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Abstract

While there has been much literature in the area of system monitoring and diagnosis, most

of these techniques have a relatively small scope in terms of the faults and performance

issues that they are built to detect. When implementing several monitors simultaneously

on a single process, a single problem can result in multiple alarms, making it difficult to

single out the underlying cause. Recent work has been done on incorporating information

from multiple monitoring systems by means of Bayesian diagnosis; however, work so far

is still in its infancy. This thesis focuses on a number of techniques that can be used to

improve performance of previously proposed Bayesian diagnosis techniques.

Previous work [1] improved Bayesian diagnosis by accounting for incomplete evidence

(monitor readings). Evidence is often presented in a multivariate vector, thus evidence with

missing elements is incomplete. Missing elements can also appear in the mode (or set of

problem sources). Many times, the mode information can also be incomplete within the

historical data, such modes are ambiguous. This thesis develops two approaches for han-

dling ambiguous modes. One technique is derived using Bayesian methods, while another

technique is a modification on Dempster-Shafer Theory.

Evidence in previous work [2] [3] was considered to be a vector of discrete variables, and

the resulting probability estimates consisted of discrete categorical distributions. However,

most monitors have continuous outputs that are only discretized for the sake of alarms.

Discretization results in information loss, so it is desirable to use a technique that can

easily estimate likelihoods for continuous evidence. Kernel density estimation is a popular

technique for the non-parametric estimation of probability densities. Non-paramteric meth-

ods enjoy the advantage of not requiring assumptions on the nature of the distribution, so

that they naturally fit the shape of the data’s distribution (which is the main motivation

for discretization). Kernel density estimation enables the construction of non-parametric

estimates for continuous densities, allowing us to circumvent discretization procedures.

Bootstrapping was a topic of interest for generating additional data if the data was

sparse; however, it is also likely that modes will be sparse, that is, the history will often not
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contain all modes of interest. This thesis presents a two-pronged approach: first, to break

down the problem into analysing components and properly selecting monitors; second, to

generate additional modes by incorporating gray-box models and bootstrapping.

Finally, incorporating ambiguous modes will affect the autocorrelated mode solution [4],

while incorporating continuous evidence through kernel density estimation will affect the

autocorrelated evidence solution [5]. This thesis lays down a framework for dynamic imple-

mentation of the newly proposed ambiguous mode and continuous evidence techniques.
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Chapter 1

Introduction

1.1 Motivational Illustrations

Consider the following scenarios:

Scenario A

You are a plant operator, and a gas analyser reading triggers an alarm for a low level of

a vital reaction component; however, from experience, you know that this gas analyser

is prone to error. The difficulty is however, if the the vital reaction component is truly

scarce, its scarcity could cause plugging and corrosion downstream that could cost over $
120 million in plant downtime and repairs, but if the reagent was not low, shutting down

the plant would result in $ 30 million in downtime. Now, imagine that we have a diagnosis

system that has recorded several events like this in the past, using information from both

upstream and downstream, and is able to generate a list of possible causes of this alarm

reading, and displays the probability of each scenario. The diagnosis system indicates that

the most possible cause was a scenario that happened three years ago, when the vital reagent

concentration truly dropped, and by quickly taking action to bypass the downstream section

of the plant, a 120-million-dollar incident was successfully avoided. Finally, imagine that you

are the manager of this plant, and discover that after implementing this diagnosis system,

the incidents of unscheduled downtime have been reduced by 60 % and that incidents of

false alarms have been reduced by 80 %.

Scenario B

You are the head of a maintenance team of another section of the plant with over 40

controllers and 30 actuators. Oscillation has been detected in this plant, where any of

these controllers or actuators could be the cause. Because these oscillations can push the

system into risky operating regions, caution must be exercised to keep the plant in a safer

region, but at the cost of poorer product quality. Now, imagine you have a diagnosis tool

that has data recorded from previous incidents and their troubleshooting solutions, and
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the probabilities of each incident. With this tool, we see that the most probable cause

(at 45 %) was fixed by replacing the stem packing on Valve 23, and that the second most

probable cause (at 22 %) was a tank level controller that in the past, was sometimes over-

tuned by a poor application of tuning software. By looking at records, you find out that a

young engineer recently used tuning software to re-tune the level controller. Because of this

information, and because changing the valve packing costs more, you re-tune the controller

during scheduled maintenance, and at start-up find that the oscillations are gone, and you

can now safely move the system to a point that produces better product quality. Now

that the problem has been solved, you update the diagnosis tool with the historical data to

improve the tool’s future diagnostic performance. Now imagine, that as the head engineer of

this plant, you find out that 30 % of the most experienced people on your maintenance team

are retiring this year, but because the diagnostic system has documented a large amount

of their experience, new operators are better equipped to figure out where the problems in

the system truly are.

Overview

These stories paint a picture of why there has been so much research interest in fault

and control loop diagnosis systems in the process control community. The strong demand

for better safety practices, decreased downtime, and fewer costly incidents (coupled with

the increasing availability of computational power) all fuel this active area of research.

Traditionally, a major area of interest has been in detection algorithms (or monitors as

they will be called in this work) that focus on the behaviour of the system component. The

end goal of implementing a monitor is to create an alarm that would sound if the target

behaviour is observed. As more and more alarms are developed, it becomes increasingly

probable that a single problem source will set off a large number of alarms, resulting in

an alarm flood. Such scenarios in industry have caused many managers to develop alarm

management protocols within their organizations. Scenarios such as those presented in

scenarios A and B can be realized and in some instances have already been realized by

research emphasizing the best use of information obtained from monitors and historical

troubleshooting results.

1.2 Previous Work

1.2.1 Diagnosis techniques

The principal objective in this thesis is to diagnose the operational mode of the process,

where the mode comprises of the operational state of all components within the process.

For example, if a system comprises of a controller, a sensor and a valve, the mode would

contain information about the controller (e.g. well tuned or poorly tuned), the sensor (e.g.

biased or unbiased), and the valve (e.g. normal or sticky). As such, the main problem
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presented in this thesis falls within the scope of fault detection and diagnosis.

Fault detection and diagnosis has a vast (and often times overwhelming) amount of

literature devoted to it for two important reasons:

1. The problem of fault detection and diagnosis is a legitimately difficult problem due

to the sheer size and complexity of most practical systems.

2. There is great demand for fault detection and diagnosis as it is estimated that poor

fault management has cost the United States alone more than $20 Billion annually as

of 2003 [6].

In a three-part publication, Venkatasubramanian et al. [7] review the major contributions

to this area and classifies them under the following broad families: quantitative model-

driven approaches [7], qualitative model-driven approaches [8], and process data-driven

approaches [9]. Each type of approach has been shown to have certain challenges. Quan-

titative model-driven approaches require very accurate models that cover a wide array of

operating conditions; such models can be very difficult to obtain. Qualitative model-driven

approaches require attention to detail when developing heuristics, or else one runs the risk

of a spurious result. Process data driven approaches have been shown to be quite powerful

in terms of detection, but most techniques tend to yield results that make fault isolation dif-

ficult to perform. In this thesis, particular interest is taken in the quantitative model-driven

approach and the process data-driven approaches.

Quantitative model-driven approaches

Quantitative model-driven approaches focus on constructing models of a process and using

these models to diagnose different problems within a process [10] [11]. These techniques bear

some resemblance to some of the monitoring techniques described in Section 1.2.2 applied

to specific elements in a control loop. Many different types of model-driven techniques exist,

and were broken down according to Frank [12] as follows:

1. The Parity Space Approach, which looks at analytical redundancy in equations that

govern the system [13].

2. The Dedicated Observer and Innovations Approach, which filters residual errors from

the Parity Space Approach using an observer [14].

3. The Fault Detection Filter Approach, which augments the State Space models with

fault-related variables [15] [16]

4. Parameter identification approach which is traditionally performed offline [12]. Here,

modelling techniques are used to estimate the model parameters, and the parameters

themselves are used to indicate faults.
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A popular subclass of these techniques are deterministic fault diagnosis methods. One

popular method in this subclass, is the parity space approach [13] which set up parity

equations having analytical redundancy to look at error directions that could correspond to

faults. Another popular method the observer-based approach [17] which uses an observer

to compare differences in the predicted and observed states.

Stochastic techniques, in contrast to the deterministic techniques, use fault-related pa-

rameters as augmented states; these methods enjoy the advantage of being less sensitive to

process noise [18], being able to determine size and precise cause of the fault, but are very

difficult to implement on large-scale systems and often require some excitement [19]. In-

cluding physical fault parameters in the state often requires a nonlinear form of the Kalman

filter (such as the EKF, UKF or the Particle Filter) as states often have nonlinear relation-

ships with respect to parameters. Such techniques were pioneered by Isermann [20] [21]

with other important contributions coming from Rault et al. [22]. The main reason behind

including these parameters in the state is that the stochastic Kalman filter is primarily fo-

cused on estimating the state distribution; when fault parameters are included in the state,

fault parameter distributions are automatically estimated in parallel with the state. Exam-

ples of this technique include Gonzalez et al. [23] which made use of continuous augmented

bias states, while Lerner et al. [24] made use of discrete augmented fault states.

Process data-driven approaches

A popular class of techniques for process monitoring are data-driven modelling methods,

where one of the more popular techniques is Principal Component Analysis (PCA) [25].

These techniques create black-box models assuming that the data can be explained using a

linear combination of independent Gaussian latent variables [26]; a transformation method is

used to calculate values of these independent Gaussian variables, and abnormal operation

is detected by performing a significance test. The relationship between abnormal latent

variables and the real system variables is then used to help the user determine what the

possible causes of abnormality could be. There have also been modifications of the PCA

model to include multiple Gaussian models [27] [25] where the best local model is used to

calculate the underlying latent variables used for testing.

All PCA models assume that the underlying variables are Gaussian, but more recent

methods [28] do away with this assumption by first using ICA to calculate values of inde-

pendent latent variables (which are not assumed to be Gaussian under ICA) and then use

Kernel density estimation to evaluate the probability density of that value. Low probability

densities indicate that the process is behaving abnormally. Even more recent work [29] uses

Bayesian networks instead of PCA/ICA to break down the system into manageable pieces;

this allows the user to define variables of interest for monitoring and determine the causal

structures used to help narrow down causes. Abnormality is detected if key process variables

take on improbable values or if groups of key process variables take on improbable patterns.
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Results from this type or approach is generally easier to interpret than PCA/ICA-based

methods.

Bayesian data-driven approaches

This thesis focuses on using the Bayeisan data-driven approach, which is distinct from other

fault detection and diagnosis methods, mainly for the reason that the Bayesian approach

is a higher-level diagnosis method [3] [2]. This type of approach is not meant to compete

with previously mentioned fault detection and diagnosis methods; instead, the Bayesian

approach provides a unifying framework to simultaneously use many of these methods

at once. As such, it can take input from many different fault detection and diagnosis

techniques in order to make a final decision. In this thesis, other diagnosis methods and

even instruments themselves are treated as input sources and are referred to as monitors;

this term is chosen mainly because previous work [3] focused heavily on using input from

control loop monitoring techniques (described later in Section 1.2.2).

For Bayesian diagnosis, data from monitors must be collected for every scenario that

one would wish to diagnose. In this work, such scenarios are referred to as operational

modes. When new monitor information arrives, the new information is compared to histor-

ical data in order to determine which historical mode best fits the new information. The

Bayesian diagnosis technique ranks each of the modes based on posterior probability which

is calculated using Bayes’ Theorem [30]

p(M |E) =
p(E|M)p(M)

p(E)

P (E) =
∑
i

p(E|mi)p(mi)

where

• p(M |E) is the posterior probability, (probability of the mode M given evidence E)

• p(E|M) is the likelihood of the evidence E given the historical mode M

• p(M) is the prior probability of the historical mode M

• p(E) is the probability of the evidence E (which is a normalizing constant)

In the Bayesian diagnosis technique, the historical data and mode classifications are used

to construct the likelihood p(E|M), and prior probabilities of modes are assigned to p(M)

using expert knowledge. While collecting data for historical modes may be a challenge,

the Bayesian method at least allows us to collect data in a way that is not necessarily

representative of the true mode occurrence rate. For example, if mode 1 occurs 90 % of the

time, then representative sampling would require that 90 % of the data come from mode 1.

Bayesian methods (which use prior probabilities to cover mode representation) allow us to

collect an arbitrary amount of data for each mode, giving us a lot more flexibility in data

collection than other methods.
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1.2.2 Monitoring techniques

Much of this work focuses on monitoring and diagnosing control-loops (a schematic for a

typical control loop is given in Figure 1.1); for this area of research, there exists abundant

literature on assessing the performance of the entire loop as well as diagnosing problems

within the loop’s core components. These methods can be directly used to create alarms or

notification statuses which alert operators and engineers about risky or inefficient operation.

Figure 1.1: Typical control loop

Monitors used for control loops tend fall under the following categories:

• Control performance monitors

• Sensor bias monitors

• Valve stiction monitors

• Process model monitors

• Process operation monitors

Methods in this thesis are tested on three particular testbed systems: a simulated sys-

tem, a bench scale system, and an industrial scale system. Each type of monitor has been

used in at least one of the systems, a summary of monitors for each system is presented in

Table 1.1. The simulated system makes use of three monitors (control performance mon-

itors, valve stiction monitors, and process model monitors) while the bench scale system

makes use of the two remaining monitor types (a process operation monitor, and two sensor

bias monitors). The industrial-scale system uses no monitors, but instead, directly uses

data from the various sensors within the facility.

Control performance benchmarks

Control performance monitors have the broadest scope of all the monitors that can be

used in our applications, as they focus on the performance of the entire control loop. The

output of a control performance monitor is a performance index based on some sort of ideal
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Table 1.1: List of monitors for each system

Simulated Bench Scale Industrial Scale

Control Performance Sensor Bias Raw Sensor Readings

Valve Stiction Process Operation

Process Model

benchmark. Ideally, a process monitor yields a value between 0 and 1 (for the worst and

best performance respectively).

