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Abstract

The thesis consists of two closely related parts: (i) Cesaro summability of the spherical
h-harmonic expansions on the sphere S~ and (ii) Bochner-Riesz summability of the
inverse Dunkl transforms on R?, both being studied with respect to the weight h2(z) :=
Hj:1 |z;|%, which is invariant under the Abelian group Z4 in Dunkl analysis.

In the first part, we prove a weak type estimate of the maximal Cesaro operator
of the spherical h-harmonics at the critical index. This estimate allows us to improve
several known results on spherical h-harmonics, including the almost everywhere (a.e.)
convergence of the Cesaro means at the critical index, the sufficient conditions in the
Marcinkiewitcz multiplier theorem, and a Fefferman-Stein type inequality for the Cesaro
operators. In particular, we obtain a new result on a.e. convergence of the Cesaro means
of spherical h-harmonics at the critical index, which is quite surprising as it is well known
that the same result is not true for the ordinary spherical harmonics. We also establish
similar results for weighted orthogonal polynomial expansions on the ball and the simplex.

In the second part, we first prove that the Bochner-Riesz mean of each function in
LY(R%; h2) converges almost everywhere at the critical index. This result is surprising
due to the celebrated counter-example of Kolmogorov on a.e. convergence of the Fourier
partial sums of integrable functions in one variable, and the counter-example of E.M.
Stein in several variables showing that a.e. convergence does not hold at the critical
index even for H'-functions. Next, we study the critical index for the a.e. convergence
of the Bochner-Riesz means in LP-spaces with p > 2. We obtain results that are in full
analogy with the classical result of M. Christ (Proc. Amer. Math. Soc. 95 (1985))
on estimates of the maximal Bochner-Riesz means of Fourier integrals and the classical
result of A. Carbery, José L. Rubio De Francia and L. Vega (J. London Math. Soc. 38
(1988), no. 2, 513-524) on a.e. convergence of Fourier integrals. The proofs of these

results for the Dunkl transforms are highly nontrivial since the underlying weighted space
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is not translation invariant. We need to establish several new results in Dunkl analysis,
including: (i) local restriction theorem for the Dunkl transform which is significantly
stronger than the global one, but more difficult to prove; (ii) the weighted Littlewood
Paley inequality with A, weights in the Dunkl noncommutative setting; (iii) sharp local

pointwise estimates of several important kernel functions.
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Preface

Chapter 3 and Chapter 4 of this thesis has been published as F. Dai, S. Wang and
W. Ye, “Maximal Estimates for the Cesdro Means of Weighted Orthogonal Polynomi-
al Expansions on the Unit Sphere,” Journal of Functional Analysis, vol. 265, issue 10,

2357-2387.
Chapter 6 of this thesis has been published as F. Dai and W. Ye, “Almost Every-
where Convergence of the Bochner-Riesz Means with the Dunkl Transform,” Journal of

Approximation Theory, vol. 29, 129-155.

Chapter 5 and Chapter 6-10 of this thesis will be published as a joint paper with Dr.

Feng Dai soon.

All of the proofs in this thesis are joint work of Dr. Feng Dai and me.
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Chapter 1

Summary of the main results

1.1 Spherical h-harmonic analysis on the sphere

The first part of this thesis is to study the pointwise convergence of the Ceséaro
means of spherical A-harmonic expansions on the unit sphere. For a class of product
weights that are invariant under the group Z¢ on the sphere, estimates of the maximal
Cesaro operator of the weighted orthogonal polynomial expansions at the critical index
are proved, which allow us to improve several known results in this area, including the
critical index for the almost everywhere convergence of the Cesaro means, the sufficient
conditions in the Marcinkiewitcz multiplier theorem, and a Fefferman-Stein type
inequality for the Cesaro operators. These results on the unit sphere also enable us to
establish similar results on the unit ball and on the simplex.

The main results in this part are contained in my joint paper [10] with Feng Dai

and Sheng Wang.



To be more precise, we need to introduce some necessary notations. Let
S¥!:={x € R?: ||z|| = 1} denote the unit sphere of R? equipped with the usual

rotation-invariant measure do, where ||x|| denotes the Euclidean norm. Let

d
he(z) = [ |21, 2= (21, ,20) €RY, (1.1.1)
j=1
where £ := (K1, , kq) € R? and Kpin := minjcjcqk; > 0. Throughout the thesis, all

functions and sets will be assumed to be Lebesgue measurable.
We denote by LP(h%;S% 1), 1 < p < oo, the LP-space of functions defined on S4-1
with respect to the measure h?(x) do(x). More precisely, LP(h2;S%!) is the space of

functions on S% ! with finite norm

o= ([ IrPimasm)”, 1< <.

For p = 0o, L>=(h?2) is replaced by C(S%!), the space of continuous functions on S¢1
with the usual uniform norm.

A spherical polynomial of degree at most n on S?! is the restriction to S*~! of an
algebraic polynomial in d variables of total degree n. We denote by I1¢ the space of all
spherical polynomials of degree at most n on S%1.

We denote by HE(h?) the orthogonal complement of T1¢_; in T1¢ with respect to the
norm of L2?(h2;S%1), where it is agreed that I1%, = {0}. Each element in H%(h?) is then
called a spherical h-harmonic polynomial of degree n on S?!. In the case of h, = 1, a

spherical h-harmonic is simply the ordinary spherical harmonic.



The theory of h-harmonics is developed by Dunkl (see [22, 23, 25]) for a family of
weight functions invariant under a finite reflection group, of which h, in (1.1.1) is the
example of the group Z¢. Properties of h-harmonics are quite similar to those of
ordinary spherical harmonics. For example, each f € L?(h?;S%!) has an orthogonal
expansion in h-harmonics, f =Y >~ proj,(h2; f), converging in the norm of
L%(h%;S% 1Y), where proj,,(h%; f) denotes the orthogonal projection of f onto H4(h?),
which can be extended to all f € L'(h%;S41).

For § > —1, the Cesaro (C,d)- means of the spherical h-harmonic expansions are

defined by

SO(h2: f Z Yo prOJg 20, Ag_j:<n ]4'- ),n=0,1,"'7

—0 A n=J

whereas the maximal Cesaro operator of order ¢§ is defined by

S2(h2; f)(x) == sup |Sp(hY; ()], =€ ST

neN

Our main goal in this first part of the thesis is to study the following weak type

estimate of the maximal Cesaro operator: for f € L*(h%;S%1),
measﬁ{:v e ST SR f)(x) > a} < Cm, Vo > 0, (1.1.2)
o

here, and in what follows, we write meas,(E) := [, h 5 ) for a measurable subset

E C S%!. Such estimates have been playing crucial roles in spherical harmonic analysis



on the sphere; for example, they can be used to establish a Marcinkiewicz type
multiplier theorem for the spherical h-harmonic expansions (see [4, 15]).

The background for this problem is as follows. In the case of ordinary spherical
harmonics (i.e., the case of k = 0), it is known that (1.1.2) holds if and only if § > 4=2.
(See [4, 45]). Indeed, in this case, since the Cesaro operators are rotation-invariant, a
well-known result of Stein [38] implies that for h,(z) =1, (1.1.2) holds if and only if

lim S2(h%; f)(z) = f(z), ae x€S¥' Vfe L'(h2;Sh). (1.1.3)

n—0o0

In the case of kK # 0 (i.e., the weighted case), while a standard density argument
shows that (1.1.2) implies (1.1.3), the result of Stein [38] is not applicable to deduce the
equivalence of (1.1.2) and (1.1.3), since the measure h2do is no longer
rotation-invariant. In fact, an estimate much weaker than (1.1.2) was proved and used
to study (1.1.3) for § > A, := &2 + Z;.lzl k; in [51], whereas (1.1.2) itself was later
proved in [15] for § > A, where the results are also applicable to the case of more
general weights invariant under a reflection group. Finally, for h, in (1.1.1), it was

shown in [57] that (1.1.3) fails for § < o, with

1<y<d

d—2 &
Ok = Ag — Kmin = T + ;K’j — min Kj- (114)

Of related interest is the fact that o, is the critical index for the summablity of the



Cesaro means in the space L'(h2;S%1). More precisely,

dim Sy (A% f) = fllea =0, Vf € L' (8™ (1.1.5)

if and only if 0 > o,. (See [30, 16]).

In Chapter 3 of this thesis, we prove that if x # 0, then (1.1.3) holds if and only if
d > o0y, and moreover, if at most one of the k; is zero, then the weak estimate (1.1.2)
holds if and only if § > o,. Of special interest is the case of 6 = o, where our results
are a little bit surprising in view of the facts that (1.1.5) fails at the critical index
0 = 0., and the corresponding results in the case of k = 0 (i.e., the case of ordinary
spherical harmonics) are known to be false at the critical index oy := d%g.

Our results on the estimates of the maximal Cesaro operators also allow us to
establish a Fefferman-Stein type inequality for the Cesaro operators and to weaken the
conditions in the Marcinkiewitcz multiplier theorem that was established previously in
[15]. The precise statements of our results on the sphere can be found in Theorem 3.1.1,
and Corollaries 3.7.1-3.7.6 in the third chapter of the thesis.

We will also establish similar results for the weighted orthogonal polynomial

expansions with respect to the weight function

d
WE(z) := (H |xj|ﬂj)(1 — |l][?)ran Y2, min ;>0 (1.1.6)

. 1<i<d+1
Jj=1

on the unit ball B¢ = {x € R?: ||z|| < 1}, as well as for the weighted orthogonal



polynomial expansions with respect to the weight function

I
=

ST faly e i k200 (11)

¢ 1<i<d+1

on the simplex T? = {r e R : 2y > 0,...,24 > 0,1 — |z| > 0}, here, and in what
follows, |z| := Z;.lzl |z;| for ¥ = (21, -+ ,x4) € R% The precise statements of our results
on B? and T¢ can be found in Theorem 4.1.1, Corollaries 4.1.2-4.1.5, Theorem 4.2.2, and
Corollaries 4.2.3-4.2.6 in the fourth and the fifth chapters of the thesis.

It turns out that results on the unit ball B? are normally easier to be deduced
directly from the corresponding results on the unit sphere S¢, whereas in most cases,
results on the simplex are not able to be deduced directly from those on the ball and on
the sphere due to the differences in their orthogonal structures. (See, for instance,

[15, 16, 49, 52]). In the fifth chapter of this thesis, we will develop a new technique
which allows one to deduce results on the Cesaro means on the simplex directly from the
corresponding results on the unit ball.

Our main results on the unit sphere are stated and proved in the third chapter.
After that, in the fourth chapter, similar results are established on the unit ball. These
results are deduced directly from the corresponding results on the unit sphere. Finally,
in the fourth chapter we also discuss how to deduce similar results on the simplex from

the corresponding results on the unit ball. A new technique is developed.



1.2 Dunkl transforms and analysis on R?

Given k = (ki,- -+, kq) € [0,00)4, let
d
he(x) == H 2|, &= (21,79, -+ ,74) € RL (1.2.8)
j=1

Denote by LP(R?; h2) = LP(R% h2dx), 1 < p < oo, the LP-space defined with respect to

the measure h2(z)dz on R, and || - ., the norm of LP(R?; h2). For a set E C RY, we
write
meas, (E) := / hZ(z) dz. (1.2.9)
E
Let || - || and (-,-) denote the Euclidean norm and the Euclidean inner product on R¢,
respectively.

The Dunkl transform F, f of f € L'(R%; h2) is defined by
Fof(@)=ce | fy)Ei(—iz,y)h%(y)dy, =€ R, (1.2.10)
R4

where ¢! = [, h2(y)e W2 dy, and B, (—iz,y) =V, [e‘i<x">] (y) is the weighted
analogue of the character e ¥ on RY. Here, V, : C(R?) — C(R?) is the Dunkl
intertwining operator associated with the weight h2(x) and the reflection group Z<,
whose precise definition will be given in Section 2. In the case of kK = 0 (i.e., the
unweighted case), Vj is simply the identity operator on C'(R?), and hence the Dunkl
transform F, f becomes the classical Fourier transform.

The Dunkl transform has applications in physics for the analysis of quantum many



body systems of Calogero-Moser-Sutherland type (see, for instance, [24, Section 11.6],
[36] ). From the mathematical analysis point of view, its importance lies in that it
generalizes the classical Fourier transform, and plays the similar role as the Fourier
transform in classical Fourier analysis.

The Dunkl transform enjoys many properties similar to those of the classical
Fourier transform (see, for instance, [29, 47, 46]). For example, each function
f € LY(R% h2) is uniquely determined by its Dunkl transform F, f. A very useful tool to
recover a function f € L'(R? h2?) from its Dunkl transform is the Bochner-Riesz means

of f, which, in the Dunkl setting, are defined as

1)
(1 - Hy”2> Fof () Exliz, y)hl(y) dy, =€ R,

BRI i) = e [ u

lvll<k

where R >0, § > —1 and f € L'(R% h?). As in classical Fourier analysis, B%(h%; f)(x)

can be expressed as an integral

By(hZ; f)(x) = cx 5 F)Kg(hZ;z,y)hi(y) dy, = € R, (1.2.11)

which further extends B%(h%; f) to a bounded operator on LP(R%; k%) for all 1 < p < oo
and R > 0.

Summability of the Bochner-Riesz means B%(h2; f) in the spaces LP(R?; h2),
1 < p < oo was studied by Thangavelu and Xu [46, Theorem 5.5], who showed that for
6> N =L+ |k,

lim || By(hZ; f) = fllnp =0 (1.2.12)
R—

8



holds for all f € LP(R% h%) and 1 < p < oo, and that this result is no longer true when
p=1and 0 < ;. Here and throughout the paper, we write |k| = Z?Zl #;. This, in
particular, means that 6 = A\, is the critical index for the summability of the
Bochner-Riesz means B2 (h2; f) in the weighted space L*(R?; h2). For the critical index
of B%(h2; f) in the spaces LP(R%; h2) with 1 < p < oo, we refer to [8, Theorem 4.3].
Thangavelu and Xu [46, Theorem 7.5] also studies almost everywhere convergence
(a.e.) of the Bochner-Riesz means B%(h2; f), showing that for § > A, and
f € LP(R% h2) with 1 < p < o0,

lim BY(R%; f)(x) = f(x) ae. z€R% (1.2.13)

R—o0

Using Stein’s interpolation theorem for analytic families of operators, one can easily
deduce from this result that for f € LP(R% h?) with 1 < p < oo, (1.2.13) holds at the
critical index § = A, as well (see, for instance, [42]). A natural question also arises here:
what will happen when 6 = A\, and f € L'(R%; h2)?

In the classical case of Fourier transform (i.e., the case when x = (0,---,0) and
hi(x) = 1), the answer to the above question is negative. Indeed, it is well-known that if
6 = Ao := %1, then there exists a function f € L'(R?) whose Bochner-Riesz mean
B(f)(z) = B}?(h%; f)(z) diverges a.e. on R% as R — oo, (see, for instance, [41]).

In this thesis, we will show that in contrast to the classical case of Fourier
transform, the above question has an affirmative answer in the weighted case (i.e., the

case when k # 0). More precisely, we have the following result:



Ifk#0,1<p<ooand f € LP(R% h2), then the Bochner-Riesz mean
By (h?; f)(x) converges a.e. to f(x) on R as R — oo.

The conclusion of the above result is a little bit surprising because of the following
two reasons. First, as indicated above, for the classical Fourier transform (i.e., k = 0),
(1.2.13) fails for some f € L'(R?) at the critical index § = \g = 4. Second, in the
general case of k € [0,00)?, there exists a function f € L'(R? h?) for which the
Bochner-Riesz means By (h2; f)(x) at the critical index diverges in the norm of
L*(R4; h?), (see, for instance, [8]).

By a standard density argument, the proof of almost everywhere convergence can

be reduced to showing a weak-type estimate of the following maximal Bochner-Riesz

operator:

BY(h2; f)(x) = sup | B(h f)(@)], @ € RY. (1.2.14)
R>0

Indeed, we just need to prove the following result:

Assume that k # 0. If § = N\, and f € L*(R% h2), then for any a > 0,

meas, ({z € R": BX(hZ; f)(z) > a}) < c,{m, (1.2.15)

(0%

[ f1ls.1

«

1. /11,
- 1 by - 1

where we need to replace log when min;cjcqkj = 0.

Note that according to Theorem 7.5 of [46], (1.2.15) holds for § > A, as well,
whereas by Theorem 4.3 of [8], it does not hold when 6 < A,. We further point out that
similar results for the spherical A-harmonic expansions on the unit sphere were recently

established by the current authors and S. Wang [10].
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One of the key steps in our proof of weak type estimates of the maximal

Bochner-Riesz operator is to show the following sharp pointwise estimate of the integral

kernel K% (h2;x,y) of BS(h%; f)(x): for § >0, R >0 and z,y € RY,

(lzjyl + B + R7Y [z — gl)) =™

Hd
K& (h2;2,y)| < OR'== 1
i) (Lt Rl — ) 2

, (1.2.16)

where we write T = (|x1],- -, |xq4|) for z = (21, -+ ,24). In the case when ||z|| = ||yl
the estimate (1.2.16) can be deduced directly from Lemma 3.4 of [13]. However, for
general x,y € R?, this is a fairly nontrivial estimate. Of crucial importance in the proof
of (1.2.16) is the explicit formula of Yuan Xu [50] for the Dunkl intertwining operator
associated with the weight h?(x) and the reflection group Z4, (see (2.2.3) in Section 2).

The proof of the weak type estimate of the maximal Bochner-Riesz operator will be
given in Chapter 6 of the thesis. And all of the above results in this part were published
in my joint paper [17] with Dr. Feng Dai.

Next, we consider the strong type estimates of the maximal Bochner-Riesz
operator. Our first goal is to establish a result for the Dunkl transform that is analogue
to a classical result of Michael Christ [6] on strong estimates of the maximal
Bochner-Riesz means of the Fourier integrals under the critical index A = %. Our main
result in this direction can be stated as follows:

Let 05(p) = A\ +1)(5 = 3) — 3. If p = 2+ 5= and § > max{0,0,(p)}, then for all

f e LP(RY 1),

1B (7% Fllp < Cllf -

11



It is worthwhile to point out that this last inequality is no longer true for § < d,(p).

The proof of this result will be given in Chapter 9.

One of the most important tools in our proof of the above strong type estimates is
the restriction theorem for Dunkl transforms. Let S¢~! := {z € R?: ||z| = 1} be the
unit sphere in R%, and do the Lebesgue measure on S%~!. We define Rf to be the
restriction to the sphere S9! of the Dunkl transform F, f of f € L'(R% h2). In this

thesis, we shall prove the following global restriction theorem.

If1<p< 2/\’\:;52, then R extends to a bounded operator from LP(R? h2) to
L*(S*',h?), and the dual operator R* extends to a bounded operator from L*(S*~! h2)
to L' (R%, h?).

Since the weight function h; in Dunkl analysis is neither translation invariant nor
rotation invariant, unlike the case of the classical Fourier transform, the global
restriction theorem stated above is not enough for our purpose. The proof of our main
results requires the following local restriction theorem, which is stronger than the global
one but significantly more difficult to prove:

Let ¢g € (0,1) be a constant depending only on d and k, and B the ball B(w,0)
centered at w € R? and having radius 0 > co > 0. If 1 <p < pp := 2;;%, and

f € LP(R%; h2) is supported in the ball B, then

. 92/\“—1
1Fllza vy < €

1 1
p 2
m) S || or (metsp2) -

The proof of the restriction theorem will be given in Chapter 7 of the thesis.

12



In addition to the restriction theorem, we also need to establish weighted
Littlewood-Paley inequality in the Dunkl setting, which seems to be of independent
interest. This inequality will be proved in Chapter 8 of the thesis.

Finally, we shall study the almost everywhere convergence of the Bochner-Riesz
means of functions in LP(R%; h?)-spaces. Our main purpose in this part is to establish a
result for the Dunkl transform that is in full analogy with a classical result of A.
Carbery, Francia and L. Vega [5] on the Fourier transform. Our main result can be
stated as follows.

Let 6,.(p) = 2\, + 1)(% — %) — 1 Ifp>2and § > max{0,0.(p)}, then for all

f e LP(R% h2),

The proof of this result will be given in Chapter 10.
Our results on local restriction theorem and the maximal Bochner-Riesz Means for

the Dunkl transforms will be published in my joint paper [18] with Dr. Feng Dai soon.
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Chapter 2

Preliminaries

In this chapter, we will describe some necessary materials for weighted orthogonal
polynomial expansions on the sphere, the ball and the simplex. Unless otherwise stated,

the main reference for the materials in this chapter is the book [25].

2.1 Notations

In this section, we shall introduce some necessary notations that will be used
frequently in the rest of the thesis. We use the notation C} ~ C5 to mean that there
exists a positive universal constant C, called the constant of equivalence, such that
C71C;, < 0y < CC,. And we note C; < Co(C = Cy) if there exists a positive universal
constant C' such that C; < CCy(Cy = CCy).

Let R? denote the d-dimensional Euclidean space, and for x € R?, we write

x = (21,22, ,2q). The norm of z is defined by ||z := \/2?21 z2. The unit sphere

14



S9! and the unit ball B¢ of R? are defined by
STV i={z: ||z|| = 1}, and B := {z: ||z| < 1}.

Given z = (1, -+ ,z4) € R? and € = (g1, -+ ,&4) € Z9 := {+1}4, we write
= |z, |za]), |2] = 2?21 |z;|, and xe := (z1€1,- -+, x4eq). We denote by p(z,y)
the geodesic distance, arccosz -y, of z,y € S

The simplex T? of R? is defined by
T ={rxcR:2,>0,...,24>0,1—|z| >0}

Let € denote a compact domain in R? endowed with the usual Lebesgue measure
dz, where in the case of Q = S* ! we use do(z) instead of dx to denote the Lebesgue
measure. Given a nonnegative product weight function W on 2, we denote by L?(WW; )
the usual LP-space defined with respect to the measure Wdz on 2. For each function

f e LP(W;Q), we define its || - ||, w norm as following

T ( / \f(rc)\”W(x)dx) " l<peoo

and for p = 0o, we consider the space of continuous functions with the uniform norm

[ flloo := esssup [ f(x)].
€S
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Let S(RY) denote the class of all Schwartz functions on R, and &'(R?) its dual (i.e.,
the class of all tempered distributions on R?).
Finally, given a sequence of operators T,,, n =0,1,--- on some L” space, we denote

by T, the corresponding maximal operator defined by T, f(z) = sup,, |T.f(z)].

2.2 Dunkl operators and Dunkl intertwining

operators

Recall that Zg is the reflection group generated by the reflections oy, - -+ , 04, where

o; denotes the reflection with respect to the coordinate plane x; = 0; that is,

To; = (xla Ty X1y, =L, L1, wTd)? VS Rd'
Define a family of difference operators F;, j =1,--- ,d by
E]f($) o f(ZL’)—f(ZEO'])’ Z'ERd.

Let 0; denote the partial derivative with respect to the j-th coordinate x;. The Dunkl
operators D, ;, j =1, ,d with respect to the weight h2(z) and the group Z¢ are

defined by

,D,{’j = aj—FlijEj, j = 1, ,d. (221)

A remarkable property of these operators is that they mutually commute, that is,
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D,.;Dyxj =Dy ;D for 1 <i,j < d. We denote by P? the space of homogeneous
polynomials of degree n in d variables, and by II¢ := II(R¢) the C-algebra of polynomial
functions on RY. It is clear that the Dunkl operators D, ; map P4 to P4 _,. A
fundamental result in Dunkl theory states that there exists a linear operator

V,. : 11 — 11 determined uniquely by
Vi.(PY cPl V(1) =1, and D,,;V. = V.0, 1<i<d. (2.2.2)

Such an operator is called the intertwining operator.
For the weight function h2(z) given in (1.2.8) and the reflection group Z4, the

following very useful explicit formula for V, was obtained by Xuan Xu [50]:

d
Vif(x) = ¢ /[1 » flaity, - aate) [ [ +4)(1 = £3)sdt, (2.2.3)

j=1

where ¢, = H;lzl Chy = H;.lzl r\(;rjr—w, and if any &; is equal to 0, the formula holds

under the limits

lim ¢, /1 gt)(1 — ) dt = M

pu—0 1 2

In particular, the formula (2.2.3) extends V,, to a positive operator on the space of
continuous functions on R?. This formula will play a crucial role in this thesis. It should
be pointed out that such an explicit formula for V, is available only in the case of Z<¢. In
the case of a general reflection group, a very deep result on the operator V, is due to

Rosler, who, among other things, proved that V, extends to a positive operator on

17



C(RY).

