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Abstract 
 

The continuing reduction in the feature sizes of the latest CMOS (Complementary Metal-

Oxide-Semiconductor) technologies allow faster, more compact, and more energy-efficient 

integrated circuits (ICs). On the downside, the performance of each transistor becomes harder and 

harder to characterise accurately as smaller transistors are more affected by smaller errors during 

production process. This tendency makes it more difficult for IC designers to perform an important 

part of the production flow – design verification (DV) – to ensure their circuits will always behave 

as required by the specifications, and thus ensure a satisfactory yield of the product. The traditional 

way of doing DV, corner analysis, requires simulating the circuit for random combinations of 

expected device parameters (i.e., corners) that affect circuit behaviour. When transistors were 

larger and more predictable, it was sufficient to simulate them at a smaller number of corners, 

ranging from five to up to, at worst, several dozen. Now, that number can be greater than one 

thousand. The corners are tested in a simulator, like Simulation Program with Integrated Circuit 

Emphasis (SPICE), and it takes significant processing power and time to simulate all the corners 

as required by DV, significantly extending the time for design iterations and IC production. 

However, it is not strictly required to simulate all the corners. IC designers really only require the 

worst-case corner, the corner at which the characteristic is the closest to failing the specifications. 

If it is possible to locate that worst-case corner before every corner has been simulated, a 

significant amount of time and resources can be saved. Surrogate function modelling techniques, 

like Gaussian Process Regression (GPR), provide relatively cheap estimates of function values at 

a set of test points based on the observations from a set of training points. In addition to the 

estimates, GPR also provides uncertainties in the estimates, which allows judging the confidence 

of the resulting Gaussian Process Model (GPM) in deciding if the current known maximum is the 

global maximum. This easily translates to corner analysis, by representing the characteristic of a 

circuit as a function dependent on the combination of inputs (corners). A previous student, Michael 

Shoniker, took the first steps in this problem in his Master of Science thesis. This thesis builds on 

his work by overcoming some weaknesses of Shoniker’s approach, analysing the benchmark 

datasets, and analysing own generated datasets to learn what output behaviours make circuits 

difficult to verify.  
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Chapter 1: Introduction 

1.1 Introduction 

 

The electrical and computer engineering industry has been growing extremely fast for 

dozens of years (Moore’s Law [1]). Much of that growth is explained by the continued ability of 

semiconductor process engineers to decrease the size of transistors, allowing the number of 

transistors per economical chip to be doubled roughly every 18 months, following Moore’s Law. 

Using smaller feature size technologies not only allows for faster switching performance in each 

particular transistor, it also allows more of them to be packed into integrated circuits (ICs) of the 

same area and for roughly the same cost in high production volumes. The downside to this, 

however, is the fact that when shrinking their size, the actual performance of transistors becomes 

more and more difficult to control precisely [2]. In other words, the most recent technologies are 

more prone to variations caused by the production process and the statistics of the dopant atoms 

in the critical regions of the transistors, and consequently it is more difficult to assure the correct 

performance of all of the manufactured circuits in the chips. Therefore, the problem of accounting 

for process variations in integrated circuits is becoming increasingly important in circuit design. 

To test an IC design for correctness with respect to the intended behaviour specifications, 

it is standard procedure to perform a series of simulation tests on the circuit over sets of 

representative operating conditions, so-called corner analysis or design verification (DV). These 

tests produce results that must comply with the specifications for the design. With the latest 

technologies, DV could require verification for thousands of corners [3][4]. As such, there would 

be great benefit to developing a way to save time on this important part of integrated circuit 

development flow. 

In theory, DV does not necessarily require simulating each corner, however. The primary 

task is to ensure that the circuit complies with the performance specifications, which really means 

it is sufficient to only simulate the corner with the worst performance – the worst-case corner. This 

observation underlines the potential benefits of being able to find the worst-case corner for every 

specified behaviour. Simulating each corner, usually in a simulator like Simulation Program with 

Integrated Circuit Emphasis (SPICE)[5] can take a significantly long time. In general, DV does 
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not possess any a priori knowledge of the circuit under analysis: the only information supplied to 

the DV algorithm is the set of corners at which the designer expects correct performance from 

every function representing key circuit output characteristics, such as the propagation delays of a 

signal going from one input of the circuit to each of the outputs. Thus, the problem of selecting a 

set of worst-case corners can be viewed as the problem of optimising an expensive unknown 

(black-box) function over a common-sampled discrete domain. The problem of optimising 

expensive arbitrary functions has long been a topic of research, with most approaches looking at 

this problem from two perspectives: exploration and exploitation[6]. With exploration, the primary 

goal is to learn the larger scale shape of the function to build a satisfactory model that can then be 

used as the basis for taking exploitation actions. With exploitation, the focus is shifted to finding 

the optimum over the most likely input regions, identified with the help of the function model. If 

the model is good, then the found optimum should indeed be the best-case or worst-case estimate. 

However, if the function model is found to be poor, then we must attempt to improve the model. 

Maintaining a balance between exploration and exploitation is critical to successful optimisation 

of arbitrary functions. 

This thesis project is a continuation of the work of a previous MSc student Michael 

Shoniker [7]. That work made great use of Gaussian Process Regression (GPR), a general function 

modelling technique that provides both an estimation of the function value at any point in the input 

domain, as well as a measure of the uncertainty of the predicted function value. Having this model 

of the function under analysis allows us to construct algorithms that can take into account the 

confidence of estimated function values to decide whether a suspected function maximum can be 

confidently concluded to be the true global function maximum. The approach to optimisation is 

split into three separate stages that try to strike good balance between exploration and exploitation: 

the initial exploration phase, selection of corners to simulate next, and requirements for 

termination. For almost all cases, only a fraction of the total number of input corners will actually 

be selected for simulation. The information given by the Gaussian Process Model (GPM) that is 

built on the basis of the simulated corners is often enough to decide either that (a) a corner should 

be selected for simulation, or (b) it is unlikely to be the global optimum, and thus can be safely 

ignored. Applying this to the DV process would help to reduce the time from design to 

manufacture, as the time to simulate process corners is usually the major factor in the time delay 

cost of design verification.  
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The rest of this thesis is structured as follows. Chapter 2 summarises the work done by 

Michael Shoniker, and reviews the relevant theory behind the concepts used in this project. 

Chapter 3 takes a deeper look into the circuit datasets provided to us by our industrial partner and 

outlines some key problems with analysing them in the context of this project. Chapter 4 details 

the exploration of just how sure we, as researchers, can be of the expected performance of our 

developed algorithm and gives some thoughts on how to compensate for the downsides to existing 

approaches; the chapter also explores an alternative convergence procedure. Chapter 5 attempts to 

learn how the search for the function maximum can be improved by adopting a divide-and-conquer 

approach, providing an alternative view on exploration and next corner selection. Chapter 6 

reviews and summarises our insight into what function characteristics tend to make a dataset 

difficult to analyse. Finally, Chapter 7 summarises the thesis research and proposes directions for 

future work. 
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Chapter 2: Background and Overview 

2.1 Background on Process Variations 

2.1.1 Sources of Variation 

 

Variations in the properties of semiconductor devices must be carefully considered when 

designing IC systems so that the yield of manufactured devices will be acceptably high. The 

variations can affect every aspect of performance, most importantly, those related to timing and 

power consumption. There are several kinds of variation, the most important being the process 

(transistor), voltage and temperature variations. These variations are often called PVT variations 

by IC designers. 

Process variations arise inevitably from the production techniques used to manufacture 

CMOS (Complementary Metal-Oxide-Semiconductor) transistors and other semiconductor 

components (e.g., capacitors, resistances, and interconnecting conductors)[3]. Variations are 

introduced for the gate oxide thickness[8], the length of the channel, statistically inevitable 

fluctuations in doping concentrations of the channel region under the gate[9], line-edge and line-

width roughness[10], and variations in the overall quality of the wafer[11]. Process variations 

affect the threshold voltage required for a transistor to switch from the isolated to the conductive 

state, the speed of formation of the conductive channel (and thus the switching speed), and the 

effects of parasitic resistances and capacitances. 

Voltage variations arise from device variations in the power supply (VDD) circuits. A higher 

voltage means faster transistor switching, but also higher power consumption. A lower voltage not 

only makes the circuits slower, it also increases the chance of failure (not switching) for transistors 

in the circuit. Finally, temperature variations affect the mobility of charge carriers and hence the 

conductivity of transistors, with lower temperatures generally resulting in faster performance. 

With time, transistor properties degrade and aging processes, like Hot Carrier Injection 

(HCI) and Bias Temperature Instability (BTI), have bigger deleterious effects[12]. With the 

shrinking linewidths sizes in the newer semiconductor processes, interconnect variations are also 

becoming more noticeable in the performance of designs[13]. 
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Finally, the design of an IC itself can make variations in signal timing have significant 

effects on the performance of circuits. For example, flip-flop behaviour is very reliant on the timing 

of the clock signal with respect to control and data input signals. For example, the clock arriving 

too early or too late might result in setup and hold time violations. In a circuit that contains multiple 

flip-flops, internal race conditions can cause drastic changes in output behaviour as a result of PVT 

variations. 

2.1.2 Effects of PVT Variations 

 

PVT variations can have profound effects on the behaviour and performance of ICs. The 

wider distributions in semiconductor device properties mean that not only the designers should be 

more mindful of the challenges that arise when optimising for power, clock, and interconnect 

distributions, but the modelling of the devices themselves becomes more and more complex[14].  

In general, wider distributions also tend to reduce our confidence that each manufactured 

instance of a design will have the correct behaviour. For example, when looking at the statistical 

timing analysis of circuit blocks, larger parameter variations cause less certainty in determining 

the critical path of a signal[15]. This requires that the circuit must be designed to function correctly 

with worst-case PVT variations in mind. 

Sometimes due to variation effects established designs become less desirable in complex 

systems. For example, the Static Random-Access Memory (SRAM) cell, a high-speed volatile 

memory design that is widely used in ICs, is defined by the stability of operations. With increasing 

variability and decreasing power supply levels, the classical 6T design[16], an SRAM cell built 

using six transistors, becomes less and less stable against noise and other transients in the 

surrounding interconnect. An SRAM must be extremely reliable as millions of them are used in 

each chip. Therefore, degrading reliability means new robust designs need to be developed. For 

example, a more stable 8T-SRAM design[17] has gained favour over the traditional 6T-SRAM 

design. The 8T-SRAM scales to small technologies much better than the 6T-SRAM, and thus it is 

becoming widely used in industry. 
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Integrated circuit designers have developed a variety of techniques for evaluating the 

effects of process variations on circuit behaviour. Some of these techniques, ranging from simple 

to complex verification methodologies, will be described next. 

2.2 Background on Design Verification 

2.2.1 Early Design Verification 

 

Up until the last several semiconductor generations, to ensure effective design verification 

against PVT variations, it was sufficient to verify circuit behaviour at the nominal and extreme 

(but still acceptable) conditions, usually SS, SF, TT, FS, and FF, where S (for slow), F (for fast), 

and T (for typical) denote the relative switching speeds of the NMOS or PMOS transistors (N-

channel and P-channel Metal-Oxide-Semiconductor, respectively)[18]. The assumption was that 

if the circuit passes the TT condition test as well as the edge cases (SS, SF, FS, and FF), then the 

circuit behaviour of manufactured devices would correspond to the specifications at all other legal 

conditions. While it was recognised that such models do not give the most accurate estimates of 

performance over all possible PVT conditions, they still could be used to ensure satisfactory yield 

at production. These strategies were widely used in practice as the technologies were predictable 

enough that even the most rigorous algorithms would require only a few more verification 

simulations [19]. 

2.2.2 The Need for More Variation-aware Design Techniques 

 

With further shrinking of transistor sizes, however, it was noticed that the effects of PVT 

variations became more significant [20][21][22][23]. The latest technologies also require a 

relatively large number of corners to be simulated to test completely [24]. One reason is that over 

several generations, the absolute effect of process variations introduced by manufacturing stages 

contributes more variation to the device performance in relative terms. So, for example, the 

thickness of the gate oxide can vary by the thickness of several atom layers. However, as the 

thickness of the gate oxide is itself only roughly a dozen atoms thick, the relative effect of the 

thickness variation is big. Another example is that the number of doping atoms has also decreased 

significantly with the smaller transistor channel volumes in the newest technologies, and so the 

inevitable statistical fluctuations in the exact number of doping atoms in the channel region makes 
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a bigger difference. As such, with time grew the need for more precise statistical modelling of 

circuit response[25]. 

2.2.2.1 Monte-Carlo Analysis 

 

The most reliable and straightforward way to ensure the correctness of a circuit at all PVT 

conditions is to perform a Monte-Carlo analysis[26]. Monte-Carlo analysis generates a huge 

number of random corners and simulates each of them to receive a response. In its most expensive 

form, the parameters of each device are varied randomly over distributions. From a sufficiently 

large number of simulations, bell curve distributions are constructed and the likelihood that a 

response variable will lie within under a certain range is estimated. 

With more sources of parameter variations, however, the number of corners to be simulated 

with Monte-Carlo analysis grows very fast. More complex designs require more optimized power 

supply, resulting in multiple power supplies, each of which has its own variation. IC designers 

sometimes have a choice in which type of transistors to use, prioritising speed of switching or 

power consumption. Finally, increased variability of separate parameters makes the general 

performance distributions less linear. Thus, more simplified and less expensive approaches to DV 

are used. 

2.2.2.2 Design of Experiments 

 

Design of Experiments (DoE) is a method for choosing the most informative set of input 

conditions of a process over a space of possible operating conditions so that the performance of 

the process can be assessed and then optimised [27]. In this project’s problem, the theory of DoE 

can be applied to select the set of PVT corners at which a design needs to be verified. The datasets 

used for analysis in this work were themselves generated from full-factorial DoE designs, by our 

industrial collaborator, SED Systems (Saskatoon). 

The main goal of DoE is to quantify both the effects of each input (factor) on the output 

(observation or response) as well as the effects of pairwise and high-order interactions among these 

inputs. The most reliable way to estimate these effects is to perform a full-factorial design. A full-

factorial design sweeps through every possible combination of input parameters, given the finite 



8 

 

sets of values that each input parameter can assume. As such, the size of a full-factorial design 

(i.e., the number of corners to test) is equal to the product of the number of possible values that 

each input can adopt. So, for example, if there are n dimensions, and each one can take one of ki 

values, then the total size of a full-factorial design will be equal to ∏ 𝑘𝑖
𝑛
𝑖=1  corners. Clearly, the 

size of a full-factorial design grows exponentially in the number n of independent parameters. 

Consider an experiment with three factors A, B and C, which take on one of two possible 

values throughout the experiment. There are various ways of choosing those two values for an 

input that might have three or more possible levels of discrete values, or a continuous range of 

values. Following established convention[27], the high value and the low value of each factor (or 

input) are denoted simply as + and -, respectively. Then, a full factorial experiment can be 

summarised as shown in Table 2.1. Note that the entries in the Response Value column use a 

special DoE notation, rather than a standard algebraic notation. For example, (1) denotes the 

response when all the inputs are at their low level, while ac means that factors A and C are at their 

high levels, while B is at its low level. 

A B C 
Response 

Value 

- - - (1) 

+ - - a 

- + - b 

- - + c 

+ + - ab 

+ - + ac 

- + + bc 

+ + + abc 

Table 2.1 23 Full-Factorial Design for Three Factors 

Then, to estimate the effect on the response of each factor and all possible interactions 

among the factors, a linear combination of responses needs to be taken. For example, to estimate 

the overall effect of factor A, all that needs to be done is to subtract the average response of all the 

observations where A was at its low level (denoted as �̅�𝐴− in the equation below) from the average 

of all the observations where A was at its high level (denoted as �̅�𝐴+ in the equation below). The 

same logic applies to factors B and C. Mathematically, the effect of A is 

𝐴 = �̅�𝐴+ − �̅�𝐴− =
𝑎 + 𝑎𝑏 + 𝑎𝑐 + 𝑎𝑏𝑐

4
−
(1) + 𝑏 + 𝑐 + 𝑏𝑐

4
 (2. 1) 
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To estimate the effect of two-factor interactions, for example AB, all that is needed is to 

subtract the average of the responses for the runs where A and B were at different levels (denoted 

�̅�𝐴⊕𝐵 in the equation below) from those responses where A and B were at the same level (denoted 

�̅�𝐴⇔𝐵 in the equation below). 

𝐴𝐵 = �̅�𝐴⇔𝐵 − �̅�𝐴⊕𝐵 =
𝑎𝑏𝑐 + 𝑎𝑏 + 𝑐 + (1)

4
−
𝑏𝑐 + 𝑏 + 𝑎𝑐 + 𝑎

4
(2. 2) 

Finally, the tri-factor interaction is defined as the difference between the AB interaction at 

different levels of C. 

𝐴𝐵𝐶 = �̅�𝐴𝐵
𝐶+
− �̅�𝐴𝐵𝐶− =

𝑎𝑏𝑐 + 𝑐 − 𝑎𝑐 − 𝑏𝑐

4
−
(1) + 𝑎𝑏 − 𝑎 − 𝑏

4
 (2. 3) 

A partial-factorial design, on the other hand, does not require that its corners assume every 

possible value but instead considers just enough corners to give an idea about the contribution of 

each input dimension to the value of the function under analysis. The result is a more compact 

design, but one that cannot distinguish between certain combinations of effects. For example, 

consider the partial-factorial design in Table 2.3. The design is generated using the key I=ABC. 

The key (also called the defining relation) is the combination of factors that is used to generate the 

partial-factorial design. The choice of + and – is particularly useful here as using the algebraic 

multiplication operation on these signs will produce a “key” column. Table 2.2 demonstrates this 

rule. The key is then used to extract the combinations of factors A, B and C that result in a + in the 

column of Table 2.2 for the key. So, for example, with key I=ABC, Table 2.3 is produced for the 

partial-factorial design. 

A B C AB AC BC ABC 

- - - + + + - 

+ - - - - + + 

- + - - + - + 

- - + + - - + 

+ + - + - - - 

+ - + - + - - 

- + + - - + - 

+ + + + + + + 

Table 2.2 Factorial Effects of a 23 Full-Factorial Design for Three Factors 
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A B C 
Response 

Value 

+ - - a 

- + - b 

- - + c 

+ + + abc 

Table 2.3 23-1 Partial-factorial Design with Key I=ABC 

This design is compact but has disadvantages. For example, to calculate the effect of factor 

A, following the procedure described in the preceding paragraphs, one needs to calculate the 

following 

𝐴 =
𝑎 + 𝑎𝑏𝑐

2
−
𝑏 + 𝑐

2
=
1

2
(𝑎 − 𝑏 − 𝑐 + 𝑎𝑏𝑐) (2. 4) 

Then, to calculate the effect of the two-factor interaction BC, the formula is 

𝐵𝐶 =
𝑎𝑏𝑐 + 𝑎

2
−
𝑏 + 𝑐

2
=
1

2
(𝑎 − 𝑏 − 𝑐 + 𝑎𝑏𝑐) (2. 5) 

which is exactly the same effect as 𝐴. So, in essence, by performing these calculations, the designer 

really gets information on the combined effects of A and BC, that is A + BC, meaning that for the 

key I=ABC, the effects of A and BC are aliased. And, indeed, Table 2.2 shows that the values in 

the columns A and BC have the same values in every row where the column ABC is positive. For 

a more in-depth discussion of partial-factorial designs, refer to [27]. 

Full-factorial and partial-factorial designs, however, do not have to be defined over only 

two levels. By generating samples that adopt one of a number of intermediate values along one or 

more input dimensions, DoE analysis makes possible a more complicated and also likely more 

accurate model of a function. This leads to pk designs, where p ≥ 2 is the number of levels in an 

input dimension. Note that for pk designs the number of corners grows extremely fast with the 

number p of extra levels and the number k of extra dimensions. To correctly represent a strongly 

non-linear function, thousands of simulations would likely be required, greatly increasing the time 

required for design verification. This problem has a solution, presented in the previous work on 

the subject, and described in Section 2.3. 

A central composite design (CCD) is often used to construct quadratic response surface 

models[28]. In addition to the points selected by a full factorial or a fractional factorial design, it 

also includes a collection of “star points”, corners that are located either at the centre of the faces 
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of the partial or full factorial hypercube design (thus generating a central composite faced design 

(CCF)) or equidistantly from each other and the factorial hypercube on a sphere encircling the 

factorial hypercube design. The number of star points is equal to the number of faces of the 

hypercube, or twice the number of factors. Designers differentiate between the circumscribed 

(CCC) and the inscribed (CCI) central composite designs. The difference between them is that 

CCC goes beyond the defined boundaries of the experiment, while CCI stays within them. Also, 

the hypercube of the factorial design occupies the entire defined space in a CCC design, whereas 

in a CCI design it is constructed so that the encircling sphere is within the boundaries. The star 

points provide information about the curvature of the response functions, which is used to build a 

quadratic response surface model (RSM). Figure 2.1 illustrates the structures of CCC, CCF and 

CCI designs on a two-dimensional example. 

 

Figure 2.1 Illustration of Central Composite Designs for the Two-Dimensional Case 

Yet another interesting design that will be used later in the thesis project is the Plackett-

Burman design. This design minimizes the variance of observations for every input dimension 

with the smallest number of samples[29]. Specifically, the number of samples in the design is 

always a multiple of four. A Plackett-Burman design of size m can cover between m-4 and m-1 

input dimensions. Such compactness requires the assumption that the effect of interactions 

between factors (that is, input dimensions) is weak or negligible. However, as an initial assumption 

concerning the dataset for the GPM, this assumption is as good as any. As such, a Plackett-Burman 

design has the potential to be very helpful at this stage of the algorithm. A representation of a 

Plackett-Burman design is provided in Table 2.4. 

In Table 2.4, the rows represent samples in the design, and columns represent the extreme 

values (+ for high and - for low) that the input dimension attains in each sample. In a Plackett-

Burman design, every pair of high and low levels (that is ++, +-, -+, and --) is repeated the same 

CCC 
CCF CCI 
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number of times for m-1 samples, the one sample left out having every input dimension at the high 

level. Also, any subset of columns is itself a valid Plackett-Burman design. Removing rows 9 

through 12 (as well as removing between four and seven columns) from Table 2.4 will represent a 

Plackett-Burman design for a 4- to 7-factor experiment, depending on the number of columns 

removed. 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 

1 + - + + + - - - + - - 

2 - + + + - - - + - - + 

3 + + + - - - + - - + - 

4 + + - - - + - - + - + 

5 + - - - + - - + - + + 

6 - - - + - - + - + + + 

7 - - + - - + - + + + - 

8 - + - - + - + + + - - 

9 + - - + - + + + - - - 

10 - - + - + + + - - - + 

11 - + - + + + - - - + - 

12 + + + + + + + + + + +  

Table 2.4 Plackett-Burman Design for up to 11 Input Dimensions, m=12 

In this work, the industrial circuit datasets supplied to us by our sponsor (Solido Design 

Automation) are full-factorial with respect to a sampled input space. At the same time, these 

datasets completely define the search space for the algorithm, and the performance of the algorithm 

is defined by how many points from that search space can be safely omitted from being selected 

for precise simulation when searching for the global maximum value. Sometimes, it will be 

necessary to construct a DoE design on top of the search space defined by another DoE design in 

order to get a first understanding of a subset of the original input space. The exact procedures for 

that will be described in the relevant later sections of this thesis. 

2.3 Review of Previous Work 

2.3.1 Discussion of the Framework Setup 

 

Design of Experiment techniques, briefly described in Section 2.2.2.2, are intended to 

obtain an informative set of function values as the basis for an initial function model. Other factors 

(e.g., foundry specifications) provide an input grid with pi ≥ 2 of levels along each i-th PVT 
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dimension, located on the defined step size along the dimension. The choice of the input grid can 

have important implications on function modelling. 

Note that for conventional PVT corner simulations, the input domain of the functions is 

represented as discrete, rather than continuous. The values not sampled by the input grid are 

assumed to be easily interpolated by, for example, a simple linear or quadratic Response Surface 

Model (RSM)[28]. However, this is not always a correct assumption. An unlucky design could 

miss a high value region, or introduce a sudden perceived discontinuity in the modelled function, 

something simple linear or quadratic RSMs cannot interpolate accurately. As most of the datasets 

provided for the project are from unknown circuits, the datasets must be assumed to be error-free 

samples of the circuit output functions and that the full-factorial design is a perfectly sampled 

representation of those functions. The commercial tool provided by our industrial partner, Solido 

Design Automation, allows the designer to specify their own DoE for the FastPVT design 

verification, which has the same functionality explored in this project, and the reader will 

understandably want to see comparisons with FastPVT. Therefore, this assumption is valid for 

application in the industry. Lastly, it can be noted that the algorithms presented in this work do not 

need to be constrained by an input grid as Gaussian Process Regression can give an estimate of 

the value and uncertainty in the value for any set of inputs, even ones that are off the defined grid. 

While going off a given input grid is not a goal of the research, it could be an interesting direction 

for future work. 

An additional constraint on the research problem is that each function is a-priori assumed 

to be an arbitrary, expensive-to-evaluate black-box function. This means that nothing is known 

about it or its internal structure, and each evaluation at any input point requires significantly more 

time than it takes to construct the mathematical model of the function. This also means that the 

primary goal is then to minimise the number of samples (that is, function evaluations) of the black-

box function. As such the primary metric of each version of the algorithm is the speedup, defined 

as the total number of points in the input domain divided by the number of samples required to 

declare a point as the global optimum. 

As a simplifying approximation, any operation during the modelling and optimisation of a 

black-box function can be categorised as either an exploration action or an exploitation action. 

Exploration means that the focus is placed on increasing the knowledge of the larger-scale 
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properties of the function, such as establishing the general range of possible function values or 

narrowing down the likely optimum regions. Exploitation means that the amassed knowledge is 

used to place the computational focus on the most promising region. So, for example, once the 

confidence threshold in a certain subregion of the search space is reached, the exploitative action 

would be to focus on exploring this subregion. As the algorithm proceeds, there is less and less 

distinction between these two notions. Clearly ensuring a good balance between exploration and 

exploitation is critical to successful optimisation. 

