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Abstract

Laminar separation bubbles tend to occur on low Reynolds number wing sections
(less than 1.5(10%) just prior to the pressure recovery region, as a mechanism of
transition from laminar to turbulent boundary layer flow. Since this laminar bubble
transition makes an increasingly important contribution to wing section profile drag at
low Reynolds number, a model for the analysis of the boundary layer through the bubble
is needed. The model developed here is based on Horton’s method. It provides a simple
and computationally efficient analysis matching the integral boundary layer calculation
used in airfoil analysis.

The bubble calculation is initiated by the detection of laminar separation. After
transition location is determined using Van Ingen’s short-cut ¢" method, which allows the
effect of freestream turbulence to be accounted for, the growth in the bubble laminar
region is predicted using Schmidt’s correlations. The iterative turbulent region
calculation was improved by replacing Horton's linear velocity distribution with
Wortmann’s concave velocity distribution which corresponds better with experimental
observations. Both computation efficiency and prediction accuracy were improved by
these changes.

Like the original Horton’s method, the convergence of the turbulent region
iterative calculation means that reattachment can occur and the information generated can
initiate the subsequent attached turbulent boundary layer calculation. Bursting is
predicted by tailure of the turbulent region to reattach.

Addition of the bubble model greatly improved the drag prediction accuracy of
airfoil analysis, especially in cases where the mid-chord bubble was a dominant feature
on the airfoil. The validity of the bubble model was further confirmed by the good
agreement between the calculated values of bubble size, reattachment velocity gradient
and their respective measured values, taken from published experimental results on a
number of airfoils in the Reynolds mumber range from 0.2(10°) to 1.5(10.
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Chapter 1 Introduction

Analysis of wing sections operating at low Reynolds number (Re,) has attracted
research attention because of the numerous applications and the difficulty in dealing with
laminar separations that occur at low Re,. Examples of applications include sailplanes
(1], {2], human-powered aircraft [3], photovoltaic-powered aircraft [4], high-
altitude vehicles [5], [6], and even radio-controlled model planes [7].

Airfoil sections are usually designed with geometrical constraints which may
include maximum thickness to chord ratio, surface contour curvature, etc. The UA(2)-
180 airfoil [1] was designed to have no concave surface for ease of construction, while
Lissaman [4] specified a flat upper surface for his airfoil to enhance the performance of
the solar cells. With the geometrical constraints of the airfoil in mind, the designer’s
task is to maximize the aerodynamic performance. For a low Re, airfoil, the most
important factors to be considered are the pressure recovery and the flow transition
mechanism.

Pressure recovery measures how much the flow on the upper surface can
decelerate from its velocity peak, u, ., (minimum pressure) to its trailing edge velocity,
u, rz- The flow is separated if the pressure recovery is not complete, and the form drag
increases substantially. The most famous pressure recovery is the one developed by
Stratford [8], [9]. It keeps the flow on the verge of separation by specifyipg the
skin friction, C; in the pressure recovery region to be zero. It can be identified on the
C, vs x graph as a concave curve, which means the adverse pressure gradient is gradually
reduced towards the trailing edge. Besides obtaining reduced drag due to the zero skin
friction, the major advantage of Stratford’s pressure recovery is that it can finish in the
shortest distance. This allows the longest laminar flow before the pressure rise, and thus
achieving minimum drag. However, after some numerical experiments, Eppler [10]
suggested Stratford’s recovery is not optimum in terms of lift generation even though it
has the least drag. He found that a pressure recovery less concave than Stratford’s can
achieve more lift due to a higher roof-top velocity. Kennedy [11] also pointed out
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that Stratford’s method is not convenient for computation, and he preferred the older
Wortmann's [12] pressure recovery. Compared to Stratford’s, Wortmann’s recovery
is likewise maintained on the verge of separation, but it comes with a simpler
mathematical relationship using to the boundary layer shape factor, H,, instead of C,
This allows aerodynamicists the freedom to choose between a moderate recovery and an
aggressive recovery by varying H,, from 1.8 to 2.4. Kennedy [11] also claimed that
Stratford recovery is t0o conservative because there is almost no difference between
Stratford’s recovery and Wortmann's recovery with H,, equals 1.8. Liebeck [13] had
similar idea when he discovered that the original Stratford distribution actually has some
reserve from imminent separation. He then introduced the modified Stratford
distribution, a more aggressive one, in which the margin from separation in the recovery
region is reduced. But both Liebeck [13], and McMasters and Henderson [14]
noticed that when angle of attack, «, increases (Re, decreases) beyond the design
condition, the flow with Stratford distribution separates at the start of the recovery
region, and an abrupt stall can follow. Their explanation is that Stratford distribution
(and the modified one) has constant margin from separation along the whole recovery
region. Once the margin is consumed in an off-design condition, the whole recovery
region is prone to separation. On the other hand, McMasters and Henderson [14]
suggested that an airfoil with Wortmann's recovery has a more gradual stall. It can be
said that Stratford®s recovery is more accurate than Wortmann’s recovery in terms of
introducing imminent separation because Stratford’s recovery is related to the direct
indicator of separation, C, Ironically, the accuracy of Stratford’s distribution results in
poorer stall characteristics. .

Atlow Re, a laminar flow generally separates whei it encounters adverse pressure
gradient. After separation, the flow becomes unstable and is prone to transition. Once
the flow becomes turbulent, the entrainment of the fluid increases and the flow can have
enough energy to reattzzi: back to the airfoil surface. Depending on the amount of
adverse pressure gradient and local Reynolds number at separation, Re,, the three
processes, separation, transition, and reattachment can happen in a few percent of chord
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length. The resulting flow structure is the separation bubble, or short bubble. With
increasing a, accompanied by steep adverse pressure gradient and low Re,, the flow
cannot reattach in a short distance and so the bubble extends to become a long bubble.
If the angle of attack continues to increase, the flow can eventually fail to reattach and
the bubble bursts. Both Ward [15], and Tani [16] carried out an exténsive
survey of the experimental observations on the two types of bubbles and the bursting
phenomenon. Notably, they classified a bubble which affects only tise local pressure
distribution as a short bubble, while one which can cause the collapse of the suction peak
and consequently the loss of lift as a long bubble. Long bubbles and their bursting are
definitely undesirable because they destroy lift drastically and cause dangerously abrupt
stall characteristics [16]. However, there is still some debate on whether a short bubble
is desirable. Marsden [1], Drela [3], and Gad-el-Hak [17] consider short bubble as
an efficient transition mechanism if used in an appropriate situation. But Selig [7]
pointed out that bubble is an unreliable feature due to its dependence of turbulent
intensity and its hysteresis behaviour. Over-prediction of airfoil performance can happen
because wind tunnel noises reduce the bubble size and consequently the pressure drag.
Selig thus suggested using a convex pressure recovery for very low Re, applications since
his investigation stiowed that bubbles form in conventional concave recovery.

The purpose of a transition mechanism, mentioned in the last paragraph, is to
ensure that there is a pressure recovery. Itis known that turbulent flow has more energy
to resist separation in the adverse pressure gradient typical of the pressure recovery
region. On the contrary, laminar flow tends to separate and form a long bubble or even
fails to reattach under the same adverse pressure gradient. Therefore, an airfoil designer
must introduce some sort of instability to promote transition before the flow meets the
pressure recovery region. Wortmann [18] pioneered a solution by shaping the airfoil
surface contour to introduce a moderate adverse pressure gradient before the pressure
recovery region. This moderate adverse pressure gradient is designed to cause transition
instead of separation. Wortmann named this region as the instability range, which is also
commonly referred to as a destabilizing region. Horstmann, Quast, and Boermans
[19] criticized the instability range on the fact that it is optimum for one Re, only.
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They suggested that increasing Re,. from design condition can cause additional friction
drag due to the forward shift of transition, while reducing Re, from design condition
results in a bubble and associated pressure drag. Pfenninger, Vemuru, Mangalam, and
Evangelista [20] also pointed out that the instability range has to be extended over
most of the chord to function in very low Re, operation, wasting available pressure
recovery. Nevertheless, if operating in moderate low Re, condition (Re, > 0.7(10%)),
a well-designed instability range has little increase in drag due to the departure from the
design condition. Therefore, it still remains popular with airfoil designers who favour
its simplicity [1], [21], [22]. Another drawback of instability range is the
occurrence of long bubble in operational conditions with low turbulent intensity. This
is partially solved by the extension of Wortmann’s instability range concept to more than
one adverse pressure gradient [23]. The idea is to connect the suction peak and the
concave pressure recovery region with a more rounded pressure distribution to allow
easier reattachment for the separated shear layer. Usually the bubble size is reduced but
not completely eliminated. It is not surprising that the instability range is also called
bubble ramp or transition ramp because of the associated flow behaviour.

The instability can also be introduced by a mechanical device, such as roughness
bumps, trip wire [24], and zig-zag tape [25], [26]). Of all these, zig-zag tape
is the most efficient device. Boermans and Waibel [26] suggested zig-zag tape’s
effectiveness is due to its ability to generate three-dimensional vortices which promote
transition. Although focused on two-dimensional trip wire rather than three-dimensional
zig-zag tape, Gibbings, Goksel, and Hall’s model [24] still reveals the general behaviour
of these mechanical devices. They found that the effective origin of the turbulent
boundary layer after tripping is upstream of the trip location. This represents the drag
associated with these devices. Usually the device drag is just a little penalty compared
to the pressure recovery it saves. The main advantage of zig-zag tape is its negligible
cost. It is also reliable even in very low Re, conditions. But it provides even less
flexibility than the instability range because the size of instability range can be designed
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to allow shifting of transition (small bubble) in various angles of attack, while zig-zag
tape must have transition in a fixed location.

