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ABSTRACT

This thesis involves the implementation and evaluation of three
predictive control schemes: (1) the PID control with Smith predictor, (2)
the Robust Adaptive Control (RAC), and (3) the Multi~step Adaptive
Predictive Control (MAPC). These three model-based predictive control
schemes are capable of handling processes with time delay but suffer from
the effect of model process mismatch (MPM). Therefore, attention was paid
especially to the effect of time delay mismatch on these control schemes and
ways of getting around the problem. It was found bLoth from simulations and
experimental evaluations {(done on a Continuous Stirred Tank Heater) that
filtering plays an important role in rendering the control schemes robust to
time delay mismatch.

When the MPM is not too far off, the Smith predictor gives excellent °
control prediction and allows the closed loop to use a higher gain. With the
introduction of an exponential residual filter, the Smith predictor can
achieve similar performance even when the time delay is severely under or
over estimated. For servo control, it is best to have a strong residual
filter when the time delay of the process is not known or time-varying. For
regulatory control, on the other hand, the filtering action must be reduced
so as to make the controller more alert to disturbance rejection. The filter
constant can therefore be used as an on-line tuning parameter for closed
loop performance.

The RAC is a direct adaptive controller similar to the miaimum variance
controller. It features an augmented process that ensures stable control of
non-minimum phase (NMP) processes and a ssrameter estimation scheme that
uses regressor normalization and a dead zone to ensure robustness. The
controller demonstrated its ability to give offset free servo and regulatory
control to processes with variable time delay. Output weighting (or
filtering) is found to be essential to its success. However, the choice of
the output weighting requires some knowledge of the process, which renders
the controller somewhat unfriendly to use. The MAPC, which is based on a
multi-stage controller design, showed itself to be superior to the RAC in



dealing with time delay mismatch both on performance and ease of use. The
predictor used for the MAPC (called the Modified Kalman Filter Predictor) is
structurally similar to the Smith predictor with a residual filter, except
that the filter is chosen ‘optimally’ according to the knowledge of the
ratio of the process and measurement noise (R2/R1). Results show that it is
best to have a high ratio to commence the controller for robustness and
progressively tune it down to increase servo and regulatory performances.
Since the controller’s 'default settings’ can result in satisfactory results
in most applications, the performance of MAPC can be tuned using R2/Ri
alone.

This thesis also introduces the structure of the QNX operating system
and Multicon. Together, they form a unified multitasking shell for
deveioping Advanced Control Tasks (ACT) which relieves the control ¢ngineer
from many computer software burdens. The three above mentioned control
schemes are dcveloped as ACTs. User manuals are written (in Appendix 2) so ’
that thsse ACTs can be used for educational and experimental purposes.
Althoughx Multicon has successfully provided services to a number of graduate
students for their applications, the present version has much to be improved
on. Therefore, suggesiions for enhancing its power and user friendliness are

presented.
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1 INTRODUCTINN

1.1 Motivations

Adaptive control of processes with variable time delays is of
considerable practical interest in the process industry. The Smith predictor
pioneered by Smith (1957) plays an importznt role in time delay compensation
and control. Like the Smith Predictor, many adaptive predictive control
schemes also require an exact knowledge of the process time delay (Astrdm
and Wittenmark, 1973; Ljung and Séderstrdm, 1983). Since this requirement
greatly restricts the performance and applicability of adaptive controllers,
special attention has been paid to the on-line estimation of the time delay
and co. troller design that is more robust to the wrong choice of the time
delay.

On-line estimation of the time delay appears to be one of the solutions
to the time delay problem. This metho¢ has widely been used in the area of *
signal processing (Hassab et al, 197%; Friedlander et al., 1984). However,
it still needs to be tailored for adaptive control applications. The idea of
using a rational approximation for the time delay has been examined by many
authors (Robinson et a!, 1970; Rao, 1983; Gawthrop et al., 1985). This
philosophy remains controversial because of the uncertainty of the time
delay on the performance of the system. de Souza et al. (1988) follow this
method and use it in the design of an adaptive controller. The authors
report promising resuits in that the order of the approximation can be as
low as second order and the approximation still allows a very good fit to
the system frequency response over the bandwidth relevant to control system
design. Another approach is to use least squares to estimate the parameters
of the system for each value of time delay, and then optimize the delay
using a spline curve fitting method (Pearson et al., 1984). This statistical
method is promising but computationally expensive. It appears that
estimation of the time delay for adaptive control remains an open field of
research. More reliable and efficient methods must be developed before i_t_
can be applied in actual applications.

Many adaptive controller designs have been configured to alleviate the



problem of the dependence of the control algorithm on a good estimate of the
time delay. For example, pole~-placement algorithms (Wellstead et al., 1979;
Astrém and Wittenmark, 1980) and the generalized predictive control
algorithms (Clarke et al.,, 1987) estimate a model that admits a range of
possible delay values by over parameterizing the numerator dynamics. Cluett
and Shah, (1989) proposed a direct adaptive control scheme which makes use
of an augmented process representation to reduce the excessive control
action due to time delay underestimation and unmodelled dynamics. Dumont and
Zervos (1988) proposed an alternative process representation using the
Laguerre series which is thought to be less sensitive to the time delay
estimation. These methods have been demonstrated to be very successful in
various applications provided that some a priori knowledge of the process

time delay is available (e.g. the upper bound of the delay).

The implementation and evaluation of three different control schemes to °
deal with variable time-delay problem is the primary objective of this
thesis. The schemes are based on the following categories: (1) Non-adaptive

predictive control: PID control with Smith predictor; (2) a single step

adaptive predictive controller: the Robust Adaptive Control (RAC, Cluett and

Shah , 1989); and (3) multi~-step adaptive predictive control: Multistep
Adaptive Predictive Control (MAPC, Sripada, 1988). The features pertaining

to their robustness against varying time delay are examined and
experimentally tested on the pilot scale Continuous Stirred Tank Heater.

To evaluate these control schemes, a lot of coinputer software has been
developed, inciuding the real-time control programs for each scheme as well
as utility programs. Since the effort spent on computer programming is
enormous, the question of how to organize these programs in a reusable
fashion quickly becomes a big concern. This becomes the secondary subject of
the thesis: to organize the programs so that they can be used for continuing
studies in an educational environment. This lead to the use of a PC based
multiuser, multitasking operating system and the development of an
application oriented shell so that organization and use of the user-written
control schemes can be simplified.



1.2 Organization of the thesis

This thesis is organized as follows: Chapters 2, 3, and 4 are dedicated
towards the discussions of three control schemes. They are the non-adaptive
predictive control scheme in Chapter 2; the adaptive single-step predictive
control scheme in Chapter 3; and the multi-step adaptive predictive control
scheme in Chapter 4. The development and evaluation of the <control
properties in the presence of varying time delay are the focuses of these
chapters. Simulations and experiments are used for illustration and
evaluation whenever necessary. Figures are graphed at th% end of each
chapter to facilitate comparison.

Chiz.v»» S introduces the QNX operating system and MULTICON software
package under which the control schemes were developed and run. Evaluation
on the MULTICON is done by examining its internal structure. Its
shortcomings and some suggestions on possible improvements are included in
the recommendation section of Chapter 6.

Chapter 6 conciludes the thesis with the inclusion of some
recommendations possible for future work followed by a listing of the
references. All the user manuals for the control schemes in the previous

chapters are included in the Appendix section.



2 PID control and the Smith Pradictor

2.1 Introduction

Proportional-Integral-Derivative controllers have dominated the process
control industry for almost half a century. Even with the introduction of
digital ccniiollers which make the realization of many advance control
technique:. noissible, the 3-term controller remains a standard mode of
control in industry because it is both well understood, flexible, and works
for over 907 of process applications.

Time delays are very common in the process industry due to reasons such
as transTortatio . lag and instrumentation analysis and response time. In the
prz=~n.« of t.me delay, the closed loop is more sensitive to low frequency
peri~~ “st. -bances and therefore is susceptible to stability problems.
Figui. .  nows the performance of PID control on the Continuous Stirred
Tank Heater (see Chapter S for a description of the apparatus). The tightly
tuned controller gives very good control performance up to time « 130 sample
periods, after which the time delay of the process suddenly ircreases (from
= 4 sampling periods to = 7 sampling periods). At that point, the control
becomes unstable. One common strategy to deal with this problem is to detune
the PID controller which makes the response sluggish. Another strategy is to
use time delay compensation to improve the control performance. 0.J.M. Smith
proposed a time delay compensation scheme called the Smith Predictor (1957)
which effectively removes the time delay element from the characteristic
equation. This improves the stability margin of the closed-loop system and
therefore allowing higher gains. The Smith Predictor coupled with the PID
controller forms the basis of classical predictive centrol. It has proven to
be very effective in numerous industrial applications.

This chapter reviews the mathematical formulation of the Smith
Predictor, the basic PID control algorithm, and its variations.

2.2 Smith Predictor
The block diagram of the Smith Predictor is presented in Figure 2.2.
Let



B(z™Y)

Gz = - 2™ represent the actual process including delay,
A(z™)
a -1 -
Gm(z™") = B(z ) -4 represent the model including delay,
Az
Bz
Ge(z™) = - z-l represent the delay free mocsl , and
A(z)

Gf(z—l) =1 representing the filter transfer function.

The prediction is given by

Yeea|t) = By + Greh w2 1) ] (2.2.1)
Az Az™h

When there is no model-plant-mismatch (MPM), the residual term (i.e.

Y(t) - Bz ) 2"%) in the absence of disturbances becomes zero and the -

Az™h
prediction is simply the undelayed output of the process. The predicted

output ?(t+d|t) corresponding to the estimate of the undelayed output is
used as the feedback signal instead of the true process output. The block
diagram of the closed loop system with the Smith Predictor in place is
presented in Figure 2.3. Gc(z-l) denotes the controller transfer function.

The closed loop transfer function described as in Figure 2.3 is given by:

-1 -1
vit) = — O 1Gelz. ) — Yuplt) (2.2.2)
1+Gp(z 1)Gelz™ )+Ge (2™ HG(z™)-Gm(z ™))

When G{z )=Gm(z}), i.e. no MPM, Equation (2.2.2) becomes

-1
Y(t) = [B‘z oz ] 18z B g c(z")]v.p(t) (2.2.3)
A(z™h A(z™)

where the time delay term has been completely removed from the

characteristic equation.



2.3 Smith Predictor with a Residual Filter

Even though it has been over 40 years since the Smith predictor was
first proposed, and even though simulation and experimental results
demonstrated successful applications, the Smith predictor is still not being
widely used. Detuning the controller for robustness is preferred instead.
One of the main reasons is that a good model for representing the process is
difficult to obtain. As long as ther: is no MPM or disturbance, the Smith
Predictor gives excellent prediction. However, the performance of the
predictor deteriorates in the presence of MPM and/or disturbances. These
problems can be alleviated by introducing a residual filter, Gf(z'l). in the
feedback path (see Figure 2.3, also see section 2.6). An exponential filter
is often found to give 'good’ results (Walgama, 1986):

Ge(2™) = L-kr 0ske<1 (2.3.1)

1-kez™}

The amount of filtering can be adjusted by ke: the higher the value of
ke, the stronger the filtering will be. In the presences of large residuals
due to MPM, it is desired to have strong filtering action so that the
predictor will not be overly sensitive to MPM. On the other hand, kf cannot
be too large because heavy filtering of Gf(z") leads to slow disturbance
rejection. This is because there is no disturbance modelling used and
disturbance rejection depends solely on feedback (one modification called
the ’Smith Predictor with load prediction’ sets Gf(z_l) as a first order
lead filter so that it acts as an extrapolator). As a result, the selection
of ke is usually a compromise between performance, e.g. speed, and
robustness. For most chemical processes, where the setpoint is not
frequently changed, ke should be small (say 0.75 instead of 0.95) so that
the disturbance information can be passed quickly for feedback control.

The steady-state value of Gt(z'l) is unity. This is importunt for the
Smith predictor to result in unbiased prediction.

Many advanced predictive control schemes can be represented by the same

block diagram as shown ‘n Figure 2.3, only with a different value of



Gi(z™)). The RAC and MAPC, which have a similar structure, are the subjects

of detailed discussion and evaluation in the later chapters.

2.4 Proportional-Integral-Derivative Control

The positional form of the basic PID control scheme is given by:

U(t) = Kee(k) + KiTsfe(i) + Ka/Ta(e(t)-e(t-1)) (2.4.1)

The velocity form is given by differencing Equation (2.4.1). It is
usually preferred over the positional form because it provides bumpless

transfer and avoids reset windup. The veloc 'y form is written as
U(t) = Ult-1) + (Ke+TaKi+Kd/Ts)e(t) - (1+2Ka/Ts)e(k-1) +

Ka/Tse(k-2) (2.4.2)

Equation (2.4.2) is also known as the ‘setpoint on PID control’
structure since the proportional, integral, and derivative actions are taken
on the error between the setpoint and the output. Astrém and Wittenmark have
(1984) mentioned and discussed several modifications to the basic PID
control algorithm to improve its performance. Two of the common variations

are outlined below.

Setpoint on PI only control:

When a setpoint change is requested in a setpaint on PID controller, a
large kick in the output often results. This occurs because the derivative
of the error at the time of the setpoint change is very large. This action
is known as a derivative kick. A PID control algorithm that avoids this
'kick® can be realized by making the derivative action act only on the
actual process output instead of the feedback error. The resulting algorithm
is as follows (Vermeer, 1987):

U(t) = U(t-1) + Kele(t) - e(t-1)) + KiTse(t) +

Ke/Ta(=Y(t) + 2Y(t-1) - Y(t-2)) (2.4.3)



Setpoint on I only control:

This structure is designed to remove the setpoint from the proportional
and the derivative terms:

U(t) = U(t-1) + Ke(-Y{t) + Y(t-1)) + KiTse(t) +

Ka/Ts(-Y(t) + 2Y(t-1) - Y(t-2)) (2.4.4)

These three PID control algorithms have identical characteristic
equations and therefore the stability margins are identical. However, the
controllers’ zeros are different, which contribute to the difference in
control performance. In general, the setpoint on PID control algorithm Iis
the most aggressive and the setpoint on I only control algorithm is the
least aggressive among the three. A detailed analysis of these algorithms

has been done by Vermeer (1987).

2.5 Tuning of the PID controller
Although there are only three tuning parameters in a PID controller,
they allow one to adjust the low, middle, and high frequency behaviours of
the process. There are numerous schemes suggested for getting ’'good’
estimates for the three parameters. Some commonly used off-line tuning
methods are listed as follows (Seborg et al., 1989):

Off-line Methods based on frequency response analysis:

One commonly known method under this category is the Ziegler-Nichols
method (1942). The process is set into closed loop proportional control and
the tuning constants are estimated from the proportional gain required for a
sustained oscillation. Another similar method is suggested by Astrdm and
Higglund (1983) where the proportional control is replaced by a relay. If a
limit cycle exists under relay control, this method locates a single point
on the Nyquist curve based on the describing function approximation. The PID
tuning constants can then be designed for specific phase and gain margin.
The amplitude of the oscillation can be controlled by controlling the relay
amplitude, which is not possible for the Ziegler-Nichols method.



Model-based off-line tunigg‘_methods:

The Cohen and Coon method is perhaps the most well known tuning method
under this category (1953). The authors realized that most of the process
responses in chemical industry have a sigmoidal shape and can be
approximated using a first order plus time delay model. The controller
parameters are then determined according to this model to give one-quarter
decay ratio and minimum ISE performance. Another model-based tuning method
is based on Internal Model Control (IMC, Garcia and Morari, 1982). Rivera et
al. (1986) borrowed the IMC framework for PID controller design. They took
into account closed-loop performance and robustness in a very systematic
fashion and provided a complete guideline for PI(D) design. Robustness to
MPM (and also time delay error and disturbances) is achieved by an imbedded
filter in the controller. It was found that many commonly used industrial
models (in particular a first order plus time delay model) lead to PI(D)
controller design, with the tuning constants closely tied with the model
parameters and the filter constant. The method uses the Padé approximation
for systems with time delay.

Another method that uses both frequency response method and process
model method is due to Seborg and Yuwana (1982). From an underdamped process
response, the ultimate gain and period are obtained. The PID constants can

then be designed according to the desired phase and gain margins.

On-line Methods:

Many auto-tuning methods for the PID controller have been proposed and
commenced for the PID controller. The relay method by Higglund and Astrdm
(1985) has been extended to an on-line method. A commercial controller built
on this method called the Satt Control Autotuner has been evaluated by
Goberdhansingh and Cluett (1987). The Foxboro EXACT is another class of
auto-tuning PID controller developed recently based on the idea of pattern
recognition of the process (Bristol, 1987). It has been evaluated by Minter
and Fisher (1987). Model based self tuners such as the Self Tuning Regulator
(Clarke and Gawthrop, 1975) can also achieve a 3-term PID control structure

when the regulator parameters are adjusted accordingly. The Turnbull TCS



6355 is a commercial product based on the model based self tuner scheme. The
Toshiba Tosdic 211D8 is another commerciai product based on this scheme. It
is a two degrees of freedom auto-tuning PID controiier which claims to have

better process control quality for both servo and regulatory performances
(Shigemasa et. al., 1987).

2.6 Time delay analysis using frequency domain interpretation
Frequency domain analysis is a useful tool ir examining stability of
systems. In this section, this technique is applied to analyze: (1) the
effect of time delay in closed loop control; (2) the effect of time delay
mismatch on the Smith predictor; and (3) the importance of the residual
filter in the presence of time delay mismatch.

Consider the following process in the s-domain:

2.16 e—(so+6)-
48s+]

G(s) = (2.6.1) -

where & represents the time delay fluctuations in seconds.

A PID controller is applied to the process for feedback control. The
controliler is tuned using the Cohen-Coon (C-C) method, with 8 assumed to be
0 (Ke¢ = 1.103, K1 = 0.019 s'l. Kd = 10.810 s). For ease of comparison, these
tuning constants will not be altered throughout the analysis.

Figure 2.4 shows the Bode plots of the open loop transfer function of
the feedback system. When =0, the phase margin (PM) «35°, Since

PM=8 W (2.6.2)

max co’

the maximum tolerable time delay error =13.5 s. This means that with
the C-C settings, the loop allows a maximum increase of process time delay
of the order of 13.5 seconds before it becomes unstable (which is a 45%
increase in time delay). This effect has already been demonstrated clearly
in Figure 2.1.

Assuming there is no MPM except for time delay mismatch, Figure 2.3 can
be refigured to Figure 2.5, where
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Ge(z™)) = PID controller,

Gp(z™) = 2.16/(48s+1), and

Cml(z™) = 14Ge(z e T85(e T4 ) (2.6.3)
where Ge(z™!) = 1 for ordinary Smith predictor, and

6 = 8/1d4 = fractional time delay error.

The Smith Predictor effectively removes the time delay term from the
closed loop and thereby alleviates time delay problems. When there is no
time delay mismatch (i.e. 6=0), Gm(z") = 1. Since Gp(z™) is first order,
Gc(z'l) can be of infinitely large gain without rendering the closed loop
system unstable. When 6#0, however, the performance of the Smith predictor
declines because the time delay is ’reintroduced’ in the closed loop. Figure
2.6 is the Bode plot using the Smith predictor with different values of 6.
Several points are worth noting:

(1) For perfect prediction, the system is always stable,

(2) Time delay mismatch will not alter the loop gain,

(3) There exists a value of 8 where the loop becomes unstable.

Intuitively, if Gm(z™) is kept with gain equal to unity and the phase
shift never exceeds -180° at all frequencies, then the closed loop will
always be stable. It can be seen from Equation (2.6.3) that Griz™) plays a
very important role in achieving this result. As mentioned in section 2.3, a
first order low pass filter is usually used:

Gr(z™) = L(es+1) (2.6.4)

Figure 2.7 demonstrates that for the same amount of @ (8=1), the phase
shift and the gain of G::-(z") are better maintained at the desired values of
0° and 1 respectively as ¢ increases. This means that the closed loop is now
‘insensitive’ to time delay mismatch and of course the loop gain can be

tuned up to achieve tighter and faster performance.

In summary, when there is no MPM except for time delay mismatch, the
performance of the Smith predictor improves in terms of performance and

11



robustness with the introduction of a residual filter. Whenever the delay
mismatch is large, or the time delay varies greatly over time, stronger
filtering is recommended. A word of caution on using the Padé approximation
for the time delay: A third order approximation was used to derived the

above plots. First and second order approximations were often poor.

2.7 Experimental Evaluation of a Predictive Control Scheme
A Smith Predictor cascaded to a PID controller was applied
experimentally to the Continuous Stirred Tank Heater (CSTH) for testing
(Refer to Chapter S for a detailed description on the apparatus). The
purpose of the experiment is to demonstrate that contrei performance
improves with, the use of predictive control. Also the effects of time delay

mismatch are examined.

Results and discussions

If the model time delay is incorrect, the performance suffers. This is

demonstrated in Figure 2.8. The settings of the experiment is as follows:

-

Bz .9
Az
where B(z™) = 0.0822"

Gm(z!) =

Az = 1-0.892z7"
d=1
The PI gains (Kp=3.0, Ki=0.019) are tuned for thermo-couple #1 (i.~.
dxl1).

Without Gr(z™"): (from period O to 450)

With the time delay progressively increased by changing from
thermo-couple #1 to #2 to #3, the performance of the servo control worsen.

For thermo-couple #3 in particular, the response is only marginally stable.
With Gr(z™)): (from period 450 onward)

Rather than detuning the controller, a residual filter Ge(z™) in the
form of an exponential filter is used. kr is used as the tuning knob for the

12



time delay mismatch case. Notice the mark improvement for the thermo-couple
#3 case with kr=0 and kr=0.95. It can be concluded from the figure that when
the knowledge of the process time delay (or even process model) is
uncertain, a larger value of kr (heavier filtering) should be used. A more

in-depth discussion on the role of Gr(z™}) is presented in section 4.2.3.

2.8 Conclusions

This chapter introduces predictive control by reviewing ¢ ¢ Smith
Predictor and the PID controller. Through experimentai rums, it has U=2an
demonstrated that time delay compensation can result in improved control
performance if the time delay can be exactly modelled. However, when the
time delay of the process is not known or when it is time varying,
predictive control suffers from the same problem. In this case, a residual
filter plays an important role in giving a more acceptable predictive
control performance.

The following algorithms are implemented as an Advanced Control Task
that runs under MULTICON. They are useful for experimental evaluation of the
control algorithms. User references are included in Appendix 2A.

(1) PID control with variations (section 2.4),

(2) Smith predictor with an e: ponential residual filter.

A fixed gain feedforward control is also implemented to accommodate for

a secondary measurable process input. A user reference manual for the

controller is included in Appendix 2A.
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Figure 2.1, PID Control on the Continuous Stirred Tank Heater
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3 Robust Adaptive Control (RAC)

3.1 Introduction

Most adaptive predictive control schemes can be represented as in
Figure 3.1. The adaptive control loop consists of three main components,
namely (1) the parameter estimator which approximates the real process with
a fixed order model through identification based on input and output data,
(2) an optimal predictor that projects the undelayed output based on the
model, and (3) the controller which generates the control signal for the
process based on a controller design scheme (usually a minimization of a
quadratic cost function) and the model parameters supplied by the parameter
estimator. In order for the control scheme to work properly, both components
have to be robust individually and collectively.