Another way to look at the differences between exploration and exploitation is to say that 

exploration involves unbiased sampling over less well-known input regions (at least initially), 

whereas exploitation is biased sampling where the bias is controlled by heuristic rules. With this 

point of view, an interesting discussion can be had on the trade-off between randomness and 

determinism. On the one hand, deterministic solutions will lead to consistent and reproducible, 

possibly even better, results. For example, as will be explored in this thesis, having a deterministic 

solution to the initial exploration stage often leads to faster and in most cases more accurate 

convergence to the global maximum (see Section 5.1.2). On the other hand, incorporating some 

randomness allows traps created by deterministic rules to be avoided. So, as will be demonstrated, 

while a deterministic initial exploration phase leads to faster and more accurate convergence most 

of the times, the other times the results are unacceptably worse than the true global maximum. And 

as effective exploitation depends on the result of the knowledge gained from exploration, 

randomness indirectly affects that part of optimisation as well. 

Finally, while optimising the cost of building mathematical models is not a concern of this 

project, there are still a few points to consider. First, it might be possible to take advantage of the 

computational capability available to run the algorithms. Taking advantage of multithreading, for 

example, might be beneficial to simulating several points or optimising several subregions at once, 

while taking the same total processing time as for a serial implementation. Another thing to 

consider would be how well the assumptions work together, whether some of the new ones might 

contradict or exclude the assumptions that were made earlier. Such insights can form the basis for 

developing new heuristics. However, having many heuristics might make termination of the 

algorithm less optimal, for example if there are no clearly defined rules on when one heuristic 

should be applicable over another. To limit such downsides, it would be beneficial to develop 
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heuristics that are applied based on the gathered information on the dataset during the course of 

execution. 

2.3.2 Overview of Gaussian Process Regression 

 

Gaussian Process Regression (GPR), also known as kriging, is a regression (function 

fitting) technique that makes use of Gaussian Processes (GPs). A Gaussian Process is defined to 

be a statistical distribution over a number of samples where each sample is represented by a 

Gaussian random variable and any finite number of the samples has a jointly Gaussian distribution 

[30]. A D-dimensional GP has samples 𝑿 ∈ ℝ𝐷 where 𝐷 > 1. Kriging was originally developed 

for the purposes of mining engineering, with the primary task being to approximate how much 

material (gold ore, in the original problem) was present in an area based on the a-priori spatial 

distribution of a few known samples in the area[31]. The description of GP in Section 2.3.2.2 is 

valid for the implementation of the python package sckit-learn, version 0.18.0 and above. The 

version of the package used in the project is 0.16.1, and is described in Section 2.3.2.3. The 

difference between the two implementations is primarily in the way the variances of the predictions 

are estimated, and are explained in more detail towards the end of their respective sections. 

2.3.2.1 General Overview of GPR 

 

A GP is completely defined by the mean and covariance functions, which together 

represent the target function 𝑓(𝑿). The mean function 𝜇(𝑿) is usually 0, and the covariance 

function is generated from the so-called kernel function of the Gaussian Process Model (GPM). 

The mean 𝜇() and covariance 𝑘() functions, respectively, are defined as follows: 

𝜇(𝑿) = 𝐸[𝑓(𝑿)] (2. 6) 

𝑘(𝑿,𝑿′) = 𝐸[(𝑓(𝑿) − 𝜇(𝑿))(𝑓(𝑿′) − 𝜇(𝑿′))] (2. 7) 

where 𝐸[𝑓(𝑿)] denotes the expected values of the Gaussian process 𝑓(𝑿)~𝐺𝑃(𝜇(𝑿),𝑘(𝑿,𝑿′)) 

where 𝑿 ∈ ℝ𝐷  and 𝑿′ ∈ ℝ𝐷  are any two input points.  

For discrete datasets, covariance functions are replaced with covariance matrices 𝛴 whose 

entries correspond to the values of the covariance function for pairs of points. Covariance functions 
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themselves are generated from the kernel functions by changing the varying parameters of the 

kernel (also called hyperparameters). Kernel functions specify the prior distributions over the 

training points, and the posterior distributions over the test points, with information available from 

the training points. Essentially, what this means is that for each test point, we can draw the 

distribution, with mean and variance, of the random variable corresponding to the optimised 

function value at nearby input points. This information can be used not only to predict function 

values, but it also gives an easy way to estimate the confidence in each prediction (see Figure 2.2, 

generated using scikit-learn 0.16.1).  

 

Figure 2.2 Demonstration of Gaussian Process Regression for the Function f(x) = x*sin(x) 

In Figure 2.2, the red dots are the training points (known function values or function 

samples) that are used to construct the GPM. The shaded blue region shows the 95% likelihood 

region of the values of the posterior distributions (functions) generated from the absolute 

exponential kernel based on the observed values of the training points that go through the training 

points.  

The absolute exponential kernel function was used to construct Figure 2.2. This kernel 

defines functions that expect discontinuities or sudden changes in values and instantaneous slopes 

of the tangents. Contrast to this with the Radial Basis Function (RBF) kernel, which generates 

infinitely differentiable (i.e., smooth) functions. Some other examples of kernels are the rational 
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quadratic and the squared sine exponential kernels. Figure 2.3 (generated in scikit-learn 0.18.1) 

illustrates the differences between the four kernels.  

 

 

Figure 2.3 Comparison of Different Kernels for GPR 

The mathematical definitions of the kernels are the following[32]. The RBF kernel is 

defined as 
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𝑘(𝑥𝑖, 𝑥𝑗) = exp (−
1

2
𝑑 (
𝑥𝑖
𝑙
,
𝑥𝑗
𝑙
)
2

) (2. 8) 

where 𝑥𝑖 and 𝑥𝑗 are the input values of any two points, 𝑑() is the function of distance between the 

points, and 𝑙 is the length scale that defines the extent of interaction between two points. The 

absolute exponential kernel is defined similarly to RBF, except it only takes the distance between 

the points, rather than the square of the distance 

𝑘(𝑥𝑖, 𝑥𝑗) = exp (−
1

2
𝑑 (
𝑥𝑖
𝑙
,
𝑥𝑗
𝑙
)) (2. 9) 

The rational quadratic kernel is defined as follows 

𝑘(𝑥𝑖, 𝑥𝑗) = (1 +
𝑑(𝑥𝑖, 𝑥𝑗)

2

2𝛼𝑙2
)

−𝛼

(2. 10) 

where the new parameter 𝛼, called the scale mixture, defines how much effect the distance between 

these two points should influence the predictions and uncertainties for the points. Finally, the 

squared sine exponential kernel is defined as 

𝑘(𝑥𝑖, 𝑥𝑗) = exp

(

 
 
−2

(

 
 
sin (

𝜋
𝑝 ∗ 𝑑

(𝑥𝑖, 𝑥𝑗))

𝑙

)

 
 

2

)

 
 

(2. 11) 

where 𝜋 is the irrational constant and 𝑝 is the periodicity parameter that defines how soon the 

pattern of the output function will start repeating. 

The top left part of Figure 2.3 shows how regression is performed using the absolute 

exponential kernel (which is obtained through setting the hyperparameter ν=0.5 for the Matern 

kernel [30]) on the function 𝑓(𝑥) = 𝑥 ∗ sin ((𝑥 − 2.5)2). The top row shows 20 samples from the 

prior (uninformed) distributions. From those samples, it can be seen what kind of functions the 

GPM will use to model 𝑓(𝑥). The bottom row shows the final results of the regression. The thick 

solid black line is the predicted mean function 𝜇(𝑿) (compared to the thick dashed red line of the 

true function to be predicted), and the thin lines are the posterior (informed) functions. The top 

right part of Figure 2.3 shows the same information produced by applying the RBF kernel. Notice 
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how the samples of that kernel are much smoother than those of the absolute exponential. As the 

function to be modelled is itself a smooth one, RBF gives a smaller uncertainty for its prediction 

compared to that of the absolute exponential even if the mean predicted functions are similarly 

accurate in their predictions of the true function. The squared sine exponential and the rational 

quadratic kernels (bottom left and right, respectively) also show smooth predictions but provide 

more uncertainty and, in the case of squared sine exponential, less accurate predictions. It is 

interesting to note that for this function for this collection of samples and unrestricted ranges of 

the length scale and the periodicity, the squared sine exponential produces the exact same 

predictions and uncertainties (as well as the same posterior samples) as the RBF kernel. It is unwise 

to have unrestricted hyperparameters as it takes a long time to finalise the model. 

2.3.2.2 Bayesian approach 

 

The approach implemented in scikit-learn 0.18.0 and above follows that of Gaussian 

Process for Machine Learning[30]. According to that approach, a function is modelled in the form 

𝑦 = 𝑓(𝒙) + 𝜀, where 𝑓(𝒙) = 𝒙𝑇𝒘 is the function model, 𝒘 is the weight vector, meaning the 

function model is represented as a linear combination of its inputs, and 𝜀 ~ 𝑁(0, 𝜎𝑛
2) is the 

Gaussian independent and identically distributed error with zero mean and variance 𝜎𝑛
2. Given the 

set of input points 𝑋, and the weights 𝒘, the likelihood of observing the number 𝑛 outputs 𝒚 for a 

joint Gaussian process is the product of the likelihood of observing a separate instance 𝑦𝑖 of 𝒚. 

𝑝(𝒚|𝑋,𝒘) =  ∏𝑝(𝑦𝑖|𝑋, 𝒘) =  ∏
1

√2𝜋𝜎𝑛2
exp (−

(𝑦𝑖 − 𝒙𝑖
𝑇𝒘)2

2𝜎𝑛2
)

𝑛

𝑖=1

𝑛

𝑖=1

 

𝑝(𝒚|𝑋,𝒘) =
1

(2𝜋𝜎𝑛2)
𝑛
2

exp (−
1

2𝜎𝑛
2
|𝒚 − 𝑋𝑇𝒘|2) = 𝑁(𝑋𝑇𝒘, 𝜎𝑛

2𝐼) (2. 12) 

where 𝐼 is the identity matrix and | ∙ | is the L2 norm (the Euclidean length of a vector). Thus, the 

total likelihood is also Gaussian distributed. 

 In Bayesian models, we learn the likelihood of an event based on observations (posterior 

likelihood) by first defining a prior likelihood (the best guess for the likelihood of the event) and 
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the likelihood of observing the targets given the inputs and the weights (in this case, Equation 

2.12). Then, the following formula is applied. 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑝𝑟𝑖𝑜𝑟

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
 

which translates to regression as 

𝑝(𝒘|𝒚, 𝑋) =
𝑝(𝒚|𝑋, 𝒘)𝑝(𝒘)

𝑝(𝒚|𝑋)
(2. 13) 

essentially defining how likely it is that the weights 𝒘 are to give the right linear coefficients for 

the 𝑓(𝒙) = 𝒙𝑇𝒘 model based on the observed targets 𝒚. The prior (uninformed) distribution of the 

weights 𝒘, 𝑝(𝒘), is usually taken as a zero-mean Gaussian distribution 𝒘 ~ 𝑁(𝟎, 𝛴𝑝), where 𝛴𝑝 

is the prior covariance matrix, which is generated from the kernel (see Figure 2.3 and the related 

discussion). The marginal likelihood is marginalization of the likelihood over the weights 𝒘 to 

give the likelihood independent of the weights’ probability 

𝑝(𝒚|𝑋) = ∫𝑝(𝒚|𝑋, 𝒘)𝑝(𝒘)𝑑𝒘 (2. 14) 

 Then, the distribution of the model at a test point 𝒙∗ given the observations 𝒚 at training 

points 𝑋 is given by 

𝑝(𝑓∗|𝒙∗, 𝑋, 𝒚) = ∫𝑝(𝑓∗|𝒙∗, 𝒘) 𝑝(𝒘|𝒚, 𝑋)𝑑𝒘 

𝑝(𝑓∗|𝒙∗, 𝑋, 𝒚) = 𝑁 (
1

𝜎𝑛2
𝒙∗
𝑇 (
1

𝜎𝑛2
𝑋𝑋𝑇 + 𝛴𝑝

−1)
−1

𝑋𝒚, 𝒙∗
𝑇 (
1

𝜎𝑛2
𝑋𝑋𝑇 + 𝛴𝑝

−1)
−1

𝒙∗) (2. 15) 

is also Gaussian distributed with the mean and variance as specified in Equation 2.15. 

In all figures in Figure 2.3, the shaded region corresponds to the 68.3% likelihood region, 

which can also be called the 1-sigma confidence region. The mean functions are linear 

combinations of the priors or posteriors, which are samples of the kernel. For a continuous 

functional optimisation, it can be said that the regression task of a GPM is to find the best linear 

combination of the posterior functions. A better linear combination is assumed to have a larger log 

likelihood. Also note that the parameters, like length_scale, changed between the top and bottom 
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figures. The parameter length_scale governs to the length scale of the kernel, and defines the extent 

of interaction between the uncertainties of any two points. Having an overly small length scale 

tends to give myopic estimates, meaning that the uncertainty rises too quickly with the distance 

between the test point and the closest training point. Conversely, having an overly big length scale 

would mean that there is too little effect of the distance between test and training points on the 

uncertainties, and as a result the uncertainties are too similar for every test point. Thus, optimising 

the length scale is a very important part of regression. The process of regression goes on until the 

log likelihood does not rise any more. The log likelihood in this case is a measure of how much 

the model is confident in its current selection of hyperparameters, and is the natural logarithm of 

the likelihood of a set of parameters. For a set of hyperparameters 𝜃 given observations 𝑋, the 

likelihood is defined as 

𝐿(𝜃|𝑌, 𝑋) = 𝑃(𝑌|𝜃, 𝑋) (2. 16) 

where 𝑃(𝑌|𝜃, 𝑋) is the probability of having observations 𝑌 given the chosen hyperparameters 𝜃 

and inputs 𝑋. From another point of view, the likelihood (and consequently the log likelihood) is 

a measure of the validity of the hyperparameters 𝜃, given by the evidence 𝑌. For GPR, the log 

likelihood is given by  

log𝑃(𝒚|𝑋) = −
1

2
𝒚T(𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼) −1𝒚 −
1

2
log|𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼| −
𝑛

2
log(2𝜋) (2. 17) 

where 𝒚 is the observed function values (training samples), 𝐾(𝑋,𝑋) is the covariance (also known 

as Gram) matrix, generated from the covariance (kernel) function with set hyperparameters for the 

input values of the observed values 𝑋, 𝜎𝑛
2 is the square of the allowed noise level, and 𝑛 is the 

number of observations (training samples)[30]. The covariance matrix 𝐾(𝑋, 𝑋) is calculated as 

𝐾(𝑋,𝑋) =  𝚽(X)TΣ𝑝𝚽(X) (2. 18) 

where Σ𝑝 is the prior covariance matrix and 𝚽(X) is the collection of projected inputs X, the 

projection function being defined as the kernel with the set θ of hyperparameters, and each entry 

of 𝐾(𝑋,𝑋) is equal to 

𝑘(𝒙, 𝒙∗) =  𝜑(𝒙)
TΣ𝑝𝜑(𝒙∗) (2. 19) 
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To produce the mean estimates and the variance, the covariance function with the 

hyperparameters that lead to the highest log likelihood is used to calculate the following for each 

test point 𝒙∗: 

𝑓∗̅ = 𝐾(𝑋, 𝒙∗)
T(𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼)−1𝒇 (2. 20) 

𝕍[𝑓∗] = 𝑘(𝒙∗, 𝒙∗) − 𝐾(𝑋, 𝒙∗)
T(𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼)−1𝐾(𝑋, 𝒙∗) (2. 21) 

here 𝑓∗̅ is the predicted mean value at 𝒙∗, as before, 𝒇 is the true values of the training points, 𝕍[𝑓∗] 

is the predicted variance (also equal to the square of the predicted standard deviation at 𝒙∗), and 

𝜎𝑛 is the allowed noise in the model. The square of 𝜎𝑛 is multiplied by the identity matrix 𝐼 to have 

the same dimensions as 𝐾(𝑋,𝑋), adding the square of the noise magnitude to the main diagonal 

of the covariance matrix to model noisy observations. 

2.3.2.3 Best Linear Unbiased Prediction 

 

In the implementation of scikit-learn 0.16.1, the BLUP for every point is calculated 

instead[33], adapted from the MATLAB software package DACE (Design and Analysis of 

Computer Experiments)[34]. Best linear unbiased prediction means that the predicted mean of the 

function is a linear combination of the posterior functions, the expected difference between the 

predicted values and the true values is 0 (i.e., the prediction is unbiased), and the selected linear 

combination of the posterior functions minimises the variance (mean squared error) of the 

predictions, so it is the best fit. The conditions give a constrained minimisation problem to find the 

linear coefficients 𝑎(𝑋) of the linear combination: 

𝑎(𝑋∗) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑎(𝑋)𝐸[(𝐺(𝑋) − 𝑎(𝑋)
𝑇𝑦)2]  

𝑠. 𝑡. 𝐸[𝐺(𝑋) − 𝑎(𝑋)𝑇𝑦] = 0 (2. 22) 

for the multi-objective function to be predicted 𝐺(𝑋) and the observed values (i.e., training 

samples) 𝑦. The error in the predictions is equal to 

�̂�(𝑋) − 𝑦(𝑋) = 𝑎(𝑋)𝑇𝑦 − 𝑦(𝑋) = 𝑎(𝑋)𝑇(𝐹𝛽 + 𝑍) − (𝑓𝑇𝛽 + 𝑧) 

�̂�(𝑋) − 𝑦(𝑋) = 𝑎(𝑋)𝑇𝑍 − 𝑧 + (𝐹𝑇𝑎(𝑋) − 𝑓)𝑇𝛽 (2. 23) 
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where 𝐹 is the set of projections of the training points into the kernel space, 𝑓 is the projection of 

the single test point under consideration into the kernel space (both of them together are equivalent 

to 𝚽(X) in Section 2.3.2.1), 𝛽 is the set of linear coefficients for the projections, and 𝑍 is the 

collection of regression errors 𝑧 at every test point. For the unbiased predictor, 𝐹𝑇𝑎(𝑋) − 𝑓 = 0. 

And so, the mean squared error (MSE) in the predictions (which for unbiased predictors is equal 

to the variance) is calculated as 

𝜎(𝑋) =  𝐸 [(�̂�(𝑋) − 𝑦(𝑋))
2
] = 𝐸[(𝑎(𝑋)𝑇𝑍 − 𝑧)2] = 𝐸[𝑧2 + 𝑎(𝑋)𝑇𝑍𝑍𝑇𝑎(𝑋) − 2𝑎(𝑋)𝑇𝑍𝑧] 

𝜎(𝑋) =  𝜎2(1 + 𝑎(𝑋)𝑇𝑅𝑎(𝑋) − 2𝑎(𝑋)𝑇𝑟) = 𝜎2(1 + 𝑎(𝑋)𝑇(𝑅𝑎(𝑋) − 2𝑟)) (2. 24) 

where 𝜎 is the MSE of the predictions for the training points (i.e., the process variance), and 𝑅 is 

the symmetric correlation matrix (equivalent to the noisy covariance matrix 𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼 in 

Section 2.3.2.2) with entries 𝑟 (equivalent to 𝐾(𝑋, 𝒙∗) in Section 2.3.2.2) that define the similarity 

of the predictions and the errors between two different points in the input space.  

The goal of the BLUP is to minimize the MSE of the predictions subject to the constraints 

in Equation 2.22. For that, the method of Lagrange multipliers is used and the Lagrangian function 

is constructed 

𝐿(𝑎(𝑋), 𝜆) =  𝜎2(1 + 𝑎(𝑋)𝑇𝑅𝑎(𝑋) − 2𝑎(𝑋)𝑇𝑟) − 𝜆𝑇(𝐹𝑇𝑎(𝑋) − 𝑓) (2. 25) 

where 𝜆 is a Lagrange multiplier. Then, the gradient is 𝐿′(𝑎(𝑋), 𝜆) = 2𝜎2(𝑅𝑎(𝑋) − 𝑟) − 𝐹𝜆, and 

the system of equations is constructed 

{
2𝜎2(𝑅𝑎(𝑋) − 𝑟) − 𝐹𝜆 = 0

𝐹𝑇𝑎(𝑋) − 𝑓 = 0
(2. 26) 

 Substituting �̃� = −
𝜆

2𝜎2
 into Equation 2.26 leads to the following matrix 

[
𝑅 𝐹
𝐹𝑇 0

] [
𝑎(𝑋)

�̃�
] = [

𝑟
𝑓(𝑋)] (2. 27) 

and finally, we solve for �̃� and 𝑎(𝑋) to get 

�̃� = (𝐹𝑇𝑅−1𝐹)−1(𝐹𝑇𝑅−1𝑟 − 𝑓) (2. 28) 

𝑎(𝑋) = 𝑅−1(𝑟 − 𝐹�̃�) (2. 29) 
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 Having 𝑎(𝑋), and remembering that 𝑅 and 𝑅−1 are symmetric, we can substitute 𝑎(𝑋) to 

find the expression for the mean function of the prediction 

�̂�(𝑋) = 𝑎(𝑋)𝑇𝑦 = (𝑟 − 𝐹�̃�)
𝑇
𝑅−1𝑦 

�̂�(𝑋) = 𝑟𝑇𝑅−1𝑦 − (𝐹𝑇𝑅−1𝑟 − 𝑓)𝑇(𝐹𝑇𝑅−1𝐹)−1𝐹𝑇𝑅−1𝑦 (2. 30) 

 Note that, as 𝑅 is equivalent to 𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼, and from Equation 2.23, 𝑅𝑎(𝑋) = 𝑟 − 𝐹�̃�. 

𝑟 is also equivalent to 𝐾(𝑋, 𝒙∗) in Section 2.3.2.2, so we arrive at a somewhat similar, but different 

expression as Equation 2.20 for the mean prediction. Finally, substituting Equation 2.29 into 

Equation 2.24, we get 

𝜎(𝑋) =  𝜎2(1 + 𝑎(𝑋)𝑇(𝑅𝑎(𝑋) − 2𝑟)) = 𝜎2 (1 + (𝐹�̃� − 𝑟)
𝑇
𝑅−1(𝐹�̃� − 𝑟)) 

𝜎(𝑋) = 𝜎2 (1 + (𝐹�̃� − 𝑟)
𝑇
𝑅−1(𝐹�̃� − 𝑟)) = 𝜎2(1 + �̃�𝑇𝐹𝑇𝑅−1𝐹�̃� − 𝑟𝑇𝑅−1𝑟) (2. 31) 

 Substituting 𝑢 = 𝐹𝑇𝑅−1𝑟 − 𝑓(𝑋) into Equation 2.31 to keep consistent with [33] and [34], 

we get the following for the MSE 

𝜎(𝑋) = 𝜎2(1 + 𝑢𝑇(𝐹𝑇𝑅−1𝐹)−1𝑢 − 𝑟𝑇𝑅−1𝑟) (2. 32) 

 The process variance 𝜎2 is found from the generalized least squares fit analysis and is equal 

to  

𝜎2 =
1

𝑚
(𝑦 − 𝐹𝛽∗)𝑇𝑅−1(𝑦 − 𝐹𝛽∗) (2. 33) 

where 𝑚 is the number of samples and 𝛽∗ is the same as in Equation 2.19, and is equal to 

(𝐹𝑇𝑅−1𝐹)−1(𝐹𝑇𝑅−1𝑦). That expression for 𝛽∗ also appears in Equation 2.30, which signifies that 

the mean prediction of the BLUP approach is the same as that of linear regression in the kernel 

space. 

 The difference between the Bayesian approach of conditioning the prior distributions on 

the observations in Section 2.3.2.2 and the BLUP approach in this section is primarily in the fact 

that the BLUP estimate for the variance (MSE) explicitly depends on the values of the training 

points 𝑦, while the Bayesian approach depends less directly through conditioning the covariance 

matrix on the observations. As such, the variance is more constrained by the observations for 
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BLUP, and, if the GPM is not confident in the mean function, the variances calculated in that way 

are smaller. Since this project was a continuation of a previous work, it was decided to keep using 

the 0.16.1 version of the scikit-learn package to expand on the heuristics developed there. The 

previous work is summarized in Section 2.3.3. 

2.3.3 The Iterative Framework of Michael Shoniker 

 

For this project, it was found empirically that the absolute exponential kernel worked the 

best when using the scikit-learn 0.16.1 implementation of kriging[33]. This might be explained by 

the fact that the datasets provided are discrete, and thus are likely to appear irregular to the model, 

with discontinuities and sudden changes in values. For greater generality, the absolute exponential 

kernel is used, even if the underlying function is smooth. This would mean that, for example, the 

RBF kernel would lead to overly confident predictions. Additionally, the expressive capacity of 

the absolute exponential kernel is objectively higher than that of RBF. RBF will always try to 

predict smooth functions, which may result in overly complex models which might change a lot 

from iteration to iteration. In addition to choosing the kernel, the previous work by Michael 

Shoniker, developed a set of rules and heuristics empirically using the same set of benchmark 

circuits used in this thesis. These rules saved an average of 78.9% of the simulations before being 

confident in finding the true global maximum[7]. Shoniker’s algorithm is reviewed below. 

Following the framework described in [35], the problem is partitioned into three parts: (1) 

selection of the initial training set, (2) selection of points to simulate in the next iteration of the 

algorithm, and (3) the termination decision. The purpose of the initial training set is to provide a 

good starting point (that is, a good initial model of the function) for the algorithm. A good initial 

training set should be large enough to be a representative sample to direct early exploration of the 

input domain, but should also be compact enough that there is still significant opportunity to save 

on the number of points to be simulated before the algorithm is terminated. After a series of tests, 

Shoniker decided that the initial training set should be constructed the following way. The total 

size of the initial training set is equal to m = max(0.01*N, 2*n), where N is the total number of 

points in the total dataset, and n is the number of input dimensions. The initial design includes the 

mean point (the central point) of the input space, and then adds to it a set containing every extreme 

point. An extreme point is one that has at least one of its input values equal to an extreme (i.e., 
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smallest or biggest) value that can be assumed for the input dimension. If the number of extreme 

points is bigger than m-1, then m-1 points out of all of the extreme points are selected at random 

for the initial training set. If, however, there are fewer than m-1 extreme points, then all extreme 

points are selected for the initial training set, and more points are selected at random from the rest 

to raise the total number of points in the initial training set to m. 

