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Abstract

The topic of the thesis is an overview of some sequential and change-point

detection methods with applications to clinical trials. Performing sequential

monitoring is important for ethical, economical and other reasons. It is im-

portant to terminate a study as soon as possible when potentially harmful

treatments are used or when financial resources are limited. The modern

theory of sequential testing of hypotheses started with works of Wald and

Barnard on quality control of military supplies during World War II. Since

then sequential methods received a lot of attention. In this thesis we consider

application of truncated sequential methods to four different models. First, we

consider sequential testing of composite hypotheses in the presence of nuisance

parameters. Second, we describe sequential procedures for binary data with

risk-adjustment. Then, we consider non-parametric methods for sequential

monitoring of longitudinal data. We finish the thesis with an example of mon-

itoring proportions in the context of waiting time at emergency departments

in hospitals.



Acknowledgments

I would like to express my gratitude to my supervisor Professor Edit Gombay

for her patience and kind support throughout my master’s program.

I wish to thank Jason Scarlett, a health system simulation engineer at

Data Integration, Measurement & Reporting at Alberta Health Services, for

compiling and providing the data set on emergency departments lengths of

stay.



Contents

1 Introduction 1

2 Composite Hypotheses 16

3 Binary Data 23

4 Longitudinal Data 36

5 Monitoring Wait Time 43

Bibliography 55

A Asymptotics 60

B R Scripts 62



List of Figures

1.1 Shewhart Control Chart. . . . . . . . . . . . . . . . . . . . . . 4

3.1 Test 1.1 statistic for the seven surgeons (n = 5000, C∗
1(0.05, 5000) =

3.28). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Test 1.2 statistic for the seven surgeons (n = 5000, C∗
2(0.05) =

2.24). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Test 1.3 statistic for the seven surgeons (n = 5000, C3(0.05) =

2.24). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 CUSUM test statistics for the seven surgeons (h = 4.5). . . . . 35



List of Tables

2.1 Monitoring Normal Data: Simulated Power. The initial mean

parameter µ0 = 0, nuisance parameter σ = 1, µA varies from 0

to 0.6. Number of simulations is 5000. . . . . . . . . . . . . . 21

2.2 Monitoring Normal Data: Average Sample Number. The initial

mean parameter µ0 = 0, nuisance parameter σ = 1, µA varies

from 0 to 0.6. Number of simulations is 5000. . . . . . . . . . 22

3.1 Monitoring Binary Data: Simulated Power. The initial param-

eter p0 = 0.07, pA varies from 0.07 to 0.13. Number of simula-

tions is 5000. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Monitoring Binary Data: Average Sample Number. The initial

parameter p0 = 0.07, pA varies from 0.07 to 0.13. Number of

simulations is 5000. . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Monitoring Odds Ratio: Simulated Type I Error. The ini-

tial odds ratio R0 = 1, α = 0.05. The CUSUM algorithm

is stopped after 9600 observations, the truncation points are

n = 5000, 9600. Number of simulations is 5000. . . . . . . . . 29

3.4 Monitoring Odds Ratio: Simulated Power of Tests 1.1-1.3. The

initial odds ratio R0 = 1, RA varies from 1.25 to 2, the trunca-

tion points are n = 5000, 9600. Number of simulations is 5000. 30



3.5 Monitoring Odds Ratio: Simulated Power, Average Sample Num-

ber and Conditional Average Sample Number for CUSUM. Be-

fore τ is the proportion of stops before τ . The initial odds ratio

R0 = 1, RA varies from 1.25 to 2. The algorithm is stopped

after 9600 observations. Number of simulations is 5000. . . . . 31

3.6 Monitoring Odds Ratio: Average Sample Number for Tests 1.1-

1.3. The initial odds ratio R0 = 1, RA varies from 1.25 to 2, the

truncation points are n = 5000, 9600. Number of simulations is

5000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Monitoring Longitudinal Data: Simulated Power. The parame-

ters are µ1 = 1, µ2 varies from 1 to 2, J1 = J2 = 20, 50. Number

of simulations is 5000. . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Monitoring Longitudinal Data: Average Sample Number. The

parameters are µ1 = 1, µ2 varies from 1 to 2, J1 = J2 = 20, 50.

Number of simulations is 5000. . . . . . . . . . . . . . . . . . . 42

5.1 Monitoring proportion of discharged patients within four hours:

Stollery Hospital. Stopping times are provided for the tests that

signaled a change. The initial proportions are p0 = 0.687, the

historical average, and p0 = 0.7, 0.75, 0.8. The sample size is

130, the truncation point is n=260. . . . . . . . . . . . . . . . 45

5.2 Monitoring proportion of discharged patients within four hours:

University of Alberta Hospital. Stopping times are provided for

the tests that signaled a change. The initial proportions are

p0 = 0.4, the historical average, and p0 = 0.5. The sample size

is 130, the truncation point is n=260. . . . . . . . . . . . . . . 45

5.3 Monitoring proportion of discharged patients within four hours:

Average and Maximum Sample Numbers of EWMA under H0 :

pi = 0.4, i ≥ 1. Number of simulations is 5000. . . . . . . . . 46



5.4 Monitoring proportion of discharged patients within four hours:

Simulated Power for Tests 1.1-1.3. The initial proportion is

p0 = 0.4, pA varies from 0.5 to 0.9, the truncation point is

n=260. Number of simulations is 5000. . . . . . . . . . . . . . 47

5.5 Monitoring proportion of discharged patients within four hours:

Simulated Power for EWMA. The initial proportion is p0 = 0.4,

pA varies from 0.5 to 0.9, λ = 0.05, 0.1, 0.2, 0.3. The algorithm

is stopped after 1500 observations. Number of simulations is

5000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6 Monitoring proportion of discharged patients within four hours:

Average Sample Number. The initial proportion is p0 = 0.4,

pA varies from 0.5 to 0.9. The truncation point is n = 260,

EWMA algorithm is stopped after 1500 observations. Number

of simulations is 5000. . . . . . . . . . . . . . . . . . . . . . . 48

5.7 Monitoring proportion of discharged patients within four hours:

Simulated Power for Tests 1.1-1.3. The initial proportion is

p0 = 0.4, pA varies from 0.401 to 0.41, the truncation point is

n = 260. Number of simulations is 5000. . . . . . . . . . . . . 49

5.8 Monitoring proportion of discharged patients within four hours:

Simulated Power for EWMA. The initial proportion is p0 = 0.4,

pA varies from 0.401 to 0.41, λ = 0.05, 0.1, 0.2, 0.3. The algo-

rithm is stopped after 1500 observations. Number of simulations

is 5000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.9 Monitoring proportion of discharged patients within four hours:

Average Sample Number. The initial proportion is p0 = 0.4, pA

varies from 0.401 to 0.41. The truncation point is n = 260,

EWMA algorithm is stopped after 1500 observations. Number

of simulations is 5000. . . . . . . . . . . . . . . . . . . . . . . 51



5.10 Monitoring proportion of discharged patients within four hours:

Simulated Power for Tests 1.1-1.3. The initial proportion val-

ues are p0 = 0.3, 0.39, 0.399, 0.4, 0.401, 0.41, 0.5, the alternative

parameter pA is fixed at 0.4, the truncation point is n = 260.

Number of simulations is 5000. . . . . . . . . . . . . . . . . . . 52

5.11 Monitoring proportion of discharged patients within four hours:

Simulated Power for EWMA. The initial proportion values are

p0 = 0.3, 0.39, 0.399, 0.4, 0.401, 0.41, 0.5, the alternative param-

eter pA is fixed at 0.4, λ = 0.05, 0.1, 0.2, 0.3. The algorithm is

stopped after 1500 observations. Number of simulations is 5000. 53

5.12 Monitoring proportion of discharged patients within four hours:

Average Sample Number. The initial proportion values are

p0 = 0.3, 0.39, 0.399, 0.4, 0.401, 0.41, 0.5, the alternative param-

eter pA is fixed at 0.4. The truncation point is n = 260, EWMA

algorithm is stopped after 1500 observations. Number of simu-

lations is 5000. . . . . . . . . . . . . . . . . . . . . . . . . . . 54



Chapter 1

Introduction

Sequential Analysis Motivation

This thesis describes sequential analysis methodology. We illustrate the meth-

ods in the context of clinical trials. However, applications can be found in

almost any area where an experiment is carried out sequentially. This includes

quality control and reliability in industry and sequential monitoring of optimal

portfolio weights in finance. Another area of applications is monitoring hospi-

tal performance, for example, with respect to infection rates or patient falls.

One of the recent important applications is monitoring of wait times includ-

ing emergency department lengths of stay, wait times for hip replacement and

radiation oncology services. Long wait times at emergency departments and

walk-in clinics is a problem that almost everyone encounters every year. The

problem was resolved in Ontario, but is still present in Alberta. Statistical

monitoring of wait times at emergency departments in Alberta is a part of the

Five-Year Health Action Plan [1].

In experiments, where data accumulate over time, it is natural to monitor

results as they occur. An analysis of the data at one or more time points prior

to the official close of the study is called interim analysis. The purpose of such

analysis is to assess the possibility of terminating the study early. There are

several reasons for the interim analyses. The most important is the ethical

reason. For example, in clinical trials, it is necessary to monitor the results to

ensure that individuals are not exposed to unsafe treatments. If a new treat-
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ment is beneficial or harmful compared to the placebo or a current standard

treatment, it is an ethical need to perform interim analysis and to terminate

the study earlier than planned if sufficient evidence is gained. However, origi-

nally sequential methods were developed for economic reasons. These methods

typically lead to savings in sample size, time and cost in comparison to the

fixed sample procedures.

The randomized clinical trials have become a gold standard for medical

research. It has led to a great development of methodology for the design,

conduct and analysis of these studies. The process of interim monitoring of

the accumulating data in such trials are receiving more and more attention.

It is even a formal requirement for some studies. For example, the US Food

and Drug Administration (FDA) guidelines contain “E9 Statistical Principles

for Clinical Trials” [2] that says “Careful conduct of a clinical trial according

to the protocol has a major impact on the credibility of the results (see ICH

E6). Careful monitoring can ensure that difficulties are noticed early and their

occurrence or recurrence minimized... The goal of such an interim analysis is

to stop the trial early if the superiority of the treatment under study is clearly

established, if the demonstration of a relevant treatment difference has become

unlikely or if unacceptable adverse effects are apparent”. The ICH guidelines

were adopted by Health Canada in 2003 [3].

Often the interim monitoring is performed by an independent data moni-

toring committee (DMC), sometimes called data and safety monitoring board

(DSMB). The committee is formed to assess the progress of a clinical trial,

patient safety and treatment efficacy, and recommend whether to continue,

modify or terminate a trial. The operation of data monitoring committees is

described in [4]. The book provides instructions on how to establish DMC,

describes its purpose and responsibilities as well as statistical approaches to

monitoring accumulating data.

To stress the importance of the interim analysis we would like to mention

that there are many conferences held on this topic, and corresponding training
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is offered to researches in clinical trials trough workshops, such as the Work-

shop on Current Advances in Interim Analysis and Design Modifications held

in Rockville, USA in September 2000. Also, the interim analysis is one of the

topics at FDA/Industry Statistics Workshop every year.

Although the formal requirements mentioned above were written with the

accent on the more practical group sequential methods, continuous monitoring

is often desirable. In this thesis we focus on sequential methods, the methods

where analysis is performed after each new observation.

History of Sequential Methods

Even though interim analysis is common in many fields of science, it did not

receive much attention in the classical theory and the sequential procedures

cannot be found in most of the widely used statistical software packages. Ar-

mitage [5] said: “The classical theory of experimental design deals predomi-

nantly with experiments of predetermined size, presumably because the pio-

neers of the subject, particularly R. A. Fisher, worked in agricultural research,

where the outcome of a field trial is not available until long after the experiment

has been designed and started. It is interesting to speculate how differently

statistical theory might have evolved if Fisher had been employed in medical

or industrial research.”

The formal application of sequential procedures started in the late 1920s

in the area of statistical quality control in industry. Walter A. Shewhart [6]

introduced control charts for process control while working for Bell Labs, for-

merly known as the American Telephone & Telegraph Company (AT&T). The

control chart is nowadays one of the seven basic tools of Statistical Process

Control (SPC) and the most technically sophisticated, out of the seven. By

the 1920s the AT&T’s engineers had realized the importance of reducing vari-

ation in a manufacturing process in order to keep the frequency of failures

and repairs low. Shewhart formulated the problem in terms of common- and

special-causes of variation and introduced the control chart as a tool for dis-
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tinguishing between the two. Common-cause is the usual, chance cause of

variation in a system. A certain amount of natural variability always exists,

no matter how well a production process is designed or maintained. This

natural variability, “background noise”, was named the common-cause of vari-

ation. Special-causes are unusual, not previously observed causes of variation.

The special-cause variability might occur, for example, in case of improperly

adjusted or controlled machines, operator errors or defective raw materials.

Shewhart emphasized that bringing a production process into a state of sta-

tistical control, where there is only common-cause variation, and keeping it in

control, is necessary to predict future output and to manage a process eco-

nomically.

The Shewhart control chart is a graphical display of a quality characteristic

(e.g. mean) that has been measured on a sample versus the sample number.

A typical control chart is shown in Fig. 1.1. The control chart consists of a
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Figure 1.1: Shewhart Control Chart.

center line that represents the mean value of the quality characteristic when

the process is in-control state and two other horizontal lines, called the upper

control limit (UCL) and the lower control limit (LCL). The UCL and LCL

lines are typically drawn 3 standard errors from the center line. The chart

may optionally have upper and lower warning limits, drawn as separate lines,
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typically 2 standard errors from the central line. The warning and control

limits are also sometimes referred to as alert and alarm thresholds, respectively.

If the process is in control, almost all, 99.73% for the three-sigma limits,

points will plot within control limits. A point that falls outside of the con-

trol limits indicates that the process is out of control, and investigation and

correction are required.

Although the control chart was not motivated by the Neyman-Pearson

lemma, it is closely connected to the hypothesis testing. In a sense, the con-

trol chart is a test of the hypothesis that the process is in a state of statistical

control. A point plotting within the control limits is equivalent to failing to re-

ject the null hypothesis of statistical control, while a point outside the control

limits is equivalent to rejecting the null hypothesis. The main difference with

the hypothesis testing is that when testing hypotheses the validity of assump-

tions is usually checked, whereas control charts are used to detect departures

from the assumed in control state. In general, one should not worry too much

about assumptions such as the form of the distribution or independence when

applying control charts with the purpose of reducing variability about the state

of statistical control. The hypothesis testing framework is useful in analyzing

the performance of control charts. It brings in the probability of type I error,

concluding the process is out of control when it is really in control, and the

probability of type II error, concluding the process is in control when it is

really out of control.

A general model for a Shewhart control chart is as follows. Let S be

a sample statistic that measures some quality characteristic of interest, the

mean of S is θ0 and the standard deviation of S is σS. Then the center line,

the upper control limit and the lower control limit are defined by the equations

UCL = θ0 + LσS,

center line = θ0,

UCL = θ0 − LσS,
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where L is the distance of the control limits from the center line. If the

process is in control with the mean θ0 and S is the sample average, the by

using the central limit theorem to assume that S is approximately normally

distributed, it is expected that 100(1 − α)% of the sample means S will fall

between θ0 + Zα/2σS and θ0 − Zα/2σS, where L = Zα/2 is the α/2-th quantile

of a standard normal distribution.

The design of the Shewhart control chart is given by the sample size, control

limits (L) and frequency of sampling. The control limits are chosen to minimize

the risk of type I and type II errors. Moving control limits away from the

center line decreases the risk of type I error while increasing the risk of type

II error. If the control lines are moved closer to the center line the effect

on errors is opposite. It is important to note here that we are talking about

individual type I and type II errors, i.e. corresponding to testing H0 : θi =

θ0 for sample number i. Keeping type I error small prevents unnecessary

process adjustments and is consistent with the “if it isn’t broken don’t fix it”

philosophy. For the control chart where average as a sample statistic and three-

sigma control limits are used, from the standard normal table the probability

of type one error is 0.0027 under the assumption of normality. That is, a false

alarm will be generated on average in 0.27 out of 100 samples.

In addition to control limits, sample size and the frequency of sampling

must be specified to design a control chart. Ideally, large samples very fre-

quently should be taken. In this situation it is easier to detect small shifts

very early. However this is usually not economically feasible. A compromise

between small samples at short intervals and larger samples at longer intervals

is usually sought.

Another way to make the decisions about sample size is through the average

running length (ARL). ARL is the average number of points that must be

plotted before a point indicates that a process if out of control. This is an

important characteristic of sequential tests, especially open ended. Shewhart

procedure stops and declares an out-of-control condition with probability one.
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Thus it is not possible to control the traditional overall type I error at a certain

level. Instead, the sample size and/or L are chosen to control ARL as large

as possible when the process is in control, since stopping represents a false

alarm, while if the process has shifted an undesirable setting, we would like

the procedure to stop shortly. ARL is also called average sample number

(ASN) and average stopping time.