The first major control loop monitors were introduced by Harris [31] who proposed the

minimum variance control (MVC) benchmark as a reference of evaluation; Huang et al.

[32] later developed a filtering and correlation (FCOR) algorithm to effectively estimate

this benchmark. The MVC benchmark was later extended to MIMO (multi-input multi-

output) systems [33] along with the corresponding estimation algorithms [34]. In addition,

other benchmarks were proposed, including the linear quadratic regulator benchmark [34]

and the model-predictive control benchmark [35], [36], [37].

In this thesis, the FCOR algorithm [32] is the control performance monitor used for the

simulated system.

Valve stiction monitors

As previously mentioned, fault detection and diagnosis using quantitative models is a broad

area of research, and many techniques have been developed for specific applications based

on knowledge of the physical system. Such techniques have been used for process control ap-

plications, where valve stiction monitoring is one of the most prominent modelling subjects,

due to the fact that it is often the largest contributor to poor control loop performance.

This subject has been reviewed in depth by Jelali and Huang [38]. Some of the earliest

work in this area focused on non-linearity caused by non-ideal valves; such methods used

a Hammerstein model to identify the non-linear valve and a linear process [39] [40]. Some

qualitative methods were also introduced, for example, trying to fit the valve input-output

relationship to an ellipse [41].

In this thesis, a simple stiction monitoring algorithm is used for the simulated system

based on fitting the valve’s input-output relationship to an ellipse. If stiction is absent, the

data should be easily fit by an ellipse. However, if the fit is poor, it is likely that stiction is

present.

Plant-model mismatch monitors

One of the main issues with model-predictive control is the gradual degradation of the

process model. If the modelled behaviour deviates too drastically from the real process, the
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efficacy of model-predictive control is fundamentally compromised. In order to safeguard

against such events, we monitor the performance of model prediction. The most intuitive

method to monitor a model’s performance is the squared prediction error, but other more

elaborate techniques have also been developed including frequency domain methods [42],

two-model divergence methods [43], and OE model methods [44].

In this thesis the OE model method is used for model error monitoring. This algorithm

focuses on MISO (multi-input single-output) systems, even though the simulated process is

a MIMO system; however, a MIMO system can be easily constructed using several MISO

systems.

Bias monitors

Sensor bias can also be a problem in control loops, as sensors are the main reference for

control action. A common method for detecting sensor bias in process industries is the use

of data reconciliation and gross error detection [45]. Most of data-reconciliation and gross

error detection methods have been proposed for offline implementation [46]; recently, Qin

and Li. [47] and Gonzalez et al. [23] developed on-line versions.

In this thesis, bias monitors for the bench scale process focus on the flow meter output

versus pump speed. This type of monitor is effective for positive-displacement pumps such

as those found in the bench scale process.

Process operation monitors

Process operation monitoring is a broad area of research, mainly because of the large variety

of processes that can be monitored and the large number of operation phenomena that can

be targeted (such as faults/breakdowns, abnormal/suboptimal operation, and violation of

operating limits). Literature in this area falls under fault detection and diagnosis literature,

which is reviewed in Section 1.2.1.

In this thesis, for the bench scale system, a quantitative model-driven technique is used

based on the Kalman filter; here, the state is augmented in order to include two fault-related

parameters (representing leaks). Under ideal conditions, the parameters have values of zero

(no leak), but as leaks are introduced, the parameter values change to values significantly

greater than 0.

1.3 Thesis Outline

This thesis is broken down into two major parts: Fundamentals and Application, where

each of the major contributions is generally represented in both parts. The fundamentals

focus on theoretical development and justification of the proposed techniques, while the

application focuses on succinctly conveying all information required to apply said techniques.

Because both parts are meant to be stand-alone, there may be some slight overlap between
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the fundamentals and application sections, namely the parts in the fundamentals that are

directly relevant to application.

A number of techniques exist in this thesis that many readers may not be familiar

with, namely Bayesian diagnosis, Dempster-Shafer theory, kernel density estimation, and

bootstrapping. A tutorial is provided in this thesis which covers fundamental aspects of all

four techniques.

1.3.1 Problem overview and illustrative example

The main objective of this work is to diagnose the process operating mode (which contains

information about the state of each process component of interest, such as sticky valves, bi-

ased sensors, inaccurate process models etc). Before diagnosing modes, we collect historical

data from monitors for each mode; this historical data is used to diagnose the mode when

new evidence becomes available online. Because it is assumed that corresponding modes

are available with the historical data, this thesis takes a supervised learning approach when

applying historical data.

In order to easily illustrate the challenges associated with Bayesian diagnosis, consider

a problem where the modes consist of two different coins, one with a bias toward heads

(probability of heads = 0.6) and one that is fair (probability of heads = 0.5). The probability

estimates are obtained through historical data of coin flips. For the diagnosis problem, a

coin is randomly selected and we wish to use evidence of coin flipping to determine which

coin was selected. The evidence is provided by two people flipping the same coin once.

1.3.2 Previous work

The bulk of the work in this thesis follows from work presented by Pernestal [2] and by Qi

[3]. In particular, Qi addressed some practical issues when applying Pernestal’s work to the

process industry including

Missing data

It is not uncommon in process industries that sensor records in the history are unavailable

during certain time intervals. Since sensors are also used for monitoring, the corresponding

monitor will also be unavailable, rendering a data point incomplete (as some elements are

missing). Simply discarding incomplete data points will result in a loss of information; how-

ever, Qi and Huang [1] proposed using Bayesian methods to recover the useful information

from these incomplete data points.

Using our coin-flipping example, consider the case where the evidence from the two

people flipping coins is dependent. For example, after the first person flips a coin, whatever

side faces up will be placed face up on the thumb on the second person. Now the historical

data contains the results of both people flipping coins. In some circumstances, the result

from one of the two flips will be missing. Because the coin-flips are dependent, Qi and
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Huang [1] adopts Bayesian methods to use the information present to make up for the

missing information.

Autodependent modes

For industrial processes, mode changes tend to be quite rare, which means that the mode at

time t is highly dependent on the mode at time t− 1. Taking this type of dependency into

account can significantly increase precision of our diagnosis results, as consecutive pieces

of evidence contain more information than individual pieces. This type of dependency has

been addressed in Qi and Huang [4].

Returning to our coin flipping example, consider the case where after each pair of flips,

there is a probability of the coin being switched. If that probability is low, the ‘mode’ has a

strong time-wise autodependence. This means that consecutive pieces of evidence contain

even more information about the mode than single pieces of evidence themselves.

Autodependent evidence

Monitor readings often use data from previous time steps in order to calculate a result.

If monitor readings are not sampled slowly enough, the evidence will be autodependent.

Taking the autodependence of evidence into account was addressed in Qi and Huang [5]

Autodependent evidence can also be applied to our coin flipping example. If the second

coin flipper obtained heads at t − 1, and the first coin flipper at time t placed the coin

on his thumb heads-side-up (with tails being similarly treated) then results would exhibit

time-wise dependence.

Sparse evidence given a mode

If a process has a large number of components, the number of possible modes will be very

large. In such cases, it is quite possible for data from a particular mode to be quite sparse. Qi

and Huang [48] recommended the use of bootstrapping as a method to generate additional

data and get a better representation of the monitor distribution.

For the coin flipping example, consider the case where historical data for one of the coins

(such as the biased one) does not have a large amount of historical data. Bootstrapping is

a method that was suggested in Qi and Huang [48] to resolve this issue by simulating more

coin flips by randomly drawing from previous results recorded in the historical samples.

1.3.3 Proposed work

This thesis aims to address other challenging issues that have not been previously addressed.

A visual map of these solutions is given in Figure 1.2 where dark gray boxes indicate prob-

lems, medium gray boxes indicate important previously existing solutions, and white boxes

indicate solutions proposed by this thesis; moreover, dotted lines indicate a combination of

multiple methods. The contents of the thesis have also been accepted as a part of a book
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entitled “Control System Monitoring and Diagnosis: An Evidence-Based Approach” to be

published by Wiley.

Figure 1.2: Overview of proposed solutions

Ambiguous modes from a Bayesian perspective

Qi and Huang [1] addressed the issue if some elements of historical evidence records are

missing causing the evidence to be incomplete. However, just like evidence requires input

from multiple monitors, the mode requires information from multiple components. If any

information about the components is missing, a number of different modes will be possible,

causing the mode to be ambiguous.

For example, if some of the historical data from coin flipping exercises contained no

information on which coin was flipped (the biased or fair one) then either coin could have

produced the results (heads or tails) and the corresponding mode (or coin in this case) is

ambiguous. Since the conditioning variable is unknown, probability cannot be calculated in

a straightforward manner.

Ambiguous modes from a Dempster-Shafer perspective

Demspter-Shafer theory [49] [50] has been deemed by many to be a generalization of

Bayesian diagnosis that is able to handle ambiguity. However, it is shown in this work that

Dempster-Shafer theory does not adequately formulate the problem of ambiguous modes in

the historical data when likelihoods p(E|M) are used. Some modifications are required in

order to properly fit the data-driven diagnosis problem into a Dempster-Shafer framework.
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Using continuous evidence

Previously, it was assumed that information used by the diagnosis method was discrete

(our coin-flipping exercise yields discrete evidence). In reality however, most monitors yield

an output that is continuous (for example, a monitor that monitors changes in compressor

pressure). In order to reduce the amount of information lost through discretizing continuous

values, this thesis proposes the use of kernel density estimation to make use of the continuous

data directly.

Sparse or missing modes in the data

As the number of components in a system increase, the possible modes will increase ex-

ponentially. For systems with a large number of components, it is likely that data for a

significant number of modes will be missing entirely.

For example, in our coin flipping exercise, even though we only have two coins (e.g.

modes), we might not have any historical data from one of the coins. This thesis will

present techniques on what one can do if certain modes of interest are absent from the

historical data.

Dynamic applications

When accounting for ambiguous modes, the solution for addressing mode autodependence

will be affected. Similarly, when accounting for continuous evidence, the solution for au-

todependent evidence will be affected. In Part I which deals with fundamentals, the solution

to autodependent modes is addressed in Chapter 4 which discusses ambiguous modes. Like-

wise, the solution to autodependent evidence is addressed in Chapter 6. However, in Part II

which deals with application, the solution to autodependent modes and evidence are dealt

with in their own chapter (Chapter 11).

1.4 Published/Submitted Material

A number of papers have been submitted and published while completing the work done in

this thesis, and material in several chapters have been addressed in these publications.

(1) R. Gonzalez, B. Huang, Control loop diagnosis with ambiguous historical operating

modes: Part 1. A proportional parametrization approach, Journal of Process Control

23 (4) (2013) 585–597 [51], (Related material is found in chapters 4 and 8)

(2) R. Gonzalez, B. Huang, Control loop diagnosis from historical data containing ambigu-

ous operating modes: Part 2. Information synthesis based on proportional parameter-

ization, Journal of Process Control 23 (4) (2013) 1441–1454 [52] (Related material is

found in chapters 4 and 8)
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(3) R. Gonzalez, B. Huang, Data-driven diagnosis with ambiguous hypotheses in historical

data: A generalized Dempter-Shafer approach, in: Procedings from the 16th Inter-

national Conference on Information Fusion, 2013 [53] (Related material is found in

chapters 5 and 9)

(4) R. Gonzalez, B. Huang, Control-loop diagnosis using continuous evidence through kernel

density estimation, Journal of Process Control 24 (5) (2014) 640–651 [54] (Related

material is found in chapters 6 and 10)

(5) R. Gonzalez, B. Huang, E. Lau, Process monitoring using kernel density estimation

and Bayesian networking with an industrial case study, submitted to ISA Transactions,

2014 [29] (Related material is found in chapters 6 and 10)
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Part I

Fundamentals
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Chapter 2

Prerequisite Fundamentals

2.1 Introduction

The primary focus of this thesis is diagnosing the performance of process systems by means

of historical data and Bayesian inference. However, there are many practical problems to

be considered before such methods can be properly implemented, namely, missing historical

evidence, ambiguous historical modes, sparse data (modes and or evidence). In addition,

the Bayesian diagnosis method can be enhanced by taking into account dynamic properties

of modes and evidence as well as estimating continuous distributions using kernel density

estimation. Each of the solutions or enhancements make use of one of the following four

tools:

1. Bayesian Inference

2. The EM Algorithm

3. Techniques for Ambiguous Modes (including Dempster-Shafer theory)

4. Kernel Density Estimation

5. Bootstrapping

Working knowledge of each of these tools is important in understanding the material pre-

sented in this thesis, thus we include a short tutorial for each of these tools in this chapter.

2.2 Bayesian Inference and Parameter Estimation

Bayesian inference is at the core of every solution mentioned in this thesis. Philosophically,

Bayesian statistics interprets probability in a different manner than the more traditional

Frequentist approach. The frequentist interpretation discusses problems in dealing with

long-term frequencies of data generated from repeated independent random experiments

[55]. However, it does not accommodate the intuitive notion that short-term probabilities

exist and have meaning [56]. By contrast, the Bayesian view of probability asserts that
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probability represents a subjective degree of belief, a view that was held prior to Venn by

de Laplace [57] and even earlier by Bayes [30].

In practice, there are two main differences between the Bayesian and Frequentist ap-

proaches, which mainly addresses parameter estimation and inference.

Parameter estimation

When estimating parameters, the frequentist approach to parameter estimation assumes

that the underlying parameters are not random and hence not subject to chance. By con-

trast, Bayesian methods assume that the underlying parameters are random and Bayesians

must assign prior distributions to these parameters.