The second step, next corner selection, is executed as follows. With each algorithm 

iteration after selecting the initial training set, a GPM is constructed, and a mean predicted value 

ŷ and a standard deviation value 𝜎 are generated for each test (unsimulated) point. These values 

are used to construct scatter plots, where the standard deviation values are plotted against the 

corresponding mean predicted values (see Figure 2.5). From each such plot, the upper convex hull 

is constructed, and every point that lies on the hull is selected as one of the training points for the 

next round of simulations. The reason the points on the upper convex hull are selected is that it 

was found that these points are most likely to become the true maximum (because they have large 

predicted values and predicted errors), and by selecting multiple points on the hull the selection 

heuristic ensures diversity in the search and counteracts against too much greed in the search 

algorithm. 

The third and final step of the algorithm is the termination decision. If each training point 

is indeed a Gaussian random variable, then the probability that the variable assumes a value bigger 

than ŷ + k*σ is described by the single-tailed cumulative probability Q(𝑘) of the Gaussian 

distribution with mean of ŷ and standard deviation 𝜎[36]. The plot of the Q-function is provided 

in Figure 2.5. Thus, if we have a known current simulated maximum value of ŷmax? and for a certain 

test point it is true that, for example, ŷmax? = ŷtest + 3*σtest, then there is a 1 −  Q(3) =  0.99865 

probability that the test point has a smaller value than ŷmax?. Then, it was decided that the algorithm 

has a 3-sigma confidence that the current maximum is the true maximum if, for every test point, it 

is true that ŷmax? ≥ ŷtest + 3*σtest. Graphically, this is represented if every test point on the scatter 

plot lies below the straight line going from the current simulated maximum with slope -k, the line 

representing the k-sigma confidence of termination to the true maximum (see Figure 2.4). 

In Figure 2.4, an intermediate state in the search is shown for the delay output function of 

the shift_reg dataset. The figure shows a scatter plot each point’s predicted value versus the 

corresponding uncertainty. The straight lines starting at the left of the figure are the termination 
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lines, with the magnitude of the slope being equal to the sigma-confidence level (i.e., the 

coefficient factor of the σ value). The termination lines go from the current known maximum, and 

the dataset has not terminated even to 1-sigma confidence level as not every point is located below 

the top straight line. As soon as every point is predicted to be below a termination line with slope 

-k, it is said that the k-sigma confidence has been reached and the algorithm is terminated for that 

sigma level. The red point in the red circle between the 3-sigma and the 4-sigma termination lines 

is the prediction of the true global maximum for this particular circuit. On the figure, the global 

maximum is predicted to have the value of approximately 1.22e-8 and uncertainty of 

approximately 1.5e-10 units, when the true value is 1.32e-8, so GPM misses that prediction by 

approximately 7 sigma at that stage of the algorithm.  

 

Figure 2.4 Demonstration of the Convergence Criteria for Different k-sigma Confidences 

The green multi-segment line enveloping all the points at the top right is the upper convex 

hull. It goes from the point with the highest predicted value to the point with the highest predicted 

uncertainty. The perpendicular red line going from the 3-sigma termination line points to the corner 

farthest from the termination line. This is the worst-case corner for the 3-sigma termination rule, 

and in an earlier version of Shoniker’s algorithm it would be the only point selected for next step 

Most Likely Point to Exceed ymax for k=3 

Standard Deviation 

Predicted Values 
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simulation. After Shoniker tried several such termination rules (6-sigma and 9-sigma), he found 

that taking all the points from convex hull makes termination faster and more accurate, possibly 

because the corners on the upper convex hull essentially account for every such termination rule, 

from 0-sigma up to an arbitrarily-high-sigma rule. After selecting the next corners for simulation 

and after building a new GPM that accounts for the newly selected corners, it is desirable that all 

the corners move towards the lower left corner of the figure, to accelerate termination. This, 

however, is not always the case. It is sometimes possible that selecting the corners on the convex 

hull significantly changes the understanding of the dataset by the model, which often produces 

drastically different predicted values and increases uncertainties. 

 

Figure 2.5 Illustration of the Q-function for Sigma Levels from 0 to 5.0 

Shoniker found that it was useful to make certain modifications, however, as the iterative 

algorithm would often converge to an incorrect identification of the global maximum, getting stuck 

in a local optimum. The selected modifications were to increase the uncertainty in the predictions 

for function values, by introducing a so-called three-step amplification procedure and the 

application of a heuristic boosting factor. The need for a three-step amplification procedure arose 

from noting that GPR would often underestimate the value of points near the current maximum. 

After conducting a number of experiments, Shoniker decided that every point within one 
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manhattan step away in the input space from the current maximum would have its uncertainty (as 

predicted by the latest GPM) amplified by 25%, and every point two manhattan steps away from 

the current maximum would have its uncertainty amplified by 15%. To take a manhattan step 

means to change one and only one value of the inputs to a value right next to the former value on 

the defined grid. The difference between the old and the new input corners is then defined as on 

manhattan step, regardless of the Euclidean distance in the input space. This would also serve as 

an incentive for the algorithm to more thoroughly explore the region close to the current maximum 

to make it less likely that a true global function maximum will be missed. 

The need for the global boosting factor arose from observing that for certain datasets (e.g., 

circuit shift_reg) many more points would not be within a certain number of standard deviations 

from their true values. In other words, GPMs systematically underestimate the uncertainty for the 

predicted functions. So, for example, it would be expected that the true value of a point would lie 

within ±3*σ of the actual function value approximately 99.73% of the time. For shift_reg outputs, 

however, that was not the case, and so it was decided to empirically boost the uncertainty for all 

points to bring the fraction of estimations being within the true values to the expected rates. A 

strategy was adopted to modify a well-known 10-fold cross-validation technique[37] to find by 

how many standard deviations exactly predictions from GPR miss their true values. Ten cross-

validation folds would be constructed and for each cross-validation run, 9 of the folds would serve 

as the training set and the last fold would be used as the test set. Then, for each point in the test set 

it would be recorded by how many standard deviations the mean estimate missed the true value. 

After each cross-validation run is complete, the largest miss is divided by 3, and the resulting ratio 

becomes the boosting factor. Finally, as it was noted that at the beginning of this procedure the 

fraction of the corners within ±3*σ of the true value would still be less than expected, the boosting 

factor is multiplied by a further factor of 1.25 if less than 25% of the corners in the dataset have 

been simulated. The boosting factor is then multiplied by the uncertainty estimation of each test 

point to produce the final 𝜎𝑡𝑒𝑠𝑡_𝑓𝑖𝑛𝑎𝑙 . The complete expression for 𝜎𝑡𝑒𝑠𝑡_𝑓𝑖𝑛𝑎𝑙 is 

𝜎𝑡𝑒𝑠𝑡𝑓𝑖𝑛𝑎𝑙 = {
1.25 ∗ 𝑏𝑜𝑜𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 ∗   𝜎𝑡𝑒𝑠𝑡 ,       𝑁𝑐𝑜𝑟𝑛𝑒𝑟𝑠 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 ≤ 0.25 ∗ 𝑁𝑐𝑜𝑟𝑛𝑒𝑟𝑠 𝑡𝑜𝑡𝑎𝑙
𝑏𝑜𝑜𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 ∗   𝜎𝑡𝑒𝑠𝑡 ,         𝑁𝑐𝑜𝑟𝑛𝑒𝑟𝑠 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 > 0.25 ∗ 𝑁𝑐𝑜𝑟𝑛𝑒𝑟𝑠 𝑡𝑜𝑡𝑎𝑙

(2. 34) 

With the higher uncertainty, the algorithm takes several more iterations to terminate. 
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As doing cross-validation is time and resource consuming, it would be done only 

occasionally, after successive 10% increments of the total set simulated. It was noted that the 

boosting factor grows roughly linearly, and so it was decided to linearly interpolate the factor in-

between cross-validation procedures. Finally, to perform cross-validation immediately after 

selecting the initial training set, the minimal number of points in the training set was bounded from 

below at 10 points, and so the size of the initial training set became m = max(0.01*N, 2*n, 10). 

This allowed a significant increase in accuracy of the predictions made by the algorithm, at the 

cost of lower speedups. The results of the final algorithm by Shoniker are presented in Table 3.2. 

Before starting new work on the project, we included one small modification. For many 

datasets, one or more input dimensions had only one unique value. In this work, these dimensions 

were removed, as they would not be of any benefit to the accuracy of predictions, and they would 

introduce unnecessary work for the algorithm. One significant factor that would change with this 

is the number of points in the initial training set. This way, the number of ways to choose the initial 

training set is slightly reduced. Since selection of the initial training set is the biggest source of 

variance in the reported results, the results are thus more stable with the modification. 

This change, however, adds an additional point of consideration. A dataset used in 

Shoniker’s work, mux, lost half of its input dimensions, going from eight to four. Therefore, the 

size of the initial training set dropped from sixteen to ten. An unwelcome consequence from this 

was losing approximately 30% in accuracy of termination in two of the output functions, qtran and 

qtran0. This cast doubts on whether it was smart to remove the static dimensions. Looking at this 

from the other perspective, however, is it smart to leave those dimensions in? If such static 

dimensions should be allowed, then the selection of the initial training set according to Shoniker’s 

selection procedure would not depend on the structure of the dataset in the input space. This would 

make the size of the initial training set rather arbitrary, which would introduce additional problems 

for the algorithm, particularly in the number of corners it takes to simulate to terminate to an 

answer. 

It is worth noting that the two output functions that lost in accuracy have the exact same 

structure, and, in addition to that, have three non-adjacent values, which are the maximums, that 

are 161 times bigger than the next biggest value. Such spikes, which are not even located on a 

ridge, are impossible to predict, and, in the worst case, the only sure way to catch them is to perform 
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the exhaustive full-factorial simulation. All three values could potentially be selected for the initial 

training set, and thus without removing the static dimension the algorithm is much “luckier”. This 

luck, however, is different from the intentional randomness introduced in the flow of the algorithm, 

such as the selection of the initial training set. This randomness in Shoniker’s algorithm was 

intended to provide more diversity to the results of applying the algorithm, as well as give a higher 

probability to not use a wrong model for functions that are not well modelled by the GPM. With 

the outputs of the mux dataset, simulating more points in the unbiased stage makes it closer to pure 

luck. As such luck is the only way that could help in the situations when an output has an isolated 

spike, it was decided to remove mux dataset from analysis in this work as including it would distort 

the true performance of the algorithms presented in this work. No algorithm can deterministically 

find a truly worst-case isolated spike in the output function. The dataset will be analysed separately 

in Chapter 3. Isolated spikes are an interesting structure in some datasets and, unfortunately, this 

is a valid problem that IC designers have to deal with. 

2.4 Related Work 

2.4.1 Similar Research 

 

Related work was done by Dr. Xin Li’s group at Carnegie Melon University (Dr. Li is 

currently working in Duke University). This work concerns statistical modelling[38][39][40] and 

incorporating the models into production flow to optimise production[41][42]. Although this work 

is not directly applicable to this project, it could indicate several directions for future work, and 

could demonstrate how these concepts are applied in production flow. 

Some of this work is extremely close to the subject of this project, and thus it will be 

reviewed in detail. For example, in [38], a process is described that translates the problem of 

extracting the worst-case corners by formulating it as quadratically constrained quadratic 

programming with the help of a quadratic response surface model based on a DoE design, and then 

converts it to a convex semi-definite programming problem for extra efficiency. This approach 

works if a quadratic response surface model is an accurate model for the circuit, which is not 

always the case. Also, for our problem, the DoE design is the only input. 
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In [39], a way is presented to approximate the performance of circuits that are highly 

influenced by variability as the linear combination of a set of basis functions. The coefficients for 

the linear regression come from Maximum A Posteriori (MAP) estimates based on the (prior 

Laplacian-distributed) errors of the regression model. The error distribution is then itself 

approximated as a Gaussian kernel density distribution. As a result, the modelling is more precise 

than the SR-L1 methodology (sparse regression method with L1-norm) on which the approach is 

based. This approach is interesting in its use of kernels that are linear combinations of Gaussian 

distributions. Some of these ideas can be used to build more suitable kernels for GPR based on the 

initial training set; however, building a good representation would require a large fraction of the 

small datasets, and thus it is inapplicable for this project. 

In [40], the authors suggest an approach to model the response of circuits as linear surfaces 

at subdivided patches of the grid, essentially performing piecewise linear approximation of the 

surface. As a result, they get an accurate representation of the response function. This is applied to 

two common circuits, a 6T SRAM cell and a two-stage operational amplifier, and the results are 

within a few percent of the true response functions. However, these also require a thousand pre-

selected corners to build, which is not always possible in this project. Additionally, if the bitcell 

and opamp1 datasets provided for this project are indeed functions of an SRAM cell and an 

operational amplifier, then the tested circuits in [40] are not so difficult to model, as Shoniker’s 

algorithm has no trouble with any of the functions in the two datasets. Finally, an error of several 

percent is still too imprecise for the purposes of this project. 

2.4.2 Other Function Optimisation Techniques 

 

There are several widely accepted function optimisation techniques, like gradient 

descent[43], hill climbing[44], and simulated annealing[45]. Like all general function optimisation 

techniques, they are not guaranteed to find the global optimum, and are vulnerable to getting stuck 

in a local optimum. 

For example, gradient descent looks at the gradient (e.g., the slope) of the cost function at 

the present point, and selects the next sample in the direction of the biggest change (steepest 

descent). The risk here is that the final answer for the lowest point of the cost function is very 

dependent on the starting point from which the descent started. Some modifications were proposed 
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to increase the probability of not getting stuck in a local minimum. For example, a momentum 

term, which takes into account the previous values of the cost function, can be included. Another 

option, multi-start strategies, avoid local optima by starting the search at different points. These, 

however, still do not guarantee convergence to the global minimum for any reasonable time. Hill 

climbing is similar to gradient descent, except that it optimises in one direction at a time, and has 

the same problems as gradient descent. 

Simulated annealing attempts to increase the probability of finding the global maximum, 

but it still cannot be guaranteed to do so, and may only find a local maximum. The possible changes 

in the state of the system at a point in time for simulated annealing are affected by its temperature 

parameter. The temperature parameter is lowered in steps as the simulation proceeds and affects 

the probability that a higher cost next state will be selected instead of a lower cost state. The 

process starts at a random reference point, and then a random sample is selected, the distance in 

the input space between the reference point and the sample depends on the temperature. At the 

beginning when the temperature is high, the next sample is allowed to be far from the reference, 

whereas at the end when the temperature is low, the selection is less likely to explore regions far 

from the current candidate. Then, the sample is evaluated. If the value of the cost function at the 

sample is higher than reference, the sample is selected as the new reference. If it is not higher, the 

sample can still be chosen as the new reference, with probability that exponentially decays with 

decreasing temperature. This allows for more thorough exploration phase at the beginning of the 

algorithm. However, the maximum found with simulated annealing is still vulnerable to 

converging to a local optimum. Simulated annealing struggles with flat functions, of which we 

have found several in our industrial benchmarks. 

2.4.3 Formal Verification 

 

Formal verification is application of logical operations to exhaustively prove that a system 

corresponds to a set of constraints. Formal verification can be for both software[46] and 

hardware[47][48][49][50] systems. These methods are exhaustive, but also take a long time to 

develop the mathematical tools, and are generally circuit specific[51], and cannot be applied to 

arbitrary black-box functions. As this project requires a universal method of finding the worst-case 

estimation of a black box function, none of the formal verification strategies can be applied. 
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2.4.4 Rare-Event Failure Estimation 

 

In cases when extreme reliability is required, a designer needs to apply so-called rare-event 

failure estimation techniques. Typically, such requirements would be applicable either to 

components that are used in huge numbers, like SRAM cells[52], or to complex systems for the 

purposes of verification[53]. A common approach here is subset simulation (SUS), where corners 

are chosen iteratively, selected by Markov Chain Monte Carlo (MCMC)[54], in order to calculate 

the probability of failure in a given subset[55]. Then, a subset of the previously selected subset of 

corners is selected, and the probability of failure within that subset is estimated again, giving the 

conditional probability of failure for the current subset. The eventual probability of failure is equal 

to the product of the conditional probabilities of failure for each subset. 

The rare-event failure estimation approach could potentially be applied here if a high-sigma 

termination threshold is defined, and the search space is regenerated after each convergence. This 

could prove to be an attractive area of further research. 

2.4.5 Applications in Other Fields of Engineering 

 

The function optimisation problem considered in this thesis does not necessarily need to 

be applied only to the design verification of integrated circuits. In fact, process optimisation is a 

very important problem for a number of engineering disciplines, for example process optimisation 

in chemical engineering [56][57][58][59][60], where the exact proportions of reactants, as well as 

the process conditions, like pressure and temperature, need to be optimised subject to constraints 

for the maximum yield of the desired product. 
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Chapter 3: Deeper Look into Benchmark Datasets 

3.1 Shapes of Datasets 

 

The datasets supplied to us by Solido Design Automation provided a variety of functions, 

supposedly from real industrial circuits, for us to explore using different candidate algorithms for 

minimal worst-case corner selection. We do not know how the datasets were produced, and we 

can only guess at the characteristics that the functions model from the names of the datasets and 

the functions. Table 3.1 summarises the output functions available to us. 

Dataset Input Unique Values Output Min, Max, Mean, and Median Values 

bitcell 

Model_set ff, fs, sf, ss, tt 
blwm 0.2241, 0.5775, 0.385958333333, 0.3862 

HI 0.9, 1.0, 1.1 

LO 0 
blwm_mv 224.1108, 577.5151, 385.956115, 386.1763 

Temperature -25, -50, 0, 100, 125, 25.0, 50, 75 

charge_pump1 

Model_set ff, ss, tt 
boostcr 0.7993, 0.8132, 0.805446759259, 0.8052 

Temperature -25, -40.0, 0, 100, 125, 25, 50, 75 

gnd 0 eq_error 0.000897, 0.0774, 0.017937125, 0.011055 

hvnn_fs_vnds -40 
holdcrd 0.917, 0.9347, 0.92617962963, 0.9262 

vcc 2.4, 2.5, 2.6 

vcce 1.5 
holdcru 0.9229, 0.938, 0.930111111111, 0.93005 

vin 26 

vv3 2.4, 2.5, 2.6 ovdrive 1.712, 2.031, 1.88417592593, 1.8855 

charge_pump2 

Model_set ff, ss, tt 
boostcr 0.7945, 0.815, 0.804158641975, 0.8044 

Temperature -25, -40, 0, 25, 50, 75 

gnd 0 eq_error 
-0.001558, 0.1231, 0.0158857746914, 

0.0069705 

hvnn_fs_vnds -40 
holdcrd 0.9148, 0.9372, 0.925291975309, 0.92495 

vcc 2, 2.5, 3 

vcce 1.4, 1.6 holdcru 0.9207, 0.9426, 0.930122222222, 0.92995 

vin 26 
ovdrive 1.535, 2.142, 1.8972345679, 1.912 

vv3 2.4, 2.5, 2.6 

sense_amp1 

Model_set ff, fs, sf, ss, tt SAspeed 
3.476866e-11, 1.370766e-10, 6.147855625e-

11, 5.548009e-11 

Temperature -25, -50, 0, 100, 125.0, 25, 50, 75 glitch_senout 
0.003463692, 0.1749941, 0.061537111925, 

0.038181035 

bidirection_flag 0 maxout 
0.540016, 0.5408317, 0.5402601125, 

0.540239 

k 0.9 

offset 
-0.001171875, 0.008422852, 

0.001993560785, 0.001785278 
preext_flag 0 

saebgn 1.00E-11 

saewid 7.9e-10, 8.1e-10, 8e-10 rslt 
-1.080105e-05, 0.0002046455, 1.4537917e-

05, -5.1428055e-06 

slwrt 2.00E-11 sen_dip 
0.540016, 0.5408317, 0.5402601125, 

0.540239 

vs 0 sen_dip_pctg 0.3990759, 0.3999823, 0.399711, 0.3997345 
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Dataset Input Unique Values Output Min, Max, Mean, and Median Values 

bias_gen 

Model_set ff, ss, tt 

bgr_m51_v145 1.143, 1.198, 1.17404166667, 1.1745 

bgr_m51_v150 1.153, 1.198, 1.17566666667, 1.1745 

bgr_m51_v155 1.158, 1.199, 1.17641666667, 1.1745 

Temperature -25, -50, 0, 100, 125, 25.0, 50, 75 

bgr_m51_v180 1.16, 1.201, 1.177, 1.1745 

bgr_m51_v195 1.16, 1.201, 1.17729166667, 1.175 

bgr_m51_v25 1.16, 1.202, 1.177875, 1.1755 

bgr_m51_v27 1.161, 1.203, 1.17816666667, 1.176 

vcc_ext 2.8, 2.9, 3.0, 3.1, 3.2 

bgr_m51_v30 1.161, 1.203, 1.17841666667, 1.176 

bgr_m51_v33 1.161, 1.204, 1.178875, 1.1765 

bgr_m51_v36 1.162, 1.204, 1.17929166667, 1.177 

opamp1 

Model_set ff, ss, tt 

dc_gain 32.7, 35.16, 34.0946666667, 34.125 

Temperature -25, -50, 0, 100, 125, 25.0, 50, 75 

psweep 1 

vcc 2 

vm 0.005 

vref 1.23, 1.24, 1.25, 1.26, 1.27 

shift_reg 

Model_set ff, fs, sf, ss, tt 
delay 

9.421e-09, 1.322e-08, 1.15065518519e-08, 

1.1515e-08 Temperature -25, -50, 0, 100, 125, 27.0, 50, 75 

vin_ac 0.05 
fall_time 

2.004e-10, 4.25e-09, 1.33582814815e-09, 

1.097e-09 vvcc 3.2, 3.3, 3.4 

vvdd 1.4, 1.5, 1.6 
rise_time 

3.672e-10, 4.032e-09, 1.08265601852e-09, 

8.8495e-10 vvref 1.6, 1.65, 1.7 

buffer_chain 

Model_set ff, fs, sf, ss, tt Tf4_5 
3.332e-11, 1.635e-10, 6.78230183435e-11, 

6.119e-11 

Temperature -25, -50, 0, 100, 125, 25, 50, 75 

Tr4_5 
2.984e-11, 1.519e-10, 6.4019688716e-11, 

5.792e-11 cl 
1.8E-015, 1.9E-015, 2.1E-015, 

2.2E-015, 2E-015 

in_slew 1.1E-010, 1E-010, 9E-011 
avg_slew 30.0797, 114.8954, 56.5462939411, 52.2514 

myvdd 0.9, 1, 1.1 

tp 0.00000002 
avgdly4_5 31.5795, 157.7366, 65.9213255142, 60.1182 

tstart 0.000000001 

tstep 1.00E-12 fslew 
2.7e-11, 1.061e-10, 5.18013618677e-11, 

4.758e-11 

tstop 0.0000001 rslew 
3.316e-11, 1.237e-10, 6.12911839911e-11, 

5.599e-11 

Table 3.1 Information about the Inputs and Outputs of the Available Datasets 

Table 3.1 summarises what inputs the datasets have, the possible input values, and gives 

brief information about the outputs. It is interesting to note from the output information that there 

is sometimes a significant difference between the mean and the median values of the output 

function. One might expect the distribution to be close to being uniform or Gaussian, meaning 

there will not be a big difference between the mean and the median. However, if the median is 

significantly lower than the mean, this indicates that the average of the function is skewed by the 

higher values, potentially indicating the presence of significant excursions or spikes in the 

responses of the function. Looking at the difference between the extremal values also might give 

interesting insights as a function that has a small difference between the minimum and the 
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maximum values (i.e., relatively flat functions) might make it difficult for the GPM to properly 

model all the small variations, which might be significantly affected by noise at the time of 

measurement.  

The results achieved by Shoniker’s final algorithm for the 4-sigma termination rule are 

provided in Table 3.2. The table shows results for 4-sigma confidence bound for a number of test 

circuits provided by our industrial partner Solido Design Automation. The average speedup is 

4.74x, with the speedup defined as 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑝𝑜𝑖𝑛𝑡𝑠

𝑃𝑜𝑖𝑛𝑡𝑠 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑓𝑖𝑛𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑚𝑎𝑥
(3.1) 

Circuit Name Type of Set 
Initial Train-

ing Set Size 

Corners to Find 

Fmax 

Corners Until 

Termination for each 

output 

Min., Max. and Mean 

Speed-Ups 

shift_reg Full Factorial 14 of 1080 84-306 478, 988, 1047 1.03, 2.25, 1.46 

buffer_chain Full Factorial 20 of 1799 29-45 159, 104, 134, 99, 365, 121 4.93, 18.18, 13.32 

bitcell Full Factorial 10 of 120 12 26, 26 4.61, 4.61, 4.61 

charge_pump1 Full Factorial 16 of 216 4-23 38, 41, 43, 45, 50 4.32, 5.68, 5.02 

charge_pump2 Full Factorial 16 of 324 8-23 53, 56, 61, 68, 71 4.56, 6.11, 5.31 

sense_amp Full Factorial 20 of 120 1-7 34, 51, 81, 37, 35, 81, 114 1.05, 3.53, 2.37 

bias_gen Full Factorial 10 of 120 1 
40, 41, 38, 36, 37, 38, 37, 

37, 37, 37 
2.93, 3.33, 3.18 

op_amp Full Factorial 12 of 120 1 46 2.61, 2.61, 2.61 

Table 3.2 Results of Michael Shoniker's Original Algorithm 

Each of the functions in Table 3.2 terminated with 100% accuracy. Accuracy is defined as 

the fraction of runs of the algorithm for which the true global maximum was found. So, for 

example, if in a test of 100 runs of the algorithm on an output function, 95 runs terminate to the 

correct worst-case corner (meaning that 5 times out of 100 an incorrect worst-case corner was 

chosen), the accuracy of the algorithm on this function is 95%. 100 trials were performed for every 

entry in Table 3.2. In each trial, a different initial training set is selected according to Michael 

Shoniker’s randomized design (see Section 2.3.3). The results are averaged to produce the values 

in the column “Corners Until Termination for each output”. 