When the observations are uncorrelated the ARL for any Shewhart control

chart is

ARL =
1

p
,

where p is the individual type I error, the probability that any point exceeds

the control limits. ARL is used to evaluate the performance of sequential

procedures. For the control chart with the average as a sample statistic and

three-sigma control limits, p = 0.0027 when the process is in control and there-

fore in control ARL=370. That is, even if the process remains in control, an

out-of-control signal will be generated every 370 samples on average. The use

of average run lengths for comparing control chart performance is usually criti-

cized, because that average usually follows a geometric distribution, which has

high variability and is very skewed. The standard deviation of the geometric

distribution is
√
1− p/p, which is approximately 370 for the three-sigma lim-

its. Because the distribution is quite skewed to the right, it might be more

appropriate to report percentiles of the run length distribution instead of just

the ARL.

There is a number of generalizations of Shewhart control charts to accom-

modate for correlation between the observations and different types of data

(e.g. binary, counts). Shewhart control charts are still widely used in industry.

The modern theory of sequential testing of hypotheses was initially devel-

oped independently by Wald in 1943 [7] in the US and Barnard [8] in the UK.

Wald and Barnard developed the sequential methods for quality control of mili-

tary supplies in the World War II. In 1947 Wald [9] proposed very powerful and

well-known sequential probability ratio test (SPRT), where for a sequence of
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independent and identically distributed random variables Y1, . . . , Yk, . . . with

a density function f(·; θ) with respect to a σ-finite measure, where θ ∈ Ω ⊂ R

is the parameter of interest, the null hypothesis

H0 : θ = θ0

is tested versus

HA : θ = θA. (1.1)

The value θ0 is typically determined by the current process performance, while

θA represents an alternative value of interest, corresponding typically to worse

performance. The test is defined as follows: Two positive constants A and B

(B < A) are chosen so that the test has the prescribed error probabilities α =

P (type I error) and β = P (type II error). At each stage of the experiment,

the likelihood ratio
∏k

i=1 f(yi; θ0)/
∏k

i=1 f(yi; θA) is computed. If

k∏
i=1

f(yi; θ0)/
k∏

i=1

f(yi; θA) ≤ B

the sampling is stopped with the acceptance of H0. If

k∏
i=1

f(yi; θ0)/
k∏

i=1

f(yi; θA) ≥ A

the sampling is stopped with the acceptance of HA. If

B <

k∏
i=1

f(yi; θ0)/
k∏

i=1

f(yi; θA) < A

the sampling is continued by taking an additional observation. The sample

size at which the boundary A or B is crossed is a random variable and the

mean of this random variable is the average running length (ARL). It is also

called the average sample number (ASN) and we use the ASN notation in the

rest of the thesis. The Wald’s procedure is optimal in the sense of minimizing

the average sample number among all the tests with a finite ASN and error

probabilities α and β. Note that the theory can essentially be used only in

case both H0 and HA are simple hypotheses.
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One of the other approaches to quality control problems is change-point

detection. In statistics these problems can usually be modeled as follows. We

have a sequence of independent and identically distributed random variables

Y1, . . . , Yk, . . . and would like to detect whether a change at time τ occurred in

the sequence and that after time τ Y ’s have another distribution. In contrast

with the sequential testing described above, in change-point detection we test

H0 : θi = θ0 for all i ≥ 1 versus
HA : θi = θ0 for all i < τ,

θi = θA for all i ≥ τ,
(1.2)

where τ is unknown. Wald’s SPRT was originally developed to for testing the

hypotheses when τ is fixed and equals 1.

Sequential procedures that test against an alternative hypothesis that all

observations Y1, . . . , Yk, . . . come from f(·; θA) cannot be expected to be very

powerful if the change in distribution happens late in the sample. The few

observations after the change in parameter would be dominated by the many

from the original distribution. In the case when both f(y; θ0) and f(y; θA)

are completely specified, that is θ0 and θA are both known constants, there

are some popular and well developed change-point detection procedures avail-

able, such as Shewhart’s control charts, Moving Average control charts, Page’s

CUSUM procedure and V-mask (see [10]). The basic change-point detection

problem was first considered by Page in 1954 [11]. If the interest is in the

mean parameter, Page’s CUSUM test monitors the partial sums

Sk − min
1≤j≤k

Sj, k = 1, 2, . . . ,

where Sk =
∑k

i=1 wi and wi is the sample score assigned to the i -th ob-

servation. There are different implementations of this procedure. Two-sided

implementation suggested by Barnard [12] involved the use of a graphical de-

vice, called a V-mask. This approach is inconvenient to use in practice. In

situations where concern is focused on only detecting increases (or decreases)

of the parameter, the tabular form of the CUSUM is easier to use. That is,

if the alternative hypothesis is one-sided, HA : θi = θA > θ0 for all i ≥ τ , a

9



standard tabular CUSUM involves monitoring:

Sk = max (0, Sk−1 + wk), k = 1, 2, 3, . . . ,

where S0 = 0, and wk is the sample weight (see [10]). The null hypothesis of

no change is rejected at the first k when Sk ≥ h.

The design of the CUSUM is given by wk and h. Lorden (1971) [13] sug-

gested the log-likelihood ratio weights

wk = log
f(Yk; θA)

f(Yk; θ0)
. (1.3)

Moustakides [14] showed that this choice of weights is optimal in the sense

that, among all schemes with the same ASN under H0, the log-likelihood ratio

weights give the smallest ASN under HA given that the change point has been

past.

The choice of a control limit h is based on the Average Sample Number

(ASN) of the CUSUM under H0 and HA. Similar to Shewhart control chart,

it is not possible to control the traditional type I error at a certain level.

Instead, h is chosen to control ASN as large as possible under H0 and as small

as possible under HA. After the control limit h and weights wk are selected

the CUSUM algorithm can be formulated as follows.

CUSUM Test. Stop and conclude that H0 is not supported by the data

at the first k, when

Sk ≥ h.

The other method, that is extensively used and performs similar to CUSUM,

is the exponentially weighted moving average (EWMA). It is another alterna-

tive to the Shewhart control chart when detecting small shifts is of interest.

Similar to the CUSUM, the EWMA is typically used with individual observa-

tions, rather than samples.

The exponentially weighted moving average control chart was originally

proposed by Roberts (1959) [15]. The theoretical properties of the EWMA
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were studied later (Crowder [16],Lucas and Saccucci [17]). The EWMA for

monitoring the process mean is defined as

Sk = λYk + (1− λ)Sk−1, (1.4)

where 0 < λ ≤ 1 is a constant, sometimes called a smoothing parameter, and

S0 = θ0. Sometimes the average of the preliminary data or the historical value

is used for S0. Rewriting Sk−1 in terms of previous Yi’s in (1.4), demonstrates

that the EWMA test statistic Sk equals an exponentially weighted average of

all previous observations

Sk = λ

k−1∑
i=0

(1− λ)iYk−i + (1− λ)kS0.

The weights λ(1− λ)i decrease geometrically so that the most recent observa-

tions have heavier weights while the first observations contribute very little. In

contrast, the original CUSUM control chart uses equal weights. The EWMA

is widely used in time series modeling and in forecasting (Box et al. [18])).

Assuming Yi’s are independent random variables with variance σ2, the

variance of Sk is

σ2
Sk

= σ2

(
λ

2− λ

)[
1− (1− λ)2k

]
.

Therefore the center line and control limits for the EWMA control chart are

defined by the equations

UCL = θ0 + Lσ
√

λ
2−λ

[1− (1− λ)2k],

center line = θ0,

UCL = θ0 − Lσ
√

λ
2−λ

[1− (1− λ)2k],

(1.5)

where L is the width of the control limits [10]. The process is considered out-

of-control whenever the EWMA test statistic is out of the control limits. Note

that the term
[
1− (1− λ)2k

]
in the above equations tends to 1 as k → ∞. The

EWMA chart is identical to a Shewhart control chart when λ = 1. Therefore,

given the width of the control limits L and the smoothing parameter λ the

EWMA algorithm can be formulated as follows.
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EWMA. Stop and conclude that H0 : θ = θ0 is not supported by the data

at the first k, when

|Sk − θ0| ≥ Lσ

√
λ

2− λ
[1− (1− λ)2k]. (1.6)

The design of the EWMA is given by L and λ. Similar to the CUSUM the

choice of these values depends on the desired ASN. Values of λ between 0.05

and 0.25 were found to work well in practice. It was also found that L = 3,

the usual three-sigma limits, works reasonably well, especially with the larger

values of λ (λ > 0.1).

Although the normal distribution is the basis of the EWMA chart, the chart

is relatively robust to the normality assumption violations. The chart, how-

ever, can be adapted to some other distributions, like Poisson and Bernoulli,

and to monitoring parameters other than the mean [10].

The EWMA chart is sensitive to small shifts in the process mean, but is

very slow in detecting large shifts. The ASN performance is equivalent to that

of CUSUM.

Truncated Sequential Tests

The stopping rules for the above procedures, e.g. Wald’s sequential probability

ratio test or the CUSUM, do not rely on asymptotic distributions. These open-

ended procedures stop and reject the null hypothesis of the process being

in control with probability one. The disadvantage of this is that all these

procedures do not allow to control type I error, which may lead to many

false alarms, especially if the change in the process happens not soon after

monitoring begins. The hypotheses that are tested, (1.1) or (1.2), can also

be generalized by not fully specifying the alternative parameter θA. We now

describe three truncated sequential procedures that allow to control type I

12



error and test the generalized hypotheses

H0 : θi = θ0 for all i ≥ 1 versus
HA : θi = θ0 for all i < τ,

θi = θA > θ0 for all i ≥ τ,

where θA and the change-point τ are unknown. The term truncated means

that there is a maximum sample size n that is specified before the monitoring

begins and testing is performed after each new observation until the maximum

sample size is reached.

These sequential tests are based on the efficient score vector, that is defined

as

Vk(θ) =
k∑

i=1

∂

∂θ
log f(Yi; θ).

To obtain sequential test statistics we standardize Vk(θ0) with I−1/2(θ0), where

I(θ) is the information matrix

I(θ) = −E

[
∂2

∂θ2
log f(Y ; θ)

]
.

Let Sk(θ) = I−1/2(θ)Vk(θ) and n be the truncation point, i.e. the maximal

allowed sample size. The truncated level α tests are as follows.

Test 1.1. Stop and conclude that H0 is not supported by the data at the first

k, 1 < k ≤ n when
1√
k
Sk(θ0) ≥ C1(α, n),

where

C1(α, n) =
− log (− log (1− α)) + 2 log log n+ 1

2
log log log n− 1

2
log π

√
2 log log n

;

otherwise do not reject H0.

For the two-sided version of Test 1.1 monitor k− 1
2 |Sk(θ0)| and reject H0 if

it is greater than

C∗
1(α, n) =

− log (−1
2
log (1− α)) + 2 log log n+ 1

2
log log log n− 1

2
log π

√
2 log log n

.

(1.7)
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Asymptotic distribution of the test statistic in Test 1.1 was calculated

by Darling and Erdős [19]. However, critical values C1(α, n) and C∗
1(α, n),

corresponding to the asymptotic distribution, give conservative tests. They

can be improved by using Vostrikova’s results [20]. See Appendix A for details.

Test 1.2. Stop and conclude that H0 is not supported by the data at the first

k, 1 < k ≤ n when
1√
n
Sk(θ0) ≥ C2(α),

where C2 is obtained from the distribution of |N(0, 1)|, N(0, 1) a standard

normal random variable; otherwise do not reject H0.

For the two-sided version of Test 1.2 monitor n−1/2|Sk(θ0)| and reject H0

if it is greater than C∗
2(α), where C∗

2(α) satisfies

4

π

∞∑
m=0

(−1)m

2m+ 1
exp

(
−π2(2m+ 1)2

8C∗
2(α)

2

)
= 1− α. (1.8)

Test 1.1 and Test 1.2 were compared in Gombay [21] when τ = 1, i.e. in

sequential testing. Test 1.1 is conservative and stops early for large changes.

However Test 1.2 is more powerful at the expense of a greater average stopping

time.

Tests 1.1 and 1.2 were originally developed for the case when τ = 1 in HA.

When the problem of interest is the change point detection a sequential test

motivated by cumulative sum procedure may be considered.

Test 1.3. Stop and conclude that H0 is not supported by the data at the first

k, 1 < k ≤ n when

max
0≤j<k

1√
n
(Sk(θ0)− Sj(θ0)) ≥ C∗

2(α);

otherwise do not reject H0.

The two-sided version of Test 1.2 has the same critical value as the one-

sided Test 1.3. Test 1.3 has more power when a change in a distribution
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happens late. The distributions of test statistics in Test 1.2 and Test 1.3

under H0 are provided in Appendix A.

The tests described in the Introduction can be applied to many different

models. We illustrate the application of the sequential and change detection

tests to some of the models. In Chapter 2 we consider sequential methods for

testing composite hypotheses, in particular in the presence of nuisance param-

eters. In Chapter 3 we present tests for binary data and a risk-adjustment pro-

cedure and illustrate them with a surgeon performance monitoring example.

In Chapter 4 we consider nonparametric sequential methods for longitudinal

clinical trials in terms of comparison of several treatment groups. In Chapter

5 we provide an example of monitoring proportions in the context of waiting

times at emergency departments at the Stollery Hospital and the University

of Alberta Hospital.
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Chapter 2

Composite Hypotheses

Let Y1, . . . , Yi, . . . be independent random variables with density f(y; ξi) with

respect to a σ-finite measure, where ξi = (θi, ηi) denotes the parameter vector.

We assume that θi ∈ Ω1 ⊂ Rd, d ≥ 1, ηi ∈ Ω2 ⊂ Rp, p ≥ 0 and consequently

ξi ∈ Ω = Ω1 × Ω2. In this notations θ is the parameter of interest and η is

the nuisance parameter. In this section we consider sequential tests of the

composite hypotheses

H0 : θi = θ0, ηi = η ∈ Ω2 for all i ≥ 1 versus
HA : θi = θ0, ηi = η ∈ Ω2 for all i < τ,

θi = θA, ηi = η ∈ Ω2 for all i ≥ τ,
(2.1)

where η, θA, τ ≥ 1 are unknown. These hypotheses are composite for two

reasons: first, the alternative parameter space for θ is not a single point as θA

is unknown, second, there is a nuisance parameter η.

Wald was the first who tried to generalize his open-ended likelihood-ratio

test by introducing weight functions. He suggested integrating it over the range

of nuisance parameters to reduce a composite hypothesis to a simple one in

terms of the parameter of interest. This approach was found not successful in

applications.

Another approach suggested using Wald-type procedure and asymptotics

developed by Barlett (1946) [22] and Cox (1963) [23] under contiguous alter-

natives, that is, assuming that ∥θA − θ0∥ = O(N−1/2), where N is the sample

size, which is a random variable. It was shown that the likelihood ratio has

optimal power in fixed sample size tests (see Bahadur [24], Brown [25]). In
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Gombay (2002) [26] truncated sequential tests based on the likelihood ratio

were compared to the sequential t-test of Barnard [27] and Rushton [28], [29]

with the variance as a nuisance parameter. The procedure based on the likeli-

hood ratio was found to have greater power at the expense of greater average

sample number (ASN). See [21] and [26] for more discussions.

Tests 1.1-1.3 formulated in the previous section do not require specifying

θA. In this section we give extensions of these tests to testing hypotheses in

the presence of nuisance parameters.

The efficient score vector is defined as

Vk(ξ) =
k∑

i=1

∇ξ log f(Yi; ξ)

and the information matrix is

I(ξ) = −E

[
∂2

∂ξi∂ξj
log f(Y ; ξ)

]
.

The information matrix I can be partitioned with respect to θ and η as

I =

(
I11 I12
I21 I22

)
,

where I11 is d× d, I12 = IT21 is d× p and I22 is p× p. The inverse of I is then

I−1 =

(
I11 I12

I21 I22

)
.

The parameter of interest is θ, so the nuisance parameter η is replaced by its

restricted maximum likelihood estimator η̂k, i.e. the solution of

k∑
i=1

∇η log f(Yi; θ0, η) = 0. (2.2)

When we replace η with η̂k the efficient vector score with respect to the pa-

rameter of interest simplifies to

Vk(θ0, η̂k) =
k∑

i=1

∇θ log f(Yi; θ0, η̂k).
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Similar to Tests 1.1 and 1.2 the efficient score vector Vk(θ0, η̂k) is standardized

with (I11(θ0, η̂k))
1/2, where I11(θ0, η̂k) =

(
I11 − I12I

−1
22 I21

)−1
. The test statistic

for monitoring is then

Sk(θ0, η̂k) = (I11(θ0, η̂k))
1/2Vk(θ0, η̂k).

The approximating process for Sk is a multivariate Gaussian process with

independent standard Wiener process components. Hence each component can

be monitored with a level α∗ test which gives an overall level of significance

α = 1− (1− α∗)d. Therefore it is enough to define the tests for d = 1.

Sequential tests analogous to Test 1.1 and 1.2 are then as follows.

Test 2.1. Stop and conclude that H0 is not supported by the data at the first

k, 1 < k ≤ n when
1√
k
Sk(θ0, η̂k) ≥ C1(α, n),

otherwise do not reject H0.

The critical value C1(α, n) is the same as in Test 1.1. For the two-sided

version of Test 2.1 monitor k−1/2|Sk(θ0)| and reject H0 if it is greater than

C∗
1 (α, n). Vostrikova’s improvements of the critical values are also applicable

here.

Test 2.2. Stop and conclude that H0 is not supported by the data at the first

k, 1 < k ≤ n when
1√
n
Sk(θ0, η̂k) ≥ C2(α),

otherwise do not reject H0.

