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Abstract

While there has been much literature in the area of system monitoring and diagnosis, most
of these techniques have a relatively small scope in terms of the faults and performance
issues that they are built to detect. When implementing several monitors simultaneously
on a single process, a single problem can result in multiple alarms, making it difficult to
single out the underlying cause. Recent work has been done on incorporating information
from multiple monitoring systems by means of Bayesian diagnosis; however, work so far
is still in its infancy. This thesis focuses on a number of techniques that can be used to
improve performance of previously proposed Bayesian diagnosis techniques.

Previous work [1] improved Bayesian diagnosis by accounting for incomplete evidence
(monitor readings). Evidence is often presented in a multivariate vector, thus evidence with
missing elements is incomplete. Missing elements can also appear in the mode (or set of
problem sources). Many times, the mode information can also be incomplete within the
historical data, such modes are ambiguous. This thesis develops two approaches for han-
dling ambiguous modes. One technique is derived using Bayesian methods, while another
technique is a modification on Dempster-Shafer Theory.

Evidence in previous work [2] [3] was considered to be a vector of discrete variables, and
the resulting probability estimates consisted of discrete categorical distributions. However,
most monitors have continuous outputs that are only discretized for the sake of alarms.
Discretization results in information loss, so it is desirable to use a technique that can
easily estimate likelihoods for continuous evidence. Kernel density estimation is a popular
technique for the non-parametric estimation of probability densities. Non-paramteric meth-
ods enjoy the advantage of not requiring assumptions on the nature of the distribution, so
that they naturally fit the shape of the data’s distribution (which is the main motivation
for discretization). Kernel density estimation enables the construction of non-parametric
estimates for continuous densities, allowing us to circumvent discretization procedures.

Bootstrapping was a topic of interest for generating additional data if the data was

sparse; however, it is also likely that modes will be sparse, that is, the history will often not
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contain all modes of interest. This thesis presents a two-pronged approach: first, to break
down the problem into analysing components and properly selecting monitors; second, to
generate additional modes by incorporating gray-box models and bootstrapping.

Finally, incorporating ambiguous modes will affect the autocorrelated mode solution [4],
while incorporating continuous evidence through kernel density estimation will affect the
autocorrelated evidence solution [5]. This thesis lays down a framework for dynamic imple-

mentation of the newly proposed ambiguous mode and continuous evidence techniques.

iii



To my beloved wife Ellanor, and to God who have both been
the greatest sources of comfort and encouragement while I
was completing this work

v



Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Huang for his continuing
advice support and guidance, in particular, his guidance in how to present some of the
more technically difficult components of this thesis. I would also like to thank him for his
advice toward many of the areas that became major contributions in this thesis, as well as
his patience during the times when I had difficulty in understanding and communicating
some of these concepts.

I would also like to acknowledge Fei Qi, a previous doctoral student whose work I have
been following. He has been of great help in terms of understanding his work, and the
suggestions for future research have been particularly helpful (namely the use of continuous
evidence and dealing with modes not represented in the data).

A significant amount of this work was developed as a direct result from industrial col-
laboration. I would like to thank Aris Espejo and Joseph Amalraj from Syncrude for their
help in acquiring the industrial data and process knowledge which was used prior to this
thesis. Additionally, I would like to thank Elom Domlan from Suncor for his help in acquir-
ing data that was directly used in this thesis, and for his guidance in assessing underlying
process modes. Finally, I would like to thank Eric Lau and Ramesh Kadali from Suncor for
their encouragement and guidance in applying some of the material in this thesis. Through
working with them, I have gained a stronger appreciation of the practical benefits of the
methodologies I have been developing during my time as a graduate student.

I would also like to thank the members of my research group, particularly Kangkang
Zhang, Ming Ma, Tianbo Lu, Shima Khatibisepehr, Yaojie Lu, Yuri Shardt, Xin Jing, Yijia
Zhu who have all made specific contributions to my work, but also to the other group mem-
bers who have also contributed in many indirect ways. I would also like to aknowledge the
department of Chemical and Materials Engineering for giving me the opportunity to pur-
sue my doctoral degree, and I would like to thank NSERC, Alberta Scholarship Programs,
Syncrude Ltd, and Suncor for their financial support.

I would like to thank my parents for their continuous encouragement and for always
being so enthusiastic and supportive of the decisions I’ve made. They may have been at the
other end of the country, but often times it did not feel that way. Finally, I would like to
thank Ellanor, now my wife, who has been such a great friend to me while we were living in

opposite ends of the country. Her heartfelt support was crucial for me during the difficult



beginnings of this work, and I very much doubt that this thesis would have been completed
without it. I would also like to thank Ellanor for her continuing patience as I worked to
complete this thesis while we were together. She has honestly made the final years of my

graduate studies the happiest years of my life.

vi



Contents

1 Introduction
1.1 Motivational Illustrations . . . . . .. .. .. ... .. .. ... .. ...
1.2 Previous Work . . . . . .. Lo
1.2.1 Diagnosis techniques . . . . . . . . ... L Lo
1.2.2  Monitoring techniques . . . . . . . . .. ..o
1.3 Thesis Outline . . . . . . . . .
1.3.1 Problem overview and illustrative example . . ... ... ... ...
1.3.2 Previouswork. . . . . ...
1.3.3 Proposed work . . . .. ...
1.4 Published/Submitted Material . . . . . ... ... ... ... .. ...
I Fundamentals
2 Prerequisite Fundamentals
2.1 Introduction . . . . . . . . . ..
2.2 Bayesian Inference and Parameter Estimation . . . . . . . ... ... ....
2.2.1 Tutorial on Bayesian inference . . . . .. ... ... .. ... ...,
2.2.2 Tutorial on Bayesian inference with time dependency . . . . . . . . .
2.2.3 Bayesian inference vs direct inference . . . . .. ... ...
2.2.4 'Tutorial on Bayesian parameter estimation . . . .. .. .. .. ...
2.3 The EM Algorithm . . . . . . . ... ..
2.3.1 Tutorial: Solution for general distributions . . ... ... ... ...
2.4 Techniques for Ambiguous Modes . . . . . . .. ... ... ... .......
2.4.1 Tutorial on © parameters in the presence of ambiguous modes
2.4.2 Tutorial on probabilities using © parameters . . . .. ... .. ...
2.4.3 Dempster-Shafer Theory . . . . . . . ... ... ... ... ..
2.5 Kernel Density Estimation . . . . . . .. .. ... .. ... ...

2.5.1 From histograms to kernel density estimates . . . . . . . .. .. ...
2.5.2 Bandwidth selection . . . . . ... ... oL

2.5.3 Kernel density estimation tutorial . . . . .. ... ... .. ... ..

vii

© © 00 O NN ==



2.6 Bootstrapping . . . . . . . ..o
2.6.1 Bootstrapping tutorial . . . . . .. ...
2.6.2 Smoothed bootstrapping tutorial . . . . . . ... ... ... ...

Introduction to Testbed Systems

3.1 Simulated System . . . . . . . ..
3.1.1 Monitor design . . . . . . ...

3.2 Bench Scale System . . . ... Lo

3.3 Industrial Scale System . . . . ... ... L Lo

Accounting for Ambiguous Modes: A Bayesian Approach
4.1 Introduction . . . . . . . . . . L
4.2 Parametrization of Likelihoods Given Ambiguous Modes . . . . . . . .. ..
4.2.1 Interpretation of proportion parameters . . . .. ... ... .. ...
4.2.2 Parametrizing likelihoods . . . . . . .. ... ... ... ... ....
4.2.3 Informed estimates of likelihoods . . . . . . ... ... ... ... ..
4.3 Fagin-Halpern Combination . . . . . ... ... ... ... ... .....
4.4 Second-Order Approximation . . . . . . . .. ... ... ... ... ... .
4.4.1 Consistency of © parameters . . . . . . . ... ... ... ......
4.4.2 Obtaining a second-order approximation . . . . . . .. .. ... ...
4.4.3 The second-order Bayesian combination rule . . . .. ... ... ..
4.5 Brief Comparison of Combination Methods . . . . . ... ... ... ....
4.6 Applying the Second-Arder Rule Dynamically . . . . . ... ... . ... ..
4.6.1 Unambiguous dynamic solution . . . . . . .. ... ... ... ....
4.6.2 The second-order dynamic solution . . . . . .. .. .. .. ... ...
4.7 Making a Diagnosis . . . . . . . . ..o
4.7.1 Simple diagnosis . . . . . . ... Lo
4.7.2 Ranged diagnosis . . . . . . . ... L Lo o
4.7.3 Expected value diagnosis . . . . .. ... oo oL

Accounting for Ambiguous Modes: A Dempster-Shafer Approach

5.1 Introduction . . . . . . . . . .. L

5.2 Dempster-Shafer Theory . . . . . . . ... ... L o
5.2.1 Basic belief assignments . . . . . .. ... ... 0L
5.2.2 Probability boundaries . . . . . . .. ... oo
5.2.3 Dempster’s rule of combination . . . . . .. ... ...
5.2.4  Shortcut combination for unambiguous priors . . . . . . ... .. ..

5.3 Generalizing Dempster-Shafer Theory . . . . .. . ... . ... ... ....
5.3.1 Motivation: Difficulties with BBAs . . . . . . ... ... ... ....
5.3.2 Generalizing the BBA . . . . ... ... o L

viii

60
60
60
62
64

66
66
66
66
68
69
69
70
71
72
73
74
75
75
76
7
77
77
78



6

11

5.3.3 Generalizing Dempster’srule . . . . ... .. ... 93

5.3.4  Shortcut combination for unambiguous priors . . . . . . . ... ... 94

Making Use of Continuous Evidence Through Kernel Density Estimation 96

6.1 Introduction . . . . . . . . .. L 96
6.2 Performance: Continuous Methods vs. Discrete Methods . . . . . . . . . .. 97
6.2.1 Average false negative diagnosis criterion . . . . ... .. ... ... 98
6.2.2 Performance of discrete methods vs continuous methods . . . . . . . 99

6.3 Kernel Density Estimation . . . . .. .. ... ... ... 102
6.3.1 From histograms to kernel density estimates . . . . . . . . ... ... 102
6.3.2 Defining a kernel density estimate . . . . ... ... ... ... ... 104
6.3.3 Bandwidth selection criterion . . . . . .. ... ... ... ... ... 105
6.3.4 Bandwidth selection techniques . . . . . . . .. ... ... L. 106

6.4 Dimension Reduction . . . . . . . . . ... o oL 108
6.4.1 Independence assumptions. . . . . . . .. . ... ... L 109
6.4.2 Principal and independent component analysis . . . . ... .. ... 110

6.5 Missing Values . . . . . . .. . 110
6.5.1 Kernel density regression . . . . . . .. ... 110
6.5.2 Applying kernel density regression for a solution . . ... ... ... 112

6.6 Dynamic Evidence . . . . .. .. .. . o 112
Accounting for Sparse Modes Within the Data 114
7.1 Introduction . . . . . . . . . . . .. 114
7.2 Algorithms . . . . . . .. 114
7.2.1 Algorithm for component diagnosis . . . . . . .. .. ... ... ... 115
7.2.2  Algorithm for bootstrapping new modes . . . . . . . ... ... ... 118

7.3 IMustration . . . . . . . . . . . e 123
7.3.1 Component-based diagnosis . . . . . . . ... ... L. 127
7.3.2 Bootstrapping for additional modes . . . . ... ... ... L. 130

7.4 Application . . . . . ... 136
7.4.1 Monitor selection . . . . . .. ... 137
7.4.2 Component diagnosis . . . . . . .. ..o 137
Application 142

Accounting for ambiguous modes in historical data: A Bayesian approach143

8.1 Imtroduction . . . . . . . . . .. . L 143
8.2 Algorithm . . . . . . .. . 144
8.2.1 Formulating the problem . . . . ... ... ... ... ... .... 144
8.2.2 Second-Order Taylor series approximation of p(E|M,0) . . . . . .. 144

X



8.2.3 Second-Order Bayesian combination . . . . ... ... ... ..... 146

8.2.4 Optional step: Separating monitors into independent groups. . . . . 148
8.2.5 Grouping methodology . . . . . . . . .. ... ... 149
8.3 Ilustrative Example of Proposed Methodology . . . . ... ... ... ... 150
8.3.1 Introduction . . .. . . .. .. ... ... 150
8.3.2 Offline Step 1: Historical data collection . . . . . . ... ... .... 150
8.3.3 Offline Step 2: Mutual Information Criterion (optional) . . .. . .. 151
8.3.4 Offline Step 3: Calculate reference values . . . . . . ... ... ... 152
8.3.5 Online Step 1: Calculate support . . . . . . .. ... ... ... ... 153
8.3.6  Online Step 2: Calculate second-order terms . . . . . ... .. ... 154
8.3.7 Online Step 3: Perform combinations. . . . . .. .. ... .. .... 156
8.3.8 Online Step 4: Make a diagnosis . . . . . .. ... ... ... .. .. 157
8.4 Simulated Case . . . . . . . . .. L 160
8.5 Bench Scale Case . . . . . . . . . . e 164
8.6 Industrial Scale Case . . . . . . . . . . . ... 165

9 Accounting for ambiguous modes in historical data: A Dempster-Shafer

approach 167
9.1 Introduction . . . . . . . . . . . . e 167
9.2 Algorithm . . . . . . .. 168
9.2.1 Parametrized Likelihoods . . . . . ... ... ... ... ... .. .. 168
9.2.2 Basic Belief Assignments . . . . ... ... ... 168
9.2.3 The Generalized Dempster’s Rule of combination . . . . . . ... .. 170
9.3 Illustrative Example of Proposed Methodology . . . . .. . ... ... ... 172
9.3.1 Introduction . . .. . . .. .. .. ... 172
9.3.2 Offline Step 1: Historical data collection . . . . . .. ... ... ... 172
9.3.3 Offline Step 2: Mutual Information Criterion (optional) . . .. . .. 173
9.3.4 Offline Step 3: Calculate reference value . . . . . . . ... ... ... 174
9.3.5 Online Step 1: Calculate support . . . . . . ... ... ... .. ... 174
9.3.6 Online Step 2: Calculate the GBBA . . . . ... .. ... .. .... 176
9.3.7 Combine BBAs and diagnose . . . . . ... ... ... ........ 178
9.4 Simulated Case . . . . . . . .. 178
9.5 Bench Scale Case . . . . . . . .. .. e 180
9.6 Industrial System . . . . . . . .. 181

10 Making use of continuous evidence through kernel density estimation 182

10.1 Introduction . . . . . . . .. L Lo 182
10.2 Algorithm . . . . . . . . ... 183
10.2.1 Kernel Density Estimation . . .. ... ... ... ... ....... 183
10.2.2 Bandwidth selection . . . . . . .. ... o oo 183



10.2.3 Adaptive bandwidths . . . . . .. .. ... Lo 184
10.2.4 Optional Step: Dimension reduction by multiplying independent like-

lihoods . . . . . . . . 185

10.2.5 Optional Step: Creating independence via Independent Component
Analysis . . . . . . oL 186
10.2.6 Optional Step: Replacing missing values . . . . . .. ... .. .. .. 186
10.3 Hlustrative Example of Proposed Methodology . . . . . .. ... ... ... 187
10.3.1 Offline Step 1: Historical data collection . . . . . . . ... ... ... 189
10.3.2 Offline Step 3: Mutual Information Criterion (optional) . . . . . .. 191
10.3.3 Offline Step 4: Independent Component Analysis (optional) . . . . . 192
10.3.4 Offline Step 5: Obtain bandwidths . . . . . . .. ... .. ... ... 192
10.3.5 Online Step 1: Calculate likelihood of new data . . . . . . .. .. .. 195
10.3.6 Online Step 2: Calculate posterior probability . . . . . . . .. .. .. 196
10.3.7 Online Step 3: Make a diagnosis . . . . . . . . ... ... .. .... 196
10.4 Simulated Case . . . . . . . . . .. 196
10.5 Bench Scale Case . . . . . . . . . . .. 197
10.6 Industrial Scale Case . . . . . . . . . . .. L 199

11 Dynamic application of continuous evidence and ambiguous mode solu-

tions 202
11.1 Introduction . . . . . . . .. Lo 202
11.2 Algorithm for autodependent modes . . . . . . ... ... ... ... .... 202
11.2.1 Probability transition matrix . . . . . . .. ... ... 203
11.2.2 Review of second-order method . . . . . . . . .. ... ... ... .. 203
11.2.3 Second-order probability transition rule . . . . . .. .. ... .. .. 204
11.3 Algorithm . . . . . . . . . . . e 205
11.3.1 Algorithm for dynamic continuous evidence . . . . . . .. ... ... 205
11.3.2 Combining both solutions . . . . . . . ... .. .. ... ... 207
11.3.3 Comments on usefulness . . . . . . . . .. ... ... L. 208
11.4 Hlustrative Example of Proposed Methodology . . . . . . . ... ... ... 209
11.4.1 Introduction . . . . . . . . .. ... . 209
11.4.2 Offline Step 1: Historical data collection . . . . . . ... ... .. .. 209
11.4.3 Offline Step 2: create temporal data . . . . .. .. .. .. ... ... 210
11.4.4 Offline Step 3: Mutual Information Criterion (optional, but recom-
mended) . . ... 210
11.4.5 Offline Step 5: Calculate reference values . . . . .. ... ... ... 212
11.4.6 Online Step 1: Obtain prior second-order terms . . . . . . .. .. .. 212
11.4.7 Online Step 2: Calculate support . . . . . . .. .. .. ... ... .. 212
11.4.8 Online Step 3: Calculate second-order terms . . . . . .. ... ... 213
11.4.9 Online Step 4: Combining prior and likelihood terms . . . . . . . .. 213

xi



11.5 Simulated Case . . . . . . . . . s 214

11.6 Bench Scale Case . . . . . . . . . . . 215
11.7 Industrial Scale Case . . . . . . . . . . . 216

12 Concluding remarks and recommendations for future work 217
12.1 Concluding Remarks . . . . . . .. ... o o 217
12.1.1 Summary of proposed solutions . . . . . . . .. ... ... .. 217

12.1.2 Unified Bayesian framework . . . . . . . . ... ... .. 0. 218

12.1.3 Summary of application cases . . . . . . . . . .. ... ... .. 221

12.2 Recommendations for Future Work . . . . .. .. ... ... ... ... 222
Bibliography 224
A Code for Kernel Density Regression 229
A.1 Kernel Density Regression . . . . . . . . .. ... ... .. 229
A.2 Three-dimensional matrix toolbox . . . . . . ... ... ... ... .. ... 231

xii



List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

3.1
3.2
3.3

4.1

6.1
6.2
6.3
6.4

Typical control loop . . . . . . . . . .. ... 6
Overview of proposed solutions . . . . . . .. ... ... ... 11
Bayesian parameter result . . . . .. ..o 16
Comparison of inference methods . . . . . . . .. ... ... ... ...... 17
Tllustrative process . . . . . . . . . . 20
Evidence space with only prior samples . . . . ... ... ... ... .... 21
Evidence space with prior samples and historical samples . . . . . ... .. 22
Evidence space with historical data . . . . . . . .. .. ... ... .. 23
Mode dependence (Hidden Markov Model) . . . . . .. ... ... ... ... 25
Evidence dependence . . . . . . ... Lo oo 27
Evidence and mode dependence . . . . . . ... ... ... L. 29
Histogram of distribution . . . . . ... .. ... .. ... ... ..., 50
Centered histogram of distribution . . . . . . .. .. .. ... 50
Gaussian kernel density estimate . . . . .. ... ... L0 51
Data for kernel density estimation . . .. .. ... ... ... ........ 53
Data points with kernels . . . . . . . .. .. oo oo 54
Kernel density estimate from data . . . . . . . ... ... ... ... 54
Distribution of i estimate . . . . . . .. ... 56
Sampling distribution for bootstrapping . . . . . . ... ... 57
Smoothed sampling distribution for bootstrapping . . . . . . .. ... ... 58
Distribution of i estimate . . . . . . . . ... L oL oL 59
Tennessee Eastman process . . . . . . . . .. ... .o 61
Hybrid tank system . . . . . . . ... o 63
Solids handling system . . . . . . . . ... .. L o 65
Diagnosis result for support in Table 4.1 . . . . . .. .. .. .. ... ... 76
Grouping approaches for kernel density method . . . . . . . ... ... ... 100
Discrete method performance . . . . . . . ... ... L Lo 101
Two-dimensional system with dependent evidence . . .. .. .. ... ... 102
Two-dimensional discretization schemes . . . . . . . .. ... ... .. ... 102

xiii



6.5 Histogram of distribution . . . . .. .. ... ... .. 0L 103
6.6 Centered histogram of distribution . . . . . . .. ... ... ... .. 103
6.7 Gaussian kernel density estimate . . . . . . ... ... ... ... .. 104
6.8 Kernels summing to a kernel density estimate . . . . . . .. ... ... ... 104
7.1 Owerall Algorithm . . . . . .. . .. .. ... 115
7.2 Hybrid tank system . . . ... Lo L Lo 124
7.3 Hybrid tank control system . . . . . .. ... ... 136
7.4 Diagnosis results for mode space approach . . . . . . ... ... ... .... 140
7.5 Diagnosis results for component space approach . . . . . . .. ... ... .. 141
8.1 Typical control loop . . . . . . . . . . . 150
8.2 Typical control loop . . . . . . . . . . . 161
8.3 Probablility bounds at 30 % ambiguity . . . . . .. ... ... L. 162
8.4 Probablility bounds at 70 % ambiguity . . . . . . . ... ... 162
8.5 TE mode diagnosis error . . . . . . . . .. ... Lo 163
8.6 TE component diagnosis error . . . . . . .. ... ..o 164
8.7 Hybrid tank system mode diagnosis error . . . . . .. ... 164
8.8 Hybrid tank system component diagnosis error . . . . . . ... ... ... 165
8.9 Industrial system mode diagnosis error . . . . . ... ..o 165
8.10 Industrial system component diagnosis error . . . . . . . . ... ... ... 166
9.1 Typical control loop . . . . . . . . . .. 172
9.2 TE mode diagnosis error . . . . . . . . ... 179
9.3 TE component diagnosis error . . . . . . . . ... Lo 179
9.4 Hybrid tank system mode diagnosis error . . . . ... ..o 180
9.5 Hybrid tank system component diagnosis error . . . . .. . ... ... ... 180
9.6 Industrial system mode diagnosis error . . . . . ... ..o Lo 181
9.7 Industrial system component diagnosis error . . . . . . .. ... 181
10.1 Typical control loop . . . . . . . . . . . .. 188
10.2 Tennessee Eastman, discrete vs. KDE . . . . . ... ... .. ... ..... 197
10.3 Grouping approaches for discrete method . . . . . .. ... ... ... ... 198
10.4 Grouping approaches for kernel density method . . . . . . .. ... ... .. 198
10.5 Hybrid tank, discrete vs. KDE . . . . . . . . .. .. .. ... ... ... . 198
10.6 Grouping approaches for discrete method . . . . . . . ... ... ... ... 199
10.7 Grouping approaches for KDE method . . . . . . . ... ... ........ 199
10.8 Solids handling, discrete vs. KDE . . . . . .. .. ... ... 0. 200
10.9 Grouping approaches for discrete method . . . . . . . ... ... ... ... 200
10.10Grouping approaches for KDE method . . . . . . .. ... .. ... ..... 201

Xiv



11.1 Mode autodependence . . . . . . . . . .. L Lo 203

11.2 Evidence autodependence . . . . . . . .. .. .. Lo 205
11.3 Evidence and mode autodependence . . . . . .. .. .. ... ... ... .. 207
11.4 Typical control loop . . . . . . . . . .. 209
11.5 Comparison of dynamic methods . . . . . . . . ... ... ... ... .... 215
11.6 Comparison of dynamic methods . . . . . . . . ... ... ... ... .... 215
11.7 Comparison of dynamic methods . . . . . .. .. ... ... ... ... ... 216
Al zmatmultiply . . . . . . .. ... 231
A2 z.transpose . . . .. ... 232
A.3 Converting matrices depth-wise . . . . . . . . .. ... ... ... 233

XV



List of Tables

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1

4.1

5.1

6.1
6.2

7.1
7.2
7.3

8.1
8.2
8.3
8.4

9.1
9.2
9.3

List of monitors for each system . . . .. .. ... ... ........... 7
Counts of historical evidence . . . . . . ... ... ... L. 22
Counts of combined historical and prior evidence . . . . . ... .. .. ... 23
Likelihoods of evidence . . . . . . . . . .. ... ... ... ... . ..., 23
Likelihoods of dynamic evidence . . . . . . . ... .. ... ... ... ... 28
Counts of combined historical and prior evidence . . . . .. ... ... ... 30
List of conjugate priors. . . . . . . . .. L Lo 32
Biased sensor mode . . . . . .. ... 36
Modes and their corresponding labels . . . . . . ... .. ... ... ..... 42
Ambiguous modes and their corresponding labels . . . . . ... ... .. .. 43
Historical data for allmodes . . . . . . . . .. . ... ... ... ... ... . 43
List of simulated modes . . . . . . ... ... Lo 61
Support from example scenario . . . . . ... ..o 75
Frequency counts from example . . . . . ... ... ... L., 89
Comparison between kernel and discrete methods . . . . . ... ... ... 97
Curse of dimensionality . . . . ... ... ... .. L L. 108
Included monitors for component space appraoch . . . . .. ... ... .. 137
Misdiagnosis rates for modes . . . . . . ... L Lo 138
Misdiagnosis rates for component faults . . . . .. ... ... .00 138
Probability of evidence given Mode 1 . . . . . . . ... ... ... ... 151
Prior probabilities . . . . .. .. oo 152
Frequency of modes containing my . . . . . . ... ... oL 154
Support of modes containing my . . . . .. .. ..o 155
Probability of evidence given Mode 1 . . . . . . . ... ... ... ... .. 173
Frequency of modes containing mq . . . . . . ... ... 175
Support of modes containing m1 . . . . . . ... 175

xXvi



List of Symbols

Symbol Description

« Frequency parameter for the Dirichlet Distribution

a{m#k Frequency parameters pertaining to the ambiguous mode my,

I Population mean

by Population covariance

o Population standard deviation

(C] Complete set of probability /proportion parameters

o{ mék The set of elements in © pertaining to the ambiguous mode my,
6 Informed estimate of ©

(C) Complete set of probability /proportion parameters (matrix form)
CN Inclusive estimate of © (matrix form)

0. Exclusive estimate of © (matrix form)

0 A probability /proportion parameter

o{ =} Proportion of data in ambiguous mode m belonging to mode m
Bel(M) Lower bound probability of mode M

C State of the component of interest (random variable)

c State of the component of interest (observation)

C(M) The event where mode M was diagnosed

C(M)|M The event where mode M was diagnosed and M was true
C(M)|M The event where a mode other than M was diagnosed and M was true
D Historical record of evidence

D; it" element of historical evidence data record D

E Evidence (random variable)

e Evidence (observation)

Fy False negative diagnosis rate

G Generalized BBA

xvii



GJ[:,m] mt" column of G (MATLAB notation)

Glk,:] k" row of G (MATLAB notation)

H Bandwidth matrix (Kernel density estimation)

H Hessian matrix

11D Independent and identically distributed

J Jacobian matrix

K Support for conflict (Dempster-Shafer Theory)

K Kernel function (Kernel density estimation)

M Operational mode (random variable)

M Potentially ambiguous operational mode (random varaible)

m Operational mode (observation)

m Potentially ambiguous operational mode (observation)

MIC Mutual information criterion

CMIC Conditional mutual information criterion

n(E) Number of times evidence E has been observed

n(E, M) Number of times evidence E and mode M have been jointly observed
n(M) Number of times mode M was observed

ODE[f(x)] Ordinary differential equation solver applied to f(x)

p(E) Normalization over Evidence (probability of evidence)
p(E|M) Likelihood (probability of evidence given the mode)

p(M) Prior (prior probability of the mode)

p(M|E) Posterior (probability of mode given the evidence)

PI(M) Upper bound probability of mode M

P Posterior state covariance (Kalman filter)

Q Model error covariance (Kalman filter)

R Observation error covariance (Kalman filter)

S Sample covariance matrix

S(E|M) Support for evidence E given potentially ambiguous mode M
S(M) Support for potentially ambiguous mode M

S(E|M) Support for potentially ambiguous mode M given evidence E
UKF[f(x)] Unscented Kalman filter with a model f(x)

xviii



Chapter 1

Introduction

1.1 Motivational Illustrations

Consider the following scenarios:

Scenario A

You are a plant operator, and a gas analyser reading triggers an alarm for a low level of
a vital reaction component; however, from experience, you know that this gas analyser
is prone to error. The difficulty is however, if the the vital reaction component is truly
scarce, its scarcity could cause plugging and corrosion downstream that could cost over $
120 million in plant downtime and repairs, but if the reagent was not low, shutting down
the plant would result in $ 30 million in downtime. Now, imagine that we have a diagnosis
system that has recorded several events like this in the past, using information from both
upstream and downstream, and is able to generate a list of possible causes of this alarm
reading, and displays the probability of each scenario. The diagnosis system indicates that
the most possible cause was a scenario that happened three years ago, when the vital reagent
concentration truly dropped, and by quickly taking action to bypass the downstream section
of the plant, a 120-million-dollar incident was successfully avoided. Finally, imagine that you
are the manager of this plant, and discover that after implementing this diagnosis system,
the incidents of unscheduled downtime have been reduced by 60 % and that incidents of

false alarms have been reduced by 80 %.

Scenario B

You are the head of a maintenance team of another section of the plant with over 40
controllers and 30 actuators. Oscillation has been detected in this plant, where any of
these controllers or actuators could be the cause. Because these oscillations can push the
system into risky operating regions, caution must be exercised to keep the plant in a safer
region, but at the cost of poorer product quality. Now, imagine you have a diagnosis tool

that has data recorded from previous incidents and their troubleshooting solutions, and



the probabilities of each incident. With this tool, we see that the most probable cause
(at 45 %) was fixed by replacing the stem packing on Valve 23, and that the second most
probable cause (at 22 %) was a tank level controller that in the past, was sometimes over-
tuned by a poor application of tuning software. By looking at records, you find out that a
young engineer recently used tuning software to re-tune the level controller. Because of this
information, and because changing the valve packing costs more, you re-tune the controller
during scheduled maintenance, and at start-up find that the oscillations are gone, and you
can now safely move the system to a point that produces better product quality. Now
that the problem has been solved, you update the diagnosis tool with the historical data to
improve the tool’s future diagnostic performance. Now imagine, that as the head engineer of
this plant, you find out that 30 % of the most experienced people on your maintenance team
are retiring this year, but because the diagnostic system has documented a large amount
of their experience, new operators are better equipped to figure out where the problems in

the system truly are.

Overview

These stories paint a picture of why there has been so much research interest in fault
and control loop diagnosis systems in the process control community. The strong demand
for better safety practices, decreased downtime, and fewer costly incidents (coupled with
the increasing availability of computational power) all fuel this active area of research.
Traditionally, a major area of interest has been in detection algorithms (or monitors as
they will be called in this work) that focus on the behaviour of the system component. The
end goal of implementing a monitor is to create an alarm that would sound if the target
behaviour is observed. As more and more alarms are developed, it becomes increasingly
probable that a single problem source will set off a large number of alarms, resulting in
an alarm flood. Such scenarios in industry have caused many managers to develop alarm
management protocols within their organizations. Scenarios such as those presented in
scenarios A and B can be realized and in some instances have already been realized by
research emphasizing the best use of information obtained from monitors and historical

troubleshooting results.

1.2 Previous Work

1.2.1 Diagnosis techniques

The principal objective in this thesis is to diagnose the operational mode of the process,
where the mode comprises of the operational state of all components within the process.
For example, if a system comprises of a controller, a sensor and a valve, the mode would
contain information about the controller (e.g. well tuned or poorly tuned), the sensor (e.g.

biased or unbiased), and the valve (e.g. normal or sticky). As such, the main problem



presented in this thesis falls within the scope of fault detection and diagnosis.
Fault detection and diagnosis has a vast (and often times overwhelming) amount of

literature devoted to it for two important reasons:

1. The problem of fault detection and diagnosis is a legitimately difficult problem due

to the sheer size and complexity of most practical systems.

2. There is great demand for fault detection and diagnosis as it is estimated that poor
fault management has cost the United States alone more than $20 Billion annually as
of 2003 [6].

In a three-part publication, Venkatasubramanian et al. [7] review the major contributions
to this area and classifies them under the following broad families: quantitative model-
driven approaches [7], qualitative model-driven approaches [8], and process data-driven
approaches [9]. Each type of approach has been shown to have certain challenges. Quan-
titative model-driven approaches require very accurate models that cover a wide array of
operating conditions; such models can be very difficult to obtain. Qualitative model-driven
approaches require attention to detail when developing heuristics, or else one runs the risk
of a spurious result. Process data driven approaches have been shown to be quite powerful
in terms of detection, but most techniques tend to yield results that make fault isolation dif-
ficult to perform. In this thesis, particular interest is taken in the quantitative model-driven

approach and the process data-driven approaches.

Quantitative model-driven approaches

Quantitative model-driven approaches focus on constructing models of a process and using
these models to diagnose different problems within a process [10] [11]. These techniques bear
some resemblance to some of the monitoring techniques described in Section 1.2.2 applied
to specific elements in a control loop. Many different types of model-driven techniques exist,

and were broken down according to Frank [12] as follows:

1. The Parity Space Approach, which looks at analytical redundancy in equations that
govern the system [13].

2. The Dedicated Observer and Innovations Approach, which filters residual errors from

the Parity Space Approach using an observer [14].

3. The Fault Detection Filter Approach, which augments the State Space models with
fault-related variables [15] [16]

4. Parameter identification approach which is traditionally performed offline [12]. Here,
modelling techniques are used to estimate the model parameters, and the parameters

themselves are used to indicate faults.



A popular subclass of these techniques are deterministic fault diagnosis methods. One
popular method in this subclass, is the parity space approach [13] which set up parity
equations having analytical redundancy to look at error directions that could correspond to
faults. Another popular method the observer-based approach [17] which uses an observer
to compare differences in the predicted and observed states.

Stochastic techniques, in contrast to the deterministic techniques, use fault-related pa-
rameters as augmented states; these methods enjoy the advantage of being less sensitive to
process noise [18], being able to determine size and precise cause of the fault, but are very
difficult to implement on large-scale systems and often require some excitement [19]. In-
cluding physical fault parameters in the state often requires a nonlinear form of the Kalman
filter (such as the EKF, UKF or the Particle Filter) as states often have nonlinear relation-
ships with respect to parameters. Such techniques were pioneered by Isermann [20] [21]
with other important contributions coming from Rault et al. [22]. The main reason behind
including these parameters in the state is that the stochastic Kalman filter is primarily fo-
cused on estimating the state distribution; when fault parameters are included in the state,
fault parameter distributions are automatically estimated in parallel with the state. Exam-
ples of this technique include Gonzalez et al. [23] which made use of continuous augmented

bias states, while Lerner et al. [24] made use of discrete augmented fault states.

Process data-driven approaches

A popular class of techniques for process monitoring are data-driven modelling methods,
where one of the more popular techniques is Principal Component Analysis (PCA) [25].
These techniques create black-box models assuming that the data can be explained using a
linear combination of independent Gaussian latent variables [26]; a transformation method is
used to calculate values of these independent Gaussian variables, and abnormal operation
is detected by performing a significance test. The relationship between abnormal latent
variables and the real system variables is then used to help the user determine what the
possible causes of abnormality could be. There have also been modifications of the PCA
model to include multiple Gaussian models [27] [25] where the best local model is used to
calculate the underlying latent variables used for testing.

All PCA models assume that the underlying variables are Gaussian, but more recent
methods [28] do away with this assumption by first using ICA to calculate values of inde-
pendent latent variables (which are not assumed to be Gaussian under ICA) and then use
Kernel density estimation to evaluate the probability density of that value. Low probability
densities indicate that the process is behaving abnormally. Even more recent work [29] uses
Bayesian networks instead of PCA/ICA to break down the system into manageable pieces;
this allows the user to define variables of interest for monitoring and determine the causal
structures used to help narrow down causes. Abnormality is detected if key process variables

take on improbable values or if groups of key process variables take on improbable patterns.



Results from this type or approach is generally easier to interpret than PCA/ICA-based

methods.

Bayesian data-driven approaches

This thesis focuses on using the Bayeisan data-driven approach, which is distinct from other
fault detection and diagnosis methods, mainly for the reason that the Bayesian approach
is a higher-level diagnosis method [3] [2]. This type of approach is not meant to compete
with previously mentioned fault detection and diagnosis methods; instead, the Bayesian
approach provides a unifying framework to simultaneously use many of these methods
at once. As such, it can take input from many different fault detection and diagnosis
techniques in order to make a final decision. In this thesis, other diagnosis methods and
even instruments themselves are treated as input sources and are referred to as monitors;
this term is chosen mainly because previous work [3] focused heavily on using input from
control loop monitoring techniques (described later in Section 1.2.2).

For Bayesian diagnosis, data from monitors must be collected for every scenario that
one would wish to diagnose. In this work, such scenarios are referred to as operational
modes. When new monitor information arrives, the new information is compared to histor-
ical data in order to determine which historical mode best fits the new information. The
Bayesian diagnosis technique ranks each of the modes based on posterior probability which
is calculated using Bayes’ Theorem [30]
p(E[M)p(M)

p(E)

P(E) = ZP(E|mi)p(mi)
i

p(M|E) =

where

e p(M|FE) is the posterior probability, (probability of the mode M given evidence E)
e p(E|M) is the likelihood of the evidence E given the historical mode M
e p(M) is the prior probability of the historical mode M

e p(E) is the probability of the evidence E (which is a normalizing constant)

In the Bayesian diagnosis technique, the historical data and mode classifications are used
to construct the likelihood p(E|M), and prior probabilities of modes are assigned to p(M)
using expert knowledge. While collecting data for historical modes may be a challenge,
the Bayesian method at least allows us to collect data in a way that is not necessarily
representative of the true mode occurrence rate. For example, if mode 1 occurs 90 % of the
time, then representative sampling would require that 90 % of the data come from mode 1.
Bayesian methods (which use prior probabilities to cover mode representation) allow us to
collect an arbitrary amount of data for each mode, giving us a lot more flexibility in data

collection than other methods.



1.2.2 Monitoring techniques

Much of this work focuses on monitoring and diagnosing control-loops (a schematic for a
typical control loop is given in Figure 1.1); for this area of research, there exists abundant
literature on assessing the performance of the entire loop as well as diagnosing problems
within the loop’s core components. These methods can be directly used to create alarms or

notification statuses which alert operators and engineers about risky or inefficient operation.

\

4>f>+<—> Controller > Valve »  Process

Sensor |-

Figure 1.1: Typical control loop

Monitors used for control loops tend fall under the following categories:
e Control performance monitors

Sensor bias monitors

Valve stiction monitors

e Process model monitors
e Process operation monitors

Methods in this thesis are tested on three particular testbed systems: a simulated sys-
tem, a bench scale system, and an industrial scale system. Each type of monitor has been
used in at least one of the systems, a summary of monitors for each system is presented in
Table 1.1. The simulated system makes use of three monitors (control performance mon-
itors, valve stiction monitors, and process model monitors) while the bench scale system
makes use of the two remaining monitor types (a process operation monitor, and two sensor
bias monitors). The industrial-scale system uses no monitors, but instead, directly uses

data from the various sensors within the facility.

Control performance benchmarks

Control performance monitors have the broadest scope of all the monitors that can be
used in our applications, as they focus on the performance of the entire control loop. The

output of a control performance monitor is a performance index based on some sort of ideal



Table 1.1: List of monitors for each system

Simulated Bench Scale Industrial Scale
Control Performance Sensor Bias Raw Sensor Readings
Valve Stiction Process Operation
Process Model

benchmark. Ideally, a process monitor yields a value between 0 and 1 (for the worst and
best performance respectively).

The first major control loop monitors were introduced by Harris [31] who proposed the
minimum variance control (MVC) benchmark as a reference of evaluation; Huang et al.
[32] later developed a filtering and correlation (FCOR) algorithm to effectively estimate
this benchmark. The MVC benchmark was later extended to MIMO (multi-input multi-
output) systems [33] along with the corresponding estimation algorithms [34]. In addition,
other benchmarks were proposed, including the linear quadratic regulator benchmark [34]
and the model-predictive control benchmark [35], [36], [37].

In this thesis, the FCOR algorithm [32] is the control performance monitor used for the

simulated system.

Valve stiction monitors

As previously mentioned, fault detection and diagnosis using quantitative models is a broad
area of research, and many techniques have been developed for specific applications based
on knowledge of the physical system. Such techniques have been used for process control ap-
plications, where valve stiction monitoring is one of the most prominent modelling subjects,
due to the fact that it is often the largest contributor to poor control loop performance.
This subject has been reviewed in depth by Jelali and Huang [38]. Some of the earliest
work in this area focused on non-linearity caused by non-ideal valves; such methods used
a Hammerstein model to identify the non-linear valve and a linear process [39] [40]. Some
qualitative methods were also introduced, for example, trying to fit the valve input-output
relationship to an ellipse [41].

In this thesis, a simple stiction monitoring algorithm is used for the simulated system
based on fitting the valve’s input-output relationship to an ellipse. If stiction is absent, the
data should be easily fit by an ellipse. However, if the fit is poor, it is likely that stiction is

present.

Plant-model mismatch monitors

One of the main issues with model-predictive control is the gradual degradation of the

process model. If the modelled behaviour deviates too drastically from the real process, the



efficacy of model-predictive control is fundamentally compromised. In order to safeguard
against such events, we monitor the performance of model prediction. The most intuitive
method to monitor a model’s performance is the squared prediction error, but other more
elaborate techniques have also been developed including frequency domain methods [42],
two-model divergence methods [43], and OE model methods [44].

In this thesis the OE model method is used for model error monitoring. This algorithm
focuses on MISO (multi-input single-output) systems, even though the simulated process is
a MIMO system; however, a MIMO system can be easily constructed using several MISO

systems.

Bias monitors

Sensor bias can also be a problem in control loops, as sensors are the main reference for
control action. A common method for detecting sensor bias in process industries is the use
of data reconciliation and gross error detection [45]. Most of data-reconciliation and gross
error detection methods have been proposed for offline implementation [46]; recently, Qin
and Li. [47] and Gonzalez et al. [23] developed on-line versions.

In this thesis, bias monitors for the bench scale process focus on the flow meter output
versus pump speed. This type of monitor is effective for positive-displacement pumps such

as those found in the bench scale process.

Process operation monitors

Process operation monitoring is a broad area of research, mainly because of the large variety
of processes that can be monitored and the large number of operation phenomena that can
be targeted (such as faults/breakdowns, abnormal/suboptimal operation, and violation of
operating limits). Literature in this area falls under fault detection and diagnosis literature,
which is reviewed in Section 1.2.1.

In this thesis, for the bench scale system, a quantitative model-driven technique is used
based on the Kalman filter; here, the state is augmented in order to include two fault-related
parameters (representing leaks). Under ideal conditions, the parameters have values of zero
(no leak), but as leaks are introduced, the parameter values change to values significantly

greater than 0.

1.3 Thesis Outline

This thesis is broken down into two major parts: Fundamentals and Application, where
each of the major contributions is generally represented in both parts. The fundamentals
focus on theoretical development and justification of the proposed techniques, while the
application focuses on succinctly conveying all information required to apply said techniques.

Because both parts are meant to be stand-alone, there may be some slight overlap between



the fundamentals and application sections, namely the parts in the fundamentals that are
directly relevant to application.

A number of techniques exist in this thesis that many readers may not be familiar
with, namely Bayesian diagnosis, Dempster-Shafer theory, kernel density estimation, and
bootstrapping. A tutorial is provided in this thesis which covers fundamental aspects of all

four techniques.

1.3.1 Problem overview and illustrative example

The main objective of this work is to diagnose the process operating mode (which contains
information about the state of each process component of interest, such as sticky valves, bi-
ased sensors, inaccurate process models etc). Before diagnosing modes, we collect historical
data from monitors for each mode; this historical data is used to diagnose the mode when
new evidence becomes available online. Because it is assumed that corresponding modes
are available with the historical data, this thesis takes a supervised learning approach when
applying historical data.

In order to easily illustrate the challenges associated with Bayesian diagnosis, consider
a problem where the modes consist of two different coins, one with a bias toward heads
(probability of heads = 0.6) and one that is fair (probability of heads = 0.5). The probability
estimates are obtained through historical data of coin flips. For the diagnosis problem, a
coin is randomly selected and we wish to use evidence of coin flipping to determine which

coin was selected. The evidence is provided by two people flipping the same coin once.

1.3.2 Previous work

The bulk of the work in this thesis follows from work presented by Pernestal [2] and by Qi
[3]. In particular, Qi addressed some practical issues when applying Pernestal’s work to the

process industry including

Missing data

It is not uncommon in process industries that sensor records in the history are unavailable
during certain time intervals. Since sensors are also used for monitoring, the corresponding
monitor will also be unavailable, rendering a data point incomplete (as some elements are
missing). Simply discarding incomplete data points will result in a loss of information; how-
ever, Qi and Huang [1] proposed using Bayesian methods to recover the useful information
from these incomplete data points.

Using our coin-flipping example, consider the case where the evidence from the two
people flipping coins is dependent. For example, after the first person flips a coin, whatever
side faces up will be placed face up on the thumb on the second person. Now the historical
data contains the results of both people flipping coins. In some circumstances, the result

from one of the two flips will be missing. Because the coin-flips are dependent, Qi and



Huang [1] adopts Bayesian methods to use the information present to make up for the

missing information.

Autodependent modes

For industrial processes, mode changes tend to be quite rare, which means that the mode at
time ¢ is highly dependent on the mode at time ¢ — 1. Taking this type of dependency into
account can significantly increase precision of our diagnosis results, as consecutive pieces
of evidence contain more information than individual pieces. This type of dependency has
been addressed in Qi and Huang [4].

Returning to our coin flipping example, consider the case where after each pair of flips,
there is a probability of the coin being switched. If that probability is low, the ‘mode’ has a
strong time-wise autodependence. This means that consecutive pieces of evidence contain

even more information about the mode than single pieces of evidence themselves.

Autodependent evidence

Monitor readings often use data from previous time steps in order to calculate a result.
If monitor readings are not sampled slowly enough, the evidence will be autodependent.
Taking the autodependence of evidence into account was addressed in Qi and Huang [5]
Autodependent evidence can also be applied to our coin flipping example. If the second
coin flipper obtained heads at ¢ — 1, and the first coin flipper at time ¢ placed the coin
on his thumb heads-side-up (with tails being similarly treated) then results would exhibit

time-wise dependence.

Sparse evidence given a mode

If a process has a large number of components, the number of possible modes will be very
large. In such cases, it is quite possible for data from a particular mode to be quite sparse. Qi
and Huang [48] recommended the use of bootstrapping as a method to generate additional
data and get a better representation of the monitor distribution.

For the coin flipping example, consider the case where historical data for one of the coins
(such as the biased one) does not have a large amount of historical data. Bootstrapping is
a method that was suggested in Qi and Huang [48] to resolve this issue by simulating more

coin flips by randomly drawing from previous results recorded in the historical samples.

1.3.3 Proposed work

This thesis aims to address other challenging issues that have not been previously addressed.
A visual map of these solutions is given in Figure 1.2 where dark gray boxes indicate prob-
lems, medium gray boxes indicate important previously existing solutions, and white boxes
indicate solutions proposed by this thesis; moreover, dotted lines indicate a combination of

multiple methods. The contents of the thesis have also been accepted as a part of a book
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entitled “Control System Monitoring and Diagnosis: An Evidence-Based Approach” to be
published by Wiley.
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Figure 1.2: Overview of proposed solutions

Ambiguous modes from a Bayesian perspective

Qi and Huang [1] addressed the issue if some elements of historical evidence records are
missing causing the evidence to be incomplete. However, just like evidence requires input
from multiple monitors, the mode requires information from multiple components. If any
information about the components is missing, a number of different modes will be possible,
causing the mode to be ambiguous.

For example, if some of the historical data from coin flipping exercises contained no
information on which coin was flipped (the biased or fair one) then either coin could have
produced the results (heads or tails) and the corresponding mode (or coin in this case) is
ambiguous. Since the conditioning variable is unknown, probability cannot be calculated in

a straightforward manner.