Consider an example where we flipped a coin 200 times, with 115 results being heads, and

85 results being tails, and we wanted to know the probability of ‘heads’. The frequentist

approach would be to simply estimate the probability parameter from the result (θ =

115/200 = 0.575). There is no distribution associated with this result. The Bayesian

approach would be to assume a Dirichlet distribution (which is explained later) which

directly describes the distribution of the probability parameter θ. As we can see in Figure

2.1, the peak probability of this parameter is 0.575, (our ‘heads’ proportion from last time);

furthermore, we can see that the distribution is fairly sharp due to the fact that we have

performed this experiment about 200 times.
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Figure 2.1: Bayesian parameter result

Inference about one hypothesis

When performing inference, the frequentist approach yields a probability of being false when

assuming each hypothesis. The aim is to select the hypothesis that has the lowest risk of

being false. The Bayesian approach will yield probabilities of each hypothesis with the aim

of selecting the hypothesis with the largest probability as being true. When estimating

parameters, the frequentist appraoch yields a single maximum likelihood estimate (as it is

16



the value with least risk of being false), while the Bayeisn approach yields a probability

density function, depicting the uncertainty about the estimate.

Let us again consider the coin-flipping example, where again, the heads outcome was

observed 115 times, while the tails outcome was observed 85 times and we wish to determine

if the coin is fair. When performing inference, the frequentist approach first estimates the

distribution of the data. Because of the central limit theorem, we can assume that the mean

follows a normal distribution, enabling us to perform a T 2 test. Using the T 2 distribution,

we assess the risk of being wrong if we reject the null hypothesis (that the coin is fair, or

that µ = 0.5). Figure 2.2(a) shows the T 2 distribution, with the shaded area being the risk

of rejection (the T 2 statistic was 0.0229). From integrating the rejection region, we find

that we have about a 36% risk of being wrong if we say that the coin is not fair µ 6= 0.5.

The Bayesian approach to the coin problem is markedly different. First, in order to

implement the Bayesian approach, we need to define what a fair coin really is. In this case,

let us say that if the probability of heads θ is between 0.45 and 0.55, then the coin is fair. We

use the parameter distribution to find out how much of the distribution’s area lies outside

of this range, which for this case (given in Figure 2.2(b)) is roughly 76%. Thus we can say

that based on the observed data, there is a 24% probability that the coin’s probability for

heads θ lies inside our fairness interval of [0.45, 0.55].
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(a) Frequentist Approach
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(b) Bayesian Approach

Figure 2.2: Comparison of inference methods

Inference about many hypotheses

In the coin-flipping example, the hypothesis was concerned about a continuous hypothesis,

that is, the probability parameter θ. Let us consider a new example, where we have two

fair coins θ = 0.5 and one coin with a bias toward heads θ = 0.6. Now, instead of θ

being continuous (taking on an infinite number of values), it is now discrete (taking on the

value of either 0.5 or 0.6). For this example, a random coin was selected and 200 trials
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were performed on this coin, again with heads being observed 115 times, and tails being

observed 85 times. Now we would like to determine if the selected coin is one of the fair

coins (θ = 0.5) or if it was the biased coin (θ = 0.6).

For the frequentist approach, we calculate the T 2 statistics based on µ = 0.5 and µ = 0.6

T 2
θ=0.5 =

(µ̂− 0.5)2

σ̂2
=

(0.575− 0.5)2

0.2456
= 0.0229

T 2
θ=0.6 =

(µ̂− 0.6)2

σ̂2
=

(0.575− 0.6)2

0.2456
= 0.0025

These statistics result in rejection risks of 36% and 84% respectively. Since θ = 0.6 has the

highest rejection risk, we can say that we are more likely to be correct if we say that the

biased coin was selected.

Now, in order to use the Bayesian approach, we must familiarize ourselves with Bayes’

Theorem, the fundamental basis for all Bayesian methods.

p(H|E) =
p(E|H)p(H)

p(E)

Here, H represents a hypothesis, E represents evidence and the probability terms are in-

terpreted as follows

• p(H) is the prior probabiltiy of the hypothesis

• p(E|H) is the probability of the evidence given the hypothesis

• p(E) is the probability of the evidence which can be expressed as

p(E) =

∫
p(E|H)p(H) dH

• p(H|E) is the posterior probability

For our applications, H is a hypothetical value of θ (in this example it is discrete, in the

previous examples, it was continuous).

In order to apply Bayes’ Theorem, we calculate the likelihoods for θ = 0.5 and θ = 0.6

over the 200 data points.

p(E|θ = 0.5) = 0.51150.585 = 6.2230× 10−61

p(E|θ = 0.6) = 0.61150.485 = 4.5972× 10−60

We also have the prior probabilities based on the number of coins we have for each hypothesis

p(θ = 0.5) = 2/3

p(θ = 0.6) = 1/3
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The prior probability is based on prior knowledge about the type of coins we have. The

resulting Bayesian probabilities are therefore

p(θ = 0.5|E) =
(2/3)6.2230× 10−61

p(E)
=

0.415× 10−60

p(E)
= 0.2131

p(θ = 0.6|E) =
(1/3)4.5972× 10−60

p(E)
=

1.532× 10−60

p(E)
= 0.7869

From these results, we can say that it is most probable that the biased coin was selected.

We can also see that the Bayesian approach has the advantage of being able to use prior

probabilities (from the get-go, it was twice as probable to select a fair coin than a biased

one, the frequentist approach does not take this into account). In addition, the Bayesian

approach directly results in probabilities for each hypothesis which is a more intuitive result

than the frequentist result of rejection risks.

Dynamic inference

One final comment about the difference between frequentist and Bayesian inference is that

Bayesian inference can be easily implemented dynamically. Recall that in our Bayesian

inference, we multiplied the evidence together for the 200 samples in one likelihood calcula-

tion step. However, one can obtain the same result by updating the prior probability using

a single piece of evidence at a time. For example, let us say that the first observation is

‘heads’, then

p(θ = 0.5|E1) =
(2/3)0.5

p(E1)
=

1/3

p(E1)
= 5/8

p(θ = 0.6|E1) =
(1/3)0.6

p(E1)
=

1/5

p(E1)
= 3/8

Now let us say the second result was ’tails’ then our previous posterior can be used as a

prior for the next inference.

p(θ = 0.5|E1, E2) =
p(E2|θ = 0.5)p(θ = 0.5|E1)

p(E2)
=

(5/8)0.5

p(E2)
=

5/16

p(E2)
= 25/37

p(θ = 0.6|E1, E2) =
p(E2|θ = 0.6)p(θ = 0.6|E1)

p(E2)
=

(3/8)0.4

p(E2)
=

3/20

p(E2)
= 12/37

If this is continued for the entire 200 observations, we will obtain the same result as the

case where all 200 observations were considered at once. For the Bayesian approach, our

diagnosis result can be easily updated every time new evidence is made available, and the

computational burden is the same for each new data point. Conversely, for the frequentist

approach, a new test over the entire dataset has to be calculated every time a new data

point is added. In this way, the computational burden increases with each new data point.

This property makes the Bayesian approach more practical for on-line applications than the

frequentist approach.
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Practical considerations

In the scientific community, the Frequentist approach is generally more popular, under-

standably because parameter estimates and proposed hypotheses are not random, but take

fixed values from nature. Furthermore, the aim of scientists is to perform carefully con-

trolled experiments where results can be considered independent and identically distributed,

conditions which are required for frequentist inference. Conversely, Bayesian inference is

more popular in the artificial inteligence community, especially in areas where real-time

decisions have to be made on hypotheses that can change at random; for example, diagno-

sisng problems in diesel engines [2]. Bayesian inference has the advantage that it can be

easily implemented in machine learning and on-line diagnosis. Data from different scenarios

can be collected off-line to estimate their respective distributions, then when implemented

online, new evidence can be made to make decisions.

2.2.1 Tutorial on Bayesian inference

In this tutorial a system with two components is considered (as shown in Figure 2.3):

1. A valve which can be subject to stiction

2. A sensor which can be subject to bias

For the sake of simplicity, we assume that the two problems do not happen simultaneously,

resulting in three operating modes for the process: normal operation, valve stiction, and

sensor bias.

Figure 2.3: Illustrative process

Bayesian inference techniques are always applied on top of monitoring techniques. In

this way, Bayesian inference was designed to piece together evidence from various sources

in order to make a decision. With this in mind, we assume that monitoring algorithms

are already in place to detect stiction and bias. The Bayesian technqiue is simply a layer

applied above the monitors in order to make sense of monitoring input. At this point, we will

assume that the monitors yield a discrete output. In the case of our example, the output for

the stiction monitor is either 0 (stiction not detected) and 1 (stiction detected). Likewise,
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the output for the bias monitor is either 0 (bias not detected) and 1 (bias detected). The

evidence space, therefore, consists of four possible discrete values (as shown in Figure 2.4):

e1 = [0, 0] e2 = [0, 1] e3 = [1, 0] e4 = [1, 1]

Figure 2.4: Evidence space with only prior samples

The goal of using historical evidence is to estimate the likelihood p(E|M) for each mode.

This can be combined with user-defined prior mode probabilities p(M) in order to obtain a

posterior

p(M |E) =
p(E|M)p(M)∑
M p(E|M)p(M)

(2.1)

For discrete data, the likelihood p(E|M) can be calculated as

p(E|M) =
n(E,M)

n(M)
(2.2)

where n(E,M) is the number of samples where the evidence E and mode M occur simul-

taneously, and n(M) is the total number of samples were the mode M occurs.

The motivation for applying the Bayesian technique is alarm management. The moni-

tors themselves are capable of generating alarms, but a problem such as stiction could also

affect the sensor bias monitoring alarm. One can see that for systems with a large number

components, information on the underlying problem can be obtained from the alarm pat-

tern. Furthermore, the alarms often do not contain information about how certain the alarm

is; by contrast, Bayesian techniques assign probabilities to each possible mode, allowing us

to ascertain the level of uncertainty about our decision.

Bayesian methods have the added benefit of user-defined priors (denoted as p(m) in

Eqn (2.1)). Prior probabilities can be used to assign more weight to modes that occur more

frequently. If one does not have any information about prior probabilities, a non-informative
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flat prior can also be used. This can be applied to inference, but it can also be applied in

estimating distribution. For example, we use non-informative prior samples for estimating

likelihood distributions by assigning one data point for each discrete evidence, a(E|m1) = 1,

A(m1) = 4, as shown in Figure 2.5. Here, all evidence possibilities are shown in a 2 × 2

grid (2× 2 as it contains two monitors with two discrete values each), and a single sample

is added to each grid sector representing a possible evidence value. By assigning a point to

each grid, we state that for this mode, each possible evidence value was observed once.

prior sample

Figure 2.5: Evidence space with prior samples and historical samples

After applying the prior samples, historical samples are used to obtain the terms in Eqn

(2.2)

n(E,M) = Prior(E,M) + History(E,M)

n(M) = Prior(M) + History(M)

where Prior(E,M) represent the prior samples of where E and M jointly occur, and

History(E,M) represents the historical data samples where E and M occur. Similarly

Prior(M) and History(M) represent the prior samples of M and the historical samples of

M respectively. Table 2.1 contains results which will be used for this example

Table 2.1: Counts of historical evidence

E Normal Sticky Valve Biased Sensor

e1 = [0, 0] 10 0 0

e2 = [0, 1] 0 1 7

e3 = [1, 0] 0 8 1

e4 = [1, 1] 0 1 2
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When historical data and prior samples have been combined (note, prior samples placed

one sample point for each possible evidence realization under each mode), the result is given

in Table 2.2

Table 2.2: Counts of combined historical and prior evidence

E Normal Sticky Valve Biased Sensor

e1 = [0, 0] 11 1 1

e2 = [0, 1] 1 2 8

e3 = [1, 0] 1 9 2

e4 = [1, 1] 1 2 3

As a visual example, the evidence space for the sensor bias mode is shown in Figure 2.6

with both prior and historical samples are shown.

prior sample

historical sample

Figure 2.6: Evidence space with historical data

Likelihoods can be obtained from these samples by normalizing over the frequency of

each mode. Results are shown in Table 2.3.

Table 2.3: Likelihoods of evidence

E Normal Sticky Valve Biased Sensor

e1 = [0, 0] 11/14 1/14 1/14

e2 = [0, 1] 1/14 1/7 4/7

e3 = [1, 0] 1/14 9/14 1/7

e4 = [1, 1] 1/14 1/7 3/14
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Before performing on-line diagnosis, priors for each mode must be assigned. For instance,

if the valve has not been maintained for a considerable amount of time, then a higher prior

probability can be assigned to the Sticky Valve mode to reflect our knowledge that the valve

has a high chance of being sticky. In such a case, the prior probabilities are assigned as

p(normal) = 1/4, p(sticky valve) = 1/2, and p(biased sensor) = 1/4.

With the estimated likelihood probabilities for current evidence E under different modes

M , the likelihoods p(E|M), and the user-defined prior probabilities p(M), posterior prob-

abilities of each mode mi ∈ M can be calculated. Among these modes, the one with the

largest posterior probability is selected.