In 1981, Horstmann and Quast [19] introduced a new generation of boundary
layer tripping device, the pneumatic tubulator. It ejects ram air through small ducts into
the laminar boundary layer, causing three-dimensional disturbances and subsequent
transition. Its four advantages over the instability range and conventional tripping
devices are:

a. It is more effective and reliable in causing transition or reducing bubble size,
regardless of Re,.
b. Itis more flexible because it can be turned off if not needed.
c. It is more powerful because it can reduce bubble size even if installed
downstream of separation location.
d. It has less device drag because the ram air drag is negligible.
The only drawback is its high installation cost. It should be pointed out that Horstmann
and Quast recommended the installation of pneumatic tubulator on the lower surface
only. Up to this point, the discussion only focuses on the upper surface pressure
distribution because its has larger pressure recovery than the bottom surface and thus
dominates the airfoil performance. However, the lower surface also has pressure
recovery at low angle of attack and requires transition control. It is actually a more
difficult problem to control transition on the lower surface because the transition point
tends to shift forward suddenly on some airfoils [1], but the solution is neatly provided
by the pneumatic tubulator.

The aim of this project was to find a simple model for the (short) separation
bubble, so that it could be incorporated into an existing airfoil analysis and design
program developed at the University of Alberta [11]. With this modification, the
program can supply more information to an airfoil designer who has to choose between
instability range and other tripping devices. On the other hand, an engineer who opts
to select an airfoil from different catalogues can use the modified program as a unified
testing grouiid, because comparing data contained in various catalogues can be misleading
if they were generated in different wind tunnels,
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The original program will be described in Chapter 2, followed by the discussion
of available bubble models and more recent developments in Chapter 3. Chapter 4
contains the tests of the modified program against wind tunnel data. The comparison will
illustrate the limits of the modified program and its improvements over the original
program, and will reveal the places where further improvements should be made. All
these will then be summarized in Chapter 5.



Chapter 2 Airfoil Analysis Without Bubble

The original airfoil analysis program was developed by Kennedy and Marsden at
the University of Alberta and was fully documented in [11], [27). This chapter will
give a brief review of this program.

The analysis is based on viscous-inviscid interaction. The inviscid (potential) flow
is calculated with the vortex panel (boundary element) method, which will be discussed
in section 2.1. The viscous flow is calculated with the integral equations of subsonic
boundary layers. The coupling of these two calculations is then achieved by iterative
calculation. Both the viscous flow calculation and the viscous-inviscid interaction will
be discussed in section 2.2. This program’s capabilities and limitations will be described
in section 2.3.

2.1 Potential Flow

Figure 1 shows an airfoil without a boundary layer. The flow field around the
airfoil can be characterized by the distribution of streamlines. Each streamline is
represented by a stream function value, Y. For two-dimensional, incompressible,
irrotational flow Y must satisfy the Laplace’s equation,

— + —L = 1)

This means the induced velocities due to freestream, vortices, sinks, sources, doublets
can be superimposed. The analysis is focused on steady flow, so the frame of reference
can be chosen as the one moving with the airfoil.

Only one streamline, with stream function ¥, hits the airfoil in Figure 1, while
others simply detour and avoid the airfoil. That streamline splits into two paths at the
stagnation point, where it hits the airfoil. Going along the upper and lower surface of
the airfoil, the two paths join together and depart from the airfoil right at the trailing
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edge, thus satisfying the Kutta condition. Therefore, the entire airfoil surface has the
same stream functicn value, ¥,. .

Dimensional analysis shows that the airfoil surface velocity u, is equivalent to
vortex density, 4. Panel method models an airfoil and its surrounding flow field by
placing vortex elements with strength 4 on the airfoil surface contour.

To calculate the velocity distribution on the airfoil using panel method, Kennedy
and Marsden [27] divided the airfoil surface into a number of panels. An example is
shown in Figure 2. Smaller panels are used near the leading edge and the trailing edge
to capture the larger velocity gradient and to er:hance the stability of the calculation.
Kennedy [11] concluded that using straight liné panels with constant vy is accurate enough
for engineering use, and it saves substantial computation time when compared to usizg
higher order panels.

Each panel mid-point, also referred to as a control point, is represented by a cross
in Figure 2. All control points have the same stream function value y, because they are
on the same airfoil surface. By superposition, ¢, is the sum of the induced stream
function values from the freestream and all the vortex panels, including the one where
the cross is located.

The stream function for a uniform free stream incident to the positive x axis at

an angle « is give by,
¥ = ycosa - xsina @

On the other hand, the induced stream function value from a point vortex of
strength T located at a distance r away is,

2n

Integrating Eq. (3) on a panel j gives the stream function value it induces on any
control point i as,



¥ = 2-—11 [ ¥s) mlrgsy) ds, @
%

where s measures the distance along the airfoil surface from the stagnation point, r; is
the distance between the panel j and the control point i.

Consequently, for each control point located at (x;, y,), its stream function value
can be obtained by combining Eq. (2) and Eq. (4):

N
. 1
¥, = y,cos¢ - x;sine - ¥ —

P> [ v(s) mirs)y as, (5

5
where N is the number of panels on that airfoils.

Using constant « for each panel and after some rearranging, Eq. (5) can be
written as,

¥ * é v, K; = R @
where
R, = y,cosa - x,sine )
and
Ky = 5= [lalrfsplds ®)
y

Each of the N panels can provide an equation tke Eq. (6), but there are N + 1
unknowns. They include the surface stream functiow:, y,, and N panel vortex densities,
v/'s with j = 1 to N. Therefore, one more equatiz:: is needed and it is provided by the
Kutta condition. To obtain this equation, Kersedy and Marsden [27] specified a point
just behind the trailing edge through whick: £t surface streamline must pass. This is not
difficult provided that the trailing edge nz =, thickness. Thus, this point has the same
stream function value, y,, as all other cemiznl points. Moreover, it can provide the Kutta
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condition equation in the form of Eq. (6) with i = N + 1. With the number of equations

matching the number of unknowns, the system of equations can be written as,

i=1 (Kl.l KI.N 1] .Y,.
- (R ®

i=N KN,] o eue KNN 1 YN

i=N+l .KN‘I-I o Kﬂolﬂ 1‘ _¢” k d

The matrix in Eq. (9) is called the influence matrix. As defined in Eq. (8), the
influence coefficients, Kj;, depend only on the geometry of the airfoil. Straight line
panels with constant v allow the K; to be expressed in analytical form and thus save
computation time by avoiding numerical integration. Once generated, K can be reused
for various « because only the right hand side of the system R, is dependent on a.

7:» €quivalent to u, ; can be solved from Eq. (9) by Gaussian elimination. For
subsonic fiow, u, , can then be converted to pressure coefficient, C, , by the simplified
Bernoulli equation:

ul

2
c -1- .T] (10)

where u,, is the freestream velocity. With the C, distributions known, the lift coefficient
C, and the quarter moment coefficient C,, can then be calculated from numerical
integration.

Panel methods generally need more computation time for the same analysis than
transformation methods. This is due to the need to solve a matrix when using a panel
method. However, the main advantage of the panel method is that it cam be easily
extended to analyze airfoils with more than one component. Interested readers can refer
to Kennedy and Marsden [27] for further details. Until this point drag has not been
mentioned because there is no consideration of viscous forces in potential flow.
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Therefore, pressure distribution plots, C, vs x, at various «'s and the C, vs a plot are
the only results one can get from potential flow analysis.

Potential flow calculation can be applied to practical airfoil analysis because
viscous force is virtually negligible beyond the boundary layer. Consequently, the flow
velocity just outside the boundary layer, u,, can be determined from the panel method.
However, the assumption that the thickness at the trailing edge of the airfoil is zero
becomes weaker as the boundary layer thickness is no longer negligible after growth on
both surfaces. Both Toogood [28), Moktarian and Modi [29] have shown that
it is possible to correct this problem by adding a source to the airfoil trailing edge (see
Figure 3).

The induced stream function at (x, y) due to a point source of strength m located
at (x,, y,) can be written as,

2n x-x

v - ﬂm-l[y;"z) an

The effect of the source can be included in the summation for the stream function

for each control point (x, y) by rewriting Eq. (6) as,

N
¥, + 2 YIK"i + ms‘ = R‘ (12)
j=1
where
s, = ~Lant| 22 (13)
2n X - X,

Now, there are N + 2 unknowns, including y,, N of v,'s, and m. Besides the N
equations supplied by the N panel control points, two more equations are required to
solve the system. Again, these two equations are supplied by the Kutta condition. To
satisfy the Kutta condition, the surface streamline is specified to pass through two
additional control points near the trailing edge. As shown in Figure 3, they locate
immediately beyond the boundary layer displacement of the upper and lower surfaces
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respectively. With index i = N + | and N + 2, these two Kutta condition control
points supply two equations in the form of Eq. (12). The system of equations can thus

be written as,
i=1, panel Ko - Kn 5 1fy)]
) (14)
Ri
i=N,panel | Ky -~ - Kow Sv Y1y
i=N+1,KutaC1 (K, ~ - Kyan Sya 1| |m
i=N "'2’ KuttaC2 !‘N*Z,l e KN+2,N SN+2 l, .wk -

which can be solved by Gaussian elimination.

However, due to the presence of the source, v, is not equivalent to u,. At each
control point i, u, , has to be calculated from the summation of all the induced velocities
from the freestream, the source and all the panels. Fortunately the computation time for
the summation is minimal compared to that for solving the matrix. Again, C, can be
calculated from the corresponding u, by using Eq. (10). C, can then be calculated by
integrating the C,’s numerically.

22 Vi Fl d Viscous-Inviscid I .

Lift and drag are the two most important performance parameters in which
aerodynamicists are interested. Unlike lift, drag cannot be estimated accurately by
integrating the pressure distribution around the airfoil due to its relatively small
magnitude. Moreover, the pressure distribution is generated from panel method which
is based on inviscid flow, a definite conflict to the idea of drag. Fortunately, for the
majority of the airfoil applications, viscous flow can be considered to be confined in the
boundary layer. Thus, it should be possible to estimate drag if the growth of the
boundary layer is known.
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The concept of the boundary layer was first proposed by Prandtl in 1904. The
voundary layer is the region where the flow velocity increases gradually from zerv (no
slip condition) on the airfoil surface to u, in the inviscid far field. Although the
boundary layer has finite thickness, it is so thin that it can be assumed to have no
pressure gradient normal to the surface. In other words, C, is independent of the normal
distance from the airfoil surface, 7, in the boundary layer. This is particularly true for
attached flow with Re, larger than 0.1(10%), the range of most aeronautical applications.
The concept is important because it reduces the Navier-Stokes equations into a more
manageable form.
Kennedy’s [11] program is based on 'the following two boundary layer integral
equations:

ds, C, é,du
—E =1 - (2+H )¢ 1
s 2 GEITE (s
and
a6, _ d-_3_6_3_"_“: (16)
ds u, ds

Both Eq’s. (15) and (16) are the result of integrating the simplified Navier-Stokes
equations in the direction normal to the airfoil surface. It should be noted that instead
of the Cartesian x-y system used in the inviscid flow calculation, an s-n coordinate system
has been employed in the boundary layer calculation with s measures the distance along
the airfoil surface from the stagnation point. Since no suction or blowing is considered,
only u, the velocity component tangential to the airfoil surfacz appears in Eq’s. (15) and
(16). u, varying with 7, has its value ranged from O on the airfoil surface to u, at the
edge of the boundary layer (see Figure 4). The rest of the parameters in Eq’s. (15) and
(16) plus some other related parameters will be given in the following paragraphs.

