dip_pctg function of the sense_amp1 benchmark. It seems that Michael Shoniker’s

algorithm had difficulty with at least two types of functions: ones that have sudden spikes, and

ones that are very flat. Each of the types affects performance of the algorithm in a different metric

of performance of the algorithm: spikes decrease the probability of finding the true global

maximum, while flat regions require almost every point in the region to be simulated. And while

it is undesirable to have a spike in the dataset, it is still often possible to model the underlying

39

function that produced the spike as it depends on the combination of the input parameters.

Modelling flat surfaces causes GPM additional challenges for reasons that are explored in Section

3.2.

3.2 Overfitting and Underfitting

In the cases when a GPM is used to model what looks like statistical noise, the model still

tries to ensure that the mean function goes through the training points exactly, resulting in irregular

functions that tend to change a lot from one GPM generation stage of the algorithm to the next.

This could be seen as a case of overfitting[61]. Overfitting is when the model is too complex to be

useful for learning. In the case of neural networks, for example, extreme overfitting essentially

means memorizing the entire training set, while simultaneously being rather poor at trying to

interpolate between or extrapolate training samples to predict unknown samples. In the context of

this project, overfitting might cause the predictions and uncertainties for test points to change

rapidly from one stage of the algorithm to another. This is undesirable as it introduces even bigger

uncertainty in selecting corners for simulation.

A common way to counter overfitting is to account for noise in the predictions. Then, the

model is allowed to fit less precisely, essentially creating a soft margin [62] for regression, thus

allowing for simpler function shapes. In scikit-learn 0.16.1, the software package used for this

thesis, this is achieved by setting the nugget parameter of the gaussian_process object to a bigger

value. Testing this on the most challenging dataset (shift_reg) yields the results in Table 3.3. The

value for the nugget was based on the average value of the three functions in the shift_reg dataset,

which is 4.64E-09.

Nugget
Average

Corners

Average

Speedup
Accuracy

4.64E-11 815.97 1.32 100

4.64E-10 862.57 1.25 100

4.64E-09 803.60 1.34 100

4.64E-08 846.07 1.28 100

Table 3.3 Results of Allowing Noisy Predictions in GPM for the shift_reg Dataset

As can be seen from Table 3.3, there is no significant difference between noiseless

predictions and noisy predictions, which suggests that overfitting is not a problem. This is

40

supported by closely observing performance on the most difficult functions at every stage. From

those observations, it looks like the model performance on the datasets were more likely due to

underfitting. Underfitting is the opposite problem to overfitting – the model is not expressive

enough to be used for accurate function regression. For example, if the task is to model a sinusoid,

but the model can only produce a linear function, then the resulting prediction will simply be a flat

0 function, that is, the mean of the sinusoid. With some functions, a GPM is unable to properly

model the functions due to, for example, the poor fit of the kernel function. In these cases, the

GPM just produces a 0 mean function and the uncertainties based on the proximity to the training

points.

While the predicted values of the functions for problematic output functions, like rise_time,

are not 0, they are still often more than 100 times smaller than the respective uncertainties. In

contrast to that, in the well-behaved delay function from the same shift_reg dataset, the values of

the predictions at test points are very rarely less than 100 times bigger than the respective

uncertainties. While it would be inappropriate to conclude that underfitting is the bigger problem

for the rise_time function, the eventual conclusion is the same: for such functions, optimisation is

largely shifted into the exploration phase as the next corners selection procedure will be dominated

by the value of the uncertainties, and these points are likely to be those that are in the farthest

regions from the trained points. This also means that the algorithm will take longer to converge

than it should. Unfortunately, we could find no simple and reliable heuristic to prevent that without

sacrificing accuracy.

3.3 Flat Functions

An additional problem introduced by functions that have maxima hidden in “flat” regions

is that we can not be sure that the sampling method that generates the input to the algorithm for

selecting worst-case corners will contain the true worst-case corner. For example, consider the

functions of a phase detector circuit described in Chapter 6. All of them are rather flat and, having

generated a finer dataset, we can see how the sampling of the input space affects what can be

selected as the worst-case corner.

41

Number of Corners

for the Sampling

Method for

phase_det_down

Worst-Case Value for

phase_det_down

down_rise_time

Worst-Case Value

for

phase_det_down

down_fall_time

Number of

Corners for the

Sampling Method

for phase_det_up

Worst-Case Value

for phase_det_up

up_rise_time

Worst-Case Value

for phase_det_up

up_fall_time

Total Sampling

(9450 Corners)
1.00877856305E-11 9.29257005458E-12

Total Sampling

(9450 Corners)
1.02241882614E-11 9.32792900107E-12

Partial Sampling 1

(1944 Corners)
1.00877451023E-11 9.29257005458E-12

Partial Sampling 1

(1944 Corners)
1.02221401286E-11 9.13006671489E-12

Partial Sampling 2

(6300 Corners)
1.00877451023E-11 9.29257005458E-12

Partial Sampling 2

(6300 Corners)
1.02238923073E-11 9.19881168078E-12

Partial Sampling 3

(1800 Corners)
1.00877451023E-11 9.15371593837E-12

Partial Sampling 3

(1800 Corners)
1.02238923073E-11 9.32792900107E-12

Partial Sampling 4

(4050 Corners)
1.00877451023E-11 9.15371593837E-12

Partial Sampling 4

(4050 Corners)
1.02241882614E-11 9.32792900107E-12

Partial Sampling 5

(1400 Corners)
1.00877451023E-11 9.29257005458E-12

Partial Sampling 5

(1400 Corners)
1.02238923073E-11 9.32792900107E-12

Partial Sampling 6

(504 Corners)
1.00877451023E-11 9.29257005458E-12

Partial Sampling 6

(504 Corners)
1.02221401286E-11 9.19881168078E-12

Table 3.4 Summary of Several Sampling Procedures of Functions Generated by a Phase Detector Circuit

Table 3.4 and Table 3.5 list some of the sampling procedures of the four functions, and the

respective global maximums. The main observation from Table 3.4 is that no matter the sampling

procedure, there is always a risk of not sampling the true global maximum of the continuous

response function. The Total Sampling procedure is itself a full-factorial design of 9450 corners

in each case, and selecting sub-samples, even if to bring the number of corners to a reasonable

level more often than not misses that maximum. Even selecting over 4000 corners still does not

capture the biggest value of one of the four functions, and selecting 6300 corners misses both of

the maximum points in the phase_det_up dataset.

This problem has been noted as a fundamental problem of the corner analysis[63].

Choosing a discrete combination of parameters always carries the risk of underestimating the

variance of responses, and the only truly reliable choice is a long-running and expensive Monte-

Carlo simulation. However, as we did not have any information on the provided circuit, and only

had a limited time to analyse our own custom circuits, we must assume that the input space given

to us is a comprehensive sample of the function that must be optimised.

42

Sampling Procedures for phase_det_down Sampling Procedures for phase_det_up

Sampling
Procedure

Name

Input Names Unique Input Values
Sampling
Procedure

Name

Input Names Unique Input Values

Total

Sampling

Temperature (-25.0, 0.0, 25.0, 50.0, 75.0, 100.0)

Total

Sampling

Temperature (-25.0, 0.0, 25.0, 50.0, 75.0, 100.0)

Delay of Adjustable
Clock

 (2.5e-10, 3.75e-10, 5e-10, 6.25e-10, 7.5e-10,
8.75e-10, 1e-09)

Delay of Adjustable
Clock

(-1e-09, -8.75e-10, -7.5e-10, -6.25e-10, -5e-10, -3.75e-10,
-2.5e-10)

Fall Time of

Adjustable Clock
(3e-11, 3.5e-11, 4.0e-11, 4.5e-11, 5e-11)

Fall Time of

Adjustable Clock
(3e-11, 3.5e-11, 4.0e-11, 4.5e-11, 5e-11)

Rise Time of
Adjustable Clock

(3e-11, 3.5e-11, 4.0e-11, 4.5e-11, 5e-11)
Rise Time of

Adjustable Clock
(3e-11, 3.5e-11, 4.0e-11, 4.5e-11, 5e-11)

Fall Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Fall Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Rise Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Rise Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Partial

Sampling 1

Temperature (-25.0, 0.0, 25.0, 50.0, 75.0, 100.0)

Partial

Sampling 1

Temperature (-25.0, 0.0, 25.0, 50.0, 75.0, 100.0)

Delay of Adjustable

Clock
(2.5e-10, 5e-10, 7.5e-10, 1e-09)

Delay of Adjustable

Clock
(-1e-09, -7.5e-10, -5e-10, -2.5e-10)

Fall Time of

Adjustable Clock
(3e-11, 4e-11, 5e-11)

Fall Time of

Adjustable Clock
(3e-11, 4e-11, 5. e-11)

Rise Time of

Adjustable Clock
(3e-11, 4e-11, 5e-11)

Rise Time of

Adjustable Clock
(3e-11, 4e-11, 5. e-11)

Fall Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Fall Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Rise Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Rise Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Partial
Sampling 2

Temperature (-25.0, 25.0, 50.0, 100.0)

Partial
Sampling 2

Temperature (-25.0, 25.0, 50.0, 100.0)

Delay of Adjustable

Clock

 (2.5e-10, 3.75e-10, 5e-10, 6.25e-10, 7.5e-10,

8.75e-10, 1e-09)

Delay of Adjustable

Clock

(-1e-09, -8.75e-10, -7.5e-10, -6.25e-10, -5e-10, -3.75e-10,

-2.5e-10)

Fall Time of

Adjustable Clock
(3e-11, 3.5e-11, 4.0e-11, 4.5e-11, 5e-11)

Fall Time of

Adjustable Clock
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)

Rise Time of

Adjustable Clock
(3e-11, 3.5e-11, 4.0e-11, 4.5e-11, 5e-11)

Rise Time of

Adjustable Clock
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)

Fall Time of
Reference Clock

(3e-11, 3.5e-11, 4e-11)
Fall Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Rise Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Rise Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Partial

Sampling 3

Temperature (-25.0, 0.0, 25.0, 50.0, 75.0, 100.0)

Partial

Sampling 3

Temperature (-25.0, 0.0, 25.0, 50.0, 75.0, 100.0)

Delay of Adjustable

Clock
(2.5e-10, 6.25e-10, 1e-09)

Delay of Adjustable

Clock
(-1e-09, -6.25e-10, -2.5e-10)

Fall Time of

Adjustable Clock
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5 e-11)

Fall Time of

Adjustable Clock
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)

Rise Time of
Adjustable Clock

(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5. e-11)
Rise Time of

Adjustable Clock
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)

Fall Time of

Reference Clock
(3e-11, 4e-11)

Fall Time of

Reference Clock
(3e-11, 4e-11)

Rise Time of
Reference Clock

(3e-11, 4 e-11)
Rise Time of

Reference Clock
(3e-11, 4e-11)

Partial

Sampling 4

Temperature (-25.0, 0.0, 25.0, 50.0, 75.0, 100.0)

Partial

Sampling 4

Temperature (-25.0, 0.0, 25.0, 50.0, 75.0, 100.0)

Delay of Adjustable

Clock
(2.5e-10, 6.25e-10, 1 e-09)

Delay of Adjustable

Clock
(-1e-09, -6.25e-10, -2.5e-10)

Fall Time of
Adjustable Clock

(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5. e-11)
Fall Time of

Adjustable Clock
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)

Rise Time of

Adjustable Clock
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5 e-11)

Rise Time of

Adjustable Clock
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)

Fall Time of
Reference Clock

(3e-11, 3.5e-11, 4e-11)
Fall Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Rise Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Rise Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Partial

Sampling 5

Temperature (-25.0, 100.0)

Partial

Sampling 5

Temperature (-25.0, 100.0)

Delay of Adjustable
Clock

(2.5e-10, 3.75e-10, 5e-10, 6.25e-10, 7.5e-10,
8.75e-10, 1e-09)

Delay of Adjustable
Clock

(-1e-09, -8.75e-10, -7.5e-10, -6.25e-10, -5e-10, -3.75e-10,
-2.5e-10)

Fall Time of

Adjustable Clock
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)

Fall Time of

Adjustable Clock
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)

Rise Time of
Adjustable Clock

(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)
Rise Time of

Adjustable Clock
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)

Fall Time of

Reference Clock
(3e-11, 4e-11)

Fall Time of

Reference Clock
(3e-11, 4e-11)

Rise Time of

Reference Clock
(3e-11, 4e-11)

Rise Time of

Reference Clock
(3e-11, 4e-11)

Partial

Sampling 6

Temperature (-25.0, 100.0)

Partial

Sampling 6

Temperature (-25.0, 100.0)

Delay of Adjustable

Clock

(2.5e-10, 3.75e-10, 5e-10, 6.25e-10, 7.5e-10,

8.75e-10, 1e-09)

Delay of Adjustable

Clock

(-1e-09, -8.75e-10, -7.5e-10, -6.25e-10, -5e-10, -3.75e-10,

-2.5e-10)

Fall Time of

Adjustable Clock
(3e-11, 5e-11)

Fall Time of

Adjustable Clock
(3e-11, 5e-11)

Rise Time of

Adjustable Clock
(3e-11, 5e-11)

Rise Time of

Adjustable Clock
(3e-11, 5e-11)

Fall Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Fall Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Rise Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Rise Time of

Reference Clock
(3e-11, 3.5e-11, 4e-11)

Table 3.5 Unique Values of the Input Dimensions for the Different Sampling Methods of the Phase Detector

Functions

43

3.4 Spikes and Ridges

In some functions (like rise_time), we observe ridges, where adjacent input points have

relatively high values compared to the surrounding points. In fact, a ridge is a region that is flat

along one (or a small number) of dimensions having significantly larger output values than the rest

of the dataset. The three by far highest values of the rise_time function have input values

(Model_set, Temperature, vin_ac, vvcc, vvdd, vvref) of (sf, -25, 0.05, 3.4, 1.4, 1.65), (sf, -25, 0.05,

3.4, 1.5, 1.65), and (sf, -25, 0.05, 3.4, 1.6, 1.65), the only difference being vvdd parameter. From

Shoniker’s observations, it was noted that GPM tends to significantly underestimate the values of

the function in the neighbourhood of the current known maximum. The proposed solution was to

introduce a three-step amplification factor for the predicted uncertainties near the current

maximum. This observation can explain why ridges would give problems to the current setup.

Naturally, it would be beneficial to somehow detect if ridges exist in the dataset and to

make suitable adjustments in the search strategy. Unfortunately, there is no good solution to doing

that. The only way would be to try and guess that the algorithm has encountered a ridge is to

sample the immediate neighbours of a point. This would mean that many more points are selected

for next step simulation, which is inefficient and costly for the functions which do not cause

problems for the GPM. Even restricting this additional sampling only to the cases when a new

maximum is known can have significant adverse effects on the performance.

We investigated a method to look for ridges as follows. Whenever a new maximum or a

new minimum is found, every point within one manhattan step from the current known maximum

is selected for sampling. After each of those corners is simulated, their output values are compared

to the current known maximum. If the values at one of those corners are within 10% of the current

known maximum, relative to the distance between the current known minimum and the current

known maximum of the function, the corner is marked as a ridge. Since with one manhattan step

the input values of the corners differ only in one dimension, the unsimulated corners in that entire

dimension are selected for simulation at the next stage.

Since many points are selected in this way, it only makes sense to do so for big datasets,

like shift_reg. There was, however, no significant benefit observed. When running the ridge

44

heuristics with the global boosting factor, no benefit is observed at all for shift_reg dataset, which

includes the only functions that could potentially benefit from this method. The average respective

speedup and accuracy is 1.28x and 100% for the 4-sigma termination rule. Excluding calculating

the boosting factor produces speedup of 2.40x and accuracy of 97.17%. While the accuracy is

better than the accuracy of 95.33% that was observed in Shoniker’s work for the 4-sigma

termination rule without the global boosting factor, and the speedup is impressive, the accuracy is

still too far below the target accuracy 99.86%, and so the method was decided to be inapplicable

to the project. The low accuracy could be explained by the fact that stumbling upon a point on a

ridge is rather random in the first place, so the ridge heuristic is only as reliable as the next corner

selection procedure is reliable at finding a spike.

3.5 Conclusions

This chapter explored the structure of the provided circuit datasets and identified some of

the problems that were encountered when applying Shoniker’s best algorithm. It was noted that

the biggest challenges are provided by the functions that have either sudden irregularities (e.g.,

spikes), or, conversely, are flat. Both provide problems of overfitting and underfitting.

The problem of overfitting was analysed on the example of the provided datasets. It was

found that allowing softer margins for regression, which often helps with overfitting, did not give

any significant benefit. This points to the problem for the challenging functions being studied (the

outputs of the shift_reg dataset) being closer to underfitting, and closer observing states of

simulation supports that.

The problems of flat functions are primarily caused by the fact that it is very difficult to

model them, and find the true global maximum. Indeed, even the choice of the sampling procedure

introduces a significant problem of missing the true worst-case corner, as studied on the custom

dataset. As most datasets provided for us are of unknown origin, there is not much we can do about

this problem, so we will have to assume that the datasets contain the true worst-case corner for the

respective functions.

It was noticed that spikes in datasets are often located close to one another, producing

something close to ridges or n-dimensional plateaus. When trying to account for such structures in

45

the function, specifically looking for ridges does not seem to help, possibly because locating ridges

is a matter of luck in the first place.