Ambiguous modes from a Dempster-Shafer perspective

Demspter-Shafer theory [49] [50] has been deemed by many to be a generalization of
Bayesian diagnosis that is able to handle ambiguity. However, it is shown in this work that
Dempster-Shafer theory does not adequately formulate the problem of ambiguous modes in
the historical data when likelihoods p(E|M) are used. Some modifications are required in

order to properly fit the data-driven diagnosis problem into a Dempster-Shafer framework.
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Using continuous evidence

Previously, it was assumed that information used by the diagnosis method was discrete
(our coin-flipping exercise yields discrete evidence). In reality however, most monitors yield
an output that is continuous (for example, a monitor that monitors changes in compressor
pressure). In order to reduce the amount of information lost through discretizing continuous
values, this thesis proposes the use of kernel density estimation to make use of the continuous

data directly.

Sparse or missing modes in the data

As the number of components in a system increase, the possible modes will increase ex-
ponentially. For systems with a large number of components, it is likely that data for a
significant number of modes will be missing entirely.

For example, in our coin flipping exercise, even though we only have two coins (e.g.
modes), we might not have any historical data from one of the coins. This thesis will
present techniques on what one can do if certain modes of interest are absent from the

historical data.

Dynamic applications

When accounting for ambiguous modes, the solution for addressing mode autodependence
will be affected. Similarly, when accounting for continuous evidence, the solution for au-
todependent evidence will be affected. In Part I which deals with fundamentals, the solution
to autodependent modes is addressed in Chapter 4 which discusses ambiguous modes. Like-
wise, the solution to autodependent evidence is addressed in Chapter 6. However, in Part II
which deals with application, the solution to autodependent modes and evidence are dealt

with in their own chapter (Chapter 11).

1.4 Published/Submitted Material

A number of papers have been submitted and published while completing the work done in

this thesis, and material in several chapters have been addressed in these publications.

(1) R. Gonzalez, B. Huang, Control loop diagnosis with ambiguous historical operating
modes: Part 1. A proportional parametrization approach, Journal of Process Control
23 (4) (2013) 585-597 [51], (Related material is found in chapters 4 and 8)

(2) R. Gonzalez, B. Huang, Control loop diagnosis from historical data containing ambigu-
ous operating modes: Part 2. Information synthesis based on proportional parameter-
ization, Journal of Process Control 23 (4) (2013) 1441-1454 [52] (Related material is
found in chapters 4 and 8)
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3)

R. Gonzalez, B. Huang, Data-driven diagnosis with ambiguous hypotheses in historical
data: A generalized Dempter-Shafer approach, in: Procedings from the 16th Inter-
national Conference on Information Fusion, 2013 [53] (Related material is found in
chapters 5 and 9)

R. Gonzalez, B. Huang, Control-loop diagnosis using continuous evidence through kernel
density estimation, Journal of Process Control 24 (5) (2014) 640-651 [54] (Related

material is found in chapters 6 and 10)

R. Gonzalez, B. Huang, E. Lau, Process monitoring using kernel density estimation
and Bayesian networking with an industrial case study, submitted to ISA Transactions,
2014 [29] (Related material is found in chapters 6 and 10)
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Chapter 2

Prerequisite Fundamentals

2.1 Introduction

The primary focus of this thesis is diagnosing the performance of process systems by means
of historical data and Bayesian inference. However, there are many practical problems to
be considered before such methods can be properly implemented, namely, missing historical
evidence, ambiguous historical modes, sparse data (modes and or evidence). In addition,
the Bayesian diagnosis method can be enhanced by taking into account dynamic properties
of modes and evidence as well as estimating continuous distributions using kernel density
estimation. Each of the solutions or enhancements make use of one of the following four

tools:
1. Bayesian Inference
2. The EM Algorithm
3. Techniques for Ambiguous Modes (including Dempster-Shafer theory)
4. Kernel Density Estimation
5. Bootstrapping
Working knowledge of each of these tools is important in understanding the material pre-

sented in this thesis, thus we include a short tutorial for each of these tools in this chapter.

2.2 Bayesian Inference and Parameter Estimation

Bayesian inference is at the core of every solution mentioned in this thesis. Philosophically,
Bayesian statistics interprets probability in a different manner than the more traditional
Frequentist approach. The frequentist interpretation discusses problems in dealing with
long-term frequencies of data generated from repeated independent random experiments
[55]. However, it does not accommodate the intuitive notion that short-term probabilities

exist and have meaning [56]. By contrast, the Bayesian view of probability asserts that
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probability represents a subjective degree of belief, a view that was held prior to Venn by
de Laplace [57] and even earlier by Bayes [30].
In practice, there are two main differences between the Bayesian and Frequentist ap-

proaches, which mainly addresses parameter estimation and inference.

Parameter estimation

When estimating parameters, the frequentist approach to parameter estimation assumes
that the underlying parameters are not random and hence not subject to chance. By con-
trast, Bayesian methods assume that the underlying parameters are random and Bayesians
must assign prior distributions to these parameters.

Consider an example where we flipped a coin 200 times, with 115 results being heads, and
85 results being tails, and we wanted to know the probability of ‘heads’. The frequentist
approach would be to simply estimate the probability parameter from the result (6 =
115/200 = 0.575). There is no distribution associated with this result. The Bayesian
approach would be to assume a Dirichlet distribution (which is explained later) which
directly describes the distribution of the probability parameter 6. As we can see in Figure
2.1, the peak probability of this parameter is 0.575, (our ‘heads’ proportion from last time);
furthermore, we can see that the distribution is fairly sharp due to the fact that we have

performed this experiment about 200 times.

Bayesian Probability: Heads: 115, Tails: 85

Probability Density
o

. . . .
0 0.2 0.4 0.6 0.8 1
Probability Parameter Heads

Figure 2.1: Bayesian parameter result

Inference about one hypothesis

When performing inference, the frequentist approach yields a probability of being false when
assuming each hypothesis. The aim is to select the hypothesis that has the lowest risk of
being false. The Bayesian approach will yield probabilities of each hypothesis with the aim
of selecting the hypothesis with the largest probability as being true. When estimating

parameters, the frequentist appraoch yields a single maximum likelihood estimate (as it is
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the value with least risk of being false), while the Bayeisn approach yields a probability
density function, depicting the uncertainty about the estimate.

Let us again consider the coin-flipping example, where again, the heads outcome was
observed 115 times, while the tails outcome was observed 85 times and we wish to determine
if the coin is fair. When performing inference, the frequentist approach first estimates the
distribution of the data. Because of the central limit theorem, we can assume that the mean
follows a normal distribution, enabling us to perform a T2 test. Using the T2 distribution,
we assess the risk of being wrong if we reject the null hypothesis (that the coin is fair, or
that p = 0.5). Figure 2.2(a) shows the T2 distribution, with the shaded area being the risk
of rejection (the T? statistic was 0.0229). From integrating the rejection region, we find
that we have about a 36% risk of being wrong if we say that the coin is not fair u # 0.5.

The Bayesian approach to the coin problem is markedly different. First, in order to
implement the Bayesian approach, we need to define what a fair coin really is. In this case,
let us say that if the probability of heads 8 is between 0.45 and 0.55, then the coin is fair. We
use the parameter distribution to find out how much of the distribution’s area lies outside
of this range, which for this case (given in Figure 2.2(b)) is roughly 76%. Thus we can say
that based on the observed data, there is a 24% probability that the coin’s probability for

heads 6 lies inside our fairness interval of [0.45,0.55].

Rejection Risk = 0.3592 Heads: 115, Tails: 85 P Not Fair = 0.7639 Heads: 115, Tails: 85
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(a) Frequentist Approach (b) Bayesian Approach

Figure 2.2: Comparison of inference methods

Inference about many hypotheses

In the coin-flipping example, the hypothesis was concerned about a continuous hypothesis,
that is, the probability parameter 6. Let us consider a new example, where we have two
fair coins # = 0.5 and one coin with a bias toward heads § = 0.6. Now, instead of 6
being continuous (taking on an infinite number of values), it is now discrete (taking on the

value of either 0.5 or 0.6). For this example, a random coin was selected and 200 trials
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were performed on this coin, again with heads being observed 115 times, and tails being
observed 85 times. Now we would like to determine if the selected coin is one of the fair
coins (A = 0.5) or if it was the biased coin (f = 0.6).

For the frequentist approach, we calculate the T statistics based on y = 0.5 and y = 0.6

(i —0.5)2  (0.575 — 0.5)?

i — = =0.022
=05 52 0.2456 0-0229
1 —0.6)2  (0.575 —0.6)>
2 U - — 0.0025

0=0.6 52 0.2456

These statistics result in rejection risks of 36% and 84% respectively. Since 6§ = 0.6 has the
highest rejection risk, we can say that we are more likely to be correct if we say that the
biased coin was selected.

Now, in order to use the Bayesian approach, we must familiarize ourselves with Bayes’

Theorem, the fundamental basis for all Bayesian methods.

p(E|H)p(H)
p(E)

Here, H represents a hypothesis, E represents evidence and the probability terms are in-

p(H|E) =

terpreted as follows
e p(H) is the prior probabiltiy of the hypothesis
e p(E|H) is the probability of the evidence given the hypothesis

e p(FE) is the probability of the evidence which can be expressed as
o(B) = [ p(EImp(H) a

e p(H|FE) is the posterior probability

For our applications, H is a hypothetical value of € (in this example it is discrete, in the
previous examples, it was continuous).

In order to apply Bayes’ Theorem, we calculate the likelihoods for # = 0.5 and 6§ = 0.6
over the 200 data points.

p(E|§ = 0.5) = 0.5'190.5% = 6.2230 x 107!
p(El0 = 0.6) = 0.6'150.4%° = 4.5972 x 1079

We also have the prior probabilities based on the number of coins we have for each hypothesis

p(0 = 0.5) =2/3
p(6=0.6)=1/3
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The prior probability is based on prior knowledge about the type of coins we have. The

resulting Bayesian probabilities are therefore

(2/3)6.2230 x 107%%  0.415 x 10790

0 =05|E) = = =0.2131
Pl6 =0.3() ) )
(1/3)4.5972 x 10799 1.532 x 1079
0 =0.6|F) = = = 0.7869
B8 =0.6(%) p(E) )

From these results, we can say that it is most probable that the biased coin was selected.
We can also see that the Bayesian approach has the advantage of being able to use prior
probabilities (from the get-go, it was twice as probable to select a fair coin than a biased
one, the frequentist approach does not take this into account). In addition, the Bayesian
approach directly results in probabilities for each hypothesis which is a more intuitive result

than the frequentist result of rejection risks.

Dynamic inference

One final comment about the difference between frequentist and Bayesian inference is that
Bayesian inference can be easily implemented dynamically. Recall that in our Bayesian
inference, we multiplied the evidence together for the 200 samples in one likelihood calcula-
tion step. However, one can obtain the same result by updating the prior probability using
a single piece of evidence at a time. For example, let us say that the first observation is
‘heads’, then

(2/3)05  1/3
p(E1)  p(Er)
(1/3)06  1/5
p(E1)  p(Er)

Now let us say the second result was ’tails’ then our previous posterior can be used as a

p(0 = 0.5|E,) = =5/8

p(6 = 0.6|Ey) = =3/8

prior for the next inference.

p(E2|0 = 0.5)p(0 = 0.5|E1) _ (5/8)0.5  5/16

P(6 = 05IEr, By) = p(E2) B p(E2)  p(Ey) = 25/37
-  p(Eal0 = 0.6)p(0 = 0.6|Ey)  (3/8)04  3/20
p(6 = 0614, B2) = D) = wm) pm)

If this is continued for the entire 200 observations, we will obtain the same result as the
case where all 200 observations were considered at once. For the Bayesian approach, our
diagnosis result can be easily updated every time new evidence is made available, and the
computational burden is the same for each new data point. Conversely, for the frequentist
approach, a new test over the entire dataset has to be calculated every time a new data
point is added. In this way, the computational burden increases with each new data point.
This property makes the Bayesian approach more practical for on-line applications than the

frequentist approach.
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Practical considerations

In the scientific community, the Frequentist approach is generally more popular, under-
standably because parameter estimates and proposed hypotheses are not random, but take
fixed values from nature. Furthermore, the aim of scientists is to perform carefully con-
trolled experiments where results can be considered independent and identically distributed,
conditions which are required for frequentist inference. Conversely, Bayesian inference is
more popular in the artificial inteligence community, especially in areas where real-time
decisions have to be made on hypotheses that can change at random; for example, diagno-
sisng problems in diesel engines [2]. Bayesian inference has the advantage that it can be
easily implemented in machine learning and on-line diagnosis. Data from different scenarios
can be collected off-line to estimate their respective distributions, then when implemented

online, new evidence can be made to make decisions.

2.2.1 Tutorial on Bayesian inference

In this tutorial a system with two components is considered (as shown in Figure 2.3):
1. A valve which can be subject to stiction
2. A sensor which can be subject to bias

For the sake of simplicity, we assume that the two problems do not happen simultaneously,
resulting in three operating modes for the process: normal operation, valve stiction, and

sensor bias.

\J

4>}+ }——— Controller »  Valve »  Process

Sensor |-

Figure 2.3: Illustrative process

Bayesian inference techniques are always applied on top of monitoring techniques. In
this way, Bayesian inference was designed to piece together evidence from various sources
in order to make a decision. With this in mind, we assume that monitoring algorithms
are already in place to detect stiction and bias. The Bayesian technqiue is simply a layer
applied above the monitors in order to make sense of monitoring input. At this point, we will
assume that the monitors yield a discrete output. In the case of our example, the output for

the stiction monitor is either 0 (stiction not detected) and 1 (stiction detected). Likewise,
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the output for the bias monitor is either 0 (bias not detected) and 1 (bias detected). The

evidence space, therefore, consists of four possible discrete values (as shown in Figure 2.4):

€1 = [0,0] €y = [0, 1] €3 = [1,0] €4 = [1, 1]

0, 1) (1, 1)

I

JOJTUOIA UOTIINS AR A

0

(0,0) (1,0)

\J

Sensor Bias Monitor

Figure 2.4: Evidence space with only prior samples

The goal of using historical evidence is to estimate the likelihood p(E|M) for each mode.
This can be combined with user-defined prior mode probabilities p(M) in order to obtain a

posterior

M)
P = 5 BT @

For discrete data, the likelihood p(E|M) can be calculated as

n(E, M)
p(E|M) = “n(M) (2:2)
where n(E, M) is the number of samples where the evidence E and mode M occur simul-
taneously, and n(M) is the total number of samples were the mode M occurs.

The motivation for applying the Bayesian technique is alarm management. The moni-
tors themselves are capable of generating alarms, but a problem such as stiction could also
affect the sensor bias monitoring alarm. One can see that for systems with a large number
components, information on the underlying problem can be obtained from the alarm pat-
tern. Furthermore, the alarms often do not contain information about how certain the alarm
is; by contrast, Bayesian techniques assign probabilities to each possible mode, allowing us
to ascertain the level of uncertainty about our decision.

Bayesian methods have the added benefit of user-defined priors (denoted as p(m) in
Eqn (2.1)). Prior probabilities can be used to assign more weight to modes that occur more

frequently. If one does not have any information about prior probabilities, a non-informative
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flat prior can also be used. This can be applied to inference, but it can also be applied in
estimating distribution. For example, we use non-informative prior samples for estimating
likelihood distributions by assigning one data point for each discrete evidence, a(E|m) = 1,
A(my) = 4, as shown in Figure 2.5. Here, all evidence possibilities are shown in a 2 x 2
grid (2 x 2 as it contains two monitors with two discrete values each), and a single sample
is added to each grid sector representing a possible evidence value. By assigning a point to

each grid, we state that for this mode, each possible evidence value was observed once.

@ prior sample

0, 1) (1, 1)

I

JIOJIUOA] UOTIONS SATBA

0

0, 0) (1,0)

\J

Sensor Bias Monitor

Figure 2.5: Evidence space with prior samples and historical samples

After applying the prior samples, historical samples are used to obtain the terms in Eqn
(2.2)

n(E, M) = Prior(E, M) + History(E, M)
n(M) = Prior(M) + History (M)
where Prior(E, M) represent the prior samples of where E and M jointly occur, and
History(E, M) represents the historical data samples where E and M occur. Similarly

Prior(M) and History(M) represent the prior samples of M and the historical samples of

M respectively. Table 2.1 contains results which will be used for this example

Table 2.1: Counts of historical evidence

E Normal Sticky Valve Biased Sensor
e1 = [0,0] 10 0 0
es = [0,1] 1 7
es = [1,0] 8 1
es = [1,1] 1 2
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When historical data and prior samples have been combined (note, prior samples placed
one sample point for each possible evidence realization under each mode), the result is given
in Table 2.2

Table 2.2: Counts of combined historical and prior evidence

E Normal Sticky Valve Biased Sensor
e =10,0] | 11 1 1
es = [0,1] 1 2 8
es = [1,0] 1 9 2
es = [1,1] 1 2 3

As a visual example, the evidence space for the sensor bias mode is shown in Figure 2.6

with both prior and historical samples are shown.

A o

prior sample

X historical sample

0,1 x X (1, 1)

1

JIOJIUOJA] UOTIONS SATBA

0

(0,0) x (1,0

\J

Sensor Bias Monitor

Figure 2.6: Evidence space with historical data

Likelihoods can be obtained from these samples by normalizing over the frequency of

each mode. Results are shown in Table 2.3.

Table 2.3: Likelihoods of evidence

E Normal Sticky Valve Biased Sensor
e; =[0,0] | 11/14 1/14 1/14
es = [0,1] 1/14 1/7 4/7
es = [1,0] 1/14 9/14 1/7
es=1[1,1] | 1/14 1/7 3/14
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Before performing on-line diagnosis, priors for each mode must be assigned. For instance,
if the valve has not been maintained for a considerable amount of time, then a higher prior
probability can be assigned to the Sticky Valve mode to reflect our knowledge that the valve
has a high chance of being sticky. In such a case, the prior probabilities are assigned as
p(normal) = 1/4, p(sticky valve) = 1/2, and p(biased sensor) = 1/4.

With the estimated likelihood probabilities for current evidence E under different modes
M, the likelihoods p(E|M), and the user-defined prior probabilities p(M), posterior prob-
abilities of each mode m; € M can be calculated. Among these modes, the one with the
largest posterior probability is selected.

As an example, given evidence [1,0] (where the stiction monitor detects a problem and

the bias sensor does not) the posterior probabilities can be calculated as

p(normal|[1,0]) o< p(normal) - p([1, 0] normal)
= 1/4-1/14 = 1/56 (2.3)
p(sticky valvel|[1,0]) o p(sticky valve) - p([1, 0]|sticky valve)
=1/2-9/14 = 9/28 (2.4)
p(biased sensor|[1, 0]) o< p(biased sensor) - p([1, 0]|biased sensor)
=1/4-1/7=1/28 (2.5)

The mode with largest posterior probability, Sticky Valve, is then diagnosed as the under-
lying process mode. Note that these probabilities do not add up to 1 because they are not

normalized by p(FE). If proper probabilities are desired, then normalization is required
p(F)=1/56+9/28 +1/28 = 3/8

2.2.2 Tutorial on Bayesian inference with time dependency

Mode time dependency

During on-line application, where evidence is being obtained at every At, unless the time
intervals are exceedingly long (which would be undesirable, because shorter intervals yield
more information), there will be some time dependency with the modes. In general, a mode
has a probability of switching p(M?|M?'~!) and this probability tends to be fairly small;
for example, it usually takes a while for a valve to become sticky, or for an instrument to
become biased, and it takes a while for these problems to be noticed and corrected. Because
these switching occurrences can be rare, there tends to be strong auto-dependence within
the modes, thus evidence collected over time yields more information than single pieces of
evidence themselves. A visual representation of dependency is available in Figure 2.7 which
resembles the well-known Hidden Markov Model

Mode-time dependency can be taken into account by using switching probabilities. Let
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P(m'™") = P(m!) > P(m'™)

t—1 {7 t41

Figure 2.7: Mode dependence (Hidden Markov Model)

us consider our previous example with the following prior probabilities:

p(my) =1/2 Normal operation
p(me) =1/4 Sticky valve
p(ms) =1/4 Biased sensor

Now let us consider the modes having the following switching probabilities

p(m'ilmzfi) —0.90 p(m§|m%*1) ~0.10 p(m§|m§;1) — 010
A= p(mgymtl—l) =0.05 p(mt2|mt2_1) =0.90 p(mg\mg’_l) — 0.00
p(mimi™) =0.05 p(mi|mb1) =0.00 p(mbmi ) =0.90

Let us now consider the evidence e; = [0,0] with the following likelihoods obtained from
Table 2.3

plerlmi) =11/14
plerl|M) = | plerlmz) =1/14
pler|ms) = 1/14

By combining the likelihood with the prior probabilities we can obtain

plerlma)p(mi=™)
p(ei=")

plmafef™") =
(11/14)(1/2)
(11/14)(1/2) + (1/14)(1/4) + (1/14)(1/4)

_ 128 11/12
3/7
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Similarly, for the other modes, we can obtain

=1y _ ple1ma)p(m5~")
p(maler) = (=)
UL
=1y _ pleilms)p (m5~)
p(m3’el >_ p( ﬁ 1)
_ (1/1;%1/4) _ 124

Now let us consider the probability at t = 2 when e is observed. Firstly, the likelihood is

shown to be

plealmy) = 1/14
p(e2|M) = | plealma) =1/7
plea|ms) = 4/7

Now the prior probability for ¢ = 2 is the posterior of ¢t = 1 with switching probabilities

taken into account
p(mi=2 M=) =Y p(mh M )p(M]ef™)
M

= p(mi|mi " p(malef=") + p(mi|mb " p(malet™") + p(mi|myp(mslei=")
=09 x (11/12) + 0.1 x (1/24) + 0.1 x (1/24) = 5/6
p(m52 M=) = p(mb|m{ p(malel™") + p(mb|mb " )p(malefi=") + p(mb|mf " )p(mslei™)
=0.05 x (11/12) +0.9 x (1/24) +0.0 x (1/24) = 1/12
p(mE2 M=) = p(mbmi)p(ma ef™h) + p(mbmbHp(malet=") + p(mhmb~1)p(ms|ef™)
=0.05 x (11/12) 4 0.0 x (1/24) +0.9 x (1/24) = 1/12

These values are new priors p(M'=2|M®=1) which can be combined with the likelihoods
p(e5=2|M) to obtain a new posterior p(M*=2|e5=2).

5= |M)p(M'"=*| M=)
p(eb™?)

p(M=2)ef2) = X

or more generally

p(E*|M)p(M*'|M*T)
p(E")

t|Mt 1 Zp t‘Mt 1 M|Et 1)

p(M'|E") =
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By applying our example, we get the following numerical values for the posterior

(=2| =2y _ p(es=2|my)p(mi=2|M'=1)
p(eb™?)

_ (1/14)(5/6)

s 2

p(e5=2|ma)p(mb=2|M'=1)

p(es™?)

ST
mi=2(et=2) — P(egzg\ml)P(m§:2|Mt:1)
p(mi~—"ley ") = p(e§:2)
_(@/mnasz)
= P

p(mb=2|e5™2) =

Evidence time dependency

For evidence time dependency, we consider the case where E! depends on E'~!, which can
happen, for example, if monitors use a window of data which overlaps with the data that
monitors use at different time intervals. For the most basic case, where E! depends on

E'! the graphical model resembles Figure 2.8.

P(mt_l) P(mt) P(m“‘l)

t—1 > t > t+1

Figure 2.8: Evidence dependence

In such a case, we wish to evaluate p(M|E?, E'~1) as

p(E'|E'™1, M)p(M)
p(EY)

We can obtain the required likelihood expression p(E?|E*~1, M) by the rule of conditioning

p(M|E", E" 1) =

M Et Et—l)
Et Et—l M) = p( ) )
p( ’ ? ) p(Et_l,M)
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which yields the estimator

p(E'|EH M) =

where n(M?, E!, E'~1) is the number of times M, E*, E*~1 jointly occur, and n(E!~1, M?)
is the number of times Ef~!, M? jointly occur. This will mean that the number of evidence

possibilities will be squared. For example, for evidence presented in Table 2.3, the dependent

n(Mt,Et,Et_l)
n(E-1, Mt

evidence solution will resemble Table 2.4.

Table 2.4: Likelihoods of dynamic evidence

E Normal Sticky Valve Biased Sensor
et el 0.5 0.01 0.01
el et 0.07 0.07 0.01
ef,eb™ | 007 0.01 0.07
ebett | 0.07 0.01 0.01
ebet™t 1007 0.07 0.01
eheb™t | 0.01 0.5 0.01
ehes | 0.01 0.07 0.07
eh,et"t | 0.01 0.06 0.01
eb, et | 007 0.01 0.7
eh,eb”t | 0.01 0.07 0.7
eh,es | 0.01 0.01 0.5
eh el 0.01 0.01 0.7
ef, et | 0.06 0.01 0.01
eb, el | 0.01 0.07 0.01
eh,es | 001 0.01 0.06
ef el 0.01 0.01 0.01

This table of evidence can be used in the same manner as the previous table (Table 2.3).
t—1

For example, if the evidence €}, e

p(mfef

p(mb]el

p(mj|e]

1

, €

, €

, e

tfl)

t—1

t—1

was observed, the posterior would be

t t tfl)

Zip(€§|€§71a7n1)P(€1|61
(0.5)(0.5)
=-———> =750/51
51/200 /
) = pleflel™, mb)p(eflei™)
_ (0.01)(0.25) —1/102
51/200
) = pleflei™, mb)p(el]ei™)
B (0.01)(0.25) —1/102
51/200
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Dynamic evidence and modes

The dynamic evidence and dynamic modes solutions can be easily combined. The dynamic
evidence solution only modifies the likelihood, while the dynamic modes solution only mod-
ifies the prior. Because the dynamic evidence solution only modifies the likelihood, we
can simply substitute the dynamic evidence likelihood p(E!|E*~!, M) in Eqn (2.7) for the
static likelihood p(E|M) which showed up in the Hidden Markov Model solution in Eqn
(2.6). Thus, when both dynamic evidence and dynamic mode solutions are applied, one can
calculate the results using

p(Et]Et_l, Mt)p(Mt‘Mt_l, Et—l’ Et—Q)

p(E'|E)
p(BYEY) = Zp(Et’EtfljMt)p(Mt’Mtfletfl7Et72)

p(M'|E" E'Y) = (2.8)

Mt
plmi| M B B =N p(ml | M p(MT, B E?)
M

As one might observe, this solution is applied in the same manner as the dynamic modes
solution, but now we replace the evidence (such as Table 2.3) with dynamic evidence (such

as Table 2.4). This solution solves the problem depicted in Figure 2.9.

P(mf’*l) » P(m') > P(mt“)

t—1 > t > t+1

Figure 2.9: Evidence and mode dependence

2.2.3 Bayesian inference vs direct inference

Let us revisit the example where we are monitoring for sensor bias and valve stiction for
the system in Figure 2.3. Now let us say that we have collected some larger samples of data
with the evidence history being summarized in Table 2.5.

By looking at this table, if we observed evidence e, an intuitive way to evaluate the
probability of the modes would be to count the occurrences of evidence e; for each mode

(m1 — 30, mg — 7, m3 — 4) and divide it by the total occurrence of evidence e; — 41 so
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Table 2.5: Counts of combined historical and prior evidence

E Normal Sticky Valve Biased Sensor | Evidence Total
e1 = [0,0] 30 7 4 41
es = [0,1] 10 2 10 22
es = [1,0] 16 2 25
eq = [1,1] 5 4 12
Mode Total 50 30 20 100

that

p(miler) = 30/41
p(male;) = 7/41
p(msler) = 4/41

This approach is called the direct approach as it directly evaluates p(M|E) based on his-
torical counts. This method however, assumes that the evidence collected is representative
of the mode probability. Thus, it assumes that the prior probability can be obtained from
the mode totals at the bottom of Table 2.5

p(m1) = 50/100 = 0.5
p(ms) = 30/100 = 0.3
p(msg) = 20/100 = 0.2

If these values were used for prior probabilities when applying the Bayesian method, the

results obtained would be identical to the results from the direct method.

p(er|m1)p(m1)  (30/50)(50/100)

p(miler) = ) = 11/100 =30/41
plmaler) = p(el\;rzz)f;(ma) _ (7/325?1% 100) _ - /41
plmsler) = p(el\;rzs;)lz)ﬂ(ma) _ (4/22521%/0 100) _ , /a1

Thus, as we can see, the Bayesian method is much more flexible as it allows us to select
prior probabilities that are not represented in the data. This property of allowing us to
use different prior probabilities means that the Bayesian method enjoys certain advantages

over the direct probability method:

e Bayesian methods allow us to collect arbitrary amounts of data for each
mode. When using Bayesian methods, priors take care of the mode probabilities so
that the data does not have to.
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e Bayesian methods allows for easy on-line implementation. When implement-
ing solutions on-line, the prior probabilities change over time when evidence becomes
available. This can be easily taken into account when using the Bayesian method, but

this is much more difficult to represent when using the direct method.

2.2.4 Tutorial on Bayesian parameter estimation

In addition to Bayesian Inference, some chapters in this thesis deal with Bayesian parameter
estimation. In our previous example, we have already performed some parameter estimation
with respect to the probability parameters

n(E, M)

P(E|M) = 9E|M = W

where n(E, M) and n(M) take into account both prior and historical samples of F and M.

However, this estimation does not yield the uncertainty behind the parameter estimate.
For example, let us consider a coin flipping experiment. If we had a prior belief of one
sample for heads C' = h and one sample for tails C' = ¢, and we flipped a coin once, and

observed heads, our probability of heads and tails would resemble the following

1+1 2
h :0 = — = —
Ph) =0n = 177770~ 3

140 1
p) =0 =— "2

1+41+14+0 3

From our intuition however, we know that this result is not very reliable because there are
so few data points. What we would like to have is to have a distribution over © = {6y, 6}

denoted as p(©) that could be updated using evidence in a Bayesian manner

p(E[|©)p(©)
p(E)

We know that p(F|©) is a categorical distribution, so that in our case,

p(O|E) = (2.9)

p(h|©) = 0, = p(h)
p(t|©) = 6; = p(t)

The distribution p(©) is known as a conjugate prior, which is a distribution that can be
updated by p(E|©). Conjugate priors are used in Bayesian parameter estimation problems
in order to incorporate prior information about the parameters. These priors can be updated
as information becomes available so that they reflect the uncertainty behind the updated
parameter. As data becomes more available, the updated parameter distributions become
narrower, depicting higher confidence in the estimates.

One of the most important properties of a conjugate prior p(0) to a likelihood distribu-

tion p(F|O©) is that the posterior p(©|E) must be of the same family of distributions as the
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prior p(0©) after combination with the likelihood according to Eqn (2.9); this allows for easy
derivation of the posterior, resulting in a computationally light updating scheme. Finding a
conjugate prior is not an easy task, and not only depends on the distribution that produces
E, but also on the particular parameter © of interest; fortunately, the conjugate priors
for many likelihood distributions have been found [58] and some results are summarized in
Table 2.6.

Table 2.6: List of conjugate priors

Process for generating ¥  Parameter of Interest ® Conjugate Prior p(©)

’ Discrete Univariate Processes ‘

Bernoulli Binary Probability (0 vs 1) Beta
Hypergeometric Binary Probability (0 vs 1) Beta-binomial
Poisson Poisson Parameter Gamma

’ Discrete Multivariate Processes ‘

Multinomial/Categorical Probability Parameters Dirichlet

Multivariate Hypergeometric Probability Parameters Dirichlet-Multinomial

’ Continuous Univariate Processes ‘

Uniform Uniform Probability Pareto
Pareto Precision Parameter Pareto
Pareto Shape Parameter Gamma
Exponential Mean Gamma
Gamma Rate Parameter Gamma
Normal Mean Normal
Normal Inv. Var. Gamma
Lognormal Normal Mean Normal
Lognormal Normal Inv. Var. Gamma,

Continuous Multivariate Processes

Normal Mean Vec. Normal
Normal Cov. Mat. Wishart
Normal Mean Vec. and Cov. Mat. Normal-Wishart
Normal Regression Regression Coeff. Normal
Normal Regression Reg. Coeff. and Precision Normal-Gamma

For discrete probabilities, the conjugate prior is identified to be the Dirichlet Distribution
[59].

f(®la) = FH(ZF(;‘)) H g1 (2.10)

® € [0,1] (2.11)

> 0i=1 (2.12)

i
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where I is called the gamma function

I'(t) = /OOO 2 le™ dx (2.13)

which is a generalization of the factorial function (as it can support continuous values) so
that

L(k) = k! k € positive integers (2.14)
Iz +1) =aI'(z) x € real numbers (2.15)

The parameter set a can be defined as
a; = n(e;)

so that « is simply a record of the samples. Thus, according to our coin-flipping exercise,

the conjugate prior (or the function that can be updated by evidence) is given as

I' (o, + o)

eah—leat—l
P(an)l(ar) ™

f(Ola) =

The “magic” behind the Dirichlet distribution lies within its two desirable properties

1. The expected value of 6; is given as the intuitive fraction of data samples

oo n(e)
Ep,[f(Ola)] = o S n(en) (2.16)
2. Updating f(©|a) with the observation of e; simply adds the value of 1 to «;
_ p(Ei|©)f(Olalk])
f(Olak+1]) = () (2.17)
Oéi[k‘ + 1] = Ozl[k] +1 (2.18)

To better understand the Dirichlet distribution, examples are given below.

Example: Expected values of a Dirichlet distribution

Let us say we have observed enough coin flips so that

ap=n(h)=5
ar=n(t)="7
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We now wish to calculate the probability of heads, or equivalently, the expected value of
0y,.
.%M@MHz/%ﬂwwd@
(o + ) pop—1 pay—1
0 o, 0 d
/h ey h 9
Oéh I'(ap + o)
T(on)T () Jo
_ (ah + Oét) / 0 (ap+1)— 10% 1 40
F(ah
Now it should be noted that Dirichlet’s Integml states that

a;—1 H I'(cy)
/H9 0= )

0,050 dO

which results in

I(ap + Oét) F(ap + DI(ey)
Eo, 17 (O1e)] = g, T an) * Fian +1) + a0)
I (ap + o) " [ap T (ap)]T (o)
P(ah) (o)  T(ap+1+ay)
Plapt+a)  [anl(an)]l(ar)
" T(an)T(ar) * [lan+ al (an + ay)
1 " apl(ap)(on)
INGTRIN(E) (o + o)
ap 5) D

(o, + o) T 547 12

yielding the value that was intuitively expected.

Example: Updating a Dirichlet distribution with new observations

Again, let us say that historically we observed coin flips so that
ap =n(h) =5
ap=n(t)="17
Now let us say that after another coin flip, we observed heads (E = h) and we would like
to update our results. According to Bayes’ Theorem
p(Ei|©)f(O]afk])
p(E;)

f(®la, E;) = f(Olafk +1]) =

When applying the updating rule to our example, we have
p(h|©)f(©]alk])
p(Ei)
_ 0uf(Oalk)
Jo Onf(®lalk]) dO

J(©lalk + 1)) =
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Now, from our previous expected value example, we have already shown that

/@ 041 (Olalk]) d© = Ey, f(O]alk)
an
ap + oy

Thus

p(h|©)f(Ola(k])
p(E;)

_ Ohf(Olalk])

ahafat
= YT f(0]alk]) 6
Qp,
ap + oy hF (o + ay) on—1gar—1
ap, T(ap)T(oy)
an+a I (ap + O‘t)e(a;ﬂrl)fleatfl
ap  T(ap)T(ay) " t
Recalling in Eqn (2.15) that I'(x + 1) = zI'(z),

I'(on + ap + 1) (an+1)

T(ap + 1) (oy) "

T((an+1) + ) j(an+1)-140s—1

- plan+b—1yc
I'(ap + 1) ()

From this, we can see that the posterior probability f(©|a[k + 1]) has (ap + 1) in every

f(®lafk+1]) =

—1904,5—1

F(©lalk+1)) =

place that (ay) occurred in f(O|a[k]). Therefore,
aplk+1=ap+1=5+1=6

when a new outcome of “heads” (E = h) is observed.

2.3 The EM Algorithm

The EM algorithm is a technique pioneered by Dempster et al. [60]; variations of the EM
Algorithm technique previously proposed, but [60] was the first to present it in a general
manner with rigorous proof of convergence. The principal reason for implementing the EM
algorithm is to learn relationships and distributions when data for estimation is incomplete.

Dempster et al. [60] presented the EM algorithm in three different forms having increased

generality:
1. Exponential family distributions with closed-form maximum-likelihood solutions
2. Exponential family distributions without closed-form maximume-likelihood solutions

3. General distributions

However, since all solutions can be obtained from the general solution, we set our focus on

the most general solution.
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Tutorial problem

For the EM Algorithm tutorial, we revisit the simple control loop example as presented in
Figure 2.3. Again, we have two monitors, one which monitors instrument bias, while another
monitors valve stiction. Consider a mode Biased Sensor where we have some missing values
from certain monitors as shown in Table 2.7. When a monitor’s value is missing, we denote

it as x

Table 2.7: Biased sensor mode

Evidence Frequency

[0,0] 5
[0, 1] 12
[1,0] 4
[1,1] 6
[0, X] 8
[1, ] 2
[x, 0] 3
[x,1] 10
Total 50

We would like to estimate p(E|ms) when pieces of data are missing from the evidence.

2.3.1 Tutorial: Solution for general distributions

The most general type of solution does not rely on any notion of exponential families.
However, becuase it is the most general, the other two solutions can be derived as a special
case of this solution. Thus, the general solution is most often used as a starting point

despite its complexity.

1. Expectation: This step involves the construction of the @ function
Q(®|d*)y = E |log f(Z|®)|y, (I)[k]} — / log(f(Z|®))p(Z|y, ") dz
Z

where Z represents the unobserved part of the dataset (notation is upper case due
to its random nature), and y represents the observed part of the dataset (notation is
lower-case due to its non-random nature). Furthermore, ® is the current (variable)
parameter set, and ®*! is the previously obtained (constant) parameter set obtained

at iteration k.

2. Maximization: This step involves numerical maximization of the @ function over

the variable parameter set ®

ol = arg max E(log f(Z|®)[y, @)
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where ®F+1 ig the estimate of parameters ® after iteration k

In order to apply this solution to our tutorial problem, we must first take note of the

following notation.
e D, is a matrix of complete data entries
e D;. is a matrix of incomplete data entries (containing missing “x” elements)
e Z is a random vector consisting of the missing (or x) elements within D;,
e z is a realization of Z
e y is a vector which represents all of the observed elements within D,

When referring to the historical data in our sample problem (shown in Table 2.7) D, rep-
resents the data points without any missing entries (e.g. data summarized in the first four
rows), while D;. represents the data points that have missing entries (e.g. data summarized
in the last four rows). In addition, Z represents all occurrences of missing elements (x) in
Dic, while y represents all occurrences of observed elements (not x) in Dj.

Then, when implementing the EM Algorithm in our example problem, one goes through

the following steps:

[0]

1. Initialization: As an initialization point, we calculate the ©"! parameters without

any missing data

9[070] - 5/27
9[0’1] — 12/27
9[170] — 4/27
9[171] = 6/27

2. Expectation: This is the step that involves the bulk of the work. We must take the

Q@ function, which is initially expressed as
Q(el6M) => " p(zly, D, ©F)log p(y, 2, D.|©)
z

and derive a usable expression from it. The reason this current expression is hard
to implement is that there are 2"(%) possible realizations of Z, thus, summation
becomes an infeasible exercise. The first simplification can be made by assuming

time-independence of the data. In this way

D, L D;,
D. L {z,y}
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This essentially removes D, from the conditional probability expression, allowing us

to express it as a separate independent term
Qoo ZP zly, ©") [log p(y, 2|©) + log p(D|©)]

Now, we have already established that D, is independent of Z which is the summation

term. Because
> p(zly, 0
Z

we can separate out the log p(D|©) from the summation

Q(0]6%)) =logp(Dc©) + > p(zly, ©*)logp(y, 2(0)
Z

Now, because of time-independence, the summation over Z can be broken down into
the elements in ¢1,%2,...,%,(p,c)- In terms of Z this means that the realizations are

broken down into
Z = {Zl, z2,... Z”@ie)} (2.19)

where Z* is the set of realizations of all x values in the t** incomplete data sample

(in D;.). For example,
e If the first element of D;. was [0, x| then Z = {0, 1}.

e If the second element of D;. was [x,1] then Z% = {0,1}.

e If the third element of D;. was [x, x] then Z3 = {[0,0],[0,1],[1,0],[1,1]} or it
could also be simply mapped to four possible values Z3 = {0, 1, 2, 3}.

t

Note that in being consistent with previous notation, z* is one of the possible realiza-

tions of Z! so that
> p(Zt=z)) =1
i

When time-independence is taken into account, we can assert that

D,.)
p(Zly, 0 = H p(Z'ly", 6M)

t=1
logp(Z,y|OH) = Y~ logp(Z*,y'|0H)

This results in a summation that is broken down as follows:

Q(e]e") = logp(D.|0)+

(Dic) n(Dic)
S H 'y, 0)| | D logp(s,y'[OM)
z1 zn(Die) | t=1 t=1
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We can simplify this expression by noting that each term of log p(2t, y*|©) is front-
multiplied by all values of p(zt|yt, ©); however, the first term log p(z',3"'|0") is in-
dependent of all terms in p(zt|y’, ©) except p(z!|y', ©). And because the summation
of all realizations p(z¢|yt, ©) over Z! is equal to unity, the summations signs all cancel

out, except for the one occurring at t = 1

n(Dic)

Yoo > | I p'1 ) | log(=", o |0H) =

Z1 gnD) | t=1

> 'y, ©)logp(z",y'|OM)

Zl
This property can be generalized to yield

n(ch)

St > | T p'1y' )| togp(=, el =

zZ1 Zn(D;e) t=1
> ('Y, ©)logp(=', y'|OH)

Zi
When applied to our @) function, the simplification yields the following result:

n(Dic)

Q(016M") =1logp(De[©) + > Y p(z'ly",©)logp(2",y'|OH)
t=1 7t

This is a more workable solution. For example if each incomplete data entry D;. has
only one element missing, instead of assessing the probability of 2(Pie) realizations of
Z and summing them up, we only have to go through 2 realizations for every Z! and
summing up the results. Thus the computational burden of evaluating the Q(0|0])

function only increases linearly instead of exponentially.
. Maximization: The maximization step could be performed by numerical optimiza-
tion

n(Dic)

O = argmax |logp(De|©) + D > p(='ly", ©)logp(=",y'|OM)
=1 gt

However, the solution to this can be analytically obtained. In order to obtain a result

that relates more directly to our original problem, we first note that

logp(D.|O) = Z log p(el|©)

= nc[O, 0] log(00,07) + me[0, 1] log(0)0,1)+
ne[1, 0] log(01,0) + nell, 1] log(6)1,17)
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Now recall that 2!, y" will correspond to some ef.. For example, let us say that [0, x|
is the first element of D;.. Then

{z! =0} = {[0,x] =[0,0] = e1}
{z' =1} = {[0,x] = [0,1] = ez}
thus

p(zt = 0,510l = p(el, = [0,0]|0*)
p(z' = 1,4'10%) = p(el, = [0, 1]|0H)

In addition, because of the rule of conditioning

p(2',y'©)
p(y'|©)

Now p(3*|©) is the probability that y; takes this value, or equivalently it is a normal-

p(z'y", ©) =

ization constant to ensure that all probabilities of p(z!|y!, ©) sum to 1 (with respect

to all possible values of z!). Thus according to our example, we can say that

p(EL = [0,0]|0)
p(EL = [0,0]|0) + p(E, = [0, 1]|©[)
_ Yoy
B0 0o,y
p(EL = [0,1]|0)
p(EL = 10,0]|0ld) + p(EL = [0,1]|Ol)

p(Zt =0y, 6k =

p(Z' =1y, el =

_ o
010,01 + 00,1
so that in general,
05t
t1t @y — __Fic
p(z'ly", ©") S0,
eCE!,

where > 6. sums the 6 parameters associated with all possible evidence realizations
eCE?,
in Efc. For example,

Y 0e=0pg + 00y

eC[x,0]

40



Now Q(©|0]) can be rewritten as

Qelet) =
1[0, 0]log(0po,q1) + 1[0, 1] log (60 17)
+ ne[1, 0] log(0)1,07) + nc[1, 1] log(0}1,1)

0 0,0
+ nic[O, X] log(a[o’o])e[oo}[_‘_}e[ol] + 10g(9[071])

0
+ nic[1, x] IOg(e[l’O])O[lo}[j—mQ[ll] + log(61,17)

0110
+ nic[ %, 0] log(9[1,0])m

0
+ nic[x, 1] log(e[l,l])% + log(0)0,1))

Which can be rearranged as
f10,0)
010,00 + 01,01 010,00 + 00,1
O, ]
00,1 + Oy
01101
010,00 + O10)

0,1
PR St bt B + nZC 1’ X|—
10,11 + 01,11 | ]9[1,0} + 011 ]

Q8]0 =1log by ) [nc[0,0] + nic[x, 0]
+ lOg 0[071] nC[O, 1] + TLZ'C[X, 1]

+ log 9[1,0] nc[lv O] + TLZ‘C[X,O] + nic[la X]

+ log 0[1,1] nc[L 1] + nic[x7 1]

By applying numbers in Table 2.7 , Q(©|0]) is expressed as

5/27 5/27

5/27 + 4/27 5/274—12/27}
12/27 12/27

12/27 + 627 12/27-%5/27}

4/27 4/27
+1°g9“‘”_4*‘34/27:-5/27 4/27:—6/27}
6/27 6/27
6/27 + 12/27 6/27%—4/27]

Q(0]6M) =log by |5 +3

+ log 9[071} 12 =+ 10

+log 0} 1 _6 + 10
resulting in the following expression
Q(0]0M) = 9.0196 log 8¢ o) + 24.314log b 1) + 6.133 log 83 o) + 10.533 log )1 1)
When maximized over all values in ©, in light of the constraint

9[0’0] + 9[071} + 0[1’0] + 9[1?1] - 1 (220)
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the result is

no_
Ololy = 9-0196/50

n

Ol = 24.314/50
o

61 = 6.133/50
no_

01’y = 10.533/50

which is an intuitive result. The expectation and maximization procedures can be

repeated until the parameters in © converge.

2.4 Techniques for Ambiguous Modes

In Section 2.3 we discussed the problem of missing evidence and how the EM algorithm
could be used to infer likelihoods even if some of the historical evidence is incomplete. In
this section, we can discuss how to infer likelihoods if some of the modes are incomplete.
If we return to our example system presented in Figure 2.3, where we have a sensor that
could be biased, and a valve that could become sticky. Let us say that in this case, it is
possible for more than one problem to exist at a given time. In this way, there are four

modes m1, ma, ms, my as shown in Table 2.8.

Table 2.8: Modes and their corresponding labels

Mode Label Meaning Binary Label
my no bias, no stiction [0,0]
mg no bias, stiction [0,1]
ms bias, no stiction [1,0]
my bias, stiction [1,1]

As in the case of evidence, it is possible for information about the mode to be missing
in the history. In such a case, the mode is ambiguous. For example, let us say that we
are sure that there is no bias, but we are unsure as to whether stiction exists or not. The
binary label for such a mode would be [0, x|, which would indicate that the modes m; and
mg were possible (resulting in a mode label {mj, mo}). Let us now assume that additional

modes were seen in the data according to Table 2.9.
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Table 2.9: Ambiguous modes and their corresponding labels

Mode Label Meaning Binary Label
{mqy,ma} no bias, stiction uncertain [0, x]
{msz, m4} bias, stiction uncertain [1, ]
{my,ms} bias uncertain, no stiction [x, 0]
{ma,m4} | bias uncertain, stiction uncertain [x,1]

For the tutorials to follow, let us consider some historical data as seen in Table 2.10.