As an example, given evidence [1, 0] (where the stiction monitor detects a problem and

the bias sensor does not) the posterior probabilities can be calculated as

p(normal|[1, 0]) ∝ p(normal) · p([1, 0]|normal)

= 1/4 · 1/14 = 1/56 (2.3)

p(sticky valve|[1, 0]) ∝ p(sticky valve) · p([1, 0]|sticky valve)

= 1/2 · 9/14 = 9/28 (2.4)

p(biased sensor|[1, 0]) ∝ p(biased sensor) · p([1, 0]|biased sensor)

= 1/4 · 1/7 = 1/28 (2.5)

The mode with largest posterior probability, Sticky Valve, is then diagnosed as the under-

lying process mode. Note that these probabilities do not add up to 1 because they are not

normalized by p(E). If proper probabilities are desired, then normalization is required

p(E) = 1/56 + 9/28 + 1/28 = 3/8

2.2.2 Tutorial on Bayesian inference with time dependency

Mode time dependency

During on-line application, where evidence is being obtained at every ∆t, unless the time

intervals are exceedingly long (which would be undesirable, because shorter intervals yield

more information), there will be some time dependency with the modes. In general, a mode

has a probability of switching p(M t|M t−1) and this probability tends to be fairly small;

for example, it usually takes a while for a valve to become sticky, or for an instrument to

become biased, and it takes a while for these problems to be noticed and corrected. Because

these switching occurrences can be rare, there tends to be strong auto-dependence within

the modes, thus evidence collected over time yields more information than single pieces of

evidence themselves. A visual representation of dependency is available in Figure 2.7 which

resembles the well-known Hidden Markov Model

Mode-time dependency can be taken into account by using switching probabilities. Let
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Figure 2.7: Mode dependence (Hidden Markov Model)

us consider our previous example with the following prior probabilities:

p(m1) = 1/2 Normal operation

p(m2) = 1/4 Sticky valve

p(m3) = 1/4 Biased sensor

Now let us consider the modes having the following switching probabilities

A ≡
p(mt

1|m
t−1
1 ) = 0.90 p(mt

1|m
t−1
2 ) = 0.10 p(mt

1|m
t−1
3 ) = 0.10

p(mt
2|m

t−1
1 ) = 0.05 p(mt

2|m
t−1
2 ) = 0.90 p(mt

2|m
t−1
3 ) = 0.00

p(mt
3|m

t−1
1 ) = 0.05 p(mt

3|m
t−1
2 ) = 0.00 p(mt

2|m
t−1
3 ) = 0.90

Let us now consider the evidence e1 = [0, 0] with the following likelihoods obtained from

Table 2.3

p(e1|M) =

 p(e1|m1) = 11/14
p(e1|m2) = 1/14
p(e1|m3) = 1/14


By combining the likelihood with the prior probabilities we can obtain

p(m1|et=1
1 ) =

p(e1|m1)p(mt=1
1 )

p(et=1
1 )

=
(11/14)(1/2)

(11/14)(1/2) + (1/14)(1/4) + (1/14)(1/4)

=
11/28

3/7
= 11/12
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Similarly, for the other modes, we can obtain

p(m2|et=1
1 ) =

p(e1|m2)p(mt=1
2 )

p(et=1
1 )

=
(1/14)(1/4)

3/7
= 1/24

p(m3|et=1
1 ) =

p(e1|m3)p(mt=1
3 )

p(et=1
1 )

=
(1/14)(1/4)

3/7
= 1/24

Now let us consider the probability at t = 2 when e2 is observed. Firstly, the likelihood is

shown to be

p(e2|M) =

 p(e2|m1) = 1/14
p(e2|m2) = 1/7
p(e2|m3) = 4/7


Now the prior probability for t = 2 is the posterior of t = 1 with switching probabilities

taken into account

p(mt=2
1 |M t=1) =

∑
M

p(mt
1|M t−1)p(M |et=1

1 )

= p(mt
1|mt−1

1 )p(m1|et=1
1 ) + p(mt

1|mt−1
2 )p(m2|et=1

1 ) + p(mt
1|mt−1

3 )p(m3|et=1
1 )

= 0.9× (11/12) + 0.1× (1/24) + 0.1× (1/24) = 5/6

p(mt=2
2 |M t=1) = p(mt

2|mt−1
1 )p(m1|et=1

1 ) + p(mt
2|mt−1

2 )p(m2|et=1
1 ) + p(mt

2|mt−1
3 )p(m3|et=1

1 )

= 0.05× (11/12) + 0.9× (1/24) + 0.0× (1/24) = 1/12

p(mt=2
3 |M t=1) = p(mt

3|mt−1
1 )p(m1|et=1

1 ) + p(mt
3|mt−1

2 )p(m2|et=1
1 ) + p(mt

3|mt−1
3 )p(m3|et=1

1 )

= 0.05× (11/12) + 0.0× (1/24) + 0.9× (1/24) = 1/12

These values are new priors p(M t=2|M t=1) which can be combined with the likelihoods

p(et=2
2 |M) to obtain a new posterior p(M t=2|et=2

2 ).

p(M t=2|et=2
2 ) =

p(et=2
2 |M)p(M t=2|M t=1)

p(et=2
2 )

or more generally

p(M t|Et) =
p(Et|M)p(M t|M t−1)

p(Et)
(2.6)

p(mt|M t−1) =
∑
M

p(mt|M t−1)p(M |Et−1)

26



By applying our example, we get the following numerical values for the posterior

p(mt=2
1 |et=2

2 ) =
p(et=2

2 |m1)p(mt=2
1 |M t=1)

p(et=2
2 )

=
(1/14)(5/6)

5/42
= 1/2

p(mt=2
2 |et=2

2 ) =
p(et=2

2 |m2)p(mt=2
2 |M t=1)

p(et=2
2 )

=
(1/7)(1/12)

5/42
= 1/10

p(mt=2
1 |et=2

2 ) =
p(et=2

2 |m1)p(mt=2
1 |M t=1)

p(et=2
2 )

=
(4/7)(1/12)

5/42
= 2/5

Evidence time dependency

For evidence time dependency, we consider the case where Et depends on Et−1, which can

happen, for example, if monitors use a window of data which overlaps with the data that

monitors use at different time intervals. For the most basic case, where Et depends on

Et−1, the graphical model resembles Figure 2.8.

Figure 2.8: Evidence dependence

In such a case, we wish to evaluate p(M |Et, Et−1) as

p(M |Et, Et−1) =
p(Et|Et−1,M)p(M)

p(Et)

We can obtain the required likelihood expression p(Et|Et−1,M) by the rule of conditioning

p(Et|Et−1,M) =
p(M,Et, Et−1)

p(Et−1,M)
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which yields the estimator

p(Et|Et−1,M t) =
n(M t, Et, Et−1)

n(Et−1,M t)
(2.7)

where n(M t, Et, Et−1) is the number of times M t, Et, Et−1 jointly occur, and n(Et−1,M t)

is the number of times Et−1,M t jointly occur. This will mean that the number of evidence

possibilities will be squared. For example, for evidence presented in Table 2.3, the dependent

evidence solution will resemble Table 2.4.

Table 2.4: Likelihoods of dynamic evidence

E Normal Sticky Valve Biased Sensor

et1, e
t−1
1 0.5 0.01 0.01

et1, e
t−1
2 0.07 0.07 0.01

et1, e
t−1
3 0.07 0.01 0.07

et1, e
t−1
4 0.07 0.01 0.01

et2, e
t−1
1 0.07 0.07 0.01

et2, e
t−1
2 0.01 0.5 0.01

et2, e
t−1
3 0.01 0.07 0.07

et2, e
t−1
4 0.01 0.06 0.01

et3, e
t−1
1 0.07 0.01 0.7

et3, e
t−1
2 0.01 0.07 0.7

et3, e
t−1
3 0.01 0.01 0.5

et3, e
t−1
4 0.01 0.01 0.7

et4, e
t−1
1 0.06 0.01 0.01

et4, e
t−1
2 0.01 0.07 0.01

et4, e
t−1
3 0.01 0.01 0.06

et4, e
t−1
4 0.01 0.01 0.01

This table of evidence can be used in the same manner as the previous table (Table 2.3).

For example, if the evidence et1, e
t−1
1 was observed, the posterior would be

p(mt
1|et1, et−1

1 ) = p(et1|et−1
1 ,mt

1)p(et1|et−1
1 )

=
(0.5)(0.5)

51/200
= 50/51

p(mt
2|et1, et−1

1 ) = p(et1|et−1
1 ,mt

2)p(et1|et−1
1 )

=
(0.01)(0.25)

51/200
= 1/102

p(mt
3|et1, et−1

1 ) = p(et1|et−1
1 ,mt

3)p(et1|et−1
1 )

=
(0.01)(0.25)

51/200
= 1/102
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Dynamic evidence and modes

The dynamic evidence and dynamic modes solutions can be easily combined. The dynamic

evidence solution only modifies the likelihood, while the dynamic modes solution only mod-

ifies the prior. Because the dynamic evidence solution only modifies the likelihood, we

can simply substitute the dynamic evidence likelihood p(Et|Et−1,M) in Eqn (2.7) for the

static likelihood p(E|M) which showed up in the Hidden Markov Model solution in Eqn

(2.6). Thus, when both dynamic evidence and dynamic mode solutions are applied, one can

calculate the results using

p(M t|Et, Et−1) =
p(Et|Et−1,M t)p(M t|M t−1, Et−1, Et−2)

p(Et|Et−1)
(2.8)

p(Et|Et−1) =
∑
Mt

p(Et|Et−1,M t)p(M t|M t−1, Et−1, Et−2)

p(mi|M t−1, Et−1, Et−2) =
∑
M

p(mt
i|M t−1)p(M t−1|, Et−1, Et−2)

As one might observe, this solution is applied in the same manner as the dynamic modes

solution, but now we replace the evidence (such as Table 2.3) with dynamic evidence (such

as Table 2.4). This solution solves the problem depicted in Figure 2.9.

Figure 2.9: Evidence and mode dependence

2.2.3 Bayesian inference vs direct inference

Let us revisit the example where we are monitoring for sensor bias and valve stiction for

the system in Figure 2.3. Now let us say that we have collected some larger samples of data

with the evidence history being summarized in Table 2.5.

By looking at this table, if we observed evidence e1, an intuitive way to evaluate the

probability of the modes would be to count the occurrences of evidence e1 for each mode

(m1 → 30 , m2 → 7 , m3 → 4) and divide it by the total occurrence of evidence e1 → 41 so
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Table 2.5: Counts of combined historical and prior evidence

E Normal Sticky Valve Biased Sensor Evidence Total

e1 = [0, 0] 30 7 4 41

e2 = [0, 1] 10 2 10 22

e3 = [1, 0] 7 16 2 25

e4 = [1, 1] 3 5 4 12

Mode Total 50 30 20 100

that

p(m1|e1) = 30/41

p(m2|e1) = 7/41

p(m3|e1) = 4/41

This approach is called the direct approach as it directly evaluates p(M |E) based on his-

torical counts. This method however, assumes that the evidence collected is representative

of the mode probability. Thus, it assumes that the prior probability can be obtained from

the mode totals at the bottom of Table 2.5

p(m1) = 50/100 = 0.5

p(m2) = 30/100 = 0.3

p(m3) = 20/100 = 0.2

If these values were used for prior probabilities when applying the Bayesian method, the

results obtained would be identical to the results from the direct method.

p(m1|e1) =
p(e1|m1)p(m1)

p(e1)
=

(30/50)(50/100)

41/100
= 30/41

p(m2|e1) =
p(e1|m2)p(m2)

p(e1)
=

(7/30)(30/100)

41/100
= 7/41

p(m3|e1) =
p(e1|m3)p(m3)

p(e1)
=

(4/20)(20/100)

41/100
= 4/41

Thus, as we can see, the Bayesian method is much more flexible as it allows us to select

prior probabilities that are not represented in the data. This property of allowing us to

use different prior probabilities means that the Bayesian method enjoys certain advantages

over the direct probability method:

• Bayesian methods allow us to collect arbitrary amounts of data for each

mode. When using Bayesian methods, priors take care of the mode probabilities so

that the data does not have to.
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• Bayesian methods allows for easy on-line implementation. When implement-

ing solutions on-line, the prior probabilities change over time when evidence becomes

available. This can be easily taken into account when using the Bayesian method, but

this is much more difficult to represent when using the direct method.

2.2.4 Tutorial on Bayesian parameter estimation

In addition to Bayesian Inference, some chapters in this thesis deal with Bayesian parameter

estimation. In our previous example, we have already performed some parameter estimation

with respect to the probability parameters

p(E|M) = θE|M =
n(E,M)

n(M)

where n(E,M) and n(M) take into account both prior and historical samples of E and M .

However, this estimation does not yield the uncertainty behind the parameter estimate.

For example, let us consider a coin flipping experiment. If we had a prior belief of one

sample for heads C = h and one sample for tails C = t, and we flipped a coin once, and

observed heads, our probability of heads and tails would resemble the following

p(h) = θh =
1 + 1

1 + 1 + 1 + 0
=

2

3

p(t) = θt =
1 + 0

1 + 1 + 1 + 0
=

1

3

From our intuition however, we know that this result is not very reliable because there are

so few data points. What we would like to have is to have a distribution over Θ = {θh, θt}
denoted as p(Θ) that could be updated using evidence in a Bayesian manner

p(Θ|E) =
p(E|Θ)p(Θ)

p(E)
(2.9)

We know that p(E|Θ) is a categorical distribution, so that in our case,

p(h|Θ) = θh = p(h)

p(t|Θ) = θt = p(t)

The distribution p(Θ) is known as a conjugate prior, which is a distribution that can be

updated by p(E|Θ). Conjugate priors are used in Bayesian parameter estimation problems

in order to incorporate prior information about the parameters. These priors can be updated

as information becomes available so that they reflect the uncertainty behind the updated

parameter. As data becomes more available, the updated parameter distributions become

narrower, depicting higher confidence in the estimates.

One of the most important properties of a conjugate prior p(Θ) to a likelihood distribu-

tion p(E|Θ) is that the posterior p(Θ|E) must be of the same family of distributions as the
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prior p(Θ) after combination with the likelihood according to Eqn (2.9); this allows for easy

derivation of the posterior, resulting in a computationally light updating scheme. Finding a

conjugate prior is not an easy task, and not only depends on the distribution that produces

E, but also on the particular parameter Θ of interest; fortunately, the conjugate priors

for many likelihood distributions have been found [58] and some results are summarized in

Table 2.6.