The general conclusion from this chapter is that there is no simple solution to the problems

experienced by Shoniker’s algorithm. The best we can do is to try to narrow the regions of locating

the spikes by attempting to prune away regions that are not likely to have such spikes. For example,

partitioning the input space could increase the chance to encounter a spike or a ridge and thus make

algorithms terminate faster and more accurately, while also allowing to prune away unlikely

regions to focus computational effort on the promising regions. The partitioning approach will be

explored in more detail in Chapter 5.

46

Chapter 4: Pruning Singular Points

4.1 The Problem of Termination

The framework of the algorithm that searches for the worst-case corners of an arbitrary

black-box function can be separated into three subproblems: (1) initial exploration of the specified

function of the given circuit, (2) selection of the next corners to simulate, and (3) termination of

the search for the function maximum. This chapter explores the effects of the choice of different

termination heuristics on the performance of the Shoniker’s algorithm for selecting a minimal set

of worst-case corners.

4.1.1 Premature Termination

The goal of the algorithm is to find the global function maximum in the fewest number of

PVT corner simulations. A search that terminates too fast should raise suspicion about the accuracy

of that termination decision. For example, output rise_time of circuit shift_reg was sometimes

found to converge to a candidate corner for the global maximum with the 10-sigma confidence

heuristic having selected as few as 17 corners (speedup of 63.5x). In many of those cases, the

found corner did not correspond to the actual worst-case corner. In general, rise_time was found

to take fewer than 100 simulations to converge to an incorrect corner in approximately 3% of the

cases, even with algorithm improvements like the boosting factor for the predicted error produced

by the GPM. Such a high error rate in termination is not acceptable and an improved heuristic

needs to be introduced to avoid these problems.

Having collected the results of simulations for 2744 of such termination errors for the

rise_time output of shift_reg, it was found that the most common reason for premature termination

on the wrong corner is that sometimes the output values of the corners that lie on the convex hull

in an iteration of the algorithm are significantly higher than the previous known maximum. In

Figure 4.1, this effect is demonstrated. The small blue symbols (the 26 corners, in this case) at the

left along the vertical axis are the ones that were used to construct the present GPM, and the big

green dots are the true values of the points lying on the convex hull (black points on the lower

right). The red point below the convex hull is the estimate of the true global maximum by the GPR.

47

Figure 4.1 Undesired Dislocation of the 4-Sigma Confidence Line

However, since the points on the convex hull are not part of the training set that was used

to construct the present GPM, the resulting function value predictions and uncertainties can be

greatly underestimated. In the case of Figure 4.1, the highest value known by the GPM (the “old”

maximum, the highest blue symbol on the figure) is more than twice as small as the highest value

among the points selected for the next iteration (the “new” maximum, the highest green symbol

from which the confidence line extends). Had the confidence line extended from the highest trained

value, the algorithm would not have terminated at that stage. Figure 4.2 summarises by how much

the “new” maximum is bigger than the “old” maximum.

Figure 4.2 Distribution of Ratios of New and Old Maxima

48

Figure 4.2 was constructed by running 90000 trials of Shoniker’s algorithm on the

rise_time output of the shift_reg dataset. As the problem of early termination was being

investigated, each trial only continued either until termination was declared or until 100 corners

had been selected. If the algorithm did indeed terminate with fewer than 100 corners, it was

recorded whether or not the global maximum was found, as well as the biggest value on the convex

hull and of the points that were the basis for the GPM were recorded. Some of those cases (71 out

of 90000) did indeed terminate with the true global maximum; however, even they had the same

problems described in Figure 4.2. The 71 cases just happened to select the true global maximum

in the few corners that they looked at out of good luck.

From Figure 4.2 then, we note that most of the time the new maximum is more than twice

as big as the old maximum, with the smallest such ratio being equal to 1.34. This can barely be

seen on Figure 4.2, as there was only one such case, compared to nearly 450 cases of the ratio

being between 2.35 and 2.42. To account for this information, a new heuristic was developed. If

the new maximum is 33% bigger than the old maximum, the search is not allowed to terminate,

and so the next iteration of the algorithm is started unconditionally. While this heuristic would

likely not allow early termination at the true global maximum, such cases would only account for

0.04% of all cases, according to the trials performed to generate Figure 4.2. Running this heuristic

on the rise_time function, the algorithm terminates with 4-sigma confidence after simulating an

average of 991.70 points out of 1080, with a termination accuracy of 99.82% compared to 96.95%

without the heuristic. As can be seen, it takes a similar number of simulations to terminate with

this heuristic, compared to the times when there was no premature termination. One interesting

thing to note from these tests is that terminating with 4-sigma confidence produces the termination

accuracy that should be expected from the 3-sigma confidence termination rule. This phenomenon

will be further explored in Section 4.1.2.

The results of applying this heuristic on every dataset are summarised below in Table 4.1.

As can be seen, the results are not significantly different from the ones provided in Table 3.2. The

gains are explained by the reduction in the number of input dimensions, as described at the end of

Section 2.1.4, and the termination accuracies are approximately what should be expected from the

3-sigma termination rule. Note, however, that for these results the k=4 termination rule was used,

and therefore the accuracy would be expected to be higher, following the assumptions of Michael

49

Shoniker’s work. In reality, however, the k-sigma rule leads to termination failure statistics that

are rather different from the Q(k) single-tailed distribution function. The likely reason for this is

explored in Section 4.1.2. The average speedup across all datasets is 4.99x, and the average

termination accuracy is 99.94%. Thanks to the reduced size of the initial training set, more

simulations were saved, while the accuracy remained at an acceptable level, compared to the

results of applying Shoniker’s algorithm.

Dataset
Average Corners to

Convergence
Average Speedup

Average

Accuracy

bias_gen 37.29 3.22 100

bitcell 26.16 4.59 100

buffer_chain 171.25 13.48 99.83

charge_pump1 35.29 6.21 100

charge_pump2 58.038 5.72 100

opamp1 47.31 2.54 100

sense_amp1 59.81 2.60 100

shift_reg 818.59 1.55 99.67

Average Speedup 4.99 Average Accuracy 99.94

Table 4.1 Results of Applying a Safeguard Against Premature Termination

4.1.2 Understanding the Meaning of the σ-threshold

In Shoniker’s thesis, the 3-sigma confidence level was taken to be the benchmark metric

for evaluating the performance of the various versions of the algorithm for minimal worst-case

corner selection. The reasoning behind this decision was that, for Gaussian random variables, that

would provide the expected termination accuracy of 99.865%, as described by the Q-function that

represents the tail probability of a Gaussian distribution for a certain standard deviation σ (σ = 3

in this case). That is, the algorithm would be expected to fail to find the global worst case corner

in only one out of 740 runs, which, according to our industrial partner, would be an acceptable

error rate for such tasks in the industry. However, there are some conceptual flaws with this

expectation. Note that for GPR each test point, for which a prediction is made, is considered to be

an independent (from other test points) Gaussian random variable, the above reasoning would be

valid if we only have one unsimulated point below the 3-sigma confidence threshold. If there are,

however, multiple points below the threshold, the total expected accuracy 𝐸[𝑎𝑐𝑐] would be the

product of factors where each factor is 1 minus the Q-function for the σ levels of each predicted

test point. That is, the expected total accuracy would actually be equal to

50

𝐸[𝑎𝑐𝑐] =∏(1 − 𝑄(𝜎𝑖))

𝑛

𝑖=0

= ∏𝜑(𝜎𝑖)

𝑛

𝑖=0

= 𝜑(𝜎𝑒𝑓𝑓) (4.1)

for the number n of unsimulated points and the function 𝜑(𝜎𝑖) = 1 − 𝑄(𝜎𝑖) providing the

complement of the Q-function. It is clearer now that using the same 3-sigma confidence threshold

as before will lead to overly optimistic expectations since there is almost always more than one

point under the confidence line at the time of termination for almost every function under analysis.

Moreover, having as many points as possible below the confidence threshold at the time of

termination is the entire point of the algorithm. As such, a more in-depth analysis of what we mean

by confidence of termination is needed.

Fortunately, due to the roughly exponentially decaying nature of the Q-function, the effect

of multiple equally confident corners is not overly significant. The σi-confidence level of the corner

i is calculated according to the expression:

𝜎𝑖 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑘𝑛𝑜𝑤𝑛 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑖

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑖
(4.2)

 Performing some easy algebraic transformations to show the effective σeff-confidence

level of the number u of unsimulated points having the same σi-confidence level, and to show the

required σi-confidence level for u points to have the effective σeff-confidence level, the following

expressions are obtained:

𝜑(𝜎𝑒𝑓𝑓) =∏𝜑(𝜎𝑖)

𝑢

𝑖=0

= 𝜑(𝜎𝑖)
𝑢

ln (𝜑(𝜎𝑒𝑓𝑓)) = 𝑢 ∗ ln(𝜑(𝜎𝑖))

𝜎𝑒𝑓𝑓 = 𝜑
−1(exp(𝑢 ∗ ln(𝜑(𝜎𝑖)))) (4.3)

𝜎𝑖 = 𝜑
−1 (exp (ln(𝜑(𝜎𝑒𝑓𝑓)) 𝑢⁄)) (4.4)

Thus the number u > 1 of unsimulated points that together produce the same σi-confidence as one

point at the σeff-confidence level is

𝑢 =
ln (𝜑(𝜎𝑒𝑓𝑓))

ln(𝜑(𝜎𝑖))
(4.5)

51

This means that, for example, to achieve a target σeff = 3, we can have up to 42 points at σi = 4,

and the number of corners required to make an effect on σeff for higher σi grows very fast. Figure

4.3 illustrates this.

Figure 4.3 The Number of Unsimulated Corners at Confidence σi Required to Have the Same Confidence as

One Corner at 3-Sigma Level

Since not every point will lie on the same sigma threshold at the time of termination, with

most points having significantly higher individual sigma confidences, in Shoniker’s final

algorithm it was decided that simply increasing the termination threshold by 1 would be sufficient

to approach the expected level of accuracy. As such, all of the results in Chapter 4 are reported for

termination criterion at the 4-sigma confidence level.

4.1.3 Terminating Execution on a Point-by-Point Basis

An interesting way to decrease the number of simulated points that it takes to terminate at

a global maximum is to look at when it is safe to exclude certain points from consideration when

looking for the global maximum. This subsection describes several ways to go about that.

The ideas presented below are somewhat similar to the three-step amplification factor for

the predicted uncertainty in the function estimates in Shoniker’s algorithm, but instead of next

52

corner selection, it is applied to the termination stage of the framework. The purpose of the three-

step amplification factor was to encourage exploration near the current candidate maximum, to

ensure that the true global maximum is not missed just because the current known one is close and

is good enough. The purpose of these new heuristics, however, is to take advantage of the predicted

values and uncertainties at an earlier stage of simulation. As will be demonstrated, to achieve the

desired accuracy, it will be necessary to look at a collection of points within a radius of a candidate

for termination to be able to make a decision on whether or not it will be safe to do so.

4.1.3.1 The Naïve Algorithm

As previously described, GPR sees every test point for which it is required to make a

prediction as being independent from all other predicted test points. For each one of the test points,

then, the algorithm produces the estimated value ŷ and uncertainty σ in the estimation of the value

at the test point. This leads to an idea that certain points can be said, with high enough confidence,

to be very unlikely to be bigger than the global maximum, and thus these points can be safely

excluded (that is, pruned away) from consideration at an earlier stage of the simulation.

Following the calculations in Section 4.1.2, those equations can be reformulated with u

being the number of points in a dataset. This is a somewhat pessimistic estimation of σeff as it

assumes that every point will be considered for termination (i.e., below the σeff termination

threshold), and a significant fraction of points from the dataset may already have been selected for

simulation, rather than being involved in the termination decision. Additionally, many points will

be at a level of confidence significantly higher than σeff at the time of termination. However, it is

better to have more safety if the points are going to be excluded completely, especially if the GPM

cannot model the function accurately, so these considerations provide reasonable σeff. The effective

σeff-confidence levels are shown in Table 4.2

Size of Set Datasets of this Size σeff

120 bitcell, sense_amp1, bias_gen, op_amp 4.2384

216 charge_pump1 4.3685

324 charge_pump2 4.4563

1080 shift_reg 4.708

1799 buffer_chain 4.811

Table 4.2 Dependence of σeff on the Number of Corners in a Dataset to Produce the Target 3-Sigma Confidence

53

As expected, the heuristic provided a significant reduction in the number of simulated

points required to reach termination on the global maximum, however with lower overall accuracy.

Table 4.3 summarises the results of using this procedure.

Dataset
Average Corners

to Convergence
Average Speedup

Average

Accuracy

bias_gen 32.65 3.68 100.00

bitcell 21.12 5.68 100.00

buffer_chain 116.61 16.78 99.17

charge_pump1 29.71 7.38 99.60

charge_pump2 46.51 7.06 98.40

opamp1 42.93 2.80 100.00

sense_amp1 48.47 3.07 98.14

shift_reg 632.44 2.21 93.33

Total Average

Speedup
6.08

Total Average

Accuracy
98.58

Table 4.3 Results of Applying Pointwise Termination of Datasets

The average speedup this way is 6.08x, and the average termination accuracy is 98.58%.

This accuracy is not acceptable for an important application such as the finding of the worst-case

corner for the purposes of design verification, and therefore developing a more reliable termination

rule is required.

4.1.3.2 Experiments with a Stricter Termination Threshold

While reducing the average number of required simulations for convergence was a

welcome improvement, the resulting reduction in termination accuracy meant that the heuristic

needed more work. Stricter termination rules were therefore considered.

For the termination rule described in Section 4.1.3.1 to yield the best accuracy, the actual

global maximum should never fall below the termination threshold. As the shift_reg dataset that

had by far the biggest difficulty with termination accuracy, that dataset was studied carefully for

insights when developing a stricter and hopefully more accurate termination rule.

An initial idea was to have a curved termination threshold, rather than the straight one

defined by the sigma confidence equation 𝑦 = 𝑦𝑚𝑎𝑥? − 𝑘 ∗ 𝜎𝑝𝑟𝑒𝑑. It was noted that often when the

predictions and uncertainties for the unsimulated true maximum would place that point below the

termination threshold, the point would be located in a small region just below the confidence

threshold. It was decided to try to define a certain “dangerous zone”, where it would not be safe to

prune away points, to eliminate the possibility of wrongly terminating the global maximum.

54

Essentially, this would make the termination threshold slightly stricter for a range of predicted

uncertainties, the “dangerous zone”, while outside of it the threshold would remain at the defined

sigma level. Performing a comprehensive visual analysis, however, proved that such an approach

would be infeasible as the dangerous zone could essentially include the entire scatter area (see

Figure 4.4), offering not even a theoretical benefit in the number of simulated corners to

convergence for any dataset under analysis.

a)

b)

Relative Uncertainty

Relative Prediction

Relative Uncertainty

Relative Prediction

55

Figure 4.4 Unsafe Positions of the Global Max Relative to the σeff Confidence Line

In Figure 4.4 the vertical and horizontal positions are calculated by

�̂�𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = 1 −
𝑦𝑚𝑎𝑥? − �̂�𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑎𝑥
𝑦𝑚𝑎𝑥? − �̂�𝜎𝑚𝑎𝑥

(4.6)

𝜎𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = 𝜎𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑎𝑥 𝜎𝑚𝑎𝑥⁄ (4.7)

respectively, for k=4.708, where 𝑦𝑚𝑎𝑥? is current known maximum for that stage of simulation

where the global maximum was predicted to be pruned away, 𝜎𝑚𝑎𝑥 is the highest uncertainty at

that stage of simulation, �̂�𝜎𝑚𝑎𝑥 is the predicted value of the point with the highest uncertainty at

that stage of simulation, and �̂�𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑎𝑥 is the predicted value of the true global maximum for the

function. In the figures, the main information is that the predictions of the global worst-case corner

are often much lower than the σ-confidence termination line and that the true global maximum can

sometimes be located much lower than the termination line. This makes it impossible to produce

a reasonable curved termination threshold that would allow to easily prune away unsimulated

corners.

Another way to approach the termination problem was to consider changing the parameters

of the termination inequality ŷ + 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 ∗ 𝜎 ≤ scale ∗ 𝑦𝑚𝑎𝑥?, where 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 is a different

sigma threshold, and scale is a factor that would place the benchmark value below the current

known maximum value y𝑚𝑎𝑥? relative to the current known minimum value. Mathematically,

c)
Relative Uncertainty

Relative Prediction

56

scale =
�̂�𝜎𝑚𝑎𝑥 + 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 ∗ 𝜎𝑚𝑎𝑥

𝑦𝑚𝑎𝑥?
(4.8)

where 𝑦𝑚𝑎𝑥? is the current known maximum value, 𝜎𝑚𝑎𝑥 is the highest uncertainty of a test point

at that stage of the simulation, and �̂�𝜎𝑚𝑎𝑥 is the mean estimate of the point with 𝜎𝑚𝑎𝑥.

To explore which parameter values in the new termination rule would give the best trade-

off between complexity and termination accuracy, a series of a series of experiments were

performed for the outputs of shift_reg dataset. Whenever the point with the true global maximum

was predicted to be below the 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 -sigma confidence threshold, the state of the simulation

(namely, the ŷ and 𝜎 values for every test point) was recorded for further analysis. This information

allowed for the creation of scatter plots showing the position of the global maximum on the convex

hull scatter plots relative to the 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒-sigma confidence line (see Figure 4.4).

