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ABSTRACT

Weakly nonlinear hyperbolic waves arising fror. - . - or boundary
disturbances in systems of one dimensional cons Lo ongidered. The
study undertaken is divided into two parts. ' * Sudes a relatively
complete single-wave-mode geometric optics the- - « o investigate wenkly
nonlinear hyperbolic waves subject to small-am:. a frequency boundany
disturbances of single-wave-mode type. By introdi v o ounlinear phase from the
outset, an asymptotic solution to the signaling problemn is constructed. A rational
scheme is designed to adjust the small-amplitude to high-frequency relation aceord-
ing to the order of local lincar degeneracy. The transition process from smooth
wave breaking to the generation of shock waves is carefully studied via a bifurea
tion analysis. We show that wave-breaking will lead to the generation of entropy
admissible shock waves. Shock fitting and tracking are also accomplished. As u pro
totypical example, this process is demonstrated in a transparent fashion for scalar
conservation laws in the large.
generalizes a characteristic method originally introduced by Lin [44] and Fox [15]
by directly introducing two nonlinear phases and no longer demands a priors knowl-
edge of the associated Riemann invariants. Both initial and sigualing problems are
investigated for systems of conservation laws through the deployment of asymptotic
analysis. We apply this theory to compute the interaction and propagation of two
weak sound waves in one dimensi
study an interesting problem arising from the context of grophysical fluid dynamies,
that is, nonlinear Kelvin waves confined to a channel.

al gas dynamics. The theory is also applied to
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Introduction

sition in reie;:eh reletmg to nonlinear wave theory for several decades. This ix ns
a result of the fact that they are capable of encompassing a multitude of physical
phenomena in their formulation and also owing to the rich mathematical structure
which their solutions exhibit. One of their most prominent features, which serves to
distinguish nonlinear hyperbolic systems from other evolutionary systems, is their
tendency to shock formation - these shocks being formed as a result of the focusing
of a characteristic family. Owing to this shock formation, solutions to noulinear
hyperbolic conservation laws, or hyperbolic waves as they are called, are, in general,

not gbhl.lly smooth and must be interpreted in the sense of weak solution: [.‘SU?] J.

!mmth is more or less the case [53]i It is for this reason that various methods
devoted to locating these discontinuities, or shocks, have arisen as an important
research issue in the recent past. These are lumped together under the general title
The mathematical theory for nonlinear systems of conservation laws L. under-
gone substantial advancement over the past few decades. The seminal work of Lax
[36-39] and the invention of the random choice scheme by Glimnimn [16] Luve: lexl to
many important results relating to existence, uniqueness, large-time behiaviour, and
stability of solutions to hyperbolic systems. These recent results have been achicved
through the efforts of such mathematicians as DiPerna, Dafermas, Liu, and Majda
(9, 11-14, 4585, 55-88] to name but a few.
mntby&i‘mmﬁnpbﬁdm:ﬁenmnﬁ to u sim-

lying structure of these nonlinear systems

ing as well as quantitative




is needed in order to reveal new phenomena and supply models that capture their
salient features. The motivation behind the present study is an attempt to pro-
vide an approach with the desired attributes for unravelling some of the complex

phenomena inherent to gas dynamics, elasticity, and fluid mechanics.

the flow pattern around a supersonic projectile 73] and the propagation of weak
spherical shocks in stars [74]. By this method, the geometrical eflects are accepted
unchanged from linear theory for weakly nonlinear disturbances but the crucial
influence on the characteristics of the nonlinear self interaction of the flow field
is corrected for. This technique is capable of determining the position of shock
initiation as well as providing an approximate representation for the solution to
nonlinear hyperbolic systems. This approach is now generally known as Whitham's
nonlinearization technigue. Similar ideas can also be found in the earlier works of
Landau [38] and Lighthill [43]. From the time of Whitham's 1950's work onwards,
interest in devising systematic perturbation schemes for the analysis of nonlinear
hyperbolic waves has been high. For example, in a series of papers published during
the early 1970's, Taniuti et. al. [1-3, 71) developed a method which they called the
reductive perturbation method. By this approach, one perturbs a nonlinear system
about a constant state employing stretched linear phase and slow space variables
to arrive at a single evolution equation of canonical form. At about the same
time Choquet-Bruhat [6] published her influential paper in which she constructed
a formal asymptotic expansion for small amplitude, high-frequency solutions of
a nonlinear hyperbolic system in multi-dimensional space. In fact, the literature
encompassing research in this direction in the period prior to 1980 is abundant. For
Mortell [T0], Nayfeh [68], and Kluwick [33)].

These eaclier studies, especially that of Choquet-Bruhat, stimulated further sys-
tematic studies of perturbation procedures for hyperbolic systems by Keller, Hunter,




Majda, Rosales, their students, and others. In a series of papers (8, 24-26, 61--63)
they developed a procedure which is often referred to as weakly nonlinear geometrs-

with a multiple scale analysis for small amplitude, high-frequency waves to incor-

porate nonlinear corrections into geometrical optics in a systematic fashion.

It is well known that linear geometrical optics, which deals with high-frequency
waves for linear problems, is an ideal tool for the analysis of linear hyperbolic
systems. See, for example, Keller [31) or Whitham [78]. The ideas which led to such
a mathematical theory for treating wave propagation had their origins in physies
and, in particular, in physical geometrical optics. Waves of high frequency hehave
like particles, as, for example, do light waves. This is becausc we can associate a
definite direction with such waves by the rays of geom
locally as plane waves. This provides an immediate and intuitive visualization for
linear wave propagation processes. However, when nonlinearities come into play, the

etrical optics and view them

situation is considerably more complex requiring more than just a small adjustinent
to lincar geometrical optics. A widely used device for incorporating nonlinearity into
a solution scheme is to employ a perturbation analysis using the method of multiple
scales. Designing such a perturbation scheme with the correct scaling to reflect the
basic nonlinear features of the system is a delicate matter.

In the theory of weakly nonlinear geometrical optics (WNGO) an asymptotic
solution for small amplitude, high-frequency waves is derived using linear phase
variables together with a slow time variable. Most presentations of the analysis
are based upon the tacit assumption that oaly smooth solutions are allowed [63).
However, the approach is valid even when shocks form. Indeed, DiPerna and Majda
(14), in a remarkable paper, proved the walidity of weakly nonlinear geometrical
optics for general systems of conservation laws in a single space variable subject
to the condition that the initial profile is of compact support. Furthermore, in
[8], Cehelaky and Rosales presented a desivation of the equations of WNGO that



explicitly deals with nonsmooth weak solutions of a very general kind. Also in
(24-38), Hunter and Keller verify directly that the shock conditions provided by
the asymptotic equations agree with the first term in the amplitude-expansion of
the shock conditions for the full equations. One of the advantages that weakly
nonlinear geometrical optics has over the method of characteristics is that it is
capable of handling multi-wave interactions and resonance so that all wave modes

may come into play simultaneously in the initial configuration.

However, the use of linear phases has its limitations. Natnbly the transition
This is due to the fact th;t the hnen.r phge(,l)‘ even after noanlinear correction,
does not repre-eﬁt exn:tly the noanlinear characteristic fimily it indicates. Also one
experiences a local linear qumq about the -tﬂdy state under mds:tmi
the associated Burgers-type equation for the nonlinear evolution of amplitude also
degenerates. Though such a degeneracy can be avoided by redesigning the small
amplitude to high frequency relation, this is done a posteriori on a trial and see basis.
It is due to this consideration that our investigation of nonlinear hyperbolic waves
and their interactions will differ from the approach of weakly nonlinear geometrical
optics (WNGO) outlined above in that we introduce noalinear phase variables from
the outset. Indeed, in the study of nonresonant hyperbolic waves, in particular the

first part, a relatively complete theory of geometrical opties involving one nonlin-
mpﬁmm” vﬂmi-.;mgh' weve-mode ﬁ-r'. hm “ﬁm

4



frequency single-wave-mode initial or boundary disturbances. As the work of John

lifespan to at least T = O(c~?).

In our analysis, a rational approach to scaling is developed which enables us to
find the time of breakdown for smooth solutions to systems having degeneracies. To
this end we have employed the concept of order of local linear degencracy (17,20]

amplitude to frequency that is appropriate for a given problem. We point out here
that this concept was proposed by Rosales (69 |. We then focus on the transition
approach is based on an analysis of the associated characteristic family cast in
terms of a bifurcation problem. This analysis provides a transparent picture of the
to shock generation. A shock criterion is established

and the shock tracking is accomplished. The analysis here ascertains the after-shock
validity of the asymptotic solution. Indeed, this direct use of a nonlinear phase in
closely related to the method of characteristics and the characteristic family under

In an effort to accommodate applications in a wider class of problem involving
spatial inhomogeneity, we allow for an explicit spatial dependence in the flux func-
tion, that is, f = f(w, z). It turns out that such inhomogencities in the media lead
an order higher than the order of the local linear degeneracy, is induced solely by




Another study undertaken here is an analysis of the important issue of two-wave
interactions for hyperbolic conservation laws. By two-wave interactions here we
mean the evolving pattern of a propagating disturbance arising out of the action
of initial or boundary disturbances consisting of two wave-modes. Here we take an
approach which differs from weakly nonlinear geometrical optics 35, 3] and its use
of linear phases but is close in spirit to the use of Riemann invariants in the early
studies of Lin [44] and Fox [15]. The method due to Lin and Fox was based on the
method of characteristics and you may refer to either Kluwick (33} or Nayfeh (66] for
an extensive review of the subject and list of the relevant references. We do not seek
an explicit construction of the Riemann invariants, a task which may only be carried
out with certainty on at most two-by-two systems, but rather we introduce two
nonlinear phase variables and transform the space-time coordinates into nonlinear
phase coordinates. When the system of conservation laws is then perturbed, non-
resonant two-wave interactions can be handled in an explicit fashion in the sense
that our analysis provides an asymptotic solution as well as the perturbed space-
time coordinates explicitly.

We apply the above type of analysis to gas dynamics computing the propagation
and interaction of two sound waves. Then, as a variation on the theme of hyperbolic
conservation laws, we examine a system that is hyperbolic only to leading order
in the small perturbation parameter. This particular system describes nonlinear
Kelvin waves confined to a channel and its solution has several interesting features.

We now outline the organisation of this thesis. In the next chapter, Chapter 1, we
start by considering a general scalar conservation law having spatial variability in
the flux function and deal with both initial and boundary problems via direct ussof a
nonlinear phase{19). Although our purposs here is largely motivational for what is to
follow in subsequent chapters and although the analysis is relatively straightforward,
the results are suggostive and some are new. For instance, we examine the focusing
of the characteristic family and prove a criterion for the generation and propagation



of a shock wave by means of a bifurcation analysis. Then we treat a transonic model
problem proposed by Liu [81, 88). This model consists of a scalar conservation law
with a strong source term and exhibits some interesting nonlinear phenomena in
the transonic regime. The direct use of a nonlinear phase provides an efficient
tool for unravelling these phenomena. References on this subject, including the
more complicated transonic gas flow through a nozzle, can be found in (80, 52).
Although this transonic problem is in a sense outside the strict purview of this thesis
its treatment here illustrates the utility of the nonlinear phase variable in treating
a variety of situations. For a more detailed analysis of this interesting problem the
reader can refer to the recent article by He and Moodie [18).

In Chapter 2, we develop a complete single wave-mode geometrical optics theory
for systems of hyperbolic conservation laws involving n state variables. Many of
the ideas employed here in the context of weakly nonlinear asymptotics have been
introduced in the less technical exact solution context of Chapter 1. In this chapter
we define the signaling problem and employ asymptotic analysis to analyze the
solution in regions of smoothness as well as give a com.plete description of the
shock generation process. This analysis is carried out in the presence of linear
degeneracies. Our theoretical results are then deployed to give a full treatment of
an interesting technical problem involving nonlinear waves in deformable fluid lines
whose elastic beha' iour is modelled by means of a strain energy function. We are
able to recover some former results of Moodie and Swaters (64), as well as, provide

a complete shock-tracking procedure.

Chapter 3 is devoted to an analysis of two-wave interaction and propagation of
weakly nonlinear hyperbolic waves. We do this by superimposing initial or bound-
ary disturbances consisting of two wave modes and seeking asymptotic expansion
solution in the corresponding nonlinear phase configuration. The quadratic inter-
action of thess two wave modes generates, on the next order, all other wave modes
and can be resolved fully and systematically. Together with the resolution of the

7



perturbed spatial and temporal coordinates in the nonlinear phase configuration,

we derive a full asymptotic expansion solution describing the non-resonant evolving

signaling problems. As for the latter problem, the class of admissible boundary dis-
turbances is also specified in the course of solution. We then make an application
to one dimensional gas dynamics, in which the interaction and propagation of two
weak sound waves are computed.

The last chapter deals with an interesting problem arising from the context of
geophysical fluid dynamics, that is, the nonlinear Kelvin waves confined to a chan-
nel. This model is described by the three dimensional shallow water equations in a
rotating channel. As it is well known (40, 67), linear Kelvin waves are hyperbolic

We study the nonlinear version of Kelvin waves for two reasons. The first reason
is that there are exactly two nonlinear phases involved in the analysis, which pro-
vides a suitable background for the application of the two-wave interaction theory
furnished in the previous chapter. The second reason is that the model includes
another spatial dimension, namely the croess channel dimension. This fact not only
admits interesting phenomena to surface but also expands the range of application
for the two-wave interaction theory. We shall present an asymptotic analysis in the
nonlinear phase configuration and derive asymptotic solutions for along and cross
quadratic interactions. Examples which exhibit the evolution pattern of nonlinear



CHAPTER 1.

Scalar Conservation Laws, Spatially Dependent
Flux Functions, and A Source Problem

In the past few years, interest in hyperbolic conservation laws in which the flux
functions admit explicit spatial dependencies has been on the rise (17, 27, 64).
Examples of applications of this theory includes the Buckley-Leverett equations for
multiphase flow in porous media (37), the equations for flows in distensible hy-
draulic lines [17, 27), as well as those for isothermal gas flow through a variable
area duct [27). These problems are closely related to conservation laws with spa-
tially distributed sources (48] in the sense that both no longer preserve self-similar
solutions, and their Riemann problems are not, in general, exactly solvable. They
do, however, also differ from the latter in that they may be supplemented by an
additional conservation law to form a classical system of hyperbolic conservation
laws [27).
In this chapter, we shall study the scalar conservation law

ue + f(u,z), =0,

where u is the state variable, f = f(u,z) is the flux function which has explicit
spatial variability, and = and ¢, as usual, represent spatial and temporal variables,
respectively. We shall conduct a detailed analysis of the signaling and initial value




chapter is mainly motivational setting the scene for direct use of nonlinear phase
variables in later discussions of systemns of conservation laws.

We organize the contents of this chapter as follows. The next two sections are
devoted to signaling and initial value problems, respectively. After a direct intro-
duction of a nonlinear phase variable, the problems are cast into the space-phase
configuration and solved implicitly. Then we examine the caustics which are formed
through the focusing of the characteristic family. The point on a caustic which has
minimum time is a cusp, and is referred to as s shock initiation point, indicat-
ing the time and position at which a smooth wave first breaks. Proper conditions
guaranteeing the existence of such caustics are found and the caustic structure is
analyzed. We then carry out a local bifurcation analysis enabling us to prove that,

wave will generate an admissible propagating shock wave. Hence, for the case of
scalar conservation laws, a transparent picture depicting the transition process from
wave-breaking to shock generation is provided. We digress slightly in the last sec-
tion of this chapter to demonstrate the utility of the inear phase by discussing
a scalar transonic model problem due to Liu [81, 88).

1.1. The Signaling Problem

1.1.1  Problem defined

we+ f(v,2)s = 0. (1.1.1)

We require that \(u, 2) & 0f(u,2)/0u not vanish anywhereand be bounded avey



from zero. For definiteness, we assume that
B> AMu,z)2A>0, V¥ (uz)eNcR? (1.1.2)

where (] is the domain of discussion and A, B are constants.
We call a smooth time-independent solution of (1.1.1) a steady state of (1.1.1)
{48]. Let u = ug(z) be such a steady state of (1.1.1). Then ur(z) solves

f(uo(z),7)s =0, (1.1.3)

f(uo(z),2) = f(uo(0),0), (1.1.4)

and a steady state u = ug(z) is fully determined by its value at z = 0 (or any other
given point).

Now we suppose that the scalar conservation law (1.1.1) is initially in a steady
state which we may assume, without loss of generality, to be ug(z) = 0. Otherwise
we simply replace u by u + up(z) in (1.1.1). When a boundary condition is imposed
at z = 0, we have the following signaling problem:

w+f(v,z); =0, 2>0,t>0, (1.1.1)

u(0,t) = g(t), t 2 0, (1.1.8)
u(2,0) =0, £ 2 0. (1.1.6)
Here g(t) is a smooth function satisfying

#(0) = ¢’(0) = 0. (1.1.7)



The mixed initial and boundary conditions of (1.1.5) and (1.1.6) are equivalent
to

u(0,¢t) = g(t), —o0o <t < 00, (1.1.8)

where g(t) =0 for all t < 0.

1.1.2 Nonlinear phase and eskonal transformation

Now, in order to resolve (1.1.1), (1.1.5), and (1.1.6), we introduce a nonlinear phase § .
which remains constant along each characteristic and is parameterized on the t-axis.
The approach we take here is equivalent to the standard characteristic method [76)
and can also be cast in that fashion. The notion of a nonlinear phase can also be

extended to systems of nonlinear conservation laws.
The nonlinear phase @ = §(z,¢) is defined as the solution of

0 + Mu, z), =0, (1.1.9)

0l a0 =t t € (—00,00). (1.1.10)

The existence and smoothness of § = é(z,t) is guaranteed so long as u = u(z,t),
the solution to the signaling problem (1.1.1), (1.1.5), and (1.1.6) exists and remains
smooth. The inverse function of # = §(z,t) gives the so-called arrival time formuls
(17, 64, 70}, that is, the time required for the wave of phase # to arrive at the
position z and we write this as

t = T(z,0). (1.1.11)

In fact, {t = T'(z,0) : —00 < # < oo} is the family of characteristics for the signaling
problem.



We now transform the space-time coordinates into space-phase ones. That is,

(,8) — (2,0), (1.1.12)

=2z, (1.1.13a)

0 = &(z,t). (1.1.13b)

We point out here that in his study of developing singularities along the leading
wavefront, Jeffrey [38) considered a transformation of the form (1.1.12).
Rewriting u(z,t) = i(z,0), we have

8, — O, ~ ‘I'a.. (1.1.14n)

Transforming (1.1.1) into (z,6) coordinates and dropping the tilde for notational

%f(u(:,‘),s) = 0, (1.1.18)
f(u(=,0),2) = f(»(0,0),0) = 1(9(0),0). (1.1.16)

t = T(s,82,1)), (1.1.17)



gives
6, = "Tc/Th 6 = I/Th (1.1.18)

when (1.1.17) is differentiated with respect to z and ¢, respectively. Then a substi-
tution of (1.1.18) into (1.1.9) results in

T, = 1/\(u,z), (1.1.19)

T|,uo=09. (1.1.20)
We have therefore upon integration that
£ ds
t=T(z,0) =0 +/° :\(—'-‘m (1.1.21)

Combining (1.1.16) and (1.1.21) provides the complete solution to the signaling
problem (1.1.1), (1.1.5), and (1.1.6) as

f(u,z) = f(g(0),0) & F(0), (1.1.22)
* ds
t=0+ /o m, (1.1.21)

where the unique smooth value for u = u(z,#) is obtained by solving (1.1.22).
In particular, we obeerve that # < 0 corresponds to the steady state region, for
which

f(u,2) = f(g(0),0) = £(0,0),

and hence u = 0 there and accordingly
[’ ds * ds
tmb+ 1'(0_,:7-‘4'/. m, <0, (1.1.28)

1L}



where A(0,z) & M\o(z). When 8 = 0, we then have

f ds
o Ao(s)’

{ =

(1.1.24)

which is called the leading wavefront or leading characteristic and represents the time
for the first boundary disturbance to arrive at position . This leading wavefront
provides us with a boundary separating the disturbed region from the undisturbed
steady state region. This is depicted in Fig. 1.1 below.

t=T(x,0)

um)

Fig. 1.1: The leading wavefroat.
When there is no explicit spatial dependence in the flux function, that is, f =
J(u) so that A = A(w), (1.1.21) and (1.1.22) reduce to

u = g(0), (1.1.28)



and

tml 4 ——— G (5)) (1.1.26)

In this case, the characteristics are straight lines, and along each characteristic

u preserves its value. This result is classical and well known, see, for example,

Whitham (78]

1.1.3 Wave breaking and caustic structure

The validity of the eikonal transformation (1.1.12) rests on the condition that the

Jacobian
s =0 -
J A B( ) =0, 90, (1.1.27)
and
To=0;' 40. (1.1.28)

It is apparent that the transformation (1.1.12) is valid near the boundary z =

since

However, the characteristic family may focus so that individual charactes in-
tersect thereby leading to breakdown of the smooth solution and the formation of

shocks. Indeed, the characteristic family focuses when (17]

To=0, (1.1.30)

which, in turn, signals the breakdown of the transformation (1.1.12). As a conee-



respect to ¢ to give
Mu, z)ue = Xg(0),0)g'(0)8, = A(g(6),0)g'(6)/To, (1.1.31)
and hence for g'(0) # 0,
uy—roo as Tp— 0. (1.1.32)
That is, a smooth solution to (1.1.1) will break down as its derivative ‘blows up'.
which
T, =0,

the shock initiation point. In fact, the envelope (a caustic) I for the characteristic
family is specified by

L(z,t,0)= T(z,0) -t =0, (1.1.33a)
I:
Lo(z,t,0)= Ty = 0. (1.1.33b)
From (1.1.21) we obtain
Ty=1+ j *(=A")A, weds. (1.1.34)
1”

Then, differentiating with respect to # in (1.1.22), we obtain
Aug = A(’(.),ﬂ)"('). (1.1.38)
which, when combined with (1.1.34), gives

s=at0): MO0 [ AAus =1, (1.1.36)
= t(0) : c-o+[‘"% (1.1.36b)

114
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It is clear from the above that I' exists for the set O+ = {# € (=00,00) : ¢'(#) >
0} when A, > 0 and the set - = {# € (~00,00) : g'() < 0} when ), < 0. For
definiteness in all of our future discussions we shall assume that K3 2 A, 2 K; > 0,
where K, and K; are positive constants. This is equivalent to

K, 2 fii(‘!i:) 2 K, >0, (LLST)

that is, the flux function is uniformly convex with respect to u.

The following lemma addresses more than just the existence of the shock initia-
tion point.
LEMMA 1.1. Suppose g'(#) > 0 for # € (0,6) and g'(fo) = 0. Then the envelope
(or caustic) T for the characteristic family exists for # € (0,6). Also, there exists
0, € (0,60) which gives the shock initiation point (2,,t,) : 2, = 2(0,), t, = ¥(0,).
In addition, we have

1°. 2, = 2(0,) = “lggi){!(f)]i (1.1.38a)

t, =¢(0,) = Eﬁ){t(,‘)}, (1.1.38b)

2°. (z,,t,) is & cusp for the caustic ' and along I’

L ode L dt 1
w E = Ohj: E - r(i(in'-)iin)g (’LL‘)

Proof. Since ¢’(0) = g’(fs) = 0, g’(#) > 0, V 0 € (0,6) and A is positive and
bounded away from sero, it follows from (1.1.36) that I" exiets for 0 < # < &, and

#(0) = +o0. (1.1.400)



This luuelto that the minima for f(i) and t(!) both exist. Let i. be that value

£(0).
Let 2* = z(#°) be the minimum for z(0). If z* < z, then there are two cases:
t* = ¢, ort* > t,, where t* = t(#°). In the first case we simply shift the shock
initiation point to (z°*,¢*) and adopt the convention that 8, is always chosen such
that z, is also the minimum of z(0). In the second case, by connecting (z..t,) to
(z°,t°) by means of a line segment, we notice that its slope
t,

ke 2t o,
2 -S-

so that 34 € (0, &) such that ¢ = T(z, #) has a negative tangent at (2(), #(9)). This
is, however, impossible for the characteristic family under consideration. Therefore
we have shown that

2= 2(0,) = min {2(0). (1.1.38a)

0€(0.8)

Now to show (1.1.39), we differentiate (1.1.36b) with respect to # to get

#(0) o 1 dr
ot/dd = ”/. )""* Nu(z(0),0),2(0) #

"" 1 ds
] =A"? e
”/. (=27 X Jweds + SC500), 0),2(0)) #

1 ds

= Nu(=(0),0),5(0)) &

(1.1.41)

in light of (1.1.33b) and (1.1.34). Thus along I' we bave

1
Mu(2(0),0), (0))

dfds = (1.1.42)




In particular, letting @ — 0% we have

A . dt 1 ,
o E " AT Xl b)) (1.1.39)

and hence (z,,t,) is a cusp.
This completes the proof.

Apparently, for any interval (t',¢”) on the t-axis for which g'(t') = ¢g'(t") = 0
and g'(t) > 0, Vt € (t',t"), the corresponding part of the characteristic family has
an envelope that retains the property stated in Lemma 1.1.

As a result of Lemma 1.1, we can separate the envelope I into two branches,

Ti: zma(0), t=t(0), 0<0<0, (1.1.439)

Fy: zme(0), t=t(0), 0, <0< b (1.1.43b)

Here we suppose that the conditions of Lemma 1.1 for ¢ are fulfilled. We denote
the cusped region enclosed by I'y,I's, in some neighbourhood of (z,,t,), as D.
There are, in general, two cases.

ourhood of (z,,t,).

Case 1. T lies above '3, or ') and Iy coincide in the neigh

Case £. T3 isabove I;.
(1.1.37), Case 2 is impossible and, in particular, I'; is always above I's and as &



To begin, we note from (1.1.42) that I has slope
dz/dt = A(u(z(9),0),2(0)) & G(9). (1.1.44)
G(0) is a smooth function of # and we expand it about # = 6, to get
G(0) = G(0,) + G'(0,)(8 — 0,) + R(6)(8 - 6,), (1.1.45)
where R(6) is smooth and
Jim R(#) = %e"(o.)i (1.1.46)

The next lemma determines the sign of G'(#,) which plays a crucial role in ascer-

LEMMA 1.3. Suppose g’'(#) >0, V0 € (0,8) and ¢’(0) = g'(6o) = 0 s0 that the
caustic ' and the shock initiation point exists. Then at # = 0, we have

G'(0,) = ¢'(0,)0s(9(0,),0)Au(4(20,8,), 2,)/G(0) > 0. (1.1.47)
Proof. We differentiate
Ju.s) = KO, (1.1.22)

with respect to # to get

Mu,2)up = F'(0). (1.1.38)

tiate (1.1.35) with respect to & to yield

Aot} + Auge = F*(0). (1.1.48)



Now (1.1.22) and (1.1.35) are independent of z and, in particular, we evaluate
(1.1.35) at z = z(#) obtaining

G(0)us = F'(0), (1.1.49)
and
G'(O)us + G(0) 5 uel2(0),0) = F(9), (1.1.50)

after a differentiation with respect to 0.

Now
Zun((0),0) = wes((6), 05'(9) + uae(2(0),0). (1.1.81)

We note that in the space-phase coordinates, ug, u,, as well as uy,, are all smooth
functions. We may evaluate (1.1.48), (1.1.50), and (1.1.51) at # = §, to obtain

Aa(u(24,80,),2,)u} + G(0,)uge = F¥(0,), (1.1.52)
and
G'(0,)ue + G(0,)uee = F"(0,), (1.1.83)

where we have employed the fact that £'(0,) = 0.
Subtracting (1.1.52) from (1.1.53) gives

G'(0,)ue = Ay(u(24,0,), 31)331 (1.1.54)

G'(0,) = F'(0,)2a(w(54,0,),2,)/G(0,)



where (1.1.49) has been noted. Thus G'(4,) > 0.
This completes the proof.

We are now in a position to prove the following theorem.

THEOREM 1.1. Suppose g'(#) > 0, ¥V 8 € (0,60) and g’'(0) = ¢’(6) = 0. Also
the flux function satisfies (1.1.2) and (1.1.37). Then for the two branches of the
caustic defined by (1.1.36), (1.1.43), I'; is always above I';.

Proof. The existence of the caustic I' follows from Lemma 1.1. Let (z,,t,) be the

for both = = z(#) and t = t(#). Hence t'(0,) = 0 and t"(6,) = 0. Without loss of

generality, we assume t”(6,) > 0.
We now expand ¢ = t(#) about § = §, to get

t=t,4 200007 4 00 - 07)
=t, + Q)0 - 0,)", (1.1.56)

where Q(0) is smooth and

. 1, , .
Jim Q(0) = 5¢"(0,) >o. (1.1.57)

Rewrite (1.1.56) as
QIO -0, =t —1t,. (1.1.58)

One can invert ¢ = t(#) by an application of the implicit function theorem in (1.1.58)
to get two solutions in a neighbourhood of § = 0, when ¢ > t,. We have two cases:

1°. When # < §,, the first solution § = #,(¢) solves

00, = —{(t - ,)/Q(0))'/* & —p(1,0). (1.1.50)



2°. When 0 > 6,, the second solution @ = 6;(t) solves
0-0,={(t—1,)/Q(0))'/* = p(t,0). (1.1.60)
Therefore 8 — 8, = O((t — t,)'/3) as t = t} in both cases.
Substituting (1.1.45), (1.1.59) and (1.1.60) into (1.1.44) yields, respectively, that
on Iy : 52 = G(0) - G(0)p(t.0) + ROP(1,0), (1.1.61)

and

on T3: = G(0,) + G'(0.)p(t,0) + R(OP(1,) (1.1.62)

Now, in o1der to ascertain the relative positions of I'; and I';, we compare their
slopes. In the neighbourhood of (z,,t,) we denote I'; and I3 by r = z,(t) and
z = z(t), respectively. Fixing t and subtracting (1.1.62) from (1.1.61), we have
that

-:7(:: —23) = —G'(0,)(p(t, 0) +p(t,0)) + R0 )p*(t,0,) - R(6;)p* (¢, 83), (1.1.69)
where #; = #,(t) and 83 = §;(t). When ¢ is close to t,, we know from above that

p(t,0,), p(t,02) = O((t - gi)lﬁ)-

lim R((1) = lim R((1)) = 3G°(0,) (1164

are finite. Hence the sign of £(2) — 21) is determined by the first term on the right
of (1.1.63). Hence, as a result of Lemma 1.2, we have

Sln - ) <0, (11.68)



Thus, in the neighbourhood of (z,,t,), T, is above I';.
This completes the proof.

ts
r

(%a: 1)

—_—
X

() xa(t)

Fig. 1.2: Iy, T3 in a neighbourhood of (z,,¢,).