Table 2.6: List of conjugate priors

Process for generating E Parameter of Interest Θ Conjugate Prior p(Θ)

Discrete Univariate Processes

Bernoulli Binary Probability (0 vs 1) Beta

Hypergeometric Binary Probability (0 vs 1) Beta-binomial

Poisson Poisson Parameter Gamma

Discrete Multivariate Processes

Multinomial/Categorical Probability Parameters Dirichlet

Multivariate Hypergeometric Probability Parameters Dirichlet-Multinomial

Continuous Univariate Processes

Uniform Uniform Probability Pareto

Pareto Precision Parameter Pareto

Pareto Shape Parameter Gamma

Exponential Mean Gamma

Gamma Rate Parameter Gamma

Normal Mean Normal

Normal Inv. Var. Gamma

Lognormal Normal Mean Normal

Lognormal Normal Inv. Var. Gamma

Continuous Multivariate Processes

Normal Mean Vec. Normal

Normal Cov. Mat. Wishart

Normal Mean Vec. and Cov. Mat. Normal-Wishart

Normal Regression Regression Coeff. Normal

Normal Regression Reg. Coeff. and Precision Normal-Gamma

For discrete probabilities, the conjugate prior is identified to be the Dirichlet Distribution

[59].

f(Θ|α) =
Γ (
∑

i αi)∏
i Γ(αi)

∏
i

θαi−1
i (2.10)

Θ ∈ [0, 1] (2.11)∑
i

θi = 1 (2.12)
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where Γ is called the gamma function

Γ(t) =

∫ ∞
0

xt−1e−x dx (2.13)

which is a generalization of the factorial function (as it can support continuous values) so

that

Γ(k) = k! k ∈ positive integers (2.14)

Γ(x+ 1) = xΓ(x) x ∈ real numbers (2.15)

The parameter set α can be defined as

αi = n(ei)

so that α is simply a record of the samples. Thus, according to our coin-flipping exercise,

the conjugate prior (or the function that can be updated by evidence) is given as

f(Θ|α) =
Γ (αh + αt)

Γ(αh)Γ(αt)
θαh−1
h θαt−1

t

The “magic” behind the Dirichlet distribution lies within its two desirable properties

1. The expected value of θi is given as the intuitive fraction of data samples

Eθi [f(Θ|α)] =
αi∑
k αk

=
n(ei)∑
k n(ek)

(2.16)

2. Updating f(Θ|α) with the observation of ei simply adds the value of 1 to αi

f(Θ|α[k + 1]) =
p(Ei|Θ)f(Θ|α[k])

p(Ei)
(2.17)

αi[k + 1] = αi[k] + 1 (2.18)

To better understand the Dirichlet distribution, examples are given below.

Example: Expected values of a Dirichlet distribution

Let us say we have observed enough coin flips so that

αh = n(h) = 5

αt = n(t) = 7
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We now wish to calculate the probability of heads, or equivalently, the expected value of

θh.

Eθh [f(Θ|α)] =

∫
Θ
θhf(Θ|α) dΘ

=

∫
Θ
θh

Γ (αh + αt)

Γ(αh)Γ(αt)
θαh−1
h θαt−1

t dΘ

=
Γ (αh + αt)

Γ(αh)Γ(αt)

∫
Θ
θhθ

αh−1
h θαt−1

t dΘ

=
Γ (αh + αt)

Γ(αh)Γ(αt)

∫
Θ
θ

(αh+1)−1
h θαt−1

t dΘ

Now it should be noted that Dirichlet’s Integral states that∫
Θ

∏
i

θαi−1
i dΘ =

∏
i Γ(αi)

Γ (
∑

i αi)

which results in

Eθh [f(Θ|α)] =
Γ (αh + αt)

Γ(αh)Γ(αt)
× Γ(αh + 1)Γ(αt)

Γ ((αh + 1) + αt)

=
Γ (αh + αt)

Γ(αh)Γ(αt)
× [αhΓ(αh)]Γ(αt)

Γ (αh + 1 + αt)

=
Γ (αh + αt)

Γ(αh)Γ(αt)
× [αhΓ(αh)]Γ(αt)

[(αh + αt)Γ (αh + αt)]

=
1

Γ(αh)Γ(αt)
× αhΓ(αh)Γ(αt)

(αh + αt)

=
αh

(αh + αt)
=

5

5 + 7
=

5

12

yielding the value that was intuitively expected.

Example: Updating a Dirichlet distribution with new observations

Again, let us say that historically we observed coin flips so that

αh = n(h) = 5

αt = n(t) = 7

Now let us say that after another coin flip, we observed heads (E = h) and we would like

to update our results. According to Bayes’ Theorem

f(Θ|α, Ei) = f(Θ|α[k + 1]) =
p(Ei|Θ)f(Θ|α[k])

p(Ei)

When applying the updating rule to our example, we have

f(Θ|α[k + 1]) =
p(h|Θ)f(Θ|α[k])

p(Ei)

=
θhf(Θ|α[k])∫

Θ θhf(Θ|α[k]) dΘ
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Now, from our previous expected value example, we have already shown that∫
Θ
θhf(Θ|α[k]) dΘ = Eθhf(Θ|α[k])

=
αh

αh + αt

Thus

f(Θ|α[k + 1]) =
p(h|Θ)f(Θ|α[k])

p(Ei)

=
θhf(Θ|α[k])

αh
αh+αt

=
αh + αt
αh

f(Θ|α[k])θh

=
αh + αt
αh

θh
Γ (αh + αt)

Γ(αh)Γ(αt)
θαh−1
h θαt−1

t

=
αh + αt
αh

Γ (αh + αt)

Γ(αh)Γ(αt)
θ

(αh+1)−1
h θαt−1

t

Recalling in Eqn (2.15) that Γ(x+ 1) = xΓ(x),

f(Θ|α[k + 1]) =
Γ (αh + αt + 1)

Γ(αh + 1)Γ(αt)
θ

(αh+1)−1
h θαt−1

t

=
Γ ((αh + 1) + αt)

Γ(αh + 1)Γ(αt)
θ

(αh+1)−1
h θαt−1

t

From this, we can see that the posterior probability f(Θ|α[k + 1]) has (αh + 1) in every

place that (αh) occurred in f(Θ|α[k]). Therefore,

αh[k + 1] = αh + 1 = 5 + 1 = 6

when a new outcome of “heads” (E = h) is observed.

2.3 The EM Algorithm

The EM algorithm is a technique pioneered by Dempster et al. [60]; variations of the EM

Algorithm technique previously proposed, but [60] was the first to present it in a general

manner with rigorous proof of convergence. The principal reason for implementing the EM

algorithm is to learn relationships and distributions when data for estimation is incomplete.

Dempster et al. [60] presented the EM algorithm in three different forms having increased

generality:

1. Exponential family distributions with closed-form maximum-likelihood solutions

2. Exponential family distributions without closed-form maximum-likelihood solutions

3. General distributions

However, since all solutions can be obtained from the general solution, we set our focus on

the most general solution.
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Tutorial problem

For the EM Algorithm tutorial, we revisit the simple control loop example as presented in

Figure 2.3. Again, we have two monitors, one which monitors instrument bias, while another

monitors valve stiction. Consider a mode Biased Sensor where we have some missing values

from certain monitors as shown in Table 2.7. When a monitor’s value is missing, we denote

it as ×

Table 2.7: Biased sensor mode

Evidence Frequency

[0, 0] 5

[0, 1] 12

[1, 0] 4

[1, 1] 6

[0,×] 8

[1,×] 2

[×, 0] 3

[×, 1] 10

Total 50

We would like to estimate p(E|m3) when pieces of data are missing from the evidence.

2.3.1 Tutorial: Solution for general distributions

The most general type of solution does not rely on any notion of exponential families.

However, becuase it is the most general, the other two solutions can be derived as a special

case of this solution. Thus, the general solution is most often used as a starting point

despite its complexity.

1. Expectation: This step involves the construction of the Q function

Q(Φ|Φ[k]) = E
[
log f(Z|Φ)|y,Φ[k]

]
=

∫
Z

log(f(Z|Φ))p(Z|y,Φ[k]) dZ

where Z represents the unobserved part of the dataset (notation is upper case due

to its random nature), and y represents the observed part of the dataset (notation is

lower-case due to its non-random nature). Furthermore, Φ is the current (variable)

parameter set, and Φ[k] is the previously obtained (constant) parameter set obtained

at iteration k.

2. Maximization: This step involves numerical maximization of the Q function over

the variable parameter set Φ

Φ[k+1] = arg max
Φ

E(log f(Z|Φ)|y,Φ[k]))
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where Φ[k+1] is the estimate of parameters Φ after iteration k

In order to apply this solution to our tutorial problem, we must first take note of the

following notation.

• Dc is a matrix of complete data entries

• Dic is a matrix of incomplete data entries (containing missing “×” elements)

• Z is a random vector consisting of the missing (or ×) elements within Dic

• z is a realization of Z

• y is a vector which represents all of the observed elements within Dic

When referring to the historical data in our sample problem (shown in Table 2.7) Dc rep-

resents the data points without any missing entries (e.g. data summarized in the first four

rows), while Dic represents the data points that have missing entries (e.g. data summarized

in the last four rows). In addition, Z represents all occurrences of missing elements (×) in

Dic, while y represents all occurrences of observed elements (not ×) in Dic.
Then, when implementing the EM Algorithm in our example problem, one goes through

the following steps:

1. Initialization: As an initialization point, we calculate the Θ[0] parameters without

any missing data

θ[0,0] = 5/27

θ[0,1] = 12/27

θ[1,0] = 4/27

θ[1,1] = 6/27

2. Expectation: This is the step that involves the bulk of the work. We must take the

Q function, which is initially expressed as

Q(Θ|Θ[k]) =
∑
Z

p(z|y, Dc,Θ
p) log p(y, z, Dc|Θ)

and derive a usable expression from it. The reason this current expression is hard

to implement is that there are 2n(z) possible realizations of Z, thus, summation

becomes an infeasible exercise. The first simplification can be made by assuming

time-independence of the data. In this way

Dc ⊥ Dic
Dc ⊥ {z,y}
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This essentially removes Dc from the conditional probability expression, allowing us

to express it as a separate independent term

Q(Θ|Θ[k]) =
∑
Z

p(z|y,Θ[k]) [log p(y, z|Θ) + log p(Dc|Θ)]

Now, we have already established that Dc is independent of Z which is the summation

term. Because ∑
Z

p(z|y,Θ[k]) = 1

we can separate out the log p(Dc|Θ) from the summation

Q(Θ|Θ[k]) = log p(Dc|Θ) +
∑
Z

p(z|y,Θ[k]) log p(y, z|Θ)

Now, because of time-independence, the summation over Z can be broken down into

the elements in t1, t2, . . . , tn(Dic). In terms of Z this means that the realizations are

broken down into

Z =
{
Z1, Z2, . . . Zn(Dic)

}
(2.19)

where Zt is the set of realizations of all × values in the tth incomplete data sample

(in Dic). For example,

• If the first element of Dic was [0,×] then Z1 = {0, 1}.

• If the second element of Dic was [×, 1] then Z2 = {0, 1}.

• If the third element of Dic was [×,×] then Z3 = {[0, 0], [0, 1], [1, 0], [1, 1]} or it

could also be simply mapped to four possible values Z3 = {0, 1, 2, 3}.

Note that in being consistent with previous notation, zt is one of the possible realiza-

tions of Zt so that ∑
i

p(Zt = zti) = 1

When time-independence is taken into account, we can assert that

p(Z|y,Θ[k]) =

n(Dic)∏
t=1

p(Zt|yt,Θ[k])

log p(Z,y|Θ[k]) =

n(Dic)∑
t=1

log p(Zt, yt|Θ[k])

This results in a summation that is broken down as follows:

Q(Θ|Θ[k]) = log p(Dc|Θ)+∑
Z1

. . .
∑

Zn(Dic)

n(Dic)∏
t=1

p(zt|yt,Θ)

n(Dic)∑
t=1

log p(zt, yt|Θ[k])
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We can simplify this expression by noting that each term of log p(zt, yt|Θ[k]) is front-

multiplied by all values of p(zt|yt,Θ); however, the first term log p(z1, y1|Θ[k]) is in-

dependent of all terms in p(zt|yt,Θ) except p(z1|y1,Θ). And because the summation

of all realizations p(zt|yt,Θ) over Zt is equal to unity, the summations signs all cancel

out, except for the one occurring at t = 1

∑
Z1

. . .
∑

Zn(Dic)

n(Dic)∏
t=1

p(zt|yt,Θ)

 log p(z1, yt|Θ[k]) =

∑
Z1

p(z1|y1,Θ) log p(z1, y1|Θ[k])

This property can be generalized to yield

∑
Z1

. . .
∑

Zn(Dic)

n(Dic)∏
t=1

p(zt|yt,Θ)

 log p(zi, yi|Θ[k]) =

∑
zi

p(zi|yi,Θ) log p(zi, yi|Θ[k])

When applied to our Q function, the simplification yields the following result:

Q(Θ|Θ[k]) = log p(Dc|Θ) +

n(Dic)∑
t=1

∑
Zt

p(zt|yt,Θ) log p(zt, yt|Θ[k])

This is a more workable solution. For example if each incomplete data entry Dic has

only one element missing, instead of assessing the probability of 2n(Dic) realizations of

Z and summing them up, we only have to go through 2 realizations for every Zt and

summing up the results. Thus the computational burden of evaluating the Q(Θ|Θ[k])

function only increases linearly instead of exponentially.