The desirable set of parameters would be a low 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 and a high “scale”, with a higher

𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 being more favourable than a low scale. The combinations of the parameters that caused

the point of the global maximum to be above the termination line were sought. Among all the

tested combinations, scale = 0.85 and 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 = 8.5 was selected as the most appropriate (see

Figure 4.5), having affordable rates of failure. This means that it is assumed safe to terminate every

corner that is predicted to be below the 8.5-sigma confidence line stretching from 85% of the value

of the current known maximum. Unfortunately, even these conditions turned out to be too strict to

produce any improvement on the original results. The results are provided in Table 4.4 combine

this threshold with the combined confidence threshold of 4-sigma for all points. That is, the search

terminates if every point is below the 4-sigma confidence threshold.

Dataset
Average Corners

to Convergence
Average Speedup

Average

Accuracy

bias_gen 37.15 3.23 100.00

bitcell 25.87 4.64 100.00

buffer_chain 166.54 13.26 100.00

charge_pump1 34.96 6.27 100.00

charge_pump2 57.03 5.82 99.00

opamp1 47.29 2.54 100.0

sense_amp1 58.36 2.62 99.71

shift_reg 813.47 1.55 99.33

Total Average

Speedup
4.99

Total Average

Accuracy
99.76

Table 4.4 Results of Stricter Threshold Simulations

57

Figure 4.5 Relative Positions of Global Maxima Estimates for scale=0.85 and kpointwise=8.5

a)

b)

c)

Relative Uncertainty

Relative Prediction

Relative Uncertainty

Relative Prediction

Relative Uncertainty

Relative Prediction

58

With the average speedup of 4.99x, and 99.76%, there is no noticeable benefit compared

to the results produced by Shoniker’s original algorithm, and thus there appears to be no point in

exploring pointwise termination in this way. Section 4.1.3.3, however, describes another approach

to pointwise termination that considers the predictions and the uncertainties of neighbouring

points.

4.1.3.3 Neighbourhood Effects and Hybrid Termination

At this point, it is clear that it is difficult to find a reliable and simple termination criterion

where the unsimulated points are considered separately. However, by modifying the pointwise

termination rule to one that considers the neighbouring points, we found that a further slight

improvement in termination accuracy can in fact be achieved over all previously described

algorithms.

Dataset
Average Corners to

Convergence

Average

Speedup

Average

Accuracy

bias_gen 36.29 3.31 100.00

bitcell 25.45 4.72 100.00

buffer_chain 156.81 13.48 99.50

charge_pump1 33.85 6.48 100.00

charge_pump2 55.60 5.96 99.00

opamp1 46.66 2.57 100.00

sense_amp1 58.21 2.65 99.57

shift_reg 788.12 1.63 98.67

Total Average Speedup 5.10
Total Average

Accuracy
99.59

Table 4.5 Results of Neighbourhood Termination

In this new termination rule, a point is ruled out as the global maximum only if all the

points within a certain radius of the point under consideration are themselves below the confidence

boundary. This radius would be calculated as a suitable fraction of the diameter of the dataset

under consideration. Here, the diameter is defined to be the biggest distance between any two

points in the dataset. To determine the appropriate radius, information was collected on every case

where the true global maximum ended up below the 4-sigma confidence line. The 4-sigma

confidence line was chosen since now the termination criterion for the entire dataset does not have

to pass all 1080 times for shift_reg dataset, and thus 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 was assumed to be too strict of a

threshold. The fraction value for the radius was swept to determine the lowest fraction of the

diameter for which the true global maximum would never be selected for termination, provided

59

that not every point is under the 4-sigma confidence line. The best fraction was determined to be

0.3 (that is, 30% of the biggest distance between two points in the input space) and results are

provided in Table 4.5. The average speedup was 5.10x, and the average accuracy was 99.59%,

slightly below the desired accuracy. This proved that 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 was not too harsh for radial

pointwise termination, and therefore the decision boundary was set to the σeff threshold again.

Achieving one final improvement in termination accuracy requires determining how many

points are in the neighbourhood of the candidate global maximum point under consideration for

termination. For the raw input value set for the true global maximum of the outputs in shift_reg

dataset, these values were 675, 405, and 540 points, respectively. However, by performing

standardisation (removing the mean and reducing the standard deviation from the distribution of

the values along each dimension to 1) on the input values before, these numbers drop to 96, 94,

and 113 points, respectively, while the fraction of the radius increases to 40% of the diameter of

the dataset. From a run of simulations, it was observed that performing standardisation on the input

values and applying Shoniker’s algorithm did not have any significant negative effect on the

accuracy of termination (see Table 4.6), and as such there is no downside to doing this kind of

preprocessing. In fact, the buffer_chain dataset had great improvements in termination accuracy

thanks to standardisation preprocessing. Consequently, the neighbourhood analysis heuristic was

combined with Shoniker’s original 4-sigma confidence rule of termination.

Dataset
Average Corners

to Convergence

Average

Speedup

Average

Accuracy

bitcell 25.76 4.66 100.00

charge_pump1 35.34 6.22 99.80

charge_pump2 58.59 5.71 100.00

sense_amp1 59.99 2.58 100.00

bias_gen 37.32 3.22 100.00

opamp1 48.04 2.50 100.00

shift_reg 820.63 1.53 100.00

buffer_chain 137.65 15.37 100.00

Average Speedup 5.22
Average

Accuracy
99.98

Table 4.6 Performance after Applying a Standardisation Preprocessing Step

The combination works as follows. After each simulation, every remaining unsimulated

point is tested for termination, with the calculated σeff (see Table 4.2) and with the radius of the

neighbourhood of the point being set to 0.4 of the diameter of the entire dataset. However, if every

point is below the 4-sigma confidence threshold, the execution is terminated all the same and the

60

current known maximum is declared to be the global maximum. The results of this heuristic are

provided in Table 4.7.

Dataset
Average Corners to

Convergence

Individual Function

Speedups
Average Speedup Average Accuracy

bias_gen 36.81

3.08, 3.02, 3.29, 3.37,

3.34, 3.29, 3.29, 3.32,

3.33, 3.32

3.26 100.00

bitcell 24.47 4.86, 4.92 4.90 100.00

buffer_chain 157.34
12.35, 18.18, 13.74,

18.20, 5.23, 14.33
13.67 100.00

charge_pump1 34.69
7.12, 6.21, 5.44, 7.30,

5.54
6.32 99.80

charge_pump2 55.46
5.08, 5.55, 7.16, 7.08,

5.05
5.98 99.20

opamp1 46.00 2.61 2.61 100.00

sense_amp1 56.26
4.15, 2.90, 1.62, 3.92,

3.96, 1.59, 1.06
2.74 99.43

shift_reg 818.42 2.42, 1.04, 1.11 1.52 99.33

Total Average Speedup 5.13
Total Average

Accuracy
99.72

Table 4.7 Results of the Hybrid Termination Heuristic

The average speedup is then 5.13x, and the average termination accuracy is 99.72%. This

is mainly due to improvements in the termination of functions in shift_reg dataset. The termination

accuracy is at the lower boundary of the accuracy objective, but this is mainly due to the problem

of premature termination, as described at the beginning of this chapter

4.2 Chapter Discussion

In this chapter, the subject of what termination means using point-level heuristics was

explored. It was found that there are limitations to looking at each test point as a separate case.

While that is exactly what GPR attempts to do, such an approach can backfire when analysing a

function that perhaps was not the result of a process easily described by a Gaussian Process with

a set covariance function.

It becomes apparent that some theoretical pitfalls of Shoniker’s work are sometimes

balanced out by unexpected benefits. So, for example, if the value of one test corner is greatly

underestimated, the value of another test corner might be greatly overestimated. As such, the

average effect of errors across many test points works out to approximately what one would expect

from a heuristic that should produce results with, for example, 3-sigma confidence. In particular,

this could explain why the model developed by Shoniker would produce uncertainties of a

61

magnitude noticeably smaller than desired by his model, and the need to introduce the global

boosting factor to compensate for that as fewer corners remain unsimulated. Indeed, as the number

of test points becomes smaller, the boosting factor grows larger, signalling that the GPM is getting

more and more inaccurate.

This insight might explain why looking at neighbourhoods of points produces much better

results compared to focusing on points on an isolated basis. It could be that GPM predictions have

limited regions of effect, meaning that the predictions for the center of the region of effect are

more reliable when looking at all the points in such area. Indeed, GPR exploits the correlation

between closely located points by tying the predictions of a test point to nearby training points.

The next step taken was to investigate the identification of safely pruned regions, rather

than safely pruned points. Perhaps by performing relatively simple preprocessing steps (e.g.,

partitioning), there might be a good chance of quickly learning which areas can be safely pruned

away from the search for the global maximum and thus focus computational effort on the most

promising partition. This approach of partitioning also provides a framework for allowing different

heuristics used in different partitions. This study is the focus of the next chapter.

62

Chapter 5: Pruning Groups of Points

5.1 k-means Clustering on Input Values

From the results of Section 4.1.2, we learned that one of the Shoniker algorithm’s key

strengths is to prune away individual points from consideration when searching for the global

maximum. With respect to a scatter plot diagram (predicted function value vs. predicted

uncertainty), this occurs when a point falls below the sigma confidence line. An extension to this

idea would be to prune away entire input regions, containing multiple unsimulated points, from

consideration. In this chapter, we explore the effects of partitioning the input space into clusters

using a popular clustering technique: k-means clustering.

5.1.1 A Straightforward Approach

The first idea that we investigated was to perform k-means clustering on the inputs for

various assumed numbers of clusters. k-means clustering [64] is an unsupervised machine learning

technique that attempts to partition an input space into k > 1 disjoint subspaces. The number k of

subspaces is specified by the user. The fundamental task of k-means clustering is to assign each

point to one of the k clusters, Si, with mean µi, 1 ≤ i ≤ k, so that the total sum of the within cluster

sum of squares (WCSS) is minimised. The WCSS is defined as follows:

𝑊𝐶𝑆𝑆 = ∑∑‖𝒙 − 𝝁𝒊‖
2

𝒙∈𝑆𝑖

𝑘

𝑖=1

(5.1)

The problem of minimising WCSS is NP-hard[65][66], so every practical implementation

must use heuristics to partition the set of points into clusters. This can result in irregular boundaries

between clusters, and this introduces an additional source of variation when testing the algorithm

for the minimal selection of worst-case corners, as will be shown later. The cluster means µi are

generated randomly at first. Then, the input points are assigned to clusters based on the proximity

to the generated means. The means are then updated to the mean position of the points selected to

the cluster, and the clusters are regenerated, resulting in new mean points. This continues until the

63

assignments have not changed between iterations. Note that this iterative process does not

guarantee optimal WCSS.

The experiments showed that there is the potential to have more accurate average

predictions for test points for the outputs of the most difficult dataset shift_reg, compared to the

“no clustering” case, as illustrated in Figure 5.1.

Figure 5.1 Fractions of Simulated Corners vs. Mean Squared Errors of Predictions for the (a) delay, (b)

fall_time, and (c) rise_time Outputs of the shift_reg Datasets

Figures 5.1 illustrate the mean squared error of prediction versus the fraction of simulated

corners for the corners in the shift_reg dataset for different numbers of clusters. The mean squared

error of prediction is calculated as

𝑒𝑟𝑟𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑁𝑡𝑒𝑠𝑡 𝑝𝑜𝑖𝑛𝑡𝑠
 ∑ (𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒𝑖 − �̂�𝑖)

2

𝑁𝑡𝑒𝑠𝑡 𝑝𝑜𝑖𝑛𝑡𝑠−1

𝑖=0

(5.2)

a) b)

c)

64

k-means clustering was performed on the input space of shift_reg, and Shoniker’s algorithm was

applied to each cluster independently. In the figures, it can be clearly seen that the “no clustering”

case (dashed lines) almost universally leads to higher errors from predictions �̂� at any stage of

simulation, compared to the multiple clustering cases, which suggests the models become more

accurate. It is not clear what the optimal number of cluster is, so in the trials, the number of clusters

will be swept between 2 and 8 to better understand how performance is influenced by each setup.

Figure 5.2 illustrates how partitioning the input space into a number of clusters (five, in the

case of Figure 5.2) can make it easier for the search algorithm to find the global maximum.

Figure 5.2 Demonstration of the Benefits of Separating the Input Space into Clusters

In Figure 5.2, note that the high peak is completely within Cluster 1, compared to the

relatively flat four other clusters. A properly designed cluster-based algorithm would quickly

understand that the regions described by Clusters 2 through 5 can be safely pruned away, so the

computational effort can then be focused on Cluster 1. Thus, we conjectured that clustering has

the potential to improve the performance of the minimal corner selection algorithm.

65

More applicable to this project are the distributions of the challenging functions fall_time

and rise_time of shift_reg (see Figures 5.3 and 5.4, respectively). Before the figures were

constructed, a k-means clustering procedure was performed on the input space of the shift_reg

dataset, with k=4. The figures reveal the distributions of the outputs of each of the four clusters for

the two challenging functions rise_time and fall_time. It is clearly seen that one of the clusters

(cluster no. 3 in the case of fall_time and cluster no. 0 in the case of rise_time) have the highest

output values, and so, hopefully, the algorithm can quickly recognise that the other clusters are not

likely to have the global maximum and will prune them away quickly. A potential difficulty could

be the problem of underfitting described in Section 3.2; however, we still expect notable

improvements, since the predictions are supposed to be much closer to the true values.

Figure 5.3 Shapes of the Output Distributions of the Four k-means Clusters of the fall_time Function

66

Figure 5.4 Shapes of the Output Distributions of the Four k-means Clusters of the rise_time Function

The proposed procedure is then as follows. Before starting Shoniker’s algorithm, k-means

clustering is performed on the input set, with the number of clusters increased from 1 (no

clustering) up to 8. Then, for every cluster, the initial training set is selected according to the

established design. No constraints are placed on the form of clusters, so the boundaries between

them can be different from one trial to another. Once that is done, each cluster constructs its own

GPM, independent of the GPMs of other clusters. Similarly to Section 4.1.3, a cluster can be

terminated (or pruned) if every point in the cluster is under the sigma-confidence line defined by

the 4-sigma confidence threshold and the maximum value from the corners found in every cluster

(i.e., the current known global maximum). Execution for each cluster continues until every cluster

has been terminated, and the maximum over all clusters is declared the global maximum. Results

of this heuristic are provided in Table 5.1. In Table 5.1, the results in italics with an asterisk denote

cases where not every output terminated in all 100 out of the 100 trial runs with the true function

maximum. Note that the termination accuracy is rather low for some outputs, particularly rise_time

of shift_reg. In general, the termination accuracy seems to drop as the number of clusters rises.

67

Dataset
Avg. Speedup No

Clustering

Avg. Speedup 2

Clusters

Avg. Speedup 3

Clusters

Avg. Speedup 4

Clusters

shift_reg 1.33* 1.61* 1.81* 1.89*

buffer_chain 11.11 9.94* 9.01* 8.35*

Big Datasets Average 6.22 5.78 5.41 5.12

bitcell 4.7 3.21 2.57 2.11

charge_pump1 6.13 4.74 3.79 3.13

charge_pump2 5.69* 4.17* 3.4* 2.95*

sense_amp1 2.01* 1.89* 1.78 1.55*

bias_gen 3.21 2.91 2.39 2.03

op_amp 2.59 2.14 2.16 2.07

Small Datasets Average 3.93 3.17 2.70 2.35

Overall Average 4.60 3.83 3.36 3.01

Dataset
Avg. Speedup 5

Clusters

Avg. Speedup 6

Clusters

Avg. Speedup 7

Clusters

Avg. Speedup 8

Clusters

shift_reg 1.95* 1.98* 2.09* 2.15*

buffer_chain 7.76* 7.35* 6.9* 6.54*

Big Datasets Average 4.86 4.67 4.5 4.35

bitcell 1.79 1.57 1.39 1.25

charge_pump1 2.76 2.48 2.22 2.02

charge_pump2 2.62* 2.33* 2.23* 2.14*

sense_amp1 1.47 1.38 1.28* 1.2

bias_gen 1.75 1.53 1.36 1.22

op_amp 1.77 1.55 1.39 1.25

Small Datasets Average 2.07 1.85 1.70 1.57

Overall Average 2.73 2.52 2.36 2.22

Table 5.1 Average Speedups for Achieving 4-sigma Confidence when Applying Clustering with Cluster

Pruning

In addition, only shift_reg seems to benefit from clustering in terms of reducing the number

of points simulated to get to convergence. This might be explained by the fact that the procedure

for selecting the initial training set has a strictly fixed size that depends on the number of input

dimensions and is bounded below by 10 to ensure that 10-fold cross-validation can be performed.

For a dataset with many input dimensions, such as sense_amp1, the points to be simulated would

be quickly exhausted, and as a result there would be hardly any potential benefit in this procedure.

Indeed, the average speedup of small datasets drops noticeably faster than that of big datasets

(3.93x to 1.57x vs 6.22x to 4.35x). Circuit buffer_chain is also poorly handled with clustering for

the k=4 sigma rule, which might be explained by the fact that the dataset itself is rather “easy” to

converge at that confidence level. At higher sigma levels, there seems to be some benefit from a

higher number of clusters. This was the case for shift_reg.