We have shown above that of the two branches of caustic I, I'; is always above I';.
As a result the generation and propagation of a shock wave is predicted. We shall

s, that is, @ = 0¢(z,t), 0,(z,¢) with

0 < 0,(2,t) < Oi(t), B(t) < O¢(z,t) < &, (1.1.66)

satisfying (1.1.21). Namely, there are two characteristics, with their phases 0, 0,,
subject to (1.1.08), passing through each (z,t) € D. Here 0 = #,(t), b(t) with



0,(t) < 8, < 8;(t) are two branches of the inversion of t = ¢(@) near t,, defined by
(1.1.59) and (1.1.60) respectively.

Proof. When T, is above '3, for any fixed 8 : 0 < @ < 0,, the characteristic
emanating from the boundary will cross I'; and intersect I'; at the point (2(#),¢(9)).
At this point of intersection the characteristic is tangent to I';. As a convention,
we terminate the characteristic at (2(6),¢(9)) and denote it by C(@). Then {C(#) :
0 < 0 < 6,} constitutes a family of characteristic curves which vary smoothly with
6. In other words, ¥ (z,t) € D, 3 a unique (0 < 0 < 6,), such that C(@) passes
through (z,¢). Similarly, for 6 : 8, < 8 < 6, we also have a family of characteristic
segments {C(0) : 0, < 6 < &} which has the same property as the above one. That
is, V (z,t) € D, 3a unique §: 0, < # < 6y which passes through (z,¢).

Thus, we have shown that V (z,t) € D, I two 6s from 0 < 0 < 6, and
6, < 0 < &, respectively, and the two corresponding characteristic segments pass
through (z,t). We denote these two 's by 6; = 8;(z,t) and 6, = 8,(z,t), where
0<6,<0,<0,<b

To be more precise, we further note that V (z,t) € D,

0<0,(z,t) < by(t), 03(t) < e(z,t) < b, (1.1.66)

where 8 = 0,(t), 0;(t) with 0,(t) < 0, < #3(t) are two branches of the inversion of
t = #(0) on the caustic T, introduced in (1.1.59) and (1.1.60) respectively. See Fig.
1.3 below.

To see that V (z,t) € D, there are exactly two #'s, that is, §, and #; with
0 < 0,(2,t) < (1), 3(t) < Oe(z,t) < b, satisfying (1.1.21). We supposs § =
d(z,1) : 0 < # < & provides a third solution to (1.1.21). As we have shown
above, there are only two characteristic segments from {C(f) : 0 < < &) passing
through (z,¢), providing the two #"s: §¢ and §,, so the characteristic associated to
§ and passing through (=,t) must correspond to the extension of C(#), u-by
leading to 8 (1) < # < #3(t) since the characteristic has a positive slope eves




This completes the proof.

Remark 1.1. Without the restriction (1.1.66), (1.1.21) may admit more than two
solutions for 8. This has been demonstrated for the inviscid Burger's equation, see

(3,4 for more details.

Apparently, the above analysis applies to the case when I'; coincides with I';
and D collapses to the caustic I itself. The cusped caustic and the region D are
depicted in Fig. 1.3 below.

x
Fig. 1.3: Cusped envelope in the (z,t) plane.

The next theorem illustrates the generation and propagation of a shock wave
in the neighbourhood of the shock initiation point and completes the shock-fitting
procedure.

THEOREM 1.3. (Shock Propagation Rule). If 'y lies above or is overlapping
with I in the neighbourhood of the shock initiation point (z,,t,) then an entropy



admissible shock wave will be generated and propagate along the shock front

di llg = YUr_

Lz > 2, (1.1.67a)

t(z,) = ta, (1.1.67b)

with the shock strength [u) = u¢ - u,. Here u¢ = u(z,8¢), u, = u(z,6,) and
0¢ = O¢(z,1), 0, = 0,(z,1) solve (1.1.21) with 0 < 8, < 6,(t), 8(t) < 0 < o

Proof. Clearly D, according to Lemma 1.3, is a multi-valued region. We resolve
this situation by introducing a curve of discontinuity, or, in other words, a shock
front £ in D and terminating at £ any characteristic which enters D. This curve £
is initiated at the shock initiation point t(z,) = ¢,.

Invoking the Rankine-Hugoniot condition across the shock front T gives

:ilu] + [f] = (), (1.1.68)

which in turn provides
@
dz ~ [f]
= (ue = ur)/(f(ue,2) = f(wr,2))
= (u¢ — ur)/(f(9(0¢e),0) - £(9(0r),0)). (1.1.67a)

Here u; = u(2,0¢), u, = u(z,0,) with 0 = 0y(z,t), 0, = 0,(z,t) being solutions of
(1.1.21) confirmed by Lemma 1.3.

Now we need to show that the shock front L, which is determined by (1.1.67a,b)
mﬂnmﬂmmﬂman{(snt.) In fact, (1.1.67) constitutes
an initial value problem for an ordinary differential equation. We notics that

1

eoeicr & Xu(z.,0,) (1.1.09)
«:‘.:;'Ef.:,, = Nu(s,,0,),2,)’




from (1.1.67a) and the fact that

0c(2,),0,(2,1) — 0, 88 D 3 (2,8) — (24.1,).

The initial value problem (1.1.67) is well-posed and its solution exists if and only
if £ remains in D. To show that T remains in D we need only show that at any
point (z,t) on the boundary of D, the tangent direction of £ points into D.

In fact, we have

(1.1.70)

where u® € (u¢, us) or (u,,uz). This, in turn, leads to

d _( 1 1 , 1 1 117
2 < (S o) * (e o) N

points in the above interval correspond to directions that are either aligned with
the direction of T or point into the interior of D. Hence, dt/dz being between these
two directions will always point into D.



Fig. 1.4: Shock front £ in D.

Now we show that the shock wave we have introduced is admissible in the sense

that it satisfies an appropriate entropy condition.
From (1.1.22) we have

Aug = X(g(0),0)¢'(0),

and since ¢'(0) > 0, that up > 0, V @ € (0,6). Thus u(z,0) is strictly increasing in
0 and

u, = u(z,0,) < u(z2,0¢) = ue, ¥V (2,t) € D, (1.1.72)
which, in turn, implies
Moris) < P = Mets) < M), (1.1.73)

where u° is between u, and u¢. Equation (1.1.73) is just Lax's entropy coadition in
the scalar case [8,9,30)], showing that the shock wave is compressive and admissible.



This completes the proof.

We note here that when 0 = §, provides a single minimum for x(#) and #(#), the
shock strength grows from an initial sero value. Otherwise the shock wave may be
initiated with a nonsero strength. This issue will be examined in the next section.

1.2. The Initial Value Problem

Now for the scalar conservation law introduced in the last section, that is
u + f(u,z), =0, (1.1.1)

we consider the associated initial problem. Here the flux function has the same
properties as described in the preceding section.

“lg-ﬂ = ,'(S)i z€ (‘ﬁlﬁ)! “*2”
where g(z) is a smooth function.

1.2.1 Nonlinesr phase and cihonal trensformation

As before, we introduce the nonlinear phase variable # with the difference that now
# is parametrised on the z-axis rather tham en the boundary. Hence

O + Mu,2)0, =0, (1.1.9)

Vo = 2. (1.2.2)

The existence and smoothness of § = §(z2,t) is inherited from the existence and
smoothness of ¥ = u(z,t). As before, the inversion of § = &z,1) gives the arrival



time formula

t = T(2,0), (1.2.8)

which represents a family of characteristics emanating from the z-axis.
We now carry out the nonlinear eikonal transformation

(2,8) — (2,0), (1.2.4)

z=z, (1.2.5e)

0= 0z,1), (1.2.5b)
80 that the scalar conservation law becomes

%f (u(2,0),2) = 0, (1.2.6)

f(u(2,0),2) = f(g(0),0) & F(0), (1.2.7)

u(z,0) is fully determined by (1.2.7).

T, =1/A (1.2.8)

temen = [ ot (129)



Now (1.2.7) and (1.2.9) give a full solution to the initial value problem (1.1.1),
(1.2.1).

In particular, when there is no explicit spatial dependence in the flux function,
the solution becomes simplified to

u = g(0), (1.2.108)

1 - (1 b

u = g(0), (1.2.11a)

2= 04+ M), (1.2.11b)
which can be found in Whitham (78).

The eikonal transformation (1.2.4) is valid when

=0 _
P Bl
and Ty = 6;! ¢ 0. Therefore the transformation is justified near the z-axis on

=00 <€ bs)oug = —Mg(=)) < 0. (1.2.12)




‘blow up’ of the derivative and the breakdown of the solution can be resolved by
introducing discontinuities into the solution and extending the meaning of ‘solution’
in a weak sense. This was observed for the signaling problem in the preceding
section.

Again, we consider the family of characteristics (1.2.9). Their envelope is

{ L(z,t,0)= T(2,0) —t =0, (1.2.13a)
r:
Lo(z,t,0)= Ty = 0. (1.2.13b)

Note that, upon differentiating in (1.2.9) with respect to #, we have

= 36000 (u),o) + a8 (5)

_j -
l(r(!).l) / (=27%)Agueds. (1.2.14)

Differentiating in (1.2.7) with respect to # we obtain

Mu,2)ue = F'(0), (1.2.18)

and then combining this with (1.2.14) gives

o= s(0): F0) [Nt Aule = -, (1.2.100)
r: | " & o
tmtll) it | s, (1.2.16b

for the envelope.

LEMMA 1.4. Suppose F'(§) <0, VO € (0,,0,) and F'(0,) = F'(#)) = 0, thea T
Y]



1°. 30, € (6,,6,) which gives the shock initiation point. That is,

t, = ¢t(0,) = ‘€x(‘l’xil'x‘.){t(0)}. (1.2.17a)
z,=2(0,) = .el(!‘lfl'l..){z(a)}g (1.2.17b)

2°. (z,,t,) is & cusp for the caustic I' and along I

. dt . dt 1 N

oo 32 ™ otgy & Nglhh). 0 (1218

3. lim (z(0),¢(0)) = (+00,+00), (1.2.19a)
0}

.lil?_ (2(0),¢(0)) = (400, +00). (1.2.19b)

Proof. Since F'(0) < 0, V 0 € (0,,8,) and )\, is bounded away from zero, the
expressions (1.2.16) guarantee the existence of I'. Also, 3° follows from (1.2.16) and
the conditions that F'(#,) = F'(6) = 0. This, in turn, suggests the existence of
0, € (0,,8,) such that

t,=t0,)=_ min {¢(0)}). (1.2.17a)

€0, .0)

Hence the shock initiation point exists.
can show that

2= 5(0) = min_{s(0)) (1:2.176)



Now to show 2°, we differentiate (1.2.16b) with respect to # to get

dt 1 dz
dé = Nu(z(6),9),z(0)) do

'W*/.M% (5)

1 dz
= Mu((6),0),(9)) 4o’

(1.2.20)

where (1.2.13b) and (1.2.14) have been noted. Therefore along I' we have

dt 1
& = Nu(=(0),0),20)" (1.221)

In particular, letting § — 6% in (1.2.21) recovers (1.2.18).
This completes the proof.

Under the conditions of Lemma 1.4, I' can be separated into two branches, that
is,

Ty:zmz(0), t=t(0), 0, <0<, (1.2.222)

Fy:z2=2(0), t=t(0), 0, <0< (1.2.22b)

As before we denote the region enclosed by I'; and I'; in a neighbourhood of (2,,t,)
by D.
1.2.3 The relative positions of the caustic brenches

Now, as in Section 1.1, we examine the relative positions of I'; and I's. We do this

by comparing the slopes of T, and I's.
From (1.2.21) we know that I' has a slope

S = Mul(s(0).0),5(0)) & G(0) (1239)



We require a lemma which ascertains the sign of G'(6) at 8 = 6,. This is parallel to
Lemma 1.2 above.

LEMMA 1.5. Suppose F'(0) <0, V0 € (0,,6,) and F'(8,) = F'(6,) = 0 so that
the caustic ' as well as the shock initiation point exists. Then at = 8,, we have

G’(‘.) = r('l)xl(“(:io ’c)o 30)/0(00) <0. (1.2.24)

We omit the proof which mimics that of Lemma 1.2.

Our next theorem ascertains the relative positions of I'y and I'; and ensures that
for initial problems having smooth data, a shock wave will be generated whenever
the characteristic family focuses.

THEOREM 1.3. Suppose that F'(0) <0, V0 € (§,,6,) and F'(0,) = F'(6;) = 0.
Also assume that the flux function satisfies (1.1.2) and (1.1.37). Then for the two
branches of the caustic defined by (1.2.16) and (1.2.22), I'; is always above I';.

We omit the proof which parallels that for Theorem 1.1.

1.2.4 Bifurcation end shock propagetion

As in Lemma 1.3, the following result suggests that the shock initiation point is a
bifurcation point for the arrival time formula when I'; is above T').

LEMMA 1.6. When I'; is above I'; then, V (2,t) € D there are precisely two
values of §, namely 0¢(z,t) and 0,(2,t), such that

0, < 0(2,t) < by(t), 05(t) < O,(z,t) < b, (1.2.28)

satisfying (1.2.9). That is, there are two characteristics with phases 6,0, subject
to (1.2.25) passing through (z,t). Here # = 8)(t), 5(t) with €y(t) < 0, < 3(t) are
two branches of the inversion of ¢ = ¢(#) on I’ near ¢,.
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Fig. 1.5: Cusped envelope for initial problem.

We omit the proof since it parallels

We can now establish the following shock propagation rule for the initial value
THEOREM 1.4. (Shock propagation rule). If I'; is above or overlaps I'; in
the neighbourhood of the shock initiation point (z,,t,) then an entropy admissible

_3 s '(’-‘l) ﬁ(:,..-) - . ) 7
H H “F(0)-F(o,) ' (1.2.20a)

tz,) = t,, (1.2.26b)
with the shock strength [u] = u¢ — v, = u(z,0) ~ u(2,0,). Hore O = O¢(2,t) snd
0, = 0,(2,t) solve the arrival time formuls (1.2.9), V (2,¢) € D and 0, < b¢ <
h(t), K(t) <0, < &.



Proof. We need only show that the above shock wave satisfies the appropriate
entropy condition as all other aspects of the proof are similar to those of Theorem
1.2.

We note that (1.2.7) leads to

Mu,z)up = F'(0) <0, ¥ 0 € (6,,6,). (1.2.15)
Then, since A(u,z) > 0, up < 0 in (%, ) and therefore
ue = u(z,00) > u(z,0,) = u,, (1.2.27)
since §, < 0; < 6, < 6. Therefore, in light of A, > 0, we have

Mue,2) > {% = A(u®,z) > Mu,, z), (1.2.28)

sible by Lax's entropy inequality [39).
This completes the proof.

Now, we shall provide some detailed calculations of caustic structure by consid-
ering five particular cases employing the simplified flux function having no spatial
dependence, that is, f = f(u).

1.2.53 Investigations of caustic structure
For the initial value problem, the full solution is

= g(0), (1.2.11a)
z =0+ F(O), (1.2.11b)

where F(0) A \(g(9)) and A = f'(u). The caustic T' for the characteristic family is

therefore



F(0) oo

y { zm0 - Fop (1.2.20a)

te “F)’ (1.2.29b)

so that I exists for 0 € (0,,60,), F'(0) < 0, or equivalently g'(§) < 0 owing to the
fact that A\, > 0.

Now on I' we have

dt __F'(0) .
& = o (1.2.30)

and
% - j’;‘;}gg’ . (1.2.31)

It is easy to see that z = z(#) and ¢ = ¢(#) have the same critical points on (04,6 ). In
addition, (1.2.29), (1.2.30) further indicate that z = 2(#) and t = ¢(#) achieve local
maxima or minima simultaneously for the same critical point (F(#) = A\(g(#)) > 0).
Each local minima or maxima for F'(#) on (0., 6 ) gives a cusp for the caustic T

In order to illustrate these ideas in a concrete fashion, we shall explore the caustic
structure in detail for several specific cases.

Case 1. We choose
F0) = %(a.o ~1), 0€ 0,2, (1.2.32)

s that
F(0) = %(-. +sind - 0), 0 € [0,2x], (1.2.39)

together with its accompanying caustic structure are depicted in Fig. 1.6 below.
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Fig. 1.6: Case 1 - F'(0) with corresponding caustic structure.

Case 2. We chooee

F0) = %(ea‘ ~2), 0 € [0,4x), (1.2.34)

which integrates to
F(0) = %(., +5in0—20), 0 € [0,4x), (1.2.35)
with a3 > 8x. In Fig. 1.7 below are displayed plots of F*(6) and the corresponding

caustic structure with its three cusps.

a9



F'(0)
04

Fig. 1.7: Case 2 - F¥(#) with correspondin
Case 3. Choosing
Fo) = %(aml - 2), 0 € [0,2nx], (1.2.36)
we have that
F(0) = %(.-, +8in0 - 20), 0 € [0, 2nx], (1.2.37)

with a3 > 4nx. In Fig. 1.8 we have plotted F'(#) and its
siructure in the case n = 3,



F'(0)

Fig. 1.8: Case 3 - F'(0) with corresponding caustic structure.
Case 4. Choosing
f %(ml ~2), 0 € [0,2x],
F0) = { S(2c000-3), 0 € [2,4x], (1.2.38)

1(con0 - 2), 0 € [4x,6x),

we then have
%(-4 +sin0-24), 0 € [0,2x],

F(0) = é(-. + 2% + 2sinl - 39), 0 € [2x,4x), (1.2.39)

_ ;(,-i. - 2x 4 sind - 24), 0 € [4x,6x),

with the conditions &g > 4x, a¢ + 27 > 12%, and a4 ~ h;lhmﬁmm
a; > 14=. In Fig. 1.9 are plotted F'(#) and the correspc |
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Fig. 1.9: Case 4 - F'(0) with corresponding caustic structure.

Case 5. With

we have

%(w.o -1),0¢0,x),
F@0)={-1 0 € x,3%), (1.240)
%(“' - 1). . E lailiill

%(.. +sin0-0), 0 € [0, %),

FO) = { Lo +7-20), 0€[x,30), (1.2.41)

e -2r +in0-0), 0 [3r,4v],

3

with ¢ > ¥, a3 + 7 > 6, and ag — 27 — dx > 0 implying that a5 > 6. In Fig. 1.10
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onding caustic structure.

It is interesting to note that in Case 5 depicted in Fig. 1.10, 6, is no longer a
single point but rather encompasses the interval [x, 3x). In this situation we have a
whole bunch of characteristic converging at a single point and forming a so-called
‘compression fan’, a shock is initiated with non-sero strength ] = u(x) — w(3x) =
g(x) — g(3x) at (2,,¢t,) rather than one initiated with sero strength.

We end our discussion with some remarks about general scalar conservat
with spatially dependent flux functions.

Remerk 1.8. As in Fig. 1.10, when §, is no longer a single point but rather encom-
passes an interval (0°,0°°), the results in Theorems 1.1-1.4 remain valid. One can
remedy the analysis by breaking 4, into two points, §; = #*, #} = **, and carrying
of 0} for I's, respectively.




cusing is the only mechanism that leads to the breaking of smooth waves and hence
generating shock waves. In the nonfocusing case, smooth waves are expansive and
remain smooth. Discussions for flux functions which are either concave or of nega-
tive characteristic speed are similar.

Remark 1.{. We require the characteristic speed A(u,z) to be strictly positive

sero. The uniform convexity condition (1.1.37) (or concavity condition) is applied
to guarantee the existence of a caustic. When the caustic is known to exist, we
need f(u,z) only to be strictly convex (or concave) in order to ensure the relative
positions of 'y and I'; ascertained in Theorems 1.2 and 1.4. Therefore, the situation
when f(u, z) may change convexity, that is, f has an inflection point at ¢ = §, poses
an interesting problem which merits further investigation.

1.3. A Transonic Model Problem

model problem proposed by Liu (81, 88) and based on the equation

w4+ f(u)s = c(z)h(un), (1.3.1)

where the flux function f(u) is a smooth convex function, and the source term on
vation laws with a moving source. Indeed, (1.3.1) is a simplified version of
we + f(u)e = ez ~ at)i(u), (13.3)

after the change of variables £ — ot — 2, f(u) — f(u) — au & f(x), where a is



system of conservation laws, such as those representing gas flow through a nozzle,
and so will exhibit more complex structure and behaviour [80].

For hyperbolic conservation laws with a moving source term, the source speed
is & key parameter affecting the behaviour of the system. In particular, resonance
occurs when the source speed is close to one of the characteristic speeds of the
system. Equation (1.3.1), however, provides the simplest model which inherits
many of the features found in more complicated problems (see (51, 88)).

Liu [88) carried out a qualitative analysis for the model problem (1.3.1) revealing
many interesting phenomena such as nonlinear stability, instability, and changing
wave types.

For the other case, that is, when the source speed differs significantly from all
the characteristic speeds, systems of conservation laws with source terms behave
in & more regular fashion. We refer the reader to the significant paper of Liu (48]
in which he studied the existence of global solutions as well as their large time
behaviour via a generalized Glimm scheme. Dafermos and Hsiao [10] may also be
consulted on these issues.

Here we concentrate on the transonic model (1.3.1) and analyze its associated
initial value problem by taking advantage of the direct use of a nonlinear phase as
before.

For definiteness, we impose the same conditions as those in [88]. These are:

(i). ¢(z), which represents the source strength, is piecewise smooth and of com-

pact support,

e(z) =0,z ¢ [0,1). (1.3.3)

(ii). A(u), which couples the source with the hyperbolic conservation law, satisfies
h(u) % 0, A'(u) 9 0. (1.34)

In particular, A(0) # 0, A’(0) # 0. Thus a strong coupling is assumed.

o



(iii). We are interested in the transonic case, that is, the characteristic speed
and the source speed are close. For our transformed stationary source problem
(1.3.1) this means that f'(u) is around gero so that we assume

£(0) = £'(0) = 0. (1.3.5)
In addition, the convexity of f provides

f"(u) >0, (1.3.6)

so that f'(u) > O for u > 0 and f'(u) < 0 for v < 0. Thus u > 0 refers to a
supersonic state, u < 0 to a subsonic state, and u = 0 to the sonic state.
1.3.1 The initial value problem
Our initial value problem then consists of (1.3.1) together with

U |imo = uo(z), = € (~00,00), (1.3.9)
where ug(z) is a smooth function.

To begin with, we introduce the nonli

ear phase § = #(z,t) as before, where §

0 + f'(u)0; =0, (1.3.80)
Olme = 2. (1.3.3b)
We invert # = §(z,¢) to obtain the arrival time formula

t =TYs,0), (1.39)



which gives, upon differentiation and substitution into (1.3.8), that
 pp—_—— 1.3.10
T, = o (1.3.10)

An integration then leads to

£ ds

EET(S;,‘)E A ﬁi'

(1.3.11)

formula.
We now transform the spatial-temporal coordinates into space-phase coordinates,

that is,
(z,t) — (2,0), (1.3.12)

by means of

z=1z, (1.3.13a)
0 =6z,t) (1.3.13b)

Thus 8; — 9; + 0,0y, 8, — 0,8y, 20 that (1.3.1) is transformed to
2 1(w) = a)hw) (13.14)
ar,

P = cle)hl), (1.3.15)

¥ lemo = wo(0), (1.3.16)



and so (1.3.15) and (1.3.16) together pose an initial value problem for an ordinary
diflerential equation that can be integrated directly giving

*  f'(u)du . s
o _h(u) /. c(s)ds, (1.3.17)
or
G(u) = G(uo(9)) + /. * e(a)ds, (1.8.18)
where
L[ 1w
G(u) /o o
Therefore, the solution to the initial value problem (1.3.1), (1.3.7) is provided by
G(u) = G(uo(0)) + /: c(s)ds & F(z,0), (1.3.18)
¥ ds
t =T(z,0) = /. 7wy’ (1.3.11)

1.3.2 The sonic line and transonic Ayperdolic weves
From (1.3.5) we see that (1.3.11) is singular at ¥ = 0. From (1.3.18), we may observe
that the value u = 0 is attained when

Fiz,) = Gsa(o) + " e(o)ds = 0. (1.3.19)

The solution to the above equation gives rise to the position of a sonic stete. As

0 varies, this sonic position also varies. We call the solution to (1.3.19) the sonic
line and write it as

s = X(0), (1.3.200)

t-r(‘), (lM)



where T'(6) & T(X(6),6).

The next lemma states the conditions under which a sonic line exists.

LEMMA 1.7.
1°. If ¢(z) > 0 in (0,1), then the sonic line z = X(0),t = T(#) exists for those
# € (=00, 00) satisfying

[ ]
Gluo(#) < L c(a)ds, uo(0) < 0. (1.3.21)

2°. If ¢(z) < 0in (0,1), then the sonic line z = X(8) exists for those # € (-00, 00)
satisfying

-
Gluo(®) < /. c(s)ds, wo(d) > 0. (1.3.22)

Hence z = X(0) solves

pE 1)
/ o(s)ds = / c(a)ds - G(no(9)). (1.3.23)
J0 70

In addition, 0 < X(0) < 1.

The proof, being straightforward, is omitted.

We are interested in the behaviour of hyperbolic waves near sonic states. Here
assume the sonic line to be contained in 0 € X(0) < 1.

We now expand F(z,0) about z = X(#) to get

P =(F) ., (£~ XO)+0( - XO)
= dX())s - X(0) + Otz ~ X)) (1334



On the other hand,
G(0) = G'(0) = 0,
and
G"(0) = [f'(u)/h(u))ymo
= f"(0)/h(0),
so that, combining (1.3.18) with (1.3.24), we find

1 /"(0),
3 o) u? + O(u?) = c(X(0))(z - X(0)) + O((z - X(0))*),

or, equivalently,
o = W( — X(0)) + O((z - X(0))") + O(w).
From (1.3.18), when z = X(#), we have that

w(X(0),0) =0,

(1.3.25)

(1.3.26)

(1.3.27)

(1.3.28)

which is the sonic state. Now, letting 2 —» X(#) in (1.3.27), we obtain the following

asymptotic relations:
When sgu(c(X (#))A(0)) > 0,

When sgn(c(X(#)A(0)) < 0,

=(X(0) -~ 2)', 2 < X(0), s — X(0).

(1.3.29)

(1.3.30)



Correspondingly, the characteristics take the following asymptotic forms

+k*(0)(z - X(0))~'2, = > X(0), + — X(9),

dt if sgn(c(X (0))h(0)) > 0, (1.3.31)
dz f'(8) | £k=(6)(~z + X(9)"'/2, 2 < X(8), z — X(9), a2
, if sgn(c(X (8))h(0) < 0, (1.332)
where
k*(0) = 1//22c(X(8))h(0)/(0). (1.3.33)
Accordingly, we have that

£2H(O)z - X(O)'72, 2> X(0), 2 — X(0), () 34,
if sgn(c(X(0))A(0)) > 0, -

*  d
t=-T(O) = [ s~
/xm F'w) ] 2ok-(0)(X(0) - 2)'2, = < X(8),  — X(O),

if sgn(c(X(0))h(0)) < 0, (1.3.35)

where
T(0) -/. -fﬁ,
exists.

the sonic state. F&mpk.mppﬁsﬁmﬁderehemvvhereir:ip(c(.!‘(i))h(ﬂ)) >

MQM!-ﬂs,O)mthdimﬁmdm:mhm
mu:-x(l)whmitnhﬂnﬁdhﬂmm&-ﬂﬂthm
acteristic becoming supersonic (u(s,0) > 0). This charac ,
:-X(O)idothlﬁmMWE(-@,G).moi.ﬂﬂ{lgﬁh
(X(0),T(0)) is » turning point for the characteristic of phase # along which the
previously in [88)]. See Fig. 1.11.




We note that if the sonic state is reached at any time (even initially) within the
support of the source which comprises the spatial interval [0, 1] the above analysis
still applies. Hence the singularity in (1.3.11) corresponding to this sonic state is,
interval [0, 1] is trivial since this sonic state is stationary and (1.3.11) reduces to a
vertical line z = § and we have initially uo(@) = 0 at this point.

A more complete discussion of this problem is to be found in the recent article
of He and Moodie [18].

u>0

T(6)[—

S

X@©) 6 1 X

Fig. 1.11: Turning point for charactesistic of phase 0.



CHAPTER 3.
Signaling Problem for Systems of Hyperbolic Conservation Laws

In this chapter we present a detailed study of weakly nonlinear hyperbolic waves
arising from the action of small amplitude, high-frequency, and single wave-mode
boundary disturbances. The main tools deployed in this study are the nonlinear
phase introduced in Chapter 1 and an asymptotic analysis. Our objective is to
develop a relatively complete geometrical optics theory involving only one nonlinear
phase (17, 20]). As we have already shown in Chapter 1, a direct use of this nonlinear
phase provides a significant advantage for the analysis of nonlinear hyperbolic waves.
Notably, a transparent picture detailing the process from wave-breaking to shock
generation and propagation can be obtained and the after shock admissiblity of the
solution justified.

In the more complicated case involving systems of hyperbolic conservation laws,
such a feature of the analysis is preserved when a nonlinear phase is incorporated
into an asymptotic analysis. This leads to the formulation of a single wave-mode
geometrical optics theory.