3. Maximization: The maximization step could be performed by numerical optimiza-

tion

Θ[k+1] = arg max
Θ

log p(Dc|Θ) +

n(Dic)∑
t=1

∑
Zt

p(zt|yt,Θ) log p(zt, yt|Θ[k])


However, the solution to this can be analytically obtained. In order to obtain a result

that relates more directly to our original problem, we first note that

log p(Dc|Θ) =

n(Dc)∑
t=1

log p(etc|Θ)

= nc[0, 0] log(θ[0,0]) + nc[0, 1] log(θ[0,1])+

nc[1, 0] log(θ[1,0]) + nc[1, 1] log(θ[1,1])
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Now recall that zt, yt will correspond to some etic. For example, let us say that [0,×]

is the first element of Dic. Then

{z1 = 0} 7→ {[0,×] = [0, 0] = e1}

{z1 = 1} 7→ {[0,×] = [0, 1] = e2}

thus

p(z1 = 0, y1|Θ[k]) = p(e1
ic = [0, 0]|Θ[k])

p(z1 = 1, y1|Θ[k]) = p(e1
ic = [0, 1]|Θ[k])

In addition, because of the rule of conditioning

p(zt|yt,Θ) =
p(zt, yt|Θ)

p(yt|Θ)

Now p(yt|Θ) is the probability that yt takes this value, or equivalently it is a normal-

ization constant to ensure that all probabilities of p(zt|yt,Θ) sum to 1 (with respect

to all possible values of zt). Thus according to our example, we can say that

p(Z1 = 0|y1,Θ[k]) =
p(E1

ic = [0, 0]|Θ[k])

p(E1
ic = [0, 0]|Θ[k]) + p(E1

ic = [0, 1]|Θ[k])

=
θ[0,0]

θ[0,0] + θ[0,1]

p(Z1 = 1|y1,Θ[k]) =
p(E1

ic = [0, 1]|Θ[k])

p(E1
ic = [0, 0]|Θ[k]) + p(E1

ic = [0, 1]|Θ[k])

=
θ[0,1]

θ[0,0] + θ[0,1]

so that in general,

p(zt|yt,Θ[k]) =
θEt

ic∑
e⊂Et

ic

θe

where
∑

e⊂Et
ic

θe sums the θ parameters associated with all possible evidence realizations

in Etic. For example, ∑
e⊂[×,0]

θe = θ[1,0] + θ[0,0]
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Now Q(Θ|Θ[k]) can be rewritten as

Q(Θ|Θ[k]) =

nc[0, 0] log(θ[0,0]) + nc[0, 1] log(θ[0,1])

+ nc[1, 0] log(θ[1,0]) + nc[1, 1] log(θ[1,1])

+ nic[0,×]

[
log(θ[0,0])

θ[0,0]

θ[0,0] + θ[0,1]
+ log(θ[0,1])

θ[0,1]

θ[0,0] + θ[0,1]

]
+ nic[1,×]

[
log(θ[1,0])

θ[1,0]

θ[1,0] + θ[1,1]
+ log(θ[1,1])

θ[1,1]

θ[1,0] + θ[1,1]

]
+ nic[×, 0]

[
log(θ[1,0])

θ[1,0]

θ[1,0] + θ[0,0]
+ log(θ[0,0])

θ[0,0]

θ[1,0] + θ[0,0]

]
+ nic[×, 1]

[
log(θ[1,1])

θ[1,1]

θ[1,1] + θ[0,1]
+ log(θ[0,1])

θ[0,1]

θ[1,1] + θ[0,1]

]
Which can be rearranged as

Q(Θ|Θ[k]) = log θ[0,0]

[
nc[0, 0] + nic[×, 0]

θ[0,0]

θ[0,0] + θ[1,0]
+ nic[0,×]

θ[0,0]

θ[0,0] + θ[0,1]

]
+ log θ[0,1]

[
nc[0, 1] + nic[×, 1]

θ[0,1]

θ[0,1] + θ[1,1]
+ nic[0,×]

θ[0,1]

θ[0,0] + θ[0,1]

]
+ log θ[1,0]

[
nc[1, 0] + nic[×, 0]

θ[1,0]

θ[0,0] + θ[1,0]
+ nic[1,×]

θ[1,0]

θ[1,0] + θ[1,1]

]
+ log θ[1,1]

[
nc[1, 1] + nic[×, 1]

θ[1,1]

θ[0,1] + θ[1,1]
+ nic[1,×]

θ[1,1]

θ[1,0] + θ[1,1]

]
By applying numbers in Table 2.7 , Q(Θ|Θ[k]) is expressed as

Q(Θ|Θ[k]) = log θ[0,0]

[
5 + 3

5/27

5/27 + 4/27
+ 8

5/27

5/27 + 12/27

]
+ log θ[0,1]

[
12 + 10

12/27

12/27 + 6/27
+ 8

12/27

12/27 + 5/27

]
+ log θ[1,0]

[
4 + 3

4/27

4/27 + 5/27
+ 2

4/27

4/27 + 6/27

]
+ log θ[1,1]

[
6 + 10

6/27

6/27 + 12/27
+ 2

6/27

6/27 + 4/27

]
resulting in the following expression

Q(Θ|Θ[k]) = 9.0196 log θ[0,0] + 24.314 log θ[0,1] + 6.133 log θ[1,0] + 10.533 log θ[1,1]

When maximized over all values in Θ, in light of the constraint

θ[0,0] + θ[0,1] + θ[1,0] + θ[1,1] = 1 (2.20)
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the result is

θ
[1]
[0,0] = 9.0196/50

θ
[1]
[0,1] = 24.314/50

θ
[1]
[1,0] = 6.133/50

θ
[1]
[1,1] = 10.533/50

which is an intuitive result. The expectation and maximization procedures can be

repeated until the parameters in Θ converge.

2.4 Techniques for Ambiguous Modes

In Section 2.3 we discussed the problem of missing evidence and how the EM algorithm

could be used to infer likelihoods even if some of the historical evidence is incomplete. In

this section, we can discuss how to infer likelihoods if some of the modes are incomplete.

If we return to our example system presented in Figure 2.3, where we have a sensor that

could be biased, and a valve that could become sticky. Let us say that in this case, it is

possible for more than one problem to exist at a given time. In this way, there are four

modes m1, m2, m3, m4 as shown in Table 2.8.

Table 2.8: Modes and their corresponding labels

Mode Label Meaning Binary Label

m1 no bias, no stiction [0, 0]

m2 no bias, stiction [0, 1]

m3 bias, no stiction [1, 0]

m4 bias, stiction [1, 1]

As in the case of evidence, it is possible for information about the mode to be missing

in the history. In such a case, the mode is ambiguous. For example, let us say that we

are sure that there is no bias, but we are unsure as to whether stiction exists or not. The

binary label for such a mode would be [0,×], which would indicate that the modes m1 and

m2 were possible (resulting in a mode label {m1,m2}). Let us now assume that additional

modes were seen in the data according to Table 2.9.
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Table 2.9: Ambiguous modes and their corresponding labels

Mode Label Meaning Binary Label

{m1,m2} no bias, stiction uncertain [0,×]

{m3,m4} bias, stiction uncertain [1,×]

{m1,m3} bias uncertain, no stiction [×, 0]

{m2,m4} bias uncertain, stiction uncertain [×, 1]

For the tutorials to follow, let us consider some historical data as seen in Table 2.10.

Table 2.10: Historical data for all modes

Modes

Evidence [0, 0] [0, 1] [1, 0] [1, 1] [0,×] [1,×] [×, 0] [×, 1] Total

e1, [0, 0] 11 1 1 1 6 2 6 1 29

e2, [0, 1] 1 2 8 2 1 2 4 2 22

e3, [1, 0] 1 8 2 2 5 4 2 5 29

e4, [1, 1] 1 2 3 9 2 6 2 6 31

Total 14 14 14 14 14 14 14 14 112

From Table 2.10, we can see that fourteen data points were collected from every mode

(including the ambiguous ones). If we assume that the mode frequency in the data represents

the true mode frequency (so that all modes have an equal chance of happening as presented

in the data) we could use the EM algorithm [60] to solve this problem. However, because

we are using Bayesian diagnosis methods

p(M |E) =
p(E|M)p(M)

p(E)

the term p(M) indicates that we have a prior probability of modes that is not obtained from

historical data. The Bayesian evaluation of p(M |E) is convenient because it allows us more

freedom in terms of how we select data (for example, if mode 1 occurs 95% of the time,

we do not need to ensure that 95% of the historical data comes from mode 1). Now, the

EM algorithm in this case, would use the data to find the mode probability p(M); however,

if we assume that we cannot use the historical data to estimate the mode frequency, as is

done in Bayesian diagnosis, the EM algorithm should not be applied as it would attempt

to estimate the ambiguous mode statistics (defined as Θ) using historical data.

Instead, we can we can use unknown parameters Θ to express the likelihood based on

different outcomes of the ambiguous modes. These parameters can be used to express a

probability ranges in the diagnosis. This type of approach (using ambiguity to express

probability ranges) has been introduced in the topic of Dempster-Shafer theory but as we
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will see in Section 2.4.2 the expression of p(E|Θ) is somewhat complicated. Furthermore, we

will see that in Section 2.4.3 the problem of Bayesian probability (with ambiguous modes)

cannot be well-represented by the formulation given by Shafer [50], although the problem

of direct probability can be represented quite well by this same formulation.

2.4.1 Tutorial on Θ parameters in the presence of ambiguous modes

Previously, we used Θ to express the probability θi = p(ei|M). In the case of ambiguous

modes, Θ is also used to express probability, but now we are concerned about the probability

of the mode

p(mi) = θ{mi}

More specifically however, we are focused on the probability of an unambiguous mode mi,

given a historical mode mk which could potentially be ambiguous (a boldface m here,

indicates that the mode can be ambiguous).

θ{ mi
mk
} ≡ p(mi|mk)

For example, let us consider the historical mode {m1,m2} which is ambiguous (refer to

Table 2.9). The parameter θ for mode m1 given this ambiguous mode is

θ{ m1
m1,m2

} = p(m1|{m1,m2})

In other words, θ{ m1
m1,m2

} is the amount of data in {m1,m2} that actually belongs to m1.

In general, the values of θ are unknown parameters except in the following cases

(1) θ{ mi
mk
} = p(mi|mk) = 0 mi *mk

e.g. θ{ m3
m1,m2

} = p(m3|{m1,m2}) = 0

(2) θ{ mi
mk
} = p(mi|mk) = 1 mi = mk

e.g. θ{m1
m1
} = p(m1|m1) = 1

One can see that in these special cases, logic forces the probability to be 1 or 0, hence, these

cases are logically forced.

2.4.2 Tutorial on probabilities using Θ parameters

Now that an interpretation on Θ has been given, we can proceed to express probabilities of

unambiguous modes given the data (which includes ambiguous modes).
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Direct probability

Let us first assume that we are not using Bayes’ theorem, but that we are using the data

p(M |E) to directly evaluate the probability. In order to do this properly, one must assume

that the mode frequencies in the data are representative of the true mode frequency (or

that the number of times the mode happens in the data is proportional to its probability).

Let us say that from our system in Figure 2.3, we observe the evidence E = [0, 0] and

we wish to evaluate the probability of mode m1 = [0, 0]. Now in addition to the eleven

data points we have observed for this evidence under m1 = [0, 0], we must also consider

the data points under M = [0,×], [×, 0] or equivalently M = {m1,m2}, {m1,m3} wherein

some of those data points could also belong to m1 = [0, 0]. The amount of data in M =

{m1,m2}, {m1,m3} that does belong to m1 is given by the parameters θ{ m1
m1,m2

}, θ{ m1
m1,m3

}
which are unknown. The probability of m1 is then expressed as

p(m1|e1,Θ) =

[
n(m1, e1) + n({m1,m2}, e1)θ{ m1

m1,m2
}+ n({m1,m3}, e1)θ{ m1

m1,m3
}
]

n(e1)

Now n(m1, e1), n({m1,m2}, e1), and n({m1,m3}, e1) are the number of observations of the

modes [0, 0], [0,×], and [×, 0] when e = [1, 0]. These values can be obtained from Table 2.10

as 11, 6, and 6 respectively. Similarly n(e1) is likewise found to be 29 so that

p(m1|e1,Θ) =

[
11 + 6 θ{ m1

m1,m2
}+ 6 θ{ m1

m1,m3
}
]

29

In general, the probability of p(M |E,Θ) is given as

P (M |E,Θ) =
1

n(E)

∑
mk⊇M

θ{ Mmk
}n(mk, E)

=
∑

mk⊇M
θ{ Mmk

}S(mk|E) (2.21)

where the summation condition mk ⊇ M indicates that we search through all historical

modes and sum over the terms mk when it contains or is equal to M . The term S(mk|E)

was coined by Shafer [50] as support, or in later terminology, the Basic Belief Assignment

(BBA). The support function is functionally the same as probability, but makes allowances

for ambiguous modes; for example,

S(mk|E) =
n(mk, E)

n(E)

Bayesian probability

When using the Bayesian technique for diagnosis, we combine the prior probability p(M)

with the likelihood p(E|M), where the likelihood is calculated from historical data

p(E|M) =
n(E,M)

n(M)
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When ambiguous modes are in the history, we have to consider not only the data points

from mode M but also the data points from ambiguous modes that could also belong to

M . For example, if we wish to consider the likelihood of E = e1 = [0, 0] given M = m1, the

likelihood p(e1|m1,Θ) is expressed as

p(e1|m1,Θ) =
n(e1,m1) + θ{ m1

m1,m2
}n(e1, {m1,m2}) + θ{ m1

m1,m3
}n(e1, {m1,m3})

n(m1) + θ{ m1
m1,m2

}n({m1,m2}) + θ{ m1
m1,m3

}n({m1,m3})

Now n(m1, e1), n({m1,m2}, e1), and n({m1,m3}, e1) are again obtained from Table 2.10 as

11, 6 and 6 respectively. Similarly, n(m1), n({m1,m2}), and n({m1,m3}) are obtained from

the bottom row which indicates the total number of observations from each mode. All three

of these values are equal to 14.

p(e1|m1,Θ) =
11 + θ{ m1

m1,m2
}6 + θ{ m1

m1,m3
}6

14 + θ{ m1
m1,m2

}14 + θ{ m1
m1,m3

}14

In more general terms, the expression for the likelihood can be given as

p(E|M,Θ) =

∑
mk⊇M

θ{ Mmk
}n(mk, E)∑

mk⊇M
θ{ Mmk

}n(mk)

=

∑
mk⊇M

θ{ Mmk
}n(mk)S(E|mk)∑

mk⊇M
θ{ Mmk

}n(mk)
(2.22)

where the support function S(E|mk) can be obtained for discrete data as

S(E|mk) =
n(mk, E)

n(mk)

2.4.3 Dempster-Shafer Theory

Dempster-Shafer theory was first proposed as a generalization to Bayesian methods in a

manner that can account for uncertainty about the hypotheses (or for our purposes, the

modes). Dempster-Shafer Theory has been developed as a framework for artificial intel-

ligence with uncertain reasoning and many developments (particularly combination rules

and methods of interpretation) have been made in this area. In this tutorial, the basics of

Dempster-Shafer Theory from [50] will be covered.