2.3 Spherical h-harmonic expansions on the unit

sphere

We restrict our discussion to h, in (1.1.1), and denote the LP norm of LP(h%;S% 1)

by || - llwps

o= ([ VPR as) ", 1<p <o

with the usual change when p = oo.

We denote V(h2) the space of orthogonal polynomials of degree n with respect to
the weight function h2 on S~1. Thus, if we denote by II,(S?1) the space of all
algebraic polynomials in d variables of degree at most n restricted on the domain S 1,
then V¥(h2) is the orthogonal complement of II,,_1(S?!) in the space II,(S%"!) with
respect to the inner product of L?(h2;S%1), where it is agreed that IT_;(S?!) = {0}.

Since S9! is compact, each function f € L?(h?;S%1) has a weighted orthogonal
polynomial expansion on S, f =" proj,(h?%; f), converging in the norm of
L%(h%;S%71), where proj,,(h%; f) denotes the orthogonal projection of f onto the space

VA(h2). Let P,(h%;-,-) denote the reproducing kernel of the space V4(h2); that is,

d
n

Pn(hi? Z, y) = Z Spn:j(m)gpn:j(y)a T,y € Sdil

Jj=1

a.

for an orthonormal basis {¢,;: 1< j <al:=dimV?(h2)} of the space VI(h2).

18



The projection operator proj, (h?) : L*(h?;S* 1) — VI(h?) can be expressed as an
integral operator

proj, (h2; f,x) = f)Pa(hZ;z,y)hi(y)dy, ©€S™, (2.3.4)

Sd-1

which also extends the definition of proj,,(h%; f) to all f € L(h?;S%!) since the kernel
P,(W;z,y) is a polynomial in both z and y.

Let S2(h2; f), n =0,1,---, denote the Cesaro (C,d) means of the weighted
orthogonal polynomial expansions of f € L'(h?;S*!). Each S°(h?; f) can be expressed
as an integral against a kernel, K2(h2; z,v), called the Cesaro (C,d) kernel,

S3(h2; f,x) = F) KW, y)hi(y)dy, x € ST,

gd—1

where

Ko(h2smy) = (A) ™' Y AL Pi(hlsay), xyest
=0

An h-harmonic on R? is a homogeneous polynomial P in d variables that satisfies
the equation A, P = 0, where Ay, := D7, + ... 4 D2 ;. The restriction of an h-harmonic
on the sphere is called a spherical h-harmonic. A spherical h-harmonic is an orthogonal
polynomial with respect to the weight function h2(z) on S%!, and we denote by H¢(h?)
the space of spherical h-harmonics of degree n on S*~!. Thus, we have H%(h2) = VI(h2).

A fundamental result in the study of h-harmonic expansions is the following
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compact expression of the reproducing kernel (see [23, 49, 50]):

d d
n+ A o
K -1, =1

=1

where C? is the Gegenbauer polynomial of degree n, and ¢, is a normalization constant
depending only on k and d. Here, and in what follows, if some x; = 0, then the formula

holds under the limit relation

lim c,\/_l FIO(1 =) dt = w

A—0

The following pointwise estimates on the Cesaro (C, d) kernels were proved in [16].

Theorem 2.3.1. Let x = (w1, ,xq) € S and y = (y1,- -+ ,y4) € STL. Then for

0> —1,

d 1 ogm = o\

1 Hj:1(’xjyj|+” 'p(Z,9) +n?)
(np(z,g) + 1)°+d/2

d o o\

Hj:1(|xj?/j| + p(T,9)* +n2)
(np(z,y) + 1)

K (s, y)] < en”
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2.4 Orthogonal polynomial expansions on the unit

ball and simplex

The weight function W2 we consider on the unit ball B¢ is given in (1.1.6) with

K:= (K1, " ,Kay1) € Ri. It is related to the h, on the sphere S? by
W2 (/1= [J2]]2) = WP (2)\/1 = ||=]?, «eBY, (2.4.6)

in which h,, is defined in (1.1.1) with S? in place of S¥~. Furthermore, under the change

of variables y = ¢(z) with

p:x B (z,4/1—|z|2) €S% :={yeS*: yar1 >0}, (2.4.7)

we have

3 Y g dx
[ oot = [ ot TTR) + gt~V TTRP)] 2 249

The orthogonal structure is preserved under the mapping (2.4.7) and the study of
orthogonal expansions for W2 on B¢ can be essentially reduced to that of h2 on S9.

More precisely, we have

Py(W2ix,y) = 5 [Pu(hZ; (x,2411), (Y, Yar1)) (2.4.9)

N —

+ Pn(hia (l’, xd+1)7 <y7 _yd+1))}
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where z,y € B, and 441 = /1 — ||z||?, yar1 = /1 — |Jy||?. As a consequence, the
orthogonal projection, proj,,(W25; f), of f € L*(WZ;B?) onto V4(W?2) can be expressed

in terms of the orthogonal projection of F(x,z4,1) := f(x) onto HITL(h2):

proj, (W, f,x) = proj, (hg: F,X),  with X := (z,v/1—[|z[]?). (2.4.10)

This relation allows us to deduce results on the convergence of orthogonal
expansions with respect to W2 on B? from that of h-harmonic expansions on S¢.

For d = 1 the weight W5 in (1.1.6) becomes the weight function

Wy (1) = [t (1 — t2)n271/2’ ki >0, te[-1,1], (2.4.11)

whose corresponding orthogonal polynomials, clr , are called generalized Gegenbauer

polynomials, and can be expressed in terms of Jacobi polynomials,

CQ(:\;ILL)(t> _ E)\ _—:: /j;n P7E)\71/2,,LL71/2) (2t2 _ 1)7
M2 (2.4.12)
C(A,u) (t) = (A + “>n+1 tP(A—l/Q,y+1/2)(2t2 —1),
2n+1 (,U/+ l) n
2/n+1

where (a), =a(a+1)---(a+n—1), and P{*? denotes the usual Jacobi polynomial of
degree n and index («, 5) defined as in [44].
The weight functions we consider on the simplex T¢ are defined by (1.1.7), which

are related to W5, hence to h?. In fact, W7 is exactly the product of the weight
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function W75 under the mapping
Vi (wy,... 1) €EBY s (22, 22) € T (2.4.13)

and the Jacobian of this change of variables. Furthermore, the change of variables shows

dx
/d g(x%,...,a:i)dx:/ g(x1, .., 1g) ——. (2.4.14)
B T4

xl.--xd

The orthogonal structure is preserved under the mapping (2.4.13). In fact,
R e VHWT) if and only if Ro € V4 (W25). The orthogonal projection, proj,,(WT; f),
of f € LA(WZT;T?) onto VI(WT) can be expressed in terms of the orthogonal projection

of f o onto V§ (WB):

1
proj, (W5 f.0(x)) = 55 Y projs, (W,s f o v, ze), = € B, (2.4.15)

d
€EZS

The fact that proj,(W7T) of degree n is related to proj,,(W?) of degree 2n suggests
that some properties of the orthogonal expansions on B¢ cannot be transformed directly

to those on T¢.

2.5 Dunkl transforms

The classical Fourier transform, initially defined on L!(R?) extends to an isometry

of L?(R?) and commutes with the rotation group. For a family of weight functions h,
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invariant under a reflection group G, there is a similar isometry of L?(R%; h2), called the
Dunkl transform, which enjoys properties similar to those of the classical Fourier
transform (see [46, 47]).

Given o € C with Re a@ > —1, let J, denote the first kind Bessel function of order a:

oo

Jalt) = (%)a 2 n!r(y(:):+ 0 <%>2n tek. (2.5.16)

n=0

The Dunkl transform F, f of f € L'(R% h?) is defined by

Fof(x) = fx) = co [ fy)B(—iz,y)h2(y)dy, x€R% (2.5.17)

Rd

where ¢! = [o. h2(y)e WI°/2 dy and

, d g —1(x5y5) St (T55)
i) =l = e [0 Tty
j=1 (25y;) 2 (wjy;)™ "

We shall also consider the Dunkl transform on the space of finite Borel measures on R%:

Fott(€) = 7€) 1= ¢, / B(-ig, )k ()du(y), €€ R

If K =0 then V, =id and the Dunkl transform coincides with the usual Fourier
transform.
The Dunkl transform F, on the Schwartz class S(R?) extends uniquely to an

isometric isomorphism on L*(R% h2), i.e., || fllx2 = || Fuf|ls2 for each f € L2(R%; h2).
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Since LP C L' + L? for 1 < p < 2, we can also define the Dunkl transform F, f for each

f e LP(R% A2) with 1 < p < 2.

Many properties of the Euclidean Fourier transform carry over to the Dunkl

transform. The results listed below can be found in [21, 29, 35].
Lemma 2.5.1. [21, 29, 35]

(i) If f € LY(R% h2) then F,.f € C(RY) and lim F,f(¢) =0.

[[€]]—o0

(ii) The Dunkl transform F, is an isomorphism of the Schwartz class S(RY) onto itself,

and F2f(x) = f(~x).

(iii) If f and F.f are both in L*(R%; h2) then the following inverse formula holds:

f@)=co | FufW)Euliz,y)hi(y)dy, =R

Rd

(iv) If f,g € L*(R%; h2) then

Rd

v) (Haussdorf-Young) If 1 < p < 2, then
v) ( g

[Faf sy < N Fllnps

1, 1
where = + = = 1.
P +p’

25

Fof@)g(a) () de = [ F()Fro(e) (o)

(2.5.18)

(2.5.19)



(vi) Given e >0, let f.(x) = e~ HD f(e7la) with A, := 41 + |k[. Then

Frele(§) = Fuf(e€).

(vii) If f is a Schwartz function on R?, then

Fo(DLf)(2) = (—iz)* Fof(x), x€R™

where Dy = Dy - Dyt and o = (o, - -+, aq) € Z4.

(viii) If f(x) = fo(||lz]|) is a radial function in LP(R% h2) with 1 < p < 2, then
Fof(&) = Hx folll&ll) is again a radial function, where H, denotes the Hankel

transform defined by

Many identities in this thesis have to be interpreted in a distributional sense. As a
result, throughout the thesis, we identify a function f in LP(R% h2), 1 < p < oo with a

tempered distribution in &’(R%) given by

(o) = [ F@plaie)ds, Ve e SE,

For f € LP(R? h2) with 2 < p < oo, by (2.5.18), we may define its distributional Dunkl
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transform F, f via

(Fefs) = ([ Fep) = | [(@)Fep(a)hi(z)dz, Yo € SRY). (2.5.20)

Rd

For more information on distributional Dunkl transform, we refer to [2, 9].
For later applications, we also record some useful facts about the Bessel functions

in the following lemma:

Lemma 2.5.2. (i) ([44, (1.71.1), (1.71.5)]) For each a € C with Rea: > —1,

27%J,(2) is an even entire function of z € C and

d

= [ a(0)] = =2 (2). (2.5.21)

(i) ([44, (1.71.1), (1.71.11)]) For each a = o + it € C with 0 > —1,

27T (z)] < Cel(1 + |2))772, zeR. (2.5.22)

(iii) ([1, p. 218, (4.11.12)]) If Re > —1 and Re B > 0, then

. 1 % Jay8(8) Ja(5t) 9041
Haldars)(1) = 5oy /0 i (e ®

1 _

. Ja t
where josp(t) = 2220
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2.6 Generalized translations and convolutions with

Schwartz functions

We first give the definition of generalized translation on the class of Schwartz

functions:

Definition 2.6.1. Given y € R? and f € S(R?), we define its generalized translation

TYf by
Tf(@)=cu | F&) Bu(—iy, ) E(i€, 2)h2(€) dE, x € R™ (2.6.24)

By the inverse formula for Dunkl transforms, we have that for f € S(R?) and
z,y € RY,

Fu(TV ) (@) = Ex(—iz,y) Fr f(2). (2.6.25)

The following lemma collects some useful known results on generalized translations

on S(RY).

Lemma 2.6.2. (i) (/35, Lemma 2.2]) If f € S(R?) and y € R?, then also

TYf € S(RY). Thus, TY : S(RY) — S(R?) is a linear operator on S(RY).

(ii) (/46, Theorem 7.1]) Fory = (y1,--- ,yq) € R? and f € S(R?),

TYf(z) = ThyToy, - Tuy, f(2), = (21, -+ ,24) € RY, (2.6.26)
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where

1
Ty, f(2) =c,, /1 Fie(wi(@,y, 1) (1 — )Y (1 4+ t) dt

Li—Yj (1 _ t2)mj—1(1 + t) dt,

1
+ C:ij / fj,o(uj($7y7t))
-1 \/3:32 +y5 — 2x5y;t

(2.6.27)

Uj(l‘,y,t) - <.Z‘1, o, L1, \/l’? + ?/]2 - ijyjt7xj+17 o 'Id>7

and

frela) = 5 (F@) + £@0))), frola) = 5 (F@) — Flaoy)).

(iii) For f € S(R?),
/Rd TYf(x)p(z)h2(z) do = g f@)TYo(x)h?(z) dr, Yo € S(RY). (2.6.28)
Definition 2.6.3. The generalized convolution of f,g € S(R?) is defined by
fregl@)= | f@T9@hi(y)dy, =R (2.6.29)
The generalized convolution has the following basic property: for f,g € S(R?),

29



Chapter 3

Maximal Cesaro operators for
spherical h-harmonics on the sphere

and their applications

3.1 Main results

Recall that the letter x denotes a nonzero vector k := (K1, -+ , kq) in

and

1<y<d

d
. d—2
Kmin = min k;, |k| = Z@, O 1=~ + |k = Kmin- (3.1.1)
7j=1
We will keep these notations throughout this chapter. Some of our results and
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estimates below are not true if kK = 0.

Our main result on the unit sphere can be stated as follows:

Theorem 3.1.1. (i) If 6 > o, then for f € L'(h2;S%) with || f||.. = 1,

measn{x e ST SO(h2: f)(x) > a} <C—, YVa>0

with a~|log a| in place of a~' in the case when 6 = o, and at least two of the k;

are zZero.

(ii) If § < oy, then there exists a function f € L'(h2; S 1) of the form f(z) = fo(|zj,|)

such that SS(h2; f)(x) = oo for a.e. x € S¥1, where 1 < jo < d and Kj, = Fmin-

3.2 Proof of Theorem 3.1.1: Part(i)

Let us first introduce several necessary notations for the proofs in the next few
subsections. Recall that p(x,y) denotes the geodesic distance arccos z - y between two
points z,y € ST, We denote by B(x,0) the spherical cap {y € S™!: p(z,y) < 0}

centered at z € ST of radius 0 € (0, 7]. It is known that for any # € S¥~1 and 6 € (0, 7)

d

Vy(x) := meas,(B(z,0)) = / h2(y)do(y) ~ 0 H(x] + 6)%, (3.2.2)

B(,0) j=1

which, in particular, implies that h? is a doubling weight on S¢! (see [7, 5.3]). And we
denote that:
V(z,y) == meas,(B(z, p(z,y)))-
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For f € L'(h2;S%1), we define

Mof(@) = sup —— /{ o WG o)
y€eSi—L: p(%,7)<

0<O<T measH(B(x, 9))

Since the weight h? satisfies the doubling condition and is invariant under the
group Z4, the usual properties of the Hardy-Littlewood maximal functions imply that
for f € L'(h2;S%Y),

1],

meas,{z € S : M,f(z) >a} <C , Ya>0. (3.2.3)

«

For the proof of the first assertion in Theorem 3.1.1, we use Theorem 2.3.1 to obtain

|Ko(h2;w,y)| < CES(hE; w,y) + CRy(h; 2, y), (3.2.4)

where
d —1, (= = —2\—K;
B (1 )._nd—1Hj=l(|$jyj’+n p(T,§) +mn?)7 (3.2.5)
n\Ilgy L, Y) - = (np(z,y) + 1)5+4/2 ) -4
15 (zsm + p(2,5)2 + %)™
(B2 c=pdtl2E . 2.6
R ( m‘r7y) n (np(f7§)+1)d (3 )
Thus,

[Sn (ks f,2)| < ClE (s f,2)| + CIT; (R f ) + ClRa(h; f ),
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where

B3R f,0) s = /{ o B do), (3.2.7)
y€Se—1:p(z,y gﬁ

B = B0 0f@R@ ), (28)
yesI=l: p(z.9)> 5~

Rt foa): = [ Rubs o) {0l ) do(y), (3:2:9)

This implies that

meas,{z € ST : S°(h?; f, 1) > a} <meas{z € ST EX(h3; f, x) > %

+ meas, {z € ST TO(h2; f,z) > %

+meas,{z € S R,(R%; f, x) > %},

where

E{(h%; f,x) := sup | Ep(hi: fox)|, T0(his fox) = sup [T, (h%: f )|

neN neN

neN

Thus, for the proof of the stated weak estimates of S2(h2; f,x) in Theorem 3.1.1, it
will suffice to establish the corresponding weak estimates for the maximal operators E?,

T? and R,. Namely, it suffices to prove the following three propositions:
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Proposition 3.2.1. For 6§ > o, and each f € L'(h?;S*1), we have that

R.(h%; f,2) < CM,.f(x), eSS, (3.2.10)
and
meas,({z € ST R.(h%; f,x) > a}) < CHf!”’l, Va > 0. (3.2.11)

Proposition 3.2.2. For § > o, and f € L*(h?;S%1),

meas, ({z € ST T°(h2; f,2) > a}) < C||f(|j|j’1, Va > 0.

Proposition 3.2.3. If either 6 > o, or 0 = o, and at most one of the k; is zero, then
measn{x e ST ENRZ f,x) > a} < C’w, Va > 0. (3.2.12)
o

Furthermore, if 0 = o, and at least two of the k; are zero, then

measﬁ{:c e ST EN(RZ; f)(x) > a} < CHf!”’l log Hf('l”’l, Vo > 0.

The proofs of these three propositions will be given in Sections 3.3, 3.4, 3.5

respectively.
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3.3 Proof of Proposition 3.2.1

For the proof of Proposition 3.2.1, we need the following two simple lemmas.

Lemma 3.3.1. For z,y € S*1,

1 1
) N _ 3.3.13
Ru(hysy) ~ 7 np(z,y) V(%) + Vo (2) o

Proof. By (3.2.6), it is sufficient to show that for each 1 < j < d,

Ti(w,y) = (el + p(@.5)° + 0727 ~ (| + p(@,g) 0729, (3.3.14)

In fact, let’t consider the following two cases:

Case 1. If |z;| > 2p(z,y), since |z;| = 2p(z,y) > 2||x;] — |y;||, we have that

\l’j| ~ |yj|,

thus

Ji(x,y) ~ (5" + 07 4 p(2,9)") 7 ~ (| + 07" + p(z,9) 7.

Case 2. If |z;| < 2p(z,y), then since |y;| — |z;| < p(7,7),
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thus

Ti(,y) ~ (p(@,3) + 077 ~ (o] + plz,5) + 0712

Hence, in either case, we have have proven (3.3.14).

It follows that

d d
1T 7@ w) ~ [Tl + p(@,9) + 02
j=1 j=1
n~ Y+ p(z,5)"!
Vo (7) + V(2,9)

Then

Lemma 3.3.2. For x,y € S™"! and o > 0, let

nd—1 d

H ;| + p(z, ) + 1) 72
7j=1

A =

Ifa>d—1and f € L}(h2;S*1), then

L Az iz dots) < CMLf(2),

where the constant C' is independent of n, f and x. Furthermore, if o =d —1 and ¢ >0
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then

1
/ )| AS 2 9)h2 () doy) < Clog [ M, (x).
{yesd=t: p(z,5)>e} €

Proof. For x € S%!, by the last Lemma we have

[0 n x?y
A% (z,y) = (

Let

AHE fa) = [ AOsn ) F)RE) do(o),

and

A%(h2 f.2) = / A (22, f ()12 () dor(y).
{yeSi=1: p(z,5)>e}
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Then if « > d — 1,

’ DI
A58 £ < /S“nyw 5 (g, ) oy

N

IR0 i
L T s 0 el ) o)

[f @)l (y) amd+1
+Z/y —<p5:g7 21+1} V(LE y)_|_v ( )(1+np< y)) dO’(y)

< /B - vn_l(;z)h“@)d"(y)
+§:2(d0‘1)]/ |f( )| h2< )d (y)

w2 <pep<2tty V(Z,7)

M)+ S / o O )

e meas, (B(z, %)) Jp@ 2
)+ )27 M(f) ()
=0

SM(f)()

If a =d—1, then

Jo(p2. fW 2
Lussal< ] e

[log, §-|

1 2
N ; meas, (B(z, 2/¢)) /B(f,ng) | f(y)|h.(y)do(y)

1
SJ1og = M. @)

O

Proof of Proposition 3.2.1. The pointwise (3.2.10) follows directly from (3.2.9),
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Lemma 3.3.1 and Lemma 3.3.2, while the weak estimate (3.2.11) is an immediate

consequence of (3.2.10) and (3.2.3).

3.4 Proof of Proposition 3.2.2

Without loss of generality, we may assume that || f||1, =1 and a > 1. Let

S?_l ={z eSS |z > ﬁa} for 1 < j < d. Since for each z € S 1,

1 1
max |1,] > —=||e] = —-

1<j<d Vd Vd

it follows that S*! = U?ZIS?_I. By (3.2.8), this implies that

d
d—2 _ R N
T2 (h2; f2)| Sz 0 FW T T(zy5] +n~to(@, 9) +n2) " R2(y)do(y)
o 1 Jj=1
p(x’y)>ﬁ
yeSd—1
d . d
d—2_ R o
<o [ @Il + (e 0) ) R do(y)
m=1 B 1 j=1
p($’y)>ﬁ
|ym‘>ﬁ
d
<02T3j<hivf7 )7
j=1
where

n'e | f(y)

d — P
LY [T, (i + n=tp(z, ) + n=2)m
{yesi hp(@)> 512}

Tg,j(hi; fix) = R (y)do (y).
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Thus, it suffices to establish the weak estimates of

Tf’j(hi;f, T) = Suquf,j(hi;fu )

neN

for each 1 < j < d. By symmetry, we only need to consider the case of j = 1.
Take € > 0 such that e = ca for some absolute constant ¢ to be specified later.

Set F. = {x € S%1 : |z1| < €}. A straightforward calculation then shows that

£

d—3
measn(Fs)I/ |I1|2”1(1—$f)2+'”'”1dx1/ |ya|*2 - - - |ya| " do (y)
gd—2

—&
~ 62/{1+1 < Clet < O()é_l.
On the other hand, if z € S*!'\ F., y € S{* and p(z,9) > ﬁ&’ then

d
[Tzl + ' p(7,5) +n72)% > Cemrnlm,
=1

which implies that

d=2 _ _ _
(T (h; fo)] < On'2 —ome=mnlmm £

d=2 _
= On'7 thl=m—ok =R < Ce=r — Ocq.

Therefore, choosing ¢ > 0 so that C'c = %, we deduce that

1

meas,i{x e ST (K2 f,x) > a} < meas,(F) < C—,
' o
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which is as desired.

3.5 Proof of Proposition 3.2.3

The proof of Proposition 3.2.3 relies on the following lemma.

Lemma 3.5.1. Let x,y € S¥1 be such that p(Z,7) < ﬁ&' If i is a positive integer such

that i < d and |z;| > \/%»1, then

d d
[T 75t ) < €0+ o, 5) " T (hasl + o, 9) + 07272, (35.15)
j=1 j=1
where
Li(z,y) = (Jzjy; + 0" p(Z, ) +n72) 7. (3.5.16)

Proof. By symmetry, we may assume that ¢ = 1. Consider the following two cases:
Case 1. p(z,y) <n L
In this case, note that I;(z,y) ~ (n=2 + |ajy;|) . If |x;| = 2n~' > 2p(z, ), then

|25 ~ [y;| and

Li(z,y) ~ || 72 ~ (o] + p(z,9) + 0 ) 7205

If |z;] < 2n~ !, then |y;| < 3n~! and

Li(z,y) ~ 0™ ~ (x| + p(z,79) + n~ )79,
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Thus, we conclude that

d d

[5G y) ~ [l + p(@,5) +nt) 2,

j=1 j=1

which clearly implies (3.5.15).