For the two-sided version of Test 2.2 monitor n−1/2|Sk(θ0, η̂k)| and reject

H0 if it is greater than C∗
2(α).

Test 2.3. Stop and conclude that H0 is not supported by the data at the first

k, 1 < k ≤ n when

max
0≤j<k

1√
n
(Sk(θ0, η̂k)− Sj(θ0, η̂k)) ≥ C∗

2(α),

otherwise do not reject H0.
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Test statistics in Tests 2.1-2.3 have the same asymptotic distributions as

the ones in Tests 1.1-1.3, respectively (see Gombay [30]).

Example. Let Y1, . . . , Yi, . . . be independent normal random variables with

mean µ and variance σ2. Consider the problem of testing the hypotheses (2.1),

which are in terms of µ and σ2

H0 : µi = µ0, σ2
i = σ2 ∈ Ω2 for all i ≥ 1,

HA : µi = µ0, σ2
i = σ2 ∈ Ω2 for all i < τ,

µi = µA, σ2
i = σ2 ∈ Ω2 for all i ≥ τ,

where µ ∈ Ω1 = R and σ ∈ Ω2 = (0,∞) ⊂ R, hence p = d = 1. Here µ

is the parameter of interest and σ2 is a nuisance parameter. Without loss of

generality we can assume that µ0 = 0.

For the normal random variables

log f(y;µ, σ2) = −1

2
log(2π)− 1

2
log σ2 − (y − µ)2

2σ2
.

The restricted maximum likelihood estimator of σ2 is the solution of (2.2):

k∑
i=1

(
1

2σ2
− Y 2

i

2(σ2)2

)
= 0.

Then σ̂2
k =

k∑
i=1

Y 2
i /k. We have

Vk(µ, σ̂
2
k) =

k∑
i=1

∂

∂µ
log f(Yi;µ, σ̂

2
k) =

k∑
i=1

Yi − µ

σ̂2
k

The components of the informations matrix are

I11 = −E

[
∂2

∂µ2
log f(y;µ, σ2)

]
=

1

σ2
,

I12 = I21 = −E

[
∂2

∂µ∂σ2
log f(y;µ, σ2)

]
= 0,

I22 = −E

[
∂2

∂(σ2)2
log f(y;µ, σ2)

]
=

1

2σ4

and therefore I11 = σ2. We would like to compare two-sided Test 2.1, two-sided

Test 2.2 ans Test 2.3. The two-sided Test 2.1 statistic is

1√
k
|Sk| =

|
k∑

i=1

Yi|√
k∑

i=1

Y 2
i

.
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The two-sided Test 2.2 statistic is

1√
n
|Sk| =

|
k∑

i=1

Yi|√
n
k

k∑
i=1

Y 2
i

.

Test 2.3 statistic is

max
0≤j<k

1√
n

(
Sk(0, σ̂

2
k)− Sj(0, σ̂

2
k)
)
= max

0≤j<k

k∑
i=j+1

Yi√
n
k

k∑
i=1

Y 2
i

.

Tables 2.1 and 2.2 show the results of small simulation study on the power

and average sample number. Test 2.1 is prone to early stopping at the begin-

ning due to the weight of 1/
√
k. So, it is recommended to start monitoring

only after 10 observations have been obtained. This is not an issue, since the

theoretical results are asymptotic. In the simulations presented below testing

started after 10 observations, truncation points are n = 100, 200, 400, the level

of significance α = 0.05. The critical value for Test 2.1 is C∗
1(0.05, 100) = 3.07,

C∗
1(0.05, 200) = 3.12, C∗

1(0.05, 400) = 3.16 using Vostrikova’s approximation,

C∗
2(0.05) = C3(0.05) = 2.24 for Tests 2.2 and 2.3. There were 5000 simulations

performed for each scenario.

Table 2.1 shows that for all the three tests the power is increasing in n

and is decreasing in τ . Between Test 2.1 and 2.2, Test 2.2 always has higher

power. Test 2.3 shows very good performance. It has high power even when a

change happens late.

Table 2.2 provides average sample numbers. ASN is increasing in τ . When

τ = 1, Test 2.1 has the smallest ASN, while reaching high power for large

changes. Test 2.3 has the smallest ASN when n and τ are large.
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Table 2.1: Monitoring Normal Data: Simulated Power. The initial mean
parameter µ0 = 0, nuisance parameter σ = 1, µA varies from 0 to 0.6. Number
of simulations is 5000.

n τ µA Test 2.1 Test 2.2 Test 2.3

100 1 0.0 0.01 0.04 0.04
0.2 0.20 0.45 0.53
0.4 0.83 0.96 0.97
0.6 1.00 1.00 1.00

50 0.0 0.01 0.04 0.04
0.2 0.03 0.13 0.22
0.4 0.15 0.42 0.65
0.6 0.41 0.76 0.95

200 1 0.0 0.02 0.05 0.04
0.2 0.48 0.76 0.82
0.4 1.00 1.00 1.00
0.6 1.00 1.00 1.00

100 0.0 0.01 0.04 0.04
0.2 0.07 0.24 0.41
0.4 0.37 0.72 0.93
0.6 0.84 0.97 1.00

400 1 0.0 0.02 0.05 0.04
0.2 0.86 0.97 0.98
0.4 1.00 1.00 1.00
0.6 1.00 1.00 1.00

200 0.0 0.02 0.05 0.04
0.2 0.15 0.43 0.68
0.4 0.80 0.97 1.00
0.6 1.00 1.00 1.00
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Table 2.2: Monitoring Normal Data: Average Sample Number. The initial
mean parameter µ0 = 0, nuisance parameter σ = 1, µA varies from 0 to 0.6.
Number of simulations is 5000.

n τ µA Test 2.1 Test 2.2 Test 2.3

100 1 0.0 99 99 99
0.2 91 84 87
0.4 53 52 60
0.6 25 35 44

50 0.0 99 99 99
0.2 99 97 97
0.4 96 90 90
0.6 90 80 81

200 1 0.0 198 198 198
0.2 155 145 146
0.4 58 77 85
0.6 26 52 61

100 0.0 198 198 198
0.2 196 190 187
0.4 185 169 162
0.6 161 146 143

400 1 0.0 395 396 397
0.2 216 221 221
0.4 60 112 120
0.6 27 78 87

200 0.0 396 396 397
0.2 387 368 354
0.4 333 304 287
0.6 282 267 259
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Chapter 3

Binary Data

Identical Bernoulli random variables.

Binary data arise when an observation takes one of two possible values. For

example, “yes”, if a person dies after surgery, of “no”, if the person sur-

vives. If the two outcomes are coded as zero and one, the data can be mod-

eled by Bernoulli random variables with probability mass function f(y; p) =

py(1 − p)1−y. This means that the value 1, “success” occurs with probabil-

ity p and the value 0, “failure”, with probability 1 − p. First, we will con-

sider a simple case of monitoring parameter p by testing the null hypothesis

H0 : p = p0. Let Y1, . . . , Yi, . . . be independent identically distributed Bernoulli

random variables with parameter p. Then the standardized score statistic

Sk(p0) =
k∑

i=1

yi − p0√
p0(1− p0)

.

Tables 3.1 and 3.2 contain small simulation results when p0 = 0.07, truncation

point n = 5000 and τ = 1, 500, 2500. Test 1.3 has the highest power and

Test 1.1 has the lowest. However, when the change in parameter is large, all

tests have power 1, while the average sample numbers of Tests 1.2 and 1.3 are

considerably larger when the change happens early.

Adjusting for covariates.

In monitoring it is often necessary to take into account other sources of varia-

tion that are specific to each observation. For example, a very sick person has
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Table 3.1: Monitoring Binary Data: Simulated Power. The initial parameter
p0 = 0.07, pA varies from 0.07 to 0.13. Number of simulations is 5000.

n pA Test 1.1 Test 1.2 Test 1.3

1 0.07 0.05 0.05 0.06
0.09 0.99 1.00 1.00
0.11 1.00 1.00 1.00
0.13 1.00 1.00 1.00

500 0.07 0.05 0.05 0.05
0.09 0.96 1.00 1.00
0.11 1.00 1.00 1.00
0.13 1.00 1.00 1.00

2500 0.07 0.05 0.05 0.06
0.09 0.39 0.73 0.92
0.11 0.98 1.00 1.00
0.13 1.00 1.00 1.00

Table 3.2: Monitoring Binary Data: Average Sample Number. The initial
parameter p0 = 0.07, pA varies from 0.07 to 0.13. Number of simulations is
5000.

n pA Test 1.1 Test 1.2 Test 1.3

1 0.07 4782 4942 4935
0.09 1455 2031 1953
0.11 362 1008 996
0.13 160 672 672

500 0.07 4786 4939 4935
0.09 2470 2519 2291
0.11 1196 1508 1405
0.13 894 1169 1105

2500 0.07 4797 4938 4932
0.09 4563 4320 3977
0.11 3644 3512 3272
0.13 3184 3169 3011

a higher risk of dying after a surgery than a healthy person. So, for monitoring

in medicine the baseline risks should be taken into account to prevent false

alarms, accusations in adverse outcomes that are due to patients prior risks

rather than treatment or doctor performance.

The procedure that accounts for other covariates is called risk-adjustment.

Consider the situation where Y1, . . . , Yi, . . . are independent Bernoulli random

variables with success probabilities depending on covariates. Logistic mod-

els are used to account for the dependence, that is for i = 1, 2, . . . success
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probabilities are given by logit linear functions

log
pi

1− pi
= α+ β1xi1 + · · ·+ βrxir = α+ βxT

i ,

where (xi1, . . . , xir) represents an r-vector of covariates associated with the

i-th subject, α is an intercept and β = (β1, . . . , βr) is a vector of parameters.

There are many reasons for considering the logit function log (p/(1− p)).

One of them is that p itself cannot be a linear function of covariates as it is

bounded by 0 and 1 and α+ βxT is unbounded. The odds function p/(1− p)

also cannot take negative values and is not symmetric with respect to 1. For

example, if odds of success is 1/2, then odds of failure is 2/1=2. The logit

function can take negative and positive values and odds of success have the

same distance from 0 as odds of failure (log (1/2) = − log (2)), which is helpful

for interpretations. Also, the Bernoulli distribution is an exponential family

distribution and the logit is its natural parameter.

The Odds Ratio.

When adjustment for covariates is done, each subject has a different baseline

score. We need a different measure of risk in order to formulate statistical

hypotheses and to perform monitoring. For Bernoulli random variables it is

natural to use the odds ratio.

The classical definition of the odds ratio is that it is the ratio of the odds of

an event occurring in one group to the odds of it occurring in another group.

If a probability of an event is p1i if the subject i is in one group and p2i if the

subject is in the second group, then the odds ratio is

Ri =
p1i /(1− p1i )

p2i /(1− p2i )
.

The definition can also be used if p2i represents a historical risk for subject i

and p1i is the risk under the new condition like new treatment or a particular

doctor. This means that the odds ratio measures an effect, e.g. of a new

treatment or doctor’s performance, on the subject’s baseline risk.
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Defining the hypothesesH0 andHA based on the odds ratio allows monitor-

ing risks in terms of a single parameter while taking into account the estimated

baseline risks for each subject. Let the estimated risk based on the current

conditions be pi. Then R0 = 1 may mean no effect of new treatment or it

may mean that the risk of death after surgery does not depend on whether

the surgery was performed by this particular surgeon. Given an estimated risk

of an event equals to pi, the odds of the event equals R0pi/(1 − pi). Under

HA the odds of the event after the change is RApi/(1− pi). This corresponds

to a probability of the event equal to RApi/(1 − pi + RApi) after the change.

If R0 = 1 and RA = 2 (detecting a doubling of the odds of event), then,

for example, a subject with the estimated risk pi = 1/2 would have a risk of

pi = 2/3 after the change under the alternative hypothesis. In order to detect

increases in R we test

H0 : Ri = R0 for all i ≥ 1 versus
HA : Ri = R0 for all i < τ,

Ri = RA > R0 for all i ≥ τ.

In this case θ = R and we denote the corresponding density function of the

Bernoulli random variables f(y;R). Then

log f(y;R) = y log p(R) + (1− y) log (1− p(R)),

where p(R) = Rp/(1− p+Rp) is the probability of failure. Then

∂

∂R
log f =

(
∂

∂p
log f

)
p′,

where p′ is a derivative of p with respect to R. To calculate I(R) we need

∂2

∂R2 log f(y;R). By taking the second derivative we obtain

∂2

∂R2 log f(y;R) = ∂
∂R

(
∂
∂R

log f
)

= ∂
∂R

(
( ∂
∂p

log f)p′
)

=
(

∂2

∂p2
log f

)
p′ +

(
∂
∂p

log f
)
p′′.

Here
∂

∂p
log f =

y − p

p(1− p)
.
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Hence

I(R) = −E
∂2

∂R2
log f(y;R) = I(p)p′ + p′′E

y − p

p(1− p)
= I(p)p′.

It is well known that I(p) = (V ar(y))−1 = p(1−p). Therefore the standardized

score statistic for the truncated sequential tests is

Sk(R0) = I−1/2(R0)Vk(R0) =
k∑

i=1

yi − p0i√
p0i (1− p0i )

,

where p0i = R0pi/(1− pi +R0pi).

Example: Monitoring Surgical Performance.

Sequential testing for monitoring surgical outcomes is popular nowadays. The

necessity of such monitoring became especially clear after doctor Harold Ship-

man’s case [31]. He murdered over 200 of his patients during the period of

1975 to 1998 in England, UK and became one of the most prolific serial killers.

Another case that was a starting point for monitoring of clinical performance

is the Bristol Royal Infirmary Inquiry [32] concerning mortality of children un-

der one year of age after open-heart surgeries. Various industrial quality con-

trol procedures were employed for the monitoring and adjusted for case-mix.

The popular procedures include risk-adjusted sequential probability ratio test

(SPRT) [33], risk-adjusted cumulative sum chart (CUSUM) [34], variable life-

adjusted display (VLAD) [35], [36] and truncated sequential and change-point

detection tests [37]. In this example we would like to compare Tests 1.1-1.3 to

the risk-adjusted CUSUM in the context of monitoring surgical performance.

We apply the tests to cardiac surgery data [34] and use Monte Carlo simula-

tions for comparison of empirical power and average sample numbers.

The data were previously analyzed by various methods in [34], [33] and [37].

The data are the 30-day post-operative mortality from individual coronary

artery bypass graft operations at cardiac surgery center in UK for the period

1992-1998. Let yi be the outcome for patient i and yi = 1 if patient i dies

within 30 days of operation and yi = 0 otherwise. This is modeled by Bernoulli
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random variables, f(y; pi) = pyi (1 − pi)
1−y. For risk-adjustment, the data for

the years 1993 and 1994 were used to find that the logistic model

log
pi

1− pi
= −3.68 + 0.077xi, (3.1)

with only xi, a Parsonnet score, as an explanatory variable, was appropri-

ate [34]. The Parsonnet score is based on a combination of other explanatory

variates such as age, hypertension and a number of reoperations. Based on

this model, the lowest risk patients, with zero Parsonnet score, were estimated

to have a risk of death of just 2.5%, while the patients with the highest risk,

with Parsonnet score higher than 70, had an estimated mortality rate of 86%.

If the Parsonnet score is higher than 20, the patient is considered to have an

extremely high risk of mortality. The Parsonnet score is itself an estimated

risk of mortality within 30 days of cardiac surgery. The logistic model that is

used to compute the Parsonet score was built by Parsonnet (1989) [38] using

3500 operations and 14 risk factors that are easy to asess. The model was

tested on different hospitals.

Tables 3.3-3.5 contain simulation results on type I error, power and aver-

age sample number (ASN) for the risk-adjusted two-sided Tests 1.1 and 1.2,

Test 1.3 and CUSUM. The data is simulated as follows. First, Parsonnet scores

are generated as random numbers following Poisson distribution with mean 13.

This implies an average mortality risk of 6.4%, which is close to the mortality

rate of 6.5% estimated from the data for 1992 and 1993. Then, mortality risks

are predicted using the logistic model (3.1) and random Bernoulli numbers are

generated using the estimated risks. These Bernoulli numbers and the esti-

mated risks are used to form the test statistics. The control limit for CUSUM

is set to h = 4.5. It was shown in [34] that when h = 4.5 ASN is around

9600 under the null hypothesis. We stop the CUSUM algorithm after 9600

observations. For the CUSUM we also need to specify an odds ratio under the

alternative hypotheis. We consider detecting doubling of the odds of death

and therefore set RA = 2 (R0 = 1). The truncation points for Tests 1.1-1.3 are
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n = 5000 and 9600. The truncation point of n = 5000 approximately corre-

sponds to the number of patients that were operated between 1994 and 1998

in the cardiac surgery data. For Tests 1.1-1.3 the significance level is set to

α = 0.05 and the critical values are C∗
1(0.05, 5000) = 3.28, C∗

1(0.05, 9600) = 3.3

(using Vostrikova’s approximation), C∗
2(0.05) = C3(0.05) = 2.24. The mon-

itoring starts after 10 observations for all tests as in the previous example.

There are 5000 simulations performed for each scenario.

Table 3.3 compares the tests in terms of type I error. Tests 1.1-1.3 have

empirical type I error close to 0.05 as expected. The CUSUM procedure with

h = 4.5 stopped with rejection of H0 79% of the time under the null hypothesis

of no change. This implies that most likely there will be a false alarm when

no change happened.