Some of the functions were very easy to search for the maxium value, while others turned 

out to be a challenge. Of course, in order to understand how to improve the algorithm, it is 

important to first understand why some of the functions are more difficult than the others, and then 

try to come up with a way to generalise and leverage that insight. Looking at the ordered histogram 
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distribution of the output values of the most challenging functions might provide some insight into 

this problem. 

 

 

 

Figure 3.1 Shapes of Select Output Functions 

The histograms in Figure 3.1 are for the hard fall_time and rise_time functions of the 

shift_reg benchmark dataset, the outputs of the mux dataset with three sudden spikes, and the very 

flat sen_dip_pctg function of the sense_amp1 benchmark. It seems that Michael Shoniker’s 

algorithm had difficulty with at least two types of functions: ones that have sudden spikes, and 

ones that are very flat. Each of the types affects performance of the algorithm in a different metric 

of performance of the algorithm: spikes decrease the probability of finding the true global 

maximum, while flat regions require almost every point in the region to be simulated. And while 

it is undesirable to have a spike in the dataset, it is still often possible to model the underlying 
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function that produced the spike as it depends on the combination of the input parameters. 

Modelling flat surfaces causes GPM additional challenges for reasons that are explored in Section 

3.2. 

3.2 Overfitting and Underfitting 

 

In the cases when a GPM is used to model what looks like statistical noise, the model still 

tries to ensure that the mean function goes through the training points exactly, resulting in irregular 

functions that tend to change a lot from one GPM generation stage of the algorithm to the next. 

This could be seen as a case of overfitting[61]. Overfitting is when the model is too complex to be 

useful for learning. In the case of neural networks, for example, extreme overfitting essentially 

means memorizing the entire training set, while simultaneously being rather poor at trying to 

interpolate between or extrapolate training samples to predict unknown samples. In the context of 

this project, overfitting might cause the predictions and uncertainties for test points to change 

rapidly from one stage of the algorithm to another. This is undesirable as it introduces even bigger 

uncertainty in selecting corners for simulation. 

A common way to counter overfitting is to account for noise in the predictions. Then, the 

model is allowed to fit less precisely, essentially creating a soft margin [62] for regression, thus 

allowing for simpler function shapes. In scikit-learn 0.16.1, the software package used for this 

thesis, this is achieved by setting the nugget parameter of the gaussian_process object to a bigger 

value. Testing this on the most challenging dataset (shift_reg) yields the results in Table 3.3. The 

value for the nugget was based on the average value of the three functions in the shift_reg dataset, 

which is 4.64E-09. 

Nugget 
Average 

Corners 

Average 

Speedup 
Accuracy 

4.64E-11 815.97 1.32 100 

4.64E-10 862.57 1.25 100 

4.64E-09 803.60 1.34 100 

4.64E-08 846.07 1.28 100 

Table 3.3 Results of Allowing Noisy Predictions in GPM for the shift_reg Dataset 

As can be seen from Table 3.3, there is no significant difference between noiseless 

predictions and noisy predictions, which suggests that overfitting is not a problem. This is 
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supported by closely observing performance on the most difficult functions at every stage. From 

those observations, it looks like the model performance on the datasets were more likely due to 

underfitting. Underfitting is the opposite problem to overfitting – the model is not expressive 

enough to be used for accurate function regression. For example, if the task is to model a sinusoid, 

but the model can only produce a linear function, then the resulting prediction will simply be a flat 

0 function, that is, the mean of the sinusoid. With some functions, a GPM is unable to properly 

model the functions due to, for example, the poor fit of the kernel function. In these cases, the 

GPM just produces a 0 mean function and the uncertainties based on the proximity to the training 

points.  

While the predicted values of the functions for problematic output functions, like rise_time, 

are not 0, they are still often more than 100 times smaller than the respective uncertainties. In 

contrast to that, in the well-behaved delay function from the same shift_reg dataset, the values of 

the predictions at test points are very rarely less than 100 times bigger than the respective 

uncertainties. While it would be inappropriate to conclude that underfitting is the bigger problem 

for the rise_time function, the eventual conclusion is the same: for such functions, optimisation is 

largely shifted into the exploration phase as the next corners selection procedure will be dominated 

by the value of the uncertainties, and these points are likely to be those that are in the farthest 

regions from the trained points. This also means that the algorithm will take longer to converge 

than it should. Unfortunately, we could find no simple and reliable heuristic to prevent that without 

sacrificing accuracy. 

3.3 Flat Functions 

 

An additional problem introduced by functions that have maxima hidden in “flat” regions 

is that we can not be sure that the sampling method that generates the input to the algorithm for 

selecting worst-case corners will contain the true worst-case corner. For example, consider the 

functions of a phase detector circuit described in Chapter 6. All of them are rather flat and, having 

generated a finer dataset, we can see how the sampling of the input space affects what can be 

selected as the worst-case corner. 
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Number of Corners 

for the Sampling 

Method for 

phase_det_down 

Worst-Case Value for 

phase_det_down 

down_rise_time 

Worst-Case Value 

for 

phase_det_down 

down_fall_time 

Number of 

Corners for the 

Sampling Method 

for phase_det_up 

Worst-Case Value 

for phase_det_up 

up_rise_time 

Worst-Case Value 

for phase_det_up 

up_fall_time 

Total Sampling 

(9450 Corners) 
1.00877856305E-11 9.29257005458E-12 

Total Sampling 

(9450 Corners) 
1.02241882614E-11 9.32792900107E-12 

Partial Sampling 1 

(1944 Corners) 
1.00877451023E-11 9.29257005458E-12 

Partial Sampling 1 

(1944 Corners) 
1.02221401286E-11 9.13006671489E-12 

Partial Sampling 2 

(6300 Corners) 
1.00877451023E-11 9.29257005458E-12 

Partial Sampling 2 

(6300 Corners) 
1.02238923073E-11 9.19881168078E-12 

Partial Sampling 3 

(1800 Corners) 
1.00877451023E-11 9.15371593837E-12 

Partial Sampling 3 

(1800 Corners) 
1.02238923073E-11 9.32792900107E-12 

Partial Sampling 4 

(4050 Corners) 
1.00877451023E-11 9.15371593837E-12 

Partial Sampling 4 

(4050 Corners) 
1.02241882614E-11 9.32792900107E-12 

Partial Sampling 5 

(1400 Corners) 
1.00877451023E-11 9.29257005458E-12 

Partial Sampling 5 

(1400 Corners) 
1.02238923073E-11 9.32792900107E-12 

Partial Sampling 6 

(504 Corners) 
1.00877451023E-11 9.29257005458E-12 

Partial Sampling 6 

(504 Corners) 
1.02221401286E-11 9.19881168078E-12 

Table 3.4 Summary of Several Sampling Procedures of Functions Generated by a Phase Detector Circuit 

Table 3.4 and Table 3.5 list some of the sampling procedures of the four functions, and the 

respective global maximums. The main observation from Table 3.4 is that no matter the sampling 

procedure, there is always a risk of not sampling the true global maximum of the continuous 

response function. The Total Sampling procedure is itself a full-factorial design of 9450 corners 

in each case, and selecting sub-samples, even if to bring the number of corners to a reasonable 

level more often than not misses that maximum. Even selecting over 4000 corners still does not 

capture the biggest value of one of the four functions, and selecting 6300 corners misses both of 

the maximum points in the phase_det_up dataset.  

This problem has been noted as a fundamental problem of the corner analysis[63]. 

Choosing a discrete combination of parameters always carries the risk of underestimating the 

variance of responses, and the only truly reliable choice is a long-running and expensive Monte-

Carlo simulation. However, as we did not have any information on the provided circuit, and only 

had a limited time to analyse our own custom circuits, we must assume that the input space given 

to us is a comprehensive sample of the function that must be optimised. 
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Sampling Procedures for phase_det_down Sampling Procedures for phase_det_up 

Sampling 
Procedure 

Name 

Input Names Unique Input Values 
Sampling 
Procedure 

Name 

Input Names Unique Input Values 

Total 

Sampling 

Temperature (-25.0, 0.0, 25.0, 50.0, 75.0, 100.0) 

Total 

Sampling 

Temperature (-25.0, 0.0, 25.0, 50.0, 75.0, 100.0) 

Delay of Adjustable 
Clock 

 (2.5e-10, 3.75e-10, 5e-10, 6.25e-10, 7.5e-10, 
8.75e-10, 1e-09) 

Delay of Adjustable 
Clock 

(-1e-09, -8.75e-10, -7.5e-10, -6.25e-10, -5e-10, -3.75e-10,     
-2.5e-10)  

Fall Time of 

Adjustable Clock 
(3e-11, 3.5e-11, 4.0e-11, 4.5e-11, 5e-11)  

Fall Time of 

Adjustable Clock 
(3e-11, 3.5e-11, 4.0e-11, 4.5e-11, 5e-11)  

Rise Time of 
Adjustable Clock 

(3e-11, 3.5e-11, 4.0e-11, 4.5e-11, 5e-11)  
Rise Time of 

Adjustable Clock 
(3e-11, 3.5e-11, 4.0e-11, 4.5e-11, 5e-11)  

Fall Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11)  

Fall Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11)  

Rise Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11) 

Rise Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11) 

Partial 

Sampling 1 

Temperature (-25.0, 0.0, 25.0, 50.0, 75.0, 100.0) 

Partial 

Sampling 1 

Temperature (-25.0, 0.0, 25.0, 50.0, 75.0, 100.0)  

Delay of Adjustable 

Clock 
(2.5e-10, 5e-10, 7.5e-10, 1e-09) 

Delay of Adjustable 

Clock 
(-1e-09, -7.5e-10, -5e-10, -2.5e-10)  

Fall Time of 

Adjustable Clock 
(3e-11, 4e-11, 5e-11) 

Fall Time of 

Adjustable Clock 
(3e-11, 4e-11, 5. e-11)  

Rise Time of 

Adjustable Clock 
(3e-11, 4e-11, 5e-11) 

Rise Time of 

Adjustable Clock 
(3e-11, 4e-11, 5. e-11)  

Fall Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11)  

Fall Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11)  

Rise Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11) 

Rise Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11) 

Partial 
Sampling 2 

Temperature (-25.0, 25.0, 50.0, 100.0)  

Partial 
Sampling 2 

Temperature (-25.0, 25.0, 50.0, 100.0)  

Delay of Adjustable 

Clock 

 (2.5e-10, 3.75e-10, 5e-10, 6.25e-10, 7.5e-10, 

8.75e-10, 1e-09) 

Delay of Adjustable 

Clock 

(-1e-09, -8.75e-10, -7.5e-10, -6.25e-10, -5e-10, -3.75e-10,     

-2.5e-10)  

Fall Time of 

Adjustable Clock 
(3e-11, 3.5e-11, 4.0e-11, 4.5e-11, 5e-11)  

Fall Time of 

Adjustable Clock 
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)  

Rise Time of 

Adjustable Clock 
(3e-11, 3.5e-11, 4.0e-11, 4.5e-11, 5e-11)  

Rise Time of 

Adjustable Clock 
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)  

Fall Time of 
Reference Clock 

(3e-11, 3.5e-11, 4e-11)  
Fall Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11)  

Rise Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11) 

Rise Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11) 

Partial 

Sampling 3 

Temperature (-25.0, 0.0, 25.0, 50.0, 75.0, 100.0)  

Partial 

Sampling 3 

Temperature (-25.0, 0.0, 25.0, 50.0, 75.0, 100.0)  

Delay of Adjustable 

Clock 
(2.5e-10, 6.25e-10, 1e-09)   

Delay of Adjustable 

Clock 
(-1e-09, -6.25e-10, -2.5e-10)  

Fall Time of 

Adjustable Clock 
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5 e-11) 

Fall Time of 

Adjustable Clock 
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)  

Rise Time of 
Adjustable Clock 

(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5. e-11)  
Rise Time of 

Adjustable Clock 
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)  

Fall Time of 

Reference Clock 
(3e-11, 4e-11)  

Fall Time of 

Reference Clock 
(3e-11, 4e-11)  

Rise Time of 
Reference Clock 

(3e-11, 4 e-11) 
Rise Time of 

Reference Clock 
(3e-11, 4e-11) 

Partial 

Sampling 4 

Temperature (-25.0, 0.0, 25.0, 50.0, 75.0, 100.0)  

Partial 

Sampling 4 

Temperature (-25.0, 0.0, 25.0, 50.0, 75.0, 100.0)  

Delay of Adjustable 

Clock 
(2.5e-10, 6.25e-10, 1 e-09)  

Delay of Adjustable 

Clock 
(-1e-09, -6.25e-10, -2.5e-10)  

Fall Time of 
Adjustable Clock 

(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5. e-11)  
Fall Time of 

Adjustable Clock 
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)  

Rise Time of 

Adjustable Clock 
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5 e-11)  

Rise Time of 

Adjustable Clock 
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)  

Fall Time of 
Reference Clock 

(3e-11, 3.5e-11, 4e-11)  
Fall Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11)  

Rise Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11) 

Rise Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11) 

Partial 

Sampling 5 

Temperature (-25.0, 100.0)  

Partial 

Sampling 5 

Temperature (-25.0, 100.0)  

Delay of Adjustable 
Clock 

(2.5e-10, 3.75e-10, 5e-10, 6.25e-10, 7.5e-10, 
8.75e-10, 1e-09) 

Delay of Adjustable 
Clock 

(-1e-09, -8.75e-10, -7.5e-10, -6.25e-10, -5e-10, -3.75e-10,     
-2.5e-10)  

Fall Time of 

Adjustable Clock 
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)  

Fall Time of 

Adjustable Clock 
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)  

Rise Time of 
Adjustable Clock 

(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)  
Rise Time of 

Adjustable Clock 
(3e-11, 3.5e-11, 4e-11, 4.5e-11, 5e-11)  

Fall Time of 

Reference Clock 
(3e-11, 4e-11)  

Fall Time of 

Reference Clock 
(3e-11, 4e-11)  

Rise Time of 

Reference Clock 
(3e-11, 4e-11) 

Rise Time of 

Reference Clock 
(3e-11, 4e-11) 

Partial 

Sampling 6 

Temperature (-25.0, 100.0)  

Partial 

Sampling 6 

Temperature (-25.0, 100.0)  

Delay of Adjustable 

Clock 

(2.5e-10, 3.75e-10, 5e-10, 6.25e-10, 7.5e-10, 

8.75e-10, 1e-09) 

Delay of Adjustable 

Clock 

(-1e-09, -8.75e-10, -7.5e-10, -6.25e-10, -5e-10, -3.75e-10,     

-2.5e-10)  

Fall Time of 

Adjustable Clock 
(3e-11, 5e-11)  

Fall Time of 

Adjustable Clock 
(3e-11, 5e-11)  

Rise Time of 

Adjustable Clock 
(3e-11, 5e-11)  

Rise Time of 

Adjustable Clock 
(3e-11, 5e-11)  

Fall Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11)  

Fall Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11)  

Rise Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11) 

Rise Time of 

Reference Clock 
(3e-11, 3.5e-11, 4e-11) 

Table 3.5 Unique Values of the Input Dimensions for the Different Sampling Methods of the Phase Detector 

Functions 
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3.4 Spikes and Ridges 

 

In some functions (like rise_time), we observe ridges, where adjacent input points have 

relatively high values compared to the surrounding points. In fact, a ridge is a region that is flat 

along one (or a small number) of dimensions having significantly larger output values than the rest 

of the dataset. The three by far highest values of the rise_time function have input values 

(Model_set, Temperature, vin_ac, vvcc, vvdd, vvref) of (sf, -25, 0.05, 3.4, 1.4, 1.65), (sf, -25, 0.05, 

3.4, 1.5, 1.65), and (sf, -25, 0.05, 3.4, 1.6, 1.65), the only difference being vvdd parameter. From 

Shoniker’s observations, it was noted that GPM tends to significantly underestimate the values of 

the function in the neighbourhood of the current known maximum. The proposed solution was to 

introduce a three-step amplification factor for the predicted uncertainties near the current 

maximum. This observation can explain why ridges would give problems to the current setup.  

Naturally, it would be beneficial to somehow detect if ridges exist in the dataset and to 

make suitable adjustments in the search strategy. Unfortunately, there is no good solution to doing 

that. The only way would be to try and guess that the algorithm has encountered a ridge is to 

sample the immediate neighbours of a point. This would mean that many more points are selected 

for next step simulation, which is inefficient and costly for the functions which do not cause 

problems for the GPM. Even restricting this additional sampling only to the cases when a new 

maximum is known can have significant adverse effects on the performance. 

We investigated a method to look for ridges as follows. Whenever a new maximum or a 

new minimum is found, every point within one manhattan step from the current known maximum 

is selected for sampling. After each of those corners is simulated, their output values are compared 

to the current known maximum. If the values at one of those corners are within 10% of the current 

known maximum, relative to the distance between the current known minimum and the current 

known maximum of the function, the corner is marked as a ridge. Since with one manhattan step 

the input values of the corners differ only in one dimension, the unsimulated corners in that entire 

dimension are selected for simulation at the next stage.  

Since many points are selected in this way, it only makes sense to do so for big datasets, 

like shift_reg. There was, however, no significant benefit observed. When running the ridge 
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heuristics with the global boosting factor, no benefit is observed at all for shift_reg dataset, which 

includes the only functions that could potentially benefit from this method. The average respective 

speedup and accuracy is 1.28x and 100% for the 4-sigma termination rule. Excluding calculating 

the boosting factor produces speedup of 2.40x and accuracy of 97.17%. While the accuracy is 

better than the accuracy of 95.33% that was observed in Shoniker’s work for the 4-sigma 

termination rule without the global boosting factor, and the speedup is impressive, the accuracy is 

still too far below the target accuracy 99.86%, and so the method was decided to be inapplicable 

to the project. The low accuracy could be explained by the fact that stumbling upon a point on a 

ridge is rather random in the first place, so the ridge heuristic is only as reliable as the next corner 

selection procedure is reliable at finding a spike. 

3.5 Conclusions 

 

This chapter explored the structure of the provided circuit datasets and identified some of 

the problems that were encountered when applying Shoniker’s best algorithm. It was noted that 

the biggest challenges are provided by the functions that have either sudden irregularities (e.g., 

spikes), or, conversely, are flat. Both provide problems of overfitting and underfitting. 

The problem of overfitting was analysed on the example of the provided datasets. It was 

found that allowing softer margins for regression, which often helps with overfitting, did not give 

any significant benefit. This points to the problem for the challenging functions being studied (the 

outputs of the shift_reg dataset) being closer to underfitting, and closer observing states of 

simulation supports that. 

The problems of flat functions are primarily caused by the fact that it is very difficult to 

model them, and find the true global maximum. Indeed, even the choice of the sampling procedure 

introduces a significant problem of missing the true worst-case corner, as studied on the custom 

dataset. As most datasets provided for us are of unknown origin, there is not much we can do about 

this problem, so we will have to assume that the datasets contain the true worst-case corner for the 

respective functions. 

It was noticed that spikes in datasets are often located close to one another, producing 

something close to ridges or n-dimensional plateaus. When trying to account for such structures in 
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the function, specifically looking for ridges does not seem to help, possibly because locating ridges 

is a matter of luck in the first place. 

The general conclusion from this chapter is that there is no simple solution to the problems 

experienced by Shoniker’s algorithm. The best we can do is to try to narrow the regions of locating 

the spikes by attempting to prune away regions that are not likely to have such spikes. For example, 

partitioning the input space could increase the chance to encounter a spike or a ridge and thus make 

algorithms terminate faster and more accurately, while also allowing to prune away unlikely 

regions to focus computational effort on the promising regions. The partitioning approach will be 

explored in more detail in Chapter 5. 
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Chapter 4: Pruning Singular Points 

4.1 The Problem of Termination 

 

The framework of the algorithm that searches for the worst-case corners of an arbitrary 

black-box function can be separated into three subproblems: (1) initial exploration of the specified 

function of the given circuit, (2) selection of the next corners to simulate, and (3) termination of 

the search for the function maximum. This chapter explores the effects of the choice of different 

termination heuristics on the performance of the Shoniker’s algorithm for selecting a minimal set 

of worst-case corners.  

4.1.1 Premature Termination 

 

The goal of the algorithm is to find the global function maximum in the fewest number of 

PVT corner simulations. A search that terminates too fast should raise suspicion about the accuracy 

of that termination decision. For example, output rise_time of circuit shift_reg was sometimes 

found to converge to a candidate corner for the global maximum with the 10-sigma confidence 

heuristic having selected as few as 17 corners (speedup of 63.5x). In many of those cases, the 

found corner did not correspond to the actual worst-case corner. In general, rise_time was found 

to take fewer than 100 simulations to converge to an incorrect corner in approximately 3% of the 

cases, even with algorithm improvements like the boosting factor for the predicted error produced 

by the GPM. Such a high error rate in termination is not acceptable and an improved heuristic 

needs to be introduced to avoid these problems. 

Having collected the results of simulations for 2744 of such termination errors for the 

rise_time output of shift_reg, it was found that the most common reason for premature termination 

on the wrong corner is that sometimes the output values of the corners that lie on the convex hull 

in an iteration of the algorithm are significantly higher than the previous known maximum. In 

Figure 4.1, this effect is demonstrated. The small blue symbols (the 26 corners, in this case) at the 

left along the vertical axis are the ones that were used to construct the present GPM, and the big 

green dots are the true values of the points lying on the convex hull (black points on the lower 

right). The red point below the convex hull is the estimate of the true global maximum by the GPR. 
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Figure 4.1 Undesired Dislocation of the 4-Sigma Confidence Line 

However, since the points on the convex hull are not part of the training set that was used 

to construct the present GPM, the resulting function value predictions and uncertainties can be 

greatly underestimated. In the case of Figure 4.1, the highest value known by the GPM (the “old” 

maximum, the highest blue symbol on the figure) is more than twice as small as the highest value 

among the points selected for the next iteration (the “new” maximum, the highest green symbol 

from which the confidence line extends). Had the confidence line extended from the highest trained 

value, the algorithm would not have terminated at that stage. Figure 4.2 summarises by how much 

the “new” maximum is bigger than the “old” maximum. 

 

Figure 4.2 Distribution of Ratios of New and Old Maxima 
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Figure 4.2 was constructed by running 90000 trials of Shoniker’s algorithm on the 

rise_time output of the shift_reg dataset. As the problem of early termination was being 

investigated, each trial only continued either until termination was declared or until 100 corners 

had been selected. If the algorithm did indeed terminate with fewer than 100 corners, it was 

recorded whether or not the global maximum was found, as well as the biggest value on the convex 

hull and of the points that were the basis for the GPM were recorded. Some of those cases (71 out 

of 90000) did indeed terminate with the true global maximum; however, even they had the same 

problems described in Figure 4.2. The 71 cases just happened to select the true global maximum 

in the few corners that they looked at out of good luck. 

From Figure 4.2 then, we note that most of the time the new maximum is more than twice 

as big as the old maximum, with the smallest such ratio being equal to 1.34. This can barely be 

seen on Figure 4.2, as there was only one such case, compared to nearly 450 cases of the ratio 

being between 2.35 and 2.42. To account for this information, a new heuristic was developed. If 

the new maximum is 33% bigger than the old maximum, the search is not allowed to terminate, 

and so the next iteration of the algorithm is started unconditionally. While this heuristic would 

likely not allow early termination at the true global maximum, such cases would only account for 

0.04% of all cases, according to the trials performed to generate Figure 4.2. Running this heuristic 

on the rise_time function, the algorithm terminates with 4-sigma confidence after simulating an 

average of 991.70 points out of 1080, with a termination accuracy of 99.82% compared to 96.95% 

without the heuristic. As can be seen, it takes a similar number of simulations to terminate with 

this heuristic, compared to the times when there was no premature termination. One interesting 

thing to note from these tests is that terminating with 4-sigma confidence produces the termination 

accuracy that should be expected from the 3-sigma confidence termination rule. This phenomenon 

will be further explored in Section 4.1.2. 

The results of applying this heuristic on every dataset are summarised below in Table 4.1. 

As can be seen, the results are not significantly different from the ones provided in Table 3.2. The 

gains are explained by the reduction in the number of input dimensions, as described at the end of 

Section 2.1.4, and the termination accuracies are approximately what should be expected from the 

3-sigma termination rule. Note, however, that for these results the k=4 termination rule was used, 

and therefore the accuracy would be expected to be higher, following the assumptions of Michael 
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Shoniker’s work. In reality, however, the k-sigma rule leads to termination failure statistics that 

are rather different from the Q(k) single-tailed distribution function. The likely reason for this is 

explored in Section 4.1.2. The average speedup across all datasets is 4.99x, and the average 

termination accuracy is 99.94%. Thanks to the reduced size of the initial training set, more 

simulations were saved, while the accuracy remained at an acceptable level, compared to the 

results of applying Shoniker’s algorithm. 