Case 2. p(z,y) > nt.

In this case, note first that if |z;| > 2p(z,y), then

Li(a,y) ~ (Jaj* + 07" p(2,9)) 7 ~ Jag |72 ~ (|ay] + p(Z,§) +n~") 7,

while if |z;| < 2p(Z,y), then

Ii(z,y) < (n"'p(z,y) +n 2w

~ (1+ np(Z, 7)) (p(Z, ) + |2;] +n~") "2

This means that for all 1 < j < d,

Li(z,y) < C(L+np(7, 7)) (p(Z,§) + |ag] +n~) 7.

On the other hand, however, recalling that |z;| > \/LE > 2p(Z,y), we have that

|z1| ~ |y1| ~ 1, and hence

Li(z,y) ~ (Jo1| + p(z,§) + 1) 72
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Therefore, putting the above together, we conclude that

d d
HIj(ZL’, y) = Il(xv y) Hlj(xu y)
j=1 j=2
d
< C+np(x, g)" = T (lzs] + p(@.5) + n~t) >,
j=1
which is as desired. O

Now we are in a position to prove Proposition 3.2.3.

Proof of Proposition 3.2.3. Without loss of generality, we may assume that

|fll: =1and @ > 1. As in the proof of Proposition 3.2.2, we have S*! = ?:1 St
with
St i={z e S*: |2y > L}
Vd
Thus, it is enough to prove that for each 1 <17 < d,
meas,({z € S EX(R% f,x) > a}) < Ca™l, (3.5.17)

1 1

with a~!loga~! in place of a~! in the case when § = o, and at least two of the x; are
Zero.
To prove (3.5.17), we consider the following cases:

Case 1. Ki > Kmpin O 0 > 0,

In this case, we shall prove that

EX(R%; f,2) < CM,.f(x), VeSS, (3.5.18)
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from which (3.5.17) will follow by (3.2.3).

By Lemma 3.5.1, if x € S?_l, y € S and p(z,7) < ﬁ, then

B (022, y)] < On' = (1 +np(2, )% [ [ iz, y)

j=1

d
< Cn" (14 np(z, g)) @bt T (2] + p(2,9) +n7") 72,
j=1

Since K; — Kmin + 0 — 0, > 0 in this case, the estimate (3.5.18) then follows by
Lemma 3.3.2.

Case 2. K; = Kmin and minjy,; k; > 0.

Without loss of generality, we may assume that ¢ = 1 in this case. Let € > 0 be
such that e?=1+2Ikl=2%1 — ¢"1q=1 where ¢; > 0 is an absolute constant to be specified
later. Set

Fo={zeS™: 1-< x| <1}

A straightforward calculation shows that
! 2 2\ 43 4| d—1+2|k|—2 1
meas, (F.) = ¢, 23 (1 — a2) 2 FIREm gy~ gdm AR T
1—€2
Next, for z € SI1\ F., and y € S¥ !, we set

Ji=J(x,y)={j:2<j<d, |z;| <2p(z,9)},

J =T (x,y)={2,3,--- ,d}\ J
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Recall that [;(x,y) is defined in (3.5.16). From the proof of Lemma 3.5.1, it is

easily seen that if |x;| > 2p(Z,7),
Li(,y) < Cllas| + p(2,5) +n70) 72
and that if |z;| < 2p(Z, ),
I(,9) < C(L+ np(@5) (p(7,5) + 5] + 01>,
Note also that if 2 € S¢* and p(z,7) < ﬁ, then |zq| > ﬁ and

il = || — p(2.5) > 4.

Thus, under the condition » € ST and p(7, ) < ﬁ&’

d

[T 5,y < +np(z, gy [T + (@, 9) +n7t) 7>,

J=1 J=1

which, in turn, implies that

B (s, )
*5*g+z Kj d

<On(L4np@ ) Tl + p(@g) + 077

i=1

If JG{2,3,--,d}, then Zjﬂj < |k| — K1 — minogjq k; and
je

d
5—}—2 EGJ/i]_d 1+2r%1£dlfj>d 1.
J
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On the other hand, however, if J = {2,3,--- ,d}, and z € S\ F., then

d d
5+§—jz€;mj:5+§—|m|+mzd—l,

and moreover,

( )>1 ] > 1—a2 €
Z,7) > — max |z;| > > ,
PR = g e = S i=1 = oA =1

where the last step uses the fact that 1 — |z1| > &2 for x ¢ F.. Thus, using (3.5.21) and

recalling that ¢~ (@~1+2%l=251) — ¢/ we conclude that if z € ST\ F. and p(Z,9) < ﬁ&’

then

ndfl

| Bp (R a,y)| <C

d=1+ min K;
(A +np(z,g)) 2950 [T (2] + p(@,9) +nt)?

+ Cea.

Since ||f]lx1 =1 and Ky, > 0, using Lemma 3.3.2, and choosing ¢; = (2C)~!, we

deduce that for » € S9'\ E.,

BS(h: f.2) < OM,f(@) + o
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It follows that

meas, ({z € SI' . E2(h2; f,2) > a})
< meas, (F.) + meas,({z € SI™'\ F.: E2(h2; f,2) > a})

1 o 1
<C— =t > 1) <C-—.
_Ca—i-meas,{({xeS M, f(x) > 20})_Ca

Case 3. Kk; =0, minj»; k; = 0 and 0 = o,.
Since k # 0, we may assume, without loss of generality, that i = 2 and k1 > 0. In

this case, using (3.5.19) and (3.5.20), we have that for z,y € S,

|ES(h2; z,y)|

10 (5] + p(Z, ) +nt) =2
(1+np(z,y))+*
10 (5] + p(z,5) +nt) =2
(1 +np(z,y))d-t+m

<Cnd—1

X{yesi—1: |or|<20(z.9)} (Y)

+ Cnit

Y

where yr denotes the characteristic function of the set F'. Thus, using Lemma 3.3.2, we

conclude that

Ok . 1
B2 (1 f.) < O (log 1 )Mo (1),
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Therefore, for || f||,1 =1 and a > 0,

meas, {r € "t E*(R%; f,x) > a}
<meas {z € ST || <a'}
+meas,{z € S : M,.f(z) > a(loga)™'}

<Ca ' logal.

3.6 Proof of Theorem 3.1.1: Part (ii)

The proof of Theorem 3.1.1 (ii) follows along the same idea as that of [32], where
the Cantor-Lebesgue Theorem is combined with the Uniform Boundedness Principle to
deduce a divergence result for the Cesaro means of spherical harmonic expansions. The
result of [32] was later extended to the case of h-harmonic expansions in [57]. Our proof
below is different from that of [57], and it leads to more information on the
counterexample f, from which the corresponding results for weighted orthogonal
polynomial expansions on the ball B? and on the simplex T? can be easily deduced.

The proof of Theorem 3.1.1 (ii) relies on several lemmas. The first lemma is a well

known result on Cesaro means of general sequences (see, for instance, [58, Theorem

3.1.22, p. 78] and [58, Theorem 3.1.23, p. 78]).

Lemma 3.6.1. Let s} := (A%)~1 >0 A _a; denote the Cesaro (C,8)-means of a
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sequence {a;}32, of real numbers. Then for >0

jan| < Csn® max [sj], n=0,1,--, (3.6.22)

and for 0 < 6, < 69,

0 02—9 1
|8n1| < 05175271 o 1121?3% |Sj

2, n=0,1,---. (3.6.23)

The second lemma was proved in [32, Section 3.3]. It follows from the asymptotics

of the Jacobi polynomials and the Riemann-Lebesgue theorem.

Lemma 3.6.2. Let o, B > —%, and let F' be a subset of [—1, 1] with positive Lebesgue

measure. Then there exists a positive integer N depending on the set F' for which

sup | PP (t)] > Cn™2, ¥n> N,
teF

where the constant C depends on the set F', but is independent of n.

To state our next lemma, recall that the generalized Gegenbauer polynomial Cc)
is the weighted orthogonal polynomial of degree n with respect to the weight

It[24(1 — t2)*2 on [—1, 1].

Lemma 3.6.3. Let f € L(w,; [0,1]) with w,(t) = [t{*1(1 — 2 *1~2. Let f: S™! - R

be given by F(x) = f(jaal). Then J & LM% 8% and

projo,(h2; f,a) = don (/YO (2y), @ € ST, (3.6.24)
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where

don(f) = / FOCRT5 (P, (t) dt. (3.6.25)
€2 Hmw 01)
Proof. We need the following formula for the reproducing kernel P, (h2;-, e;) of the
space Ha(h?) (see [16, proof of Theorem 2.2 (lower bound)]):
Ak
Py(h%;2,e)) = n—)l\— COs=rr) () e ST n=0,1,---, (3.6.26)

where e; = (1,0,---,0) € S¢1L,
By (2.4.12), it follows that {C>* """} is an orthogonal polynomial basis with
respect to the weight w,(t) on [0, 1]. Thus, each function f € L(wy; [0, 1]) has a
(An—r1,51)

weighted orthogonal polynomial expansion Y~ da,(f)Cs, (t) on [0, 1], which

particularly implies that for each polynomial g of degree at most 2n on [—1, 1],

/_ 1 Ft)g(t)we(t) dt = Z do; (f) /_ 1 O™ (1) g (£)w, (1) dt. (3.6.27)

Next, we note that (3.6.26) implies that the term on the right hand side of (3.6.24)
is an h-harmonic in H$ (h?). Thus, for the proof of (3.6.24), it is sufficient to verify that

for each P € HY (h?),

f(@)P(x)h}(x) do(x)

gd-1

—dan(f) [ OO ) Pla)hi(a) do(a). (3.6.28)

50



Indeed, for P € H$ (h2),

f(@)P(x)hi() do(x)

gd—1

— /_11 flz1|)wi(z1) [/Sd_z P(z1,4/1— x%y)h%(y) da(y)] dry,

where hi(y) = H?;i ly; |+ for y = (y1,- - ,ya—1) € R™. Since the weight h2(y) is even
in each y;, it is easily seen that the integral over S*2 of the last equation is an algebraic

polynomial in z; of degree at most 2n. Thus, it follows by (3.6.27) that

[ FoP@hia) dota)
= Z CZQJ(f) /;1 Cé;"ﬂ*m,m)(xﬁwn(.’lil) |:/Sd2 P(.Il, \/1— x%y)h%(y) dg(y) dxy
= - - On=r1m1) (0 YP(2)B2 (2) do ().
=) [ Chm ) Pahita) doe)

Since, by (3.6.26), C’J(-A”fm’m)(ml) € HY(h?), the desired equation (3.6.28) follows by

the orthogonality of the spherical h-harmonics. O]

Now we are in a position to prove Theorem 3.1.1(ii).

Proof of Theorem 3.1.1(ii). Without loss of generality, we may assume that
K1 = Kmin- Assume that the stated conclusion were not true. This would mean that
S3(h2; f,z) is finite on a set By C S of positive measure for all f € L' (w,;[0,1]) and

some § < o,., where f(z) = f(|z1]) for z € ST, and w,(t) = [¢[*(1 — #2)7=~2. By
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Lemma 3.6.1, this implies that

sup n~| projy, (h2; f, )| < oo, Vz € E;,Vf € L(w,;[0,1]). (3.6.29)

neN

We will show that (3.6.29) is impossible unless § > 0.

In fact, by(3.6.29),

E; = U {ZB € E;: supn_5|proj2n(hi;f,x)| < N}7
N=1 neN

hence, there must exist a subset E} of E; with positive Lebesgue measure such that

sup supn~°| proj,, (h%; ]7,9:)| < Ny < o0.

mEE} neN

By Lemma 3.6.3, this in turn implies that

sup sup n 0| dan (£)||CS) ()| < Ny, (3.6.30)

xEE} neN "
where dy,(f) is defined in (3.6.25). Note that by (2.4.12),

_ L +n)D(K1 +2) (on—dm-1)
C«()\n K1,K1) 1) = 2 Pn kRT3 2332 —1).
2n (z1) T(\)D(k1 + 1 +n) (a1 —1)

Hence, using [44, (4.3.3)], we can rewrite (3.6.30) as

sup n' |0, (f)|sup [P 272 (1)) < N, (3.6.31)

neN tEIf
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where Iy := {227 —1: z € E}}, and
1 11
0o(f) == / FOPT 272 (942 1), (1) dit. (3.6.32)
0

Since E; C S%! has a positive Lebesgue measure, it is easily seen that Iy C [-1,1]
has a positive Lebesgue measure as well. Thus, (3.6.31) together with Lemma 3.6.3
implies that

supnz |6, ()| < oo, Vf € L(wy;[0,1]). (3.6.33)

neN

Since {nz=9¢,(f)}, is a sequence of bounded linear functionals on the Banach

space L(wg;[0,1]), it follows by (3.6.33) and the uniform boundedness theorem that

supnz sup 10,(f)] < 0. (3.6.34)

n 11z ;10,7 <1

On the other hand, however, using (3.6.32) and [44, (7.32.2), p. 168], we have

‘6 o P(UN_%J{I_%) 2t2 1 _ P(UN_%vﬁl_%) 1 O’K—%
sup  [6u(f)] = max [P, 27 =1)| =B, (1) ~n72.
1112 Guwresfo,1) <1 t€[0,1]

Thus, (3.6.34) implies that

1 1
supn2~n% "2 = supn® 0 < oo,
neN neN
which can not be true unless § > o,.. This completes the proof. O
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3.7 Corollaries

3.7.1 The pointwise convergence

In this subsection, we devote to the investigation of almost everywhere convergence
of Cesaro (C,§)-mean S° of weighted orthogonal expansions on the unit sphere S¢~! by

our weak-type estimation. What we have already known is for § > % + |&],

lim S2(h%; f,x) = f(x), a.exc ST

n—oo

And for § < &2 + |k| — 1mind K;, there exists a function f € L'(h%;S? 1) such that
<i<

limsup |S?(h2; f,x)| = 00, a.e.x € S

n—oo

At here, we proved the critical index for the a.e. convergence of Cesaro (C,6)-mean

means, that is, for f € L'(h2;S%), if 6 = %2 + |K| — Kumin, and Kpin > 0, then

SO(h%; f x) = f(x), aexeST

Corollary 3.7.1. In order that

lim S2(h%; f)(z) = f(x)

n—oo

holds almost everywhere on S for all f € L*(h?;S*Y), it is sufficient and necessary

that 6 > o.
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Proof. For all f € L'(h%;S%!) we can write

where g,,(7) € H2, and lim ||by,|;.. = 0. Set
m—0o0

A°(f)(x) := limsup S5 (h2; f,x) — liminf S (h2; f, 2),
n—oo

n—o0

Then by Theorem 3.1.1 (i), Ve > 0

meas,({z € ST A°(f)(2) > ¢}) =meas,({z € ST : A%(by)(z) > €})

<meas, ({z € ST : SY(hZ; by, z) 2 €})

<||bm||1,fi
~ ¢

— 0, asm — oo.

This implies that lim S°(h2; f,z) exists.
n—oo

Then since g,,(x) € He,

meas,({z € ST | lim S°(R%; f,x) — f(z)| > €})
n—oo
<meas,({z € 8" SI(hZ: [bul 7) > 5))

+ meas, ({z € ST : |by(z)] > %})

<||bm||17n
~ ¢
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Let m — oo, we get

meas, ({z € ST ‘nh_)Holo SO(h2; f,x) — f(x)| >€e}) =0

lim S2(h%; f,x) = f(x), ae x€STh

n—oo

Then we finish the proof of sufficiency, whereas the necessity follows directly from

Theorem 3.1.1 (ii). O

3.7.2 Strong estimates on L

Using Stein’s interpolation theorem for analytic families of operators ([39]), we can

deduce the following strong estimates for the maximal Cesaro operators:

Corollary 3.7.2. If 1 <p < o0 and 0 > 20,$|% — %|, then

||S£(hi§ f)”n,p < Cp”f”ff,p' (3-7-35)

In particular,

152 (hgs O)llep < Coll fllwps 1 <p < o0.

We first show S¢ is strong-type (2,2) for 6 > 0. It is sufficient to show the following

lemmas. The idea of the proof is directly from the proof of Lemma 3.5 of [4].
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Lemma 3.7.3. If there exists a g > 0 such that for all f € L*(h?;S%1),
152 (s £ ) w2 Sp 112

Then for all 6 > 0 and for all f € L*(h?;S%1), we have
1S2(h2; £ )2 Sp 1f 1o

Proof. Firstly, since for any o > 0, and g > %

2
S AT - (F—R)TN
A(H‘B n(5+5 n
0 n k=0

k=

Then
|50 (R Z 2 1)
k‘: 7’L
gz 5+gk |Sk< l‘)’
=0
At | (st
=0 k=0
( 1Sy )|2-n‘1>
=0
Hence

M=

SOTB (R, f sup (Z 1S2(h 1)
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Therefore, we just need to show that for all § > —1, and for all f € L?(h2;S%),

Isup(> | Sp(h?
" k=0

) ||f€2 ||f||52

In fact, on one side, we know that for all f € L?(h2;S%1),

Isup(> _ |Spe (h?
" k=0

On the other side, since (A2 ,)(A%)"! =

1,3
2oz ez <SP (R o) ez S Nl

k
[1(n—7+0)""is a decreasing function of
=0

Z|Sk — Sp (s fL )Pk <Z_|Sk = S (hs £ @)

1
<D ISk frw) = S o)l

2

" A;‘j; A5

o A5+1)—
:Z—|ZkAn kprOJk(h’mf> )|
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we can get

| sup( Z\sk = S )R,
SO+ 1) Zn* (A5 2erAnkproJk<hmf, )2,
=(0+1) Zn—l (A5 sz (A5 2] proji (h2; f.2)12.5
k=0
) Z | projy(2: £ )2, - B2 St (A7, )2(45) 2

n=k

Since

kZ Zn—l Az k) A5+1 ~ kQZn n- 5—1—1 k>25 ~ 17

we have

Isup( Z|Sk = SP (2 fa) PR S 1 e

Then by using triangle inequality,

Isup(>_ 1S8(h%; £, )% - 1) s
" k=0
= 1. 1
<||sup<2|si°<hi;f,x>|2-n SHI
+ | sup( Z|sk — S0 (h2; fyx) PR32,

Sl k2
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By this lemma, we can get the following Lemma.
Lemma 3.7.4. For § > 0 and f(x) € L*(h2;S*Y), ||SS(R2; £, 2) w2 S || k-

Proof of Theorem 3.7.2. Firstly, recalling that ([30])
152(h%; Plloe < Cllflloos 0> 0,
we deduce from Theorem 3.1.1 and the Marcinkiewitcz interpolation theorem that
152(h%: Nlliy < Coll fllwps 1 <p <00, 8> 05 (3.7.36)
Secondly, in Lemma 3.7.4, we have already get
152 (h2; f)llwa < Cllflln2s 6 > 0. (3.7.37)

Thirdly, the index 0 of the Cesaro (C,d)-means can be extended analytically to
0 € C with Red > —1, as can be easily seen from the definition. Furthermore, it is well

known (see [4]) that for 6 > 0, e > 0 and y € R,

SR ) = (A Ty AL ATS (8 ). (3.7:38)

=0

and

2

|Ai+e+iy|—1 Z |Af;1+zy|A§ < C(e)e™ . (3.7.39)
=0

J
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It follows that for § > 0, ¢ > 0 and y € R,
STFI(R2. f 1) < C()eOY SO (R2; f, z). (3.7.40)

Finally, for each measurable function N : S% ! — {0,1,---}, define
Q% f(z) = Sji“,(m)(hi; f,x) for « € C with Rea > 0. It can be easily verified that
{Q% : a€C, Rea > 0} is a sequence of analytic operators in the sense of [39]. On
one hand, since 2|§ — 1] €(0,1) for p # 2, it follows that for any § > 20,€|% — 3|, we can
always find 0 € [0, 1] such that 2]% —3l<1-0< %, and two numbers ¢,¢’ > 0
satisfying § = 0c + (1 — 0)(o, + €), and % =4+ %, where p, =1+¢"if p <2, and

pe =2+ (¢/)71if p > 2. On the other hand, however, using (3.7.36),(3.7.37), (3.7.40),

we have that for any y € R,

QN fllxe < CE)e [Ifllne:

1 2
Q%™ Fllnp. < C(E)E || fllip.r-

Thus, applying Stein’s interpolation theorem [39], we conclude that

1 1
Q3 ey < Ol g 6> 200 =51

Since the constant C' in this last equation is independent of the function N, the

stated estimate (3.7.35) follows. O
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3.7.3 Marcinkiewitcz multiplier theorem

We can also deduce the following vector-valued inequalities for the Cesaro operators.

Corollary 3.7.5. For1 <p < oo, § > QJK% — %\ and any sequence {n;} of positive
integers,
o0 N\ 12 0 2\ 172
(Sisomor)| (i) a7
Jj=0 K,p Jj=0 K,p

Proof. Note first that (3.7.41) for 6 > 0 and p = 2 is a direct consequence of Corollary
3.7.2. Next, we prove (3.7.41) for § > o, and 1 < p < oo. Define the following positive

operators:

gz(hi7 fﬁ $) = f(y)}Kz(hia Z, y)}hi(y) dO’(y), LS Sd_lv n= Oa 17 e

Sd-1

It is easily seen from the proofs of Theorem 3.1.1 and Corollary 3.7.2 that
1S2(h2; Pllsp < Cllfllap: 1<p< 00, §> 0y (3.7.42)

We shall follow the approach of [41, p.104-105] that uses a generalization of the
Riesz convexity theorem for sequences of functions. Let LP(¢?) denote the space of all

sequences { fi} of functions for which

1/p

Iillzven = ( L. (f: |fj($)|q>p/qhi(:v)do(x)> <o

If T is a bounded operator on both LP°({%) and LP*(¢9") for some
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1 < po, qo, P1,q1 < 00, then the generalized Riesz convexity theorem (see [3]) states that

T is also bounded on LP*(¢%), where

1 1—-t ¢t 1 1—t ¢

ygs Po b1 qt qo0 q1

We apply this theorem to the operator 7' that maps the sequence { f;} to the
sequence {Szj(hi; fi)}. By Corollary 3.7.2, T is bounded on LP(¢?). By (3.7.42), it is

also bounded on LP({*°) as

<c

sup | Sp_(h2; f3)]
j=0

S ‘

3 (n2:sup 1 51) sup |f;
J20 Jj=0

P K,p K,p

Thus, the Riesz convexity theorem shows that 7" is bounded on LP(¢?) if
1 < p < q < oco. In particular, T is bounded on LP(¢?) if 1 < p < 2. The case 2 < p < 00
follows by the standard duality argument, since the dual space of LP(£2) is L¥ (£?),

where 1/p+ 1/p’ = 1, under the paring

(o)) = [ 3 g lah ot

and T is self-adjoint under this paring.

Finally, we prove that (3.7.41) for the general case follows by the Stein
interpolation theorem ([39]). Without loss of generality, we may assume that there are
only finitely many nonzero functions f; in (3.7.41). Using (3.7.38), (3.7.39), the

Cauchy-Schwartz inequality, and applying the above already proven case of (3.7.41), we
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obtain that for 6 >0 and p=2ord >0, and 1 < p < 00,

1/2 o0 1/2
H <Z ‘S5+s+zy h2 )’2) < C<€>€cy2 <Z U.J,Z) 7 (3743)
K,p Jj=0 Kyp
where y € R and € > 0. (3.7.41) then follows from (3.7.43) via applying Stein’s
interpolation theorem to the family of analytic operators,
T°f = Se(hk; f)g;, Rea>0,
where (g;) is a sequence of functions on S~ with > lgi(@)P =1for 2 € Sd-1, O

Corollary 3.7.5 allows us to weaken the condition of the Marcinkiewitcz multiplier

theorem established in [15].
Corollary 3.7.6. Let {uj}‘;‘;o be a sequence of complex numbers that satisfies
(i) sup; ;] < ¢ < o,

(i) sup, 2/(=1 lzi; |A™My| < ¢ < oo,

where ng is the smallest integer > o, + 1, Ap; = pj — pjy1, and A = APA.