Asymptotic expansion methods have been employed by many authors to inves-
tigate weakly nonlinear hyperbolic waves and among these investigations are the
recent works of Hunter, Keller, Majda, and Rosales [8, 24-28, 61-83]. Therein,
they presented a systematic approach to handle both non-resonantly and resonantly
sult the survey articles of Majda [80-60] and Rosales [68]. An carlier study of the
signaling problem that employs a nonlinear phase can be found in Seymour and
in Section 2.1. In Sections 2.2, 2.3, and 2.4 we carry out a detailed asymptotic
analysis by means of which the signaling problem is solved ia the regime of smooth



solutions. In addition, we are able to prove an associated solvability condition. In
Sections 2.5 and 2.6, we examine the wave-breaking phenomenon and devise a ratio-
nal scheme to study the transition process from wave-breaking to shock generation.
This result is made possible by arranging the small amplitude and high-frequency
relation according to the order of local linear degeneracy and carrying out a bifur-
cation analysis. Similar to the scalar conservation laws discussed in Chapter 1, two
typical features appear here. For the first feature, wave-breaking leads to shock
generation - a fact that is well known and documented in, for example, Courant
and Friedrichs [8] and Whitham [78). The second feature, which is excluded in
Chapter 1, is entirely new. That is, the asympototic solution consists of two parts,
one parallels that of the flux function without spatial dependence and the other
and it is continuous across the shock front thereby invalidating the resolution of
tion. We consider a fluid-filled hyperelastic tube problem studied earlier by Moodie
linearly degenerate. We employ the above theory not only to recover the results in
{64] but also to show that a shock wave is generated at the shock initiation point

2.1. Preliminaries and Formulation of Signaling Problem

We are interested in the system of hyperbolic conservation laws in one space dimen-
sion given by

e +f(u,z), =0, (21.1)



is the vector-valued flux function of n smooth nonlinear functions.

As in the case of Chapter 1, the flux function is allowed to admit explicit spa-
tial dependence so as to accommodate applications from a wider class of problem
involving spatial inhomogeneity in the transmitting medium.

In this and the following two sections, instead of (2.1.1), we shall consider the
equivalent general quasi-linear and strictly hyperbolic system of the form

U + A(u, z)u, = b(u,z), (2.1.2)

where the notations bear the same meaning as for (2.1.1) and A(u,z) and b(u, z)
are smooth matrix and vector functions of their arguments, respectively.

We assume the system (2.1.2) admits a steady state solution which we write,
without loss of generality, as u 0. As a result, one observes that

b0,z) =0. (2.1.3)

The strict hyperbolicity of (2.1.2) requires that A(u,z) have n distinct and real
eigenvalues {Ai(u, )}, . We further assume that

AM(u,2) < M(u,2) < < Ap(u,2) S0 < Apyy(u,2) < -+ < Ap(u, 2), (2.1.4)

when positive and negative eigenvalues are distinguished.

We denote by £0)(u, z) and r{)(u, z) the left and right cigenvectors associated
with Ai(w,z) (i = 1,2,...,n), respectively. They satisfy the orthonormality condi-
tion

) m g ijm1,2,...,n, (2.1.5)

where §; is the Kronecher function. In addition, each r{/)(0, z) # r’)(z) is called a
wave meds of the system (2.1.2).
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If u = uy(z,t) is a solution of (2.1.2), the ith characteristic fleld is called locally
linearly degenerate about u = ug if

(graduAi)r(? = 0, (2.1.6)
when evaluated at u = ug. This is a modification to the globally defined linear

degeneracy condition first introduced by Lax (37, 39]. This local linear degeneracy
concept appears in the work of Hunter, Majda, and Rosales (28, 63], although the
terminology is not explicitly specified there. See also the recent paper of Rosales
(89).

Now suppasing the boundary z = 0 to be perturbed by a small amplitude, high-
frequency boundary disturbance, one may expect a weakly nonlinear hyperbolic
wave to be generated and propagate into the steady state region. If the discussion is

restricted to the first quarter plane £ > 0, t 2 0, the signaling problem is
as
w + A(u,z)u, = b{u,z),2>0,t>0, (2.1.2)
um0,z20 t=0, (2.1.7)
u=eg(t/6),2=0,1t20, (2.1.8)
where £ and § are two small but not independent positive parameters introduced to

describe the small amplitude and high-frequency feature of the boundary perturbe
tion. Also, g, (-) is a smooth vector function appropriately restricted and satisfying

8(0) = g:(0) = 0. (2.19)

In addition, g,.(-) is supposed T
is,

6() =€)+ egM0) + M) 4 ... (2.1.10)



As is known, the well-posedness of the signaling problem relies on g,(:), which
cannot be arbitrarily assigned. The reader may refer to [42, Chapter 4, Theorem 3.1)
for a well-established sufficient condition which ensures the existence and uniquencss
of a smooth solution for the signaling problem in a finite time layer. However, in our
discussion, g, (') is not specified but rather determined in the course of the solution.

If g.(-) is & wave mode, that is, g.(-) is parallel to ri”(0) for some i, we shall
call g¢(:) a single wave-mode. Since this will not, in gencral, happen, as we shall
see later, we adopt the convention that g,(:) is of a single wave-mode if its leading
term g(°)(-) is.

In order that our mathematical formulation agree with most physical applica-
tions of the boundary condition, we impose an additional constraint, that is, one
component of u, say u;, satisfles

u1(0,¢) = eg!?(¢/6), (2.1.11)

where the O(¢?) term vanishes.

2.2. Nonlinear Phase, Eikonal Transformation, and Transport Equations
2.2.1 Nonlinesr phase

Let us pick a positive cigenvalue from among A,41(4,2),. .., As(u, z), and for simn-
plicity denote it by

A= A(w,2), (2.2.1)

with £ = &(u,2) and r = r(u,z) as the corresponding left and right cigenvectors,
respectively.
We supply an additional boundary condition for the signaling problem (2.1.2),



LA S (2.2.20)
t(0) = 0, ’ (2:2.2b)

to be the leading wavefront. It gives the time for the first boundary disturbance
(2.1.8) to arrive at a position z so that ahead of this leading wavefront is the steady
state, namely u = 0. This notion of specifying the leading wavefront as separating
the disturbed region from the steady state is, of course, valid only prior to times
when the characteristics first focus causing the smooth solution to break down.

We introduce a nonlinear phase variable associated with A = A(u,z) and define
it as the solution of

O+ \Nu,z)0;,=0,2>0,¢t>0, (2.2.3)
0|swo =t/b(c), t 20 (2.2.4)

The existence and smoothness of § = #(z,t) is guaranteed by the existence and
smoothness of u = u(z,t). The inverse function of @ = §(z,t) gives the so-called

2, which we write as
t = T(2,0;¢). (2.2.5)

Indeed, (2.2.8) is a representation of the characteristic family associated with A =
AMw,z). As a result of (2.2.2), we sue that, subject to the restrictions stated above,
0 = 0 in (2.2.5) corresponds to the leading wavefront ¢ = TY(s).




(2.1.7), and (2.1.8) into space-phase coordinates, that is,

(2,t) = (2,0),

N
[ ]
“!-l

0=0e)
Rewriting
u(z,t) = d(z,0;¢),
then

O — O, - %aﬁ
8y — 0,5y.

(2.2.6)

(2.2.7a)
(2.2.7h)

(2.2.8)

(2.2.9a)
(2.2.9b)

Transforming (2.1.2), (2.1.7), and (2.1.8) into (z,6) coordinates and dropping the

tilde for notational convenience, we obtain

Cg{i— e 2) }lu = b(u,z) - A(u, z)u,,
uno,0=0 220,

u=cg(l), z=0,020,

where ahead of the loading wavefront w = 0 is noted.

t m T(z,Kz,t);¢),

b=1/Ty, ;= ETCIT’

(2.2.10)
(2.2.11)
(2.2.12)

(2.2.13)

(2.2.14)



when differentiated with respect to t and z, respectively. A substitution from
(2.2.14) into (2.2.3) and (2.2.4) results in

1 , o
T, = o)’ (2.2.15a)
T |emo = &(¢)9, (2.2.15b)
or
t = T(z,0;¢)
s ds L
= §(c)o +‘/° m. (2.2.16)
As in the case of scalar conservation laws discussed in Chapter 1, the validity of
the eikonal transformation rests on the condition that the Jacobian
&z,0) -
& == 2.2,
J .0 =0, %0, (2.2.17)
and
To= o # 0. (2.2.18)

It is casy to check that the transformation is valid in the neighbourhood of the
boundary z = 0 since

0< 0 |pmo = 3(1‘; < +00. (2.2.19)

solution, no matter how smooth initially, may develop shocks. A mecheniem un-
derlying such a phenomencan is due to the focusing of a characteristic family, which
htmbﬁbt&emdnwmw;ﬁﬁhgﬂ
derivative. Such a ‘blow-up’ of the derivative may introduce a discontiouity isto
tbm'udthmﬂw-ln“mm-qu




in the simpler context of scalar conservation laws in Chapter 1. A criterion for

determining this focusing effect is
To=0, (2.2.20)

which, in turn, signals the breakdown of the eikonal transformation (2.2.6).

2.2.3 Weakly nonlinear waves and the transport egquations

We will now construct the asymptotic solution for the signaling problem (2.2.10)-
(2.2.12) in the form

u(z,be)mey %u“)(z.ﬂ). (2.2.21)
AmQ

Such expansions are often referred to as weakly nonlinear (Ayperbolic) waves. Here

we require
u®(z,0), u®(z,0), u¥(z,0) = 0(1),k =0,1,2..., (2.2.22)

that is, u*)(2,0) (k = 0,1,2,...) are independent of ¢ when 0 is viewed as an
independent variable.

We proceed to construct an asymptotic representation for the solution of the
signalling problem in the form (2.2.21) by first employing (2.2.14) in order to rewrite
(2.2.10) as

(l - %) w =(b-Awu,;)7T,. (2.2.23)

From (2.2.23) the transport equation is arrived at by applying € to both sides of
this equation to obtain

- lAw, =0. (2.2.24)



Based upon (2.2.23), (2.2.24), and the arrival time formula (2.2.16), we are able
to construct a weakly nonlinear wave solution of (2.2.10)-(2.2.12) in the form of
the asymptotic expansion (2.2.21), subject to (2.2.22), when g,(-) is of a single

wave-mode.,

Before we can proceed with our construction of the asymptotic expansion in
terms of the small parameter ¢, we need to Taylor-expand the following (scalar,

matrix, and vector) functions about u = 0. That is,

S SN
Mu,z) - o(z)

A(u,z) = i AWM (u,...,u)/k,
k=0

b(u,z) = i b )(w,...,u)/k!,
[T 3]

b=d

(Eb)(u,2) & cfw,2) = 3 cWw, ..., w)/kL
ke

GA) (u,2) A D(u,z) = i D) (w,...,u)/k!,
b0

A = (0,(0,2))nxn,

_ 4 ) 7 P7 | X
Am(-,...,-)-(h 7 ( ) "
*h“‘%‘-ﬂ f&[!“h-’ V o 1

| o= T »
Hsi(m....-)iL 7 ( *n ) "
"’Hg*h-l ﬁ‘: -..&.—:7 .“

(2.2.25)
(2.2.26)
(2.2.27)
(2.2.28)

(2.2.29)

(2.2.30)



*(A)
e B )]
a u u h*h.*z.;.p.,-h 8“;' .o Oug® . u, .

C(.)(ll,....ll)- E (a_uh_&a—ut) U TREFIE " P
1 U

by bhat-thombk
are matrix-, vector-, and scalar-valued k-linear forms, respectively.
Now, substituting (2.2.21) into (2.2.25)-(2.2.30) and rewriting these as

1
A(“,t) '\o(:) + E , A, (:o‘)’

j=J

A(u,z) = 2 LA,-(:,c),

b(u,z) = 2 —b,(z.O),

i-l

a(u,z) = Z -.-lj(:.‘)o

(u,z) = 2 ,c,(:,t).

:-n

D(u,z) = Z FD;(:J).
j=0 7"

we have the following lemma:
LEMMA 3.1. Forj2 1,
J
A=Y ( ) A® (w0, ),
LT 28 +..-:-b kiy...qn

Aj-t (
e~ UL IR

) A® (a0, u)),

(2.2.31)

(2.2.32)

(2.2.33)

(2.2.34)

(2.2.35)

(2.2.30)

(2.2.37)

(2.2.38)



i ,
b,- . Z (k i) u)b(k) (u(u) u(ia)) , (2'2-39)

k=) i.+---+o.-g-§

.j'zj: (‘“l ik

k=] l':+---+u-.l-i

)
stt (,= i ,,)‘( D (a... u), (2.2.41)
i)

lm(“m‘_”‘“(i.))' 2240
2.2.40

k=) -'.+---+u-:—b

D,‘sz: ku .0

k=1 ‘a+---+u-J—§

p® (“m) —.j(i;.)) . |
f (2.2.42)

where
j Y L
kiy,...ia kY .in.l]!'

subject tok + 33 4+ - + 4 = ).

Proof. We need only prove (2.2.37) as the proofs for (2.2.38)-(2.2.42) will be iden-
tical. Employing (2.2.21) in (2.2.25) we obtain

1 1 had 1 -
Nw,2) () +,E_,ﬁ'\m (w,...,9)

1 =1 . o=
'E(_:')'*.Z_:‘ﬁ"m(‘ZE‘(““z“g (i-))

® o ‘::i;i- il A® (-“‘, 77777 .m)

M‘) t-u .....i.-i

B B ) (),



and hence that

YD (ki.{..i.)’\m(““')""'"("")

kdigh $ipmj

_i > (H‘{'”h),\m(“(-'.)‘_._'uu.))_

bkl dgdoigmj=h v
This completes the proof.

We now proceed to construct the asymptotic expansion of the solution to the
ignaling problem in the form given by (2.2.21). We first substitute (2.2.31) into
the arrival time formula (2.2.16) and then insert the derived equation together with
(2.2.21), (2.2.31)-(2.2.36) into the governing equations (2.2.23) and the transport
equation (2.2.24) to form the O(1), O(¢), and O(c*) problems.
Upon substituting (2.2.31) into (2.2.16) we obtain

j &()+5(£)¢+E !/ Aj(s,0)ds

j=l

A j; ;_—!Tm(;-‘o). (2.2.43)
To match the order of §(¢) with ¢, we require that
§(e) = ™, (2.2.44)

ihmmgihmw ’Ihmntmk:hmhhamhtq:mﬁk
squati ,,'(iiﬂ),mdthe;ﬁpulmﬂn

hhkdﬂﬂgpﬂ&gnMMnth apha



Equating powers of ¢ in (2.2.43) we find that

TU)("') = /. Aj(s,0)ds, j ¥ m,
0
T™ (2,0) = mif 4 / " Am(s,0)ds.
0

(2.2.450)
(2.2.48b)

(2.2.48¢)

Then upon substituting (2.2.21), (2.2.32)-(2.2.36), and (2.2.43) into the governing
equations (2.2.23) and the transport equation (2.2.24), and equating like powers of
¢, we obtain, through somewhat tedious but relatively straightforward calculations,

the following:
O(1) problem:
(1- ) ufo =,
M(w®) - agul® = 0.
O(¢) problem:
(x - {-) " = My (s, 0),
() - agul!) = Ny(s,0),
where

M;(s,0) = Dl.‘” + 1‘"(‘! - Al“:')i
Ny(2,0) = auf? - (™, o).

(2.2.46)
(2.2.47)

(2248)
(22.0)

(2.2.50)



O(c*) problem:

(l - %) ul? = My(2,9), (2.2.52)
M (uM) - aoul?) = Ny(2,6), (2.2.53)
where
- k (b) _ M) (k)
Mi(z,9) .}::_.(,“ LI e (1) T AR
>0 & >0
1 k+1 &)
ti hthpmiel (klkl )th: ' (2254
&y t’”
Mz0)= ¥ ( k ).., ulh)
WL
h >0
1 W k + 1
- — (), .. i),
k+ i; 26y 4 digmbeil—j ) (2.2.55)

2.3. Solutions to the O(1), O(¢), and O(c*)(k < m) Problems

23.1 The O(1) probiem

First we solve the O(1) problem. Equation (2.2.46) shows that u‘,‘” must be parallel
to ro(s), 90 that u(® can be written as

w®)(2,0) = o(z,0)re(s), (23.)

-“)("‘"“ =0 k=01l,..., ‘w)



arising from
u(z,0;¢) om0 =0, (2.2.11)

has been noted and applied.
Denoting o(z,0) | ;=0 = 00o(#), the boundary condition (2.2.12) at z = 0 then
leads to

8°(0) = oo(0)ro(0),

g89(:) = oo(:)ro(0). (2.3.3)

Hence we come to the conclusion that only a single-wave-mode boundary pertur-
bation such as that in (2.3.3) will admit the asymptotic expansion (2.2.21). If the
leading term of the boundary perturbation is not of a single-wave-mode, (2.2.21)
(2.2.21) and (2.2.22) enable us to distinguish a class of (nonresonant) nonlines

The function o(z,0) can be determined from the transpo
Inserting u(® from (2.3.1) into (2.2.47) gives

t equation (2.2.47).

0s — To(2)0 =0, (2.3.4)

Fo(s) = ‘"""%’i. (2.3.5)

ting in (2.3.4), we obtain

ot5.0) = evOrerp { [ Tetoras} . (23.0)



For the sake of clarity in the following discussions, we may “normalize” ry by

requiring that ro satisfy the condition
Fo(z) = 0, (2.3.7)

so that
o(z,0) = ao(9). (2.3.8)

In fact, this procedure can be carried out simply by replacing ro by

fo = roexp {/0‘ ro(l)do} . (2.3.9)
It is straightforward to check that
fo(z) = ﬂ(l::_i:i'! =0. (2.3.10)

We shall always assume that ro has been “normalized” unless stated otherwise.
Therefore, we have that

u(®(z,0) = oo(0)ro(z). (2.3.11)

2.3.2 The O(c) problem
We consider the two cases, that is, m > land m = 1.

Case 1. m > 1. Substituting (2.3.11) into (2.2.50) and (2.2.51) we obtain

M;(z,0) = D(l)(.(.)).‘l) + [b(l)(.“)) - A..(..,l L‘ A“)(.(:))‘.

- {nm(..).. +Wew) - Aerd] [ A‘"(r.)a} ~(0)e}(0)
& ’l(‘h(‘)"")' (23.12)



Ni(z,8) = a;ul® — ¢P(u?, u(?)

= {a“’(ro)r{, - cm(ro.!‘a)} o3(0)

4 g,(2)a3(0). (2.3.13)

Thus separation of variables holds and the O(¢) problem now assumes the form

(; - %) ul? = pi(2)o0(0)5(9), (2.3.14)
M(uM) - aoul" = gy(2)ad(0). (2.3.15)

We exclude the cases in which a9 or 6§ = 0 in order to avoid trivial solutions.

Letting £y (z) be a particular solution of

(l - %) £ = pi(z), (2.3.16)

which is identically zero when py(z) vanishes, we may write

ul? = 0o(0)0}(0) {01 (2, O)ro(2) + 71(2)} , (2.3.17)

where 0,(z,0) is \0 be determined from the transport equation (2.3.15). Differen-
tiating in (2.3.15) with respect to # and applying (2.3.17) gives

(1) — To(2)on = K, (2), (2.3.18)
wherein
Ki(e) = Slrs) ;:'3 k. ) (2.3.19)

Since rg is “normalized”, I'o & 0 and hence

('I )l' = xl(‘).

72



03(2.0) = ,(0,0) + / " Ki()ds
Jo
Aoy(0)+ j " Ky (s)ds. (2.3.20)
()
We now apply (2.1.11) in order to determine ,(8). From (2.1.11) it follows that
Bg“l::o ‘01 k = 1‘2.;”;

and hence
Bl =0, k=12, 2oz

Applying the case k = 1 in (2.3.17), (2.3.20) gives
01(0)ro,1(0) + r1,4(0) = 0,

ar, m rﬂ.i(o) # oi

o< _ M.1(0) Y
o) = - (L, (2.3.22)

that is, o,(#) is a constant, where rg;(z) and ry,(z) are the first components of
ro(z) and ry(z), respectively.
Now, (2.3.17) becomes

ul) = ao(0)a}(0) {rn(z) [— :;%:2; + /o ’ K.(a)ds] + r.(;;} . (2.3.23)

We may “normalize” ry(z) in the sense that

Ki(z) =0, r),(0) = 0. (23.4)



This procedure may be carried out by simply replacing ry(z) with
#1(2) = ro(2) [ i “° / x,(.)d.] +1i(2). (2.3.25)

We always assume that r;(z) is “normalized” unless stated otherwise. Thus
ull) = ao(8)0}(0)rs (2). (2.3.26)

Integrating in (2.3.20) gives

u = %03(0)1', (2), (2.3.27)

where again (2.3.2) has been noted.

Remark 2.1. As we shall see, in order to proceed to the resolution of higher-order
problems we need ul") to take the form (2.3.26), which in turn requires only that
01(9) = constant. While the condition (2.1.11) guarantees that o, (#) is a constant,
other similar conditions, such as the j-th component of u(*) vanishing at z = 0 for
all k > 1, are also available and especially in the instance when rg,3(0) = 0.

Case 2. m = 1. Now, (2.2.45¢) gives

TV =1400) [ AV (eules,
0

and M;(z,0) no longer has a form in which the variables are separated. Although
u(!(z,0) may be solved for by a similar procedure to that employed in Case 1,
the further successive solutions of the O(¢c*) problems will be too complicated to
resolve.

However, we now have

w(z,0;¢c) = cop(O)re(z) + O(c?), (2.3.29)

T4



and
t = T(z,0;c) = jﬂ % ‘e {o +out®) [ ’ A‘"(ru(s»ds} +0(Y).  (2.3.99)

which constitutes a full asymptotic solution to the signalling problem (2.1.2), (2.1.7),
and (2.1.8), subject to a single-wave-mode boundary disturbance of the form

U |sm0 = £00(t/€)ro(0) + O(c?) . (2.3.30)
One can obeerve that the nymptaﬁc solution (2.3.28) retains the same expres-

rather than a linear one. A!:a the arrival time formula (2.3.29) indicates the exact

characteristic family under consideration, thus we can examine the focusing of the
eristic fmly. which pﬂ!dldi wave biednng and hence pminblr, shock gener-

nlmdy. we consider

[F: t=T(z,0,c), To =0,

2= 2(0): 14 0300) [ AO(ru(adn = 0, (23.31a)
r: pe(®)

=t(0) = ds ) (po(s)da (2.3.31b)
t= t(0) A M)+:{¢+n(¢)/ A (ro( ))d} )

We state the result as:

Shock initiation condition (m = 1). If there exists (£,0), = > 0, 0 > 0, such
that (2.3.31a) holds, then I is nonempty and a smooth solution (2.3.28) will break
at (2,,1,) behind the leading wavefront



where (z,,t,) = (2(0,),¢(0,)) € T and

t, = min{(0)). (2.3.32)

Two immediate observations from this shock initiation are:
(i) If A®)(ro) #t 0, & function ao(-) is always constructable such that the smooth
solution will break behind the leading wavefont.
(ii) If A0)(ro) = 0, we have (grad,A)r = 0 about u = 0, that is, the characteristic
field A(u, z) is Jocally linearly degenerate about the steady state. In this case the
asymptotic expansion method formulated above under the small amplitude, high-
frequency relation

m=l]l é§=e,

fails to capture the essential nonlinear behaviour of characteristic focusing according
to (2.3.29) or (2.3.31). As we shall see, this aspect of degeneracy will motivate our
introduction of the concept of order of local linear degeneracy and our employing this
concept to determine the relation of small amplitude to high-frequency required in
the signalling data in order to capture the nonlinear behaviour of the characteristic
field.

2.3.3 The O(c*) problem (k < m)

By the method of induction, we assume that

W (z,0) = ,.-;‘,-lcz“(m;(z). j=01,... k=1, (23.39)

and proceed to show that u(®) has the same form.
Now, considering My (2,0) and Ny(s,0), we first show that they may be ex-



pressed with variables separated. Since

J

J )D"’ (u,...,u)

=) , (
sm) ii*na*‘i!!ﬁ. 4 .!

1

-Z’: > «z!(cv)(“l i)Dm(u-H""“‘

aml iy i, mj=s
- ’g(.)[Dj)n:i
= 0}(0)(D;),

with the same argument yielding

A; = al(0)(A;),
b; = o(#)(b;),
a; = af(0)(a;),
T = af(ONTY), (j < m),
As = a3 (0)(A;),

we have that

Ma(z,0) = (& &,)‘D" ae

‘ i}M‘

P 2 (A LT T

' *z:;g;-&

k+lh*
8y Bg>0

A pu(2)0g (0)e5(9),

= X | "“)m.w.a* )}

1 o
e +ll'-.) (2.3.34)

(2.3.35)



and

kY, 1
Nal=0) = {h.§-a ("1 kz) <gh)§: 1k

1 k41
s> (,.,...aj)g(‘i’ (2.3.96)

FLETR #IJ-EEH =3

) s

qt(‘)’o“(')’

s0 that the O(c*) problem is simplified to

(1-52) i = pateeb )i o) (2.3.37)
(M) - aoul?) = qu(2)og*' (9). (2.3.38)
In the above, the notation
() & Hnlh

is employed.
We can now solve (2.3.37) and (2.3.38) as before. That is, we let ry(z) be a

particular solution of
(. - %) . (2.3.%)
so that ry(z) is identically sero when p; vanishes. Hence we then have
ul’) = 0§(0)0}(0) {oa(z, O)ro(2) + ra(2)} - (2.3.40)
If we now differentiate the transport equation (2.3.38) with respect to ¢ and apply
(2.3.40) we obtain

(9a)s = To(2)os = Ki(s), (2341)



where
c( (r.) —aorp —(k+ l)q._

Ki(z) = =L (2.3.42)
Again we note that I'o(z) = 0, so that
(o8)s = Ka(z),
or, upon integrating,
ou(2,0) = 01(0,0) + [ Ki(ods
yhd (2.3.43)

4o,(0)+ /: Kiy(s)ds.

Now apply (2.3.21) to the first component of (2.3.40) [using (2.3.43)] in order to
determine o,(0). We find that

o4 (0)ro,1(0) + ra,1(0) =0,

o,
ou(0) = '%{oo;‘ (2.3.44)

where r} 1 (z) is the first component of ry(z). Hence (2.3.40) becon

o = od0as0) {re) [- 220+ [*Katorde] +ia)} . (23.0)

Also, we “normalise” ry(z) in the sense that

Ki(z) =0, 3 ,(0) = 0. (2.3.46)
This is accomplished by replacing ra(z) by
a0 , [ v ioia o
Fa(z) = ra(z) + rel(=) [ 30) l K.(I)Ji] . (2.3.47)



As before, we assume that ry(z) is “normalised” unless stated utherwise.
Now (2.3.40) becomes

ug(z,0) = 03 ()5 (O)ra(z), (2.3.48)

which, upon integrating, gives

. j_ cat* (O)ra(s) (2.3.49)

u®(2,0) =
and hence the proof by induction of the form taken by u(®) is complete.

2.3.4 Discussion

By means of the method of induction, we have ascertained that the asymptotic
expansion for the solution to the signalling problem takes the form

u(r,0¢) = Z i—:cg(l)n-n(z) +0(c™*), 020, 220, (2.3.50)
hm)

with the arrival time determine

* ds e v 5 v
‘= /'l Tt L e L (As)ds

+c™ {o+ %a}'(d) L '(A_)d-} + O(c™ 1),

(2.3.51)

The ry(2) (k = 1,2,...,m~1) in (2.3.50) are all particular solutions of the algebraic

(I—%)r;-p..k-l,z,....mél. (2.3.9)



and

An(2,0) = a3 (0)(Ma), k = 1,2,...,m, (2.3.52)

A\ L P < k F 1 1
(M) =Y , (_; -)’\("(-—f'.----.—r.).
j-zl‘l*'"g-b—j - By -!j " + l L] lj * l ]

E L l.?,;n,m, (2'3.53)

Here we note that ry and (A,) (k = 1,2,...,m) are independent of o¢(#) and m.
In fact, {ra}, {(As)}, and {pa} constitute three sequences defined algebraically as
functions of z, depending only on the local behaviour of the quasilinear hyperbaolic

As we have seen,
(M) = A (ro) = (;nd., (%)) Flume (2.3.54)
so that
(A1) 3 0 = (grady\)r jume =0, (2.3.55)

which defines the local linear degeneracy of A(u,z) at u = 0. In general, if ¢ is the

(As) 0, k=1,2,...,¢-1, (2.3.56a)
(Ay) #0, (2.3.56b)

associated characteristic field \(w,z) as having a locel kincar degencracy of order
¢ — 1 about u = §. Genuine nonlinearity in the sense of Lax [39] thus refers to &




If we let ¢ — 1 be the order of local linear degeneracy for the characteristic fleld
A(u, z) about the steady state u = 0 and if we choose

m=gq, § =¢', (2.3.57)

then the arrival time formula becomes

t= o‘ Af:.) + ! {0+ %4(0)/:(,\')3,} + O(e'*). (2.3.58)

This leads us to the following shock initiation condition which includes the case
m = | as a particular case.
Let I again denote the caustic of the characteristic family (2.3.58), that is,

[: t=T(z,0¢), To=0, (2.3.59)
exactly, or
r=z(0): 1+ %(ag(o))' L :(A,)di = 0, (2.3.00a)
"1 = [ 2 e for Loy [ing (2:3.00b)
= ¢( =, m"'g +?’3()/u (Agds } , -3.000

Mw,2) h-vemotderdlocdhwmlbﬂt th!ngdyMi:.quﬂ
tog— 1, that is,

=0, k=1,2,...,¢-1, o
“”{tm&-; —
Then, when m = ¢ is chosen, the corresponding smooth solution for the signaling




problem, given by (2.3.50), will break behind the leading wavefront

* ds

=k @

if there exists (z,0), z > 0, 8 > 0, such that (2.3.60a) holds and I' is nonempty.
The smooth solution (2.3.50) breaks at (z,,t,), where

(3n'a) = (1(‘.), t('.)) €T,

t, = t(0,) = ;.g;)ig {1(8)) . (2.3.61)

2.4. A Solvability Condition

It has, no doubt, become clear to the reader at this point that throughout our
derivations carried out in the last section, we have either implicitly or explicitly
employed the fact that for each O(c*) problem the associated algebraic system

(I-Aq)n=pg. k=12,....m-1, (2.3.39)
Ao
is solvable. Namely, we have assumed recursively that

bpr=0, k=1,2,..., ' (24.1)
ot,

M, =0, k=1,2,..., (2.4.2)

as pi, r; are independent of m (assume formally m = +00).