0;, 0, 9, are the displacement thickness, momentum thickness and energy
thickness respectively, and they are defined as,
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6 = [(-=)dn
0 (]

5, =f;u—(l-£)dn (17)
0 e e

5, ={f:[1-(i)21dn

The skin friction coefficient, C, and the dissipation integral, C,, are defined by,

(18)

where 7 is the shear stress, and p is the density.

The boundary layer shape factors H;,, and H;, are defined by,

Hj, = -
(19)

-3
Hsz‘_

Both the upper and lower surfaces are divided into steps, and Kennedy [11] found
that a stepsize of 0.5% chord is sufficient for the analysis. For each surface, the
boundary layer calculation starts at the stagnation point and proceeds downstream by
integrating both Eq’s. (15) and (16) simuitaneously. The location of stagnation point has



15
been determined by the panel method. Following Kennedy [11], the initial values for 6.,
and d; at stagnation point are determined by:

2|s-0 -

(20)

3'3-0 -

Ve

Consequently, at each step, the values of 8,, and &; are obtained from the
integration. Hj;, can then be calculated from Eq. (19). The other parameters are
provided by empirical correlations which express H;,, C, C, in term of H;, and Re;,.
Kennedy used Eppler’s correlations [30] for laminar flow, and Felsch, Geropp, and
Walz’s [31] for turbulent flow. With H,, known, &, can be found using Eq. {19).
However, it is found that the accuracy of the turbulent flow correlations falls off with
decreasing Re,. Therefore, in this project they are replaced by Drela and Giles' [32]
newer correlations, which have been tailored for subsonic flow by Dini [33]. These
new correlations are more accurate even at low Re,, and more efficient in terms of
computation time. The improved performance comes from a better modelling of the
wake layer Reynolds stresses, which are known to have relatively slow response to
changing flow conditions, particularly at low Re.. Drela and Giles achieve this by using
the turbulence lag equation:

Fig— = 42(,[C, 5~ @1

where & is the nominal boundary layer thickness. C,, the turbulent shear stress
coefficient, is a measure of the Reynolds stresses in the wake layer. If the pressure
gradient changes slowly, C, should follow its equilibrium value, C, g, closely, but usually
the lagging is too large to be ignored. In the form of an integral equation, Eq. (21)
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accounts for the Reynolds stresses’ dependence on the flow history and thus simulates
the lagging. Drela and Giles’ correlations express C, g, 6, Hys, Cp C,in term of Hj, and
Re,,. These expressions provide the closure to the three equations, Eq’s. (15), (16) and
(21), which can then be integrated simultaneously downstream.

The switch from laminar flow calculation to turbulent flow calculation is triggered
by the detection of natural transition or laminar separation. In other words, the bubble
development behind laminar separation is ignored and immediate transition is assumed.
Also, Kennedy [11] points out that it is more practical to model the transition at a point,
although transition is actually a gradual process which takes a finite distance to finish.
The criteria for natural transition will be discussed in the following paragraphs, followed
by that for laminar separation.

To predict natural transition, Kennedy [11] ongmally used White’s criterion [34]

which states that transition occurs when,

Re,, > 29Re™* (22)

Similar to the more well-known Michel’s criterion, White's criterion is very
convenient to use, but lacks flexibility because it has not considered the effect of
freestream turbulence and surface roughness. Therefore, White’s criterion is replaced
with the more complicated but flexible ¢ method.

The " mechod predicts transition by relating the phenomenon to the linear spatial
amplification of Tollmien-Schlichting (TS) waves. Transition occurs when the
exponential growth of TS waves, represented by n, exceeds the limit, n. Finlay [35]
points out that ¢* method works well for airfoil analysis because non-linear amplification
of TS waves only occurs in the neighbourhood of transition location and can thus be
ignored in the initial growth.

As Amal [36] explains, significant TS wave growth starts only after the
boundary layer reaches a critical thickness, or when Re;; 2 Rej,,,. Writing 4 as the
amplitude of TS waves and 4, as the amplitude at critical point, the amplification ratio,
AlA, can then be calculated using linear stability theory according to the disturbance
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frequency, f, and the boundary layer thickness parameter, Re,, for a velocity profile with
a constant H,,:

m(Ai) = F,(f Re,),  const. H,, 23)

For any combination of Re,, and H,,, there is only one unique f for which the
amplification is maximum. Since n is defined as the natural log of that maximum
amplification ratio, the envelope of all these amplification curves for different f
represents some correlations between n, H;, Re,. In mathematical terms, the
relationship between the growth of TS waves (n), and the boundary layer status (H,.,,
Re,;) can be written as,

n = max[ln(—f—)] = F,(H,,, Re,,) 24)

A notable application of the ¢* method comes from Van Ingen, and Boermans
[25], who reduce the correlations between TS wave amplification and boundary layer
status to a database of about 300 numbers. However, it has been suggested that using
this database requires substantial computation time, and so a simpler model is used in the
current project. Van Ingen, and Boermans [25] also provide a correlation between 7, and
freestream turbulence level, Tu, and suggest n, should vary from 10 (wind tunnel) to 15
(free-flight).

The ¢" method chosen for the current project was developed by Gleyzes,
Cousteix, and Bonnet [37], who used a straight line fit on the envelope of the
amplification curves. This approximation allows the correlations between n, H,,, and

Re,, to be written in a very convenient format:
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0.016433H,, - 0038145, H, <335
dn__ _ 25)

Rest | -0.009988H,? + 0075774H,, - 0124776, Hy, > 3.35

Cousteix [38] reveals the correlation between Re;, ., and H, as,

exp[5.27 + 172 |1 - 039
Ay H, <25
HIZ
Re 82.cr = < . (26)
2897 . 22230
exp|35 + T + a0
I H, > 25
2> 2.
HIZ

In each step of the boundary layer calculation, Re;, is checked if it has exceeded
Re;, ,. Once it is true, the calculation can then include the integration of Eq. (25), which
can be carried on until » is larger than n, This procedure was incorporated into the
boundary layer calculation and the extra computation time was found to be negligible.

The laminar separation criteria used by Kennedy [11] are still used in the current
project. One was developed by Liu and Sandborn [39]. It states that laminar
separation happens when,

H, > 32exp(-1754) + 3.1 @7

where A,, the Pohlhausen parameter, is defined by,

Az=_"3f% 28)
14 S

Another criterion, developed by Curle and Skan [40], states that laminar
separation occurs when,
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aC,, )
C,n [sq -a—s’-'-') > 0.0104 29)
where C,, is defined by,
u, \2
Com = 1- [u ) (30
€, max
and s,, can be calculated from,
2
ul 6,
= - 31
s‘( ;(0-664) [I,-l + (s sm) @n

Smax i EQ. (31) represents the location where u, is at its maximum. Therefore, the first
term in Eq. (31) is the equivalent length of a flat plate required for the same d, at the
velocity peak, and the terms in the bracket then represent the length of surface under
adverse pressure gradient. Laminar separation is assumed to occur if either Eq. (27) or
Eq. (29) becomes true,

Since Kennedy did not use any laminar separation bubble model, the boundary
layer integral calculation in the original program was immediately switched to the
turbulent branch if natural transition or laminar separation was detected. Kennedy [11]
assumed the continuity of &, and §; after transition or laminar separation. This
assumption agrees with the fact that §, drops considerably after transition. In the current
project, the immediate transition mechanism is replaced by a more genuine bubble riodel
for laminar separation. The bubble model will be detailed in Chapter 3.

The turbulent boundary layer calculation can be carried on to the trailing edge of
the airfoil, or it can stop at the turbulent separation location. The criteria for turbulent
separation is somewhat arbitrary and less reliable than that for transition or laminar
separation. It states that,
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C, s C, ,,(Re,) (32)

Figure 5 shows the relationship between C, ., and Re,. The relationship was
determined by correlations of published experimental data and should provide reasonable
accuracy if separation occurs after mid-chord. The reduced lift due to trailing edge
separation is accounted for using a formula developed by Eppler [10]:

ac, - -n(L—"’-) @, + @) (33
c .

where L, represents the length of the separated region and d,, is the slope of the airfoil
upper surface at trailing edge. It is assumed that §, then grows at a linear rate after
turbulent separation, so that a value of §, at the trailing edge can be obtained for the
calculation of drag of the airfoil. This model of trailing edge separation is of course very
primitive, but it is adopted for this project due to its simplicity. Readers interested in
this topic can refer to Blascovich [41], Drela and Giles [32] for more recent and
advanced models for turbulent separated flow.

The purpose of the boundary layer calculation is to predict the drag coefficient,
Cp, of the airfoil. The widely used Squire and Young formula [42] gives a
correlation between Cp, and the trailing edge condition on each surface as:

H
C =2 .f! Be 329 (34
D surface c)|u,
7E
For single component airfoil, the total C, is due to the drag on both surfaces:
Co = Cop * Coiow @35)

The boundary layer calculation can be summarized in the flow chart in Figure 6.
It shows that the calculation only requires the velocity distribution (1,'s) around the
airfoil as input, and produces two major outputs:
a. the airfoil Cp,
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b.  §,’s around the airfoil.
Those §, distributions are used for viscous-inviscid coupling, which is the subject of the
rest of the section. It should be noted that the bubble model would be incorporated in
the calculation by replacing the dashed line in Figure 6.