Dataset 
Average Corners to 

Convergence 
Average Speedup 

Average 

Accuracy 

bias_gen 37.29 3.22 100 

bitcell 26.16 4.59 100 

buffer_chain 171.25 13.48 99.83 

charge_pump1 35.29 6.21 100 

charge_pump2 58.038 5.72 100 

opamp1 47.31 2.54 100 

sense_amp1 59.81 2.60 100 

shift_reg 818.59 1.55 99.67 

Average Speedup 4.99 Average Accuracy 99.94 

Table 4.1 Results of Applying a Safeguard Against Premature Termination 

4.1.2 Understanding the Meaning of the σ-threshold 

 

In Shoniker’s thesis, the 3-sigma confidence level was taken to be the benchmark metric 

for evaluating the performance of the various versions of the algorithm for minimal worst-case 

corner selection. The reasoning behind this decision was that, for Gaussian random variables, that 

would provide the expected termination accuracy of 99.865%, as described by the Q-function that 

represents the tail probability of a Gaussian distribution for a certain standard deviation σ (σ = 3 

in this case). That is, the algorithm would be expected to fail to find the global worst case corner 

in only one out of 740 runs, which, according to our industrial partner, would be an acceptable 

error rate for such tasks in the industry. However, there are some conceptual flaws with this 

expectation. Note that for GPR each test point, for which a prediction is made, is considered to be 

an independent (from other test points) Gaussian random variable, the above reasoning would be 

valid if we only have one unsimulated point below the 3-sigma confidence threshold. If there are, 

however, multiple points below the threshold, the total expected accuracy 𝐸[𝑎𝑐𝑐] would be the 

product of factors where each factor is 1 minus the Q-function for the σ levels of each predicted 

test point. That is, the expected total accuracy would actually be equal to  
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𝐸[𝑎𝑐𝑐] =∏(1 − 𝑄(𝜎𝑖))

𝑛

𝑖=0

= ∏𝜑(𝜎𝑖)

𝑛

𝑖=0

=  𝜑(𝜎𝑒𝑓𝑓) (4.1) 

for the number n of unsimulated points and the function 𝜑(𝜎𝑖) = 1 − 𝑄(𝜎𝑖) providing the 

complement of the Q-function. It is clearer now that using the same 3-sigma confidence threshold 

as before will lead to overly optimistic expectations since there is almost always more than one 

point under the confidence line at the time of termination for almost every function under analysis. 

Moreover, having as many points as possible below the confidence threshold at the time of 

termination is the entire point of the algorithm. As such, a more in-depth analysis of what we mean 

by confidence of termination is needed. 

Fortunately, due to the roughly exponentially decaying nature of the Q-function, the effect 

of multiple equally confident corners is not overly significant. The σi-confidence level of the corner 

i is calculated according to the expression: 

𝜎𝑖 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑘𝑛𝑜𝑤𝑛 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑖

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑖
(4.2) 

 Performing some easy algebraic transformations to show the effective σeff-confidence 

level of the number u of unsimulated points having the same σi-confidence level, and to show the 

required σi-confidence level for u points to have the effective σeff-confidence level, the following 

expressions are obtained:  

𝜑(𝜎𝑒𝑓𝑓) =∏𝜑(𝜎𝑖)

𝑢

𝑖=0

=  𝜑(𝜎𝑖)
𝑢 

ln (𝜑(𝜎𝑒𝑓𝑓)) = 𝑢 ∗ ln(𝜑(𝜎𝑖)) 

𝜎𝑒𝑓𝑓 = 𝜑
−1(exp(𝑢 ∗ ln(𝜑(𝜎𝑖)))) (4.3) 

𝜎𝑖 = 𝜑
−1 (exp (ln(𝜑(𝜎𝑒𝑓𝑓)) 𝑢⁄ )) (4.4) 

Thus the number u > 1 of unsimulated points that together produce the same σi-confidence as one 

point at the σeff-confidence level is 

𝑢 =
ln (𝜑(𝜎𝑒𝑓𝑓))

ln(𝜑(𝜎𝑖))
(4.5) 
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This means that, for example, to achieve a target σeff = 3, we can have up to 42 points at σi = 4, 

and the number of corners required to make an effect on σeff for higher σi grows very fast. Figure 

4.3 illustrates this. 

 

Figure 4.3 The Number of Unsimulated Corners at Confidence σi Required to Have the Same Confidence as 

One Corner at 3-Sigma Level 

Since not every point will lie on the same sigma threshold at the time of termination, with 

most points having significantly higher individual sigma confidences, in Shoniker’s final 

algorithm it was decided that simply increasing the termination threshold by 1 would be sufficient 

to approach the expected level of accuracy. As such, all of the results in Chapter 4 are reported for 

termination criterion at the 4-sigma confidence level. 

4.1.3 Terminating Execution on a Point-by-Point Basis 

 

An interesting way to decrease the number of simulated points that it takes to terminate at 

a global maximum is to look at when it is safe to exclude certain points from consideration when 

looking for the global maximum. This subsection describes several ways to go about that. 

The ideas presented below are somewhat similar to the three-step amplification factor for 

the predicted uncertainty in the function estimates in Shoniker’s algorithm, but instead of next 
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corner selection, it is applied to the termination stage of the framework. The purpose of the three-

step amplification factor was to encourage exploration near the current candidate maximum, to 

ensure that the true global maximum is not missed just because the current known one is close and 

is good enough. The purpose of these new heuristics, however, is to take advantage of the predicted 

values and uncertainties at an earlier stage of simulation. As will be demonstrated, to achieve the 

desired accuracy, it will be necessary to look at a collection of points within a radius of a candidate 

for termination to be able to make a decision on whether or not it will be safe to do so. 

4.1.3.1 The Naïve Algorithm 

 

As previously described, GPR sees every test point for which it is required to make a 

prediction as being independent from all other predicted test points. For each one of the test points, 

then, the algorithm produces the estimated value ŷ and uncertainty σ in the estimation of the value 

at the test point. This leads to an idea that certain points can be said, with high enough confidence, 

to be very unlikely to be bigger than the global maximum, and thus these points can be safely 

excluded (that is, pruned away) from consideration at an earlier stage of the simulation. 

Following the calculations in Section 4.1.2, those equations can be reformulated with u 

being the number of points in a dataset. This is a somewhat pessimistic estimation of σeff as it 

assumes that every point will be considered for termination (i.e., below the σeff termination 

threshold), and a significant fraction of points from the dataset may already have been selected for 

simulation, rather than being involved in the termination decision. Additionally, many points will 

be at a level of confidence significantly higher than σeff at the time of termination. However, it is 

better to have more safety if the points are going to be excluded completely, especially if the GPM 

cannot model the function accurately, so these considerations provide reasonable σeff. The effective 

σeff-confidence levels are shown in Table 4.2 

Size of Set Datasets of this Size σeff 

120 bitcell, sense_amp1, bias_gen, op_amp 4.2384 

216 charge_pump1 4.3685 

324 charge_pump2 4.4563 

1080 shift_reg 4.708 

1799 buffer_chain 4.811 

Table 4.2 Dependence of σeff on the Number of Corners in a Dataset to Produce the Target 3-Sigma Confidence 
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As expected, the heuristic provided a significant reduction in the number of simulated 

points required to reach termination on the global maximum, however with lower overall accuracy. 

Table 4.3 summarises the results of using this procedure. 

Dataset 
Average Corners 

to Convergence 
Average Speedup 

Average 

Accuracy 

bias_gen 32.65 3.68 100.00 

bitcell 21.12 5.68 100.00 

buffer_chain 116.61 16.78 99.17 

charge_pump1 29.71 7.38 99.60 

charge_pump2 46.51 7.06 98.40 

opamp1 42.93 2.80 100.00 

sense_amp1 48.47 3.07 98.14 

shift_reg 632.44 2.21 93.33 

Total Average 

Speedup 
6.08 

Total Average 

Accuracy 
98.58 

Table 4.3 Results of Applying Pointwise Termination of Datasets 

The average speedup this way is 6.08x, and the average termination accuracy is 98.58%. 

This accuracy is not acceptable for an important application such as the finding of the worst-case 

corner for the purposes of design verification, and therefore developing a more reliable termination 

rule is required. 

4.1.3.2 Experiments with a Stricter Termination Threshold 

 

While reducing the average number of required simulations for convergence was a 

welcome improvement, the resulting reduction in termination accuracy meant that the heuristic 

needed more work. Stricter termination rules were therefore considered. 

For the termination rule described in Section 4.1.3.1 to yield the best accuracy, the actual 

global maximum should never fall below the termination threshold. As the shift_reg dataset that 

had by far the biggest difficulty with termination accuracy, that dataset was studied carefully for 

insights when developing a stricter and hopefully more accurate termination rule. 

An initial idea was to have a curved termination threshold, rather than the straight one 

defined by the sigma confidence equation 𝑦 = 𝑦𝑚𝑎𝑥? − 𝑘 ∗ 𝜎𝑝𝑟𝑒𝑑. It was noted that often when the 

predictions and uncertainties for the unsimulated true maximum would place that point below the 

termination threshold, the point would be located in a small region just below the confidence 

threshold. It was decided to try to define a certain “dangerous zone”, where it would not be safe to 

prune away points, to eliminate the possibility of wrongly terminating the global maximum. 
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Essentially, this would make the termination threshold slightly stricter for a range of predicted 

uncertainties, the “dangerous zone”, while outside of it the threshold would remain at the defined 

sigma level. Performing a comprehensive visual analysis, however, proved that such an approach 

would be infeasible as the dangerous zone could essentially include the entire scatter area (see 

Figure 4.4), offering not even a theoretical benefit in the number of simulated corners to 

convergence for any dataset under analysis. 

 

 

a) 

b) 

Relative Uncertainty 

Relative Prediction 

Relative Uncertainty 

Relative Prediction 
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Figure 4.4 Unsafe Positions of the Global Max Relative to the σeff Confidence Line 

In Figure 4.4 the vertical and horizontal positions are calculated by 

�̂�𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = 1 −
𝑦𝑚𝑎𝑥? − �̂�𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑎𝑥
𝑦𝑚𝑎𝑥? − �̂�𝜎𝑚𝑎𝑥

(4.6) 

𝜎𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = 𝜎𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑎𝑥 𝜎𝑚𝑎𝑥⁄ (4.7) 

respectively, for k=4.708, where 𝑦𝑚𝑎𝑥?  is current known maximum for that stage of simulation 

where the global maximum was predicted to be pruned away, 𝜎𝑚𝑎𝑥 is the highest uncertainty at 

that stage of simulation, �̂�𝜎𝑚𝑎𝑥  is the predicted value of the point with the highest uncertainty at 

that stage of simulation, and �̂�𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑎𝑥 is the predicted value of the true global maximum for the 

function. In the figures, the main information is that the predictions of the global worst-case corner 

are often much lower than the σ-confidence termination line and that the true global maximum can 

sometimes be located much lower than the termination line. This makes it impossible to produce 

a reasonable curved termination threshold that would allow to easily prune away unsimulated 

corners. 

Another way to approach the termination problem was to consider changing the parameters 

of the termination inequality ŷ + 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 ∗ 𝜎 ≤ scale ∗ 𝑦𝑚𝑎𝑥?, where 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒  is a different 

sigma threshold, and scale is a factor that would place the benchmark value below the current 

known maximum value y𝑚𝑎𝑥? relative to the current known minimum value. Mathematically, 

c) 
Relative Uncertainty 

Relative Prediction 



56 

 

scale =
�̂�𝜎𝑚𝑎𝑥 + 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 ∗ 𝜎𝑚𝑎𝑥

𝑦𝑚𝑎𝑥?
(4.8) 

where 𝑦𝑚𝑎𝑥? is the current known maximum value, 𝜎𝑚𝑎𝑥 is the highest uncertainty of a test point 

at that stage of the simulation, and �̂�𝜎𝑚𝑎𝑥 is the mean estimate of the point with 𝜎𝑚𝑎𝑥. 

To explore which parameter values in the new termination rule would give the best trade-

off between complexity and termination accuracy, a series of a series of experiments were 

performed for the outputs of shift_reg dataset. Whenever the point with the true global maximum 

was predicted to be below the 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 -sigma confidence threshold, the state of the simulation 

(namely, the ŷ and 𝜎 values for every test point) was recorded for further analysis. This information 

allowed for the creation of scatter plots showing the position of the global maximum on the convex 

hull scatter plots relative to the 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒-sigma confidence line (see Figure 4.4). 

The desirable set of parameters would be a low 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒  and a high “scale”, with a higher 

𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒  being more favourable than a low scale. The combinations of the parameters that caused 

the point of the global maximum to be above the termination line were sought. Among all the 

tested combinations, scale = 0.85 and 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 = 8.5 was selected as the most appropriate (see 

Figure 4.5), having affordable rates of failure. This means that it is assumed safe to terminate every 

corner that is predicted to be below the 8.5-sigma confidence line stretching from 85% of the value 

of the current known maximum. Unfortunately, even these conditions turned out to be too strict to 

produce any improvement on the original results. The results are provided in Table 4.4 combine 

this threshold with the combined confidence threshold of 4-sigma for all points. That is, the search 

terminates if every point is below the 4-sigma confidence threshold. 

Dataset 
Average Corners 

to Convergence 
Average Speedup 

Average 

Accuracy 

bias_gen 37.15 3.23 100.00 

bitcell 25.87 4.64 100.00 

buffer_chain 166.54 13.26 100.00 

charge_pump1 34.96 6.27 100.00 

charge_pump2 57.03 5.82 99.00 

opamp1 47.29 2.54 100.0 

sense_amp1 58.36 2.62 99.71 

shift_reg 813.47 1.55 99.33 

Total Average 

Speedup 
4.99 

Total Average 

Accuracy 
99.76 

Table 4.4 Results of Stricter Threshold Simulations 
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Figure 4.5 Relative Positions of Global Maxima Estimates for scale=0.85 and kpointwise=8.5 

a) 

b) 

c) 

Relative Uncertainty 

Relative Prediction 

Relative Uncertainty 

Relative Prediction 

Relative Uncertainty 

Relative Prediction 
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With the average speedup of 4.99x, and 99.76%, there is no noticeable benefit compared 

to the results produced by Shoniker’s original algorithm, and thus there appears to be no point in 

exploring pointwise termination in this way. Section 4.1.3.3, however, describes another approach 

to pointwise termination that considers the predictions and the uncertainties of neighbouring 

points. 

4.1.3.3 Neighbourhood Effects and Hybrid Termination 

 

At this point, it is clear that it is difficult to find a reliable and simple termination criterion 

where the unsimulated points are considered separately. However, by modifying the pointwise 

termination rule to one that considers the neighbouring points, we found that a further slight 

improvement in termination accuracy can in fact be achieved over all previously described 

algorithms. 

Dataset 
Average Corners to 

Convergence 

Average 

Speedup 

Average 

Accuracy 

bias_gen 36.29 3.31 100.00 

bitcell 25.45 4.72 100.00 

buffer_chain 156.81 13.48 99.50 

charge_pump1 33.85 6.48 100.00 

charge_pump2 55.60 5.96 99.00 

opamp1 46.66 2.57 100.00 

sense_amp1 58.21 2.65 99.57 

shift_reg 788.12 1.63 98.67 

Total Average Speedup 5.10 
Total Average 

Accuracy 
99.59 

Table 4.5 Results of Neighbourhood Termination 

In this new termination rule, a point is ruled out as the global maximum only if all the 

points within a certain radius of the point under consideration are themselves below the confidence 

boundary. This radius would be calculated as a suitable fraction of the diameter of the dataset 

under consideration. Here, the diameter is defined to be the biggest distance between any two 

points in the dataset. To determine the appropriate radius, information was collected on every case 

where the true global maximum ended up below the 4-sigma confidence line. The 4-sigma 

confidence line was chosen since now the termination criterion for the entire dataset does not have 

to pass all 1080 times for shift_reg dataset, and thus 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒  was assumed to be too strict of a 

threshold. The fraction value for the radius was swept to determine the lowest fraction of the 

diameter for which the true global maximum would never be selected for termination, provided 
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that not every point is under the 4-sigma confidence line. The best fraction was determined to be 

0.3 (that is, 30% of the biggest distance between two points in the input space) and results are 

provided in Table 4.5. The average speedup was 5.10x, and the average accuracy was 99.59%, 

slightly below the desired accuracy. This proved that 𝑘𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒  was not too harsh for radial 

pointwise termination, and therefore the decision boundary was set to the σeff threshold again. 

Achieving one final improvement in termination accuracy requires determining how many 

points are in the neighbourhood of the candidate global maximum point under consideration for 

termination. For the raw input value set for the true global maximum of the outputs in shift_reg 

dataset, these values were 675, 405, and 540 points, respectively. However, by performing 

standardisation (removing the mean and reducing the standard deviation from the distribution of 

the values along each dimension to 1) on the input values before, these numbers drop to 96, 94, 

and 113 points, respectively, while the fraction of the radius increases to 40% of the diameter of 

the dataset. From a run of simulations, it was observed that performing standardisation on the input 

values and applying Shoniker’s algorithm did not have any significant negative effect on the 

accuracy of termination (see Table 4.6), and as such there is no downside to doing this kind of 

preprocessing. In fact, the buffer_chain dataset had great improvements in termination accuracy 

thanks to standardisation preprocessing. Consequently, the neighbourhood analysis heuristic was 

combined with Shoniker’s original 4-sigma confidence rule of termination.  

Dataset 
Average Corners 

to Convergence 

Average 

Speedup 

Average 

Accuracy 

bitcell         25.76 4.66 100.00 

charge_pump1    35.34 6.22 99.80 

charge_pump2    58.59 5.71 100.00 

sense_amp1      59.99 2.58 100.00 

bias_gen        37.32 3.22 100.00 

opamp1          48.04 2.50 100.00 

shift_reg       820.63 1.53 100.00 

buffer_chain    137.65 15.37 100.00 

Average Speedup 5.22 
Average 

Accuracy 
99.98 

Table 4.6 Performance after Applying a Standardisation Preprocessing Step 

The combination works as follows. After each simulation, every remaining unsimulated 

point is tested for termination, with the calculated σeff (see Table 4.2) and with the radius of the 

neighbourhood of the point being set to 0.4 of the diameter of the entire dataset. However, if every 

point is below the 4-sigma confidence threshold, the execution is terminated all the same and the 
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current known maximum is declared to be the global maximum. The results of this heuristic are 

provided in Table 4.7. 

Dataset 
Average Corners to 

Convergence 

Individual Function 

Speedups 
Average Speedup Average Accuracy 

bias_gen 36.81 

3.08, 3.02, 3.29, 3.37, 

3.34, 3.29, 3.29, 3.32, 

3.33, 3.32 

3.26 100.00 

bitcell 24.47 4.86, 4.92 4.90 100.00 

buffer_chain 157.34 
12.35, 18.18, 13.74, 

18.20, 5.23, 14.33 
13.67 100.00 

charge_pump1 34.69 
7.12, 6.21, 5.44, 7.30, 

5.54 
6.32 99.80 

charge_pump2 55.46 
5.08, 5.55, 7.16, 7.08, 

5.05 
5.98 99.20 

opamp1 46.00 2.61 2.61 100.00 

sense_amp1 56.26 
4.15, 2.90, 1.62, 3.92, 

3.96, 1.59, 1.06 
2.74 99.43 

shift_reg 818.42 2.42, 1.04, 1.11 1.52 99.33 

Total Average Speedup 5.13 
Total Average 

Accuracy 
99.72 

Table 4.7 Results of the Hybrid Termination Heuristic 

The average speedup is then 5.13x, and the average termination accuracy is 99.72%. This 

is mainly due to improvements in the termination of functions in shift_reg dataset. The termination 

accuracy is at the lower boundary of the accuracy objective, but this is mainly due to the problem 

of premature termination, as described at the beginning of this chapter 

4.2 Chapter Discussion 

 

In this chapter, the subject of what termination means using point-level heuristics was 

explored. It was found that there are limitations to looking at each test point as a separate case. 

While that is exactly what GPR attempts to do, such an approach can backfire when analysing a 

function that perhaps was not the result of a process easily described by a Gaussian Process with 

a set covariance function. 

It becomes apparent that some theoretical pitfalls of Shoniker’s work are sometimes 

balanced out by unexpected benefits. So, for example, if the value of one test corner is greatly 

underestimated, the value of another test corner might be greatly overestimated. As such, the 

average effect of errors across many test points works out to approximately what one would expect 

from a heuristic that should produce results with, for example, 3-sigma confidence. In particular, 

this could explain why the model developed by Shoniker would produce uncertainties of a 
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magnitude noticeably smaller than desired by his model, and the need to introduce the global 

boosting factor to compensate for that as fewer corners remain unsimulated. Indeed, as the number 

of test points becomes smaller, the boosting factor grows larger, signalling that the GPM is getting 

more and more inaccurate. 

This insight might explain why looking at neighbourhoods of points produces much better 

results compared to focusing on points on an isolated basis. It could be that GPM predictions have 

limited regions of effect, meaning that the predictions for the center of the region of effect are 

more reliable when looking at all the points in such area. Indeed, GPR exploits the correlation 

between closely located points by tying the predictions of a test point to nearby training points. 

The next step taken was to investigate the identification of safely pruned regions, rather 

than safely pruned points. Perhaps by performing relatively simple preprocessing steps (e.g., 

partitioning), there might be a good chance of quickly learning which areas can be safely pruned 

away from the search for the global maximum and thus focus computational effort on the most 

promising partition. This approach of partitioning also provides a framework for allowing different 

heuristics used in different partitions. This study is the focus of the next chapter. 
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Chapter 5: Pruning Groups of Points 

5.1 k-means Clustering on Input Values 

 

From the results of Section 4.1.2, we learned that one of the Shoniker algorithm’s key 

strengths is to prune away individual points from consideration when searching for the global 

maximum. With respect to a scatter plot diagram (predicted function value vs. predicted 

uncertainty), this occurs when a point falls below the sigma confidence line. An extension to this 

idea would be to prune away entire input regions, containing multiple unsimulated points, from 

consideration. In this chapter, we explore the effects of partitioning the input space into clusters 

using a popular clustering technique: k-means clustering. 

5.1.1 A Straightforward Approach 

 

The first idea that we investigated was to perform k-means clustering on the inputs for 

various assumed numbers of clusters. k-means clustering [64] is an unsupervised machine learning 

technique that attempts to partition an input space into k > 1 disjoint subspaces. The number k of 

subspaces is specified by the user. The fundamental task of k-means clustering is to assign each 

point to one of the k clusters, Si, with mean µi, 1 ≤ i ≤ k, so that the total sum of the within cluster 

sum of squares (WCSS) is minimised. The WCSS is defined as follows: 

𝑊𝐶𝑆𝑆 =  ∑∑‖𝒙 − 𝝁𝒊‖
2

𝒙∈𝑆𝑖

𝑘

𝑖=1

(5.1) 

The problem of minimising WCSS is NP-hard[65][66], so every practical implementation 

must use heuristics to partition the set of points into clusters. This can result in irregular boundaries 

between clusters, and this introduces an additional source of variation when testing the algorithm 

for the minimal selection of worst-case corners, as will be shown later. The cluster means µi are 

generated randomly at first. Then, the input points are assigned to clusters based on the proximity 

to the generated means. The means are then updated to the mean position of the points selected to 

the cluster, and the clusters are regenerated, resulting in new mean points. This continues until the 
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assignments have not changed between iterations. Note that this iterative process does not 

guarantee optimal WCSS. 

The experiments showed that there is the potential to have more accurate average 

predictions for test points for the outputs of the most difficult dataset shift_reg, compared to the 

“no clustering” case, as illustrated in Figure 5.1.  

 

Figure 5.1 Fractions of Simulated Corners vs. Mean Squared Errors of Predictions for the (a) delay, (b) 

fall_time, and (c) rise_time Outputs of the shift_reg Datasets 

Figures 5.1 illustrate the mean squared error of prediction versus the fraction of simulated 

corners for the corners in the shift_reg dataset for different numbers of clusters. The mean squared 

error of prediction is calculated as 

𝑒𝑟𝑟𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑁𝑡𝑒𝑠𝑡 𝑝𝑜𝑖𝑛𝑡𝑠
 ∑ (𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒𝑖 − �̂�𝑖)

2

𝑁𝑡𝑒𝑠𝑡 𝑝𝑜𝑖𝑛𝑡𝑠−1

𝑖=0

(5.2) 

a) b) 

c) 
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k-means clustering was performed on the input space of shift_reg, and Shoniker’s algorithm was 

applied to each cluster independently. In the figures, it can be clearly seen that the “no clustering” 

case (dashed lines) almost universally leads to higher errors from predictions �̂� at any stage of 

simulation, compared to the multiple clustering cases, which suggests the models become more 

accurate. It is not clear what the optimal number of cluster is, so in the trials, the number of clusters 

will be swept between 2 and 8 to better understand how performance is influenced by each setup.  

Figure 5.2 illustrates how partitioning the input space into a number of clusters (five, in the 

case of Figure 5.2) can make it easier for the search algorithm to find the global maximum. 

 

Figure 5.2 Demonstration of the Benefits of Separating the Input Space into Clusters 

In Figure 5.2, note that the high peak is completely within Cluster 1, compared to the 

relatively flat four other clusters. A properly designed cluster-based algorithm would quickly 

understand that the regions described by Clusters 2 through 5 can be safely pruned away, so the 

computational effort can then be focused on Cluster 1. Thus, we conjectured that clustering has 

the potential to improve the performance of the minimal corner selection algorithm. 
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More applicable to this project are the distributions of the challenging functions fall_time 

and rise_time of shift_reg (see Figures 5.3 and 5.4, respectively). Before the figures were 

constructed, a k-means clustering procedure was performed on the input space of the shift_reg 

dataset, with k=4. The figures reveal the distributions of the outputs of each of the four clusters for 

the two challenging functions rise_time and fall_time. It is clearly seen that one of the clusters 

(cluster no. 3 in the case of fall_time and cluster no. 0 in the case of rise_time) have the highest 

output values, and so, hopefully, the algorithm can quickly recognise that the other clusters are not 

likely to have the global maximum and will prune them away quickly. A potential difficulty could 

be the problem of underfitting described in Section 3.2; however, we still expect notable 

improvements, since the predictions are supposed to be much closer to the true values. 