We shall now verify these solvability conditions as they are required to make
legitimate our analysis of the previous section.

First we prove



Proof. From (2.3.12) we have

pr = DM (ro)ro + [b(ro) ~ Aor}] ju " (A)ds

& p 4 pi®,

so that
p? = tolbM(ea) = Aorj] [ (m)ds

= [¢((ro) ~ mory) L'(M)d‘
=0,

upon noting (2.3.5) and (2.3.7).
We need now only show that £,p!"’ = 0, or, equivalently,

€D (ro)ro = 0.
We proceed by employing the identity Ar = Ar, or, equivalently,

Dr=r.

D =Dy +DVu+ O(luj?),
r = ry + r{")(w) + O(fu)?),

(2.4.9)

(24.4)

(2.4.5)

(2.4.6)

(24.7)

(24.8)
(24.9)



equation

Dr = [Do + D(u) + O(llull*)] [ro + rV(w) + O(lu)?)]
= Doro + DorM(u) + DM (u)re + O(jull?)
= 1o + Dor*(u) + DM (u)ro + O(lJufl?),
r = ro +¢{¥(u) + O(Jjull?).

Equating these terms we have
Dor'"(u) + DM (u)rp = rV(u).
Applying £ to both sides gives
LD (u)r =0
which, in particular, provides
LD V(ro)ro =0,

when u is taken to be rp.

(2.4.10)
(2.4.9)

(2.4.11)

(2.4.12)

(2.4.0)

As for the most general case, we do not intend to prove (2.4.1) owing to the severe
complexity of the calculations involved and so will leave this as an open question.

+++ m (Ag) = 0, the associated algebraic system

(1-5)r=oe

z

(2.3.99)
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is solvable, In addition, we also have that
M4 =0, (2.4.13)
regardless of whether Ay vanishes or not.

Proof. It is obvious that (A;) = A (rp) is always defined and that, as a result of
Lemma 2.2,

(l - %) o= P, (2.3.16)

is solvable. We now use the induction assumnption, that is, we assume that

(I-%)r,-:p,-,j*—‘l.?...,.snl. (2.4.14)

are all solvable and (Aj41), 7 =0,...,s — 1, are all defined in a recursive manner.

In addition, we have that
(M) =(A2) =+ =(A)) =0. (2.4.15)

In order to complete the induction proof we need show that, when « < k,

(1 _ %) — (2.4.16)

is solvable, that 1s,
¢GP- = 0,
or,

M, =0. (24.17)



Now, from (2.2.54) we have that

. _ Z ~ [ s ()
Mo= 2 (51 sz)D"“' '
#ptag=a
2, >0
since (2.4.15) gives

(2.4.18)
ol

=T =0,
(2.2.23) we find

(2.4.19)
In addition, we have also that Ty = O(¢**+') and hence from the governing equation

(I - D)up = Ty(b — Au,) = O(e**?).
Comparing (2.4.20) with the identity

(2.4.20)
(I - D)r =0,

(2.4.21)
and noting that ue = O(¢) while r = O(1), we have
ug = cwr + O(e*+?),
where w is a scalar function.

(2.4.22)
Expanding both sides in (2.4.22) we obtain

. Ej " F)
,Z 7 U )
£ ﬁll. =
1=0

B N
Z JZ' Fijy +G(E?*I)
) Jam0 7%’

j! z (J ')wjlrij! *D(EH’)D
Jj=0 ’ I thmj 1 2
| hence that

(2.4.23)



Now, expanding the identity
(I-D)r=0, (24.20

about u = 0, employing (2.2.30), (2.2.36), and (2.3.33) (for j - 0,1,....s 1) wm

the result, and then equating like powers of £, we obtain

) (,’ )D,.r.,,-fr-; J=01 8= (2.4.26)
12

ht)a=)

In the above we have denoted the expansion for r formally as

_I "'
w—,
A
T
g

r=3 5
Now, rewriting (2.4.25) by transposing terms to get

(x )r., )y ()l i )D,,r.,,,; =0,1,. (2.4.27)

i) +n-:

and applying & to both sides of (2.4.27), we have

& Y (n h)o,,r,,,ﬁo,;_o 1,...,s (2.4.28)

h +n-)
h>0



Now by means of (2.4.18), (2.4.24), and (2.4.28) we obtain

l;;bn;;u
=l Z ( ’ )D., Z (132. )wilrvh
sy +03=0 %1 %2 Jitia=e; 102
23 >0
S
= o ( .. )anhr'ia
23>0
=& Z ( 2 .)w.,Dj,l',,',
s +j1+ja=e St
Nn>0
s ) 82
= W, ‘o (j . )DJI l'.”
012230 (sl %2 I )'Hga:-': 173
51 >0
=0. (2.4.17)

This proves (2.4.17) and completes the induction process. Therefore we have
M, =0

and (2.3.39) is solvable.

In order to prove (2.4.13), we notice that

k+ I)Dg, ults) 4 kD) (bn - Aou‘,‘”)

My = ky ks

ky+hamk+1 (
(1) (3)
& Mii‘l + Mi#l'

Now,

“M(.zzl = TV, (b, - Am‘,")
= T4**" (o) - Aor}) 0o(0)
=0,



by virtue of our normalization condition I'g = 0, and henee we need only show that
(1) _

The representation given in (2.4.24) can be extended to provide

N+ja=)

since u, is defined. Also from (2.4.28) we have

& Y (_, )n,,r‘,,=u,j::o.1i...,k‘

Ji +J=-J
h >0

so that

My = LML),

, c k+1 k)
s> (k. kz)D““gn

l’l+ﬁ3-ﬁ+|
ky >0
=6 (:+ I)Dﬁl Z (J )"’J- ry,
h+hiﬁ*l - Jitp=k \ J2
k; >0
e k41
=l v Z . (kl N Jz)th'"rui
h+h+jamk+1
N k+1 S
_ggr Zf (kn n jz)w;,D,,ru,
h+ii+h=k+l J
J1 >0
- DG 2 (5o
ky+hymk+41 1 73, Jl*hgka !‘"

This completes the proof for the solvability condition.



2.5. Shock Waves
In this section we shall study the propagation of shock waves associated with the
signaling problem for the system of conservation laws

u + f(u,z) =0, (2.1.1)

by first assuming that a shock wave is generated at the shock initiation point (r, :,)
surrounding the generation and admissibility of the shock wave will be deferred
until the following section.

2.5.1 Shock wave problem and some identitics

The system of conservation laws (2.1.1) may, for smooth solutions, be written as
u + A(u,z)u; = b(u, z),
where

A(u,z) & (8fi/0u;) 0y s
b(u,z) & (-8fi/02),,.,

and 3/0r designates diflerentation with respect to z only while treating u as for-
mally independent of z.

field A = M(u, 2) will be assumed to possess a local linear degeneracy of order ¢ — 1
about the steady state w = 0, that is,

(Ad) =0, k=1,2,...,¢-1; (A;) #0.



Also the small amplitude to high frequency r .
6 =:

We denote, as before, (z2,,t,) as the shoet 1 indieating the position
and time for the first blow-up of the deris A w akly nonlinear hyperbolic
wave solution. Such blow-up may, as was . cedd i Chapter 1, induce o
finite jump into the hyperbolic wave solution 11 v by itiating a shock wave which
then propagates along a shock front. We assume for the present that this is the
case and denote this shock front by £ where

.

—d

dt o
a _ . (2.5.1
{ 7= S(.1), (2.5.1)

t(z,)=ta. (2.5.2)

Invoking the Rankine-Hugoniot jump conditions then gives
[u] = S[f(u,7)) =0, (2.5.3)

where ;] represents the jump of a quantity across .
As our starting point, we will assume that the weakly nonlinear hyperbolic wave
solution (2.3.50) (with m = q) is valid on both sides of £ hoth prior to and after
Before we can proceed with the derivation of the expiession feu the reciprocal
of the shock speed, S, we require a number of algebraic relations. These we now
First we Taylor expand the flux function f(u, z) about u = 0. This gives

f(u,z) = £(0,2) + i f(O(w,... u)/k!, (2.5.4)

[T 31



wherein

¥ (u,...,u) = Z (B‘f/auf‘...bu:")ouf‘...u:'
[Py Y

O €/0u;,Bu;, ... 0ui ), Uiy - .. Uiy,
nsn;;.sn ( ) (2.5.5)

i

is a vector valued k-linear form (k = 0,1,2,...), and the subscript ‘0’ implies, as
before, quantities evaluated at u = 0.

In order to facilitate certain future manipulations we write formally that

u(z,8;¢) =¢ i %:-u“‘)(z,O). (2.5.6)
k=0

although we have specified only

1

mag“(o)r.(z). k=0,1,...,q~1. (2.5.7)

u(z,6) =

Substituting (2.5.6) into (2.5.4) and performing some relatively straightforward

operations, we obtain

f(u,z) = 1(0,z) + i ;.—‘:f,-(:,O), (2.5.8)

j=1

with

fi(z,0) = Z (k l'l.-i ) )f(i)(u(i:)'“ . ’“(ia))

ktig 4 dipmj L

; :
_ J k)¢ (0s) (6
=) X (u....i.)'( (..., ). (2.8.9)

kmliy 4 bigmj-k

Now, assume the expansion for S given by
— C. &) o
5'2:7,;5‘ . (2.5.10)
im0 ,



and substitute this together with (2.5.6), (2.5.8) into the Rankine-Hugoniot jump
condition (2.5.3) to get

: 1 <« i+ Neone W
SO =) - — Y ( .)s(muﬂl. (2.5.11)
J+1;‘x+;afj+l J1 )2 '

Nn<y

In order to solve (2.5.11) for each S1) we must first prove several lenmmas con

cerning algebraic properties of the related k-linear forms.
LEMMA 2.3. Vk>1andany v, .. vi®¥ e R",

CT LR O) SN CEL T R LS L) (2.5.12

Proof. Noting that
A(II,;') = (afl/a" ) = 4y,
we have

A=) =1y (0

= i z ((a‘ilﬁij/&“ii oo Ouiy l)n) U(” u:: |”*:“

J=1 1<i5,... ia=1 5"

=i Y ((8*fi/u, ... 0u,_, du;),) vl .ot
=110y, iner S®

- Z ((alfl/&ll a"'i)ﬂ) ")" ‘:)
156, .Ia5W

= By M)




LEMMA 2.4. Vj >0 andany v(%,...,v() € R",

\ I+ Naa-nf_ 3 o6 1 - ;)) 1 G
Z (ki....ii)A "+1v ' 'i&—:-l-lv u+1v

ko4 +inmj+l

_ - J a-n 1 i 1 (- .)) (in)
= 2. (k—li;...i;)A (u+1 AP LA A

ktiy4-4=)+1
(2.5.13)

Proof. For the right hand side of (2.5.13) we have

1+1 1

< ' J
RHS = Z(k— )| Z (i|+l,..-.it-l+lpiﬁ)

kdiy+-diamjtl
Al=1) (v(u)‘ . ”v(,_,,l)) (i)

=j¥ ! Z k(,‘,+1,..i..ii§-x+l. "l)

G+ tiathmjid
Al=D (v(m, ”‘,ﬁ.ﬁn) y(in)

*Euz Z (i.+1.t._1+l i,l-+l+l .i.+l)

k=1 s=liy 4 fipthujtl
x A=D(yli) ylinma)yylin) (2.5.14)

.H- I\

where the fact that for any permutatioa (i,...,i}) of (61,... i),

A= (@) Gl))y(d) o [ﬂ)(v(fi), verywiR))

(2.5.15)

has been used.



Interchanging the order of the two inner summations in (2.5.14) we then obtain

J*1 1

RHS;ZF Z Z(l|+l coaba~1 + 1, 14, i.+|+l....‘uil)

k=] et oobipbkmjs] o=l
x Ak- ”(v(“),n.,v"" ‘))’\f(‘")

J+1

<1 ' J+1
g_' Z (i|+l‘---yii+1| it+l)

rdobinthmggl
A1) (,(-.) , v(i-ax))v(iﬂ

N (RANY

f1ddinbhmjtd
Al-D (;v(-‘.)"_ql ‘,m-n) 1w

= LHS,

where we have employed the identity

L \ L, :
( j+1 )=Z( ) )
UR SRS 2V - AUR S PN R B Y oy s + 1, + 1

which follows upon noting that
(h+1)+--+(@Ga+1)=75+1.
LEMMA 2.3. For 0 < j < g, we have

- 3c() =0, (2.8.16)



Proof. From (2.3.29), r; is a particular solution of
(l=%)r,-=p,—, J=12,...,9-1, (2.5.17)

with p; defined in (2.3.35) as

S g
s l
1 \ g+l k
R N ( )b ey (T<42)
AR +1""“l J+lh+ﬁz-ﬁfl by y) I (2.8.18)
ky, isﬂ 7

Noting that
(TM) = /(A.)d; 20, k=12,...,q-1,
JO

reduces the expression for p; in (2.5.18) to

Pj .‘E_j (h h)(Ds. ay. (2.5.19)
&y >0
Since
D(u,z) = Z ;;'D;

N,

"
o | s 2
v M |
™ —
B
L]
o



we have, apon equating coefficients of like powers of ¢, that

= ' '
D; = Z .(Jl jz) M Ao

Ntjamy ~

Hence, for j =1,2,...,9 — 1, we have

@y= ¥ (7 Jmnan)

Ji¥ja=j

= (AoXA;)

= ‘;;(Ai)v

so that

P:'=% Y (h"kz)(Aﬁ.)n,-

kythamy
&y >0

Now, using the representation for A; given by
A= Y ( g )Am(“m‘___‘un.»)‘
bisaigmj VK BT

together with (2.3.49) (while noting the meaning attached to the notation (-)), gives
us that

,,,-% Y (k‘jk’) 2 (Ei.k.lnit)

K 4bymj keiy b dipmby
& >0

1 1
®)f _—_p. — -

A (S )
ki]...i.kz)A (il+lr“"“'i.+lr" Fi,

J w-nf_1 _ 1 - )
k-li....i.)A (in+lr“"”‘-‘.-n+lr“" e

(2.5.20)

1 (
W
do Riy o tia +hymj

&=

big 4 -biamidl (
&>



On the other hand, it follows from (2.5.9) and (2.5.12) that

f01 = Z ( i+l i )A"'” (Ijﬁ‘)p .. ,n(i“‘)) ulis) (2.5.21)

, , k1)...13
kbig o gipmydt N7 1ok

so that

. — 41 ) u)( 1 1 ) 1
] = . s A aaamenet ¥ iiii‘fmii'_ —— '.i
(f;“) k+.‘.+§.=,+x (L‘ i) ...14 “+1r1 fh—1 -léll""’l u+lr'
(2.6.22)

Now, comparing (2.5.20) with (2.5.22), and applying Lenima 2.4, we obtain

1 ¢ 1,
P = 3o (li+1) = 3-Aorj,

s0 that from (2.5.17) we have

rj— %(fj;’.l) =0, ;=12,...,q-1. (2.5.16)

This completes the proof.

2.5.2 Shock tracking procedure

We shall now track the shock wave in (z,t)-space. This will be accomplished by de-
termining S(z,t) to the appropriate order in ¢. As a byproduct of these calculations
we find that the arrival time formula of (2.3.58) is recovered from the shock path

value §,.
In order to derive S, j = 0,1,...,q, we impose the Rankine-Hugoniot condi-

sl =) -2 T (01, 05550 a1
R



and consider each case in turn,

Case: j = 0. In this instance, (2.5.11) reduces to
SO[f,] = [u®).
Noting that
[fi] = [00)(f1) = [00]Aoro = [00]Xoro,
and [u®®) = [a5)ro gives

§O = 1/2.

Case: 1 € J< q. For j =1, (2.5.11) reduces to

SOI6) = 1) - 5 (o) S0

- %[a,’,] (r: - %(f:))
=0,

(2.5.24)

where Lemma 2.5 has been used in the last step above. We thus have that S = 0.

SN asu. xSUV oD, <,

(2.5.25)



we have from (2.5.11) and an application of Lemma 2.5, that

S] = [uP) - ___( j+1 )S(o)[fj“]

+1\0,5+1
1
= —;—l( ot rj - 71 -A;lﬂ (Al [{ /78Y)

= l[cr{,""’] (r,'— j\;(fi-u))

n
9\.

We have therefore proved, by the method of induction, that

SV =5V m... =50 u,

Case: j = q. In this instance, (2.5.11) reduces to

S‘"[f,] - [“(c)] - Tl' I""‘l'

(2.5.26)

(2.5.27)

(2.5.28)

s0 that, in order to find S(7, we require the explicit representation for u(®) and this

is not given by (2.5.7) and so must now be obtained.
From (2.2.52) and (2.2.54) we have

(1-32) w? = Myte.n

(23.29)



wherein

M,(z,6) = E ( ) ulh

ky+ky

ll}o
- Z T A, ulhs)

hy+hythomg (k ky k’) ’ ’

ky >0

1 (q+ 1) k)
+— T( ?

¢+1 n.+t.z-q+l kr ks

ki, k3>0

M

(ky) ) )
(k. k;)D L' 4 T4 (by ~ Agul®).

ky+hymyg (2.5.30)

>0

In the development of the final form of M, given in (2.5.30), we employed the fact
that the characteristic field is locally linearly degenerate to order ¢ ~ 1. The form
for M, can be made more explicit yet by noting that

(Dy) = (A}, j=1,2,....0 -1

o | & J s b ydyeeon '

(Dy) = 5o(Ag) + Aa(Ay),
and (from (2.3.58))
70 =t + 0087} [ (A s
to give

oy Lok 5 [ Yaue
My(2,0) = o§(0)5(0) 1 (As e,
M,(z,0) = o§(0)op A‘i-zzs(h h) 8 )
+ T4y - Aeul®) + 0§(0)04(0X(As)ore.



Integrating with respect to @ in (2.5.29) we obtain

- | ,
(l - ﬁ) ul® = q:_ 1&3“(0)9, + (/ﬂ Eo(l)ﬁ"(:.n)da) (b‘”(!‘e) - An'c':)

Ao
+ = 7o8 OADoro, (2.8.31)
wherein
Pe= 3 h:%;' (k, )(Aml )Ty (2.5.32)

Also, noting that

1

Tl y ( ¢+1“)f(n(“u.) .., uliv))

1
S T VP s R k iy

9+ 1") AB=D(yli) ||| yli=D)yli)

kg4 dinmgél (b i

= ( Ao (9, 1 et ( q+1 )
(g + 15w+ 550 2 kiy...is

ktiy 4 Higmgél
k>1

1 1

AlR=1) ¥ _ % o e ; n K 3
KA (i‘+lr‘l'.--‘i._l+lr‘.-‘) '..+lrj.‘ (z-&-g)

we find for the right hand side of (2.5.28)

W= o it
. +1
-(]—I) -"’]—'_Hl'rlk Z kl'l .6a

[ 22 1% X0 -H.-rﬂ
(4=1) vy ——pe 71
xA (n+l Tl I‘Q_]-l-ln""ﬂ 5;4-1""




’
- —:—.T[ag“](/\,)koro + [/o doT:')dl] (b (ro) — Aorp)

ot )

2

1

ktigd binmgdl
k>1

( q+1 )A(&-l)
ki ...ix

1 1

However, since from (2.5.20) and Lemma 2.4 one can show that

Ktigd o dinmet]
1

- 1
A(. n (‘_1—{ ‘1'

(2.5.34) may now be simplified to give

1

y

1 q+1
Pe= % 2 (k.’....'

1

[ (c)] - m z[ fos1) = +l o+l] (Aq)roTo - [/ aoT")ds] d.

wherein

d = —b"(ro) + Aory.

For the left hand side of (2.5.28) we have

5O ;) = 5'9o0)ero,

s0 that if d = 0 we may solve (2.5.28) and (2.5.36) for (% obtaining

0
st -|+l

‘#l

(Aq)-

(2.5.35)

(2.5.36)

(2.5.37)

(2.5.38)

(2.5.39)



This, in turn, provides
F’“

1 e °u (Ag) + O(e™). (2.5.40)

=%t o

In general, we see from (2.5.36) and (2.5.38) that in order for (2.5.28) to be valid,
d must be parallel to ro. We now show that this is not the case.

d = pro +d*,
where d+ € {ro}* and multiply both sides by & obtaining
p = ploro = bod
= Lo(~b)(ro) + Aory)

= ~c()(ro) + mor}
= =[oloro. (2.5.41)

Thus p = =[omgro = 0 since ro has been normalize ,
Fo(2) = 0. Hence the only way in which (2.5.28) can be valid is for d, which is
perpendicular to ro, to vanish. Since

d = ~b"(ro) + Aory

(2 () e

9 (34 . 4 aur
= E r;))c ro+ M
= Agro + Aorg
= (Aoro)’, (2.5.42)

d 20 = )\gry B a constant vector. (2.5.43)



We may therefore conclude that if Aoro is not a constant vector, (2.5.28) will be
invalid thereby signalling the breakdown of our formulation at O(¢**!), namely the
O(e?) problem (2.5.29), (2.5.30) cannot both be solvable and preserve the jump
condition (2.5.28). In this situation, the inhomogeneity of the medium, that is, the
explicit dependence of f on z excites wave modes orthogonal to ro. To deal with
this, instead of demanding the validity of the asymptotic formulation to O(e**!)
on both sides of the shock front, we require that (2.5.28) be preserved.

For convenience, we denote by ul? the solution to the O(e*) problem in the sense
that it satisfics (2.5.28). Hence

SOI] = [0 - = 1 (] (25.4)

where f7,, has the same representation as in (2.5.21) except that u(® is replaced
by u'?. Then writing

)|
PV L W

f,“ (¢ + l)au(" +(g+ l)Ao ul?, (2.5.45)

and substituting this into (2.5.44) yields

SO[f] = (1 - %) [69) + R21uto) - % el (2.5.46)

Multiplying both sides by & and taking (2.5.36) and the implication following
(2.5.41) into account, gives
1 o8, K &
) —— ')
St prry (Ag)- (2.5.47)
This is precisely the same result as in (2.5.39).



asymptotic solution is valid only on the right of the shock front, that is, prior to
the arrival of the shock wave and then breaks down on the left in order to preserve
the Rankine-Hugoniot jump condition. It then follows from (2.5.31) that

(l — ﬂ) us") 1 og+l(0')p' + '+l(e,.)(l\')a\ol'u - (/“.r 501':')&) d‘

Ao q+1
(2.5.48)
and from (2.5.46), (2.5.33), and (2.5.35) that
SO = (1 - %) (u‘;” - ulf i (2.5.49)

where subscripts ¢, r indicate quantities evaluated on the left and right sides of the

shock front, respectively.
From (2.5.48) and (2.5.49) we obtain

o, ,
(l - _A__o) u") = __l_ag'ﬂ(’l)l’q - l lag*l(ﬂg)(l\').\nra - (./ﬂ ﬂ'ng')d;) d.

Ao q+1 ,
(2.8.50)
Letting

ul? = ol (0. )ry + V9, (2.5.51)
ul? = ql cof* (Oe)rg + V0, (2.8.82)

with r, vi¥ satisfying
(n - %) £ = Py + (Ad)doTo, (2.5.89)
(- 3)emn([omoa)e oo

it is clear that the contribution from the inhomogeneity introduces a vector v(?
at the ¢*1.st order. Moreover, v" is continuous across the shock front thereby
invalidating the O(c*) problem (2.5.29), (2.5.30) on the leh side of the shock front.



Therefore, the asymptotic solution derived in the previous sections in further
distinguished on both sides of the shock front as

'!H' * ett! (¢) +2 , ;
u = .;, k—an t(0e)ru-y + i?v O 4 O(e'?), (2.5.55)
g+1 f
up =Y Tod(0r)roy + —-—v"’ +0(e™?). (2.5.56)
k=1

In summary, we have the following

induced at the lhéﬁk*lmt!&tm point (;;,1,—), this shock wave will propagate along
the shock front £ defined by

dt 1 e [oft!

_ = - ] nET
dz  Ao(2) + (g + 1)! [o0] (Ag) +O(e™'), (2.5.57)

t(;-) =1,, (2553)

with shock strength given by

g+1 E
[u) = ue - u, = Z '[E,‘,']r. 1(2) + O(e*+?). (2.5.59)
k=]

Here [08) = 0d(0c) — 0}(0,), k = 1,2,...,q9 4+ 1, with 8¢ = O¢(z,t), 0, = 0,(z,1)

ti/@ m-k:‘{.i-lﬁ?ﬂ‘g(.j)/n (l\.)da}+0(;!*‘), 0, =00, (2.500)

take the forms in (2.5.55), (2.5.56), respectively, with v{" being a vector induced



It is interesting to note that our shock front formula (2.5.57) reduces to the
arrival time formula (2.3.58) in the limit 6;,, 8, — 6,. This is readily seen by
writing (2.5.57) as

a 1 e (08 (0e) - o2 (0.))/ 0 = 0.) .\ . et
%= %@ G (eol0e e ) 9+ OET)

taking the appropriate limit and integrating over z.

2.6. Admissibility and Existence of Shock Waves
2.6.1 Admissible shock waves

The shock wave, when it exists, propagates at a speed 1/S with

1 et [0t
S= o)t T T () + 0

Throughout our discussion we have not distinguished the subscript associated with
A. Let it be v (p < v < n). The strict hyperbolicity condition (2.1.4) demands that

Av-1(8,2) < Ap(u,2) = A < Apyy(u, 2). (26.1)

This inequality is preserved for small perturbations about u = 0, and hence it
follows that

A-a(8e,2) < 5 < Avta(wr,8), (2.6)

suggesting that the shock wave can only be a »-shock [39,71). We shall call it &
M-shock to avoid having to distinguish the subscript » of .
Employing Lax’s entropy inequality [36,71), we find that the shock wave should



satisfy

Av-1(ue, ) < 1/8 < Mug, 2), (2.6.3)
Mup,z) <1/8 < Ayi(ur, 1), (2.6.4)

or, equivalently,

1 , 1

ue ) <% < ua) (2.6.5)

in light of (2.6.2).
Noting that

1 1 e g+
.\(li,;) = o(?) + E!’“g(.)(’\l) +O(e*t),

we then have

1 +1

Gg(‘j)(l\') < QTFT %(A') < a3(0,)(A¢) (2.6.6)

as a suficiency condition for the determination of an admissible A-shock wave nat-
isfying Lax’s entropy condition for small ¢.
Obeerving that (see Fig. 2.1 below)
Oc(z,t) > 0,(z,1) (26.7)
on L, (2.6.6) can be replaced by a stronger yet simpler condition. Let
O = (0(z,t), 0,(z,t)l(=,2) € I},

and let J C R* be an interval. Then if 6 C J and

(0§(0))'(As) <0, VO € J; V2 :(s,t) € L for some ¢, (2.6.8)



then (2.6.6) holds, that is, the shock wave is a A-shock wave satisfying Lax's entropy
condition.

In addition, we observe that (2.6.8) is further simplified when (A,) keeps a definite
sign. That is, (2.6.8) becomes

(03(0)) <O, (2.6.9)
when (A,) > 0, Vz € R* and
(e3(9))' >0, (2.6.10)

when (A,) < 0, Vz € IR*. As we shall see in the next subsection, these are also
sponding characteristic family focuses.

conditions ensuring that the corre

X
Fig. 2.1: Shock front L in (z,t) plane.




arrival time formula
t = T(z,0),

will admit bifurcating solutions for 6, that is, the shock-initiation point is a bifur-
cation point. Therefore, the shock fitting problem has an interpretation in terms of
a bifurcation problem. The resolution of such a problem, as we shall sce, provides
an understanding of the transition process from wave breaking to the generation of
shock waves.

A subtle feature here is that the shock initiation point is always a cusp for the
caustic of the characteristic family when represented by the arrival time formula,
This fact makes it possible to separate the branches of the caustic and determine
the existence of a region where 0 is multi-valued.

We commence by considering the caustic I' of the characteristic family ¢t =
T(z,0). In order to simplify the analysis and rule out uncertainty, we neglect the
O(e**!) term and assume that

¢ = T(z,0) = / st {o+—a,(¢) / (A,)d,} (2.6.11)

is exact.
Writing F(z,t,0) = T(z,0) — t = 0, the caustic I' of the characteristic family is
specified by

T: F(z,1,0) =0, Fy(s,t,0) =0, (2.6.12)

which, in turn, provides
. 2= 2(0) : /. '(A.)h - -;—';!—- (26.13)
e [ i+ {o- v} A



In order to avoid more complications and also to ensure the existence of I', we shall

assume that

(A)(2) > 0, ¥z € R*, (2.6.14)

and
/0

The next lemma assures the existence of the caustic ', as well as, describes its

structure.

LEMMA 2.6. Suppose (A,) satisfles (2.6.14), (2.6.15), and also that (o§(0))’ <
0, Y0 € (0,8), with do(0)/d8 = dod(#o)/d# = 0. Then the caustic T for the char-

acteristic family ¢ = T(z,0) exists for # € (0,6). In addition, I' has the following
properties:

1°. 30, € (0,60) which gives the shock initiation point, and 8, provides the minima
for both z = z(#) and t = t(#), that is,

2o 2(0,) = mi ,_,{ =(0)}, (2.6.16a)
t, = t(0,) = “%1,{ 9} . (2.6.16b)

2°. (z,,¢,) is & cusp for the caustic I and along I’

- i * o
Jim T = im Te st QelOdANe). @617

In addition
(8) lows, = 0: (2.6.18)

and [ has sero curvature at (2,,1,).