One apparent benefit from using clustering is the reduction of the runtime of the algorithm

for big and difficult datasets, like shift_reg. The effect is summarised in Table 5.2. The simulations

ran in Python 2.7 on an Intel(R) Core(TM) i7-4790 CPU at 3.60 GHz frequency, using the scikit-

learn 0.16.1 Python package.

68

Number of clusters 1 2 3 4

Time to complete, s 100% ~33.7% ~17.8% ~13.0%

Number of clusters 5 6 7 8

Time to complete, s ~10.7% ~9.62% ~8.42% ~4.41%

Table 5.2 Relative Runtime of Algorithm to 10-sigma Convergence

The effect can be explained by the fact that the total complexity of the underlying GPR

algorithm is greatly reduced. The computational complexity of GPR is 𝑂(𝑛3), where 𝑛 is the

number of training samples in the model. Using clustering, however, means that each model only

needs to process 𝑛 𝑘⁄ points in the 𝑘 clusters. The overall complexity is then

𝑂((𝑛 𝑘⁄)3 ∗ 𝑘) = 𝑂(𝑛3 𝑘2⁄) (5.3)

So, to summarise, the most immediate benefit of applying clustering is a reduction in the

runtime of the algorithm, and so there is possibly better performance (specifically, a lower number

of required corner simulations) on big and difficult datasets. The downsides are reduced accuracy

and often poor performance for small datasets. Further sections in this chapter will introduce

several ways to compensate for these downsides.

5.1.2 A More Structured Initial Training Set

The clustering results presented in Table 5.1 are mixed. On the one hand, there is clearly a

decrease in how many simulations it takes for a big and “difficult” dataset like shift_reg to

converge to a maximum when increasing the number of clusters. On the other hand, there is also

a clear decrease in the termination accuracy when finding the true global maximum, and a notable

increase in the required number of simulations to converge for smaller and easier datasets. One

possible explanation for both of these downsides is that the initial training set is not well suited for

this heuristic. Indeed, as the size of the initial training set is fixed for every cluster, regardless of

how many points it contains, the total size of the initial training set can grow to be unacceptable.

For example, for sense_amp1, the size of the initial training set is 10 after removing the static

dimensions, while the total size of the dataset is 120. This means that, on average, there can be at

most twelve clusters before there is no possible room for improvement.

One way to tackle both of these problems is to use a different, more intelligently selected,

design for the initial training set. In particular, we obtained good results with the Plackett-Burman

design [29] described in Section 2.2.2.2. The procedure then is the same as in Section 5.1.1, with

69

the exception that now the initial training set for every cluster is selected according to a Plackett-

Burman design, rather than the old procedure. The results of the experiments are summarised in

Table 5.3.

These results are a clear improvement over those reported in Section 5.1.1 with regards to

both the number of points simulated that are required to terminate at the global maximum, and the

accuracy of finding the true global maximum. In particular, only the shift_reg run failed to find

the true global maximum in all 100 trials out of 100, for every output function. What cannot be

seen in Table 5.3, however, is the fact that when using many clusters with Plackett-Burman design,

the accuracy for shift_reg drops to almost zero, possibly because the deterministic nature of the

design makes it hard to correct for poor assumptions. That is, if the Plackett-Burman design was a

bad sample of the input space in a cluster, it will likely be the case for the next trial as well. Another

possible explanation is that the design gives a misleading start to the GPM for overly small clusters,

and thus it is not advisable to use too many clusters. For up to three clusters, however, the Plackett-

Burman design seemed to work well, which can be seen in that the average speed-ups for the big

datasets are higher when using two and three clusters, rather than one.

Dataset
Avg. Speedup No

Clustering

Avg. Speedup 2

Clusters

Avg. Speedup 3

Clusters

Avg. Speedup 4

Clusters

shift_reg 1.31 1.71 1.72 1.88*

buffer_chain 9.55 13.22 11.2 8.34

Big Datasets Average 5.43 7.47 6.46 5.11

bitcell 4.97 3.53 2.45 1.95

charge_pump1 7.17 5.25 4.15 3.42

charge_pump2 6.11 4.33 3.49 2.98

sense_amp 1.99 2.29 2.36 2.31

bias_gen 4.66 3.53 2.84 2.65

op_amp 2.76 2.34 2.19 2.26

Small Datasets

Average
4.61 3.55 2.91 2.60

Overall Average 4.82 4.53 3.80 3.22

Dataset
Avg. Speedup 5

Clusters

Avg. Speedup 6

Clusters

Avg. Speedup 7

Clusters

Avg. Speedup 8

Clusters

shift_reg 1.86* 1.93* 1.96* 2.05

buffer_chain 7.71 7.42 6.97 6.96

Big Datasets Average 4.79 4.68 4.47 4.51

bitcell 1.84 1.76 1.68 1.62

charge_pump1 2.95 2.59 2.33 2.1

charge_pump2 2.63 2.34 2.24 2.18

sense_amp 1.89 1.65 1.46 1.3

bias_gen 2.26 2.01 1.81 1.64

op_amp 2.2 2.09 1.99 1.88

Small Datasets

Average
2.30 2.07 1.92 1.79

Overall Average 2.92 2.72 2.56 2.47

Table 5.3 Average Speedup for Achieving 4-sigma Confidence using a Plackett-Burman Design for the Initial

Training Set

70

5.1.3 Experiments with Preprocessing

One last bit of improvement concerns the speed of convergence. It was shown in [67] that

linear GPR kernels struggle to correctly model step functions like max; however, by using even

quadratic kernels, the representational accuracy is significantly improved. This leads to

considering a preprocessing technique called polynomial features expansion. Now, before

performing clustering, the input values are expanded to their polynomial features of degree 2. This

includes squared terms for every input and every interaction term (products of two inputs).

Otherwise, the process is the same as that described in Section 5.1.2. The results are provided in

Table 5.4.

This technique provided major improvements for buffer_chain, and minor improvements

for shift_reg, and, again only for a small number of clusters. Small datasets, on the other hand, did

not see any benefit. As a result, it can be noted that these procedures benefit only on a case-by-

case basis, and so this procedure will not be used for any future heuristics.

Dataset
Avg. Speedup No

Clustering

Avg. Speedup 2

Clusters

Avg. Speedup 3

Clusters

Avg. Speedup 4

Clusters

shift_reg 1.67 1.75 1.97* 2.02*

buffer_chain 16.6 10.7 9.74 8.74

Big Datasets Average 9.14 6.23 5.86 5.38

bitcell 3.58 2.35 2.18 2

charge_pump1 5.84 4.5 3.75 3.48

charge_pump2 5.28 3.65 2.98 2.77

sense_amp 2.15 2.03 1.92 1.76

bias_gen 3.66 2.83 2.65 2.6

op_amp 2.18 1.9 2.23 2.15

Small Datasets Average 3.78 2.88 2.62 2.46

Overall Average 5.12 3.71 3.43 3.19

Dataset
Avg. Speedup 5

Clusters

Avg. Speedup 6

Clusters

Avg. Speedup 7

Clusters

Avg. Speedup 8

Clusters

shift_reg 2.12* 2.06* 2.03* 2.13*

buffer_chain 8.07 7.69 6.64 6.31

Big Datasets Average 5.1 4.88 4.34 4.22

bitcell 1.64 1.43 1.28 1.26

charge_pump1 2.91 2.79 2.45 2.29

charge_pump2 2.24 2.01 1.89 1.81

sense_amp 1.68 1.56 1.54 1.52

bias_gen 2.18 1.83 1.78 1.71

op_amp 1.83 1.62 1.65 1.62

Small Datasets Average 2.08 1.87 1.77 1.70

Overall Average 2.83 2.62 2.41 2.33

Table 5.4 Average Speedup for Achieving 4-sigma Confidence using a Plackett-Burman Design for the Initial

Training Set and Quadratic Expansion of Input Features

71

5.2 Clustering Based on Learned Information about the Function

This section explores procedures that take into account the known values of performed

simulations in the hope of arriving at the global maximum faster and more accurately. Several

techniques were developed and the results of experiments are presented below.

5.2.1 Clustering on Output Values

As an experiment, it was decided to perform clustering on all outputs. Essentially, this is a

test of what would happen were there a way to develop a perfect clustering technique that would

separate the biggest output values in all of the datasets. The results give a best-case baseline for

clustering. The two different heuristics for selecting the initial training set were tested, and the

results are provided in Table 5.5 and Table 5.6. The results show general improvements for all

metrics, particularly for a small number of clusters. Having received these promising results, it

appeared that the algorithm would benefit from a more intelligently chosen clustering, which will

be introduced in the following sections.

2 Clusters 3 Clusters 4 Clusters

bitcell 34.47 3.48 100.00 bitcell 44.77 2.68 100.00 bitcell 56.72 2.12 100.00

charge_pump1 47.73 4.70 100.00 charge_pump1 53.90 4.01 100.00 charge_pump1 63.05 3.43 100.00

charge_pump2 59.12 5.52 100.00 charge_pump2 69.73 4.68 100.00 charge_pump2 80.73 4.05 99.80

sense_amp1 45.87 2.75 100.00 sense_amp1 50.43 2.45 100.00 sense_amp1 57.18 2.10 100.00

bias_gen 37.62 3.20 100.00 bias_gen 44.84 2.68 100.00 bias_gen 56.22 2.13 100.00

opamp1 49.02 2.45 100.00 opamp1 52.66 2.28 100.00 opamp1 55.32 2.17 100.00

shift_reg 403.01 2.74 97.00 shift_reg 248.66 4.40 98.33 shift_reg 209.46 5.28 99.00

buffer_chain 170.35 13.47 99.83 buffer_chain 163.54 12.48 100.00 buffer_chain 151.24 13.05 99.83

Average speedup 4.78
Average

Accuracy
99.60 Average speedup 4.46

Average

Accuracy
99.79 Average speedup 4.29

Average

Accuracy
99.83

 5 Clusters 6 Clusters

bitcell 65.82 1.82 100.00 bitcell 76.02 1.58 100.00

charge_pump1 72.08 3.00 100.00 charge_pump1 84.39 2.56 100.00

charge_pump2 87.60 3.72 100.00 charge_pump2 97.95 3.32 100.00

sense_amp1 65.40 1.84 100.00 sense_amp1 77.51 1.55 100.00

bias_gen 70.73 1.70 100.00 bias_gen 76.79 1.56 100.00

opamp1 65.98 1.82 100.00 opamp1 76.82 1.56 100.00

shift_reg 179.76 6.27 98.33 shift_reg 175.01 6.29 91.67

buffer_chain 159.83 12.07 100.00 buffer_chain 171.96 10.96 100.00

Average speedup 4.03 Average Accuracy 99.79 Average speedup 3.67 Average Accuracy 98.96

7 Clusters 8 Clusters

bitcell 87.13 1.38 100.00 bitcell 97.49 1.23 100.00

charge_pump1 95.51 2.26 99.80 charge_pump1 106.15 2.04 99.80

charge_pump2 106.24 3.06 100.00 charge_pump2 117.09 2.77 100.00

sense_amp1 87.55 1.37 100.00 sense_amp1 96.49 1.24 100.00

bias_gen 88.75 1.35 100.00 bias_gen 96.73 1.24 100.00

opamp1 88.22 1.36 100.00 opamp1 98.31 1.22 100.00

shift_reg 171.77 6.33 98.33 shift_reg 164.15 6.64 60.67

buffer_chain 183.09 10.18 100.00 buffer_chain 189.23 9.67 100.00

Average speedup 3.41 Average Accuracy 99.77 Average speedup 3.26 Average Accuracy 95.06

Table 5.5 Results of Clustering on Outputs using the Original Training Set Design

72

2 Clusters 3 Clusters 4 Clusters

bitcell 36.00 3.33 100.00 bitcell 39.26 3.06 100.00 bitcell 51.00 2.35 100.00

charge_pump1 40.16 5.57 100.00 charge_pump1 48.28 4.49 100.00 charge_pump1 53.80 4.10 100.00

charge_pump2 60.50 5.38 100.00 charge_pump2 63.05 5.25 100.00 charge_pump2 63.22 5.20 100.00

sense_amp1 41.97 3.07 100.00 sense_amp1 41.33 2.96 100.00 sense_amp1 41.29 2.97 100.00

bias_gen 32.25 3.81 100.00 bias_gen 33.18 3.62 100.00 bias_gen 39.15 3.08 100.00

opamp1 46.03 2.61 100.00 opamp1 54.56 2.20 100.00 opamp1 44.46 2.70 100.00

shift_reg 401.86 2.74 100.00 shift_reg 251.13 4.38 100.00 shift_reg 199.32 5.65 100.00

buffer_chain 172.18 15.40 100.00 buffer_chain 169.45 13.33 100.00 buffer_chain 162.84 13.50 100.00

Average speedup 5.24
Average

Accuracy
100.00 Average speedup 4.91

Average

Accuracy
100.00 Average speedup 4.94

Average

Accuracy
100.00

5 Clusters 6 Clusters

bitcell 51.00 2.35 100.00 bitcell 49.00 2.45 100.00

charge_pump1 54.11 4.09 80.00 charge_pump1 61.98 3.64 80.00

charge_pump2 78.43 4.20 80.00 charge_pump2 82.48 3.98 80.00

sense_amp1 47.74 2.52 100.00 sense_amp1 50.71 2.38 100.00

bias_gen 49.46 2.43 100.00 bias_gen 51.76 2.33 100.00

opamp1 46.70 2.57 100.00 opamp1 50.00 2.40 100.00

shift_reg 171.26 6.59 85.00 shift_reg 162.12 7.13 100.00

buffer_chain 140.51 14.13 100.00 buffer_chain 144.33 13.36 100.00

Average speedup 4.86 Average Accuracy 93.13 Average speedup 4.71 Average Accuracy 95.00

7 Clusters 8 Clusters

bitcell 49.00 2.45 100.00 bitcell 60.00 2.00 100.00

charge_pump1 67.67 3.26 80.00 charge_pump1 74.81 3.00 80.00

charge_pump2 87.56 3.73 60.00 charge_pump2 94.10 3.46 80.00

sense_amp1 54.14 2.22 100.00 sense_amp1 60.29 2.00 100.00

bias_gen 54.68 2.20 100.00 bias_gen 60.00 2.00 100.00

opamp1 53.00 2.26 100.00 opamp1 54.00 2.22 100.00

shift_reg 144.39 7.56 100.00 shift_reg 158.99 6.91 99.33

buffer_chain 137.04 13.51 100.00 buffer_chain 164.68 11.53 100.00

Average speedup 4.65 Average Accuracy 92.50 Average speedup 4.14 Average Accuracy 94.92

Table 5.6 Results of Clustering on Outputs using a Plackett-Burman Design as the Initial Training Set

5.2.2 Clustering Based on the Outputs of Points in the Initial Training Set

From the results in Section 5.2.1 it appears that there is potential benefit to performing a

more intelligent partitioning of the input domain for the purposes of finding the global maximum.

We considered performing the partitioning in the following way. The points in the initial training

set are sorted into several ranks, the number of ranks being equal to the desired number of clusters,

as selected by the user. The remaining points are then assigned to clusters according to their

proximity to the closest point in the initial training set. Inside each of the clusters formed in this

way, an additional initial training set is selected. Since there will not be a lot of variety in how the

clusters are formed, the intra-cluster training set is selected according to the randomised procedure

proposed by Michael Shoniker. Simulation was performed in the same way as the previous

clustering approach otherwise. Up to 5 clusters were considered in this investigation. Within each

cluster, an additional set of points was selected to properly sample the cluster. The results in Table

5.7 were produced by adding the sets of points as chosen by Shoniker’s procedure for selecting

73

the initial training set. For Table 5.8, an extra Plackett-Burman design was used in each cluster

instead.

The results provided in Table 5.7 and Table 5.8 are rather uneven. As is the case for the

naïve clustering approach, the average speed-up performance on the small and easy datasets suffers

noticeably, and most of the big datasets do not see any improvement. However, applying either of

the heuristics to the dataset custom_sa, which will be described in Section 6, shows remarkable

reductions in terms of the number of corners simulated, without sacrificing the accuracy of

predictions. Circuit shift_reg also seems to benefit in terms of number of corners that would be

simulated, however the accuracy drops below the acceptable level of 99.86%. In general, as the

number of clusters increases, the performance appears to get worse, both in the average speedup

and in the average termination accuracy.