 

 

Figure 5.3 Shapes of the Output Distributions of the Four k-means Clusters of the fall_time Function 
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Figure 5.4 Shapes of the Output Distributions of the Four k-means Clusters of the rise_time Function 

The proposed procedure is then as follows. Before starting Shoniker’s algorithm, k-means 

clustering is performed on the input set, with the number of clusters increased from 1 (no 

clustering) up to 8. Then, for every cluster, the initial training set is selected according to the 

established design. No constraints are placed on the form of clusters, so the boundaries between 

them can be different from one trial to another. Once that is done, each cluster constructs its own 

GPM, independent of the GPMs of other clusters. Similarly to Section 4.1.3, a cluster can be 

terminated (or pruned) if every point in the cluster is under the sigma-confidence line defined by 

the 4-sigma confidence threshold and the maximum value from the corners found in every cluster 

(i.e., the current known global maximum). Execution for each cluster continues until every cluster 

has been terminated, and the maximum over all clusters is declared the global maximum. Results 

of this heuristic are provided in Table 5.1. In Table 5.1, the results in italics with an asterisk denote 

cases where not every output terminated in all 100 out of the 100 trial runs with the true function 

maximum. Note that the termination accuracy is rather low for some outputs, particularly rise_time 

of shift_reg. In general, the termination accuracy seems to drop as the number of clusters rises.  
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Dataset 
Avg. Speedup No 

Clustering 

Avg. Speedup 2 

Clusters 

Avg. Speedup 3 

Clusters 

Avg. Speedup 4 

Clusters 

shift_reg 1.33* 1.61* 1.81* 1.89* 

buffer_chain 11.11 9.94* 9.01* 8.35* 

Big Datasets Average 6.22 5.78 5.41 5.12 

bitcell 4.7 3.21 2.57 2.11 

charge_pump1 6.13 4.74 3.79 3.13 

charge_pump2 5.69* 4.17* 3.4* 2.95* 

sense_amp1 2.01* 1.89* 1.78 1.55* 

bias_gen 3.21 2.91 2.39 2.03 

op_amp 2.59 2.14 2.16 2.07 

Small Datasets Average 3.93 3.17 2.70 2.35 

Overall Average 4.60 3.83 3.36 3.01 

Dataset 
Avg. Speedup 5 

Clusters 

Avg. Speedup 6 

Clusters 

Avg. Speedup 7 

Clusters 

Avg. Speedup 8 

Clusters 

shift_reg 1.95* 1.98* 2.09* 2.15* 

buffer_chain 7.76* 7.35* 6.9* 6.54* 

Big Datasets Average 4.86 4.67 4.5 4.35 

bitcell 1.79 1.57 1.39 1.25 

charge_pump1 2.76 2.48 2.22 2.02 

charge_pump2 2.62* 2.33* 2.23* 2.14* 

sense_amp1 1.47 1.38 1.28* 1.2 

bias_gen 1.75 1.53 1.36 1.22 

op_amp 1.77 1.55 1.39 1.25 

Small Datasets Average 2.07 1.85 1.70 1.57 

Overall Average 2.73 2.52 2.36 2.22 

Table 5.1 Average Speedups for Achieving 4-sigma Confidence when Applying Clustering with Cluster 

Pruning 

In addition, only shift_reg seems to benefit from clustering in terms of reducing the number 

of points simulated to get to convergence. This might be explained by the fact that the procedure 

for selecting the initial training set has a strictly fixed size that depends on the number of input 

dimensions and is bounded below by 10 to ensure that 10-fold cross-validation can be performed. 

For a dataset with many input dimensions, such as sense_amp1, the points to be simulated would 

be quickly exhausted, and as a result there would be hardly any potential benefit in this procedure. 

Indeed, the average speedup of small datasets drops noticeably faster than that of big datasets 

(3.93x to 1.57x vs 6.22x to 4.35x). Circuit buffer_chain is also poorly handled with clustering for 

the k=4 sigma rule, which might be explained by the fact that the dataset itself is rather “easy” to 

converge at that confidence level. At higher sigma levels, there seems to be some benefit from a 

higher number of clusters. This was the case for shift_reg. 

One apparent benefit from using clustering is the reduction of the runtime of the algorithm 

for big and difficult datasets, like shift_reg. The effect is summarised in Table 5.2. The simulations 

ran in Python 2.7 on an Intel(R) Core(TM) i7-4790 CPU at 3.60 GHz frequency, using the scikit-

learn 0.16.1 Python package. 
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Number of clusters 1 2 3 4 

Time to complete, s 100% ~33.7% ~17.8% ~13.0% 

Number of clusters 5 6 7 8 

Time to complete, s ~10.7% ~9.62% ~8.42% ~4.41% 

Table 5.2 Relative Runtime of Algorithm to 10-sigma Convergence 

The effect can be explained by the fact that the total complexity of the underlying GPR 

algorithm is greatly reduced. The computational complexity of GPR is 𝑂(𝑛3), where 𝑛 is the 

number of training samples in the model. Using clustering, however, means that each model only 

needs to process 𝑛 𝑘⁄  points in the 𝑘 clusters. The overall complexity is then  

𝑂((𝑛 𝑘⁄ )3 ∗ 𝑘) = 𝑂(𝑛3 𝑘2⁄ ) (5.3) 

So, to summarise, the most immediate benefit of applying clustering is a reduction in the 

runtime of the algorithm, and so there is possibly better performance (specifically, a lower number 

of required corner simulations) on big and difficult datasets. The downsides are reduced accuracy 

and often poor performance for small datasets. Further sections in this chapter will introduce 

several ways to compensate for these downsides. 

5.1.2 A More Structured Initial Training Set 

 

The clustering results presented in Table 5.1 are mixed. On the one hand, there is clearly a 

decrease in how many simulations it takes for a big and “difficult” dataset like shift_reg to 

converge to a maximum when increasing the number of clusters. On the other hand, there is also 

a clear decrease in the termination accuracy when finding the true global maximum, and a notable 

increase in the required number of simulations to converge for smaller and easier datasets. One 

possible explanation for both of these downsides is that the initial training set is not well suited for 

this heuristic. Indeed, as the size of the initial training set is fixed for every cluster, regardless of 

how many points it contains, the total size of the initial training set can grow to be unacceptable. 

For example, for sense_amp1, the size of the initial training set is 10 after removing the static 

dimensions, while the total size of the dataset is 120. This means that, on average, there can be at 

most twelve clusters before there is no possible room for improvement. 

One way to tackle both of these problems is to use a different, more intelligently selected, 

design for the initial training set. In particular, we obtained good results with the Plackett-Burman 

design [29] described in Section 2.2.2.2. The procedure then is the same as in Section 5.1.1, with 
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the exception that now the initial training set for every cluster is selected according to a Plackett-

Burman design, rather than the old procedure. The results of the experiments are summarised in 

Table 5.3. 

These results are a clear improvement over those reported in Section 5.1.1 with regards to 

both the number of points simulated that are required to terminate at the global maximum, and the 

accuracy of finding the true global maximum. In particular, only the shift_reg run failed to find 

the true global maximum in all 100 trials out of 100, for every output function. What cannot be 

seen in Table 5.3, however, is the fact that when using many clusters with Plackett-Burman design, 

the accuracy for shift_reg drops to almost zero, possibly because the deterministic nature of the 

design makes it hard to correct for poor assumptions. That is, if the Plackett-Burman design was a 

bad sample of the input space in a cluster, it will likely be the case for the next trial as well. Another 

possible explanation is that the design gives a misleading start to the GPM for overly small clusters, 

and thus it is not advisable to use too many clusters. For up to three clusters, however, the Plackett-

Burman design seemed to work well, which can be seen in that the average speed-ups for the big 

datasets are higher when using two and three clusters, rather than one. 

Dataset 
Avg. Speedup No 

Clustering 

Avg. Speedup 2 

Clusters 

Avg. Speedup 3 

Clusters 

Avg. Speedup 4 

Clusters 

shift_reg 1.31 1.71 1.72 1.88* 

buffer_chain 9.55 13.22 11.2 8.34 

Big Datasets Average 5.43 7.47 6.46 5.11 

bitcell 4.97 3.53 2.45 1.95 

charge_pump1 7.17 5.25 4.15 3.42 

charge_pump2 6.11 4.33 3.49 2.98 

sense_amp 1.99 2.29 2.36 2.31 

bias_gen 4.66 3.53 2.84 2.65 

op_amp 2.76 2.34 2.19 2.26 

Small Datasets 

Average 
4.61 3.55 2.91 2.60 

Overall Average 4.82 4.53 3.80 3.22 

Dataset 
Avg. Speedup 5 

Clusters 

Avg. Speedup 6 

Clusters 

Avg. Speedup 7 

Clusters 

Avg. Speedup 8 

Clusters 

shift_reg 1.86* 1.93* 1.96* 2.05 

buffer_chain 7.71 7.42 6.97 6.96 

Big Datasets Average 4.79 4.68 4.47 4.51 

bitcell 1.84 1.76 1.68 1.62 

charge_pump1 2.95 2.59 2.33 2.1 

charge_pump2 2.63 2.34 2.24 2.18 

sense_amp 1.89 1.65 1.46 1.3 

bias_gen 2.26 2.01 1.81 1.64 

op_amp 2.2 2.09 1.99 1.88 

Small Datasets 

Average 
2.30 2.07 1.92 1.79 

Overall Average 2.92 2.72 2.56 2.47 

Table 5.3 Average Speedup for Achieving 4-sigma Confidence using a Plackett-Burman Design for the Initial 

Training Set 
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5.1.3 Experiments with Preprocessing 

 

One last bit of improvement concerns the speed of convergence. It was shown in [67] that 

linear GPR kernels struggle to correctly model step functions like max; however, by using even 

quadratic kernels, the representational accuracy is significantly improved. This leads to 

considering a preprocessing technique called polynomial features expansion. Now, before 

performing clustering, the input values are expanded to their polynomial features of degree 2. This 

includes squared terms for every input and every interaction term (products of two inputs). 

Otherwise, the process is the same as that described in Section 5.1.2. The results are provided in 

Table 5.4. 

This technique provided major improvements for buffer_chain, and minor improvements 

for shift_reg, and, again only for a small number of clusters. Small datasets, on the other hand, did 

not see any benefit. As a result, it can be noted that these procedures benefit only on a case-by-

case basis, and so this procedure will not be used for any future heuristics. 

Dataset 
Avg. Speedup No 

Clustering 

Avg. Speedup 2 

Clusters 

Avg. Speedup 3 

Clusters 

Avg. Speedup 4 

Clusters 

shift_reg 1.67 1.75 1.97* 2.02* 

buffer_chain 16.6 10.7 9.74 8.74 

Big Datasets Average 9.14 6.23 5.86 5.38 

bitcell 3.58 2.35 2.18 2 

charge_pump1 5.84 4.5 3.75 3.48 

charge_pump2 5.28 3.65 2.98 2.77 

sense_amp 2.15 2.03 1.92 1.76 

bias_gen 3.66 2.83 2.65 2.6 

op_amp 2.18 1.9 2.23 2.15 

Small Datasets Average 3.78 2.88 2.62 2.46 

Overall Average 5.12 3.71 3.43 3.19 

Dataset 
Avg. Speedup 5 

Clusters 

Avg. Speedup 6 

Clusters 

Avg. Speedup 7 

Clusters 

Avg. Speedup 8 

Clusters 

shift_reg 2.12* 2.06* 2.03* 2.13* 

buffer_chain 8.07 7.69 6.64 6.31 

Big Datasets Average 5.1 4.88 4.34 4.22 

bitcell 1.64 1.43 1.28 1.26 

charge_pump1 2.91 2.79 2.45 2.29 

charge_pump2 2.24 2.01 1.89 1.81 

sense_amp 1.68 1.56 1.54 1.52 

bias_gen 2.18 1.83 1.78 1.71 

op_amp 1.83 1.62 1.65 1.62 

Small Datasets Average 2.08 1.87 1.77 1.70 

Overall Average 2.83 2.62 2.41 2.33 

Table 5.4 Average Speedup for Achieving 4-sigma Confidence using a Plackett-Burman Design for the Initial 

Training Set and Quadratic Expansion of Input Features 
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5.2 Clustering Based on Learned Information about the Function 

 

This section explores procedures that take into account the known values of performed 

simulations in the hope of arriving at the global maximum faster and more accurately. Several 

techniques were developed and the results of experiments are presented below. 

5.2.1 Clustering on Output Values 

 

As an experiment, it was decided to perform clustering on all outputs. Essentially, this is a 

test of what would happen were there a way to develop a perfect clustering technique that would 

separate the biggest output values in all of the datasets. The results give a best-case baseline for 

clustering. The two different heuristics for selecting the initial training set were tested, and the 

results are provided in Table 5.5 and Table 5.6. The results show general improvements for all 

metrics, particularly for a small number of clusters. Having received these promising results, it 

appeared that the algorithm would benefit from a more intelligently chosen clustering, which will 

be introduced in the following sections.  

2 Clusters 3 Clusters 4 Clusters 

bitcell         34.47 3.48 100.00 bitcell         44.77 2.68 100.00 bitcell         56.72 2.12 100.00 

charge_pump1    47.73 4.70 100.00 charge_pump1    53.90 4.01 100.00 charge_pump1    63.05 3.43 100.00 

charge_pump2    59.12 5.52 100.00 charge_pump2    69.73 4.68 100.00 charge_pump2    80.73 4.05 99.80 

sense_amp1      45.87 2.75 100.00 sense_amp1      50.43 2.45 100.00 sense_amp1      57.18 2.10 100.00 

bias_gen        37.62 3.20 100.00 bias_gen        44.84 2.68 100.00 bias_gen        56.22 2.13 100.00 

opamp1          49.02 2.45 100.00 opamp1          52.66 2.28 100.00 opamp1          55.32 2.17 100.00 

shift_reg       403.01 2.74 97.00 shift_reg       248.66 4.40 98.33 shift_reg       209.46 5.28 99.00 

buffer_chain    170.35 13.47 99.83 buffer_chain    163.54 12.48 100.00 buffer_chain    151.24 13.05 99.83 

Average speedup 4.78 
Average 

Accuracy 
99.60 Average speedup 4.46 

Average 

Accuracy 
99.79 Average speedup 4.29 

Average 

Accuracy 
99.83 

  

 5 Clusters 6 Clusters 

bitcell         65.82 1.82 100.00 bitcell         76.02 1.58 100.00 

charge_pump1    72.08 3.00 100.00 charge_pump1    84.39 2.56 100.00 

charge_pump2    87.60 3.72 100.00 charge_pump2    97.95 3.32 100.00 

sense_amp1      65.40 1.84 100.00 sense_amp1      77.51 1.55 100.00 

bias_gen        70.73 1.70 100.00 bias_gen        76.79 1.56 100.00 

opamp1          65.98 1.82 100.00 opamp1          76.82 1.56 100.00 

shift_reg       179.76 6.27 98.33 shift_reg       175.01 6.29 91.67 

buffer_chain    159.83 12.07 100.00 buffer_chain    171.96 10.96 100.00 

Average speedup 4.03 Average Accuracy 99.79 Average speedup 3.67 Average Accuracy 98.96 

  

7 Clusters 8 Clusters 

bitcell         87.13 1.38 100.00 bitcell         97.49 1.23 100.00 

charge_pump1    95.51 2.26 99.80 charge_pump1    106.15 2.04 99.80 

charge_pump2    106.24 3.06 100.00 charge_pump2    117.09 2.77 100.00 

sense_amp1      87.55 1.37 100.00 sense_amp1      96.49 1.24 100.00 

bias_gen        88.75 1.35 100.00 bias_gen        96.73 1.24 100.00 

opamp1          88.22 1.36 100.00 opamp1          98.31 1.22 100.00 

shift_reg       171.77 6.33 98.33 shift_reg       164.15 6.64 60.67 

buffer_chain    183.09 10.18 100.00 buffer_chain    189.23 9.67 100.00 

Average speedup 3.41 Average Accuracy 99.77 Average speedup 3.26 Average Accuracy 95.06 

Table 5.5 Results of Clustering on Outputs using the Original Training Set Design 
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2 Clusters 3 Clusters 4 Clusters 

bitcell         36.00 3.33 100.00 bitcell         39.26 3.06 100.00 bitcell         51.00 2.35 100.00 

charge_pump1    40.16 5.57 100.00 charge_pump1    48.28 4.49 100.00 charge_pump1    53.80 4.10 100.00 

charge_pump2    60.50 5.38 100.00 charge_pump2    63.05 5.25 100.00 charge_pump2    63.22 5.20 100.00 

sense_amp1      41.97 3.07 100.00 sense_amp1      41.33 2.96 100.00 sense_amp1      41.29 2.97 100.00 

bias_gen        32.25 3.81 100.00 bias_gen        33.18 3.62 100.00 bias_gen        39.15 3.08 100.00 

opamp1          46.03 2.61 100.00 opamp1          54.56 2.20 100.00 opamp1          44.46 2.70 100.00 

shift_reg       401.86 2.74 100.00 shift_reg       251.13 4.38 100.00 shift_reg       199.32 5.65 100.00 

buffer_chain    172.18 15.40 100.00 buffer_chain    169.45 13.33 100.00 buffer_chain    162.84 13.50 100.00 

Average speedup 5.24 
Average 

Accuracy 
100.00 Average speedup 4.91 

Average 

Accuracy 
100.00 Average speedup 4.94 

Average 

Accuracy 
100.00 

  

5 Clusters 6 Clusters 

bitcell         51.00 2.35 100.00 bitcell         49.00 2.45 100.00 

charge_pump1    54.11 4.09 80.00 charge_pump1    61.98 3.64 80.00 

charge_pump2    78.43 4.20 80.00 charge_pump2    82.48 3.98 80.00 

sense_amp1      47.74 2.52 100.00 sense_amp1      50.71 2.38 100.00 

bias_gen        49.46 2.43 100.00 bias_gen        51.76 2.33 100.00 

opamp1          46.70 2.57 100.00 opamp1          50.00 2.40 100.00 

shift_reg       171.26 6.59 85.00 shift_reg       162.12 7.13 100.00 

buffer_chain    140.51 14.13 100.00 buffer_chain    144.33 13.36 100.00 

Average speedup 4.86 Average Accuracy 93.13 Average speedup 4.71 Average Accuracy 95.00 

  

7 Clusters 8 Clusters 

bitcell         49.00 2.45 100.00 bitcell         60.00 2.00 100.00 

charge_pump1    67.67 3.26 80.00 charge_pump1    74.81 3.00 80.00 

charge_pump2    87.56 3.73 60.00 charge_pump2    94.10 3.46 80.00 

sense_amp1      54.14 2.22 100.00 sense_amp1      60.29 2.00 100.00 

bias_gen        54.68 2.20 100.00 bias_gen        60.00 2.00 100.00 

opamp1          53.00 2.26 100.00 opamp1          54.00 2.22 100.00 

shift_reg       144.39 7.56 100.00 shift_reg       158.99 6.91 99.33 

buffer_chain    137.04 13.51 100.00 buffer_chain    164.68 11.53 100.00 

Average speedup 4.65 Average Accuracy 92.50 Average speedup 4.14 Average Accuracy 94.92 

Table 5.6 Results of Clustering on Outputs using a Plackett-Burman Design as the Initial Training Set 

5.2.2 Clustering Based on the Outputs of Points in the Initial Training Set 

 

From the results in Section 5.2.1 it appears that there is potential benefit to performing a 

more intelligent partitioning of the input domain for the purposes of finding the global maximum. 

We considered performing the partitioning in the following way. The points in the initial training 

set are sorted into several ranks, the number of ranks being equal to the desired number of clusters, 

as selected by the user. The remaining points are then assigned to clusters according to their 

proximity to the closest point in the initial training set. Inside each of the clusters formed in this 

way, an additional initial training set is selected. Since there will not be a lot of variety in how the 

clusters are formed, the intra-cluster training set is selected according to the randomised procedure 

proposed by Michael Shoniker. Simulation was performed in the same way as the previous 

clustering approach otherwise. Up to 5 clusters were considered in this investigation. Within each 

cluster, an additional set of points was selected to properly sample the cluster. The results in Table 

5.7 were produced by adding the sets of points as chosen by Shoniker’s procedure for selecting 
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the initial training set. For Table 5.8, an extra Plackett-Burman design was used in each cluster 

instead. 

The results provided in Table 5.7 and Table 5.8 are rather uneven. As is the case for the 

naïve clustering approach, the average speed-up performance on the small and easy datasets suffers 

noticeably, and most of the big datasets do not see any improvement. However, applying either of 

the heuristics to the dataset custom_sa, which will be described in Section 6, shows remarkable 

reductions in terms of the number of corners simulated, without sacrificing the accuracy of 

predictions. Circuit shift_reg also seems to benefit in terms of number of corners that would be 

simulated, however the accuracy drops below the acceptable level of 99.86%. In general, as the 

number of clusters increases, the performance appears to get worse, both in the average speedup 

and in the average termination accuracy. 

2 Clusters 3 Clusters 

Dataset 
Average Corners 

to Convergence 

Average 

Speedup 

Average 

Accuracy 
Dataset 

Average Corners 

to Convergence 

Average 

Speedup 

Average 

Accuracy 

bitcell         36.91 3.25 100.00 bitcell         44.41 2.70 100.00 

charge_pump1    47.29 4.65 100.00 charge_pump1    55.99 3.92 100.00 

charge_pump2    71.62 4.64 99.00 charge_pump2    82.27 4.03 99.60 

sense_amp1      53.25 2.66 99.86 sense_amp1      54.98 2.41 100.00 

bias_gen        42.72 2.81 100.00 bias_gen        48.75 2.46 100.00 

opamp1          54.03 2.22 100.00 opamp1          54.45 2.20 100.00 

shift_reg       690.73 1.92 94.33 shift_reg       677.19 1.94 94.33 

buffer_chain    200.85 11.07 98.83 buffer_chain    201.05 10.44 99.33 

Average 

Speedup 
4.15 

Average 

Accuracy 
99.00 

Average 

Speedup 
3.76 

Average 

Accuracy 
99.16 

  

4 Clusters 5 Clusters 

Dataset 
Average Corners 

to Convergence 

Average 

Speedup 

Average 

Accuracy 
Dataset 

Average Corners 

to Convergence 

Average 

Speedup 

Average 

Accuracy 

bitcell         51.94 2.31 100.00 bitcell         58.04 2.07 100.00 

charge_pump1    65.58 3.32 100.00 charge_pump1    76.09 2.84 100.00 

charge_pump2    94.32 3.50 99.20 charge_pump2    107.79 3.03 99.40 

sense_amp1      63.47 2.01 100.00 sense_amp1      68.38 1.81 100.00 

bias_gen        58.27 2.06 100.00 bias_gen        67.90 1.77 100.00 

opamp1          59.79 2.01 100.00 opamp1          65.94 1.82 100.00 

shift_reg       628.41 2.11 93.00 shift_reg       628.26 2.08 92.00 

buffer_chain    209.24 9.62 99.00 buffer_chain    223.21 9.04 99.50 

Average 

Speedup 
3.37 

Average 

Accuracy 
98.90 

Average 

Speedup 
3.06 

Average 

Accuracy 
98.86 

Table 5.7 Results of Clustering on the Initial Training Set Generated by Shoniker’s Initial Design, with an 

Extra Randomised Set for Every Cluster 
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2 Clusters 3 Clusters 

Dataset 
Average Corners 

to Convergence 

Average 

Speedup 

Average 

Accuracy 
Dataset 

Average 

Corners to 

Convergence 

Average 

Speedup 

Average 

Accuracy 

bitcell         35.70 3.36 100.00 bitcell         42.17 2.85 100.00 

charge_pump1    44.32 4.96 100.00 charge_pump1    51.98 4.21 100.00 

charge_pump2    71.15 4.68 98.00 charge_pump2    79.63 4.19 95.60 

sense_amp1      48.43 2.92 100.00 sense_amp1      44.28 2.91 100.00 

bias_gen        39.78 3.03 100.00 bias_gen        44.13 2.72 100.00 

opamp1          52.90 2.27 100.00 opamp1          51.79 2.32 100.00 

shift_reg       706.30 1.85 97.33 shift_reg       665.70 1.98 96.33 

buffer_chain    200.90 11.25 95.83 buffer_chain    201.13 10.51 94.33 

Average Speedup 4.29 
Average 

Accuracy 
98.90 

Average 

Speedup 
3.96 

Average 

Accuracy 
98.28 

  

4 Clusters 5 Clusters 

Dataset 
Average Corners 

to Convergence 

Average 

Speedup 

Average 

Accuracy 
Dataset 

Average 

Corners to 

Convergence 

Average 

Speedup 

Average 

Accuracy 

bitcell         47.76 2.51 100.00 bitcell         51.65 2.32 100.00 

charge_pump1    60.20 3.62 100.00 charge_pump1    68.29 3.17 100.00 

charge_pump2    90.23 3.69 97.00 charge_pump2    99.92 3.31 96.80 

sense_amp1      45.96 2.70 99.29 sense_amp1      53.03 2.36 99.86 

bias_gen        48.79 2.46 100.00 bias_gen        53.58 2.24 100.00 

opamp1          53.42 2.25 100.00 opamp1          51.82 2.32 100.00 

shift_reg       617.15 2.08 93.00 shift_reg       616.81 2.12 92.00 

buffer_chain    193.40 10.50 96.00 buffer_chain    189.46 10.62 93.33 

Average Speedup 3.73 
Average 

Accuracy 
98.16 

Average 

Speedup 
3.56 

Average 

Accuracy 
97.75 

Table 5.8 Results of Clustering on the Initial Training Set Generated by the Original Heuristic, with an Extra 

Plackett-Burman Design Added into Every Cluster 

The observation that some datasets do benefit from this heuristic suggests that it could be 

useful, especially if the selected initial training set provides enough information about the structure 

of the dataset, as seems to be the case with custom_sa. Another problem is that this heuristic at 

this stage acts on every dataset regardless of its size or performance using Shoniker’s original 

algorithm. A simple way to compensate for both of the above problems is to introduce clustering 

later in the simulation. This idea will be investigated in Section 5.2.3. 