Table 2.10: Historical data for all modes

Modes
Evidence | [0,0] [0,1] [1,0] [1,1] [0,x] [L,x] [x,0] [x,1] | Total
er,0,0 | 11 1 1 1 6 2 6 1 29
e,[0,1] | 1 2 8 2 1 2 4 2 22
es,[1,0] | 1 8 2 P 5 4 2 5 29
e, [1,1] 1 2 3 9 2 6 2 6 31
Total 14 14 14 14 14 14 14 14 112

From Table 2.10, we can see that fourteen data points were collected from every mode
(including the ambiguous ones). If we assume that the mode frequency in the data represents
the true mode frequency (so that all modes have an equal chance of happening as presented
in the data) we could use the EM algorithm [60] to solve this problem. However, because

we are using Bayesian diagnosis methods

p(E|M)p(M)
p(E)

the term p(M) indicates that we have a prior probability of modes that is not obtained from

p(M|E) =

historical data. The Bayesian evaluation of p(M|E) is convenient because it allows us more
freedom in terms of how we select data (for example, if mode 1 occurs 95% of the time,
we do not need to ensure that 95% of the historical data comes from mode 1). Now, the
EM algorithm in this case, would use the data to find the mode probability p(M ); however,
if we assume that we cannot use the historical data to estimate the mode frequency, as is
done in Bayesian diagnosis, the EM algorithm should not be applied as it would attempt
to estimate the ambiguous mode statistics (defined as ©) using historical data.

Instead, we can we can use unknown parameters © to express the likelihood based on
different outcomes of the ambiguous modes. These parameters can be used to express a
probability ranges in the diagnosis. This type of approach (using ambiguity to express

probability ranges) has been introduced in the topic of Dempster-Shafer theory but as we
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will see in Section 2.4.2 the expression of p(E|O) is somewhat complicated. Furthermore, we
will see that in Section 2.4.3 the problem of Bayesian probability (with ambiguous modes)
cannot be well-represented by the formulation given by Shafer [50], although the problem

of direct probability can be represented quite well by this same formulation.

2.4.1 Tutorial on © parameters in the presence of ambiguous modes

Previously, we used O to express the probability 6; = p(e;|M). In the case of ambiguous
modes, O is also used to express probability, but now we are concerned about the probability
of the mode

p(mq) = 0{mi}

More specifically however, we are focused on the probability of an unambiguous mode m;,
given a historical mode my which could potentially be ambiguous (a boldface m here,

indicates that the mode can be ambiguous).
02} = plmylm)

For example, let us consider the historical mode {m;j, mo} which is ambiguous (refer to

Table 2.9). The parameter 6 for mode m; given this ambiguous mode is

0y b = p(mil{mi, ma})

In other words, 6{; 7"~} is the amount of data in {m1,ms} that actually belongs to m.

In general, the values of 6 are unknown parameters except in the following cases

(1) 0{fe} = plmifms) = 0 mi &
eg.  O{m} = p(msl{mi,ma}) =0
(2)  0{z} = plmilmy) =1 mi =

€.g. 9{%} = p(mi|my) =1

One can see that in these special cases, logic forces the probability to be 1 or 0, hence, these

cases are logically forced.

2.4.2 Tutorial on probabilities using © parameters

Now that an interpretation on © has been given, we can proceed to express probabilities of

unambiguous modes given the data (which includes ambiguous modes).
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Direct probability

Let us first assume that we are not using Bayes’ theorem, but that we are using the data
p(M|E) to directly evaluate the probability. In order to do this properly, one must assume
that the mode frequencies in the data are representative of the true mode frequency (or
that the number of times the mode happens in the data is proportional to its probability).

Let us say that from our system in Figure 2.3, we observe the evidence E = [0,0] and
we wish to evaluate the probability of mode m; = [0,0]. Now in addition to the eleven
data points we have observed for this evidence under m; = [0,0], we must also consider
the data points under M = [0, x], [x, 0] or equivalently M = {m1, ma}, {m1,ms} wherein

some of those data points could also belong to m; = [0,0]. The amount of data in M =

{mi1,ma}, {m1,ms} that does belong to m; is given by the parameters 0{ —"2—-} {11}

mi,msa mi,m3

which are unknown. The probability of m; is then expressed as

n(mau, e1) +n({mi, ma}, e1)0{ -} + n({m1, ms}, e1)0{ - }]
p(miler, ©) = n(er)

Now n(m1,e1),n({my,ma}, e1),and n({mi, ms},e1) are the number of observations of the
modes [0, 0], [0, x],and [x, 0] when e = [1,0]. These values can be obtained from Table 2.10
as 11, 6, and 6 respectively. Similarly n(e;) is likewise found to be 29 so that

1146 0(22 1 + 6 0{ 2}
In general, the probability of p(M|FE, 6) is given as
my O M
- Z 0{2L 15 (my | ) (2.21)

where the summation condition mj; O M indicates that we search through all historical
modes and sum over the terms mj, when it contains or is equal to M. The term S(my|E)
was coined by Shafer [50] as support, or in later terminology, the Basic Belief Assignment
(BBA). The support function is functionally the same as probability, but makes allowances
for ambiguous modes; for example,

n(my, E)

S(mi| B) = "

Bayesian probability
When using the Bayesian technique for diagnosis, we combine the prior probability p(M)
with the likelihood p(E|M ), where the likelihood is calculated from historical data
n(E, M)
EM)=——F——
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When ambiguous modes are in the history, we have to consider not only the data points
from mode M but also the data points from ambiguous modes that could also belong to
M. For example, if we wish to consider the likelihood of E = e; = [0,0] given M = my, the
likelihood p(ei|m1, ©) is expressed as

n(er,m1) + 0{="2—}In(e1, {mi,ma}) + 0{="2—}n(ey, {mi, ms})

7@ — L oy
plexfma, ©) n(ma) + 002 Yn({my, ma}) + 0{20n({m1, ms})

Now n(mi,e1),n({my,ma},e1),and n({mi, ms}, e1) are again obtained from Table 2.10 as
11, 6 and 6 respectively. Similarly, n(m;y),n({mi, ma}),and n({m1, ms}) are obtained from
the bottom row which indicates the total number of observations from each mode. All three

of these values are equal to 14.

11+ 0{-"1 36+ 0{ ™1 }6

mi,ma mi,m3

T A+ {14+ 014

miy,m2 mi,m3

p(el‘mb 6)

In more general terms, the expression for the likelihood can be given as

S {2 n(my, B)

my DM

Z;Me{mﬂk}n(mk)
ZDM 0{ - }n(my)S(E|my,)
=Y 0 ) (222)

kaM

p(EIM,0) =

where the support function S(E|my) can be obtained for discrete data as

n(mk7E)

2.4.3 Dempster-Shafer Theory

Dempster-Shafer theory was first proposed as a generalization to Bayesian methods in a
manner that can account for uncertainty about the hypotheses (or for our purposes, the
modes). Dempster-Shafer Theory has been developed as a framework for artificial intel-
ligence with uncertain reasoning and many developments (particularly combination rules
and methods of interpretation) have been made in this area. In this tutorial, the basics of
Dempster-Shafer Theory from [50] will be covered.

Dempster-Shafer theory has two main proponents: the rule of conditioning and the rule

of combination.

Dempster’s Rule of Conditioning

Dempster’s Rule of conditioning aims to find probability ranges as a method of describing
the results. When the probability and likelihood were formulated earlier with © parame-

ters, it was admitted that these ® parameters were unknown. Because these parameters
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are probabilities and must be contained on the interval of [0, 1], it is possible to find the
probability bounds by maximizing and minimizing over ©. In [50], Dempster and Shaver
never made use of parameters which would represent allocation of ambiguous mode data.
Instead they were more concerned about probability ranges for the final result.

Dempster and Shafer first define the support function or Basic Belief Assignment which
was briefly mentioned before when parametrizing probabilities using ©. The support func-
tion S(X) is defined in the same manner as probability but can be directly applied to

ambiguous modes as well as unambiguous ones.

Y
SM) = s o)

S(M|E) = W

S(E|M) = W

From the support function, we can calculate the lower bound and upper bound probabilities.

In Demspter-Shafer theory, they are known as belief and plausibility.
1. Bel(X) is the Belief or lower bound probability of X
2. PI(X) is the Plausibility or upper bound probability of X

The belief and plausibility can be obtained using Demspter’s Rule of Conditioning

Bel(M)= Y S(my) (2.23)
mpCM

PIM)= Y S(my) (2.24)
mNM#£D

This rule of conditioning is consistent with our direct probability scenario. If we took the

expression in Eqn (2.21) and minimized/maximized it over ©, the result would be

Bel(M|E,©) = min Bel(M|E, ©) = ) S(mulE) (2.25)
mrp= =M

PI(M|E, ©) = max Bel(M|E, ©) = ) S(mlE) (2.26)
mkDM

The summation limits are slightly changed, but only because M is unambiguous. As one

can see that
e If M is unambiguous my C M is only true when my; = M.
e If M is unambiguous, my N M # () is only true when my O M.

The reason why Eqn (2.25) minimizes P(M|E, ©) is because it is linear with respect

to © and all of the coefficients on © are non-negative support functions S(my). Thus, by
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minimizing the non-forced values of ©, P(M|E,©) is also minimized. The only time the
condition § = 1 is forced is when 6 is expressed as 9{%}; all other terms can be zero if
need be, making my = M the only term included in the belief summation condition. By
the same reasoning, P(M|E,©) is maximized when © is maximized. Thus, we include in
our summation every case where O is not forced to be zero. Aslong as M C k then B{mﬂk}
is not forced to be zero, making O{mﬂk} the summation term for plausibility.

As an example, consider our previous case where we found that

b+ S({m1, ms}len)0{; -}

mi,m3

p(mile1, ) = S(ml\el)e Tt} 4+ S({ma, matler)d

mi m2

{ }+29 9{m1m2}+29 m??;n?,}

We can see that the value 0{;7t} = 1 is forced by logic, but the other values 6{; "} and

} can be anywhere between 0 and 1. Because the coefficients on these two values

mmg

mlm

are positive (they both equal 29),

e p(miler1, ©) is minimized when 6{;"L~} and 6{; "L~} are set to 0

e p(mqler, ®) is maximized when G{mT}nQ} and H{mT}nB} are set to 1

It should be noted however, that while Dempster’s Rule of Conditioning functions for di-
rect probabilities, it does not function for likelihoods. An adaptation of Dempster-Shafer
theory that can be applied to likelihoods is formulated in later chapters (Chapters 5 and 9)
pertaining to Generalized Dempster-Shafer Theory.

Dempster’s Rule of Combination

In addition to the rule of conditioning, Dempster-Shafer theory also has a method to combine
information from multiple independent sources, much like Bayesian methods. Dempster’s
Rule of Combination can be written as

Sia(my,) = 1K Z Si1(m;)Sa(my)  my # 0 (2.27)

mE=m;Nm;

K= ) S(m)S(m;)

D=m; nm;

where 1 — K is a normalization constant to ensure that S(my) sums to 1. Here, S; and
So must be support functions that come from independent sources and Sis is a support
function that combines the two independent sources. If, for example, the bias monitor and
stiction monitors could be considered independent, they could each be used to independently
construct their own S(my|e). The two support functions could then be combined according
to Eqn (2.27).
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As a combination example, let us consider our system in Figure 2.3 with independent

monitors. Let us say that S(myle) is given as

Sl(ml) = 4/16 Sg(ml) = 3/16
Sy(ms) = 2/16 Sa(my) = 2/16
Sl(mg) = 1/16 Sz(mg) = 2/16
51(777,4) = 1/16 Sg(m4) = 1/16
Sl(ml,mg) = 3/16 Sg(ml,mg) = 2/16
Sl(ml,mg) = 2/16 Sg(ml,m;g) = 3/16
Sl(mg,m4) == 2/16 Sz(mg, 7714) == 2/16
Sl(mg,m4) = 1/16 Sg(mg,m4) = 1/16

If we wanted to combine these two BBAs to form Sj2 and assess S12(m1), we would have

Sialm) = 3 Si(m)S(my)

mi=m;Nm;
= S1(mq)Sa(mq) + S1(m1)S2(mq, m2) + S1(mq, me)S2(my)
+ S1(m1)S2(m1, m3) + S1(m1, m3)S2(my)
+ S1(m1, m2)Sa(mi, m3) + Si(my, m3)Sa(my, mg)
1 [4.8. 42 33 22
C1-K |16 16 16 16 16 16 16 16

As one can see, each multiplied pair contains sets that intersect to yield m;.

2.5 Kernel Density Estimation

Up to this point, we have considered evidence F to be discrete. In most cases, the outputs
of monitors are actually continuous, but discretization is performed in order to create in-
dividual alarms for each monitor. However, if we used smaller and smaller discretization
regions to describe the likelihood p(E|M),

: J(E|M)p(M)
lim p(M|F) =
oM = B ()
where f(E|M) is the probability density function of the likelihood. If the type of distribution

is known, (such as Gaussian), one could fit the data to this distribution using a parametric

approach (such as maximum likelihood estimation). However, in most cases, monitor results
do not follow a well-defined distribution, thus non-parametric methods need to be used.

Namely, discretization or kernel density estimation [61].

2.5.1 From histograms to kernel density estimates

When trying to estimate a distribution from a data set without any knowledge of the distri-
bution, most practitioners would turn to the histogram to perform this task. A histogram
sections the data’s domain into bins, and counts how many data points lie within each bin

as shown in Figure 2.10.
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Figure 2.10: Histogram of distribution

The histogram is useful for getting a rough idea of what the distribution should look like.
However, this sections data into bins and the cutoffs are fixed. A slight adaptation to the
histogram is to center the counts around each data point. When evaluating the probability
at a new point x, this centred histogram approach simply counts how many data points lie
within a bin centred around x. Because the bin positions are more flexible, we can observe

in Figure 2.11 that the distribution estimate is much smoother.

0.4

0.35+

0.3

0.251

0.2

0.151

0.1

0.051

Figure 2.11: Centered histogram of distribution

The function represented by the centred histogram essentially places a block with area

1/n around each data point d; (where n is the number of data points). When evaluating
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the probability, we use the criterion

where h is a boundary width set by the user.

A 1 1

f(x)—ﬁ Z I3
di<xz+h
dlsz‘—h

estimate. The general form of a kernel density estimate is

fla) == 3 K d)

where in our example, the kernel function K is actually a block

0 {di<$—h}
K, d,h)d 1/h  {e—h<d<z+h)
0 {di>l'+h}

This is a basic form of a kernel density

Finally, after using this form, one realizes that the kernel function does not need to take

the shape of a block, but can take on any desired shape, as long as it integrates to unity,

for example, a standard Gaussian shape

so that

1 1 (x—d;\?
K(x,di,h)zmexp <5C >

. 1 1 1 (2 —d\?]
f(x)ZEthexp 2<xh )

7

(2.28)

If this kernel were applied to our data, the result would be a function resembling the one

shown in Figure 2.12, which as one might observe, is much smoother.

0.35

0.3r

0.251

0.2r

0.151

0.1

Figure 2.12: Gaussian kernel density estimate
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Kernel density estimation thus far has been presented for univariate applications, but
multivariate kernel density estimation is also possible. For example, a multivariate kernel

density estimate could use the p-dimensional standard normal distribution to yield

—d)TH  (z — dy) (2.29)

5 1 1 1
f(x):nzi:%mmex]@ 5(37

2.5.2 Bandwidth selection

Kernel density estimation itself is a simple procedure of summing up kernel functions cen-
tred around each data point, a procedure that has gone unchanged since its introduction in
[61]. However, the main difficulty lies within the selection of the bandwidth, an area where
research is ongoing. The bandwidth is synonymous to the bin-width in a histogram. Larger
bandwidths will result in smoother kernel density estimates, while smaller bandwidths will
result in rougher, more jagged estimates. Intuitively, a simple method of bandwidth selec-
tion is to start with a small bandwidth that yields a noisy, rough distribution and to use
larger bandwidths until the distribution becomes smooth. This is a fairly labour-intensive
approach, and hard to implement in dimensions larger than 2 (due to difficulties in visual-
ization).

The goal of selecting a bandwidth is to minimize the error between the kernel density
estimate and the true distribution. If the underlying distribution is known, an optimal kernel
can be selected. The fundamentals in bandwidth selection have been presented quite nicely
in [62], and the performance of adaptive bandwidth smoothing has been analyzed in-depth
in [63]. While the optimal bandwidth can depend on the underlying distribution which we
wish to estimate and the kernel type, it depends more strongly on the spread of the data
points and the number of data points. Thus, fairly good results can be obtained by simply
selecting a distribution (such as the Gaussian distribution) and using its optimal bandwidth
estimate for other distributions. Because of this, the optimal Gaussian bandwidth estimator

is commonly used

Hy = <4)> 7 s (2.30)

n(p+2

where S is the sample covariance estimate.
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2.5.3 Kernel density estimation tutorial
Let us consider a set of generated data:

[ 1.90 T
0.12
1.05
—0.23

D= _0%26 cov(D) = 1.1594
0.56

~1.12

~1.53

| —1.09 |

which can be visualized in Figure 2.13 where the data points lie along the x axis.

Figure 2.13: Data for kernel density estimation

Using the optimal Gaussian bandwidth selector in Eqn (2.30), we obtain a bandwidth
of

The individual kernels are shown around each data point in Figure 2.14
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Figure 2.14: Data points with kernels

The bandwidth parameter can then be used in the kernel density estimate

S| 1 1 (z — d;)?
flz) = n ZZ: /(27)P0.5179 exp [2 0.5179 ]

where d; is each element of D. This estimate is visualized in Figure (2.15)

0.3
0.251
0.2
0.151
0.1

0.051

Figure 2.15: Kernel density estimate from data

2.6 Bootstrapping

Bootstrapping is a resampling method introduced by Efron [64] as a modification on jack-

knifing (another type of resampling technique). Resampling technques aim to construct
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new sets of sampled data either by sampling subsets (as in jackknifing) or by sampling with
replacement (as in Bootstrapping). Bootstrapping is particularly useful if one wishes to
obtain a distribution about an estimated parameter. When bootstrapping, it is important
that the data is independent and identically distributed (IID).

2.6.1 Bootstrapping tutorial
Let us consider a case where we have ten data points and we wish to estimate the mean.

C 6.68
3.83
4.14
5.51

D= 2222 fi = 4.8090

4.05

4.77

4.16

| 5.06

However, we would also like to be able to determine a distribution around this estimate
1. Boostrapping enables us to perform this task. Firstly, one can create a new data set
by drawing from the data at random with replacement. Equivalently, one can generate 10

numbers between 1 and 10
IND = [5,2,3,3,7,8,1,4,7,9]

and then use these indices to define the new sample. For example, the first element of IND
is 5. Thus the first element of the new data set is D(5) = 5.33. The second element of IND
is 2, thus the second element of the new data set is D(2) = 3.83. This is continued until an

entirely new data set of 10 entries is constructed

[ 5.33 7
3.83
4.14
4.14
4.05
4.77
6.68
5.51
4.05

| 4.16

Dy

fi1 = 4.6660

Dy is a resampling of D with replacement. Note that resampling yielded a slightly different
value of ji. The resampling of D is then repeated until we have enough values of i to assess
its distribution. For example, after resampling 1000 times, we have a distribution of i as

shown in Figure 2.16.
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Distribution of u from Boostrapping

3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4
Mean Estimate

Figure 2.16: Distribution of ji estimate

2.6.2 Smoothed bootstrapping tutorial

Resampling straight from the historical data can sometimes have strange and undesirable
properties, such as there being a limited number of possible bootstrap sets. For example,
from our 10 data sets, we could only have 100 different data sets, but since ordering does

not matter (because of i involves a sum), there would only be about

(n+r—1)! (10+10—1)! 21!

M= 1) 10010 — 1) 1omg1 _ oo798760

unique values of i that could be sampled from. This may seem like a large number, but
it would not take very many samples before there are a number of exact repetitions of
bootstrapped values of ji.

In this example, ordinary bootstrapping would be sampling from a distribution shown
in Figure 2.17. As one might see, the resampling can only take on a finite number of values,

and the probability is zero for all other legitimate values that the data could have taken.
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Distribution of Sampled Data
15 T T T T

0.5r

Figure 2.17: Sampling distribution for bootstrapping

In order to increase the number of values that fi could take, adding Gaussian noise to
each resampled piece of data would be an intuitive solution. This is called the smoothed
bootstrap. However, adding Gaussian noise to the resampled data begs the question, what
variance should this Gaussian noise have? Fortunately, this can be answered using kernel
density estimation.

As mentioned in Section 2.5, kernel density estimation (or kernel smoothing) is a method
to estimate a smoothed distribution from sampled data. By performing kernel smoothing
on the data shown in Figure 2.17. This distribution comes from summing Gaussian distri-

butions centred at each data point

[;(x - di)TH_l(CE —d;) (2.31)

L 1
fla)=— ZZ: TaonE P

where H is the bandwidth matrix, which can be calculated as

H= (@) s (2.32)

Here, p is the dimension of the data, n is the number of data points and S is the sample
covariance from the data. This results in the smoothed distribution shown in Figure 2.18.
Note that this distribution (from Eqn (2.31)) can be sampled by randomly selecting one of
the historical data points, and adding Gaussian noise with covariance H. This is exactly

the same procedure as the smoothed bootstrap.
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Smoothed Distribution of Sampled Data
T T T T T T
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0.351

0.3r
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0.1

0.05

Figure 2.18: Smoothed sampling distribution for bootstrapping

Hence, by using the optimal bandwidth in Eqn (2.32), we can obtain appropriate co-
variance for the Gaussian noise to be added from our bootstrapped samples.
As an example, let us say we observed the same 10 data points for which we bootstrapped

previously, and again we generated the selection indices
IND =5,2,3,3,7,8,1,4,7,9]

The covariance of the data was found to be var(D) = 0.75481, resulting in a bandwidth of

H= 4+ ﬁS
- (10(1+2)>

4
= (=) 0.75481

=0.33714

SN

We can then add Gaussian noise to the bootstrapped sample

[ 5.33 ]
3.83
4.14
4.14
4.05
4.77
6.68
5.51
4.05

| 4.16

D, + v/0.33714 X randn(10,1)

where randn(10, 1) generates a 10 x 1 vector of Gaussian random variables. The mean of D;

can be calculated to generate a resampled estimate of fi1, but this time ji; can essentially
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take on an infinite number of different values. The resulting distribution of fi is shown in

Figure 2.19 from which confidence intervals of ji can be obtained.

Distribution of p from Smoothed Boostrapping
1.4 T T T T T T

3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4
Mean Estimate

Figure 2.19: Distribution of ji estimate
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Chapter 3

Introduction to Testbed Systems

3.1 Simulated System

The system used for simulation is the well-known Tennessee Eastman Process [65] which
has been the testbed for a host of process control and fault-diagnosis techniques [66] [67]
[68] [48] (The schematic is presented in Figure 3.1). In this system, the gaseous reactants
A, D, and E are fed directly into the reactor along with intert gas B (C comes in through
the recycle stream). In this reactor, G and H (liquids at standard conditions) are formed

according to the following reactions

A(g) + C(g9) + D(g) — G(I)
A(g) +C(g) + E(g) — H(I)

which are irreversible, exothermic, and approximately first-order with respect to reactant
concentrations. Product from the reactor is condensed and sent to a separator to remove
the reactants (which are much more volatile than the products). Liquid separator product
is then stripped using reactant C as the stripping agent. Liquid product from the stripper
is seen as the final product. Meanwhile, gaseous product form the stripper and separator
are recycled to the reactor, with some of the separator product being purged in order to
prevent build-up of inert gas B.

The code used for simulation allows for 15 known pre-programmed process faults and
uses the decentralized control strategy outlined by [69] (code is available in the Tennessee
Eastman Challenge Archive [70]). For our applications, we consider a normal operating
mode, and seven other modes where each fault happens one at a time (modes with multiple

faults are not considered). A list of these modes is presented in Table 3.1.

3.1.1 Monitor design

In order to assess improvements shown by the Bayesian approach, monitors are chosen
arbitrarily, some of which have high false-alarm/misdetection rates. By selecting monitors

with mediocre performance, the merits of our proposed methods can be more clearly seen.
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Figure 3.1: Tennessee Eastman process
Table 3.1: List of simulated modes
Variable number Process variable Type
NF N/A N/A
IDV 1 A/C feed ratio B composition constant (stream 4) Step
IDV 2 B composition, A/C ratio constant (stream 4) Step
IDV 7 C header pressure loss, reduced availability Step
IDV 8 A, B, C feed composition (stream 4) Variation
IDV 9 D feed temperature (stream 2) Variation
IDV 12 Reactor cooling water inlet temperature Variation
IDV 14 Reactor cooling water valve Sticking

Control performance monitor

Six univariate control performance monitors are commissioned to monitor the control per-
formance of the six key PVs. The FCOR algorithm [34] is employed to compute control

performance indices based on univariate CVs.

Valve stiction monitor

According to Downs and Vogel [65], the reactor cooling water valve and the condenser

cooling water valve both have the potential to develop stiction. T'wo valve stiction monitors

61



are commissioned to monitor these problems.

For illustrative purposes, we consider the following simplified scenario: if a control loop
has oscillation, then the oscillation is caused either by valve stiction or by an external
oscillatory disturbance. The latter has sinusoid form while the former does not.

If the CV and the MV of a control loop oscillate sinusoidally, an ellipse will be obtained
when plotting CV versus MV. It has been observed that an ellipse will be distorted if the
oscillation is caused by valve stiction. The method adopted here is based on the evaluation
of how well the shape of the CV versus MV plot can be fitted by an ellipse. An empirical
threshold of distance between each data point and the ellipse is used to determine the

goodness-of-fit, and thereafter the existence of valve stiction.

Process model validation monitor

In addition to the control performance monitors, three additional model validation monitors
are commissioned to monitor model changes for the reactor, separator and stripper levels.

The local approach based on the output error (OE) method [71] is employed to validate
the nominal process model. This method applies to MISO systems (note that any MIMO
system can be separated into several MISO subsystems). Models of each MISO part can be

monitored with the local approach.

3.2 Bench Scale System

The hybrid tank system is a bench-scale process with a schematic given in Figure 3.2. The
system consists of three tanks that can be interconnected through a system of valves. The
two outer tanks have water inlets that can be used to control the water level, while all three
tanks have outlets that empty into the main water basin. In this thesis, only the lower
valves (valves 1 and 2) are used to interconnect the tanks. Furthermore, the outlet valve
for the middle tank (valve 8) is closed, while the other outlets remain open. Valve 1 and
Valve 2 are opened and closed in order to create two states for each of these components.
In addition, bias is added to flow meters 1 and 2 in order to create states for two more
components. When coupled with the open and closed states for the two valves, the system
has 2% = 16 possible operating modes.

The system is equipped with seven different measurements. Flow meters 1 and 2 were
already mentioned; these instruments measure water flow rates into tanks 1 and 2 respec-
tively. Control signals to the pumps are also measured (for pumps 1 and 2), as well as the
three tank levels (level transmitters 1, 2 and 3).

Detection of different operating modes is done using model validation. A gray box model
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Figure 3.2: Hybrid tank system

is obtained for each tank, given as

d Ly

it S| . 1/2

L= 4 <F1 C\L} ) (3.1)
dLy 4 1/2

dLs 4 1/2

W — AC <F2 - C3L3 ) (33)

where A, is the cross-sectional area of the tanks, Fy, Fo are flow rates into tanks 1 and 3

respectively, C1,Co,Cs are flow coefficients for each tank outlet, and Lo, Lo, L3 are tank
levels for each of the tanks.

Once this model is estimated, it is perturbed in order to include bias terms By, By for

the flow rate measurements of water going into tanks 1 and 3, and leak terms C7,, and Cf,

which are flow constants for valves 1 and 2 when they are open.

— = A7l |BIF, — ClL}/2 + CLlFL(LlaL2)]

dL T

L : = A7' (—CoLY? + €L Fr(Ly, L) + Cr, Fr (Lo, LS)}
dL T

7t3 = Ac 1 BoFy — CgLé/Q + CLQFL(L?M LQ)]

where F1,(L1, Lo) is a function given as

Fr(L1,Ly) = (Ly — L1)|La — Ly| /2
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Using the unscented Kalman filter, the monitor estimates parameters By, By, Cr,,CL, as
additional hidden states.
In addition, the model between pump signal and measured flow rate gives additional

estimates for bias terms By, Ba. The estimate is given as

Fi(Uy)
B —
1 F
Fy(Us)
By —
2 5

where U; and Us are pump control signals to pumps 1 and 2 respectively, and F! 1(U1), FQ(UQ)
are the respective flow predictions based on pump signals. When combined with level

measurements, there is a total of nine monitoring inputs to this system.

3.3 Industrial Scale System

The industrial system considered for examples in this thesis is part of a solids handling
facility in Canada’s oil sands industry, similar to one used by Gonzalez and Huang [54].
As part of the preparation, mined oil sand is crushed, sized, and made into slurry though
the breaker system. Data obtained from this facility does not have faults, but each of the
subsystems (the size, conveyor and breaker) each operates under the modes “on” and “off”;
this leads to eight possible modes overall. However, certain modes occur very infrequently
due to safety systems installed; namely, the conveyor is turned off if the breaker is turned
off, and the sizer is turned off when the conveyor is turned off. Nevertheless, as rare as
these modes can be, they occur in history during transitional periods.

The system makes use of twenty unique measurements; the measurements along with a

simple system schematic are given in Figure 3.3.
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Sizer Measurements ~ Conveyor Measurements Breaker Measurements

1. Motor A % Amps 1. Conveyor Speed 1. Throughput 9. OB Trunnion Feed B
2. Motor B % Amps 2. Motor % Amps 2. Motor % Amps 10. IB Trunnion Discharge A
3. Throughput 3. Throughput 3. Gearbox Temp 11. OB Trunnion Dischrarge A
4. IB Trunnion pinion Temp 12. IB Trunnion Discharge B
5. OB Trunnion pinion Temp 13. OB Trunnion Discharge B
6. IB Trunnion Feed A 14. IB Thrust Controller
7. OB Trunnion Feed A 15. OB Thrust Controller
8. IB Trunnion Feed B

Sizer

Conveyor

Figure 3.3: Solids handling system
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Chapter 4

Accounting for Ambiguous Modes:
A Bayesian Approach

4.1 Introduction

The first challenge to be addressed in this thesis is the problem of missing information
about the mode (a challenge similar to missing information about the evidence which was
addressed by Qi and Huang [1]).

As indicated in Chapter 2, a mode comprises of a set of states for individual components.
For example, consider a system with two components c1, co; let ¢; represent a sensor and co
represent a valve. A mode must have information for both components [cy, co]. If, for this
system, the sensor has three states, (positive bias, no bias, and negative bias), while the
valve has three states, (no stiction, moderate stiction, and severe stiction) there is a total
of nine possible modes.

When information about any of the system components is missing, the mode is said to
be ambiguous. For example, let us say that in a certain segment of historical data, we are
unsure of the state of the valve, but we know there is moderate stiction, the corresponding
mode is [ ¢; = X , ¢ = 2 ]. The mode is ambiguous as it could be one of three specific
modes [c1 =1, co=2],[c1 =2, ca=2],]c1 =3, ca =2]. The aim of this chapter is

how to deal with ambiguous modes, such as this, when they appear in the data.

4.2 Parametrization of Likelihoods Given Ambiguous Modes
4.2.1 Interpretation of proportion parameters

When data in the history is taken from an ambiguous mode, a proportion of this data may
belong to any of the specific modes within the ambiguous mode; for example, the specific
mode [ ¢; = 1, ¢cg = 2 | within the ambiguous mode [ ¢; = X , ¢ = 2 ]. In order to
deal with ambiguity, we consider a set of unknown parameters 9{%} which indicate the
proportion of data under the potentially ambiguous mode m belonging to any of the specific

modes M C m. For example, if we had 10 data points for mode [ ¢; = X , co =2 |, and
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we knew that three of them belonged to mode [1 = x , ¢; = 2 |, then the corresponding

§ parameter would be assigned a value of 9{[[i22]} = 3/10. Note that in this thesis, the

boldface M can indicate any observed mode that has occurred in the data (including an

ambiguous one) but M (or m, if we are talking about observations) can only represent a
specific (unambiguous) mode.

When expressed as a probability, 9{%} is equated to
0{22} = p(M|m)

which is the probability that the specific mode M occurs given the potentially ambiguous
mode m.
As a practical example of defining 6, let us consider the same system with the valve and

sensor each being able to take on three states. The resulting modes are as follows:

_ml_ _61:1,62:1_
mo 61:1,02:2
ms 61:1,62:
my 0122,0221
ms | = | c1 =2, cp=
me 01:2,02:
my cg=3,c=1
mg C1 = ,02:2
L my Laa=3, =3 ]

If we consider data coming from the ambiguous mode [ ¢; = X , ¢a = 2 |, or equivalently,
et of that data actually
2,MMs5,Mmsg

} belongs to ms, a final proportion of

the set of modes {mg, ms, mg}, a certain proportlon 0{
belongs to mode mg, another proportion 64
the data 6{

an unknown quantity unless the following conditions apply:

ma2, m5 ms

m} belongs to mg. Each member 6 in © (which contains all § values) is

e{mzn—zi:%} 1 eg 0{%} _1 (4.2)

For the first exception, the mode my is not possible given the ambiguous mode {m, mg, m7},
thus none of the data from this ambiguous mode can belong to mode mo. For the second
exception, given the mode mo, all of the data in mgy will belong to me, it cannot belong
anywhere else; in a probabilistic sense, it would be equivalent to stating p(M = ma|mg) =1
(or p(mg|mg) = 1 for shorthand). These values of ©, being predetermined by logic are
logically forced.

67



4.2.2 Parametrizing likelihoods

The principal data-driven component of Bayesian inference is the likelihood. When com-

bined with prior probabilities, the posterior is calculated as

_ p(E[M)p(M)
p(E) = p(E|M)p(M) (4.4)
M

When ambiguous modes are present, obtaining likelihoods p(FE|M) can be quite challenging,
as the conditioning variable M is unknown in ambiguous mode circumstances. In the

discrete case, when no prior samples are taken, the likelihood is obtained as

el = ")

However, if we are calculating p(E|m;) and there is an ambiguous mode {mj, ma} in the
data, then we need to take into account the data in {my,ms} that belongs to mode m;.

Thus, the likelihood is calculated as
n(E7 ml) +0 m7177l71n2 }’I”L(E, {mlv m2})

n(my) + 6 mT}nQ }n{m1, mz}

p(Elmy) =

Let us now revisit the term, support as given in [50], which is calculated in the same manner

as probability, except that now ambiguous modes can be used as the conditioning variable

S(E|M) = W

where, again, the boldface M indicates that the mode can be ambiguous. The previous

likelihood expression can then be given as
n(E,my) + 0{ 715 S (E[{ma, ma})n{mi, ma}

mi,ma2

n(my) + 0{="2—}In{my, ma}

mi,m2

p(Elmy) =

In this chapter, it is assumed that S(E|M) is derived from discrete evidence, but continuous
evidence can be used in its stead as well; note that the utilization of continuous evidence is
addressed in Chapter 6.

The expression for the likelihood p(E|M,©) accounted for only one ambiguous mode,
but in general the likelihood can be expressed to take into account multiple ambiguous
modes:

> {37} S(EIM)n(M)

E|M,0) = M2M
p(E| ) > 0 n(M)
M>M

(4.5)

where the summation limit M D M cycles through all historical modes and includes every
historical mode my that can support the mode in question M. Note that the term ©
includes the variables in © that can support the mode M; other variables in © do not play

any role in calculating p(E|M).
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4.2.3 Informed estimates of likelihoods

As with Dempster-Shafer theory (mentioned before in Chapter 2), the presence of ambiguity
in the historical data will result in probability ranges, as the likelihoods depend on variables
in ©. The lower-bound probability is called Belief while the upper-bound probability is
called Plausibility

Bel(E|M) = m@%np(E|M, O) (4.6)
PI(E\M) = mgxp(E]M, 0) (4.7)

In addition to the belief and plausibility, there is also a probability between these two
boundaries that represents the best estimate of the likelihood. This best estimate can be
obtained by using prior probabilities. For example, let us consider an ambiguous mode
{m1,ma}. If there is complete ignorance as to whether any of the data belongs to mode m;
or mode my, then the data should be divided evenly according to the principle of insufficient
reason. However, if there is prior knowledge that mode mj happens three times as frequently
as mode ma, (p(m1) = 3p(ms)), then it stands to reason that 75 % of the data in {m1, ma}
belongs to m; and 25 % belongs to msy. This would equate to the following parameters:

0{-"1_} = p(my|{m1, mg}) = 0.75

mi,m2

0{="2_1 = p(mg|{m1, my}) = 0.25

mi,ma2

These estimates of 0{; "L} and 6{ "2} are called informed estimates as they make use

of prior information. In general, the informed estimate of a proportion parameter is given

as

_ p(M)
- MCmp(M) )

3=

0{

where the summation limit M C m cycles through all unambiguous modes M that are
contained within the historical (and potentially ambiguous) mode m. Note that logically,
informed estimates in © are also subject to the conditions in Eqn (4.1) and (4.2). The
informed likelihood can serve as an educated guess as to what the likelihood value should

be and is important for techniques mentioned later on in this chapter.

4.3 Fagin-Halpern Combination

While a parametrized expression now exists for the likelihood in Eqn (4.5), applying Bayes’
rule in Eqn (4.3) is quite difficult, and successive combinations will yield more complex

results. Fagin and Halpern [72] proposed a conditioning rule that can be used to combine
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likelihood ranges with prior probabilities.

- Bel(M,e)
Bel(M|E) = Bel(M,E) + PI(M,E)
PHOIIE) PI(M,e)

~ PI(M,E)+ Bel(M,E)

where M denotes all specific modes that are not M. When applied to Bayes’ rule of

combination, the Fagin Halpern combination rule can be given as

B Bel(E|M)Bel(M)
BelMIB) = 5 B Bel(M) + 5" PI(E |3 PI(M) (4.9)
M

B PI(E|M)PI(M)
PUMIE) = PI(E|M)PI(M) + - Bel(E|M)Bel(M) (4.10)
M

This rule gives the largest possible boundary, and is suitable for combining a single likelihood
term with a prior probability. The difficulty is that when successive combinations are used
(which can happen when applying this method dynamically), the Fagin Halpern rule yields
boundaries that quickly grow to a point where the end result is uninformative.

For example, if we consider evidence E where certain elements F; are independent of
the other elements Eo, (E = [E1, Es], E; L Es), then

p(E|M) = p(E1|M)p(E2|M)
When we consider ambiguous modes, p(E|M, ©), the same applies

If we use Fagin Halpern combination to combine the two results

B Bel(E,|M)Bel(Ey|M)
Bel(EIM) = 5 B 0D Bel (B2 M) + > PU(Ey|M)PL(Ey|M)
M

B PI(E1|M)PI(Es| M)
PI(E|M) = PL(E{|M)PI(E3|M) + Y- Bel(Ey|M)Bel(Ey| M)
M

the end result would yield probability boundaries larger than the original boundaries by
maximizing and minimizing the original expression p(E|M, ©). As a result, Fagin Halpern
boundaries are too conservative for separating likelihoods, and are also too conservative for

sequential combination as done in dynamic applications.

4.4 Second-Order Approximation

Up to this point, we have considered two solutions:
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1. Directly applying the Bayesian solution in Eqn (4.3) to the parametrized likelihood in
Eqn (4.5), but it was found that the expression grew successively more complicated

with each combination step

2. Applying the Fagin-Halpern method in Eqn (4.9) and (4.10). This was found to be
suitable for combining a single likelihood with a belief, but since probability bound-
aries grew with each successive combination, it was found to be unsuitable for sepa-

rating evidence into independent groups and for dynamic application.

In order to retain some of the properties of the first (direct) solution while maintain-
ing fixed simplicity like the second (Fagin-Halpern) solution, we propose a second-order
approximation. We can first express Eqn (4.5) as a second-order function, and perform
combination, ignoring higher-order terms. Thus the parametrized likelihood will remain to
be a second-order expression with respect to ©. While this is an approximate solution, due
to the fact that the domain of © is restricted to values between 0 and 1, there is generally
not enough room in the domain to deviate strongly from second-order behaviour. Hence,
the second-order approximation is reasonable throughout the entire domain of p(FE|M, ©).
Finally, the second-order apprixmaiton is exact at its reference point. In this case, we set
the reference point for © to be the informed probability, which is our best guess at the
value for ©. Thus the second-order approximation inherently makes use of a best-guess

probability that can be easily obtained from this method.

4.4.1 Consistency of O parameters

One important advantage of the second-order combination rule has over the Fagin-Halpern
combination method is the ability to assume consistent © parameters. Let us consider a

case where we would like to separate p(E|M, ©) into two independent distributions so that

For the Fagin-Halpern method of combination, it is assumed that © can take on different
values for F; than Fs. In making this assumption, the probability boundaries are grown in
such a way as to encompass all possible probability results from all values of © given that
they are allowed to independently vary for Fy and Fs. In reality, the values of © used for
E; must be the same values used for Fj if the independent combination in Eqn (4.11) is to
hold true.

Whether directly combining independent likelihoods p(E:|M,©) and p(E2|M,©), or
combining their approximation, because all values of ©® must be the same between the two
sources of evidence, the terms in © can be collected. Thus, when applying the combination
rule to second-order approximations, zeroth, first and second order terms of © are collected,
and higher order terms are ignored.

When evaluating evidence at different time intervals p(E*|M?, ©), the values of © do not

change with time because same historical data with the same values of © are used to evaluate
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the likelihood at each different time step t. Thus, not only is collecting © terms valid when
combining likelihoods form independent evidence, it is also valid when applying the second-
order rule in a dynamic fashion. Dynamic application of the second-order combination rule

will be covered later on in this chapter.

4.4.2 Obtaining a second-order approximation

The second-order approximation of a function f(z) is given by the Taylor Series

. . 1 N .
f@) = f(@)+J(z—2)+ (@ —2) H(x - 2)
where & is a reference point around which the approximation is taken (the approximation
is exact at & but becomes worse when z is further away from &), J is the Jacobian matrix

(first-order derivatives evaluated at @)

5 0@
or; |,
and H is the Hessian matrix (second-order derivatives also evaluated at &)
0*f(x
L
a$i aiL'j &

When applied to our problem, the second order approximation of p(E|M, ©) is calculated
with respect to ©. A convenient reference point for © is the informed estimate ©. For the

Jacobian, the expression is given as

- Op(E|M,®
Tutli] = pa(e{!M})

6
Note that because values of © are not variable in the conditions stated by Eqn (4.1) and
(4.2) (these non-varible conditions exist whenever m; 4 m), the following derivatives have

zero value

Op(E|M, ©)

—0  Vm
o0{ 2L} mi 2 m

6

The expressions for the partial derivatives with respect to p(E|M,©) are obtained by dif-

ferentiating Eqn(4.5). For compactness of notation, we introduce S and n and 6 as vectors.
n = [n(my),n(ms),...,n(my,)]
5 |pr M jr M Gr M

For non-zero conditions, the partial differentials for the Jacobian are then given as

Op(E|M, )
o0( 2L

- o ~ N\ 2
o 2imub <Zk nkok)
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Terms for the Hessian are given as

.. 2p(E|M,©
Hyli,j] = UGl )
with similar zero-derivative conditions
*p(E|M, 0) , B M
00{ 2L} 00{ L m; b M

For non-zero conditions, the second-order partial differentials for the Hessian are given as

&*p(E|M, ©)
061 2L} 06{ M

_ nSj+nS; | nin,; Dk Si110)
(Zk nkék)2 (Zk nk9k>3

With terms for the Jacobian and Hessian already defined, the resulting second order ex-

pression is

~

N 1 N
p(B|M,©) = p(E|M) + Jy(0 - ) + (6 - 0)'Hy (0 - 0) (4.12)
where p(E|M) is the informed likelihood estimate
P(EIM) = p(E|M, ©)

4.4.3 The second-order Bayesian combination rule

After the second-order approximation has been obtained for the likelihood, it can be com-
bined with priors. Priors may also contain associated ambiguity (especially in the case of
dynamic application) so we consider a general case where both the priors and the likelihoods
are represented by second-order expressions.

1 - A
50~ ©)" H (g1 (© — ©)

)+J(M)(® 0) + 5(6 —©)7 Hyypy (6 — )

=> pE[M)p

p(E|M,©) = p(E|M) + J (g (© — ©) +
p(M|©) = p(M
Bayesian combination is performed by taking the following product:

p(M|E,©) = E|M, ©)p(M|©)

=l
—P
p(E)
By collecting terms with respect to (@ — ©), the posterior probability is expressed as

~

p(MIE, 8) = (M|E) + T (6~ ©) + £ (6~ ) Huy(© - ©)  (4.13)

73



where the terms p(M|E), Jar gy, Hv|g) are calculated as

P(M|E) = p(lE)ﬁ(EIM)ﬁ(M) (4.14)
JmiE) = p(lE) [Janp(EIM) + Jgianp(M)) (4.15)
Hvg) = p(lE) [Hayp(E|M) + Hgianp(M)+ (4.16)

T T
Ty den) + sy T

These expressions form the second-order update rules. In addition these rules can be used

to combine independent likelihoods

However, there is no normalization constant p(E), thus the second-order rules for combining

independent evidence are

P(EIM) = p(E1|M)p(Es| M) (4.17)
Jpin = [T e b(E2lM) + T ) p(M|E2)) (4.18)
H giny = [Hp ainp(Ba2| M) + Hpg pyp(M| Ea)+ (4.19)

Tt T i) + J(M|E1)J(M|E2)}

4.5 Brief Comparison of Combination Methods

An example comparing the Fagin-Halpern and Second-Order boundaries is borrowed from
[52]. In this example, evidence is available from six conditionally independent sources for
a seven-mode system. When a new piece of evidence was available, the sources of evidence
yielded the support as given in Table 4.1. These six sources of evidence are combined with

the following prior:
[p(m1),...,p(m7)] =[0.27, 0.09, 0.09, 0.19, 0.11, 0.15, 0.11]

Combination was done using the exact method (which resulted in a very complicated func-
tion), the second-order method, and the Fagin-Halpern method. The posterior probability
results are shown in Figure (4.1). Three probabilities are shown, the plausibility (indicated
by the lightest bar), the informed probability (indicated by the mid-coloured bar) and the
belief (indicated by the darkest bar). From what can be seen from six combinations, the
Fagin-Halpern probability ranges are extremely large, as was expected, with a range of
practically 0%-100% for all modes. Such a result is definitively inconclusive for diagnosis.
By contrast, the second-order method yields probability boundaries that are much closer

to the true result.
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Table 4.1: Support from example scenario

Mode Support s(E|M) # of Observations
el e es eq €5 €6

{1} 0.29 0.15 0.17 0.17 0.20 0.40 164
{2} 0.14 025 0.15 0.15 0.15 0.25 82
{3} 0.30 0.20 0.32 0.22 0.10 0.30 79
{4} 0.20 020 0.23 059 022 0.22 89
{5} 0.23 019 0.17 020 0.36 0.21 64
{6} 0.17 024 0.14 0.14 0.13 0.23 62
{7} 0.09 0.08 0.11 0.11 0.14 0.34 103
{1,2} 0.18 0.21 020 0.16 0.16 0.34 31
{1,3} 029 021 039 018 0.15 0.40 31
{1,4} 029 024 019 039 0.22 0.31 32
{1,5} 0.27 0.16 021 030 0.34 044 29
{1,6} 0.20 0.22 0.15 0.14 0.22 0.27 29
{1,7} 0.16 031 028 0.14 0.16 0.36 34
{2,6} 0.22 021 019 022 026 0.24 18
{3,4} 0.25 023 027 034 0.16 0.27 21
{4,5} 021 0.19 0.25 043 0.27 0.31 20
{5,6} 029 020 015 023 023 0.24 16
{4,5,6} | 0.19 0.19 0.26 0.32 0.30 0.22 18

4.6 Applying the Second-Arder Rule Dynamically
4.6.1 Unambiguous dynamic solution

One of the strongest motivations for using the second-order combination rule is its ability
to express ambiguity, even after successive combination. Successive combination is heavily
used when solutions are applied in a dynamic manner to take into account autodependent
modes. The dynamic solution to the autodependent mode problem has been discussed in
Chapter 2, but it was only applicable to the case where no modes had ambiguity. However,
the second-order probability expression in Eqn (4.13) has been formulated in such a manner
that would enable easy application in a dynamic setting.