Then {u;} defines an LP(h2;S% 1), 1 < p < oo, multiplier; that is,

proj; (i || < ellfllep,  1<p<oo,

H?p

where ¢ is independent of ;.
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In the case when the weights are invariant under a general reflection group,
Corollary 3.7.6 was proved in [15] under a stronger assumption that ng is the smallest
integer > 0, + 2 + Kpin- The proof of Corollary 3.7.6 is based on Corollary 3.7.5 and

runs along the same line as that of [4].
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Chapter 4

Maximal Cesaro estimates for
weighted orthogonal polynomial
expansions on the unit ball and

simplex

4.1 Maximal estimates on the unit ball

Analysis in weighted spaces on the unit ball B? = {z € R?: ||z| < 1} can often be
deduced from the corresponding results on the unit sphere S, due to the close
connection between the weighted orthogonal polynomial expansions on B¢ and S?, as
described in Section 2.3, see [25, 51, 52, 54] and the reference therein. In this section, we

shall develop results on B? that are analogous to those on S.
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Throughout this section, we will use a slight abuse of notations. The letter
denotes a fixed, nonzero vector k := (K1, ,Kq41) in R4 rather than in R, and h,
denotes the weight function h,(z) := HdH |z;|% on S? rather than the weight on S?!.

Accordingly, we write

d+1

—1
Koin 1= 1<I]n<1§1+1 K, Z/{], 0n = —— + |K| — Kmin- (4.1.1)
For a set £ C B?, we write meas?(F =/ 5 WB(z)dzx. Finally, recall that

S3(WZE; f) denotes the (C,§)-means for the orthogonal polynomial expansions with

respect to the weight function W72 on B¢ that is given in (1.1.6).

Theorem 4.1.1. (i) If 6 > 0, := &2 + |K| — Kuin, then for f € L(WE;B?) with

I flloowspey =1,
1
meas, {xEIB%d SA(WE; f)(x) >a} <C—, Va>0,
«

with a~|log a| in place of a~' in the case when 6 = o, and at least two of the k;

are zero.

(ii) If § < o, then there exists a function f € L(WE;B%) of the form f(z) = fo(|zj,|)

such that S2(W2B; f)(z) = oo for a.e. x € B, where 1 < jo < d+ 1 is the integer

such that Kjy = Kmin, and x40 = /1 — ||z]|%.

Proof. Given f € LP(WB;B?), define ST Rby f(X) = f(x) for

X = (z,2411) € S% Clearly, fo ¢ = f, where ¢ : B — S? is defined in (2.4.7), which,
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using (2.4.8), is measure-preserving in the sense that for each
meas,(E) = ¢, meas? (¢~ (E)) for each E C S%. Using (2.4.8), we also have that

ferp(h2;8% and || f|l poressay = cll £l owpipey. Furthermore, by (2.4.10),

Sz<hi7.]77X) :Sz(W/??fax)v X = (x7xd+l) GSd7 TLIO,L"' .

Thus, we may identify each function f € LP(W5; B%) with a function f € LP(h2;S?)
under the measure-preserving mapping ¢, and such an identification preserves the
Cesaro means of the corresponding weighted orthogonal polynomial expansions.
Consequently, the stated conclusions of Theorem 4.1.1 follow directly from the

corresponding results on the sphere S? that are stated in Theorem 3.1.1. O

We can also deduce the following corollaries from the corresponding results on the

sphere S¢, using a similar approach.

Corollary 4.1.2. In order that

lim SS(WE: f)(z) = f(x)

n—o0

holds almost everywhere on BY for all f € L(WP;B%), it is sufficient and necessary that

0> 0.

Corollary 4.1.3. If1 <p < oo and § > 20,{\% — %\, then

1SS (W25 )l owpmay < Coll fllows may. (4.1.2)

68



In particular,

157 (W25 Dllzowpipay < Coll fllewpmey, 1<p < oo

1 1

Corollary 4.1.4. For 1 < p < o0, § > 20,|: — 5| and any sequence {n;} of positive

p 2

integers,

00 1/2
s (Z |fa'|2)

J=0

9] 1/2
(it o)

Jj=0

Lr(WE;B4) Lr(WE;B4)

Corollary 4.1.5. Let {/,Lj}(;io be a sequence of complex numbers that satisfies
(i) sup; ;] < ¢ < oo,

(i) sup, 2/(=1 lzi; |A™M | < ¢ < oo,

where ng is the smallest integer > o, + 1. Then {p;} defines an LP(WE;B?),

1 < p < oo, multiplier; that is,

< CHfHL”(W,P;IBd)a I <p<oo,

> i proj;(W2; f)
=0

Lp(W5B:B4)

where ¢ is independent of ;.

In the case when the weights are invariant under a general reflection group,

(4.1.3)

Corollary 4.1.5 was proved in [15] under a stronger assumption that ng is the smallest

integer > o, + 2 + Knin.
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4.2 Maximal estimates on the simplex

In this section, we will show how to deduce similar results on the simplex T¢ from
those on the ball BY. Recall that SS(WT; f) denotes the (C,d)-means of the orthogonal
polynomial expansions with respect to the weight function W on T that is given in

(1.1.7). Our argument in this section is based on the following proposition.

Proposition 4.2.1. Let ¢ : B? — T? be the mapping defined in (2.4.13). Then for each

fe LWL, T9) and § > 0,

SYWEi fodp,x) ~ SJ(WT; f(x)), = eB,

Proof. For simplicity, we set F' = f o). Clearly, FF € L(WZ5;B?) and F(ze) = F(z) for

all e € Z4, and x € B?. In particular, this implies that

Projo, 1 (W5 F) =0, n=0,1,---. (4.2.4)

We further claim that

proj, (W5 f,0(x)) = projy, (W72 F, z). (4.2.5)

Indeed, using (2.3.5) and (2.4.9), we have

P,(W2P:xe,ye) = PB,(WP;2,y), x,ycB? ecZi, (4.2.6)
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and hence, for each ¢ € Zg,

projy, (W25 Foae) = [ Plu)Pon(W2 2, ) WE(y) dy
B
= / F(ye) Pon(W 2, ye) W (y) dy
Bd
= [ PP (W )W) dy
B

= pr0j2n<WnB; F7 33'),

where we used the Zd-invariance of the measure W2 (z)dz in the second step, (4.2.6)
and the fact that F'(-e) = F(-) in the third step. (4.2.5) then follows by (2.4.15).

Next, we prove the inequality
SUWT, f,6(x) < CSU(WE Fa), o€ B (127

To this end, we set

z4+0+1) 1
A = > 0.
" et Terny Y2

Using asymptotic expansions for ratios of gamma functions (see [1, p.616]), we have

that for £ =10,1,---,

(%)ZA(; - ggf(;)fl (z+1)"" + O((ﬂf + 1)H_1>, x> 0. (4.2.8)
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Define the operator

o, (W25 g, 2 Zq) j)proj;(Wrig,x), g€ LW BY),
where
Al 1
S-S 0<a<2n,
o, (r) = " n
0, x > 2n.

Let ¢ be an integer such that 6 — 1 < £ < 4. It is easily seen from (7.2.22) that for

0<x<2n,
|(I)(m( )|<Cn76( +1)6im717 m:0717"' 7£+17
which, in turn, implies that

A, ()] < Cn~O(n — g F102 0K <2 — 1, (4.2.9)

and A™®,(2n) =0 for m =0,1,--- ,¢ — 1. Thus, using summation by parts ¢ times, we

obtain
2n—1
75, (W2 g)] < C ) |AT R, ()]51S5(WE: g)| + C|A D, (2n) |85, (W7 )]
=0
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which, using Lemma 3.6.1, is controlled by
Cn~ 52 — 4+ 1) (W B g) < CSS(WE: g). (4.2.10)
On the other hand, however, using (4.2.4) and (4.2.5), we have

SOWT: fh(x ZA” ; Projy;( (WP, F,x) (4.2.11)

2n

= (Afz)_l ZAfz—j/Q Projj(W£§ Fz)
§=0

[Afz irz Aé

T ] ok, (WP F )+ 88,0V Fa)
2n

j=0

=13 (WB. F x)+ 85 (WB: F,x). (4.2.12)

Thus, combing (4.2.9) with (4.2.12), we deduce the estimate (4.2.7).

Finally, we show the converse inequality
SO(WEB. F ) <CS(WT; f,4(z)), =B (4.2.13)

The proof is similar to that of (4.2.7), and we sketch it as follows.

Let m be the integer such that 2m < n < 2m + 1. Then by (4.2.4) and (4.2.5),

) m

A o ]
A52] projy; (WP F,x) Z

n =0 TL

SS(WE Fz) =

2 proj, (W' f,4(x))

= 11z

5 proj;(Wrhs f(x)) + So, (W f.ap(x)),

[
Il
o
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where

AS . AD .
AélZJ _ Aén]7 0 g ] < m’
Hi =
0, j>m

Using (4.2.8) and similar to the proof of (4.2.9), one can easily verify that for
0<yj<m,

A < Cm™(m—j+ 1) i=0,1,---. (4.2.14)

Let ¢ be an integer such that 6 — 1 < £ < 4. Summation by parts ¢ times shows that

m m—L
)Z uj proj; (Wl f,w<:c>>\ <O A |G+ DSHWE f(x)]
j=0 j=0

¢ i el (T
+Cm Iax | A" i | Spr—s (W5 £ 00(2))],

which, using Lemma 3.6.1, and (4.2.14), is controlled by C'S®(WZ; f,+(x)). The desired

inequality (4.2.13) then follows. O

Recall that ki, || and o, are defined in (4.1.1). For a set E C T%, we write

meas/ (E) := [, W[ (z)dz. The following result is a simple consequence of Proposition

4.2.1, Theorem 4.1.1, and (2.4.14).

Theorem 4.2.2. (i) If§ > 0, := &L + |k| — Kuin, then for f € L(WT;TY) with

||f||L(WE;Td) = 1;
1
meas:f{x eT: SWT; f)(z) > a} <C—, Va>0,
Q

1

with o~ log a| in place of a™' in the case when § = o, and at least two of the K;
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are zZero.

(ii) If 6 < oy, then there exists a function f € L(WT;TY) of the form f(z) = fo(|zj|)
such that SS(WT; f)(x) = oo for a.e. x € T4, where 1 < jo < d+ 1 is the integer

such that Kjy = Kmin, and T4 = /1 — |z|.
As a consequence of Theorem 4.2.2, we obtain

Corollary 4.2.3. In order that

lim Sp(W,1; f)(x) = f(z)

n—oo

holds almost everywhere on T¢ for all f € L(WT;T9), it is sufficient and necessary that

0> 0.

Corollary 4.2.4. If 1 <p < oo and § > 20,{|% — 110|, then

1S2(W.Es Pllowr ey < Coll fll o o). (4.2.15)

In particular,

HS?(WE; f)HLv(Wg;ﬂrd) < CprHLp(Wg;Td), I <p<oo.

Corollary 4.2.5. For1 <p < oo, § > QUH\% — %\ and any sequence {n;} of positive
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integers,

1/2
(4.2.16)

(Sworinn)”

sc (jf;’ff)

Lr(WE;Td) Lr(WE;Td)

Using Corollary 4.1.4, and following the approach of [4], we have
Corollary 4.2.6. Let {,uj};?‘;o be a sequence of complex numbers that satisfies
(i) sup; |p;] < e < oo,

27+1

(i) sup, 270D 37 [Amy| < ¢ < oo,

where ng is the smallest integer > o, + 1. Then {u;} defines an LP(WT;T?),

1 < p < oo, multiplier; that is,

Wl f)

< CHfHLP(WE;Td)? 1< p <00,

Le(W,I5T)
where c is independent of ;.

Corollary 4.2.6 was proved in [15] under a stronger assumption that ng is the

smallest integer > o, + 2 + Kmin-
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Chapter 5

Generalized translations for Dunkl

transforms on R

5.1 Integral representation of generalized

translations

The generalized translation 7Y, initially defined on the space of Schwartz functions,
extends to a bounded operator on the space L?(R%; h2), as can be easily seen from
(2.6.25). On the other hand, Thangavelu and Xu [46] proved that the integral
representation (2.6.26) of 7% defines a bounded operator on L>®(R% h2). It is, therefore,
very natural to ask whether the generalized translation 7% given by (2.6.25) has the
integral representation (2.6.26) on the space L> N L*(R%; h2). This question is fairly
nontrivial as S(R?) is not dense in L*°, but is important for the extension of 7Y to
general LP(R?; h?)-spaces with 1 < p < 0.
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Our main purpose in this section is to clarify the definition of generalized
translations on LP-spaces and some related facts, which will be needed in later sections.
We will show that the expression on the right hand side of the integral representation
(2.6.26) defines a bounded operator on LP(R%; h?) for all 1 < p < oo, which, in
particular, implies that the formula (2.6.26) is applicable to all f € L?(R%; h2). More

precisely, we have

Theorem 5.1.1. The integral representation (2.6.26) extends TV to a bounded operator

on the spaces LP(R%; h?) for all 1 < p < oo with
sup ||Tyf||li,p < Cd”f”li,p’ 1 < p < 0. (511)

yERd

In other words, for each 1 < j < d and a.e. x € R%, the expression on the right hand
side of (2.6.27) is well defined for all f € LP(R% h2) with 1 < p < 0o, and moreover, it

defines a bounded operator T}, on LP(RY; h?) which satisfies

HTj,yijn,p < Cd“f”ﬁ,pa 1<p<oo (5.1.2)

Note that we may rewrite the integral representation (2.6.26) in the form

TYf(z) := » f(2)dpey(2), xy€RY (5.1.3)
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where dji, , is a signed Borel measure supported on

{Z: (21, ,2a) € R ’|$z| — |yl

< el il +lyil, i =12, d}.

As a direct consequence of Theorem 5.1.1, we obtain the following integral
representation of generalized translations for radial functions, which will play a crucial

role in this paper:

Corollary 5.1.2. If f(z) = fo(||z]|) is a radial function in LP(R%; k%) with 1 < p < oo,

then for each y € R and a.e. x € RY,

d
TYf(z) = ¢y /[1 » fo(z(z,y,1)) H(l +t;) (1 — )% dt, (5.1.4)

where 2(z,y,1) = /lle] + w12 — 250,

In the case when f is a radial Schwartz function, (5.1.4) is a direct consequence of a
more general formula of Rosler [35] and the explicit expression (2.2.3) of V. That

(5.1.4) holds under the relaxed condition f = fo(|| - ||) € LP(R%; h?) is very important in

the proofs of the main results of this thesis. A standard limit argument doesn’t seem to
give this result.

Now we are in a position to show Theorem 5.1.1.

Proof of Theorem 5.1.1. By Fubini’s theorem, it is enough to show the result for d = 1.

Assume that x,y € R, k > 0 and f € LP(R;|x|**). Without loss of generality, we may
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assume that x > 0 and zy # 0. Note that for ¢t € [—1, 1],

1
Va2 +y? — 2zyt > max{|z — yt|, |zt — y|} > §|x —y|(1+1). (5.1.5)
It then follows from (2.6.27) that

5@ < C [ [l )]+ o) 0= 2

where u(z,y,t) = /22 + y2 — 2zyt. Thus, we reduce to showing that the integral

1

Ty f(z) = y F(Va2+ 92 = 2zyt)(1 — 2L dt, f e LP(R; |z|>), (5.1.6)

defines a bounded operator on LP(R; |z|**):

|79 f || o (myji2mde) < Okl fll e @ijapzraz), 1< p < o00. (5.1.7)

Performing a change of variable z = /22 + y2 — 2zyt in (5.1.6), we obtain that

N 2l +1u] R Yk
Tyf(;c):/’M:'f(z) [1_ (%)2] 1|x_2y|dz

_ /Rf(z)W(m,y,z)|z|2” dz, (5.1.8)

where
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(A,2)

if || — |y|| < 2 < |2 + |y,

W(z,y,z) =q 2 2oy (5.1.9)
0, otherwise,
Az,y, 2) = (lz| + |yl + 2)(lz| + ly| = 2)(z + || = |y[)(z = |=| + |y]). (5.1.10)
We claim that
sup /W(az,y,z)|x|2” dr < C < o0, (5.1.11)
y,2€R\{0} JR

from which the assertion (5.1.7) will follow by Hélder’s inequality.

To show (5.1.11), we first note that
2| = lyl] <z <zl + [yl < |yl — 2| <zl <yl +2 =220
Also, it is easily seen from (5.1.9) and (5.1.10) that
Wiz, y,z) = W(lzl, [yl 2) = W(lzl, 2, ly[), Yo,y eR, Vz=0.

Thus,

y+z
sup /W(x,y,z)\ac[zﬁdx: sup/ W(z,y, 2)x*" dx.
R

y,2€R\{0} y>2>0 Jy—z
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A straightforward calculation shows that for y > 2z > 0 and z € [y — 2,y + 2],

W(x,y,z) ~ [xy r—(y—2))(y+z— x)] N_1(Iyz)1 2

< Cylyz)™" [(1‘ —(y—2)" +y+z—a)T 1]-

It follows that for y > 2z > 0

y+z
sup W (z,y, z)x*" dx
y>2>0 Jy—

< Cilyz) "(y + Z)”/

" [(:): —(y — z))”fl +(y+z—x)"" 1] dx

—z

< G,

which completes the proof of Theorem 5.1.1.

The multiplier property (2.6.25) of the generalized translation operators plays a

crucial role in our argument. This property carries over to L” spaces:

Proposition 5.1.3. Let y € R? and f € LP(RY R2) with 1 < p < 0o. (2.6.25) holds a.e.

on R? for 1 < p <2, and in a distributional sense for p > 2; that is,

(Fn(Tyf),@ = (f, En(—iy,-)w), Vo € S(RY). (5.1.12)

Proof. That (2.6.25) holds a.e. on R? for 1 < p < 2 follows by the Hausdorff-Young

inequality (2.5.19) and a standard density argument. For p > 2, and any ¢ € S(RY), we
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have

(FI'f.0)= (. Fup) = [ F@)T " Feplahi () da

= [ @ F (B o) wnd(e) de = (FLE(=iv. )e).

where we used (2.6.28) and (5.1.1) in the second step, the identity

T/3(w) = Fe(0Baliv,)) (@), o € SRY)

in the third step. This proves (5.1.12). O

5.2 Generalized convolution

Finally, we give a few comments on generalized convolutions on LP-spaces. Recall
that the generalized convolution f *, g is defined in (2.6.29) for f,g € S(R?). Since the
generalized translation operators are uniformly bounded on LP-spaces with 1 < p < oo,
the following Young’s inequality for the generalized convolution can be established (see
[46, Proposition 7.2]):

1S *5 gllwr <A llxpllglln.as (5.2.13)

where 1 < p,q,r < oo and 1+ % = % + %. This, in particular, implies that the
generalized convolution f *, g can be defined for f € LP(R% h2) and g € LY(R? h2) with
1<p,q<ooand%+%21.

The generalized convolution has the following basic property:
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Corollary 5.2.1. Let f € LP(R%h2), 1 < p < oo and g € S(R?). Then

holds in a distributional sense.

Proof. A straightforward calculation shows that for any ¢ € S(R?),

~

(f % 9,0) = (£, 8% 9) = (£, (00)") = (. G¢) = (FG. ¥)-
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Chapter 6

Almost everywhere convergence of
the Bochner-Riesz means of the
inverse Dunkl transforms of L!-

functions at the critical index

6.1 Sharp Pointwise estimates of the Bochner-Riesz

kernels

Recall that the Bochner-Riesz means of order 6 of f € L'(R?; h?) are defined by

Bi(hl (@) =c | Fuf(€)Euliz, )P (RTENLEdE, R >0,

Rd
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where ®°(z) := (1 — ||z[|*)%.. It is known ( see [46, p. 44]) that ®°(x) = F,.¢°(x), where

& (x) = 2% [l 20 s (lall) = (). (6.1.1)

Setting ¢%(x) := R*F1¢?(Rx) for R > 0, we obtain from Lemma 2.5.1 (vi) that

Ohl€) = P(RE) = ¥ (¢/R), and hence, FE)B(¢/R) = (f . 6}) (€). By (5214),

this implies that BS(h2; f)(z) = f *. ¢%(x). Thus, using (2.6.29) and (5.1.4), we obtain

Br(his f)(@) = s | F@ER(NGS ) ) dy (6.1.2)

where

K302 2,) = T*63(y) = Vi (63 (VI TP = 2[ellly, ) ) @/ ll2l), (613

PO = DI (), 60 = ROYTIEOR™M). (6.14)

The main goal in this section is to show the following pointwise estimate of the

kernel K% (h2;x,y):

Theorem 6.1.1. For § >0, R > 0 and z,y € R?,

R'TT5_, (lzjy;l + R + R~ |}z — gl) ™

|3 (h2;x,y)| < C .
" (1+ R|z — g|)F+

, (6.1.5)

where we write & = (|x,],-- -, |x4|) for o = (z1,- -+ ,z4) € RY

As pointed out in the introduction, this is a fairly nontrivial estimate since an

86



application of Lemma 3.4 of [13] would only give the estimate for the case of ||z|| = ||y]|.

The idea of our proof is from the paper [12].

Proof. By (2.2.3) and (6.1.3), it is easily seen that
K&(h%; x,y) = R*»TKY(h2; Rx, Ry), =,y €RY, R>0. (6.1.6)
Thus, it suffices to show (6.1.5) for R = 1. For simplicity, we write

K(z,y) = K{(h2;z,y). Using (2.2.3), we have

d

K=o /[—1 14 0™ (2, y,0) [T = )97 (1 + 1) (6.1.7)

Jj=1

where z(z,y,t) = \/HxH2 + ||lyl]2 — 2 Z;j:l zy;t; and t = (t1,-- -, tq).

Let & € C*(R) be such that &y(s) =1 for |s] < 1/4 and &y(s) = 0 for |s| > 1, and
let £(s) = &o(s/4) — &o(s). Clearly, supp € C {s: 1 <|s| <4}, and Y7 &(s/4") =1 for
s > 1. Thus, by (6.1.7), we may decompose K(z,y) as K(z,y) = >, K,(z,y), where

1+ 2(z,y,t)?
Kn(x7y) = /[ i qb‘s’o(Z(Q;,y?t))é (%) X (618>
~1,1

x | (1= (1 +¢;) di;.

—.

<
Il
—

Next, fix 2,y € R? and let ng = ng(z,y) € Z, be such that

2200 L1+ ||z — g||* < 22t (6.1.9)
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Note that for t = (t1,--- ,t4) € [-1,1]%,

d
22,y, 07 = Jl2l® + Iyl =2 wjyity > 1z - 711,
j=1

1 02\ -
hence, & (%) is zero unless

2 R
- 1+ z(z,y,t) > 1+ ||z — 7l

4
4n 4n

> 4n0—n‘

This means that

K(z,y) =) Ku(zy). (6.1.10)

n=ng

The following lemma gives an estimate of the kernel K, (z,y):

Lemma 6.1.2. Forn > nyg = no(z,y),
d
K, y)] < C27" S T (s +27) 7, (6.1.11)

where C' > 0 s independent of n, x and y.

For the moment, we take Lemma 6.1.2 for granted and proceed with the proof of

Theorem 6.1.1. Indeed, once Lemma 6.1.2 is proved, then using (6.1.10) and (6.1.11), we
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have that

[e's) o0 d

(gl n

z,y)| < Z | K (2, y) <OZQ R H (lzjy;l +27)”
7=1

n=ng n=ng
d d
< ([Tl +2)7) 30 27549 < ol + 2 ) o500
j=1 n=no J=1
d
~ (L7 =gl T [yl + 1+ 2 = gl)
7=1

which proves the desired estimate (6.1.5) for R = 1.