- however, uhﬁ&hhmmm

3. Jim, (2(0),¢(8))= (+00, +00), (2.6.10a)

Jlim (2(0), #(0))= (+00, +00). (2.6.19b)

Proof. The existence of I" follows directly from (2.6.13) and the conditions for oo(#)
and (A,). It is also straightforward to verify (2.6.19) from (2.6.13) and (2.6.13) and
hence to conclude that ¢ = ¢(#) must have a minimum at , € (0,68) such that

t, = t(0,) = Di%.%-) {¢(9)}. (2.6.16b)

Now we need to show that #, also provides the minimum for £ = z(#). The fact that
z = z(#) has a minimum is obvious from (2.6.19). We use an argument similar to
Let 2* = £(¢°) be the minimum. Then there are two cases: t* = {, or {* > t,,
where t* = ¢(#°). In the first case we simply shift the shock-initiation point to
(°,¢*) and adopt the convention that #, is always chosen such that z, is also the
minimum of £ = 2(¢). In the second case, by connecting (z,,t,) to (z*,¢*) by means
of a line segment, we note that its slope
_g-

ES'

- <0,

mmale(o,q.)-ua.;m:-ns.d)h.mumm(s(i).c(m This,

2, =2(0,) = mlll-g.) {=(9)) . (2.0.10a)

This establishes 1°.



Lastly, we need to show 2°. Indeed, by differentiating in (2.6.13), we obtain

@ = 0 T | (3.6.200)
% - (@ Ty * %) @ (26.200)

Thus
(23(0))"|gme, = O, (2.6.18)

as 0, provides a minimum for both z = z(#) and ¢ = ¢(#). From (2.6.20), we have
that along I
1

- + RO,

&M -3

so that

L dt Lt 1 e e vy a1
ol-'.':'- & -.g% & " %) +7gg(¢.)(;\.)(=.). (2.6.17)

and hence (z,,1,) is a cusp for I'. In addition, we can compute d®t/dz? in order to
establish the zero curvature assertion. From (2.6.21) we have

-z (mm )+ Sl

e) , :
-+ 7v.(¢)<a.)( 5+ 5 G
X yr o € ((o3O)P A
) + SO + o5 R

(2

(2.6.22)
from which, by noting that (¢3)"],.,, = 0, we may deduce that
a%ﬂa (2.6.23)

and hence that I' bas sero curvature at (2,,t,).



This completes the proof.

The above results establish a caustic structure similar to those discussed in Chap-
ter 1. In particular, we can separate I' into two branches in the neighbourhood of
(2 1) ‘;) :

Iy: 2m=z(0), t=t(0), 0<0<,, (2.0.24n)
F3: 2=2(0), t=1(0), 0, <0 <b. (2.6.24b)

As before, we denote the sharp region enclosed by I'y and I'; as D.
The relative positions of I'; and I'; in the neighbourhood of the shock-initiation
Pﬂ‘ﬂt (S.,t.) is ascertained by the following result.

LEMMA 2.7. Suppose that the conditions of Lemma 2.6 pertain so that I' exists
and can be separated into two branches I'y, I'; as defined by (2.6.24). Then T, is
above I'; in a neighbourhood of the shock-initiation point (z,,t,).

dt 1 ¢! .
" T(j+ Ecg(l)(l\i)(;). (2.6.21)
where ¢ may be expressed in terms of z by iuverting = = £(#). To accomplish this

Now, by expanding z = £(0) about § = §,, we obtain

£ oo, 4 3870000 +0((0 - 0,1,
=z, + Q(ON0 - 0,)?, (2.6.28)



where Q(#) is smooth and
. a1 _ng
dim Q(O) = 3= (0,) > 0.
Rewriting (2.6.25) as

Q(‘)(- - —‘l’)’ =z~ZI,,

(2.6.20)

(2.6.27)

one can then invert z = z(#) by an application of the implicit function theorem in
(2.6.27) to obtain two solutions in a neighbourhood of § = 0, when z > z,. Indeed,

1°. When @ < 0,, the first solution, # = #,(z), solves

0-0,=-{(z-2.)/Q0)".

2°. When 0 > §,, the second solution, § = #;(x), solves

0-0, = {(z - 2,)/Q0)".

0 (z) - b(z) <0, V2 > 2,,

in a neighbourhood of (2,,1,).

Therefore we have, respectively, that

= ﬁ;; + ";;-x(-. (#)NANS),

o Ty: 3=+ AGENAN)

1n7

(2.0.28)

(2.6.29)

(2.6.30)

(2.6.31a)

(2.6.31b)



Now, in order to determine the relative positions of I’y and I3, we compare their
slopes. In the neighbourhood of (z,,t,), we denote I’y and I'; by t = #,(z) and
t = #3(z), respectively (see Fig. 2.2 below). Fixing z and subtracting (2.6.31b)
from (2.6.31a) we obtain

32t = ) = 5 {o4(01(2)) - oB((0N} (A)e)

= OBV O(2) - B2 (M), (2.6.32)
where € € (61(2), #1(z)). Thus

%(h —13) >0, (2.6.33)

peighbourhood of (z,,¢,), Ty is above I3
This completes the proof.

— e  ——
X X

Fig. 2.2: T, T'; in & neighbourhood of (s,,¢,).




As a result of Lemma 2.7, we can prove that the shock-initiation point is a
bifurcation point for the arrival time formula. More precisely, we have the following.

LEMMA 2.8. Suppose the conditions of Lemma 2.6 hold so that the caustic I'
exists and has two branches I'; and I'; with D being the enclosed sharp region.
Then V(z,t) € D, there are two solutions # = #¢(z,t), ,(z,t) which solve the

arrival time formula
t= ‘[ % +ef {0 + %eg(l) /:(A,)dn} ) (2.6.11)

with

0<0.(z,t) <b(z), #(z) < Oz,t) < bo. (2.6.34)

Namely, ¥(z,t) € D, there are two characteristics with phases #¢(z,t) and #,(z,¢),
respectively, passing through it. Here 0 = #;(2), 6;(2) with #;(2) < 0, < b4(=) are
two branches of the inversion of £ = 2(0#) defined by (2.6.28), (2.6.29) respectively.

té




We are now in the position to formulate the

THEOREM 3.4. (8hock Criterlon). Suppose (A,)(z) > 0, ¥z € R*, and
(c3(0)) <0, Y0 € (0,60), do3(0)/dé = dod(6)/dé = 0, then at the shock-initiation
point, a A\-shock wave is generated in D and its propagation described by the Shock
Propagation Rule. In addition, the shock wave is admissible in the sense that it
satisfles Lax’s entropy condition.

Proof. The conditions (A,)(z) > 0, Yz € IR* and (0§(6))’ < 0, VO € (0,6),
do§(0)/d# = do§(6o)/d# = 0, ensure the existence of a caustic I' for the charac-
teristic family {t = T(z,0)|0 € (0,60)} as well as the shock-initiation point (z,,t,),
which provides a cusp for the caustic. According to Lemma 2.8, the sharp region
D enclosed by T is a multi-valued region for the nonlinear phase 6. We resolve the
situation by introducing a curve of discontinuity, or in other words, a shock front
L in D and terminating at £ any characteristic which enters D. This curve L is
initiated at the shock-initiation point (z,,t,) and described by the Shock Prop-
agation Rule which is obtained from the Rankine-Hugoniot condition. Hence we
have a shock wave being generated at the shock-initiation point. The shock wave
is a A-shock wave and admissible as it satisfies (2.6.8) - an interpretation of Lax’s
entropy condition.

This completes the proof.



Fig. 2.4: Shock front L and caustic I'.
(Ad)(2) >0, Vz € R, (2.6.14)

(ag(o))' <0,v0€(0,0),
dof(0)/d0 = daf()/d0 = 0,

in

(2.6.200)




it is easy to see that z = z(6) and ¢ = #() have the same critical numbers in (0, ).
In addition, (2.6.20) demonstrates that r = z(@), t = ¢(8) achieve local maxima or
minima simultaneously for the same critical number. Each local minima or maxima
for (08)’ gives a cusp for the caustic I' where the curvature is zero. The caustic I’
again takes the form displayed in Figs. 1.6-1.10,

Remark 2.2. Apparently, when (A,) is strictly positive (or negative), for smooth
boundary data, characteristic focusing is the only mechanism that leads to wave
enerates shock waves. In the nonfocusing case, smooth waves

2.7. An Application: Shock Waves in Fluid-filled Hyperelastic Tubes.

Moodie and Swaters [64) considered the propagation of weakly nonlinear waves in
fluid-filled, hyperelastic, tethered tubes subjected to axial strain. The one dimen-
mﬂmad:ltheympbyedmongmﬂydﬂebpedbyMﬁndmdeﬂdnwlﬂl

A+ (Au); =0, (2.7.1)
¥y + g + p; =0, (2.7.2)

As + (Av)s =0, @.7.1)
.+ (%-‘ +p) =0, 2.7.3)

when the conservation form is retained. These aren

Mph&i smural p



The governing equation (2.7.1) arises from mass conservation and (2.7.2) (or (2.7.3))
from momentum balance. The fluid is assumed to be incompressible.
The constitutional relation derived in [64] gives
A = A(z,p)
= Ao(z) + wo(z)p + v1(2)p? + pa(2)p® + O(p*), (2.7.4)

where

wo(z) = A3’ (2)/ [2ho(=)WP /(1 +¢)* + W)] , (2.7.8)
P1(2) = 3¢3(2)/240(2), (2.7.6)

Pa(z) = [6/2 = B(2)) wi(2)/ A3 (=), (27.7)

B(z) = WD/ +e) + 2 43 (4; :ﬁ)g)’,ﬁ(l + g)'wﬂ 278)

are all known functions involving the strain energy function W, the tube wall thick-
ness A, and the axial strain e. lﬂp:ﬂleuhf Ao(0) = 1 and o(0) = 1/2,

p=um0, AmAyz).
Now if the boundary is perturbed by
Plomo = €9(t/8), ¢ 20,
we have the mixed initial and boundary problem prescribed by

p=um0, A=Ays), t=0,220, (2.7.9)
Pl oo = ¢9(8/6), t20. (2.7.10)




and distance calculated for the interior shock. We shall now reconsider this example
the presence of wave-breaking the mathematical model itself may no longer be a
valid description of the physical correspndence, hence the discussion here is purely
a mathematical treatise.

In a recent paper [17] we constructed the asymptotic solution of the mixed initial
boundary problem prescribed by (2.7.1), (2.7.2) together with (2.7.9), (2.7.10) in
the form

u= (?) =t rgoaz el ((A"Pf)”’)

3 -;/: 2 ;/: m 0 Y
+ 22 0)Ay ((Ao/s?u) ,,,) + 0(c?), 2

tm _/ " oA m)AS  (mhn
0

2fe_ 3 ¢ 30\ A=3(p) 3
+et{o- a0 [ BndednA mn} + e, -
where 0g(0) = 2-1/3g(#), and § = ¢3.

Thm.whmglha:kﬁwnmduudnthelhntk-nmn&tmpmm‘ and after
applying our shock propagation rule, we expect the shock front to be described by

% =0 (@)A45"2) - T lﬂn(s)w’(s)ﬁ’(ﬂ +Oe), (2.7.13)

t(z,) = ts, (2.7.14)

where [¢*] = 5*(0:) - 5*(4,), (o] = #(0c) - 5(0.), and O¢, §, (0 > #,) are bifurcation
solutions of the arrival time formaula (2.7.12).



The above approach needs some justification since the state variables we have chosen
in (17) are u = (p,u)7, and with this choice the system (2.7.1), (2.7.3) fails to
preserve the form of the conservation law (2.1.2) considered throughout the previous
sections of this chapter.

We take another approach. Let

- (A - Ao) A (f) (2.7.18)

so that (2.7.1), (2.7.3) now become

(8),+ (k)= ©) o

Then rewriting (2.7.16) as

OGO (5 o

we have

Aﬁ(p‘: :) h'(-;'f-f::v‘l%'

We need only to show that the arrival time formula (2.7.12) is invariant under the
The eigenvalues of A are

A=ut(pad)'”. (2.7.18)

A= w4 (paA). (2.7.19)

1%



The left and right eigenvectors associated with A are

o o \1/2
1= 3 (oarAra), wm (WP, (2.7.20)
In particular, Ir = 1 is satisfied and
| . towo)!/?
b= 3 (o)1), r= (A, (2.7.21)

We Taylor expand (1/A) to get

% _ % AW (u) + % A® (4, u) + O(||ull®), (2.7.22)
where
AD) = ((Aofgo) 205", ~(afie)™) (2). (21.23)

D u) = ( ~30p5(Ao/0)~*?  ~2p5"'(Ao/p0)? (A
") = (o (2 o o )(u)(zm)
We then have

III
A (ko) = ((ove) 05", ~(dofir™") (“45))
=0, ' (2.7.25)
80 that the order of local linear degeneracy is one and with § = 2 we have the

ot {oria [maa}roe), @z

-4

where (A3) = A®)(ro, 10) + AV(ry).
It remains to find r;, a particular solution of

(l - %) n= %A"’(ﬁ)ﬁ, (2.7.27)



wherein

( ) (2) m (2) (I)
() - (B4u)o + g (Buv)o o, (514)0 +r (5-4)0
A (vo)ro = ( 1] (a,.m)ﬁ-rz Bupado ¥ (Bxudo + 1) (Buudo ) ( "’)

_ ?(Ao'ﬁ:)" ? ,
= ( g ) (2.7.28)
A direct check shows that
AT y 7 e
r = (0)2\90 (257.29)

is a particular solution.

It remains for us to “normalize” ro. Now

Fa(e) = 3c&(r0) - kort
=34 ly
4 Ao 4 Yo

so that

exp{/:l"g(l)d;}-(ﬁ)-j" (ﬁ)m

and hence rg is normalized to

e (") ) )" o
and
() @) oo

(Az) = A®(ro, ro) + A (ry)

() () )"

1n



which is pﬁciely the same result as we found in [17)]. Suhtituting (2 7. 32) and

required.

2.7.2 Shock waves

In the situation when a shock wave is induced at the shock-initiation point, the
shock front is given by (2.7.13), (2.7.14). In the following discussion we make an
example calculation and show that for the particular boundary disturbance function
chosen in [64), a shock wave will be generated.

To be specific, we take a particular strain energy function (68)

W, I) = &I, - 3) + (1 - b)(Is - 3) + v(I, - 3)%, (2.7.33)
where b and v are real constants. Then it follows from (2.7.5), (2.7.8) that
vom1/2, P=2, (2.7.34)

where A9 ® 1 because of homogeneity. Choosing v = 1 the arrival time formula
reduces to

’ ¥ ) _
t= ? +¢ {. - ﬁ) (’);} (2735)

Apparently (2.7.35) represents a family of characteristi
the eavelope formed by this family is defined by

(ﬁ) / o(0)s'(0), (2.7.38)

oo+ {o- 201 (27.37)
t=(3) {- 2

s. The caustic, that is,



The boundary disturbance function chosen in [64] is
9(0) = ab(1 + P)e=", 0<0<], (2.7.98)

where a is a nondimensional amplitude parameter and g(#) is cut off and appropri-
ately smoothed for large # 50 as to be of compact support.
It was shown [64] that the shock-initiation point (z,,t,) is given by

z, = (2.1468)a"?, (2.7.39)
t, = (0.5179)a"? + ¢*(0.2309), (2.7.40)

with 0, = 0.5724. The envelopes (2.7.36), (2.7.37) are generated and displayed in
Figs. 2.5-2.7 below for different choices of a. These figures show that (z,,t,) is &
cusp. The arrow indicates the direction in which # is increasing and hence we soe
that T'; lies above I';. By the Shock Criterion, a shock wave is predicted and the
shock front takes the form

@ 1 _dlf] 2741
2=-%-5 0 (2.7.41)
G(;j) = fg, (2'7“2)

with [g°] = g*(0¢) - °(0¢), lg) = 9(0c) - 9(0,) and O¢, &, (0 > 0, > 0, > 0) solving

t= % - {o- ﬁ!,’(o);}. V(z,t) € D.
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Fig. 2.5: Characteristic envelope for a = 4, ¢? = 0.05, and 0.1 < ¢ < 0.8.
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Fig. 2.6: Characteristic envelope for a = 3, ¢? = 0.05,and 0.1 < 0 < 08.
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Fig. 2.7: Characteristic envelope for a = 2, ¢? = 0.05, and 0.1 < # < 0.8.



CHAPTER 3.
Two Wave Interactions for Weakly Nonlinear Hyperbolic Waves

ed by

It is well known that nonlinear hyperbolic waves whose propagation is go

modes, that is, a linear combination of eigenvectors associated with each charac-
teristic speed. As time evolves, these wave modes tend to interact with each other
as well as undergo self interaction. This process is nonlinear and may lead to com-
plicated wave pattern. A detailed analysis of these interactions is essential for a
deeper understanding of systems of conservation laws. For instance, the conver-
gence of the celebrated Glimm scheme is based upon an estimate of the wave-wave
interaction through a nonlinear functional in which the wave decomposition is car-
ried out by employing Lax's construction of the solution to the Riemann problem
(Smoller [70)).

In this chapter we focus our attention on two-wave interactions for hyperbolic
systems of conservation laws. By two-wave interactions here we mean the non-
resonant evolving pattern of a propagating disturbance arising from the action of
initial or boudary disturbances consisting of two wave modes. We take an approach
which is close in spirit to the use of Riemann invariants in the carly studies of Lin
(44) and Fox [18]. A summary of this approach is to be found in Kluwick [33]
and aleo Nayfeh [68]. The reader is referred to Kevorkian and Cole (32] for more
applications( We point out that the comments in [$3] about the Lin-Fox method is
unfounded as the argument made there is flawed).

Here we introduce directly the nonlinear phases instead of attempting to deal
with Riemann invariants, which can be found with certainty only for 2 x 2 systems.
two-wave interactions because for multi-waves (more than two) it is not clear how



to select an appropriate set of phases to replace (z,t) coordinates. Furthermore, the
nonlinearity imposes restrictions and couplings between the nonlinear phases whose
nature is hard to ascertain. No doubt this difficulty is related to the completeness,
coherence and nondegeneracy condition that appears-and some what restricts the
applicability-in the analysis of [26].

when the number of noalinear phases involved is restricted to two, an asymptotic
setting.

We shall deal with systems of hyperbolic conservation laws in one space dimension
which have a slightly different form from those studied in the previous chapter and
which exhibit no explicit spatial dependence in their flux functions. Specifically, we
deal with

G(u) + F(u); =0, (3.0.1)
where u = u(z,t) is the vector of n state variables, G(u), F(u) are smooth vector-
valued functions of u, while z and ¢, as usual, represent space and time variables,

The system (3.0.1) is always assumed to admit a steady state solution, which,
without loss of generality, we take to be u = 0. For smooth solutions, the system
(3.0.1) can be written as

Bw + Au, =0, (3.0.2)

where A = (aﬁ/a’j)ixi A (Cij)-,i- and B = (ﬁiI&j)iii A (&J)iii- We
further require that (3.0.1) be strictly hyperbolic, that is, B is nonsingular and

det(A - AB) = 0, (3.0.9)

has n distinct real roots {\i(u)}2,;. In particular, we assume positive and negative



eigenvalues are distinguished, that is,
Ar(u) € A3(u) < -+ < Am(8) S0 < Amya(u) < +1- < Ag(u). (3.0.4)

For each i (1 < i € n), we demote by £; and r; the left and right eigenvectors
associated with A{®) & 1,(0), respectively, that is,

(Ao - A{”By) =0, (Ao - A{”Bo)r; =0, (3.0.5)
where Ao & A(0), Bo & B(0). Also, we require the orthonormality condition
&Bor; = §;j; i,j =1,2,...,n, (3.0.6)

where §;; is the Kronecker symbol. In addition, each right eigenvector r; is called &
wave mode of the system (3.0.1) (at the steady state u = 0).

The remainder of this chapter has the following organization. In Section 1, we
consider the initial problem in which the system of hyperbolic conservation laws
(3.0.1) is perturbed initially from its base steady state by two superimposed wave
phase transformation, we construct an explicit asymptotic solution together with
the perturbed spatial-temporal coordinates. The next section is then devoted to the
signaling problem. We perturb the base steady state by superimposing two wave

In particular, for each wave mode a seperation kine is defined to distinguish the
ranges of influsnce. As an application of the results in Sections 1 and 2, the last
oa the boundary.




3.1. The Initial Value Problem
3.1.1 Problem defined

We perturb the system of hyperbolic conservation laws

G(u); + F(u); =0, (3.0.1)

U|,o0 = €0p(2)r) + €0y(2)ry, ~00 < z < 00, (3.1.1)

where ¢ is the small perturbation parameter, and 0,(:), o4(:) are smooth scalar
functions. The subecripts p, ¢ are any fixed pair of integers satisfyingl S p<g<n.

3.1.2 Nonlinear phase transformation and asymplotic ezpansion

We introduce two nonlinear phase variables §, = §,(z,t), §, = 0,(z,¢t) defining

(05)c + Ap(u)(0))s = 0, (3.1.2)
O),ee = =, (3.1.3)

(0g)¢ + Ag(u)(y)s = O, (3.14)
Oy = 5. (3.18)

(,8) — (65,0,), (3.1.6)



z = 2(0,0,), t = 1(6,,0,),

(3.1.7)

where 2(0,,0,) and ¢(6,,0,) are determined from the relations given in (3.1.2)-

(3.1.5).

We differentiate (3.1.7) with respect to z and ¢ taking (3.1.2) and (3.1.4) into

account to obtain

1= ;.‘(G,), + Ze, (")!i
0=z, [=2p(0p)] + 20, [—Ag(0y):),

and

0=1ty,(0,): +to, (),
1= tiilgAp(‘ﬁ)il + fi;['Ai(—.!’)S]!

which, in turn, provide

zo, = Ag(Mg — "F)E!/(—‘!)n 2o, = Ap(Ap - “i)ill(‘!’)!!
te, = (‘\1 = Ap)—‘/(-p):- te, = (Ap = lg)ﬁ’/("c);:

2o, = Aste, =0,
30, = Apte, = 0.

That is,

(3.1.8a)
(3.1.8b)

(3.1.9)
(3.1.9b)

(3.1.10)
(3.1.11)

(3.1.12)
(3.1.13)



The validity of the nonlinear phase transformation (3.1.6) depends upon the

condition that the Jacobian

) = (0,)c(00)e(0p = M) 0, (3.0.14)

and that
te,, to, ¥ 0. (3.1.15)

The condition (3.1.15) follows from (3.1.11) and the requirement that the Jacobian

Since the initial disturbance (3.1.1) is always assumed smooth, the theory of
nonlinear hyperbolic equations (42, 58] ensures the existence and smoothness of
u(z,t) and hence the existence and smoothness of §, = #,(z,t) and §, = §,(z,?).
Throughout the derivation process in this chapter we shall tacitly assume, as in
(63), that u remains a smooth function (of z,t). Indeed, as the work of F. John
[39-30)] suggests, u remains smooth at least up to O(c~?).
functions of the new phase variables (#,,0,) with the change of derivatives according
to

s — (0):s, +(0,)sD, (3.1.16e)
8 —+ (0,):0s, + (04 )e0%, (3.1.16b)

or, upon using (3.1.10), (3.1.11), as

Be —+ (Ag = M) 451 B0, + (g = Ag) 115100, (3.1.178)
O —+ Ag(Ag = Ag) 310, + Ag(Ag - M""‘ o
(3.1.17)



The governing equation (3.0.2) is then transformed to
to, (A - A¢B)uy, - t.'(A - /\,B)llo, =0. (3.1.18)

Now, based upon (3.1.12), (3.1.13), and (3.1.18), which constitute the full system
transformed into (6,,8,) coordinates, we shall seek an asymptotic solution of (3.0.1)

in the form
u = ¢cu(®(0,,0,) + 2u'’)(6,,6,) + O(c?), (3.1.19)

when (3.0.1) is subject to an initial disturbance having the particular structure of
(3.1.1). Also, the space-time coordinates are assumed to be perturbed in the form

z = 2(9(0,,0,) + cz(!)(8,,0,) + O(e?), (3.1.20)
t = t((0,,0,) + ct*)(0,,0,) + O(c?). (3.1.21)

Throughout our discussion, the nonlinear phase variables 8,, #, will be considered
as being independent of the perturbation parameter ¢.

In order to construct the asymptotic solution (3.1.19)-(3.1.21), we first expand
(3.1.12), (3.1.13), and (3.1.18) to formulate the requisite O(1) and O(¢) problems.
Thus, in order to implement this procedure, we first need to expand the following
(matrix and scalar) functions about the steady state u =0 :

A(w) = Ao + A () + 2 AP (u,u) + O(Iul?), (3.1.22)
(\B)(u) & By(w) = B® + B{"(w) + zB(w,u) + O(IWN),
(3.1.23)

M(w) = 22 4 2(w) + 22" (w, w) + O(hul’), (3.0.4)
B(u) = By + B*(u) + 5BV (u,u) + O(kul’), (3.1.25)



where

R (D o T o Rty I

k4 dhoymb

E?’(u,m,n) = ( Z (a"(A.b,_)/au{‘ ...au:‘)nu:‘ ...H:‘) '

b4 thamb

M. u)= Y (Sa/oud mang‘)ﬁug“ L
lg+...+§_;g ;

a«->(..,,..,..)=( ¥ (a“b.-;/au:l.._aug-)ﬂu:'...u:-)-“.

kyd:thaah

We now substitute (3.1.19) into (3.1.22)-(3.1.25) and regroup like powers of ¢

A(u) = cAo + A, + O(%), (3.1.26)
Bi(w) = B;p +£'Bi, + 0(c), (3:1.37)
Ai(w) = ehip + )iy + O(2?), (3.1.28)
B(w) = cBoy + * By, + O(s*), (3.1.29)



with

Ao = A(0),
A= A(l)(“(@))j

Az = AOuD) 4 % AD (O, (),

Bio = B/(0),

Bi. = B! (u?),

Bg q = B( )(n(l)) + B(?)(“(ﬂ)‘ “(ﬂ))
e\;'g = Al(o)!

g = 2" (u®),

Aig = A?’(u‘") + % AD(@ 4@
Bo,; = B(0),

E]J = Bﬂ)(“(ﬂ))'

By, = BO(uV) 4 %Bm(“m‘“(m)‘

where the relation connecting B; ; and By ; is given by

Bij= Y %i;Bo.

h+h=j

(3.1.30)

(3.1.31)

(3.1.32)

(3.1.33)

(3.1.34)

We now insert (3.1.26)-(3.1.29) together with (3.1.19)-(3.1.21) into the trans-
formed system (3.1.12), (3.1.18), and (3.1.18), and equate like powers of ¢ to obtain

the O(1) and O(¢) problems.

gﬂ)( Ao - ‘\(')&)‘2’ f(.?( Ao - A‘,‘)Eo)l‘.:’
(0 - AO(®)y =0,
(2@ - Ag"t‘—‘) Jo, = 0.

(3.1.35)
(3.1.38)
(3.1.37)



0O(c) problem :

(Ao - AOBo)u)) - () (Ao - X" Bo)up) =My, (3.1.38)

(zV - A(mt")). = H,,,
(3.1.39)

(M = APV, = Hy,,
' (3.1.40)
where
My= 3 {6 (As, = By u) -t (As, — Bya,) uf,
' ...._Z,_.{ T nAn - B e}, (8.1.41)
Hyy = Moty (3.1.42)
Hey = Agaty). (3.1.43)

We are now ready to solve the O(1) and O(e) problems corresponding to an
initial disturbance of the form
8,00 = €0p(2)ry + coy(2)ry. (3.1.1)

Before doing this, we note that the parametrisation of the nonlinear phases §,, 0,
on the z-axis, that is, (3.1.3) and (3.1.5) indicate that

t=0 =0 =t (3140
This condition can be interpreted, after using (3.1.21) and (3.1.22), s

1)(0,,0,) = t4)(0,,0,) = 0, k= 0,1,2,..., (3.1.48e)
£#°(0,,0,) = 8,, °(0,,0,) = 0, (3-148b)
£%0,,0,) = sV(0,,0,) =0, k=1,3,.... (3:1.48¢)



We are now in a position to solve the O(1) problem.
3.1.3 Solution of the O(1) problem
First we integrate (3.1.36) and (3.1.37) over 6, and 8,, respectively, obtaining

20 — Ag’)tm = f(0,),

2(® — A0 = (4,).

Applying (3.1.45) gives

£ — A0 = g, (0~ ADHO) = ¢, (3.1.46)
oc
20 = l}."’( A0 _ A(a)) 10, + A(O)( A“” A(n))-i. (3.1.47)
1@ = (AP - 20)=10, + (AP - AV)7'8,. (3.1.48)
Thus (3.1.35) reduces to
(Ao = XBo)ul? + (Ao — AVBo)uy, = (3.1.49)

Denoting u'® = }’:, 0{%(0,,0,)r;, and substituting it into (3.1.49), we obtain
=]
{( Am (ﬂ)# ( A(‘) m)ﬁ } Bor; =0,
4‘ rn=
i-l 9, )

. 2 (9) (9)
(A - A&“)%'- +(\® - .\;")%'- =0,i=12,...,n (3.1.50)



The general solutions to (3.1.50) possess the form

a{(8,,0,) = fi((M? = A2)0y = (AD = 2M)0,), V1S i<n, iskp,g,

(3.1.51a)
0:0’('" ") = fp(‘,), (ailislb)
a{")(0,,0,) = f¢(0), (3.1.810

where fi(-) (i = 1,2,...,n) are arbitrary C* functions. Applying the initial condi-
tions (3.1.1) it follows immediately that

fr(8y) = 0,(0,), fo(O) = o4(0y), (3.1.52b)
and hence that
‘!m)(—‘l!i .1) = ij(—.p)l‘p + G‘g(.j)qu (3153)

It is clear that (Ao —A{"Bo)ul? and (Ag— ;" Bo)ug) vanish separately in (3.1.49).