From the fundamentals, it was noted that the probability transition solution was
n
p(M'EY) = p(M'|mi =" )p(mi = [E*) (4.20)
i=1

where p(m§_1|Et_1) is the posterior probability of mode m; at time ¢ — 1. The probability
transition rule calculates a prior probability at time ¢ (p(M?|E*~1)) using the posterior
probability from ¢ — 1 (p(m}~'|E*1)). This resultant prior p(M?|E*~1) is used as the prior
probability, to calculate the posterior at time ¢ using Bayes’ Theorem

p(E' | M)p(M'|E*T)

p(mi|E) = S B DM (4.21)
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Figure 4.1: Diagnosis result for support in Table 4.1

4.6.2 The second-order dynamic solution

In this chapter, the second-order version of Bayes’ theorem has already been derived. The
remaining work is to define the second-order probability transition rule. Consider a second-

order posterior probability that was obtained at time t — 1
p(M'TYE™Y,0) = (M E"™Y) + Jppi-1 1) (O — ©)+ (4.22)
1
(@ o) (Mtq‘Etﬂ)(@ - 0)

The second-order prior probability at time ¢ can be obtained by directly applying Eqn (4.22)
to Eqn (4.20)

n
p(M'|EY,0) =Y p(M'|m!™ )p(m! B, ©)
i=1
If we consider each second-order term for p(M!~!|E*~! ©) in Eqn (4.22), a second order

transition rule can be made for each term when transitioning to M?.

p(METY Zp M mIYp(MT B (4.23)

Mt|Et 1y Zp Mt|m Mt—l‘E'tfl) (4.24)

H(Mt|Et71) = Zp(Mt’mg_l)H(Mtfl‘Etfl) (4.25)
=1

This resulting probability is used as a prior probability at time ¢, which can be updated
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to a posterior using the previously proposed second-order Bayesian combination rule:

P(EY) = 37 (B! M)p(M B
M

1
H(MEEY = — S(EYM)p(ME EF!
p(M'|E") p(Et)p( | M)p(M"| )
_ 1 A Et M A Mt Et—l
Joue) = 2D [Tt -0y D(E* M) + T e p(MY | EFH)]
1 R . _
H g = i) [H (0 pe-1)D(E' | M) + H g anp(M'| B 1)+

Jg;wt|Et—1)J(Et‘M) + J?Et|M)J(Mt|Et_1):|

4.7 Making a Diagnosis

After using the second-order combination rule to merge prior probabilities and likelihoods,
the results can be used for diagnosis. The second-order approximation is convenient as it

can be used to define four quantities useful for diagnosis:
1. The informed probability p(M|E)
2. The belief Bel(M|E)
3. The plausibility PI(M|E)

4. The expected probability Eg[p(M|E, ©)]

4.7.1 Simple diagnosis

The first quantity p(M|E) can be used as a simple diagnosis reference. This is a convenient
quantity to use because it is explicitly available in the second-order result. In fact, if one
simply wishes to obtain a simple diagnosis, p(M|E) is the only term that needs to be
calculated; Jy gy and H(y g) are not needed. One simply chooses the mode which has
the largest informed posterior p(M|E).

4.7.2 Ranged diagnosis

It may be desirable to also convey information about the ambiguity associated with a
diagnosis. For example, if evidence is located in a region where historical data tends to be
ambiguous, the probability range will be large. Conversely in regions where historical data
tends to be unambiguous, the probability range will be small. Probability ranges can be

calculated according to

Bel(M|E) = m@inp(M\E7 ©)
PI(M|E) = mgxp(M\E, 0)
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Because the expression is quadratic, the resulting minimization and maximization problems
can be solved using quadratic programming methods; hence converting the expression to
a second-order approximation greatly simplifies the minimization and maximization proce-

dures. Note that the following constraints must be applied:

While the probability boundaries are approximate, the function p(M|E,©) is generally
well-approximated by the second-order approximation over its domain (limited between 0
and 1 for all ©). The probability boundaries serve to give an estimate on how reliable the
diagnosis is, and how adversely it is affected by ambiguity in the historical data.

4.7.3 Expected value diagnosis

One can also use the second-order approximation to obtain an expected value Eg[p(M |E, ©)].
However, in doing this, one is required to treat © as a random variable and construct a
probability distribution for it. Due to the fact that elements in © can be seen as probabilities

themselves

O} = p(M]|my)

an appropriate distribution for © is the Dirichlet distribution, a probability distribution
often used to define the distribution of probability estimates.

The Dirichlet Distribution for expected values of p(M|E,©)

Let us consider @{mék}, the set of elements in © that pertain to the ambiguous mode my

Ofm} = [0{2), .. 0{2n)]

These elements behave like a complete set of discrete probabilities, which follow the Dirichlet

distribution

r Zia :THL;} o min_
ICIEREPNEESE H<T(a W})) [T o4 eyt

s Motz 0
a{ -} = [Oz{% b }

where B(a) is a normalization constant. As previously mentioned, the values ©{ >}, can

be seen as probabilities and must be on the interval between 0 and 1; furthermore, they

must sum to unity. The terms a{mLk} are shape parameters that can be interpreted as the
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number of prior samples. Thus the Dirichlet distribution is a probability distribution of
m

probability estimates given the samples. The expected value of 6{
it
Yoo

As an example to aid in the interpretation of a Dirichlet distribution, let us assign the

} is given as

E(0{ 7)) (4.26)

following values to the parameters:

O{ -} = p(ms|my)

mg
my

af -} = n(mg|mg)

where p(m;|my) is the probability of mode m; given ambiguous mode my, and n(m;|my,) is
the frequency of mode m; given ambiguous mode my. The Dirichlet distribution is given

as

Using this Dirichlet distribution, the expected value of 6{

m-} can be calculated as

()] — n(mg|mg)  n(mi|lmy)
Blplmalm)] = < ) ~ ()

This is the probability one would expect to obtain given the samples n(m;|my). Note that
the expected values are always in the interval of 0 and 1, and sum to unity (given my) as
is required.

The previous Dirichlet distribution was used to denote the PDF f(©{>-}) for © pa-
rameters pertaining to a single ambiguous mode. Now we would like to express a PDF
f(O©) pertaining to all ambiguous modes. Note that parameter sets for different ambiguous

modes are independent of each other, resulting in the following expression for f(O)
f©) =Ilrei=h
k

This probability distribution defines the possible values of ©® and will be used for calculating

the expected value.

Calculating the expected value of p(M|E, ©)

The posterior probability p(M|E, ©) was previously given in Eqn (4.13); by making use of
the probability distribution over © in f(©), the expected value is given as

E[p(M|E)] :/@ {ﬁ(MIE) + J(ajm) A0 + ;A@TH<M|E>A@} 17650 0
k

* 1 L
k
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where
A 1. A
Const = p(M|E) — J(M\E)@ + §@TH(M|E)@
X AT
Juip) = (Jauip) — O Hour))
The second-order expression of p(M|FE, ©) is linear with respect to © and contain terms no

higher than second-order. Because of this, the expected value can be expressed in terms of

means and variances, which have well-known solutions for the Dirichlet distribution.

/@9{%} [1r@©4G21) do = BE(o{iL})
k
/99{%}9{%} [1/062 ) do = E(@{ L)) E@b{M})
k

2
/@ L] £O(a}) d0 = [E@{AL Y] + Var(9{2L})
k
For the Dirichlet distribution, the means and variances are given by

Almg) = Y a(my|mi)

mt) = Zé((ﬂj\i))
a(M)[A(m;) — a(M

where (M) represents the prior sample of the unambiguous mode M. If one uses the

E(0]

frequency of mode occurrences n(M), the shape parameters (M) will be quite large and
the expected value of p(M|FE, ©) will be nearly identical to the informed estimate. This is
because a large shape parameters «(M) yield a very sharp distribution centred at 6. If
one is unsure about the accuracy of © it is best to divide all a(M) by a common factor so
that the largest a(M) is no larger than 10 (values larger than 10 can result in fairly narrow
distributions).

The means and variances can be applied to Eqn (4.27). First, one has to separate the

squared terms of © associated with variance
E[p(E|M)] = Const+
. 1
/@ {J(Mw)@ +3 | ©"(H(ypy — Hp)® + [0%]" (Hp 1) || f(©) dO

where Hp is a diagonal matrix containing the diagonal elements of H(,/ ), and 1 is a
vertical vector of ones. Furthermore, © is a vertical vector of parameters, and ©2 is a
vertical vector containing squared values of ©. By expressing the integrals as expected

values and variances, the solution is reduced to
. 1
Elp(B|M)] = Const + (1) P(6) + 5 E(©)" (Hiariy — Hp)E(O)

+ %[Var(@) +E©)4THp 1 (4.28)
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This can be solved in order to obtain the expected value of the posterior.

When Eg[p(M|E, )] approaches p(M|E)

As was mentioned earlier, if the number of prior samples n(M) is large, one can justify
using the informed estimate p(E|M) by assuming strong prior knowledge. In such a case,
the prior samples « are large so that o — oo. The expected values and variances will then

take the following values:

E(0{7)) = 0{35)
Var(&{%}) =0

If this occurs, it can be shown that Eqn (4.27) will revert to the informed estimate p(M|E).

1
2
= Const + [Jarp) — @TH(M|E)]@

45 (67 (Hue) ~ HD)O + 6" HpO)]
= Const + {J(M‘E)(:) — C;)TH(M‘E)C:)} + L

E[p(M|E)] = Const + J{3© + {@T(H(M‘E) —~Hp)o+[0+6%THp 1

)

O H ) )0

N |

. A La ~ ~
= |:p(M|E) — J(M|E)@ + §@TH(M|E)@ + J(M‘E)G —
= p(MI|E)
This result justifies using p(M|E) when the prior sample size is large, or equivalently, if one
has high confidence in the priors. However, if one is not confident in the value of ©, (or
equivalently, if one is not confident that prior probabilities adequately represent proportions

in the ambiguous modes) one should use small sample sizes of a and calculate the expected

value for diagnosis.
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Chapter 5

Accounting for Ambiguous Modes:
A Dempster-Shafer Approach

5.1 Introduction

Inference methods for ambiguous hypotheses have existed since the late sixties with Demp-
ster [49] and Shafer [50] being the first to contribute major publications in this field; a field
which later became known as Dempster-Shafer theory. First, being proposed as a gener-
alization to Bayesian inference, Dempster-Shafer theory was shown to be able to account
for both probabilistic uncertainty and ignorance, the claim being that Bayesian inference
cannot adequately express ignorance. Since its inception, there has been a vast amount
of literature published on Dempster-Shafer theory, which includes a wide arrangement of
combination rules, methods of interpretation, and criticisms, (criticisms are mainly due to
the subjective nature of Dempster-Shafer theory).

A solution to the diagnosis problem with ambiguous modes has been proposed in Chapter
4 using the parametrized Bayesian method; however, Dempster-Shafer theory provides an
alternative solution. It may seem that Demspter-Shafer theory can be readily applied to
the ambiguous mode problem, but further investigation reveals some difficult challenges
that ultimately requires restructuring and generalization of some of the basic concepts of
Dempster-Shafer theory. Nevertheless, because of the intended scope of Dempster-Shafer
theory is quite broad, the method in this chapter does not require certain assumptions to
be made about ® as in Chapter 4.

5.2 Dempster-Shafer Theory

5.2.1 Basic belief assignments

The principal difference between Dempster-Shafer theory and Bayesian inference is the
interpretation of probability. In the Bayesian sense, all of the supported hypotheses must

be mutually exclusive. For example, let us borrow the problem in Chapter 4 with a valve
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and a sensor, with each of the two components having three states.

_ml_ 01—1,62—1_
mo C1 = ,02—2
ms ci1=1, cp=

my 01—2,02—1
ms | = | 1 =2, co=2
me 61—2,02:3
my 01—3,02:

ms Cc1 = ,62—2
L Mg | _01:3,02:3_

All modes in this case, are exclusive hypotheses. When there is ambiguity in any of these
modes, overlap between the hypotheses will exist. Probability can only be applied to a set

of exclusive hypotheses, which in our case is an unambiguous mode m.

Dempster-Shafer theory however, makes use of a Basic Belief Assignment (BBA) which is

equivalent to the support function defined Chapter 4.
S(M)=——"=
() ="
1= S(M)
M
where M can contain ambiguous modes (for example, my = {m1, ma, m3} which occurs
when ¢; = 1 is observed and ¢y is missing); when ambiguous modes are in the data, overlap-
ping hypotheses can occur. Dempster-Shafer theory aims to express the probability in terms

of the BBA. When invoking the © parameter notation given in Chapter 4, the probability

is expressed as

pMO) = Y 6{M)5(m,)
mNM#QD

where M is the mode of interest, and 6{ ka} is an unknown proportion parameter that

represnts the probability of M given my.
M
Q{Wk} = p(M|my,)
The parameters H{ka} have a set of constraints. The first constraint
M
0< H{m—k} <1

states that, because G{mﬂk} is a probability, it cannot be larger than 1, or smaller than 0.

In two special cases, G{mﬂk} is not random at all, but must take on specific values based
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on logical constraints. In the first case, if the mode of interest M completely contains the

mode my, then all the support to m; must apply to M.
HMy=1 ¥V MDOmy (5.1)

For example if the mode of interest M is the ambiguous mode {m, mo, m3g} and the sup-
ported mode is {m1, m3} then all support given to {mi,mg} in the history must also be
given to {my, ma, ms}.

In the second case, if the mode of interest M has nothing in common with the mode

my,, none of the support given to my can apply to M.
i} =0 ¥V Mnmy=10 (5.2)
Outside of these conditions, 6{ ka} is a flexible (or unknown) value between 0 and 1.
0<O0{My<1 vV MZmyp , MNmy=10 (5.3)

5.2.2 Probability boundaries

Dempster-Shafer theory concerns itself with boundaries on the probability. The plausibility
and belief can be obtained by maximizing and minimizing p(M|0) over the unknown pa-
rameters ©. The optimization in this problem is linear with respect to © and is constrained
by previously mentioned conditions. Because the BBA S(my,) values (which serve as coef-
ficients on ©) are non-negative, the belief can be obtained by setting all flexible values of

© to zero.
Bel(M) = Ex(M) = Y S(my)
mpCM

Because the condition my O M excludes support from all flexible values of O, it is called
the exclusive condition Ex(M). For Dempster-Shafer theory, the exclusive probability is
the solution to the belief or lower bound probability.

In a similar manner, the plausibility can be obtained by setting all flexible values of ©
to 1.

PI(M)=1In(M)= Y S(my)
The condition my N M # () includes support from all flexible values of ©, and so is called

the inclusive condition In(M). In this way, the inclusive probability is the solution to the

plausibility or upper bound probability.

5.2.3 Dempster’s rule of combination

Dempter’s Rule of combination is made to combine two BBAs of M from independent

sources, and is said to be a generalization of Bayeisan combination. Dempter’s rule can be
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expressed as

Sia(M)=-— > Si(m;)Sy(my)
M:miﬂmﬁé@

K= Y Si(m)S(m;)

@:mi ﬂmj

Here, to find out the combined support Si2(M) of the mode M we search for all modes in
S1 and Sy that intersect to yield M (expressed as M = m; N m; # (). However, there is
no such thing as support to the empty set () which denotes conflict. Support to conflict is
denoted as K, and is normalized out (as 1 — K), because BBAs are not allowed to support
conflict.

In Dempster-Shafer theory, a BBA is called Bayesian if it contains no support for am-
biguous hypotheses. In our application, the BBA is Bayesian if support is only given to
unambiguous modes. If BBAs are Bayesian, then Dempster’s Rule will revert to Bayes’

Theorem.

8172(M) = ﬁ Z Sl(mZ)SQ(m]) =

m=m;Nm;7#0

K= > Si(m)Sa(m;)=1-> 81(M)S(M)

P=m;Nm; m

ﬁsl (M)S2(M)

so that the end result is
B 1
> S1(M)Sa(M)

which indeed resembles Bayes’ Theorem.

S1,2(M) S1(M)Sa(M)

Dempster’s Rule will always yield support to intersections between Si(m;) and Sa(m;).
Because of this, ambiguity is reduced after every combination; the idea is that information
from S1(m;) will be applied to ambiguity in Sp(m;) and information from Ss(m;) will be
applied to ambiguity in S;(m;). Applying information to each others’ ambiguity will reduce
the uncertainty between the two BBAs.

Because each combination results in a reduction in ambiguity, the more combinations
that are performed, the more that the resulting BBA will resemble a Bayesian BBA. In
fact, if any BBA is combined with a Bayesian BBA, the resulting BBA will be Bayesian. In
such a case, precise information from the Bayesian BBA will be applied to the uncertainties

in the other BBAs, resulting in zero uncertainty after combination.

5.2.4 Shortcut combination for unambiguous priors

If the prior probability is Bayesian, Dempster-Shafer combination of any BBA will yield a
Bayesian result. In such a case, a short-cut solution is available to calculate the posterior

which is much less computationally intensive than applying Dempster’s rule directly. In
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addition, when implementing a dynamic solution, successive combinations yield a Bayesian
result, thus it makes sense to use a Bayesian prior in order to cut computational loads.
Choosing Bayesian priors not only reduces computational loads, it also yields a dynamic
application that is fully compatible with the dynamic Bayesian method; the posteriors are
always Bayesian, thus probability transition technique will be the same as in the dynamic
Bayesian solution.

Let us consider a BBA S; (M) that is a Bayesian prior p; (M), and another BBA So(M)
which contains ambiguity. Using Dempster’s rule for combination

S12(M) = L > pi(mi)Sa(my)

1-K
M=m;Nm;#0

Now the condition
M =m; Nm; # 0

is only true when m; = M and when m; O M. Because of this, we can factor out p; (M)

and replace the condition with m; O m.

(M) Y Sy(my)

m;om

Slg(M) =

Now because M is unambiguous, the condition m; O M is equivalent to m; N M # () so
that

1
TP (M) > Sy(my)
m]ﬂM;ﬁ@

S12(M) =

From earlier results, we can see that the Sy term amounts to the inclusive probability of M
(or equivalently, the Dempster-Shafer plausibility).

1
1-K

Because 1 — K is a normalization constant (so that >, S12(M) = 1) we can define 1 — K

S12(M) p1(M)Inz(M) (5.4)

1—K =Y pi(M)Iny(M) (5.5)
M

Eqn (5.4) and (5.5) together define the short-cut evaluation of Dempster’s rule with a

Bayesian prior.

Dynamic application

When using the shortcut rule, the posterior result is always Bayesian, thus the transition-

rule is still the same

SHM) =Y p(M'[mj")S" (my)
k
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After Dempster’s rule was applied at a time step t—1, the resulting probability S?~!(my) can
be converted to the prior S*(M) at time ¢ using the transition rule. Desmpter’s combination

rule is then used to update S*(M) with more evidence.

5.3 Generalizing Dempster-Shafer Theory

In the previously discussed Fagin-Halpern combination rule, boundaries grow after each
combination, and in the second-order Bayesian method boundaries tend to stay relatively
constant; however in the Dempster-Shafer method, boundaries tend to shrink after succes-
sive combinations. The reason for this is that Dempster’s rule does not make the assumption
that © values are identical but that they are independent and that information from one
BBA can make up for the ambiguity in another. As a rule for application, if reference data
from different information sources is taken from the same time window, it is best to use the
second-order Bayesian method, because © values will be identical. However, if the evidence
data for each source comes from different time intervals, it is better to apply Generalized
Dempster-Shafer theory as © values will be independent.

Applying Dempster-Shafer theory to our problem does not come without difficulties, as
will be seen later on in this section; the BBA does not adequately describe how ambiguity
affects the likelihood. Because of this, the BBA and Dempster’s rule need to be generalized
in order to better fit the problem in question.

Previously, when discussing Dempster-Shafer theory, we concerned ourselves about the
probabilities of all modes in the history p(M); however, we are only interested in diagnos-
ing unambiguous modes p(M). From this point forward, we will be only considering the
problem of diagnosing unambiguous modes p(M) with potentially ambiguous modes M in

the history.

5.3.1 Motivation: Difficulties with BBAs

The difficulty with using Dempster-Shafer theory is representing the likelihood as a BBA.

Demspter-Shafer theory can be used to describe direct probabilities with ambiguity.

p(M|E,©) = > 6{2L}S(my|E) (5.6)

mNm#()
where the BBA terms in S are given as

n(M,E)

S(M|E) = =5

This is the case where we sample data at random from the entire evidence history, D, and we
assume that the mode frequencies in D represent the mode probabilities for the population.
When evaluating the probability directly, we consider the number of times the mode M
and evidence E occur simultaneously (n(M, E)) and divide by the total number of times
the evidence E occurs (n(E)).
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The disadvantage for direct evaluation is that in most cases, some modes occur quite
rarely, thus we cannot trust that D is representative of the mode frequency. Furthermore,
dynamic application of the direct method is difficult. Instead it may be better to obtain the
priors using process knowledge (from both this process, and possibly other similar processes)
and use Bayes’ Theorem to combine likelihoods from the data with these priors. The results
of utilizing such an approach are increased flexibility in sampling from D, and the ability
for easy dynamic implementation.

Evaluating likelihoods however, poses a problem for Dempster-Shafer theory; the likeli-
hood with respect to S and © is given in Chapter 4 as

> 0} S(Elmy)n(my,)

me_DM

> 62 yn(my)

mgom

p(E|M,©) = (5.7)

which is very different from Eqn (5.6). There are in fact, two main functional differences

between the Dempster-Shafer problem in Eqn (5.6) and our problem in Eqn (5.7).

Difference 1

In the Dempster-Shafer problem, the term S(my|E) functions as a non-negative coefficient

on Q{mﬂk} which means that increasing G{mﬂk} never decreases p(M|E, ©)

Jdp(M|E,©)

soil) = (5.8)

In our problem, because we have a fractional expression now, it is possible for an increase

in 6{2LY} to result in a decrease in p(E|M,0{m}) (an example of this is shown later
my

9 p(E|M, ©)

5 (T #0 (5.9)

Because derivatives are no longer non-negative, Bel(F|M) is not necessarily solved by using

the exclusive probability, and PI(FE|M) is no longer solved by using the inclusive probability.

Difference 2

In the Dempster-Shafer problem, the term S(myg|E) functions as a constant coefficient on
H{mﬂk} with respect to m. This means that as long as m; and m; are both in my, the partial
derivatives of p(m;|E, ©),p(m;|E,©) are the same with respect to their # parameters on
m.
O p(milE,0) _ 9 p(m,|E,©)
9 0{ -} 0 0{%

mi,m; C My (5.10)

In our problem, because of the fractional expression, the normalization constant on the de-

nominator can change with respect to M, thus the partial derivatives of p(E|m;, ©), p(E|m;, ©)
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are not necessarily the same with respect to their 6 parameters on m.
0 p(Elm;,©) , 0 p(E|m;,0)

m; mg

0 O{m—k} 0 G{m—;

mi, mj C My (5.11)

Example of differences

Let us consider a simple two-mode system with one ambiguous mode so that
e M| =my
e My = my

e m3 = {my, my}

The historical data for this system is presented in Table 5.1.

Table 5.1: Frequency counts from example

ma mo {ml, mg} All M
el 12 4 7 23
€2 5 9 6 20
All e 17 13 13 43

Now let us consider a case where e; is observed. We can see that directly evaluating the
probability of m yields
12 7

p(miler, ©) = 23 T e{mTan}%

A I
p(moler, ©) = 23 + e{ml,fnz}ﬁ

One can observe that the derivative of these expressions with respect to 0{%} is 7/23.

This result is identical for both mi, me and is also non-negative. Conversely, when evalu-

ating the likelihoods of F given the modes m; and mo we obtain

12 + 0{-"—-1}7
p(e1lm1, ©) = T
17 + 0{77”1771”2 }13
44 6{-"2_17
p(€1‘m2, 6) = m;;mQ
13 + 0{7"“772”2 }13
We can further see that the derivatives can be obtained as
d plerlm1,0) —-37
m - m 2
0 0{7m17;}12} (17 + 0{7m1771n2 }13)
d pe1lm2,0) 39
0 9{7m71”§12} (13 + 9{?’1’?212 }13)2

We can see that the derivative of p(ej|m;,©) is always negative, while the derivative of
p(e1|ma, ©) is always positive. Thus the derivatives for likelihoods are not identical nor are

they non-negative.
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Implications of the differences

The implication of these results is that we cannot adequately express the likelihood expres-
sion p(E|M,0) in Eqn (5.7) in the Dempster-Shafer BBA format presented in Eqn (5.6).
A more general form of the BBA is required to express p(E|M, ), and a new combination

rule must also be constructed.

5.3.2 Generalizing the BBA

At this point, we have established that the Dempster-Shafer BBAs make use of three as-

sumptions which are not true for our Bayesian inference problem:
1. The function p(E|M, ©) is linear with respect to ©
2. The derivatives of p(E|M, ©) are always positive with respect to ©

3. The derivatives of p(E|M,©) with respect to O{mﬂk} are identical for all M if my, is

held constant

The objective of the Generalized BBA is to relax assumptions (2) and (3) in order to

express p(E|m;, ©) as a first-order approximation of ©
p(E|m,©) = G[:,m]T©]:,m] (5.12)

Here, G and © take structures that allow us to easily define a generalized Dempster’s rule
of combination. In this thesis G[:,m] denotes the m'* column of G, while G[m,:] denotes
the m* row of G.

A first-order approximation is used in this chapter, firstly because Dempster’s rule of
Combination is a linear operation and difficult to generalize over higher orders. Secondly,
combination operations tend to reduce ambiguity and thus tend to reduce the influence of
© on the final result; this reduced influence of © results in posterior functions p(M|FE, ©)
that are increasingly linear (and increasingly constant) as combinations are performed,
depreciating the relevance of higher-order terms.

In this thesis, ® is the matrix form of O, with each row representing the potentially

ambiguous mode my, and each column representing an unambiguous mode m; so that
Ok, 1] = 0{ 5}

The matrix G has the same dimensions as ® where elements can be calculated as

0 m; Nmy, = 0
Glk,i) = { P(Elmi) mi =my (5.13)
Op(Elm,)

900k, i C M

90



where

p(E|m;) = p(E|m;,0) —

Op(Elm:) _ 0 p(E|m;, ©)
90k, 1] 3 61

m
mt o

Note that © is the reference value of ©, around which the approximation is centered. In
Chapter 4, ©® was defined as the informed probability. In this chapter, because of the

properties of Dempster’s rule, it is best to use the inclusive value of ©.

®=0"
where
e OF is the inclusive value, which sets all flexible values to 1
e O, is the exclusive value, which sets all flexible values to 0

Note that the mathematical conditions for flexible values were given in Eqn (5.3). With G
and © defined in this manner, Eqn (5.12) is able to express the likelihood as a first-order
approximation.

One important feature of GG is that the mode can be extracted by the values taken on by
the row of G. For example, let us consider a three mode system, with possible ambiguous

modes {m1,ma}, {m1,ms}, and {mg, ms}. The structure of G is defined as

mi ma m3
m G{nt} 0 0
ma 0 G{2} 0
{mi,mo} | G{ET Y G ) 0
{m1,ms} | G{;; 75} 0 Clomms )
| {ma,m3} 0 e MG Crrerrd B

We can therefore recover the mode from the appropriate row of G by analysing the zero

elements. For example, the fourth row of G is

G[4,:] = | G{;"5 ) G{mas ) 0 = {m, ma}

where each column in this row pertains to modes my, ms, m3. Because the third element
is zero, mg is not supported, and hence, {m, ma} is supported. Thus for every row of G,
zeros indicate that the corresponding modes are not supported. In a similar manner, we

can see that the row

G[2,:] = [o Gfmz) o} — ma
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only supports mo. In this way, we can see that the mode can be recovered by determining
which elements in G|[k,:] are equal to zero.

This generalized form of the BBA, because it is a generalization, can be used to ex-
press Dempster-Shafer BBAs as well. If we consider the conditions set forth by Eqn (5.8)
and Eqn(5.10), and the GBBA construction method in Eqn (5.13) we can set about two
conditions where the GBBA can be classified as a BBA.

1. Every non-zero element in G must be non-negative
2. Every non-zero element in a given row G|k, :] must have identical values

By taking the GBBA structure from our previous three-mode system, G would be a BBA
if it took the form

mq mo ms
my S(my) 0 0
mo 0 S(mg) 0
G = ms3 0 0 S(mg)
{ml,mg} S{ml,mg} S{ml,mQ} 0
{m1,ms} | S{mi,ms} 0 S{m1,ms}
L {mg,mg} 0 S{mz,mg} S{mg,m;g} ]

which is the GBBA structure that would be formed if the direct method (as opposed to the

Bayesian likelihood method) was used.

Probability boundaries on GBBAs

When GBBAs are applied, the inclusive and exclusive probabilities have similar definitions
to BBAs

Ex(M)= Y G[my,m]=G[:,m|"©,[:,m] (5.14)
In(M)= > G[my,m]=G[:,m]"©"[:,m] (5.15)

where ©*[:,m] sets all flexible 6 values to 1, while ©,[:,m] sets all flexible 6 values to
0. While the inclusive and exclusive probability definitions are similar, they are not the

solutions to the belief and plausibility.

Bel(M) = mén G[:,m]TO©[:,m] # Ex(M)
PI(M) = m(ng[:,m]TG)[:,m] # In(M)
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5.3.3 Generalizing Dempster’s rule

As previously mentioned, Dempster’s Rule of combination is given for BBAs in the following

form:
S(mk):ﬁ S S(mi)S(m,) (5.16)
my=m;Nm;#0}
1-K = > S(my)S(my) (5.17)

my=m;N\m;#0
In a similar manner, the Generalized Dempster’s Rule of Combination is applied to the rows

of G that pertain to my (or equivalently, G[my, :])

Gulmy ] == Y GilmioGalmy, (5.18)
m=m;m;#0}
1-K= Z mean,o(G[m;, :] o Gmy, :]) (5.19)

my=m;Nm;#0

where X oY denotes the Hadamard (or element-wise) product between X and Y, while
mean,-o(X) is the mean of the non-zero values of X.
The interesting property about the Hadamard product is that it conserves properties of

the intersection x Ny operation. For example, we can see that
[0 X2 0]o[0 Yy Y3]=[0 X2Y2 0]
Analogously, when obtaining sets from these row vectors, we can see that
mo N {ma, m3} = mo

When taking this into account, we can see that the Generalized Dempster’s Rule of combi-
nation truly generalizes Dempster’s rule. For example, let us consider two BBA values for

{m1,ma} and {mgy, m3}. In Dempster’s rule, we could allocate the product
S{ml, mg}S{mg, mg}
to mode mo. In the Generalized Dempster’s rule, the Hadamard product

[S{m1,ma}, S{m1,ma}, 0]o[0,S{mz,ms}, S{ma, ms}]
= [ 0 ,S{ml,mg}S{mg,mg}, 0 ]

is allocated to mode mgo (which one can see from the product result). When the GBBA
is consistent with a Dempster-Shafer BBA, the Hadamard product serves no purpose as
all nonzero elements in the ambiguous mode my have the same support, regardless of the
unambiguous modes M C my supported. The same final result can be obtained without
Hadamard products as long as the sets and the BBA are known. However, when an ambigu-
ous mode my, in a GBBAs allocates different support to each unambiguous mode M C my,

the Hadamard product allows us keep track of how my supports each M C my.
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5.3.4 Shortcut combination for unambiguous priors

The Generalized Dempster’s rule shares another property with Dempster’s rule, that is, re-
peated combination will result in shrinking ambiguity, and that combination with a Bayesian
prior will result in an unambiguous posterior. In fact, the Bayesian shortcut for the Gener-
alized Dempster’s rule is the same as the Bayesian shortcut for Dempster’s rule. If p; (M)
is a Bayesian prior, which is combined with a GBBA (G2), the resulting GBBA (G12) can

be expressed as

Glg(mi,mi) = 1 _:lel(mi)InQ(mi) (5.20)
Glg(mi, mj?gi) =0
1=K =Y pi(M)Iny(M) (5.21)
M

This can be shown by analysing the Generalized rule of combination. However, we first
need to define p;(M) as a GBBA

From the Generalized rule,

Glg[m, :] = ﬁ Z Gl[mi,:] OGQ[mj,:]

m=m;Nm ;#0

From this we can see that the condition m = m; N'm; # () is only satisfied when m; = m
and when m; 2O m. This allows us to factor out G[m,:] which yields
1
Gram, :] = T—=Galm, ] > Gamy,

m;iom

We can see that for row 1 of G, the form is [X,0,...,0] which means that the first row of
G12 will also take the form [X0,...,0], where all elements other than the first one is zero.
In the same manner, the second row of G and G2 will take the form of [0, X,0,...,0], so
on and so forth. From this we can see that
1
Giz2[m, m] = ﬁGl[m,m] Z Ga[mj, m]

m;om

Gia[mi, mjs] =0

Now, one can observe that the summation term is identical to that of inclusive probability
described in Eqn (5.14), and that G1[m, m] = p;(M). Thus,

1
1-K
Glz[mi, mj#] =0

G12[m, m] = pl(M)I’I’LQ(M)
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where the normalization constant assures that the diagonal sum of G192 is 1.
1-K= ZM(M)IM(M)
M

This results provides a quick method to combine GBBAs with a Bayesian prior. In addition,
the result validates the consistency of the Generalized Dempster’s rule with Dempter’s

original rule.

Dynamic application

When using the shortcut rule, the posterior result is always Bayesian, thus the transition-

rule is still the same

G'(M, M) =" p(M'[m} )G (my, my,)
k

After Dempster’s rule was applied at a time step ¢ — 1, the resulting probability G*~1 (M, M)
can be converted to the prior G*(M, M) at time ¢ using the transition rule. Desmpter’s

combination rule is then used to update G*(M, M) with more evidence.
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Chapter 6

Making Use of Continuous
Evidence Through Kernel Density
Estimation

6.1 Introduction

When discussing material in Chapters 4 and 5, it was assumed that evidence was discretized
in order to construct alarms. However, in the case of process monitors, the raw evidence is
often continuous and discretization can result in the loss of valuable information. It is shown
in this chapter that for a single monitor, discretization can be optimized to yield exactly
the same result as continuous methods, but in higher dimensions, optimal discretization
can be a challenge as the optimal regions can take on strange shapes.

Often times, parametric methods are used to estimate continuous distributions. How-
ever, parametric methods make assumptions about distribution shape. In the case of process
monitors, the distributions can take very unusual shapes (for example, under certain sit-
uations, the control performance monitor results from the FCOR algorithm [34] will have
bimodal behaviour with peaks near 0 and 1). The Gaussian Mixture Model approach is
parametric but uses multiple Gaussian distributions to approximate the data distribution.
The challenge for the Gaussian mixture model is that one is required to know beforehand
how many Gaussian distributions are required, and estimation algorithms (such as EM) are
not guaranteed to converge to the globally optimal solution. Furthermore, while Gaussian
mixture distributions model multi-modal distributions quite well, there is still difficulty
with distributions exhibiting non-linear behaviour between variables.

This chapter discusses kernel density estimation, a density estimation technique for con-
tinuous variables that is non-parametric. The main advantage of kernel density estimation
is that it naturally follows the shape of the data and can adequately model the distribu-
tions regardless of the shape taken. Furthermore, the process of obtaining a kernel density
estimate is not iterative, but is obtained in a single step; because of this, kernel density

estimates yield the same consistent result for a single data set. However, much like the dis-

96



crete method, the kernel density method suffers from the curse of dimensionality in which
performance will degrade in higher dimensions. Nevertheless, the performance degrades at
a slower rate for kernel density methods.

This chapter discusses many important aspects of kernel density estimation, including
performance relative to discrete methods, how to obtain the critically important bandwidth

parameter and how to reduce dimensionality.

6.2 Performance: Continuous Methods vs. Discrete Meth-
ods

In previous chapters, discrete evidence was used mainly because of its ease of interpretation
and the fact that any distribution can be discretized to estimate the probability distribution.
Discretization is a non-parametric method in the sense that it does not require knowledge
of the distribtion shape in order to approximate it (however, discrete distributions are cat-
egorical and have parametric properties such as the ability to perform Bayesian parameter
updating). The drawback of discretization however, is that it results in a loss of informa-
tion. By contrast kernel density estimation is a method that is applicable to continuous
distributions and does not suffer as much from loss of information by discretization. It is
also non-parametric, able to fit any type of distribution, which was the one key advantage
to discrete methods. The comparison between discrete and kernel density methods is shown
in Table (6.1)

Table 6.1: Comparison between kernel and discrete methods

Discrete Kernel Density
Computationally light (when Computationally heavy
implemented intelligently) (proportional to data)

Does not suffer from

Suffers from information loss . .
information loss

Performance suffers
exponentially with increased
dimensionality (but much slower
than the discrete case)

Performance suffers
exponentially with increased
dimensionality

The advantages of the kernel density approach over the discrete approach are intuitive as
there is much less loss of information. Mathematically, it has been shown that kernel density
estimation converges to the true probability density function faster than discretization [73].
However, most readers may not be merely concerned about the accuracy of the density

function estimate, but are more concerned about the false diagnosis rate. The material that
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follows in this section will help readers understand the diagnosis performance characteristics
of both methods.

6.2.1 Average false negative diagnosis criterion

In order to assess diagnostic performance, we must first choose a valid performance criterion.
In this chapter, we calculate the average false negative diagnosis rate Fy as our performance
criterion.

Our criterion takes note of every instance of a false diagnosis. In this chapter, the event
that mode M diagnosed (or chosen) is denoted as C(M). From this, the events of true and

false diagnosis can be expressed as
o C(M)|M represents a (true) diagnosis of M, when M is the true underlying mode.

o C(M)|M represents a (false) diagnosis of M when M is the true underlying mode

(where M represents some mode other than M).

The average false diagnosis rate can be calculated as

T'm

Fy =Y p(C(mg)|my)p(my)
k=1

where p(my,) is the prior probability of my, (a flat prior could be used if the prior probabilities
are not known). When using Bayesian methods (which account for prior probability) the

diagnosis is based on the maximum posterior probability.
C(my) if my = arg mﬁxp(E|M)p(M)

The posterior probability density function is a likelihood function of E (i.e. p(E|M))
weighted by the prior probability p(M). For certain regions of E, the mode M will be
diagnosed (ideally, this is when E closely resembles data in M). Our notation of this region

of F is given as
E|C(M) = The region of E where M is diagnosed

Because F is continuous, we obtain p(C(M)|M) by integration over the regions of E where

M is not diagnosed.

p(C(IT)|M) = /E oy PR de

This formal definition of Fy requires integration, which can be quite difficult to perform.
In practice, the value of Fiy is much easier to estimate using Monte Carlo simulations. This

approach can be performed by taking the following steps:

1. Use training data to construct likelihoods p(E|M).
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2. Obtain validation data in proportion to the prior probabilities (for example, if the

probability of my is 40%, then 40% of the data must come from my).

3. Go through each of the data points E (taking note of its true mode M?), and evaluate
the posterior probability

p(E*|M)p(M)

4. Find the mode with the maximum posterior probability, and set it as the diagnosed
mode C(M).

5. In this step, we tally the diagnosis results, thus if E? is correctly diagnosed we add

one to the tally of correct results n .
Neor = Neor + 1 if C(M) = M*
Otherwise, if E is incorrectly diagnosed, we add one to the tally of incorrect results
Ninc
Nine = Ninc + 1 if C(M) # M*
6. After tallying results for all B, the false negative rate Fyy can be obtained using a
simple quotient

Ninc
N — -
Ninc + Neor

6.2.2 Performance of discrete methods vs continuous methods

When evaluating performance of methods between continuous and discretized evidence, one

will arrive at two conclusions:

1. Continuous methods perform better than discrete methods, unless discrete methods
are optimized in terms of boundary selection, at which point their performance is

equal.

2. In a one-dimensional system, the optimal discretization boundary is easy to obtain,
but in higher dimensions, defining the optimal discretization boundary can be difficult,

if not infeasible.

When discrete methods perform as well as continuous

The discrete method performs as well as the continuous method when the discretization
regions coincide with E|C(M)

E|C(M) = The region of E where M is diagnosed
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As an example of defining optimal cutoff boundaries, let us consider a two-mode system
where each mode is Gaussian, having the distributions given in Figure (6.1(a)). When
continuous methods are used, we diagnose the mode that has the highest probability; thus
if Mode 1 has a higher density function than Mode 2, Mode 1 is diagnosed. From this
example, we can see that the diagnosis region for E|C(m1) is where E < 0 and the region
for E|C(mz2) is E > 0. Let us consider a case where E' < 0, even if Mode 1 is more probable,
it may not be the true mode because Mode 2 has non-zero probability in this region. In
Figure (6.1), we see the overlapped regions shaded in a darker area, and these regions
represent the false negative rates Fiy. If this region is small, we have a low probability of

misdiagnosis.
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(a) Original Distributions (b) Misdiagnosis rate of continuous method
Figure 6.1: Grouping approaches for kernel density method

If we consider the discrete case, we must create discretization boundaries to analyse
the probability distribution. The best boundaries for discretization are the ones set by the
continuous distribution, in this example, we have one discrete region where £ < 0 and one
discrete region where E > 0. The resulting false negative rate is shown in Figure 6.2(a)
which is identical to the continuous false diagnosis rate.

Now, let us consider the case where we have no knowledge of the continuous distributions.
In this case we set the discretization regions to a new arbitrary location, where one region
occurs at E < 0.5 and another region occurs at E > 0.5 as shown in Figure 6.2(b). Values
of E to the left of this boundary will diagnose my, and values of E to the right of this
boundary will diagnose my. When the boundary is shifted to this location, we can see that
the shaded region representing Fy has somewhat grown. This is because when shifting this
boundary from 0 to 0.5, the probability of falsely diagnosing Mode 2 (the right part of the
dark region) decreased, but at a slower rate than the probability of falsely diagnosing Mode
1 (the left part of the dark region) grew.

From this example we can see that the optimal discretization region is given by the
continuous distributions, and that shifting this region in any way will result in an increase

in false diagnosis rates. Discrete methods can perform as well as continuous methods, but

100



o
15
<)
5

Region 2

I
S
[l

Region 1 Region 2 Region 1

I
aS
[

o
IS
I
~

o
@
o
o
@
@

o
w
4
w

Probability Density
o
o R
N [4,]

Probability Density
o o

S 9 i

o o O

o

o

o
o

0.05F

o
=)
o

0 -4 -3 -2 -1 0 1 2 3 4
Evidence Evidence

(a) Misdiagnosis rate of optimal discrete (b) Misdiagnosis rate of suboptimal discrete

Figure 6.2: Discrete method performance

optimal discretization requires knowledge of the continuous distributions, which begs the
question as to why one would discretize the evidence in the first place. A short answer
to this question is that the motivation for discretization is not for performance but for
computational simplicity.

In addition to comparing performance between discrete and continuous cases, this exam-
ple illustrates a useful procedure for optimal discretization; that is, to analyse the continuous
distributions (either defined parametrically or through kernel density estimation), and note
the regions where the continuous density for a target mode M is highest. This approach
however, is only straightforward in one-dimensional cases because discretization boundaries

can be more complex in higher dimensions.

The feasibility of optimal discrete methods in higher dimensions

In cases of dependent evidence E in dimensions two or higher, optimal discretization be-
comes a much more complicated endeavour than in our previous example, as discretization
regions become more difficult to define (as they can be non-linear).

As an example on the difficulty of discretization, consider the two-dimensional three-
mode system in Figure 6.3. In this case, we have three Gaussian distributions, and two of
them are quite correlated (this type of behaviour can occur quite easily in practice).

The challenge with this system is that it is easiest to define discretization boundaries
one at a time for each piece of evidence (this is called the element-wise approach). In this
way, the discretization boundaries will be linear and follow the direction of the axes as seen
in Figure 6.4(a). However, as one can see, this discretization scheme is quite suboptimal.
When boundaries are drawn in this manner, region 1 will diagnose Mode 1, regions 2 and
4 will diagnose Mode 2, and region 3 will diagnose Mode 3. This scheme will yield a
false negative rate of Fiy ~ 0.1233. However, one can see that in this figure, the modes

are actually quite well separated (the kernel density method has a false negative rate of
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(a) Data from 2D system (b) Distribution of 2D system

Figure 6.3: Two-dimensional system with dependent evidence

Fy = 0.0020).

If one will allow a more complex method to define the boundary, one can use visual
inspection to draw linear boundaries as done in Figure 6.4(b). In such a case, the false
diagnosis rate will be much closer to optimal Fy = 0.0025. However, optimally defining
linear boundaries in higher dimensions becomes a very difficult task, especially when data

takes on non-linear shapes.

of [Foawnz

» ‘ ‘ ‘ : ‘ ‘ ‘
-1 0 1 2 3 4 5 6
(a) Element-wise discretization (b) Nearly optimal linear discretization

Figure 6.4: Two-dimensional discretization schemes

6.3 Kernel Density Estimation
6.3.1 From histograms to kernel density estimates

As previously mentioned, kernel density estimation is a non-parametric method used to
estimate continuous probability density functions. The process of arriving at a kernel density

estimate from discrete frequency data is an intuitive one. First, let us consider a histogram

102



visualization of a distribution in Figure 6.5 which is synonymous to discretization. In this

case, we divide the x axis into discrete segments, and we count the frequency of data points
residing in each bin.

Figure 6.5: Histogram of distribution

In the histogram, we divide x into discrete segments, but what if we allowed the segments
to be centred around each data point? This would mean that centred around each data
point, we would place a rectangular function (with area 1/(n x bin width), so that the
distribution integrates to unity). After summing these rectangular functions, the end result

(the centred histogram) will be slightly smoother than the histogram as seen in Figure 6.6.

Figure 6.6: Centered histogram of distribution

The centred histogram is actually a kernel density estimation. The kernel in his case, is

a block, with area 1/(n x width). Instead of using this kernel, we could choose a smoother
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kernel, for example, a Gaussian density function divided by n. This would yield the result

in Figure 6.7.

Figure 6.7: Gaussian kernel density estimate

6.3.2 Defining a kernel density estimate

From the example above, a kernel density estimate takes a set of sampled data points and
places a kernel function, centred around each data point. As shown in Figure 6.8, the kernel
functions (denoted by the blue dotted line), centred around five data points (denoted by
the black dots on the z axis) will sum up to yield a smooth function (denoted by the solid

black curve).

Figure 6.8: Kernels summing to a kernel density estimate
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Mathematically, the kernel density estimation procedure can be defined as
fa~ iy Lk (12~ D)) (6.1)
n & H]P Z |

where D denotes a multivariate data set with n entries, K (x) represents the kernel function,
and H represents the bandwidth, which will be discussed in more detail later on. The kernel
function itself can take on many forms as long as it is non-negative and the integral over

the entire domain is equal to one.

/ZK(:L“) de =1

The two most popular kernels are
1. The Epanechnikov kernel (due to its asymptotic efficiency)

2. The standard multivariate normal kernel (due to its excellent differentiation properties

and its ease of application in higher dimensions)

In our applications, we will use the standard multivariate normal kernel.

1
K(z) = 2 exp(27 2)

where d is the dimensionality of the data. By using this kernel, the kernel density estimate

takes the following form

fz) ~ % z; (27r1)d\H! exp ([z — DITH [z — D)) (6.2)
This estimate is non-parametric, but its smoothness hinges on the bandwidth parameter
H. In the same way that width of bins in a histogram affect its smoothness, the kernel
bandwidth H will affect the smoothness of the kernel density estimate.

When performing Bayesian diagnosis, the kernel density estimate is used to express the
likelihood term

p(EM) = f(E|M)
 p(EM)(M)
M) = S B p(0)

6.3.3 Bandwidth selection criterion

Selecting the bandwidth is not a trivial problem. The goal of bandwidth selection is to
select a bandwidth that minimizes the asymptotic mean integrated square error (AMISE).

One might recall the popular mean squared error (MSE) criterion

MSE = E |(f(z) - f(x))’
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where in this case f(z) is the kernel density estimate and f(z) is the real density estimate.