Dempster-Shafer theory has two main proponents: the rule of conditioning and the rule

of combination.

Dempster’s Rule of Conditioning

Dempster’s Rule of conditioning aims to find probability ranges as a method of describing

the results. When the probability and likelihood were formulated earlier with Θ parame-

ters, it was admitted that these Θ parameters were unknown. Because these parameters
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are probabilities and must be contained on the interval of [0, 1], it is possible to find the

probability bounds by maximizing and minimizing over Θ. In [50], Dempster and Shaver

never made use of parameters which would represent allocation of ambiguous mode data.

Instead they were more concerned about probability ranges for the final result.

Dempster and Shafer first define the support function or Basic Belief Assignment which

was briefly mentioned before when parametrizing probabilities using Θ. The support func-

tion S(X) is defined in the same manner as probability but can be directly applied to

ambiguous modes as well as unambiguous ones.

S(M) =
n(M)∑
k n(mk)

S(M |E) =
n(M , E)

n(E)

S(E|M) =
n(M , E)

n(M)

From the support function, we can calculate the lower bound and upper bound probabilities.

In Demspter-Shafer theory, they are known as belief and plausibility.

1. Bel(X) is the Belief or lower bound probability of X

2. Pl(X) is the Plausibility or upper bound probability of X

The belief and plausibility can be obtained using Demspter’s Rule of Conditioning

Bel(M) =
∑

mk⊆M
S(mk) (2.23)

Pl(M) =
∑

mk∩M 6=∅

S(mk) (2.24)

This rule of conditioning is consistent with our direct probability scenario. If we took the

expression in Eqn (2.21) and minimized/maximized it over Θ, the result would be

Bel(M |E,Θ) = min
Θ
Bel(M |E,Θ) =

∑
mk=M

S(mk|E) (2.25)

Pl(M |E,Θ) = max
Θ

Bel(M |E,Θ) =
∑

mk⊇M
S(mk|E) (2.26)

The summation limits are slightly changed, but only because M is unambiguous. As one

can see that

• If M is unambiguous mk ⊆M is only true when mk = M .

• If M is unambiguous, mk ∩M 6= ∅ is only true when mk ⊇M .

The reason why Eqn (2.25) minimizes P (M |E,Θ) is because it is linear with respect

to Θ and all of the coefficients on Θ are non-negative support functions S(mk). Thus, by
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minimizing the non-forced values of Θ, P (M |E,Θ) is also minimized. The only time the

condition θ ≡ 1 is forced is when θ is expressed as θ{MM }; all other terms can be zero if

need be, making mk = M the only term included in the belief summation condition. By

the same reasoning, P (M |E,Θ) is maximized when Θ is maximized. Thus, we include in

our summation every case where Θ is not forced to be zero. As long as M ⊆ k then θ{ Mmk
}

is not forced to be zero, making θ{ Mmk
} the summation term for plausibility.

As an example, consider our previous case where we found that

p(m1|e1,Θ) = S(m1|e1)θ{m1
m1
}+ S({m1,m2}|e1)θ{ m1

m1,m2
}+ S({m1,m3}|e1)θ{ m1

m1,m3
}

=
[

11
29θ{

m1
m1
}+ 6

29 θ{
m1

m1,m2
}+ 6

29 θ{
m1

m1,m3
}
]

We can see that the value θ{m1
m1
} = 1 is forced by logic, but the other values θ{ m1

m1,m2
} and

θ{ m1
m1,m3

} can be anywhere between 0 and 1. Because the coefficients on these two values

are positive (they both equal 6
29),

• p(m1|e1,Θ) is minimized when θ{ m1
m1,m2

} and θ{ m1
m1,m3

} are set to 0

• p(m1|e1,Θ) is maximized when θ{ m1
m1,m2

} and θ{ m1
m1,m3

} are set to 1

It should be noted however, that while Dempster’s Rule of Conditioning functions for di-

rect probabilities, it does not function for likelihoods. An adaptation of Dempster-Shafer

theory that can be applied to likelihoods is formulated in later chapters (Chapters 5 and 9)

pertaining to Generalized Dempster-Shafer Theory.

Dempster’s Rule of Combination

In addition to the rule of conditioning, Dempster-Shafer theory also has a method to combine

information from multiple independent sources, much like Bayesian methods. Dempster’s

Rule of Combination can be written as

S12(mk) =
1

1−K
∑

mk=mi∩mj

S1(mi)S2(mj) mk 6= ∅ (2.27)

K =
∑

∅=mi∩mj

S(mi)S(mj)

where 1 − K is a normalization constant to ensure that S(mk) sums to 1. Here, S1 and

S2 must be support functions that come from independent sources and S12 is a support

function that combines the two independent sources. If, for example, the bias monitor and

stiction monitors could be considered independent, they could each be used to independently

construct their own S(mk|e). The two support functions could then be combined according

to Eqn (2.27).
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As a combination example, let us consider our system in Figure 2.3 with independent

monitors. Let us say that S(mk|e) is given as

S1(m1) = 4/16
S1(m2) = 2/16
S1(m3) = 1/16
S1(m4) = 1/16

S1(m1,m2) = 3/16
S1(m1,m3) = 2/16
S1(m2,m4) = 2/16
S1(m3,m4) = 1/16

S2(m1) = 3/16
S2(m2) = 2/16
S2(m3) = 2/16
S2(m4) = 1/16

S2(m1,m2) = 2/16
S2(m1,m3) = 3/16
S2(m2,m4) = 2/16
S2(m3,m4) = 1/16

If we wanted to combine these two BBAs to form S12 and assess S12(m1), we would have

S12(m1) =
1

1−K
∑

m1=mi∩mj

S1(mi)S2(mj)

= S1(m1)S2(m1) + S1(m1)S2(m1,m2) + S1(m1,m2)S2(m1)

+ S1(m1)S2(m1,m3) + S1(m1,m3)S2(m1)

+ S1(m1,m2)S2(m1,m3) + S1(m1,m3)S2(m1,m2)

=
1

1−K

[
4

16
· 3

16
+

4

16
· 2

16
+ . . .+

3

16
· 3

16
+

2

16
· 2

16

]
As one can see, each multiplied pair contains sets that intersect to yield m1.

2.5 Kernel Density Estimation

Up to this point, we have considered evidence E to be discrete. In most cases, the outputs

of monitors are actually continuous, but discretization is performed in order to create in-

dividual alarms for each monitor. However, if we used smaller and smaller discretization

regions to describe the likelihood p(E|M),

lim
n(E)→∞

p(M |E) =
f(E|M)p(M)∑
M f(E|M)p(M)

where f(E|M) is the probability density function of the likelihood. If the type of distribution

is known, (such as Gaussian), one could fit the data to this distribution using a parametric

approach (such as maximum likelihood estimation). However, in most cases, monitor results

do not follow a well-defined distribution, thus non-parametric methods need to be used.

Namely, discretization or kernel density estimation [61].

2.5.1 From histograms to kernel density estimates

When trying to estimate a distribution from a data set without any knowledge of the distri-

bution, most practitioners would turn to the histogram to perform this task. A histogram

sections the data’s domain into bins, and counts how many data points lie within each bin

as shown in Figure 2.10.
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Figure 2.10: Histogram of distribution

The histogram is useful for getting a rough idea of what the distribution should look like.

However, this sections data into bins and the cutoffs are fixed. A slight adaptation to the

histogram is to center the counts around each data point. When evaluating the probability

at a new point x, this centred histogram approach simply counts how many data points lie

within a bin centred around x. Because the bin positions are more flexible, we can observe

in Figure 2.11 that the distribution estimate is much smoother.
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Figure 2.11: Centered histogram of distribution

The function represented by the centred histogram essentially places a block with area

1/n around each data point di (where n is the number of data points). When evaluating
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the probability, we use the criterion

f̂(x) =
1

n

∑
di ≤ x+ h
di ≥ x− h

1

h

where h is a boundary width set by the user. This is a basic form of a kernel density

estimate. The general form of a kernel density estimate is

f̂(x) =
1

n

∑
i

1

h
K(x, di)

where in our example, the kernel function K is actually a block

K(x, di, h)


0 {di < x− h}

1/h {x− h ≤ di ≤ x+ h}
0 {di > x+ h}

Finally, after using this form, one realizes that the kernel function does not need to take

the shape of a block, but can take on any desired shape, as long as it integrates to unity,

for example, a standard Gaussian shape

K(x, di, h) =
1

h
√

2π
exp

[
1

2

(
x− di
h

)2
]

so that

f̂(x) =
1

n

∑
i

1

h
√

2π
exp

[
1

2

(
x− di
h

)2
]

(2.28)

If this kernel were applied to our data, the result would be a function resembling the one

shown in Figure 2.12, which as one might observe, is much smoother.
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Figure 2.12: Gaussian kernel density estimate
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Kernel density estimation thus far has been presented for univariate applications, but

multivariate kernel density estimation is also possible. For example, a multivariate kernel

density estimate could use the p-dimensional standard normal distribution to yield

f̂(x) =
1

n

∑
i

1√
(2π)p|H|

exp

[
1

2
(x− di)TH−1(x− di)

]
(2.29)

2.5.2 Bandwidth selection

Kernel density estimation itself is a simple procedure of summing up kernel functions cen-

tred around each data point, a procedure that has gone unchanged since its introduction in

[61]. However, the main difficulty lies within the selection of the bandwidth, an area where

research is ongoing. The bandwidth is synonymous to the bin-width in a histogram. Larger

bandwidths will result in smoother kernel density estimates, while smaller bandwidths will

result in rougher, more jagged estimates. Intuitively, a simple method of bandwidth selec-

tion is to start with a small bandwidth that yields a noisy, rough distribution and to use

larger bandwidths until the distribution becomes smooth. This is a fairly labour-intensive

approach, and hard to implement in dimensions larger than 2 (due to difficulties in visual-

ization).

The goal of selecting a bandwidth is to minimize the error between the kernel density

estimate and the true distribution. If the underlying distribution is known, an optimal kernel

can be selected. The fundamentals in bandwidth selection have been presented quite nicely

in [62], and the performance of adaptive bandwidth smoothing has been analyzed in-depth

in [63]. While the optimal bandwidth can depend on the underlying distribution which we

wish to estimate and the kernel type, it depends more strongly on the spread of the data

points and the number of data points. Thus, fairly good results can be obtained by simply

selecting a distribution (such as the Gaussian distribution) and using its optimal bandwidth

estimate for other distributions. Because of this, the optimal Gaussian bandwidth estimator

is commonly used

HN =

(
4

n(p+ 2)

) 2
p+4

S (2.30)

where S is the sample covariance estimate.
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2.5.3 Kernel density estimation tutorial

Let us consider a set of generated data:

D =



1.90
0.12
1.05
−0.23
−0.16
0.69
0.56
−1.12
−1.53
−1.09


cov(D) = 1.1594

which can be visualized in Figure 2.13 where the data points lie along the x axis.
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Figure 2.13: Data for kernel density estimation

Using the optimal Gaussian bandwidth selector in Eqn (2.30), we obtain a bandwidth

of

H =

(
4

10(1 + 2)

) 2
1+4

1.1594

=

(
4

10(1 + 2)

) 2
1+4

1.1594

=

(
4

30

) 2
5

1.1594

= 0.5179

The individual kernels are shown around each data point in Figure 2.14
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Figure 2.14: Data points with kernels

The bandwidth parameter can then be used in the kernel density estimate

f̂(x) =
1

n

∑
i

1√
(2π)p0.5179

exp

[
1

2

(x− di)2

0.5179

]
where di is each element of D. This estimate is visualized in Figure (2.15)
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Figure 2.15: Kernel density estimate from data

2.6 Bootstrapping

Bootstrapping is a resampling method introduced by Efron [64] as a modification on jack-

knifing (another type of resampling technique). Resampling technques aim to construct
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new sets of sampled data either by sampling subsets (as in jackknifing) or by sampling with

replacement (as in Bootstrapping). Bootstrapping is particularly useful if one wishes to

obtain a distribution about an estimated parameter. When bootstrapping, it is important

that the data is independent and identically distributed (IID).

2.6.1 Bootstrapping tutorial

Let us consider a case where we have ten data points and we wish to estimate the mean.

D =



6.68
3.83
4.14
5.51
5.33
4.56
4.05
4.77
4.16
5.06


µ̂ = 4.8090

However, we would also like to be able to determine a distribution around this estimate

µ̂. Boostrapping enables us to perform this task. Firstly, one can create a new data set

by drawing from the data at random with replacement. Equivalently, one can generate 10

numbers between 1 and 10

IND = [5, 2, 3, 3, 7, 8, 1, 4, 7, 9]

and then use these indices to define the new sample. For example, the first element of IND

is 5. Thus the first element of the new data set is D(5) = 5.33. The second element of IND

is 2, thus the second element of the new data set is D(2) = 3.83. This is continued until an

entirely new data set of 10 entries is constructed

D1 =



5.33
3.83
4.14
4.14
4.05
4.77
6.68
5.51
4.05
4.16


µ̂1 = 4.6660

D1 is a resampling of D with replacement. Note that resampling yielded a slightly different

value of µ̂. The resampling of D is then repeated until we have enough values of µ̂ to assess

its distribution. For example, after resampling 1000 times, we have a distribution of µ̂ as

shown in Figure 2.16.
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Figure 2.16: Distribution of µ̂ estimate

2.6.2 Smoothed bootstrapping tutorial

Resampling straight from the historical data can sometimes have strange and undesirable

properties, such as there being a limited number of possible bootstrap sets. For example,

from our 10 data sets, we could only have 1010 different data sets, but since ordering does

not matter (because of µ̂ involves a sum), there would only be about

(n+ r − 1)!

r!(n− 1)!
=

(10 + 10− 1)!

10!(10− 1)!
=

21!