O
To complete the proof of Theorem 6.1.1, it remains to prove Lemma 6.1.2.
Proof of Lemma 6.1.2. Let Go(u) = (v/u)"*Jo(vu) and Fu(t) = G, (u(:v,y,t)),
where
d
(e, y,t) = zl® + lyl* = 2 Y ayyit; = 2(z,y,0)%.
j=1
By (2.5.21) and (2.5.22), it is easily seen that for a € R,
9 d
%Fa,1<t> = iL’jija(t), t= (tl, te ,td) € [—1, 1] y (6112)
J
and
IFo(t) < C(1+u(z,y, b)) 573, te[-1,1]% (6.1.13)
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Also, note that

—Ax—6

0 (2(z,y,t)) = 2)‘”"( u(z,y,t)) _EJA,.;—HH-%( u(z,y,t)) = C’RF/\HM%(t).

Thus, by (6.1.8), we may write

d
[T =) "1+ dt;.

j=1

Ky(z,y) = cﬁ/

[7171}(1

1
Fy o1 ()€ <W)

Without loss of generality, we may assume that |z;y;| > 2", j=1,--- ,m and
|zjy;| <2, j=m+1,--- .d for some 1 < m < d (otherwise, we re-index the sequence
{xjyj}?zﬂ- Fix temporarily t,,11,--- ,tq € [~1,1], and set

I(tmi1s - 5 ta)

1+ u(z,y, 1)\ o
= cﬁ/[ . Fy, 501 (1€ <4—n) [T =) "1+t dt. (6.1.14)

7=1
By Fubini’s theorem, we then have

d
Kn(z,y) z/[ . I(tmer,- o ta) [ (0=£)"" (1 +1;)dt;. (6.1.15)
_171 —m

j=m+1

Thus, for the proof of (6.1.11), it suffices to show that for each ¢,,,1, - ,tq € [—1, 1],

[t ta)| < €27 e st 540 T [y~ (6.1.16)
Jj=1

To show (6.1.16), let 1y € C*(R) be such that ny(s) =1 for |s| < 3 and ny(s) =0
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for |s| > 1, and let n;(s) = 1 —no(s). Set B, := % for j=1,---,m. Given
797

e:= (1, ,&m) € {0,1}™, we define ¢ : [—1,1]™ — R by

oty =g (P )ng(

) (1+18;)(1— 2,
where t = (t1,--+ ,t,,). We then split the integral in (6.1.14) into a finite sum to obtain

s t) = 3 /[ o B 000 d =

e€{0,1}™ e€{0,1}™

where

Jo= Jtois, e o ty) = / Fa sy (00t dty - dty, (6.1.17)
[-1,1m™

Thus, it suffices to prove the estimate (6.1.16) with I(¢,,11,-- ,tq) replaced by J. for

each € € {0, 1}™, namely,

[eltmr, -+ ta)| < €27 E5mmn ot ST T |y, (6.1.18)
j=1

By symmetry and Fubini’s theorem, we need only to prove (6.1.18) for the case of

g1=-=¢ém =0and g,,,1 =+ =&, = 1 with m; being an integer in [0, m]. Write

) (1+t;)(1 — 2y (6.1.19)

HUO(

with




42
Since the support set of each 7, <1BZ> is a subset of {¢; : [t;| <1— 1B;}, we can use
J

(6.1.12) and integration by parts [1] = 3~ . ¢; times to obtain

| /[ o Prarsny 00O i
—1,1]m—m1

¢, oM (t)
= H |jy5] /[11] Fyrse () dt‘
—1,1]m—m1

Y4
j=mi+1 0 ml+1tm1+1 U aemtm

m
<c ]I V%’yj!_@/

jem -1 ‘

M (t)
FAH+6+57|1|(75)H65 ’ dt,

'm1+1tm1+1 . aemtm

where 1 = ({11, -+, bn) € N7 satisfies ¢; > k; for all m; < j < m. Since ¢ is

supported in [1, 1], ¢(t) is zero unless

d
A R [ D A

J=1

(6.1.20)

> 14z — gl + 2[z;u;](1 = [t5]) = 2|lzj5](1 — 4],

for all m; +1 < j < m; that is, lxﬁ” <2(1—|t])"tfor j =my+1,---,m. On the other

—12
hand, note that the derivative of the function n, (1 B%J> in the variable ¢; is supported in
J

{t;: 3B; <1—1t < B;}.

oMe(t) g o
azm1+1tml+1...@£mtm) <C. H (1= [t;])=~
j=mi-+1
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Finally, note that in the support of ¢(t), 1 + u(x,y,t) ~ 4", and hence by (6.1.13),
By seioy ()] < el +u(z,y, 1) o (Ao,

It follows that

/[1 1]777,77711

1,7
C27’L )\n—é 1+|1| H / o Hj—f'—l dt

j=mi+1

n(=Ax—3—1+]1)) H Kj—
<2 Bj

j=mi+1

oMe(t)
F/\~+5+§—|l|(t)H8£m1+ltm 410 8£mtm

dtm1+1 e dtm

< C27L(Ozf)\;<*1*§) H |‘rjyj|[j*“j7 (6121)

j=mi1+1

where o = Y

j=mi+1

| < /
[~1,1)m1
X H770 <
m mi
<@t T fagysl “JH / (1 |ty dt,

JE—— B;<|t; \<1

< iz A1) H |7,
j=1

r;. Thus, using (6.1.17) and Fubini’s theorem, we obtain that

/[ | Fy 1 @Qp(t) dbpy i1 - - - dig
1,1]m—m1

) (L+t5) (1L —t3)%dt,

2

where we used (6.1.21) and the fact that 7 <1;Jt_j> is supported in

{t;: 1—B; <|t;| <1} for 1 <j < my in the second step. This yields the desired

estimate (6.1.18) and hence completes the proof of Lemma 6.1.2. a
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6.2 Proof of the main results

As mentioned in the introduction, we want to prove the almost everywhere

convergence of Bochner-Riesz mean.

Theorem 6.2.1. Ifx #0, 1 <p < oo and f € LP(R% h2), then the Bochner-Riesz mean

By (h?; f)(x) converges a.e. to f(x) on R as R — oo.

However, Theorem 6.2.1 follows directly from weak type estimates of the maximal
Bochner-Riesz operator. Thus, we only need to prove the following theorem in this

section.

Theorem 6.2.2. Assume that k #0. If § = \. and f € L*(R% h2), then for any a > 0,

meas, ({z € R": BX(hZ; f)(z) > a}) < ¢, Hf('l”’l, (6.2.22)

[ f1l.1

o

[Lf 11,1 11l
o by 7,

where we need to replace log when min¢j<q kj = 0.

We first describe several necessary notations. Let B,.(x) := {y € R?: ||z — y|| < r}

denote the ball centered at # € R? and having radius 7 > 0. Define
V,(x) := meas, (B,(z)) = / h2(z)dz, r>0, x€R%
By (x)

and

V(w,y) = Vie_y (@) = / R2(2)dz, .y € R
lz—=||<[|Z—7l|

Since the measure h?(z)dz is Z3-invariant, it is easily seen that V(z,y) = V(z, %) and
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V.(z) = V,.(Z). Furthermore, a straightforward calculation shows that

d d
Vi) ~ r Tl + ), Viwy) ~ Nz =gl [Tl + 7 = gl)>.

j=1 j=1

(6.2.23)

Here and elsewhere in the paper, the notation A ~ B means that ¢ 'A < B < ¢B for

some positive constant ¢ depending only on x and d.

The proof of Theorem 6.2.2 relies on a series of lemmas.

Lemma 6.2.3. For x,y € R?, set

Liz,y) = (lzjyl + Rz =g+ R 2™, j=1,---,d

Then

d

RdHIj(a:,y) <C

Jj=1

(1+ Rfjz — g
Vi (z) + V(w,y)

where |5, = 3 k; and J = J(z,y) = {j e {1, d} |yl < 2z - g||}.

jeJ

Proof. If j ¢ J = J(x,y), then |z;| > 2|z — y||, |z;| ~ |y;| and hence

Li(x,y) ~ (|l + Rz — gll + R ~ (|l [* + R7%)™™

~ (] + 1z = gl + R~
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If j € J(z,y), then |z;| < 2||z — g||, and

Li(z,y) < (R + Rz —gl)™ = 1+ Rllz —gl)™ (R~ + |z —gl) ™

~ (1+ Rllz = gl)™ (17 = gl + || + R

Thus, using (6.2.23), we obtain

RQIIﬁy 1+MM—MWJRqIMﬂ+W—W+R T
7j=1
1+ Rz —g||?

~ (1 + Rl|z — gl

Vi1 (2) + V(Z,9)’

where the last step can be obtained by considering the cases ||z — y|| < R~' and

|z — y|| > R~! separately. This yields the desired estimate (6.2.24). O

A combination of Lemma 6.2.3 and Theorem 6.1.1 yields the following estimate of

the Bochner-Riesz kernels K% (h2;z,v):

Lemma 6.2.4. For § > 0,2,y € R? and R > 0,

(1+ Rl|z —g|) =+

Ko (h2 z,y)| < C
| R( K y)| VRfl( )—{—V(.T,y)

, z,yeRY R>0, (6.2.25)

where

Rlr= D m= D

j€d(z,y) 3 lzgl<2lz—gl

Next, recall that the weighted Hardy-Littlewood maximal function is defined for
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f € Lioo(R% 1Y) by

loc

1

Mof(a) = sup s [ CLOES

Our proof will also use a modified weighted Hardy-Littlewood maximal function, defined

as follows:
~ 1
@) i=sw o [ @@, 2R
r>0 Vo(@) Jip—gii<r
Since ||7 — || = ||zo — y|| < ||z — y|| for some o € Z4 that depends on z,y and since the

measure h2(x)dz is Z4-invariant, it follows that

M. f(z) < Mof(z) < 3 Myf(z0), z€R%

UGZg

Since h? is a doubling weight on R?, this implies that

meas, {z € R? : ]T/[;f(x) > a} < CW, Va > 0, (6.2.26)

and

1My fllnp < Coll fllups 1< p < o0, (6.2.27)

Finally, the following lemma can be verified straightforwardly:

Lemma 6.2.5. Let 3> 0 and f € L} (R% h?). Then for v € R and R > 0,

loc

A+Rjz—g)",, Vi

g £ ()l
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where C' depends only on B, k and d.

We are now in a position to show Theorem 6.2.2.

Proof of Theorem 6.2.2 . First, we prove Theorem 6.2.2 for the case of ki, > 0; namely,

we prove that if ki, > 0, then for any f € LY(R%; h2),

meas, ({z € R : BM(h2; f)(z) > a}) < Cﬁllf(l)lf,17 Ve o

0.

To this end, without loss of generality, we may assume that || f||.1 = 1. Given

a >0, let € > 0 be such that g2l+d =: %, where C > 0 is a large constant to be

specified later. Setting F. = [—¢, ¢]?, we have

meas, (F.) = / h2(y)dy ~ 2rl+d = ﬁ

" «

Next, we split the integral in (1.2.11) into two parts fEs R fRd\Es

E.=FE.(x) ={yeR?: ||z —g| > e/2}. We then write
By (b 1)) = Tz (b (@) + Sie (b (),
where

Ty (h2; f)(z) = cn i F) Ky (W22, y)h2 (y) dy,

SR = [ Sy 0 k) dy
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To estimate Tgfg(hi; f)(z), we note that by Theorem 6.1.1, for y € E.(z),

Ky ()| < CRY(Re) ™ P2 (R71e) 7 = O — %
1
Thus, choosing € such that C; = 2¢,C, we get that
Ccﬁ
[Tz (hig: ()] < =l =5 (6.2.31)

Next, we estimate Sy (h%; f)(z) for © ¢ F.. If z € RY\ F. and y € R?\ E., then

o1 i= max [z, > & > 2]~ g,

and hence

floi= 3 < Inl = iy <[] =

J:lzjl <2z -l

It then follows by Lemma 6.2.4 that for # € R?\ F, and y € R?\ E.,

(14 R||z — g||)!~lo—I~ (1+Rllfi’—@7||)’“m‘“_
Ve-1(z) +V(z,y) Vi-1(z) +V(z,y)

K (b z,y)| < C

Since Kymin > 0, by Lemma 6.2.5, this implies that

Sy (h2; f)(x) < OM,f(z), = e R\ F.. (6.2.32)
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Now combining (6.2.30), (6.2.31) with (6.2.32), we obtain that for z € R?\ FL,

B (k% f)(@) < CM(f)(2) + 5, =€ R\ E. (6.2.33)
Finally, using (6.2.26), (6.2.29) and (6.2.33), we obtain

meas,{r € R : BM(h%; f)(z) > a}

<meas, (F.) + meas, {x € R*\ F. : BM(h2; f)(z) > a}
C —~ Q C

<= JreRT: M, > 1< =,
a+meas {z flz) > 20} ”

This completes the proof of Theorem 6.2.2 for the case of Ky, > 0.

Next, we show Theorem 6.2.2 for the case of Ky, = 0, namely, we show that if

|k| >0, Kpin = 0 and || f||1,x = 1, then for all a > 0,

1+ |Ina

meas, ({z € R : BM(h; f)(z) > a}) < e, -

(6.2.34)

For the proof of (6.2.34), we claim that it is enough to show that for f € L*(R¢; h2)

with || f]l1.. = 1,

1+ |Inq]
A

meas, ({z € [-1,1]*: B} (hZ; f)(z) > a}) < e (6.2.35)

To see this, set fi(z) = f(tx) for each t > 0, and observe that
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1 flle1 = 22| fi]| 1. Furthermore, using (6.1.6), we obtain that for ¢ > 0,

By (0% £)(w) = ext™7 | Sl IR0 5 )y

= [ HO) R0t 0B ) = B0 1) o)

which implies that

B (h; f)(x) = B (hy; fi)(z/t), t>0, z€R™ (6.2.36)

Next, set

Dno(f) ={z € [-N,N|*: BM(hZ; f >a}, a>0, N>1

It’s easily seen from (6.2.36) that x € Dy . (f) if and only if /N € [—1,1]¢ and
B2(h2; fx)(z/N) > «, namely, /N € D, (fx). Thus, once (6.2.35) is proved, then

meas, (DN,oz(f)) :/

Rd

XDLQ(fN)(N_ll')hi({L‘)d{L‘ = Nd/ hi(Ny)dy

Dl,a(fN)

— Nd+2|n| meas,, ({x c [_1, 1]d : ;upo |B%(hi7fN>($)‘ 2 Oé})
>

1+ |lna . 1+ |lna
< CH%N(LQI |||fN||I'€71 = CH|—"

The desired estimate (6.2.34) will then follow by Levi’s monotone convergence theorem.
It remains to prove the estimate (6.2.35). Without loss of generality, we may

assume that o > 2C5, where (s is a sufficiently large constant. Denote by G(z) the set
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of all y € R? for which there exists i € {1,--- ,d} such that x; > 0 and |z;| > 2|z — 7.

We then write By (h2; f)(z) = G (h2; f)(x) + Gy (h2; f)(x), where

Gi\fR( / fy KA” (RZ; 2, 9)h2 (y) dy,

G%mymw:%/ F) K (0 2 y)h2 () dy.

RNG(z)

By Lemma 6.2.4 and Lemma 6.2.5, it is easily seen that
|GYr(hs f)(@)] < CM f ().

To estimate Gé\j%(hi; f)(z), assume that x; > 0 for some [ € {1,--- ,d}. By the
definition of G(z), we conclude that for each y € R\ G(z), |z;| < 2||Z — ¢]||. Thus, by

Lemma 6.2.4, for 0 < || < 1

W%@%ﬁ@ﬂéc/ '“Wbﬁw@+c/ F@)IR2(y) dy

| <2lz—gl<1 V(T 7) lz—gl>1

[log, ‘le

<¢ ‘ / F@)hi(y)dy + C
Z rneas,,i (m 2J|$l|)) B(i,2j|xl|)| (W) (y) 2

C<1+1n—>M Fla) +

8}
|| 2’

where the last step uses the assumption that o > 2C5.

Putting the above together, we conclude that for = € [—1,1]¢,

B (b2 f)(@) < C(1+1n — ) M f(2) + 5.
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Recalling that a > 2, we deduce

meas,i{x € [—1,1%: |BM(R); f)(x)] > a}

gmeas,i{x el-1,1]": (1+n a)MHf(x) > %} +meas,{r € [-1,1]: |7] < a™'}

<Ca'lna+ Ca " < Ca'(1+1na).

This shows the estimate (6.2.35). The proof of Theorem 6.2.2 is then completed.
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Chapter 7

Restriction theorem for the Dunkl

transform

7.1 Global restriction theorem

Let do denote the Lebesgue measure on the unit sphere S¥1 := {z € R?: ||z|| = 1}

of R%. Recall that for f € L'(S¥1 h2do), we write
Folfdo)(§) = [do(€) == | [W)E(=i&p)hl(y)do(y), &R (7.1.1)

Sd—1

In particular,

Foldo)(€) = do(€) = / Bt gy doly), € € R (7.12)

104



It is known that (see, for instance, [11, Proposition 6.1.9] and [46, Proposition 2.3]))

00(€) = ceall€] 7T Tuz (D) = e, (€L, (7.13)

where \, = &1 + [x].

Our main result in this section can be stated as follows:

Theorem 7.1.1. Let p, = 23:122. Then for 1 < p < pg,

1f #x doflsp < Cllfllnp-

Proof. By (2.5.16), the function,

It (lel)

d
H$|’>‘“_%+Z ) eR )

Ko@) = G- 14-lzl)) =

is analytic in z on the domain {z € C: Re z > —1 — A,;}, whereas by (2.5.22),

| Kypir ()| < Coe (1 + |2|]) =P+ 2 eRY N\, +0>0. (7.1.4)

Furthermore, according to (2.6.24), and by analytic continuation, the function K, has

the following distributional Dunkl transform:

— CH

K.(§) = m(l — €M)=, Rez>0, ¢€cR (7.1.5)
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Namely, the following holds for all z € C with Rez > 0 and ¢ € S(R?).

K.(2)@(x)h?(x) do O

R T T2+ 1) /”Nl(l — |lz)1?)* p(z)hi (z) da.

Define
R.f(x):= fx, K.(x) =c g f)TYK, (2)h2(y) dy, Vf € S(RY).

It is casily seen that R.f is analytic in z on the domain {z € C: Re z > —1 — A.}.

On the one hand, by (7.1.4) and Young’s inequality (5.2.13) , we have that
IR i flloo < N0l Flla < Ce | fllr- (7.1.6)
On the other hand, by (7.1.5) and (5.2.14), it follows that
|Rrsin Il < 1K il fllez < O £ s
Thus, by Stein’s interpolation theorem of analytic families of operators, we conclude that
1f #0 A0y, = cllRoflluzy, < Cllf - (7.1.7)
Finally, by (7.1.3) and Young’s inequality (5.2.13),

|f #x dolloe < Ol fllrplldollee < C||flln1
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Theorem 7.1.1 then follows by the Riesz-Thorin theorem. O]

Next, we define Rf to be the the restriction to the sphere S~! of the Dunkl
transform F, f of f € L'(R% h2), and R*g to be the inverse Dunkl transform of the

measure gdo for a function g € L'(S¥1, h2do). Thus, Rf = F..f . and

Ro@) = [ 0B do(). e
A straightforward calculation shows that for f € S(R?)
R'Rf(@) =c | [T Fuldo)(2) hi(2) dz = . ] s doa). (7.18)

By Theorem 7.1.1, R*R extends to a bounded operator from LP(R% h2) to L” (R%; h2)

with 1 < p < p.. On the other hand, it is easy to verify that

(Rf, 9>L2(sd71,hg) = (/, R*g>L2(Rd7hi)7 Vfe S<Rd)a Vg € C<Sd_1)7

where the notation (-, -),, denotes the inner product of a given Hilbert space H. Thus,

observing that

||R||LP(Rd h2)—L2(Sd—1 p2) — ||R*||L2 Sd=1 h2)—Lr' (R4, h2)

= HR*RHLP(Rd,hE)aLP'(Rd,hi)'

we conclude
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Corollary 7.1.2. If 1 < p < ps, then R extends to a bounded operator from LP(R? h?)

to L*(S?*1, h2), and R* extends to a bounded operator from L*(S?~1, h2) to LY (R?, h2).

7.2 Local restriction theorem

The global restriction theorem proved in Section 7.1 will not be enough for our
purpose. In order to show the main results in this thesis, we need the following local

restriction theorem.

Theorem 7.2.1. Let ¢y € (0,1) be a parameter depending only on d and k, and let B
denote a ball B(w, ) centered at w € R and having radius 6 > co. If f € LP(R%; h2) is

supported in the ball B, d > 2 and 1 < p < p, = 2;%’\2", then

([ sedoto it in)” < € (g [ B ) "Wl (729)

1, 1
where = + = = 1.
> —I—p/

The local estimate (7.2.9) is, in general, stronger than the global estimate in

Theorem 7.1.1. To see this, we write w = (w1, -+ ,wq) and observe that

gy <o

d
Jj=

(gores [ 1) " ~

1

The proof of Theorem 7.2.1 is much more involved than that of the global
restriction theorem. Indeed, a direct application of Stein’s interpolation theorem for
analytic families of operators or the real technique used in the proof of the Stein-Tomas
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restriction theorem would yield (7.2.9) for a smaller p only.
The proof of Theorem 7.2.1 will be given in the next few subsections. For the

moment, we take it for granted and deduce a useful corollary from it.

Corollary 7.2.2. Let ¢y € (0,1) be a constant depending only on d and K, and B the

ball B(w,0) centered at w € RY and having radius 0 > co > 0.

) If1 <p<ppi=22s and f € LP(R% h2) is supported in the ball B, then
Ax+2 K

~ 92)\H+1 l_%
gy < O(———)" p(RA:H2)- 7.2.10
Ilrorrany < () I losmene (7.2.10)
(it) If2+4 > < q< oo, and f € L*(S';h2), then
) 92/\,@+1 %_l
EL (i€, Yh2(6) d ‘ <O(——-—) " .
|, reBe e o0, , . <C(apra) Mleems

(7.2.11)
where LY(B;h?%) denotes the Li-space defined with respect to the measure h?(z)dz

on the ball B.

Proof. Consider the operator T'f := ((fXB) % c/if;) xB- According to Theorem 7.2.1, T' is

a bounded operator from LP(R? h2) to LP (R%; h?) satisfying

L,
7 < (G [ 1)) 11y (7212
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for 1 < p < p.. Next, define

Rf(z) = e /B F@) B =iz y)h2(y) dy, = €S fe LN(BiR2),

and

Rf@@)=co | f)BEdlizy)hi(y)doly), =€ B, fe L' (W),

Sd-1

Namely, Rf = F.(f XB)‘Sd and R*f = (fdo)Y| . A straightforward calculation shows
1 B

that
(R, 9>L2(sd71;hg) =/ R*9>L2(B;hg)7 Vf e LY(B;hy), g € LNSTHRY). (7.2.13)
We further claim that
R*Rf(x) =dTf(z), v€ B, fecLYB;h?), (7.2.14)

where ¢, is a positive constant depending only on d and k. Indeed, for f € L'(B;h?)

and z € B,

R*Rf(z) = c,.@/ Rf(2)E.(ix, 2)h2(z) do(z)

Sd—1

= [ Fi)[ [ Bue i) By i) dote)] dy
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However, it is known that ( see, for instance, [11, p.77])

/S Eu(w,i2) Ey(—y, i2)h3(2) do(2)

= Ve gy (VIRIP + TP = 202, 9) | (9) = €T (do) (@), @,y € R

Thus, it follows that

RRf(x) =, /B () T¥(d0) ()2 (y) dy = T f(z), =€ B,

which proves the claim (7.2.14).
Now using (7.2.12),(7.2.13), (7.2.14) and a standard duality argument, we obtain

that for 1 < p < p,

1RIZs (5in2) 22si-1n2) = IR Wit ) o a2y

= c;HTHLP(B;hg)aLp’(B;h%) < 00,
which yields the assertions stated in the corollary.

7.2.1 Proof of Theorem 7.2.1

We write w = (wy, -+ ,wq). Set [ ={j: |wj| <40} and I' ={1,--- ,d}\ I. Let
Y=g = Zjd ;. We consider the following two cases:

Case 1: v = |&|
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In this case, r; = 0 whenever |w;| > 46. Thus,

d
/ﬁﬁw@~9qFWA+®%A%””P
B

=1

which implies that
1 / 1-2
— hi y) dy ~ 1.
(s [ 010)

Thus, the stated estimate in this case follows directly from Theorem 7.1.1, the global
restriction theorem, which is proved in the last section.