The MISE integrates this error over all values of x

MISE:/E[(f(a:)—f(x))Q dz

The MISE is generally intractable hence, the asymptotic approximation is used instead. In

the univariate case, the AMISE is given by [73] as
1
AMISE = Zh‘lR( Fua(K)? + (nh) 'R(K) (6.3)

where n is the number of data points and h is the bandwidth (which, is a scalar for the

univariate case), and where
R(K) = / K2(2) de
ua(K) = /zQK(z) dz

[73] also defined a multivariate version of the AMISE criterion which is given as
R(K)

/1]

AMISE [ f(a: )] = iug(Kﬁ vech” (H)] ® [vech(H)] +

where
o (K) :/ 22K (z) dz Vi
R4

R(K) = » K(z)? dz < 0o

W = [ vech(M)vech? (M) dz
R4

M = 2D%[f(2)] — dg (D*[f(2)])

In the multivariate AMISE criterion expression, vech(H) takes the lower diagonal of H
and strings it out column-wise into a vector. In addition, D?[f(2)] is the Hessian of f(z),
and the operator dg(A) sets all off-diagonal elements of A to zero (the equivalent of the
diag(diag(A)) command in MATLAB).

6.3.4 Bandwidth selection techniques

The bandwidth selection criterion makes the assumption that we know the real density
function f(x). Obviously, if we knew the real density function f(x), we would not need a
kernel density estimate. The main idea of using the AMISE criterion however, is to select
an optimal bandwidth for a distribution we know; this bandwidth will be close to optimal
for similar distributions. In practice, the concern with selecting appropriate bandwidths
has more to do with the amount of data and its general spread than it has to do with the

specifics of the distribution.
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Optimal bandwidths for multivariate normal distributions

The most popular method to select bandwidths is to use the optimal kernel density estimate

for multivariate normal distributions. This bandwidth is defined as

H 74 %HE
N <n<d+2)>

where X is the covariance matrix of the target multivariate normal distribution. Now in
practice X is not available to us, but the sample covariance matrix S can be easily obtained,

resulting in the following bandwidth selection

H 74 ﬁS
N_<n<d+2)>

If the relationships between the variables is linear, it is best to use the full covariance matrix
estimate S. However, if the variables exhibit non-linear relationships, one may wish to set

the off-diagonal elements of S to 0 so that the diagonal elements are all that remain.

Adaptive bandwidth estimation techniques

One problem with choosing a single bandwidth is that the distribution tends to be over-
smoothed near the peaks of the distribution, but tends to be under-smoothed near the tails.
This is analogous to the problem of histogram bins being well-estimated in regions of high
probability, but very sparse and disjoint in regions of low probability.

In order to improve performance in these extreme cases, the bandwidth is modified
so that the kernel function’s height is proportional to the probability at that point. The
reasoning behind this is that if the kernel’s hight is proportional to the point’s probability,
then each kernel is expected to have the similar number of data points within its domain.

The bandwidth height is modified by setting a localized scalar A; in front of every
individual bandwidth

Hy =X\ ""Hy (6.5)

The scaling parameter \; can be calculated using a “pilot” density estimate fI’}N (z), which

is obtained using the optimal normal bandwidth H .

. (szw[m)a

9

where « is a user-defined parameter and g is the geometric mean of fg (DJi]), such that
1 )
log(g) = = > log | f4(DIi))|
og(g) = — ; og | fi(Dlil)

If one desires the kernel height to be proportional to the probability at that point, the user

defined parameter « should be set to 1; however [74] found that o = 1 was too aggressive
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for univariate cases and suggested that for univariate cases one should set o = 0.5 (which
is a half-way point between the aggressively adaptive o = 1 and the non-adaptive a = 0).
[63] also commented on this phenomenon after rigorous theoretical analysis, suggesting that
the av = 0.5 should also work well in higher dimensions. However, [63] also mentioned that
adaptive kernel density estimation is useful for smaller sample sizes, but converges to the
true density slower as the sample size increases. Thus, for larger sample sizes, smaller values
of a should be used.

One can see that when setting H; = )\;2/ PHy, it results in a kernel density estimate

given as

f(l") = *Z |H, ’1/2 ( 1/2(1' - Dz))
~n Z |)\_2/pH |1/2K (H%'I/Q(x - Dl))

- Z|HN|1/2 (1@ - D)

so that the height of each kernel is modified by A;.

6.4 Dimension Reduction

One point of difficulty for kernel density estimation is the problem of dimensionality. Much
like its discrete counterpart, the difficulty of estimating kernel densities increases exponen-
tially with respect to its dimension; this is referred to as the curse of dimensionality. The
rate at which the difficulty increases is of the order O [n_4/ (d+4)].

As an example, let us consider a one-dimensional system. In order to adequately estimate
a kernel density, around 40 data points will be needed; the amount of required data points
to achieve the same quality of estimation is shown in Table 6.2. As one might observe, for

every additional dimension, the amount of data required is increased by a factor of 40/5.

Table 6.2: Curse of dimensionality

Dimension | Required Data Points
1 40
84
175
366
765
1600

S T W N

Because of this problem, kernel density applications for large systems must always con-

sider a dimension reduction scheme. In this chapter, we will consider two main schemes,
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independence assumptions and independent component analysis (ICA).

6.4.1 Independence assumptions

One method to reduce dimensionality is to introduce independence assumptions. For ex-
ample, let us consider a six-dimensional system E = [Ej, Es, E3, E4, Es5, Eg]. If, for mode
M, the first three pieces of evidence can be considered independent of the second three,

[E1, B2, E3] L [E4, Es5, Eg] then we can calculate the joint probability as a product
p(E|M) = p(E1, Eg, E3|M)p(Ey, E5, Eg|M)  if [Ey, Eo, E3]|M L [Ey, Es5, Eg||M

Even though the joint probability is six-dimensional, we can break the problem down into
two kernel density estimates: p(E1, E2, E3|M) and p(Ey4, E5, Eg|M) which are both three-
dimensional distributions. In this way, a six-dimensional problem was reduced to a three-
dimensional one.

If one suspects some evidence to be independent, there is a test that can be used to
verify whether this assumption can be made. The mutual information criterion (MIC) can

be used to check for independence.

By, Bo|M
MIC(El,Eg):/ p(El,E2|M)log( p(EL, Bo| M)
Ey JE> (

dE dE
pE1M>p<E2|M>) Lo

The MIC can be calculated numerically by using kernel density estimates for p(E7, Es| M),
p(E1|M), and p(E2|M), and then numerically integrating the result over a suitable range
of Eq, E».

It may not always be possible to break down the evidence into purely independent
groups. However, a much more lenient conditional dependence assumption can also result
in dimension reduction. Consider a case where all evidence E = [E1, Es, E3, E4] is caused
by a single underlying factor, which is best observed by FEj. If this is the case, then it is

reasonable to break down the dimensions by conditioning with respect to F4

p(E1, B, E3, Eg|M) = p(E1|M)p(E2|E1, M)p(Es|E1, M)p(E4|E1, M)

B p(Er, Eo|M) p(Eq, E3|M) p(E1, E4|M)
=PEMDT BT pE@) plEM)

By using conditional probability, highest dimension of this problem has been reduced from
four to two. A variation of the MIC (the Conditional MIC or CMIC) can be used to test

for conditional independence

p(Ela EQ‘EW M)
p(E1|E'r‘7 M)p(E2|ET> M)

Eo
p(F1, Bz, E |m) ( p(E1, Eo, E;|M)p(E; \M))
lo dFEq dE5 dE,
/E/E p(E| M) S\ p(EA| By, M)p(Es|E,, M) Lo

CMIC(El,EQ) = / p(El,E2|Er,m) log < > dE1 dE2 dEr
Ey

where F, is the reference evidence.
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6.4.2 Principal and independent component analysis

In addition to making independence assumptions, one can also attempt to explain the data
with respect to a set of independent components. Independent component analysis (ICA)
is a generalization of principal component analysis (PCA) and is a useful tool for dimension
reduction. Both techniques assume a model where the data observations y are assumed to

be linear combinations of latent variables f
y—p=At

The difference between PCA and ICA is that in PCA, the independent latent variables
t are assumed to be Gaussian, and in ICA, they can follow any distribution (hence, the
generalization). Both PCA and ICA aim to define the loading matrix A. The procedure
for PCA is standard and will not be discussed. For ICA, a variety of algorithms exist, some
of which have been discussed in [75]; the same author provided a MATLAB package in [76]

for an algorithm that is both computationally efficient and reasonably accurate.

6.5 Missing Values

As in the discrete evidence case, it is possible for some values to be missing from the data.
For the discrete case, Bayesian marginalization and the EM algorithm are typically the most
popular solutions. For missing values in kernel density estimates, kernel density regression

for the missing values is an effective and popular solution.

6.5.1 Kernel density regression

The zeroth-order (Nadaraya-Watson) method

Kernel density regression was first proposed by [77], shortly after the widely cited paper
on kernel density estimation [61]. It can be derived by first noting the following regression

function

ot — Y 2)dy

We let the joint probability estimate for f(y,x) be

fly,z) = anCyl/i\H 72 ZK (Hx—l/z[XZ- — x]) K (Hy—l/zm _ y]>
Y i=1

N

1 - _
Fo) = g 2 1 (1 =)

where K(x) is a kernel function (such as the standard multivariate normal distribution).

The kernel functions are set to be independent between x and y to facilitate the integration
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over y (independent kernels do not suggest that z and y are independent, but that the
bandwidth matrix H is simply diagonal).

P o 1 . —-1/2 L —1/2 -
/yf(y,w)dy— /yWMUQ’Hy’l/2 ;K(Hx [X; x])K<Hy [Y; y]) dy

1 - B -
N W;K (H 21— a1) /‘Hy:é/‘lﬂK (1,21~ 91) dy

1 = _
= g 2 K (X =) ¥

This results in the following estimator for y

a7 i K (Hajl/z[Xi - l’]) Y;
m Y K (Hm_l/Q[Xi — ;1:])
_ i K (Hx_l/Q[Xi — x]) Y;

Sy K (He (X - o)

g(x) =

(6.6)

This result amounts to a weighted average of historical Y values based on the proximity of

the corresponding X values to the query value z; hence, it is a locally weighted average.

The first-order method

The Nadaraya-Watson method is a fairly popular method of non-parametric (or kernel
density) regression. However, it has been shown to be biased toward flat functions of y
with respect to x. In order to reduce this bias, the first-order method was proposed. Here,

instead of using a locally-weighted average, we wish to use a locally-weighted linear model
yi=a+ B (X; —x)+ ¢
We can arrive to the ordinary least squares solution by setting

1
7=

and then performing the following operation to obtain a linear model

[ ;Eg ] - ;Zizf ;Zz)/z

Due to the way this problem was posed (being centered around x when we defined 2), &(z)

-1

serves as our estimate of .
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However, for the kernel density variation, we use the kernel as a weighting function to create

a locally weighted linear solution

(0] - [ e

The locally weighted linear solution does not suffer as much from the bias toward flat

-1
(6.7)

- ~121x. _ 1) 7y
;K(Hz X, :c]) Z:Y;

regression estimates. Higher-order solutions also exist, but their improvement over the

first-order method tends to be quite minimal.

6.5.2 Applying kernel density regression for a solution

Let us consider a data set X wherein some data entries are incomplete
X
X = ¢

Within each incomplete data entry, there are values that are present, denoted as z, and

values that are missing denoted as y. For each incomplete data entry, X;.[i], we use kernel

density regression §(z|X.) on z (based on the complete data set X.) to estimate the missing

values y.
9= 9(z|Xc)
We now have a complete data estimate
~ X,
Ao = [ X; ]

This complete data estimate can either be used as the kernel density estimate, or we could

perform another iteration of the estimation procedure.

5= (21 {X\ Xicli})
Kicli] = [2,3]

where {Xc) \Xw[z]} denotes as set difference (or simply that we remove X;.[i] from the

dataset X,. This iterative scheme converges fairly quickly; it seldom requires more than ten

iterations. For most intents and purposes, a single iteration will yield an adequate result.

6.6 Dynamic Evidence

Previously, it was shown that the likelihood for autodependent discrete evidence can be

obtained as

E' B my)
EY B! _ BB my 6.8
p(E* B, my,) (B ) (6.8)
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where n(E?, =1 m;,) is the number of times that E?, E'~! and my are jointly observed in
history while n(E*~!,my) is the number of times that n(E~!) and my) are jointly observed
in the history. This solution was modified in the previous chapters to include prior samples
in order to prevent possible division by zero.

A very similar solution can be made by using the kernel density method to estimate the

likelihood. In order to condition on both E* and E*~! the rule of conditioning is applied

p(XNY)
p(X)

By applying the rule of conditioning to the kernel density estimation solution is given as

p(Y[X) =

p(E', B M)
p(EMY)

p(B'[EY, M) = (6.9)

This result requires two kernel density estimates to be evaluated:

1. p(E', B*=1|M?) for the likelihood of joint present and past evidence (given the mode
M?Y)

2. p(E'"Y M) for the likelihood of past evidence (given the mode M?)

The resulting ratio of likelihoods can be used in the same manner as a likelihood; for

example, when used in Bayesian diagnosis, the dynamic solution is applied as follows:
Et Et—1|Mt)
EHEL At = p(E",
p( | ) ) p(Et_l |Mt)

EYE MY)p(MY)
MtEt Et—l — p( )
PIMCIES B) = o B BT, M )p(M)

Dimensionality reduction

The use of dynamic evidence however, has the problem of adding dimensionality to the data.
Thus, when applying a dynamic evidence solution, dimensionality reduction techniques
(such as ICA and dependence analysis) are even more vital to perform. Because of the curse
of dimensionality, it is desirable to test whether it is necessary to include past evidence in
the likelihood. Again, this test can be performed using the MIC, but with a focus on past

and present evidence

~ _ p(EL E M ~
MIC(E}, B} 1):/ / p(EL, ELtm) log E k> Zk t‘_l) dE};, dE}!
Bt JEt p(ER|M)p(Ey " [M)

If MIC(E!, Ei) is a small number (generally less than 0.2), then we do not need to

include past evidence for this particular evidence source Ej.
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Chapter 7

Accounting for Sparse Modes
Within the Data

7.1 Introduction

In this chapter, we consider how to address the problem of diagnosing a system when
modes are missing entirely. Recall that operating modes must include information of all
system components; however, as the number of components increases, the number of possible
operating modes will tend to grow exponentially. Because of this, modes that are missing
entirely is a very pertinent issue to systems having more than a small number of components
(for example, an eight component system will have at least 28 = 256 modes).

This chapter discusses two approaches one can take to deal with the problem of missing

operating modes.

1. The first approach is to focus on diagnosing the state of each component; this approach
is fairly easy to perform in practice, as it is a simple re-structuring of the original

diagnosis problem.

2. The second approach is to use process modelling and bootstrapping to simulate the
missing faulty scenarios; this approach is difficult to implement in practise as it re-
quires sufficient process knowledge to simulate faulty behaviour. Furthermore, if the
system is large, a very large number of simulations will be required in order to cover

every possible mode.

The two techniques are independent and do not interfere with each other, consequently,

applying both techniques simultaneously requires no modification of either technique.

7.2 Algorithms

This chapter discusses two separate algorithms: the first algorithm focuses on diagnosis in

component space the second algorithm focuses on generating data for unencountered modes.
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7.2.1 Algorithm for component diagnosis

Overview

Fault diagnosis focuses on collecting data to estimate the distributions p(E|M ); however, if
there is a large number of possible modes in M, this will result in the historical data having
to be divided into a large number of modes. Some modes will be well represented in their
data, but many of them will have little data or no data at all. By contrast, if we evaluate
p(E|C), where C represents the state of the component of interest, there should be data
from each state of the component.

Consider a basic control loop in Figure 7.1. Here, the components of interest are the con-
trol valve, the actuator, the sensor and the process (which could have multiple components
itself).

——®{~ " Controller L. Valve »  Process L

Sensor -

Figure 7.1: Overall Algorithm

The overall aim of component diagnosis is to diagnose the state of each component, and
then diagnose the mode. The probability of the state for a component ¢ can be calculated

according to Bayes’ rule.

P(CF) = p(E[C)p(C")

>_ci P(E|CY)p(CY)
If this system had three states for each component, the total number of modes (and required
distributions) would be 3* = 81. By contrast, considering each component one at a time
would require the estimation of 4 x 3 = 12 distributions, which is a dramatic reduction in
terms of the diagnosis space. While it may be a challenge to find data that would correspond
to 81 modes (and hence 81 different conditions), it is much easier to find data from which
each component state is realized so that only 12 conditions need to be realized. This result

leads us into the main advantages of the component diagnosis technique:

1. Reduction in problem complexity for modes: The primary reason we consider
the component diagnosis technique is that it reduces the number of modes we have to
diagnose. Using the mode-based diagnosis approach, the complexity of the problem
grows exponentially with each new component. By contrast, using the component-
based diagnosis approach, the complexity of the problem grows linearly with each
new component. An eight component system with two modes each will have 2% = 256

modes to diagnose under the mode-based approach, but the same system will have 2 x
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8 = 16 modes to diagnose under the component-based approach. Since the component-
based approach has one sixteenth as many modes as the mode-based approach, there
is a much smaller probability that modes will be missing if the component-based

approach is applied.

2. Reduction in problem complexity for evidence: Each piece of evidence tends
to be sensitive toward a few components. Because the mode-based approach con-
siders all components, all available evidence should be used; this can lead to fairly
high-dimensional distributions. However, if we adopt the component-based approach,
we only need to consider the evidence that is sensitive toward that component; the
rest can be discarded. This allows us to effectively reduce the dimensionality of the
evidence; recall that in Chapter 6, evidence dimension space was a problem for kernel
density estimation, and even more for discrete methods. Using the component-based
approach allows us to reduce evidence dimensionality in a manner that is easier than

testing and assuming independence (which was the solution suggested in Chapter 6).

While the component based approach has its merits, it also has one key drawback. The
component based approach assumes that the component states are independent of each
other, which is not a true assumption if for example, a problem in once component tends
to cause problems in another component. In such cases the mode based approach will

outperform the component based approach if sufficient data is available for each mode.

Selecting monitors for components

When diagnosing between modes, any available sensor or monitor could be helpful as long as
it can help distinguish at least one mode from another. Similarly, when diagnosing between
components, one chooses a set of sensors or monitors that are sensitive to changes between
any states in that component. Because modes include the states of all components, the
number of sensors needed to distinguish a single component will tend to be fewer than the
monitors needed to distinguish between modes.

In component diagnosis, it is important only to select monitors and sensors that are
sensitive to changes in that particular component. Other sensors will be sensitive to other
components, and including them may result in misleading information especially if not every
mode is realized in the data. The use of fewer sensors and monitors for each component
has the added advantage of dimension reduction. In most cases, using the MIC criterion
to reduce dimensionality is unnecessary when component based diagnosis is used. One can
use the false negative criterion to determine how sensitive a particular sensor or monitor is

to a mode, which can be calculated by following a series of steps

1. Select a component of interest. For example, let us consider a four-component system
[CY,C?,C3,C4], where the first component C! is of interest.
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10.

11.

. Search for historical data for situations where only the component of interest changes.

One would select modes that have different values in C' but the values of C2,C3, C*
remain constant. It is best to select a set of constant values C2, C3, C* where abundant
data is present for all values of C''. Note that because we are only testing one evidence
source at a time, the dimension is small making data requirements easier to meet (100
data points is a good sample size, but 40 will suffice). This means we can be quite

flexible with data collection for this purpose.

. Group the data according to the different states in C'; data from each state value in

C* will be used to evaluate the likelihood p(E?|C, D) (where D is the historical data).

. Select a monitor/sensor of interest E' and obtain corresponding data D’ for that

instrument. Evaluate the set of historical data likelihoods p(D%|c}, D) based on the

monitor/sensor of interest.

. Use the likelihoods from one state p(D?|c}) to diagnose the state based on the maxi-

mum likelihood (C’l is the diagnosed state with the maximum likelihood).

. Determine how frequently the data from state c}c is diagnosed as some other state

n[C # c}|ct]ge when E' is used to make the decision. This is referred to as a false

negative frequency.

Obtain the false negative probability for each component state k by normalizing the
false negative frequency
[C" # cile}]

PICY # chleb]p = 2
[ # Ck|ck‘]E n[cllg]Ez

. The false negative rate is obtained as

n

1 A
FNpi = — > PIC # cilei] g (7.1)
k=1

where n is the number of states component C? can take. FNgi = 1 indicates that
E' is perfectly uninformative, and where FNg: = 0 indicates that E’ is a perfect

classifier.

. Based on FNg: decide whether or not E* should be included to estimate the state of

the component of interest C'!. Generally, it is best to select E* when F Ny is low (for

example, less than 0.5).
Repeat steps 4-9 for other monitors/sensors

Repeat steps 1-10 for other components of interest
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Constructing and evaluating probabilities

After the included evidence has been selected for each component, we can construct their
respective likelihood functions (either by discrete means or kernel density estimation). The
simplest manner to construct the likelihood function p(E|C) is to estimate the function
based on data from all modes where C' has the desired state. However, modes that occur
frequently will be given a lot of weight in this function. It is often better to select the most

likely mode where the component state C(k) is true (denoted as M O C') so that
E|C) = E\M
p(E|C) = max p(E|M)

Note that if all of the evidence FE is selected for every component, then the component
diagnosis results will be the same as the mode diagnosis results if the component states are
independent. The improvement of the component diagnosis result stems from the fact that
only evidence sensitive to the component is used to diagnose the component’s state. When
this is done, it is possible to evaluate any of the possible modes so long as all states for each
component are present in the data.

The posterior probability of the component state is obtained by using Bayes’ Theorem
p(E|C)p(C
p(C|p) = LERE) (7.2
> P(Elck)p(cr)

where

M>DC
One can diagnose the most probable state as the true component. Once all the components
C',C?,...CP are diagnosed (as Ct, C’Q, e ) we can diagnose the mode that contains

the appropriate component states.
m=[Ct,C?,...,CP)

By assuming all component states are independent, it is also possible to evaluate the pos-

terior probability of the modes

p(M|E) = [[p(C" c M|E) (7.3)
k

where C* C m indicates that C* is contained in the mode M, or equivalently, C* takes the
value specified by that component of M. Obviously, the most probable mode is the one

that contains all diagnosed component states.

7.2.2 Algorithm for bootstrapping new modes

Bootstrapping for new modes is done in a manner similar to the technique presented in
Qi and Huang [48]; however, in this chapter, the underlying fault parameters are varied in
order to simulate new scenarios. Considering a control loop with various components, the

algorithm can be done by taking the following steps which are briefly described below:

118



1. Create a model structure for each system component which includes all relevant fault

parameters and unknown parameters if any.

2. If there are unknown parameters obtain data for model identification (for the most
reliable results, open-loop testing) and use gray-box modelling to identify unknown

parameters.

3. Obtain residual error information by subtracting predicted output from observed out-

put.

4. Whiten residual errors by identifying an AR model and applying its inverse to the

residual errors.
5. Estimate a kernel density function from the whitened residual errors.

6. Simulate new process data using the identified model by manipulating the fault pa-
rameters. Disturbances can be generated by sampling from the kernel density function

(smoothed bootstrapping) and applying the AR model to the sampled estimates.

7. Apply monitoring algorithms to both simulated and real process data. Monitor results

are used as reference data for Bayesian diagnosis.

Step 1: Create model structures

This step is highly process dependent. If there are multiple components to the system
(such as the case with a control loop), each of the components has to be modelled. The
model structure should be given such that fault-related parameters can be easily seen and
manipulated. An example of this is given later on with respect to the hybrid tank system.
Because the model in question must make use of parameters that have physical meaning, the
model structure must be derived using a white box or gray box approach, where white box
models are based on first principles and have no unknown parameters, and where gray box
models are constructed based on first principles, but can have simplifications and unknown

parameters (to be estimated using data).

Step 2: Use data to identify gray box models

If one cannot construct a white box model (which is usually the case), one can use data to
estimate unknown parameters in a gray box model. Consider a dynamic model f(z,u,©)

with states x, inputs u and unknown parameters O.

dx
E = f(x,u,@) + &z
This model is subject to an observation function h(x) to yield the observed values y

y = h(z) +¢y
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where the observation function h(zx) is assumed to be known. The predicted values of y can
be obtained by using an ordinary differential equation solver (such as the RK45 method) to
solve for x given u, and then predict y using the observation function h(z). The estimated

value of © can then be obtained by minimizing an error expression
#(t) = RK45 [ (a(t—1), u(t-1), 0)]
© = arg min > @) —y@)]" R [h(E(1) - y(1)]
t

where R is a positive-definite (often diagonal) weighing matrix that represents the noise
variance of each instrument. The purpose of R is to give an appropriate weight to each
element of the observation vector y(t). If y(¢) has only one element, R = 1 is sufficient,
and if all elements of y(t) take the same units, R = I will also be sufficient. Otherwise, one
might want to take the variance of each element in y in order to obtain a suitable metric

for scaling.

Step 3: Obtain residual errors

Residual error calculations require estimates of the hidden state, which can be obtained us-
ing Kalman filtering. In general, the state models are nonlinear, thus an ordinary Kalman
filter will not suffice. It is recommended that more advanced techniques such as the Ex-
tended Kalman filter (EKF), the Unscented Kalman filter (UKF), the Ensemble Kalman
Filter (EnKF), or the Particle Filter (PF) are used. Due to a combination of easy computa-
tion and effectiveness, the Unscented Kalman Filter (UKF) a popular choice for nonlinear
state estimation problems.

The UKF estimates the state given a system that has the following conditions:

dx
E:f(x7u7@)+ax

y=h(z)+ey
gz ~ N(0,Q)
ey~ N(0,R)
where £, ~ N(0, Q) indicates that ¢, is Gaussian white noise with mean zero and covariance
@ (similar conditions are assumed for £, ~ N(0,Q)). If one already has suitable values of

Q@ and R, the residual errors of x and y can be obtained via the unscented Kalman filter.

The residual errors on x (denoted as £;) can be obtained using

z(t) = UKF [f(z(t—1),u(t-1)),p(t—1), h(z),y(1), Q, R]
& = RK45 [f(z(t—1), u(t—1), ©)]

=T — X

where x is the more reliable estimate (as it uses observations y), and & is the predicted

value without considering noise (a less reliable estimate which does not use y).
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Meanwhile the residual errors on y (denoted as €,) can be obtained using

<
Il
>

(z(t))

8Ay y—9

The values for () and R are often used as tuning parameters which express the reliability
of the model and observations respectively. Large values in () assume the model is less
reliable, but large values in R assume that the observations are unreliable. It is also possible
to estimate ) and R from data using a technique that is similar to the EM algorithm. The

technique makes use of the following steps:

1. Start with initial values for @) and R. If the system changes slowly and the model is

fairly accurate, a good initial estimate of R can be obtained using

> (i) —yli - 1))2]

=2

1
= —di
Ry 30n —1) iag

where diag(x) is the same as the MATLAB command diag(x) which takes a vector
x and constructs a diagonal matrix out of it. An initial value of () can be obtained by
analysing the Ry and the observation function h, generally, it is best to choose large

values for @) initially, so that the observations carry more weight than the model.

2. Use Kalman filtering to estimate states given values chosen for () and R

f(x) = f(z,u(t-1),0)
x(t) = UKF(f(2), 2(t=1), p(t=1), h(x), y(t), Qo, Ro)

where u(t—1) is assumed to be a constant over the given time interval.

3. Estimate a new value for @) using

& =RK45 [f(x(t—1),u(t—1),0)]

=1

4. Estimate a new value for R using
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5. Repeat steps 2-4 until the log likelihood of the data L converges

L=L,+1L,
L, = —% log [(27r)dz|Q’} - %Z[x(z) — 2(0)]" Q" (i) — 2(1)]

Ly = =% log | 2m)|RI| = 5 > [y(0) — 9] R y(i) — 5(0)

where d, is the dimension of z, and d,, is the dimension of y.

After obtaining () and R, one can further tune these values to suit their needs. Scaling for
smaller values of ) will result in smoother state estimates but will be less responsive to
observations; conversely scaling for larger values of () result in rougher state estimates but

will be more responsive to observations.

Step 4: Whitening residual errors

Bootstrapping (and its smoothed counterpart) requires that the residual errors be indepen-
dent and identically distributed (IID). Often times, the residual errors are autocorrelated
but can be whitened by applying an auto-regressive (AR) model. This is done by first
identifying and AR model for both &, and &,

Eo(t) + Arén(t—1) + ... + Apéy(t—n) = £V (t)
1

~ AW

€ = A(z)gx

The whitened residuals are obtained by inverting the model so that

Note that the same whitening procedure should be performed on é,.

Step 5: Kernel density estimation

Recall that the kernel density estimate can be calculated as

— D))"H; [z — D)

~ Y T

where D represents the data points (in this case D = €Y, d is the dimension of z, and H;
is the bandwidth at x;. Also recall that if one is using a uniform bandwidth, H; = H can

be calculated using the normal bandwidth reference rule

Hy = (n(di2)> i s (7.4)
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where S is the sample covariance matrix of the data D = &7 or D = £j/. The kernel density
estimate consists of data and bandwidth matrices corresponding to the data points. Note
that the adaptive bandwidth technique mentioned in Chapter 6 can also be used.

For this step, since the data D = €}/ and D = &} are already obtained, one simply needs
the bandwidth matrix to complete the kernel density estimate.

Step 6: Simulate new data via smoothed bootstrapping

The kernel density estimate forms the basis of the smoothed bootstrap. One can sample

from the kernel density estimate by means of a two-step process

1. Randomly select a data point £5'(i) or £;(i) from the history, where i is a random

integer between 1 and n with uniform probability.

2. Add Gaussian noise to £7'(i) or £(i) with mean of zero and covariance H;. Note that
adding Gaussian noise samples a Gaussian distribution centred around the selected
data point instead of sampling the data point itself; by sampling the kernel function

around the data point, ordinary bootstrapping is converted to smoothed bootstrapping.

The sampling and noise-adding is repeated for the number of times the simulation is desired.
After smoothed bootstrapping, the AR filter is used to generate disturbances that act

similarly to the original case.

N S
ex—A(z)sx
R 1
5y:A(z)sy

The disturbance sequences can be applied to the process and observation models (f(z, u, ©)
and h(x) respectively) to generate new samples for y. New modes can be created by varying
the parameters © in the gray box model f(z,u,©) that corresponds to different faults, but
the step of generating noise from bootstrapping remains the same for each new simulated

mode.

Step 7: Apply monitoring algorithms

The monitoring algorithms are process specific, and can be applied to the additional simu-

lated data in the exact same manner as the original data.

7.3 Illustration

In this illustration, we will consider the hybrid tank system which will also be presented
in the practical application later on (in Section 7.4); a schematic is available in Figure 7.2.
The hybrid tank system has four components each with two states, resulting in 16 modes

in all. The four components are the flow sensor into tank 1 (F'M;), the flow sensor into
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tank 2 (F'Ms), the valve between tanks 1 and 2 (V1), and the valve between tanks 2 and 3
(V2). Modes will be described in terms of bias in F'My, F My (B, Bs respectively) and leaks
caused by opening the valves V1, Vs, (L1, Lo respectively); the mode vector in this example
is [B1, Ba, L1, Lo] where each component can take the state 0 (where the problem does not

exist) or 1 (where the problem does exist).

Vs Vs
—><t— —><t—
v, v,
—><t— —><t—
ank ank ank !
T 1 T 2 T 3
N
\ Vv, v, ‘
FM, \ ‘ FM,
| |
L/ \ V7 VB Vs / \ ]
J f ACH:

Figure 7.2: Hybrid tank system

The monitor selected for this system consists of an augmented Kalman filter and cal-

culated pump model prediction errors. For the original filter, the state model is given as

follows
% = A7 gi O [le + hr} + LIM] tex,
dd)? e :—02 (X372 n] + 1 | X‘Z{“’__Xill 7ty X‘?__Xj?i/g] +ex,
dd)i?) = A7t gz —Cs [X§/2 + hr:| + L1M] e
Y =IX +ey

where the state vector X consists of the three level indicators, and the input vector U
consists of the flow rate measurements into Tanks 1 and 3. The state is augmented to

include four additional states, B, B2, L1, Ly representing bias and leak parameters which
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are ideally constant

d B
dstlzo
T:ZO

When augmented, the additional state covariance entries in () are set to be small values as
the monitored values are believed to be relatively constant. Small values in @ also mean
that the monitored results are smooth.

The four monitored values are obtained by applying the unscented Kalman filter to the
augmented model. A MATLAB implementation of the unscented Kalman filter is available
on the MATLAB file exchange, courtesy of Yi Cao of Cranfield University, and is presented
below. For the original version, one can visit
http: //www.mathworks.com/matlabcentral /fileexchange/18217-learning-the-unscented-kalman-
filter

1 function [x,P]=ukf (fstate,x,P,hmeas, z,Q,R)

2 % UKF Unscented Kalman Filter for nonlinear dynamic systems

3 % [x, P] = ukf(f,x%x,P,h,z,0Q0,R) returns state estimate, x and state covariance, P
4 % for nonlinear dynamic system (for simplicity, noises are assumed as additive):
5 % x_k+1 = f(x_k) + w.k

6 % z_k = h(x.k) + v_k

7 % where w = N(0,Q) meaning w is gaussian noise with covariance Q

8 5 v = N(0,R) meaning v is gaussian noise with covariance R

9 % Inputs: f: function handle for f (x)

10 % x: "a priori" state estimate

11 % P: "a priori" estimated state covariance

12 % h: function handle for h(x)

13 % z: current measurement

14 % Q: process noise covariance

15 % R: measurement noise covariance

16 % Output: x: "a posteriori" state estimate

17 % P: "a posteriori" state covariance

18 %

19 %

20 % By Yi Cao at Cranfield University, 04/01/2008

21 %

22 L=numel (x); $numer of states

23 m=numel (z); $numer of measurements

24 alpha=le—3; $default, tunable

25 ki=0; $default, tunable

26 beta=2; $default, tunable

27 lambda=alpha”2x (L+ki)—L; %$scaling factor

28 c=L+lambda; $scaling factor

29 Wm=[lambda/c 0.5/c+zeros(1l,2+L)]; $weights for means

30 Wc=Wm;

31 Wc(l)=Wc(l)+(l—alpha“"2+beta); $weights for covariance
32 c=sqgrt(c);

33 X=sigmas(x,P,c); %$sigma points around x

34 [x1,X1,P1l,X2]=ut (fstate,X,Wm,Wc,L,Q); %unscented transformation of process
35 % Xl=sigmas(x1l,Pl,c); %$sigma points around x1
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36 % X2=X1—x1(:,ones(l,size(X1,2)));

37 [z1,721,P2,z2]=ut (hmeas,X1l,Wm,Wc,m,R);
38 Pl2=X2xdiag(Wc)*z22"';

39 K=P12/P2;

40 x=x1+K« (z—zl);

41 P=P1—K«+P12';

42

43 function [y,Y,P,Y1l]=ut (f,X,Wm,Wc,n,R)
44 SUnscented Transformation

45 SInput

46 % f: nonlinear map

47 % X: sigma points

48 % Wm: weights for mean

49 % Wc: weights for covraiance

50 % n: numer of outputs of £

51 % R: additive covariance

52 %Output:

53 % y: transformed mean

54 % transformed smapling points
55 % P: transformed covariance

56 % Y1l: transformed deviations
57

58 L=size(X,2);

59 y=zeros(n,1l);

60 Y=zeros(n,L);

61 for k=1:L

62 Y(:,k)=£(X(:,k));

63 y=y+Wm (k) *Y (:, k) ;

64 end

65 Yl=Y—y(:,ones(1l,L));

66 P=Ylxdiag(Wc)*Y1l'+R;

67

68 function X=sigmas (x,P,c)
69 $Sigma points around reference point
70 S%Inputs:

1% reference point
72 % covariance

73 % c: coefficient

74 %Output:

7% X: Sigma points

76

77 A = cxchol(P)"';

78 Y = x(:,ones (l,numel (x)));
79 X = [x Y+A Y-A];

%deviation of X1
%unscented transformation of measurments

$transformed cross—covariance

$state update

covariance update

In addition, two more monitors are included to estimate flow meters using pump speed

signals. Under normal conditions, the output error (OE) model is estimated to predict flow

rates

By (1)

By(t)
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7.3.1 Component-based diagnosis

Offline Step 1: Select components and choose reference modes

In the case of our data, the most frequent mode is the no fault mode [0,0,0,0], thus
for the first component, we will be evaluating the false negative criterion (F'N) between
mi = [0,0,0,0] and mg = [1,0,0,0]. Likewise, for the second component, we will be
evaluating F'N between m; = [0,0,0,0] and ms = [0, 1,0, 0]; this procedure is then repeated
for the third and fourth components which compare mg = [0,0,1,0] and my = [0,0,0, 1]

respectively to m; = [0,0,0,0]. The list of modes for this system is given as follows:

mi 00 0 O
m2 0O 0 0 1
ms 0 0 1 0
ma 0 0 1 1
ms 01 0 0
me 01 0 1
mry 0O 1 1 0
m 01 1 1
m: =|31 0 o o | =ModeBV (7.5)
mio 1 0 0 1
mi1 1 0 1 0
mig 1 0 1 1
mis3 1 1 0 0
mia 1 1 0 1
mis 1 1 1 0
L mi6 | | 1 1 1 1 |

Let us consider the first component, where the reference modes are m; = [0, 0, 0, 0] and
my = [1,0,0,0]. We assume that MATLAB is used, and that data is already sectioned
into different modes in a cell array labelled Data so that Data{1} contains data for m; =
[0,0,0,0] and Data{9} contains data for mg = [1,0,0, 0].

Offline Step 2: Calculate FN criterion for each instrument

The FN criterion for each instrument can be calculated according to the MATLAB code

below which follows steps 1-10 under Selecting monitors for components in Section 7.2.1.

1 function FN = FalseNegativeCriterion (Data)

2

3 ne = length(Data{l}(1,:)); %find the dimension of the data
4 ns = length(Data); %find the number of states for this component
5

6 SFor each piece of evidence

7 for e = l:ne

8 $For each state

9 for 1 = 1:ns

10 %Define the kernel density estimate

11 KDE (i,e) = fKernelEstimateNorm(Data{i}(:,e));

12 end

13 end

14

15

16 SFor each component state

17 Pn = zeros(ns,ne);
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19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

for

end

%$Def
FN =

s = l:ns
$For each piece of evidence
D = Data{s};
n = length(D);
Lik = zeros(n,ns);
for e = l:ne
%Estimate the likelihood from the KDE for each component state
for k = 1l:ns
Lik (:,k) = fKernelDensity(D(:,e),KDE(k,e));
end

%Diagnose most likely mode (here, max defines largest element in rows)

[-,Diagnosis] = max(Lik, [],2);
$Define the proportion of false diagnosis results
Pn(s,e) = sum(Diagnosis # s)/n;
end
ine false negative criterion FN, a row vector with respect to evidence

1/ (ns—1)*sum(Pn);

Given the selected modes for component 1 (m1,mg), one could obtain the false negative

criteria for each instrument using the following code

1

FN =

FalseNegativeCriterion (Data(1l,9)

After calculating the F'IN criteria for all pieces of evidence, one can make a decision as

to which pieces of evidence to include for that component.

Offline Step 3: Obtain kernel density estimates using selected monitors

For each mode that occurs in the data, we evaluate the kernel density based on the selected

evidence. Consider the variable EvidenceSelection which is a cell array that contains a

vector of selected evidence in each cell. The kernel density estimate can be obtained as

© W N U s W N

e e e
TR W N = O

nc =

nm =

sfor

for

4; %number of components

length (Data); %number of modes in the data

each component
c = l:nc
%$obtain selected evidence

ind = EvidenceSelection{c};

$for each mode
for m = 1l:nm
$estimante KDE using selected evidence
if —isempty (Data{m})
KDE (m,c) = fKernelEstimateNorm(Data{m}(:,ind));
end

end
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Online Step 1: Calculate likelihoods for a new data point

The Bayesian diagnosis algorithm starts off with evaluating likelihoods of modes. Here
however, we need to take into account different pieces of evidence selected for components.
Thus, the likelihood matrix Lik for evidence e will have columns pertaining to modes and

rows pertaining to components.

1 [nm,nc] = size (KDE);

2

3 %for each mode

4 for m = 1l:nm

5 $for each component

6 for ¢ = 1l:nc

7 %selected evidence index

8 ind = EvidenceSelection{c};

9 %$Evaluate likelihood of mode if it appears in the data
10 if —isempty (KDE (m, c) .bwm)

11 Lik (m,c) = fKernelDensity (e (ind),KDE (m,c));
12 end

13 end

14 end

Online Step 2: Calculate component likelihoods

The component state likelihoods are calculated by going through all the modes having
that state, and using the largest likelihood. Determining whether or not a mode has the
right component state requires the use of the ModeBV variable defined in Eqn (7.5). As an
example, if we wish to figure out the modes where component 1 is equal to 0, we search
through all elements of the first column in ModesBV and note the rows where the element is

1. The code below, performs this search for all applicable modes and all component states.

1 [nm,nc] = size (ModesBV) ;

2 %Find the number of component states for each column

3 mc = max (ModesBV);

4

5 ApplicableModes = cell(l,nc);

6 S$For each component, create a new ApplicableModes matrix
7 for c = l:nc

8 ApplicableModes{c} = zeros (nm,mc(c));

9 $For each component state, search ModesBV

10 for ci = 0:mc(c)

11 %A binary matrix having 1 where the mode matches component state
12 ApplicableModes{c}(:, (ci+1l)) = ModesBV(:,c)==ci;
13 end

14 end

After the search for applicable modes has been performed, we can calculate the likelihoods
for each component state by selecting the most probable likelihood out of all applicable

modes.
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LikC = cell(1l,nc);
%$For each component
for ¢ = l:nc
%$For each component state
for ci = 1:(mc(c)+1)
$Use the maximum likelihood of applicable modes
aModes = find( ApplicableModes{c}(:,ci) );
LikC{c}(ci, 1) = max(Lik(aModes,c));

© 0 N O Uk W N =

end

=
o

end

The result LikC contains likelihoods for each component state under each component.

Online Step 3: Bayesian inference

For each component, there are prior probabilities for each state. The posterior can be

calculated using typical Bayesian methods.

%$For each component

for ¢ = 1l:nc
post{c} = LikC{c}.*Prior{c};
post{c} = Post{c}/sum(Post{c});

UL W N =

end

Note that for each component ¢, LikCc contains column vectors of likelihoods, and Priorc

contains column vectors of prior probabilities of the same size. The mode can be diagnosed

by selecting the state values of highest probability for each component.

Online Step 4: Obtain posterior for modes (Optional)

If one wishes to display the posterior probability of the modes (assuming that the states

are independent), one can use Eqn (7.3), which, in MATLAB takes the following form:

1 PostM = ones(nm,1);

2 S$For each mode

3 for m = 1l:nm

4 %$Find the component state indices

5 $because zero is first index, (index = value +1)
6 CompInd = ModeBV(m, :)+1;

7 %$For each component

8 for ¢ = 1l:nc

9 %$Product of applicable posterior probabilities
10 PostM(m) = PostM(m)+Post{c} (CompInd(c));

11 end

12 end

7.3.2 Bootstrapping for additional modes

Here we discuss the technique of bootstrapping for more data. Because the end-goal is to

produce more learning data, this entire technique is performed offline. If combining the two

techniques, the bootstrapping procedure is completed before the first step is taken in the

component space approach.
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Step 1: Identify the model

The original model is defined in MATLAB according to the function Tanks, which yields

the

differential dX given the input flow rate U, current level X, and the parameters A.

(tank cross section area), C1,Cy, Cs coefficients for the drain, and Bj, Be, original bias or

scaling parameters for the flow rates.

Ut W N =

function dX = Tanks (U, X,Ac,Cl,C2,C3,B1,B2,Ho)

dX(1,1) = ( BlxU(l) — Cl*(X(1l)+Ho) (0.5) )/Ac;

dx(2,1) = (—C2x (X (2)+Ho) " (0.5))/Ac;

dx (3,1) = ( B2xU(2) — C3%(X(3)+Ho) " (0.5) )/Ac;
end

The level prediction is obtained using the RK45 method

© 0 N OOk W N =
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function Y = HybridTanks (U, X0,Ac,C1,C2,C3,B1,B2,Ho,Ts)
%$Restrict the values from being negative

options = odeset ('NonNegative', [1,2,3]1);

%u has rows for t and columns for components (in this case 2)
[nt,nu] = size(U);

X = X0;

for t = 1l:nt
u = 0P (k,:);
dXu = @(t,X) Tanks(u,X,Ac,Cl,C2,C3,B1,B2,Ho);

[—,vX] = oded5(dXu, [0,Ts],X,options);
X = vX(end, :);
X (X>100) = 100; %Upper limit on X
Y(k,:) = X;

end

the

The parameter of the model Theta = [Ac,C1,C2,C3,B1,B2,Ho] can be identified by

optimization technique of your choice; for example, in MATLAB, one can use fminunc.

W N U e W N

$U, Y X0 and Ts are already defined earlier
ThetaO = [Ac,Cl1,C2,C3,B1,B2]; %Initial Parameters

%$Set up objective function
Yhat = @(Th) HybridTanks (U, X0,Th(1),Th(2),Th(3),Th(4),Th(5),Th(6),Th(7),Ts);

Objective = @(Th) sum( sum( (Yhat (Th) — Y )."2 ) );

Theta = fminunc (Objective, ThetaO);

The function fminunc is used for this purpose, but it may be desirable to include constraints

on parameter values. Furthermore, C'1, Cy, C3 could be forced to be equal, as the tank outlets

are

identical. This helps reduce dimensionality of the search.

Step 2: Obtain residual errors

When identifying model error covariances, it is required that the ) and R matrices are
identified first. The first step is to set up the UKF so that state errors Xe = ¢, and
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observation errors Ye = ¢, are reported.
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function [X,P,Xe,Ye] = TankUKF (X0,Y1,U0,P0,Theta,Q,R,Ts)
%$Set up differential equation model
dTank = @(t,X)Tanks(X,u,Th(1),Th(2),Th(3),Th(4),Th(5),Th(6),Th(7),Ts);

%$Set up predictor for differential equation model
options = odeset ('NonNegative', [1,2,3], 'InitialStep', (Ts/10));
function Xf = Ftank(X,Ts)

X = X.*x (X>0);

[-,vX] = oded5(dTank, [0,Ts],X,options);

Xf = (vX(end,:))"';

end

%state transition and observation functions
ftank = @(X) Ftank(X,Ts);
htank = @ (X) X;

%UKF result
[X,P] = ukf (ftank,X0,P0,htank,¥Y1,Q,R);

%Residual error in X
Xe = X—ftank (X0);

%$Residual Error in Y
Ye = Yl—-htank (X);

Now that we have a function to define prediction errors in X and Y, we can iteratively

estimate () and R
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%Y, U, Ts and Theta are already defined

$Initial values for $0$ and $R$ are already chosen

[nt,—] = size(U);
X =Y(:,1);
P =0

%Obtain covariance constant for x and y log likelihoods
K = —0.5x( log( (2+pi)~ (length(Q))xdet(Q) ) + log( (2xpi)~ (length(R))=xdet(R) ) );

%Cholesky decomposition for easy inversion
Qr = chol(Q);
Rr = chol(R);

LogLik0 = —1/0;
dLog = 100;

$Iterate the estimation of Q and R until log likelihood converges
while dLog > le—5

LogLikl = 0;

for t = 2:nt

[X,P,xe,ye] = TankUKF (X,Y(t,:),U(t-—1,:),P,Theta,Q,R,Ts);
Xe(t,:) = xe;
Ye(t,:) = ye;

%Use a more accuate expression for inversion

%  sum((Xe\Qr)."2) = Xexinv (Qr)«+Xe'
LogLikX = —0.5xsum((Xe(t,:)\Qr)."2);
LogLikY = —0.5xsum((Ye(t, :)\Rr)."2);

LogLikl = LogLikl + K + LogLikX + LogLikY;

end

132




31
32
33
34

Q = cov(Xe);

R = cov(Ye);

dLog = LogLikl — LogLikO0;

end

This procedure not only estimates covariances Q and R, but also the residual errors ¢, = Xe

and €, = Ye can be obtained from the final iteration.