2 Clusters 3 Clusters

Dataset
Average Corners

to Convergence

Average

Speedup

Average

Accuracy
Dataset

Average Corners

to Convergence

Average

Speedup

Average

Accuracy

bitcell 36.91 3.25 100.00 bitcell 44.41 2.70 100.00

charge_pump1 47.29 4.65 100.00 charge_pump1 55.99 3.92 100.00

charge_pump2 71.62 4.64 99.00 charge_pump2 82.27 4.03 99.60

sense_amp1 53.25 2.66 99.86 sense_amp1 54.98 2.41 100.00

bias_gen 42.72 2.81 100.00 bias_gen 48.75 2.46 100.00

opamp1 54.03 2.22 100.00 opamp1 54.45 2.20 100.00

shift_reg 690.73 1.92 94.33 shift_reg 677.19 1.94 94.33

buffer_chain 200.85 11.07 98.83 buffer_chain 201.05 10.44 99.33

Average

Speedup
4.15

Average

Accuracy
99.00

Average

Speedup
3.76

Average

Accuracy
99.16

4 Clusters 5 Clusters

Dataset
Average Corners

to Convergence

Average

Speedup

Average

Accuracy
Dataset

Average Corners

to Convergence

Average

Speedup

Average

Accuracy

bitcell 51.94 2.31 100.00 bitcell 58.04 2.07 100.00

charge_pump1 65.58 3.32 100.00 charge_pump1 76.09 2.84 100.00

charge_pump2 94.32 3.50 99.20 charge_pump2 107.79 3.03 99.40

sense_amp1 63.47 2.01 100.00 sense_amp1 68.38 1.81 100.00

bias_gen 58.27 2.06 100.00 bias_gen 67.90 1.77 100.00

opamp1 59.79 2.01 100.00 opamp1 65.94 1.82 100.00

shift_reg 628.41 2.11 93.00 shift_reg 628.26 2.08 92.00

buffer_chain 209.24 9.62 99.00 buffer_chain 223.21 9.04 99.50

Average

Speedup
3.37

Average

Accuracy
98.90

Average

Speedup
3.06

Average

Accuracy
98.86

Table 5.7 Results of Clustering on the Initial Training Set Generated by Shoniker’s Initial Design, with an

Extra Randomised Set for Every Cluster

74

2 Clusters 3 Clusters

Dataset
Average Corners

to Convergence

Average

Speedup

Average

Accuracy
Dataset

Average

Corners to

Convergence

Average

Speedup

Average

Accuracy

bitcell 35.70 3.36 100.00 bitcell 42.17 2.85 100.00

charge_pump1 44.32 4.96 100.00 charge_pump1 51.98 4.21 100.00

charge_pump2 71.15 4.68 98.00 charge_pump2 79.63 4.19 95.60

sense_amp1 48.43 2.92 100.00 sense_amp1 44.28 2.91 100.00

bias_gen 39.78 3.03 100.00 bias_gen 44.13 2.72 100.00

opamp1 52.90 2.27 100.00 opamp1 51.79 2.32 100.00

shift_reg 706.30 1.85 97.33 shift_reg 665.70 1.98 96.33

buffer_chain 200.90 11.25 95.83 buffer_chain 201.13 10.51 94.33

Average Speedup 4.29
Average

Accuracy
98.90

Average

Speedup
3.96

Average

Accuracy
98.28

4 Clusters 5 Clusters

Dataset
Average Corners

to Convergence

Average

Speedup

Average

Accuracy
Dataset

Average

Corners to

Convergence

Average

Speedup

Average

Accuracy

bitcell 47.76 2.51 100.00 bitcell 51.65 2.32 100.00

charge_pump1 60.20 3.62 100.00 charge_pump1 68.29 3.17 100.00

charge_pump2 90.23 3.69 97.00 charge_pump2 99.92 3.31 96.80

sense_amp1 45.96 2.70 99.29 sense_amp1 53.03 2.36 99.86

bias_gen 48.79 2.46 100.00 bias_gen 53.58 2.24 100.00

opamp1 53.42 2.25 100.00 opamp1 51.82 2.32 100.00

shift_reg 617.15 2.08 93.00 shift_reg 616.81 2.12 92.00

buffer_chain 193.40 10.50 96.00 buffer_chain 189.46 10.62 93.33

Average Speedup 3.73
Average

Accuracy
98.16

Average

Speedup
3.56

Average

Accuracy
97.75

Table 5.8 Results of Clustering on the Initial Training Set Generated by the Original Heuristic, with an Extra

Plackett-Burman Design Added into Every Cluster

The observation that some datasets do benefit from this heuristic suggests that it could be

useful, especially if the selected initial training set provides enough information about the structure

of the dataset, as seems to be the case with custom_sa. Another problem is that this heuristic at

this stage acts on every dataset regardless of its size or performance using Shoniker’s original

algorithm. A simple way to compensate for both of the above problems is to introduce clustering

later in the simulation. This idea will be investigated in Section 5.2.3.

5.2.3 Clustering Based on the Performance of the Dataset Under Analysis

After applying the simple k-means clustering preprocessing technique on the input space

of datasets in Section 5.2.1, the main conclusion was that while clustering seems to provide

significant benefits to big and difficult datasets like shift_reg, it can be counter-productive for

small and straightforward datasets. This problem could possibly be addressed by monitoring the

performance of the dataset under analysis. The problem, however, is deciding what is a

75

straightforward dataset. At runtime, every function is unknown, so we can only guess whether a

function is straightforward by monitoring the performance of the algorithm on the function.

For this chapter, the solution is based on the previous observations of the effectiveness of

the algorithm for our benchmark circuits. This requires the same assumption that has been made

about the provided datasets, and that assumption is that these functions are reasonably

representative of the entire class of functions that would be produced from a corner analysis of a

circuit. From Table 3.2, it can be seen that the majority of the output functions take no more than

a third of the corners simulated to converge to a maximum with 4-sigma confidence. Taking into

account that these results are averages of 100 runs starting with randomised initial training sets,

and that some datasets have almost exactly 3.0x speedup, it makes sense to make the boundary

between an “easy” and a “difficult” dataset a little stricter. It was decided then to move that

boundary to 2.5x speedup. In other words, a dataset is considered difficult at runtime, if after more

than 40% of the corners have been selected for simulation, the algorithm still has not converged to

4-sigma confidence. This also addresses the conclusion made in Section 5.2.2, as now the

algorithm has more information about the output function and can make more intelligent choices

when partitioning the input space.

2 Clusters 3 Clusters 4 Clusters

bitcell 25.19 4.76 100.00 bitcell 24.21 4.96 100.00 bitcell 23.90 5.02 100.00

charge_pump1 34.67 6.33 99.80 charge_pump1 34.27 6.39 100.00 charge_pump1 34.54 6.37 100.00

charge_pump2 55.12 6.01 98.80 charge_pump2 55.61 5.98 99.40 charge_pump2 56.13 5.94 98.80

sense_amp1 57.26 2.65 100.00 sense_amp1 56.61 2.69 100.00 sense_amp1 57.91 2.68 99.71

bias_gen 36.86 3.26 100.00 bias_gen 36.64 3.28 100.00 bias_gen 36.69 3.28 100.00

opamp1 48.87 2.46 100.00 opamp1 49.82 2.41 100.00 opamp1 48.81 2.46 100.00

shift_reg 588.01 1.96 97.00 shift_reg 636.62 1.75 92.33 shift_reg 538.09 2.05 90.33

buffer_chain 159.13 13.91 99.83 buffer_chain 162.42 14.32 99.83 buffer_chain 133.78 16.12 99.83

Average Speedup 5.17
Average
Accuracy

99.43 Average Speedup 5.22
Average
Accuracy

98.95 Average Speedup 5.49
Average
Accuracy

98.58

5 Clusters 6 Clusters

bitcell 23.94 5.01 100.00 bitcell 23.81 5.04 100.00

charge_pump1 34.84 6.32 100.00 charge_pump1 34.45 6.39 99.80

charge_pump2 57.12 5.86 99.60 charge_pump2 56.17 5.91 98.40

sense_amp1 59.53 2.67 99.86 sense_amp1 60.90 2.63 99.57

bias_gen 36.74 3.27 100.00 bias_gen 36.66 3.28 100.00

opamp1 51.65 2.32 100.00 opamp1 50.60 2.37 100.00

shift_reg 555.56 1.99 88.67 shift_reg 556.68 1.99 86.33

buffer_chain 138.51 15.87 100.00 buffer_chain 129.68 16.30 99.83

Average Speedup 5.41
Average

Accuracy
98.52 Average Speedup 5.48

Average

Accuracy
98.00

76

7 Clusters 8 Clusters

bitcell 23.58 5.09 100.00 bitcell 24.19 4.96 100.00

charge_pump1 34.02 6.46 99.80 charge_pump1 34.27 6.42 99.60

charge_pump2 55.87 5.97 99.40 charge_pump2 55.45 6.00 98.40

sense_amp1 60.26 2.63 99.86 sense_amp1 59.54 2.66 100.00

bias_gen 36.76 3.27 100.00 bias_gen 36.59 3.28 100.00

opamp1 51.55 2.33 100.00 opamp1 55.76 2.15 100.00

shift_reg 569.37 1.93 90.67 shift_reg 579.26 1.91 91.67

buffer_chain 133.69 16.15 99.83 buffer_chain 133.60 16.31 100.00

Average Speedup 5.48
Average

Accuracy
98.70 Average Speedup 5.46

Average

Accuracy
98.71

Table 5.9 Results of Splitting the Datasets into Two and Three Clusters if they have not Converged after 40%

of the Corners have been Simulated

From this starting point, a new heuristic was developed. The algorithm proceeds like

Shoniker’s algorithm as long as fewer than 40% of the total number of corners have been selected

for simulation. When more than 40% of corners have been selected for simulation, the remaining

points are clustered based on the output values of simulated corners and the proximity of the

unsimulated corners to the simulated corners. So, for single output functions, all of the simulated

points are separated into several tiers based on how big their output value is, the number of tiers

being equal to the number of clusters. Then, for each tier, the distance between the points that have

not been assigned to a cluster yet and the respective closest point from the tier is calculated. The

reason why points are assigned to clusters based on the proximity to the closest point in a tier,

rather than to the central point in a tier, is because an unsimulated point is more likely to have the

output value close to a neighbouring point, rather than the central point. Finally, all the unassigned

points are separated into their own tiers based on their proximity to the closest point in the current

cluster, with the number of these tiers being set equal to the number of clusters which have not

been assigned any unsimulated points yet. This cluster is then regarded as complete, and the

process moves on to the next tier of simulated corners. The process continues until every point has

been assigned to a cluster.

After the clusters have been determined, each cluster gets additional training points from

the Plackett-Burman design to ensure proper representation of each cluster’s subspace. The

Plackett-Burman design was selected since it is compact and the results of Section 5.1.2 have

shown that this design is well suited for the algorithm. The calculated boosting factors would carry

over to the new clusters. Additionally, pointwise termination heuristic from Section 4.1.3.3 with

77

σeff was used, as it allows slightly increased efficiency without sacrificing accuracy. This heuristic

was, again, tested for up to 8 clusters. The results of these runs are provided in Table 5.9.

Reviewing the results summarised in Table 5.9, it is clear that there is in fact some benefit

to using more clusters for the more difficult circuits, which causes the average speedup to rise, and

the small datasets (sense_amp1) surprisingly do not lose in the speedups or, mostly, in the

termination accuracies. However, the termination accuracy is still too low. In order to increase the

accuracy on several problematic datasets, a series of heuristic improvements was introduced. First,

separate points would not be pronounced safe under any condition, to eliminate the risk of

accidentally removing the true maximum point from consideration. Second, from preliminary

tests, it was found that introducing clustering later in a run positively influences the eventual

accuracy, and so that threshold was set at 50% of the dataset. Third, no point from the extra

Plackett-Burman design for each cluster would be aliased with any other point, meaning the

number of sampled points would be increased by the theoretical size of the Plackett-Burman design

for this dataset. Fourth, a central point would be added to the extra Plackett-Burman design to keep

it more consistent with the Shoniker’s problem design for selecting the initial training set. Finally,

the clusters have a separate termination threshold to compensate for the lower accuracy of such

heuristic. While more informed clustering results in higher termination accuracies than

straightforward clustering, it is still mostly not good enough. This is not such an extreme problem

as for the straightforward clustering cases, so simply setting a higher termination threshold for the

resulting clusters should be enough. Setting a higher termination threshold, additionally, allows

the computational priority to be shifted into exploration to give GPMs more accuracy within each

partition. For Table 5.10, such threshold would be set to 6-sigma.

3 Clusters 4 Clusters

bitcell 26.07 4.60 100.00 bitcell 25.58 4.69 100.00

charge_pump1 35.21 6.23 99.80 charge_pump1 35.43 6.21 100.00

charge_pump2 58.06 5.74 100.00 charge_pump2 58.33 5.72 100.00

sense_amp1 62.73 2.54 100.00 sense_amp1 62.46 2.55 100.00

bias_gen 37.25 3.23 100.00 bias_gen 37.30 3.22 100.00

opamp1 46.91 2.56 100.00 opamp1 46.74 2.57 100.00

shift_reg 654.59 1.74 95.00 shift_reg 640.29 1.74 96.33

buffer_chain 135.20 15.97 99.83 buffer_chain 140.63 15.86 100.00

Average Speedup 5.33 Average Accuracy 99.33 Average Speedup 5.32 Average Accuracy 99.54

Table 5.10 Results of Not Discarding Safe Points, Clustering at Half, Expanded Extra Training Set and

Increasing Termination Threshold for Clusters to 6-sigma

78

A further improvement was to increase the termination threshold for eventual subsets to 8

sigma. This produces 100% accuracy for all the functions that had to be clustered. Thus, we

conclude that, to achieve the target accuracy, we need to double the termination sigma level for

the clusters, compared to the unclustered case. So, for example, if the unclustered case is told to

terminate with the 3-Sigma rule, the clustered termination threshold should be 6-Sigma. From

preliminary tests on the most challenging output (30 runs on the rise_time output from circuit

shift_reg), it was found that partitioning into 4, 5, and 6 clusters had the highest accuracy of

prediction for the output. Table 5.11 summarises the results of the 100 tests using this combination

of heuristics.

4 Clusters 5 Clusters 6 Clusters

bitcell 25.66 4.68 100.00 bitcell 25.47 4.71 100.00 bitcell 25.63 4.68 100.00

charge_pump1 35.58 6.19 100.00 charge_pump1 35.41 6.23 100.00 charge_pump1 35.52 6.21 100.00

charge_pump2 58.59 5.71 100.00 charge_pump2 57.37 5.80 100.00 charge_pump2 57.80 5.77 100.00

sense_amp1 65.15 2.51 100.00 sense_amp1 65.42 2.49 100.00 sense_amp1 65.89 2.49 100.00

bias_gen 37.24 3.23 100.00 bias_gen 37.33 3.22 100.00 bias_gen 37.33 3.22 100.00

opamp1 46.81 2.56 100.00 opamp1 46.67 2.57 100.00 opamp1 47.15 2.55 100.00

shift_reg 697.33 1.61 95.67 shift_reg 720.83 1.60 99.33 shift_reg 716.69 1.65 97.33

buffer_chain 137.24 15.32 100.00 buffer_chain 131.30 16.38 100.00 buffer_chain 136.32 16.11 99.67

Average

Speedup
5.23

Average

Accuracy
99.46

Average

Speedup
5.38

Average

Accuracy
99.92

Average

Speedup
5.34

Average

Accuracy
99.63

Table 5.11 Results of 8-sigma Termination Rule for Subclusters

The final improvement would be to not add the extra training set for small datasets when

clustering difficult functions of such datasets. Table 5.12 summarises by how much the training

set increases for each dataset, should the dataset be found to be difficult and then consequently

split up into multiple clusters.

Dataset
Clustering

Threshold

Extra

Training

Points

Approximate

Relative

Increase for

4 Clusters

Approximate

Relative

Increase for

5 Clusters

Approximate

Relative

Increase for

6 Clusters

Has

"Difficult"

Functions

bitcell 60.00 9.00 1.60 1.75 1.90 No

charge_pump1 108.00 9.00 1.33 1.42 1.50 No

charge_pump2 162.00 9.00 1.22 1.28 1.33 No

sense_amp1 60.00 9.00 1.60 1.75 1.90 Yes

bias_gen 60.00 5.00 1.33 1.42 1.50 No

opamp1 60.00 5.00 1.33 1.42 1.50 No

shift_reg 540.00 9.00 1.07 1.08 1.10 Yes

buffer_chain 900.00 9.00 1.04 1.05 1.06 Yes

Table 5.12 Relative Increases of Training Set Sizes in Case of Clustering

From Table 5.12, it is seen that the small datasets significantly increase the size of their

training sets. However, only one dataset (sense_amp1) selects too many extra corners at the

moment of partitioning, thus causing worse speedups. Then, the extra training set will not be added

79

if the total number of added points is 20% or more of the size of the training set at the moment of

split. The updated Table 5.11 is provided as Table 5.13.

4 Clusters 5 Clusters 6 Clusters

bitcell 25.66 4.68 100.00 bitcell 25.47 4.71 100.00 bitcell 25.63 4.68 100.00

charge_pump1 35.58 6.19 100.00 charge_pump1 35.41 6.23 100.00 charge_pump1 35.52 6.21 100.00

charge_pump2 58.59 5.71 100.00 charge_pump2 57.37 5.80 100.00 charge_pump2 57.80 5.77 100.00

sense_amp1 61.33 2.56 100.00 sense_amp1 62.04 2.55 100.00 sense_amp1 61.54 2.55 100.00

bias_gen 37.24 3.23 100.00 bias_gen 37.33 3.22 100.00 bias_gen 37.33 3.22 100.00

opamp1 46.81 2.56 100.00 opamp1 46.67 2.57 100.00 opamp1 47.15 2.55 100.00

shift_reg 697.33 1.61 95.67 shift_reg 720.83 1.60 99.33 shift_reg 716.69 1.65 97.33

buffer_chain 137.24 15.32 100.00 buffer_chain 131.30 16.38 100.00 buffer_chain 136.32 16.11 99.67

Average

Speedup
5.23

Average

Accuracy
99.46 Average Speedup 5.38

Average

Accuracy
99.92 Average Speedup 5.34

Average

Accuracy
99.63

Table 5.13 Report for not Adding Extra to the Training Set, if it Increases by More Than 20 Percent

The final best accuracy and speedup are then 99.92%, and 5.38x, respectively, compared

to 100% and 4.74x, as found originally.