As explained earlier, the panel method can be applied to practical airfoil analysis
because viscous flow is confined in the thin boundary layer. The original airfoil, with
its shape displaced due to the presence of the boundary layer, can thus be represented by
an equivalent airfoil. Figure 3 shows an original airfoil (solid line) and its equivalent
airfoil (dashed line). The application of the panel method on the equivalent airfoil, which
has a trailing edge with finite thickness, has been discussed in section 2.1. The biggest
deviation of the equivalent airfoil from the original one is its reduced camber, caused by
the thicker boundary layer on the upper surface. Therefore, failing to use the equivalent
airfail for analysis can lead to overestimation of C, because the reduced camber of the
airfoil has not been accounted for.

It is not exaggerating to say that the concept of equivalent airfoil is the key to
viscous-inviscid interaction because it provides a feedback route from the boundary layer
calculation to the potential flow calculation. This allows the use of an iteration loop to
couple the two types of calculation.

Figure 7 is a flow chart for the viscous-inviscid coupling procedure, which is
explained as follows. Velocity (4,) distribution is obtained from the original airfoil
coordinates using the panel method. The u, distribution is the input to the boundary layer
calculation, which has been illustrated in detail in Figure 6. The equivalent airfoil
(Figure 3) is simulated by displacing the original airfoil surface normally outward by an
amount equal to the local 4, value, which is produced from the boundary layer
calculation. Again, a new u, distribution can be obtaned from the equivalent airfoil
coordinates using the panel method. After that, the three processes (boundary layer
calculation, equivalent airfoil simulation, and the pasiel method) form an iteration loop.
The looping is repeated until both C, (from panel method), and C,, (from boundary layer
calculation) converge within their respective tolerances.
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1 mi ns

The performance of the original code can be demonstrated by comparing the
results it produces with available experimental data. “Two aicfrilt are selected for the
demonstration. The first one is the Eppler 387 airfuii {sse Figure 8), which was
designed for low Re, (0.5(10%) application. Its performa: ez ¢3ta can b2 cotained from
McGhee, Walker, and Millard [43], who have carrig = ¢ut &7 sX®nsive testing
program on this airfoil. The second one is the FX 66-174-75 airfoil {ste Figure 9) by
Wortmann. It was designed for genéral aviation purposes with Re, > 10°. Iis
coordinates and performance data are contaired in the catalogue by Aih:us and
Wortmann [44].

The calculated results for the Eppler 387 airfoil are shown with the experimental
data at Re, = 0.2(10%), 0.3(10%), 0.46(:{#) ir Figure 10, Figure 11, and Figure 12
respectively. McGhee et. al. {43] suggest that ine tests were carried out in the NASA
Langley low-turbulence pressure tunnel at Tu = 0.055%, so the value of , is chosen to
be 11.2 according to Van Ingen et. al. [25]. It can be seen in Figure 12 that the
agreement between experimental data and calculated results is excellent at Re, =
0.46(10°). However, the agreement deteriorates with decreasing Re,. Figure 11 shows
that C,, is under-predicted by about 0.0007 at Re, = 0.3(10°) over the practical C, range
between 0.35 and 1.05, while Figure 10 shows that C,, is under-predicted by about
0.0015 at Re, = 0.2(10°) over the same C, range. The calculated results suggest that
laminar separation occurs in every a tested. Thus it is apparent that the bubble size
grows and becomes more dominant when Re, drops below 0.4(10%).

Similarly, the calculated results for the FX 66-17A-175 airfoil are shown with the
experimental data at Re, = 10%, 1.5(10°), 2(10%) in Figure 13, Figure 14, and Figure 15
respectively. The value of n, was chosen to be 14 because Althaus et. al. [44] claim that
the Laminar Wind Tunnel of the University of Stuttgart (Stuttgart LWT) has a very low
Tu of less than 0.02%. Again, as shown in Figure 15, the agreement between calculated
results and experimental data is excellent at Re, = 2(10%), but deteriorates with
decreasing Re.. The calculated results show that in the practical C, range between 0.2
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and 1.4, laminar separation only occurs on the upper surface because of the larger
adverse pressure gradient. Thus it is the separation bubble on the upper surface causing
the substantial drag increases. As shown in Figure 13 (Re, = 105), C) is under-predicted
by more than 0.001 at lower C, and by about 0.0007 at higher C, because the bubble size
is reduced at higher @. A similar trend can also be observed in Figure 14 (Re, =
1.5(10%), although the bubble is causing less drag increases.

From the above two test cases, it can be seen that separation bubble can grow
quickly and cause substantial drag increases if Re, drops below the value which the airfoil
was designed for. Therefore, to improve the accuracy of drag prediction at low Re,, the
"immediate transition” assumption must be' replaced with a better separation bubble
model. The search for such a bubble model and how it is incorporated into the original
code will be discussed in Chapter 3.
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Chapter 3 Bubble Model

This chapter contains the details of the separation bubble model, which forms the
core of the current project. It is based on the bubble model developed by Horton [45]
in 1967. He obtained the boundary layer growth in bubbles by integrating both Eq’s.
(15) and (16) manually. Also, Horton’s method only requires the boundary layer
information upstream of separation point. It was adopted for the current project because
it is convenient to use. There have been more than two decades of advancements in both
experimental observation and theoretical analysis on separation bubbles since 1967.
Thus, it was expected that this classical method could be improved to make it a simple
and reliable tool for bubble analysis. Consequently, this chapter is divided into four
parts. Section 3.1 will contain some general discussion on bubble structure, followed by
the development of the original Horton’s method in section 3.2. The modifications on
Horton’s method will be discussed ir: szctions 3.3 and 3.4.

11 G | Discussi Bubble S
A simple sketch of a laminar separation bubble is shown in Figure 16. Itis a
short bubble which is characterized by a quickly reattaching turbulent shear layer. The
bubble starts at point S, where the attached laminar boundary layer separates to form the
shear layer. The shear layer is very unstable and disturbances grow quickly. This
eventually leads to traniition at point T. After the shear layer turns turbulent, the
increased entrainment and mixing with the exterior flow cause the reattachment at point
R, where the bubble ends. For convenience, the subscripts S, T, R will be used to
represent separation, transition, and reattachment respectively in the following text.
The solid streamline in Figure 16 is the dividing streamline which divides the
bubble region into the outer shear layer and the inner flow reversal region. Schmidt
[46) points out that the turbulent shear layer expands quickly as momentum is
transferred from the external flow. Compared to an attached turbulent boundary layer,
the turbulent shear layer causes more airfoil drag by yielding a thicker boundary layer
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after reattachment. On the other hand, the inner flow reversal actually reduces airfoil
drag by providing negative C. When Re, is higher than 10°, the bubble can be short
enough that the increase in drag due to shear layer entrainment is cancelled or even
overcome by the reduction of drag due to flow reversal. However, as the bubble grows
longer with decreasing Re,, the entrainment and its associated drag will dominate.
Eppler [10] supplies a rule of thumb to determine whether a bubble will add more drag
to the airfoil. It states that there is negligible drag penalty if,

Bes ~ Per ¢ 0.042 36)
Us

In other words, a separation bubble can be used as an efficient transition mechanism if
its size is within the limit suggested in Eq. (36).

Figure 17 shows the perturbation on the surface velocity distribution due to the
presence of a bubble. The dashed line represents the u, distribution when the bubble is
eliminated by a boundary layer trip, while the solid line represents the perturbed u,
distribution when the bubble is present. For the bubble case, laminar separation occurs
shortly after the flow decelerates. Instead of decelerating steeply as in the tripping case,
the flow has its velocity kept at a value very close to u, until transition occurs. The flat
u, distribution between separation and transition is usually referred by researchers as the

“plateau.” Van Ingen and Boermans [25] suggest the following correlations for the u,
plateau:

0.978 + 0.022 exp(-4.545¢£ -2.52) 0 < £ < 13333
. - 37
Y 10978 £> 13333

where the transformed streamwise coordinate, £, is defined as,

S8
8.5 Regs

£ (38)

After transition, the turbulent entrainment causes the shear layer to reattach to the
airfoil surface with the flow decelerating quickly. In fact, the velocity gradient between
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T and R (solid line) is steeper than any segment of the attached flow u, distribution
(dashed ling). This also explains the intense growth of the turbulent shear layer.

The perturbation to the u, distribution is not limited to the region within the
bubble. It can be seen in Figure 17 that the velocity peak is reduced due to the presence
of the bubble. Also, after reattachment, the flow cannot adjust its velocity quickly
enough and this results in some sort of overshooting. The overshooting can bring
additional difficulties to researchers who have to determine reattachment location
experimentally [47). For the current project, it is more convenient to define the
reattachment location as the intersection point of the solid line and the dashed line as
illustrated in Figure 17.

The extent of external perturbation depends heavily on the bubble length. Figure
2c in Ref. [48] shows that the entire u, distribution can be reduced substantially due
to the presence of a long bubble, causing a stall. The current project will concentrate
on short bubbles which have most of their perturtation confined to the separation region.
Only this type of bubble can act as an efficient transition mechanism without causing
drastic degrading in airfoil performance.

3.2 _Horton's Method

Horton [45] developed a model for the boundary layer growth in the bubble
because he wanted to investigate the bursting phenomenon. Information generated in this
model can be used to determine whether bursting will occur. If bursting does not happen
and the separated flow reattaches to the airfoil surface, the growth information can then
be used to initialize the subsequent turbulent boundary layer calculation for the
calculation of airfoil drag (C,).