Case 2: v < |k|.

In this case, there exists 1 < j < d such that |w;| > 46 and x; > 0. The proof in
this case is more involved. Our goal is to show the estimate (7.2.12) with
Tf = ((fxp) 5 do ) .

Let & be an even C*°-function on R that equals 1 on [—1,1] and equals zero
outside the interval [—2,2]. Let &(x) = &y(z) — & (2x). Define
i(x) = §(27x) = &(277x) — &(277 ) for j > 1 and 2 € R. Then 377 &;(x) = 1 for
all x € R.

Recall that

me:%éﬂwK@w@ww%mea

where

K(z,y) = T"(Fu(do)) (@) = T o 3 (I ] (@),
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Thus, we may decompose the operator T as T =Y, T,,, where

)= [ @R n ) dy]xota),

and

Ka(z,y) =T (a3 &) (1 D] (@),

First, we show that

_ —1
IT: Sl < 20T 08054 [ ha)dy) "1
B

To this end, we need the following kernel estimates:

Lemma 7.2.3. Fora > —1 andn=0,1,---, set
Kan(@,y) =T Gata) (|- D] @), @,y € R,
Then for z,y € R4,

d
| Kon(z,y)| < C274 2750 T (|50 +27)°
7j=1

(7.2.15)

(7.2.16)

(7.2.17)

(7.2.18)

The proof of Lemma 7.2.3 is long, so we postpone it until the next subsection. For

the moment, we take it for granted and proceed with the proof of (7.2.17).

To show (7.2.17), we note that |y;| ~ |w;| for j € I’ whenever y € B. Thus, using
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Lemma 7.2.3 with a = A\, — %, we obtain that for z,y € B,

[Kn(a,y)l < ﬁ (lzjy;| +2")7 < co s [H(’%F +6%)” ] <H 2‘"“3)
j=1

jer’ jel

1 -1
<C2‘"(d7+”927+d< / hi(2) dz) :
B

(7.2.17) then follows by (7.2.15).

Next, we show that for n > 0,

1T flls2 < C2"(1 flln2- (7.2.19)

To this end, we write

Tf(2) = |(Fxs) e G,

where

Gu(w) = iy 1 (2 éa(lll]) = do(@)&u(l]).

Let ¢ be a radial Schwartz function on R? such that @D/Q:L(x) = &, (x), where

Yyn(x) 1= 2"+ 1g)(277). Then

Eﬂ%ﬂz%/ T (s (2)2 () dor (). (7.2.20)

§d—1
The proof of (7.2.19) relies the following lemma, which gives an estimate of this last
integral.

Lemma 7.2.4. Assume that p(x) = @o(||x||) is a radial Schwartz function on R?, and
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let pon(x) = 2"V p(272) for n € N. Then for a.e. x € R?,

’ /S T2 ()| B2(y) da(y)\ <C

The proof of Lemma 7.2.4 will be given in Section.

By (7.2.20) and Lemma 7.2.4, it follows that for a.e. x € R,

| FeGn(7)] = cx

/S T @)y doly)| < O

Thus,

[Tz < [[fxBGnllk2 < C2"[| fllr2-

On one hand, using (7.2.17), (7.2.19) and the Riesz-Thorin interpolation theorem,

we obtain that

d+1

[T f g < C2 (5 000) vt gty gy

where A = [, hi(y) dy, t = ﬁ = % —land p=p, = —2;%:‘;.

On the other hand, using (7.2.17) and Hélder’s inequality, we obtain that

| flln < AV | Tuf oo < C2CF D02 A7S £,

< O
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Finally, recalling that T f = >~ T, f, we obtain

Tl <D NTafllayr = D ot > o
n=0

21 <62 27 >02
=. 21 -+ 22.
For the first sum X1, noticing that
d+1
1—(—— t= —v) >0
(=4t = 15 (sl =2 >0,

we use (7.2.21) to obtain

Y, < C@(Z'erd)tAft”mep Z 2n(—(%+’7)t+1)
2n <62

22 +1

< COTr RN 9T5E A5 || fl,p = COTER A3 f |l

For the second sum ¥, we use (7.2.22) and obtain

£, <0 Y 2 e A | £,
2n>02

225 +1

< COA 3| f]lnp < COTET A2 || Fllrps

where the last step uses the assumption 6 > ¢y > 0. This completes the proof of

Theorem 7.2.1.
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7.2.2 Proof of Lemma 7.2.3

Let 1 denote either the function &, or the function £ on R depending on whether
n =0or n > 1. Then n is an even C:°-function on R which is constant near the origin.

According to (2.2.3) and (5.1.4), we have

d
Kon(z,y) = c/ Ja(z(x,y,t))n(27 " 2(2, y, t) H N1+ ty)dty,  (7.2.23)
[7171]d j=1
where
d
2z, y,t) = (|2l + 9l = 2wyt
j=1

Next, let Go(u) = (Vu) *Jo(v/1) = jo(y/u). Fix x,y € R? and set
Fult) = Ga(u(@,3.1)) = ja(=(,,1)), where u(z,y,t) = 2(z,,1)? and

t=(t, - ,tq) € [-1,1]% By (2.5.21) and (2.5.22), it is easily seen that for a € R,

0

a—tFa_l(t) = zy;Fa(t), t=(ty, - ,ts) € [-1,1]%, (7.2.24)
J

and
IF(8)] < C(L+u(z,y,t))" 275, te[-1,1% (7.2.25)

By (7.2.23), we may write

Kaste) =a [ 07 (M52 TT0
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where 77(2) = n(1/|z|) for z € R. Since 7 is constant near the origin, it is easily seen that

n € C*(R). Without loss of generality, we may assume that |z;y;| > 2", j=1,---,m
and |z;y;| < 2", j=m+1,---,d for some 1 < m < d (otherwise, we re-index the
sequence {z;y;}9_,). Fix temporarily tp, 1,--- ,t4 € [-1,1], and set
It - 1)
= cﬁ/ ()7 < i )H 2)si =Y (1 4 ) dt;. (7.2.26)
[7171]m ]:1

By Fubini’s theorem, we then have

Kanle) = [ oot TT Q=70+ )y
—1,1]d-m ,

Thus, for the proof of (7.2.18), it suffices to show that for each t,,,1, - ,tq € [—1,1],

(s, o ta)] < C27OF 2550 T . (7.2.27)

j=1

To show (7.2.27), let 1y € C*(R) be such that ny(s) =1 for |s| < 3 and ny(s) =0

for |s| > 1, and let n1(s) =1 —no(s). Set B, for j=1,---,m. Given

Imyl

e:=(e1," ,6m) € {0,1}™, we define ¢, : [~1,1]™ — R by

o) = (220 )ﬁnsj(

) (1+t;)(1 =2y,
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where t = (t1,--- ,t,). We then split the integral in (7.2.26) into a finite sum to obtain

I(tmer, o ota) = Y /[11]mFa(t)1/1€(t)dt1---dtm:: >

e€{0,1}m ee{0,1}™

where

Jo= Jltpsrs - o ta) = / Fo(t)be(t) dty - - dtp. (7.2.28)
[—1,1]m

Thus, it suffices to prove the estimate (7.2.27) with I(¢,,.1,- - ,tq) replaced by J. for

each ¢ € {0, 1}™, namely,

[elbmr, - ta)] < C27CF 3250 T Jajy 7. (7.2.29)

=1

By symmetry and Fubini’s theorem, we need only to prove (7.2.29) for the case of

g1 =-=¢m =0and ,,41 =+ =€, = 1 with m; being an integer in [0, m]. Write
2

4

1- 2\k;—1
5,2) 0+t =) (7.2:30)

Ue(t) = () [T m(

with

p(t) =1 (M‘Z—ft)> . ﬁ m(l ;?32)(1 + ;) (1 =)

J
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(7.2.24) and integration by parts |1 = 3_7" . ¢; times to obtain

‘/ Fa<t>§0(t) dtml—f—l e dtm’
[—1,1)m— 1

Mep(t)
= C |,[L‘~yA|_£j / Fa—l(t) dt‘
j_mH1+1 J97 [7171]m7m1 I I 8€m1+1tm1+1 e 8fmtm
] oMp(t)
<c X ‘_Zj/ Fa—] tH ‘dt’
S jln:1[+1 | JyJ| (—L1]m \ |( ) 8£m1+1tm1+1 . Qbmt,,
where 1 = ({5, 11, -+ , ) € N7 satisfies £; > k; for all m; < j < m. Since 7] is

supported in (—4,4), ¢(t) is zero unless

d
4> 2P+ llylP = 2 ) lzygty]
j=1

(7.2.31)

> |2 — gl1* + 2|yl (1= [t;]) = 2]a;y;|(1 — [t]),

for all my +1 < j < m; that is, 22!

2 L 2(1—|ty|) ! for j =my +1,--- ,m. On the other

12
hand, note that the derivative of the function n, (1 B%J) in the variable ¢; is supported in
J

{t;: %Bj <1- t? < B;}. Consequently, by the Lebnitz rule, we conclude

OMo(t) <
< _ i Hj—ej—l'
] <¢ 1 a1
Jj=mi+1

Finally, recall that 7 € C2°(R) for all n > 0, and that 7 is zero near the origin for n > 1.

This implies that for all n > 0, i <%> = 0 unless ;4" < 1+ u(z,y,t) < 24" for
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some absolute constants c1,co > 0. It then follows by (7.2.25) that

Fa_|l|(t)’ < C(l + U(ZE, Y, t))_a_Qm _% ~ 2—n(a—\1\+%)‘

Thus,

Me(t)
m(t) ’ ‘ 8€m1+1tm IR 8£mt

F,_ Aty 1 dty,

\/[1 1}777, my

1,7
< 2 mall+3) H/ (1 —t;)5at;

Jj=mi+1

<2 a=ll+3) H BHJ

j=mi+1
< Cz—n(a+%_zgﬁ:m1+l H]') H |x]y] lzjin] . (7232)
j=mi+1

Thus, using (7.2.28) and Fubini’s theorem, we obtain that

] </
=1 L g
X HUO(

Ful)p(t) dtm 1 -+ du

) (L+t5) (1 —3)%dt;

m mi
< 62_n(a+%_zgnzm1“ ") H |Iayj| i H/ 1 - |tj|)mj_1 dtj
j=mi+1 Bj<[t; ‘<1

m

—nla+i-3" kK —Kj

<2 (at+3-3" J)H|$jyj| 7,
Jj=1

2

where we used (7.2.32) and the fact that 7 <1;Jt_j> is supported in

{t;: 1—B; <|t;| <1} for 1 <j < my in the second step. This yields the desired

estimate (7.2.29) and hence completes the proof of Lemma 7.2.3.
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We conclude this subsection with the following useful corollary.

Corollary 7.2.5. For a > || — 5 and a.e. z,y € RY,

d = _ =I\—k
Hj:l(‘xjyj‘ +1+ [z —yl)™™
(1+ |z —gl)o+z—

T (ja(ll - D) (@)| < C

Proof. Set K, (z,y) =T [ o (Il - ||) (x). We then write

=3[ Gag) (1 D] (2) = Y- Kanlw. ). (7.2.33)

It is easily seen that K, ,(z,y) is supported in {(x,y): ||z — | < 2"*'}. Thus, by

(7.2.33) and (7.2.18), it follows that

d
|Ko(z,y)| < C > D T ] + 27
7j=1

2”“2maX{lli—@7H71}

— — —(« l—[{/ = — —Kj
C+ |z —gl)~r ”)H(1+|lx—y\|+!xjyj\) 7,
j=1

where the last step uses the assumption that o > |k| — 3.

7.2.3 Proof of Lemma 7.2.4

For the proof of Lemma 7.2.4, we need an additional lemma:

Lemma 7.2.6. Assume that o(x) = @o(||x|) is a radial Schwartz function on R?, and
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let oi(x) = t72Lp(t~1a) for t > 0. Then for a.e. z,y € RY, anyt >0 and { > 0,

C
(1+ 7|z — g])) measy(B(y, 1))

[TY¢()] <

Proof. Clearly, it is enough to show that for any ¢ > 0,

_d1Td ok
t de:l(‘yj‘ + )7

, (7.2.34)
(1+ ez —g])’

[TYi(2)] < C

where p(x) = @o(||z]|) is a radial Schwartz function on RY, o, (x) = t 2~ 1p(t71z) for
t>0.

Note that for ¢ > 0,

(o)) = 2V, (VT + [l = 207y, 1) (¢ ')

— 2L (Tt_lyg0> (t~1a). (7.2.35)

Thus, it suffices to show (7.2.34) for ¢ = 1.

We claim that for any ¢ > 0,

d
TYo()| < C(L+ |z =g~ T+ 117 = glI* + )™, (7.2.36)

j=1
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which will imply (7.2.34) for ¢t = 1. Indeed,

[To(x)| =

V[ oW+ Tyl = 20y, D] (@)

d
A el + Tl 23 assty) 10 - 80570+ 1) ]

Jj=1 Jj=1

:CI{

And if any ; is equal to 0, the above formula holds under the limits

lim ¢, /1 gt)(1 =t dt = M

p—0 1 2

Since ¢(z) is a radial Schwartz function on RY, there exists ¢ > |«| such that

d —op 4
el < [ (el sl =2 Y an) " T[0 -0 i
11 o o1
Since for each fixed t = (t1,--- ,tq4) € [—1,1]¢,
d d d
l2l” + yll* = 2wty = lol” + yll* — 2 lzulltsh = 112 = gl> + 2> (1 = )|zl
=1 =1 =1

> |1z = glI° + 2 max |2y 1(1 — [t]),

it follows that

d

(1 el + Iyl = 23" 2t

7=1
d —
C+llz—glH™ TT (1 + llz = gl + 2l (0 — 113)
j=1

—2¢

/
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This implies that

d 1

|ﬂwwﬂ<cu+wf—m%411/

-1

- — i
(L4112 = g% + 2l (L= [5D] (1= £5)™ 7 (1 +1)dt;.
j=1

If there are some x; = 0, then
1 i /
tiny [ [Lle =gl 2l (1= ) =) @) = G e-gl) Y <
If k; # 0, letting s = 1 — |¢;], we get that
d 1
T¥(2)] < C(1+ Iz — gl*)~* H/ (1 + (17 = glI* + 2|zjy]5)~ s ds.
j=1"70
It is easy to see
1 , |51 )
/ (L+ |7 = gl + 2|zjy]5) ™" 5™ ds = clay;|™ / (1+ [z = gl* +25)" 5™ ds.
0 0
Case 1. If |z;y;|~" > 1, then |z;y;| < 1. And
|55 ) |5y;]
/ (1+ ||z —g|]* + 25) s ds < / s ds = Clayy;|™.
0 0
Case 2. If |z;y;|™" < 1, then |z;y;| > 1. And

|m]'yj| , fee) ,
/ (1+ ]z —g||> +25) ¥ " ds </ (1+s) s ds =C,.
0

0
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Hence

1 , |55 )
/ (14117 — g1 + 2ajyyls) " s ds = clayy; | ™ / (14 7 — gl +25) s ds
0 0

< C’min{l, ]xjyjr”j} < O+ [zjy,]) ™.

And letting ¢ = ¢/ — || > 0, we get that

d
T7p(a)| < O+ |z —gI7) ™" [T + eyl ™)
j=1
d
= O+ lz =gl TTA +llz = gl*) ™ (1 + 1)
j=1
d
<O+ e =gl IO+ 1z = 17 + |y ™.
j=1

This completes the proof of the inequality (7.2.36).
Then let us prove the inequality (7.2.34) for ¢ = 1.

Case 1. If ||z — y|| < 2|y;|, then |z;| ~ |y;|. And

L+ 11z — g7 + |zjy) ~ 1+ [y > ~ (1 + [y;])%

Case 2. If ||z — y|| > 2]y;|, then

L+ |z = g)* + |zy;] = CQA+ [y; %) ~ (14 |y;])*
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Therefore, for all £ > 0,

d
TY0(2)| < C(1+ ||z — gl T + i) 7.

j=1
We got the inequality that we desired. O]
We are now in a position to show Lemma 7.2.4.

Proof of Lemma 7.2.4. By Lemma 7.2.6, for any ¢ € N and = € R,

[, [ee @]z o)
<cy / 1+2“||:w—yu)g2“d(f[ (lysl +27)72%) B (y) do(y)

oezd

<C Z Q"d/ (1 + 2"||xo — y||>£d0(y).

o€zl

Thus, it is sufficient to show that for a sufficiently large ¢, (say, ¢ > d + 1), and any
r € R,

¢
gnd /S (142" —yl)  doly) < O2" (7.2.37)

Without loss of generality, we may assume that % < JJz|| < 2, since otherwise the

desired estimate (7.2.37) holds trivially. Writing x = ||z||2’, we have that for y € S,

lz = ylI* = (2l = D* + 2l|2[|(1 = (2", 9)) = 1 = (2, ).
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Thus,

gnd /Sd_1 (1 +2" |z — yl|>‘f do(y) < C2" /Sd_l (1 e <x’,y>)>_m o

<Oo2™.
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Chapter 8

Weighted Littlewood-Paley theory in

Dunkl analysis

8.1 Weighted Littlewood-Paley inequality

Given a ball B = B(z,r), we write
B={yeR': |z—g|<r}

Recall that

Mofle) = sup e [ 1l )

where the supremum is taken over all balls B such that x € B.

Definition 8.1.1. Let U be a radial Schwartz function such that

supp¥ C {€ € R? : = < [|€] <16}, Let Wj(z) = 2/ DW(2g) for j € Z. Define the
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square function L(f) by

L(f)(x) :

(S 1w, @) s.11)

JET

The operator L(f) can be viewed as a vector-valued convolution operator

Tf(e) = {000 SN = { | ST ()R ) dy}

The norm of L(f) is | Tf|¢-

Lemma 8.1.2. (i) For z # y € R?,

V(W) ()10 ¢
\HI’O&)()chmegglnaﬁﬁgﬂxJu__MDy (8.1.2)
(i) Iz #y and |1z — 2] < 312 — ], then
| )@ - @z |, < B2 ¢ 519
J M=l S =5 meas (B, T2 — 51)

Proof. (i) By the Lemma 7.2.6,

d
24 T] (Jas] +277) 72

TV . = |T7"V;(—y)| < C- ———
(T%(x)| = |T~"%;(~y)| (1+ 27|z — g}
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If p:= |z —y|| <277, then

d
24 T] (|| + 277) 72

d
1 , C
o= <p [zl +p)72 > (1+2p) ~ :
CESEErTIANE S O s B T~ o)

27 p<1 27 p<1

fp=|z—gll>27 let J={j: 1<j<d, |rj| >p}and J*={1,2,--- d}\ J.

Then
26 [] (o] +279) 2
=1 dj (o7 -\l —2K; —j\—2k;
. g 2] 2] i i 2 J i
Z 1+ 2z — g]))! Z (2) <H|x| )(H( ) )
27p>1 271p>1 1eJ ieJ
< Cp~ - g T [ (] + p) =2
icJ
a C
< Cp~ | | (il +p) 7 ~ — -
E meas, (B(z, |z — 7))
Therefore,

C

< .
o~ measg(B(z, ||z — 7))

[t ez ., < clire)@s

j=—o00

(i) Let @(x) = W(||z|), then ® € S(R). Let u(z,y,t) = /[lz[* + [ly[[* — 2z;y;t;,
then for 1 < n < d,
P d

5o T (o) )—cm/ O (u(z,y,t)) -%_—WH(l—tf)“fl(l—l—tj)dtj.

[7171]d

J=1

131



Since for each fixed t = (¢, ,tq4) € [—1,1]%,

d

w(w,y,t) = Y (@) +y = 2a5y5ty) = 2+ yh — 20ayntn > (@0 — Yntn)’,
j=1

we get |z, — yntn| < |u(z,y,t)|. And by Lemma 7.2.6, for all [ > 0,

d

AT (E)@)| <o [ (@ (o) [0 - 25 gy
n [-1,1)4 j=1
d
0+l — i) T[]+ 172
i=1

And by (7.2.35), we get

0 Y
5T W)(@)

-1 d
< C 27 (1 y”) H i| 4+ 27) 72

Then by the mean value theorem, there exist § € (0,1) such that

T (W5)(2) = T9(¥;)(0)] <l = 2] - [VT(95)(E)]
d
< C- 277D g — 2 (14 2701E = gll) " Tyl + 2)7>,

=1

where £ = 0z + (1 — 0)=.

Since ||z — 2|l < 3llz — ll,

—_— B a 3 _ B 3 B B 1, B
1€ =gl = llz —gll =z =&l = Iz = gll =l =€l = Iz =gl = lla = 2l = Sz -7l
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Then

d
[T¥(95)(2) = TY()(2)] < Cllw — 2 - 279D (14 277 & — gll) ™ T[] +27) 7.

=1

o iy _i o\l N\ o
Let p = |2 — gl and I;(a,y) = 270 (14 279p) " T2 (fys] + 27) 72

If p < 27, then

d

S L) <o [Tl + )2~ ——— 1

29<p i=1 Hi._yH meas,i(B(y, Hj_g”))

Ifp=>2let J={j: 1<j<d, |y;| = p}and J*={1,2,--- ,d}\ J. Then

Y Ly <Y 27742 (H\M 2’“) (H 2‘2”“)

20>p 2i>p ieJ ieJe
d
<Cp <H\yi|‘2*”> (H p‘z’“) Tl + )
ieJ ieJe i=1
C 1

1z =gl meas.(B(y, ||z —gl)))

Since B(z, ||z —gl)) < B(y, 2[lz - )),

meas,(B(y, |7 = g[|)) = meas.(B(y, |7 — yll)) = Cx meas.(B(y, 2]z - [|))

> C,meas,(B(zZ, ||z — yl)).
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Therefore,

|7 (w))(z) = 70w (@)

jz_ooHe?

<ol - @i

j=—o00

ya
[ ==l C
1z = gll meas.(B(z, [z — 7))

Definition 8.1.3. Let w(z) be a non-negative, locally integrable function on R?. We

say w is an A, weight for some 1 < p < oo, if

sup (s [o@an) (ot [ w(x)llpdu,i(x))pl <c

where dy, = h2(x)dr and the supremum is taken over all balls B C R?. We say that w

is an A; weight, if

sup (; /B w(x)d%(x)) <w(x), ae z€B.

BCRY meas,(B)

Theorem 8.1.4. Suppose L(f) is the square function defined by (8.1.1), and w is an A,

weight for some 1 < p < co. If w(ox) = w(x) for all ¢ € Z, then

LN 2o w) < Cllf |z (w)-

Proof. Let ¢; be independent and identically distributed random variables with
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P(ej = +1) = 3 for every |j| < n. We define

T.f(x) = [ Ku(x,y)f(y)wy)du(y),

R4

where K, (z,y) = > TY¥;(x) -¢;.

j=-n

Let R, C R? be the subspace such that R, = R% for some o € Z4. Then

10w = 3 3 [ Kale ) 0w - xn, (2

o'€Zd oe7d Ro

=22 /Rd Ku(z,0y) f(ey)w(oy)du(y) - Xr,, (2).

U’EZg JEZg

Let f,(y) = f(oy), then

Tuf(w)= > > / K (0'z,0y) f (y)w(y)dis(y) - Xge ().

d
UIEZg O'EZ% RY

For x € Ri, set

Thoo f(x) = | Ku(o'z,0y)fo(y)w(y)du.(y).

d
R-F

By Plancherel’s Theorem,

||Tn,U,U’fU||L2(w,Ri) < CHfUHLZ(w,Ri)‘
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Thus, the Lemma 8.1.2 implies that T}, , ,» are Calderén-Zygmund operators. Hence

1 Th.0.0 foll o zt) < Cllifollogw,re):

Then the Minkowski’s inequality gives that

1T f e (wrty < Cll foll Lo wra-

And by Khintchine’s inequality and the dominated convergence theorem, we get

WL e wray < CNFll e re)-

8.2 An important corollary

Lemma 8.2.1. Let f € L} _(R% h2) be such that M, f(x) < oo for a.e. x € R If

loc

0 <6 <1, then for every ball B C RY,

g L MR ) dy < OM (@), V€ B

Proof. Fix a ball B and decompose f as f = fi + f2, where fi = fx;5. Then for
0<d<1,

Mnf(y)6 < Mnfl(y)é + Mﬂf?(y)a'
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Since M, is weak (1, 1), it follows by Kolmogorov’s inequality that

m /E(Mﬁfl(z))‘shi(z) dz < ca(m /27; I£(2)|h2(2) dz>6

< CM,.f(x)°, Vxc B.
Next, we claim that
M, fo(y) < CM,.f(z), Vz,y€ B. (8.2.4)

Indeed, fix xz € B and Yy € E, and let B; be a ball such that y € /B: Since fo is
supported in R%\ 2B, in order that J5; 1f2(2)|h%(2) dz > 0, one must have that

2rad(B;) > rad(B), which implies that = € B C 5B;. Thus,

1

meas,(B1) Jp, |f(2)|h%(z) dz < OM,. f(x).