3.1.4 Solution of the O(c) problem

First we note from (3.1.41) that

M, = t{)(A, - B,, )!g) - fS‘_’(A: - By )Eg?
= (A = A" [A0)(wg) - B (w)] o},
+ (O = X)~ [AD(we) - BY(we)] o4
= (A" - 3 {[A(r,) - BY(r,)] 7peye),
+ [AD(xg) - BY)(xy)] rpoee;
+ [A(r,) - B (r,)] ry0pe
+ [AO(ee) - BI(e))] reeee} (3.1.54)




Similarly, from (3.1.42) and (3.1.43), we obtain
Hyy = Mpatf)
- (A(iﬂ) - A‘.”)“»\}."(ii“”)

= (AL = A0~ {;\},“(r,)a; +2(eg)e, ) (3.1.55)

By = At
- (A('ﬂ) - A(’ﬁ))-l Agi)(“@))

= (M0 = 20~ (A (ry)ap + A (r)a ) (3.1.56)
Writing
u'')e,,0,) = ia:"(o,.o.)r.. (3.1.57)
=l

and applying, for each 1 < i < n, the left eigenvector ¢; to (3.1.38) (with k = 1),
we reduce the O(c) problem to

) ( (ll
(A - A&")—L + (A9 - A‘“’)si—- =T%,0,(0,)04(0,) + Tya4(0y)0}(0))
pey 4 7s(0,)0,(0y) +r‘ 4 04(0g)0)(0,), 1 S i <, (3.1.58)

(0 = AOH0),, = (A2 - 37)1 (A (1,)0,(05) + 2 rdog(0)} . (3.0.50)

(£ = XOt0), = (AP - 201 {A(r,)0,(0)) + X (redey(0)} ,  (3.1.00)
wherein I, is defined by
I = &[AY(r;) - B (r))les, 1 Sivsik S m, (3.1.61)

ﬂﬂéﬂnﬁ* tbm&rihntﬂtnthﬂhnvemﬁdedum;bmﬁn
ear interaction of the j-th and k-th wave modes. In fact, (3.1.61) is the nonlinear




phase version corresponding to the definition introduced in (63] and reduces to that
form when ), is a constant eigenvalue.

LEMMA 3.1. For conservation laws (3.0.1),

ry

i = 0; Vi S "lj S. n. (3‘1'63)

Proof. Let Li(u), Ri(u) be the left and right eigenvectors associated with \i(u),
that is,
LA -B,) =0, (A - B;)R; =0. (3.1.63)
In particular, we require that
Li(0) = &, Ri(0) = r; (3.1.64)

0=L;(A - B)Ry
= {& + L")} {(Ae - Big) + AV - B)w)} {r: + R{O(w)}
+O(lul?)
= &AM () - B{" (w)jr; + O(Iul’), (.1.65)

and bence that
LAD(w) - B (w)ir; =0, VU ER", V1SiSn. (3.1.00)
In pasticular, we have

T = &AY(r;) - B (s,)lei =0, V1S i, 5 S .



This completes the proof.

If we use f"}. to denote the interaction coefficient introduced in [83], then it is

straightforward to check that
B4y = GAM(r)) = 2B (r))]res.
The following lemma describes the relation between I, and ['},.
LEMMA 3.2. For conservation laws (3.0.1)
Ty = Py = 2" (r, 00, Y1 Sijik <,
where &, is the Kronecker symbol.
Remark 3.1. 1t follows from Lemmas 3.1 and 3.2 that

(). D= Y1Sijksn, igk,

). AMe)) =, Vigijsn

Proof. Since
B{(r;) = A{"B{"(r;) + A{"(r;)Bo,
we have
Iy = &[AY(x)) - B (r))lra
= &IAM (ry) - "B (e ~ AL (e; Mo Bors
- Eﬁ — a\(;)(?j)‘ﬂ-

(3.1.67)

(3.1.08)

(3.1.00)
(3.1.70)

(8.1.71)



Next we integrate (3.1.58) to yield an explicit solution for E?’(Q,. 8,). This is
accomplished using the method of characteristics.
Forall 1 <i < n, i # p,q, the bicharacteristic

do ) ) y(@ <.
T2 = A" - AP, L= 2P, (3.1.72)
implies that
8, = 8+ (A? = A0)s,,, (3.1.73)
0, = 0 + (A" = A)sp,. (3.1.73b)

This corresponds to the fact that the bicharacteristic when triced backw
(0,,0,) intersects t = 0 at (67,07). Thus, # =% and

_ A0 _ @) A0 _ A©
PO 0 » X0 ~a0

4y = ﬁ (3.0.73)

0 A, (3.1.74)

As there is no contribution from the initial disturbance to any wave mode at O(c?),
integration along the bicharacteristic (3.1.72) from (phq, ¥},) t0 (05, 0,) yields

0{(0,00) = 3T5, (A — A)~11s3(0,) - o3(0})
+ 3T = AO)13(0) - o3}
+ [T {Therddete+ O - XNlejlol + 4 - 4

+Tiy0plly + (A = Aelo by + (A - AM)a)} o,
VigisSn, i¥peq (3.1.78)

e



Similarly, we have
1 -
o(1)(6,,0,) = Er;,(,\(,m - M) =Y [od(8,) — 03(6,))

%
F T30 = X0 71030) [ ot
[ 4

(3.1.77)
o(8.8,) = 313, = X)'[s3(6,) - a3(8,)
"
+ L (A0 — \©0)=14!(4,) (8)ds.
o\ p ) %\ /.. Op(s)ds (3.0.78)

Meanwhile, we integrate (3.1.59), (3.1.60), obtaining
2(1(0,,0,) - AOe(1)(4,,8,) = (A - A(M)"! {A‘,"(r,)o,(&,)(O, -6,)

(l)( /" ( )da}
+A3(rg) oqs ,
e (3.1.79)

21(8,,0,) = A0 (8,,0) = (A = A2)* {X(r o) (0,0, - 0,)

%
+M(r,) /. o.(a)da} ' arm

or,
£12(0,,0,) = (A = 3)2 { [MOAD (1, )ep(0) - AP AP (re)oy(80)] (0 - 00)

%
+ /" [Asﬂ,\('l)(r.)c'(a) - A‘O)Asl)(r,)c,(a)] Jc} , a181)

€0(0,,00) = (A = 30)° { [M(m, )0, (8,) - A (e des(00)] (0, ~ 8)
+ /.:. [4"('0)'0(‘) - ‘\(v"(")"(‘)] “} ' (3.1.82)



The O(c) problem is thus completely solved.

In summary, we have shown that for the system of hyperbolic conservation laws
(3.0.1) with the initial condition of the form

U,uo = €op(2)ry + €0y (2)ry, (3.1.1)

representing a small amplitude two-wave-mode disturbance, the asymptotic solution
takes the form

u = eoy(0p)rp + o4(0,)r, + € i o(1(0,,0,)r; + O(c?), (3.1.83)

"
im]

where of") (i = 1,2,...,n) are expressed explicitly by (3.1.76)~(3.1.78) and 6,,4,
are nonlinear phase variables defined by (3.1.2)-(3.1.5).
Meanwhile, the spatial-temporal coordinates take the perturbed form

z = 2(0)(0,,0,) + e2")(0,,0,) + O(c?), (3.1.84)
t = 1(9(0,,0,) + t")(0,,0,) + O(c?), (3.1.85)

where 2(9, ¢0 (1) ¢(}) are expressed in an explicit fashion by (3.1.47), (3.1.48),
(3.1.81), and (3.1.82), respectively.

3.2. The Signaling Problem

Now we turn to the signaling problem. Suppose the system of hyperbolic coneer-
vation laws (3.0.1) is perturbed from its base steady state u = 0 by the boundary
disturbance of the form

6 g = e0y(t)e, +coy(t)ey + O(), ¢ 20, (321)



where, as before, ¢ is the perturbation parameter and 0,(:), 74(-) are samooth scalar
functions with 6,(0) = 04(0) = 0, 0,(0) = o¢(0) = 0. The subscripts p,q are any
fixed pair of integers satisfying m < p < ¢ < n so that Ay > A, > 0. The O(c?)
term is added to accomodate well-posedness of the signalling problem, as well as to
specify the class of all admissible boundary disturbances of the form (3.2.1).

We restrict the domain of discussion to the quarter plane z > 0, t > 0 so that
the signaling problem is formulated as follows:

G(u); + F(u); =0, >0, t >0, (3.0.1)
U, .o = £op(t)Fp + coy(t)eg + O(e?), £ 20, (3.2.1)

uj,_, =0, z 0. (3.2.2)

For clarity in our future analysis, we impose the additional requirement that

%" = A%, 2(0) = 0, (3.2.9)

or, equivalently, z = {9¢ describes the leading wavefront and ahead of it the steady

state is preserved.

We first introduce nonlinear phase variables §,,0, associ
A¢ = Ag(u) defining them as solutions to

ed with A, = A,(u) and

(8))e + Ap(u)(0))s =0, (3.24)
0| o =t ~00 <t < 00, (3.2.8)

(0g)s + Ag(u)(0y): = O, (3.2.0)
O] ye =t =00 < t < 00, (3.2.7)



respectively.
In defining nonlinear phases 8,, 6, here, the main difference from the initial prob-
lem, as one can see, is that 6,0, are parametrized on the boundary rather than on

the z-axis.
The spatial-temporal coordinates are then transformed into nonlinear phase co-
ordinates, that is,

(z,8) — (0, 6,) (3.2.8)

T = 3(',, ")o t= t(‘?"')? (3’2'9)

which are inverses of the solutions to (3.2.4)~(3.2.7), that is, of §, = #,(z,t) and
0y = 04(z,1).
As was shown in the previous section, when we differentiate (3.2.9) with respect
to z and t, and take advantage of (3.2.4) and (3.2.6), it follows that

zo, = Ag(Aq - AP)-‘/(‘p)so ze, = Ap(Ap = Ai)i!/(‘l)ii

(3.2.10)
to, = (Ag = 2p)"/(0,)ss ta, = (Ap = A" /(09)s. (32.11)
These, in turn, provide
2o, ~ Agte, = 0, (3.2.12)
= Mpte, = 0. (3.2.13)

w(z,t) and hencethm‘dmh-:d‘l, 0,(2,() ndi.-‘,(:,i)
Again, throughout the derivations in this section, u will be assumed to be a smooth
function of = and ¢.



Now, under the new phase coordinates, the governing equation (3.0.?) is trans-

formed, as in the previous section, to

te,(A — A¢B)uy, —to (A — AyB)uy, =0. (3.2.14)

We now employ (3.2.12), (3.2.13), and (3.2.14), which constitute the full sys-
tem transformed into (6,,60,) coordinates, and seek an asymptotic solution of the

signalling problem in the form
u = cul?(0,,0,) + 2u'')(0,,8,) + O(c*). (3.2.15)
Also, the spatial-temporal coordinates are assumed to take the perturbed form

z = 2)(0,,0,) + ¢2*)(0,,0,) + O(c?), (3.2.16)
t = 1(0,,0,) + ct*)(0,,0,) + O(c?). (3.2.17)

To find the asymptotic solution (3.2.15)(3.2.17), we expand (3.2.12), (3.2.13),
and (3.2.14) to formulate the requisite O(1) and O(¢) problems. This was accom-
plished in the last section and gave

O(1) problem:

th (Ao = A"Bo)ul) — (Ao - A"'Bo)uf) = 0, (3:218)

(=1 - A?), =0, (3.2.19)
(,(0) - A:"t"’)., = 0. (3.2.20)



O(e) problem:

f(m(Ag A(O)Bg)u") t(o)(Ag A(n)Bo)u“) = M;, (3.2.21)
(i(i) A(ﬂ)g(l))' = H,,

(3.2.22)

(0 = MOy, = Hyy,

(3.2.239)

M= 3 {6 (As - Bpay)ul)) -4 (Asy = By uf)},

ky+hym1 B (3.2.24)
Hypy = Apaty), (3.2.25)
Hyp = Agaty). (3.2.26)

3.2.2 Solution of the O(1) problem

Wemmnnthpdhmh:ﬂwthenpﬂm;mbm For the convenience of
iscussion, we adopt the convention that

o,(t) = o,(t) m0, t<0. (3.2.27)

This convention allows us to extend our domain of discussion to £ 2 0, —0c0 <t <
0.
boundary, that is,

=0, b= =t (3.2.28)



can be written as

£06,,0,) = 2(V(0,,0,) =0, k=0,1,2,..., (3.2.29a)
t©°(0,,6,) = 8,, t(8,,6,) = 6,, (3.2.29b)
t(1(6,,0,) = t(V(0,,0,) =0, k=1,2,..., (3.2.29¢)

when (3.2.16) and (3.2.17) are employed.
Now let us consider the O(1) problem.
First we integrate (3.2.19) and (3.2.20) over 8, and ,, respectively, to obtain

£® - A0 = £(9,),
£ - A0 = g(o,),

which, upon using (3.2.29), give

20 - OO o _xO)g, (O _ \OHO) - _ (g,

or, alternatively,

(0),(0)
£ a (F}g_“hﬁ) 0, - 4,), (3.2.30)
- Ap

t© = A O - A0)=1g, + 2D — A, (3.2.31)
It then follows that (3.2.18) reduces to

AO(Ao = AOBo)uY + AL (Ag - XOBo)uly) = 0. (3.2.32)

e z':.g»(o,, Oy,
=]



and substituting it into (3.2.32), we obtain
(0) (0)
MDA — A0 )9;-,-;- + A0 - ,\‘,°’)-8—;‘:- =0, i=12,...,n (3239)

The general solution to (3.2.33) takes the form

o(”(8,,0,) = ;OO = 20, - AP - X)),

YViSisSn, i¥pg, (3.2.34a)
0;0)("' 0) = f5(6,), (3.2.34b)
dzo)(.,,") = fo(0q), (3.2.34¢)

where fi(-) (i = 1,2,...,n) are arbitrary C? functions. Upon invoking the boundary
condition (3.2.1), it follows immediately that

fi(-)=0, V1<i<n, i¥pgq (3.2.380)
T5(0y) = 0y(0,), fo(0g) = o4(0y), (3.2.38b)

so that we now have
w®(0,.0,) = 2,(0,)¢, + o,(0,)s,. (3.2.36)

Clearly, (Ao — A" Be)ul?’ snd (Ae — A;"Bo)ul) vanich separately in (3.2.33) or
(3.2.18).
Employing the above results enables us to simplify the O(c) problem.

3.2.3 The simplified O(c) probiem



We note from (3.2.24) that

M, = ()(As = Bpa)ul? — ¢ (As - By, )up)

'\(0) 0)
¢ TN

- (s s - B )] 2

= (A - )~ { AD [ AV (g,) - B('n)(,’)] £,05(0,)0}(0,)
+ 30 [AD(r,) - BOr,)] rp00(04 ) (0))
+ ‘\('o) :Am('r) - B(."("p)] re0p(0))0q(6,)

+2 [AD(x,) - BY(r,)] reoe(O0)oy0)} (3.237)
Similarly, from (3.2.25) and (3.2.26) we obtain
H,g = A' 1':
( 20 _ A«» 35 (wo)
T;_L.U M (e, )ap(0,) + A (ry)ay(9)] |
( 2 - ) [ R oo ] (3.2.38)
Hea = Agaty)
() e
(‘T.T‘\;ln) [“m("v)'r(‘p) +AM(r c)‘i('!)]
A = A9 (3.2.9)

a(0,.0,) = 3" o8, 0,).,
=)



and applying, for each 1 £ i < n, the left eigenvector £ to (3.2.21) (with k = 1),
we reduce the O(¢) problem to the simplified form

, a.(1) (1)
\0)(3(0 _ 5029 ©)(1(0 _ y(ony e
== A(gmr;j’?(.p)’;(’r) = AT, 4(04)03(9))

= AT},05(0))04(0y) = M Toqae(04)oy(0y), 2 40
(3.2.40)

(29 = MOy, = MO - XO)~ [AD(ry )y (0y) + A}."(r.)c.(i.g.
’ ' f 3.2.41)

(21 = ALD)y = AP = AP [A(q‘)(fp)’p(—‘p) + A?’('v)’q("g:
5 ’ 3.2.42)

3.2.4 Solution to the O(c) problem

Again, the O(c) problem in its simplified form may be integrated to give explicit
solutions. smﬂcaﬂy.themmhhn:h«r}"mhmhdmtmm
bicharacteristic

Te=A000 - A, Qe oA, (e2e)

However, the current situation is somewhat intricate when compared to the O(¢)
intersect either the boundary s = 0 (¢ 2> 0), or the leading waveliont §, = 0, or
both of them.

For our analysis, we divide the half plaae £ > 0, =00 < ¢ < 00 into thees regions



specified as

Dy = {(6,,0,): 0,0, >0}, (3.2.44a)
Dy = {(6,,0,): 6, <0, 6, >0}, (3.2.44b)
Dy = {(’pv’q) : .pi" < 0} ' (3.2.44¢)

and depicted in Fig. 3.1 below.

0, =0,

(a) (b)

Fig. 3.1(a): The (0,,0,) plane. (b): The (2,¢) plane.

In the (z,t) plane, the above specified regions as shown have clear geometrical
m Indeed, Dy is the steady state region and #; = 0 is the leading
acteristic for Ag, whereas Dy is a perturbed region which is ahead of the leading

ristic §, = 0 of A,. As we shall see later, there is a simple wave region next
hl,iﬂhﬂn “hpﬂﬂﬁlmhtmﬁﬁlm in the half

Thhaind’hﬁiﬂﬁh *hﬂmhﬁhﬁdﬂ ' teristic
passing through (6,,0,) intersects the leading wavefront 8, = 0 at (6;,0). This



implies that

0, = 05 + MO\ = Ay, (3.2.452)
0y = MO - a0y, (3.2.45b)

(3.2.46)

(3.2.47)

(Q) ( A(ﬂ) A(D) )

This case occurs only when §; < 0.

The next case we note is that for which the bi teristic passing through
(0,,0,) intersects the boundasy 8, = 8, (or, alternatively, = = 0, ¢ > 0) at (65,07).
This, in turn, implies that

0 = 0+ 230 = XMea, (3.2.4%)
0y = 0 + MO = AM)saa, (3.2.48b)

APOP - ),
AP - A ”

intersects the boundary if and only f a; = 0.




each 1 <i < n, M? ¢ 0, denote

b= MO 0D e MO A
e Ag N Agm(’\(im_ .\}."))

' (3.2.51)

and call
. p;',‘p + pgpig = 0, (3.2.52)
the separation line for the ith mode. As particular cases, we find

I?: 6,=0 and I'': 6, =0.

The following lemma . .certains the position for each I¥ (i # p,g; A" # 0).

LEMMA 8.3. (i). 10 < A < A, then IV ¢ Dy, (ii). B AL < A < A, then
¥ € D, (iii). I A2 < A?, o A(? < 0, then [ ¢ Dy

Pho+ Py =1, (3.2.53)

(). 0< 2 <A,
Now gl > 1 and p{, < 0. On the boundary of Dy we have

whean 0, = 0,, and

o = sty + sty = iyl <0,



when 8, = 0. This suggests that a; changes sign in D, that is, rMco.

(i) M <A@ <2,
Now 0 < pi,, p}, < 1. On the boundasy of Dy, we have

when 0, = 0. That is, a; changes sign in Dy; and hence I C D1

i) M2 <A or A <.
In both situations we have pi, <0, p}, > 1. Thus V (,,0,) € Dy U Dy; we have

a; = P‘”‘p + P:'.q

= 0y + ppy(0p — 8y) >0,
and so I is not contained in Dy U Dy, and hence I C Dyjs.

This completes the proof.

The next lemma is in fact a corollary of Lemma 3.3 and specifies under what
circumstances will a bicharacteristic intersect the boundary, the leading wavefront,
or both of them.

LEMMA 3.4. V (0,,0,) € DyUDy U {0, = 0}, the | istic (3.2.43)

passing through (6,,4,) will intersect

(i). either the boundary £ = 0 (¢ > 0), or the leading wavefront §, = 0, that is,
2 = A%, but only one of them when 0 < A < A",

(ii). both the boundary £ = 0 (¢ > 0) and the leading wavefront §, = 0 when
N® c00r A? > 2,

represent the bicharacteristic passing through (4,,4,)-



Fig. 3.2(a): The (4,,0,) plane with separation line I'' C D;.
(b): The (0,,0,) plane with separation line I' C Dy;.
(c): The (0,,0,) plane with separation line I C Dyy.

We are now in a position to integrate (3.2.40) along the bicharacteristic according
to the cases classified above.

Casel. 0<N? <2l” andigp.
Now I C D} U Di1. There are two subcases.

(i). When a; = pi 8, + pi,0, > 0, we integrate (3.2.40) from (a,a;) to (6,,8,) to
obtain (see Fig. 3.2(a), (b))
o("(8,,0,) = o{"(ai00) = 3T - A '1e3(0,) - }(ai)]

O S e

+ o ,4.1 3 /: {*%"!“.v;ln:.» +Aipoloy[0y + £)e(0) — 3))
+‘\". )l"‘"c,[p;.l, + ".‘]‘;[‘c + "”(" - ‘)]} ds. (3.2.54)



(ii). When a; = p} 8, + p}y0, < 0, we integrate (3.2.40) from (3;,0) to (0,.0,)
(sce Fig. 3.2 (a),(b)) obtaining

o(8,,8) = = 3T = X)) o}(8,)

§ri (A““ ‘\(im)‘ljg(’!)

, 1 b i R

A(ﬂ)( ,\(ﬂ) A(ﬂ))
"o ["*,\, (¢ —A“')(' "]

Case 2. '\(G) <0or Am > ;\m

In this case Lemma 3.1 asserts that I C Dyy. Aliﬂdiﬂhdhlﬂﬁli? the
peculiar nature of this case resides in the fact that the bicharac ¢ passing
through (0,, ,)mﬂmtamtbﬂhthebmm&rys-ﬂ(!?ﬂ)mdthhdh;
wavefront z = A%t Here we integrate (3.2.40) from (6;,0) to (0,,0,) (see Fig.
3.2(c)) obtaining an expression which is the same as that in (3.2.55). In particular,
we specify that on the boundary

o0y, 00 ] m0,me = = 3TN = X130
- —r‘ (.\“" - A9)=tg3(t)

- /: {A“’I“ o4(s)

+ E(QDS!(D) !( )!(. 0
AP - AP)

xa'[t

+ATS o (s)e, [t +



Case 3. i=p,gor N =0

(i). When i = p, we integrate (3.2.40) from (6,,6,) to (6,,8,) keeping 6, a constant
along the path to obtain

o(1)(6,,0,) = 0{1(6,,6,) - %r:,(x‘,” - MN)=1{s3(0,) - 03(8))]
= D2, (A ~ A)"20,(6,)o(0,) — 04(6))). (3.2.57)

Similarly, when i = q, we have

o0y, 00) = o{(8y,0) - STE (M - A7) [03(0,) - 73(0,)

=TGP = AP) " 04(0,)[04(0)) — o5(8y))- (3.2.58)
(ii). When A{?) = 0, we have the situation in which the bicharacteristic degenerate

to the boundary itself. Integrating (3.2.40) from 0 to ¢ we obtain

rs r
AU O0)mayme = 3 RO+ 3 3T

¢ B . o .
+ 40~ P b + 4 Faeedeat] o

This completes the integration of (3.2.40).

Meanwhile, for the perturbed spatial-temporal coordinates, we integrate (3.2.41)
and (3.2.43) with respect t0 6, and §,, respectively, cbtaining after some simplif-



cations that

21 = (A _ A()-2 { AL A2 -0
e Tp ““"(I‘,)d’p(dp) A. (Pl)gi(’i) (e }
. 'Ag'o)z’ (s) A(n):g (‘) o
+/'- ;3"(;.) “’(;,) def (3.2.60)
¢(1) = (A(a) _ A(P))i—? { ‘\(9) A(ﬂ) .’)
. o | Am)ﬂ' (!) 4\?’6 (’) o
+/o, Ak A |¥] (3.2.61)

The O(c) problem has been completely and explicitly solved.
In summary, we have shown that for the system of liyperbolic conservation law
(3.0.1) subject to the boundary condition

ul, o = €oy(t)ry + coy(t)ry + O(c?), (3.2.1)

takes the form

u = £0,(0))ry + coy(y)ry + ¢* i gim(‘pi.!)?i + 0(c®), (3.2.02)
=1

where the o!")(i = 1,2,...,n) are expresse

explicitly by (3.2.54)-(3.2.50) and 6.,

are nonlinear phases defined by (3.2.4)-(3.2.7). The spatial- coordinates
take the perturbed form
2 = 209(0,,0,) + e (0,,0,) + O{c?), (3.2.62)
t = 019(0,,0,) + ct')(8,,0,) + O(s*), (3.2.69)

where 2(9, (9, 2()) and ¢(*) are given explicitly by (3.2.90), (3.2.31), (3.2.00), and
(3.2.61), respectively.



It is well known that the signalling problem differs significantly from the initial
value problem in the way the boundary or initial conditions are prescribed. The well-

disturbance is assigned (see, for example, (23] and [34]). However, in the course
of solution, we have specified the class of boundary disturbances admissible for the
asymptotic solution constructed above. We state these findings as follows,

Remark 3.1. Under the requirement that ahead of the leading wavefront 8, = 0, or
alternatively z — A‘.mi = (), there exists a steady state region, the class of boundary
disturbances admissible for the asymptotic solution (3.2.62) is specified precisely.
That is,

U, 0 = €0p(t)ry + eoy(t)ry + £ i o "(t)r; + O(eY), (3.2.64)

wherein o{")(t) = (") (0,,8,)|,, .. o p» a0d:
(i) V1Si<Sn,if M > A or A <0, o!')(t) is specified by (3.2.56),
(ii). V1 <Si<n,if M =0, o!')(t) is specified by (3.2.59),
(i) Y1 S i S n, if 0 < A? < A, 6{"(t) can be any C! functions satisfying
() _
o) (0) = <4-(0) = 0.
Secondly, as we have already observed, at the O(c?) order, each separation line
F(V1<iSn: 0<M? <) separates the regions of dependence for the ith
wave mode. We thus have the following remark.

Remark 3.2.¥ 1 < i S nand 0< A < A?, I separates the region {(6,,0,) :
a; > 0}, in which ¢{')(0,,0,) depends on the boundary disturbance function o{''(:),
from the region {(0,,0,) : a; < 0}, in which o{'(0,,0,) is independent of #{'’(:).
See Fig. 3.2



Remerk 3.9. The region {(6,,0,) : ae-1(8,,8,) < 0, 8, > 0} is a single phase
region, that is, u(6,,6,) depends upon 68, only.

In fact, this recovers, for 2 x 2 systems, the classical result of Courant and
Friedrichs [8] which states that next to any constant region must be a simple wave
region. The single phase region is depicted in Fig. 3.3 below.

Oq-1=0
(b)

Fig. 3.3(a): The simple wave region in the (z,t) plane.
(b): The simple wave region in the (6,,0,) plane.

3.3. Propagation and Interaction of Weak Sound Waves in Gas Dynam-
ics

the equations of ons dimensional gas dynamics which, in the abssnce of visoosity,



have the following conservation laws [58,62,71,78):

pe + (pv)s = 0, (3.3.1)
(pv)e + (pv? +p)e =0, (3.3.2)
(e + 300" + (pev + 300 + o) = 0, (3.3.)

where p is the mass density, v is the flow speed, p is the pressure, and ¢ is the
internal energy per unit of mass. In addition, we introduce the entropy S and
the temperature 7. We assume, as is conventional in thermodynamics, that given
any two of p,p,e,T, and S, it is possible to obtain the remaining three through
constitutive equations. We shall use p, v, and § as the dependent variables in the
above equations. Moreover, we adopt the constitutive assumptions stated in [03)
which are as follows:

(i). p, e, and T are smooth functions of p and S and they satisfy the thermodynamic
relation

TdS = de + pdp™*, (3.3.4)
which, in turn, implies

¢, =p/p’, es=T, (3.3.5)

(ii). Clearly, p > 0, p > 0, and T > 0. Furthermore we assume that

c’ =py, > 0, ps = "Tl >0, (:';'B)

where ¢ = ./, > 0 is the sound speed and ps = p*T,, follows from (3.3.5).



We now write (3.3.1)-(3.3.3) in matrix form as

(b 2 2)C)
v p 0 v
h+}v? v pT) \S/,

v P 0
+ vi+p, 20v Ps v)] =0
vp, + hv + jv* ph+ §ov? vps+ T /) \S/,
where we have introduced the enthalpy
h#e4p/p.
The system (3.3.1)-(3.3.3) or (3.3.7) admits the steady state solution

p=po, vEuvg, SuSo,

where pg, o, and S, are constants.
Now let

p=potu, v=1g+uy sisﬁ+‘§v
so that (3.3.7) may be written as
B“I + A“; = o‘

with u = (U],“,,US)T and

v P 0
A(I)!( 'Q’Pp 2w rs )I
ep,+kv+ jo* sh+jo? vps+vpT

1 0 O
B(u)!( v /) D)
h+jv? po T

(33.7)

(3.3.8)

(3.3.9)

(3.3.10)

(3.3.11)



Now, from det(A — AB) = 0, one¢ can readily compute that the eigenvalues

associated with (3.3.9) are

AMmp—=¢c, Myg=v, Agmu4c.

After some straightforward calculations, we find that about the steady state u = 0,

we have

Agg)ivﬂécﬂi ‘

1

(alelio )t (lvg B ho) po(T,)o, —coTo — po(T,)ovo, m(T,p o),

iyt

-3

) K
(3.3.

=lil:_)
& EEEG°?%M'1‘> (3.3.

A = v + o,
1

“ = tndTs

x (an(m —w)+ (gug - ;.,) po(T, Joy coTo ~ mnm.n(m) >

12)

13)

-(3)

(3.3,

14)

| quantity at



We now consider the propagation and interaction of weak sound waves generated

by either initial or boundary disturbances.

3.3.1 Propagation and interaction of two weak sound waves arising from initial

disturbance

We take the initial perturbation to be

uj,_, = €a1(z)r1 + cos(z)rs

po ~ [ro
= ¢0)(z) ( -co) + eos(2) (Go) ’ (3.3.18)
0 0

that is, we choose p = 1 and ¢ = 3. 0(-) and o3(-) are smooth scalar functions.
The results derived in the first section of this chapter suggest that the perturba-
tion solution will be

u =coy(0,)r, + cos(0)r; + e i’?)(‘h") + Q(Ca ) (3-3.16)

t=]
where 02”(01.03) satisfy (3.1.58).