For a known process, one should have no difficulty in designing a
control scheme that mezts the desired control performance. However, since °
the orders of most chemical processes are unknown and the parameters are
usually time-varying, modelling the process often presents a difficult
problem for the adaptive control application. This is also true for
modelling the time-delays of the processes. Most adaptive predictive control
schemes presented in the literature require an exact knowledge of the
process time-delay, which is not possible if the delay is time-varying. When
the controller is applied to an unknown process with an approximated process
order and an approximated process time-delay, unmodelled dynamics may lead
to unexpected instability. Figure 3.2 shows the performance of a d-step
ahead minimum variance predictive controller applied to a first order
process with variable time delay. When the time-delay of the process is
increased at k>5300 second, which corresponds to a time-delay under-
estimation case, the controller becomes unstable. Therefore, a control
system that is more robust to such variation is required, especially a
system which is backed by theoretical proof of stability.

Cluett et al. (1988) have presented a general approach for the
stability analysis of the adaptive predictive control system (APCS). This
approach is used to prove global stability for a class of stable-inverse
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processes in the presence of bounded disturbances and unmodelled dynamics
due to the process-model order mismatch. Based on the theorem, a new Robust
Adaptive Predictive Controller (RAPC) was developed. The key features of
this controller is a normalization factor introduced to allow formal proof
of the stability of a controller, with the modelling error treated as a
bounded disturbance. The controller was further extended by Cluett and Shah
(1987) to include time-delay mismatch, which is treated as a form of
plant-order mismatch. They presented sufficient conditions for the RAPC to
ensure global stability in the presence of model-plant time-delay mismatch.
The controller will, from hereon, be denoted by the acronym RAC which stands
for Robust Adaptive Controller.

Since the RAC is designed to deal with time-delay mismatch, Chapter 3
is designated to apply RAC to such a process for evaluation. The RAC is also
extended in this Chapter so that it can handle undeterministic, non-zero

mean disturbances.

3.2 Derivation of RAC

The RAC uses a discrete, SISO, time-variant ARMA (auto-regressive

moving average) model to represent the process. The derivation is as
follows:

Let the process be represented by

AZYY() = BizHz%Uit) + At (3.2.1)
where the order of A(z™) is m1 and order of B(z™)) is n2.

Rewriting Equation (3.2.1) in vector notation gives:

Y(t) = a(t)tp(t-d) + Alt) (3.2.2)

where

#(t-d)t = [Y(t-d) Y(t=-d-1)... Ult-d) U(t-d-1)...]
¢(t-d) is the regressor vector containing the past input U and the past

output Y. d is the process delay including the unit sample delay. 8 is a

vector containing the time-variant unknown process parameters. The
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dimensions of ¢ and 8 are determined by the process order and the time

delay. A(t) represents the effect of unmeasured disturbances and noise on
the output at time t.

Let d be an estimate of the true delay d. The process model can be
reexpressed as follows:

Y(t) = or(t)gr(t-d) + A™(t) (3.2.3)
where

A™(t) = Bu(t) pu(t-d) + A(t)

A™(t) includes the unmodelled dynamics and the perturbation term.
Subscript r stands for reduced order and subscript u stands for unmodelled
terms. The order of 0 is larger than or equal to the order of the parameter
estimates Or(t) in the predictive adaptive model estimation of ?(t]t) of the
process output at time t:

|1 = be(t)* gr(t-a) (3.2.4)

The corresponding' a posteriori estimation error is defined as
e(t|t) = Y(t) - ¥(t]t)

= Y(t) - 6r(0)'¢r(t-d) (3.2.5)
where the estimated parameter vector is generated by an appropriate adaptive
law which guarantees parameter convergence. The control input U(t) can be

calculated by setting the predictive output equal to the setpoint.

Yap(t+d) = 8r(t)t ¢r(t-d) (3.2.5)

The RAC derived above requires the following assumptions to establish
global stability:
Al: The upper bound d for d is known.
A2: The upper bounds ni and nz for m and nz are known.
A3: The sequence {j®(k)]} is unbounded only if there is a subsequence
{ks} such that

(a) lim |®(ke-1)] = o, and
ke



(6) | Y(ks)|>a1}&(ks-1) ez, Vks
where

04x1¢w and Osa2{o and

#(t-1' = [Y(t-1) ... Y(t-G-mi+1), U(t-1) ... U(t-2d-nz+1)]
® is an 170 vector which contains all the elements included in
¢r(t-d) and ¢u(t-d). This assumption is standard for process with
stable-inverse (Martin-Sanchez, 1984).

A4: The upper bound on [6u], the norm of the unmodelled part of the
process parameter vector, and an upper bound on the norm of the
perturbation signal |A(k)| are known. This allows for an
estimation on the upper bound of the dead-zone used in the

parameter estimator.

To formally guarantee the boundedness of the unmodelled term in .
Equation (3.2.3), Cluett et al. (1988) introduced a normalization scheme
to the process represented by Equation (3.2.2). It is defined as follows:

Y™(t) = Y(t)/n(t)
x(t-d) = ¢(t-d)/n(t)

n(t) = max( _max_ (|&i(t-d)|.c) (3.2.7)

1<=i<=m
where & is the 1/0 regressor vector of dimension m which defines an upper
bound of the plant order (see A3). The normalized system of Equation (3.2.2)

becomes

Y*(t) = ex(t-d) + At)/n(t) (3.2.8)

Note that over-estimation of the plant order does not cause any
practical problem on the normalization scheme even if the choice of m is
very large. For the reduced model case, where the model order and the model
delay are chosen to be less than the process delay, the normalized process

may be represented by

Y1) = erxr(t-d) + A"(t) (3.2.9)
where A™Mt) contains the unmodelled dynamics and the perturbation signal



sequence {A(t)). Any term that is due to time-delay mismatch is also lumped
into A™(t). It was proven by Cluett et al. (1988) that for a bounded {A(t)),
the {A"(t}} is also bounded, ie. the boundedness of {(A"(t)} only requires
the boundedness of the unmeasured noise and disturbance.

The a priori estimation errcr for the normalized system is

e™(t[t=1) = Y'(t) = r(t-1)'xr(t-) (3.2.10)

3.3 Parameter estimation in RAC
A normalized parameter estimation scheme with a dead-zone defined by
Cluett et al. (1988) can be used for the RAC to update 8r. It is a recursive
projection type estimator and has been proven to result in a globally stable
controller when coupled with a d-step ahead minimum variance controller
under the assumptions Al to A4 in section 3.2.

The algorithm for updating the parameter estimates is as follows:
le(tit-| = Y"(t) - 8t-1"x(t-a) (3.3.1)

z(t)Ze™(t]t-1)x(t-d)
1+ 2()%x(t-d) *x(t-d)

o(t) = o(t-1) + (3.3.2)

Z(t) acts as a variable weighting factor to the parameter update and a

“switch” for shutting estimation on or off as per the following criterion:
1 gw? = o iff

|e™(tlt-1)|= Ab*(Z1,Ab,t)<2A0w (3.3.3)

where

. .
50’ (Z1,80,t) = 2v2ef x(t-)'x(t-d) (3.3.4)

2 + 2t x(t-d)tx(t-4)

with

n
io<cfe and AwdAm= max_ |a"(t)]

Ab is an estimate of an upper bound on the absolute value of the
perturbation signal A™t) and Am is the least upper bound.
Estimation of Av requires assumption A4.
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2) ket sot)?sthio iff |et(tit-1)]>Ae' (21, Ab,t)2Ab (3.3.5)

where
() ge(t)?=gu? if |e"(tIt-1)]>80’(Gu,b0,1) (3.3.6)
where

2+2% x(t-d)*x (t-d)

Ab’(Lu,Ab,t) = > < Ab (3.3.7)
2 + &6 x(t-d) " x(t-d)
n
(i) goe)? = —20le it =fe) (3.3.8)
(286-|e" (t|t-1) |)x (t-d) x(t-d)
Av’(Z1,A0,t)<| e"(tIt-1) | SAb’ (§u,Av,t) (3.3.9)

Therefore, the on/off scheme can be summarized as follows: Adaptation
will stop if |e"(t|t-l)|SAb'(C|,Ab.t) (ie. case (1)). Otherwise, c(t)2 will
be chosen in the interval (cf.Cb(t)zl (ie. case (2)). (Z1,8u) are used tC -

ensure nonsingularity of the leading coefficient associated with u(t).

3.4 Control Weightings used in RAC
When the process itself contains unstable zeros (i.e. NMP), and/or when
the time-delay is under-estimated, the inverse stable assumption A3 is
violated. The resulting controller is unstable. In order to overcome this
problem, Cluett et al. (1988) proposed augmentation of the process with a
process input weighting Q as defined in Equation (3.4.1).

Z(t) = Y(t) + z%Qz™Hu() (3.4.1)
where the steady state value of Q(z™)=0.

Minimum variance control is then applied to the augmented process. With
a proper choice of Q weighting, all the zeros of the augmented process will
be in the stable region. This satisfies the stability requirement and
therefore results in a stable controller. In general, if the process is
B(z™)
Az

represented as Y(t) =

U(t-d), the augmented process will be given as



-1 -
z(t) = BZ ) yie-a) + 2% Nu-a)

A(z™h

-4-d), oz

A(z’YH

-1
- Bz )z U(t-d)

Notice that the zeros of the augmented process get closer to the open
loop poles as Q gets larger. This means that if the process is open loop
stable, the zeros of the augmented process will be in the stable region when
a large enough Q is chosen. The following example illustrates the effect of
the augmented process for a NMP process and when the time delay is
under-estimated.

Example:
Case 1: NMP process

Let the NMP, open loop stable process be

-1
() = 222152 ye-3)
1-0.7z

Choosing Q=AA, the augmented process is given by

0.9+1.52"
1-0.7z"

_ (0.9+2)+(1.5-0)z”"

1-0.7z"}

2(t) = U(t-3) + All-z HHu(t-3)

U(t-3)

Therefore the process zero will be in the stable region when A is
greater than 0.3.

Case II: time delay under-estimation

Let the estimated time delay d=1. The augmented plant is given by:

0.9+1.5z!

Z(t) = -
1-0.7z

U(t=3) + AAU(t-1)

_ A-1.7a274(0.72+0.9)z"%+1.52™°

- U(t-1)
1-0.7z"
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Figure 3.3 shows the roots of the augmented plant zeros as A varies. It
can be seen that all the roots are in the stable region when A>12. Notice
that two extra zeros are introduced when the delay is under-estimated by two
sample periods.

A affects the leading coefficients of the numerator polynomials in both
cases, especially in the second case where the leading coefficient is A.
Since the inverse of this value is essentially the controller gain,
adjusting A will have a direct effect on the performance. The higher the

value, the slower the response speed.

3.5 Reconstruction of RAC

3.5.1 Introduction

The parameter estimator in RAC uses a dead-zone to prevent the
destablizing parameter drift associated in the presence of unmodelled
dynamics and disturbances (Rohrs et al., 1984). However, the drawback of
using a dead-zone is that when the parameter estimation stops, prediction is
carried out using the ’'unconverged’ set of parameters, which leads to offset
in prediction. This prediction offset shows up in the plant output (referred
to a controller ofts.t) as shown in Figure 3.4. (See Figure 3.5 where the
offset is completely eliminated when the dead-zone is removed.) This
suggests that the predictor has to be modified so that it will give unbiased
prediction, especially when the dead-zone is in effect. Steady-state bias
and non zero-mean disturbances, which are not sufficientiy represented by an
ARMA model, are other sources contributing to the offset problem. This

requires the choice of a model that is able to represent these effects.

3.5.2 Choice of process model

The CARIMA (Controlled AutoRegressive Integrated Moving Average) model
is chosen to represent the process. This incremental model is a more
‘realistic model’ that accounts for undetermiristic and non-zero mean
disturbances then other positional models such as the ARMA or the CARMA
models (Tuffs and Clarke, 1985). It is because the model provides an
integrator in the forward path to remove controller offset (like the
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integration mode in a PID controller). In fact, this model has widely been
discussed and utilized by other authors such as Fesstl and Karny (1979),
Harris et al. (1980), Belanger (1983), Gawthrop (1982), and Clarke et al.
(1983) for tackling offset problems in the design of adaptive regulators.

3.5.3 RAC with the CARIMA model

The ’integrating form’ of the Clarke-Gawthrop Self tuner (1979) forms
the backbone of the reconstruction, but the unique features of the RAC are
kept, namely (1) the idea of using an augmented plant to ensure the inverse
stable criteria, (2) the use of normalization and a dead-zone in the
parameter estimator to guarantee robustness in the on-line process model
adaptation. Furthermore, a P weighting is added as the process output
weighting in the augmented process and a R weighting is added as a setpoint
weighting. All P, Q, and R weightings are extended to rational transfer
function weightings in the backward shift operator. The resulting RAC has
two integrators incorporated to remove offset: (1) an integrator in the
forward path to ensure that there is no setpoint tracking offset, and (2) an
integrator in the predictor to remove the prediction offset.

Consider the CARIMA model:

Az YY) = Bz Hut-d) + czheElt)/a (3.5.1)

The augmented process is given by

Z(t) = Pz)Y(t) + QzHu(t-d) (3.5.2)
where
PzY) = Pn(z™!)
Pa(z”™")
and

-1
Q(z-l) ~ Qn(z l)
Qd(z™)

Figure 3.6 is a block diagram showing the structure of the augmented
process. In order that the process output, Y(t), tracks the augmented



process output, Z(t), P(z") and Q(z_‘) have to be selected such that P(1)=1
and Q(1)=0.
Multiplying Equation (3.5.1) with P(z!) and rearranging, we have

Pn(z")B(z"))
Pa(z™

-1 -1
Ult-a) + Pn(z ")C(z E(t)

Pz HY(t) = — ——
JA(z ) Pda(z )A(z") A

(3.5.3)

After substituting Equation (3.5.2) to (3.5.3), the augmented plant
CARIMA model is obtained:

ve_-1 b -1
B'(z ) ye-a) + {2 ) gty (3.5.4)

z(t) = 1 1
A'(Zz) A'(z 7)A

where

Az = Pazh)Qaz Az

B'(z”)) = 22 %Pn(z"")Qa(z Bz )+Pa(z" 1 )Qn(z )A(Z™)

ciz’h) = Pn(z'l)Qd(z")C(z-l)

The second term on the RHS of Equation (3.5.4) involves knowledge of
future noise. This can be resolved by defining the following identity:

vp-1 -1 a
Lz ) gty o E2 ) (3.5.5)
A'(z ")A AA'(z )
where
SE = d-1

8F = max(5C’-1, 8A’)
= max(8Pn+8Qd-1, 3P4+3Qa+n)

Substituting Equation (3.5.5) into (3.5.4) and shifting d step forward,
the augmented process model becomes

P | -1
2(t+d) = B2 )y F2 ) gy + B2 E() (3.5.6)
A'(z) A'(z7)A
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The past noise term can be feconstructed from the process model. From
Equation (3.5.4),

g0 = Az 8Z(1)-B (zhaute-d)
c'(z™h

(3.5.7)

Therefore, substituting Equation (3.5.7) into (3.5.6), and combining

with Equation (3.5.5) gives the following structure for the regression model:

-1 -1

F(z_l) Z(t) + G(z l)
c’'(z) c’'(z7)
where G(z™") = E(zMB'(z")

Z(t+d) = AU(t) + E(z M)E(t+d) (3.5.8)

The optimal prediction of Z(t+d), Z‘(t+a), is now given by

. -1 -1
Z'ted) = 2 ) 7y o G2 )

c'(z™h c'zh
with the estimation error equals to

aU(t) (3.5.9) -

EE(t+d) = Z(t) - Z' (1) (3.5.10)

To determine the control law that gives minimum variance control to the

augmented process, the following cost functional is minimized with respect
to U(t):

3,c = L RE ep(tsd) - Z°(24d) 1° (3.5.11)
where Z (t+d) = EZ(t+d)}

The minimization, which is obtained by setting 8J/8U(t)=0, s
equivalent to setting the prediction output to the desired setpoint.
Therefore, the control law is given by

F(z'h Z(t) + G(z™h)

R(Z_I)Ytp(t*‘a) = " gy
c'(z) C'(z)

AU(t) (3.5.12)
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-1
F_(z__%_z(t)]C'(z-l)
c'(z )

G(z"hHa

R(z ) Ysp(t+d)-

or Ul(t) = (3.5.13)

Discussion:

There are four points worth noting about the controller defined in

Equation (3.5.12):

(1)

(2)

(3)

(3)

It has an integrator in the forward path that arises from the
CARIMA model. This integrator eliminates offset between the weighted
setpoint, R(z-l)Ysp(t+a), and the weighted augmented process output,

-1.
F(z ')

-1
c'(z )
It requires that G(z!) be stable. This is equivalent to the

Z(t).

inverse stable criterion stated in assumption A3 since G=EB’. As can be
seer from Equation (3.5.8), this can be achieved by proper choice of .
P(z}) and Q(z™') weightings.

The order of the controller is fixed by the degree of F(z') and
Gz™h polynomials. According to Equations (3.5.5) and (3.5.9), their
degrees are affected by the process model order, delay, and the degrees
of the weightings chosen. Since it is undesirable to have a high order
controller in general, the degree of Fiz') and G(z') can be
deliberately chosen to be less than the design values from Equations
(3.5.5) and (3.5.9) such that a reduced order controller is obtained.
This is possible because the RAC is designed to handle unmodeiled
dynamics as long as the assumption A4 is satisfied by choosing a
sufficiently large dead-zone.

F(z™))

cz™h
Diophantine identity defined in Equation (3.5.5) into the optimal
prediction model in Equation (3.5.9) gives

can be interpreted as a residue filter. Substituting the

P | -1 PR | "
2 (t+d) = -wT’u(t) + Flz l’ 2(1)-B(2 l)z"U(t)] (3.5.14)
A'(z) c'(z7) A'(z7)

Equation (3.5.14) can be represented by the block diagram in
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F(z')
c'(z’h 4
following two criteria: (1) C'(z ) must be stable in order that the

predictor is stable. According to Equation (3.5.4), if the C(z))

Figure 2.2. is the disturbance filter which must satisfy the

polynomial of the CARIMA model is chosen to be unity, the poles of the
filter are uniquely defined by the user chosen Pn(z™)) and Qd(z")
polynomiais. Choosing ciz™) to be unity implies that the CARIMA macdel
uses a step model as the disturbance model. This is a fair choice as
long as the major disturbances to be rejected are step type
disturbances. If such is the choice in the controller design, the
disturbance filter in Equation (3.5.14) is bound to be stable. {2) The
steady-state value of the filter must be unity in order that the
prediction is not biased (see Equation (3.5.14)). This, however, is
difficult to guarantee and this prediction bias eventually shows up as
an offset between the process output and the setpoint. The next section .
will focus on the method of enforcing this requirement by incorporating
an integrator to the predictor.

3.5.4 Removing Offset

The problem that causes RAT to have offset lies in the fact that the
parameters of F and G obtained from the estimator are biased during periods
of low excitation in the input signal. This will invariably occur when the
parameters are frozen due %5 the dead-zone, which leads to a prediction
offset. To ensure tiu: %mers is no prediction offset when the parameter
estimation is turned off. :n integrator can be incorporated in the

prediction step by splitting the ¥ polynomial in the following manner:

Fizh) = FP(zha + () (3.5.15)
where 8F’ = &F - 1

Substitute Equation (3.5.15) into (3.5.8) to obtain the following new
regression model:

P | » -1
Pz ) pziey » S0 200 4 2 ) gy »

Z(t+d) = - = -
c'(z) c'(z7) c'(z )
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E(z H)E(t+d) (3.5.16)

It is well known that the C(z'l) polynomial is not easy to identify
on-line especially because of the different rate of convergence of the
process model and the disturbance model. In order to get around this
problem, a fixed polynomial T(z') is used as a proxy for the C(z™)
polynomial. Experience has shown that for a reasonably chosen sampling
period, a value of T(z™) typically chosen to be (1-0.8z"") suffices. This
method is referred to as the T-filter by authors such as Clarke et al.
(1984). Using the certainty equivalence principle to replace the unknown F
and G polynomial, the adaptive optimal prediction of the d-step ahead
augmented process output Z‘(t+a) is given by

2,0 -1 . A .~1
F'(z ) AZ(t)+ C’'(1) Z(t)fc(z )

T (27" T (2 T (')
where  T'(z) = T(z")Palz)Qat=™)

Z (t+d) =

AU(t) (3.5.17)

The control law for the modified RAC is (the superscript f stands for a
signal filtered by T')

R(z)Yap(t+d) = £ (zHAZ (1)+G(z Hau )+’ (1)Z\ (1) (3.5.18)

3.5.5 Parameter Estimation for the modified RAC
The prediction model for the reduced order -controller in Equation

(3.5.16) can be rewritten in vector form for parameter estimation:

w(t) = or(t)'gr(t-d) + A™(t) (3.5.19)

where
A™(t) = Bu(t)'gu(t-d) + E(ZTHE()
WD) = Z(t) - TWZ (t-d)
¢rlt-a)t = (AZ°(t-d) aZ((t-3-1) ... AUT(t-Q) AUT(t-d-D) ... )

or(t)t = [fo f1 ... go g1 ... ]



The parameter estimation scheme from the original RAC defined in

Equations (3.3.4) to (3.3.12) can be used for the modified RAC with slight
modification to the normalization.

Y (1) = y(t)/n(t) (3.5.20)
x(t-d) = ¢(t-d)/n(t) (3.5.21)
n(t) = max(, max_ (|8 (t-d)|,c)) (3.5.22)

where @ is a vector containing positional I/0 data for the augmented

process with dimension m. ¢ is a constant to avoid division by zero. The

nominal value of c is one.

3.5.6 Some interpretation on P and Q weighting of RAC

The control law of the RAC is obtained by r.inimizing the following cost
functional with respect to U(t):

J = E(Z(t+d) - R(z™)Ysp(t+d))?} (3.5.23)
where Z(t+d) is defined as

Z(t+d) = Pz H)Y(t+d)+Q(z HU(t) (3.5.24)

P(z1), Q(z!), and R(z?) weightings are user specified rational
transfer functions in z ' which make the RAC control algorithm flexible and
practical. Since R(z') is not involved in the closed-loop path (see
Equation (3.5.17)), it can simply be interpreted as a setpoint filter.
However, P(z) and Q(z'l) weightings deserves a closer look because they

affect process modelling, estimation, as well as controller design.

P(z"') weighting
Consider the augmented process in Equation (3.5.4):

v o1 ve -1
B'(z™) gy + _C (2

z(t) = =2 2
Az A*(z7ha

§(t) (3.5.4)

where

A'(z™Y) = Paz)Qa(z Az
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B'z”Y) = Pn(z1)Qa(z" " IB(z"})+Pa(z” )z Az

c'(z’h) = Pz’ hazHez™)

If Qn(z™!)=0 and Qa(z™")=1, the augmented process becomes

-1 S N
z(t) = Pz B ye-d) + pH SIS

Az Az’ a
= P(z )Y(t)

(3.5.25)

Apart from adding zeros and poles to the augmented process, the most

prominent effect of the P(z!) is to shape the disturbance as can be seen

from Equation (3.5.25). This effect is more obvious when the closed loop

system is examined. Substituting Equation (3.5.10) into Equation (3.5.11),

and setting Q(z’l)=0. the control law is given by

(1

(2)

Rz 3¥sp(t+d) = Pz )Y(t+d) - E(z )E(t+d) (3.5.26)

Rearranging Equation (3.5.26) gives the closed-loop model:

-1 -1
R(z1) g1 « B2 ) gy (3.5.27)

P(z™h) P(z™h)

Y(t) =

This leads to two important interpretations of the P(z) weighting:

The inverse P(z™) presented as an internal model for model
reference control. The process ocutput tracks the desired setpoint
through the R(zY)/P(z") transfer fumction. It is suggested that the
reference model P(z™)" be chosen as a discretized first order model
of unity gain and time constant faster than the process time constant.
The similarities between this design of model reference control and the
model reference adaptive conirol (MRAC) are broadly discussed by Egardt
(1978).