() de < —C /

meas, (5581) J55,

This shows the claim.

Now using (8.2.4), we obtain that

g L MBI dy < ML f (2"

]

Lemma 8.2.1 implies that (M,)°dpu, satisfy the A;—condition for all § € (0,1). And

it follows that (M, )°dpu, are A, weights for all § € (0,1) and p € (1,00). Thus, by the
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Theorem 8.1.4, we can get the following corollary.

Corollary 8.2.2. Let g € L}, (R4 h%) be such that M.g(z) < oo for a.e. x € R, and

loc

L(f) be the square function defined by (8.1.1). If0 <d <1 and 1 < p < 0o, then

| L) zr(Mngdre) < CNf Il Lo (Mgdpn)-
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Chapter 9

Strong estimates of the maximal
Bochner-Riesz means of the Dunkl

transforms

9.1 Main results

The Bochner-Riesz means of f of order 6 > —1 in the Dunkl setting are defined by

2\ 0

Y .

s o [ (1-UE) Fpwman i . o c® R0
ylI<R

whereas the maximal Bochner-Riesz operators are defined by

B(h%: f)(x) = sup|By(hi; f)(x)], = € R". (9.1.1)

R>0
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Theorem 9.1.1. Let 6,(p) = (2\. +1)(% — ]lj) L Ifp=2+ % and 6 > max{0,0.(p)},

then for all f € LP(R?; h2),

1B2 (7% Fllwp < Cllf -

Let 6 > ¢ > 0. Since

€17\ 2I°(6) —25/R 2 2nd—e—L1 0 €]2\e—2
1——=—=) = - R R —t T (1 — 22— dt
( R2 ) F(eE + %)F(é — e+ %) €| ( ) ( 2 > 7

we get that
R ) 1
Ba(h2: f)(x) = CosR ™ / (R — 24 £ BT H(12: f)(w) dt.
0

By Cauchy-Schwartz inequality,

-

2

B0 ) < o [ 10 -yt dt); (5 [ 15 0o )

(9.1.2)
and the first integral above is bounded under the condition § > ¢ > 0.
1

Let v be a C2° function supported in [0, 5] such that

- 1
dwlt)y=1,  telo )
k=1

where 75, (t) = 7(2"t). And define yo(t) =1 — Y52 v(t) for 3 <t < 1and y(t) =0
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otherwise. Then

(L= )5 =D (1= [€)) (1 — [¢])
k=0

= (1= et — )+ 3027 (20— em) (2 - 1) .

Define ¢°(€) = (1 — [£]*)70(1 — [£]?). And for A € (0,1/2], define

Mo = (A=)

Clearly,

supp¢* C {€: 1—

and

VMO < Cx™", €€ R,

Set ¢ (€) = ¢*(&/t) for t > 0, then

(1-55) = e

It follows that

By (02 f)(@) = f e Ao

_ 2
§7<1 J§’>’

A
2

)+ 2Ry
k=1
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0=0,1,-

+3 27 (¢)
k=1

¢ e RY

%o 07 (2).

(9.1.3)

(9.1.4)



By triangle inequality and (9.1.2),

—_

1

R R 3 o /1 (R 3
0 (2. - % 0 2 —k(e—3) [ — ” 2=k 2 )
s @) < C ([ 1w B )+ 3D (3 [Tig o 6T @ )

Define
Gafa) = ([ 172 0P ) "
Then
B2(h2; f)(x) = sup | By(h; f)(x)| < CM.f(x) +C 2 K2 Gy o f(2).
R>0 1

Therefore, to show Theorem 9.1.1, we just need to prove for all p > py := 2 + %,

1
1GASllwp < CAPF2] £l

which is a consequence of the following theorem.

Theorem 9.1.2. Let py =2+ < and r = (3po)’ = A + 1. Then for any nonnegative

function g on RY,

6@ gt de < oxw [ 1f@)PM, (g)@)kie) da,

where M, ,g = (M,.i(g’”))l/”.
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9.2 A locality lemma

Denote by D; the collection of all dyadic cubes in R? with side length 27. Let T be
a sublinear operator with the following local property: for any function f supported in a
cube Q) € D;, T'f is supported in a fixed dilate Q* = cé of @ = Ueezg Qe. By (5.1.3), it
is easily seen that if K is a kernel supported in B(0,c2?), then T'f = f . K has the

above local property.

I _po

Lemma 9.2.1. Suppose T has the above local property, po > 2 and r = (po/2) ot

Suppose further that for any QQ € D;, and any function f supported in @,

97 (2Ax+1) ) 1L
)

T K <A<— " K,2¢
17l < Amgy) . Mk

Then for any f defined on R? and any testing function g > 0,

/ ITf(z)Pg(x)h2(x) dx < CA22j(2)‘“+1)/T/ |f(2) > M, .g(z)Rh2(z) dz. (9.2.5)
R4 R4

Proof. First, we show (9.2.5) for f supported in a cube () € D;. Indeed, by the local
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property of T,

[ s de = | 15 Potnie) i

5,20 </Q lg(x)["h2(z) dﬂf)l/r

< Clmeasy(Q) ITFz , inf M rg()

< [irse]

<cary@ ([ | K (a)de) i Mog(a)
0 xe

<CA22j(2AN+1>/r/ |f(g;)|2Mm,g(g;)hi(x) dx.
Q

Next, we show (9.2.5) for a general f. Write

F=> fxe=)_ fa

QE’DJ' QGD]'

Since 7' is sublinear, we have, by the local property of T,

T <) IT(fo)lxe:

QeD;

which implies

TF?<C D IT(f)l*

QEDj
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Thus,

[ ri@Ps@ite e <c 3 [ (o)l gane) da

QeD;

< CA205@AatD)/r Z /Rd |fQ|2M,€7Tg(9c)hi(x) dx
QeD;

_ CAQQ]'(Q)\N-&-U/T N |f|2Mn,r(g)($)hi(x) dr.

Remark 9.2.2. Note that (9.2.5) implies that for 2 < p < pg, and 7 = (p/2)’ > r,

ITfI%p = NTf*lpsz = sup /Rd ITf(2)]Pg(x)hi () dx

lgller<t

< C AT qyp |f (@) P My rg(2)hi(x) dx

lglle7<1 JRY

< CAZI SV 20 sup | Mgl

|9HN,F<1

< CAZPEVI|fE

9.3 A pointwise kernel estimate

Assume that 2771 < X\ < 277 for some i € N. Let n € C*(R?) be a radial function

such that n(x) =1 for ||z]] < 1, and n(z) = 0 for ||z|| > 2. Set n;(z) = n(27"z) and

n;(z) =n(27~9z) — n(2~91z) for j > i. Then

>_mil€) = lim n(27§) =1, £ € RN\ {0}, (9:3.6)
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Lemma 9.3.1. For % <t<4,j>iand any N € N,

On20IN (1 4 2°]||o]| — ¢ if § <llzll <8
20N (L4 2] D i 937

17 *x 97 ()] <
Cn 20NN (1 4 ||z|)~V, otherwise,

where ¢)M(z) = oMt~ 1x).

The proof of Lemma 9.3.1 is long and technical, so we postpone it until Section 9.5.

9.4 Proof of Theorem 9.1.2

For 271 <t < 4, write

TF(x,t) = f #, oM Zf* o) ZTfa:t z € RY, (9.4.8)

where T} f(x,t) = f *, ( &t)(m) Each T} will be considered as a vector-valued operator

T;: L*(R%h2) — LPo(L2[271,4]) with

1/po
I lumazray o= ([ W00 B i) )

and

4 1
T f (w0, )| L2pe-1,4) = (/2_1 |ij(x,t)|2dt> ‘)
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Note that

~ —~ ~

(1,10 (©) = FOmaN () = FO, = 6)(©). (9.49)

Thus, by the Fourier inverse formula, we have that for f € S(R?),

)= e / T #0 6)(€)Eulit, 1) h2(€) de

/ OOV T; 4 6) (06) Enlip, 2)2(€) dor(€)p™ dp. (9.4.10)

Recall that pg =2 + A%

Lemma 9.4.1. Let B = B(w, c2?) denote a ball centered at w € RY having radius ¢2? for

some ¢ > 0, and let B = Uaezg B(o(w),c2?). Then for j >i>1,

93 (2Ax+1)

<02J<

([ mreora)”

)

LPo(B,h2) meas, (B

~ ~

Proof. Write f = fi + fo, where f1(€) = F(€)Xxa-1<jej<s(E), f2(€) = F(E)xs () and

I:=10,)U(8,00). We then reduce to showing that for k = 1,2,

2](2)\ +1) (1_1

) Wl (041)

([ mora)”

023(

LPo(B,h2) meas, (B)

First, we show (9.4.11) for £ = 1. Using (9.4.10) and Minkowski’s inequality, we
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obtain that for ¢ € [271, 4],

5Oy < O [ [ T 50 00 Bl O12(6) o) ]

<C(/8
s

where Ep = UUEZ% B(po(w)w, 27 p). By the Cauchy-Schwartz inequality, the term on the

LPo(B,h2)

F(0&) 7 5 60)(0€) B, )2() do (€)

gd—1

2
d ) ,
o2 "

right hand side of this last inequality is controlled by a constant multiple of

([

which, using the restriction theorem (Corollary 7.2.2 (ii)), is bounded above by

O T 40 ) (0E) Enli 126 do ()|

L?0(B,,h2)

(1+ 2o — 1) dp),
sd—1

2(2)\&4-1)] 1—-2 8 ) ~
C2 ' —rer) 1+ 2p—t|)? TERACIk 2h2 (&) do(€) dp.
( ) 2=t [ 1 ORI P do(6) do

meas,(B) 1
Here we used the fact that for B, = B(pw, ¢2’p) and any p > 0,

(29 p)PAetl (20 p)2rst1 97 (2Ax+1) 92jlx|
meas,{(ép) meas,(B,)  meas,(B) Hizl(|wn| + 27)2n

(9.4.12)

Thus, by Lemma 9.3.1, it follows that for any t € [271, 4],

1T £ v (512

9@+ (1-2 8 ' R
<O (—ut) [ (14 2p—t])7 2h2(€) do(€) dp.
s ( ) " [ 02— [ 1fpoRke) o6 dp

meas, (B)
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Here and throughout the proof, N denotes a sufficiently large number depending only on

2

k and d. Now using Minkowski’s inequality again, we deduce
[RON it
2—1

4
<.l
LPO(BhQ)
o 2(2)\&—1-1)] )

<o (2 / [ 1P dote / (1+21p— t)~ dtdp

meas, (B Sd-1

22AK+1)]
<oui(2 / / F(p€)2h2(€) dor(€) dp
4 )

meas, (B
2(2)%4'1)] _2

) SR,

S 1)

LPo(B,h2)

< 04—j<

meas,(B)

This shows (9.4.11) for k = 1.
Next, we show (9.4.11) for k = 2. By Minkowski’s inequality, it suffices to show

that for any ¢ € [271, 4] and p = p,

9(2As+1)j

1 1
—iNoi—j 2 p
1T £ Dl oy < €272 ( )) 1 fall2- (9.4.13)

meas, (B

Note that the log-convexity of the LP-norm implies

T3 2 (o) oo (B.n2) < ||ij2(-,t)||Loo 5y 1520 )||L2 Br2)

Thus, it suffices to show (9.4.13) for p = co and p = 2.
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To show (9.4.13) for p = oo, we observe that by (9.4.10), for ¢ € [27,4] and = € B,

it 0 = | [ [ F 0O 50 D06 Blipe 0E) do(€) )

< [l [ f@g)(@ e 60 (0€) Enli, )W(E) do(€)] dp.

yeB,
which, using the fact (9.4.12) and Corollary 7.2.2 (ii) with ¢ = oo, is estimated above by

( Qj(Z)‘KJFl) 1

(Z)" [ ([ 15 P10 (e ) o

Thus, by Lemma 9.3.1, it follows that

up [T o, )] < €272 J(ﬂ)é Jasib ([ Ferre i0(©)) " do
z€B S meas,.; ) I sd—1 K
2(2)%"‘1)3

< 2—’iN2’i] 2)\/ h2 d d
cr s (2 ([ [ FoRize dote) ap)’

2(2)%"'1)] 1

< 072 (o ) e

meas, (B

where the second step uses the Cauchy-Schwartz inequality. This shows (9.4.13) for

p = 00.

Finally, we show (9.4.13) for p = 2. Indeed, by Plancherel’s theorem and Lemma

9.3.1,

T3 = ¢ [ 1FORIT 50 X ORRE) de

<t Ve [ RO+ IE) R de < Ca VIl
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This completes the proof of the lemma. O

Lemma 9.4.2. For any g > 0,

/4 [ e 00 ) Pola)hE () dav dt < CAT / |f (@) Mg (2)hig () de.
2-1 JRd R4

Proof. Recall that Tj : L*(R% h2) — LP(L?[271,4]) is a vector-valued operator given
by

Tif (1) = f 50 (130°)(@) = 6 | F@)T(0 ) @)l w) dy, ¢ € [27,4]

Since 7); is supported in the ball By;+2(0), we conclude from (5.1.3) that Ty(nj@)(x) =0
unless ||z,| — |yn|| < 2772 for n =1,2,--- ,d. This means that for each fixed y € R?, the
function Ty(nj@) is supported in the set erzg B(oy, v/d2/*?). Thus, for any function f

supported in a ball B = B(w, ¢27), T; f(-,t) is supported in the set

B= U B(ow, (¢ +Vd)27).

o€zl

Thus, the operator T} has the locality property stated before Lemma 9.2.1. On the other

hand, however, by Lemma 9.4.1,

1

/ 1T5.f (5 )72 (21 ap hi(x )dl’> " - </§ I1T5.f (2, )2 o 14)}%( )da:)
) 1l

meas, (B
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Thus, using Lemma 9.2.1, we conclude that for j =4, +1,---,

[T e atebie) da

< C4IPEAD)r / | (2) [2M g (2) B2 () d, (9.4.14)
Rd

where 7 = (pg/2)' = A\x + 1. Now let € € (0,1) be such that 0 < & < 2 — 2=t = /\:H.

We obtain from (9.4.8) that

2 N
T 7 g < (Zan Merasan) < €27 S T £, Eagoor.ay

j=i

Thus, by (9.4.14),

/ 1T () 22 s ol >h<>dx<02-“22ﬁ / 15 s 9 ()2 (1) d

02—1822]62 2]2] (2Xk +1)/r/ |f | Mnrg( )hQ( )d

] =1

<O [ 5@ Mgk o) do.
Rd

Lemma 9.4.3. For k € Z and any function g > 0,

J.o

where ¢} (z) = ¢z /t).

2k+2

d 1
[ 17w ) Pa@nitte) de < oA [ 1@ M g(w)bie) de,
Rd
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Proof. For 1 < p < oo, set

Dil? f(z) = u= PP f(z/u), uw>0, zeR%

Note that for any u > 0,

(f  6)(&) = F€)6*(t71€) = Dil: | (il )(Dilgse")| €)

s [Dili(DiLi_lf i @t)] (€).

It follows that for any z € R? and any u > 0,

f i 8 () = DUL(DILL 1 1) s (Fod) () = (DI ) s (Fod) (')

= fu_l *r Qbét(uilx)a

where, for convenience, we set f,(y) = f(u~ly) = Dill°f(y). It follows by Lemma 9.4.2

that
ok+2 e gt A -
s O (2) ]2 2 i . A 2 2 dt
/216_1 /Rd |f *x 02 (2)["g(2) i () dx ; /2_1 /Rd |f *x 0o, (2)["g(@) hig () do -
= / o 50 e (250) P )2 ) i
2-1 JRd

4 - dt
=k [ G o e ) de
2-1 JRd t
<ONT RO [ )P g(2 e ) da
Rd

_ oni / S @ Mgl (w) do,
R

153



where we used the fact that M, ,.(g(u-))(z) = M, ,g(uz) for any u > 0 in the fourth

step.
Now we are in a position to prove Theorem 9.1.2.

Proof of Theorem 9.1.2. Let ¢ be a C*-radial function on R? with the properties that
supp o C {€ €RY: 1< |€] <2} and > e ©(27¢) =1 for all £ € R?\ {0}. Define the

operators L; by

~

(Li))M(&) = ¢(26) [ (&), j € L.

Thus,

[ B2 (@) = S (L) %0 03 ().

jez

Note that

~

(L f) %2 60)(€) = (PO F(©) M),

which is zero unless
4 A4 4 4 . ‘
271 22T el St < 2 < = - 28 < 22
— 27 < el <t <5l < 5

This implies that

f e B2(w) = S (L) e B ),

JEZ: 27 1-ILtL22-7

and hence

Fredt@P<C Y (L)) # o (@)

JEZ: 213227
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It follows that

L 175 P terite / d / ) e R P e
(Z ’Ljf|2)1/2

<N S [ LM gl din(o) = A*
jez YR

Y
L2(R4, My, rgdpin)

where dy,(z) = h%(x) dz. Without loss of generality, we may assume that
M,(g")(x) < oo a.e.. Since r > 1, this implies that the weight M, g = (M, (g"))"/"
satisfies the As-condition with respect to the measure du,. It then follows by the
weighted Paley-Littlewood inequality that

)

L2(M, d,
jez ( K, g p,ﬁ)

< I Wtat e = € [ V@) Mirg(e) die(o).
This completes the proof. O

9.5 Proof of Lemma 9.3.1

Denote by 1 the radial Schwartz function on R? whose Dunkl transform is either

the function 7 or the function 7(§) — n(2¢) depending on whether j =i or j > i. Then

7i(z) = 22t 1)y (20 ) = Y;(x) and

M *n 0P (T) = ) %, @ = 2TEFD) / V(27y) TG (2)hi (y) dy.

Rd
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Since TY¢) (x) = T¥/*¢*(x/t), we have

0 0}(0) = 2O [ G @UTI wOR) dy = (e /1)

where 2™ = 27t. Thus, it suffices to prove the stated estimates for ¢ = 1 (for the cases
|| € [3,8] and |lz]| ¢ [5.8]).

Firstly, by Lemma 7.2.6, we have that

IS

1
meas,(B(z,1))’

TN @) < C T+ Jayl) > ~ z € Re (9.5.15)
j=1

Then we turn to the proof of the estimates (9.3.7) with ¢ = 1. Assume that
TY¢*(z) # 0. As stated before, we need to consider the following cases:

Case 1. ||z|| < 1.

Recall first that
1-27 ||z 4 7| and ||z —7| <1427, (9.5.16)

which in turn implies that

[yl = 1| < llz] + 277, (9.5.17)

Hence, if ||z|| < %, then

Iyl = llll + llyll = llll > 1 =277 -

A
|
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It follows that

0 (@) < P [ ()T @) dy

< (D / (@ |lyl) =21V 2 (y) dy

1
lyll=z

<C2 [ (Ll ) dy
R

< C279N ~ UIINQ=IN (] |z |) Y.

Case 2. ||z|| > 8.

Note that by (9.5.16), ||z — || < 2 < 20 which implies

It follows by (9.5.15) that

;4 9N (2)] < C2IHD / @ lyl) 22 VR (y) dy

llyll~[ll

<C@lal)™ [ 1+ Il dy < CHVE N (1 ),

Case 3. 7 < ||z| < 8.

1
4

In this case, we will show that for any N € Z,,

o ) -N
[ 4 0 (@)] < 2N (1421 = Jaf[) (9.5.18)
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First, we show

[y % ()] < C20DY, (9.5.19)

which will yield (9.5.18) for |1 — ||z||] < 277",

If j =4, then (9.5.19) holds trivially since
|thj * (b)\(x)l < O[]l = ¢ < o0

Now assume that j > 7. Since @/Z)\ is zero near the origin when j > ¢, it follows from

(2.2.1) that D2¢(0) = 0 for any a € Z4. Thus,
0 = D%(0) = czo1h(0) = c/ 2 (x)h2 (z) dx, Vo € 72

Rd

This implies that for every polynomial P on R,
Vij(z)P(x)hi(x)de = [ (x)P(277x)hi(z)dx = 0. (9.5.20)
Rd Rd

Fix temporarily z € {z € R?: 55 < ||z]| <16} and t = (ty,--- ,t4) € [-1,1]% Set

Fo(y) = 0Mu(z,y. 1)), where u(z,y,2) := /22 + [yl — 257, 2y, It s casy to

see

d d
u(z,y, 02 2 2+ lyl® =2 ) lagysllty) = 12 = g1° +2 ) gyl (L= [;) - (9:5.21)

Jj=1 Jj=1

> ||z —gl|* + ngélh?jyﬂ(l — [t5])-
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Since ¢ (u(z,y,t)) =0 unless 1 — 27 < u(z,y,t) <1+2771 (9.5.17) and (9.5.21)

give that F,;(y) is a C°°- function of y supported in the set where

d

D lasllyl =1l < 2. [l = 1] < llyll + 2 and [yl = 1| < [l]| + 27,
j=1

Furthermore, by (9.1.3),
||vantHoo X 2”1 V’I’L:O’l’... .

Now using Taylor’s theorem, we obtain that given any N € Z.,

9°F, (0 0°F,,(0y) .
¢/\(U(.T,y,t)) = Z T}()ya_F Z %y )

lo|<N -1 ’ la|=N

for some 6 = 0(x,y,t) € [0, 1]. It then follows by (5.1.4) that

d
ya o fij—l
TVo(x)=c Y J/[_mda Fo(0) [T - (L+1;) dt;

|a|<N-1 j=1
y* :
+c Z a/[ o 8an,t(0(x7yvt)y) H(l _t?>ﬁj_1(1 +t]>dtj
la]=N Y17 j=1
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Thus, using (9.5.20) and (9.5.23), we conclude that

s 0@ =| [ oo @ o] <€ [ ol
X [/[ L) ||VNFxt .7} y, || H t2 Kkj—1 1+t )dt ]h2( )dy (9525)

< CNp @) [ (1 2y N2y VR ) dy < 020N,
R

This proves (9.5.19), and hence (9.5.18) for

1 ||g;||‘ <25,
Finally, we begin to prove (9.5.18) under the assumption ‘||x|| - 1) > 275, First,

we observe that if

] = 1] > 2715 then by (9.5.22), *F,,(0) = 0 for all & € Z¢, and

hence by (9.5.24), (9.5.25) holds for all j > i. Second, observe that if ||y|| <

H= ]
then

lall = 1| > llgll +27* = 192,y Oyl + 27,

which, by (9.5.22), implies that 9*F, ,(6(z,y,t)y) = 0 for all a € Z%. Thus, (9.5.25)

implies that for all 7 > 1,

A , N
0, %50 M (x)| < C /y||>1\1 LI

< | /[ . IV Fra(0(,y, )| TT = 209711+ 1)ty | 2 )y

o,
I Q
— E

< C2N At / @[y ) ly 1V hi(y) dy

1
loli=2 | 1=l |

. . ) . -N
< C2N QI (Pt )= j(2N+20s-+1) (2—z X |1 _ ||$||’>

< 02V (1421 - Hac|||)_N
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Chapter 10

Almost everywhere convergence of
Bochner-Riesz means for the Dunkl

transforms of functions in LP-spaces

10.1 Main results

In this section, we want to prove the almost everywhere convergence of
Bochner-Riesz means of functions in LP(IR%; h2) which is stated in the following theorem.