Horton assumes that a bubble only perturbs locally within the separated region.
Consequently, there is no peak velocity reduction or reattachment overshooting in the
perturbed u, distribution shown in Figure 18. For simplicity, he specifies that u, is
equal to u,;. The more recent correlations in Eq. (37) shows that this is not a bad
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assumption at all. Horton also assumes that the laminar shear layer does not grow, so
the Jaminar part of his model can be summarized as:

Uer = Ugs (39)
Oyp = Oy
This allows Horton to normalize length parameters and velocity parameters with 8,5 and
us respectively. Following Horton’s notation, parameters normalized against the
separation condition will appear with an overline in the following text. For example, &,
represents u,/u,.
Horton uses /!, /;, and i, to represent the total length, the length of the laminar
region, and the length of the turbulent region of the bubble respectively, so these length
parameters can be related to surface distance s as,

L =sq~ 5,4 (40)

L=l b =55 -5
He also provides the correlation between 7, and Re;, as,

- 1
l, =

2o 4a0h @1)
628 Rel)

which does not include the effect of freestream turbulence level.
The essence of Horton’s method lies in the model of the turbulent shear layer and
its reattachment. As illustrated in Figure 18, Horton assumes that the turbulent shear

layer decelerates linearly from T to R, so the external velocity distribution can be written
as,
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@, =1-Q - E.R)(s ;.s’) @2

2

Differentiating Eq. (42) with 5 gives,

ducl N ucR_- 1 @3)
ds |n l,
Using Eq. (43), 52 at reattachment can be expressed as,
6‘“ - ’1& Upls 44)
Ugp-1
with the pressure gradient parameter, A, defined by,
4-[22% 45)
u, ds

On the other hand, SZR can also be expressed in terms of the growth between T
and R. First, Horton rewrites Eq. (16) as,

1 d

—=w’H,b6)=C
u‘3 dg(u' 32 2) d (46)

Both C, and Hj, are assumed to have little change in the turbulent shear layer and thus
each can be represented by an overall mean value. Then Eq. (46) can be integrated as,

Sx

Spitg - 1= =2 [52ds @7
;T

or after some transformation,
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- H 5‘

623 -13 + Cdn-l 332»: fE‘3£ (48)
utR ud 3y

Upon substituting Eq. (42) and carrying out the integral in Eq. (48), it becomes,

G—ZR - 1 + Cdn 12(1 -iek‘ (49)
ngs 4”325: ‘7‘33(1 - Ed)

By equating Eq. (44) and Eq. (49), Horton finds a relationship between u,, and

Ly
Cin | (-itg
eR C
dm - A
R
4”32-:

But he still has to determine the values of A, H;,,, and C,,.
To find A,, Horton uses Truckenbrodt’s shape-parameter equation, which can be
derived by combining Eq’s. (15) and (16). It states that,

H,,C,
2

(51)

,si”._-?:(y -DH ﬁﬂ+c -
2 ds 12 32 u¢ ds d
C; is equal to 0 at reattachment. Also, using some experimental data, Horton concludes

that H;, reaches minimum at reattachment. This means that,

=2 -9 (52)

Therefore, at reattachment, Eq. (51) can be reduced to,

A -2 (G (53)
wds ) | HyW,-D),
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Eq. (53) implies that Ag«depends only on the local velocity profile at reattachment. The
dependence also holds true for Hj,, and C,,, although they are subject to some variation
because they are actually the mean value between T and R. Horton suggests that there
is a universal wake-like velocity profile for short bubble reattachment regardless of the
airfoil Re,, so he tries to find the values of A, Hj,,, and C,, by integrating the velocity
profile. After some minor adjustments to the theoretical values so that they can
correspond better with the experimental data from various sources, Horton suggests the

following:
4, = -0.0082
H, =150 (59
C;n = 0.0182

which can be substituted back into Eq. (50). Another relationship between u,, and 7, is
of course the u, distribution from the potential flow calculation. With these two
independent relationships, the reattachment location can be solved using the Newton-
Raphson method.

After the values of % and I, are solved, turbulent boundary layer calculation
starts at the reattachment location. The initial values can be derived using Eq. (44) and
the reattachment velocity profile. They are,

AR E.d -2]
(59)

8,0 = 6,0(8,0) = 8,o] ———2
2m = 025(05) ”[ud-l

HSZR

1.51

On the other hand, if the values of u,, and 7, cannot converge, or if the shear
layer reattach is at a location beyond the trailing edge of the airfoil, the bubble is
assumed to have burst. This means that Horton’s method can also function as a bursting

criterion.
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As illustrated in Figure 19, Horton's bubble model can be incorporated into the
boundary layer calculation which has been outlined in Figure 6. The flow chart in
Figure 19 thus replaces the dashed line in Figure 6 for bubble calculation. It should be
noted that the bubble model was not part of the boundary layer iteration loop in the
current project. This is because the sudden increase of §, associated with the bubble can
cause substantial perturbation to the u, distribution around the separation location. Since
the laminar separation prediction is very sensitive to the local u, gradient, the
perturbation restlts in serious instabilities in determining the separation location, thus
increasing the required number of iterations considerably. Therefore, for the current
project, the bubble calculation is only applied after the separation location has been
determined via the viscous-inviscid interaction iterative schemes.

Depending on the camber of the particular airfoil, convergence can be achieved
within 6 to 8 iterations, with tolerances set at AC, < 0.003 and AC, < 0.0003.
Locating the separation position without using the bubble model in the viscous-inviscid
interaction is consistent with Horton's assumption that the bubble introduces a local
perturbation only. The only penalty for doing so is that a minor error can be introduced
in the C, prediction because the value of §, at the trailing edge is smaller than it should
be if the bubble has been accounted for. Nevertheless, preliminary testing suggested that
the effect on the drag polar (C, vs C,) plot is practically negligible.

The original codes were thus modified with the inclusion ot: Horton's bubble
model. After some testing, it was found that the additional computatiok time due to the
iterative scheme is minimal compared to the res of the boundary layer calculation,
suggesting that Horton’s method is practical. However, the airfoil C, was seriously
underestimated in every test case. It was believed that the siror came frcm inaccurate
prediction of shear layer growth. Therefore, some revisions of Horton's bubble model
were necessary before it could become an accurate and reliable tool for low Re, airfoil
analysis. Available models for improvement will be discussed in the following sections.
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3.3 Modifications on Laminar Region and Transition Modelling
Dini’s [33] calculation scheme represents the most recent development on bubble
model. He recognizes the need to communicate flow information from the reattachment
region upstream to the separation point. This idea is entirely different from the
traditional one that bubble development is solely dependent on the separation condition.
Dini argues that reverse flow inside the bubble can actually affect the flow upstream and
the bubble model should therefore include the same mechanism. Therefore, Dini uses
Gaster’s pressure gradient parameter, P, as the feedback mechanism. It is defined by,

p - )k ts (56

v k Sp - S5

Before the bubble calculation, P cannot be determined because it requires
knowledge of reattachment location, sz, which still remains an unknown. However, P
has to be determined before the bubble calculation can proceed because the prescribed
H;, distribution (will be discussed in section 3.4) is indirectly dependent on P. Thus, a
guessed value of P is used to start the bubble calculation. The calculation can determine
Sg, and hence produce a new value of P, which can be immediately substituted back to
start a new round of bubble calculation. The process is repeated until P converges.

It can be recalled from section 3.2 that Horton's model also contains an iterative
scheme, but it is limited to the turbulent region. Compared to Horton’s model, Dini’s
model has its iterative scheme extended to cover the entire bubble. Dini claims that his
model is more effective in simulating the upstream influence of bubble. It is speculated
that this improvement helps stabilize the computation during a parameter sweep via a
better control on the bubble size prediction. Thus the C, vs C, plots generated will have
a smoother appearance.

Although Dini's bubble model holds the advantage of better accuracy and
computation stability, the current project will follow the more traditional scheme, which
has iterative calculation confined in the turbulent region only. In other words, the state
of the laminar region is calculated directly from the separation condition. Once
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determined, it cannot be altered by the subsequent development in the turbulent region.
It is believed that this straightforward approach can still produce satisfactory results for
engineering purposes and is in better coherence with the simplicity of Horton's method.
Also, it is more efficient to “tune” an analysis program against experimental results if
it involves fewer empirical parameters.

Horton’s claim that the laminar shear layer has zero growth is questioned by
Schmidt {46]. By combining Eq. (46), which is the alternate form of the kinetic energy
integral eqiation, and the entrainment equation, which states that,

%[u,(é -6)] = D_u, CY)

Schmidt shows that the laminar shear can thicken substantially. It should be noted that
in Eq. {57), & is thé nominal boundary layer thickness, and D,u, is the entrainment
velocity. Schmidt explains that using Eq. (57) can reveal the importance of some terms
which are usuafly considéred negligible if Eq. (15), the momentum thickness equation
is used instead.

Since the laminar shear layer growth is not negligible, a better model of the
bubble laminar region shiwild be incorporated into Horton’s method to produce more
accurate C), calculation. In fact, there are many from which to choose, and they can be
classified into two main types.

The first type is characterized by the extension of the laminar attached flow
correlations directly into the separated region. In other words, Eq's. (15) and (16) can
be integrated from the stagnation point and continuously up to the transition point in the
bubble, eliminating the need to detect laminar separation. A notable example comes
from Drela and Giles’ [32] laminar flow correlations, which are developed using the
Falkner-Skan one-parameter profiles. The transition criterion is accordingly modified
so that it can be used in the separated region, and this has been done by Van Ingen et al.
[25] and Gleyzes et al. [37). Both parties’ formulations are based on the amplification
of TS waves, or the so called " method. By combining the laminar flow correlations
of Drela et al. [32] with the transition criterion of Gleyzes et al. [37], Coiro and Nicola [49]



34

demonstrate that excellent agreement with experimental data can be achieved using this
type of laminar flow model.

Another type of laminar flow model is considerably simpler. It is characterized
by the decoupling of the transition detection from the calculation of laminar shear layer
growth. First, the transition criterion is expressed in terms of the information at
separation. It is usually based on experimental data. Examples are Horton's original
criterion in Eq. (41) and Schmidt’s [46] criterion:

Re, - "Lv' = 275(Re,, PP (58)

The laminar flow model used in the current project is the short-cut ¢* method
developed by Van Ingen [50], [25]. It is quite unique because it contains the merits
of both types of models mentioned above. Compared to the second type of models which
are developed empirically, it is more credible because it is based on the theory of TS
waves amplification in the laminar separated flow, and thus the effect of freestream
turbulence is also accounted for. On the other hand, it requires substantially less
computation time than the first type of laminar flow model. For these reasons, it was
adopted for the current project as a compromise between computation ease and accuracy.