The controller rejects disturbances according to the choice of the
P(z!). For the special case where P(z')=1, the controller rejects
step load disturbances in only d sample periods. As discussed by Tuffs



and Clarke (1985), this controller rejects step type disturbances with
mir® um time compared with other minimum variance type controller
des .

Qz™") weighting

Q(z'l) weighting has many roles: It reduces the excessive contirol
activity, it shapes the contrcl action according tu its structure, and it
places the augmented process zeros so that the controller can handle some
non-minimum phase systems or systems with poorly damped zeros. Consider the
augmented process in Equation (3.5.4):

S | S |
zn) = B2 D ye-dy + EH2 ) 4y (3.5.4)
A’(z ) A'(z ')A
where
A2 = Palz ez Az

B'(z) = Pa(z"1)Qa(z™)B(z")+Pa(z" )n(z HA(Z™)

c(z™) = Pn(z™)Qatz™)c(z™)

As mentioned before, Q(z'l) affects the positions of the zeros of the
augmented process. By proper choice of Qn(z') and Qdf(z’)), B'(z™) will
have all its roots in the stable region. Therefore, assumption A3 can be
satisfied. When P(z™)=l, the control law resulted from the cost function J
is

R(z™)Ysp(t+d)-Y(t+d|t)
Qz™h)

ult) = (3.5.28)

Minimum variance control can be realized vy setting Q(z'l)-l and
R(z')=l. This is known to give fastest closed-loop response in regulatory
control (dead-beat control). However, without the filtering action of
Q(z'l). the control action calculated this way is very sensitive to the
variance of the parameter estimates and the accuracy of the predicted
output. The role of Q(z’l) is to detune the controller to give conservative

control. Three common choices of "J(z'l) are outlined as follows:



1) Q=2

This is equivalent to a proportional control on the predicted error on
setpoint where the proportional constant is equal to I/A. According to
classical control theory, offset will occur if proportional control is
applied to an open-loop stable system except when the proportional gain is
infinitely large. Therefore, it is preferred that A is as small as possible
to svoid offset problem. However, this is not practical because A plays
another role of shifting the augmented process zeros to the stable region.
Its value is therefore not completely user chosen and it iz bounded by some
lower limit beyond which the augmented process zeros are unstable. This was
demonstrated in the example in section 3.4.
(2) Q = AA

This is equivalent to the Integral only control. A resembiles the
intsgral time constant 7T1. The selection of Q(z’') is able to eliminate
controller offsei, but the closed loop response Is expected to be more
sluggish and oscillatory. Integral only control is therefore seldom used
alone. PI or PID control structure can be realized by using a more
complicated structure of Qz™).
{(3) Q = PI structure

The conventional discrete PI controller takes the following structure:

(Kp+K1Ts) - (Kp)z™

Lz = — (3.5.29)
1-2
Therefore, the PI structure of Qz’) is
iz’ = ——"A—_-; (3.5.30)
Qo + qz

where qo = A(Kp+KiTs) and
qt = AKp
The proportional action speeds up the response rate while the integral
action eliminates controller offset. This adds flexibility to the controller
but increases the complexity. Instead of 1 tuning parameter, the Pl

structure requires 2 tuning parameters.

37



3.6 Test Run on the RAC by Simulation
3.6.1 Description of process
The modified RAC algorithm defined by Equations (3.5.4) and (3.5.18)
was implemented and tested using computer simulation. The process is a
benchmark example commonly used for analyzing robustness of adaptive
controilers (Rohrs et al., 1984). It is a third order process which contains
second order, high frequency dynamics as defined in Equation (3.6.1). A
time-delay term is added for time-delay mismatch case study.

Y(s) = __2__ 229 _ e-o.:ss

3 U(s) (3.6.1)
s+l s"+30s+229

The discretized version of the process is minimum-phase when sampled
faster then 0.2 second. Two different sampling periods of 0.1 second and 0.3
second were chosen for controller testing:

For sampling at Ts=0.3s, the discretization of Equation (3.6.1) gives
model I for simulation:

-1 -2
yit) = —0:313+0.19327140.002922 Utt=1) (3.6.2)

1-0.759z " '+0.01372"2-0.00009142">

For sampling at Ts=0.ls, the discretization of Equation (3.6.1) gives
model II for simulation:

0.037+40.0717z '+0.0078z "2

1-1.3422z ' +0.44552"%-0.0452"°

Y(t) =

U(t-4) (3.6.3)

The dead-zone is chosen by the following equation (Cluett, 1988):

Av = V(np-nr) leul (3.6.4)
= 0.0243
where np is the process regressor length, nr is the reduced order

regressor length, and |9u| is the norm of the unmodelled terms.
The simulation settings are tabulated in the following Table 3.1.



Table 3.1, Controller settings for simulation runs

Run# Figure order delay Ts Piz™) Qiz™h RzYH Tz Ab
1 37 31 0/0 03 | 0 1 1 0.0243
2 38 371 0/0 03 1 0 1 1 0.01
3 39 373 3/0 03 1 0 1 1 0.0243
4 311 3/3 3/0 03 1 sA 1 1 0.0243
54
5 312 3/3 3/0 03 1 1o7zh ! 1 0.0243
6 313 3/3 3/0 01 1 58 1 1 0.0243
3A
7 314 3/3 3/0 03 1 -7z ! 1 0.0243
3A
8 315 3/3 3/0 0.3 5(1-.82") -7z ! 1 0.0243

(order= process/model order; delay= process/model delay; )
(Ts= sampling time in second )

3.7.2 Discussion of Results

The results of applying- RAC to model I is shown in Figure 3.7. The
controller is stable, but the controller output contains high frequency
oscillation. This is referred to as 'ringing’ in the control literature, and
is caused by the controller trying to cancel poorly damped negative
controller poles (notice from the parameter trajectories that the controller
pole is equal to -0.8). These poles are normally not desired because they
make the controller change sign rapidly and cause excessive wear in the
final control element. The ringing phenomenon can be alleviated by either
increasing the sampling period or introducing controller weighting to obtain
desired zero locations for the augmented process (this will be demonstrated
later). The control variable tracks the setpoint exactly even when a
dead-zone, Ab, is used. This is a big improvement compared with the original
RAC design. The dead-zone represents an upper bound to the unmodelled
dynamics. If this value is reasorably reduced so that the parameter
estimator can be run more often while still maintaining the function of the
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dead-zone, the performance of the controller is expected to increase. This
is demonstrated in Figure 3.8 where Av=0.0l. There is a mild improvement
performance for both the input and output trajectories.

Figure 3.9 demonstrates the effect of time delay mismatch (no process
order mismatch). The controller 'blows up’ because the parameter associated
with U(t), go, monotonically converges to a very small value. Q(z'l)=7\A is
chosen. The value of A is chosen such that the augmented process has all
zeros in the stable region. Figure 3.10 shows the roots locus of the
augmented process zeros with A increasing from 1 to 6 (all the roots are
stable when A25). These zeros migrate towards the center as A increases.
Notice that these negative zeros are damped out rapidly so that no pronounce
effect of ringing can be seen. Tr2 result is shown in Figure 3.11. The
closed-loop response is stable if not slightly oscillatory. Notice that the
go parameter in Figure 3.11 is fairly large compared with tuat in Figure
3.9. As mentioned in section 3.5, this structure of Q(z™') is equivalent to
an Integral only controller. Whereas the Integral only controller can
eliminate offset when applied to an open-loop stable process and increase
the response speed, it is seldom used alone because of its overshoot and
oscillatory behavior. Figure 3.12 shows the effect of using an inverse PI
structure for Q(z-l) weighting. The corresponding PI constants are chosen to
be Kp=0.158 and Ki=0.14 repeats per second. The performance of the
controller is very much improved. As shown in Figure 3.14, when A is
decreased to 3, the go parameter converges to a smailer number. This
ztplains the more oscillatory behavior. Normally, A is thought to be the
proportional band and is used for tuning the controller.

The closeness of model-following is traded against control activity
when P(z) weighting is used with conjunction with Q(z") weighting
(Clarke and Gawthrop, 1979). It was recommended that to design for a certain
performance, choose P(z"!) as the inverse of the desired closed loop model
and Q(z’l) in the form of an inverse P! structure. Then A can be used as a
tuning knob for the controller performance (Clarke, 1984). P(z™) weighting
in the form of a 1st order lead filter is applied to the process and the
result is shown in Figure 3.15. The performance is improved compared with
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Figure 3.14. The control is tighter, oversh:..x is less, and oscillation is
reduced. As meniioned in section 3.5, P(z’l) can “& thougunt as the inverss
model for model following contrel when Az")=c. Therefore, ww. < sice of
=5(1-0.82"') places the closed loop ole to z=0.8. This slows down the
response and stabilizes the closed loop performance.

Finally, the controller is tested on model II which contains NMP zeros.
The process model is first order and the time-delay is underestimated to be
zero. Q is chosen as SA. The result is shown in Figure 2.13. When the
parameter estimates converge to a set of values, the output responses are
sluggish but stable. This demonstrates that the RAC performs satisfactorily
on a NMP process under process order mismatch and time-delay mismatch. The
responses can again be improved by using an inverse PI equivalent Q(z")

weighting.

The simulation results concluded that the modified RAC perf orms
satisfactorily in the presence of time delay mismatch. It is robust against
offset that results from poor prediction. With a proper chosen Q(z-l)
weighting, RAC is able to control MP and NMP processes with little knowledge
on the model order and model delay. The Pz weighting provides model
following feature to the RAC design. However, a priori knowledge of the
process is required to obtain good tuning parameters for P(z") and Q(z™)
weightings. This presents as one drawback of the RAC.

3.7 Test of RAC by Experimental Runs

3.7.1 Introduction

The RAC was tested on a pilot scale Continuous Stirred Tank Heater
(CSTH). Chapter S5 contains a detail description of the apparatus. The
purpose of the experiment is to demonstrate the robustness of RAC in the
presence of time delay mismatch. This is Studied by setting the model delay
d to S (which is roughly the delay of thermo-couple #2) and using
thermo-couple #3 to measure the temperature. Dif ferent P(z'l) and Q(z")
weightings are tested for servo and regulatory control.

41



Choice of model

Fractional delay results with the above choice of sampling period. The
modified z-transform of a Ist order model is used to represent the system

(the process is sampled at 10 seconds and measurement is taken from
thermo-couple #2):

-1
Y(t) = ‘-’3*"”—2_1 2z U(t-1)
1-as2
Initialize RAC
The parameter vector is initialized to one, ie @(0)={1 1 ... 1). This

is a bad choice of initial parameter since these values are far from the
true values. Therefore a sequence of step changes is introduced at the first

20 sampling intervals for open loop identification.

3.7.2 Discussion on the choice of the dead-zoi:n _

The algorithm for choosing the dead-zone for RAC is in Equations
(3.3.3) to (3.3.9). In practice, a small dead-zone renders the parameter
estimator more susceptible to parameter drifting during the periods of lo{av
excitation. On the other hand, a large dead-zone results in poor parameter
estimates because the parameters may not be updated as frequently as
necessary. The choice of the size of the dead-zone is really a compromise
between these two cases.

Choosing the size of the dead-zone actually requires knowledge of the
process as well as disturbances. Equation (3.6.4) is for the estimation of
the dead-zone for the deterministic case. If perturbation A(t) is present,
the dead-zone should be chosen to be the maximum of that from Equation
(3.6.4) and the largest size of {(A(t)). However, this knowledge is usually
difficult, if not impossible, to obtain in practice. From the simulation
resuits (Runs 1 and 2), a smaller dead-zone gives only mild improvement to
the output performance and parameter update when there is no disturbance.
The user has to choose a dead-zone that can accommodate the biggest possible
disturbance. One practical method is the choose the dead-zone according to
the maximum perceivable prediction error: )

From Equations (3.3.1) and (3.3.7), the maximum value of Y"(t)=1 and
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|Y"—?"!>2Ab. The dead-zone can therefore be chosen to be the fractional
prediction error divided by 2:
Av = (err)/2 O=errsl

For all the experimental runs, the dead-zone is fixed at Av=0.05 which

means that a maximum of 10% in the prediction error is allowed.

3.7.3 Results and Discussions

The settings of the experimental runs are tabulated in Table 3.2.

Table 3.2, Settings for experimental runs

Run# Figure TC # delay Ts P(z™) oz R@YH TEZYH e
1 316 2 5 10 1 0 1 1 0.05
2 317 3 5 10 1 0.5A 1 1 0.05

0.95A
3 318 3 5 10 1 -z 1 1 0.05
0.95A
4 319 3 S 10 1 s o7 ! 1 0.05
’ -1 _3_9_.__.
s 320 3 5 10 20-52) (D74 ! 1 0.05
6 3.2 3 5 10 (changed on-line) 1 1 0.05
4. 38
7 322 3 5 10 30-.6627) [~ o1, 1 1 0.05

(delay=model de#ay in sample period; Ts=sampling time in second)

Figure 3.%6 shows a S5-step ahead minimum variance predictive control
(P(zh=1, Q2h=l, R(zY)=1) on the process. After the open loop
identificati®d, and 2 setpoint changes, the parameters converge to some good
values andi the controller is able to drive the output to the setpoint
satisfuctorily. However, the control action is too vigorous (which is common

for minimum variance control). With the chosen sampling time (d=5), RAC may
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not be able to compensate for the time delay even when 2 b parameters are
used in the model. The fractional time delay mismatch causes instability
because the controller poles continuously migratées in and out of the
stability region. Furthermore, it resuits in a small value of go which makes
the vrontroller very active. This can be seen from Figure 3.16 that the
¢ 1 . 2r shows signs of ringing from period 150 to 250. This is caused by
a . .ly damped negative controller pole. After 250 sampling periods, go
converges to about 0.913. The control action becomes very vigorous and shows
sign of instability. Notice that there is no instabiiity in the process
output because the controller cancels the unstable zero with an unstable
controller pole. This should be avoided because the unstable mode will
eventually show up in the process output when cancellation is no longer
exact due to finite word length of the digital computer, Q(z'l) weighting
can help alleviate this problem.

Figure 3.17 shows that RAC controls the process successfully under time
delay mismatch by using Q(z-l) weighting. Thermo-couple #3 is used to
measure the temperature which adds about 75 seconds time delay to the
process (the time delay is underestimated by 2 to 3 sample periods). After
100 sample periods from start, the parameters converges to some meaningful
values and the controller starts to perform fairly satisfactorily. Notice
that go is mairtained at a fairly large number compared with that in Figure
3.16. There are still small traces of ringing in the control output. This
can be removed by specifying a larger value of A. However, the response
speed is expected to slow down when doing so. The performance of the servo
response at period 250 is fairly acceptable. The response is slow and not
oscillatory, with about 307 overshoot.

An inverse PI structure for Q(z"ii weighting is used. The result is
shown in #igure 3.18. The parameters for Q(z-‘) are arbitrarily chosen and
they correspond to Kp=0.316 and Ki=0.074. The responses are faster than the
previous run but more oscillatory. Figure 3.19 shows another setting for the
Q(z'l'} weighting with the same inverse PI structure. They correspond to
K::=0.85 and Ki=0.0313. It can be seen that the responses are sluggish but

overshoot and oscillation are reduced. In general, the PI structure. provides
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more flexibility (and therefore better performance can be achieved) to the
controlier output shaping but it makes the controller harder to tune.

The response speed is increased when a lead filter P(z’h weighting is
added. This is shown in Figure 3.20. ‘The controller performs well after
several setpoint changes. Although overshoot is high (over 507), the
oscillation dies down rapidly and the output tracks the setpoint quickly.
Notice that the parameters converge much faster when P(z) is added when

compared with Figure 3.19.

In order to obtain a ‘tuned’ set of P(z) and Q(z™') weightings, they
are adjusted on-line as shown in Figure 3.2l P=3(l-0.662") and
Q=3A/(l-0.7z'l) appear to be acceptable settings. These values are used for
examining the regulatory control of RAC. Two step disturbances are
introduced: at 300 sampling period, water inlet flow is increased to 457 and
at 350 sampling period, water inlet flow is dropped back to 35%. The results ’
are shown in Figure 3.22. The disturbance rejection is reasonably fast

compared with the speed foi- servo comtrol.

3.8 Conclusion

The modified RAC demornstrates it ability to control both minimum and
NMP stable processes with model order or time delay mismatch. The robust
parameter estimator is enuipped with regressor normalization and a dead-zone
for stopping the esiima.ion. The size of the dead-zone can be easily chosen
to be the fractional prediction error divided by 2. Offset free performance
is achieved, which is a big improvement compared with the original RAC
design. It is also extended to include Pz, ozh, R(zY, and Tz
weightings in raticnal transfer functions.

Q(z") weighting is very important for the success of the control
algorithm when time delay mismatch exists. It detunes the controller and it
places the augmented process zeros so that the controller can handle some
non-minimum phase systems or systems with poorly dampad zeros. The choice of
Q(z'l). however, is not easy and it requires some a priori knowledge of the

process. Q(z'l) = AA is found to be a sucressfu! choice wher= A can be used
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as an on-line tuning parameter. It is recommended that when the time delay
is not known, or when it is time varying, a large A should be used at the
star* and slowly reduced to obtain faster control response. There is a lower
bound to the value of A for which the closed-loop will be unstable. The user
is advised to use a more conservative A whenever the knowledge of the time
delay is limited. An inverse-PI structure of Q(z') adds more flexibilities
to the controller and the controller performance is seen to improve.

Pz weighting is useful for output shaping. It is recommended to
choose P(z')™" to be a first order filter with unity gain and time constant
faster than the process time constant. With proper choice of P(z") and
Q(z'l) weightings, the RAC can handle open-loop stable processes
satisfactorily.

The modified RAC algorithm is implemented as an 'Advanced Control Task'
under the  QNX operating system using C pregramming language. This
implementation is useful for educational purposes. Details of the program ’
can be found in Chapter 5 and the user reference to the program can be found
in Appendix 2B.
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4 Multistep-Adaptive-Predictive~Control (MAPC)

4.1 Introduction

Inverse-model adaptive schemes developed wusing a single point
optimization, such as the GMV (Generalized Minimum Variance control) by
Clarke (1984) and RAC (Robust Adaptive Control) by Cluett (i987), are
sensitive to a priori choice of the time delay. If the time delay is
underestimated, or if the process time delay increases at some point in
time, this class of controllers can become unstable. The usual strategy to
get around this problem is to detune the controller by the introduction of
controller weightings. For example, Q weighting is absolutely essential to
the success of the RAC as explained in Chapter 3. This method guarantees
stable control by trading off response speed. However, the major drawback is
that a successful choice of Q weighting is not easy and depends greatly on
some a priori. knowledge of the process. Since Q is non-adaptive (Minter,
1988), a user selected value of Q may not be uble .3 stabilize the process
if the process is highly time-varying. This proinpts one to consider another
class of controllers that are based on the minimization of a multi-stage
cost function and can handle time-varying delays relatively easily.

Long range predictive control (LRPC) has recently received a lot of
attention. This is because this class of control strategy has been found to
be more robust to model-plant-mismatch (MPM), especially in the mismatch
between the process and the model time delay, and can easily handie
non-minimum-phase (NMP) processes. Although the formulation of the LRPC
varies from one design to another, they are all based on the idea that
control action is determined based on a long term prediction of the process
output. - At every sample period, a forecast of the process over a long range
time horizon is generated based on a model of the process that is adjusted
on-line with a recursive parameter estimator. The ‘best’ control path to
bring the predicted trajectory to the setpoint is then determined by a
series of control moves calculated such that a quadratic cost function is
minimized. The control action is .implemented in a receding horizon fashion,

ie. only the first element of the predicted control path is implemented. The
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whole procedure is repeated at the next sample period.

Among the many LRPC strategies, EHAC (Extended Horizon Adaptive
Control) by Ydstie et al. (1985), DMC (Dynamic Matrix Control) by Cutler and
Ramaker (1980), EPSAC (Extended Prediction Self-Adaptive Control) bty De
Keyser et al. (1979), and GPC (Generalized Predictive Control) by Clarke et
al. (1986) have received special attention in industry and in fact a number
of them have been successfully implemented. In particuiar, DMC is being used
as the main control platform by Shell at its oil refineries and other
petrochemical units.

The Muiltistep-Adaptive-Predictive-Controller (MAPCj developed at the
University of Alberta by Sripada (1988) and modified by Foley (1988) falls
into the same category as LRPC. The most prominent feature of MAPC is that
the process model is formulated using a state-space realization and the well
established Kalman Filter (Kalman, 1960) is used for state estimaticn and
prediction (called the Modified Kalman Filter Predictor, MKFP). Foley (i}
has compared MAPC with GPC and claimed that they are asymptotically ¢:ual
provided that the disturbance model in MAPC is chosen to be the same as that
in GPC.

In this study, the MAPC is successfully implemented as an Advanced
Control Task in C programming language running under MULTICON and the QNX
operating system (see Chapter S). This chapter outlines the structure and
the features of the MKFP and the MAPC. Special attention is paid on the
performance of the MKFP in the presence of time deiay mismatch. The MAPC is
experimentally evaluated on the pilot scale Continuous Stirred Tank Heater
(CSTH, see Chapter 5). Since LRPC based controllers are known to be more
robust to model-plant delay mismatch, MAPC is especially tested under this

conditior.

4.2 The Modified Kalman Filter Predictor (MKFT)
4.2.1 Basic formulation of the Kalman Filter Predictor
Time delay compensation, which was pioneered by Smith (1957), plays an
important role in process control especially when the time delay is

significant. Chapter 2 discussed the classical predictive control using the
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Smith predictor and the PID controller. However, the Smith predictor was
originally developed to tackle deterministic process only. When stochastic
noise or non-stationary disturbance terms are present, it was found that the
predictive control can be improved by adding a noise filter Gf(z-l) as shown
in Figure 2.3. This is similar to the configuration of the Internal Model
Control (IMC) by Garcia and Morari (1982). Rivera et al. (1986) analyzed IMC
and suggested ways of choosing the filter (see Chapter 2). Bialkowski (1978)
developed an optimal k-step-ahead predictor based on the Kalman Filter,
called the Kalman Filter Predictor. The resulting predictor has the same
structure as the Smith predictor shown in Figure 2.2, but the noise filter
Ge(z™') is chosen optimally w~ith respect to the a priori knowledge of the

stochastic disturbances and the noise characteristics.

Consider the discrete state-space representation of a SISO system

Xl(tﬂ) = le‘(t) + AIU(t) + El'm(t) (4.2.1)
Y(t) = HlX(t) + n2(t) (4.2.2)
where for d=k-1

] T
Xl(t) = [xl(t) xz(t) xn(t) xmn(t) xmd(t)l
[0 0..0-a o o]
1 0 0 -a . 00
-1
Ql = (o} 1 -ul [+ )
1
.0 © 1 0] (n+d)x(ned)
t
1\l = [b“ bn-l bl 0 ... Ollx(m;)

Hi =[0..0 ”lx(m;)

Ex = [&l Ez En 0...0

1x{n+d)
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Notice that the state variables (except those associated with the
delayed states) do not carry any physical meaning in this state space
observable canonical form. This makes the interpretation of m(t) and m2(t)
very difficult. Previous authors interpreted ni(t) as process noise or state
excitation. Equations (4.2.1) and (4.2.2) can be expressed in an

input-output form by doing forward substitution of the states to give:

-1 ~ ..l -~
v = 222 2 ye-n + S22 27 + matw (4.2.3)
A(z ) A(z)
where
Az =1+az+..+az"
1 n
Bzl =b +bz's..+bz""
1 2 n

-1, -1 -2 -n
C(z )= Enz + En_lz + ... * Elz

Equation (4.2.3) is an ARMAX model with m(t) as a zero mean stochastic

disturbance which passes through the dynamic structure czhz A to
generate the deterministic disturbance, and n2(t) as a zero mean measurement
noise.