We now carry out the computations to find the interaction coeficients I}, , where
by Lemna 3.2,

P = & [AO(r)) - 2B (r,)] v = A0 (e . (3:317)
First we expand A; (i = 1,2,3) about u = 0 obtaining

A(w) = A2 + A" (w) + O(lel®), (3.3.18)

m



in which

A(u) = (--co (Posdor 1o =565 (PpS)o) (3.3.19)
MY(u) = (0,1,0)u, (3.3.20)
N (u) = (%ca’(p.,)o. 1, %ca‘(p,s)o) u. (33.21)
Thus we have

W) = -2(n) =co + %(m/co)(p”)o 4 q, (3.3.22)
M(rs) = =2{(r) = co - 'l'(Po/Co)(Pn)o 24, (3.3.23)

AV (ez) = =2 (e3) = 3eolps)o = ge3 " (Ps)olpprlo 2 4,
(3.3.24)
A(rs) = =25"(rs) = oo, (3.3.25)
A" (r;) = 0. (3.3.26)

The fact that A" (r;) = 0 implies the local lincar degeneracy about the steady state
solution of the characteristic field A3 = A(u) = vy + u3.

Further detailed calculations give us the pair of relations required for the evalu-
ation of the interaction coeficients, namely,

c(v,w) & B{'(v)w

0

- v w3 + VW,

( ’:.dvl'l + povawy + (pT, Jovawy ) (3.3.27)
+o(v193 + n3w;) + (pT, Jo(viw3 + v3wy) o



and

D(v,w) 2 AV (v)w
( , v1ws + vaw)
(Pos)oviwr + 2p013w3 + (Pss)ovaws
 +2u0(vywz + mwy) + (Ppslo(viws + vaw)
= | vo(p='c? + ppploviwy + Spovovaws + [vp(pT),slovsws

+(h + ¢+ §v?), (viws +vawy) 3.3.28)
+{(p(pT)s)plo(v1ws + vaw1)
\ +pol(pT,)plo(vaws + vaws)

Now we compute the interaction coefficients to get

F%] = P?] = rg; = F;, = O; (3-3-&)
ng‘; = rgl = ﬁ: = rgn =0, (3.3.29)
My =T} =0, [}, =13 = -5 (3.8.29¢)

We further simplify the problem by taking the base flow speed to be identically
zero, that is, vo = 0. Thus (3.1.58) reduces to

n.(1) 3
8oy __ (%) {03(0:)(0(83) + 1 (8)0}(%)}

e, (3.3.30)
80" 803" g (3.3.30b)
o0 08 a
,&7“) B , ) 7 7 -
ot B (3 WHRPPRW] Y (0)} .
oL M (h) (sl +entriOl},
whereas (3.1.59) and (3.1.60) reduce to
o= = et = (ﬁ) [aos(®) - Ber (M), (3.3.31)

3" +at™) = (L) 1) tan@). (3



After integration we have

(§-(2)-
(5) o (3) (3

p - m
+é (-'5%) %03(’3) - %03(01) —0y(61)o3(0y) + 0,1(6))0:(63) (—rn)

. fo
+e (-%) .%af(ﬁ) —a,(O;) 01(03)6:(33)+§|(91)ﬂ:(5;)i (fﬂ)

+0(c*), (3.3.33)

'-('|+‘a)+¢( ){0(03 01)[01(0)) — 03(63)]

+8 /. le1(s) - os(a)lds} +0(c?),

2 ) (3.3.4)
- (-21-0) (O -0) +¢ (%) (al0s - 0)[or (01) + o3(8s)]
L
-p / [oa(s) + oa(s)}ds} +0(c?).
o 4
In particular, we may note that
S = 5o + O(®), (3.3.35)

00 that the entropy wave is a higher order effect.
As a particular example, we shall carry out some numerical experiments for &
polytropic gas for which (70}
T-.’I‘.”-.v r= R“h‘o e=ec,7, (3.3.30)

17



where R = c, ~ ¢, > 0 is the gas constant, ¢y > 0 and ¢, > 0 are the specific heats
of constant volume and pressure, respectively, and 1 < v = ¢,/c, < 2 is the ratio
of specific heats. After some direct calculations we find that

and, as 1 < v <2, we have ] < a < } and } < § < 1. The figures that follow
represent calculations performed for air at a moderate temperature, for which (8]
~ = 1.4 and hence a = 1.2, and § = 0.8. For both the density waves of Fig. 3.4 and

oy(z) =

(3.3.38a)

[(I - g), = IPI |2 = Zl <1,
0, |2 - 2' >1,

{[(:4—2)’-11!. lz+2| S 1, 7
ay(z) = , , (3.3.38b)
0, ls+2|>1.
that is, o3(z) = 0y(~2).

In the sequence of time frames t = 0,1,2,3, and 4 shown in Fig. 3.4, the prop-
cal work is very straightforward. Shown also in Fig. 3.5 is the propagation and
nonlinear interaction of the velocity waves.
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disturbance

We shall perturb two sound waves at the boundary, that is, we pick p= 1, g = 8,
We therefore require that

A = vy —co >0, (3.3.99)
ur, equivalently, that
Mo = vo/co > 1, (3.3.40)

where M, is the Mach number for the steady state. That is, our base steady state
is & supersonic steady flow.
In light of Remark 3.2, we may take the boundary perturbation to be

ul, o = cor(t)r1 + cos(t)rs, (3.3.41)

where ¢ is the small perturbation parameter and ,(+), o3(:) are smooth scalar

01(0) = ¢}(0) = 0, 3(0) = 03(0) = 0. (3.3.42)

be

3
u = oy (0)rs + cos(B)rs + 62 Y o{" (04,0 )r + 0(s?), (3.3.43)
=)
with o{")(#),0) satisfying (3.2.40).

We compute ¢ “(!.,0.)(: = 1,2, 3) by directly integrating (3.2.40). Here we note
that the interaction cosficients, as have besn detailed in the previous subsection,
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rh = F}, = T‘}, = ij; = 0. (3‘3'2“)
F%; - rgl - ﬁ’ - T;I = 0, (3.3.20b)
l‘h - Fga =J, F}I - f‘g] = =1, (3.3.29¢)

where 8 = co ~ }(0o/c0)(Pss)o-
Therefore, (3.2.40) reduces to

891" _ (L) (0,(6:)0%(85) + 03(83)a (8
-ilr - (E) {01(0,)0}4(0) + E:(’;)f:(.(la)i}im)

{1) (1)
1+ “‘)%T +(1- u;)’—;;i— n 0, (3.3.44b)

89" _ (B (01 (026" (81) + os(8a)0" (8]
s (ﬁ) {02 (01)0}(0) + w:(’:)’n(‘: g.'i.m)

In the mean time we have from (3.3.22)-(3.3.26) that
N(e3) = -A"(r1) = a,
N(es) = =230(r1) = 5,
M) = -23"(ra) = 4,
'\(ju(r!) = —‘\g"(ﬁ) = o, ‘\g"(ﬁ) =0,

where a = co + §(so/co)(Pps)o and & = fco(pps)o = §5 " (Ps)o(Ppp)o. Thus (3.2.41)
and (3.2.42) reduce to

[0 - atate - 0], = (5552 t-omiwr ¢ Bnte.

[ - a4 1)) = %){h-m—mm)- o
. , (33.46)



Upon integrating we find

(§-()-
(§)omn () ()

+e (i) Lo303) - La3() - an(@)os (@) + ar(t)ox(8)] [ oo
2c° .2 3 2 FiN4 ] 1\9} )93\¥]) 1 3 ] 0

2 ﬂ 1 2 )| 2 - Po
e (E) 391(01) — 301(0s) = 01(8)os(6) + o1 (fh)os(4s) (?)

L) (3.3.47)
r= %(ug = 1)co(0s = )
+ 5{a [(Mo + 1)%01(81) + (Mo ~ 1)'0a(8)] (4 — )

+8 A ” (Mo = 1Y'01(6) + (Mo + 1)%os(s)] ds} + (e?), (33.49)

o = 3(Mo~ 1) + 3(Mo + 1)y
+ g {-al(Mo + 1)ey(#) + (Mo - 1jos(®s)] (85 - 1)

s
+8 A [(Mo = 1)3(s) + (Mo + 1) (s)] ds} + O(e?). (33.49)
We also note in particular that
S= s. + O(C'). (‘w)

indicating that the entropy wave is a higher order effect.
We carry out our example calculation for polytropic gas for which

T a7 pu Re¥%, ¢me,T, (3.3.30)



with the constants R, ¢,, c, as explained before. 1 < ¥ = ¢,/c, < 2 and we have

a-’—“. f=

3-1
3 :

3 (3.3.37)

Figure 3.6 and 3.7 below depict the density and velocity waves, respectively. The
calculation is performed for air at moderate temperatures with Y = 1.4 and hence
a=12 3 =0.8. We also choose, for simplicity, Mo > 1 and pp = o = 1. For both

waves, the input functions at z = 0 are

1-(@-1), jt-1<1,

oy(t) = (3.3.51)
0, [t-1]>1,
1-(¢-3)?%?7 |t-3I<1,

o3(t) = . (3.3.52)
0, t-3I>1.

that is, o3(t + 2) = 0, (t).

In the sequence of time frames t = 1,2,...,9 shown in Figures 3.6 and 3.7,
the propagation and nonlinear interaction of both density and velocity waves is
depicted clearly. We cbeerve that, as My > 1, the waveform associated with mode
r; overtakes the one associated with mode r,.
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CHAPTER 4.

4.1. Introduction

In the context of geophysical fluid dynamics, the shallow water model, which de
scribes the dynamics of a shallow, rotating layer of homogeneous, incompressible,
and inviscid fluid, has long been studied and considered prototypical for being ea-
pable of capturing important aspects of atmospheric and oceanic motions as well
as giving insight into the nature of the subject of geophysical fluid dynamics,

The shallow water equations ve are interested in are

ue + uy + vuy, — fv = —gh,, (4.1.1)
vy + uv, + vv, + fu = —ghy, (4.1.2)
he + {th - hp)u}, + {(h - ha)v}, =0, (4.1.3)

when a sheet of fluid with constant and uniform density (as shown below) is con-




The notations used are as follows: u,v represent flow velocity in the z and y
directions, respectively, h is the height of the water surface, and hp describes the
bottom topography, while f is a constant reflecting the action of the Coriolis force
due to the earth’s rotation. Obviously, (4.1.1) and (4.1.2) follow from the momen-

pressure is assumed to be hydrostatic. See, for example, J. Pedlosky [67)] for more
detail.

The shallow water equations (4.1.1)-(4.1.3) can be rewritten in a slightly different
form. Take the constant H to be the mean surface water height and 7 the surface
elevation from the mean, then h = H + n and (4.1.1)~(4.1.3) become

ur + uug + vuy — fv = —gn;,, (4.14)
Ve + uve + vuy + fu = —gn,, (4.1.5)

where ho = H - hp.

When the shallow water flow is restricted to a partially bounded region, namely
a channel of width 2L oriented parallel to the z-axis, as shown in Fig. 4.2, the
lincarized theory gives rise to Poincaré, Kelvin, and Rossby waves. Among them,
Kelvin waves stand apart owing to the fact that they are nondispersive and exhibit
purely hyperbolic behaviour along the z-direction. In addition, their cross-channel
velocity vanishes identically.



Fig. 4.2: The channel of width 2L.

4.1.1 Linear Kelvin waves

Indeed, under the small amplitude regime, the linearized version of the shallow
water equations (4.1.4)-(4.1.6) is

ug = fv = —gn,, (4.1.7)
vy + fu = —gny, (4.1.8)

‘Taking v = 0 and hg to be a constant, we reduce (4.0.7)-(4.0.9) to

v = ~gns, (4.1.10)
Ju=—gny, (4.1.11)
m = —houys, (4.1.12)



which gives for n

Nee = CaNes, (4.1.13)

where ¢ = gho.
It is straightforward to verify that the general solution to (4.1.10)-(4.1.12) takes

the forin

z,p,t) = €%, (z + cot) + ¢ %03 (z —~ cot) + ¥(y), (4.1.14)
u(z,y,t) = -%n.(z,v.t)
= - L%, (2 +cot) + Le EV05(z - cot) - %‘v'(v), ,
co ‘o — (4.1.13)
where 0,,0; € C*(IR) and v € C'[-L, L] are arbitrary functions. Apparently, when

initial value problem is considered for the system (4.1.10)-(4.1.12), the equation
fu = —gn, puts a severe restriction on the initial data that can be prescribed.
From the general solution above, it is clear that only initial data of the form

n(z,9,0) = e%%a,(z) + ¢~ %a3(2) + 7(y), (4.1.16)
u(z,y,0) = —%n.(z.v.o)- (4.1.17)

are allowed.

We call (4.1.16) the admissible initial profile of surface elevation for Kelvin waves.

The above analysis provides, in the linear context, the full solution for the Kelvin
waves as well as some additional insights.

In fact, (4.1.14) indicates that, for any admissible initial profile of the surface
elevation, the variation in the z-direction translates into travelling waves, and is
counter-balanced by a guidence profile in the y-direction, of the definite forms, ¢%?
or ¢=%". The sign determines, in turn, the direction of the generated travelling




the right. The constant

as pointed out by Pedlosky [87], is an intrinsic length scale and called the Rossby
radius of deformation. It is the distance over which the tendency of gravity to render
the free surface flat is balanced by the Coriolis acceleration deforming the surface.
For the part of the initial surface elevation profile uniform in the r direction, namely
4(y), no particular guidance in the y-direction is required, but is rather related to
the uniform and stationary part of the initial along-channel velocity profile, namely
+'(y), again reflecting the action of Coriolis force to a moving flow.

Our objective in this chapter is to study the nonlinear version of Kelvin waves.
The basic idea behind our approach is as follows. We study the nonlinear shallow
water equations (4.1.4)-(4.1.6) in the small amplitude regime by using an asymp-
totic perturbation method, insisting upon the fact that the cross-channel velocity
appears only at the O(e?) order. Nonlinear phases are introduced to take account of
the nonlinear hyperbolic nature of the problem and the two-wave interaction theory
developed in the previous chapter is applied.

Now we formulate the problem and summarize the main results for nonlinear

Kelvin waves in the following two subsections.

4.1.2 Formulation of the problem

We are concerned with the nonlinear shallow water equations

4 + wu, + vuy — fo = —gn,, (4.1.4)
Ve + 4vg + vvy + fu = —gn,y, (4.1.5)
e + {(ho + n)u}, + {(ho + n)v}, =0. (4.1.0)

The fact that the flow is confined to a channel oriented parallel to the z-axis, as
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shown in Figure 4.2, leads to the boundary conditions,

DI':—L = vl.!L =0. ({-1-18)

The initial configuration of the flow is to be given later. We bear in mind that
proper formulation of the initial condition must ensure that the cross-channel ve-
locity v, as time evolves, appears only at O(e?). Here ¢ is the to-be-introduced
perturbation parameter. Hence a mixed initial boundary value problem is pre-
scribed.

The shallow water equations alluded to above can be nondimensionized. We
choose the half-width of the channel, namely L, and the shallow water depth ho
to be the typical horizontal and vertical length scales, respectively. The linear
shallow water wave speed co = /gho is designated as the typical velocity scale.
The following dimensionless variables are introduced

(Spv !’I) = (z,y)/L, n = n/ho, (4.1.190)

(v, v') = (u,u)!ég, (4.1.19b)
¢ =t/ (&) i (4.1.10¢)

As a result, the nondimensional shallow water system takes the form

e + 4l + Uy — V0 - 1y, (4.1.20)
v + v + vUy + Ve = —n,, (4.1.21)
m+ {(1 4 ), +{(1 +n)v), =0, (412)

v = fL/cy = L/R, (41.29)



is a dimensionless parameter which gives the rati iie -ngth seale
to the Roesby deformation radius. In the geoph 7 a length in
the scale of hundreds or thousands of kilometers #.,87 11, i ove model is
most proper for the description of oceanic moticr Ao ey v essentinlly
vanishes.

Also, the boundary conditions (4.1.18) become . 1 danensionization,

]y = "I.;. =0 (4.1.24)

y=-
We rewrite (4.1.20), (4.1.22) in the form

U+ Yug + 1 = VU = U,

ne+une +(1+n)u, =-{(1+ 77)”}' '

u + Au; = B(u,v), (4.1.25)

with

GRS (R N € ) S

Now (4.1.23) is coupled with (4.1.21) through B(u,v), which is rewritten as
Ve + vy = —pu =1y — v, & b, (4.1.27)

M=u=yTHn<rymut /140 (4.1.28)



effect, B(u,v) is alsoa hlgher order term. Thus (4.1.25) can be treated as a nonlin-
ear hyperbolic system and the two nonlinear phase variables 6, = 6,(z,y,t), 6; =
6;(z,y,t) are introduced and defined as the solutions to

01¢ + Ay (u)by . =0, (4.1.29)
g] Iiiﬂ = Z, (4.1.&)

and

024+ Aa(u)y = 0, (4.1.31)
.ilgﬂ = I, (4'1'32)

with rapect to that variable.

The existence and smoothness of §, = #;(z,y,t), 3 = 83(z,y,t) depend on, in
turn, the existence and smoothness of the solution to the aforementioned mixed
initial boundary value problem. This we shall assume to be the case.

We now transform the original spatial-temporal coordinates into phase-cross
channel coordinates. This is indeed an extended version of the noanlinear phase
transformation introduced in the previous chapter. That is

(.9, t) — (01,05,5°), (4.1.33)

b= ’!(si.i ‘)i (4—‘1&)
b = O(s,y.1), (4.1.36b)
=y (4.1.3¢c)



We write the inversion of (4.0.34) as

z=12(0,,0;,y°), (4.1.30n)
t= ‘(01,02.!/. )o (4-1.35‘!)
y=1y°'. (4.1.35¢)

As a result of the nonlinear phase transformation, we have the following differential

relations

8y +— 820y, + 62.:0s,, (4.1.36n)
8¢ — 01,‘80, + 02,(80,, (4136‘1)
8y — 61,40, + 63,400, + 0y". (4.1.36c)

The shallow water equations(4.1.25), (4.1.27) can thus be transformed into rep-
resentations in (6,,6;,y°) coordinates

te,(A = MI)uy, — to, (A = A3l)ug, = (A3 = Ay )te, te,(B* + D), (4.1.37)

l..(l -M )v., -~ to, (v = Az)ve, = (A2 = Ay)te, l.,(b' +d), (4.1.38)

respectively. Here D and d are related to §; , and 63 ,.

- =v(bigue, + by yve) \
D= (s, +mwds, — g {1+ n)vl..)' (4.1.9)
d = —(05m, +035m,) — v(b1 00, + b2 yvs,). (4.1.40)

Meanwhile, B* and §° are cbtained by replacing all differentiations with respect to



y by those with respect to y*, that is

= (ciaemm): (141

b* = —vu — nye — vy, (4.1.42)

]

We also note that, as in the previous chapter, the differentiation of (4.1.38) with
respect to 8,,8; leads to, after employing the definitions of two phase variables
(4.1.29) and (4.1.30) that

ze, = Aate, =0, (4.1.43)
26 = ity =0. (4.1.44)

Now the equations (4.1.37), (4.1.38), supplemented by (4.1.43), (4.1.44), and the
boundary condition (4.1.24), constitute governing equations in the new phase-cross
channel coordinates.

4.1.3 Main results

We now perturb the shallow water equations from their steady state (u,n,v) =
(0,0,0) and assume that an asymptotic solution in the following form is admitted

u=enl?(0),05,5°) + 2u')(0,,85,5°) + O(c®), (4.1.480)

n= 5"‘”(’!3’3: y')+ Ei"‘“(’h‘h") + Q(S‘), (iliﬂ)

v = cv'%(0,,05,5°) + 01 (0;,8,,5°) + O(c®), v mO. |

(4.1.48¢)

Here ¢ is the perturbation parameter. The requirement that v!* = 0 is imposed
to reflect the nature of the Kelvia wave. In particular, the leading term solution




water equations are linearized at the steady state.

z =1(6,,05,3°) + eV (6,,0:,1°) + O(c?), (4.1.46n)
t=1(8,,0;,y°) +ct(8,,8,,4°) + O(c?). (4.1.46h)

To derive the requisite O(1) and O(¢) problems, we need to expand the following

nonlinear (matrix, vector and scalar) functions

A = Ag+eA; +0(?), (4.1.47)
B’ = ¢B} + ¢?B; + 0(¢*), (4.1.48)

A = A 4 exiy + 0(?), (4.1.49)
b = ebg + €28} + O(c*). (4.1.50)

These are accomplished by first Taylor expanding the functions about the steady
state, then substituting (4.1.48) into them and collecting like powers of ¢.

Due to the appearance of 6, , and & ,, the expansions of D and d are more
complicated. However, as we shall sce, 8, , and &, have no contribution to the

O(1) problem. We write first

D = ¢Do + ¢’D, + O(c?), (4.1.51)
d = edy + e2dy + O(c®). (4.1.52)

Now, by substituting (4.1.45) and all the above expansions into the governing
equations (4.1.37), (4.1.38), (4.1.43) and (4.1.44), we have, after some straightfor-



0O(1) problem

t(ﬂ,(An _ A‘D)l) (0} - ‘(0)(A - A‘o)l)u(n)
vul® 4 ,7(0) =0,
29 - 3OO w0

(o) ~ AP0 w,

The general solution to the O(1) problem takes the form

- ()
_ { e 0,(0)) +-n(ni‘)} (_11)

+ {e""ﬁ(ﬁ) + ‘ﬁ(ll')} G)

with v(®) = 0. This recovers linear Kelvin wave solution when the phases are replaced

by linear phases.
Oc) problem

(Ao + l)um + (Ao - l)llm = —(A) = A, li)‘..
~ (A1 = Mal)ug)
+B;,

ivg) + ug) = —(d; +§),
(S(!) - fu))‘| - %Az.h
(s - 1), = ~ 201,

at a canonical initial boundary problem which describes the evolution of crom-



channel velocity

Paa — G38 — Syy + V2O = PO+ a,0 - a,y),

a>0, ~o< e, ~lay<],

¢I'--—l = él-i‘ =0,
8,0 =0, (4.3.53)
éﬂl.-o = dﬁ! v)o

where the cross-channel velocity is related to ¢ by
Mg B =~ [ oda.
oW(a,8,9) = - [ bda

where we have replaced by a, §, the nonlinear phases according to
h=f-a, bh=f+a,

and (), ¢() are all known functions.
Meanwhile, u(?), n(?) are all explicitly expressed in terms of v{!) and the perturbed

2=+ ge{6in(8 - a) - n(B+ala
+/"'l 0.3) - n(0,3)) )
e M7, ¥y) — NV, )| =
+0(c?),
y=y,
¢-o+%¢(-¢h(ﬂ+~.r)*ﬁ(ﬁ—-.ﬂl-
+ /‘_. [n(0.y) + n(0,y)] &9)
+0(*),



Thus n, /1 have the implication as wnperturbed z and t coordinates, respectively.

We point out here that it is only in the context of nonlinear Kelvin waves that
thin nonvanishing cross-channel velocity is expected and our treatment captures
this impoctant feature and provides a solvable linear initial boundary value problem
describing it.

The remainder of this chapter is organized as follows. In Section 2, we perturb
the shallow water system (4.1.4)-(4.1.6) from its steady state and seek an asymp-
tatic expansion solution in terms of the nonlinear phases. Meanwhile, the spatial
and temporal coordinates are also assumed to be perturbed admitting asymptotic

»ansions in nonlinear phases. We derive the requisite O(1) and O(¢) problems and
:ﬁlwthe()(l)pmblmi The O(c) problem is then discussed in the next section. We
carry out a reduction procedure and derive, as a result, the linear canonical initial
boundary value problem, thereby giving rise to the evolution pattern of nonlinear
and giving some particularly interesting examples in which the surface elevation as

4.2. Asymptotic Expansions and the O(1), O(c) Problems

4.2.1 Asymplotic espansions

cated, we perturb the shallow water equations from their steady state (w,n,v) =
(0,0,0) and assume that an asymptotic solution in the following form is admitted

u = ' (0),05,5°) + *u'V(0y,0,5°) + O(c?), (4.1.450)

= cn'™(0,0,0°) + '), 0,5°) + O(*), (4.1.45b)

v = v (0),0,,5°) + viV)(0,,85,5°) + O(c?), v¥ mO.
(4.1.48¢)



Here ¢ is the perturbation parameter. The requirement that v(® = 0 is imposed
to reflect the nature of the Kelvin wave. In particular, the leading term solution
(49, n(®, 1(®) will be seen to recover the linear Kelvin waves when the shallow

water equations are linearized at the steady state.

In the meantime, the spatial coordinate in the along channel direction and the
temporal coordinate are also assumed perturbed and they take the forms

z = 2(8,,0,,°) + ¢21(0;,02,4°) + O(¢?), (4.1.46a)
t = 10)(0,,05,5°) + ¢t')(8,,0,,4°) + O(c?). (4.1.46b)

Upon expanding all the releavent nonlinear functions, namely A,D,B*, A, b*,d
as expressed in the previous section( see (4.1.47)-(4.1.53)), we substitute (4.1.45)
(4.1.53) into (4.1.37), (4.1.38) and have, after some straightforward calculations,
the O(1) and O(¢) equations as follows

0(1)

oy (Ao = 3”1 - (Ao = A Dug, = (AP - AP )G (BS + Do)

i +dg=0. (422)



O(e)

t..)(Ao A(o)l)u(o) (0)(Ao A“”l)um
= = {66)(A0 - ANl - (A0 - 3 1)ul)
+(A1 = Malug) = t0(Ay = AgaD)ul)
+ ('\(0) A(o))(t("t(o) (o)t(l))(no + Do)
+ (A7 = Ae¢0(B; + D)
+ (21 = M)t (85 + Do), (423)
(=2l — (=AMl = (A = a6 (87 + dy). (4.2.4)

Also, by substituting (4.1.46) and (4.1.49) into (4.1.43), (4.1.44) and equating like
powers of ¢ we obtain

o(1)
:(‘:’) - A;”t‘,?) =0, (4.2.5)
A\ (426)

Ofe)
oD — KD = 30, (a2
) _ Agc)t(.:) - 4\1,1‘(.:). (‘-”)

Now (4.2.1), (4.2.2), (4.2.5) and (4.2.6) coustitute the O(1) problem, (4.2.3),
(4.2.4), (4.2.7) and (4.2.8) constitute the O(c) probiem.

However, before we solve these problems, some simplification is necessary. In
particular, we neod to make clear the role played by 6, , and 63, in order to express
D and d explicitly in (4.1.51) and (4.1.52). We do this in the immediate subsection.



4.2.2 Simplification of the O(1) and O(e) problema.

Consider

61 + M (u)dy . =0,

6, |i:o =z,

azgl + A?(u)—a?ii = oi

"’liiﬁ =7z
Differentiate (4.1.20)-(4.1.32) with respect to y to get

(O1.9)¢ + Mi(019)s = =2{"(u,)0) .,

’Lllgﬂ =0,

(03,9)e + A3(3,5)s = i?‘g“(‘!j)‘:.n
.iifliiﬂ = 0,

(4.1.29)
(4.1.30)

(4.1.31)
(4.1.32)

(4.2.9)
(4.2.10)

(4.2.11)
(4.2.12)

where ), = #;(z2,y,t) and b3 = §y(2,y,t) are supposed twice continuously differen-

.lj = sl(.h.h'i)n
by = Ex(1,0,,5°),

(4.2.1%)
(4.2.130)



we have for (4.2.9)

*d\g‘)(“.)a].g = E]ij + A!EI,S

= E) 0,011+ E1,0024+ M Ey 0,01, + M E) 0,03,
= Ej0,(010+ M01c) + Ey0,(030 + \162,;)

= E]‘E(A] - A})aﬂ,.n

that is,

Evn = =3{(u,)(h - 2a) 71 31

Eae = -3{"(u,)(%; - é\l)‘l:#i
1.s

By using (4.1.13) we rewrite (4.2.14) and (4.2.15) as

Ey 0y = X" (uy)(M1 = Ag)™! :—::-

Ene, = XM (uy) 0 - A.)-':—::-.

(4.2.14)

(4.2.15)

(4.2.17)

light of the differential

B = PN - 515+ 01
"6y

By, = 3 (u2)25” - A."’)"% +0().
]

(42.18)

(42.09)



We then integrate the above relations with respect to 8; and 8, respectively, ob-

taining
[ B
E, = E, l.j_,.! + A E\ 0,d0;
4 .
= E, 0,d0,
Jo,
= eE® + 0(c?), (4.2.20)
L
E; = Ezl.j:.—! + A Ej,e,d6,
[ -
= 5 Eﬂ.ﬁﬂl
.:,,
= ¢E® + 0(c?), (4.2.21)
since
E"Q;ﬂg = Ei|,uo=0, E’ID,-Q = B3| yuo =0.
Here
, . o @ -
E® = /. | AN @)AL — A)-1 %a,. (4.2.22)

(ﬂl
/ A‘"(u(ﬂ) X A“Jn) Am))*l a%_ﬂ (4.2.23)

The analysis thus shows that, for E; = #;, and E; = g,,mmm

contributions in the asymptotic expansions are of O(¢c). A further examination of
D and d then suggests

=B {(1 +n)v)y, = B2 {(1 +n)v},,

= qe‘)i (42.)
d = —(Eyne, + Eyne,) — v(Byve, + Erv,)

- -t’(ﬁ.’f’ + g”q:‘ ) + O(c*). (4.2.35)




Therefore

Do = D, =0, (4.2.26)
do =0, dy = —(EPn{® + En{)). (4.2.27)

This ends our discussion for the role played by Ey = 6, ,, E; = 83 ,.

In addition, we notice that

= (Lo )

= (f':('.’,) +0(c%), (4.2.28)
'.
0* = —vu — nye — vype
= e(-vu'® — D) + (= — i) + O(c?), (4.2.29)
hence
(1)
B; =0, B} = (j‘;g,). (4:2:30)
b = —vu® - vpg.”, b = —vu(¥) - qg). (4.2.31)

As a result of the above discussion, the O(1) and O(e) problems are simplified
to

O(1) problem
(Ao = X" - €(Ag — A" DY =, (4232)
w® 4 Q:!) =0, (4.2.33)
25 - 2" = 0, (4.2.8)
-2 =0 (4.26)



O(e) problem

ter (Ao = AN ~ 60(Ao = 27Dl
= = {th) (A0 = MODu - (Ao - A1
+HQ (AL = MaDuld - 62 (Ao = Azaluf}
+ (A7 = A e s, (4.2.34)
A0 — AP 0l)) - (A = A (d + B}), (4.2.35)
zg) = AP = 2g,4t0Y, (4.2.7)

S(.:) - a\(‘m!(‘? = 4\,;_3!‘@?- (4.2.8)

4.3. Solution to the O(1) Problem and the Reduction of the O(c) Problem

In this section we solve the O(1) problem and then use the result to further simplify
the O(¢) problem and reduce it to a linear canonical mixed initial and boundary
value problem which is exactly solvable.