5.3 Discussion

In this chapter, the potential benefits of partitioning the input space into several sub regions

was explored. Following the results of Chapter 4, it was suggested that there could be a way to

expand the number of points that can be safely pruned away because they were not likely to have

the global maximum. This led to the idea that separating the input set into several disjoint subsets

(that is, clustering) could be an efficient way to go about this. The preliminary finding proved there

could be great potential in this, and several heuristics were developed and refined.

Throughout testing the various developed heuristics, it was found that the more clusters

that were used, the faster the algorithm would converge to what it assumed to be the global

maximum. However, the termination accuracies were unacceptably poor, further corroborating

one of the conclusions of the previous chapter that with more points under observation of a GPM,

the individual errors for each separate corner are balanced out, and the average error of a collection

of corners leads to the expected termination accuracies.

Bringing more structure into the selection of the initial training set provided interesting

results. On the one hand, the termination accuracy improved to much more acceptable levels. On

80

the other hand, there would be very little chance of arriving at the correct value should such an

“improved” initial training set turn out to be a poor representation of the total search space.

It was found that by taking a more informed approach to clustering greatly increases the

overall efficiency of the general algorithm, significantly increasing the speedup, while preserving

the termination accuracy at expected levels. By getting an idea of where to locate some of the

higher valued outputs of the objective function, reasonable guesses can be made as to where the

true global maximum is likely to be located. Such a technique seems to work particularly well on

the functions for which the original algorithm would have difficulty producing quick results.

The next step would be to test the limits of the best available algorithm. Applying some

insight into generating a difficult dataset, it should be possible to expand the scope of the project

and eliminate the possibility of only having good performance for the datasets provided.

Additionally, having total control over new datasets might provide additional insights into what

makes a circuit produce functions that are difficult to analyse using existing variation design

techniques. The next chapter will explore some of these questions.

81

Chapter 6: Building Hard Datasets

6.1 Sources of Difficulty in the Datasets

6.1.1 Observations from the Provided Datasets

The datasets provided to us by Solido Design Automation did not indicate the details of

the circuits (e.g., the schematics) whose simulated behaviour produced the datasets. We could only

guess about what functions were being implemented by looking at the names of the datasets.

However, to achieve an important goal of the project, which is to understand what design structures

can make circuits difficult to verify, we really do need full netlists for the circuits. One way to

overcome the limitations of Solido’s datasets was to create difficult datasets of our own, either

from simulating difficult circuits or by creating synthetic datasets (i.e., without netlists).

It is clear that our algorithm would poorly handle datasets with sudden narrow spikes in

the magnitudes of the output values. Indeed, we attempted to improve the performance for those

cases using clustering. If such spike could be localised within a smaller region of focus of the input

domain, then there would be a greater chance for the algorithm to accidentally sample it. However,

as proved by several outputs of the provided datasets, simple clustering was not found to be

effective. Another observation was that the algorithm poorly handles flat functions, like

sen_dip_pctg of sense_amp1. Perhaps that is because the GPM has difficulty modelling what looks

like uncorrelated noise. Finally, assuming that the benchmark circuit shift_reg indeed models the

delay, rise time and fall time of the signals of a shift register, a plausible explanation for the

difficulty of this dataset would be that internal race conditions can cause sudden non-linear

behaviour in the positive feedback-stabilized outputs and are thus not well modelled by a GPM,

which is best suited for modelling smooth well-correlated functions. All of these insights were

applied in attempts to generate our own difficult datasets.

6.1.2 Creating Difficult Datasets

Several datasets were generated following the observations outlined in Section 6.1.1. The

first of those is one that models uniform noise. It was generated from MATLAB, with different

noise powers in the otherwise constant output functions, with the input values having no relation

82

to the outputs. Therefore, one would expect a GPM to have difficulty accurately modelling such a

noisy output. Looking at the results provided in the relevant tables in this section, that is indeed

the case. In fact, the best average speedup for this dataset (not shown in the tables) is 1.01x for the

riskier algorithm that relies on single-point termination.

Next, datasets generated from the circuits were studied. The circuits were synthesised

assuming 28-nm CMOS technology, and simulated in HSPICE, the commercial version of

SPICE[5]. The first such new dataset was generated from a phase detector circuit, which is itself

a part of a delay locked loop (DLL) design [68]. The phase detector detects the relative phase

difference between two input clock signals and generates two pulsed outputs, UP and DOWN, that

allow later stages of the DLL to phase-lock one adjustable (with variable delay) clock to a fixed

reference clock. This circuit should have an increased probability of race conditions and nonlinear

behaviours. Figure 6.1 demonstrates the basic functionality of the circuit

Figure 6.1 Basic Functionality of a Phase Detector Circuit

The detailed functionality is demonstrated in Figure 6.2. In the top half of Figure 6.2, C1

(the reference clock signal) leads C2 (the clock to be phase-locked to the reference) by 250 ps,

which causes the circuit to generate a pulse at the UP output, while only producing a constant low

(with some noise) at the DOWN output. In the bottom half of Figure 6.2, the situation is reversed.

C1 lags C2 by 250 ps, and as a result a DOWN pulse is generated.

The functions generated from the phase detector circuit were the rise time and fall time of

the two output signals, and the inputs were the phase difference between the clocks, the rise time

and fall time characteristics for the adjustable clock generated by the circuit and the input clock

signal to be synchronised, and the die temperature. Due to the complexity of the circuit, and its

intended purpose, which implies dealing with race conditions, the output functions can be expected

to be very sensitive to small PVT changes at certain input phases. The tests done on the circuit

83

with the algorithms presented in this work supported that hunch. The results of some of these tests

are summarised in the relevant tables at the end of this section.

Figure 6.2 Functionality of the Phase Detector Circuit

The second circuit was the differential sense amplifier used in SRAM arrays [16]. The

tested output function was the fall time of the complementary output in reaction to reading a

positive value from a mock SRAM cell. The function was chosen for its simplicity and importance

in IC design. Also, the positive feedback of the sense amplifier will produce a highly nonlinear

output response. The inputs supplied were the PVT characteristics (modelsets ss, tt, and ff,

temperature, and power voltage), and the voltage difference between the two complementary bit

lines received from the mock cell. Interestingly, this dataset turned out to be easy for Shoniker’s

time (ns)

time (ns)

84

algorithm. Despite the fact that several output points had significantly higher values than the

others, the algorithms very rarely failed to find the global maximum, and the speedups were usually

around 3.5x.

The third and last custom circuit design was the “glitch eraser” circuit, shown in Figure

6.3. Glitch eraser is designed to deglitch the two complementary input signals, X1 and X2, in case

those inputs are corrupted by noise spikes, such as spikes caused by cosmic radiation or other

sources of soft errors. The circuit fails if two glitches occur too close together in time, and that

presents an interesting set of functions. The glitches were modeled as triangular waves with

varying widths (that is, length of effect), and phase differences between the two glitches. In

addition to those inputs, the process corners were also applied with the three standard values for

the transistor modelset, as well as the die temperature and the power voltage level VDD. The

functions to be explored were the maximum voltage for the output signal that would be expected

to be HIGH (Y1), and the minimum voltage for the output signal that would be expected to be

LOW (Y2). So, for correct operation of the glitch eraser, output Y1 should be close to VDD and Y2

should be close to GND (the ground voltage), whereas for incorrect operation this would be

reversed. The sudden separation between the values of the modelled functions at the points of

correct operation versus the points where the circuit fails would make this a difficult circuit. Table

6.1 gives the truth table for the circuit.

X1 X2 Y1 Y2

Glitched LOW LOW X X

LOW Glitched LOW X X

Glitched HIGH HIGH X X

HIGH Glitched HIGH X X

Glitched LOW HIGH LOW HIGH

LOW Glitched HIGH LOW HIGH

Glitched HIGH LOW HIGH LOW

HIGH Glitched LOW HIGH LOW

Table 6.1 Truth Table for the Glitch Eraser Circuit

The circuitry and the functionality are provided in Figures 6.3 and 6.4, respectively. In

Figure 6.4, two triangular pulses with the duration of 1 ns affect the complimentary inputs X1 and

X2, 1 ns apart. The 1 ns width for the pulses is perhaps too wide for a glitch, and could model

something more like an extremely brief power surge, but this width is the biggest values for the

duration of the pulses (the other are 250 ps, 500 ps and 750 ps), and these values still produce an

interesting behaviour for the output functions. The circuit is able to catch those irregularities in the

85

voltage levels, and produce the corresponding complementary outputs Y1 and Y2 at the required

levels, with the noise spikes removed.

Figure 6.3 Glitch Eraser Circuit Diagram

Figure 6.4 Functionality of the Glitch Eraser Circuit

The distributions of the generated output functions are provided next.

time (ns)

86

Figure 6.5 Distributions of the Output Functions of a Uniformly Random Dataset

Figure 6.6 Distributions of the Output Functions of the phase_det_up Dataset

Figure 6.7 Distributions of the Output Functions of the phase_det_down Dataset

87

Figure 6.8 Distribution of the Output Function of the custom_sa Dataset

Figure 6.9 Distributions of the Output Functions of the glitch_erase Dataset

The histograms provide interesting insights into the structures of the output functions of

these datasets. The histograms of the output functions of the random dataset (Figure 6.4) are of a

trapezoidal shape, as one would expect from samples of a uniform random variable. As the noise

power becomes larger, the slope of the trapezoid also becomes steeper. Of course, such a simple

shape does not mean that the dataset is easy to analyse as the output values (by design) have no

simple relation to the inputs for this dataset.

The shapes of the phase detector functions are rather flat, but still a few points are

noticeably bigger than most others. This distribution looks similar in shape to the three functions

in the shift_reg dataset. This means we could expect these datasets to be relatively challenging.

88

The custom sense amplifier output function has nine output values that are between 7.45

and 8.43 times bigger than the tenth highest value. The total size of the dataset is 1512 corners,

meaning that 99.4% of the corner outputs lie within just over seven percent of the total range of

values in the dataset. The fifteen highest values and the lowest value, with corresponding input

values, are provided in Table 6.2.

Rank Model_set delta_v Temperature vvdd fall_time

1 tt 0.25 125 0.85 8.24E-10

2 ss 0.25 125 0.85 8.24E-10

3 ff 0.25 125 0.85 8.23E-10

4 ss 0.25 100 0.85 7.94E-10

5 tt 0.25 100 0.85 7.92E-10

6 ff 0.25 100 0.85 7.88E-10

7 ss 0.25 125 0.9 7.40E-10

8 tt 0.25 125 0.9 7.38E-10

9 ff 0.25 125 0.9 7.28E-10

10 ss 0.05 125 0.85 9.77E-11

11 ss 0.05 100 0.85 9.66E-11

12 ss 0.05 50 0.85 9.34E-11

13 ss 0.05 75 0.85 9.32E-11

14 ss 0.05 27 0.85 9.19E-11

15 ss 0.05 125 0.9 9.07E-11

1512 ff 0.25 -50 1.05 4.29E-11

Table 6.2 The Fifteen Highest Values and the Lowest Value of the custom_sa Dataset

From Table 6.2 it can be seen that the six highest values are located in a two-dimensional

neighbourhood, or, alternatively, on two adjacent ridges. The next three highest points are also

located on a ridge, defined by the modelset of the CMOS technology. Looking at only the nine

highest points, it would seem that the modelset parameter defines a more or less flat ridge for the

points, and the conclusion could be that ridges are defined by that parameter. However, looking at

the points ranked 10 to 14, the ridge parameter then seems to be the temperature value, and not

even all the temperature values along the dimension.

Finally, the glitch_erase circuit provides an interesting structure in that there are two clearly

defined, separated to extremes and abruptly changing levels in the output functions. This structure

could easily confuse GPMs which would be expecting significantly higher or lower responses from

a function. The output min_y2, which models the lowest response of the Y2 signal, the signal that

would be pulled to VDD, over the 4 ns illustrated on Figure 6.4, provides additional dimensions to

the problem in that some of the output values are negative, and in that the circuit setup makes the

89

second higher level have five “stepped” levels of its own. This is because one of the inputs for

glitch_erase is five different Vdd levels (0.9 V, 0.95 V, 1.00 V, 1.05 V, and 1.1 V), so min_y2

cannot go much higher than the corresponding value of VDD. A GPM should easily model that the

output has near perfect correlation between the corner values and the value of the VDD input.

However, this might also introduce the problem of the GPM being too reliant of that input value

and thus having problems at the low level of the function, as the corner values in that level are

much less correlated to VDD, and so that GPM would be a worse fit for the function.

As intended, Shoniker’s algorithm struggles greatly on the functions of the custom datasets,

and the introduced improvements are able to safely prune away anywhere from 11% to 77% more

of the corner simulations, compared to Shoniker’s final algorithm, excluding the random dataset.

Some of the algorithms described in the previous sections were tested on the new datasets. The

results of those tests are provided in the following Tables 6.3-6.13.

Dataset
Average Corners

to Termination

Average

Speedup

Average

Accuracy

phase_det_up 1451.59 1.00 100.00

phase_det_down 1453.35 1.00 100.00

custom_sa 458.16 3.30 100.00

random 999.64 1.00 100.00

glitch_erase 2042.24 1.03 100.00

Table 6.3 Results of Applying Standardised Preprocessing (Section 4.1.3.3) on the Custom Circuits

Dataset
Average Corners

to Termination

Average

Speedup

Average

Accuracy

custom_sa 436.45 3.46 100.00

phase_det_down 1454.20 1.00 100.00

phase_det_up 1451.89 1.00 100.00

random 999.25 1.00 100.00

glitch_erase 1064.89 1.97 98.50

Table 6.4 Results of Applying the Final Pointwise Neighbourhood Termination Heuristic (Section 4.1.3.3) on

the Custom Circuits

Dataset
Average Corners

to Termination

Average

Speedup

Average

Accuracy
Dataset

Average Corners

to Termination

Average

Speedup

Average

Accuracy

phase_det_up 1436.68 1.01 100.00 phase_det_up 1412.96 1.03 99.58

phase_det_down 1442.34 1.01 100.00 phase_det_down 1419.45 1.03 100.00

custom_sa 106.36 14.22 100.00 custom_sa 119.47 12.66 100.00

random 997.29 1.00 99.75 random 998.08 1.00 99.75

glitch_erase 1959.81 1.07 100.00 glitch_erase 1895.82 1.11 99.5

Table 6.5 Results of Applying Clustering on the Randomised Initial Training Set (Section 5.2.2) with

Randomised Initial Training Set for Each Cluster; Results for 2 and 3 Clusters

90

Dataset
Average Corners

to Termination

Average

Speedup

Average

Accuracy
Dataset

Average Corners

to Termination

Average

Speedup

Average

Accuracy

phase_det_up 1406.98 1.04 99.50 phase_det_up 1373.87 1.06 100.00

phase_det_down 1395.19 1.05 99.00 phase_det_down 1386.36 1.05 99.50

custom_sa 129.81 11.65 100.00 custom_sa 134.80 11.22 100.00

random 994.89 1.01 99.50 random 997.63 1.00 100.00

glitch_erase 1791.33 1.17 100.0 glitch_erase 1776.06 1.18 100.00

Table 6.6 Results of Applying Clustering on the Randomised Initial Training Set (Section 5.2.2) with

Randomised Initial Training Set for Each Cluster; Results for 4 and 5 Clusters

Dataset
Average Corners

to Termination

Average

Speedup

Average

Accuracy
Dataset

Average

Corners to

Termination

Average

Speedup

Average

Accuracy

phase_det_up 1445.60 1.01 100.00 phase_det_up 1434.65 1.02 100.00

phase_det_down 1435.62 1.02 99.50 phase_det_down 1425.12 1.02 99.00

custom_sa 84.87 17.82 100.00 custom_sa 120.83 12.51 100.00

random 999.24 1.00 100.00 random 995.39 1.00 99.50

glitch_erase 1918.75 1.09 96.50 glitch_erase 1890.99 1.11 100.00

Table 6.7 Results of Applying Clustering on the Randomised Initial Training Set (Section 5.2.2) with a

Plackett-Burman Design for the Initial Training Set for Each Cluster; Results for 2 and 3 Clusters

Dataset
Average Corners

to Termination

Average

Speedup

Average

Accuracy
Dataset

Average

Corners to

Termination

Average

Speedup

Average

Accuracy

phase_det_up 1396.33 1.04 100.00 phase_det_up 1376.87 1.06 99.00

phase_det_down 1411.95 1.03 98.00 phase_det_down 1359.04 1.07 98.50

custom_sa 125.54 12.04 100.00 custom_sa 137.23 11.02 100.00

random 997.01 1.00 99.75 random 997.72 1.00 100.00

glitch_erase 1608.85 1.32 81.00 glitch_erase 1609.46 1.32 87.50

Table 6.8 Results of Applying Clustering on the Randomised Initial Training Set (Section 5.2.2) with a

Plackett-Burman Design for the Initial Training Set for Each Cluster; Results for 4 and 5 Clusters