The optimal state estimates il(t) at each sample instant can be
obtained by a Kalman Filter. The standard Kalman Filter algorithm is a one
step algorithm and its variations can be found in Astrdm and Wittenmark
(1984). A two-step formulation of the time-varying Kalman Filter is used
here (Franklin and Powell, 1980). It consists of the following steps:

(1) Gain Calculation:

L(t) = MK (HM(t)H" + R2)™ (4.2.4)
(2) Measurement Update:
(2) A Posteriori State update

R(t) = X(t) + L)(Y(t) - HX(t)) (4.2.5)
(b) A Posteriori Covariance update

P(t) = M(t) - L(t)HM(t) (4.2.6)
{3) Time Update:
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(a) A Priori State update

X(t+1) = 8% (t) + AU(t) (4.2.7)
(b) A Priort Covariance update

M(t+1) = #P(t)8" + ZRi=" (4.2.8)

where R1 and Rz are variances of mi(t) and nz(t) respectively, ie.
Etm(tm()"} = Ry,
Eln2(tinz(t)) = Ra,

and
Em{tinz(t)")

"
o

Notice that in Equations (4.2.4), (4.2.6), and (4.2.8), the Kalman gain
update L(t), the a posteriori covariance update P(t), and the a priori
covariance update do not depend on the process measurement. Therefore, the
Kalman gain does not need to be calculated on-line. Furthermore, since L(t),
P(t), and M(t) will finally converge to their steady state values, rather
than calculating the Kalman gain at every time step, the steady state Kalman

Filter can be used instead (Pappas et al, 1980):
M - oM2' + GLHM®' - R1 =0 (4.2.9)

L = ME'(HME® + R2)™ (4.2.10)

where M and L are the steady state values of M(t) and L(t)
respectively. Equation (4.2.9) is known as the Algebraic Riccati Equation
(ARE).

The iterative Kalman Filter algorithm defined in Equations (4.2.4) to
(4.2.8) can therefore be reduced from an iterative problem to an algebraic
problem by solving the ARE just once. This method saves a lot of real-time
computing power because the ARE can be solved off-line. Since the Kalman
Filter will be extended to an adaptive version later, the iterative method
is used instead. However, the control algorithm can be written such that the
steady-state Kalman Filter would kick in to replace the recursive Kalman

Filter whenever the user decides to switch off the parameter adaptation.
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The d+l step ahead prediction of the output Y(t) is given by forward
shifting the state estimates:

Y(teds1|t) = HX (n+dei|t) (4.2.11)
Since
R (t+d+1]t) = #% (1) +“ao‘"ﬁ’*‘/\ u(j) (4.2
1 T T JZ‘ T -2.12)
&l A delg ted tode)
Y(tsda1ft) = H ¢7K (1) +,Z¢H‘°‘ A UG) (4.2.13)

4.2.2 Modified Kalman Filter Predictor: disturbance modelling

The future prediction of the process output ?(t+a+l|t) can be used as
the feedback signal to replace the real process signal. When m(t) and ma(t)
are white noise, i.e. random noise with zero mean, this predictor will
result in zero-offset prediction (provided there is no MPM). However, in the
presence of coloured noises and/or in the presence ~f non-zero me'ah
disturbances, the predictor will give biased results. To . account for non
zero mean noise/disturbance, Walgama (1986) proposed the Modified Kalman
Filter Predictor(MKFP). An integrator is embedded into the state space model
to represent the deterministic non-stationary noise dynamics. The state
matrix and the input/output matrices in Equations (4.2.14) and {4.2.15) are

redefined as follows:

X(t+l) = & X(t) + A U(t) + E m(t) (4.2.14)

Y(t) = H X(t) + n2(t) (4.2.15)
where for dm=k-1

T
X(t) = [xo(t) xl(t) xz(t) xn(t) xm(t) xma(t)l
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n n-i 1 1x(n+d+l)

A
H=(0..01]

lx(ne:ul)
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An extra state xo(t) is augmented to the original state-space model. It
wonstrated that the state-space system defined in Equations

{4.2.15) is equivalent to the following input-output CARIMA

_ B i) « S mit)

" . + 72(t) (4.2.16)
Alz ") A(z ) A
Az =1+az'+azi+...+az"
1 2 . n
Bz =b +bzl+...+b2™
1 2 n

o N | -2 -n
Cz) = Enz + £n_lz + ...+ Elz

Notice that the only difference between Equation (4.2.3) and Equation

(4.2.16) is the presence of the A term. Whereas the ARMAX modei requires

m(t) and n2(t) to be zero mean for- unbiased process representation, 4 in

the CARIMA model relaxes this requirement. n2(t) can now represent non-zero

mean disturbances because Anz(t)=0 at steady-state. Therefore, mni(t) can be

interpreted as zero mean noise and n2(t) can be interpreted as non-zero mean

random disturbances (eg. the steady-state bias and step disturbances).

Equation (4.2.16) provides an insight into the physical interpretation
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of m(t) and m2(t) so that choosing Ri 1nd Rz for the Kalman Filter
predictor becomes physically meaningful. Experience has shown that it is the
ratio of the noise variance R2/Ri and not the absclute value of each noise
variance that affects the performance of the MKFP. Therefore, the common
practice is to choose one (usually R2 because it is more physically
interpretable) and vary t..e other.

Innovations analysis is used to examine the structure of the &#uii"led
Kalman Fiiter Predictor and thereby understand how it rejects disturiiaicass,
The details of the analysis are in Appendix 1 and the results are listed as
follows:

From the innovations analysis of the MKFP,

-y, - vl
v = B sty o L2000 (ALT)
Alz™) A(z™) A

whers w(t) is the innovations sequence which is defined as

w(t) = Y(t) - ¥(t|t-D (AL.2)

w(t) contains new information that Y(t|t-1) does not have, ie. it
includes the current effects from process noise, measurement noise,
disturbances, as well as unmodelled dynamics.

As shown in Appendix 1, the observer polynomial C'(z') is chosen
optimally according to the variances of the process and measurement noise,
Ri and k2. With R1 and Rz specified, the Kalman gain L(t) can be calculated
and the C'(z™") is given by Equation (AL8):

iz = [AlZ)(1+K2(z ez %Kiz D 1Az DIz (AL8)
where
Kiz) =1 ¢1 20 +...+12™
n n-1 1
-1 . -1 -3vl
K2z ") = lmd_“z + ...+ le

-1 -1 -n
D(z") = lownz + .4 Elz )|
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ll. iel0, n+d-1] are the elements of the Kalman gain vector
obtained from Equations (4.2.4) to (4.2.8).

As can be seen from Equation (Al.7), the MKFP utilizes a step type
model as the internal model for the disturbances w(t). In theory, each type
of disturbance (eg. a ramp type disturbance or a sinusoidal type
disturbance) requires a correct model in order to get good disturbance
rejection. However, since the most common type of disturbances encountered
in the process industry are persistent (step) type functions, this internal
model is often sufficient for handling a majority of them.

The original development of MAPC by Sripada (1988) uses a residual
model as the disturbance model. This residual model is identified on-line by
fitting a moving average model to the residual sequence (Single series
forecasting, Man, 1984). Apart from complicating the formulation of the
controller and requiring more computational effort, the main difficulty is
to obtain on-line the process model and the disturbance model totally
independent of each other from the input signals alone. Although Sripada
suggested ways of switching on and off the model estimators under special
conditions so as to obtain the models, Foley (1988) mentioned that such a
system is basicully non-realizable if the dynamics of the process are
time-varying and unknown. Therefore, the MKFP appears to be a much simpler
and realizable predictor.

The d+1 step ahead prediction ?(t+a+l|t) can again be obtained by
forward shifting the state estimates:

~

- ted a
Ytsdo1|t) = HO™'R() + ) HO“ AU (4.2.16)
=

To further investigate the internal structure of the MKFP so that it
can be compared with the Smith Predictor (Chapter 2) and the optimal least
squares predictor (Chapter 3), the prediction ?(t+3+l|t) is reexpressed
using the model in Equation (AL7). Forward shifting Equation (AL7) d+l
steps ahead gives:
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Y(t+d+l) =

-1 , -1
B(z_,) U(t) + E——(—z—l—)w(ﬂaﬂl (4.2.17)
A(z7) Alz )A

The following Diophantine Identity is then used to separate past and

future noise terms:

yp_-1 -1 -
C'(z ) - E(z-l) . F(z ) g4

= = (4.2.12)
Alz A A(z ')A

From Equation (Al.8),
Ezh =1 + Ka(z™) (4.2.19)
Fiz'h) = Kiz'ha + bz’ (4.2.20)

Substituting Equations (4.2.19) and (4.2.20) to Equation (4.2.17) gives

-1 -1 -1
B(z ") Ul + Ki(z )A+D(z )
Az’ Az 1A
(1+K2(z")w(t+d+1) (4.2.21)

Y(t+d+1) = w(t) +

Reconstructing w(t) from Equation (AL.7) and substituting into Equation
(4.2.21) gives

-1
Y(t+d+l) = E(—z-i-)- Ut) + (14Ka(z)w(t+ds1) +

Alz)
Ki(z"Ha+D(z™h)
o Y(t) -
C'(z ')
-1 -1 -1, &
Ki(z  )A+D(z ") B(z )z-dAU(t) (4.2.22)

Azha  c(z’h

Ay p gty A R
Since KMZ )A$D(Z ) -1, C(Z ) (v, Equation (4.2.22)
Aiz"h)a Az hHa

becomes

-1 -1 -1
Ki(z7 JA+D(27) oy, (14K2(Z D) giptypyqe) o

Y(tsd+l) = — =
c'(z ) c'(z)




( 1+K2(z"))w(t+&+l) 4.2.23)

Taking the expected values of Equation (4.2.23) gives the d+l1 step
ahead prediction:

-1 -1 -1
Ki(z” )84D(2 Dyy), U1+K2(Z Ng(,-typy0q) (4.2.24)

c'(z™) c'(z™h

Y(t+d+t|t) =

Therefore, Equation (4.2.24) presents an alternative way to obtain the
d+1 step ahead prediction rather than by Equation (4.2.16). This method is
computationally more efficient especially when the time delay is large.
Notice that this predictor is identical to the prediction in Chapter 3 (see
Equation (3.5.9)) (Foley, 1988). Equation (4.2.24) can further be expressed
in the following manner using the Diophantine Identity in Equation (4.2.18):

-1, &
B(z l)z'd'lU(t)] (4.2.25)

A(z)

B(z™h
Az

Ytede1|t) = u(t) + Gf(z")[Y(t) -

Equation (4.2.25) can again be represented by the block diagram in
Figure 2.2 where Gt(z™") is obtained optimally through the MKFP:

- Ki(z H)a+D(z™")
c'(z )

Ge(z™) (4.2.26)
Notice that the steady state value of the filter is unity, ie. Ge(l) =

D(1)/C’'(1) = 1. This is important for the MKFP to give offset free
prediction.

4.2.3 The role of Gr(z™)
Smith Predictor(SP):

In light of Equation (4.2.25) and Figure 2.2, the MKFP can be
interpreted as a SP with an optimal time varying residual filter Ge(z™). In
fact, Gt(z!) is the only difference between the MKFP and the SP. For the
SP, Gz’ is unity. This means that the future effect of the residuals is
predicted to be the same as the current effect (see Equation (4.2.25)). The
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controller will take immediate action to regulate this effect. This method
is found to be robust if the mode! can closely represent the process. In
fact, the Dynamic Matrix Control {Cutler and Ramaker, 1980) uses a multistep
SP to generate the future trajectories and is proven to be very robust in
industrial application. However, high frequency noise, unmodelled dynamics,
time delay mismatch may cause problems. For example, the SP requires the
exact knowledge of the process time delay. If time delay mismatch is big,
the time delay term is reintroduced into the closed loop characteristic
equation which makes the closed loop stability difficult to guarantee
without detuning Gelz™). However, an exact knowledge of the process time
delay is generally not available because the delay is often a function of
the process operating conditions. The specification of Gt(z') becomes a

necessity to guarantee robustness in the presence of noise and MPM.

Least-square predictor(LSP):

The LSP is found to have a similar structure to the MKFP except for
Griz?). It is derived in section 3.5.2 and is reproduced here for
convenience. The process medel is

A = BNz U1 + SZ e (4.2.27)

A
Multiplying Equation (4.2.27) by E(z")A/T(z!) and rearranging gives

C(z-x)Y(t-rad) FlzY) Y(t) + E(z™VBiz )AU(t) .
T(z™ ) T(z Y T(z™h)
———€(t+a+1) (4.2.28)
T(z l

where E(z") and F(z° 1y are obtained from the Diophantine identity

c(z™") = EzYAzMa + Fiz )z ! (4.2.29)

The least-square prediction is given by

-x)Y(t+a+1|t Flz Y(t) + EYBEY AU(t)

T(z™h T(z ) T(z'™hH
= Flz )Y . Sz Bz _u)
T(z™Y) Aiz’hH T(zhH
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F(z"1)B(z")_-é-1_U(t)

Az T(z'H
1R eednfa | Cle] ) Btz ’Um . Fzh
Tiz™ ") Tz Az™) Tz

B(z™")
Alz’H

Clz

[Y(t) U(t-aﬂ)]

(4.2.30)

Since identifying C(z'l) on-iine is known to be a difficult problem. a
user chosen polynomial T(z') known as the T-filter (Clarke, 1985) is
assumed to be approximately equal to C(z"). In such case, the d+l step

ahead prediction is given by

-1
fesdet|v) = 22 dyqy cf(z“)[v(t) Bz ’U(t a+1)] (4.2.31)
A(z ) Az™)
where
-1
Gr(z) = ﬁ?-} (4.2.32)
T(z )

Notice that F(z™') is uniquely determined by T(z') through Equation

(4.2.29) when A(z") is known (le. T(z) = EzHaczha + Fzhz .
The problem of identifying C(z’!) on-line reduces to a problem of selecting
a suitable T(z™) polynomial. However, choosing T(z') is a complicated
matter since the order of T(z") and the locations of its roots can affect
the robustness of the closed-loop as well as disturbance rejection
characteristic. It is generally desired that Gt(z-l) be low pass so that
residuals resulting from noise plus high frequency unmodelled dynamics can
be attenuated.

Figures 4.l1a and 4.1b are magnitude plots of the frequency response of
Ge(z M)sF(z)/T(z")  (where AlzV)=1-0.901z", and T )=(1-gz™)"). For
n=l, Gr(z') is low pass only when the time constant of T(z') is larger
than the time constant of A(z!) (see Figure 4.l1a). For n=2, Ge(z™) has a
much better low pass characteristic as B increases, except the ..+ where
B=0.99. Wit’. 1=0.99, the magnitude of the filter is greater than v.c at some
low frequencies. This choice of B is not as good as the others as far as
robustness of the filter is concern. The loss of performance is due to the
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non-minimum phase zero in Ge(z’") as explained by Mohtadi (1988). With a
higher order T(z"). this phenomenon is more likely to happen. Thersfore,
the above simulations lead to the following guide-lines for the choice of
T(z") as suggested by Mohtadi (1988) and McIntosh {1988):
1)  T(zY) is recommended to be used all the time,
2) Since 3F(z')=8A(z™") (from Equation (4.2.29)), 38T(z)zsAz™") is
a criterion for ensuring reasonable high frequency attenuation
properties. In particular, T(z') is chosen as (l-Bz'l)ésA with
Bxthe dominant time constant of A(z). This will ensure low pass
characteristic of Gr(z™).

Modified Kaiman Filter Predictor(MKFP):

The MKFP weights the residual sequence w(t) against an ‘optimally’
chosen Gf(z'). This enhances the performance of the predictor because the
predictor is now less sensitive to the effects of the residual. There is
also one tuning knob for the MKFP, R2/Ri (similar to the B in the LSP). By
adjusting R2/Ri, Gf(z') can be tailored to filter different types of
residuals. It appears that a large Rz/Ri1 suffices to give 'good’ prediction
regardless of the noise and unmodelled dynamics present. This makes the
tuning of the MKFP easier than the LSP. Section 4.2.4 shows simulations on
how Rz/R1 affects the characteristic of Ge(z ).

The residual filter Gf(z'l) is designed by the MKFP. Notice from
Equation (4.2.26) that the degrees of the numerator and denominator
polynomials of Ge(z™") depend only on the process model (model order and
time delay) and their coefficients depend only cn the model parat.eters and
the kalman gain. R2/Ri alters the value of the kalman gain and thereby
adjusts the poles and zeros of Ge(z'). This makes the MKFP very easy to use
compare with the T-ti..er.

Closed-loop performance:

Before going into simulations, the closed loop transfer function s
first examined to investigate how Gr(z™') affects the closed loop stability
and behavior in two special cases. Consider the closed loop transfer
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function described as in Figure 2.3 (The argument (z!) is omitted for
simplicity).

Y(t) = Gs(z )Ysp(t) + Gr(z M wl(t) (4.2.33)

where

GGec
14#GpGe+G £ Ge(G-Gm)
14+GmGe-GtGpGe
1+GpG e +G¢Ge (G-Gm)

G-(z'l) =

Gr(z") =

Case 1: G(z'l)me(z'l)
Whenever there is MPM, whether the model order is not sufficient to

represent the process dynamics or the time delay is over or under-estimated,
the denominator (or characteristic equation) of the filter transfer function
Ge(z™') enters the characteristic equations of both the closed loop servo
transfer function Gs(z!) and the regulatory transfer function Gelz ™).
Therefore, the stability and the performance of the filter affects both
'modes’ of the closed loop.

Case 2: G(z)=Gm(z™)
When there is no MPM, the servo and regulatory models reduce to

GGe
14+GpGe

Galz!) =

- 14GpGe-GtGGe = 1-GtGs
1+4GpGe

Grizh)

Notice that for this ideal case, Gr(z") only affects the
characteristics of the disturbance rejection. This enables the controller to
perform servo and regulatory control independently (a two degrees of freedom

controller).

Since R2/R1 affects the performance of Gf(z"l). it becomes the main
tuning knob for the closed loop performance. In particular, when the MPM is
significant, a large R2z/R1 ratio desensitizes the residual effect and



therefore making the closed loop more robust to MPM (see the characteristic
equation in Equation (4.2.33)). When the MPM is insignificant, on the other
hand, R2/Ri becomes solely the tuning knob for disturbance rejection. Since
there is bound %o be some MPM in any model based control algorithm,
adjusting R2/R1 affects both modes of operation. This may not be too
disadvantageous because complete decoupling of the two modes are usually not

a crucial requirement in many process control applications.

4.2.4 Simulation on MKFP in the case of time delay mismatch

The following set of simulations shows the performance of the MKFF when
time delay mismatch occurs. The characteristics of the filter Gt(z™) are
also investigated. The model used for simulation is as foliows:

2.16 -30s

Y(s) = m e U(s) (4.2.34)

The process is sampled at 5 seconds and the corresponding discrete
input-output ARMA model is:

0.045

— 2 °Ult-1) (4.2.35)
1-G, %01z

Y(t) =
This is converted to the following state space model with process and
measurement noise added:

X(tel) = & X(t) + A U(t) + E m(2) {4.2.36)

Y(t) = H X(t) + n2(t)
where for 336. n=],

X(t) = [x (t) % (t) x,(8) X {t) x () X (8) x,(t) x ()]

1 2 o o0 o 0 o0 o]

1 -.9010 0 0 O O O

o 1 0 06 0 0 O o

0o 6 1 0 o 0o o O
a=|0 © © 1 0 0 o0 0

6 0 0 0 1 0 o o

o ¢ o 0 0 1t ©O0 O

Lo e o0 o o o 1 °-m



t
A=[00.045000000]1“
H=(00000001]
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n(t) = Gaussian noise with variance = 0.0025

n2(t) = Gaussian noise with variance = 0.3

Figure 4.2 shows the open loop step response of the process. PRBS of
magnitude one is infjected into the steps to enhance excitation. The optimal
state estimates X(t) are obtained by the MKFP and the d¢l step ahead
prediction is calculated by Equation (4.2.16). The performance of the MKFP
using different R2/R1 is first examined.

Case 1: No time delay mismatch

When there is no time delay mismatch (d=d=6), the MKFP generally gives

‘good’ offset free d+l step ahead prediction (see Figure 4.3a, b, c).

Increasing Rz/R1 improves the filtering property of tike MKFP but worsens the
tracking property slightly. With R2/R1 set to ths correct value (Figure
4.3b, Rz/Ri=120), the MKFP gives ‘'optimal’ predicticn in a sense that the
estimation error is minimum. The performance it seen to be ’best’ among the
three settings of Rz2/R1. '
Case 2: With time delay mismatch

The MKFF is tested under time delay underestimated case (d=6, d=1). The

results are shown in Figure 4.4a, b, c. In this case, the MKFP is only

predicting 1 step ahead while the process has a delay of 6 steps. It is
desired that the predictor can give 6 step ahead prediction regardless of
the time delay underestimation. With small R2/R1 (R2/R1=2.4), or even with
the correct R2/Ri setting (Rz/Ri=i20) , the prediction tracks the process
output very closely. The effect due to the delay mismatch is treated as
disturbance and is rejected quickly. With a large R2/R1 (Figure 4.4c,
R2/Ri1=6000), the MKFP ‘averages’ out the error. As a result, the 1 step
ahead prediction reserbles the 6 step ahead prediction (a pseudo-
prediction). Figures 4.5s, b, and c overlays the prediction with d varying



from 1 to 12 (d=6). From these results, it can be seen that the performance
is worse when the delay is overestimated (Figure 4.5a and b).

Figure 4.6 summarizes the above resuits by showing the variance of the
difference between the predicted outpu® and the process undelayed output
(ie. var(Y(t+a+l|t)-Y(t+d+1))) with respect to the model time delay 4. The
variance is least when both R2/R1 and d are set to the correct values. As d
departs from d, a large R2/R1 is necessary to reduce the variance. This
leads to the conclusion that a large R2/R1 is necessary for good filtering
and predicting actions especially when the time delay is not exactly known.

As mentioned in section 4.2.3, the performance of the MKFP is very much
related to the performance of the filter Gifz™"). The characteristics of
Gr(z') in relation to RzRi is therefore srzmined. With no time delay
mismatch (d=d=6), the :cations of the roots with different Rz/Ri settings
is shown in Figure 4.7. As Rz/R:i increases, 2 conjugate pairs migrate
towards the center of the umit circle while ihe other pair migrates towards
a number close to unity. In the limiting case, the characteristic equation
reduces to a n-th order equation (l-ﬂzq)“ {where B8 is a number smaller than
but close to unity). This justifies the cheice of the T-filter as mentioned
in se~tion 4.2.3. A simulation plot is done for a time delay underestimation
case in Figure 4.8. The order of the characteristic equation is now reduced
since it is affected by z® A similar trend is observed: as RzRi
increases, one root migrates towards the center while the other conjugate
pair migrates towards a number smaller than but close to unity. Notice
however that there is one unstable root at about -1.8 when R2/R1=2.4. This
is a caution to the user that the MKFP can become unstable in the presence
of delay mismatch if R2/R:1 is not chosen appropriately large.

l-‘fgures 4.9 and 4.10 show the frequency responses of the filters for no
delay mismatch case and delay mismatch case, respectively. In both cases,
the MKFP can attenuate high frequency noise more effectively with large
R2/R1 (ie. the larger R2/Ri, the stronger the high frequency attenuation of
Gr(z™"). The frequency responses obtained from the leust-square predictor
(where T(z ')=(1-0.92)%) are overlaid in toth figures for comparison.