5.2.3 Clustering Based on the Performance of the Dataset Under Analysis 

 

After applying the simple k-means clustering preprocessing technique on the input space 

of datasets in Section 5.2.1, the main conclusion was that while clustering seems to provide 

significant benefits to big and difficult datasets like shift_reg, it can be counter-productive for 

small and straightforward datasets. This problem could possibly be addressed by monitoring the 

performance of the dataset under analysis. The problem, however, is deciding what is a 
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straightforward dataset. At runtime, every function is unknown, so we can only guess whether a 

function is straightforward by monitoring the performance of the algorithm on the function. 

For this chapter, the solution is based on the previous observations of the effectiveness of 

the algorithm for our benchmark circuits. This requires the same assumption that has been made 

about the provided datasets, and that assumption is that these functions are reasonably 

representative of the entire class of functions that would be produced from a corner analysis of a 

circuit. From Table 3.2, it can be seen that the majority of the output functions take no more than 

a third of the corners simulated to converge to a maximum with 4-sigma confidence. Taking into 

account that these results are averages of 100 runs starting with randomised initial training sets, 

and that some datasets have almost exactly 3.0x speedup, it makes sense to make the boundary 

between an “easy” and a “difficult” dataset a little stricter. It was decided then to move that 

boundary to 2.5x speedup. In other words, a dataset is considered difficult at runtime, if after more 

than 40% of the corners have been selected for simulation, the algorithm still has not converged to 

4-sigma confidence. This also addresses the conclusion made in Section 5.2.2, as now the 

algorithm has more information about the output function and can make more intelligent choices 

when partitioning the input space. 

2 Clusters 3 Clusters 4 Clusters 

bitcell      25.19 4.76 100.00 bitcell       24.21 4.96 100.00 bitcell         23.90 5.02 100.00 

charge_pump1 34.67 6.33 99.80 charge_pump1  34.27 6.39 100.00 charge_pump1    34.54 6.37 100.00 

charge_pump2 55.12 6.01 98.80 charge_pump2  55.61 5.98 99.40 charge_pump2    56.13 5.94 98.80 

sense_amp1   57.26 2.65 100.00 sense_amp1    56.61 2.69 100.00 sense_amp1      57.91 2.68 99.71 

bias_gen     36.86 3.26 100.00 bias_gen      36.64 3.28 100.00 bias_gen        36.69 3.28 100.00 

opamp1       48.87 2.46 100.00 opamp1        49.82 2.41 100.00 opamp1          48.81 2.46 100.00 

shift_reg    588.01 1.96 97.00 shift_reg     636.62 1.75 92.33 shift_reg       538.09 2.05 90.33 

buffer_chain 159.13 13.91 99.83 buffer_chain  162.42 14.32 99.83 buffer_chain    133.78 16.12 99.83 

Average Speedup 5.17 
Average 
Accuracy 

99.43 Average Speedup 5.22 
Average 
Accuracy 

98.95 Average Speedup 5.49 
Average 
Accuracy 

98.58 

  

5 Clusters 6 Clusters 

bitcell         23.94 5.01 100.00 bitcell         23.81 5.04 100.00 

charge_pump1    34.84 6.32 100.00 charge_pump1    34.45 6.39 99.80 

charge_pump2    57.12 5.86 99.60 charge_pump2    56.17 5.91 98.40 

sense_amp1      59.53 2.67 99.86 sense_amp1      60.90 2.63 99.57 

bias_gen        36.74 3.27 100.00 bias_gen        36.66 3.28 100.00 

opamp1          51.65 2.32 100.00 opamp1          50.60 2.37 100.00 

shift_reg       555.56 1.99 88.67 shift_reg       556.68 1.99 86.33 

buffer_chain    138.51 15.87 100.00 buffer_chain    129.68 16.30 99.83 

Average Speedup 5.41 
Average 

Accuracy 
98.52 Average Speedup 5.48 

Average 

Accuracy 
98.00 
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7 Clusters 8 Clusters 

bitcell         23.58 5.09 100.00 bitcell         24.19 4.96 100.00 

charge_pump1    34.02 6.46 99.80 charge_pump1    34.27 6.42 99.60 

charge_pump2    55.87 5.97 99.40 charge_pump2    55.45 6.00 98.40 

sense_amp1      60.26 2.63 99.86 sense_amp1      59.54 2.66 100.00 

bias_gen        36.76 3.27 100.00 bias_gen        36.59 3.28 100.00 

opamp1          51.55 2.33 100.00 opamp1          55.76 2.15 100.00 

shift_reg       569.37 1.93 90.67 shift_reg       579.26 1.91 91.67 

buffer_chain    133.69 16.15 99.83 buffer_chain    133.60 16.31 100.00 

Average Speedup 5.48 
Average 

Accuracy 
98.70 Average Speedup 5.46 

Average 

Accuracy 
98.71 

Table 5.9 Results of Splitting the Datasets into Two and Three Clusters if they have not Converged after 40% 

of the Corners have been Simulated 

From this starting point, a new heuristic was developed. The algorithm proceeds like 

Shoniker’s algorithm as long as fewer than 40% of the total number of corners have been selected 

for simulation. When more than 40% of corners have been selected for simulation, the remaining 

points are clustered based on the output values of simulated corners and the proximity of the 

unsimulated corners to the simulated corners. So, for single output functions, all of the simulated 

points are separated into several tiers based on how big their output value is, the number of tiers 

being equal to the number of clusters. Then, for each tier, the distance between the points that have 

not been assigned to a cluster yet and the respective closest point from the tier is calculated. The 

reason why points are assigned to clusters based on the proximity to the closest point in a tier, 

rather than to the central point in a tier, is because an unsimulated point is more likely to have the 

output value close to a neighbouring point, rather than the central point. Finally, all the unassigned 

points are separated into their own tiers based on their proximity to the closest point in the current 

cluster, with the number of these tiers being set equal to the number of clusters which have not 

been assigned any unsimulated points yet. This cluster is then regarded as complete, and the 

process moves on to the next tier of simulated corners. The process continues until every point has 

been assigned to a cluster.  

After the clusters have been determined, each cluster gets additional training points from 

the Plackett-Burman design to ensure proper representation of each cluster’s subspace. The 

Plackett-Burman design was selected since it is compact and the results of Section 5.1.2 have 

shown that this design is well suited for the algorithm. The calculated boosting factors would carry 

over to the new clusters. Additionally, pointwise termination heuristic from Section 4.1.3.3 with 
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σeff was used, as it allows slightly increased efficiency without sacrificing accuracy. This heuristic 

was, again, tested for up to 8 clusters. The results of these runs are provided in Table 5.9. 

Reviewing the results summarised in Table 5.9, it is clear that there is in fact some benefit 

to using more clusters for the more difficult circuits, which causes the average speedup to rise, and 

the small datasets (sense_amp1) surprisingly do not lose in the speedups or, mostly, in the 

termination accuracies. However, the termination accuracy is still too low. In order to increase the 

accuracy on several problematic datasets, a series of heuristic improvements was introduced. First, 

separate points would not be pronounced safe under any condition, to eliminate the risk of 

accidentally removing the true maximum point from consideration. Second, from preliminary 

tests, it was found that introducing clustering later in a run positively influences the eventual 

accuracy, and so that threshold was set at 50% of the dataset. Third, no point from the extra 

Plackett-Burman design for each cluster would be aliased with any other point, meaning the 

number of sampled points would be increased by the theoretical size of the Plackett-Burman design 

for this dataset. Fourth, a central point would be added to the extra Plackett-Burman design to keep 

it more consistent with the Shoniker’s problem design for selecting the initial training set. Finally, 

the clusters have a separate termination threshold to compensate for the lower accuracy of such 

heuristic. While more informed clustering results in higher termination accuracies than 

straightforward clustering, it is still mostly not good enough. This is not such an extreme problem 

as for the straightforward clustering cases, so simply setting a higher termination threshold for the 

resulting clusters should be enough. Setting a higher termination threshold, additionally, allows 

the computational priority to be shifted into exploration to give GPMs more accuracy within each 

partition. For Table 5.10, such threshold would be set to 6-sigma. 

3 Clusters 4 Clusters 

bitcell         26.07 4.60 100.00 bitcell         25.58 4.69 100.00 

charge_pump1    35.21 6.23 99.80 charge_pump1    35.43 6.21 100.00 

charge_pump2    58.06 5.74 100.00 charge_pump2    58.33 5.72 100.00 

sense_amp1      62.73 2.54 100.00 sense_amp1      62.46 2.55 100.00 

bias_gen        37.25 3.23 100.00 bias_gen        37.30 3.22 100.00 

opamp1          46.91 2.56 100.00 opamp1          46.74 2.57 100.00 

shift_reg       654.59 1.74 95.00 shift_reg       640.29 1.74 96.33 

buffer_chain    135.20 15.97 99.83 buffer_chain    140.63 15.86 100.00 

Average Speedup 5.33 Average Accuracy 99.33 Average Speedup 5.32 Average Accuracy 99.54 

Table 5.10 Results of Not Discarding Safe Points, Clustering at Half, Expanded Extra Training Set and 

Increasing Termination Threshold for Clusters to 6-sigma 
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A further improvement was to increase the termination threshold for eventual subsets to 8 

sigma. This produces 100% accuracy for all the functions that had to be clustered. Thus, we 

conclude that, to achieve the target accuracy, we need to double the termination sigma level for 

the clusters, compared to the unclustered case. So, for example, if the unclustered case is told to 

terminate with the 3-Sigma rule, the clustered termination threshold should be 6-Sigma. From 

preliminary tests on the most challenging output (30 runs on the rise_time output from circuit 

shift_reg), it was found that partitioning into 4, 5, and 6 clusters had the highest accuracy of 

prediction for the output. Table 5.11 summarises the results of the 100 tests using this combination 

of heuristics. 

4 Clusters 5 Clusters 6 Clusters 

bitcell         25.66 4.68 100.00 bitcell         25.47 4.71 100.00 bitcell         25.63 4.68 100.00 

charge_pump1    35.58 6.19 100.00 charge_pump1    35.41 6.23 100.00 charge_pump1    35.52 6.21 100.00 

charge_pump2    58.59 5.71 100.00 charge_pump2    57.37 5.80 100.00 charge_pump2    57.80 5.77 100.00 

sense_amp1      65.15 2.51 100.00 sense_amp1      65.42 2.49 100.00 sense_amp1      65.89 2.49 100.00 

bias_gen        37.24 3.23 100.00 bias_gen        37.33 3.22 100.00 bias_gen        37.33 3.22 100.00 

opamp1          46.81 2.56 100.00 opamp1          46.67 2.57 100.00 opamp1          47.15 2.55 100.00 

shift_reg       697.33 1.61 95.67 shift_reg       720.83 1.60 99.33 shift_reg       716.69 1.65 97.33 

buffer_chain    137.24 15.32 100.00 buffer_chain    131.30 16.38 100.00 buffer_chain    136.32 16.11 99.67 

Average 

Speedup 
5.23 

Average 

Accuracy 
99.46 

Average 

Speedup 
5.38 

Average 

Accuracy 
99.92 

Average 

Speedup 
5.34 

Average 

Accuracy 
99.63 

Table 5.11 Results of 8-sigma Termination Rule for Subclusters 

The final improvement would be to not add the extra training set for small datasets when 

clustering difficult functions of such datasets. Table 5.12 summarises by how much the training 

set increases for each dataset, should the dataset be found to be difficult and then consequently 

split up into multiple clusters. 

Dataset 
Clustering 

Threshold 

Extra 

Training 

Points 

Approximate 

Relative 

Increase for 

4 Clusters 

Approximate 

Relative 

Increase for 

5 Clusters 

Approximate 

Relative 

Increase for 

6 Clusters 

Has 

"Difficult" 

Functions 

bitcell        60.00 9.00 1.60 1.75 1.90 No 

charge_pump1   108.00 9.00 1.33 1.42 1.50 No 

charge_pump2   162.00 9.00 1.22 1.28 1.33 No 

sense_amp1     60.00 9.00 1.60 1.75 1.90 Yes 

bias_gen       60.00 5.00 1.33 1.42 1.50 No 

opamp1         60.00 5.00 1.33 1.42 1.50 No 

shift_reg      540.00 9.00 1.07 1.08 1.10 Yes 

buffer_chain   900.00 9.00 1.04 1.05 1.06 Yes 

Table 5.12 Relative Increases of Training Set Sizes in Case of Clustering 

From Table 5.12, it is seen that the small datasets significantly increase the size of their 

training sets. However, only one dataset (sense_amp1) selects too many extra corners at the 

moment of partitioning, thus causing worse speedups. Then, the extra training set will not be added 
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if the total number of added points is 20% or more of the size of the training set at the moment of 

split. The updated Table 5.11 is provided as Table 5.13. 

4 Clusters 5 Clusters 6 Clusters 

bitcell         25.66 4.68 100.00 bitcell         25.47 4.71 100.00 bitcell         25.63 4.68 100.00 

charge_pump1    35.58 6.19 100.00 charge_pump1    35.41 6.23 100.00 charge_pump1    35.52 6.21 100.00 

charge_pump2    58.59 5.71 100.00 charge_pump2    57.37 5.80 100.00 charge_pump2    57.80 5.77 100.00 

sense_amp1      61.33 2.56 100.00 sense_amp1      62.04 2.55 100.00 sense_amp1      61.54 2.55 100.00 

bias_gen        37.24 3.23 100.00 bias_gen        37.33 3.22 100.00 bias_gen        37.33 3.22 100.00 

opamp1          46.81 2.56 100.00 opamp1          46.67 2.57 100.00 opamp1          47.15 2.55 100.00 

shift_reg       697.33 1.61 95.67 shift_reg       720.83 1.60 99.33 shift_reg       716.69 1.65 97.33 

buffer_chain    137.24 15.32 100.00 buffer_chain    131.30 16.38 100.00 buffer_chain    136.32 16.11 99.67 

Average 

Speedup 
5.23 

Average 

Accuracy 
99.46 Average Speedup 5.38 

Average 

Accuracy 
99.92 Average Speedup 5.34 

Average 

Accuracy 
99.63 

Table 5.13 Report for not Adding Extra to the Training Set, if it Increases by More Than 20 Percent 

The final best accuracy and speedup are then 99.92%, and 5.38x, respectively, compared 

to 100% and 4.74x, as found originally. 

5.3 Discussion 

 

In this chapter, the potential benefits of partitioning the input space into several sub regions 

was explored. Following the results of Chapter 4, it was suggested that there could be a way to 

expand the number of points that can be safely pruned away because they were not likely to have 

the global maximum. This led to the idea that separating the input set into several disjoint subsets 

(that is, clustering) could be an efficient way to go about this. The preliminary finding proved there 

could be great potential in this, and several heuristics were developed and refined. 

Throughout testing the various developed heuristics, it was found that the more clusters 

that were used, the faster the algorithm would converge to what it assumed to be the global 

maximum. However, the termination accuracies were unacceptably poor, further corroborating 

one of the conclusions of the previous chapter that with more points under observation of a GPM, 

the individual errors for each separate corner are balanced out, and the average error of a collection 

of corners leads to the expected termination accuracies. 

Bringing more structure into the selection of the initial training set provided interesting 

results. On the one hand, the termination accuracy improved to much more acceptable levels. On 
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the other hand, there would be very little chance of arriving at the correct value should such an 

“improved” initial training set turn out to be a poor representation of the total search space. 

It was found that by taking a more informed approach to clustering greatly increases the 

overall efficiency of the general algorithm, significantly increasing the speedup, while preserving 

the termination accuracy at expected levels. By getting an idea of where to locate some of the 

higher valued outputs of the objective function, reasonable guesses can be made as to where the 

true global maximum is likely to be located. Such a technique seems to work particularly well on 

the functions for which the original algorithm would have difficulty producing quick results. 

The next step would be to test the limits of the best available algorithm. Applying some 

insight into generating a difficult dataset, it should be possible to expand the scope of the project 

and eliminate the possibility of only having good performance for the datasets provided. 

Additionally, having total control over new datasets might provide additional insights into what 

makes a circuit produce functions that are difficult to analyse using existing variation design 

techniques. The next chapter will explore some of these questions. 
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Chapter 6: Building Hard Datasets 

6.1 Sources of Difficulty in the Datasets 

6.1.1 Observations from the Provided Datasets 

 

The datasets provided to us by Solido Design Automation did not indicate the details of 

the circuits (e.g., the schematics) whose simulated behaviour produced the datasets. We could only 

guess about what functions were being implemented by looking at the names of the datasets. 

However, to achieve an important goal of the project, which is to understand what design structures 

can make circuits difficult to verify, we really do need full netlists for the circuits. One way to 

overcome the limitations of Solido’s datasets was to create difficult datasets of our own, either 

from simulating difficult circuits or by creating synthetic datasets (i.e., without netlists). 

It is clear that our algorithm would poorly handle datasets with sudden narrow spikes in 

the magnitudes of the output values. Indeed, we attempted to improve the performance for those 

cases using clustering. If such spike could be localised within a smaller region of focus of the input 

domain, then there would be a greater chance for the algorithm to accidentally sample it. However, 

as proved by several outputs of the provided datasets, simple clustering was not found to be 

effective. Another observation was that the algorithm poorly handles flat functions, like 

sen_dip_pctg of sense_amp1. Perhaps that is because the GPM has difficulty modelling what looks 

like uncorrelated noise. Finally, assuming that the benchmark circuit shift_reg indeed models the 

delay, rise time and fall time of the signals of a shift register, a plausible explanation for the 

difficulty of this dataset would be that internal race conditions can cause sudden non-linear 

behaviour in the positive feedback-stabilized outputs and are thus not well modelled by a GPM, 

which is best suited for modelling smooth well-correlated functions. All of these insights were 

applied in attempts to generate our own difficult datasets. 

6.1.2 Creating Difficult Datasets 

 

Several datasets were generated following the observations outlined in Section 6.1.1. The 

first of those is one that models uniform noise. It was generated from MATLAB, with different 

noise powers in the otherwise constant output functions, with the input values having no relation 
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to the outputs. Therefore, one would expect a GPM to have difficulty accurately modelling such a 

noisy output. Looking at the results provided in the relevant tables in this section, that is indeed 

the case. In fact, the best average speedup for this dataset (not shown in the tables) is 1.01x for the 

riskier algorithm that relies on single-point termination.  

Next, datasets generated from the circuits were studied. The circuits were synthesised 

assuming 28-nm CMOS technology, and simulated in HSPICE, the commercial version of 

SPICE[5]. The first such new dataset was generated from a phase detector circuit, which is itself 

a part of a delay locked loop (DLL) design [68]. The phase detector detects the relative phase 

difference between two input clock signals and generates two pulsed outputs, UP and DOWN, that 

allow later stages of the DLL to phase-lock one adjustable (with variable delay) clock to a fixed 

reference clock. This circuit should have an increased probability of race conditions and nonlinear 

behaviours. Figure 6.1 demonstrates the basic functionality of the circuit 

 

Figure 6.1 Basic Functionality of a Phase Detector Circuit 

The detailed functionality is demonstrated in Figure 6.2. In the top half of Figure 6.2, C1 

(the reference clock signal) leads C2 (the clock to be phase-locked to the reference) by 250 ps, 

which causes the circuit to generate a pulse at the UP output, while only producing a constant low 

(with some noise) at the DOWN output. In the bottom half of Figure 6.2, the situation is reversed. 

C1 lags C2 by 250 ps, and as a result a DOWN pulse is generated. 

The functions generated from the phase detector circuit were the rise time and fall time of 

the two output signals, and the inputs were the phase difference between the clocks, the rise time 

and fall time characteristics for the adjustable clock generated by the circuit and the input clock 

signal to be synchronised, and the die temperature. Due to the complexity of the circuit, and its 

intended purpose, which implies dealing with race conditions, the output functions can be expected 

to be very sensitive to small PVT changes at certain input phases. The tests done on the circuit 
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with the algorithms presented in this work supported that hunch. The results of some of these tests 

are summarised in the relevant tables at the end of this section.  

 

 

Figure 6.2 Functionality of the Phase Detector Circuit 

The second circuit was the differential sense amplifier used in SRAM arrays [16]. The 

tested output function was the fall time of the complementary output in reaction to reading a 

positive value from a mock SRAM cell. The function was chosen for its simplicity and importance 

in IC design. Also, the positive feedback of the sense amplifier will produce a highly nonlinear 

output response. The inputs supplied were the PVT characteristics (modelsets ss, tt, and ff, 

temperature, and power voltage), and the voltage difference between the two complementary bit 

lines received from the mock cell. Interestingly, this dataset turned out to be easy for Shoniker’s 

time (ns) 

time (ns) 
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algorithm. Despite the fact that several output points had significantly higher values than the 

others, the algorithms very rarely failed to find the global maximum, and the speedups were usually 

around 3.5x. 

The third and last custom circuit design was the “glitch eraser” circuit, shown in Figure 

6.3. Glitch eraser is designed to deglitch the two complementary input signals, X1 and X2, in case 

those inputs are corrupted by noise spikes, such as spikes caused by cosmic radiation or other 

sources of soft errors. The circuit fails if two glitches occur too close together in time, and that 

presents an interesting set of functions. The glitches were modeled as triangular waves with 

varying widths (that is, length of effect), and phase differences between the two glitches. In 

addition to those inputs, the process corners were also applied with the three standard values for 

the transistor modelset, as well as the die temperature and the power voltage level VDD. The 

functions to be explored were the maximum voltage for the output signal that would be expected 

to be HIGH (Y1), and the minimum voltage for the output signal that would be expected to be 

LOW (Y2). So, for correct operation of the glitch eraser, output Y1 should be close to VDD and Y2 

should be close to GND (the ground voltage), whereas for incorrect operation this would be 

reversed. The sudden separation between the values of the modelled functions at the points of 

correct operation versus the points where the circuit fails would make this a difficult circuit. Table 

6.1 gives the truth table for the circuit. 

X1 X2 Y1 Y2 

Glitched LOW LOW X X 

LOW Glitched LOW X X 

Glitched HIGH HIGH X X 

HIGH Glitched HIGH X X 

Glitched LOW HIGH LOW HIGH 

LOW Glitched HIGH LOW HIGH 

Glitched HIGH LOW HIGH LOW 

HIGH Glitched LOW HIGH LOW 

Table 6.1 Truth Table for the Glitch Eraser Circuit 

The circuitry and the functionality are provided in Figures 6.3 and 6.4, respectively. In 

Figure 6.4, two triangular pulses with the duration of 1 ns affect the complimentary inputs X1 and 

X2, 1 ns apart. The 1 ns width for the pulses is perhaps too wide for a glitch, and could model 

something more like an extremely brief power surge, but this width is the biggest values for the 

duration of the pulses (the other are 250 ps, 500 ps and 750 ps), and these values still produce an 

interesting behaviour for the output functions. The circuit is able to catch those irregularities in the 
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voltage levels, and produce the corresponding complementary outputs Y1 and Y2 at the required 

levels, with the noise spikes removed. 

 

Figure 6.3 Glitch Eraser Circuit Diagram 

 

Figure 6.4 Functionality of the Glitch Eraser Circuit 

The distributions of the generated output functions are provided next. 

time (ns) 
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Figure 6.5 Distributions of the Output Functions of a Uniformly Random Dataset 

 

Figure 6.6 Distributions of the Output Functions of the phase_det_up Dataset 

 

Figure 6.7 Distributions of the Output Functions of the phase_det_down Dataset 
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Figure 6.8 Distribution of the Output Function of the custom_sa Dataset 

 

Figure 6.9 Distributions of the Output Functions of the glitch_erase Dataset 

The histograms provide interesting insights into the structures of the output functions of 

these datasets. The histograms of the output functions of the random dataset (Figure 6.4) are of a 

trapezoidal shape, as one would expect from samples of a uniform random variable. As the noise 

power becomes larger, the slope of the trapezoid also becomes steeper. Of course, such a simple 

shape does not mean that the dataset is easy to analyse as the output values (by design) have no 

simple relation to the inputs for this dataset. 

The shapes of the phase detector functions are rather flat, but still a few points are 

noticeably bigger than most others. This distribution looks similar in shape to the three functions 

in the shift_reg dataset. This means we could expect these datasets to be relatively challenging. 
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The custom sense amplifier output function has nine output values that are between 7.45 

and 8.43 times bigger than the tenth highest value. The total size of the dataset is 1512 corners, 

meaning that 99.4% of the corner outputs lie within just over seven percent of the total range of 

values in the dataset. The fifteen highest values and the lowest value, with corresponding input 

values, are provided in Table 6.2. 

Rank Model_set delta_v Temperature vvdd fall_time 

1 tt 0.25 125 0.85 8.24E-10 

2 ss 0.25 125 0.85 8.24E-10 

3 ff 0.25 125 0.85 8.23E-10 

4 ss 0.25 100 0.85 7.94E-10 

5 tt 0.25 100 0.85 7.92E-10 

6 ff 0.25 100 0.85 7.88E-10 

7 ss 0.25 125 0.9 7.40E-10 

8 tt 0.25 125 0.9 7.38E-10 

9 ff 0.25 125 0.9 7.28E-10 

10 ss 0.05 125 0.85 9.77E-11 

11 ss 0.05 100 0.85 9.66E-11 

12 ss 0.05 50 0.85 9.34E-11 

13 ss 0.05 75 0.85 9.32E-11 

14 ss 0.05 27 0.85 9.19E-11 

15 ss 0.05 125 0.9 9.07E-11 

1512 ff 0.25 -50 1.05 4.29E-11 

Table 6.2 The Fifteen Highest Values and the Lowest Value of the custom_sa Dataset 

From Table 6.2 it can be seen that the six highest values are located in a two-dimensional 

neighbourhood, or, alternatively, on two adjacent ridges. The next three highest points are also 

located on a ridge, defined by the modelset of the CMOS technology. Looking at only the nine 

highest points, it would seem that the modelset parameter defines a more or less flat ridge for the 

points, and the conclusion could be that ridges are defined by that parameter. However, looking at 

the points ranked 10 to 14, the ridge parameter then seems to be the temperature value, and not 

even all the temperature values along the dimension. 