Table 3.3: Monitoring Odds Ratio: Simulated Type I Error. The initial odds
ratio R0 = 1, α = 0.05. The CUSUM algorithm is stopped after 9600 obser-
vations, the truncation points are n = 5000, 9600. Number of simulations is
5000.

n CUSUM Test 1.1 Test 1.2 Test 1.3

5000 NA 0.0426 0.0550 0.0570
9600 0.7918 0.0456 0.0436 0.0530

Tables 3.4 and 3.5 analyze the power as follows. The odds ratio after

change varies over RA = 1.25, 1.5, 1.75, 2. The columns Total and Before τ

represent the overall proportion of stops (power) and the proportion of stops

before the change point τ , respectively. This separation is necessary because

the CUSUM test stops with probability one even under the hypothesis of no

change. For the same reason the empirical power of CUSUM is one in almost

all cases. It is not 1 in one scenario, because we force the algorithm to stop

after 9600 observations. All other tests also show very high power in most

situations. From Before τ column of Table 3.5 we see that for the CUSUM

test the probability of stopping before the change point increases as τ increases

and can be as high as 56% when the change point is far from the beginning. In

other words, there are too many false alarms. The power of Test 1.3 is almost
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always high (> 0.95). Tests 1.1 and 1.2 have smaller power due to the extra

terms in the test statistics corresponding to the before change observations.

Tests 1.1-1.3 have lower power when the change is small (RA = 1.25), especially

Test 1.1 with power of 0.21 when τ = 2500 and n = 5000. As the value of

truncation point n increases the power increases.

Table 3.4: Monitoring Odds Ratio: Simulated Power of Tests 1.1-1.3. The
initial odds ratio R0 = 1, RA varies from 1.25 to 2, the truncation points are
n = 5000, 9600. Number of simulations is 5000.

n τ RA
Test 1.1 Test 1.2 Test 1.3

Total Before τ Total Before τ Total Before τ

5000 1 1.25 0.88 0.00 0.98 0.00 0.99 0.00
1.50 1.00 0.00 1.00 0.00 1.00 0.00
1.75 1.00 0.00 1.00 0.00 1.00 0.00
2.00 1.00 0.00 1.00 0.00 1.00 0.00

500 1.25 0.78 0.03 0.95 0.00 0.98 0.00
1.50 1.00 0.03 1.00 0.00 1.00 0.00
1.75 1.00 0.03 1.00 0.00 1.00 0.00
2.00 1.00 0.03 1.00 0.00 1.00 0.00

2500 1.25 0.20 0.05 0.50 0.00 0.75 0.00
1.50 0.84 0.04 0.98 0.00 1.00 0.00
1.75 1.00 0.04 1.00 0.00 1.00 0.00
2.00 1.00 0.04 1.00 0.00 1.00 0.00

9600 1 1.25 1.00 0.00 1.00 0.00 1.00 0.00
1.50 1.00 0.00 1.00 0.00 1.00 0.00
1.75 1.00 0.00 1.00 0.00 1.00 0.00
2.00 1.00 0.00 1.00 0.00 1.00 0.00

960 1.25 0.98 0.03 1.00 0.00 1.00 0.00
1.50 1.00 0.03 1.00 0.00 1.00 0.00
1.75 1.00 0.04 1.00 0.00 1.00 0.00
2.00 1.00 0.04 1.00 0.00 1.00 0.00

4800 1.25 0.45 0.04 0.79 0.00 0.95 0.00
1.50 0.99 0.03 1.00 0.00 1.00 0.00
1.75 1.00 0.04 1.00 0.00 1.00 0.00
2.00 1.00 0.04 1.00 0.00 1.00 0.00

Table 3.6 analyzes the average sample number of the three truncated tests.

Column Total represents the overall average sample number, while column

When Stopped is the average sample number when an algorithm stops before

the truncation point (n = 5000 or 9600). Table 3.5 provides average sample

numbers for the CUSUM. Out of the four tests, CUSUM has the smallest ASN,
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Table 3.5: Monitoring Odds Ratio: Simulated Power, Average Sample Number
and Conditional Average Sample Number for CUSUM. Before τ is the propor-
tion of stops before τ . The initial odds ratio R0 = 1, RA varies from 1.25 to
2. The algorithm is stopped after 9600 observations. Number of simulations
is 5000.

τ RA Total Power Before τ ASN Conditional ASN

1 1.25 1.00 0.00 1221 1221
1.50 1.00 0.00 457 457
1.75 1.00 0.00 260 260
2.00 1.00 0.00 174 174

500 1.25 1.00 0.06 1573 1661
1.50 1.00 0.07 888 931
1.75 1.00 0.07 705 735
2.00 1.00 0.07 634 658

960 1.25 1.00 0.14 1908 2137
1.50 1.00 0.13 1281 1397
1.75 1.00 0.13 1108 1195
2.00 1.00 0.13 1035 1115

2500 1.25 1.00 0.34 2860 3679
1.50 1.00 0.33 2365 2933
1.75 1.00 0.35 2204 2737
2.00 1.00 0.33 2187 2653

4800 1.25 0.99 0.54 3878 5932
1.50 1.00 0.53 3614 5240
1.75 1.00 0.55 3435 5028
2.00 1.00 0.56 3347 4959

but when the change happens after 500 observations the small ASN is due to

erroneous stopping, that is before τ . When change happens right at the first

observation, CUSUM detects it faster unless the the change is large (RA ≥ 2).

In this case Test 1.1 has a little smaller ASN. When the change happens late

the average sample number for CUSUM is smaller than τ . For late changes,

out of Tests 1.1-1.3, Test 1.3 stops earlier and has higher power. In general,

when n increases average sample number also increases for the truncated tests.

Table 3.5 contains conditional average sample numbers of CUSUM, given

the change point has been passed. It shows that conditional ASN for CUSUM

is the smallest ASN among the tests except for the cases when τ = 1 and

RA = 2. In those situations Test 1.1 has the smallest ASN.

In general, one should decide on what is more important for a given prob-
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Table 3.6: Monitoring Odds Ratio: Average Sample Number for Tests 1.1-1.3.
The initial odds ratio R0 = 1, RA varies from 1.25 to 2, the truncation points
are n = 5000, 9600. Number of simulations is 5000.

n τ RA

Test 1.1 Test 1.2 Test 1.3

Total
When

Total
When

Total
When

Stopped Stopped Stopped

5000 1 1.25 2337 1976 2640 2589 2513 2478
1.50 629 629 1328 1328 1300 1300
1.75 289 289 897 897 888 888
2.00 169 169 680 680 679 679

500 1.25 3298 2826 3079 2985 2785 2745
1.50 1546 1546 1835 1835 1689 1689
1.75 1090 1090 1398 1398 1307 1307
2.00 904 904 1182 1182 1115 1115

2500 1.25 4677 3349 4582 4170 4287 4051
1.50 4055 3869 3811 3781 3500 3498
1.75 3494 3490 3399 3399 3188 3188
2.00 3193 3193 3179 3179 3017 3017

9600 1 1.25 2499 2470 3646 3646 3511 3511
1.50 639 639 1849 1849 1821 1821
1.75 298 298 1251 1251 1242 1242
2.00 166 166 942 942 942 942

960 1.25 4467 4343 4613 4602 4192 4192
1.50 2209 2209 2806 2806 2609 2609
1.75 1687 1687 2209 2209 2081 2081
2.00 1462 1462 1902 1902 1807 1807

4800 1.25 8657 7485 8157 7768 7468 7363
1.50 6906 6880 6633 6631 6189 6189
1.75 6043 6043 6044 6044 5744 5744
2.00 5678 5678 5753 5753 5522 5522

lem, an early detection at the expense of very possible false alarms, in which

case CUSUM performs better, or a guaranteed probability of type I error at

the expense of delays in the change detection. In the latter case, for detect-

ing small changes it is better to use Test 1.3 or 1.2, for detecting early large

changes it is recommended to use Test 1.1 as it stops faster. When it is ex-

pected that the change will happen late in a sequence Test 1.3 has the highest

power with the smallest average sample number. For detecting large changes

in situations similar to the one in the example it might also be more optimal

to set a smaller truncation point. In that case the power of the truncated

sequential tests is still very high, but the delay in detection is much shorter.
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Finally, we apply Tests 1.1-1.3 and CUSUM to the cardiac surgery data,

the data for seven surgeons for the period 1994-1998. Risk-adjustment is

performed using model (3.1). We set n = 5000, 9600 and α = 0.05 for the

truncated tests. We assume RA = 2 and h = 4.5 for the CUSUM. Plots of

the test statistics when n = 5000 are presented in Figures 3.1- 3.4. Test 1.1

and CUSUM signal a change for surgeons 1 and 2. Test 1.1 stops at 355 for

surgeon 1 and at 236 for surgeon 2. CUSUM stops at 260 and 220, respectively.

CUSUM also signals a change for surgeon 7 after 111 observations.
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Figure 3.1: Test 1.1 statistic for the seven surgeons (n = 5000,
C∗

1(0.05, 5000) = 3.28).
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Figure 3.2: Test 1.2 statistic for the seven surgeons (n = 5000, C∗
2(0.05) =

2.24).
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Figure 3.3: Test 1.3 statistic for the seven surgeons (n = 5000, C3(0.05) =
2.24).
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Figure 3.4: CUSUM test statistics for the seven surgeons (h = 4.5).
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Chapter 4

Longitudinal Data

Sometimes the outcome for an individual subject consists of a series of re-

peated measurements. Longitudinal studies are often used in psychology to

study developmental trends across the life span, in sociology to study life

events throughout lifetimes or generations, in medicine to find predictors of

certain diseases. In contrast to a cross-sectional study repeated several times

to observe an outcome a longitudinal study looks at the outcome on the same

people. That is the sample of a longitudinal study contains the same indi-

viduals at different time points. In this case the differences observed in those

people are less likely to be the result of differences due to time or differences

across generations.

In this chapter we consider sequential methods for longitudinal data in

treatments comparison set up. Parametric approaches for longitudinal data are

often complicated and computationally expensive. We consider nonparametric

approaches here.

Suppose there are I treatment groups with Ji subjects in i-th group. Let

Y i
j1, . . . , Y

i
jP be P observations on subject j in i-th group. Assume Y i

j =

(Y i
j1, . . . , Y

i
jP )

T , j = 1, . . . , Ji are random vectors with density function f i,

i = 1, . . . , I. We are interested in testing

H0 : f 1 = · · · = f I = f versus
HA : not H0.
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For a fixed p the sequential rank of Y i
jp is defined as

Ri
jp = 1 +#{Y l

kp| Y l
kp ≤ Y i

jp, Y
l
kp has already been observed,

not including Y i
jp itself, for l = 1, . . . , I and k = 1, . . . , Jl}.

For example, if Y i
jp is the first p-th measurement, Ri

jp = 1. The second p-th

measurement is of sequential rank 2 if it is larger or equal to the first one (Y i
jp)

and 1 otherwise. The third p-th observation may have sequential rank 1, 2 or

3. The sequential ranks that have already been assigned do not change when a

new observation is available. Under H0 and for fixed p, Ri
jp follow independent

discrete uniform distributions [39], that is Ri
jp can take values 1, . . . ,mi

jp with

equal probability, where mi
jp is the number of available p-th measurements

mi
jp = 1 +#{Y l

kp| Y l
kp has been observed before Y i

jp,
for l = 1, . . . , I and k = 1, . . . , Jl}.

The mean and the variance of Ri
jp are then given by

E
(
Ri

jp

)
=

mi
jp + 1

2

and

V ar
(
Ri

jp

)
=

(
mi

jp

)2 − 1

12
.

At time t, subjects with all P repeated measurements observed are called

complete. For each of the complete subjects the sum of standardized sequential

ranks is introduced

Si
j =

P∑
p=1

Zi
jp,

where

Zi
jp =

Ri
jp − (mi

jp + 1)/2√((
mi

jp

)2 − 1
)
/12

.

Note that Si
j, i = 1, . . . , I, j = 1, . . . , Ji, are independent.

To formulate sequential tests that use Weiner process approximation, like

Tess 1.1-1.3, Si
j needs to be standardized. Under H0, the mean of Si

j is zero.

To find the variance, we note that Si
j is the sum of dependent term, as ranks

of repeated measurements on the same subject may be dependent. Then

V ar
(
Si
j

)
=

∑P
p=1

∑P
q=1 Cov

(
Zi

jp, Z
i
jq

)
=

∑P
p=1 Cov

(
Zi

jp, Z
i
jp

)
+ 2

∑
p,q:p<q Cov

(
Zi

jp, Z
i
jq

)
.
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Let Jp(t) denote the number of subjects with observed p-th measurement at

time t in all groups. Then, at time t the empirical pooled covariance estimator

for Cov
(
Zi

jp, Z
i
jq

)
, 1 ≤ p < q ≤ P , is

ρp,q(t) =
1

Jq (t)

∑
i,j:qth measurement observed

(
Zi

jp − Z̄p

) (
Zi

jq − Z̄q

)
,

where

Z̄p =
1

Jp (t)

∑
i,j:pth measurement observed

Zi
jp, p = 1, . . . , P.

Thus an estimator of V ar
(
Si
j

)
, i = 1, . . . , I, at time t is

(σ̂(t))2 =
P∑

p=1

ρp,p(t) + 2
∑

p,q:p<q

ρp,q(t).

Let Ji(t) denote the number of complete subjects at time t. Now we can

define the test statistic

Si(t) =

Ji(t)∑
j=1

Si
j

σ̂(t)

for each group, i = 1, . . . , I. The statistical process Si(t) has Ji(t) independent

standardized components. The test statistic is updated after each subject that

became complete. The level α tests are as follows.

Test 4.1. (aka Pocock) Stop and conclude that H0 is not supported by the
data at the first time t, when for some i = 1, . . . , I − 1,∣∣∣∣∣ 1√

Ji (t)
Si (t)

∣∣∣∣∣ ≥ C∗
1(α

∗, Ji),

where C∗
1(α

∗, Ji) is defined in (1.7); otherwise do not reject H0.

Test 4.2. (aka O’Brien-Flemming) Stop and conclude that H0 is not sup-
ported by the data at the first time t, when for some i = 1, . . . , I − 1,∣∣∣∣ 1√

Ji
Si (t)

∣∣∣∣ ≥ C∗
2(α

∗),

where C∗
2(α

∗) is defined in (1.8); otherwise do not reject H0.

The significance level α is adjusted to comparing of I groups through α∗.

By the independence of the Si(t), i = 1, . . . , I − 1, if α∗ satisfies

1− α = (1− α∗)I−1
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the overall type I error rate is α. Notice that it is enough to monitor I −

1 treatment groups, which is proved in [40]. Again, Test 4.1 can be less

conservative with the use of other critical values.

Performance of Tests 4.1 and 4.2 is similar to that of Tests 1.1 and 1.2,

respectively. Test 4.1 stops early for large treatment differences when maximal

sample sizes are large, while Test 4.2 is more powerful when deviations from

H0 are small.

It is also important to remind that the statistics are not updated after each

new observation, but rather when this observation is the P -th measurement

on some subject. That is, at time t an analysis performed in case n(t) =

J1(t)+ · · ·+JI(t) has increased by 1. Observations on incomplete subjects are

used only in the calculations of sequential ranks Ri
jp and in the estimation of

the covariance structure ρp,q(t), 1 ≤ p ≤ q ≤ P .

The above tests work best when the maximal sample size is large. An

alternative test for small maximal sample sizes is based rather on signs of the

sums of P standardized sequential ranks. Let

sgn(Si
j) =


1, if Si

j > 0,
0, if Si

j = 0,
−1, if Si

j < 0

be the sign function. Under H0 for fixed I, sgn(Si
j), j = 1, . . . , Ji(t) are

independent identically distributed, as functions of i.i.d. random variables,

with P (sgn(Si
j) = 1) = P (sgn(Si

j) = 1) = 1/2. Therefore the statistical

processes

Si(t) =

Ji(t)∑
j=1

sgn(Si
j)

are simple symmetric random walks, i = 1, . . . , I. The level α test based on

Si(t) is as follows.

Test 4.3. Stop and conclude that H0 is not supported by the data at the first
time t, when for some i = 1, . . . , I − 1,∣∣Si (t)

∣∣ ≥ C(α∗, Ji),
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where C(α∗, Ji) ∈ {1, . . . , Ji} is the value for which

1

C(α∗, Ji)

2C(α∗,Ji)−1∑
j=0

(
1− (−1)j

2

)
sin

jπ

2
(cosxj)

Ji
1 + cosxj

sinxj

is closest to 1− α∗, where xj = jπ/(2C(α∗, Ji)); otherwise do not reject H0.

For small treatment differences, the power of Test 4.3 is larger than the

power of Test 4.1 but smaller than that of Test 4.2 and the average sample

number of Test 4.3 is similar to that of Test 4.1 and Test 4.2. For large

treatment differences, ASN of Test 4.3 is larger. In general [40] recommend

Test 4.2 for large sample sizes, unless early stopping is very important and large

treatment differences are expected. Test 4.3 should be used when Ji < 20.