Notice the close match between the Ge(z™') obtained from the T-filter and
that from the MKFP using a large R2‘Ri especially at the high frequency
region. As mentioned before, many authors have stated that the selection of
T(z")wl-Bz'l with B=0.8 to 0.95 is a good choice. Because of the
similarities, the MKFP provides a channel for the explanation of the success
of the T-filter in GMV and GPC applications.

4.2.5S Summary to the simulation resulits

The rule of thumb in using the MKFP is: estimate a value of Rz (the
variance of the measurement noise) and then specify a value of Ri 107 to
10°° order of magnitude smaller. This will ensure robust performance against
effects due to undeterministic disturbances, time delay mismatch, and MPM.
Having said these, however, it is important to mention that in feedback
control using the MKFP as the predictor, heavy filtering makes disturbance
rejection slow because of the extra phase lag introduced to the feedback
signal (consider Gr(z')=0 in the limiting case). Furthermore, the predicted
trajectory becomes more sluggish as R2/Ri increases. This slows down the
tracking ability of the controller as well. In other words, the controller
performance is highest only at some values of R2/R1, which depends on the
degree of MPM. This is a classical trade of in robustnese and performance.
Therefore, in closed-loop control where the time delay is uncertain, it is
recommended to start with a large value of R2/Ri and progressive tune it
down to increase performance.

4.3 Adaptive Modified Kalman Filter Predictor
4.3.1 Problem formulation and requirements
For a time varying process, Equations (4.2.14) and (4.2.15) can be
rewritten as

X(t+1) = &(t) X(t) + A(t) U(t) + E m(t) (4.3.1)

Y(t) = H{) X(t) + n2(t) (4.3.2)
where for d=k-1

T
X(t) = [xo(t) xl(t) xz(t) xn(t) xm(t) xm;(t)l
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As in Equation (4.2.3), the time varying state-space system can be
expressed in the following input-output CARIMA model:

-1 ~ -1 -
Y(t) = E(_ZT'.t_)z-dU(t_l) - C(z .t)z-d-lnl(t)
A(z- ,t) A(z-l.t) A

+ n2(t) (4.3.2)

where
Azt =1+ al(t)z"+ e * an(t)z"'
Blz,t) = b.(t) + b (t)z7+ ... + b (t)z™!
1 2 n

-1 -1 -2 -n
Clz ' ,t) = En(t)z + En_l(t)z + .+ €l(t)z

Since the choices of &l affect the dynamics of the MKFP as much as
R2/R1, they can be used as the tuning parameters as well. Since they are
difficult to estimate on-line, as explained earlier, tuning of the MKFP will
be easier if €l are user-prechosen and only Rz/Ri is used as the tuning
knob. Thus even though C(z'l.t) is time variant, it is not estimated on
line. A(z,t) and B(z.t) can be estimated on line using a RLS based
parameter estimator. Figure 4.1 shows the structure of the AMKFP. In
general, any parameter estimator that has the following properties can be

used:



1) Must retain alertness when changing from one operating
condition to another aperating condition.

2) Must be able to avoid parameter drift in a noisy
environment.

3) Must be able to provide a model that can closely represent
the process even in the presence of noise and disturbance.

4) Must be reasonably fast in parameter convergence and must be

numerically stable.

A fast converging parameter estimator is crucial to the success of the
Kalman Filter Predictor since the convergence of the Kalman Filter Predictor
depends on the process model supplied from the parameter estimator, (see
Figure 4.11). Recursive Least Square (RLS) algorithm provides fast
convergence compared with other estimation schemes (eg. projection
algorithm). Therefore it is chosen as the basic parameter estimator for the
AMKFP. '

4.3.2 Recursive Least Square Algorithm
The RLS algorithm is based on the minimization of the following cost
function with respect to :
t
t-1 \tas2
1 = ) AT - ¢i'%)’ oaa (4.3.4)

1=0
where

Ali) is the data discounting factor or the forgetting factor.

The resulting algorithm is as follows:

Parameter update:

B(t) = 8(t-1) + K(t-Dg(t-Dly(t)-¢(t-1"(t-1)} (4.3.5)
Gain update:
K(t-1) = P(t-2)/[A(t)+¢(t-1)'P(t-2)¢(t-1)] (4.3.6)

Covariance update:

P t ) -
P(t-2){t-1)g(t-1) "P(t=2), . 4 (4.3.7)

P(t-1) = [P(t-2) - .
A(t) + $(t-1)'P(t-2)(t-1)
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where ¢(t—l)t

(AY(t-1) AY(t-2) ... AY(t-n),
AU(t-d-1) AU(t-d-2) ... AU(t-d-n)]

and 8%(t-1)

(3, 4 ..4,6 6 .. 8]

The properties of the RLS algorithm have been widely discussed by
Goodwin and Sin (1984). There are several draw backs which make it
impractical for on-line identification: it encounters problems when the
input signals are either too rich or too poor, resulting in covariance
turn-off and covariance blow-up problems respectively. The following section
briefly discusses the problems and provides appropriate solutions to these
problems.

4.3.3 Problems relating to the Recursive Least Square Algorithm

The basic RLS algorithm with a unity constant forgetting factor is
known to have the problem of "falling asleep”. This occurs because the
covariance matrix P decreases rapidly as the parameter estimates converge to
some values. The rate of convergence is especially fast when the input
signals are rich, ie. persistently exciting. Since P(t) basically defines
the alertness of the algorithm, this will shut off the parameter update and
the estimator "falls asleep” forever. Many ad hoc schemes have been proposed
to fix this problem. Two most prominent ones are “covariance resetting”
(Goodwin and Sin, 1988) and "constant trace variable forgetting factor” as
proposed by Sripada {1987). The covariance resetting scheme will reset the
covariance matrix P(t) to P(0) if the trace of P(t) becomes smaller than a
predefined value. The constant trace variable forgetting factor scheme
calculates at every sample instant a forgetting factor A(t) such that the
trace of P(t) is maintained. Both of the schemes try to retain the alertness
of the RLS algorithm by preventing the "shrinkage” of the covariance matrix.

When the input signals are poor, i.e. due to insufficient excitation,
the RLS algorithm will encounter covariance blowup. This leads to a very
erratic behavior of the estimator and the parameter estimates become very
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oscillatory. Furthermore, noisy input signals will result in parameter drift
because the large covariance matrix magnifies the effect of the noise. Ad
hoc fixes have been proposed to deal with this problems such as selective
discounting on the input signals using a variable f orgetting factor and
using a dead zone to stop parameter estimation when the signals are ’silent’
(Ydstie, 1985).

In order to obtain an ‘unbiased’ input/output representation of the
process, very high frequency disturbances have to be filtered (low-passed)
from the 1/0 data before being used for process identification. The
band-width of the filter must be large enough to permit accurate estimation
of the actual variations in the process parameters. Mclintosh (1988)
discussed in detail the choice of this low-pass filter (/T (z'l). where
T(z!) is usually chosen as a first or second order polynomial). He also
suggested to use a bandpass filter of the form A/T(z™h). By differencing the
signals, very low frequency disturbances occur from dc bias or process
non-linearity can be removed.

The parameter estimator chosen for this work utilizes the following
features to ensure proper on-line working conditions:

1)  Ydstie’s (Ydstie, 1985) variable forgetting factor for old

data discounting which is based on the idea of keeping the
weighted sum of the residual constant.

2)  Cluett’s (Cluett, 1988) normalization factor and estimator

on/off scheme to ensure robustness to unmodelled dynamics.

3) UDU factorization on the covariance update to increase

numerical stability.

4) Data filtering by a band pass filter (Mcintosh, 1988).

4.4 Multistep Controller Design
4.4.1 Basic development of the Multistep controller
The main reason for the robustness of MAPC towards time delay mismatch
lies partly in the robustness of the MKFP but mainly in its multistep
controller design. The MAPC calculates the set of the future input sequence
{U(t+i), iell,Nul} based on the minimization of a multistep cost functional.



It minimizes the setpoint error and the control effort squared over the
prespecified trajectory. The objective function is given by:

N2 Nu
- YV . 2 il 2
L -jzuiy.p(m) Yt+j|tn ij(t)jzl(AU(t 1 () (4.4.1)

where ?(t+j|t) is the predicted output trajectory generated from the
AMKFP, the Ysp(t+j) is the preset future setpoint trajectory and AU(t-j-1)
is the future control sequence. 1“(1:) and 701“) are weighting functions
which provide individual weightings on both input and output trajectories.
N1 and N2 are the output horizons (N2zNizl) and Nu is the controlled
horizon (1sNu<N2).

At every sample instant, a sequence of estimated future process output
(?(t+j|t), jelN1,N2]} is generated by the AMKFP simply by forward shifting
the state-space model j number of times:

(¥(t+j|0), jelNLNzD} = (H(OB(L)'R(t]t), jelNs,Nz)} +

t+)-1 )
(Z Hoew* AU, jelNi,N2) (4.4.2)
i=t

It can be shown that this is equivalent to the block diagram in Figure
4.12 (Foley, 1988). The predictive structure of Equation (4.4.2) s
equivalent to a network of parallel, optimal Smith predictor (see sections
4.2.2 and 4.2.3).

Rearranging Equation (4.4.2) gives

(Y(t+j[t), jelNLNz]} = {H(OQ(tIR(t]|t), jelNi,N2]} +
h(t{U(t+j), jelN1,N2}} (4.4.3)
where h(t) is finite impulse response coefficient sequence of the
process model and is given

h(t) = [HOS( A H)e)' 2Aw) ... H(AL))
The future input sequence {U(t+j), jei:i,N2]} can be written in

incremental form with respect to the input U(t-1), ie.
AU(t+i) = U(t+i) - U(t-1), i=0, 1, 2...

9



Therefore, the pradiction equation (4.4.2) can be written as

{Y(t+j| 1), JelNiNzl} = (HOS(IR(E[1), jelNi,N2l} +
h(t)U(t-1) +

h(tNAU(t+i-1), i€l1,Nul} (4.4.4)
where  U(t-D)* = [U(t-1) Ut-1) ... Ult-1}]
and AU(t+i-1) = 0 for DNu

The future predicted trajectory is constructed by three components as
shown in Equation (4.4.4). The first term on the RHS (ie. (H(t)é(t)’i(tlt).
jelN1, Nzl}) defines the prediction from the model (state projection). The
second term (ie. h(t)U(t-1)) defines the adjustment to the prediction due to
the most previous actual measurement of the input U(t-1). The third term
{ie. h(t)}{AU(t+i-1), iell,Nul}) is the prediction adjustment due to the
future input increments. Notice that the future input incremental sequence
is unknown and the objective of the controller is to determine at every
sampling instant the ‘best’ sequence to satisfy the controller design
requirement in Equation (4.4.1). Furthermore, AU(t+i+l) is set to zero .
whenever i is greater than the control horizon Nu. This means that the
controller is only allowed Nu number of moves to achieve the control

objective.

The multistep prediction defined in Equation (4.4.4) can be reexpressed
in vector notation:
Y(t) = Y'(t) + G(t)aU(t) (4.4.5)

where
Y(t) = (Y(t+j|t), jelNi,Nz]),
Y1) = (Y'(t+j|t), jelNi,Nz}}
= (HIML'R(t]t), jelNi,Nz]} +
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G(t) = G'(t)s

where

G'(t) =

and

and

TH(t)&(t)

H(t)8(t)
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N2-1

N1

H®

At} + ...

At) + ...+ ..,
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N2-1

. 0]

HOV' A HOMAA .

H°Nl-l

A HeVZ?

AU(t) = {AU(t+i-1), iel1,Nul}.

+ HIt)A(t) O ]

. + HILAR)

.HA O

HA

u(t-1),

<4 (N2-Nt+D)xl

(4.4.6)

(4.4.7)

{4.4.8)

<+ (N2 -N1+1)xN2

(4.4.9)

To obtain the muiltistep control law, the cost functional in Equation

(4.4.1) is rewritten in vector notation and is minimized with respect to

AU(t):

Spe = X (OFYOIT LY (0-Y(0] + AURITAU()
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Tyni 0 ]
where Ey=
L 0 ¥ ynad
r 1
Tuni 0
I'=
=
L 0 Tunz:
aY(t) yt aY(t)
Rl Sl BT O R (R (-yoi'L, (- ] +
= aau(t) P ® aAU(t)
SALI(t)\ ¢ . aAU(t)
[ ) I AU + AUIL) gu[ ] (4.4.11)
aaU(t) 3AU(t)
ay(t)
Since from Equation (4.4.5}, = G(t), the controller law is
aAU(t)

obtained by setting Equation (4.4.11) to zero:

~G{)T.[Y (1)-Y (t)-G(t)aU(t)] + T, AU(t) = O
=Y ~8p =y

or

. N -l o
AUt = [G(t)"EYG(t) + T, ] GO (X, (0-Y (0] (4.4.12)

At every sampling instant, the future trajectory of the process is
obtained from Equation (4.4.5). The control action can then be obtained from
Equation (4.4.12}. Since the MAPC is implemented in a receding horizon
strategy, only the first row of (G(t)'EYG(tNEU)"G(t)I_‘Y is required.

4.4.2 Feedforward Control
Feedforward control can be easily implemented by augmenting the

state-space model with other inputs, Iie. Equations (4.2.1) and (4.2.2)

becomes

X(t+1) = & X(¢) + A(t) U(t) + E m(t) (4.4.13)



Yit) = ¥ X(t) + na(t) (4.4.14)
where

A(t) U(t) = Milt)Un(t)+A2(t)Uz(t)+...+Am(t)Um(t)

A(t) is the input matrix of dimension (n+d)xm, and U(t) is the input
vector of dimension mxl. Ai(t), A2(t) ..., Am(t) are updated on-line by the
parameter estimator. The state vector X(t) is updated by the Kaiman Filter
defined in Equations (4.2.S) to (4.2.9).

The control law is identical to Equation (4.4.12) except that the X.(t)
in Equation (4.4.6) is updated with the multidimensional input matrix B and
the input vector U(t). G(t) remains unchanged because it defines the control
scheme in the feedback path.

It is well known from classical control design that for a feedforward
controller to be realizable, the time delay of the process model has to be
equal or smaller than the time delay of the load transfer function.

Gre(s)Gls)e™™ = -Gals)e™™ (4.4.15)
where

Gre(s) is the feedforward controller,

G(s) e is the process model with p as the model time-delay,

Gad(s) e % is the disturbance model with d as the model time
delay.

Rearranging Equation (4.4.1S) gives the feedforward controller:

Geels) = - 90%2; e P (4.4.16)

It is clear from Equation (4.5.2) that in order for Grr(s) to be
realizable, the process model time-delay should be at least as big as the
disturbance model time-delay. Therefore, this serves as a design criterion
for the feedforward controller.



4.4.3 Some tuning guidelines for MAPC in the presence of time delay mismatch

The multistep control scheme appears to be very flexible and can be
tailored to tackle different control applications. However, flexibility
always implies complication. There are essentially five controller
parameters that can be used for tuning: Ni, N2, Nu, L . and Eu Many authors
have given detailed suggestions on how these parameters should be selected
for different applications (Clarke et al. 1987, Mclntosh, 1988). For
example, the ’default settings’ suggested by Clarke et al. (1987) that can
handle various situations greatly simplify the use of the controller.

It is of great interest here to converge quickly to the selection of
those parameters that are able to best handle the time delay mismatch cases.
The output horizon N2 is a good candidate for such application. When the
process time delay is uncertain, a large value of N2 is recommended. [t was
mentioned by McIntosh (1988) that as N2»= and Ni=l, Nu=l, £u=0. and Ev=l.
the controller will provide a single control step so as to reduce the error
at steady state to zero. This is called the 'mean-level’ controlier and i¢
behaves conservatively. Usually Nz is chosen such that dmuﬂ(NzSt.. whire
dmx is the upper bound for the process time delay and t. is the settling
time of the process in sampling intervals (including time delay), while
Ni=l, Nu=l, Euzo. and EY-L

Another effective tuning parameter is R2z/R1 in the MKFP. When the
process time delay is uncertain, a suitably large value of R2/Ri guarantees
performance and robustness of the MKFP (see section 4.2). However, when the
MKFP is cascaded to a controller for feedback control, Rz/Ri1 cannot be
unlimitedly high because of two reasons: (1) the presence of a low-pass
filter in the feedback path ‘desensitizes’ the controller towards
disturbances. A smaller R2/Ri1 reduces the low-pass characteristic of the
filter (the band-width of the fiiter increases) and makes the controller
more alert to disturbance. (2) the sluggish predicted trajectory resulted
from an over size R2/Ri makes servo control slow. Therefore, it is
recommended to use a large R2/Ri (choose Ri1 10°* times of R2) when
commencing the controller for robustness and tune it down for better servo
and regulatory control performance.



4.5 Experimental results
4.5.1 Process and Program description

Experiments were conducted to demonstrate the performance of MAPC on a
process with unknown or time varying time delay. The experimental apparatus
used is the pilat scale Continuous Stirred Tank Heater (CSTH). Details of
the process are described in section 5.S.1.

MAPC is implemented as an Advanced Control Task (ACT) running under
MULTICON, which is a task scheduling shell that runs under the QNX operating
system (see chapter S5 for details on MULTICON and QNX OS). It consists of
three tasks (initial settings for each task are listed in (}):

(1) parest :the on-line parameter estimator (see section 4.3).

{P(0)=10I; 0=100.0; db‘=0.l; dbh-looo; a(0), and
b(0) are obtained from the user start-up file}
(2) kfp :the Modified Kalman Filter Predictor task that
does the on-line state estimation.
{P(0)=3I; L(O)=[0 ... Ol
(3) mapc :the controller signal calculation step.
{Ni=1, N2=10, Nus=l; Eyal. r_‘uso)

The sampling time is chosen to be 8 seconds. The CSTH can be
represented by a first order model plus time delay. However, the model order
is chosen as six and the model time delay is chosen as one ‘¢ allow enough b
parameters for accommodating time delay variation betwee> TC#l to TC#3 (see
Table 5.1 for different time delays associated with each thsrmocouple).

The parameters of the controller are set to the! ‘default’ values (ie.
Ni=l, N2=10, Nu=l, Eval, and 50-0). The upper and low:r deadband and ¢ used
in the parameter estimator will not be changed iiroughout the experiment.
The only tuning parameter used to athiéve performance and maintain
robustness under time delay mismatch is i1 in the MKFP. Resuits for

these runs are summarized in the next section.

4.5.2 Results: with no time delay mismatch
Servo Control
Thermocouple #1 is used for this set of experiments. With the chosen




sampling period, the model delay exactly represents the process time delay
(see Table 5.1 for the time delays associated with each thermocouple).

The time responses for servo control are shown in Figure 4.13a. After
the parameters converge to some meaningful values (Figure 4.13b), the
performance of the controller becomes very satisfactory. (Notice that it
takes more than 7C cycles before the parameters of the process converge. The
interaction between the Kalman Filter Predictor and the parameter estimator
adds difficulties to the convergence. It is expected that convergence will
be faster if good initial values are provided). With a small value of Rz/Ri
(300), the controller achieved almost deadbeat control (see period from 100
to 170). The R2/Ri ratio is stepped up to 3,000 and then to 30,000 by
keeping Ri=0.01 and varying R2 (from period 170 to 340). With a larger

ratio, the servo response becomes more sluggish with more overshoot. The

control action is very conservative compared with that of a small ratio.
This is related to the sluggishness of the trajectory predicted by the MKFP
as mentioned in section 4.2.4.

The R2/Ri ratio is dropped-back to 3,000 and then 300 but this time by
keeping R2=300 and varying Ri {from period 340 onward). This demonstrates
that it is the ratio Rz/Ri1 rather than the absolute values of Rz and Ri that
determines the performance of the controller. As can be seen, the responses
from period 100 to 170 are almost identical with that from 400 to 470
(R2/R1=300) and the responses from period 170 to 240 are almost identical
with that from 330 to 420 (R2/R1=3,000). The plot of the Kalman gain in
Figure 4.14 illustrates this point more clearly. The gain approaches similar
values when the ratios are the same. However, the convergence rate of the
gain appears to be affected by the absolute values of Rz and Ri: a big Rz
seems to slow convergence down (compare the Kalman gain from 150 to 250 and
from 320 to 380). Another effect of using a large R2/Ri ratio is that the
values of the Kalman gain become very small. This explains the filtering
effect of the MKFP because the prediction update is more conservative when
the gain gets smaller. This can be seen from the frequency response of the
residual filter Gr(z™') in Figure 4.15. -

Generally speaking, the filter is predominantly a low-order filter with



the order equals 1.5. The low pass characteristic of the filter increases
with the R2/R:i ratio. As the ratio increases, the band-width of the filter

decreases which means more cut-off on lower frequency signals. This explains
the sluggishness of the output response: some waniad frequency
characteristics of the process are attenuated.

Figure 4.16 shows a comparison of the frequency responses bestween the
Gt(z'') obtained from a second order T-filter and Gf(z') by various Rz/Ri
of the MKFP. They exhibit similar low frequency characteristics (unity gain)
but deviate greatly in the mid and high frequency domains. More importantly,
the T-filter does not appear to be able to cut out high frequency noise. The
difference is due to the fact that a high order A polynomial is being used
{8A=6). To achieve similar performance, the order of the T-filter must be
chosen such that dT)8A and the roots of the filter chosen appropriately (see
section 4.2.3 for some suggested guide-lines on how to choose Tz™"). This
may be difficult. The MKFP selects the filter directly.

Figure 4.13b suggests that the process can be sufficiently represented
by a second order model since the tailing parameters of the Az’
polynomial are near zero. The reason for using a high model order is due to
the fact that the state space model in Equations (4.2.14, IS) requires the
degree of A(z™') equals:the degree of B(z), and the B(z™) polynomial has
to be over-parameterized to handle different values of the time delay. This
adds strain to both the parameter estimator as well as the MKFP. It also
makes the controller more prone to numerical errors. To alleviate this
problem, the parameters from inm to ﬁnb in Az™") can be set to zero, that
is, to use a lower order A(z™") polynomial and a high order B(z™")
polynomial in the state space formulation. Walgama (1986) took advantage of
the sparseness of the state matrix and proposed a 'speed-up’ version of the
MKFP. This approach cuts calculation steps down by an order of 10 times
compared with the algorithmic approach. This implementation heips to reduce
computation effort as well as numerical errors.

Regulatory Control

The experiment is repeated for regulatory control using the inlet water



N

as disturbance. The output responses are shown in Figure 4.17. Disturbance
rejection becomes more active as the Rz/Ri ratio decreases. This result
suggests that R2/Ri should not be chosen to be too large when the controller

is predominantly used for regulatory control.

As mentioned in section 4.3.2, both servo and regulatory controls are
affected by Ge(z') only when there are MPM. If there is no MPM, Ge(z™)
will affect regulatory control only. It is clear that the process model is
only an approximation to the process since R2/R1 affects both modes of
operation. Since some degree of MPM is bound to exist, the residual filter
should be used all the time. However, it is seen that the output responses
using large R2/Ri are sluggish for both servo and regulatory control. The
controlier becomes more alert when R2/Ri decreases. It can be concluded that
whenever the user is confiGent about the time delay, i.e. the time delay

mismatch is small, R2/R1 should be set to a small number.