It is worthwhile to go through the development of this short-cut € method because
it can help review all the essential features in the laminar part of the bubble. Using
linear stability theory, the amplification ratio of TS waves, 4/4,, can be expressed as,

f—aids

n = m[in(i‘-)] = max (59)

where q, is the spatial amplification rate. The maximum function in Eq. (59) implies that
for any combination of shear layer thickness (Re,) and profile (H,,), there is a
disturbance frequency at which the amplification goes to maximum. As in attached flow,
transition happens when » is accumulated to exceed a prescribed limit, n;.
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Rather than expressing n into a function of Re;, and H,, as in Eq. (24), Van Ingen
[50] chooses to evaluate n by integrating Eq. (59) directly at various frequencies, f.
However, to simplify the calculation, he has to make the following assumptions:
1)  u, b, Re, stay unchanged after separation, so the normalized frequency 2xf0./u,
can be treated as constant during the evaluation of the integral in Eq. (59) for
each f.
2)  No appreciable amplification occurs prior to separation.
3) -a;5, only depends on 2xf3,/u, and velocity profile shape factor.
4) At separation, the dividing streamline is straight, forming an angle y with the
airfoil surface.
It should be noted that the first two assumptions are quite contradictory to previous
discussion. However, it is believed that the errors they introduce can be corrected by
some minor adjustments on the value of n;, which is input by the user.

With assumption 4, Van Ingen suggests the following correlation:

B
Rey s

tan(y) = (60)

where B is found experimentally to range between 15 and 20. Van Ingen thus assigns
a universal value of 17.5 to B. Schmidt [46] also provides a newer correlation which is
tailored for low Re, conditions when bubble is dominating. It states that,

B = 27034 + 2149.1 A, (61)

where A,, the Pohlhausen parameter, has been defined in Eq. (28). As Schmidt explains,
B ranges from 12.6 to 23.8 if typical A,; values (-0.099 < A, < -0.068) is substituted
in Eq. (61). This agrees well with Van Ingen’s findings. However, preliminary testing
suggested that the value of B is very sensitive to A,s, which can change considerably with
a small shift in the separation location. Therefore, the current project continues to use
17.5 as a constant value of B because of its reliability.

Van Ingen then introduces a new transformed bubble laminar length, z, which is
defined as,
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z=|B fAzs|
[62.1 Reysl] v \ds )

63)
. (10“‘)—';—% [10° f(-@, 8 )dz |

With I defined by,

I = max

(10%(-a, a,)dz} (64

Eq. (59) and Eq. (63) can be combined to form:

Re
ngr = (104)—22% max

BAy

4
10[(-e, a,)dz]
: (65)
Re
= (1079225
BAy
where ng designates the amplification between separation and transition. .
Applying linear stability theory with spatial growth, and using assumptions 2 and
3, the integral in Eq. (65) can be evaluated for various f's as a function of z and the
values can be represented by the solid lines in Figure 20. Consequently, I(2) is
represented by the dashed line, which envelops all these solid curves. After organizing
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all these numerically generated data, Van Ingen is able to express / as a fairly simple
function of z:

122.5 + 530z z < 0.9877
/- { )

650z z > 0.9877

For application, 7 is first calculated by substituting ng and other separation
parameters into Eq. (65). Then z can be obtained by inverting Eq. (66). Finally /, can
be calculated according to Eq. (62). These equations will replace Eq. (41) as the
transition criterion in the current project. The only problem left is to find a suitable
value for ng. According to assumption 2 which states that the amplification of TS waves
before separation is negligible, ng- should be equal to the input value of n,. However,
preliminary program testing shows that substituting n,. directly into Eq. (65) can over-
predict the bubble length if ng, the accumulated TS waves growth at separation point, is
close to n;. Thus, to ensure that a unified parameter, n;, can be applied to both attached

and separated flow, the following empirical correlations are used in the current project:

Rrmin = Max(10, 0.75n,)

Rt = ng/n,

(n, R <05 (67
ngp={ Rp- [R‘ “03n, - Prow)| 0.5 < Rt <038

| " min 08 < Rt

Eq. (67) is also illustrated in Figure 21 for clarification.

The use of n;,, in Eq. (67) is to put a limit on the minimum length of the
bubble, so that the prediction will not show unrealistic drag reduction. Although the
correlations in Eq. (67) seem arbitrary, using them gives better agreement with
experimental data than assuming negligible TS waves growth prior to separation. The
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correlations also suggest that the amplifications in separated flow dominate over those
in attached flow. This agrees with the fact that laminar separated flow is highly unstable
compared to laminar attached flow.

After determining /; and hence the transition location, the laminar shear layer
growth can be expressed as a function of the separation condition by integrating the
boundary layer equations between § and 7. For instance, using Eq. (15) and the
Stewartson profiles, Van Ingen et al. [25] obtain the following:

{1 +0.152[1-(1-0.75811'% 0 < £ < 1.3333
3, - % - (68)
3 111935 ' £ > 1.3333
with the transformed streamwise coordinate £ already defined in Eq. (38).

On the other hand, Schmidt [46] argues that the separated shear layer on an airfoil
surface bears a strong resemblance to the free shear layer in terms of pressure gradient
and velocity profile similarity. Therefore, by drawing analogy to the theoretical &,
growth in a free shear layer and using ¢ as a fundamental scale in laminar flow, Schmidt
suggests that,

3, =1+(12417 ¢ 69)

He also points out that Eq. (69) predicts substantially more growth than Eq. (68). Eg.
(69) will be used in the current project because it agrees better with experimental results,

specially in low Re, conditions when bubule becomes a dominating feature on an airfoil
[46].

As discussed in section 3.2, the turbulent separated flow model in Horton's
method is solely based on Eq’s. (15) and (16), which represent the direct mode of
boundary layer calculation. However, Dini [33] finds that calculation of separated flow
using direct mode is very sensitive even to the smallest variations in the input u,
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distribution. He suggests that the inverse mode of the boundary layer equation should
be used and he cites two equations derived by Eppler as an example:

< (70)

62 Hsz(le -1

du, |C H, dH,, u
= -C + 6
ds [ 2 4" g

(71)

dé, _3CH,, eC -8 dH,] H,, +2
ds 2H,+2) ° ?ds |H,H,-1)
The major difference between the direct mode and the inverse mode lies in the
use of the u, distribution. It can be seen that u, is used as an input in Eq's. (15) and
(16), while it is generated as an unknown in Eq. (70). As well as being used in the

calculation of separated flow, boundary layer equations in inverse mode can of course
be used to generate the u, distribution for optimum pressure recovery. Classic examples

include the Stratford’s [8], [9] recovery and the Wortmann's [12] recovery, which have
been discussed in Chapter 1.

Following Drela and Giles [32], Dini [33] uses three integral equations to
calculate the growth of the turbulent shear layer. They include Eq's. (70) and (71),
which are in the inverse mode. The other one is Eq. (21), which is required to account
for the non-equilibrium in the flow due to the response lag to the rapidly changing
pressure gradient. To have the calculation proceed, Dini has to prescribe the H,,
distribution, with the continuity of its curvature maintained from the transition location
to the overshoot region downstream of reattachment. However, one of the parameters
in the H;, distribution is left as an unknown. Its value is determined through an internal
iteration loop which runs on until the generated u, distribution can merge with the
inviscid u, distribution smoothly. Reattachment is assumed to occur at the point where
Horton’s [45] reattachment criterion, Eq. (53), is satisfied.

The closure to the three equations, Eq.’s (70), (71), and (21), is completed with
Drela et al.’s correlations between C,, H,,, Cp and C, g, Since the correlations are
developed for the trailing edge turbulent separation with less recirculation and
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entrainment, Dini has to modify the correlations to reflect the higher values of C, and
C, typical to the turbulent part of the bubble.

Due to Dini’s observation, the turbulent shear layer model in Horton’s method
should be replaced by one which is based on the inverse mode boundary layer equations.
Inevitably, the analysis program will become more complicated and less <fficient if the
boundary layer calculation has to switch between direct and inverse modes. Therefore,
it is preferred to have an analytical relationship which can express the reattachment
condition in terms of the transition condition.

In view of Van Ingen et al.’s [25] successful application of Stratford’s recovery
as bursting criterion, it was decided to adopt the similar but more flexible Wortmann’s
recovery to model the turbulent shear layer in the current project. Although Wortmann’s
recovery was originally developed for attached flow on the verge of separation, it is
likely that it is applicable to the turbulent region development with little error due to the
shortness of the region. Nevertheless, the concave u, distribution resulting from
Wortmann's recovery certainly agrees better with experimental observation than the
linear u, distribution proposed by Horton.

With the consideration that growth in the laminar region is substantial, variables
will be normalized usirg transition condition (3, u,;), rather than using separation
condition as done by Horton. To avoid confusion, the overcap, *, will be used from this
point on to represent variables normalized against transition condition. For example, &,
represents u/u,r.

With the new notation, the u, distribution generated from Wortmann’s [12]
recovery can be expressed as,

u, _ -
a,=a-[1+p(§-s,)] (72)

where
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Kennedy [11] suggests that a u, distribution with the value of H,, staying at 1.8
required 8 = 9.2(10°) at Re, = 10°, and B = 8.0(10°) at Re, = S(10°). Since these
values are derived for attached flow on the verge of separation, it is expected that some
adjustments within the same order of magnitude are necessary before they can be applied
to the bubble turbulent region.

At reattachment, Eq. (72) can be rewritten as,

Bg = =% <1+ )™ (74)
Uer

Now, Eq. (74) can be coupled with the u, distribution generated from potential
flow calculation to solve for u,, and I,. Thus, Eq. (74) replaces Eq. (50) as the iterative
mechanism. Likewise, bursting is assumed to occur if the iterative scheme fails to
produce converged values of u, and /,. Preliminary testing suggests that Eq. (74) is
more successful in predicting bursting than Eq. (50), as Eq. (50) fails to predict the
occurrence of reattachment in some cases. The better performance of Wortmann's
concave u, distribution is due to its allowing more overall deceleration in the bubble
region (u, - u,g) than Horton’s linear distribution, with the same reattachment velocity
gradient (du,/ds), in both cases. Van Ingen et al. [25] observe the same trend when
using the also concave Stratford u, distribution. In addition, being a much simpler
formulation with variables in lower order, Eq. (74) takes fewer iterations to achieve
<onvergence, thus saving computation time. These are the two reasons why Eq. (74) was
used in the current project.