Finally, the glitch_erase circuit provides an interesting structure in that there are two clearly 

defined, separated to extremes and abruptly changing levels in the output functions. This structure 

could easily confuse GPMs which would be expecting significantly higher or lower responses from 

a function. The output min_y2, which models the lowest response of the Y2 signal, the signal that 

would be pulled to VDD, over the 4 ns illustrated on Figure 6.4, provides additional dimensions to 

the problem in that some of the output values are negative, and in that the circuit setup makes the 
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second higher level have five “stepped” levels of its own. This is because one of the inputs for 

glitch_erase is five different Vdd levels (0.9 V, 0.95 V, 1.00 V, 1.05 V, and 1.1 V), so min_y2 

cannot go much higher than the corresponding value of VDD. A GPM should easily model that the 

output has near perfect correlation between the corner values and the value of the VDD input. 

However, this might also introduce the problem of the GPM being too reliant of that input value 

and thus having problems at the low level of the function, as the corner values in that level are 

much less correlated to VDD, and so that GPM would be a worse fit for the function. 

As intended, Shoniker’s algorithm struggles greatly on the functions of the custom datasets, 

and the introduced improvements are able to safely prune away anywhere from 11% to 77% more 

of the corner simulations, compared to Shoniker’s final algorithm, excluding the random dataset. 

Some of the algorithms described in the previous sections were tested on the new datasets. The 

results of those tests are provided in the following Tables 6.3-6.13. 

Dataset 
Average Corners 

to Termination 

Average 

Speedup 

Average 

Accuracy 

phase_det_up    1451.59 1.00 100.00 

phase_det_down  1453.35 1.00 100.00 

custom_sa    458.16 3.30 100.00 

random          999.64 1.00 100.00 

glitch_erase 2042.24 1.03 100.00 

Table 6.3 Results of Applying Standardised Preprocessing (Section 4.1.3.3) on the Custom Circuits 

Dataset 
Average Corners 

to Termination 

Average 

Speedup 

Average 

Accuracy 

custom_sa 436.45 3.46 100.00 

phase_det_down 1454.20 1.00 100.00 

phase_det_up 1451.89 1.00 100.00 

random 999.25 1.00 100.00 

glitch_erase 1064.89 1.97 98.50 

Table 6.4 Results of Applying the Final Pointwise Neighbourhood Termination Heuristic (Section 4.1.3.3) on 

the Custom Circuits 

Dataset 
Average Corners 

to Termination 

Average 

Speedup 

Average 

Accuracy 
Dataset 

Average Corners 

to Termination 

Average 

Speedup 

Average 

Accuracy 

phase_det_up    1436.68 1.01 100.00 phase_det_up    1412.96 1.03 99.58 

phase_det_down  1442.34 1.01 100.00 phase_det_down  1419.45 1.03 100.00 

custom_sa    106.36 14.22 100.00 custom_sa    119.47 12.66 100.00 

random          997.29 1.00 99.75 random          998.08 1.00 99.75 

glitch_erase 1959.81 1.07 100.00 glitch_erase 1895.82 1.11 99.5 

Table 6.5 Results of Applying Clustering on the Randomised Initial Training Set (Section 5.2.2) with 

Randomised Initial Training Set for Each Cluster; Results for 2 and 3 Clusters 
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Dataset 
Average Corners 

to Termination 

Average 

Speedup 

Average 

Accuracy 
Dataset 

Average Corners 

to Termination 

Average 

Speedup 

Average 

Accuracy 

phase_det_up    1406.98 1.04 99.50 phase_det_up    1373.87 1.06 100.00 

phase_det_down  1395.19 1.05 99.00 phase_det_down  1386.36 1.05 99.50 

custom_sa    129.81 11.65 100.00 custom_sa    134.80 11.22 100.00 

random          994.89 1.01 99.50 random          997.63 1.00 100.00 

glitch_erase 1791.33 1.17 100.0 glitch_erase 1776.06 1.18 100.00 

Table 6.6 Results of Applying Clustering on the Randomised Initial Training Set (Section 5.2.2) with 

Randomised Initial Training Set for Each Cluster; Results for 4 and 5 Clusters 

Dataset 
Average Corners 

to Termination 

Average 

Speedup 

Average 

Accuracy 
Dataset 

Average 

Corners to 

Termination 

Average 

Speedup 

Average 

Accuracy 

phase_det_up    1445.60 1.01 100.00 phase_det_up    1434.65 1.02 100.00 

phase_det_down  1435.62 1.02 99.50 phase_det_down  1425.12 1.02 99.00 

custom_sa    84.87 17.82 100.00 custom_sa    120.83 12.51 100.00 

random          999.24 1.00 100.00 random          995.39 1.00 99.50 

glitch_erase 1918.75 1.09 96.50 glitch_erase 1890.99 1.11 100.00 

Table 6.7 Results of Applying Clustering on the Randomised Initial Training Set (Section 5.2.2) with a 

Plackett-Burman Design for the Initial Training Set for Each Cluster; Results for 2 and 3 Clusters 

Dataset 
Average Corners 

to Termination 

Average 

Speedup 

Average 

Accuracy 
Dataset 

Average 

Corners to 

Termination 

Average 

Speedup 

Average 

Accuracy 

phase_det_up    1396.33 1.04 100.00 phase_det_up    1376.87 1.06 99.00 

phase_det_down  1411.95 1.03 98.00 phase_det_down  1359.04 1.07 98.50 

custom_sa    125.54 12.04 100.00 custom_sa    137.23 11.02 100.00 

random          997.01 1.00 99.75 random          997.72 1.00 100.00 

glitch_erase 1608.85 1.32 81.00 glitch_erase 1609.46 1.32 87.50 

Table 6.8 Results of Applying Clustering on the Randomised Initial Training Set (Section 5.2.2) with a 

Plackett-Burman Design for the Initial Training Set for Each Cluster; Results for 4 and 5 Clusters 

 

Dataset 

Average 

Corners to 
Termination 

Average 

Speedup 

Average 

Accuracy 
Dataset 

Average 

Corners to 
Termination 

Average 

Speedup 

Average 

Accuracy 
Dataset 

Average 

Corners to 
Termination 

Average 

Speedup 

Average 

Accuracy 

phase_det_up    1350.42 1.08 100.00 phase_det_up    1318.87 1.11 100.00 phase_det_up    1320.70 1.10 100.00 

phase_det_down  1414.19 1.03 100.00 phase_det_down  1396.60 1.05 100.00 phase_det_down  1401.95 1.04 97.50 

custom_sa    465.85 3.25 99.00 custom_sa    469.23 3.22 98.00 custom_sa    473.72 3.19 100.00 

random          1000.00 1.00 100.00 random          999.41 1.00 100.00 random          998.03             1.00 99.00 

glitch_erase 1635.65 1.28 100.00 glitch_erase 1670.86 1.26 100.00 glitch_erase 1627.00 1.29 100.00 

Table 6.9 Results of Applying Clustering Based on the Performance of Datasets, Final Version (Section 5.2.3), 

for 4, 5 and 6 Clusters 

Dataset 

Average 

Corners to 

Termination 

Average 

Speedup 

Average 

Accuracy 
Dataset 

Average 

Corners to 

Termination 

Average 

Speedup 

Average 

Accuracy 
Dataset 

Average 

Corners to 

Termination 

Average 

Speedup 

Average 

Accuracy 

phase_det_up    1431.36        1.02   100.00           phase_det_up    1378.70        1.06 100.00           phase_det_up    1317.02         1.11   100.00           

phase_det_down  1437.85         1.01  100.00           phase_det_down  1399.94        1.04   100.00           phase_det_down  1295.55         1.13 100.00           

custom_sa    161.63          9.35  82.00            custom_sa    146.63          10.31  99.00            custom_sa    155.66          9.71  100.00           

random          999.47         1.00  100.00           random          999.13 1.00 100.00 random          998.80             1.00 100.00 

glitch_erase 1890.57 1.11 100.00 glitch_erase 1796.52 1.17 100.00 glitch_erase 1742.43 1.21 100.00 

Table 6.10 Results of Applying Straightforward Clustering (Section 5.1.1) with a Randomised Initial Training 

Set for Each Cluster, for 2, 3 and 4 Clusters 
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Dataset 
Average Corners 

to Termination 

Average 

Speedup 

Average 

Accuracy 
Dataset 

Average 

Corners to 

Termination 

Average Speedup 
Average 

Accuracy 

phase_det_up    1259.09         1.16   100.00          phase_det_up    1245.12        1.17   100.00           

phase_det_down  1306.87        1.12 100.00           phase_det_down  1292.65         1.13 100.00           

custom_sa    173.80           8.70 99.00            custom_sa    175.27          8.63   100.00           

random          998.54 1.00 99.50 random          998.50 1.00 100.00 

glitch_erase 1727.27 1.22 100.00 glitch_erase 1740.11 1.21 100.00 

Table 6.11 Results of Applying Straightforward Clustering (Section 5.1.1) with a Randomised Initial Training 

Set for Each Cluster, for 5 and 6 Clusters 

Dataset 

Average 

Corners to 

Termination 

Average 
Speedup 

Average 
Accuracy 

Dataset 

Average 

Corners to 

Termination 

Average 
Speedup 

Average 
Accuracy 

Dataset 

Average 

Corners to 

Termination 

Average 
Speedup 

Average 
Accuracy 

phase_det_up 1448.66 1.01 100.00 phase_det_up 1448.66 1.01 100.00 phase_det_up 1402.04 1.04 100.00 

phase_det_down 1452.08 1.00 100.00 phase_det_down 1450.08 1.01 100.00 phase_det_down 1441.07 1.01 100.00 

my_sense_amp 292.63 5.17 100.00 my_sense_amp 157.72 9.59 100.00 my_sense_amp 179.19 8.44 100.00 

random 999.67 1.00 100.00 random 999.67 1.00 100.00 random 999.58 1.00 100.00 

glitch_erase 1959.91 1.07 100.00 glitch_erase 1738.05 1.21 100.00 glitch_erase 1689.70 1.24 100.00 

Table 6.12 Results of Applying Straightforward Clustering (Section 5.1.2) with a Plackett-Burman Design for 

the Initial Training Set for Each Cluster, for 2, 3 and 4 Clusters 

Dataset 
Average Corners 

to Termination 

Average 

Speedup 

Average 

Accuracy 
Dataset 

Average 

Corners to 

Termination 

Average 

Speedup 

Average 

Accuracy 

phase_det_up 1393.65 1.05 100.00 phase_det_up 1303.12 1.13 100.00 

phase_det_down 1428.62 1.02 100.00 phase_det_down 1426.24 1.02 100.00 

my_sense_amp 227.00 6.66 100.00 my_sense_amp 234.65 6.44 100.00 

random 999.24 1.00 100.00 random 998.92 1.00 100.00 

glitch_erase 1705.08 1.23 100.00 glitch_erase 1736.60 1.21 100.00 

Table 6.13 Results of Applying Straightforward Clustering (Section 5.1.2) with a Plackett-Burman Design for 

the Initial Training Set for Each Cluster, for 5 and 6 Clusters 

Tables 6.3-6.13 demonstrate improvements in speedups without loss of accuracy, 

compared to Shoniker’s final algorithm, for almost any developed algorithm. Table 6.3 shows 

results that are close to those of Shoniker’s final algorithm, and demonstrate that it struggles a lot 

with every dataset, except custom_sa, with the average speedup being 1.47x. The best results of 

our algorithms are for each dataset: 1.17x for phase_det_up (compared to 1.00x of Shoniker’s 

algorithm), 1.13x for the phase_det_down dataset (compared to 1.00x), 17.82x for the custom_sa 

dataset (compared to 3.30x), 1.00x for the random dataset (compared to 1.00x), and 1.29x for the 

glitch_erase dataset (compared to 1.03x), among heuristics that terminated with 100% accuracy 

for the respective datasets. 

6.1.3 Comparison with an Industrial Tool 

 

In order to get a better sense of how the algorithms compare to the industrial standards, the 

commercial tool Solido Variation Designer version 3.5.7 (latest available version to us, current 

release is version 4.1.9) was used on the three custom circuits.  The results of this round of 
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experiment are provided in Table 6.14. The tool does not provide a lot of flexibility in how the 

minimal corner selection will be carried out. So, for example, we could not set the desired sigma-

confidence level. We could, however, set up the corners according to the ones in our datasets. 

Dataset Output Name 
Corners to 

Convergence 
Speedup 

Average 

Speedup 

Max 

Found 

phase_det_down 
down_rise_time 987.00 1.48 

1.44 
TRUE 

down_fall_time 1034.00 1.41 TRUE 

phase_det_up 
up_rise_time 636.00 2.29 

1.82 
TRUE 

up_fall_time 1088.00 1.34 TRUE 

custom_sa fall_time 59.00 25.63 25.63 FALSE 

glitch_erase 
max_y1 938.00 2.24 

2.66 
TRUE 

min_y2 681.00 3.08 TRUE 

Table 6.14 Results of Analysis by Industrial Tool 

Dataset Output Name 
Corners to 

Convergence 
Speedup 

Average 

Speedup 
Max Found 

phase_det_down 
down_rise_time 1029.00 1.42 

1.53 
TRUE 

down_fall_time 873.00 1.67 TRUE 

phase_det_up 
up_rise_time 421.00 3.46 

2.23 
TRUE 

up_fall_time 885.00 1.65 TRUE 

glitch_erase 
max_y1 1328.00 1.58 

1.66 
TRUE 

min_y2 1195.00 1.76 TRUE 

Table 6.15 Best Results of the Best Algorithms as Applied on the Custom Datasets 

From Table 6.14, it can be seen that Variation Designer 3.5.7 significantly outperforms any 

algorithm described in the work. However, what is interesting to note, Variation Designer returned 

an incorrect worst-case corner when analysing the easy dataset custom_sa, the tenth-worst-case 

corner, in fact. Perhaps, this suggests that Variation Designer 3.5.7 is not well suited to handling 

datasets with spikes as it selects the highest “regular” value in the custom_sa fall_time function 

(see Table 6.2). The other results are far better than the respective average results by any of our 

algorithms. Even setting a lower termination threshold for our algorithms does not come close to 

the speedups of Variation Designer (however, the up_fall_time of the phase_det_up dataset gets 

very close to Variation Designer for the 3-sigma termination rule, losing by about 60 corners, on 

average). At the same time, some performances of our informed clustering algorithms do terminate 

to the correct global maximum faster than Variation Designer for three out of four outputs in the 

phase_det_up and phase_det_down datasets. The best results of our algorithms are summarised in 

Table 6.15.  

It can be argued then that Variation Designer is simply more consistent in its analysis and 

predictions. This can be explained by the fact that Variation Designer has been in continuous 
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development for around a decade, for commercial use, meaning the standards and knowledge in 

Solido Design Automation are far higher than those for a graduate project. Figures 6.10, 6.11, and 

6.12 summarise the best performances of our algorithms. 

 

Figure 6.10 Results of Informed Clustering, 7 Clusters, on the glitch_erase Dataset 

 

Figure 6.11 Results of Informed Clustering, 5 Clusters, on the phase_det_down Dataset 

 

Figure 6.12 Results of Informed Clustering, 8 Clusters, on the phase_det_up Dataset 
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Another interesting observation is the convergence diagram for the glitch_erase outputs, 

provided in Figure 6.13 and Figure 6.14. In those figures, the x axis corresponds to how many 

corners have been simulated so far, and the y axis shows the predicted values and uncertainties of 

the worst predicted corner, with the current known maximum as the baseline. 

 

Figure 6.13 Convergence Plot of the max_y1 Output of the glitch_erase Dataset 

 

Figure 6.14 Convergence Plot of the min_y2 Output of the glitch_erase Dataset 

Figure 6.13 and Figure 6.14 show the evolution of the uncertainty (grey shaded region) of 

Variation Designer in its eventual selected guess for the global maximum (the constant blue dashed 

line). The red dashed line is the prediction �̂� of the corner that has the highest �̂� + 𝑘 ∗ 𝜎, and the 

Sample # 

max_y1 value 

Sample # 

min_y2 value 
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solid purple line is the value of the latest simulated corner. It is interesting to see in Figure 6.9 that 

the algorithm came extremely close to convergence at least three times, before selecting a corner 

with significantly smaller output than was expected and causing the uncertainty to rise and thus 

continue looking for the maximum. This could be explained by the nature of the dataset, which 

has two very distinct levels: near the GND voltage level and near VDD. A smart clustering 

procedure would definitely help in this case as it should be able to separate these two levels, and 

accelerate convergence to the selected corner. 

6.2 Discussion 

 

Looking at the constructed worst-case circuits proved to be very helpful for improving our 

understanding of the various algorithms for minimal worst-case corner selection. Having a custom 

dataset allows more flexibility in exploring performances of algorithms and this flexibility allowed 

us to highlight strengths or weaknesses of each particular heuristic. 

This chapter provided a very preliminary analysis of what could make a dataset difficult to 

analyse with Shoniker’s algorithm. From our experience with these datasets, these guesses turned 

out to be mostly correct. The performance of the heuristics developed in Chapters 4 and 5 showed 

clear improvement on these difficult datasets, which suggests that they could become more 

valuable as the feature size of circuits grows smaller and the number of corners for confident design 

verification grows larger. 

Having access to an industrial tool also provided significant benefit. Quite unsurprisingly, 

the tool outperformed every algorithm developed here by a large margin. Interestingly, one of the 

custom datasets highlighted a significant weakness in the design of the tool. The visualisation 

techniques of the tool also suggested insights into how their algorithm works and what conditions 

could confuse the tool. Overall, the performance of algorithms developed in this work could be 

judged to be reasonably good, although there is a long way to go to reliably achieve the speed-ups 

of the commercial tool. It could partially be explained by the apparent less strict requirements for 

termination from Variation Designer 3.5.7. 
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Chapter 7: Conclusions and Future Work 

7.1 Main Contributions 

 

This thesis described attempts to improve upon Michael Shoniker’s algorithm for minimal 

worst-case corner selection when finding the maximum of an output function. The improvements 

studied include: 

• A more in-depth study of the distributions of the output values of the datasets with 

the first attempts to improve performance for the datasets that suffer from 

overfitting and sudden changes in output values (spikes and ridges). 

• More detailed experimentation on the termination rules and more attempts to prune 

away some “safe” corners before terminating the entire algorithm, thus improving 

speedups of the analyses of output functions. Introduction of neighbourhood 

termination in order to improve the termination accuracy. 

• Study of the effects of partitioning the input space into several clusters for the 

purposes of pruning away groups of corners according to the k-means clustering 

procedure, for between 2 and 8 clusters. Exploration of selecting the initial training 

set for the algorithms according to Plackett-Burman designs. Partitioning of the 

input space based on the observed output values after a fraction of the corners have 

been simulated, thus allowing the algorithm to take advantage of the benefits for 

big and difficult circuits and avoid the disadvantages for small and easy circuits 

introduced by running the straightforward k-means clustering of the input space. 

• Design of custom datasets for the purposes of further exploration of what design 

decisions make circuits difficult to analyse. Comparison of the performance 

heuristics developed in Chapters 4 and 5 to that of the commercial tool, Solido 

Variation Designer 3.5.7, performing the same function as the heuristics introduced 

in this thesis. 

First, it was noted that the termination criterion used by Shoniker had some inconsistencies, 

and these inconsistencies were studied. The effect of multiple near-worst-case corners, in 

particular, meant that the algorithm would, theoretically, tend to be more optimistic than expected. 
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Thus, the performance of the algorithm with a stricter pruning and termination thresholds was 

studied. As a result, it was found that increasing the termination σ rule by one would take care of 

most of such inconsistencies, and thus the σ=4 termination rule was adopted exclusively in all 

further work.  

Making the GPR assumption that every test point is an independent variable drawn from 

the same joint Gaussian distribution provided interesting insights into the behaviour of the GPM 

for some particularly difficult datasets. Specifically, it was found that proclaiming test points as 

unlikely to be equal to the global maximum based only on their predicted distributions proved to 

be a risky strategy. Consequently, mechanisms for considering several neighbouring points for 

pointwise termination were developed. These changes provided minor (approximately 10%) 

improvements to the speedups of our datasets. This also gave the insight that taking into account 

the predicted values of the neighbours of the target corner, and not just those of the target corner 

on its own, could be very beneficial. 

The early studies of neighbourhood-based group termination suggested that it was an even 

riskier strategy than pointwise termination. The naïve k-means clustering approach was tested and 

inverse correlations were observed between the number of clusters and the number of corners 

simulated to convergence, as well as between the number of clusters and the accuracy of finding 

the true global maximum. As the number of clusters grew bigger, the termination accuracies and 

the number of corners simulated tends to decrease. This was improved by applying a deterministic 

initial design for the initial selection of corners. This helped when the algorithm was optimising 

big and difficult datasets, however, the performance on the small and easy datasets became worse. 

The clustering heuristic was further improved to base the clustering on the observed responses, 

which helped to increase the termination accuracy to acceptable levels and avoided the need for 

more complicated termination heuristics. 

Looking at the custom circuits and comparing the performance of the industrial tool with 

the algorithms provided some interesting insights. It was found that the tool is able to reliably (but 

not always) achieve significantly better speedups on the custom circuits compared to the developed 

algorithms. Surprisingly, the tool failed to find the maximum of one of the datasets. This could 

point to the tool not being able to handle spikes and high plateaus in the structure of the output 

functions. It is also possible that the tool has more relaxed requirements for termination. 
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7.2 Future Work 

 

There are a number of directions in the project that can be explored in the future, some of 

which we have attempted to implement but were not successful. The biggest one of those that we 

tried was the multiobjective optimization. That functionality was preliminarily explored in 

Shoniker’s thesis. We attempted to extend his ideas to the informed clustering approach (Section 

5.2.3). In our implementation, if 50% of the corners have been simulated, we would perform k-

means clustering on the multiple output dimensions, and assign the unsimulated corners to the 

clusters as described in Section 5.2.3 otherwise. This led to reduced accuracies and reduced 

speedups, however, so other ways should be considered. 

Another attempted direction of research was trying to generate the training set of the 

smallest size that would terminate the function to a certain sigma confidence level while finding 

the true global maximum. For that purposes we used the adapted versions of two popular feature 

selection techniques: sequential forward selection (SFS)[69] and sequential backward selection 

(SBS)[70].   

For SBS, we would run our algorithms on a dataset, and then select the smallest training 

set that terminated the function with 3-Sigma confidence. Then, we would remove one corner from 

the smallest training set, and look at how much closer the convex hull on the scatter plots gets to 

the 3-Sigma termination line. The smallest such change would mean that termination was the least 

affected by removing that corner, and so the new training set is taken as the smallest and the 

procedure is repeated until we cannot remove any corner without causing any of the points on the 

scatter plot to be above the termination line.  

SFS is the opposite approach. We would start with no corners in the training set and would 

add one corner at a time to see which added corner brings the convex hull closest to the 3-Sigma 

termination line. This procedure runs until a training set is found that puts all the points on the 

scatter plot below the termination threshold. 

Obviously, neither SBS nor SFS are ideal methods for the task, however, the ideal method 

would take enormous amount of time to run. Even these methods were only viable for small 

datasets, no bigger than charge_pump1 (216 corners). Tests for the charge_pump1 dataset found 
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that the best speedup achieved could be 9.56x for the 3-Sigma termination rule, compared to 5.16x 

for Shoniker’s algorithm. However, just finding the smallest training sets is not enough. It is 

important to understand what makes that selection the smallest, and we were not successful in 

determining that. 

A significant next step would be to find the most theoretically sound and efficient way to 

partition the input space into subregions, as early as possible in the execution of the algorithm. In 

Section 5.2.2, for example, it was shown that certain circuits (e.g., custom_sa) get significant 

improvements for the earliest stages after such a partition. Becoming more confident in the 

generated GPMs is critical to this. Thus, it would be very helpful to develop mechanisms to quickly 

locate spikes in the dataset. Another potentially useful work would be additive kernels, for example 

as explored in [71], which is essentially automatic construction of kernels from several basis 

kernels based on the observed outputs. If we know that a kernel models the function well, we can 

be more confident in its predictions, and thus partition the input space, or even terminate, earlier. 

As an intermediate step, we could measure some regression metrics, such as the ones implemented 

in the scikit-learn package[72] , for example coupling them with the cross-validation step, as 

described in Section 2.3.3. 

The algorithms described in this work are very general. There is no reason to apply them 

only for the task of analysing the responses of integrated circuits. Any problem that requires 

optimisation through observing responses is well suited for this algorithm. For example, 

optimising a production process in chemical engineering tasks could require selecting process 

parameters that maximize the output. Such processes could easily be too large to analyse directly, 

requiring expensive simulations to model system performance for each choice of parameter 

settings accurately. 

Conversely, the focus might be put into integrating knowledge of integrated circuit 

functions into the algorithm for a more tailored approach. For example, if a circuit needs to be 

optimised for a timing constraint, and one of the inputs is the process parameter, it would make 

sense to spend more computational effort on exploring regions represented by the slow-slow 

process, as this region would be most likely to contain the worst timing performance of the circuit. 

Moving on to optimising a function over a nongridded input space could make the 

algorithm applicable for looking for rare-event failures in circuits. The algorithm could spend a 
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comparable amount of time finding high-sigma corners, like finding a 6-sigma (one-in-a-billion) 

worst case corner, in a fraction of the time that is required for a full-factorial simulation. Such an 

application would be useful for designing extremely variation-aware circuits or circuits that are 

required to be extremely reliable. 

Finally, should the computational cost of GPR be optimised enough and the problem of 

locating spikes be solved adequately enough, these algorithms could be used for cost function 

optimisations used in other machine learning techniques, such as neural networks. This would 

ensure the lowest value of the cost function meaning that the performance of the learned structure 

(e.g., the trained neural network) would be the best possible using simpler designs of the networks, 

compare to the extremely complex structures like Deep Neural Networks. An existing framework, 

such as Robust Bayesian Optimization [73][74], can be a basis for these developments. 
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