4.5.3 Results: With Time Delay Mismatch

A sixth order model and a unit time delay is again used to represent
the process. Time delay mismatch is introduced by switching to thermocouple
#2 and #3 at some point in time (the time delays associated with these two
thermocouples can be seen from Table S.1). This introduces a trismatch
(underestimation) of five to six sample periods.

The time response is shown in Figure 4.18 (the start-up portion is
omitted in the plot). MAPC demonstrates good servo and regulatory control in
spite of the drastic variation of the time delay. (1) Compare the responses
from 100 to 250 and from 350 to S50: the performance of the control improves
when a smalier R2/R:1 ratio is used. For this amount of time delay mismatch,
R2/R1=30,000 gives a better performance. (2) Compare the responses from 350
to 550 and from S50 to 80C: when time delay mismatch is more severe, a
larger R2/R:1 ratio is used and the servo and regulatory responses are
comparable to the less time delay case. These results suggest that whenever
the time delay is uncertain, a large R2/R: is always preferred.

Figure 4.19 plots the Kalman gain trajectories. Notice that at period

100



50, a setpoint change causes the gain to converge to a set of 'good' values.

From then on, the gain update only responses to the change in the R2/Ri
ratio.

Figure 4.20 shows the frequency response of the residual filter
Ge(z™). Although it behaves as a low pass filter, its dynamic behavior is
different from that for no time delay mismatch case in several aspects (for
ease of ref erencing, let filter 1 be the filter for no time delay mismatch
and filter 2 be the filter with time delay mismatch). Figure 4.21 shows a
comparison of the two filters. Both have low pass characteristics and their
dominant orders are very similar (about 1.2). However, their dynamic
behaviors are very different. In particular, when R2/Ri=30,000, the filter 1
shows a sharper cut off characteristics and its band-width is larger (at
x0.3 rad sec' compared with =0.09 rad sec’ for filter 2). Therefore,
filter 1 retains middle to low frequency information, which may be essential
for characterizing the process, better than filter 2. In fact, the frequency
response curve of filter 2 with R2/Ri1=30,000 matches better with that of
filter 1 with R2/R1=3,000.  These observations lead to the conclusion that
whenever the time delay mismatch is small, R2/R1 should be set to a small

value so as to avoid over filtering.

_ 4.6 Conclusion

The Multistep Adaptive Predictive Control (MAPC) consists of three
major components that cooperate with each other to form a powerful control
scheme: (1) an on-line parameter estimator; (2) the Modified Kalman Filter
Predictor (MKFP) which predicts the process output trajectory into the
future; and (3) a multistep controller design that calculates the control
action based on a long term prediction (from the MKFP) of the process
output.

The MAPC has been applied to a process with varying time delay and is
found to perform very well. Experiments shows that with reasonable choice of
sampling time and the process model order, the default controller settings
(N1=1, N2=10, NU=l, Eyal, gusm are sufficient for good control performance.
This makes the controller very easy to use.
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The robustness against time delay mismatch can be attributed to the
MKFP, which gives ‘good’ future prediction regardless of the uncertain
specification of time delay in the process model. The noise covariance ratio
R2/Ri is a very important tuning knob to the predictor. It adjusts the
properties of the residual filter to compensate for error due to time delay
mismatch (disturbances and noises as well). A large value of R2/R1 should be
used whenever the time delay of the process is uncertain. This way, the MKFP
puts heavier filtering on the error and gives a smoother (but more sluggish)
future output trajectory. Because the residual filter is designed
'optimally’ by the MKFP (the order and the coefficients of the filter depend
on the model parameters and the kalman gain), the user is left only with the
choice of R2/R1 to alter the properties of the filter. This makes the MKFP
very easy tc use compared with the T-filter where the order and the
coefficients of the filter have to be chosen.

Since tuning the predictor directly affect the closed-loop performance,
the ratio, R2/R1, is an important performance tuning knob for the whole MAPC
control scheme. From the experimental results, a large R2/R1 is needed
whenever the time delay mismatch is large. This ensures the robustness of
the controller and aiso gives ’'good’ servo and regulatory performances. From
the experiment, R2/Ri in the order of 10> to 10* are found to give
satisfactory performance when the mismatch is big (i.e.6 sample units). If
R2/R1 is too small {e.y. 102). the controller becomes unstable., However, an
over-sized R2/Ri worsen both modes of operation because of the sluggishness
of the predicted output and the heavy filtering on the feedback signal. It
is recommended that a large R2/Ri should be chosen at least in the order of
10° at the start for robustness and tuned down progressively for tighter
performances.

The MAPC is implemented as an Advanced Control Task that runs under
MULTICON. It is developed so that further investigation on the control
scheme can be made. Full user documentation on the tasks can be found in
Appendix 2C.
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Figure 4.4a, Open loop prediction from the MKFP with time delay
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5 QN plus MULTICON

5.1 Intreduction

A typical real time software package for computer process control can
be described by Figure 5.1. It is |usually characterized by four
goal-oriented modules labelled as modules 1, 2, 4, and 5 in the figure.
Modules 1 and 2 handle information in real time. They controcl data exchange
between the operator and the computer and between the process and the
computer i.e. the I1/0 stages of process control. Module 4 contains the
mathematical formulation to process the measured data (eg. digital filter,
control algorithm etc) and decision algorithms to produce qualitative and
quantitative information to send back to the process. Module 5 contains
programs which modify the control algorithm or operating conditions in
module 4 in an on-line manner based on current results.

Module 3 is the real time executive module that is under direct control
of the operating system. It schedules and coordinates the other four modules
so that the whole real time control software package runs in proper order.
In this chapter, the real time executive program, MULTIpurpose CONtrol
package (or MULTICON), developed at the University of Alberta (Qiu, 1988)
for educational and experimental purposes is introduced. The main features
are reviewed and some possible extensions and expansions are suggested (some
of the proposals are already in progress). Since MULTICON is supported by
and created under QNX, a brief introduction to the operating system is given
first.

5.2 QNX Operating System

5.2.1 Introduction

The job of an operating system (referred to as OS herein) is to provide
for an orderly and controlled allocation of the processor, memories, and 1/0
devices among the various programs competing for them. With the advent of
personal computers, many vendors have been developing OS that are small (in
terms of memory requirement) and yet powerful for them. Two OS that are
currently dominating the PC world are the MS-DOS written by Microsoft, Inc.
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for the IBM PC and compatibles using the Intel 8088 CPU and its successors;
and UNIX, which is dominant on the larger PCs using the Motorola 68000 CPU
family (and recently on workstations that use the Intel 80386 CPU). Whereas
later versions of the MS-DOS are powerful and have been well received by
many PC users, it is a ’'single minded’ OS since only one application program
can be run at one time until it is finished. UNIX offers a multitasking,
multiuser alternative to MS-DOS, but this system is usually larger in size
and is usually not used on PC based (Intel 8088/80286) machines. Microsoft
Inc. offers a Unix solution to the PC called Xenix. However, none cof these
OS supports real-time applications.

Since 1982, Quantum Software System Limited of Ottawa, Ontario has been
marketing a PC based real-time, multiuser, multitasking OS called QNX (was
called QUNIX at that time). It was designed and developed as an outgrowth of
research done at the University of Waterloo. Instead of building on a
monolithic or layer model (which are common OS architectures), QNX uses a
modular architecture that is based on message passing. This design provides
many modular advantages to the OS. Furthermore, it does not require much
memory (a lean 1SOKbytes) and is found to be very flexible in terms of
real-time control applications. Figure 5.2 shows the layer model of an OS.
Although this is not the structure used for QNX, the figure suffices in
describing the many facets that an OS must handle. The following section
contains a brief introduction to the structure and some important features
of the QNX OS version 2.1S.

5.2.2 Structure of the QNX OS

QNX is built on a client-server model. The approach is to implement
most of the OS functions in server tasks (called administration tasks in
QNX) and link them up through a message system. To request a service, a user
task (called client task) sends the request tc a server task, which then
does the work and sends back the answer. This model is shown in Figure 5.3,
where all the kernel does is to handle the communication between the client
and the servers. This way the OS is split into small cooperating parts where
each part handles one group of system function. This modular structure
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provides strict benefits to ease of maintenance and expandability. For
instance, when a bug is triggered in one of the server tasks (e.g. the file
server), the server task may crash, but the whole system will remain intact.
Also, since all the server tasks run as user-mode tasks and not in kernel
mode, user tasks are able to become server tasks. This means the OS can
easily be extended by connecting these user-defined server tasks to the
existing OS through messages. The MULTICON presented in section 5.3 is an
example of such task. Another advantage of this message sending model is
that it provides the OS a correct platform to work in a distributed (or
network) system. The unified message passing system works for communication
between either local tasks or remote tasks. This is because the client need
not know whether the message is handled locally in its own me "hine, or some
where across the network. As far as the client is concerned, a request is
sent and a reply comes back.

All server and user tasks are held together by the QNX kernel {which is
represented by a lean 10Kbytes of highly optimized code). It performs
message passing and task synchronization functions. The task scheduler in
the kernel makes sure that all the tasks get a fair share of the CPU time
{on a 8MHz 80286 PC, the kernel performs well over 3000 task switches per
second). This message system and the task scheduler algorithm will be
described in section 5.2.3 and 5.2.4 respectively. At startup, five server
tasks are created. Each of these server tasks provides a set of system calls
for the user to use the hardware of the computer. They are listed in
descending priority as follows: (For reference purposes, priority level is
from 1 to 1S, 1 being the top priority. The default priority of a user task
is 8):

(1) Task administrator (task): Priority 1. Responsible for creating
and destroying tasks. It is also responsible for allocating
memory for the tasks. This is the most important task in the
whole system. The 8088 version (or the 80286 real mode
version) supports 64 task while the 80286 protected rmode
version supports 150 tasks.

(2) Device administrator (dev): Priority 2. Responsible for handling
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all requests to open, close, read, and write to character
devices such as the terminal, keyboard, line printer etc.

(3) File system administrator (fsys): Priority 3. Responsible for
handling all requests to open, close, read, and write to
files. It implements a tree-structured file system that
supports disks up to 1 Terabyte in size with 0.5Kbyte unit of
allocation.

(4) Network administrator (net): Priority 3. Responsible for handling
all data requests which must be transmitted over the network.
This task exists only in the network version of QNX.

(S) Idle administrator (idle): Priority 15. Responsible for consuming

any spare processor time.

In addition to the above .ive tasks, two other important QNX tasks are:
The Timer
The Timer Administration task (timer) is not created at boot, but may
be created after the system is running. It adds complex timing capabilities
to the system and is responsible for providing ‘'wake up’ service for
real-time applications. Usually the timer task is run as a background task
at a priority of 8.
The Shell
A task called the command interpreter, or shell, is created at log in.
Although the shell is not part of the QNX 0S, just as the text editor and
the compiler are not part of the O0S, it serves as a primary interface
between the user and QNX. The shell has the terminal as the standard output
and the keyboard as the standard input. It sits most of the time idling to
wait for a user input. When a user types in a command to start a user
program, the shell creates a son task and runs the user program as its son.
It waits for the son to finish running and then reclaims the resources
allocated to the son. The reader is referred to the QNX user manual for the
many features that is supported by the QNX shell.

127



5.2.3 Inter-task communication in QNX

As mentioned earlier, message passing forms the basic structure of the
QNX OS and it is handled by the kernel. Three basic system primitives are
SEND, RECEIVE, and REPLY. When a task sends a message to another task, it
will block (i.e. the task is held at its current state) until the receiving
task receives the message and replies to it. When a task is waiting for a
message to receive, it will block until another task sends to it (CRECEIVE
is a non-blocking form of RECEIVE, i.e. whenever there is no in coming
message, the task carries on with the next line of execution). When there
are many tasks sending to one task, the messages are placed onto a stack and
are processed on a first come first serve basis. Usually, the sending task
and the receiving task agree on a certain communication protocol and the OS
does not check the content of the message. The OS simply does a byte-copy
from the source to the destination. The maximum message size in QNX is 64k
bytes.

The message system not only provides the advantages mentioned above,
the block send and block receive features also help to coordinate and
synchronize the tasks. However, one common problem associated with messages
is that it might get lost, especially when it is sent across a network. This
could be a serious problem because if there is no external message coming
in, both the sender and the receiver will be blocked. This may result in a
locked situation. Some complex OS guard against this problem by enforcing
the receiver to reply the sender with an acknowledgement message. If the
sender does not receive any acknowledgement within a certain period of time,
it sends the message again. QNX does not provide this feature on the OS
level. It only protects the sender from sending to ’dead’ tasks that of
course do not respond to messages. However, ihe programmer can always make
use of the system timer to accomplish similar protection in the user

software.
5.2.4 Task scheduling in QNX

For a single processor computer to accomplish multitasking, the OS must

be able to switch the CPU and other resources for the use of several
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time-competing tasks. This scheduling is done by the kernel in QNX. It uses
the ’'round robin’ algorithm to schedule the tasks at a single priority
level. The rules are summarized as follows:
(1) When a task is waiting for input or output (eg. accessing external
devices such as a disk file), it will not occupy any CPU time.
(2) Each task caa only occupy the CPU for a certain period of time (50
millisecond by default) if there is another task waiting to run.
All tasks queue in a round robin fashion. The size of the time
slice can be adjusted by the user.

QNX also supports priority scheduling. Each task is assigned a
priority, and the runnable task with the highest priority is allowed to run.
This leads to rule number three for task scheduling in QNX:

(3) The higher priority task will never relinquish the CPU to the

lower priority tasks.

This seems to be a drawback to the QNX operating system because high
priority task may run indefinitely. Some complex OS prevent this by
decreasing the priority of the running task at each time slice. When the
priority level drops below the next highest task, the task switch occurs.
However, since most tasks require 170, by rule number (1), the above problem
seldom waccurs. Figure 5.4 shows the scheduling algorithm used in QNX.

5.2.% Computer System

#iere is a description of the computer system that the QNX OS is
currently mounted. it is ~unning on an IBM PC model 30 (a Intel 8086 based
computer) with a clock rate of 20MHz. The computer system includes the
following: |

(1) Memory : 640k bytes on board memeory @ 1Susec response time.

(2) Hard Disk Driv -+ 20 Mbytes Winchester. Contains a 3 Mbyte DOS

partition and a 17 Mbyte QNX partition.
(3) Floppy Disk drive : One 760kbytes 3%" floppy drive.
(4) Coprocessor : Intel 8087 floating point coprocessor.
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(5) Ports : 2 RS-422 serial ports and 1 parallel port.
(6) Cards : QNX network card, VGA graphic card.

(7) Display : IBM VGA colour monitor.

(8) Printer : IBM Proprinter.

The real mode version of QNX is used. Therefore, only 64 tasks are
supported at one time and the memory is restricted to 604Kbytes. For higher
end computers such as the 80286 and 80385 micro-computers, QNX can run in
the protected mode. Up to 150 tasks can be supported and the system memory
restriction is relaxed from a maximum of 640 kbyte to 16 Mbytes.

5.3 MULTICON
5.3.1 Introduction
MULTICON (MULTI-purpose CONtrol system package) is a real time
executive program run under the QNX operating system (in QNX, an executive
task is also referred to as an administration task). It is created to
support the existence and control the activity of user tasks used for real
time control application (referred to as Advanced Control Tasks (ACT)
herein) and other system tasks such as the Process Operator Communication
(POC) interface task and the on-line graphics task. The following are a list
of the functionalities of MULTICON:
(1) It maintains an on-line data base and does house keeping on it.
(2) It performs task creation, termination, and task-scheduling.
(3) It sends and receives analog signals from the process (outside
world) and places them in the on-line data base.
(4) It allows ACTs to communicate with each other (and also with
itself) through the on-line data base.

Since MULTICON is built on the QNX OS, true multitasking is possible.
This means that more than one tasks (control tasks or other supportive tasks
such as an on-line parameter estimator task) can be run concurrently. All
the user has to do is to fill out a table on how the tasks are to be
scheduled and MULTICON will do the scheduling properly. Furthermore,
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MULTICON greatly simplifies the communication process between ACTs, i.e. the
ACT developers no longer have to know about the message system of QNX. The
ACTs can therefore be deveioped in a true modular form. By using the
communication features in MULTICON, several functional blocks can be
connected to form the desired control algorithm. With all these features and
capabilities, MULTICON is a flexible shell for a control engineer to

develop, test, and compare different control algorithms.

5.3.2 Structure of MULTICON
The MULTICON package is made up of five independent tasks which
coordinate with each other by message sending:
(1) multicon : the main administrative task (core).
(2) opto_drv : the opto-22 interface driver.
(3) timing : a software interrupt to multicon core task.
(4) sys_poc : the user interface to multicon.
(5) graph : the on-line graphics task.

The multicon core (task 1) is responsible for creating the other four
system tasks as well as other user defined ACTs at the start of the session,
and terminates them when the session ends. Figure 5.5 shows the relationship
of these tasks. A number indicating their priorities is included — the
smaller the number, the higher the priority of the task. The functions and
features of each task are described qualitatively as follows:

timing

The timing task is responsible for giving soft interrupts (or clock
ticks) to the core multicon task at a resolution of one second. This is used
by the core to check if there is any task that needs a "wake up’ call.

multicon

The multicon core program follows a typical structure of an
administration task. Its function is to coordinate the activities of all
tasks in the MULTICON package. The pseudo-code in Figure 5.i. describes its
structure and the following is a short description to its operation.

The system tasks (timing, sys_poc, opto_drv, and graph) and the user
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defined ACTs send messages to the multicon core regularly. The multicon core
services the tasks on a first-come first-serve basis. Upon receiving a
message, the multicon core first discovers the identity of the task that is
sending the message. It processes the request according to the five
different cases (see Figure 5.6) and then replies to the task. Take case 5
as an example: when an ACT requires a sample from the process, it sends a
messzge to multicon core toc request the reading. Multicon identifies that
the message is from an ACT, so it processes it according to case 5. It takes
the sampie reading from its data base (to be merntioned later) and sends it
back (reply) to the ACT. When there is no incoming message, the multicon
core sits idling.

The multicon core is capable of managing single-loop, muitiloop, as
well as concurrent tasks within the loop. The reader should refer to the
user manual of MULTICON for details about how to set up these configurations
(Qiu, 1988). This function is provided by the ’wake-up’ service of timing
(case 1) follcwed by case S: whenever an ACT tells the multicon core that it
is finished with one pass (by sending a wait signal to multicon), case 5
checks if there are subsequent and concurrent tasks to be activated.

When the user requests to terminate the session, multicon will kill all
ACTs gracefully using the system brzzk command, which means that the ACTs
will not be terminated in the middie of the program. This is important for
taking care of devices and files which would otherwise be left in an
indeterminate state.

There are two features of the iulticon core that are worth noting.

(1) The timing task sends an interrupt to multicon once every second
which gives the multicon core its real-time properties. At these
instances, multicon scans the task table to determine if there are
ACTs {or loops) due for activation (case 1). It starts those tasks
(or loops) whose sample times are up and those tasks that are
waiting to be created. Therefore, the default time resolution for
any discrete event running under multicon is one second. This also
implies ‘that the minimum sampling time for ACTs is one second. For

those ACTs that specify zero sampling time, their schedulings are
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totally under the control of the OS and multicon will not
intervene with their operations.

(2) The multicon core maintains a posi (data base) for communications
among the whole software package, especially for communication
between different ACTs. The pool is an array of 100 elements which
cann store a varisble name, a floating peint value, and an
explanation of the variable. This means that 100 numeric values
can be passed between different ACTs. The editing and modification
to the data base is done through sys_poc.

opto_drv

This task establishes a link between the multicon core and the ’'outside
world’ through the serial port. It is created by the nmwuiiicon core but run
as a background task, i.e. it is not a son of multicon (see Figure 5.5). At
startup, the task initializes the opto-22 interface and configures the 1/0
channels. Then it sends messages to multicon reguiarly to initiate accesses
to the process, i.e. it asks the multicon core whether there is someone who
wants to access the process. After a message is sent, it is blocked until
the multicon core replies. There are two situations where the multicon core
will reply to opto_drv:

(1) When it is in 'RUN’ mode, the multicon core replies whenever (i)
there is an ACT due for activation. Before the multicon core 'wakes
up’ the ACT, it requests opto-drv for a sample of the process. In
other words, the process is sampled at every sampling interval set
by the fastest loop. (ii) An ACT wants to send information to the
process,

(2) When it is in 'PAUSE’ mode, the muiticon core replies whenever the

timing task interrupts. In this case, the process is sampled every
one second.

sys_poc
This .s the user interface of MULTICON. Its main functions are to do
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maintenance on the data base and to interface the user with the multicon
core. It is created by the multicon core as a concurrent son running at the
same priority as its father (see Figure 5.5). It scans the keyboard in a
continuous fashion for a key character and performs accordingly upon
receiving a character that is on the menu. There are two possible requests
from the user:

(1) the user may ask for a change in operating mode, eg. change from
automatic control to manual control or quiting MULTICON. In this
case, sys_poc is only responsible for sending the command to the
multicon core and letting it accomplish the request.

(2) The user may want to alter the data base. In this case, sys_poc
receives from the user all information about one particular item
(the mnemcnic number, the mnemonic name, a floating point value,
and an explanatory note about that variable) into a buffer and then
sends to the multicon core. Upon receiving the message, the
multicon core modifies the data base accordingly. Therefore,
sys_poc lets the user modify the pool in the multicon core one at a
time. During the user input, the multicon core continues with its

normal computational activity with the old data in the pool.

graph

This task equips MULTICON with an on-line graphics feature. It is
created by the multicon core to run on another tty (see section 5.2 on CuX)
so that the user can switch easily between the graphics window and the main
control panel. After graph is created, it creates a son (a grandson of the
multicon core) graph_poc as an user interface (see Figure 5.5). Graph sends
a message to the multicon core every one second to get values from the pool
for plotting. It also replies to graph_poc every second to see if the user
has requested any changes. Up to twelve variables can be plotted

simultaneously in an on-line manner.

ACT
All user written Advanced Control Tasks (ACTs) are created by the
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muiticore core as concurrent sons. They all have the same priority, one lower

than rsuliicon. The usual structure of an ACT is as follows:

#include “r_w.h" /* header file that include the three
three utility program */

main(') {

loop : {
read from pool;
calculation block;
write to pool;
goto loop if not exiting;

}

MULTICON makes communication between ACTs simpie. Three utility
programs (read, write, and access) and the communication protocol are
provided for the user. They are in the r_w.h header file. To use the
utilities, the user has to ’include’ r_w.h at the beginning of the source
file. The read and write can access up to 20 elements from the pool and
multiple read and write are allowed in the ACTs. Each of the 100 elements
in the pool are therefore available to all ACTs at any time through the use
of the utiii’y programs. Furthermore, the read and write statements provide
a simple way to send a wait signal to the multicon core for task swapping.
This is important for ACTs that are to be run in discrete fashion. The
reader should refer to the MULTICON user manual for details about the r_w.h
file.

5.4 Use of MULTICON
Qiu (1988) wrote a detailed user manual for MULTICON. The purpose of
this write-up is not to duplicate those efforts. Rather, this section is to
summarize the ACTs that have been developed by the author to run on
MULTICON.
The detailed theory and properties of the following control algorithms
have been discussed in Chapter 2, 3, and 4. They are listed according to
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their functions:
Non Adaptive ACTs
(1) pid : PID control task.
(2) feedfw : Fixed gain feedforward control task.
(3) smp : Smith Predictor task.
Adaptive ACTs
(1) rac : Robust Adaptive Controller task (Single step Adaptive

controller, Chapter 3).
(2) mapc: Multistep Adaptive Predictive Control task (Chapter 4).
(3) kfp : Adaptive Modified Kalman Filter Predictor task (Chapter 4).
Parameter Estimation ACTs

(1) ils : Improved Least Square task.