Step 3: Whitening residual errors

Residual error whitening can be performed by estimating an AR model, and applying it

to the data. There are many techniques that can be used to estimate an AR model, and

MATLAB has a command Model = ar(y,n) strictly for this purpose. It can be applied to

all elements of the noise in X and Y as follows

%n is your selected model order
for 1 = 1l:length(Q)
ARx{i} = ar(Xe(:,i),n);
end
for 1 = 1l:length(R)
ARy{i} = ar(Ye(:,1i),n);
end

N OOt R W N =

After the model has been learned, it is possible to whiten the residual errors by applying

the model. First, we want to create a data object so that
€ =[et,64—1,Et-2,+ - Et—n)

This can be done using the following code

1 for k = 1l:length(Q)

2 %Construct the desired noise sequence for each residual sequence k
3 XEk = zeros(length(Xe(:,k))—(n—1),n);

4 $For each coefficient of A

5 for 1 = 1:n

6 xe = Xe(:,k);

7 $remove the first n — i data points

8 xe(l:(n=1)) = [1];

9 $remove the last i—1 data points

10 xe ((end—i+2) :end) = [];

11 $Place the result in the kth XE matrix
12 XEk (:,1) = xe;

13 end

14 xe{k} = XEk;

15 end

The output of the AR modeling step in MATLAB is such that

gf = A(D)er + A(2)er—1 + ... + A(n)er_(n—1)

=g x A

In MATLARB, given the XE variable, the whitened output is obtained as
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$For each residual error sequence
for k = 1l:length(Q)

A = (ARx{k}.a)';

Xew (:,k) = XE{k}*A;

T W N =

end

The final product Xew contains the whitened residuals of Xe. This procedure is repeated
for residual error sequences in Y as well.
Step 4: Bootstrapping residual errors

When running a new simulation, new residual error sequences must be generated. This can

be done by first obtaining the kernel density estimate

$For each X residual error component
for k = 1l:length(Q)
KDE_xew (k) = fKernelEstimateNorm (Xew (:,k));

end

$For each Y residual error component
for k = 1l:length(R)
KDE_yew (k) = fKernelEstimateNorm(Yew(:,k));

© 0 N W N

end

Then, data points in the history can be randomly selected

$nt is the number of time samples desired in the simulation
XewBS = zeros(nt,length(Q));
%$For each X residual error component
for k = 1:length(Q)
*Select data from KDE object
Data = KDE.xew (k) .data;
nd = length (Data);
$For as many time instances desired
for t = 1l:nt

%$Select random index from data

© W N U W N
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ind = round(nd*rand (1)) ;
XewBS (t,k) = Datal(ind, :);

end

== e
=W

end

If these data points were directly used to simulate the noise, the process would be regular
bootstrapping which samples directly from the historical data. Smoothed bootstrapping
on the other hand, samples from the kernel density estimate, which can be done by first
selecting the random piece of historical data (as done in bootstrapping) and then adding
noise that’s sampled from the kernel function. For the Gaussian kernel, one simply samples
from the standard normal distribution, and multiplies the result by the square-root of the
bandwidth. The result is a smoothed bootstrap sample, which is obtained by implementing
the following MATLAB code.

134



for k = 1:length(Q)
%$Select bandwidth matrix from KDE object
H = KDE_xew (k) .bwm;
%$Smooth the bootstrap with Gaussian noise
XewBS (:,k) = XewBS(:,k) + randn(nt,1)*H"0.5;

end

U W N =

The smoothed bootstrapping procedure is performed on residual errors in X above, but the
process should also be repeated in residual errors on Y.
Finally, one has to reverse the AR model to predict a new sequence. The reverse model

takes the form
A(l)Et = —A(2)€t,1 — ... A(n)st_(n_l) + Ezu

where A(1) = 1 by convention. This reverse AR model can be applied using the following
MATLAB code

1 XeBS = zeros(nt,length(Q));

2 S%For each component

3 for k = 1l:length(Q)

4 %Obtain AR parameters and set up noise sequence

5 A = ARx{k}.a;

6 na = length(A);

7 y = zeros(nt+na,l);

8

9 $Reverse model: y = —A(2) y—1 — ... — A(n) y—(n—1) + XewBS
10 %$Time starts at l+length(A), as A pertains to past values
11 for t = ((l:nt)+na)

12 %$Select past inputs for reverse model

13 $wrev reverses vector (we can only construct ascending)
14 ind = wrev( (t—(na—1)):(t=1) );

15 $Predict new output from reverse model

16 y(t) = —A(2:end)*y(ind) + XewBS(t—na);

17 end

18 $remove the first na inputs as they are not used

19 y(l:na) = [];

20 XeBs (k,:) = y;

21 end

This reverse modelling procedure should likewise be performed on residual errors in Y in

addition to X which was performed above.

Step 5: Simulating new data from the bootstrap

Once the bootstrapped noise sequence has been generated, this sequence has to be inserted
into a simulation. The simulation itself must contain all aspects of the control loop. For the
hybrid tank system, the control loop is shown in Figure 7.3. In this model, the appropriate
places to add the noise are indicated, as well as the appropriate places to sample outputs.
Simulation can be done using MATLAB code, Simulink or any other desired simulation

software.
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Figure 7.3: Hybrid tank control system

Step 6: Generate new data from monitoring

From the simulated data, monitoring algorithms can be applied. In this case, the monitors
include an augmented unscented Kalman filter for the four components (two sensors and

two valves) and a pump prediction model (for the two sensors).

7.4 Application

In this chapter, only the hybrid tank system will be considered for the following reasons

1. The model is simple enough for most audiences to grasp the nuances of the bootstrap-

ping technique.

2. The monitors for this system have already been explained, so that the monitor selec-

tion results for this system will be most meaningful.

3. Unlike the industrial system, we have control over what modes appear in the data so
that we can easily validate performance for modes that do not appear in the historical
data.

Experimental data was obtained for the 16 possible modes, roughly one hour’s worth of
data for each mode. The nonlinear model was estimated using the Prediction-Error method,
based on the lab data containing no faults. The closed-loop behaviour was then simulated
for each of the 16 possible modes.

The first purpose of this experiment is to assess how the bootstrap simulation approach
performs. The second purpose is to assess how well the mode-space method and component-
space method are improved by replacing simulated data with real process data. For the
mode-space method, replacing simulated data with process data for a single mode will
improve the result for that mode, resulting in a significant but localized improvement.

Conversely, for the component-space method, the same data replacement for the same
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mode should improve results in diagnosing all components, resulting in a slight but more
widespread improvement. For realism, real data is only applied to the most common modes,
namely, normal operation and modes with a single fault occurrence.

Because the system has already been modelled, the mode space and component space
methods are compared to another intuitive method, the model-based approach. The model-
based method functions similarly to the component-space method, except only the corre-
sponding UKF fault parameter estimate is used to diagnose the fault. If the UKF reading for

fault parameters exceeds a certain boundary, the corresponding fault is considered present.

7.4.1 Monitor selection

When setting up the component space diagnosis approach, the monitors had to be selected
based on their sensitivity toward that component’s faulty state. It was found that leaks
did not affect the pump-based bias monitors, thus these monitors were discarded when
diagnosing bias. Additionally, because of the complex interactions between bias and leaks
when implmenting the UKF, both bias and leak parameters were used for Tank 1 when
diagnosing leaks and bias in that tank. Likewise, both UKF parameters are included when

diagnosing bias and leaks in Tank 2. A summary of monitor inclusion is given in Table 7.1

Table 7.1: Included monitors for component space appraoch

Bias Tank 1 Bias Tank 2 Leak Tank 1 Leak Tank 2
UKF B, yes no yes no
UKF Bs no yes no yes
UKF L, yes no yes no
UKF L, no yes no yes
Pump B; yes no no no
Pump B> no yes no no

7.4.2 Component diagnosis

The three diagnosis methods were tested using monitor results obtained from the laboratory
setup. For the first trial, diagnosis was performed using only simulated data for training.
For the second trial, diagnosis was performed using experimental data from the normal
operation. Finally, for the third trial, experimental data was included from all modes with
a single fault. In all runs, each method attempted to diagnose the mode and the individual
faults. Mode diagnosis results are shown in Table 7.2 and component diagnosis results are
shown in Table 7.2

One of the first observations that can be made is that it was more difficult to diagnose the

mode than it was to diagnose the individual component faults. This is expected, as the mode
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Table 7.2: Misdiagnosis rates for modes

all simulated real data: ny <0 real data: ny <0
model driven 42.7 % 38.5 % 30.3 %
mode space 50.3 % 40.3 % 22.1 %
component space 42.6 % 37.9 % 23.1 %

Table 7.3: Misdiagnosis rates for component faults

all simulated real data: ny <0 real data: ny <1
model driven 134 % 12.6 % 9.12 %
mode space 20.1 % 15.8 % 8.9 %
component space 12.3 % 11.3 % 6.6 %

will be considered as misdiagnosed even if all components are correctly diagnosed except
one. For example, if the three out of four faults were correctly diagnosed, the misdiagnosis
of a single fault would mean that the entire mode is misdiagnosed. Misdiagnosis rates are
therefore expected to be two to four times higher for modes than the individual faults.

It was also found that the performance of the mode space method was inferior to that of
the component space method. This is best explained by the fact that diagnosing based on
component space was simpler than diagnosing based on modes. There are fewer distributions
to estimate when diagnosing the presence of each fault. Furthermore, monitors not sensitive
to the fault can be discarded, further reducing dimensionality of the distributions to be
estimated.

While the component-based method has its merits in this application, we should note
that this method assumes that component states are independent of each other. That as-
sumption holds true for this system as the leaks and bias were introduced independently.
The mode space approach does not make such assumptions; thus, if sufficient data is avail-
able for all modes, the mode space method becomes more practical, as it can better take
into account interactions between states of different components.

Adding experimental data to the learning dataset (first the normal mode, and then
single fault modes) was found to improve performance, especially the mode space approach.
Improvements from adding experimental data indicated that the model was not completely
able to replicate the process; however, simulated data did provide valuable information
for diagnosis as performance was still acceptable when only simulated data was used as a
reference. Adding experimental data had a more balanced effect when it was introduced in

the component space approach. Every time experimental data was included for a mode, half
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of the distributions in the component space approach were effected, but only one distribution
in the mode space was affected. Thus, the component space approach had a more evenly
spread benefit.

These trends can be observed in Figure 7.5 where including the normal operating mode
(mq) decreased its misdiagnosis rate, but left other modes fairly untouched. This is also true
when experimental data from single fault modes (ma, ms, ms, mg) was added; misdiagnosis
rates for these modes decreased, but the other modes were left untouched. Conversely,
when observing Figure 7.4, including experimental data from these modes affected the
misdiagnosis rate of all modes, usually resulting in a decreased misdiagnosis rate for modes

on average.
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Figure 7.4: Diagnosis results for mode space approach
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Part 11

Application
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Chapter 8

Accounting for ambiguous modes
in historical data: A Bayesian
approach

8.1 Introduction

This chapter discusses the application of the second-order parametrization method, which
is useful when the historical data contains ambiguous operating modes (i.e. uncertain cases
where more than one mode is possible). Ambiguity occurs when information is missing
from one or more problem sources. For example, let us say that there are two components,
an sensor and a valve. The sensor can develop bias, while the valve can become sticky. If
bias is known to exist, but it is unknown whether the valve is sticky or not, then there are
two possible modes, one mode having bias without stiction, and the other having bias with
stiction.

When ambiguous modes are in the data, the resulting probabilities can have ranges.
The second-order method is used to combine prior probabilities along with one or more
likelihoods in order to obtain a final result with probability boundaries. The approach

consists of the following steps:
1. Set up a method for calculating likelihoods given 6: p(E|M,©))
2. Calculate second-order approximation of likelihood expression

3. Combine likelihood expressions with the second-order combination rule to obtain final

diagnosis result

4. An option to group monitors together into approximately independent groups
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8.2 Algorithm

8.2.1 Formulating the problem

When ambiguous modes M are present in the data, the likelihood expression takes the
following form:

S(E|M)n(M) + ZM 9{%}S(E|mk)n(mk)

mg D

n(M)+ 3 0{mIn(my)

m DM k

p(E|IM,0) = (8.1)

where n(my,) is the number of times my, appears in the history, and S(E|my) is the support
function for evidence E given my; here, the term S(FE|my) is calculated in the same manner
as likelihood

_ n(E[M)
_ n(E|M)
S(EIM) = = 3°

The only difference from the likelihood is that my can be an ambiguous mode. The terms
H{mﬂk} are unknown and represent the proportions of data in an ambiguous mode m; which
belongs to one of its specific modes M C my.

n(M|my)

o{ My = =p(M
(B0 = ) ()
The unknown parameters G{mﬂk} can be used to define the probability boundaries, namely,

the plausibility (the maximum probability) and the belief (minimum probability)

Bel(E|M) = m@inp(E]M, O)
PIE\M) = mgxp(E]M,@)

The challenge with the expression in Eqn (8.1) is that it is difficult to use Bayesian methods
to combine likelihoods with priors, as the resulting expressions are increasing in complexity
with respect to © (where O represents the collection of all § parameters). In order to
manage this complexity, the second-order Taylor Series approximation is used. When this
approximation is applied, a simple updating rule can be derived and the resulting belief

and plausibility are relatively easy to obtain.

8.2.2 Second-Order Taylor series approximation of p(FE|M, ©)

The Taylor series approximation makes use of differentiation in order to make an approxi-

mation around a reference point ©. The univariate expression is given by

L[y, L I
dx |, 2 da?

T

fz) =~ f(z)+ A(m—fc)z—t-... (8.2)
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where Z is a reference point around which the approximation is centred. However, the
expression p(F|M,0) is a function of multiple variables ©, thus a multivariate Taylor
series approximation is needed. In this case, a second-order multivariate Taylor Series

approximation is desired:

A~

AO=6-0
A 1
p(E|M,0) = p(E|M,0) + JAO + 5A@THA@ (8.3)

where J and H are Jacobian and Hessian matrices

[ 9 p(EIMO) 9 p(E|M6) 9 p(E|M0)
J = L
&% p(E|M.0) & p(EIMO) 9 p(EIMO) T
9 0{ 71 0 0{ 101 s} 0 0{ 101 )
9% p(E|M,0) 9% p(E|M,0) 9% p(E|M,0)
H_ | 00ms10 00 0 0{pe? 0 0{ = }0{
0 p(E|MO) O pENME) . 0 p(EPME)
| 0 0{ 10 0( =t 0 0{ e 0{ s} 0 0{ )

The expressions for the partial derivatives with respect to p(E|M, ©) are obtained by differ-

entiating Eqn (8.1). For compactness of notation, we introduce S and n and 6 as vectors.

S = [S(E|ma), S(E|m),. .., S(E|my)]
n = [n(mq),n(my),...,n(m,)]
6= [0{2L},0{AL),... 002

The partial differentials are then given as

0 p(E‘M, @) ’TLZSZ _ n; Zk: Sknkek

96  Sumbe (X, mbk)
0" p(BIM,8) __miSj+n;S;  miny 3y Spmubr
06;0 Oj (Zk nké)k)Q (Zk nkek)g

Reference point: The informed transformation

The second-order Taylor series approximation requires a reference point for © in order to
obtain expressions for each likelihood. The informed transformation makes use of the most
credible assignment of © as a reference point based on prior probabilities. As an example, let
us consider a three-mode system with the following priors: p(m1) = 0.5, p(mso) = 0.25 and
p(ms3) = 0.25. Now let us say that there is a body of evidence belonging to the ambiguous

mode {mi,ma}. If, according to the prior probabilities, mode m; was twice as probable as
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mode msy then the most credible allocation is
0.5

0{{m1 m2}} p(m1|{m17m2}) m = 2/3
0.25 13
{{ml m2}} p(m2|{m17m2}) m /

where 6 indicates a most credible estimate. Similarly, consider body of evidence belonging
to the ambiguous mode {mg, m3} where the priors of my and mg are equal. The most

credible allocation in this case is

0.25
Oy} = plmal{me ma}) = G557 5 = 1/2

0.25 5
iy} =pmsltme,msh) = o5 s =1

This technique to obtain credible allocation is called the informed transformation as it
is based on information from prior probabilities. In general, the informed transformation
é{%} is given as
__ pM)

> p(M)

MCmy,

{2 (8.4)

This transformation also yields the informed likelihood p(E|M) by substituting © in for ©
in the likelihood expression in Eqn (8.1)

P(EIM) = p(E|M, ©)

8.2.3 Second-Order Bayesian combination

Combination method

Two types of combination need to be considered: the combination of multiple likelihoods and
combination with a prior. In both cases, two second-order approximations are multiplied
together and all terms that are third order or higher are discarded. The difference lies in the
normalization. For combining likelihoods, normalization is not needed, but when combining
with a prior using Bayes’ Rule, normalization must be performed.

The goal for likelihood combination is to express the joint probability of two independent

pieces of evidence.
p(E1, B3| M, ©) = p(E1|M, ©)p(Es| M, ©)
p(E1|M,0) =~ p(E|M) + JLAO + %A@TﬂlA@
p(Bs| M, ©) ~ p(Ea| M) + JoAO + %A@THzA@

When ignoring terms of third order and higher, the joint probability must also be expressed

as second-order

1
p(Ey, B3| M,0) ~ p(Ey, Eo| M) + J12A0 + 5A@THHA@
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By multiplying the second order approximations of p(F;|M,©) and p(E2|M,O) and then
discarding terms that are third order and higher, one obtains a rule for updating key terms
P(EL, Eao| M) = p(Ey |M)p(E2| M)
Ji2 = p(E1|M)J2 + p(E2|M)Jq
Huz = p(E1|M)Hz + p(Ez|M)Hy + J3 Jy + J{ J»
After the independent likelihoods are combined, they can be combined with a prior distri-
bution p(M|©) in a similar manner in order to obtain the posterior estimate p(M|E,©).

However, for combination with a prior, the normalization constant K needs to be accounted

for. First, we define the prior
1
p(M|©) = p(M) + JpAO + 5A@THPA@

In the static case, there is often no ambiguity in the prior, and in such a case Jp and Hp

are zero matrices. When combining the likelihood with the prior, normalization is required
K =" p(mi)p(Er, Ba|my)
k

The second-order terms for the posterior probability are similar to the likelihood, except

now the terms are normalized by the inverse of K

. 1, .
P(M|Ey, Es) = gp(mk)p(El,Eﬂmk)
1 ., .
Jr = [7a [D(M)J12 + p(E1, E2|M)Jp]
1 .. .
Hp = I7a [p(M)Hy2 + p(E1, E2|M)Hp + J{3Jp + JpJ12]

so that the second-order expression for the posterior probability is

1
p(M|E1, FEy,©) = p(M|Ey, Ey) + JpAO + 5A@THFA@

Diagnosis methods: The simple method

The diagnosis is made by determining which posterior probability has the highest value. A
simple posterior probability estimate is the second-order reference point, p(M|E1, E2) (or
the informed transformation). This value is already given in the second-order probability
calculations and requires no information from J or H. In fact, if the objective is to make
a diagnosis based on the simple point estimate, J or H do not need to be calculated at all.

One can simply use the Bayesian method based on the reference likelihoods p(E1, Ea| M).

Diagnosis methods: The expected value method

The more complex and rigorous estimate is the expected value E[p(M|E)] which assumes a
distribution over the # parameters and calculates the expected value of the posterior. The

posterior expected value is given as
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Elp(M|E)] = C + J*E[©] + % (E[6]" HopE[©] + E[0?” Hp] (8.5)

where Hpp is the Hessian H with the diagonal elements being set to zero, and Hp is a

column vector of the diagonal elements of H. The parameters C' and J* are calculated as
N 1. A
C =p(M|E) — JO + 5@TH@
J*=(J-6TH)
where © is the same value as that given in Eqn (8.4). The terms E[0] and E[©?] are column
vectors with each element pertaining to F [G{mﬂk}] and F [92{%}] These expectations are

calculated assuming that 6 follows a Dirichlet distribution; for each term, the expectation

results are given as follows:

pip(ALy) - — ) (8.6)
L )
a( My | a2( M
Bl ALY] = () + (o)) 2 ®7)
JDRIES] B I

where a(%) represents the prior frequency of mode M happening given the ambiguous
M

mode my. A natural value for oz(m—k) can be calculated as

a(L) = p(Mlmy)n(my) = 0{ 2 }n(my,)

Diagnosing by means of the expected value is advantageous when n(my) is small (hence,
historical data with a large number of ambiguous modes and few data points). Small
values of n(my) lead to large variances of the © parameters. If there is a large number
of data points for an ambiguous mode, the variances of © will be much smaller, and the
expected values will be nearly identical to the much simpler point estimates obtained from

the informed transformation.

8.2.4 Optional step: Separating monitors into independent groups

Overview of motivation

If the evidence E is multivariate with a large number of components, the likelihood function
p(E|M) is high-dimensional and can be difficult to estimate, so it is often desirable to break
down F into independent groups. For example, if £ has ten elements, and each element
can take on two values, then the distribution would be ten-dimensional with 20 = 1024
different possible values (resulting in a 1042 bin distribution). However, if elements in
E can be divided into two independent groups (E; and Es) with five elements each, we

would end up estimating two five dimensional distributions with 2° = 32 bins each. A

148



significant simplification over the former 1024-bin distribution. The joint probability could

be calculated through simple multiplication
p(Ev, Eo|M) = p(Ex[M)p(E2|M)  Eilm L Ea|m

Note that evidence groups can change with each mode, so they only have to be conditionally
independent given the mode. This results in the following Bayesian combination rule
p(E1, Ea| M)p(M
p(M|Er, By) = ( [M)p(M)

Yk (B, Eolmy)p(my)
_ p(Ey|M)p(E2|M)p(M)

Yk p(Er, Eolmy)p(my)

where p(E1, Ea|my) can be broken down differently depending on my. Breaking down like-

lihoods into components gives added utility to the second-order combination rule; when
ambiguous modes are present, the second-order rule is needed to calculate the joint proba-

bilities and their respective ranges.

Dependency metrics

In order to break down the likelihood into separate components, a dependency metric is

required. A popular metric is the Mutual Information Criterion (MIC).

I(Xl;Xg):/X /X p(z1,x2)log (m) dxq dxo (8.8)

where X} and X represent the domain of the PDF p(z1,z2). In this chapter, evidence
components x1 and xo are discrete, thus the MIC is calculated via summation instead of
integration. The MIC yields a value of zero if X; and X, are independent, and a positive

value if they are dependent (and ideally a value of infinity if they are perfectly dependent).

8.2.5 Grouping methodology

The MIC values should first be arranged in a matrix, in a similar manner to covariance. In

order to avoid redundancy, we only consider the lower-left hand portion of this matrix

0 0 0 e 0
| MIC(X,,X1) MIC(X,,Xs) MIC(X, Xs) - 0 ]

By assuming independence between groups, elements of the MIC matrix will be assumed
as zero. In order to minimize the loss of information, elements of the MIC are sorted
from largest to smallest. The grouping algorithm starts with the largest MIC value, which
corresponds to X, and Xj. The first group to be formed is thus {X,, Xp}. The algorithm
then proceeds to the next MIC value. For any newly drawn MIC value for {X,, X;} one is

faced with one of four different scenarios:
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1. Scenario: Variables {X,, X;} are not contained in any previous groups

Solution: Start a new group which contains { X, Xp}

2. Scenario: X, is contained in one of the previous groups but Xj is not
Solution: Add variable X} to the group that contains {X,}

3. Scenario: X, and X} are contained in two different existing groups
Solution: Consider merging the two existing groups together as long as the merged

group is not too large

4. Scenario: X, and X} are both contained in the same existing group
Solution: Do nothing, as the MIC(X,, X}) is already taken into account

This is performed until either all MIC values are accounted for , or if the MIC values become
small (for example MIC < 0.01.

8.3 Illustrative Example of Proposed Methodology
8.3.1 Introduction

We now go over a simple example of how to implement the proposed algorithm. Consider a
control loop as shown in Figure 8.1; let us assume that the sensor may be subject to bias,
and the valve may be subject to stiction. Consider two pieces of evidence in the form of
monitors; Fq is a bias monitor with outputs “bias” and “no bias”, while E5 is a stiction
monitor with outputs “siction” and “no stiction”. Positive results are given as (1) while

negative results are given as (0).

>>+< » Controller ——» Valve —®»  Process -

Sensor -

Figure 8.1: Typical control loop

8.3.2 Offine Step 1: Historical data collection

The first step is to go through the historical data and note the instances where each of the

four possible modes occurs.
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1. my [0,0] where bias and stiction do not occur

2. mg [0, 1] where bias does not occur but stiction does
3. mg [1,0] where bias occurs but stiction does not

4. my [1,1] where both bias and stiction occur

Data should be collected according to each mode. In certain instances, one of these am-

biguous modes may also occur
1. {m1,ms} [x,0] where bias is undetermined and stiction does not occur
2. {mga,m4} [x,1] where bias is undetermined and stiction occurs
3. {m1,ma} [0, x] where bias does not occur and stiction is undetermined
4. {ms3,m4} [1, x| where bias occurs and stiction is undetermined
5. {mq,ma, m3,my} [X, x] where both bias and stiction are undetermined

Such data should be collected according to each ambiguous mode.

8.3.3 Offline Step 2: Mutual Information Criterion (optional)

This step is optional, and considering the data is only two-dimensional, the benefit of
assuming independence is insignificant in this case. However, for the sake of demonstration,
the MIC matrix can be calculated as follows

0 0
MIC = [ MIC(1,2) 0 ]

where M1C(1,2) is calculated as

MIC(1,2) =) > p(E, Ey|m)log

E1 Ep

< p(E1, Ea|M) >
p(E1 | M)p(E2| M)

The MIC matrix must be calculated for every unambiguous mode. For each mode, the two
pieces of evidence are either considered independent or dependent. For example, let us say
that under Mode (1), the probability is distributed as given in Table 8.1.

Table 8.1: Probability of evidence given Mode 1

| E=[0,00 E=[0,1] E=[1,0] E=][1]]
n(E|m1) 70 10 15 5
p(E|lm1) 0.7 0.1 0.15 0.05
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The MIC for Mode 1 is given as

O O|m1) )
MIC = 0 O m lo
p([0,0]}m1) g<p(o x\ml ([x, O0][m1)

([0, 1]
p([0, 1]|m1) log ‘ml
p(]0, x |m1 ([x,1]jm1)

1 O \ml
([1,0]jmq)1
lima) Ogpl><|m1 ><O|m1>
([1 1 \ml
+p<[1,1]m1>1og( e

= 0.7log <m?&;%%)> +0. 1log< 05 >

0.15 0.05
01515 (i )+ v ((ozxom)

= 0.0088259

Because this number (0.0088259) is so small, the two monitors £} and Es can be considered

independent under this mode.

8.3.4 Offine Step 3: Calculate reference values

The reference values © can be calculated offline after the data has been collected; in par-
ticular, we work with the subsets @{m;} of ©. The term 6?

containing all modes that can support m;, for example,

Ormms) = (01 My b O s e{{ml,mm,m}}}
{mQC }_ |:9{ }7‘9{{771717?72712}}’0{{m2?7314}}’0{{m1,m7£72n3,m4} }:|

Note that é{%} =1 and é{%} = 1 by definition. Each element of é{mjncl S} is calculated

as

bmy = M Comy,

For example, let us say that the prior probabilities of the four modes are given in Table 8.2

Then parameters HA{%} can be calculated, for example, as

Table 8.2: Prior probabilities

‘ mi mo ms3 mq
p(Elm1) | 0.6 015 0.15 0.1
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p(m1)

{{mlﬂm}} ~ p(ma) + p(my)
0.6
= m — 0-8
by - p(m2)
{m17m27m3»m4} p(m1) + p(ma) + p(ms) + p(my4)
0.15

=0.15

T 06+0.15+0.15+0.1

However, if the term in the numerator is not contained in the denominator, the value of

N
0{ m;} is zero, for example,

0 N
p(ma) + p(ma)

0{ {m27m4}}

This is because given the ambiguous mode {mg, m4} the probability of m; is zero.

8.3.5 Online Step 1: Calculate support

When a new piece of evidence [E1, E3] becomes available, we calculate the support according
to

TL(El, E2|mk)

S(El,EQ‘mk) = n(mk)

For example, using the values in Table 8.1, if E = [0,0] then S(Ei, E2lm;) would be
calculated as

70
0+10+15+5

S([0,0]jmy) = =0.7;

If 1 and E5 are considered independent given my, the support is calculated separately

n(El\mk)

Using the same example, the probability given the independence assumption would be

n(Ez|my)

S(Erfmy) = e

S(Ez|my) =

70 + 10

S0 Hlm) = 51575 = 08
70 + 15

S([x, 0][my) = * — 0.85

70+10+15+5

As comparison with the first result, the joint probability given the independence assumption

would be
S([0,0]|my) = S([0, x]|my)S([x,0]|lmy) = 0.8 %0.85 = 0.68

which is fairly close to our original result, S([0,0]|m1) = 0.7; thus validating the indepen-

dence assumption.
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8.3.6 Online Step 2: Calculate second-order terms
The second-order terms are calculated as a linearization around ©. The required terms are

1. p(E|M) = p(E|M, ©): required for probability boundaries and all diagnosis methods

5. Op(EIME)

0;

‘é: required for probability boundaries and expected value diagnosis method

3. 9% p(E|M,0)

76, 00, 6: required for probability boundaries and expected value diagnosis method

These terms can be calculated as follows:

p(E|a, 6) = 2 50k
Zk 10,
0 p(E‘M, @) . ’I’LZSZ _ n; Ek Sknkék
. A ) ~\2

9% p(E|M,0)
96,00,

_ n;S;+n;S; nn; Y, Sknkékz{m}

© <Zk nkék)2 <Zk nkék)3

where S and n are horizontal vectors containing the support and frequency of the modes
that can support mode M (both ambiguous and unambiguous). In order to illustrate, let

us consider a more complete version of Table (8.1) shown below in Tables (8.3) and (8.4)

Table 8.3: Frequency of modes containing my

E=[0,00 E=[0,1] E=I[,00 E=]I[1,1]

n(Elm1) 70 10 15 5
n(E|m2) 14 59 6 21
n(E|ms3) 13 7 58 22
n(E|myq) 12 8 23 57
n(E|m1i, ma) 25 15 7 3
n(E|mi, m3) 20 20 6 4
n(E|ma, ma) 19 17 7 7
n(E|ms, mq) 19 8 7 16
n(E|mi, ma, m3,myq) 7 6 6 6

Each element in S and m pertain to an element in é{mz} For example, consider mode

1; the resulting vectors S and n are obtained as

S = [S(E|m1), S(E{m1,m2}), S(E|[{m1,ms}), S(E|{m1, m2, m3, ma})]
— [0.7,0.5,0.4,0.28]

n = [n(m1),n{m1, ma}, n{my, ma}, n{mi, ma, ms, ma}|

= [

100, 50, 50, 25]
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Table 8.4: Support of modes containing mq

E=[0,00 E=[0,1] E=[1,0 E=]I1,1]

S(E|m1) 0.7 0.1 0.15 0.05
S(E|m2) 0.14 0.59 0.6 0.21
S(E|ms3) 0.13 0.07 0.58 0.22
S(E|ma) 0.12 0.08 0.23 0.57
S(E|m1,m2) 0.5 0.3 0.14 0.06
S(E|m1,ms3) 0.4 0.4 0.12 0.08
n(E|ma, ma) 0.38 0.34 0.14 0.14
n(E|ms, mq) 0.38 0.16 0.14 0.32
S(E|m1,ma, m3, ma) 0.28 0.24 0.24 0.24

The function value, as well as the first and second derivative expressions are evaluated at

©. For my, the parameter vector 6 is given as:

6= 1,002} 0y 0
=[1,0.6/0.75,0.6/0.75,0.6/1.0] = [1,0.8,0.8,0.6]

Note that the terms J, H only pertain to the variable terms in O, thus, in the case of my,

0{7+} = 1 is not included because it is a constant.

0 = |0 iy b O iy b U ey |

By taking derivatives according to the variable terms in © the Jacobian and Hessian can

be obtained along with the reference value. Note that the derivative can be taken for other
terms that are not variable, but their corresponding elements in J and H will be zero. For
the purposes of notation compactness, we will only be taking the derivative with respect to
0, the variable elements in © for the mode in question. For example, when my is selected,
J and H take the following form:

~

p(E|m1) = p(E|ma, ©)

gmi _ [ 0p(Em®) 0 pEme) 0 pBlmy.e)

[3 0 01 0 05 0 03 é
9% p(Elm1,©) 9% p(Elm1,0) 82 p(E|m1,0)

0 9% 0 010 02 0 010 03
H™ — 9* p(Elm1,©) 9? p(Elm1,©) 9 p(E|m1,0)

7 - 0 020 6, 0 9% 0 020 03
9% p(Elm1,0) 02 p(E|m1,0) 92 p(E|m1,0)

9 050 0 D 050 05 2 02 P

where the superscript my pertains to mode 1. Using data from Tables 8.3 and 8.4, when
E =0,0] is observed, the reference likelihood is:

A S, 1.0
p(Elmy, ©) — 2=k Skrbi
>k kO

0.7-100-14+0.5-50-0.84+0.4-50-0.84+0.28-25-0.6

100-1+50-0.8+50-0.8+25-0.6

70 +20+ 16 +4.2
= = 110.2/195 = 0.565
100 + 40 + 40 4 15 /
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In a similar manner, the Jacobian terms are calculated as

82 p(E|m1,@) niS,- . n; Zk Sknkék

2 - A “ 2
90 Sl (v, m0,)
. TLZSZ n; 110.2 . ’I’Li(195 Sz — 110.2)
195 1952 1952

Thus, the Jacobian can be expressed as

gma — [ 50(195(0.5)-110.2)  50(195(0.4)=110.2)  25(195(0.28)—110.2)
1952 1952 1952

Likewise, the Hessian terms can be expressed as

92 p(Elmy,0)
00;080,

B _niSj + ani n n;n; Zk Sknkék{m}

- ~\2 ~\3
o <Zk nk9k> (Zk nkak)
niSj + ’I’I,jSZ' n nan1102
1952 1953

. (1102 S; S
i ( 195 ~n; mn,

1952

so that the Hessian takes the following form

2 05 05 2 04 0.
195 50 50 195 50 ~ 50 5
1952 1952 1952
110.3° 0.5 0.4 110.2° 0.4 0.4 110.9°0.28 0.4
H™ 50'50( 195 _50‘50) 5050( 195 _50_50) 5025( 195 — 25 _50)
2 2 2
25’50( 1105°0.5 0 28) 25,50 1105704 0 28) 05,95 ( 110 39,98 0 28)
195 5 5 105 ~ 50 ~ 25 105 ~ 25 ~ 2
1952 1952 1952

Note that these Jacobian and Hessian terms do not assume independence, and are calculated
from joint probabilities of E1, FEs; if independence is assumed, Jacobian and Hessian matrices

have to be calculated for each independent piece of evidence.

8.3.7 Online Step 3: Perform combinations

For some modes, Fy and FE> are considered independent; if this is the case for mode M,
second order terms exist for each piece of evidence. These terms must be combined before

performing combination with the prior probabilities.
P(En, Eo|M) = p(Er|M) p(E2|M)

Jr = p(E1|M)J2 + p(E2|M)J4
Hyp = p(E1|M)Ha + p(Eo| M)Hy + J1 J1 + J{ J2

where Jy, and Hj, are the Jacobian and Hessian of the overall likelihood. If £ and E5 are

considered dependent, then Jy and Hp, are obtained directly from the previous step; no
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combination is required. These likelihood terms are then combined with the prior terms
p(M), Jp and Hp, in order to obtain the posterior terms p(M|E1, Es), Jp and Hp

K = mek (Ey, Es|M)

) 1 ) .
p(M|E1, Es) = EP(M)P(El,EﬂM)
1 .. .
Jr = 17 [D(M)J + p(E1, E2|M)Jp]
1 .. .
Hp = e [p(M)H L, + p(E1, B2/ M)Hp + J{ Jp + JpJ1]

Keep in mind that priors focus on the frequency of unambiguous modes; thus Jp and Hp
tend to be zero matrices.

In the case of our example, p(M) is given in Table 8.2; the likelihood reference p(E7, Ealmq)
was already given to be 0.565; by calculating the reference likelihoods for other modes, we
get the likelihood vector p(E1, Es|M) = [0.565,0.198,0.184,0.168]. From this, the normal-

ization constant is
K = Zp m1)p(Er, Ealm)

= 0.565 -0.64+0.198-0.15+0.184 - 0.15 4+ 0.168 - 0.1 = 0.413

When keeping in mind previous Jacobian and Hessian terms J"™', H™! and that Jaco-
bian and Hessian terms associated with prior probabilities are zero matrices, the posterior

probability along with the Jacobian and Hessian matrices are obtained as

p(m|Er, B) = —-=(0.6- 0.565) = 0.821
1
m1 e =145 J™
TEt = 55 (0.6 +0.565(0]) 5J
=[ —0.0228 —0.0579 —0.0500 |
™= TG (0.6H™* 4 0.565[0] + (J™)T0 + 07 J™) = 1.45 H™

0.0490 0.0492 0.0244
= | 0.0492 0.0493 0.0245
0.0244 0.0245 0.0122

8.3.8 Online Step 4: Make a diagnosis
Diagnosis using the point estimate p(M|E;, Es)

A diagnosis can be made using the reference posterior probabilities p(M|E1, E3). This is
the simplest method available and does not require the calculation of Jp and Hg. The

diagnosis is made by selecting the mode with largest corresponding value of p(M|E1, Es).
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In our example, the set of posterior probabilities was found to be

0.565 x 0.6 0.8207
) 1 | 0198 x0.15 0.0719
PIMIE, E) = s | 0184 x 015 | — | 0.0668

0.168 x 0.1 0.0406

From this example, one would diagnose mode 1.

Diagnosis using the expected value of p(M|E;, E>)

Instead of assuming a point value for p(M|E7, Es) using @, we could assume a distribution
over the possible values of © in order to calculate the expected value of p(M|E1, E2).
Consider mode 1 with its corresponding values Jp and Hp along with the corresponding

parameter vector € from © that can be varied

T
0= [0{ {mlﬁlnz}}’a{{mwlns}}’e{ {mlvmzﬂlﬂsvmél}}}
=[61,6,65)"

Note that because 6{ 21} =1 is not variable but constant, it is now excluded from 6. The
vector of expected values and expected squared values are given as
E[6] = [E(61), E(6:), E(05)]"
T
E[0%) = [E(67), E(63), B(63)]

These expected values are calculated using Eqn (8.6) and (8.7)

Blo ) = o)
L ey
m;Cmy,
a(m) + %)
2rm m m
E0" {5 = : : 5
| a]+| £ am]
m; Cmy, m;Cmy,
where «o(24) is calculated using

my

o) = 07 yn(my,)

myg my

As an example, let us consider the prior probabilities in Table 8.2 and the mode frequencies

in Table 8.3, then the resulting « parameters would be

a(Gs) = 0{ e dn(my, mo)

= 0.8 x 50 =40

The value for a conveys a degree of certainty on é{ﬁ} (where o« — oo indicates complete

certainty). If one wishes to reduce certainty on « it is possible to scale the values for a by
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a value less than 1 (scaling by zero conveys complete uncertainty). Using these values for

a, the expectation E(01) is calculated as
(7 omg )

a(Giang) +almins)

E(6,) = El0{ 55 =

mi,m2

T 40410

al(mrhs) + o2 (Gr)

E(67) = Bl0*{;;1; 1 =

mi,mz - [a(%) + Oz(%)] + [O‘(mrlrf}nz) + Q(%)P
40 + 402
=—— =0.643
50 + 502

When this techniques applied to m using the other ambiguous modes {mq, ms}, {m1, ma, ms, my}

the elements of E(6) and E(6?) are given as follows:

E(6) =[0.8,0.8,0.6]7
E(6%) = [0.643,0.643,0.369] "

The next step is to obtain all the terms in the expression for the second-order expectation
1

Elp(M|E)| = C + J*E[6] + 5 [E[6]" Hop E[6] + E[6°]" Hp)

The first terms C and J* are obtained using the reference parameter values 6. Note that
because the non-variable terms in @ have zero Jacobian and Hessian elements, they are

omitted.

1A A
C =p(M|E)—J6 + 5oTHe

—0.0228 177 08 e T 700490 0.0492 0.0244 0.8
—0.821 — | —0.0579 08 |+ |08 0.0492 0.0493 0.0245 0.8
—0.0500 0.6 0.6 0.0244 0.0245 0.0122 0.6
—0.725
J'=J-6"H
—0.0228 77 70877 [0.0490 0.0492 0.0244
— | —00579 | —| 08 0.0492 0.0493 0.0245
—0.0500 0.6 0.0244 0.0245 0.0122

= [ —0.0910 — 0.1263 — 0.0840 ]

Next, Hpp is obtained by subtracting the main diagonal of H from H, meanwhile Hp
is a vector of the main diagonal of H that was removed from Hpp. For our example, Hpop
and Hp are given as

0 0.0492 0.0244

Hip =] 00492 0 00245
0.0244 0.0245 0

Hp = [ 0.0490 0.0493 0.0122 |
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With all of the expectation vectors and matrix terms defined, the expected value E[p(M |E)]

can be calculated according to Eqn 8.5.

EMMWH:C+ﬁEM+%WWFEmEM+EWFHﬂ
= 0.821

which is almost identical to the posterior probability of mode (1) obtained from the point

estimate.

Diagnosis using the probability ranges of p(M|E1, E>)

While the simple method and the expectation method yield point estimates of the proba-
bility, the second-order approximation can also be used to obtain probability ranges. The

probability is a function of © given by
AO=0-6
1
puﬂExn:ﬁmﬂEy+J$Ae+§A@?HpA@

The belief or lower bound probability is obtained by minimizing p(M|E,©) subject to
the constraint 0 < © < 1 while the plausibility or upper bound probability is obtained
by maximizing p(M|E, ©) subject to the same constraints. Because this is a constrained
quadratic expression, the maximization and minimization problems can be solved using
standard quadratic programming techniques.

While the actual diagnosis can be obtained using either the point estimate or expected
value of p(M|E1, Es), the belief and plausibility can give additional information about the
uncertainty of the diagnosis. Consider a hypothetical result in Figure 8.2 where point
estimate is given by a dotted line, and the uncertainty regions are given in a lighter shades
of gray. In this example, the uncertainty region for mode 2 and mode 3 overlap. Thus while
the system is most likely operating at mode 2, it would be unwise to rule out mode 3, as

under certain circumstances, mode 3 could be more probable than mode 2.

8.4 Simulated Case

The proposed second-order method was tested on the simulated Tenessee Eastman problem.
In this simulation, data was masked as ambiguous based on its resemblance toward other
modes. In the masking process, distributions were estimated for each mode and a likelihood
ratio threshold was set, so that if another mode was likely enough, the data point was
classified as ambiguous. For example, consider the data from mode 1. If there is a data
point d; (consisting of evidence) where the likelihood ratio R between mode k and mode 1
was large enough
R= ZM > Threshold
p(dimi)
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Posterior Probability for
Each Mode

Probability

Mode1 Mode2 Mode3 Mode 4

Figure 8.2: Typical control loop

then the mode mj was added, rendering the mode associated with d; ambiguous. By
manipulating the threshold, certain amounts of data can be classified as ambiguous. For
this simulation case, data was abundant, and the monitors showed fairly clear results.
In order to demonstrate the effectiveness of the second-order method, 50% of data was
deliberately removed from the history, and noise was added.

First, we took a look at the average probability boundaries given for the system. Here,
second order posterior terms were calculated and boundaries were calculated via quadratic
programming. The first set of figures (Figure 8.3) had an ambiguity threshold set so that
30 % of the data had modes with ambiguity. In the second set of figures (Figure 8.4) each
had 70 % of the data belonging to ambiguous modes. From these figures, one can see that
modes 2 and 4 were the easiest to diagnose, with the true probability being notably higher,
and with small probability boundaries. Modes 3 and 5 were the most difficult, with much
larger probability boundaries and a tendency toward mutual confusion. When the amount
of ambiguous mode data was increased from 30% to 70%, probability ranges grew, primarily
from modes 1 and 6; however, there was a slight increase in probability boundaries from
modes 2 and 4. Probability boundaries for modes 3 and 5 were already quite large with
30% ambiguous mode data; increasing the amount of ambiguous mode data from 30% to
70% had little effect.

After evaluating the probability boundaries, we proceed to evaluating overall diagnosis
performance. For the sake of simplicity diagnosis was based on the point estimate method
(from the informed transformation p(M|E) = p(M|E,®)). In Figure 8.5, mode diagnosis
performance was assessed. The performance metric used is percent of misdiagnosed modes.

Three different methods were compared:
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Figure 8.4: Probablility bounds at 70 % ambiguity
1. Ideal Case: This refers to the case where ambiguity is not present. The original
Bayesian method is performed on data before masking techniques were applied.

2. 2nd Order Method: This referes to the case where the second-order Bayesian

method is performed on data containing ambiguous modes.

3. Incomplete Bayesian Method: This refers to the case where ambiguous modes
were present in the data, but they were ignored so that the original Bayesian method

can be performed on the remaining data set.
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The second-order method was compared to the incomplete Bayesian method, where
masked data was simply discarded, and the ideal case, where masked data was known. In
Figure 8.5(a), the three methods performed very similarly thus ignoring the 30 % of the
data that was ambiguous did not significantly affect the result. However, when the amount
of ambiguous data increased to 70 %, the incomplete Bayesian method ignores a significant
amount of data. Thus when there was more ambiguous data, the performance improvement

brought on by the second-order method was significant.

Comparison of ambiguity approaches Comparison of ambiguity approaches

I (deal I (deal
901 [ 2nd Order | 90 [ 2nd Order |4
[ Incomplete [ TJincomplete

Percent Mode Misdiagnosis
Percent Mode Misdiagnosis

(a) 30 % Ambiguous Mode Data (b) 70 % Ambiguous Mode Data

Figure 8.5: TE mode diagnosis error

In addition to diagnosing modes, the state of each individual component was diagnosed.

For this system, the component states were:
1. A/C feed ratio step change (stream 4)
2. B composition step change (stream 4)
3. C header pressure loss
4. A B,C, Feed Composition step change (stream 4)
5. D feed temperature (stream 2)
6. Reactor cooling water inlet temperature
7. Sticky reactor cooling water valve

In many cases, if a mode is incorrectly diagnosed, the correct mode is similar, usually
differing by one or two components. Consequently, component diagnosis tends to exhibit
better performance with fewer false results. Unsurprisingly, when diagnosing components,
the second-order method showed a performance improvement that was similar to the im-

provement shown when diagnosing modes. Results are shown in Figure 8.6.
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Figure 8.6: TE component diagnosis error

8.5 Bench Scale Case

This method was also applied to the lab-scale hybrid tank system where tank leaks and
sensor bias were to be detected. Again, data was masked based on its proximity to other
modes and diagnosis was based on the point estimate given by the informed transformation
p(M|E) = p(M|E, ©).

Mode diagnosis results are available in Figure 8.7. When diagnosing modes, performance
seemed to be relatively unchanged even when 70% of the data was missing; this robustness
toward missing data was again likely due to the abundance of data. In contrast, Figure
8.8 shows results when diagnosing components, where it can be seen that the second-order
approach shows a slightly more significant improvement. While the frequency of diagnosing
the correct mode may not have significantly improved when the second order method was
applied, it appears that the incorrectly diagnosed modes bear more resemblance to the true

mode.
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(a) 30 % Ambiguous Mode Data (b) 70 % Ambiguous Mode Data

Figure 8.7: Hybrid tank system mode diagnosis error
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Figure 8.8: Hybrid tank system component diagnosis error

8.6 Industrial Scale Case

Finally, this method was tested on industrial data, where the on and off conditions were
detected for each subsystem. Data was masked by taking into account proximity with
other modes and again, diagnosis results were based on the point estimate of the posterior
probability p(M|E) = p(M|E, ©).