Example. Consider the following simulation study. Let Y i
j = (Y i

j1, . . . , Y
i
j3)

denote the correlated observations for each subject in one of two groups j =

1, . . . , Ji, i = 1, 2. We induce an autoregressive correlation structure by

Y i
j = µk + Ω

1
2W i

j ,

where µ1 = 1 and µ2 varies over the set {1.0, 1.2, 1.4, 1.6, 1.8, 2.0} and they

represent the difference in means between groups,W i
j is a vector of independent

unit exponential variables and

Ω =

 1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1

 ,

ρ is a parameter that is less than one. An autoregressive correlation structure

is very natural in longitudinal data or repeated measures designs. It indicates

that two observations taken close in time within an individual tend to be

more highly correlated than two observations taken far apart in time from the

same individual. We set ρ = 0.5 in the example. We assume equal group

sizes. In simulations we also assume that first J1 vectors of repeated measures

correspond to subjects from the first group and the next J2 vectors of repeated

measures correspond to subjects from the second group. Then we perform
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a random permutation of numbers 1, . . . , n to simulate the order in which

observations were obtained. For simplicity, all three repeated measures for

each subject are assumed to be observed in succession

Tables 4.1 and 4.2 show results of the simulation study on the power and

average sample number. To avoid erroneous early stopping testing is started

after 10 observations. The level of significance α = 0.05. Since there are two

groups in the study, α∗ = α = 0.05. Let J1 = J2 = 20, 50. The critical values

for the tests are C∗
1(0.05, 20) = 2.93, C∗

1(0.05, 50) = 3.02, C∗
2(0.05) = 2.24 and

C(0.05, 20) = 10, C(0.05, 50) = 16 for Tests 4.1-4.3, respectively. There are

5000 simulations performed for each scenario.

Table 4.1: Monitoring Longitudinal Data: Simulated Power. The parameters
are µ1 = 1, µ2 varies from 1 to 2, J1 = J2 = 20, 50. Number of simulations is
5000.

J1 µ2 Test 4.1 Test 4.2 Test 4.3

20 1.0 0.03 0.05 0.04
1.2 0.05 0.09 0.06
1.4 0.10 0.21 0.12
1.6 0.20 0.39 0.25
1.8 0.34 0.59 0.42
2.0 0.48 0.74 0.57

50 1.0 0.04 0.05 0.04
1.2 0.08 0.16 0.09
1.4 0.30 0.54 0.30
1.6 0.62 0.85 0.61
1.8 0.86 0.96 0.83
2.0 0.95 0.99 0.95

Tables 4.1 and 4.2 demonstrate the performance of Tests 4.1-4.3 in terms of

empirical power and average sample number. Power and ASN increase when

sample size J1 increases. The power is quite low for all three tests when the

sample size is small. The power is the highest for Test 4.2 for both sample

sizes. Test 4.3 has an average power and Test 4.1 has the smallest power when

J1 = 20. Test 4.3 and 4.1 have very similar powers when J1 = 50. The average

sample numbers are similar for all three tests when J1 = 20. When J1 = 50,

Test 4.3 has the largest ASN. Average sample numbers of Tests 4.1 and 4.2 are
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similar to ASN of Test 4.3 for small treatment differences. When treatment

differences are moderate and large, average sample numbers of Tests 4.1 and 4.2

are smaller, but similar to each other. Test 4.1 has the smallest ASN when

the treatment difference is the largest (µ2 − µ1 = 1).

Table 4.2: Monitoring Longitudinal Data: Average Sample Number. The
parameters are µ1 = 1, µ2 varies from 1 to 2, J1 = J2 = 20, 50. Number of
simulations is 5000.

J1 µ2 Test 4.1 Test 4.2 Test 4.3

20 1.0 39.31 39.46 39.68
1.2 39.18 39.19 39.53
1.4 38.41 38.23 39.09
1.6 37.20 36.53 38.04
1.8 35.25 34.24 36.44
2.0 33.23 32.29 34.78

50 1.0 97.54 98.96 99.07
1.2 95.56 96.45 98.29
1.4 87.38 86.49 93.45
1.6 73.60 72.86 84.30
1.8 59.39 61.82 73.71
2.0 48.65 54.49 64.57

42



Chapter 5

Monitoring Wait Time

The long wait times at Emergency departments and not only there has become

a problem, especially in Alberta, in the last 10 years. The median waiting time

in Edmonton was 11.6 hours in March 2011, which is a somewhat smaller than

a couple of years earlier. According to the Worlds Health Organization 70% of

patients should be accesed or discharged withtin 4 hours and nobody should

wait longer than 12 hours in emergency rooms.

As a part of the Five-Year Health Action Plan, Alberta Health Services

(AHS) and Alberta Health and Wellness (AH&W) are tracking the progress

being made at some of the largest emergency departments. They are monitor-

ing a proportion of discharged patients with the length of stay at a particular

emergency department no longer than four hours [41]. The target that 90% of

patients are seen, assesed, treated and discharged within four hours has been

set for March 2015.

An example used in this chapter is based on the data from emergency

departments of University of Alberta and Stollery Hospitals for the period of

Jan 4, 2011 to June 25, 2011. The data were provided by the Data Integration,

Measurements & Reporting. For each of the two emergency departments we

have weekly numbers of visits and weekly proportions of people that were

discharged within the target time. The data are modeled by binomial random

variables Yi ∼ B(ni, pi). That is, yi is the number of people discharged within

four hours during i-th week. We are interested in monitoring “pi”. That is we
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are interested in testing

H0 : pi = p0 for all i ≥ 1 versus
HA : pi = p0 for all i < τ,

pi = pA > p0 for all i ≥ τ.

We apply Tests 1.1 and 1.2, two-sided, and Test 1.3 to verify if the data

support the null hypothesis. The moving average plots are presented in the

weekly summary reports. We compare the performance of Tests 1.1-1.3 to

that of the exponentially weighted moving average procedure (EWMA). We

monitor the following test statistics of Tests 1.1-1.3, respectively, 1√
k
|Sk(p0)|,

1√
n
|Sk(p0)| and max

0≤j<k≤n

1√
n
(Sk(p0)− Sj(p0)). In the case of binomial distribu-

tion

Sk(p0) =
k∑

i=1

yi − E(Yi)√
V ar(Yi)

=
k∑

i=1

yi − nip0√
nip0(1− p0)

.

For EWMA we have to make some modifications to adjust for not identical

distributions. Each week there is a different number of people that were seen at

an emergency department. Therefore the formula for the control limits (1.5),

that were given in the first chapter, need to be changed. Since

Sk = λYk + (1− λ)Sk−1

is calculated recurrently, then

Sk = λ
k∑

i=1

(1− λ)k−iYi + (1− λ)kS0,

where S0 = p0n0 and one has to choose the initial p0 and n0. Then the expected

weighted average is

ESk = λp0

k∑
i=1

(1− λ)k−ini + (1− λ)kp0n0,

and

V arSk = λ2p0(1− p0)
k∑

i=1

(1− λ)2(k−i)ni.

Therefore we keep monitoring until

|Sk − ESk| ≥ Lλ

√√√√p0(1− p0)
k∑

i=1

(1− λ)2(k−i)ni.
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as in (1.6). This idea is also used to peform risk-adjustment (see, for exam-

ple, [42], [43]).

Tables 5.1 and 5.2 provide results of Tests 1.1-1.3 and EWMA applied to

data from the Stollery and University of Alberta Hospitals. The first 29 weeks

were used to evaluate the historical “p0”. The tests were performed on the

values for the weeks 30 to 129. The width of the control limits for EWMA was

set to L = 3, the usual three-sigma limits. The truncation point was n = 260

(about the number of weeks in five years). If a truncated test did not stop

after 130 available observations, and hence did not reach the truncation point

n = 260, we write “did not stop” for stopping time.

Table 5.1: Monitoring proportion of discharged patients within four hours:
Stollery Hospital. Stopping times are provided for the tests that signaled a
change. The initial proportions are p0 = 0.687, the historical average, and
p0 = 0.7, 0.75, 0.8. The sample size is 130, the truncation point is n=260.

p0 Test 1.1 Test 1.2 Test 1.3
EWMA

λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.3

0.687 10 21 21 10 10 10 10
0.700 10 23 23 10 10 10 10
0.750 14 35 75 14 13 13 13
0.800 10 13 did not stop 10 10 10 10

Table 5.2: Monitoring proportion of discharged patients within four hours:
University of Alberta Hospital. Stopping times are provided for the tests that
signaled a change. The initial proportions are p0 = 0.4, the historical average,
and p0 = 0.5. The sample size is 130, the truncation point is n=260.

p0 Test 1.1 Test 1.2 Test 1.3
EWMA

λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.3

0.4 10 51 87 10 10 14 14
0.5 10 5 did not stop 10 10 10 10

From Tables 5.1 and 5.2 we see that all the tests detect a change from

historical proportions. Simulation studies, presented below, show that all the

tests are very sensitive to even small changes in proportions. For this reason,

we provide results for other than historical values of p0 in Tables 5.1 and 5.2.

Tests 1.1, 1.2 and EWMA are two-sided. Test 1.3 is one-sided and this might
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explain why it did not signal a change in certain cases. For example, it might

mean that the proportion of patients discharged from the emergency depart-

ments within four hours has not reached 80% for the Stollery Hospital and has

not reached 50% for the University of Alberta Hospital.

Tables 5.3-5.6 contain simulation results for Tests 1.1-1.3 and EWMA.

For simplicity we assume that all ni = 1000. We set p0 = 0.4, α = 0.05,

n = 260, each scenario is repeated 5000 times. In Table 5.3 we report the

average sample number (ASN) and the maximum sample number (max SN)

of EWMA over 5000 simulations under the null hypothesis of pi = p0 = 0.4,

i ≥ 1. The maximum ASN of EWMA is 1391 when λ = 0.05. Since the

distribution of sample numbers of EWMA is skewed to the right, EWMA will

stop before 1500 most of the time. In all simulations below we stop EWMA

algorithm after 1500 observations. Table 5.4 shows that Tests 1.1-1.3 have

empirical power 1 when the alternative parameter is larger than 0.5. EWMA

is known to stop with probability 1, and even truncated at 1500 it has an

empirical power of 1 (Table 5.5). Moreover, Table 5.5 shows that EWMA

stops before the change even happened in up to 35% times (see column Before

τ). Table 5.6 provides average sample numbers for all the tests considered

here. EWMA has the smallest ASN, but in many cases they are even smaller

than τ . This inconsistency is due to many early false alarms.

Table 5.3: Monitoring proportion of discharged patients within four hours:
Average and Maximum Sample Numbers of EWMA under H0 : pi = 0.4, i ≥
1. Number of simulations is 5000.

Statistic λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.3

ASN 1391 831 553 474
max SN 10930 7880 5538 3810

Tables 5.7-5.9 provide simulation results for smaller gradation of pA. We

set p0 = 0.4, α = 0.05, n = 260, pA changes from 0.401 to 0.41. We see

that behavior of Tests 1.1- 1.3 is similar to behavior of these tests in the

previous chapters. Test 1.3 has the highest power and Test 1.1 has the lowest

power. Again, the power of EWMA is always 1 (see Table 5.8). Table 5.8 also
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Table 5.4: Monitoring proportion of discharged patients within four hours:
Simulated Power for Tests 1.1-1.3. The initial proportion is p0 = 0.4, pA varies
from 0.5 to 0.9, the truncation point is n=260. Number of simulations is 5000.

τ pA Test 1.1 Test 1.2 Test 1.3

26 0.5 1 1 1
0.6 1 1 1
0.7 1 1 1
0.8 1 1 1
0.9 1 1 1

130 0.5 1 1 1
0.6 1 1 1
0.7 1 1 1
0.8 1 1 1
0.9 1 1 1

200 0.5 1 1 1
0.6 1 1 1
0.7 1 1 1
0.8 1 1 1
0.9 1 1 1

Table 5.5: Monitoring proportion of discharged patients within four hours:
Simulated Power for EWMA. The initial proportion is p0 = 0.4, pA varies
from 0.5 to 0.9, λ = 0.05, 0.1, 0.2, 0.3. The algorithm is stopped after 1500
observations. Number of simulations is 5000.

τ pA

EWMA
λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.3

Total Before τ Total Before τ Total Before τ Total Before τ

26 0.5 1 0.02 1 0.02 1 0.03 1 0.04
0.6 1 0.02 1 0.02 1 0.03 1 0.03
0.7 1 0.02 1 0.02 1 0.03 1 0.04
0.8 1 0.01 1 0.02 1 0.03 1 0.03
0.9 1 0.02 1 0.02 1 0.03 1 0.03

130 0.5 1 0.08 1 0.14 1 0.19 1 0.22
0.6 1 0.09 1 0.13 1 0.20 1 0.24
0.7 1 0.09 1 0.13 1 0.20 1 0.23
0.8 1 0.08 1 0.13 1 0.20 1 0.23
0.9 1 0.09 1 0.13 1 0.20 1 0.23

200 0.5 1 0.14 1 0.20 1 0.29 1 0.35
0.6 1 0.14 1 0.21 1 0.29 1 0.34
0.7 1 0.14 1 0.21 1 0.28 1 0.35
0.8 1 0.13 1 0.20 1 0.29 1 0.34
0.9 1 0.14 1 0.21 1 0.30 1 0.32

shows a lot of early false alarms (up to 34%). The number of early false alarms
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Table 5.6: Monitoring proportion of discharged patients within four hours:
Average Sample Number. The initial proportion is p0 = 0.4, pA varies from
0.5 to 0.9. The truncation point is n = 260, EWMA algorithm is stopped after
1500 observations. Number of simulations is 5000.

τ pA Test 1.1 Test 1.2 Test 1.2
EWMA (Total)

λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.3

26 0.5 28 31 31 27 26 26 26
0.6 27 28 28 26 26 26 26
0.7 26 27 27 26 26 26 26
0.8 26 27 27 26 26 26 26
0.9 26 27 27 26 26 26 26

130 0.5 134 135 134 126 122 118 116
0.6 131 132 132 124 122 117 115
0.7 130 131 131 124 122 117 115
0.8 129 131 131 125 122 118 115
0.9 129 131 130 124 121 117 115

200 0.5 204 204 203 187 181 171 164
0.6 199 202 201 187 180 171 166
0.7 199 201 200 187 179 172 165
0.8 198 200 200 186 180 170 165
0.9 197 200 200 186 179 170 167

increases with λ and does not depend on pA, when we compare columns Before

τ in Tables 5.8 and 5.5. Table 5.9 shows that all average sample numbers are

quite large. For small changes (pA ≤ 0.404), the open-ended EWMA has larger

average sample numbers than the truncated tests. When a change is large,

EWMA has the smallest ASN. Out of Tests 1.1-1.3, Test 1.3 has the smallest

ASN unless a large change happend early in a sequence, in which case Test 1.1

has the smallest ASN.

Tables 5.10-5.12 contain simulated power and ASN when pA is fixed at

0.4. The tables summarize power and ASN behavior for different settings of

p0. Tables 5.10 and 5.11 show that all tests detect a change in proportion in

1%. They also show that decrease in the proportion is detected by Test 1.1,

Test 1.2 and EWMA. This is due to the fact, that those tests are two-sided.

An adequate choice of a value of p0 may help to detect wheather the historical

value reached the desired level or not. For this purpose one-sided tests, such

as Test 1.3, are a better option.
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Table 5.7: Monitoring proportion of discharged patients within four hours:
Simulated Power for Tests 1.1-1.3. The initial proportion is p0 = 0.4, pA varies
from 0.401 to 0.41, the truncation point is n = 260. Number of simulations is
5000.

τ pA Test 1.1 Test 1.2 Test 1.3

26 0.401 0.06 0.14 0.21
0.402 0.18 0.42 0.55
0.403 0.47 0.77 0.86
0.404 0.81 0.94 0.98
0.405 0.96 0.99 1.00
0.406 1.00 1.00 1.00
0.407 1.00 1.00 1.00
0.408 1.00 1.00 1.00
0.409 1.00 1.00 1.00
0.410 1.00 1.00 1.00

130 0.401 0.03 0.07 0.10
0.402 0.05 0.15 0.27
0.403 0.09 0.28 0.49
0.404 0.18 0.47 0.71
0.405 0.34 0.67 0.90
0.406 0.55 0.84 0.98
0.407 0.73 0.93 1.00
0.408 0.87 0.98 1.00
0.409 0.96 0.99 1.00
0.410 0.99 1.00 1.00

200 0.401 0.02 0.05 0.06
0.402 0.02 0.07 0.09
0.403 0.03 0.09 0.15
0.404 0.04 0.13 0.22
0.405 0.05 0.18 0.32
0.406 0.06 0.24 0.43
0.407 0.10 0.32 0.57
0.408 0.14 0.41 0.71
0.409 0.20 0.51 0.81
0.410 0.26 0.59 0.91
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Table 5.8: Monitoring proportion of discharged patients within four hours:
Simulated Power for EWMA. The initial proportion is p0 = 0.4, pA varies
from 0.401 to 0.41, λ = 0.05, 0.1, 0.2, 0.3. The algorithm is stopped after 1500
observations. Number of simulations is 5000.