These ACTs can be combined in different ways to form different control
schemes. For example, the kfp or the smp can be combined with the pid to
form a predictive control scheme. The control tasks mentioned in Chapters 2,
3, and 4 are constructed by linking particular ACTs together (see section
5.3.3, point number 2):

(1) Non-Adaptive Predictive Control: pid + smp + feedfw;

(2) Single Step Adaptive Predictive Control: rac;

(3) Multi-Step Adaptive Predictive Control: kfp + mapc + ils;

The user manuals for these three control schemes are in Appendices 2A,
2B, and 2C respectively. They were all connected to the Continuous Stirred
Tank Heater for experimental evaluation and comparison. Other ACTs have been
written by other developers, eg.:

(1) SISO GPC: gpc + ils;

(2) MIMO GPC with control output constraints:

5.5 CSYH and the Opto-22 Interface
5.5.1 The Continuous Stirred Tank Heater (CSTH)
The pilot scale Continuous Stirred Tank Heater (CSTH) is deseribed
schematically in Figure 5.7. Cold water flows into the glass tank, which is
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heated up with steam, and exits the tank through a long copper pipe. A
stirrer is used to ensure good mixing in the tank. The steam and water
flowrates are independently controlled by pneumatic valves. Water level in
the tank is maintained by a pneumatic proportional regulator at the exit.
The inlet water flowrate is measured by a magnetic flow meter and the water
exit temperature is measured by one of the four tharmocouples located along

the copper pipe.

The following are the nominal operating -onditions for the CSTH:

(1) Inlet water temperature 5°C
(2) Inlet water flowrate 50 cm’/s
(3) Water level 25 cm

(4) Steum flowrate (7% valve opening)  S0%
(5) Exit water temperature 35°C

Various feedback and feedforward control schemes can be configured. The
following is the wusual set up for experimental evaluation of control
algorithms:

(1) The steam flowrate is the manipulated variable.

(2) The exit water temperature is the measured variable.

(3) The inlet water flowrate is the disturbance variable.

The open loop response curves of the CSTH are shown in Figure 5.8. They
can be approximated by a first order model plus a time delay. The models

obtained from the first three thermo~couples are listed in Table 5.1:

Table 5.1 Open loop process model of CSTH

Thermocouple  Gain(°C/%) Time constant(s) Time delay(s)
#1 0.76 70 8
#2 0.76 70 46
#3 0.75 68 78
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Notice that the model parame:~:s vary with ¢ .'ration conditions. The
water level changes when iniet witer : - ~<.-ve changes. This is because of
the offset due to the proportional regulator sec for ev=l contrei sf the
tank. The time constant and the time delay also vary with ©-* water ilowrate
and the water tank level. Therefore, the models in Table I.1 are accurate
only at the nominal operating point.

Sampling Time

The sampling time for the procez= is chosen as 8 to 10 szconds, which
is the usual recommendation for discrete sampling: choose a sampling rate
0.1 to 0.25 of the dominant time constant or the time delay (whichever is
larger) (Stephanopoulos, 1984).

5.5.2 The Opto-22 Interface

The Opto-22 behaves as a low end computer to the host computer {the IBM
model 3C) connected through a RS-422 serial line. Its responsibility
includes: (1) Optically isolating the process with the computer. (2)
Continuously scanning the 1/0 channels and providing signal conversions for
inputs and outputs (eg. Analog to digital conversion). (3) Responding to
requests from the host computer.

There are two input variables (water temperature and water flowrate)
and two output variables (steam control valve position and water control
valve position) for the CSTH. Whenever the host computer (MULTICON) needs to
access these variables, say to sample the water temperature, it sends a
command to Opto-22 to ask for the data. Opto-22 gets the most recent digital
data from the channel connected to the thermocouple and loads it onto the
serial line to send the data back to the host computer. A very complete set
of communication protocol is provided by the Opto which makes the Opto-22
very easy to talk with.
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create all system tasks;
loop: {
receive message from any task:
process message immediately according to cases: {
case 1 : message from timing {

do : {
check if any task is waiting to be created :
if so create the task;
check if there is any task (or loop) whose
sampling period is due : {
sample process and reply tc opto_drv;
activate the task (or loop);

)
}
}
case 2 : message from opto_drv {
do : {
check if any task requests sampling the
process :

update data pool if so;
/® reply is done through case 1 */
}

case 3 : message from sys_poc {

do : {
case : for modifying operation mode {
/* modes: auto/manual/run/pause/quit */
set flags according to modes;
reply to sys_poc;
}

cases : for modifying data pool {
modification includes: append,
modify, insert, and cancel to task
table and system data table;
reply to sys_poc;
}

case : for terminating session {
extit the loop;
}
case 4 : message from graph {

do : {
reply graph with data it needs for on-line
plotting;
}

cagze S : message from other ACTS {

do : {
check if : ACTs request to walt
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if so : {

reply with data requested and hold
the task;

check if subsequent task should be
activated; actlvate if so;

check if concurrent task should be
activated; activate if so;

}

if not: reply with data requested only;
}

}
goto loop;
write data to file;
kill system tasks and ACTS;
}

Figure 5.6, Pseudo-core for the multicon core program.

143



Y(t), U(t), V(t)

Y(t), U(t), V(t)

55

50

45

Thermo=-couple#l

U(t)

Y(t)=Process output (temperature, deg C)
U(t)=Process input (% steam valve opening)
V(t)=Cold water flow rate (10E-3 m/s)

30 L 1 1 1 1 1
0 100 200 300 400 500 600 700
55 —
Thermo-~couple#2 Thermo-couple#3
50 .
45+ -
‘0 \ A Uy _
35+ -
Y(t)=Process Output (temperature, deg C)
U(t)=Process input (% steam valve o ening)
V(t)=Cold water flow rate (10E-3 m}s)
30 L 1 L 1 1 1
100 200 300 400 500 600 700

Sample Period (Ts=5sec)

Figure 5.8, Open loop response curve of the CSTH

144



6

Conclusions and Recommendations

6.1 Conclusions

The main contributions of this thesis are the implementation aud

evaluation of three PC based Advanced Control algorithms that have the

capability of handling processes with varying time delay.

v
(R

(2)

The PID+Smith predictor offers a simple but effective solution
for predictive control as long as the process model can represent the
process sufficiently well. When the time delay is known, the
closed-loop system can afford high gains that result in faster and
tighter control performance with the Smith predictor in place . In the
presence of MPM, or in particular time delay mismatch, the residual
filter Gr(z™) plays an important role in attenuating the residual
terms due to the mismatch. An exponential filter is used as the
residual filter and is found to be very effective. It was found that
when the delay mismatch increases, stronger filtering action is needed
to improve on servo performance. On the other hand, the filtering
action should not be too strong for regulatory control. The user must
select the filter according to the mode of application.

The RAC is an adaptive predictive controller based on a single
stage controller design criterion. It gives robust servo and regulatory
control in the presence of time delay mismatch. The dead-zone is
very important for the robustness of the parameter estimator and it can
be chosen as 172 of the maximum allowable prediction error. The control
weighting Q(::,") is very important for the success of the controil
scheme because (1) it ensures inverse-stable criterion, so that the
controller can handle NMP processes and (2) it detunes the controller
whenever its gain becomes excessively high due to time delay mismatch.
The choice of Q(z-l) is not easy but can be made simpie by choosing
Q(z')=AA. When the time delay is not known, start off with a large
value of A for robustness and progressively tune it down to gain speed
and alertness. A‘ more complex form of Q(z'l). such as an inverse PI

form, can be used to get better performance. However, a more complex
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(3)

Q(z-l) is more difficult to use without = a priori knowledge of the
process.

Due to offset problems with the original RAC design, the RAC was
reconstructed using a CARIMA model for process representation and an
integrator in the predictor to remove offset. The resulting controller
achieved offset free performance. In addition, to enhance flexibility
to the control scheme, P(z)), R(z), and T(z™) weightings are added.

The MAPC is a powerful control scheme that belongs to the LRPC
family. It includes a robust parameter estimator for process
identification, a MKFP for providing the j-step ahead prediction
trajectory, and a multistep controller.

The MKFP resembles a Smith predictor with an optimally chosen
residual filter. Tuning the MKFP is therefore the same as adjusting the
characteristics of the filter. The variances of the process noise, Ri,
and the measurement noise, Rz, affect the performance of the MKFP. It
was found that it is not the individual values of Rz or Ri that affects
the performance but their ratio, Rz/Ri. In the presence of time delay
mismatch, a large R2/R1 usually gives stronger residual filtering (a
low-pass filter that attenuates high frequency residuals) and smoother
(or more sluggish) prediction trajectory. On the other hand, if R2/Ri
is too small, the filter (and therefore the predictor) may become
unstable. It is therefore a precaution to the user that Rz/Ri should
not be set too small whenever the delay is not known or is time
varying.

In terms of the overall performance of MAPC, the R2/R1 serves as a
major tuning parameter as well. It was found that a large {or an over
sized) Rz2/R1 slows down both servo and regulatory controls because of
the sluggishness of the prediction trajectory and the strong filtering
on the residuals. This is a classica! trade-off between robustness and
performance. The rule of thumb is to choose Ri 10™* times smaller than
Rz (which is the variance of the measurement noise) when commencing the
controller, and progressively tuning R2z/R1 down to achieve tighter
controller performances. With R2/Ri as the tuning knob and the rest of
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the tuning parameterz set to default values, the controller is able to
give excellen’ servo and regulatory control performances to the CSTH
even under severe time delay mismatch.

Among the three predictive control schemes, the MAPC is the most
complicated but versatile and powerful controller. When computer resources
are cheap and available, this scheme is preferable over the others. Also,
the controller is very simple to use thanks to the ‘'default’ settings of the
control parameters.

There are other contributions in terms of software developmnt:

(1) The muititasking, multiuser real-time QNX operating system and the
MULTICON executive program are examined by looking at their internal
structures. The features supported by MULTICON are also mentioned.
Together, they form a unified platform1 for the development of Advanced
Control Tasks.

(2) Each of the above mentioned Advanced Control Tasks are implemented
in C programming language and run urder the MULTICON environment.
(3) Full user documentation for each Advanced Control Task is written

for later reference and use of the programs.
(4) A software utility library for matrix and vector manipulation is
developed with full user documentaticn.

Organizing these Advanced Control algorithms into a unified ervironment
allows easy access and use of the software. This is useful when the control
algorithms are to be evaluated by future users. For example, the PID, Smith
predictor, and the Feedforward ACTs are being frequently used for
educational purposes.

6.2 Recommendations
The recommendations are mainly for the upgrade of MULTICON. With all
its present features, MULTICON can support up to the limit of 100 ACTs, only
limited by the computer memory and speed and the operating system’s mode of
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operation (for 8088 or 80286 real-mode version, QNX supports up to 64 tasks;
for 80286 or 386 protected-mode version, QNX supports up to 150 tasks). It

supports single loop, multi loop, and concurrent tasks within a loop. Each

ACT or loop can communicate with any other ACT or loop through the pool.

MULTICON is indeed a flexible software package for developing control tasks.

However, there is still much room for improvement and some suggestions are

listed as follow:

(1)

(2)

The datz pool can be improved on. There are two drawbacks in the
present version of MULTICON. First, it can only contain up to 100
floating point elements and 16 of them are used as system variables.
This means that only a limited number of variables can be passed among
ACTs. Second, each of these elements is referred to by a i~nemonic name.
Accessing a variable with multiple values (eg. a matrix) is very
cumbersome. Of course, to solve the first problem, the array of the
pool can be expanded to a bigger size. However, the basic limitation is
rooted in the basic design of the data structure.

Instead of storing a floating point value, MULTICON could store a
pointer which points to a block of memory for storiag the real data.
This would ajlow MULTICON to store variables with multiple values. The
block of memory can be dynamically allocated according to the size of
the variable. This feature is important for MULTICON to support ACTs
with variable size data structure. For example, in the Recursive Least
Square algoritlim, the size of the covariance matrix changes with the
number of parameters estimated. If the RLS ACT wants to pass the
covariance matrix to another ACT, MULTICON must use a dynamic data
structure for its pool.

This modification would require a major overhaul on the whole
MULTICON system including the data structure, communication protocol,
the user interface, and also the data pool editor.

The ACTs can be considered as functional blocks (eg. RLS, PID, GPC
etc). Each has inputs, outputs, and parameters. All these variables
must be in the data pool in order that they can be shared among
different ACTs and/or modified by the operator. This means that all the
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(3)

(4)

ACTs must use the same name to reference one particular variable.
Future ACT developers must therefore be informed of the variable names
of other previously developed ACTs in order to coordinate with them.
This reduces the modular structure of the ACTs. The problem lies in the
fact that MULTICON uses mnemonic name to refer to the variable. For
example, if the RLS ACT wants to pass the parameter estimates toc the
CONTROL ACT, then both the RLS and CONTROL ACTs must use the same
mnemonic names for the variables that represent the parameter
estimates.

A utility program for equivalencing variables can be provided by
MULTICON to alleviate this problem. Thus every time when MULTICON is
invoked, the user has to define a set of variable names (or mnemeonic
names) in the pool. Then he is asked by the utility program to equate
these mnemonic names to the input and output variables of the ACT to be
used. This way, the user physically links the modular ACTs to form a
complete control loop.

In constructing a control loop, one particular ACT may be used
many times. For example, the same filter ACT can be used for the
regressor filter and the contrcller output filter. This requires that
MULTICON to be able to create ACT with the same name more than once.
This could be done because the QNX OS supports the creation of the same
task multiple number of times (by using the fork command). With this
modification, and modification number 2, MULTICON can become a true
modular shell for ACTs.

Other minor changes can be made: (i) The sys_poc can be improved
on. (ii) A built in data acquisition task historian can be added. The
structure of this task is similar to the graph except for the
destination of the output. Whereas graph writes to the graphic
terminal, historian writes to a disk file.
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Appendix 1
Innovations analysis for MKFP

The process model is
X(t+1) = @ X(t) + A U(t) + E m(t) (4.2.14)
Y(t) = H X(t) + na(t) (4.2.15)
Consider steady state Kalman gain for simplicity (ie. steady state
value of L(t)=L). From the Kalman filter update in Equations (4.2.4) to
(4.2.8), Equation (4.2.14) can be expressed as

Kit+1) = @X(t) + AU(t) + Luw(t+l) (AL1)
where the innovation sequence w(t) is defined as
wit) = Y(t) - ¥(t|t-1) (AL2)

= Y(t) - HdX(t~1) - HAU(t-1)

By successive substitution, the n"h state is given by
Kn(t) = [1-Alz"NRn(t) + Bz HU(t-1) +
Kiz hu(t) + Dz )w(t)/a (AL3)
-n+l

where Ki(z) =1 +1 2zl +...+1z2
n-1 1

n
-1, _ -1 -n
D(z) = lolsnz + ..+ elz ]

The n+d-1'" state is obtained by further successive substitution:

2 %n(t) + K2z M)olt) (AL4)

-aol
4

Kned-1(t)

-1
+ ...+1

-1
where K2(z
h ( ) nos—lz n+l

Substitute Equation (Al.3) into (Al.4) gives
fnvda(t) = 2 A BzHU(t-1) +

2 9AHY Kz he(t) + Koz () +

2 9A(z") "Dz Hw(t)za (ALS)

From Equation (Al.2),
Y(t) = Y(t|t-1) + w(t)
= Kned-1(t-1) + w(t) (AL.6)
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Substituting Equation (Al.S) into (Al.6) gives
Y = A BEhut-n +

2 A ) Kz () +
A YA YAz ut) +

2 %Az Dz (t)/a
= z A Bz Hult-1) +

AzH? [A(z“)(1+Kz(z“))A+z“’(xx(z“m+n(z“))] w(t)/a

-1 -1
= B—(i_—l’u(t-a-l) + Ef-z—_-l)w(t)/a ? (AL7)
A(z ) Alz") .
where C(z™)) = [A(z")(1+K2(z )42 %Kaz"H)1A + 2%D(z™) (AL.8)
Therefore the -:..--- .pace model can be rewritten in an input/output

form as in Eq.e: . /2
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APPENDIX 2A
PID+Smith Predictor+Feedforward Control

User Reference

1 Introduction
The references for the following three tasks are included in this
manual:
(1) PID control with variations.
(2) Smith predictor with load prediction.

(3) Feedforward control.

1.1 PID contro!

(1) Basic control algorithm (or setpoint on PID):

u(t) = Ut-1) +
Kel(1+TsKi+Kp/Tsle(t)-(1+2Kd/T s)e(k-1)+Ka/Tse(k-2)] (1)

U  control output

e difference between process output and setpoint
Kc Proportional gain

Ki Integral gain (sec” Y

Ka Derivative gain (sec)

Ts sampling time (sec)

(2) Setpoint on PI only control:

Uft) = U(t-1) +
Kele(t)-e(t-1)+KiTse(t)+Ka/Ts(-Y(t)+2Y(t-1)-Y(t-2))] (2)

Y process output

(3) Setpoint on I only control:

U(t) = U(t-1) + Kcl-Y(t) + Y(t-1) + KiTse(t) +
Ka/Ts(-Y(t) + 2Y(t-1) - Y(t-2))] (3)

[ 4

1.2 Smith predictor with load prediction

Yted|t) = Bz’ ‘)U(t) + [—‘—'ﬁ—;] [Y(t) BzD),- ] (4)
A7) 1-az Az

¥ predicted output
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o 21

process model of order one (l—aoz'l)
process model of order one (b°+blz'l)

estimated time delay in sample period

R A »

residual filter constant

1.3 Feedforward
U(t) = U(t) + Kee(V(t)-V) (S)
Ker feedforward gain
\' disturbance variable
v disturbance variable nominal value
The feedforward signal is added to the control ocutput calculated
from the feedback path.

2 How to use PID+Smith Predictor+Feedforward
2.1 Program files
The following files are needed (these files are Iocated in
[113:7user/eric/pid/):

(1) pid : pid control with variations

(2) feedfw : feedforward control

(3) smp : Smith pradictor with load prediction
(4) data_acq : data acquisition task

(5) pid2 : second pid control (if needed)

(6) startpi : MULTICON startup file
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2.2 Block diagram for each task

INPUTS INPUTS
STtc -3 STtc STsc
{ l ADJUSTABLE l l ADJUSTABLE
FLAGS X X PARAMETERS X ) PARAMETERS
Auto [ ¢<——STtsp -(——-al,bo,bl.pd
SPmod—>] PID SMP
mo L ——Kp,Ki,Kd,ts L e— kf
Smith
STsc PY
OUTPUT OUTPUT
INPUT
STf I
FLAGS ! ADJUSTABLE
1 PARAMETERS
Ff lag> FEEDFW —Kf T
T
STte
OUTPUT
INPUTS
STtc,STt STfc,STf
§figSTesp, Tre.g1fm.
FLAGS l !
Dat on—> DATA_ACQ
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2.3 Procedure for starting up
(1) Read MULTICON user manual.
(1) Startup MULTICON.

(2) Use 3:/user/eric/pid as the working directory and startpi as the
working file,

2.4 On-line variables

(A) System defined variables
STfl : Stirred Tank input water flow (% of O-lm/s)
STtc : Stirred Tank thermo couple (°C)

STsc : Stirred Tank steam control valve opening (%)
STfc : Stirred Tank input water flow valve opening (%)

3

6

7. cnthl: high limit for STsc
8 cnth2: high limit for STfc
9

10. cntll: low limit for STsc

11, cntl2: lew limit for STfc

14. STtsp: Stirred Tank temperature setpoint :°C)
1S. STfsp: Stirred Tank inlet flow setpcint (% on 0-lm/s)
16.
(B) User defined yariables
17. Autc : Auto/Maizual switch (O=auto; l=manvual)
18. SPmod: PID mode switch
(0=SP on PID; 1=SP on PI; 2=SP on I only)
18. Smith: Smith Predictor (0=off; l=on)
20. ts : sampling time in second
(must match that in task table)
2. kp : proportional constant
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ki : integral constnat (sec™)

22
23. kd : derivative constant (sec)
24. al : proccess model parameter (A(z M)=1-a1z™)
25. b0 : process model parameter (Bkz'l)=bo+blz'l)
26. bl : process model parameter
27. pd : process model delay (in sample period)
28. kf : filter constant ()
29. py : smith predictor output (used as feedback signal)
30. Auto2: loop 2 Auto/Manual switch (O=auto; l=manual)
31. kp2 : loop 2 proportional constant
32. ki2 : loop 2 integral constant (sec™)
33. kd2 : loop 2 derivative constant (sec)
34. ts2 : loop 2 sampling time in second
(must match that in task table)
35. Daton: data acquisition flag (O=off; l=on; 2=over)
36. Kff : feedforward gain
37. Fflag: feedforward flag (O=off; 1=on)

2.5 History files
The data acquisition task stores the following data:

(1) time (in second)
(2) process output
(3) picocess input (ie. control output)
(4) setpuint
(5) disturbance variable
(6) control action affect the disturbance variable
(7) setpoint to disturbance variable

These data are store to outfile.log in directory 3:/user/eric/pid/.
2.6 Quit PID+Smith Predictor+Feedforward

Modify mnemonic #35 to “"over" before issuing "Goodby" in MULTICON to
quit. This will ensure the history data file is closed properly.
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3 Modifying the tasks
3.1 Source files
Source files are residing in (1]13:/user/eric/pid/.
(1) pid.c : source file for task pid.
(2) swmp.c : source file for Smith predictor.
(3) feedfw.c : source file for feedforward control.
(4) pid2.c : source file for second pid control.

(5) data_acq.c: source file for data acquisition task.

3.2 Compiling task
This is how a rask (eg. piz! -»n be compiled and linked:
#cc 1:id.c s=1000 -T +8 ¢+l
Command line explan::isn:
cc : compile command,
s : stack size,
-T : duv rot use ram disk for temperate storage,
+8 : gencirate 8088 co-processor code,

c=pid : name the core file to pid.

163



APPENDIX 2B
ROBUST ADAPTIVE CONTROLLER (RAC)
‘ USER REFERENCE

1 Introduction
The robust adaptive controiler is developed by W. Cluett and modified
by E. Lau. It is implemented as an advanced control task on MULTICON for
signal-input-signal-output control.

1.1 Frocess Model

Az YY) = Bz Hz %t-1) + czhEr)za (1

Process output

Process input

Disturbance (assumed white noise)
Monic polynomial with order Na
Polynomial with order Nb

Monic polynomial with order Nc
Integer time delay (d=0)

Current sample time (integer)

c~aawermc<

1.2 Augmented Process

-1 -1
2(t) = ﬂT’ vty + 22 yre-a) 2)
Pa(z™h) Qa{z™h)

Z Augmented process output

Fn Weighting polynomial with order dPn
Pda  Weighting polynomia! with order dP4
Qn Weighting polynomial with order dQn
Q4 Weighting poiynomial with order dQd

1.3 CARIMA model for the augmented process

» -1 N -1
2(t) = B—(z——‘-’-U(t-d) $ C82 ) gy 3)
A'(z™h A'(zha

A PazhoazHAzY
B Palz )Quz Bz )+Pa(z Hon(z Az
¢ pPalzhaaz ezt

1.4 :.ophantine Egquation
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R | -1,_-d
C (z-_ll_ = E(zY) + F(z -:z
A’(z )a A’'(z ')A
E Monic polynomial with order d-1
F Polynomial with order max(dPn+dQ4-1,dPd+dQa+Na)

4)

1.5 Cost Function

Rn(z™h) . z
J = { nlz ~Yap(t+d) - Z (t+d) } (5)
Ra(z™)

Z'  E(ztsd|t)

Rn Weighting polynomial with order dRn
Rd Weighting polynomial with order dRd
E Expectation operator

1.6 Control Law

Rz YYsp(z”™) = Bz haZf(t) + Gzhaut ) + cZi() (6)

F' Polynomial with order dF-1 (F=F'A+C'(1))
~ Estimated value " i a ”
£ Filtered vs T'(2 )=T(z )Pn(z )Qd(z )

1.7 Estimator

Projection algorithm with normalization and deadzone.