Dataset

Average

Corners to
Termination

Average

Speedup

Average

Accuracy
Dataset

Average

Corners to
Termination

Average

Speedup

Average

Accuracy
Dataset

Average

Corners to
Termination

Average

Speedup

Average

Accuracy

phase_det_up 1350.42 1.08 100.00 phase_det_up 1318.87 1.11 100.00 phase_det_up 1320.70 1.10 100.00

phase_det_down 1414.19 1.03 100.00 phase_det_down 1396.60 1.05 100.00 phase_det_down 1401.95 1.04 97.50

custom_sa 465.85 3.25 99.00 custom_sa 469.23 3.22 98.00 custom_sa 473.72 3.19 100.00

random 1000.00 1.00 100.00 random 999.41 1.00 100.00 random 998.03 1.00 99.00

glitch_erase 1635.65 1.28 100.00 glitch_erase 1670.86 1.26 100.00 glitch_erase 1627.00 1.29 100.00

Table 6.9 Results of Applying Clustering Based on the Performance of Datasets, Final Version (Section 5.2.3),

for 4, 5 and 6 Clusters

Dataset

Average

Corners to

Termination

Average

Speedup

Average

Accuracy
Dataset

Average

Corners to

Termination

Average

Speedup

Average

Accuracy
Dataset

Average

Corners to

Termination

Average

Speedup

Average

Accuracy

phase_det_up 1431.36 1.02 100.00 phase_det_up 1378.70 1.06 100.00 phase_det_up 1317.02 1.11 100.00

phase_det_down 1437.85 1.01 100.00 phase_det_down 1399.94 1.04 100.00 phase_det_down 1295.55 1.13 100.00

custom_sa 161.63 9.35 82.00 custom_sa 146.63 10.31 99.00 custom_sa 155.66 9.71 100.00

random 999.47 1.00 100.00 random 999.13 1.00 100.00 random 998.80 1.00 100.00

glitch_erase 1890.57 1.11 100.00 glitch_erase 1796.52 1.17 100.00 glitch_erase 1742.43 1.21 100.00

Table 6.10 Results of Applying Straightforward Clustering (Section 5.1.1) with a Randomised Initial Training

Set for Each Cluster, for 2, 3 and 4 Clusters

91

Dataset
Average Corners

to Termination

Average

Speedup

Average

Accuracy
Dataset

Average

Corners to

Termination

Average Speedup
Average

Accuracy

phase_det_up 1259.09 1.16 100.00 phase_det_up 1245.12 1.17 100.00

phase_det_down 1306.87 1.12 100.00 phase_det_down 1292.65 1.13 100.00

custom_sa 173.80 8.70 99.00 custom_sa 175.27 8.63 100.00

random 998.54 1.00 99.50 random 998.50 1.00 100.00

glitch_erase 1727.27 1.22 100.00 glitch_erase 1740.11 1.21 100.00

Table 6.11 Results of Applying Straightforward Clustering (Section 5.1.1) with a Randomised Initial Training

Set for Each Cluster, for 5 and 6 Clusters

Dataset

Average

Corners to

Termination

Average
Speedup

Average
Accuracy

Dataset

Average

Corners to

Termination

Average
Speedup

Average
Accuracy

Dataset

Average

Corners to

Termination

Average
Speedup

Average
Accuracy

phase_det_up 1448.66 1.01 100.00 phase_det_up 1448.66 1.01 100.00 phase_det_up 1402.04 1.04 100.00

phase_det_down 1452.08 1.00 100.00 phase_det_down 1450.08 1.01 100.00 phase_det_down 1441.07 1.01 100.00

my_sense_amp 292.63 5.17 100.00 my_sense_amp 157.72 9.59 100.00 my_sense_amp 179.19 8.44 100.00

random 999.67 1.00 100.00 random 999.67 1.00 100.00 random 999.58 1.00 100.00

glitch_erase 1959.91 1.07 100.00 glitch_erase 1738.05 1.21 100.00 glitch_erase 1689.70 1.24 100.00

Table 6.12 Results of Applying Straightforward Clustering (Section 5.1.2) with a Plackett-Burman Design for

the Initial Training Set for Each Cluster, for 2, 3 and 4 Clusters

Dataset
Average Corners

to Termination

Average

Speedup

Average

Accuracy
Dataset

Average

Corners to

Termination

Average

Speedup

Average

Accuracy

phase_det_up 1393.65 1.05 100.00 phase_det_up 1303.12 1.13 100.00

phase_det_down 1428.62 1.02 100.00 phase_det_down 1426.24 1.02 100.00

my_sense_amp 227.00 6.66 100.00 my_sense_amp 234.65 6.44 100.00

random 999.24 1.00 100.00 random 998.92 1.00 100.00

glitch_erase 1705.08 1.23 100.00 glitch_erase 1736.60 1.21 100.00

Table 6.13 Results of Applying Straightforward Clustering (Section 5.1.2) with a Plackett-Burman Design for

the Initial Training Set for Each Cluster, for 5 and 6 Clusters

Tables 6.3-6.13 demonstrate improvements in speedups without loss of accuracy,

compared to Shoniker’s final algorithm, for almost any developed algorithm. Table 6.3 shows

results that are close to those of Shoniker’s final algorithm, and demonstrate that it struggles a lot

with every dataset, except custom_sa, with the average speedup being 1.47x. The best results of

our algorithms are for each dataset: 1.17x for phase_det_up (compared to 1.00x of Shoniker’s

algorithm), 1.13x for the phase_det_down dataset (compared to 1.00x), 17.82x for the custom_sa

dataset (compared to 3.30x), 1.00x for the random dataset (compared to 1.00x), and 1.29x for the

glitch_erase dataset (compared to 1.03x), among heuristics that terminated with 100% accuracy

for the respective datasets.

6.1.3 Comparison with an Industrial Tool

In order to get a better sense of how the algorithms compare to the industrial standards, the

commercial tool Solido Variation Designer version 3.5.7 (latest available version to us, current

release is version 4.1.9) was used on the three custom circuits. The results of this round of

92

experiment are provided in Table 6.14. The tool does not provide a lot of flexibility in how the

minimal corner selection will be carried out. So, for example, we could not set the desired sigma-

confidence level. We could, however, set up the corners according to the ones in our datasets.

Dataset Output Name
Corners to

Convergence
Speedup

Average

Speedup

Max

Found

phase_det_down
down_rise_time 987.00 1.48

1.44
TRUE

down_fall_time 1034.00 1.41 TRUE

phase_det_up
up_rise_time 636.00 2.29

1.82
TRUE

up_fall_time 1088.00 1.34 TRUE

custom_sa fall_time 59.00 25.63 25.63 FALSE

glitch_erase
max_y1 938.00 2.24

2.66
TRUE

min_y2 681.00 3.08 TRUE

Table 6.14 Results of Analysis by Industrial Tool

Dataset Output Name
Corners to

Convergence
Speedup

Average

Speedup
Max Found

phase_det_down
down_rise_time 1029.00 1.42

1.53
TRUE

down_fall_time 873.00 1.67 TRUE

phase_det_up
up_rise_time 421.00 3.46

2.23
TRUE

up_fall_time 885.00 1.65 TRUE

glitch_erase
max_y1 1328.00 1.58

1.66
TRUE

min_y2 1195.00 1.76 TRUE

Table 6.15 Best Results of the Best Algorithms as Applied on the Custom Datasets

From Table 6.14, it can be seen that Variation Designer 3.5.7 significantly outperforms any

algorithm described in the work. However, what is interesting to note, Variation Designer returned

an incorrect worst-case corner when analysing the easy dataset custom_sa, the tenth-worst-case

corner, in fact. Perhaps, this suggests that Variation Designer 3.5.7 is not well suited to handling

datasets with spikes as it selects the highest “regular” value in the custom_sa fall_time function

(see Table 6.2). The other results are far better than the respective average results by any of our

algorithms. Even setting a lower termination threshold for our algorithms does not come close to

the speedups of Variation Designer (however, the up_fall_time of the phase_det_up dataset gets

very close to Variation Designer for the 3-sigma termination rule, losing by about 60 corners, on

average). At the same time, some performances of our informed clustering algorithms do terminate

to the correct global maximum faster than Variation Designer for three out of four outputs in the

phase_det_up and phase_det_down datasets. The best results of our algorithms are summarised in

Table 6.15.

It can be argued then that Variation Designer is simply more consistent in its analysis and

predictions. This can be explained by the fact that Variation Designer has been in continuous

93

development for around a decade, for commercial use, meaning the standards and knowledge in

Solido Design Automation are far higher than those for a graduate project. Figures 6.10, 6.11, and

6.12 summarise the best performances of our algorithms.

Figure 6.10 Results of Informed Clustering, 7 Clusters, on the glitch_erase Dataset

Figure 6.11 Results of Informed Clustering, 5 Clusters, on the phase_det_down Dataset

Figure 6.12 Results of Informed Clustering, 8 Clusters, on the phase_det_up Dataset

94

Another interesting observation is the convergence diagram for the glitch_erase outputs,

provided in Figure 6.13 and Figure 6.14. In those figures, the x axis corresponds to how many

corners have been simulated so far, and the y axis shows the predicted values and uncertainties of

the worst predicted corner, with the current known maximum as the baseline.

Figure 6.13 Convergence Plot of the max_y1 Output of the glitch_erase Dataset

Figure 6.14 Convergence Plot of the min_y2 Output of the glitch_erase Dataset

Figure 6.13 and Figure 6.14 show the evolution of the uncertainty (grey shaded region) of

Variation Designer in its eventual selected guess for the global maximum (the constant blue dashed

line). The red dashed line is the prediction �̂� of the corner that has the highest �̂� + 𝑘 ∗ 𝜎, and the

Sample #

max_y1 value

Sample #

min_y2 value

95

solid purple line is the value of the latest simulated corner. It is interesting to see in Figure 6.9 that

the algorithm came extremely close to convergence at least three times, before selecting a corner

with significantly smaller output than was expected and causing the uncertainty to rise and thus

continue looking for the maximum. This could be explained by the nature of the dataset, which

has two very distinct levels: near the GND voltage level and near VDD. A smart clustering

procedure would definitely help in this case as it should be able to separate these two levels, and

accelerate convergence to the selected corner.

6.2 Discussion

Looking at the constructed worst-case circuits proved to be very helpful for improving our

understanding of the various algorithms for minimal worst-case corner selection. Having a custom

dataset allows more flexibility in exploring performances of algorithms and this flexibility allowed

us to highlight strengths or weaknesses of each particular heuristic.

This chapter provided a very preliminary analysis of what could make a dataset difficult to

analyse with Shoniker’s algorithm. From our experience with these datasets, these guesses turned

out to be mostly correct. The performance of the heuristics developed in Chapters 4 and 5 showed

clear improvement on these difficult datasets, which suggests that they could become more

valuable as the feature size of circuits grows smaller and the number of corners for confident design

verification grows larger.

Having access to an industrial tool also provided significant benefit. Quite unsurprisingly,

the tool outperformed every algorithm developed here by a large margin. Interestingly, one of the

custom datasets highlighted a significant weakness in the design of the tool. The visualisation

techniques of the tool also suggested insights into how their algorithm works and what conditions

could confuse the tool. Overall, the performance of algorithms developed in this work could be

judged to be reasonably good, although there is a long way to go to reliably achieve the speed-ups

of the commercial tool. It could partially be explained by the apparent less strict requirements for

termination from Variation Designer 3.5.7.

96

Chapter 7: Conclusions and Future Work

7.1 Main Contributions

This thesis described attempts to improve upon Michael Shoniker’s algorithm for minimal

worst-case corner selection when finding the maximum of an output function. The improvements

studied include:

• A more in-depth study of the distributions of the output values of the datasets with

the first attempts to improve performance for the datasets that suffer from

overfitting and sudden changes in output values (spikes and ridges).

• More detailed experimentation on the termination rules and more attempts to prune

away some “safe” corners before terminating the entire algorithm, thus improving

speedups of the analyses of output functions. Introduction of neighbourhood

termination in order to improve the termination accuracy.

• Study of the effects of partitioning the input space into several clusters for the

purposes of pruning away groups of corners according to the k-means clustering

procedure, for between 2 and 8 clusters. Exploration of selecting the initial training

set for the algorithms according to Plackett-Burman designs. Partitioning of the

input space based on the observed output values after a fraction of the corners have

been simulated, thus allowing the algorithm to take advantage of the benefits for

big and difficult circuits and avoid the disadvantages for small and easy circuits

introduced by running the straightforward k-means clustering of the input space.

• Design of custom datasets for the purposes of further exploration of what design

decisions make circuits difficult to analyse. Comparison of the performance

heuristics developed in Chapters 4 and 5 to that of the commercial tool, Solido

Variation Designer 3.5.7, performing the same function as the heuristics introduced

in this thesis.

First, it was noted that the termination criterion used by Shoniker had some inconsistencies,

and these inconsistencies were studied. The effect of multiple near-worst-case corners, in

particular, meant that the algorithm would, theoretically, tend to be more optimistic than expected.

97

Thus, the performance of the algorithm with a stricter pruning and termination thresholds was

studied. As a result, it was found that increasing the termination σ rule by one would take care of

most of such inconsistencies, and thus the σ=4 termination rule was adopted exclusively in all

further work.

Making the GPR assumption that every test point is an independent variable drawn from

the same joint Gaussian distribution provided interesting insights into the behaviour of the GPM

for some particularly difficult datasets. Specifically, it was found that proclaiming test points as

unlikely to be equal to the global maximum based only on their predicted distributions proved to

be a risky strategy. Consequently, mechanisms for considering several neighbouring points for

pointwise termination were developed. These changes provided minor (approximately 10%)

improvements to the speedups of our datasets. This also gave the insight that taking into account

the predicted values of the neighbours of the target corner, and not just those of the target corner

on its own, could be very beneficial.

The early studies of neighbourhood-based group termination suggested that it was an even

riskier strategy than pointwise termination. The naïve k-means clustering approach was tested and

inverse correlations were observed between the number of clusters and the number of corners

simulated to convergence, as well as between the number of clusters and the accuracy of finding

the true global maximum. As the number of clusters grew bigger, the termination accuracies and

the number of corners simulated tends to decrease. This was improved by applying a deterministic

initial design for the initial selection of corners. This helped when the algorithm was optimising

big and difficult datasets, however, the performance on the small and easy datasets became worse.

The clustering heuristic was further improved to base the clustering on the observed responses,

which helped to increase the termination accuracy to acceptable levels and avoided the need for

more complicated termination heuristics.

Looking at the custom circuits and comparing the performance of the industrial tool with

the algorithms provided some interesting insights. It was found that the tool is able to reliably (but

not always) achieve significantly better speedups on the custom circuits compared to the developed

algorithms. Surprisingly, the tool failed to find the maximum of one of the datasets. This could

point to the tool not being able to handle spikes and high plateaus in the structure of the output

functions. It is also possible that the tool has more relaxed requirements for termination.

98

7.2 Future Work

There are a number of directions in the project that can be explored in the future, some of

which we have attempted to implement but were not successful. The biggest one of those that we

tried was the multiobjective optimization. That functionality was preliminarily explored in

Shoniker’s thesis. We attempted to extend his ideas to the informed clustering approach (Section

5.2.3). In our implementation, if 50% of the corners have been simulated, we would perform k-

means clustering on the multiple output dimensions, and assign the unsimulated corners to the

clusters as described in Section 5.2.3 otherwise. This led to reduced accuracies and reduced

speedups, however, so other ways should be considered.

Another attempted direction of research was trying to generate the training set of the

smallest size that would terminate the function to a certain sigma confidence level while finding

the true global maximum. For that purposes we used the adapted versions of two popular feature

selection techniques: sequential forward selection (SFS)[69] and sequential backward selection

(SBS)[70].

For SBS, we would run our algorithms on a dataset, and then select the smallest training

set that terminated the function with 3-Sigma confidence. Then, we would remove one corner from

the smallest training set, and look at how much closer the convex hull on the scatter plots gets to

the 3-Sigma termination line. The smallest such change would mean that termination was the least

affected by removing that corner, and so the new training set is taken as the smallest and the

procedure is repeated until we cannot remove any corner without causing any of the points on the

scatter plot to be above the termination line.

SFS is the opposite approach. We would start with no corners in the training set and would

add one corner at a time to see which added corner brings the convex hull closest to the 3-Sigma

termination line. This procedure runs until a training set is found that puts all the points on the

scatter plot below the termination threshold.

Obviously, neither SBS nor SFS are ideal methods for the task, however, the ideal method

would take enormous amount of time to run. Even these methods were only viable for small

datasets, no bigger than charge_pump1 (216 corners). Tests for the charge_pump1 dataset found

99

that the best speedup achieved could be 9.56x for the 3-Sigma termination rule, compared to 5.16x

for Shoniker’s algorithm. However, just finding the smallest training sets is not enough. It is

important to understand what makes that selection the smallest, and we were not successful in

determining that.

A significant next step would be to find the most theoretically sound and efficient way to

partition the input space into subregions, as early as possible in the execution of the algorithm. In

Section 5.2.2, for example, it was shown that certain circuits (e.g., custom_sa) get significant

improvements for the earliest stages after such a partition. Becoming more confident in the

generated GPMs is critical to this. Thus, it would be very helpful to develop mechanisms to quickly

locate spikes in the dataset. Another potentially useful work would be additive kernels, for example

as explored in [71], which is essentially automatic construction of kernels from several basis

kernels based on the observed outputs. If we know that a kernel models the function well, we can

be more confident in its predictions, and thus partition the input space, or even terminate, earlier.