τ pA

EWMA
λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.3

Total Before τ Total Before τ Total Before τ Total Before τ

26 0.401 0.81 0.02 0.90 0.02 0.96 0.03 0.97 0.03
0.402 0.98 0.01 0.98 0.02 0.99 0.03 0.99 0.04
0.403 1.00 0.01 1.00 0.02 1.00 0.03 1.00 0.04
0.404 1.00 0.02 1.00 0.02 1.00 0.03 1.00 0.04
0.405 1.00 0.02 1.00 0.02 1.00 0.03 1.00 0.04
0.406 1.00 0.02 1.00 0.03 1.00 0.03 1.00 0.03
0.407 1.00 0.02 1.00 0.02 1.00 0.03 1.00 0.04
0.408 1.00 0.02 1.00 0.02 1.00 0.03 1.00 0.03
0.409 1.00 0.02 1.00 0.02 1.00 0.03 1.00 0.03
0.410 1.00 0.01 1.00 0.02 1.00 0.03 1.00 0.04

130 0.401 0.80 0.09 0.90 0.12 0.95 0.19 0.97 0.23
0.402 0.97 0.08 0.98 0.13 0.98 0.20 0.99 0.23
0.403 1.00 0.09 1.00 0.14 1.00 0.19 1.00 0.23
0.404 1.00 0.08 1.00 0.13 1.00 0.20 1.00 0.23
0.405 1.00 0.09 1.00 0.13 1.00 0.20 1.00 0.23
0.406 1.00 0.09 1.00 0.14 1.00 0.20 1.00 0.23
0.407 1.00 0.08 1.00 0.14 1.00 0.19 1.00 0.23
0.408 1.00 0.09 1.00 0.13 1.00 0.19 1.00 0.23
0.409 1.00 0.09 1.00 0.13 1.00 0.18 1.00 0.22
0.410 1.00 0.09 1.00 0.13 1.00 0.20 1.00 0.23

200 0.401 0.81 0.13 0.90 0.21 0.95 0.29 0.97 0.33
0.402 0.96 0.13 0.97 0.20 0.98 0.30 0.99 0.34
0.403 1.00 0.14 1.00 0.21 1.00 0.29 1.00 0.32
0.404 1.00 0.14 1.00 0.21 1.00 0.29 1.00 0.34
0.405 1.00 0.14 1.00 0.22 1.00 0.29 1.00 0.34
0.406 1.00 0.13 1.00 0.21 1.00 0.30 1.00 0.33
0.407 1.00 0.13 1.00 0.21 1.00 0.28 1.00 0.34
0.408 1.00 0.14 1.00 0.21 1.00 0.28 1.00 0.33
0.409 1.00 0.13 1.00 0.21 1.00 0.28 1.00 0.34
0.410 1.00 0.13 1.00 0.20 1.00 0.29 1.00 0.33
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Table 5.9: Monitoring proportion of discharged patients within four hours:
Average Sample Number. The initial proportion is p0 = 0.4, pA varies from
0.401 to 0.41. The truncation point is n = 260, EWMA algorithm is stopped
after 1500 observations. Number of simulations is 5000.

τ pA Test 1.1 Test 1.2 Test 1.3
EWMA (Total)

λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.3

26 0.401 252 253 248 742 586 468 419
0.402 243 234 222 423 394 346 339
0.403 216 200 184 228 239 243 257
0.404 174 166 152 145 157 169 183
0.405 137 139 127 105 111 124 137
0.406 109 120 110 81 84 95 106
0.407 92 107 99 67 68 76 85
0.408 80 96 89 59 58 64 72
0.409 71 88 82 52 51 55 62
0.410 65 82 77 49 47 49 54

130 0.401 255 257 255 760 623 479 427
0.402 255 254 249 490 442 389 357
0.403 253 249 240 316 309 305 295
0.404 251 240 228 236 238 238 242
0.405 244 230 213 198 195 198 203
0.406 235 219 201 175 172 174 182
0.407 225 210 192 163 159 161 165
0.408 214 200 184 154 151 149 152
0.409 204 192 178 149 145 144 144
0.410 196 186 173 145 141 137 138

200 0.401 256 257 257 771 619 493 430
0.402 256 257 257 533 475 402 383
0.403 256 257 255 364 350 333 321
0.404 256 256 254 290 282 277 272
0.405 255 255 252 254 247 244 244
0.406 255 254 251 235 226 219 222
0.407 254 252 247 224 213 208 205
0.408 254 251 245 215 206 200 197
0.409 253 249 242 210 199 193 190
0.410 252 247 238 208 197 188 185
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Table 5.10: Monitoring proportion of discharged patients within four hours:
Simulated Power for Tests 1.1-1.3. The initial proportion values are p0 =
0.3, 0.39, 0.399, 0.4, 0.401, 0.41, 0.5, the alternative parameter pA is fixed at 0.4,
the truncation point is n = 260. Number of simulations is 5000.

τ p0 Test 1.1 Test 1.2 Test 1.3

26 0.300 1.00 1.00 1.00
0.390 1.00 1.00 1.00
0.399 0.05 0.13 0.22
0.400 0.02 0.04 0.04
0.401 0.06 0.14 0.00
0.410 1.00 1.00 0.00
0.500 1.00 1.00 0.00

130 0.300 1.00 1.00 1.00
0.390 0.98 1.00 1.00
0.399 0.03 0.06 0.12
0.400 0.03 0.05 0.04
0.401 0.03 0.07 0.02
0.410 0.98 1.00 0.00
0.500 1.00 1.00 0.00

200 0.300 1.00 1.00 1.00
0.390 0.27 0.60 0.91
0.399 0.02 0.05 0.07
0.400 0.03 0.04 0.05
0.401 0.03 0.05 0.03
0.410 0.26 0.59 0.02
0.500 1.00 1.00 0.02
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Table 5.11: Monitoring proportion of discharged patients within four hours:
Simulated Power for EWMA. The initial proportion values are p0 =
0.3, 0.39, 0.399, 0.4, 0.401, 0.41, 0.5, the alternative parameter pA is fixed at 0.4,
λ = 0.05, 0.1, 0.2, 0.3. The algorithm is stopped after 1500 observations. Num-
ber of simulations is 5000.

τ p0

EWMA
λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.3

Total Before τ Total Before τ Total Before τ Total Before τ

26 0.300 1.00 0.02 1.00 0.02 1.00 0.03 1.00 0.04
0.390 1.00 0.02 1.00 0.02 1.00 0.03 1.00 0.03
0.399 0.82 0.02 0.90 0.02 0.95 0.03 0.97 0.03
0.400 0.67 0.02 0.84 0.02 0.93 0.03 0.96 0.03
0.401 0.81 0.01 0.90 0.02 0.95 0.04 0.97 0.04
0.410 1.00 0.02 1.00 0.02 1.00 0.03 1.00 0.03
0.500 1.00 0.02 1.00 0.02 1.00 0.03 1.00 0.04

130 0.300 1.00 0.09 1.00 0.14 1.00 0.20 1.00 0.22
0.390 1.00 0.08 1.00 0.14 1.00 0.20 1.00 0.23
0.399 0.81 0.09 0.90 0.14 0.96 0.20 0.97 0.23
0.400 0.68 0.08 0.83 0.14 0.93 0.20 0.96 0.23
0.401 0.80 0.09 0.89 0.14 0.95 0.20 0.97 0.23
0.410 1.00 0.09 1.00 0.13 1.00 0.18 1.00 0.24
0.500 1.00 0.08 1.00 0.14 1.00 0.20 1.00 0.23

200 0.300 1.00 0.13 1.00 0.20 1.00 0.29 1.00 0.32
0.390 1.00 0.13 1.00 0.21 1.00 0.28 1.00 0.34
0.399 0.80 0.13 0.90 0.21 0.95 0.29 0.97 0.34
0.400 0.66 0.13 0.85 0.21 0.93 0.29 0.96 0.33
0.401 0.80 0.13 0.88 0.20 0.95 0.29 0.97 0.34
0.410 1.00 0.13 1.00 0.20 1.00 0.29 1.00 0.33
0.500 1.00 0.14 1.00 0.21 1.00 0.28 1.00 0.33
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Table 5.12: Monitoring proportion of discharged patients within four
hours: Average Sample Number. The initial proportion values are p0 =
0.3, 0.39, 0.399, 0.4, 0.401, 0.41, 0.5, the alternative parameter pA is fixed at 0.4.
The truncation point is n = 260, EWMA algorithm is stopped after 1500 ob-
servations. Number of simulations is 5000.

τ p0 Test 1.1 Test 1.2 Test 1.3
EWMA (Total)

λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.3

26 0.300 28 31 30 27 26 26 26
0.390 65 82 77 48 47 49 53
0.399 252 252 248 723 593 470 412
0.400 256 257 258 916 701 531 456
0.401 253 252 260 740 600 472 429
0.410 65 83 260 49 47 50 54
0.500 28 31 260 27 26 26 26

130 0.300 133 135 133 125 122 118 116
0.390 195 186 173 146 140 137 137
0.399 255 257 255 758 608 474 424
0.400 256 257 258 897 708 526 448
0.401 255 257 259 768 615 487 433
0.410 196 186 260 145 141 139 138
0.500 133 135 260 126 122 117 116

200 0.300 203 204 202 187 181 171 166
0.390 252 247 238 207 196 189 185
0.399 256 257 257 782 623 492 426
0.400 255 258 258 912 692 518 459
0.401 255 257 258 781 641 494 430
0.410 252 247 258 207 197 188 187
0.500 204 205 258 187 179 171 166
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Appendix A

Asymptotics

Here we provide some theoretical background to the truncated tests described

in the thesis. Let

a(x) = (2 log x)
1
2 , b(x) = 2 log x+

1

2
log log x− 1

2
log π

and W (t) denote a standard Brownian motion. Under certain conditions the

test statistics have the following asymptotic distributions under the null hy-

pothesis of no change.

• The asymptotic distributions of the one-sided and two-sided Test 1.1

statistics were calculated by Darling and Erdős (1956) and are given by

lim
n→∞

P

(
a(log n) max

1<k≤n

1√
k
Sk ≤ u+ b(log n)

)
= exp(−e−u)

and

lim
n→∞

P

(
a(log n) max

1<k≤n

1√
k
|Sk| ≤ u+ b(log n)

)
= exp(−2e−u),

for −∞ < u < ∞. The two-sided test statistic max
1<k≤n

1/
√
k|Sk| can be

better approximated by a diffusion process

P

(
max
1<k≤n

1√
k
|Sk| > u

)
∼= P

(
sup

1≤t≤n
W

1
2 (t) > u

)
∼= P

(
sup

1≤t≤n
|U(log t)| > u

)
,

where U(t) is a stationary diffusion process. Vostrikova (1981) showed

that for all N > 0

P

(
sup

0≤t≤N
|U(t)| > u

)
=

u exp(−u2/2)√
2π

(
N −N

1

u2
+

4

u2
+O(

1

u4
)

)
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as u → ∞. Hence the improved critical value of the two-sided Test 1.1

is obtained using

P

(
max
1<k≤n

1√
k
|Sk| > u

)
∼=

u exp(−u2/2)√
2π

(
log n(1− 1

u2
) +

4

u2
+O(

1

u4
)

)
.

• A critical value for the Test 1.2 can be obtained from

P

(
max
1<k≤n

1√
n
Sk > u

)
∼= P

(
sup
0≤t≤1

W (t) > u

)
= 2(1− Φ(u)),

where Φ(·) is the cumulative distribution function of the standard nor-

mal distribution. The two-sided test statistic have the following tail

probability

P

(
max
1<k≤n

1√
n
|Sk| > u

)
∼= P

(
sup
0≤t≤1

|W (t)| > u

)
= 1− 4

π

∞∑
m=0

(−1)m

2m+1
exp

(
−π2(2m+1)2

8u2

)
.

(A.1)

• The Test 1.3 statistic can also be approximated by the supremum of a

Brownian motion. This follows from the fact that

max
0≤j<k≤n

1√
n
(Sk − Sj) →D sup

0≤s<t≤1
(W (t)−W (s)) =D sup

0≤t≤1
|W (t)|.

Therefore a critical value for Test 1.3 can be obtained from the last

equality in (A.1).
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Appendix B

R Scripts

A function that finds α for Test 1, given critical value h. It is used to find an

approximate critical value using Vostrikova’s improvement.

##########################

### Test 1 critic val ####

##########################

f=function(h,n)

{

return(exp(-h^2/2)*h/sqrt(2*pi)*(log(n)*(1-1/h^2)+4/h^2))

}
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Script for Tables 2.1 and 2.2.

###########################

### Test 1, 2-sided #######

###########################

test1=function(n,s,c1)

{

t=abs(s)/sqrt(1:n)

k=which.min(t[11:n]<c1)

if(k==1 && t[11]<c1) return(c(n,0)) else return(c(k,1))

}

###########################

### Test 2, 2-sided #######

###########################

test2=function(n,s)

{

t=abs(s)/sqrt(n)

k=which.min(t[11:n]<2.24)

if(k==1 && t[11]<2.24) return(c(n,0)) else return(c(k,1))

}

###########################

### Test 3 ################

###########################

test3=function(n,y,s2k)

{

d=rep(0,n)

for(k in 1:10)

{

d[1:k]=d[1:k]+y[k]

}

t=0

k=11

while(t<2.24 && k<=n)

{

d[1:k]=d[1:k]+y[k]

t=max(d[1:k]/sqrt(s2k[k])/sqrt(n))

k=k+1

}

if(t<2.24) return(c(n,0)) else return(c(k-1,1))
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}

###########################

### Saving results ########

###########################

sink("outputnormal.txt")

set.seed(9600)

xx=format(round(c(0.0,0.2,0.4,0.6),1),nsmall=1)

xx=rep(xx,3)

y=c(50,rep(999,3),100,rep(999,3),200,rep(999,3))

z=c(100,rep(999,3),200,rep(999,3),400,rep(999,3))

xx=cbind(z,y,xx)

power=NULL

asn=NULL

for (n in c(100,200,400))

{

if (n==100) {c1=3.07} else {if(n==200) {c1=3.12} else c1=3.16}

for (tau in c(0.5))

{

for (i in c(0.0,0.2,0.4,0.6))

{

a1=0

asn1=0

a2=0

asn2=0

a3=0

asn3=0

for (m in 1:5000)

{

y=c(rnorm(round(tau*n)-1,0,1),rnorm(round(tau*n)+1,i,1))

st=cumsum(y)

s2=cumsum(y^2)

s2k=s2/1:n

s=st/sqrt(s2k)

test=test1(n,s,c1)

a1=a1+test[2]

asn1=asn1+test[1]

test=test2(n,s)
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a2=a2+test[2]

asn2=asn2+test[1]

test=test3(n,y,s2k)

a3=a3+test[2]

asn3=asn3+test[1]

}

power=rbind(power,c(a1/m,a2/m,a3/m))

asn=rbind(asn,c(asn1/m,asn2/m,asn3/m))

}

}

}

power=cbind(xx,format(round(power,2),nsmall=2))

asn=cbind(xx,format(round(asn,2),nsmall=2))

cat("Simulated Power")

cat("\n")

cat("\n")

write(t(power),"",ncolumns=6,sep=" & ")

cat("\n")

cat("ASN")

cat("\n")

cat("\n")

write(t(asn),"",ncolumns=6,sep=" & ")

sink()
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Script for Tables 3.1 and 3.2.

###########################

### Test 1, 2-sided #######

###########################

test1=function(n,s,c1)

{

t=abs(s)/sqrt(1:n)

k=which.min(t[11:n]<c1)

if(k==1 && t[11]<c1) return(c(n,0)) else return(c(k,1))

}

###########################

### Test 2, 2-sided #######

###########################

test2=function(n,s)

{

t=abs(s)/sqrt(n)

k=which.min(t[11:n]<2.24)

if(k==1 && t[11]<2.24) return(c(n,0)) else return(c(k,1))

}

###########################

### Test 3 ################

###########################

test3=function(n,y,p)

{

d=rep(0,n)

for(k in 1:10)

{

d[1:k]=d[1:k]+st[k]

}

t=0

k=11

while(t<2.24 && k<=n)

{

d[1:k]=d[1:k]+st[k]

t=max(d[1:k])/sqrt(n)

k=k+1

}

if(t<2.24) return(c(n,0)) else return(c(k-1,1))
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}

###########################

### Saving results ########

###########################

library(Rlab)

sink("outputbinary.txt")

set.seed(9600)

xx=format(round(c(0.07,0.09,0.11,0.13),2),nsmall=2)

xx=rep(xx,3)

y=c(1,rep(999,3),500,rep(999,3),2500,rep(999,3))

xx=cbind(y,xx)

power=NULL

asn=NULL

for (n in c(5000))

{

c1=3.3*0^(9600-n)+3.28*0^(n-5000)

for (tau in c(1/n,0.1,0.5))

{

for (i in c(0.07,0.09,0.11,0.13))

{

a1=0

asn1=0

a2=0

asn2=0

a3=0

asn3=0

for (m in 1:5000)

{

p=rep(0.07,n)

ptrue=p

ptrue[round(tau*n):n]=i

y=rbern(n,ptrue)

st=(y-p)/sqrt(p*(1-p))

s=cumsum(st)

test=test1(n,s,c1)

a1=a1+test[2]

asn1=asn1+test[1]

test=test2(n,s)

67



a2=a2+test[2]

asn2=asn2+test[1]

test=test3(n,y,p)

a3=a3+test[2]

asn3=asn3+test[1]

}

power=rbind(power,c(a1/m,a2/m,a3/m))

asn=rbind(asn,c(asn1/m,asn2/m,asn3/m))

}

}

}

power=cbind(xx,format(round(power,2),nsmall=2))

asn=cbind(xx,format(round(asn,2),nsmall=2))

cat("Simulated Power")

cat("\n")

cat("\n")

write(t(power),"",ncolumns=5,sep=" & ")

cat("\n")

cat("ASN")

cat("\n")

cat("\n")

write(t(asn),"",ncolumns=5,sep=" & ")

sink()
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Script for Tables 3.3-3.6.