Following Horton, Eq. (46) was used to calculate the growth of the turbulent
shear layer. Integriting it between T and R and representing H,,, C, with some overall
mean values results in:
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]
d
62R ueRS - 521‘“:1’3 = 71'—"' uesdg (75)
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With the new notation, Eq. (75) can be normalized to form,

$
C R
Spily -1 = 2= [d3ds (76)

e
2m e,

Readers can note the similarity between Eq. (76) and Eq. (47) developed by Horton.
Now, Eq. (72) can be substituted into Eq. (76). After evaluating the integral, the
following is obtained:

Cd m

Spply - 1= [
e HJZm

an

(1 + ph)3mn - 1]
B(-3m + 1)

With some transformation, the growth of the turbulent region can be expressed as,

+ B Y3meD) _
f_q:g“: 1 {“ C,, [(1 pl,)m+n 1]} 9

yr i, Hy,, B(-3m + 1)

Both u,, and /, in Eq. (78) have been determined through the iterative scheme,
leaving C,, and H;,, as the only unknowns. Horton suggests that C,, = 0.0182, but
Roberts [48] argues that Horton obtains the value in a condition that the velocity gradient
is zero. Therefore, he suggests a much higher value of C,, at 0.0350, which can account
for the larger flow dissipation associated with the steep velocity gradient typical to the
turbulent region. This is also supported by Schmidt {46] who states that prediction of
d, can be more accurate asing Robert’s value for C,,. However, numerical expressions
from Drela et. al. [32] and Dini [33] suggests that C,, can vary considerably with Re,.
In fact, it is the main object of the current project to determine the value of C,, at

various conditions characterized by combinations of Re, and n,. On the other hand, there
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seems to be no objection to Horton’s suggestion that H,,, = 1.50, so the same value was
used im the current project.

It may have been noticed that the parameter A, is no longer involved in the
calculation after the introduction of Wortmann’s u, distribution, but its vaiue can still be
evaluated. First, the velocity gradient of Wortmann's distribution can be expressed as,

-

di, . & \i-(me
TR ~mB[1+ BE-$p)] "D (79)

which can then be substituted into the definition of A in Eq. (45) and the following can
be obtained:

A =ﬁ(£] =£’£ —mp (80)
. ﬁeR ds PR (1+ piz)(ml)

The calculated value of A, can be used in checking the validity of the bubble model, as
Schmidt [46] suggests that Ap should range between -0.0099 and -0.0060 based on
experimental results from O'Meara. Thus this provides a guideline for obtaining the
value of 8 in Eq. (74).

It is not known whether the error due to the use of mean values like C,, and H,,,
is small enough so that it will not jeopardize the airfoil C, prediction, but the bubble
model can be verified by testing it against the experimental data of various airfoils
collected in a wide range of conditions. This can be done simultaneously when
investigating the dependence of 8 and C,, on Re, and n,. The findings and the
verifications are documented in Chapter 4.
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Since the two parameters, 8 and C,,, are left open in the bubble model, it is
necessary to calibrate them with experimental data on a trial and error basis. Then the
validity of the bubble model can be verified by applying it to other airfoils. To increase
the credibility of the current project, the airfoils selected for calibration and verification
are of various aerodynamicists’ designs and the experimental data are from several
different wind tunnels. The calibration will be discussed in section 4.1, while the

verification will be discussed in section 4.2.

4.1 Calibration

The airfoils selected for calibration iriclude Eppler 387, FX 66-17A-175, and FX
66-S-196 V1 [44] (see Figure 22). The first two have been discussed in section 2.3 with
their shapes shown in Figure 8 and Figure 9 respectively. The FX 66-S-196 V1 airfoil
is selected because its data is available at Re, = 0.5(10°), so the gap (0.3(10%) < Re, <
109) left by the first two sets of data can be filled. It should be noted that the calibration
is limited in the Re, range between 0.2(10% and 1.5(10°). With Re, higher than 1.5(10),
the effect of the bubble is so small that reliable data is not available for calibration. On
the other hand, if Re, drops below 0.2(10%), the bubble generally extends to have
substantial perturbation on the u, distribution outside the bubble region. Reliable results
using the current bubble model are not expected for such low Re.. As mentioned in
Chapter 2, the value of n, can vary from 10 (wind tunnel) to 15 (free-flight) according
to freestream turbulence level 7u.

The calculated results of the Eppler 387 airfoil at Re, = 0.2(10%) and 0.3(10%)
using the modified codes are shown in Figure 23 and Figure 24 respectively. The value
of n; was chosen to be 11.2. The reason for choosing 8 as 0.022 is that it gives the
closest agreement between the calculated and the measured bubble length, I, especially
at Re, = 0.3¢10%. This value of B is several times larger than that supplied by
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Wortmann, suggesting that the bubble region has a higher boundary layer growth rate
than attached flow. As shown in Table 1 (Re, = 0.2(10°)) and Table 2 (Re, = 0.3¢10%),
the relative difference between the predicted and the measured / are within 20% at a wide
range of . The agreement at Re, = 0.3(10%) can be described as excellent, while the
agreement at Re, = 0.2(10°% is relatively inferior. However, it is speculated that the
disagree:nent is due to the over-prediction of /,, which is not related to the value of 8.
In fact, the over-prediction of /; at Re, = 0.1(10°) is confirmed by comparison with
experimental data [43]. Also, choosing 8 as 0.022 produces A, values which are within
the range suggested by Schmidt [46). This topic will be discussed in more detail in
section 4.2.

With g fixed at 0.622, the optimal value of C,, can then be found on a trial and
error basis. After some iterations, the value of C,, is chosen to be 0.017 at Re, =
0.2(10° and 0.025 at Re, = 0.3(10%. As seen in Figure 24, the agreement of the
predicted and the measured drag polar is excellent at Re, = 0.3(10°). The agreement at
Re. = 0.2(10°) (Figure 23) deteriorates slightly, most likely due to the over-prediction
of /.. Nevertheless, the accuracies of the prediction in both cases are improved after the
addition of the bubble model.

The results of the FX 66-17A-175 airfoil at Re, = 10° and 1.5(10°) using the
modified codes are shown in Figure 25 and Figure 26 respectively. The value of n, was
chosen to be 14. Again, based on the output A, values, f is chosen to be 0.022. The
optimal values of C,, is found to be 0.055 at Re, = 10° and 0.075 at Re, = 1.5(10%).
Figure 25 and Figure 26 show that excellent results can be obtained with such
combinations of 8 and C,, at the respective Re,. The only exception is at the C, range
between 0.25 and 0.55, where C,, is under-predicted by a maximum of 0.0007 at Re, =
10° and by a maximum of 0.001 at Re, = 1.5(10°). After reviewing the boundary layer
development, it is speculated that the drastic drag increase at that C, range is caused by
a bubble located near the leading edge on the lower surface. This illustrates that the
bubble model is more accurate in predicting mid-chord bubbles than leading edge
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bubbles. It is probably due to the much larger velocity gradient, (du /ds)s, encountered
by leading edge bubbles.

The experimental data for the FX 66-S-196 V1 airfoil at Re, = 0.5(10% are
obtained from Horstmann et. al. [19]. Since the airfoil was tested in the Low Speed
Laboratory at Delft University of Technology (Delft LSL), the value of n; was chosen
to be 11.2 following Van Ingen et. al. [25]. Figure 27 shows that excellent results can
be obtained by choosing 8 as 0.022, and C,, as 0.035 at Re, = 0.5(10°).

After calibrating the bubble model with the above three sets of data, it is proposed
that B has a universal value of 0.022 at all combinations of n; and Re,, while C,, is
dependent on Re, only. As shown in Figure 28, the correlations between C,, and Re,
can be determined by fitting a cubic spline through the above findings, which suggest that
C,, = 0.017, 0.025, 0.035, 0.055, and 0.075 at Re, = 0.2(10%), 0.3(10%, 0.5(10°), 10%,
and 1.5(10% respectively.

4.2 Verification

The airfoils selected for verification include Eppler 387 (at Re, = 0.46(10%), FX
61-163 ([44], Figure 29), Eppler 403 ([10], Figure 30), FX S02/1-158 ([44], Figure 31),
UAG 88-143/20 ([2], Figure 32), and FX LV-152 ([44], Figure 33). The bubbles on the
first two airfoils are so small that they are close to being eliminated, while the bubbles
on the other four airfoils are dominant and definitely increase the airfoil drag. Thus, by
testing against these six airfoils, the effectiveness of the bubble model at a wide range
of bubble dominance can be illustrated.

Figure 34 shows the results for the Eppler 387 airfoil at Re, = 0.46(10%. It can
be seen that the bubble mode! codes over-predict C,, slightly (by about 0.0003) because
the bubble is relatively small at this design Re.. Nevertheless, the results from the
modified codes are accurate enough for engineering purposes. Also, by comparing the
results generated with and without the bubble model, the user can appreciate that the drag
increase due to the bubble is negligible.
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The experimental data of the FX 61-163 airfoil are obtained from Boermans and
Selen [S1]. Since the airfoil was tested at Delft LSL, n, was chosen to be i1.2.
Figure 35 and Figure 36 show the results at Re, = 10° and 1.5(10°) respectively. It can
be seen that the bubble model gave excellent prediction in both cases. The only
disagreement is located at the C, range near stall, but this is due to inaccurate prediction
or the turbulent separation location. These two cases again illustrate that the bubble
model can produce reliable predictions even if the bubble size is small.

The Eopler 403 airfoil was tested at Re, = 10° in Stuttgart LWT [10], so n, was
chosen as 14. As seen in Figure 37, major improvement in predicting the drag polar is
obtained after the addition of the bubble model, although C, is still under-predicted by
about 0.0008 at C, = 0.2. The under-prediction is probably due to excessive bubble size
(12% c at Re, = 10°).