As an intermediate step, we could measure some regression metrics, such as the ones implemented

in the scikit-learn package[72] , for example coupling them with the cross-validation step, as

described in Section 2.3.3.

The algorithms described in this work are very general. There is no reason to apply them

only for the task of analysing the responses of integrated circuits. Any problem that requires

optimisation through observing responses is well suited for this algorithm. For example,

optimising a production process in chemical engineering tasks could require selecting process

parameters that maximize the output. Such processes could easily be too large to analyse directly,

requiring expensive simulations to model system performance for each choice of parameter

settings accurately.

Conversely, the focus might be put into integrating knowledge of integrated circuit

functions into the algorithm for a more tailored approach. For example, if a circuit needs to be

optimised for a timing constraint, and one of the inputs is the process parameter, it would make

sense to spend more computational effort on exploring regions represented by the slow-slow

process, as this region would be most likely to contain the worst timing performance of the circuit.

Moving on to optimising a function over a nongridded input space could make the

algorithm applicable for looking for rare-event failures in circuits. The algorithm could spend a

100

comparable amount of time finding high-sigma corners, like finding a 6-sigma (one-in-a-billion)

worst case corner, in a fraction of the time that is required for a full-factorial simulation. Such an

application would be useful for designing extremely variation-aware circuits or circuits that are

required to be extremely reliable.

Finally, should the computational cost of GPR be optimised enough and the problem of

locating spikes be solved adequately enough, these algorithms could be used for cost function

optimisations used in other machine learning techniques, such as neural networks. This would

ensure the lowest value of the cost function meaning that the performance of the learned structure

(e.g., the trained neural network) would be the best possible using simpler designs of the networks,

compare to the extremely complex structures like Deep Neural Networks. An existing framework,

such as Robust Bayesian Optimization [73][74], can be a basis for these developments.

101

References

[1] Moore, G.E., 1965. Cramming more components onto integrated circuits. Electronics,

38(8), pp.80-91.

[2] Asenov, A., 1998. Random dopant induced threshold voltage lowering and fluctuations in

sub-0.1/spl mu/m MOSFET's: A 3-D" atomistic" simulation study. IEEE Transactions on

Electron Devices, 45(12), pp.2505-2513.

[3] Kuhn, K.J., Giles, M.D., Becher, D., Kolar, P., Kornfeld, A., Kotlyar, R., Ma, S.T.,

Maheshwari, A. and Mudanai, S., 2011. Process technology variation. IEEE Transactions

on Electron Devices, 58(8), pp.2197-2208.

[4] McConaghy, T., Breen, K., Dyck, J. and Gupta, A., 2012. Variation-aware design of

custom integrated circuits: a hands-on field guide. Springer Science & Business Media.

[5] Nagel, L.W. and Pederson, D.O., 1973. SPICE: Simulation program with integrated

circuit emphasis. Electronics Research Laboratory, College of Engineering, University

of California.

[6] March, J.G., 1991. Exploration and exploitation in organizational learning. Organization

science, 2(1), pp.71-87.

[7] Shoniker, M, 2015. Accelerated Verification of Integrated Circuits Against the Effects of

Process, Voltage and Temperature Variations (Master dissertation, University of Alberta

Edmonton).

[8] Koh, M., Mizubayashi, W., Iwamoto, K., Murakami, H., Ono, T., Tsuno, M., Mihara, T.,

Shibahara, K., Miyazaki, S. and Hirose, M., 2001. Limit of gate oxide thickness scaling

in MOSFETs due to apparent threshold voltage fluctuation induced by tunnel leakage

current. IEEE Transactions on Electron Devices, 48(2), pp.259-264.

[9] Stolk, P.A., Widdershoven, F.P. and Klaassen, D.B.M., 1998. Modeling statistical dopant

fluctuations in MOS transistors. IEEE Transactions on Electron devices, 45(9), pp.1960-

1971.

[10] Asenov, A., Kaya, S. and Brown, A.R., 2003. Intrinsic parameter fluctuations in

decananometer MOSFETs introduced by gate line edge roughness. IEEE Transactions on

Electron Devices, 50(5), pp.1254-1260.

102

[11] Stapper, C.H., 1985. The effects of wafer to wafer defect density variations on integrated

circuit defect and fault distributions. IBM Journal of Research and Development, 29(1),

pp.87-97.

[12] Keane, J. and Kim, C.H., 2011. Transistor aging. IEEE Spectrum, 48(5), pp.28-33.

[13] Mehrotra, V., Nassif, S., Boning, D. and Chung, J., 1998, December. Modeling the

effects of manufacturing variation on high-speed microprocessor interconnect

performance. In Electron Devices Meeting, 1998. IEDM'98. Technical Digest.,

International (pp. 767-770). IEEE.

[14] Calhoun, B.H., Cao, Y., Li, X., Mai, K., Pileggi, L.T., Rutenbar, R.A. and Shepard, K.L.,

2008. Digital circuit design challenges and opportunities in the era of nanoscale CMOS.

Proceedings of the IEEE, 96(2), pp.343-365.

[15] Li, X., Le, J., Celik, M. and Pileggi, L.T., 2005, November. Defining statistical

sensitivity for timing optimization of logic circuits with large-scale process and

environmental variations. In Computer-Aided Design, 2005. ICCAD-2005. IEEE/ACM

International Conference on (pp. 844-851). IEEE.

[16] Pavlov, A. and Sachdev, M., 2008. CMOS SRAM circuit design and parametric test in

nano-scaled technologies: process-aware SRAM design and test (Vol. 40). Springer

Science & Business Media.

[17] Chang, L., Montoye, R.K., Nakamura, Y., Batson, K.A., Eickemeyer, R.J., Dennard,

R.H., Haensch, W. and Jamsek, D., 2008. An 8T-SRAM for variability tolerance and

low-voltage operation in high-performance caches. IEEE Journal of Solid-State Circuits,

43(4), pp.956-963.

[18] Sedra, A.S. and Smith, K.C., 1998. Microelectronic circuits (Vol. 1). New York: Oxford

University Press.

[19] Cox, P., Yang, P., Mahant-Shetti, S.S. and Chatterjee, P.A.L.L.A.B., 1985. Statistical

modeling for efficient parametric yield estimation of MOS VLSI circuits. IEEE Journal

of Solid-State Circuits, 20(1), pp.391-398.

[20] Nassif, S.R., 2001. Modeling and analysis of manufacturing variations. In Custom

Integrated Circuits, 2001, IEEE Conference on. (pp. 223-228). IEEE.

103

[21] Antoniadis, D.A. and Khakifirooz, A., 2008, December. MOSFET performance scaling:

Limitations and future options. In Electron Devices Meeting, 2008. IEDM 2008. IEEE

International (pp. 1-4). IEEE.

[22] Wang, X., Brown, A.R., Idris, N., Markov, S., Roy, G. and Asenov, A., 2011. Statistical

threshold-voltage variability in scaled decananometer bulk HKMG MOSFETs: A full-

scale 3-D simulation scaling study. IEEE Transactions on Electron Devices, 58(8),

pp.2293-2301.

[23] Adamu-Lema, F., Wang, X., Amoroso, S.M., Riddet, C., Cheng, B., Shifren, L., Aitken,

R., Sinha, S., Yeric, G. and Asenov, A., 2014. Performance and variability of doped

multithreshold FinFETs for 10-nm CMOS. IEEE Transactions on Electron Devices,

61(10), pp.3372-3378.

[24] Wang, X., Cheng, B., Brown, A.R., Millar, C., Kuang, J.B., Nassif, S. and Asenov, A.,

2013. Interplay between process-induced and statistical variability in 14-nm CMOS

technology double-gate SOI FinFETs. IEEE Transactions on Electron Devices, 60(8),

pp.2485-2492.

[25] Mutlu, A.A. and Rahman, M., 2005. Statistical methods for the estimation of process

variation effects on circuit operation. IEEE Transactions on Electronics Packaging

Manufacturing, 28(4), pp.364-375.

[26] Kroese, D.P., Brereton, T., Taimre, T. and Botev, Z.I., 2014. Why the Monte Carlo

method is so important today. Wiley Interdisciplinary Reviews: Computational Statistics,

6(6), pp.386-392.

[27] Montgomery, D.C., 2017. Design and analysis of experiments. John Wiley & Sons.

[28] Box, G.E. and Wilson, K.B., 1992. On the experimental attainment of optimum

conditions. In Breakthroughs in Statistics (pp. 270-310). Springer New York.

[29] Plackett, R.L. and Burman, J.P., 1946. The design of optimum multifactorial

experiments. Biometrika, 33(4), pp.305-325.

[30] Rasmussen, C.E. and Williams, C.K., 2006. Gaussian processes for machine learning

(Vol. 1). Cambridge: MIT press.

[31] Krige, D.G., 1951. A statistical approach to some basic mine valuation problems on the

Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy,

52(6), pp.119-139.

104

[32] Gaussian Processes, 2017. Retrieved on August 25, 2017, from http://scikit-

learn.org/stable/modules/gaussian_process.html

[33] Gaussian Processes, 2014. Retrieved on August 25, 2017, from http://scikit-

learn.org/0.16/modules/gaussian_process.html

[34] Lophaven, S.N., Nielsen, H.B. and Søndergaard, J., 2002. DACE-A Matlab Kriging

toolbox, version 2.0.

[35] Jones, D.R., Schonlau, M. and Welch, W.J., 1998. Efficient global optimization of

expensive black-box functions. Journal of Global optimization, 13(4), pp.455-492.

[36] Abramowitz, M. and Stegun, I.A., 1964. Handbook of mathematical functions: with

formulas, graphs, and mathematical tables (Vol. 55). Courier Corporation.

[37] Kohavi, R., 1995, August. A study of cross-validation and bootstrap for accuracy

estimation and model selection. In Ijcai (Vol. 14, No. 2, pp. 1137-1145).

[38] Zhang, H., Chen, T.H., Ting, M.Y. and Li, X., 2009, July. Efficient design-specific

worst-case corner extraction for integrated circuits. In Proceedings of the 46th Annual

Design Automation Conference (pp. 386-389). ACM.

[39] Fang, C., Huang, Q., Yang, F., Zeng, X., Zhou, D. and Li, X., 2016, June. Efficient

performance modeling of analog integrated circuits via kernel density based sparse

regression. In Design Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE (pp.

1-6). IEEE.

[40] Li, X. and Cao, Y., 2008, March. Projection-based piecewise-linear response surface

modeling for strongly nonlinear VLSI performance variations. In Quality Electronic

Design, 2008. ISQED 2008. 9th International Symposium on (pp. 108-113). IEEE.

[41] Blanton, R.D., Li, X., Mai, K., Marculescu, D., Marculescu, R., Paramesh, J., Schneider,

J. and Thomas, D.E., 2015, November. Statistical learning in chip (SLIC). In Computer-

Aided Design (ICCAD), 2015 IEEE/ACM International Conference on (pp. 664-669).

IEEE.

[42] Chang, H.M., Cheng, K.T., Zhang, W., Li, X. and Butler, K.M., 2011, September. Test

cost reduction through performance prediction using virtual probe. In Test Conference

(ITC), 2011 IEEE International (pp. 1-9). IEEE.

[43] Qian, N., 1999. On the momentum term in gradient descent learning algorithms. Neural

networks, 12(1), pp.145-151.

105

[44] Tsamardinos, I., Brown, L.E. and Aliferis, C.F., 2006. The max-min hill-climbing

Bayesian network structure learning algorithm. Machine learning, 65(1), pp.31-78.

[45] Khachaturyan, A., Semenovsovskaya, S. and Vainshtein, B., 1981. The thermodynamic

approach to the structure analysis of crystals. Acta Crystallographica Section A: Crystal

Physics, Diffraction, Theoretical and General Crystallography, 37(5), pp.742-754.

[46] Meadows, C.A., 1994, November. Formal verification of cryptographic protocols: A

survey. In International Conference on the Theory and Application of Cryptology (pp.

133-150). Springer, Berlin, Heidelberg.

[47] Coudert, O. and Madre, J.C., 1990, November. A unified framework for the formal

verification of sequential circuits. In IEEE International Conference on Computer-Aided

Design (pp. 126-129).

[48] Gupta, A., 1992. Formal hardware verification methods: A survey. In Computer-Aided

Verification (pp. 5-92). Springer US.

[49] Kern, C. and Greenstreet, M.R., 1999. Formal verification in hardware design: a survey.

ACM Transactions on Design Automation of Electronic Systems (TODAES), 4(2),

pp.123-193.

[50] Camurati, P. and Prinetto, P., 1988. Formal verification of hardware correctness:

Introduction and survey of current research. Computer, 21(7), pp.8-19.

[51] Althoff, M., Rajhans, A., Krogh, B.H., Yaldiz, S., Li, X. and Pileggi, L., 2013. Formal

verification of phase-locked loops using reachability analysis and continuization.

Communications of the ACM, 56(10), pp.97-104.

[52] Kanj, R., Joshi, R. and Nassif, S., 2006, July. Mixture importance sampling and its

application to the analysis of SRAM designs in the presence of rare failure events. In

Design Automation Conference, 2006 43rd ACM/IEEE (pp. 69-72). IEEE.

[53] Avizienis, A., Laprie, J.C. and Randell, B., 2001, May. Fundamental concepts of

computer system dependability. In Workshop on Robot Dependability: Technological

Challenge of Dependable Robots in Human Environments (pp. 1-16).

[54] Hastings, W.K., 1970. Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57(1), pp.97-109.

106

[55] Au, S.K. and Beck, J.L., 2001. Estimation of small failure probabilities in high

dimensions by subset simulation. Probabilistic engineering mechanics, 16(4), pp.263-

277.

[56] Biegler, L.T., Grossmann, I.E. and Westerberg, A.W., 1985. A note on approximation

techniques used for process optimization. Computers & chemical engineering, 9(2),

pp.201-206.

[57] Downs, J.J. and Vogel, E.F., 1993. A plant-wide industrial process control problem.

Computers & chemical engineering, 17(3), pp.245-255.

[58] Biegler, L.T., Cervantes, A.M. and Wächter, A., 2002. Advances in simultaneous

strategies for dynamic process optimization. Chemical engineering science, 57(4),

pp.575-593.

[59] Hanson, T.C., Bonaquist, D.P. and Jordan, M.D., Praxair Technology, Inc., 1994.

Chemical process optimization method. U.S. Patent 5,315,521.

[60] Floudas, C.A., 2000. Global optimization in design and control of chemical process

systems. Journal of Process Control, 10(2), pp.125-134.

[61] Babyak, M.A., 2004. What you see may not be what you get: a brief, nontechnical

introduction to overfitting in regression-type models. Psychosomatic medicine, 66(3),

pp.411-421.

[62] Rätsch, G., Onoda, T. and Müller, K.R., 2001. Soft margins for AdaBoost. Machine

learning, 42(3), pp.287-320.

[63] McAndrew, C.C., Lim, I.S., Braswell, B. and Garrity, D., 2013, September. Corner

models: Inaccurate at best, and it only gets worst…. In Custom Integrated Circuits

Conference (CICC), 2013 IEEE (pp. 1-4). IEEE.

[64] Hartigan, J.A. and Wong, M.A., 1979. Algorithm AS 136: A k-means clustering

algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1),

pp.100-108.

[65] Garey, M.R. and Johnson, D.S., 2002. Computers and intractability (Vol. 29). New York:

wh freeman.

[66] Jain, A.K., 2010. Data clustering: 50 years beyond K-means. Pattern recognition letters,

31(8), pp.651-666.

107

[67] Zhan, Y., Strojwas, A.J., Li, X., Pileggi, L.T., Newmark, D. and Sharma, M., 2005, June.

Correlation-aware statistical timing analysis with non-gaussian delay distributions. In

Proceedings of the 42nd annual Design Automation Conference (pp. 77-82). ACM.

[68] Cockburn, B.F. and Boyle, K., 2006, May. Design and Characterization of a Digital

Delay Locked Loop Synthesized from Black Box Standard Cells. In Electrical and

Computer Engineering, 2006. CCECE'06. Canadian Conference on (pp. 1214-1217).

IEEE.

[69] Marill, T. and Green, D., 1963. On the effectiveness of receptors in recognition systems.

IEEE transactions on Information Theory, 9(1), pp.11-17.

[70] Whitney, A.W., 1971. A direct method of nonparametric measurement selection. IEEE

Transactions on Computers, 100(9), pp.1100-1103.

[71] Duvenaud, D., 2014. Automatic model construction with Gaussian processes (Doctoral

dissertation, University of Cambridge).

[72] Regression metrics, 2017. Retrieved on August 25, 2017, from http://scikit-

learn.org/stable/modules/classes.html#regression-metrics

[73] Springenberg, J.T., Klein, A., Falkner, S. and Hutter, F., 2016. Bayesian optimization

with robust Bayesian neural networks. In Advances in Neural Information Processing

Systems (pp. 4134-4142).

[74] automl/RoBO, 2017. Retrieved on September 1, 2017, from

https://github.com/automl/RoBO

http://scikit-learn.org/stable/modules/classes.html#regression-metrics
http://scikit-learn.org/stable/modules/classes.html#regression-metrics
https://github.com/automl/RoBO