Mode diagnosis results are shown in Figure 8.9. In a similar manner as the experimental
system, diagnosis results are fairly uniform for both the cases with 30 % ambiguous mode
data and 70 % ambiguous mode data. When diagnosing components however (Figure 8.10),
the improvements for the second-order method appear to be more pronounced; thus, while
a similar number of modes may still be incorrectly diagnosed, it is evident that the incorrect

modes tend to resemble the correct mode more closely.
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(a) 30 % Ambiguous Mode Data (b) 70 % Ambiguous Mode Data

Figure 8.9: Industrial system mode diagnosis error
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Chapter 9

Accounting for ambiguous modes
in historical data: A
Dempster-Shafer approach

9.1

Introduction

Dempster-Shafer theory (DST) has long been considered as a more general alternative to

Bayesian combination; DST directly accounts for ambiguity and has had a wide variety of

adaptation in the literature. However, Dempster-Shafer theory does not lend itself well to

making inference from history-based likelihoods containing ambiguous modes; becuase of
this, DST needs to be generalized in order better fit this task.

As in Bayesian combination, the goal is to combine information from independent sources

of evidence (including prior probabilities). The application of Generalized DST (or GDST)

takes the same form as the second-order method discussed in Chapter 8. This chapter gives

details on how to

1.

2.

Set up a method for calculating likelihoods given 6 parameters p(E|M, ©))

Calculate the Generalized Basic Belief Assignment (GBBA) for both priors and like-
lihoods

Combine the GBBAs to obtain a final diagnosis result

Group monitors together into independent groups (optional)
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9.2 Algorithm
9.2.1 Parametrized Likelihoods

Likelihoods are parametrized in the same way as in Chapter 8
> o 1 S(Elmyg)n(my,)

T 02 n(my)

mpom

p(E|M,©) = (9.1)

where n(my) is the number of times my, appears in the history, and S(E|my) is the support
function for evidence E given my, which, for discrete data is calculated as

n(Elmy)

In this chapter, Eqn (9.1) is used as a basis for calculating Generalized BBAs (or GBBAS).

9.2.2 Basic Belief Assignments

Traditional Basic Belief Assignments

The Basic Belief Assignment (BBA) is a function with respect to the mode and is denoted
as S(my); it is similar to probability except that it can yield support to ambiguous modes
as well (the boldface m is used to represent potential ambiguity). The probability p(M|E)

is calculated using S(m|E) according to

p(M|E,©) = > 0{;2}S(my|E) 9.2)

my :_)m
where the support function (or BBA) S(m/|E) is given as

n(m, F)

S(m|E) = n(E)

(9.3)
Here, n(m, E) is the number of times the mode m and evidence E jointly occur, while n(E)
is the total number of times evidence F occurs. In addition to probability, Dempster-Shafer
theory also concerns itself with belief (the lower-bound probability) and plausibility (the
upper-bound probability). Because p(M|E, ©) is linear with respect to 6 and the coefficients
S(m) on 6 are positive, p(M|E, ©) is maximized by setting € to 1 whenever possible and is

minimized by setting 6 to 0 whenever possible.

Bel(M|F,0) = min [p(M|E,0)] = Y S(my|F)

mrpCm

PI(M|E, ©) = max [p(M|E, 0)] = > S(my|E)

my Qm

Unfortunately, the form of Eqn (9.2) is too restrictive to adequately represent the base

problem in Eqn (9.1). The two most detrimental restrictions of Eqn (9.2) lie in the terms
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S(m) (which function as coefficients on ©). The first restriction is that terms in S(m)
are positive, and the second restriction is that terms must be identical for all unambiguous
modes contained in m. The reasons for relaxing these restrictions have been discussed in
Chapter 5, but they mainly boil down to the fact that Eqn (9.1) is non-linear with respect to
©. The task at hand is to obtain a generalized expression of the BBA that better represents
the problem presented in Eqn (9.1). This can be done by allowing the BBA to have negative

support, and to have different amounts of support for different modes in m.

Generalized Basic Belief Assignments

The generalized BBA (or GBBA) denoted as G is a matrix that can approximate the
expression of p(E|M,0) in Eqn (9.2)

p(E|M,0) = G[:,m]TO[:,m] (9.4)

where @ is the matrix form of © and ®]:, m] is the column of @ that pertains to the specific
mode m (G[:,m]T is likewise the column of G pertaining to m). The expression in Eqn
(9.4) is a first-order approximation of Eqn (9.1)

As an example for the structure of G, let us consider a three mode system myq, mo, ms

with ambiguous modes {my, ma}, {ma, ms}, {m1, ms}. The structure of G and ® are given

as
B mi mao ms3 1
my G{i+} 0 0
mo 0 G{2} 0
G = ms3 0 0 G{ms
{mh m2} G{ mTTlng } G{ m7lryb"2n2 } 0
{m1,ms} | G{;; 70} 0 G{st
| {m2, ms} 0 Cloms b Gl b
i m ma ms3 |
my 1 0 0
ma 0 1 0
o= ms 0 0 1
{mla m2} e{m:rfrlnz } 0{ mTZ”Q } 0
| {mams} |0 0{pEan) oy |

Any value of © that is not set to 0 or 1 is considered to be unknown or flexible. The

approximation for p(F|M, ©®) is then given as

p(E|M,0) = G[:,ml]TQ[:,mﬂ
= G{i 0ot + G{ 0 st Gl G st

mi,m2 mi,m2 mi,m3 mi,m3
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The individual terms of G' can be calculated according to the following heuristic

0 m; Nmy, = 0
Glk,i) = { p(Elm;) m; =my (9.5)
a0k i & Mk
where
. A A 0 p(EIM,©
p(EIM) = p(BIM,©) — Y d(y PUELERE)
mkDM {mik (':)
Op(E|M) _ 9 p(E|M,©)
00k, 1] d 9{% 6

Here, © is the reference value of ® which, for the generalized Dempster-Shafer method is

set to the inclusive value of ©.

®=0"
where
e O is the inclusive value, which is defined by setting all flexible values to 1
e O, is the exclusive value, which is defined by setting all flexible values to 0

When G is defined in this manner, Eqn (9.4) is a first-order Taylor Series approximation of
p(E|m1, ©).
Belief and plausibility can also be calculated from Eqn (9.4) by minimizing and maxi-

mizing p(E|m1, ©).

Bel(E|M) = ngn G[:,m]T O, m]
PI(E|M) = max G[:,m]T O, m]

where © is the set of variable elements in ®[:,m| (i.e. the elements not automatically set
to 1 or 0 by logic). Again, the variables values in ©® are constrained to be between 0 and
1. However, one should note that the elements in G are no longer positive. Consequently,
when calculating belief and plausibility, the minimum is no longer obtained by setting all
flexible values in © to zero; likewise, the maximum is no longer maximized by setting all
flexible values in ® to one. Instead, the belief and plausibility should be obtained using

linear programming methods.

9.2.3 The Generalized Dempster’s Rule of combination

In the same way as Bayesian methods, the Generalized Dempster’s Rule of combination
can be used to combine information from multiple pieces of evidence (including prior prob-

abilities). Originally, Dempster’s Rule of combination is given for BBAs in the following
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form:

Stm) =2 Y Sma)sm)) (9.6)
my=m;Nm;#}
1-K = Y S(my)S(my) (9.7)

m=m;Nm;#0

where K is a normalization constant, to ensure that the terms S(my) sum to unity. In a
similar manner, the Generalized Dempster’s Rule of Combination is applied to the rows of
G that pertain to my, (or equivalently, G[my, :])
1
G12[mk, ] 1_ K Z G1 [mi, :] o} Gg[mj, :] (9.8)

mi=m;Nm;#0

1-K = Z mean,o(G[m;, :] o Gmy, :]) (9.9)

mE=m;MNm; #0

where X oY denotes the Hadamard (or element-wise) product between X and Y, while

mean,o(X) is the mean of the non-zero values of X.

Shortcut combination rule with Bayesian GBBAs

When the Generalized Dempster’s rule is applied and at least one of the two GBBAs
is Bayesian (having no support to ambiguous modes), the resulting GBBA will also be
Bayesian. In such a case, it is easier to apply a shortcut rule that will yield the exact
answer with much less computational burden. Here, we can consider the case where G
is a is a Bayesian prior (expressed as Pj(M)), and where Gy is an arbitrary GBBA, the
resulting GBBA (G12) can be expressed as

1
Glg(mi, mz) = 1_ Kpl(mi)fng(mi) (9.10)
G12(mi, mjz;) =0
1-K = Zpl ) Iny(M) (9.11)

where Ing(m;) is the inclusive probability of m; expressed as

Iny(m;) = Z Ga[my, m;] Gg[:,mi]T@)*[:,mi]
mEdm;
The end result is G12(m;, m;) being a diagonal matrix, with the main diagonals representing
Bayesian posterior probabilities. The shortcut combination rule is particularly useful in a
dynamic setting, where successive combinations will yield Bayesian posteriors pretty quickly;
it is better to simply use a Bayesian prior in the first step and use the short-cut rule for

every successive combination.
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9.3 Illustrative Example of Proposed Methodology
9.3.1 Introduction

To demonstrate how to use the Generalized Dempster’s rule, we consider the same example
as in Chapter 8, the control loop shown in Figure 9.1 where the same modes and evidence

are considered

4>>+<—> Controller ———» Valve ——»  Process >

Sensor -

Figure 9.1: Typical control loop

9.3.2 Offline Step 1: Historical data collection

Again, the first step is to go through the historical data and note the instances where each

of the four possible modes occurs.
1. my [0,0] where bias and stiction do not occur
2. mg [0, 1] where bias does not occur but stiction does
3. mg [1,0] where bias occurs but stiction does not
4. my [1,1] where both bias and stiction occur

Data should be collected according to each mode. In certain instances, one of these am-

biguous modes may also occur

—_

. {my,ma} [X,0] where bias does not occur and stiction is undetermined

[\

. {m1,m3} [x,1] where bias is undetermined and stiction does not occur

w

. {mga,m4} [0, xX] where bias is undetermined and stiction occurs
4. {ms,mq} [1, x] where bias occurs and stiction is undetermined
5. {m1, ma,m3,my} [X, x] where both bias and stiction are undetermined

Such ambiguous cases should be classified under one of these ambiguous modes.
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9.3.3 Offline Step 2: Mutual Information Criterion (optional)

As in Chapter 8, this step is optional. One can reduce the dimensionality of the problem by
assuming independence where the mutual information criterion (MIC) yields a result close

to zero (such as less than 0.01).

0 0
MIC = [ MIC(1,2) 0 ]

where, for example, M IC(1,2) is calculated as
(£, Eo|M)

p
MIC(1,2) (E1, E2lm) 1
“ EZ%:I’ 1 Falm)log <p(E1|M>p<E2|M>>

As in the Second-Order Bayesian method, the MIC matrix must be calculated for every
unambiguous mode. For each mode, the two pieces of evidence are either considered in-
dependent or dependent. For example, let us say that under Mode (1), the probability is
distributed as given in Table 9.1

Table 9.1: Probability of evidence given Mode 1

| E=[0,0] E=[0,1] E=[L,0 E=][L1]
n(E|m1) 70 10 15 5
p(Elm1) 0.7 0.1 0.15 0.05

The MIC for Mode 1 is given as

([0, 0]
MIC = p([0,0]|m1) log< LY >

p([0, x \ml ([%,0]|m1)

0, 1]|my
1] 1
(10, 1]frma) tog <p0><|m1 ><1|m1>

1 O\ml
([1,0][ma) 1
Jima) nglx]ml XO]m1>
([1 1 \ml
1,1]jma) 1
R e o

0.7
= 0.7log [t} +0.11
©8 <(0.8)(0.85)> +0.1og ( 0 15 )
0.15

+0.15log (W) +0.05 log <(Q2[))'((zi15))

= 0.0088259

Because this number (0.0088259) is so small, the two monitors E; and Es can be considered

independent under this mode.
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9.3.4 Offline Step 3: Calculate reference value

Generalized BBAs use inclusive © values (©*) as a reference for © in the same manner
as the second-order Bayesian method uses the informed values (@) The boldface notation

indicates that ®* takes the form of a matrix; in this illustration, ®* takes the following

form:
i 1 0 0 0 T
0 1 0 0
0 0 1 0
0 0 0 1
o = | i e 0 0
0 { st 0 o { -t 0
0 () 0 b ()
* m, *k m.
0 O 9 {md7$n4} 0 {m5,:7l4}
* m. * m. *k m. * m
= 6 {ml ,m27;§137m4 } {m1,m2,7%r13,m4 } {m17m21f77'3,m4 } {ml,m27;§7¢31m4 } -
where each element of ®* is calculated as
0 i,j]=1 m; Ny, # ()
®*i,j]=0 m; Nmy, =0

Resulting in

710 0 0]
0100
0010
000 1

@ =1100
1010
0101
0011
11 1 1|

9.3.5 Online Step 1: Calculate support

For this application, we assume that the priors are unambiguous, so that the shortcut
method can be applied. When a new piece of evidence [Ep, E2] becomes available, we
calculate the support according to

TL(El, E2|mk)

S El, E2 my ) =
(Br, Bafimy) = "2 2
If F1 and F»s are considered independent given my, the support can be calculated separately

n(E1|my)
n(mg)

n(Es|my)

o(Em) = n(m)

S(Eslmy) =
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The support can be arranged in matrix form as follows

T S(Elmy) 0
0 S(E|ms2)
0 0
0 0
S = S(E|mi,m2) S(E|my,ma)
S(E|m1,m3) 0
0 S(E]mg,m4)
0 0
L S(E]ml,...,m4) S(E\ml,...,m@

0
0
S(E|ms3)

0

0
S(E|m1, m3)

0
S(E|ms,my)

S(E]ml, oo ,m4)

S(E\mg,m4)
S(E|msz,ma)
S(E|m1, . ,m4)

where each column corresponds to an unambiguous mode, and each row corresponds to
an ambiguous mode. Note that for some modes (hence columns), evidence independence
is assumed, thus some columns have multiple entries to correspond to multiple pieces of
evidence.

For example, consider the data collected in Table 9.2 with the support calcualted in
Table 9.3.

Table 9.2: Frequency of modes containing my

E=1[0,00 E=[0,1] E=[1,00 E=][1,1]

n(Elmi) 70 10 15 5
n(E|ma) 14 59 6 21
n(E|ms) 13 7 58 22
n(E|myq) 12 8 23 57
n(E|m1, m2) 25 15 7 3
n(E|mi, m3) 20 20 6 4
n(E|ma, ma) 19 17 7 7
n(E|ms, ma) 19 8 7 16
n(E|mi, ma, m3,myq) 7 6 6 6

Table 9.3: Support of modes containing my

E=[0,00 E=[0,1] E=[1,0] E=I[1,1]

S(E|my) 0.7 0.1 0.15 0.05
S(E|mg) 0.14 0.59 0.6 0.21
S(E|ms) 0.13 0.07 0.58 0.22
S(E|ma) 0.12 0.08 0.23 0.57
S(E|m1,mz) 0.5 0.3 0.14 0.06
S(E|my,ms3) 0.4 0.4 0.12 0.08
n(E|ma, m4) 0.38 0.34 0.14 0.14
n(E|ms, m4) 0.38 0.16 0.14 0.32
S(E|my,ma, m3, myg) 0.28 0.24 0.24 0.24
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If E=[0,1] is observed, the support matrix S takes on the following form:

[ 0.1 0 0 0 7
0 059 0 0
0 0 007 O
0 0 0 0.08
S=1| 03 03 0 0
04 O 0.4 0
0 034 0 034
0 0 016 0.16
| 0.24 0.24 0.24 0.24 |

9.3.6 Online Step 2: Calculate the GBBA

The GBBA is calculated by taking the derivative of Eqn (9.2), which in vector form is
written as

[S]:,my] 0 n]T Ol:, my]

P(EIm:, ©) = =6 mi

where n is the vertical vector of mode frequencies.
n = [n(m1),n(ma),...,n(my, mg, ms, my)]"
In the case of Table 9.2, n is given as
n = [100, 100, 100, 100, 50, 50, 50, 50, 25]

In MATLAB, given the variables S (in the form of S), Theta (in the form of @) and n

(in the form of n), probabilities can be calculated using the following code:

1 n.m = length(S(1,:));

2 P = zeros(n.m,1l);

3 form= l:n.m

4 Num = (S(:,m).*n)'+«Theta(:,m);
5 Den = n'xTheta(:,m);

6 P (m) = Num/Den;

7 end

In a similar manner, we can calculate the derivatives as

0 p(Elm:, ©)| _ nlkS[kmi] _nlk] (n o S[:mi)) O, mi]
00k, mi] |o  nlO [ m (nT©*[:,m])’

which, in MATLAB can be obtained using

n = sum(N,2); %$Find number of samples for each mode
[n.-M,n_.m] = size(S);
amb = (n_m+1l):n_M; % indices of ambiguous modes

for m = 1l:n.m

G W N =

Num = (S(:,m).*n)'xTheta(:,m); %Likelihood numerator
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6 Den = n'xTheta(:,m); %$Likelihood denominator

7 P(m,1) = Num/Den; %Inclusive Likelihood

8

9 for k = amb % Only consider ambiguous modes for dP

10 if ModeStruct (k,m) == 1

11 %$Abridged code which used Num and Den

12 dP (k—n.m,m) = n(k)=*S(k,m)/Den — n(k)*Num/ (Den"2);
13 end

14 end

15 end

After calculating the derivatives, the GBBA will need reference probabilities. The reference

probability is calculated as

9 p(E|mi, ©)

B(E|mi, ®%) = p(E|m;, ©%) = > 060 my | © il
mgOm; » ©
As an example, for mode 1, p(E|mq, ©®*) is given as
" . o OpEm,0)| .
P(E[m1, ©7) = p(E|m1,07) — —— =——| ©7[5,1]
0015, 1] 6
9 p(Elm1,®)| 4. 9 p(Elm1,0)| 4.
_ oL E) 1) - 22D E) 1
06,1 1,201 —2epy |, @Y

where ©* is the matrix given in Offline Step 3. In MATLAB, the reference probability Pr

can be obtained using the following code

1 form = 1l:n.m
2 Pr(m,1) = P(m,1) — dP(:,m) '+«Theta (amb,m);
3 end

Using these inputs, the resulting GBBA is given as

[ p(E|my, ©%) 0 0 0 1
0 F(E|ms, ©%) 0 0
0 0 B(Elms, ©%) 0
0 0 0 P(E|my, ©7)
9 p(E|m1,0) 9 p(E|m2,0) 0 0
905.1  | 206,20 |
G =1 9pBm.6) 0 9 p(E|m;.©) 0
00[6,1] ) 00[6,3] o)
0 9 p(E|ma,®) 0 0 p(E|m,40)
ol | —oerrAl |
0 0 0 p(E|ms,0) 0 p(E|m4,0)
00[8,3] ) 00[8,4] o
9 p(E|m1,0) 9 p(E|m2,0) 9 p(E|ms,®) 9 p(E|m4,®)
2001 | 200,20  |g 2003 | 900941 |g

In MATLAB, obtaining the GBBA is a simple matrix concatenation

1 GBBA = [diag(Pr);dP]
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In our example, the GBBA is found to be

[ 0.16 0 0 0
0 0.57 0 0
0 0 0.08 0
0 0 0 01
G=|002 —-0.07 O 0
0.05 0 010 O
0 —-0.06 0 0.07
0 0 0.02 0.01
| 0.00 —0.05 0.02 0.02 |

9.3.7 Combine BBAs and diagnose

In this example, the prior probability is unambiguous. Thus the shortcut method can be
used for combination. The first step to the shortcut method is to calculate the inclusive
probability P*(E|M, ©®)

p(E|M, 0% = G[:, M]T©*[:, M]

where ®* is the inclusive probability, where all non-zero values are set to 1

1.0 0 0]
0100
0010
000 1
©=|1100
1010
010 1
0011
11 1 1 |

The posterior probability can be obtained using the following short-cut expression
1 . 1
P(M|E) = —p(E|M, ©°)p(M) = - In(E|M)p(M)

K = p(Elmg, ©)p(my,)
k

After the BBAs are combined, the posterior probability p(M|E) has a single value for each
mode (it is not variable with respect to @), thus one simply diagnoses the mode based on

the highest posterior.

9.4 Simulated Case

The proposed second-order method was tested on the simulated Tenessee Eastman problem.
In the same manner as the second-order Bayesian method, data was masked as ambiguous

based on its resemblance toward other modes. If 30 % of the data is classified as ambiguous,
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then for every mode, it classifies the 70 % of the most likely data for this mode as unam-
biguous, but each remaining data point will have at least one additional mode associated
with it, based on its proximity toward other modes.

Results for the Generalized Dempster-Shafer method are compared to the ideal scenario
(where no modes were ambiguous), the incomplete Bayesian method (which ignored am-
biguous mode data) and the second-order method. Results in Figure 9.2 compare diagnosis
results based on modes, while results in Figure 9.3 compare diagnosis results based on the
individual components that make up the modes.

Results for all four scenarios were nearly identical under the case when 30% of the data
belonged to ambiguous modes, but more significant improvements were exhibited when
70% of the data came from ambiguous modes. These improvements showed that data
was beginning to become more scarce, as performance for the incomplete Bayesian method
(where ambiguous mode data was simply ignored) was beginning to decline. Results between

the second-order method and the Generalized Dempster-Shafer method were very similar.
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Figure 9.2: TE mode diagnosis error
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Figure 9.3: TE component diagnosis error
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9.5 Bench Scale Case

The generalized Dempster-Shafer method was also applied to the lab-scale hybrid tank sys-
tem. Diagnosis based on modes is shown in Figure 9.4 while diagnosis based on component is
shown in Figure 9.5. Performance in this case showed that the generalized Dempster-Shafer
method exhibited a slight improvement over the second-order method.

The main difference between the second-order method and the generalized Dempster-
Shafer method was that the second-order method distributes ambiguous mode data over
the specific modes in accordance to prior probabilities; however, the Generalized Dempster-
Shafer method includes all possible ambiguous mode data into each specific mode. If the
actual ambiguous mode distribution is significantly different from what one would expect
from prior probabilities, the Generalized Dempster-Shafer method will likely yield superior

results when compared to the second-order method.
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9.6 Industrial System

Finally, the generalized Dempster-Shafer method was applied to the industrial system along-
side the second-order method. In contrast to the experimental system, the second-order
method had a slightly superior performance to the generalized Dempster-Shafer method
when applied to the industrial system. In this case, the second-order method yields supe-
rior results most likely because the real proportions © are similar to the estimated values
®* given by the prior probabilities. Results for mode diagnosis are shown in Figure 9.6,
while results for component diagnosis are shown in Figure 9.7.

Due to the abundance of data, excluding ambiguous mode data did not have a strong
effect when 30% of the data belonged to ambiguous modes, but differences became more
pronounced when 70% of the data came from ambiguous modes. There was also a more

pronounced change with respect to diagnosing components in contrast to diagnosing modes.
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Figure 9.6: Industrial system mode diagnosis error

Comparison of ambiguity approaches Comparison of ambiguity approaches
T
T

40

I
=)

I (deal I (deal

a5l I 2nd Order | a5k [ 2nd Order |
[ Dempster—Shafer [ Dempster—Shafer|
[ TIncomplete [ TIncomplete

301

@
S
T

251

N
@
T

Percent Fault Misdiagnosis
o
T

Percent Fault Misdiagnosis
N
3

(a) 30 % Ambiguous Mode Data (b) 70 % Ambiguous Mode Data

Figure 9.7: Industrial system component diagnosis error

181



Chapter 10

Making use of continuous evidence
through kernel density estimation

10.1 Introduction

In previous application chapters, we have considered evidence that takes on a discrete form,
such as alarms which were obtained by discretizing a continuous performance metric. By
classifying a continuous performance index into low-resolution bins, information is lost.
However, using methods that can deal with continuous data preserves this information, and
as a result, continuous data methods can significantly improve performance.

The Kernel density estimation method (sometimes called the Parzen-Rosenblatt window
method) is a popular method for estimating probability density functions from data. It is a
non-parametric method that places a “kernel function” centred around each data point, so
that adding the kernel functions results in a smoothed probability density estimate. Kernel
density estimation is non-parametric and thus does not assume a predefined shape for the
distribution, allowing the distribution estimate to naturally follow the shape of the data
distribution, regardless of the shape it takes.

While kernel density estimation does not contain shape parameters, it does contain
a crucial smoothing parameter called the bandwidth. A variety of techniques exist for
estimating bandwidths, and this chapter will discuss two of the most popular approaches. In
addition to the required techniques for kernel densities, there are complementary techniques
that can help increase the accuracy of a kernel density estimate. This chapter focuses on

how to perform the following techniques:
1. Kernel density estimation
2. Bandwidth selection

3. Dimensionality reduction

W

. Handling missing data

182



10.2 Algorithm

10.2.1 Kernel Density Estimation

The goal of kernel density estimation is to estimate a density function f(x) using kernels
K (z) which are centred around each data point in the historical data set D. The kernel
K (z) can be any function that integrates to unity; it is preferable for K (x) to be a density
function. From a multivariate data set D with n entries, a kernel density estimate from the

kernel K (x)is obtained using the following sum:
e 1 1/2
f(z) ~ ;ZWKH (H (m—Di)) (10.1)
i=1

Due to many desirable mathematical properties, a popular choice of kernel density estimate

is the multivariate Gaussian kernel

Kin(2) = ——— exp(:"2)

(2m)¢
where d is the dimensionality of the data. Using this kernel results in the following kernel

density estimate

1 1
)~ —y ——exp([z— D;]"H Yz — D; 10.2
f(z) Z; )] p ([ ] [ ) (10.2)

10.2.2 Bandwidth selection

Kernel density estimation is classified as a non-parameteric technique; nevertheless, Kernel
density estimates are affected by the parameter H in the same manner that histograms are
affected by bin width. When the bin width increases, the histogram becomes smoother,
but as the bin size decreases, the histogram takes a rougher shape. Similarly, shrinking the
bandwidth H will result in a jagged kernel density estimate, and increasing H will result in
a smoother kernel density estimate. Many different methods for selecting bandwidths exist,
and is still a somewhat active are of research [78] [79], but the more popular methods are

presented in this section.

Optimal bandwidth for normal distributions

Selecting a bandwidth to estimate normal distributions is a mature subject within literature,
and the result is well established. Based on the asymptotic mean integrated square error
(AMISE) criterion (mentioned in Chapter 6), the optimal bandwidth for estimating a normal

distribution with normal kernels is given as
H 1\ by 10.3
N_(n(d+2>) (103
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where X is the covariance of the normal distribution, d is the dimension of the data, and
n is the number of sample data points. In practice, the sample covariance S can be used
in place of 3. While this bandwidth is optimal for normal distributions, for many other
distributions, this bandwidth can be larger than optimal resulting in an over-smoothed
distribution, especially if the distribution has more than one mode. Engineering judgement
can be exercised by inspecting the data to see if the shape deviates significantly from normal.

In higher dimensions, the direction of the data can change in different locations. Thus it
is often safer to use the main diagonal of the covariance estimate S instead of the full matrix,
as S will stretch the covariance matrix in a certain direction. Using the main diagonal will

eliminate directional preference.

10.2.3 Adaptive bandwidths

One problem often encountered in kernel density estimation is that when a single bandwidth
is used, peaks tend to be over-smoothed, while tails tend to be under-smoothed. Adaptive
bandwidth estimation is a common solution for this problem. In the adaptive bandwidth
estimation problem, a pilot density function is estimated in order to give a rough probability
for all the data points. These probabilities are used to scale the bandwidth. Intuitively,
larger probabilities result in narrower bandwidths and smaller probabilities result in wider
bandwidths.

In the first step, the pilot density is estimated using the optimal normal bandwidth Hy

Z \/ﬁ eXP( Di]THﬁl [z — DZ])

Then, we calculate a geometric mean probability g used as a standardization constant.
log(g Z log [fH } (10.4)

Next, we obtain a bandwidth matrix scalar \; for each data point.
A . o
N (fZ(D[z])>
;=
g

where the parameter « is a user-defined parameter. For practical purposes, it is most often

(10.5)

set to @ = 0.5 for moderate sample sizes (such as 100 sample points in the univariate
case), but should be reduced for larger sample sizes. The parameter J\; is used to scale the
bandwidth as follows:

=g (10.6)

A possible adaptation to this step is to use a local covariance estimate S; to account for the

local direction of the data. In this adaptation, we obtain a sample covariance estimate S;
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using the data closest to D[i] (for example, the closest 25% of the data, or use a weighting

function for the covariacne estimator) and scale it according to the following expression:

—oja|Hn|Y4
H =" ‘|5 ,‘1/(1 S; (10.7)
Finally, the kernel density estimate is given as
Z \/ﬁ exp ([x — D))" H; Yz — Dy]) (10.8)

10.2.4 Optional Step: Dimension reduction by multiplying independent
likelihoods

Kernel density methods, like discrete methods, tend to suffer performance degradation
when dimensionality is increased. For the discrete method, estimation difficulty increases
exponentially with respect to the number of monitoring inputs. For example, if 2 monitors
were used, each having 3 different states, there would be 23 = 9 bins required for estimation.
Now if 15 monitors were used, the number of bins for estimation would balloon to over 14
million. Kernel density methods are more efficient at approximating densities, and thus
difficulty may not grow as fast as discrete/histogram methods, but dimensionality can still
be a problem.

If monitors are highly correlated, data tends to exhibit lower-dimensionality behaviour,
but independent monitors are more problematic. However, independent monitors have a
convenient solution. If certain monitors (or groups of monitors) can be considered indepen-
dent, Ey L E», then their higher-dimensional joint likelihood p(E1, E2|M) can be calculated
by multiplying the lower-dimensional individual likelihoods p(E1|M), p(E2|M) together.

p(E1, Eo| M) = p(E1|M)p(E2| M)

Assuming independence and verifying these assumptions through the MIC was previ-
ously discussed in Chapter 8. The procedure largely remains the same in this chapter,

except that now probability functions p(m1), p(m2), p(71, m2) can be expressed as kernel den-

(215 29) / /m p(z1, 22 log< ((“T;’f?))) dx1 dzs (10.9)

Because the integration is in only one or two dimensions, the integration can be per-

sity estimates

formed using quadrature (for example, via the MATLAB command “quad2d” performs
two-dimensional quadrature integration). When the MIC is applied to kernel density es-
timates, values less than 0.05 are considered negligible, while values greater than 0.2 are

considered significant.
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10.2.5 Optional Step: Creating independence via Independent Compo-
nent Analysis

Independent component analysis (ICA) assumes that data was generated by a linear combi-
nation of independent variables; it is similar to principal component analysis (PCA) except
that the latent variable ¢ is not restricted to be Gaussian. Thus, ICA can be effectively
performed on data that is not multivariate normal. Nevertheless, there still is a restriction

in that observations y are assumed to be linear combinations of latent variables f
y—p=At

The goal of ICA is to obtain the transformation matrix A, or more importantly, its inverse
W = A~!. While many algorithms for ICA exist (some are even based on the MIC), the
fixed-point algorithm has shown to exhibit both accuracy and speed. Software for this
algorithm has been previously developed under the MATLAB and Octave platforms and is
available at the following website: http://research.ics.aalto.fi/ica/fastica/.

Independent component analysis has been shown to be effective when observation inputs
consist of raw or relatively unprocessed data. However, if the data consists of monitors that
were tuned to be sensitive to underlying problem sources, ICA can reduce this sensitivity

and possibly result in poorer diagnostic performance.

10.2.6 Optional Step: Replacing missing values

When values are missing for a kernel density estimation, one cannot use the marginalization
methods that are used for discrete monitors. However, being able to assume independence
among smaller groups of observations makes missing values less of an issue. For example,
consider a system with nine observations y1, y2, . . . , ¥9. If it was possible to break them down
into three independent groups [y1,y2,y3s] L [y4,Vs5,v6] L [y7,Ys, Y], then if y7 is missing, we
would only have to discard yg and yg; if independence was not assumed, then observations
Y1, - - -,y would also have to be discarded along with yg and yo.

If discarding missing data significantly reduces data reliability, then missing data entries

have to be estimated. This can be done by applying the following steps:
1. Estimate the kernel density function using only complete data entries
2. Estimate the expected values of the incomplete data entries

3. Using the estimated data entries, estimate the kernel density function which includes

the new data points
4. Repeat the log likelihood maximization based on the new kernel density function

5. Repeat steps (3) and (4) until the likelihood converges
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This approach resembles the EM algorithm, except that the missing values must be explicitly
calculated instead of its statistics. Such an approach is required because the kernel density
function is non-parametric.

After obtaining the kernel density estimate, one can use kernel density regression to
replace the missing values. There are two main techniques for kernel density regression: the
zeroth-order (Nadaraya-Watson) method, and the first-order method.

1. Zeroth-order (Nadaraya-Watson) method: For a point with known elements x
and missing elements y, we look at the historical record of data having both known
X and Y values. The value of y is calculated by a weighted average of the historical

Y values, weighted based on the proximity of their X components to X.
S K (He X 1) Y,
E(y) = 7
Sy K (He (X - o)

(10.10)

2. First-order method: The zeroth-order method tends to have a flat bias of the
function, particularly around peaks in y and around the edges of the data. In order
to correct this bias, the first-order method is proposed. Instead of taking a weighted
average of Y, weighted linear regression on Y is performed in stead. Given the point

x,y with known elements x and unknown elements gy, we first obtain the regressor

1
Zi_[Xi—x]

The weighted linear regression is then performed as

[ lg((i/)) ] = LZ:;K (H:Zl/Q[Xz‘ — a:]) zzF [gK (H;l/Q[Xi — ar]) 7Y
(10.11)

variable Z as

-1

The result of the regression is a vector, with E(y) as the first element (corresponding

to Z; = 1), with the remaining elements B(x) being ignored.

After finding E(y) for all missing data points, the completed data points can be added
to the data. For a second iteration, because estimates are obtained for missing values,
one can use the kernel density estimate from the completed data history to estimate E(y)
again. The steps of updating the kernel density estimate and filling in missing values can

be repeated until the likelihood converges.

10.3 Illustrative Example of Proposed Methodology

Again, we consider the example presented in Chapter 8, the control loop shown in Figure
10.1 where the same modes and evidence are considered The methodology of kernel density
estimation is data-intensive and cannot be easily summarized; thus the example will be
illustrated through MATLAB/Octave code.
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Figure 10.1: Typical control loop

Kernel Density Estimation functions

The code below is an optimized MATLAB/Octave implementation of kernel density estima-
tion which works in arbitrary dimensions. The main feature is that Cholesky decomposition

is used for the bandwidth so that it only needs to be performed once offline.

1 function DensityInfo = fKernelEstimateNorm (X)

2 [n,d] = size(X);

3 %A diagonal covariance matrix tends yield more stable results

4 S = diag(var(X));

5 %Optimal bandwidth for Gaussian estimation

6 H = (4/(nx(d+2))) " (2/(d+4))=*S;

7

8 S%Inversion from cholesky decomposition (for speed and forced symmetry)
9 HRi = eye(d)/chol (H);

10

11 %we use the log of normalization constant for the kernel density to avoid NaNs
12 BWMd = det (H);

13 k = —0.5xlog( (2xpi) "d*BWMd ) — log(n);

14

15 DensityInfo.bwm = H; $bandwidth matrix

16 DensityInfo.bwmZt = HRi'; $transformation to Z

17 DensityInfo.logk = k; %log of KDE normalizing constant

18 DensityInfo.data = X; %Data

The fKernelEstimateNorm command is used to set up the bandwidth parameters in a way

to allow efficient kernel density estimation from the fKernelDensity given as

1 function fx = fKernelDensity (x,DensityInfo)

2 %x 1s multivariate random variable realization (row vector)

3 %multiple rows in x will result in multiple probabilities

4

5 Data = DensityInfo.data; %$KDE data

6 k(1,:) = DensityInfo.logk; %$Log of KDE normalization

7 Zt = DensityInfo.bwmZt; %$Transformation to Mahalanobis distance
8

9

10 %This function estimates multiple probabilities from multiple rows in x
11 %Data has nD rows, each are horizonal entries of x

12 [nX,p] = size(x);

188




13 [nD,—] = size(Data);
14

15 %Calculate kernel density (can take both static and variable kernels)
16 fx = zeros(nX,1);

17 for n = 1:nX

18 Xd = ( Data — ones(nD,1)=*x(n,:) )'; %Raw distances

19 DM = sum( (ZtxXd)."2,1); $Mahalanobis distances

20 Pe = k — 0.5%DM; $Exponent of probability

21 fx(n,1l) = sum(exp(Pe)); %$Probability density

22 end

This function treats x as a set of row vectors, so that multiple rows will yield multiple
likelihoods. Note that the log normalization constant is added in the exponent; this is less
likely to result in numerical errors if k and DM are large. For the sake of speed, it is key to
ensure that the exponent exp(Pe) is evaluated for the entire vector Pe as this is much faster
than evaluating elements of Pe one at a time (due to parallel computation methods invoked
by MATLAB and Octave for vectors).

10.3.1 OfHine Step 1: Historical data collection

As in previous cases, the first step is to go through the historical data and note the instances

where each of the four possible modes occurs.
1. my [0,0] where bias and stiction do not occur
2. mg [0, 1] where bias does not occur but stiction is does
3. mg [1,0] where bias occurs but stiction does not
4. my [1,1] where both bias and stiction occur

In this chapter, we assume that no ambiguous modes exist, thus Bayesian methods are used.
Nevertheless, because the only aspect that changes is how the likelihood function p(E|M) is
calculated (as kernel density estimates are used) kernel density estimates can be combined
with the second-order Bayesian method or the Dempster-Shafer method in order to handle
ambiguity.

If we consider the MATLAB cell variable Data which contains data for each mode, we

can set up the kernel density estimates with the following code:

1 for m = 1l:length(Data)
2 KDE (m) = fKernelEstimateNorm(Data{m})
3 end

Offline Step 2: Replacing missing values (optional)

If elements of E are missing, they cannot be used for learning unless the missing values
are replaced. The data is separated into two sections D, = [D¢, Dic]. In MATLAB, it is
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assumed that missing elements are represented by the value NaN; for example

45 28 03 12
2.7 NaN 1.0 0.9
Dp=|56 30 06 0.11
45 27 04 13
3.6 2.8 0.5 NaN

Each row represents a historical piece of evidence; from this example, rows 2 and 5 would
be moved to the set D;. while rows 1, 3, and 4 would be moved to the set D.. This sorting
can easily be done in MATLAB; consider the data set for mode M denoted by Data{m}

that has some NaN entries in various rows. Sorting is done using the following code:

vNaN = sum(Data{m},2); %rows with NaN will sum to NaN

indIC = find(isnan(vNaN)); %identify rows with NaN

indC = find(—isnan(vNaN)); %identify rows without NaN

$Place incomplete and complete data into appropriate data sets

Dc = Data{m}(indC, :);
Dic = Data{m} (indIC, :);
DcF = Dc;

DicF = Dic;

© 0 N OOk W N =

where “=" is the “not” operator, written as “~” in MATLAB. Note DcF represents the data
with missing sets filled in, but on the first iteration, the missing data are not filled in. For
each incomplete data entry, obtain the expected value of the missing entries using Kernel

density regression.

1 for i = l:size(Dic,1)

2 dic = Dic(i,:);

3 Xind = find(—-isnan(dic));

4 Yind = find(isnan(dic));

5 KDE = fKernelEstimateNorm(DcF (:,Xind));

6

rd dic(i,Yind) = fKernelRegFirst (dic(Xind),DcF (:,Yind), KDE)
8 DicF (i, :) = dic;

9 end

The function fKernelRegFirst returns the expected value of the missing elements Yind
using the historical values of the missing component DcF(:,Yind) and the kernel density
estimate KDE (obtained using historical values of the available component DcF(:,Xind)).
While the basics of the function fKernelRegFirst have been already described, a number
of safeguards and efficiency-increasing steps are included making the code quite lengthy, thus
details fKernelRegFirst are placed in Appendix A. Once estimation has been performed

over all elements in Dic, one can add completed elements to the data.

1 DcF = [Dc,DicF]

Then, one can estimate missing elements Dic again with the new completed Dc dataset.
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10.3.2 Offline Step 3: Mutual Information Criterion (optional)

As in Chapters 8 and 9, this step is optional. The kernel density estimate is used to obtain
the probability terms p(Eq|M)p(E2|M) and p(E1, E2|M) ; if MIC(1,2) is greater than some
threshold (0.01), it would be better to assume that E; and Ey were dependent.

0 0
MIC = [ MIC(1,2) 0 ]
where M1C(1,2) is calculated as

MIC(1,2) = /El /Ezp(El,E2|m) log (péﬁ%ﬁ?%%) dE; dEs

In MATLAB, the MIC can be calculated using numerical integration (the authors used

the two-dimensional quadrature command quad2d in MATLAB. Consider the example
above, where D is the historical record of the bivariate random variable £. In MATLAB,

the mutual information term can be expressed as

1  function MI = fMI (X, Y, KDE, KDEx, KDEy)

2 $X and Y are usually scalars, but quad2d prefers the ability to have matrix inputs/outputs
3 [ni,nj] = size(X);

4 MI = zeros(ni,nj);

5 for 1 = 1:ni

6 for j = 1:nj

7 pl2 = fKernelDensity ([X(i,J),Y(i,]J)],KDE);
8 pl = fKernelDensity (X (i, j),KDEXx);

9 p2 = fKernelDensity (Y (i, 3j),KDEy);

10 MI(i,]J) = pl2xlog( pl2/(pl*p2) );

11 end

12 end

13 end

Note, if there are regions where p12,p1, p2 are very small (and approach zero), there runs
a risk that MI will be undefined. It is useful to note that, due to the logarithmic term, if
p12 approaches zero, then MI also approaches zero; thus, for reliability, statements made in
the code should be inserted to reflect this fact.

The mutual information criterion is obtained by integrating over the aforementioned

mutual information term

1 function MIC = £fMIC(D)

2 x =D(:,1);

3 y = D(:,2);

4

5 %$Kernel density for univariate and bivariate data sets
6 [KDE] = fKernelEstimateNorm(D) ;
7 [KDEx] = fKernelEstimateNorm(x) ;
8 [KDEy] = fKernelEstimateNorm(y);
9

10 %$Set integration boundaries

11 minx = min(x) — 0.lxstd(x);

12 maxx = max(x) + 0.lxstd(x);
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13 miny = min(y) — 0.lxstd(y);

14 maxy = max(y) + 0.lxstd(y);

15

16 hMI is a function to be integrated
17 hMI = @(X,Y) £MI(X,Y,KDE,KDEx,KDEy);
18

19 $Integrate to obtain MIC

20 MIC = quad2d(hMI,minx,maxx,miny, maxy)
21

22 end

The mutual information criterion can be arranged in a lower triangular matrix for grouping

1 MICmatrix = zeros(length{Data{m});

2 ne = length(Data{m}(l,:)); $number of evidence sources
3 for j = l:ne

4 for i = (j+1) :ne

5 MICmatrix (i, j) = £MIC(Data{m}(:,1i,3))

6 end

7 end

When grouping, one prioritizes the elements in the MIC matrix which have large values. If
the value in the MIC matrix less than 0.05, the corresponding two pieces of evidence (by

row and column) can be considered independent.

10.3.3 Offline Step 4: Independent Component Analysis (optional)

If process data were used directly, applying ICA to transform the data may be advantageous.

The fixed-point algorithm [76] can be applied in order to solve for A in the expression
y=At+¢
so that the new monitor inputs 7* are calculated as
DY =A"'D,, =WD,,

The transformed data D}, can be used as input instead of the original data D,,.
Using the fast ICA package [76], the MATLAB code is used to produce the information

necessary for ICA, that is, the mean and the transformation matrix W.

1 Transform.mean = mean(data);
2 [—,—,W] = fastica(data', 'stabilization','on");
3 Transform.W = W;

The arguments 'stabilization’, on’ help the algorithm achieve more reliable results.

10.3.4 Offline Step 5: Obtain bandwidths

There are two main options for bandwidth matrices; the optimal bandwidth for Gaussian

distributions and the adaptive optimal bandwidth. The first option is applied to all data
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points, and for each mode, the bandwidth matrix is given a value of

Hy = (n(dfk2)>d+iznl (10.12)

so that the kernel density estimate is given as

Z exp ([z — D) H,; [z — Dy))

V(2 \H
where n is the number of data points in D,,, D; is the i** data point in D,,, d is the
dimension of the data in D,, and X,, is the covariance matrix of D,,. The equivalent

bandwidth selection step in MATLAB was already given as

1 for m = 1l:length(Data)
2 KDE (m) = fKernelEstimateNorm(Data{m});
3 end

so that likelihood probabilities given x are given as

1 for m = 1l:length(DATA)
2 L(m) = fKernelDensity (x,KDE (m));
3 end

As an alternative to the optimal normal bandwidth, one can use the adaptive bandwidths

H,’jl which are different for every k' element.

log(g Zlog [fH }

AZfH()
g
Hp[i] = X\ ' Hyp,

so that the kernel density estimate is given as

Th, (@ ZW p ([

When implementing on MATLAB, new commands have to be created:

= D" Hy[i] ™ [z — Di])

e fKernelEstimateNorm
e fKernelDensityAdaptive

The adaptive bandwidth selector is given as

1 function [DensityInfo] = fKernelEstimateAdaptive (X)
2

193




3 %Generate initial bandwidth matrix using optimal normal method
4 [n,p] = size(X);
5 KDE = fKernelEstimateNorm (X);
6 HO = KDE.bwm;
7
8 %obtain scaling parameters Lam
9 fx = fKernelDensity (X,KDE);
10 g = exp( mean( log(fx)) );
11 Lam = fx/g;
12
13 %$Scale bandwidth for individual points
14 for i = 1:n
15 BWMi = HO/Lam(1i);
16 BWM(:,:,i) = BWMi;
17 Zt(:,:,1) = chol(BWMi, 'lower')\eye(p);
18 dBWM (i, :) = det (BWMi);
19 end
20 %log of normalizing constant
21 logk = —0.5%log((2%pi) "p*dBWM) — log(n);
22
23 %Save results as a structure
24 DensityInfo.bwm = BWM;
25 DensityInfo.bwmZt = Zt;
26 DensityInfo.logk = logk;
27 DensityInfo.data = X;
28
29 end
while the adaptive kernel density estimator is given as
1 function fx = fKernelDensityAdaptive (x,DensityInfo)
2 %Unload key parameters
3 Data = DensityInfo.data;
4 7t = DensityInfo.bwmZt;
5 k(1,:) = DensityInfo.logk;
6
7 %Data has nD rows, each are horizonal entries of x
8 [nX,p] = size(x);
9 [nD,n] = size(Data);
10
11 %Calculate kernel density (can take both static and variable kernels)
12 fx = zeros(nX,1);
13 kz(1,1,:) = k;
14 for n = 1:nX
15 %$find distances (distances are nD vertical vectors)
16 Xd = (Data — ones(nD,1)*x(n,:))";
17 $Multiply each transformation by the appropriate distance
18 for zi = 1:nD
19 Z(:,:,21) = Z2t(:,:,21)*Xd(:,21);
20 end
21 Pe(:,1) = kz — 0.5*sum(Z."2,1); %exponent of probability
22 fx(n,1) = sum(exp(Pe));
23 end
If likelihoods contain multiple independent groups, one has to construct the groups first,
for example, let us say that under mode 1, the independent groups are [1, 3,4] and [2, 5] but
for mode 2, all evidence is dependent.
‘ 1 groupsl{l} = [1,3,4];

194




groupsl{2} = [2,5];
Mgroups{l} = groupsl;

groups2{1} = [1,2,3,4,5];
Mgroups{2} = groups2;

D s W N

The optimal normal bandwidths are then obtained as

end

1 CcKDE = cell(length(Mgroups),1l);

2

3 for m = l:length(Mgroups)

4 groups = Mgroups{m};

5 for ¢ = 1l:length(groups)

6 %use only data from relevent groups for each KDE

7 cKDE{m} (c) = fKernelEstimateNorm( Data{m}(:,groups{c}) );
8

9

end

Note, that one could also use adaptive bandwidths here.

10.3.5 Online Step 1: Calculate likelihood of new data
When this method is performed online, new evidence from monitors E' is used as input to
calculate the probability. When kernel density estimation is applied

p(E|M) = — Di]|"H,,'[e — D))

v

where H,y,[i] is used instead of H,, if the adaptive kernel density estimation method is used.