The results for the FX S02/1-158 airfoil at Re, = 10° and 1.5(10°) are shown in
Figure 38 and Figure 39 respectively. n was chosen as 14 because the airfoil was tested
at Stuttgart LWT. It can be seen that there is improvement in predicting the drag polar
in both cases after the addition of the bubble model, although it is not as iarge as the
improvement for the Eppler 403 case.

The UAG 88-143/20 airfoil might be the most challenging one of the selected six
to simulate. To reduce drag, the airfoil is designed to have its pressure recovery at about
60% chord. Thus, the velocity gradient at separation is relatively high, resulting in large
separation bubble. Again, n, was chosen as 14 because the airfoil was tested at Stuttgart
LWT [52]. It can be seen in Figure 40 that the bubble model brings major
impzovement to the drag prediction at Re, = 0.7(10% when the bubble length can extend
to about 10% chord. The improvements at Re, = 10° (Figure 41) and at 1.5(10%
(Figure 42) are smaller, illustrating that the bubble dominance decreases with higher Re..

The final airfoil to be verified against is FX LV-152, which is symmetric in
shape. Figure 43 shows that dramatic improvement is obtained at Re, = 0.5(10°) after
the addition of the bubble model, although C,, is still under-predicted by 0.001 at C, =
0.35. The calculation shows that at C, = 0,35, the length of the upper surface bubble
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is 14% chord, whiie the bubble on the !ower surface has its length extended to 21%
chord. It is likely that the excessive butble size on the lower surface causes the under-
prediction.

As mentioned in Chapter 3, the theoretical value of 4 calculated from Eq. (80)
can be used to check the validity of the bubble model. Table 3 shows the calculated A,
ranges for various airfoils with 8 set at 0.022. These data are gathered from mid-chord
bubbles only, but cover a wide range of bubble size and Re,. Except for two cases in
which the minimum A, vaiues are slightly out of range, all the other cases have A,
values well within the suggested range (-0.0060 > A, > -0.0099) from Schmidt [46].
Therefore, 0.022 should be an appropriate value for S.

Finally, the sensitivity of the drag prediction towards the values of C,, and 8
should be investigated. Two test cases are selected, which inciude Eppler 387 at Re, =
0.3(10%), UAG 88-143/20 at Rz, = 16°. Both airfoils have bubbles of more than 10%
chord long. Figure 44 shows the effect of changing C,, on the C, prediction of the
Eppler 387 airfoil at Re, = 0.3(10°). Increasing C,, from 0.025 to 0.035 increases the
C, prediction by an average of 0.0006, while reducing C,, to 0.015 causes the C,
prediction drop by an average of 0.0004. Figure 45 shows the effect of C,, on the C,
prediction of the UAG 88-143/20 airfoil at higher Re,. At Re, = 10%, changing C,, by
0.01 affects the C, prediction by less than 0.0002. Figure 46 shows the effect of § on
the C,, prediction of the Eppler 387 airfoil at Re, = 0.3(10%). Increasing 8 from 0.022
to 0.030 reduces the C, prediction by an average of 0.0002, while reducing g8 to 0.015
causes the C, prediction increase by an average of 0.0006. Similar trend can be
observed in Figure 47 which shows the effect of 8 on the C, prediction of the UAG 88-
143/20 airfoil at Re, = 10%. Increasing § from 0.022 to 0.030 reduces the C;, prediction
by an average of 0.0002, while reducing 8 to 0.015 causes the C, prediction increase by
an average of 0.0009. Thus, it is concluded that airfoil C,, prediction is fairly sensitive
to the values of C,, and 8, so careful calibration of the bubble model is necessary.

The test cases from these six airfoils suggest that the bubble model can indeed
improve the drag prediction, especially when it is applied to the mid-chord bubble. The
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bubble model can be applied to a leading edge bubble, but the prediction accuracy needs
some improvement. Also, some improvements must be made on the calculation of /,

before the bubble model can be applied to situations with Re, less than 0.2(10%).
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Chapter § Conclusion

In the current project, a separation bubbie model was developed and incorporated
into an existing airfoil analysis program to improve its drag prediction accuracy at low
Re. . To be retre-fitted to the boundary layer calculation in the original program, the
bubble mode! w.s based on boundary layer integra! ~guations. Also, a minimum amount
of additional computadion tasks we:: afded to the original program, while producing
results accurate for engineering purposes. i+ an these raquirements, Horton’s method
was chosen for the current project. However, after svii+ preliminary testing, it was
found that Horton’s original bubble model seriously under-predicts bubble growth and
results in inaccurate C,, prediction.

To improve the model, the original formulations had to be replaced with those
which agree more closely with experimental observations on bubbles. Therefore, Van
Ingen’s and Schmidt’s correlations were adopted for the calculation of the laminar region
of the bubble, so that both the effect of freestream turbulence on transition and the
substantial boundary layer growth in the laminar region could be accounted for. On the
other hand, the linear velocity distribution proposed by Horton was replaced by the
concave velocity distribution resulting from Wortmann’s optimum pressure recovery to
produce a better simulation of the turbulent region of the bubble. Table 4 contains a
comparison of the original and modified Horton’s bubble model for references.

Calculation using the bubble model can start after the laminar separation location
is determined by viscous-inviscid interaction. Besides functioning as a link between the
laminar and turbulent boundary layers, the bubble model also acts as a bursting criterion.
Testing with six sets of experimental data from various wind tunnels confirms that the
bubble model can simulate mid-chord bubbles in the Re, range between 0.2(10%) and
1.5(10°) with accuracy good enough for engineering purposes. The model can be applied
to leading edge bubbles, but the accuracy still requires improvement, due to the
extremely adverse u, gradient usually encountered by leading edge bubbles. Compared
with other bubble models, the current one is probably the simplest available. This is
because the calculation only involves parameters at three locations (separation, transition,
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and reattachment), thus avoiding the need of numerical integration between these points.
Its simplicity allows the current bubble model to be used in airfoil analysis even on

desktop computers. Otherwise, it is also a convenient means to obtain initial values for
more advanced forms of calculation.

Finally, there are some suggestions on how the current bubble model can be
further improved. Firstly, newer correlations should be used to calculate I, before the
model applicable Re, range can be extended to below 0.2(10°). This also improves the
prediction accuracy when the bubble being simulated is close to disappearance.
Secondly, the correlations between C,, and Re, should be extended to beyond the Re,
range between 0.2(10% and 1.5(10°) with a broader data base because bubble appearance
is certainly riot limited to the above range. Thirdly, the bubble model should be
incorporated as part of the viscous-inviscid interaction, rather than as an addendum to
the interaction as in the current project. However, this can only be done with some
numerical smoothing on the §, distribution generated from the boundary layer calculation.
Otherwise, local perturbations on the u, distribution due to the rapid §, change in the

bubble will cause serious instabilities in determining the separation location.
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Tables

Table 1 Comparison of measured and calculated separation location, bubble
size on the upper surface for the Eppler 387 airfoil at Re, = 0.2(10°)

Table 2 Comparison of measured and calculated separation location, bubble
size on the upper surface for the Eppler 387 airfoil at Re, = 0.3(10%)
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Table 3 Calculated A ranges for various airfoils with 8 = 0.022

Airfoil and Re. | . A range:

[data source] | /10° [ ™ | oy A @@ min. A, @ ()
0.2 | 0.017 | -0.0069 (0.18) | -0.0074 (0.34)
EPP;;}R” 0.3 | 0.025 [ 00011 (0.12) | -0.00% (0.20)
| 0.46 | 0.030 | -0.0074 (0.10) | -0.0076 (0.12)
FX 6‘*[5]‘)‘]196 Vil os [ 0035 | 00055 (006 | -0.0000 (.13
FX 66-17A-175 | 1.0 | 0.055 | -0.0081  (0.05) | -0.0088 (0.07)
(S] L5 | 0.075 | -0.0081  (0.04) | -0.0086 (0.05)

FX 61-163 1.0 | 0.055 | -0.0072 (0.04) | -0.0079 (0.06)
(D] 1.5 | 0.075 | -0.0076  (0.04) | -0.0079 (0.04)
EPP‘E’;]‘m 1.0 | 0.055 | -0.0069 (0.05) |-0.0102° (0.12)
FX S02/1-158 1.0 | 0.055 | -0.0078  (0.05) | -0.0089  (0.08)
[S] 1.5 | 0.075 | -0.0080 (0.04) | -0.0090 (0.06)
0.69 | 0.043 | -0.0071 (0.07) | -0.0106° (0.15)

UAG 123143’20 1.0 | 0.0s5 [ 0.0072 (0.05 | -0.0098 (0.10)

1.5 | 0.075 | -0.0072 (0.04) | -0.0089 (0.07)

FX LV-152

0.5 | 0.035 | -0.0071  (0.08)

-0.0089

0.21)

Legend:

N - NASA Langley Low-Turbulence Pressure Tunnel, n, = 11.2

D - Low Speed Laboratary of the Delft University of Technology, n, = 11.2
S - Laminar Wind Tunnel at University of Stuttgart, n, = 14

* - out of suggesied range (-0.0060 > A, > -0.0099)



Table 4

Comparison of original and modified Horton’s method

parameter original formulations modified formulations
Uy Eq. (39) Eq’s (37) and (38)
I Eq. (41) Eq’s (62) - (67)
with B = 17.5
O Eq. (39) Eq. (69)
Cin 0.035 Cun(Re), Figure 28
H;,, 1.50 1.50
Aq -0.0082 Eq. (80)
N/A 0.022
N/A Eq. (73)

Eq. (50) and airfoil u,
distribution from panel
method

Eq. (74) and airfoil «,
distribution from panel
method

Eq. (55)

Eq. (78)
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Figures

Figure 1 Vortex representation of a single component airfoil

RN — Airfoil surface
AN e Panel end point
X Panel mid-point

Figure 2 Locations of panels on airfoil surface
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Figure 8 Eppler 387 airfoil
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— Dividing streamline
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Figure 16  Flow structure of a separation bubble
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Figure 17 Velocity distribution near a separation bubble



Figure 18  Velocity distribution of Horton's bubble model
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Figure 22  FX 66-S-196 V1 airfoil
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Figure 31  FX S02/1-158 airfoil
Figure 32  UAG-88-143 airfoil

Figare 33

FX LV-152 airfoil
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