2 Program Design
The RAC program is written in QNX C that runs on the real-time QNX
operating system. The program uses the dynamic memory allocation feature
provided by C so that memory is acquired only on request. This is important
because on-line adjustments may vary the length of Pn(z'l), Fd(z_l).
anlz™)), Qsiz”™), Raz™), Ra(z™), T(z™"), F'(z™") and G(z™.

2.1 Program Description
The following pseudo-code describes the progiam operation.

#include <stdio.h>
#include "define.h"”
#include "matrix.h"”
#include "poly.h"
#include "rac_flag.h”
#include "rac_fcn.h"
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main()

begin
Declare variables;
Dynamically allocate memory for variables;
Read datz file (initrac) to initialize variables;
Open history data file;

wait for the to-go signal;
repeat for ever
begin
receive_fro:y_multicon (all information);
if ail_done :n2n
close all files;
brauk out from infinite lecop;
augment the process variable with P and Q weightings;
if setpoint_filter is needed
filter the setpoint with R weighting;
form regressor;
form the k-incremental oui;u:f;
normalize regressor and k~insremental output;
if dimensions of P and Q weiy%:i:gs changed
form theta;

estimate the model;
if estimator==faulty then
switch to manual control;
if initial_identification==ON then
control output= preset output sequence;

else
if automatic==ON then
calculate minimum variance
sacremental control output dU;
constraints the outputs;
else
getpoint tracking;

send_to_multicon (control output, flags)
store control signals;

if history_on_off==0ON then
write to data file;
wait until a sample period is up;

end;

free zll memory allocated to variables;
end;

2.2 The initrac file
After the task is started up and memories are allocated to the
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variables, the program reads from a data file "initrac® to do initialization
of variables as well as the MULTICON data table. These are the riables
that the user can prespecify for the RAC:

(1) Na, Nb, d

(2) Parameters for P(z)

(3) Parameters for O(z)

(4) Parameters for R(z™)

(5) Parameters for T(z')

(6) Deadzone used for the parameter estimator, Av

2.3 The history file
Two history files in /user/eric/rac_new/ are open for data acquisition
purposes:
(1) "out.m" is for accumulatinig the process variable, the process
manipulated variable, and the setpoint variable.

(2) "the.m" is for accumulating the parameter estimates.

2.4 Initial Identification

For the first 20 sample periods, the controller gives a sequence of
step changes around the steady state values of the process input for open
loop identification. During this period, the setpoint variable tracks the

process manipulated variable. When the 20 sample period is over, the program

kicks into automatic mode.

3 How to use RAC
3.1 Program files required
The following files are required to startup and run the RAC task. They
are residing in the directory [1]3:/user/eric/rac_new/.
(1) rac : the main RAC task,
(2) initrac : RAC initialization file,
(3) run_rac : MULTICON startup file for RAC.
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3.2 Procedure of starting RAC
(') Read MULTICON user manual.

(1) Edit and modify initrac if necessary.

(2) Change current directory to the multicon directory:

#cd /user/multicon <{cr>
(3) Start up MULTICON:

#multicon <cr

(4) Specify /user/eric/rac_new/ as the working directory and run_rac

as the working file.

3.3 On-line variables

(A) System defined variables

0.

I R S I

P S R
G 26N FS

16.

STfl : Stirred Tank input water flow (% of C-im/s)
STtc : Stirred Tank thermo couple (°C)

STsc : Stirred Tank steam control valve opening (%)
STfc : Stirred Tank input water flow valve opening (%)

cnthl: high limit for STsc
cnth2: high limit for ST{c

‘cntll: low limit for STsc

cntl2: low limit for STfc

STtsp: Stirred Tank temperature setpoint (°c)
STfsp: Stirred Tank inlet flow seipoint (% on 0-1m/s)

(B) User defined variables

(B.1)

17.
18.

Variables for process model:
na : degree of A polynomial in process model
nb : degree of B polynomial in process model
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19,

20.

(B.2)
21.

22.

24.

26.
27.
28.
29.

(8.3)

30.
31
32.

34.
35.
36.
3.
38.
39.
40.

(B.4)
41.

42.
43.
44,
45,
46.
47.
48.

delay: process model time delay (>=0)

Variables for flags and Switches:

done :
rac
estim:
adapt:

auto :

all finish flag

: status flag for rac

status flag for estimator
adaptive/non-adaptive flag

auto/manual flag

SPfil: setpoint filter flag

ffwd :

daton:

feedforward flag (not used yet)

data acquisition flag

Variables for P weightings:

dPn
Pn0
Pnl
Pn2
Pn3
dPd
Pdo
Pdl :
Pd2
Pd3
Plag :

: degree of P numerator polynomial

: Ist element of the P numerator polynomial
: 2nd eclement of the P numerator polynomial
: 3rd element of the P numerator polynomial
: 4th element of the P numerator polynomial
: degree of P denominator polynomial

: Ist element of the P denominator polynomial

2nd element of the P denominator polynomial

: 3rd element of the P denominator polynomial

: 4th element of the P denominator polynomial

delay of P weighting

Variables for Q weightings:

dQn
QnoO
Qni
Qn2
Qn3
dQd
Qdo
Qdi

: degree of Q numerator polynomial

: Ist element of the Q numerator polynomial

: 2nd element of the Q@ numerator polynomial
: 3rd element of the Q numerator polynomial
: 4th element of the Q numerator polynomial
: degree of Q denominator polynomial

: Ist element of the Q denominator polynomial

: 2nd element of the Q denominator polynomial
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49,
50.

51
(B.5)

52.
53.
54,

56.
57.
58,
59.
60.

61.

62.

(B.6)

63.
64.
65.
66.
67.
68.
69.
70.

71.

72.
3.
74.

(8.7)

718.
76.

78.

Qd2 .
Qd3 :
Qlag :

3rd element of the Q 4denominator polyromial
4th element of the Q denominator polynomial

delay of Q weighting

Variables for R weightings:

dRn
RnO
Rnl
Rn2
Rn3
dR¢
RdO
Rdl
Rd2
Rd3
Rlag :

: degree of R numerator polynomial

: 1st element of the R numerator polynomial

: 2nd element of the R humerator polynomial

: 3rd element of the R numerator polynomial

: 4th element of the R numerator polynomial

: degree of R denominator polynomial

: Ist element of the R denominator polynomiai
: 2nd element of the R denominator polynomial
: 3rd element of the R denominator polynomial

: 4th element of the R denominator polynomial

delay of R weighting

Variables for T weightings:

dTn
TnO
Tnl

Tn2
Tn3
dTd
Tdo
Tdl

Td2
Td3

Tlag :

: degree of T numerator polynomial

: Ist element of the T numerator polynomial

: 2nd element of the T numerator polynomial

:+ 3rd element of the T numerator polynomial

: 4th element of the T numerator polynomial

: degree of T denominator polynomial

: Ist element of the T denominator polynomial
: 2nd element of the T denominator polynomiai
: 3rd element of the T denominator polynomial

:' 4th element of the T denominator polynomial

delay of T weighting

Variables for parameter estimation and control:

db

phl
phu
phiHi:

: deadband
: lower bound of deadband
: upper bound of deadband

up bound for normalization is phiHi+delay
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79. kgain: kalman gain for parameter update
80. chi : variable parameter update weighting
8l. dF : degree of F controller polynomial
82. fO : Ist element of the F polynomial
83. fl : 2nd element of the F polynomial
84. f2 : 3rd element of the F polynomial
85. f3 : 4th clement of the F polynomial
86. dG : degree of G controller polynomial
87. g0 : ls* element of the G pclynomial
88. gl : 2nd element of the G polynomial
89. g2 : 3rd element of the G polynomial
90. g3 o 4th element of the G polynomial
{B.8) Variables for others:
91. z(t) : current augmented plant output
92. yf(t): current filtered STtc output

3.4 Some notes about changing parameters on-line

All of the above variables except STfl, STtc, rac, and estim can be
changed on-line by the user by modifying the MULTICON data table. When the
user wishes to modify some of th_e P, Q, R, or T weightings however, it is
reccmmended that the system should be paused before making the changes. This
is because MULTICON takes the most update values in the data table to do
data acquisition and control. If the user is not able to enter all the
changes for the weighting within one sample period, MULTICON will be using
part-new part-old data for the weightings. Issuing a pause before changing
the weightings avoids this problem.

3.5 Procedure tc quit RAC

To quit RAC, modify mnemonic #21 'done’ to 'YES'. This will notify the
rac task to close all the data files before MULTICON quit. Then issue the
*Goodby’ command in MULTICON to end the session gracefully.
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4 Modifying RAC

4.1 Source files

Source files are residing in [1]3:/user/eric/rac_new/. The following
files are required to modify and compile the rac task:

(1) rac.c : source file for task rac.

(2) rac_fcn.c : source file for all the subprograms used in rac.

(3) rac_fen.h : include file for rac subprograms.

(4) rac_flag.h: include file for rac flag.

(5) matrix.h : include file for matrix subprograms.

(s) poly.h : include file for polynomial subprograms.

(7) matrix.o : object file for the matrix subprograms

(8) poly.h : object file for the polynomial subprograms.

The most updated version of the matrix and polynomial subprograms are
residing in [113:/user/ctools/. The user is recommended to make a copy of
the matrix.o, poly.o, matrix.h, and poly.h to the directory containing the
rac task to be raodified before compiling the task.

4.2 Compiling RAC
The fnllowing command line will compile and link the necessary files
for the rac tasx: '
#cc rac.c rac_fen.c matrix.o poly.o +Wc,+u s=10000 -T +8 c=rac
Command line explanation:
cc : compile command,
+We,+u : use definite name for structure variables,
s : stack size,
~T : do not use ram disk for températe storage,
+§ : generate 8088 co-processor code,
czrac : name the core file to rac.
Note that the +Wc,+u option must be used because all the programs
listed above uses structure variables extensively. The stack size must be
reasonably large because memories are allocated dynamically to the program

variables from this stack. The -T option is used whenever there is no ram
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disk is mounted. The compilation will be slowed down slightly when this

option is used.

173



APPENDIX 2C

MULTISTEP-ADAPTIVE~PREDICTIVE-CONTROL

USER MANUAL

The MAPC .was originally designed by R. Sripada (1988).

1 Introduction

It

.
1s .7

adaptive Long Range Predictive Controller which uses a Modified Kalman
Filter Predictor

(MKFP) for disturbance shaping and prediction,

and a

multistep controller design to calculate the ’best’ control action at each

sample interval.

1.1 Process Model
X(t+l) = & X(t) + A Ut) + E m(t)
Y(t) = H X(t) + n2(t)

Ko<

-

Q-:i)d(lla:>'9'

Process output

Process input

State vector of order n+d+l

State matrix of dimension (n+d+1j¥{{n+d+l)
Input matrix of dimension (n+d+1)X2
Output matrix of dimension 1X(n+d+l)
Process noise vector of order n+d+l
Process noise (assumed white)
Measurement noise (assumed white)
Model order

Time delay (dz0)

X(t) = [x (t) X (1) x,(8) ... X (1) x_(t) ... X Wt
1 2 n n+

t

0Ob2 b2 ...b2 0...0
n n-1 1

1 n+d
0 w. 00 . O O]
we 0O -8 we 0O 0
n
1 .. 0 -a we 0 0
n-1 .
1 -a ) [+]
1
1
1 (4]
0 J (n+del)x(nedel)

A= {0 bl bl ..bl 0...0
n n-1 1

2X(n+d+1)
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le(mdﬂ)

£ =1i10..0]

1x(ned+1)

a, l:ol are obtained from parameter estimator, where

Az =1+ alz'

B(z")

1.2 Estimation

L azz'2 +..+az"

n
-n+l

-1
b +bz +..+b2
1 2 n

Any estimator that provides unbiased A(z™") and B(z™).

1.3 Kalman Filter

L(t) = M(OHT(HM(HT + R2)™
Kt) = X(t) + L(E)(Y(t) - HX(t))
P(t) = M(t) — L(t)HM(t)

X(t+1)
M(t+1)

b - - o
W

R2

1.4 Prediction

dR(t) + AU(Y)

8P(1)e" + ERIE
Kalman gain vector of order n+d+l
State estimation vector of order n+d+l
Covariance matrix of dimension (n+d+1)X(n+d+1)
Etm(tim(t)}
Etna(tinz(t)}
expectation operator

{Y(t+j| 1), jelNLN2]} = (H(D)O(tIR(t]¢), jelNi,Nz]} +

N1
N2

tel-1
(z Hoew AU, jelNi,N2])
1=t

First point of the control horizon wrt time t
Last point of the control horizon wrt time t
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1.5 Controller Cost Function

N2 Nu

- . . 2 e i}

J ,ZniY"(m) Y(t+j| )y, (0 +’Zl(w.c W, (0
Nu Control horizon

. Setpoint

7“ Weighting on prediction error

701 Weighting on output

1.6 Control Law
-1
- T - *
s = (G060 + £,] 6L Iy, -y
AU(t) = {AU(t+i-1), iell,Nul}

7 e O 7 . O

N e UN

Y (1) = (HOBYR(t|1), jelNy,Nal} +

N1-1

[H(t)®(t)" Alt) + ... + H(t)A(t)

HOS) AR + ... + ... + HOAW))]

G(t) = G'(t)S

"HOM'A ...HA O 0]

HM'A ... HA 0 ... O
G'(t) =

| He"2 A e HA|
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(N2-N1+1)X1

(N2 -N1+1)XN2



1 0 0]

11
sS=1{11 0

11 1

- <4 N2XNu

2 Program Design

The MAPC is designed for taking 2 inputs from the process (process

variable and disturbance variable) and giving 1 control signal. It comprises

of three tasks that run in the following sequence:

(1)

(2)

(3)

I_" parest Jkfp mapc

parest: parameter estimation task that gives the process

N
N

representation in an ARMA model.

kfp: the modified Kalman Filter Predictor that accepts the
ARMA model from parest and gives the predicted state
estimates. -

mapc: the multistep control design task that accepts from
parest an ARMA model and kfp the state estimates to calculate
the control output.

These tasks are written in QNX C that runs on the real-time QNX

operating system. Dynamic memory allocation feature provided by C is used so

that memory is acquired only on request.

2.1 Program description

kfp:

#include <stdio.h>
#include "define.h"
tinclude "matrix.h"
#include "kfp_fcn.h"
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main()
begin
declare variables;
allocate memory for variables;
initialize variable (read from initkfp);
wait for the to-go signal;
repeat for ever
begin
receive_from_multicon (process 170, model, flags);
if all_done
close history file;
go out of infinit loop;
update state space model;
Kalman filter;
if kalman_filter==faulty
send_to_multicon (flag);
close history file;
go out of infinit loop;
send_to_multicon (state update, flags);
if history_on_off==0N
write_history (state, kalman gain);
wait until sample period is up;
end;
free memory allocated for variables;
end.

mapc:

#include <stdio.h>
#include "define.h”
#include "matrix.h"
#include "mapc_fen.h"
main()
begin
declare variables;
allocate memory for variables;
initialize variable (read from initmapc);
wait for the to-go signali;
repeat for ever
begin
receive_from_multicon (1/0,states,model,flags,parameters);
if kalman_filter==faulty
switch to manual control;
switch to non-adaptive (model not updated);
if all dsne
close history file;
go out of infinit loop;
if adaptive==yes
update model;
if automaticz=yes
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setpoint filtering;
calculate setpoint trajectory;
calculate control output;
if calculation==fauity
switch to manual;
close history file;
send_to_multicon (flags);
constraint control output;
else
setpoint tracking;
send_to_multicon (control output, flags);
if history_on_off==on
write to file;
wait until sample period is up;
end;
free memory allocated for variables;
end.
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2.2 Block diagram of each tasgk

INPUTS
STte s ADJUSTABLE
FLAGS l l ———
—_— PARAMETERS
fdf wd ! 1
don e ,spf—> 6—— N1,N2,Nu
mapc——> MAPC — [u -1
adapt, a uto—é¢—> H—— E(z ‘) . 1 - X
kfp —> r[e—— A(z ).Bl(z ).Bz(z )
¥
STt
OUTPUT
INPUTS
STt STfl
l° i ADJUSTABLE
FLAGS PARAMETERS
] ]
done—> H—— EI.R% " 1~ '
map ¢c——> KFP e~ A(z ),B (2 ).Bz(z )
kfp —6—> — delb,delc
[ 2
X
OUTPUT
INPUTS
S STIf1
FLAGS Ti" I ADJUSTABLE
—— PARAMETERS
1 1
-1
Es t ON—) e T(2z )
leat —)+ & trace
PAREST — sigma,updb,lodd
H—— Dinit
¥

Az ), (z"),iz(z")
OUTPUT
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2.3 The Init files
The user can prespecify some initial settings for the both the kfp task
and the mapc task.

kfp:
(1) Process order, Process delay for the 2 inputs
(2) Initial estimates of A(z™}
(3) Initial estimates of B(z), including bl and b2,
(4) Process noise vector
(5) Measurement noise vector
(6) Variance of process noise and measurement noise
(7) Initial state estimates
(8) Initial values for the diagonal elements of the covariance

matrix
mapc

(1) Process order, process delay for the 2 inputs
(2) Initial estimates of A(z™)

(3) Initial estimates of B(z™"), including bl and b2,
(4) Process noise vector

(5) Measurement noise vector

(6) Initial state estimates

2.4 History files
Both kfp task and mapc task opens their own history files which record
the following data:
kfp:
(1) All values of the state update
(2) All values of the Kalman gain
The data file is "kfp_out" which is located in \user\eric\mapc_new.

mapc:
(1) Process cutput
(2) Setpoint
(3) Process input (ie. control output)
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(4) parameters for A(z™))
(S) parameters for B(z™"), including bl and b2

3 How to use MAPC
3.1 Program files

The following files, which are residing in /user/eric/mapc_new, are
required to run MAPC;

(1) mapc: Multistep controller execuable image.

(2) kfp : MKFP execuable image.

(3) parest : parameter estimator execuable image.

(4) initkfp : Kkfp task user initialization file.

(S) iritmapc: mapc task user initialization file.

(6) run_mapc: startup file for MAPC.

3.2 Procedure for starting MAPC
(!) Read user manual for MULTICON
(1) Initialize initkfp and initmapc if necessary.
(2) Fire up MULTICON.
(3) Use /user/eric/mapc_new as the working directory and run_mapc as
the working data file.

3.3 On-Line variables
(A) System defined variables
0. STfl : Stirred Tank input water flow (% of O-lm/s)

1. STtc : Stirred Tank thermo couple (°C)

2.

3.

4. STsc : Stirred Tank steam control valve opening (%)

S. STfc : Stirred Tank input water flow valve opening (%)
6.

7. cnthl: high limit for STsc

8. cnth2: high limit for STfc

9.
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10. cntll: low limit for STsc
11. cntl2: low limit for STfc
12.
13.
14. STtsp: Stirred Tank temperatire setpoint (°C)
15. STfsp: Stirred Tank inlet flow setpoint (% on O-lm/s)
16.
(B) User defined variables
17. done : all done flag (O=done; l1=not done)
18. mayc : mapc task status flag (O=ok; l=not ok)
19. kfp : kfp task status flag (O=ok; l=not ok)
20. adapt: adaptive flag (O=off; l=cn)
auto : automatic flag (O=manual; l=automatic)
spf : setpoint filter flag (0O=off; l=on)

fdfwd: feedforward control flag (O=off; l=on)
N1 : first point of prediction horizon (>0)
26. N2 : last point of prediction horizon (ONI1)
27. Nu : Control horizon (>0)
28. dRn : degree of Ra(z™)

21
22
23. daton: data logging flag (O=off; 1=on)
24
25

29. RnO :
30. Rnl
31. Rn2

dRd : degree of Rd(z™)

Rlag : setpoint filter delay
Rl : process noise variance

BIRBRLESN
§

R2 : measurement noise variance
39. Imdal: 101
40. Imda2: Y2
41. Imda3: ¥ ua
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42.
43.

45.
46.
47.
48.
49.
S0.

SL

52.
53.
54.
55.
56.
57.
58.
59.
60.
6l.
62.
63.
64.
65.
66.
67.
68.
69.
70.

n.

72.
73.
74.

X0
Xi
X2
X3
X4
X5
X6

X8
X9
X10
X1l

O

a6
a7
a8
a9

bl

E3I&GEEBER

cO
cl
c2

-1 -1 -1
: Alz ) =l-alz -az -.-az

: states estimate from kalman filter

-1
n

:Blz) =bl +b1z! +..+bl2"
0 1 n

cCz)=b2 +b22" 4.4 022!
[} 1 n

i84



75. 3

76. c4
77. o5
78. c¢6
79. ¢7
80. 8

8l. na : number of a parameters
82. nb : number of b parameters
83. nc : number of ¢ parameters'
84. delb : process time delay

85. delc : disturbance time delay
86. Tn0Q : T-filter used in parest

87. Tnl
88. Tn2 :
89. TdO :
90. Tdl
9. Td2 :

92. trace: trace of covariance matrix for parest
93. Sigma: Ydstie’s forgetting factor tuning knob
94. updb : upper bound for deadband

95. lodb : lower bound for deadband

96. Dinit: Initial diagonal element of UD matrix
97. EstON: Estimator flag (O=of f‘; 1=on)

98. lest : parest Initialization flag (O=default)

3.4 Procedure to quit MAPC

To quit MAPC, modify mnemonic #17 'done’ to O. This will notify both
mapc task and kfp task to close all the data files before MULTICON quit.
Then issue the 'Goodby’ command in MULTICON to end tae session gracefully.

4 Modifying MAPC

4.1 Source files

Source files are residing in [1]13:/user/eric/mapc_new/. The following
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files are required to modify and compile the MAPC tasks:
(1) mape.c : source file for task mapc.
(2) mapc_fen.c: source file for all subprograms used in mapc.
(3) mapc_fen.h: include file for mapc subprograms.
(4) kfp.c : source file for task rac.
(5) kfp_fen.c : source file for all subprograms used in kfp.
(6) kfp_fen.h : include file for kfp subprogram.
(7) flag.h : include file for mapc and kfp flags.
(8) matrix.h : include file for matrix subprograms.

(9) matrix.o : object file for the matrix subprograms

The most updated version of the matrix subprograms are residing in
[1]3:/user/ctools/. The user is recommended to make a copy of the matrix.o
and matrix.h to the directory containing the MAPC tasks before compiling the
tasks.

4.2 Compiling MAPC
The following command line will compile and link the necessary files
for the mapc task:
#cc mape.c mape_fen.c matrix.o +We,+u s=10000 -T +8 c=mapc
Command line explanation:
cc : compile command,
+Wc,+u : use definite name for structure variables,
s : stack size,
-T : do not use ram disk for temperate storage,
+8 : generate 8088 co-processor code,

c=mapc : name the core file to mapc.

Note that the +Wc,*u option must be used because all the programs
listed above uses structure variables extensively. The stack size must be
reasonably large because memories are allocated dynamically to the program
variables from this stack. The -T option is used whenever the ram disk is

not mounted. The compilation will be slowed down slightly when this option
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is used.
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