Again, probabilities can be calculated using the fKernelDensity command

1 for m = l:length(KDE)
2 L(m) = fKernelDensity (x,KDE (m));
3 end

Note that if the evidence is separated into independent components, there is a likelihood
p(E¢|M) for every component c. These component likelihoods have to be multiplied together

in order to obtain the net likelihood.

1 for m = l:length(Data)

2 groups = Mgroups{m};

3 L(m) = 1;

4 for ¢ = l:length(groups)

5 L(m) = L(m)* fKernelDensity( x(groups{c}),KDE{m} (c) );
6 end

7 end

8
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10.3.6 Online Step 2: Calculate posterior probability

The posterior probability is obtained by combining the likelihood with a prior according to
Bayes’ Rule

 p(EM)p(M)
PIMIE) = & (B )p(ms)

Note that if there is more than one component,
P(E|M) = p(Er[M) X p(E3|M) x ... x p(En,|M)

In MATLAB, it is convenient to set the prior p(m) = P as a vertical vector along with the

likelihood p(E|m) = L. In this way, the vector of posteriors can be calculated as

10.3.7 Online Step 3: Make a diagnosis

The diagnosis is made by selecting the mode with the highest posterior probability.

10.4 Simulated Case

The Kernel density estimation method is used on the Tennessee Eastman problem, a popular
benchmark simulation system. As done in previous applications, each fault (or problem
source) is simulated, with some of the data being used for learning, while other parts of the
data are used for validation. The first set of results (in Figure 10.2) compare diagnosis results
from the discrete method against the optimal normal and adaptive kernel density estimation
methods. From this figure, kernel density estimation performs significantly better than the
discrete methods both for diagnosing modes and problem sources. However, adaptive and
optimal Gaussian kernel density estimation methods have similar performance to each other.

In addition, we consider how different grouping methods affect diagnosis rates. Four

different grouping approaches are considered.

1. The lumped approach does not assume independence, and considers all evidence as

a single multivariate variable.

2. The indepdnent approach is the complete opposite; it assumes that all pieces of
evidence are independent so that likelihoods are calculated for each piece of evidence

and the joint likelihood is combined by multiplying results together.

3. The grouped approach is a compromise between the lumped and independent ap-
proaches. It uses the MIC as an indicator to determine which variables are dependent

and which ones are not. The grouping algorithms mentioned in this chapter (as well as

196



Comparison of Kernel types, Diagnosing Modes Comparison of Kernel types, Diagnosing Faults
T T

I
S

I Discrete I Discrete
45| [ Gauss Kernel - I Gauss Kernel | |
[ Adaptive Kernel [ Adaptive Kernel

W
&
T

N n @
=) a =]
T T T

Percent Fault Misdiagnosis
o
T

Percent Mode Misdiagnosis

=)
T

o

N |

1

o

(a) Mode Misdiagnosis Rate (b) Source Misdiagnosis Rate

Figure 10.2: Tennessee Eastman, discrete vs. KDE

Chapters 8 and 9) are used to separate evidence into independent groups. Likelihoods
are calculated for each group and are multiplied together in order to obtain a joint
likelihood.

4. Finally, the ICA transformed method is used to transform the evidence into inde-
pendent components, so that likelihoods are obtained for each component; the joint

likelihood is again obtained through multiplying individual likelihoods together.

Chapters 8 and 9 have not compared grouping approaches for the discrete method, thus we
compare grouping approaches for the discrete method first. The grouping comparison for
the discrete method is shown in Figure 10.3. The grouping approaches are also compared
for the kernel density estimation method; the comparison for kernel density estimation is
shown in Figure 10.4. Because performance of optimal Gaussian and adaptive kernel density
estimation is similar, the optimal Gaussian method is used here as it is the simpler of the
two.

From Figures 10.3 and 10.4 one can see that different grouping techniques have a neg-
ligible effect on diagnosis performance regardless as to whether discrete or kernel density

estimation is used.

10.5 Bench Scale Case

The kernel density estimation method was also used on the hybrid tank system and com-
pared with discrete results. Comparison between discrete and kernel density estimation
methods is shown in Figure 10.5. Again, for both mode and component diagnosis, ker-
nel density methods exhibit a very significant improvement over the discrete method. In
addition, the adaptive and optimal Gaussian kernel density estimation methods perform
similarly yet again.

Grouping methods for the lab scale system are also compared. As seen in Figure 10.3,
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Figure 10.5: Hybrid tank, discrete vs. KDE

for the discrete method, the independent, grouped and transformed approaches all exhibit

a significant improvement over the lumped method. In contrast however, for the kernel
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density estimation method, all grouping approaches perform similarly (as seen in Figure
10.4).
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Figure 10.6: Grouping approaches for discrete method
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Figure 10.7: Grouping approaches for KDE method

10.6 Industrial Scale Case

Finally, the kernel density methods were compared to the discrete methods for the industrial
system. In Figure 10.8, yet again we see a significant improvement when kernel density
estimation methods are used instead of discrete methods.

Different grouping approaches were tried on the discrete method when applied to the
industrial system and results are shown in Figure 10.9. Here, the independent, grouped
and transformed approaches outperformed the lumped approach; because process measure-
ments were directly used and a large number of instruments were applied, the transformed
approach performed slightly better than the other methods. However, it should be noted

that the transformed method is application specific and can result in worse performance
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Figure 10.8: Solids handling, discrete vs. KDE

for applications that it is not well suited for. When the different grouping methods were
applied to the optimal Gaussian kernel density estimation method, the other approaches

still exhibit superior performance over the lumped method.
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Chapter 11

Dynamic application of continuous
evidence and ambiguous mode
solutions

11.1 Introduction

Previous work [5] [4] addressed the topic of taking into account mode and evidence de-
pendency when implementing Bayesian diagnosis techniques online. However, the dynamic
techniques that were previously introduced were specific to unambiguous modes and dis-
crete evidence. This chapter aims to tie up previous loose ends so that autodependent
nature of modes and evidence can be taken into account.

When considering the material in this thesis, the existing autodependent mode procedure
[4] is only affected by the introduction of ambiguous modes (continuous evidence will not
affect the autodependent mode procedure). Likewise, introducing ambiguous modes will not
affect the autodependent evidence procedure. Thus, this chapter proposes two solutions that

can be applied independently:
1. Taking into account autodependent modes with ambiguous modes in history

2. Taking into account autodependent continuous evidence

11.2 Algorithm for autodependent modes

In this section, we consider the probability of each unambiguous mode at time ¢, and its
propagation over time as illustrated in Figure 11.1. At time ¢, the probability of the mode
set M is predicted from time ¢ — 1. The prediction is done via transformation by the
probability transition matrix A. After prediction, it is updated by the evidence obtained
at time ¢ (denoted as E!). Updating through evidence is done using Bayes’ Rule. The
predict-update procedure is applied recursively so that diagnosis is made by probability

that is constantly being updated.
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P(m'™") = P(m!) > P(m'™)

t—1 {7 t41

Figure 11.1: Mode autodependence

11.2.1 Probability transition matrix

The probability transition matrix A is used to predict the probabilities of each mode at the

next time step.
p(M') = Ap(M'™)

where p(M?) and p(M'~!) are column vectors of probability. The probability transition

matrix A can be constructed as follows:

p(mifmy™)  p(mifmy ) - pﬁnﬂﬂﬁf?

o | el ) pmblmy™) e plmilmn )
» I -
pmp|my™)  p(mlmy ") - plmy mi)

where p(mﬂm;_l) is the probability of mode ¢ occurring given mode j occurring at the
previous time instant. The transition probability matrix is constructed in such a manner

that each column must sum to unity.

11.2.2 Review of second-order method

In Chapter 8, where the second-order Bayesion rule of combination was introduced, the
likelihood was expressed in terms of the parameter set ©.

mipOM

n(M)+ % 6{2Lin(my)
m DM

p(E’M, @) =

The second-order Bayesian method re-expressed the likelihood in terms of a second-order

approximation

~

AO=6-6
p(E|M,©)

1
ﬂEWO+J?A@+§A@TH?A@
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where J}" is the likelihood Jacobian for mode M and H7}" is the likelihood Hessian for mode

M. In a similar manner, the prior probability was expressed as
1
p(M|©) = p(M) + JFAO + 5A@TH;;jA@

Here, if using prior probabilities from experts, it is common that priors do not have any
ambiguity; in such cases, Jp' and HF' are set to be zero matrices. By using the second-
order rule of combination (introduced in Chpater 8), new Jacobians and Hessians can be

calculated:
1
p(M|E,0) = p(M|E) + JFAO + §A@TH}ILA6

where the second-order terms are calculated as

POMIE) = 2p(BIM)p(M) (11.1)
TP = = [P(M) TP+ p(E|M)TR)
HP = [0 HY + p(EMHE + (T2 (TF) + (TR ()]
K = 3 (Elm)sm)
o

11.2.3 Second-order probability transition rule

By merit of the probability transition matrix, the probability of mode k£ can be expressed

as

n

p(mi| B =" Ak, i)p(m] ' [E') (11.2)

i=1
where, by applying this transformation, the posterior p(m:f*1 |E) at time t—1 is transformed
into the prior p(m},) for time ¢. In this chapter we apply the rule in Eqn (11.1) to the second-
order probability expressions developed in Chapter 8 to create a second-order probability

transition rule. First, let us consider the parameterized probability
1
p(m|©) = p(M¥) + J* A6 + S AT Hp* AO

By applying the probability transition rule in Eqn (11.2) to the parametrized probabil-
ity above, one can collect terms, and obtain a new probability transition rule set for the

reference probability, the Jacobian and Hessian respectively.

plmy) =Y A(k,i)p(m} " |E) (11.3)
=1

T =" Ak, i)Jp (11.4)
=1

Hp* =" Ak, i) Hp (11.5)
=1
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Thus, when transitioning to the next time step, the probability transition rules in Eqn
(11.3), (11.4) and (11.5) are applied to each reference probability, Jacobian, and Hessian
respectively in order to obtain the prior for the next time step. Updating can occur in the
usual manner, i.e. the second-order Bayesian combination rule (however, keep in mind that

Jacobians and Hessians for priors no longer tend to be zero matrices).

11.3 Algorithm

11.3.1 Algorithm for dynamic continuous evidence

The problem of autodependent discrete evidence has been dealt with previously by Qi and
Huang [5]. The goal was to take into account evidence dependence as indicated in Figure
11.2. Here, the likelihood must contain previous evidence p(E!|E'~! M) which can be
combined with prior probabilities p(M) to obtain a posterior p(M|E!, E‘~1)

_ EYE'"Y m;)p(m;
p(mi’Et,Et 1) — p( |t — l)p( Z)
>k P(EYES myg)p(my)

The key challenge is to estimate the likelihood p(E!|E'~!, M).

P(mfﬁl) P(mt) P(th)

t—1 > t > t4+1

Figure 11.2: Evidence autodependence

Review of discrete evidence solution
In Chapter 2 it was previously shown that the likelihood for autodependent evidence can
be estimated as

E', B my)
Et Eltfl — n( ’ ) k
p( | 7mk) n(Etil,mk)

(11.6)

where n(E?, E'=',m;,) is the number of times E!, E'~! and my, jointly occur in the history,
while n(E*~1, my) is the number of times n(E'~!) and m;, jointly occur in the history. This
solution also included the ability to use prior samples, and these prior samples can be simply

combined with the historical data.
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One of the challenges was that introducing autodependence increased the evidence space,
as now we must condition on both E* and E*~!. Correlation ratio tests were proposed to
determine if some dependencies could be neglected and thus narrowing the evidence space
by independence assumptions. In this work, the mutual information criterion (MIC) is
used as the independence testing method, as it functions for both discrete and continuous

evidence.

Continuous evidence solution

One problem with the solution in Eqn (11.6) is that one cannot obtain n(E! N E'=! Nmy)
directly from continuous data. In Chapter 10, the kernel density estimate was used to

approximate the likelihood

(Bl = ML)
P(EIM) ~ 5= 3 g KT %e) = (i)
i=1

Thus, the conditioning over continuous evidence n(E, M) was smoothed over using a kernel
density estimate. In order to condition on both E! and E'~! the rule of conditioning is
applied
p(XNY)

p(X)

By applying the rule of conditioning to the kernel density estimation,

p(Y[X) =

Et Etfl Mt
p(Et’Et—l’Mt):p( ’ ‘ )

p(ETAL7) e

From this result, one can see that two kernel density estimates are required:
1. The joint present and past evidence p(E?, E*=1|M?)
2. The past evidence p(E'~!|M?) (which is also equal to p(E!|M!) )

Thus, for dynamic evidence, one can estimate a kernel density function p(E!|M?) as before,
but an additional step is required: that the kernel density estimate of the present and past
observations p(E!, E‘~1|M") also be estimated. To obtain the posterior, simply combine
this new likelihood with a prior using Bayes’ Theorem

_ p(E, E1ml)
p(E'|E" ml) = =
p(E=ml)

ti gt pt—1 P(Et’Et_lamDp(mg)
p(m;|E", E = —
(il B B0 = S (B0 BT, miyp{om)
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Dimensionality reduction

As was mentioned in Chapter 10, dimensionality can be an issue when dealing with a large
number of instruments. However, dimensionality becomes an even more significant issue
when taking dynamic evidence into account as p(E!|E*~1, m!) has twice the dimensional-
ity as p(E|m}). Thus, dimensionality reduction techniques, such as grouping via mutual

information criterion become an even more relevant practice.

11.3.2 Combining both solutions

The second-order probability transition rules in Eqn (11.3 - 11.5) and the continuous au-
todependent solution in Eqn (11.7) are complementary solutions that can be independently
applied. When applying both solutions, the corresponding Bayesian network diagram takes

the form shown in Figure 11.3.

P(mt”) > P(mt) > P(th)

t—1 > t > t4+1

Figure 11.3: Evidence and mode autodependence

When applying both methods, one obtains the prior probability from the previous pos-

terior according to the second-order transition rule:
plmy) = zn: Ak, i)p(m; " |E)
i=1
Jpt = i:A(k,i)Jgi
i=1
HJ*: = Zn: A(k,i)H "

i=1

m 1 m
p(m}|©) = p(m}) + T A6 + S AOTH*AO

Then, the second-order terms p(E'|E*"!, ml), J;"* and H;'* are calculated for the likeli-

207



hood expression

S(E|M")n(M*) + ;Mte{%}S(Et\Et*l,mmmk)

WM+ Y {2 n(my)

mDM?

p(E'ETL M, 0) =

where the support S(E!|E~1 my) is calculated as

_ J(E B )

S(Et’Et_l7mk) f(Et|mk)

where my, is a potentially ambiguous mode. The notation f (E!, E'~l}my,) indicates that
the kernel density estimate uses evidence from times ¢ and ¢ — 1 collected under the mode
my, (which can either be ambiguous or unambiguous). When values of S(E!|E'"!, my,) are
obtained, the terms p(E!|E*~!,m}), J;'"* and H]"* can be obtained by taking derivatives
of the resulting expression for p(E!|E'= M!, ©).

Once the second-order terms p(E*| B!, mb), J;'* and H}"™ have been obtained, they
are combined with the previously obtained p(mi|E*, E*=1) JF'* and H* terms using the

second-order Bayesian combination rule.

11.3.3 Comments on usefulness

Mode autodependence

The effectiveness of taking account mode and evidence autodependence can vary quite
significantly depending on the application. Taking autodependence of modes into account
is particularly effective when modes change relatively slowly and if evidence is noisy. Noisy
evidence can lead to relatively frequent false diagnosis results; however, if modes change
relatively slowly, taking mode autodependence into account creates a time-weighted average
on the diagnosis results. However, mode autodependence will create a diagnosis tool that
is sluggish to respond when mode changes, as a strong prior would have been created from
the previous mode over time.

If taking modes autodependence into account results in a system that is too sluggish,
one can replace the transition matrix A with an exponent to the power of n which represents

an acceleration factor.
A=A"

For example, if n = 2, then it is assumed that the modes switch twice as frequently as
previously thought. As n grows larger, the system responds more quickly to change. In
fact, if n — oo, the resulting probability transition matrix will yield a flat prior for every

time step which has the fastest possible reaction to a change in the process.

208



Evidence autodependence

Evidence autodependence tends to make the Bayesian diagnosis method slow to detect
changes in the mode. In cases of strong evidence autodependence, the evidence trajectory
follows a clear pattern in transition regions where values of evidence tend to slowly drift
toward typical values for the new mode. This slow transition is often due to filtering or
averaging done by the monitor. By documenting these transition regions, one now has a
transition pattern which can be used to more quickly recognize changes in the operating
mode; this is particularly beneficial if fast detection is desired. If one is more concerned
about diagnosing slow-changing modes over longer-term periods, the benefits of accounting
for evidence autodependence are much less significant.

In summary, taking account autodependence in the evidence is most effective for systems
that have strongly autodependent (or slow-responding) evidence and frequently changing
modes. Primarily, this is because of the time-sensitive nature for diagnosing systems with
rapidly changing modes. Furthermore, taking autodependence into account is most man-
ageable when the possible operating modes are few, as it requires data to be collected from

transition regions between all modes.

11.4 Illustrative Example of Proposed Methodology
11.4.1 Introduction

Again, for the tutorial, we consider the control loop system shown in Figure 11.4.

4>>+<—> Controller ———» Valve ——»  Process >

Sensor -

Figure 11.4: Typical control loop

11.4.2 Offine Step 1: Historical data collection

The first step is to go through the historical data and note the instances where each of the

four possible modes occurs, and collect data belonging to the mode.

1. my [0,0] where bias and stiction do not occur
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2. mg [0, 1] where bias does not occur but stiction does
3. mg [1,0] where bias occurs but stiction does not
4. my [1,1] where both bias and stiction occur

If ambiguous modes exist in the data, one must also collect data according to the ambiguous

modes that appear in the history. For this system, the possible ambiguous modes are
1. {m1,m3} [x,0] where bias is undetermined and stiction does not occur
2. {mga,m4} [x,1] where bias is undetermined and stiction occurs
3. {m1,ma} [0, x] where bias does not occur and stiction is undetermined
4. {ms,my} [1, x] where bias occurs and stiction is undetermined
5. {m1, ma, m3,my} [X, x] where both bias and stiction are undetermined

Because the methods deal with kernel density estimation and other computationally inten-

sive techniques, the application will be given in terms of MATLAB code.

11.4.3 Offline Step 2: create temporal data

Let us consider the MATLAB cell variable Data which has all data collected into modes,
both unambiguous and ambiguous. We can construct a new data set that includes the data
from the previous time step (called the one-step temporal data). This is done by copying
the data, deleting the first row of one set, and deleting the last row of the second set, then

combining the two data sets.

1 for m = l:length{Data}

2 el = Data{m};

3 e2 = el;

4 el(end,:) = []; %Delete last row of previous evidence
5 e2(1l,:) = [1; $Delete first row of current evidence
6 DataT{m} = [el,e2];

7 end

11.4.4 Offline Step 3: Mutual Information Criterion (optional, but rec-
ommended)

As done in the kernel density estimation procedure, the mutual information criterion is used
to group evidence into independent groups. However, grouping must now be done for two

sets of data, the original data Data and the temporal data DataT.

1 MICmatrix = zeros(length{Data{m});
2 ne = length(Data{m}(1,:)); %number of evidence sources
3 for j = l:ne
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4 for i = (j+1):ne

5 MICmatrix(i,3j) = £MIC(Data{m}(:,i,3))
6 end

7 end

8

9 MICmatrixT = zeros(length{DataT{m});

10 ne = length(DataT{m}(l,:)); $number of evidence sources
11 for j = l:ne

12 for i = (j+1) :ne

13 MICmatrixT (i, j) = £MIC(DataT{m}(:,1,3))
14 end

15 end

where £MIC is the function described in Chapter 10. Using the mutual information criterion
matrices, the original data, and the one-step temporal data can be grouped into roughly
The

MATLAB cell variables Groups and GroupsT contain cell arrays groups for each mode.

independent groups Groups for original data, and GroupsT for one-step temporal.

The cell array groups pertains to a specific mode and contains vectors that consist of
grouped instruments; each vector represents a group.

If one does not wish to break the evidence down into independent groups, it is still
recommendable to evaluate the MIC in order to evaluate autodependence. For autodepen-
dence, the MIC is evaluated for two data sets: xg which is the original data set, and x
which is the same as x( except that it is shifted by one time sample. When evaluating the

MIC for kernel densities, if the MIC is less than 0.1, autodependence can be ignored.

Offline Step 4: Kernel Density bandwidths for original and one-step temporal
data

Kernel density estimation is done in the same manner as done in Chapter 10, where band-
width and data are stored in KDE. However, now ambiguous modes also need to be estimated,

and kernel density estimates now exist for both original and one-step temporal data.

for M = l:length{Data}
$Kernel Density Estimate for original data
Groups{M};
for g = l:length{groups}
KDE{M} (g) = fKernelEstimateNorm(Data{M} (:,groups{g}));

groups =

end

%Kernel Density Estimate for one—step temporal data
GroupsT{M};
for g = l:length{groups}

KDE{M} (g) = fKernelEstimateNorm(DataT{M} (:,groups{g}));

© 0 N O Uk W N =

groups =

==
=]

=
w N

end
end
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11.4.5 Offine Step 5: Calculate reference values

Again, we make use of the parameter matrix ® in the same manner as the second-order

Bayesian method.

| 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
6 - At TS 0 0
TS 0 0 mrast 0
0 s ) 0 At
0 0 CGmy G
Uirmaans st Omemams b et Mg |

11.4.6 Online Step 1: Obtain prior second-order terms

One obtains prior second-order terms for this step, from the posterior second-order terms

in the previous step.

1 $number of historical modes and unambiguous modes

2 [nM, nm] = size (ThetaHat);

3

4 for m = 1l:nm

5 Prior (m) .probability = 0;

6 Prior (m).Jjacobian = zeros(1l, (nAxnm));

7 Prior(m) .hessian = zeros ((nAxnm), (nAxnm));

8

9 for k = 1:nm

10 Prior (m) .probability = Prior (m).probability + Posterior (m).probability*A(m,k);
11 Prior (m).Jjacobian = Prior(m).Jjacobian + Posterior (k).jacobianxA(m,k);
12 Prior (m) .hessian = Prior (m).hessian + Posterior (k) .hessian=*A(m,Xk);

13 end

14 end

11.4.7 Online Step 2: Calculate support

When a new observation e has been made, one can calculate support for each mode. If

multiple independent groups are present, the kernel density estimates can be multiplied

together
1 %we have observed current evidence el
2 %we collected previous evidence e0
3 eT = [e0,ell;
4 S = ones(length(Data),1);
5 for M = l:length(Data)
6 groups = Groups{M};
7 for g = l:length(groups)
8 %Numberator and Denominator P(el\eo,m):P(eO,el\m)/P(eC\n)
9 PN = fKernelDensity(eT(qroups{q}),KDET{M}(g));

[un
o

PD = fKernelDensity (e0 (groups{g}),KDE{M} (q9));
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11

12 $If groups are independent, estimate support by multiplying
13 S (M) = S(M)=x (PN/PD);

14 end

15 end

11.4.8 Online Step 3: Calculate second-order terms

Using the calculated support values (S), one can obtain the second-order terms as was

previously done in Chapter 10.

1 function Lik = 02Terms (S, N, ThetaHat)

2 [nM, nm] = size (ThetaHat);

3 nA = nM — nm;

4

5 $Theta parameters for ambiguous modes

6 ThetaA = ThetaHat ( (nm+1l) :end, :);

7

8 for m = 1l:nm

9 $Initialize second—order terms

10 Lik (m) .probability = 0;

11 Lik (m) . jacobian = zeros (1, (nA*nm));

12 Lik (m) .hessian = zeros ((nA*nm), (nA*nm));

13

14 %0btain numerators and denominators for the likelihood
15 SN = S.=*N; $Multiplication of S and N, useful for later
16 Num = SN'xThetaHat (:,m);

17 Den = N'xThetaHat (:,m);

18

19 Jac = zeros (1l,nh);

20 Hes = zeros(nA,nA);

21

22 %Find indices where Theta values are not forced to be zero
23 Ind = find((ThetaA(:,m)#0))"';

24 for i = Ind

25 Jac(1l,i) = SN(i)/Den — Num*N(i)/(Den"2);
26 end

27

28 for i = Ind

29 for j = Ind

30 Hes(i,3) = —(N(i)*SN(J)+N(3)*SN(i))/(Den"2) + 2«Num*N(i)*N(j)/(Den"3);
31 end

32 end

33

34 $Find indices relevant to the current mode
35 ActiveInd = ((m—1)*nA+1): (m*nA);

36

37 Lik (m) .probability = Num/Den;

38 Lik (m) . jacobian (ActiveInd) = Jac;

39 Lik (m) .hessian (ActiveInd,ActiveInd) = Hes;
40

41 end

11.4.9 Online Step 4: Combining prior and likelihood terms

After obtaining the prior and likelihood probabilities, we can perform the second-order rule

of combination in order to obtain the posterior second-order terms.
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1 function Post = SecondOrderComb (Prior,Lik)

2 nm = length(Prior); %number of modes

3 %Normalization Constant

4 for m = l:nm

5 K = K + Prior(m) .probability » Lik (m).probability;
6 end

7

8 for m = l:nm

9

PP = Prior(m) .probability;
PL = Lik (m) .probability;

JP = Prior (m

==
=]

. jacobian;

=
[V

)
JL = Lik (m) .Jjacobian;
)

[un
w

HP = Prior (m).hessian;

—
IS

HL = Lik (m) .hessian;

=
o w

Post (m) .probability = 1/K* (PPxPL);
Post (m) . jacobian = 1/Kx (JP+*PL + JL«*PP);
Post (m) .hessian = 1/K=* (HP*PL + HL*PP + JL'xJP + JP'*JL);

== e
© w

end

The diagnosis can be made by selecting the posterior likelihood Post(m) .probability
which has the maximum value (the point estimate method), or one can also use the expected
value method which makes use of the second-order terms to calculate an expected value, as

mentioned in Chapter 10.

11.5 Simulated Case

To create autodependent modes during the simulation, the mode was switched at random
according to a given switching probability. Autodependence in evidence however, is a func-
tion of the monitors and cannot be easily created. Nevertheless, evidence autodependence
can be easily reduced by sampling monitor data at a slower rate. Thus, highest amounts
of autodependence in the evidence are present when monitor data is sampled at its native
frequency.

Four methods of interest were tested on the Tennessee Eastman simulation. The first
method did not use any autodependent techniques, the second method only took into ac-
count autodependent modes, the third method only took into account autodependent ev-
idence, while the final method took into account autodependence in both modes and ev-
idence. When the dynamic evidence was considered, the MIC was evaluated in order to
determine if autodependence was strong enough to be considered.

Results for the four techniques can be seen in Figure 11.5. For the Tenessee-Eastman
simulation, it was found that autodependence in evidence was quite weak, as can be seen
in the results. However, even before the results were obtained, it was noticed that the MIC
values for autodependence averaged at around 0.05, which is a relatively weak value for
autodependence (recall that if the MIC was less than 0.1, autodependence was ignored).
The low autodependence in evidence was probably caused from a slow sampling time.

In contrast to mode autodependence however, modes tended to change relatively slowly,

thus modes tended to have strong autodependence in the simulation. As is seen in Figure
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11.5, taking mode autodependence into account had significant performance improvement.

Comparison of Dynamic Approaches Comparison of Dynamic Approaches
20 20 T
I No Dynamic I No Dynamic
181 [ Autodependent Modes 181 [ Autodependent Modes |-
[ Autodependent Evidence [ Autodependent Evidence
161 [ Both Autodependent A 161 [—___1Both Autodependent H

Percent Mode Misdiagnosis
Percent Component Misdiagnosis
S
.

s 1 | I

1

(a) Mode Misdiagnosis Rate (b) Source Misdiagnosis Rate

Figure 11.5: Comparison of dynamic methods

11.6 Bench Scale Case

The bench scale system exhibited fairly different behaviour from the simulated system.
In the bench scale system, the modes were set to switch relatively quickly and data was
sampled at a slower rate. MIC values for autodependence tended toward values of 0.08
which is closer to the threshold where autodependence is taken into account. From Figure
11.6, one can see that taking modes and evidence autodependence into account has a modest

effect on the performance.

Comparison of Dynamic Approaches Comparison of Dynamic Approaches
30 20 T

I No Dynamic I No Dynamic
I Autodependent Modes 181 [ Autodependent Modes |-
251 [ Autodependent Evidence|| [ Autodependent Evidence
[ Both Autodependent 16 [ Both Autodependent 5

201

Percent Mode Misdiagnosis
>
Percent Component Misdiagnosis
S
.

4l 4
5l 1

2l 4
0 - 0 :

1 1

(a) Mode Misdiagnosis Rate (b) Source Misdiagnosis Rate

Figure 11.6: Comparison of dynamic methods
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11.7 Industrial Scale Case

For the industrial system, data was sampled relatively quickly, but only small groups of
data were selected as modes changed extremely infrequently. In order to better assess
conditions where modes were switching, validation data for each mode was divided into
groups, and these groups were shuffled so that it would appear that modes switched more
frequently. Results can be seen in Figure 11.7. In this case, one can see that accounting for
autodependence in the evidence had a stronger effect than accounting for autodependence
in the modes. The efficacy of accounting for evidence autodependence is mainly due to
the fact that autodependence was relatively strong (MIC values averaged at 0.2) and that
modes switched relatively quickly.

Comparison of Dynamic Approaches Comparison of Dynamic Approaches
10 10 T
I No Dynamic I No Dynamic
9F I Autodependent Modes | 9t I Autodependent Modes
[ Autodependent Evidence [ Autodependent Evidence
8r [ Both Autodependent 8r [ Both Autodependent

Percent Mode Misdiagnosis
o
Percent Component Misdiagnosis
o

LJ. ' I 1 i

1 1

(a) Mode Misdiagnosis Rate (b) Source Misdiagnosis Rate

Figure 11.7: Comparison of dynamic methods
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Chapter 12

Concluding remarks and
recommendations for future work

12.1 Concluding Remarks

12.1.1 Summary of proposed solutions

The principal objectives of this thesis were to further develop the work in a data-driven

Bayesian approach to detect and diagnose problematic components in process systems. Top-

ics related to enhancing this approach include ambiguous modes, Dempster-Shafer theory,

kernel density estimation and bootstrapping, all of which had their fundamentals explained

in the tutorial chapter. Mores specifically, the main contributions of this paper can be

summarized as follows:

e A parametrization sheme (respect to probability parameters ©) was developed in

order to formulate the likelihood estimation problem to account for ambiguous modes.

Additionally, in order to perform Bayesian inference, a second-order approximation

(with respect to ©) of Bayes’ Theorem was developed.

e The Dempster-Shafer Theory solution was derived using the © parametrization and

it was shown that Dempster-Shafer Theory was relevant for estimating direct proba-

bilities, but was not relevant for estimating likelihoods. A modification of Demspter-

Shafer Theory was proposed in order to express the Basic Belief Assignment (BBA)

to better-fit the problem at hand. Demspter’s Rule of Combination was also modified

so that it can be applied to the new generalized form of the BBA.

e Kernel density estimation was proposed as a solution to implement continuous evi-

dence in our Bayesian diagnosis solution. It was shown through examples and through

proofs that continuous methods perform as well or better than discrete methods. So-

lutions to missing the evidence problem and dimensionality issues were also discussed.

e Bootstrapping and component-wise diagnosis were proposed as methods to deal with

spares modes within the process data. A modification over the previous bootstrap-

217



ping approach (called smoothed bootstrapping which is related to kernel density es-
timation) was proposed in order to achieve better sampling properties. While the
Bootstrapping technique requires process knowledge, adopting component-wise diag-
nosis can be readily implemented in any framework. It also enjoys the advantage of

reducing dimensionality, an issue discussed in Chapter 6.

e Implementing kernel density estimation and ambiguous modes will affect the previ-
ously proposed solutions for auto-dependent data and auto-dependent modes respec-
tively. Chapter 11 extends the auto-dependent data and mode concepts presented
in earlier work in order to enable their application toward ambiguous modes and

continuous evidence.

12.1.2 Unified Bayesian framework

Each of the proposed methods can be applied simultaneously with the others (with exception
of the second-order Bayesian method and the Generalized Dempster-Shafer method, the user
must chose one of these two techniques); in this way, each of these solutions can be fit to a

final unified framework, implemented as follows:

Offline Step 1: Break the system down into components

This step is mentioned in Chapter 7 where we break the system down into smaller com-
ponents in order to reduce the mode dimension. In this way, the mode is described as a
vector of P component states M = [C1,C?,...,CF]. After the system is broken down, it
is also recommended that one tests the sensitivity of the monitors for each mode. Remov-
ing insensitive monitors reduces dimensionality and improves robustness of the diagnosis
method.

Offline Step 2: Fill in data from missing modes

If there are any missing modes, and if there is adequate information about the system,
it is possible to simulate data for extra modes using the bootstrap method mentioned in
Chapter 7. Breaking down the system into components however, will reduce the likelihood

that important modes will be missing.

Offline Step 3: Perform grouping for each component

In this optional step, the user can employ the Mutual Information Criterion to locate
independent groups of monitors, and further reduce the dimension of the data. Breaking
down the system into components and selecting only sensitive monitors however, will result
in an already reduced dimension; grouping should only be considered if the dimension is

large (e.g. greater than 5).
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Offline Step 4: Identify any ambiguous modes and determine the size of O

In this step, one should identify any modes that are ambiguous. One may consider discard-
ing ambiguous modes if the amount of data pertaining to these modes is small (e.g. less
than 10%). Note that breaking down the system into smaller components can reduce the
proportion of data belonging to such modes; furthermore, each component will have its own

O parameter set. Using these ambiguous modes, one should determine the size of ©.

Offline Step 5: Construct prior probabilities

Prior probabilities of unambiguous modes (or component sates) should be constructed; if
taking ambiguous modes into account, the Jacobian and Hessian matrices of the prior’s

second-order approximation should also be constructed (they can be zero matrices).

Offline Step 6: Construct kernel density estimates

If continuous data is available, it is highly recommended that kernel density estimates be

used over discrete estimates. The kernel density estimate
p(E|C) =~ f(E|C)

should be constructed according to Chapter 6 for all component modes in C' (including
ambiguous modes if present). In addition, if one wishes to take into account autodependent

evidence, the additional kernel density estimate
p(E' EHC) ~ f(B, BT C)

should be obtained so that the conditional likelihood can be estimated as

f(E, EHO)

tt—1 0
PO~ ")

Note that the kernel density estimate f(E'~!|C) is the same as f(E!|C), the only difference

is that E'~! is used as input instead of E?.

Offline Step 7: Fill in missing historical evidence

If there are any missing monitor values, one can use the kernel density regression technique

to fill in missing data.

Offline Step 8: Define probability transition matrix

If one is considering the effect of autodependent modes, a probability transition matrix
should be constructed. This matrix is essentially a tuning parameter, but one can use data

to estimate the switching probability of modes or component states.
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Online Step 1: Probability transition

Using the posterior estimate from the previous step (or an initial posterior) use switching
probabilities to obtain the prior probabilities for the current time. If considering ambiguous

modes, the update rule take the following form:

Ct|Et 1 Zp Ct|ct 1 Ct 1|Et 1)

J(Ct‘Etfl) = Zp(Ct\cﬁ_l)J(ththfl)
=1

H(Ct‘Etfl) = Zp(ct‘cg_l)H(ththfl)
=1

Online Step 2: Kernel density estimation

At each time step, new evidence E! is obtained. Using this evidence, one can construct
probabilities from kernel density estimates. When considering autodependent evidence, the

support function is

fE" B C)

S(E'EL ) ~ BT

Otherwise, a simple kernel density estimate can be used
S(E'|C) = f(E'|C)

Online Step 3: Define likelihood function

If ambiguous modes (or equivalently, component states) are present in the data, one has to
define the likelihood as a function of ©

> 0{E}S(EE, C)n(C)

coc
> 0{&mn(0)
coc

p(E|E*,C,0) =

This expression must then be converted to the second-order approximation format
- . _ 1
p(E|E'™,C,0) ~ B(E|E"™,C) + Jgpi-1 ) AO + §A@TH(E|E,§7170)A@
If there are no ambiguous modes, the likelihood will simply be

p(BE|E',C) = S(E'|E'™,C)
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Online Step 4: Combine likelihood functions

If the evidence is separated into independent groups, one must use the second-order combi-
nation rule to obtain a combined likelihood estimate. For example, if evidence is separated
into two independent groups E = [Ej, Fs] one can obtain the combined second-order like-

lihood as

P(E|C) = p(E1|C)p(E2|C)
Jieicy = [J(5,)0)D(E2|C) + J(cipy)P(C| E2)]
H g0y = [H (g, 0)p(E2|C) + H oy, p(C|Ea)+

T T
JicienJcim) + J(C|E1)J(C|E2)]

Online Step 5: Combine likelihood and prior functions

Once the likelihood of all evidence is obtained, the likelihood can be combined with the
prior (obtained in Online Step 1).

1
At oty At pt—1 Ayt t—1

1 ~ -1 N -1
J(Ct‘Et) = pi(Et‘Et_l) [J(Ct|Et71)p<Et‘Et ,C) + J(Et|Et71,C)p(Ct|Et )]

1 St prt—1 SOt pt—1
H(Ct‘Et) = pi(Et‘Et_l) [H(Ct|Et71)p<E ‘E ,C) + H(Et‘Epl,C)p(C |E )+

J(TCt|Ei*1)J(Et\Et—1,C) + J&‘”Etfl’c)']’(ct‘E‘t—l)

Online Step 6: Diagnose components and modes

From the component posteriors, one can diagnose each component separately (which would

define a mode) or construct mode probabilities using the product rule
p(M'|E") = T[] p(CH|E")
P

If p(CL|E?) is a second-order function with respect to ©, one must use the second-order
combination rule to obtain the second-order product. To diagnose a mode from the second-
order product, reference probabilities p(M?|E*) or the expected values Eg[p(M!|E*, ©)f(0)]

can be used to obtain a diagnosis.

12.1.3 Summary of application cases

Three test-bed systems were also introduced in order to evaluate the performance of each

of these techniques.

1. The well-known Tennessee-Eastman simulation simulated a chemical process, and

includes a built-in set of faults. This system was used to evaluate
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The second-order Bayesian approach for ambiguous modes (Chapter 8)

e The Generalized Dempster-Shafer approach for ambiguous modes (Chapter 9)

The kernel density estimation approach for continuous data (Chapter 10)

Dynamic adaptations of the second-order Bayesian approach and the continuous

evidence approach (Chapter 11)

2. A bench-scale hybrid tank system exists among the experimental systems owned by
Dr. Huang’s research group. This system has lines between the tanks that can be

opened to produce leaks. This system was used to evaluate
e The Bootstrapping and component-based diagnosis approaches to address sparse
modes (Chapter 7)
e The second-order Bayesian approach for ambiguous modes (Chapter 8)
e The Generalized Dempster-Shafer approach for ambiguous modes (Chapter 9)
e The kernel density estimation approach for continuous data (Chapter 10)

e Dynamic adaptations of the second-order Bayesian approach and the continuous

evidence approach (Chapter 11)

3. Data from a solids handling facility in the Canadian Athabasca Oil Sands was used as
a final test-bed solution. This system has been operating under a number of modes

that are typically given by a scheduling variable. This system was used to evaluate

e The second-order Bayesian approach for ambiguous modes (Chapter 8)
e The Generalized Dempster-Shafer approach for ambiguous modes (Chapter 9)
e The kernel density estimation approach for continuous data (Chapter 10)

e Dynamic adaptations of the second-order Bayesian approach and the continuous

evidence approach (Chapter 11)

12.2 Recommendations for Future Work

The following topics may be worthy of future investigations:

e The current implementation of Bayesian diagnosis is strictly a supervised learning
problem. However, kernel density estimation provides a powerful framework for clus-
tering which can be used as a tool to help perform the separation of data into modes

(a task that must be performed before this Bayesian framework can be used).

e Unsupervised learning through kernel density estimation may also be potentially used
to address the ambiguous mode problem. Data from ambiguous modes can potentially
be sorted out into their respective specific modes by a combination of kernel density

clustering and the use of specific mode reference data.
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e Further opportunities in unsupervised learning can also be used to help reduce data di-
mensionality. Work by Gonzalez et al. [29] showed that Bayesian networks and kernel
density estimation complement each other quite well to decompose high-dimensional
non-linear distributions into a more manageable form. Unsupervised learning of
Bayesian networks through kernel density estimation would be a very interesting (and

potentially challenging problem) worthy of investigation.

e In this work, two bandwidth selection techniques were proposed for kernel density
estimation: the optimal Gaussian bandwidth and an commonly-used adaptive kernel
technique. In a related paper [54], an advanced bandwidth selection method was tested
with disappointing results. Bandwidth selection is an active area or research in kernel
density estimation, and several authors [62] [73] rigorously describe the performance
metrics of bandwidth selectors. It may be advantageous to consider other bandwidth

selection techniques.

e Diagnosing a mode will prompt the user to either maintain current operation or take
action to rectify the situation. Taking action often has economic consequences. For
practical implementation, it is important to consider the economic implications of

each decision made so that the recommended actions are economically optimal.
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Appendix A

Code for Kernel Density
Regression

While kernel density regression has been presented Chapter 10 in a relatively simple manner,
there are a number of safeguards and efficiency schemes that need to be put in place. As
such, the code is too complex to be considered in standard chapter material and is instead,
presented in the appendix.

A.1 Kernel Density Regression

This section contains the overall code for kernel density regression (it works for both stan-
dard and adaptive kernels) with both zeroth order (fKernelRegFirst(x,Y,KDEx)) and
first order (fKernelRegZeroth(x,Y,KDEx)) being considered. In order to increase speed, a
three-dimensional matrix toolbox was constructed and various functions from that toolbox
were used (the functions are explained in Section A.2). Such functions are relatively easy
to identify as they start with the character z.

Zeroth-order kernel density regression

1 function y = fKernelRegZeroth (x,Y, KDEx)

2

3 X = KDEx.data;

4 Zt = KDEx.bwmZt;

5

6 %Data has nD rows, each are horizonal entries of x
7 [nX,p] = size(x);

8 [nD,—] = size(X);

9 [—,—,nz] = size(Zt);

10 y = zeros(nX,length(Y(1l,:)));

11

12 $Calculate kernel density (can take both static and variable kernels)
13 if nz == 1 %The usual case, for non—adaptive kernels
14 clear ('"Weight');

15 for n = 1:nX

16 Xd = (X — ones(nD,1)*x(n,:))"';

17 7 = ZtxXd;

18 Weight (1,:) = exp( — 0.5%(sum(Z."2,1)) );

19 y(n,:) = (Weight*Y)/sum(Weight) ;

20 end

21 else %$If the kernel is adaptive, we have to multiply by different matrices
22 clear ('Weight")

23 for n = 1:nX
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24
25
26
27
28
29
30

%entries are column vectors strung out depth—wise

Xd = zcols((X — ones(nD,1)*x(n,:))");
7 = z.matmultiply (Zt, Xd);
Weight (1,:) = exp(— 0.5*sum(z."2,1));
y(n,:) = (Weight=*Y)/sum(Weight);
end
end

First-order kernel density regression

© W N U e W N

W W W W N NNNNNNNNDLNRE = B e e e e e
W N = O © N O U R WN = O © OO WN = O

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

function y = fKernelRegFirst (x,Y,KDEx)

= KDEx.data;
Zt = KDEx.bwmZt;

%Data has nD rows, each are horizonal entries of x

[nX,p] = size(x);
[nD,pyl = size(Y);
[,—,nz] = size(Zt);
y = zeros (nX,py);

%Calculate kernel density (can take both static and variable kernels)
if nz == %$The usual case, for non—adaptive kernels

clear ('Weight');

for n = 1:nX
%0btain Weights
Xd = (X — ones(nD,1)*x(n,:))";
Z = Zt=xXd;
Weight (1,1,:) = exp( — 0.5%(sum(z.°2,1)) );

%0btain regression denominator

Z = [ones(l,1,nD);zcols(Xd)];

0Z = zmatmultiply(Z,z_transpose(Z));
Den = sum( z-matmultiply (Weight,o0Zz), 3);

%0btain regression numerator
oY = zmatmultiply (Z,zrows(Y));
Num = sum( z-matmultiply (Weight,oY), 3);

B = Den\Num;

end

else $If the kernel is adaptive, we have to multiply by different matrices
clear ('Weight")
for n = 1:nX

%entries are column vectors strung out depth—wise

Xd = zcols((X — ones(nD,1)*x(n,:))");
Z = z.matmultiply (Zt, Xd);
Weight (1,1,:) = exp(— 0.5*sum(Z."2,1));

$Obtain regression denominator

7z = [ones(1,1,nD);Xd];

oZ = zmatmultiply(Z,z_transpose(Z));
Den = sum( z-matmultiply (Weight,o0Zz), 3);

%Obtain regression numerator
oY = zmatmultiply (Z,zrows(Y));

Num = sum( z-matmultiply (Weight,oY), 3);

B = Den\Num;
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52

53 y(n,:) = B(1l,:);
54 end

55 end

A.2 Three-dimensional matrix toolbox

MATLAB matrix operations only support two-dimensional matrices, but higher-dimensional
equivalents can be implemented through element-wise multiplication and summation which
support higher dimensions.

Multiplying Matrices

In this work, matrix manipulation must be done repeatedly for each element of data used
in the kernel density estimate. Consider Figure A.1, on one side, there is a typical 2D
matrix multiplication, but on the other size, there are two 3D matrices, where 2D matrix
multiplication is to be repeated over the z axis.

Y (7 EH

Figure A.1: z matmultiply

The simple way to do this is to use a for loop

1 for z = l:length(A(1,1,:))
2 C(:y:,2) = A(:,:,2)%B(:,:,2);
3 end

However, this method is slow. What is desired is to replace the for loop with this statement
that can be executed efficiently

1 C = zmatmultiply (A,B)

This is done by the following function:

1 function C = zmatmultiply (A,B)

2

3 [ma,na,oa] = size(A);

4 [mb, nb,ob] = size(B);

5

6 Sminimize for loops by looping the smallest matrix dimension

7 C = zeros (ma,nb,oa);

8

9 %if na # mb || oa # ob

10 % ‘r’pr'w:‘('\n zmatmultiply warning: Matrix Dimmensions Inconsistent \r")
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11  S%else

12

13

14 if na == 1 && mb == Souter product of two matrices
15 C = repmat (A, [1,nb]) .xrepmat (B, [ma,1]);

16 elseif ma == 1 && na == 1; %A is a set of scalars

17 C = repmat (A, [mb,nb]) .*B;

18 elseif mb == 1 && nb == 1; %B is a set of scalars

19 C = A.xrepmat (B, [ma,nal);

20 elseif ma > nb %rows of A less than columns of B

21 for j = 1l:nb

22 Bp = zeros (nb,mb, ob);

23 Bp(J,:,:) = B(:,3,:);

24 C(:,3,:) = sum(A.*xrepmat (Bp(Jj,:,:),[ma,1]),2);
25 end

26 else $rows of B less than columns of A

27 for 1 = 1:ma

28 Ap = zeros (na,ma,oa);

29 Ap(:,1i,:) = A(i,:,:);

30 C(i,:,:) = sum(repmat (Ap(:,1i,:),[1l,nb]l).*B,1);
31 end

32 end

33

34 end

Rearranging Matrices

Some code has also been used for rearranging 3D matrices. For example, for taking the
transpose of all depth-wise matrices (as seen in Figure A.2) is obtained using the function
z_transpose

1 function Xt = z_transpose (X)

2 [nx,ny,nz] = size(X);

3

4 Xt = zeros(ny,nx,nz);

5

6 if nx < ny

7 for xi = 1l:nx

8 Xt(:,x1,:) = X(xi,:,:);
9 end

10 else

11 for yi = l:ny

12 Xt(yi,:,:) = X(:,yi,:);
13 end

14 end

5
|
5

Figure A.2: z_transpose
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In addition, matrices can be converted into n depth-wise columns or n depth-wise rows
using zcols and zrows.

function Azr = zrows (A)
Azr(l,:,:) =
end

=

function Azc = zcols (A)
Azc(:,1,:) = A;
end

N OOt R W N =

L1

L9 — %
I3 L1

(a) zcols (b) zrows

1 I Iz - X1

Figure A.3: Converting matrices depth-wise
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