4.3.1 Solution to the O(1) problem

To solve the O(1) problem, we first note that (4.2.8), (4.2.6) are decoupled from
(4.2.32), (4.2.33) and hence can be integrated independently.
The parametrisation of #; and #; at ¢t =0 is

Ole =2 Gy ==, (43.)



which in turn provides,

(0(0,,0,,y°) = t(*)(8,,00,4°) = 0, k= 0,1,2,...,

7 (4.3.20)
2(9(8,,0,,y°) = 6,, 20°(0,,0;,1°) = 3, z1)(8,,0,,y°) = 2(*)(6;,6,,1°) = 0,
k=1,23,.... (4.3.2b)

Thus we obtain, upon integrating (4.2.5), (4.2.6) over 8, and #; respectively, that

20 A0 w g, 7O A0 gy

or
2@ = MO — A")-16 + 270 - A7)0,
10 _ (A(ﬂ) A?))—ilaz + (’Agﬂ) - A(iﬁ))—l.! ,
oc
O = O+ 8), (O = (0~ 8) (433)
A g, A g, (4.3.4)
Now (4.2.32) reduces to
(Ao = A"Nu + (Ao — X"D)ug) =0, (435)
Let

“” ( )i!i (‘I ﬁi -)tl"‘ n(‘l .lv ‘hl (m)



where r;,r; are right eigenvectors associated with A(im.,,\,(,m respectively. In fact,
we have

A(!ﬂ) ==1: & = %(el,l). r = (_11), (4.3.7a)

M) 1 4= %(1.1), r = (;) (4.3.7b)

where £; (i = 1,2) are left eigenvectors associated with A% (i = 1,2). These eigen-
vectors as computed above satisfy the orthonormality condition
bivj =4, i,j=12 (4.3.8)

A substitution of (4.3.6) into (4.3.5) yields

s _(0) (0)
O0," L9 0o
06, 09,

o\ = n(0,y°), o =n(b,y'), (4.3.9)

() o o
) = n(0,y°)rs + 7a(b3,y")s. (43.10)

u® =

= (4o
Now equation (4.2.33) in the O(1) problem imposes a constraint on the choices of
n and ry. Insert (4.3.10) into (4.2.33) leading to
O=m{-n+n)+(n+n)y
= (ng =)+ (nye +vn),



ﬂ."(’hy.) - fo(’nv') == b‘z.v'(‘z.ll') + Vﬁ(‘zw')}
= c(y’), (4.3.11)

which is a function of y°* only, since 6;,6; are independent variables. Integrating
(4.3.11) with respect to y°* we obtain

11(61,¥°) = ¢ 01(h) + n(y°), (4.3.12a)
r2(62,¥°) = ™" 03(62) + (¥°), (4.3.12b)

where 0;,0; are arbitrary functions of #; and #;, respectively. v;, 3 are functions
of y* and they are related to each other as follows

NW*) =) = = {(n0°) + vr(y°)} = oy*),
(4.3.13)

71(0) = v2(0) = 0, (4.3.13b)
where ¢ is an arbitrary function ascertained by the initial wave profile.
We find thus, in particular, that the initial wave profile can be prescribed as

t=0: r(z,y) =e01(z) +n(y),
(4.3.14)

n(z,y) = e~ Va3(z) + n(y).

This apparently agrees with the linear Kelvin wave theory described previously.
In summary, for the O(1) problem, the admissible initial condition is

t=0: wO= (;::;)

= {¢o1(2) + n(y)) (';l)
+ {eax(2) + »(y))} (:). (43.18)



which ensures the cross-channel velocity vanishes to leading order.
The general solution to the O(1) problem takes the form

- (12

= {er o + 0} (7)
+{e oo +m0)} (), (4.3.10)

with v(©® =0,

We obeerve that the above solution recovers the linear Kelvin wave solution when
01,0, are regarded as lincar phases. In addition, we sce that (Ao — A{”I)ul’ and
(Ao = A1)ulY vanish separately in (4.3.5).

4.3.2 Reduction of the O(ec) problem
For simplicity, we prescribe the initial condition as
t=m0: u=men(z,y)r +ery(z,y)ra, v=0, (4.3.17)

where 7, 73 are given by (4.3.14).
As a result, the initial conditions for the O(e) problem read

tm0: WWmpgMayW=0, V(sy)eRx|-1,1) (4.3.18)

o =], =0, ¥ (s,t) € R xR, (4.3.19)

y=-1

which follow from (4.1.24).



Now the O(c) problem (4.2.34), (4.2.35), (4.2.7), and (4.2.8) reduces to

(Ao + l)“") + (Ao - l)uu’ = —(Ay =), !l)“(ﬂl
= (A1 =, 11)3““

+ B}, (4.3.20)

—vj) + vf)) = —(d; +5), (4.3.21)
(;-"’ t))y = 5.\, 1 (4.3.22)
(2™ = ¢1),, = -%-\u. (4.3.28)

upon using (4 3. :). (4.3.4) and the fact that (Ao ~ AV 1)ul? and (A¢ - A{”I)ul)

Employing the solution to the O(1) problem, we have

Ai = Al = AOUO®) - AD(u@)]

= (AD(r) = AV (e ) + (AD(12) = A (r3))my,
Ay = Ayl = AM(WO) = AN (@O

= (AM(5) = MV (e))n + AV (r9) = X (ra))y.

Write
2
- }; o (01,00,5°)r;, (433¢)



obtaining

:

: 4

+T1anira0 + Thninae, ),

p ‘*é

+Tynire + Thnrae, ),

where

r;l - ei {A(n(rj) - ;\(.“(?j)} r 1 < .!Jik < 2!

=B} - {ruﬂﬂ o+ r;]"?fl o

= {;B] ~ (ruflfl o+ Thimarae,

(4.3.28)

(4.3.26)

(4.3.27)

is the nonlinear interaction coefficient, describing the contribution to the i-th wave
mode at the O(c) order owing to the interaction of the j-th and k-th wave modes.

)
4B = -( 1,1) ".'.;)

= =50 + ol
6HB) - -(1 l)( m)
- ;‘"‘“ - -g))'

(4.3.28)



wn (4.3.25) and (4.3.26) become

= {rﬂflﬁ ”nt rﬂﬁﬁ.h} ’ (4.3.29)
- {rﬁﬁﬁ,;, +Mhnn,, } . (4.3.30)

Now we turn to simplify (4.3.21).
It follows from (4.2.35) and (4.2.30), (4.2.31) that

dy = —(E{"n{) + E{"n(D), (4.2.35)

. o ¢{©
E® = /: A (WYA® - A" '—";ﬂa
% [ AV(1go 11 + 13,0 )d0y
0 , "
- %{A‘,"(n)ﬂr(‘: - 0) +3{"(ry) / m-*-}-
- [ e o
- --r-\-(n Ny v1 + 1 pema)dy
--3 {-\% ) j: N dh + 3 () e (B -a.)}-



Direct calculation suggests

AV (ry) = (84 A1)o, (By M Jo)ry
3

AD(r3) = (8 Mo, (B9 o)z
1
= -2-,
AV(ry) = ((8a Aa)o, (By A2)o)rs
1

A(r3) = ((8s A2)os (By A2)o)r2
3

]

thereby giving

dy = —(E{"n})) + E{"n}))

= —(E{"r10, + E{120,)

oy ]
- _% {f,"‘ [—3‘?].'-(‘) - ‘l) + ./-l Tz,-:d’;]

6
+ﬁ'0’ [‘/" fl"od‘] - 37'2"0 (‘] - .2)] } . (4-3.3!)
Hence (4.3.21) reduces to
vg) - vg:’ =it ¢ n;p )
+ {r.... [-ar...-(o, o+ [ ﬁ..-a.]
" ]
+73.0, [ /.:I f],.-‘n - 31’3,- (0 - .j)] } . (4-3&)

As (4.3.22), (4.3.23) are decoupled from (4.3.20), (4.3.21), they can be integrated



independently to give

2V - V) = %/ A A (u)d8,
-;-/' {»\“)(rl )r + '\;"(l'z)fz} dé, |
= i— { / |(0|,v‘)dol + 37’(‘20”‘)(01 - oﬁ)} ’

z‘”+t“’=-—§/.‘ AP (u(®)ds,
o _
-3 /‘ | (X0 + X (ra)ra ) doy

1 . . o
= -‘- {3?1(0|,y )(‘1—‘])—/.‘ ﬁ(‘iil’ )d‘g '

or
# = 1{3tn(0,07) = 0,108 - 40
0 L ) )
-/ n1(0,,y°)doy -/ ﬁ(‘:,v‘)d':}- (4.3.39)
s 0
o 1{a(r.<a..y') + 1(03,5°))0: - O)
L))
/ "’2(‘3.")“14'/ ﬂ(‘l.!’)*n}; (4.3.34)
where

M =t mp,

when 6; = 6; (that is, ¢ = 0) has been noted.
Returning to (4.3.29) and (4.3.30), we compute the nonlinear interaction cosfli-

cients to get
1 A
l‘{,-;. rn';' ﬂ:"’%- ﬂ:‘giﬂ (4.3.33)



In addition, we note that

= (o) = () + )

o = 1o - uh), o =

(' +u'h). (4.3.36)

L

Thus (4.3.29) and (4.3.30) can be written as

| 1, 4y, .y} , .
ugy =y + 50 + o) = =3(n1 + ra)ram, (4.3.37)

o 1w oy ] |
"2, + ﬂg) - §(“’m - i’;!-)) = 5("‘1 + 12)710,. (4.3.38)

In summary, we have a reduced O(¢) problem consisting of equations (4.3.32),

tm0 (e 0 =b): V) =vM=yl=p, (4.3.18)

Boundary conditions: since y* = —1,1 when y = =1, 1 respectively, one has

oW, gﬂ')ll_ﬂ =0. (4.3.39)

equations (4.3.32), (4.3.37) and (4.3.38) subject to initial and boundary conditions
(4.3.18) and (4.3.99), we first eliminate u(*) and #{!) to get & single equation for



v(1), As a result, a linear canonical mixed initial and boundary value problem is
established.
Indeed, we differentiate (4.3.32) with respect to 6,,6; obtaining

e (1) 1)y {1 (1)
(v = v )eson ~ vug, s, = Tl e =

% {r1,0,0, (=371, + Ty ] + 12,000 [T1 e = LT
=3[r o Tiy0 + Ti0 T8} (4.3.40)

Meanwhile, the differentiation of (4.3.37), (4.3.38) with respect to #, and 6,

respectively results in

b, la ] e
Non, — s, + 300 + 30, = 30T, (4.3.41)

(1) ' 1 1 Q) 1 :
Vot + Torby = ;w&i’ + 592)1, = 3Nam0 (4.3.42)

The addition of (4.3.41) and (4.3.42) yields

, 1 LLay . .
Vo = o = v8)) = S(ofh, + 92l (4.3.43)

The subtraction of (4.3.41) from (4.3.42) yields

@ _l,m, o 1,0 SR
Mon = 3% +98) = (o0l — vl ) + 3nA A

ne



Thereby substituting them into (4.3.40) we obtain
, 1 ., @1 m, 1 (
(o = P = 10D — o) 4 S0 - i)
1 ,
= E {fl..!'j [_3Tli.- + ﬁiljl
+ ﬁ-’l" If‘if- = afii.‘]
ia [fll.l fl-".l + ﬁvlsﬁ!'-"]} A
(4.3.43)
where

(11.0,72,0)y =0,

is noted.
Now we introduce a new dependent variable

vi) —vi)) & g, | (4.3.44)
to write (4.3.43) as
b+ {hpy = 6= 4B, 0,0°), (4348)
where

P01,02,y°) = 4dr 0, 0,
= 11,00, 371,90 = T2,90)
+ 73,000 (=N, +313,]
+3[nanay +nanael (4.3.46)

We rewrite (4.3.45) by introducing new indepes

a=zh-0) B=50+t) v = (a41)



thus
0=f0+a, O=f-a y =y, (4.3.48)
and
8o, 300 +05), Boyr— 300 - 8a)y ¥y (4.3.49)
Therefore, (4.3.45) become:
Poa = $g8 —dyy + V' = p(B + 0,0 - a,), (4.3.50)

where we have dropped the star on y°* from now on for simplicity.
Meanwhile, v(!) is related to ¢ by

o) = -4 (4.3.51)

Now we need to reinterpret existing initial and boundary conditions in order to

Boundary conditions. This is straightforward. (4.3.39) suggests

#lyacs = ¥y =0 (4.3.52)

. We employ (4.3.32) and the fact that

t=0: ¥V=p=0 (-}qg“-ﬁ).

tuletpby=byepa=,



to obtain

Glamo =0 (4.3.53)

The derivation for ¢a|,_, is much more complicated. The idea is to make use of

(4.3.32), (4.3.37) and (4.3.38) as well as the fact that
t=0: uM=n"=vV=0 (4.3.18)
First we differentiate (4.3.32) with respect to 8;,8; respectively and evaluate
them at ¢ = 0 obtaining

0 laymty = 56, loymey + Tyt l0, ey = D100 L0,y (4.3.54)

where by (4.3.31) and (4.3.32)

1 g : .
7 (na 31y = mau] + 10, [y = 314l o,
= J!iﬁljli‘!' (4.3.56)

d! W |.| =iy

Also, letting ¢ = 0 in (4.3.37), (4.3.38) we get
I.. - q.. = —i(ﬁ + f;)ﬁiﬁh!!‘:, (4.3.57)
vy, + l'.l - i(ﬁ +7)n.0 0, e, (4.3.58)

Wnbpnﬁ:ﬂﬂhug’iig),qg)mg) from above, thus we need to supplement

{1) ), 1),
Uy, =uy lo, + v, %0, . )
) (), . i=12 (4.3.50)
Ne, =N to, +0; 20,

n?



When ¢t = iu"’-ﬂmiosku =ni!) =0,

In addition, ty, (¢ = 1,2) have their leading terms in the asymptotic expansions

ty, ~tg,) =5, to~ t)) = a%.
Thereby we conclude
'u'(,i’ = —ug). qg:) - ,12)‘ (4.3.60)
in (4.3.50).

T
- 3(ﬂ: + ﬁ)(ﬁio. + 10l 0y ey (4301

qg)'ﬁi‘! - iqg)lﬁnﬁ
l . 7 . _
=+ n)ns = nallya (43.02)



we have

Paloamo = (90, = 903)ly. o,
{""‘0:) + e, = 1 }|0,-0=
—{#l) + 0 ~ dr.n oy,
=2{suf) + nfl) —di Hlo,mo,
- {5"(" +n)(ne + 10
+ % [(r1 + m)(r,0, + 12.04)),
+% [r1.0.(371, = 72,5) + 72,05 (11 = 3"‘:.-”}';.-;.
- %V[ﬂ(f-v) + r3(2,9)} [11.2(2,9) + 72,2(2,¥)]
+ 3 In(e9) + (=) [n.alz.0) - natzl),
+ % {n,s(2,9) [371,5(2,¥) — ra,4(z,¥)]
+123.6(2,9) [n1,4(2,¥) = Ir2,4(2,9)]}

& g(z,y)
= ¢(B.y), (4.3.63)

asfmby=zatt=0.
In summary, we have formulated the following mixed initial and boundary value
problem of a canonical form

‘..-“'-"'+",‘-Kp+°’p_g!')i
a>0, —c0<f <o, -1<y<],

(4.3.80)

¢ =¥, =0 (4.3.52)
$loae =0, (4.3.89)
‘CL‘ = ¢o(B,y), (4.3.63)



where p and ¢ are expressed by (4.3.46) and (4.3.63), respectively.
Apparently, the above problem is solvable. In order to give a physically reliable
interpretation, we point out that by comparing (4.3.3) and (4.3.47) one has

a= ‘(D)‘ g = 2(5) . (4-3-“)

So a and § can be properly regarded as time and space variables, respectively. Pre-
cisely, a, B are the unperturbed temporal variable and spatial variable in the along
channel direction. Consequently, the perturbed spatial and temporal coordinates
can be written as, according to (4.3.64), (4.3.33), and (4.3.34)

z=f+ %E{Blﬁ(ﬂ -a,y)~n(B+a,y)a
e .
+ / [r2(0,y) - n(0,y)) 40}

F B
+ 0(e?), (4.9.650)

V= 7 (4.3.65b)
t=a+ %G{—Blﬁ(ﬁ+ﬁ-r)+ﬁ(ﬁ-ﬁ-r)lﬁ
ph4e , o
+/ in(0,y) + rs(0,y)) ‘}

/-

+0(c?), (4..68¢)
where we have replaced by a, 3, the nonlinear phases according to
bh=f-a bH=p+a, (m)

which aleo have an interpretation as the wnperturied (linsar) phases.
We close this section by writing dowa u(®), i(?) in terms of v{?). This is accom-




plished by direct integration of (4.3.37) and (4.3.38).

o) = 1 [0 < = [ 1
lf,s(al. y) - lr;(o.;.y) + 72(02,4)(n1 (61, ) = 11(63,))
ﬁﬁ'r,(ﬁ y)+ 573 (01,y) ~ (61, ¥)(r2(63,¥) — ma(01,¥))},

7 (0:,03,y) = ; {L (o' - ii"))ai + /(“,(l) + v(i))df‘i

+37H0) - ‘ﬁ(‘z.v)-ffi(ﬁ;ll)(ﬁ(.nll) n(#5.9)

+373(03,3) - 373(01.0) + (0, 9)(ra(83,) ~ (81,9},

where we keep using #; = 3 — a, #; =  + a for notational convenience.

4.4. Noalinear Kelvin Waves

4.4.1 Neonkinesr Kelvin waves

n(z,p) = ¢V0y(2) + n(y), n(s,y) = e"oy(z) + nly),



the functions p and q can further be written as

P(01,63,y) = Ive? [0,(0,)07(8,) + o7()))
— 3ve=2"Y [01(03)07(02) + 07 (83))
+ v[01(01)03(03) - 07 (81)e2(83))
+e"0](8,) 34} (¥) = v2(¥)]) + =703 (03) [~ (¥) + 372 ()],
(4.4.1)

a(B,v) = Ive®*V0,(B)o1 () + Sve™2*Va3(B)03(B)
+ v(o1(B)oa(B))
+ ¢a((8) (271 (v) + vn(¥)) + va(y)]
+e~"03(8) [y (y) + (-272(y) + v ()], (44.2)

where, as before, the prime indicates differentiation with respect to corresponding
variables.

When the initial profile takes a simpler form, namely putting 11(y) = 1a(y) = 0
in (4.3.14), the above two functions become

p(01,05,y) = 3ve®? [03 ()0} (0:) + 07 ()]
- 3ve™7 [03(0;)07 (03) + 05 (B)]

+ v(01(01)o3'(02) - o7 (0 )oa(83)], (4.4.3)
9(8.y) = 3ve*Va1(A)o] (A) + Sve~2 Vo3 (B)o3(8)
+ v(e1(B)ea(B))'. (4.4.4)

For function p = p(6,,6;,y), the first term arises from self-interaction of the ry
mode, whereas the second term arises due to self interaction of the ry mode and
the third term is Jdue to quadratic interaction of the r;, 1y modes. The same can be
sald for (4.4.4), the expression for ¢(f,y).

The solution to the lincar canonical initial boundary value problem can be do-



é = o+ ¢, (4.4.5)

where ¢! solves

¢ —¢l) -l + v =0, a>0, —c0< A< o0, ~-1<y<],
(4.4.0)
¢(1)|”‘ = ¢(nl'_' =0, (4.4.7)
¢(l)|m =0, (4.4.8)
)|, o ™ 9(B:¥)s (4.4.9)
and ¢(? solves

¢3) - 4 — ¢ 4 V74D m p(B + 0,0 - a,y),

a>0, —oo<f<oo, -1<y<l,

(4.4.10)
¢P| ., =6, =0 (4.4.11)
‘m'._. =0, (4.4.12)
¢ o =0. (4.4.13)

However, we dwell awhile here to note that for smooth solutions, a consistency
condition between (4.4.7) and (4.4.9) requires that

¢(6,0) = ¢(8,1) = 0, (4.4.14)
which is equivalent to
30,(B)e1 () + 303(8)03(B) + (o1 ()e3(B)) = 0,
(4.4.15)
3% 0,(8)s} (8) + 3e=* #3(8)03(B) + (#1(B)oa(B)) = 0. ,
(4.4.15b)



That is

3 z(ﬁ) + —e,(,@) + 01(8)e1(3) = constant,

ge’ﬂr?(a) + g=—=-a,<m +01(8)03(B) = constant,

o
01(0), o1(5) = constant, (4.4.10)

upon integration. Therefore the consistency condition (4.4.14) will not be fulfilled
except for the trivial case. As a result, we expect discontinuities for ¢¢) will be
generated at the boundary y = -1, lnmunﬂylndmunhjﬂmm
teristics. Thminmdé‘";ndhmdiiﬂbe;bbdlyﬁ" e C*

¢ = é1 + éu + Hun, (4.4.17)
where ¢y, éu1, b1 solve
hiﬁlliﬁﬁ*g*'ﬁw*gogiﬁn')i (""“’
ﬁl,_!, - *l._, =0, (4.4.19)
oo =0, (4.4.20)
Gl one = %(00), (e421)



respectively, for i = LILIII. Here

p = pi(0y,03,y) = 3ve™" [01(61)0y' (1) + 07 (8:))] , |
(4.4.22n)

pit = pu(6y,65,y) = —=3ve™"" [02(0:)07(8;) + 07°(6,)] , 7
(4.4.22b)

put = pur(,83,9) = v[or(0))o5(82) - o (B)oa(®),
(4.4.22¢)

a = q(B,y) = 3ve?a,(B)e}(B), (4.4.23a)
o = qu(B,y) = 3ve~*a;(B)03(8B), (4.4.23b)
qu = qu(B,y) = v(a1(B)ea(B))'. (4.4.23¢)

Thereby, é1, é11, é111 represent contributions to ¢ due to self-interactions of the r,

and r; modes, and the interaction of r;, r3 modes, respectively.
Presumably, one can solve, for any given initial profile ¢,,03, the ¢

&1, é11, $111 to obtain the evolution pntern of noalinear Kelvin waves.
We end our discussi

Take the r; mode into consideration, that is, we put o,(z) = o(z),03(z) = 0.

¢o=d. (4.4.24)

o¥(z) = 2az + k, (4.4.28)

where &,k > 0 are constants. Thus p 5 0,9 = 3ave?*? and ¢ is determined by an



initial boundary value problem for the Klein-Gordon equation

baa — ¢n + V’¢ = 0, (4.4@)
$lymy = ¥yay =0 (4.4.27)
|0 = 0 Pa,uo = ave?™”. (4.4.28)

Similarly, single rz-mode can also be considered. That is, the case of o,(s) =

0, o3(z) = o(z).

4.4.3 Non-interacting nonlinear Kelvin waves

One may observe that by letting
(b, b,y) =0, (44.29)
in (4.4.22¢) it follows that
2l . ), (4.4.30)
where 4 is an arbitrary number.
Solving (4.4.30) one has
01(0)) = c11e™ + c1ae™™, 05(03) = c316”® + o™, (4.4.31)
Now we set the initial profile to be
o1(z) = a1e**, 03(2) = @ge="", (44.32)
thea it aleo yields
an = w(e)(S)ex(8)) = 0. (44.59)



Thus the two wave modes ry, r; are noninteracting, namely ¢y;; = 0 and

é=d+dn.
Here ¢; and ¢y; solve (4.4.18)-(4.4.21) for i = LI, respectively with

PO, 8s,) = Ovaluletoriint,

Pu(:,0a,y) = —Buaju’e=2"v-20b
a(B,y) = Svpale? st

a(b,y) = —al?pqie’z—"!*i!!_
Now let ¢ = p(a, 8, y) be the solution of

Paa = Pps =Py + Vo= @’e"""‘"‘“"‘".
?lpil = PI.—!

wl:ﬂ* 1 w":-ﬂ Fe’m’.‘

Then it is straightforward to verify that

ﬁ(ﬁv 8, !) = &'ﬂfﬂﬂv A, ')i
ﬁi(ﬁlﬁl .) = im;ﬂgv -B, —,)!
«ﬁlgl ') = h‘ﬁﬁipl ') M’(“! Epl "')
We carry a further reduction. Let ¥ = ¥(a,y) be the solution of
bou = o 4 9 = 31T
*IF—I l.—l o
¥0aue = 0, *-l-i =pe”?.

(4.4.34)

(4.4.35)
(4.4.36)
(4.4.37)

(4.4.38)

(44.39)
(4.4.00)
(4441)



It can be shown that by properly choosing §, ¢ and ¢ are related as follows
¢(a,B,y) = ¥(a,y)e**’. (4.4.42)
Indeed, substitute (4.4.42) into (4.4.35)-(4.4.37) obtaining

Yaa — P88~ Py + Pi@ = (*ﬁﬁ - i". + P’i’)gg!‘ - 4}1’2*2’!‘
= {"igni = *ﬁ + (!” - M’)ﬁ} E‘j‘,

thus one can see that (4.4.39) holds when
8 = -4yl

observe that, for instance, when ;1 = }v is chosen, namely

01(2) = a1ed”*, 05(3) = age~ 4”2, (4.4.09)

then ¢ is determined by an inhomogen
Voo = ¥y = AT, (4444)

¥y ™ ¥lpay =0 (44.00)

¥ome = O Velog = 3967, (4ed1)

thereby providing a closed form solution.



and

v(a,8,4) = - [ ¢da

= ~Jvale”’ / ) ¥(a,y)da + Jvaje~*’? / ) ¥(a, -y)da.
70 e (4.4.46)

The solution ¢ to (4.4.44), (4.4.40) and (4.4.41) can be explicitly integrated [78).
We divide the domain {(a,y): a >0, =1 <y < 1} as shown in Figure 4.3 and

Fig. 43: The (a,y) domain.



after some extensive algebra to obtain

’ %e"' {sh(2va) + (e* -e"*)}, (a,y) € R
%,Mc-l) {,h(gy(y +1) + (,mm) - ,v(vﬂ))}
Waug) = { = 3 [e4r = e tsen)] [ehoreremintreiine] | a,y) € By

%e"‘“" {sh(av(1 - y)) + (*0-P - r0-0)}

- % [el"*" - eMz-.)-m] [em - ,-M:—z)] , (a,y) € Ry,
and thereby when (a,y) € R, 8 € (—00,+00),
v'(a,8,y) = %(036"’ 0 _ aje"#+27)(ch(2va) + €2 - ¢*°),

when (ao') € R’o p € ("'wo +“)9

v!)(a,8,y) = —ale " #1(a,y) + a}e~""#5(a, -y),

and when (a,y) € Ry, 8 € (—00, +00)

0‘"(0, By)= “’e".i(al y)+ .;‘-.‘.’(a' -9)s

where

®i(a,y) = %c”' [d.(zy(x +y)) + (049 3.-("»)]
+ 1 [oh21 4+ ) 4 (3000 _ o] [ 3t _ 2]
- % [cln - .-M“ﬂ] [yln(,n T N
e~ it (v _ .uum)] ,



and

®(a,y) = %e"" [ch(zv(l =) + (310 — 2¢7(1-9) )]
- % [ah(zu(l ~y)) + (e?*-9 - e»(l—ﬂv))] [EZPUEI’!) - E;..,—]
- % [cil'! - clv(l-l)] [k."(e”' - er(]i.))

+¢!b'(3-v)(e-zn - e-uu-.))] .

The figures that follow represent the time-progressive profiles for both along- and
cross-channel velocities, as well as surface elevation. In the sequence of time frames
t = 0,0.5,1 the propagation of these waves is depicted clearly. As it is shown in
Fig. 4.4 and Fig. 4.6, along-channel velocity and surface elevation waves travel to
the left near y = —1 and to the right near y = 1. In Fig. 4.6, cross-channel velocity

is seen being generated as time evolves.



20
Fig. 4.4: Along-channdl velocity st t = 0,05,1 fer @y =y =1, vy = 1 and ¢ = 0.02



k> 0.008
0,000
.0.008
1.0

' 0.008
0.000
20" :

Fig. 4.5: Cross-channel velocity ot ¢ = 0,0.5,1 for &; =y = 1, v = 1 and ¢ = 0.02
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CHAPTER 8.

We have presented in this thesis two studies of weakly nonlinear hyperbolic waves.
based on the use of a single nonlinear phase. The second part includes an asymptotic
odyndmiﬁ;nﬁmﬂ:hﬂiﬂdmﬂfmpﬁmdatohi;hﬁqmym but

WMMMMEM@ynm&uﬁﬁWmdm
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As the single wave mode geometric optics theory show, the typical pattern for
smooth hyperbolic waves to break and generate shock waves is a passage start-
ing from characteristic focusing, which produces & multi- (phase) valued region in
the 3 — ¢ plane, and a shock front and hence a shock wave results therein. Such
Mmiﬂphﬂﬁm Thglb-mduﬂdﬁﬁqﬁi
perovides both qualitative ) ormation and is suitable for practical
application of weak shock computations

Nﬂmmhhhmbh%ﬁ




spatial inhomogeneity affsxcis the geometric structure of the characteristic family
and hence existence and shape of the caustic as well as shock waves. Indeed, this
effect is a delicate issue and we do not try to address it in every detail. However,
when the function (Ag), which plays a key role in the arrival time formula, is not
of a definite sign and in particular when it changes sign around the shock initiation

interesting qualitative as well as quantitative behaviours may happen. We leave this
wave-mode geometric optics is that at an order higher than the order of local linear
part and the other is induced solely by spatial inhomogeneity. This second part

before.

alisation of the characteristic method of Lin [44] and Fox (18]. The basis of such
ables. The theory, straightforward as it is, does find interesting applications in one
Kelvin waves in a channel.
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