For convenience, we do not distinguish |z| and ||z|| in this chapter. Namely,

2] = |l = \J£2 + a3+ b ad Vo= (om0 20) R
Theorem 10.1.1. Let 6,.(p) = 2\ + 1)(% — zl)) — 3. Ifp>2 and 6 > max{0,6,(p)},
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then for all f € LP(R?; h?),

lim B%(R%; f)(x) = f(z), a.e xR

R—o0

Recall the definition of Bochner-Riesz means of f € LP(R? h?) in the last chapter,

we know that

ISIQ)

B (h2: f)w) = (1 - 20)° f(g).

Then by (9.1.4),

Bé h2 ZQ k5f* ¢2k )

Definition 10.1.2. For ¢ > 0, define S} f(z) = f *, G/bt;(l’)y and

S} f(z) = supysq [P f ()]

By definition, we get that §f(f) = f(ﬁ)gbi‘(ﬁ) And

Bo(h2; f)(z) = Y252, 2708% " f(x). Thus,
Bl (s f 22 WSS (10.1.1)

To prove Theorem 10.1.1, let us first show the following theorem.

Theorem 10.1.3. For 0 < A < 2X\, +1,

[ ORAT >| A [ 1@ ‘
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where

1, fO0<a<l,

Aot) =4 |Int|, ifa=1,

\ = dfl<a <2\, + 1.

The proof of Theorem 10.1.3 is long and technical, so we postpone it until Section
10.2.

Proof of Theorem 10.1.3 Suppose f € LP(R% h2) with 2 < p < 2;\:__4%1. Then we

get that 6 < A\, and

(20 +1)(1 — %) <1426 (10.1.2)

Choose a € ((2/\,4 +1)(1 - %), 1+ 25), and let fi(z) = f(2)X|z/<1,
fo(z) = f(2)Xjz>1- Then by Hélder inequality, || fil|r2men2y < C||flLr(a;n2), which

implies that f; € L*(R%; h2). Thus, (10.3.13) and Theorem 10.1.3 give that

— —k
HBf(hi;fl)HLQ(Rd;hi) < § :2 MHSE fillL2anz)
k=0

< Ca > 27 Aill coenz) < Cllfill ooz
k=0

This implies that

]%im BYL(RZ; f1)(2) = fi(z), ae. z€R™
—00
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Since a > (2A, + 1)(1 — %), 2Ax + 35 < —1. Thus, by Holder inequality,

/'x'>1|f2( I (/ @l dm) (/ |>1|x|f%hi<x>dx)l_5

00 1-2
«a p
< Hf2”%p(Rd;hg) (/1 AR /Sdl hi(x’)da(a:’)dr)

< CIIF o asn)-

This means that fy € L*(RY; |z|~*h2(x)).

Since v < 1426 < 14 2\, (10.3.13) and Theorem 10.1.3 give that

_ —k
HBE(hi;f2>||L2(Rd;\xI*“h%) < 22 k5||53 foll L2 @asja)-ah2 (2))
k=0

<Ca) o 2k6 Hf2HL2(Rd;|xrahi<x>)
k=0

< Ol foll 2 ez -an2 (2)) -

This implies that

P{im BY(h2; fo)(x) = folx), ae. z€R%
—00

Since f = f1 + f2, we get that

lim B%(h2; f)(z) = f(z), ae. x€R%

R—o00
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10.2 Proof of Theorem 10.1.3

To proof Theorem 10.1.3, we need to first get an estimate of |S} f(z)].

Lemma 10.2.1. For f € L*(|z|~®h%(z)) and 0 < a < d,

ISt @R S < G [ 1@

Remark 10.2.2. Lemma 10.2.1 and a duality argument imply that for 0 < a < 2\, + 1

and t > 0,

1S @ Pl 1) de < Cada) [ 1@l h (@) da (1023

Here, we first assume that Lemma 10.2.1 is true. The proof of this lemma will be

given in the next section.

Definition 10.2.3. Let / € N and 0 < o < £. Define

Aé T 2 %
i) = ([ Hy,jif%lyhi(y) ay)’,
where
¢
Z( ) 17T f ().
7=0
By (5.1.3),
Af;f(as) = » f(2)d gy e(2), (10.2.4)
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where dji, ¢ is a signed Borel measure supported in

{zeR: |z—z| <y}

Lemma 10.2.4. For{ e N and 0 < a < ¥/,

1A Fllez ~ 1D 2

Proof. By definition, we have

)

(D) (@) = Az, y)

&h

(),

where

v, [i () e

Jj=0 Jj=

8
<
-~
VRS
oL~
~__
i
l
b
‘d
||

d
[T =)y 1+t dt.

7j=1

:c,i/ (1—exp Zt x;Y; )
[7171}

It is easily seen that the function Ay(x,y) has the following properties:

(i) For z,y € RY,

| Ag(z,y)| < 2°.
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(i) As [y] =0,
Ag(z,y) = gz, y) + O(ly|")

holds uniformly in 2 € S, where

(iii) For any r > 0 and any z,y € RY, Ay(rz,y) = Az, ry).

On the other hand, using Plancherel’s formula, we obtain

D112, = [ e [ e[ 1@ RR(e) deay

/ FOPIE 1) B(e/)¢]) de.

where

[Ae(z, )| 5

B(x) = wa |y|PerI20 () dy.

Thus, it suffices to show that

B(l‘) ~k.d 1, Vo € Sd_l.
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To this end, let € = g4, € (0,1) be a small constant depending only on d and &,

and set

|Ag([[‘, y>|2 2

B(z,¢) ::/ —————h:(y) dy.
<o [yttt

Clearly,
B(z,e) < B(z) < B(w,e) + O.4(1). Yo e S
Thus, for the proof of (10.2.6), it is sufficient to show that
B(z,e) ~. 1, Vo e S (10.2.7)

Indeed, using (10.2.5), we obtain that for x € S,

lge(z, 9)* 1
B(l’,ﬁ):/l mhn(y) dy + O(1) y‘<€Whn(y) dy

yl<e |y |

= [ [ e PR dot ) + O
0 i1

Mg(.T)

_ 20—2a+1 O 1 20422«
2W—2a+1" +O()e )

where

Mife) = [ oo ) FiECy) doy)

Sd

Thus, (10.2.7) is a consequence of the following estimate:

MZ(LL’) ~y 1, Vo € Sd_l.
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Since M, is a homogeneous polynomial of degree 2¢ on S?! and S¢~! is compact, it is

enough to show that
M(x) ::/ \qe(z, y) >R (y) do(y) > 0, Vo e ST (10.2.8)
Sd-1

Assume (10.2.8) were not true, that is, there exists z = (xq,- -+ ,z4) € S¥~! such
that M;(z) = 0. This would imply that q,(z,y) = 0 for all y € S*!. However, this is
impossible because for y = e;, with jo € {1,--- ,d} satisfying |z;,| = max;<j<q|z;|, we

have

/1 (tzo) (1 —t%)=0 11 + t) dt

’qf(aja y)’ = Cry,

1
0/2 01 _ 412\Kj,—1
>y d /_115(1 t°) 0 (1 +¢t) dt > 0.

Note that by Lemma 10.2.4,

—~ AT
/Rdlf(x)llxlo‘d:vaIID“/QfIIi / / :m B2(y) dyhi(x) de,  (10.2.9)

where

AT f(w) = TO <T.)(—1)jT“f(fc)

= \J
and r is the smallest integer bigger than /2. Note that if f is supported in a set

Bz, t) = Usezg B(owo, t), then AYf(z) is supported in the domain B(zo, t+ rly|).
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Lemma 10.2.5. For0 < a <2\, +1 and k € Z,

J,

Proof. 1t suffices to prove the asserted conclusion for £ = 0. For simplicity, we denote by

2k+1

dx

[

/ S @R ) P < oA, [ rro (10.2.10)

tlwle

L2, the Hilbert L*-space defined with respect to the measure ¢t~'|z|~*h2 (x)dtdz on
R? x [1,2]. Consider the operator T': L*(|z|~*hZ(x)) — L2, given by f — S} f(x). Its

dual T* : L2, — L*(|z|~*hZ(z)) can be obtained as follows: for {g;:}1<i<2 € L2,

S fgt / / SA n( )Zijf
:/1 /Rdf(x)[\x]aS;\ y-|“gt(-))(:c>}hi(:v>f|ic|l§

= <f(x),/12[|$|a53<| ' |—agt(.)>(x)} %>L2(| |—eh2( ))'

Thus,

and it is sufficient to show that

(L.

Setting fi(z) = |x|"*g:(x), we then conclude that (10.2.10) is a consequence of the

(NI
/N
»\

[\
=
s
X
—~
S
-
>
[N}
—~
~—
—| &
Ss(8
ol &
N—

50 @] ) < exka,m)
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following estimate:

J.

Note that by (10.2.9),

2 9 2
/Sfft(x)dt’ |x|"‘hi(m)dw<(])\Aa(A)/ / (@) 22| h2 () dedt. (10.2.11)
1 1 R4

SAft dt’ 2|2 )dx—(]/
Rd

UW/¢tfotmmd

—C —2—1—a
e v~

/ AT (61 ]) dt‘ h2 (y)h2 () dydze

Since for t € [1,2], ¢} is supported in {z € R?: (1 — )t < |2| < (1 + 2)t},

AZ(gbg\ﬁ)(x) = 0 unless
d A A
FeR ol —rlyl <ol <lel + iy N {z: (1= D)t <lel < (1+ D)t} 0,

which holds either

or

A A
(L=t < lal +rlyl] < 1+ )1
In the first case, setting a,, = %, we have that
1 1 A 1
0<t—a, — ( - ><1 A1 — -3
o < el =7l (75 — 1) < O+ A0 - )
A 1
<2(1+ E)A(l — ZAQ)—l <A



< ¢, where a;, , = leltrlvl, Thus, for fixed

Similarly, in the second case, 0 <t — aj, y e

)

z,y € RY, the function A, ,(t) := Ag(gbg\ﬁ)(x) is supported in the set

I, = ([aw, Az y + CA| U[a;y, ay, , + cA]) ﬂ[l, 2].

Using Holder’s inequality, we then deduce that

2 - 2 2 ~
[ saiwal <o [ syehwp

This implies that

J.

2 ~
< CA/ Iyl_”"_l_o“/1 260 F) )| deh? ()2 (y) dydae

2
/s,ﬁft@)dtﬁxyahi(m)dx

1

Rd Rd
2
e / D2 (G o) ()P 12 () dadt
1 Rd

2
e / / 1S, ()Pl B2 () e,
1 Rd

which, by (10.2.3), is estimated above by

CAAL(N) /1 /R Vfu) Pl 2 ).

This shows the asserted estimate (10.2.11).
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Lemma 10.2.6. For 0 < a < 2X, +1,

/Ooo /]R 1S @) PR (@) < Card (Y /R () Ph2 (2) e

xle t xle’
|z ||

Proof. Recall that (L;f)"(€) = f()¢(27€), where p € C°(R?) is supported in [1,2] and

satisfies that Y., ¢(27€) = 1 for all £ € R?\ {0}. Thus,

S () = frn (@) = Y (Lif) e B2 (2),

JEZ

where

(L) 9)(©) = PP TS (E'S).
Note that ¢(27€)¢*(t71€) is identically zero unless

_j _ 5 4
27 < el <227, and €]l <t < Sl

which also implies that

9—Jj—1 < % .97 <t< § 277 L 92-J
5 3
This means that
SMf(x) = f* 0} (x) = Yo (Lif) #e 9i(@),

JEZ: 2-i-1<4<22—i
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and hence

SM@P<ce Y (L; ) #x 63 (2)]2.

JEZ: 2-i-1<t<22-7

It follows by Lemma 10.2.5 that

/R</ooo ’Sﬁf(x”z%)hi(@li% s C%/ /j 2\SAL e |2d W2 (x >|ZT;
Z/ L fI°h2(z | = C Al szﬂ 1/2

L2 (je| =R (x))

Since for 0 < o < 2\, + 1, w(z) = |z|~* € Ay, it follows by the weighted

Paley-Littlewood inequality that

| 1)

JEZ.

2
oy = h2
iy < O ey = € [ 1F@PRE )T

This completes the proof. O

Let ;b\(u) = A\¢'(u)u for u > 0. Define §§f(x) by
(52) " ©) = dllenf©), t>o,
where ¢ (|¢]) = ¢*(t71[€]). Tt is easily seen that

d 1=~
Z8) (@) = = SM (@), (10212)
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Lemma 10.2.7. For0 < a <2\, +1

| [strrnie et < o [ 1Pk

Now, we are in a position to proof Theorem 10.1.3.

Proof of Theorem 10.1.3

Proof. For t > 0,

S @) 1S (SN 82 de] = 3] [ (L) SEra) 2
<;/0 S @IS (@ >|%“
<E([isr@rt) ([T e’
= 26 )P (),
where

1) = ([ s rs)’,
& = ([ 1str@Pg)”
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It follows that

A 2 Y 2 ()22 AxNx2xd_x
[ ist@rr@ s <0 [ st o [ @@ i)

o
< CAL / (@) PR () 22

|~T|a
Lot /|GA ()22 ||a /yGAf R ) |a>§

N [ wkne)

10.3 Proof of Lemma 10.2.1
To prove Lemma 10.2.1, we need the following Lemma.

Lemma 10.3.1. For 0 < e < 100d and 0 < o < 2)\. + 1, we have

/|1_|£’< [FQPRE(E) d < CaAale)e” /R £ () 2] (z)dz. (10.3.13)

Furthermore, for any M > 2X\, + 1 and a > 0,

[ FORA+1E)02(6) de < Coraa [ 170 Plalh2)dr (10.3.14)

The proof of Lemma 10.3.1 is technical, we postpone it in Section 10.4. Now, let us

prove Lemma 10.2.1 by using Lemma 10.3.1.

Proof of Lemma 10.2.1
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Proof. We follow the notations of Section 9.4. According to (9.4.8), we have
(@) = frn (P (@) =D f e Kj(a), (10.3.15)
J=t j=i

where K;(z) = @(x)n](x) and 27" ~ §. By Lemma 9.3.1, for any N > 1,

— . C2mN (14 a1 - Jal) Y, d <2l <8,
[ K ()] = |7 * 7;(2)| <
C27U=INAN(1 4 |z|)~V, otherwise.
In particular, this implies that
C2-U—IN, for all z € R,
[Kj(2)] < ©2-G-INg—kN if [1— [2|] > 2*A and k >4,  (10.3.16)
C2-U=DNAN(L + |z))=N,  if [z| < Lor |z > 8.
For j > i, we set T} f = f %, K, and claim that
[ 1Bs@Pr@ e < o N0xa, ) [ f@PlelRe) . (10317)
Rd R4

Here and throughout the proof, N is a large positive integer whose exact value is not
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important. Indeed,

[ @R @ de = [\ ) do

:/ ...+/ ...+/ “ e
|1-Jaf | <162 167<|1-[a]| < |1-[al | >0

=L+ L+ 1.
For the first integral I7, using (10.3.16) and Lemma 10.3.1, we have

I < C27NG=) / F@) 2R () da

|1-Jal | <16

<O A2 [ (e al W) da
Rd
For I, using (10.3.16) and Lemma 10.3.1 again, we obtain

L=} / (@) 2|1 K (2)h2(z) dz
262 [1- o[ <241

16A<2kA<9

<C2—N(j—i) 2—kN/ Iy 27,2 d
2 i fepery @) e

16<25<9/\

<C2M YT AN @ [ @)l (o) do
16<2k <9/ Re

< 027NN AL () / |f () P[a| R () da Y~ 27N 2MedD
R? k=1

< C2NG-D)a 4 () / (@) Ph2 (@) ] de.
Rd
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For I3, we have

I, < CANg=G=0N / F@)( + o) VR () de

1—[a| |29

<N 0 [ (@) PlalHi ) da

<C2 O [ 17 al ) do
R

Now combining the above estimates of I3, I5, I3, we deduce the estimate (10.3.17).

Second, we show that (10.3.17) implies that for j > i,

dx

/ T f(2)|*h2 (z) —— <02N<J"'>A“AQ(A)/ |f(2)|?h2(x) da. (10.3.18)
R4 ‘x|a Rd

Indeed, the dual operator T : L*(hZ) — L*(|z|*h}(x)) of the operator

T; : L*(|z|*h%(z)) — L*(h?) can be obtained as follows:

(T3 f, 9>L2(hg) = (/. Tjg>L2(hg) = (/. T;kg>L2(|z|°‘h£(z))7

where T7g(x) = |z[~*Tjg(z). The asserted estimate (10.3.18) then follows by (10.3.17)
and duality.

Third, we show that for j > i,

dx

L dx
[ mspne < covuia,m [ wpe

]

(10.3.19)

To this end, we recall the following local property of the operator 7}: If f is
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supported in a cube @ of side length ¢27, then T} f is supported in the set

Q" = olcQ).

UEZS

We decompose R? as an almost pairwise disjoint union of cubes Qj, k € Z, where Q) is
a cube centered at the origin of side length 2¢27, and the Qy, k # 0 are cubes of side
length 27. We choose ¢ € N large enough so that @} N %QO = () for all k£ # 0. With this

decomposition, we have

lz] < C27, for all v € Q,

|z| ~ |2'| for all z,2’ € Q} and k # 0.
Set fr = fxo, for k € Z. Then f =3, fr. For k=0, we use (10.3.18) to obtain

/ T fol) ||~ hi(x) de < C27 NN AL(N) [ |f(2)Phi(x) da
R4 Qo

< croeamee [ \@pe)
< orm a0 [ e

For k # 0, we use Plancerel’s theorem to obtain

| ma@PE@ = [ R @A i< e 0 [ iwPied
Q% Rd

k
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Since |z| ~ |2/| for all z, 2" € @}, it follows that for k # 0,

d
BRI G <020 [P g
oA [ I

On the other hand, since supp T} fy C Qf, for all k € Z and } _, _; Xq:(z) < Cy4, we have

T 7@ < (Y 1T @) g (0)]) < O3 31T filo)Pxay (o)

keZ keZ

It follows that

[ 1T OZ/ T3 )P o)

kEZ

d
< CA “NZ il uﬁmﬁa

keZ
dx

|z

— A, 2(“)N/|f R

This proves (10.3.19).

Finally, using (10.3.15) and Minkowski’s inequality, we obtain

152 £l 2ol -eh2 o ZHTfHL2|x| on2(z) < Cv/Aa 22 G0 1l 2 o]~ n2 )

< OV AN 22(a1-n2 @)
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10.4 Proof of Lemma 10.3.1

Definition 10.4.1. For 0 < o < 2\, + 1, define

@) = clw.)™ [ T @l ) dy

where
[«
(A +

2

c(k,a) = 9203

[T I

n[Q
~—

Remark 10.4.2. For 0 < a < 2\, + 1, the identity [47, Proposition 4.1]
L2 fx) = |e[™ f(z)

holds in a distributional sense. We also define the operator (—A,)® in a distributional

sense by

((20°7)"© = g7t
Then I2(—A,)2f = f.

Lemma 10.4.3. [/7, Lemma 4.1] If 0 < oo < 2\, + 1, then

Full - 17727) () = e, )l

holds in a distributional sense.

Lemma 10.4.4. [47, Theorem 4.3] Let 1 <p < q < oo and 0 < o < 2\, + 1 be such
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that o = 2\, + 1)(% - %) Then

12 flleg < Cllf ey VF € LP(B7).

|a—2AH—1 (l’ﬂd

Lemma 10.4.5. Let 0 < o <2\, + 1 and 0 < e < 100d. Set uy(z) = |z

E={zeR: ||lz|-1|<e. Then forx,y€ckE,

(

Clz -yl if0<a<d,
ifa=d

C, ifd <o <2\ + 1.

\

hig ()| T ()] < S C”lnﬁ —1ll,

Proof. Let ¢ € C°(R?) be a radial function supported in [, 4] such that

> pez (282) =1, Va £ 0. Then setting p(z) = |z|* 2 14(z), we obtain that for

x #£0,

Z‘ﬂa 2 — 1¢ 21: Z2k 2Ae+1l—a) 21: ) ZQ—kang_k(aj)’

keZ keZ keZ

where ¢;(z) =t 1p(x/t). It follows by Lemma 7.2.6 that for £ > 2\, + 3,

1
ITYuq ()| = | Y 277 T, ()| < C Y 27+
kezz B é (14252 = 3l1)" fgramsy B2 (2) d2
d
C’Zdea (1+2%z—yl) €H|x]\+2 T2
kEZ j=1
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For simplicity, we set p = |z — y|. If 0 < o < d, then

h2 ()| T uq(z)] < C Z okld=a) 1 Z kld=a) 9k p) =t < Cp.

2k p<1 2kp>1

If « = d, then

h2()| T ()| < C Y 14C > (250)7 < Cllng).

2k p<1 2kp>1

Finally, if d < a < 2\, + 1, then

hig ()| TV uq ()|

< Chi(l’) 2216(2)\;4-‘1-1—&) +C Z 2k(d—a) +C Z 2k(d—a)(2kp)—£

k<0 2k p<i 2k p>1
k>0

< COh(z)+C+Cp i<

Now, we are in a position to proof Lemma 10.3.1.

Proof of Lemma 10.3.1

Proof. We start with the proof of (10.3.13). Without loss of generality, we may assume
a>0.Set E:={ze€R?: |1— |z|| <e}, and denote by L*(E;h2) the subspace of

L*(h?) consisting of all functions supported in the set E. We first claim that (10.3.13),
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is a consequence of the following estimate: for any function g € L*(E; h?),

/Rd 9(2)|?|z|"“RA (2) dz < CuAq(e)e® /E lg(2)|?h2(z) da. (10.4.20)

To see this, consider the operator T : L*(|z|*h%(x)) — L*(E;h?) given by T'f = f‘ :
E

and note that for any g € L*(E;h?),

(TF,8) 1oy = [E Fl&)a©m2(e) e = / )(1213()) ol B2 ()

This means that 7*G(x) = |z|~*§(z) where T* : L*(E; h?) — L?(|z|*h2(z)) denotes the
dual operator of 1. The claim then follows.

By the standard density argument, it suffices to show (10.4.20) for
g € L*(E;h?) N C>*(RY). Indeed, invoking Lemma 10.4.3, we obtain that for

g € L*(E;h2) N Ce(RY),

[ @) Pleln o) do

= [P NOIRO & = [ (0 DOF- IEmE de
= cli,0) [ g Glalal" P ) do = el ) [ al)g v ua) )y

E

= c(k, (9, Lg) r2(mp2) < ClILY| r2Em2)l19)| L2(i02),

where
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Clearly,

L9l 12(m5m2) < Ballgllizeinz),

where B, is the Lebesgue constant of the operator L; that is,

B, = sup/ Tyua(x)hi(y) dy.
E

zel

According to Lemma 10.4.5, if 0 < a < d, then

B, < C’sup/ 1z —g|*dy < C Z SUP/ oz —y|* " dy
E 7 E

zelR zeE

€z3

< Csup/ |z — y\a’d dy < Che®Aq(e);
E

zel

if = d, then

BagC’sup/‘ln\i'—gj\‘dyéCSUP/’1n|$—Z/|‘dy
E z€E JE

zel

< C’sup/
z€E J{ycE: |y—=z|<4e}

< Cs/ | In 6| sin?260df < Ce;
2

£

and finally, if d < o < 2\, + 1, then

Bangup/ dy < Ce.
E

zel

186
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zeE J{yeE: |y—z|>4¢}

4e 14€
<C/ rét lnrdr—i-C/ r%tdr max /
0 1—e 2’ €84 Jrresd=1. |/ —y/|>2e}

1n|w—y|‘dy

{

In|z' —y



Now we turn to the proof of (10.3.14). Note that

[ 1r@Plr@ e = [ A RO d = |- T2
R4 Rd

Thus, it suffices to show that
L@+ fa) B @) do < =202 (10.421

(10.4.21) is an easy consequence of Lemma 10.4.4. Indeed, let ¢ > 2 be such that

(22X +1)(3 — %) = 5. Then using Hélder’s inequality and Lemma 10.4.4, we obtain

2

[ F@Pa+ k) Mhd (@) do < CUFIE, = -0

K,q K,2
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