###########################

### Test 1, 2-sided #######

###########################

test1=function(n,s,c1)

{

t=abs(s)/sqrt(1:n)

k=which.min(t[11:n]<c1)

if(k==1 && t[11]<c1) return(c(n,0)) else return(c(k,1))

}

###########################

### Test 2, 2-sided #######

###########################

test2=function(n,s)

{

t=abs(s)/sqrt(n)

k=which.min(t[11:n]<2.24)

if(k==1 && t[11]<2.24) return(c(n,0)) else return(c(k,1))

}

###########################

### Test 3 ################

###########################

test3=function(n,y,p)

{

d=rep(0,n)

for(k in 1:10)

{

d[1:k]=d[1:k]+st[k]

}

t=0

k=11

while(t<2.24 && k<=n)

{

d[1:k]=d[1:k]+st[k]

t=max(d[1:k])/sqrt(n)

k=k+1

}

if(t<2.24) return(c(n,0)) else return(c(k-1,1))
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}

###########################

### CUSUM #################

###########################

cusum=function(n,wk,h)

{

xt=0

k=1

while(xt<h && k<=n)

{

xt=max(c(0,xt+wk[k]))

k=k+1

}

if(xt<h) return(c(n,0)) else return(c(k-1,1))

}

###########################

### Saving results ########

###########################

library(Rlab)

sink("SurgeonH0.txt")

set.seed(9600)

power=NULL

asn=NULL

asncusum=NULL

for (n in c(5000,9600))

{

c1=3.3*0^(9600-n)+3.28*0^(n-5000)

a1=0

asn1=0

a2=0

asn2=0

a3=0

asn3=0

a4=0

asn4=c()

for (m in 1:5000)

{

x=rpois(n,13)

logitp=-3.68+0.077*x
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p=exp(logitp)/(1+exp(logitp))

y=rbern(n,p)

st=(y-p)/sqrt(p*(1-p))

s=cumsum(st)

wk=log(2^y/(1-p+2*p))

test=test1(n,s,c1)

a1=a1+test[2]

asn1=asn1+test[1]

test=test2(n,s)

a2=a2+test[2]

asn2=asn2+test[1]

test=test3(n,y,p)

a3=a3+test[2]

asn3=asn3+test[1]

test=cusum(n,wk,4.5)

a4=a4+test[2]

asn4=c(asn4,test[1])

}

power=rbind(power,c(a4/m,a1/m,a2/m,a3/m))

asncusum=rbind(asncusum,asn4)

asn=rbind(asn,c(sum(asn4)/m,asn1/m,asn2/m,asn3/m))

}

power=cbind(c(5000,9600),format(round(power,4),nsmall=4))

asn=cbind(c(5000,9600),format(round(asn,2),nsmall=2))

cat("Simulated Type I Error")

cat("\n")

cat("\n")

write(t(power),"",ncolumns=5,sep=" & ")

cat("\n")

cat("ASN")

cat("\n")

cat("\n")

write(t(asn),"",ncolumns=5,sep=" & ")

sink()

sink("Surgeon.txt")

set.seed(9600)

xx=format(round(c(1.25,1.50,1.75,2.00),2),nsmall=2)
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xx=rep(xx,6)

y=c(1,rep(999,3),500,rep(999,3),2500,rep(999,3))

y=c(y,1,rep(999,3),960,rep(999,3),4800,rep(999,3))

z=c(5000,rep(999,11),9600,rep(999,11))

xx=cbind(z,y,xx)

power=NULL

asn=NULL

for (n in c(5000,9600))

{

c1=3.3*0^(9600-n)+3.28*0^(n-5000)

for (tau in c(1/n,0.1,0.5))

{

for (i in c(1.25,1.50,1.75,2.00))

{

a1=0

asn1=0

ab1=0

asnstopped1=0

a2=0

asn2=0

ab2=0

asnstopped2=0

a3=0

asn3=0

ab3=0

asnstopped3=0

for (m in 1:5000)

{

x=rpois(n,13)

logitp=-3.68+0.077*x

p=exp(logitp)/(1+exp(logitp))

ptrue=p

ptrue[round(tau*n):n]=i*p[round(tau*n):n]/

(1-p[round(tau*n):n]+i*p[round(tau*n):n])

y=rbern(n,ptrue)

st=(y-p)/sqrt(p*(1-p))

s=cumsum(st)

test=test1(n,s,c1)

a1=a1+test[2]

asn1=asn1+test[1]

if (test[1]<tau*n)

{
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ab1=ab1+1

}

asnstopped1=asnstopped1+test[2]*test[1]

test=test2(n,s)

a2=a2+test[2]

asn2=asn2+test[1]

if (test[1]<tau*n)

{

ab2=ab2+1

}

asnstopped2=asnstopped2+test[2]*test[1]

test=test3(n,y,p)

a3=a3+test[2]

asn3=asn3+test[1]

if (test[1]<tau*n)

{

ab3=ab3+1

}

asnstopped3=asnstopped3+test[2]*test[1]

}

power=rbind(power,c(a1/m,ab1/m,a2/m,ab2/m,a3/m,ab3/m))

asn=rbind(asn,c(asn1/m,asnstopped1/a1,asn2/m,asnstopped2/a2,

asn3/m,asnstopped3/a3))

}

}

}

power=cbind(xx,format(round(power,2),nsmall=2))

asn=cbind(xx,format(round(asn),nsmall=0))

cat("Simulated Power")

cat("\n")

cat("\n")

write(t(power),"",ncolumns=9,sep=" & ")

cat("\n")

cat("ASN")

cat("\n")

cat("\n")

write(t(asn),"",ncolumns=9,sep=" & ")

sink()

sink("CUSUMresults.txt")

set.seed(9600)
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xx=format(round(c(1.25,1.50,1.75,2.00),2),nsmall=2)

xx=rep(xx,5)

y=c(1,rep(999,3),500,rep(999,3),960,rep(999,3),

2500,rep(999,3),4800,rep(999,3))

xx=cbind(y,xx)

result=NULL

n=9600

for (tau in c(1,500,960,2500,4800))

{

for (i in c(1.25,1.50,1.75,2.00))

{

a4=0

asn4=0

ab4=0

asncond=0

for (m in 1:5000)

{

x=rpois(n,13)

logitp=-3.68+0.077*x

p=exp(logitp)/(1+exp(logitp))

ptrue=p

ptrue[tau:n]=i*p[tau:n]/(1-p[tau:n]

+i*p[tau:n])

y=rbern(n,ptrue)

wk=log(2^y/(1-p+2*p))

test=cusum(n,wk,4.5)

a4=a4+test[2]

asn4=asn4+test[1]

if (test[1]>=tau)

{

asncond=asncond+test[1]

ab4=ab4+1

}

}

result=rbind(result,c(a4/m,(m-ab4)/m,asn4/m,asncond/ab4))

}

}

result=cbind(xx,format(round(result[,1:2],2),nsmall=2),

format(round(result[,3:4],0),nsmall=0))

cat("CUSUM results")

cat("\n")

cat("\n")

write(t(result),"",ncolumns=6,sep=" & ")

sink()
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Application of tests to the cardiac surgery data.

a=read.csv("data.csv",header=T)

a=a[2087:6685,]

test1=function(n,s,c1)

{

t=abs(s)/sqrt(1:length(s))

k=which.min(t[11:length(s)]<c1)

if(k==1 && t[11]<c1) return(c(n,0)) else return(c(k,1))

}

test2=function(n,s)

{

t=abs(s)/sqrt(n)

k=which.min(t[11:length(s)]<2.24)

if(k==1 && t[11]<2.24) return(c(n,0)) else return(c(k,1))

}

test3=function(n,y,p)

{

d=rep(0,n)

for(k in 1:10)

{

d[1:k]=d[1:k]+st[k]

}

t=0

k=11

while(t<2.24 && k<=length(y))

{

d[1:k]=d[1:k]+st[k]

t=max(d[1:k])/sqrt(n)

k=k+1

}

if(t<2.24) return(c(n,0)) else return(c(k-1,1))

}

cusum=function(n,wk,h)

{

xt=0

k=1

while(xt<h && k<=length(wk))

{

xt=max(c(0,xt+wk[k]))
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k=k+1

}

if(xt<h) return(c(n,0)) else return(c(k-1,1))

}

for(i in 1:7)

{

x=a[a[,2]==i,4]

logitp=-3.68+0.077*x

p=exp(logitp)/(1+exp(logitp))

y=a[a[,2]==i,3]

st=(y-p)/sqrt(p*(1-p))

s=cumsum(st)

wk=log(2^y/(1-p+2*p))

print(c(test1(5000,s,3.28),test2(5000,s),

test3(5000,y,p),cusum(5000,wk,4.5)))

}
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Script for Tables 4.1 and 4.2.

#the table with J_i=50 is obtained by the same script with n1=50

##############

### Test 1 ###

##############

test1=function(n,k,z,s,c1)

{

nt=0

ska=0

for(t in 1:10)

{

if(k[t]==1)

{

nt=nt+1

ska=ska+s[t]

}

}

t=11

test=0

while(test<c1 && t<=n)

{

if(k[t]==1)

{

sd2=(t-1)/t*sum(cov(z[1:t,]))

nt=nt+1

ska=ska+s[t]

st=ska/sqrt(sd2)

test=abs(st/sqrt(nt))

}

t=t+1

}

if(test<c1) return(c(n,0)) else return(c(t-1,1))

}

##############

### Test 2 ###

##############

test2=function(n,k,z,s,c2)

{

ska=0
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for(t in 1:10)

{

if(k[t]==1)

{

ska=ska+s[t]

}

}

t=11

test=0

while(test<c2 && t<=n)

{

if(k[t]==1)

{

sd2=(t-1)/t*sum(cov(z[1:t,]))

ska=ska+s[t]

st=ska/sqrt(sd2)

test=abs(st/sqrt(n1))

}

t=t+1

}

if(test<c2) return(c(n,0)) else return(c(t-1,1))

}

##############

### Test 3 ###

##############

test3=function(n,k,s,c3)

{

ska=0

for(t in 1:10)

{

if(k[t]==1)

{

ska=ska+sign(s[t])

}

}

t=11

while(abs(ska)<c3 && t<=n)

{

if(k[t]==1)

{

ska=ska+sign(s[t])

}

t=t+1
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}

if(abs(ska)<c3) return(c(n,0)) else return(c(t-1,1))

}

######################

### Saving results ###

######################

sink("longit20.txt")

set.seed(9600)

n1=20

c1=2.93

c2=2.24

c3=10

n=2*n1

#creating correlated data

times=1:3

rho=0.5

sigma=1

H=abs(outer(times, times, "-"))

V=sigma*rho^H

p=nrow(V)

V[cbind(1:p, 1:p)]=V[cbind(1:p, 1:p)]*sigma

s=svd(V)

D=diag(sqrt(s$d))

om=s$u %*% D %*% t(s$v)

power=NULL

asn=NULL

ll=5000

for (mu in c(1,1.2,1.4,1.6,1.8,2))

{

a1=0

asn1=0

a2=0

asn2=0

a3=0

asn3=0

for(l in 1:ll)

{

yy=NULL
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for(k in 1:2)

{

for(j in 1:n1)

{

yy=rbind(yy,c(0,0,0))

}

}

for(k in 1:2)

{

for(j in 1:n1)

{

w=rexp(3)

yy[(k-1)*n1+j,]=om %*% w+rep(mu^(k-1),3)

}

}

z=NULL

ind=sample(1:n)

k=c(rep(1,n1),rep(2,n1))

a=c(1:n1,1:n1)

k=k[order=ind]

for(i in 1:3)

{

y=yy[,i]

y=y[order=ind]

r=c()

for(j in 1:n)

{

r[j]=sum(y[1:j]<=y[j])

}

m=1:n

zz=rep(0,n)

zz[-1]=(r[-1]-(m[-1]+1)/2)/sqrt((m[-1]^2-1)/12)

z=cbind(z,zz)

}

s=apply(z,1,sum)

test=test1(n,k,z,s,c1)

a1=a1+test[2]

asn1=asn1+test[1]

test=test2(n,k,z,s,c2)

a2=a2+test[2]

asn2=asn2+test[1]
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test=test3(n,k,s,c3)

a3=a3+test[2]

asn3=asn3+test[1]

}

power=rbind(power,c(a1/ll,a2/ll,a3/ll))

asn=rbind(asn,c(asn1/ll,asn2/ll,asn3/ll))

}

power=cbind(format(round(c(1,1.2,1.4,1.6,1.8,2),1),

nsmall=1),format(round(power,2),nsmall=2))

asn=cbind(format(round(c(1,1.2,1.4,1.6,1.8,2),1),

nsmall=1),format(round(asn,2),nsmall=2))

cat("Simulated Power")

cat("\n")

cat("\n")

write(t(power),"",ncolumns=4,sep=" & ")

cat("\n")

cat("ASN")

cat("\n")

cat("\n")

write(t(asn),"",ncolumns=4,sep=" & ")

sink()
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Script for Tables 5.1 and 5.2.

###########################

### Test 1, 2-sided #######

###########################

test1=function(n,p0,p,np,c1)

{

d=0

for (k in 1:10)

{

d=d+(p[k]-p0)*sqrt(np[k]/p0/(1-p0))

}

t=abs(d)/sqrt(k)

k=11

while (t<c1 && k<=n)

{

d=d+(p[k]-p0)*sqrt(np[k]/p0/(1-p0))

t=abs(d)/sqrt(k)

k=k+1

}

if(t<c1) return(c(n,0)) else return(c(k-1,1))

}

###########################

### Test 2, 2-sided #######

###########################

test2=function(n,p0,p,np)

{

d=0

for (k in 1:10)

{

d=d+(p[k]-p0)*sqrt(np[k]/p0/(1-p0))

}

t=0

k=11

while (t<2.24 && k<=n)

{

d=d+(p[k]-p0)*sqrt(np[k]/p0/(1-p0))

t=abs(d)/sqrt(n)

k=k+1

}

if(t<2.24) return(c(n,0)) else return(c(k-1,1))

}
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###########################

### Test 3 ################

###########################

test3=function(n,p0,p,np)

{

d=rep(0,n)

for(k in 1:10)

{

d[1:k]=d[1:k]+(p[k]-p0)*sqrt(np[k]/p0/(1-p0))

}

t=0

k=11

while(t<2.24 && k<=n)

{

d[1:k]=d[1:k]+(p[k]-p0)*sqrt(np[k]/p0/(1-p0))

t=max(d[1:k])/sqrt(n)

k=k+1

}

if(t<2.24) return(c(n,0)) else return(c(k-1,1))

}

###########################

### EWMA for not iid ######

###########################

ewma=function(n,p0,y,np,np0,L,lambda)

{

s=lambda*y[1]+(1-lambda)*p0*np0

t=np[1]

h=L*lambda*sqrt(p0*(1-p0)*t)

es=lambda*p0*np[1]+(1-lambda)*p0*np0

for(k in 2:10)

{

s=lambda*y[k]+(1-lambda)*s

es=lambda*p0*np[k]+(1-lambda)*es

t=(1-lambda)^2*t+np[k]

h=L*lambda*sqrt(p0*(1-p0)*t)

}

k=11

while (abs(s-es)<h && k<=n)

{

s=lambda*y[k]+(1-lambda)*s

es=lambda*p0*np[k]+(1-lambda)*es

t=(1-lambda)^2*t+np[k]

h=L*lambda*sqrt(p0*(1-p0)*t)

k=k+1
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}

if(abs(s-es)<h) return(c(n,0)) else return(c(k-1,1))

}

###########################

### Printing results ######

###########################

a=read.csv("ToPlot.csv",header=F)

np=a[30:129,4]

p=as.numeric(gsub("\\%","",a[,5]))/100

p00=mean(p[1:29])

np0=mean(a[1:29,4])

y=p[30:129]*np

tab=NULL

for (p0 in c(p00,0.7,0.75,0.8))

{

k=test1(260,p0,p,np,3.14)[1]

k=c(k,test2(260,p0,p,np)[1])

k=c(k,test3(260,p0,p,np)[1])

for (lambda in c(0.05,0.1,0.2,0.3))

{

k=c(k,ewma(260,p0,y,np,np0,3,lambda)[1])

}

tab=rbind(tab,k)

}

write(t(tab),"",ncolumns=7,sep="\t")

np=a[30:129,8]

p=as.numeric(gsub("\\%","",a[,9]))/100

p00=mean(p[1:29])

np0=mean(a[1:29,8])

y=p[30:129]*np

tab=NULL

for (p0 in c(p00,0.5))

{

k=test1(260,p0,p,np,3.14)[1]

k=c(k,test2(260,p0,p,np)[1])

k=c(k,test3(260,p0,p,np)[1])

for (lambda in c(0.05,0.1,0.2,0.3))

{

k=c(k,ewma(260,p0,y,np,np0,3,lambda)[1])

}

tab=rbind(tab,k)

}

write(t(tab),"",ncolumns=7,sep="\t")
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Script for Table 5.3.

###########################

### EWMA ##################

###########################

ewma=function(p0,np,L,lambda)

{

p=rbinom(1,np,0.4)/1000

s=(lambda*p+(1-lambda)*p0)*np

h=L*sqrt(lambda/(2-lambda)*np*p0*(1-p0)*(1-(1-lambda)^2))

for (k in 2:10)

{

p=rbinom(1,np,0.4)/1000

s=lambda*p*np+(1-lambda)*s

h=L*sqrt(lambda/(2-lambda)*np*p0*(1-p0)*(1-(1-lambda)^(2*k)))

}

k=11

while(abs(s-p0*np)<h )

{

p=rbinom(1,np,0.4)/1000

s=lambda*p*np+(1-lambda)*s

h=L*sqrt(lambda/(2-lambda)*np*p0*(1-p0)*(1-(1-lambda)^(2*k)))

k=k+1

}

return(k-1)

}

###########################

### Printing Results ######

###########################

set.seed(9600)

asn005=c()

asn01=c()

asn02=c()

asn03=c()

np=1000

for (m in 1:10)

{

test=ewma(0.4,np,3,0.05)

asn005=c(asn005,test)

85



test=ewma(0.4,np,3,0.1)

asn01=c(asn01,test)

test=ewma(0.4,np,3,0.2)

asn02=c(asn02,test)

test=ewma(0.4,np,3,0.3)

asn03=c(asn03,test)

}

print(c(mean(asn005),max(asn005)))

cat("\n")

print(c(mean(asn01),max(asn01)))

cat("\n")

print(c(mean(asn02),max(asn02)))

cat("\n")

print(c(mean(asn03),max(asn03)))
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Script for Tables 5.4-5.6.

#use test1, test2, test3 functions from the previous script

###########################

### EWMA ##################

###########################

ewma=function(n,p0,p,np,L,lambda)

{

s=(lambda*p[1]+(1-lambda)*p0)*np[1]

h=L*sqrt(lambda/(2-lambda)*np[1]*p0*(1-p0)*

(1-(1-lambda)^2))

for (k in 2:10)

{

s=lambda*p[k]*np[1]+(1-lambda)*s

h=L*sqrt(lambda/(2-lambda)*np[1]*p0*(1-p0)*

(1-(1-lambda)^(2*k)))

}

k=11

while(abs(s-p0*np[1])<h && k<=n)

{

s=lambda*p[k]*np[1]+(1-lambda)*s

h=L*sqrt(lambda/(2-lambda)*np[1]*p0*(1-p0)*

(1-(1-lambda)^(2*k)))

k=k+1

}

if(abs(s-p0*np[1])<h) return(c(n,0)) else return(c(k-1,1))

}

###########################

### Saving Results ########

###########################

sink("Table53.txt")

set.seed(9600)

power1=NULL

power2=NULL

asn=NULL

np=rep(1000,260)

n=260

nn=1500

p=c()
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xx=format(round(5:9/10,1),nsmall=1)

xx=rep(xx,3)

y=c(26,rep(999,4),130,rep(999,4),200,rep(999,4))

xx=cbind(y,xx)

ll=5000

pow=c()

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in 5:9)

{

a1=0

asn1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,0.4)/1000

p[round(tau*n):n]=rbinom(n-(round(tau*n)-1),1000,i/10)/1000

test=test1(n,0.4,p,np,3.14)

a1=a1+test[2]

asn1=asn1+test[1]

}

pow=c(pow,a1/m)

asn0=c(asn0,asn1/m)

}

}

power1=cbind(power1,pow)

asn=cbind(asn,asn0)

pow=c()

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in 5:9)

{

a1=0

asn1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,0.4)/1000

p[round(tau*n):n]=rbinom(n-(round(tau*n)-1),1000,i/10)/1000
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test=test2(n,0.4,p,np)

a1=a1+test[2]

asn1=asn1+test[1]

}

pow=c(pow,a1/m)

asn0=c(asn0,asn1/m)

}

}

power1=cbind(power1,pow)

asn=cbind(asn,asn0)

pow=c()

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in 5:9)

{

a1=0

asn1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,0.4)/1000

p[round(tau*n):n]=rbinom(n-(round(tau*n)-1),1000,i/10)/1000

test=test3(n,0.4,p,np)

a1=a1+test[2]

asn1=asn1+test[1]

}

pow=c(pow,a1/m)

asn0=c(asn0,asn1/m)

}

}

power1=cbind(power1,pow)

asn=cbind(asn,asn0)

pow=NULL

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in 5:9)

{

a1=0

asn1=0

b1=0
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for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,0.4)/1000

p[round(tau*n):nn]=rbinom(nn-(round(tau*n)-1),1000,i/10)/1000

test=ewma(nn,0.4,p,np,3,0.05)

a1=a1+test[2]

asn1=asn1+test[1]

if (test[1]<tau*n)

{

b1=b1+1

}

}

pow=rbind(pow,c(a1/m,b1/m))

asn0=c(asn0,asn1/m)

}

}

power2=cbind(power2,pow)

asn=cbind(asn,asn0)

pow=NULL

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in 5:9)

{

a1=0

asn1=0

b1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,0.4)/1000

p[round(tau*n):nn]=rbinom(nn-(round(tau*n)-1),1000,i/10)/1000

test=ewma(nn,0.4,p,np,3,0.1)

a1=a1+test[2]

asn1=asn1+test[1]

if (test[1]<tau*n)

{

b1=b1+1

}

}

pow=rbind(pow,c(a1/m,b1/m))
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asn0=c(asn0,asn1/m)

}

}

power2=cbind(power2,pow)

asn=cbind(asn,asn0)

pow=NULL

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in 5:9)

{

a1=0

asn1=0

b1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,0.4)/1000

p[round(tau*n):nn]=rbinom(nn-(round(tau*n)-1),1000,i/10)/1000

test=ewma(nn,0.4,p,np,3,0.2)

a1=a1+test[2]

asn1=asn1+test[1]

if (test[1]<tau*n)

{

b1=b1+1

}

}

pow=rbind(pow,c(a1/m,b1/m))

asn0=c(asn0,asn1/m)

}

}

power2=cbind(power2,pow)

asn=cbind(asn,asn0)

pow=NULL

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in 5:9)

{

a1=0

asn1=0

b1=0
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for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,0.4)/1000

p[round(tau*n):nn]=rbinom(nn-(round(tau*n)-1),1000,i/10)/1000

test=ewma(nn,0.4,p,np,3,0.3)

a1=a1+test[2]

asn1=asn1+test[1]

if (test[1]<tau*n)

{

b1=b1+1

}

}

pow=rbind(pow,c(a1/m,b1/m))

asn0=c(asn0,asn1/m)

}

}

power2=cbind(power2,pow)

asn=cbind(asn,asn0)

power1=cbind(xx,power1)

power2=cbind(xx,format(round(power2,2),nsmall=2))

asn=cbind(xx,format(round(asn),nsmall=0))

cat("Simulated Power Tests1-3")

cat("\n")

cat("\n")

write(t(power1),"",ncolumns=5,sep=" & ")

cat("Simulated Power EWMA")

cat("\n")

cat("\n")

write(t(power2),"",ncolumns=10,sep=" & ")

cat("\n")

cat("ASN")

cat("\n")

cat("\n")

write(t(asn),"",ncolumns=9,sep=" & ")

sink()
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Script for Tables 5.7-5.9.

#use test1, test2, test3, ewma functions from the previous

#script

###########################

### Saving Results ########

###########################

sink("Table56.txt")

set.seed(9600)

power1=NULL

power2=NULL

asn=NULL

np=rep(1000,260)

n=260

nn=1500

p=c()

xx=format(round(401:410/1000,3),nsmall=3)

xx=rep(xx,3)

y=c(26,rep(999,9),130,rep(999,9),200,rep(999,9))

xx=cbind(y,xx)

ll=5000

pow=c()

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in 401:410)

{

a1=0

asn1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,0.4)/1000

p[round(tau*n):n]=rbinom(n-(round(tau*n)-1),1000,i/1000)/1000

test=test1(n,0.4,p,np,3.14)

a1=a1+test[2]

asn1=asn1+test[1]

}
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pow=c(pow,a1/m)

asn0=c(asn0,asn1/m)

}

}

power1=cbind(power1,pow)

asn=cbind(asn,asn0)

pow=c()

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in 401:410)

{

a1=0

asn1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,0.4)/1000

p[round(tau*n):n]=rbinom(n-(round(tau*n)-1),1000,i/1000)/1000

test=test2(n,0.4,p,np)

a1=a1+test[2]

asn1=asn1+test[1]

}

pow=c(pow,a1/m)

asn0=c(asn0,asn1/m)

}

}

power1=cbind(power1,pow)

asn=cbind(asn,asn0)

pow=c()

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in 401:410)

{

a1=0

asn1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,0.4)/1000

p[round(tau*n):n]=rbinom(n-(round(tau*n)-1),1000,i/1000)/1000
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test=test3(n,0.4,p,np)

a1=a1+test[2]

asn1=asn1+test[1]

}

pow=c(pow,a1/m)

asn0=c(asn0,asn1/m)

}

}

power1=cbind(power1,pow)

asn=cbind(asn,asn0)

pow=NULL

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in 401:410)

{

a1=0

asn1=0

b1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,0.4)/1000

p[round(tau*n):nn]=

rbinom(nn-(round(tau*n)-1),1000,i/1000)/1000

test=ewma(nn,0.4,p,np,3,0.05)

a1=a1+test[2]

asn1=asn1+test[1]

if (test[1]<tau*n)

{

b1=b1+1

}

}

pow=rbind(pow,c(a1/m,b1/m))

asn0=c(asn0,asn1/m)

}

}

power2=cbind(power2,pow)

asn=cbind(asn,asn0)

pow=NULL

asn0=c()
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for (tau in c(0.1,0.5,200/260))

{

for (i in 401:410)

{

a1=0

asn1=0

b1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,0.4)/1000

p[round(tau*n):nn]=

rbinom(nn-(round(tau*n)-1),1000,i/1000)/1000

test=ewma(nn,0.4,p,np,3,0.1)

a1=a1+test[2]

asn1=asn1+test[1]

if (test[1]<tau*n)

{

b1=b1+1

}

}

pow=rbind(pow,c(a1/m,b1/m))

asn0=c(asn0,asn1/m)

}

}

power2=cbind(power2,pow)

asn=cbind(asn,asn0)

pow=NULL

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in 401:410)

{

a1=0

asn1=0

b1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,0.4)/1000

p[round(tau*n):nn]=

rbinom(nn-(round(tau*n)-1),1000,i/1000)/1000
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test=ewma(nn,0.4,p,np,3,0.2)

a1=a1+test[2]

asn1=asn1+test[1]

if (test[1]<tau*n)

{

b1=b1+1

}

}

pow=rbind(pow,c(a1/m,b1/m))

asn0=c(asn0,asn1/m)

}

}

power2=cbind(power2,pow)

asn=cbind(asn,asn0)

pow=NULL

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in 401:410)

{

a1=0

asn1=0

b1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,0.4)/1000

p[round(tau*n):nn]=

rbinom(nn-(round(tau*n)-1),1000,i/1000)/1000

test=ewma(nn,0.4,p,np,3,0.3)

a1=a1+test[2]

asn1=asn1+test[1]

if (test[1]<tau*n)

{

b1=b1+1

}

}

pow=rbind(pow,c(a1/m,b1/m))

asn0=c(asn0,asn1/m)

}

}

power2=cbind(power2,pow)

asn=cbind(asn,asn0)
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power1=cbind(xx,format(round(power1,2),nsmall=2))

power2=cbind(xx,format(round(power2,2),nsmall=2))

asn=cbind(xx,format(round(asn),nsmall=0))

cat("Simulated Power Tests1-3")

cat("\n")

cat("\n")

write(t(power1),"",ncolumns=5,sep=" & ")

cat("Simulated Power EWMA")

cat("\n")

cat("\n")

write(t(power2),"",ncolumns=10,sep=" & ")

cat("\n")

cat("ASN")

cat("\n")

cat("\n")

write(t(asn),"",ncolumns=9,sep=" & ")

sink()
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Script for Tables 5.10-5.12.

#use test1, test2, test3, ewma functions from the previous

#script

###########################

### Saving Results ########

###########################

sink("Table59.txt")

set.seed(9600)

power1=NULL

power2=NULL

asn=NULL

np=rep(1000,260)

n=260

nn=1500

p=c()

xx=format(round(c(0.3,0.39,0.399,0.4,0.401,0.41,0.5),3),

nsmall=3)

xx=rep(xx,3)

y=c(26,rep(999,6),130,rep(999,6),200,rep(999,6))

xx=cbind(y,xx)

ll=5000

pow=c()

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in c(0.3,0.39,0.399,0.4,0.401,0.41,0.5))

{

a1=0

asn1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,i)/1000

p[round(tau*n):n]=rbinom(n-(round(tau*n)-1),1000,0.4)/1000

test=test1(n,i,p,np,3.14)

a1=a1+test[2]

asn1=asn1+test[1]
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}

pow=c(pow,a1/m)

asn0=c(asn0,asn1/m)

}

}

power1=cbind(power1,pow)

asn=cbind(asn,asn0)

pow=c()

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in c(0.3,0.39,0.399,0.4,0.401,0.41,0.5))

{

a1=0

asn1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,i)/1000

p[round(tau*n):n]=rbinom(n-(round(tau*n)-1),1000,0.4)/1000

test=test2(n,i,p,np)

a1=a1+test[2]

asn1=asn1+test[1]

}

pow=c(pow,a1/m)

asn0=c(asn0,asn1/m)

}

}

power1=cbind(power1,pow)

asn=cbind(asn,asn0)

pow=c()

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in c(0.3,0.39,0.399,0.4,0.401,0.41,0.5))

{

a1=0

asn1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,i)/1000
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p[round(tau*n):n]=rbinom(n-(round(tau*n)-1),1000,0.4)/1000

test=test3(n,i,p,np)

a1=a1+test[2]

asn1=asn1+test[1]

}

pow=c(pow,a1/m)

asn0=c(asn0,asn1/m)

}

}

power1=cbind(power1,pow)

asn=cbind(asn,asn0)

pow=NULL

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in c(0.3,0.39,0.399,0.4,0.401,0.41,0.5))

{

a1=0

asn1=0

b1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,i)/1000

p[round(tau*n):nn]=rbinom(nn-(round(tau*n)-1),1000,0.4)/1000

test=ewma(nn,i,p,np,3,0.05)

a1=a1+test[2]

asn1=asn1+test[1]

if (test[1]<tau*n)

{

b1=b1+1

}

}

pow=rbind(pow,c(a1/m,b1/m))

asn0=c(asn0,asn1/m)

}

}

power2=cbind(power2,pow)

asn=cbind(asn,asn0)

pow=NULL

asn0=c()
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for (tau in c(0.1,0.5,200/260))

{

for (i in c(0.3,0.39,0.399,0.4,0.401,0.41,0.5))

{

a1=0

asn1=0

b1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,i)/1000

p[round(tau*n):nn]=rbinom(nn-(round(tau*n)-1),1000,0.4)/1000

test=ewma(nn,i,p,np,3,0.1)

a1=a1+test[2]

asn1=asn1+test[1]

if (test[1]<tau*n)

{

b1=b1+1

}

}

pow=rbind(pow,c(a1/m,b1/m))

asn0=c(asn0,asn1/m)

}

}

power2=cbind(power2,pow)

asn=cbind(asn,asn0)

pow=NULL

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in c(0.3,0.39,0.399,0.4,0.401,0.41,0.5))

{

a1=0

asn1=0

b1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,i)/1000

p[round(tau*n):nn]=rbinom(nn-(round(tau*n)-1),1000,0.4)/1000

test=ewma(nn,i,p,np,3,0.2)

a1=a1+test[2]
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asn1=asn1+test[1]

if (test[1]<tau*n)

{

b1=b1+1

}

}

pow=rbind(pow,c(a1/m,b1/m))

asn0=c(asn0,asn1/m)

}

}

power2=cbind(power2,pow)

asn=cbind(asn,asn0)

pow=NULL

asn0=c()

for (tau in c(0.1,0.5,200/260))

{

for (i in c(0.3,0.39,0.399,0.4,0.401,0.41,0.5))

{

a1=0

asn1=0

b1=0

for (m in 1:ll)

{

p[1:(round(tau*n)-1)]=rbinom((round(tau*n)-1),1000,i)/1000

p[round(tau*n):nn]=rbinom(nn-(round(tau*n)-1),1000,0.4)/1000

test=ewma(nn,i,p,np,3,0.3)

a1=a1+test[2]

asn1=asn1+test[1]

if (test[1]<tau*n)

{

b1=b1+1

}

}

pow=rbind(pow,c(a1/m,b1/m))

asn0=c(asn0,asn1/m)

}

}

power2=cbind(power2,pow)

asn=cbind(asn,asn0)

power1=cbind(xx,format(round(power1,2),nsmall=2))

power2=cbind(xx,format(round(power2,2),nsmall=2))
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asn=cbind(xx,format(round(asn),nsmall=0))

cat("Simulated Power Tests1-3")

cat("\n")

cat("\n")

write(t(power1),"",ncolumns=5,sep=" & ")

cat("Simulated Power EWMA")

cat("\n")

cat("\n")

write(t(power2),"",ncolumns=10,sep=" & ")

cat("\n")

cat("ASN")

cat("\n")

cat("\n")

write(t(asn),"",ncolumns=9,sep=" & ")

sink()
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