10!9!
= 38798760

unique values of µ̂ that could be sampled from. This may seem like a large number, but

it would not take very many samples before there are a number of exact repetitions of

bootstrapped values of µ̂.

In this example, ordinary bootstrapping would be sampling from a distribution shown

in Figure 2.17. As one might see, the resampling can only take on a finite number of values,

and the probability is zero for all other legitimate values that the data could have taken.
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Figure 2.17: Sampling distribution for bootstrapping

In order to increase the number of values that µ̂ could take, adding Gaussian noise to

each resampled piece of data would be an intuitive solution. This is called the smoothed

bootstrap. However, adding Gaussian noise to the resampled data begs the question, what

variance should this Gaussian noise have? Fortunately, this can be answered using kernel

density estimation.

As mentioned in Section 2.5, kernel density estimation (or kernel smoothing) is a method

to estimate a smoothed distribution from sampled data. By performing kernel smoothing

on the data shown in Figure 2.17. This distribution comes from summing Gaussian distri-

butions centred at each data point

f̂(x) =
1

n

∑
i

1√
(2π)p|H|

exp

[
1

2
(x− di)TH−1(x− di)

]
(2.31)

where H is the bandwidth matrix, which can be calculated as

H =

(
4

n(p+ 2)

) 2
p+4

S (2.32)

Here, p is the dimension of the data, n is the number of data points and S is the sample

covariance from the data. This results in the smoothed distribution shown in Figure 2.18.

Note that this distribution (from Eqn (2.31)) can be sampled by randomly selecting one of

the historical data points, and adding Gaussian noise with covariance H. This is exactly

the same procedure as the smoothed bootstrap.
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Figure 2.18: Smoothed sampling distribution for bootstrapping

Hence, by using the optimal bandwidth in Eqn (2.32), we can obtain appropriate co-

variance for the Gaussian noise to be added from our bootstrapped samples.

As an example, let us say we observed the same 10 data points for which we bootstrapped

previously, and again we generated the selection indices

IND = [5, 2, 3, 3, 7, 8, 1, 4, 7, 9]

The covariance of the data was found to be var(D) = 0.75481, resulting in a bandwidth of

H =

(
4

10(1 + 2)

) 2
1+4

S

=

(
4

30

) 2
5

0.75481

= 0.33714

We can then add Gaussian noise to the bootstrapped sample

D1 =



5.33
3.83
4.14
4.14
4.05
4.77
6.68
5.51
4.05
4.16


+
√

0.33714× randn(10, 1)

where randn(10, 1) generates a 10×1 vector of Gaussian random variables. The mean of D1

can be calculated to generate a resampled estimate of µ̂1, but this time µ̂1 can essentially
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take on an infinite number of different values. The resulting distribution of µ̂ is shown in

Figure 2.19 from which confidence intervals of µ̂ can be obtained.
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Figure 2.19: Distribution of µ̂ estimate
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Chapter 3

Introduction to Testbed Systems

3.1 Simulated System

The system used for simulation is the well-known Tennessee Eastman Process [65] which

has been the testbed for a host of process control and fault-diagnosis techniques [66] [67]

[68] [48] (The schematic is presented in Figure 3.1). In this system, the gaseous reactants

A, D, and E are fed directly into the reactor along with intert gas B (C comes in through

the recycle stream). In this reactor, G and H (liquids at standard conditions) are formed

according to the following reactions

A(g) + C(g) +D(g)→ G(l)

A(g) + C(g) + E(g)→ H(l)

which are irreversible, exothermic, and approximately first-order with respect to reactant

concentrations. Product from the reactor is condensed and sent to a separator to remove

the reactants (which are much more volatile than the products). Liquid separator product

is then stripped using reactant C as the stripping agent. Liquid product from the stripper

is seen as the final product. Meanwhile, gaseous product form the stripper and separator

are recycled to the reactor, with some of the separator product being purged in order to

prevent build-up of inert gas B.

The code used for simulation allows for 15 known pre-programmed process faults and

uses the decentralized control strategy outlined by [69] (code is available in the Tennessee

Eastman Challenge Archive [70]). For our applications, we consider a normal operating

mode, and seven other modes where each fault happens one at a time (modes with multiple

faults are not considered). A list of these modes is presented in Table 3.1.

3.1.1 Monitor design

In order to assess improvements shown by the Bayesian approach, monitors are chosen

arbitrarily, some of which have high false-alarm/misdetection rates. By selecting monitors

with mediocre performance, the merits of our proposed methods can be more clearly seen.
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Figure 3.1: Tennessee Eastman process

Table 3.1: List of simulated modes

Variable number Process variable Type

NF N/A N/A

IDV 1 A/C feed ratio B composition constant (stream 4) Step

IDV 2 B composition, A/C ratio constant (stream 4) Step

IDV 7 C header pressure loss, reduced availability Step

IDV 8 A, B, C feed composition (stream 4) Variation

IDV 9 D feed temperature (stream 2) Variation

IDV 12 Reactor cooling water inlet temperature Variation

IDV 14 Reactor cooling water valve Sticking

Control performance monitor

Six univariate control performance monitors are commissioned to monitor the control per-

formance of the six key PVs. The FCOR algorithm [34] is employed to compute control

performance indices based on univariate CVs.

Valve stiction monitor

According to Downs and Vogel [65], the reactor cooling water valve and the condenser

cooling water valve both have the potential to develop stiction. Two valve stiction monitors
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are commissioned to monitor these problems.

For illustrative purposes, we consider the following simplified scenario: if a control loop

has oscillation, then the oscillation is caused either by valve stiction or by an external

oscillatory disturbance. The latter has sinusoid form while the former does not.

If the CV and the MV of a control loop oscillate sinusoidally, an ellipse will be obtained

when plotting CV versus MV. It has been observed that an ellipse will be distorted if the

oscillation is caused by valve stiction. The method adopted here is based on the evaluation

of how well the shape of the CV versus MV plot can be fitted by an ellipse. An empirical

threshold of distance between each data point and the ellipse is used to determine the

goodness-of-fit, and thereafter the existence of valve stiction.

Process model validation monitor

In addition to the control performance monitors, three additional model validation monitors

are commissioned to monitor model changes for the reactor, separator and stripper levels.

The local approach based on the output error (OE) method [71] is employed to validate

the nominal process model. This method applies to MISO systems (note that any MIMO

system can be separated into several MISO subsystems). Models of each MISO part can be

monitored with the local approach.

3.2 Bench Scale System

The hybrid tank system is a bench-scale process with a schematic given in Figure 3.2. The

system consists of three tanks that can be interconnected through a system of valves. The

two outer tanks have water inlets that can be used to control the water level, while all three

tanks have outlets that empty into the main water basin. In this thesis, only the lower

valves (valves 1 and 2) are used to interconnect the tanks. Furthermore, the outlet valve

for the middle tank (valve 8) is closed, while the other outlets remain open. Valve 1 and

Valve 2 are opened and closed in order to create two states for each of these components.

In addition, bias is added to flow meters 1 and 2 in order to create states for two more

components. When coupled with the open and closed states for the two valves, the system

has 24 = 16 possible operating modes.

The system is equipped with seven different measurements. Flow meters 1 and 2 were

already mentioned; these instruments measure water flow rates into tanks 1 and 2 respec-

tively. Control signals to the pumps are also measured (for pumps 1 and 2), as well as the

three tank levels (level transmitters 1, 2 and 3).

Detection of different operating modes is done using model validation. A gray box model
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Figure 3.2: Hybrid tank system

is obtained for each tank, given as

d L1

d t
= A−1

c

(
F1 − C1L

1/2
1

)
(3.1)

d L2

d t
= −A−1

c

(
C2L

1/2
2

)
(3.2)

d L3

d t
= A−1

c

(
F2 − C3L

1/2
3

)
(3.3)

where Ac is the cross-sectional area of the tanks, F1, F2 are flow rates into tanks 1 and 3

respectively, C1, C2, C3 are flow coefficients for each tank outlet, and L2, L2, L3 are tank

levels for each of the tanks.

Once this model is estimated, it is perturbed in order to include bias terms B1, B2 for

the flow rate measurements of water going into tanks 1 and 3, and leak terms CL1 and CL2

which are flow constants for valves 1 and 2 when they are open.

d L1

d t
= A−1

c

[
B1F1 − C1L

1/2
1 + CL1FL(L1, L2)

]
d L2

d t
= A−1

c

[
−C2L

1/2
2 + CL1FL(L2, L1) + CL2FL(L2, L3)

]
d L3

d t
= A−1

c

[
B2F2 − C3L

1/2
3 + CL2FL(L3, L2)

]
where FL(L1, L2) is a function given as

FL(L1, L2) = (L2 − L1)|L2 − L1|−1/2
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Using the unscented Kalman filter, the monitor estimates parameters B1, B2, CL1 , CL2 as

additional hidden states.

In addition, the model between pump signal and measured flow rate gives additional

estimates for bias terms B1, B2. The estimate is given as

B1 =
F̂1(U1)

F1

B2 =
F̂2(U2)

F2

where U1 and U2 are pump control signals to pumps 1 and 2 respectively, and F̂1(U1), F̂2(U2)

are the respective flow predictions based on pump signals. When combined with level

measurements, there is a total of nine monitoring inputs to this system.

3.3 Industrial Scale System

The industrial system considered for examples in this thesis is part of a solids handling

facility in Canada’s oil sands industry, similar to one used by Gonzalez and Huang [54].

As part of the preparation, mined oil sand is crushed, sized, and made into slurry though

the breaker system. Data obtained from this facility does not have faults, but each of the

subsystems (the size, conveyor and breaker) each operates under the modes “on” and “off”;

this leads to eight possible modes overall. However, certain modes occur very infrequently

due to safety systems installed; namely, the conveyor is turned off if the breaker is turned

off, and the sizer is turned off when the conveyor is turned off. Nevertheless, as rare as

these modes can be, they occur in history during transitional periods.

The system makes use of twenty unique measurements; the measurements along with a

simple system schematic are given in Figure 3.3.
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Figure 3.3: Solids handling system
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Chapter 4

Accounting for Ambiguous Modes:
A Bayesian Approach

4.1 Introduction

The first challenge to be addressed in this thesis is the problem of missing information

about the mode (a challenge similar to missing information about the evidence which was

addressed by Qi and Huang [1]).

As indicated in Chapter 2, a mode comprises of a set of states for individual components.

For example, consider a system with two components c1, c2; let c1 represent a sensor and c2

represent a valve. A mode must have information for both components [c1, c2]. If, for this

system, the sensor has three states, (positive bias, no bias, and negative bias), while the

valve has three states, (no stiction, moderate stiction, and severe stiction) there is a total

of nine possible modes.

When information about any of the system components is missing, the mode is said to

be ambiguous. For example, let us say that in a certain segment of historical data, we are

unsure of the state of the valve, but we know there is moderate stiction, the corresponding

mode is [ c1 = × , c2 = 2 ]. The mode is ambiguous as it could be one of three specific

modes [ c1 = 1 , c2 = 2 ], [ c1 = 2 , c2 = 2 ], [ c1 = 3 , c2 = 2 ]. The aim of this chapter is

how to deal with ambiguous modes, such as this, when they appear in the data.

4.2 Parametrization of Likelihoods Given Ambiguous Modes

4.2.1 Interpretation of proportion parameters

When data in the history is taken from an ambiguous mode, a proportion of this data may

belong to any of the specific modes within the ambiguous mode; for example, the specific

mode [ c1 = 1 , c2 = 2 ] within the ambiguous mode [ c1 = × , c2 = 2 ]. In order to

deal with ambiguity, we consider a set of unknown parameters θ{Mm} which indicate the

proportion of data under the potentially ambiguous modem belonging to any of the specific

modes M ⊆ m. For example, if we had 10 data points for mode [ c1 = × , c2 = 2 ], and
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we knew that three of them belonged to mode [1 = × , c2 = 2 ], then the corresponding

θ parameter would be assigned a value of θ{ [1,2]
[×,2]} = 3/10. Note that in this thesis, the

boldface M can indicate any observed mode that has occurred in the data (including an

ambiguous one) but M (or m, if we are talking about observations) can only represent a

specific (unambiguous) mode.

When expressed as a probability, θ{Mm} is equated to

θ{Mm} = p(M |m)

which is the probability that the specific mode M occurs given the potentially ambiguous

mode m.

As a practical example of defining θ, let us consider the same system with the valve and

sensor each being able to take on three states. The resulting modes are as follows:

m1

m2

m3

m4

m5

m6

m7

m8

m9


=



c1 = 1 , c2 = 1
c1 = 1 , c2 = 2
c1 = 1 , c2 = 3
c1 = 2 , c2 = 1
c1 = 2 , c2 = 2
c1 = 2 , c2 = 3
c1 = 3 , c2 = 1
c1 = 3 , c2 = 2
c1 = 3 , c2 = 3


If we consider data coming from the ambiguous mode [ c1 = × , c2 = 2 ], or equivalently,

the set of modes {m2,m5,m8}, a certain proportion θ{ m2
m2,m5,m8

} of that data actually

belongs to mode m2, another proportion θ{ m5
m2,m5,m8

} belongs to m5, a final proportion of

the data θ{ m8
m2,m5,m8

} belongs to m8. Each member θ in Θ (which contains all θ values) is

an unknown quantity unless the following conditions apply:

θ{mi*mk

mk
} = 0 e.g. θ{ m2

m1,m4,m7
} = 0 (4.1)

θ{mi=mk
mk

} = 1 e.g. θ{m2
m2
} = 1 (4.2)

For the first exception, the modem2 is not possible given the ambiguous mode {m1,m4,m7},
thus none of the data from this ambiguous mode can belong to mode m2. For the second

exception, given the mode m2, all of the data in m2 will belong to m2, it cannot belong

anywhere else; in a probabilistic sense, it would be equivalent to stating p(M = m2|m2) = 1

(or p(m2|m2) = 1 for shorthand). These values of Θ, being predetermined by logic are

logically forced.
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4.2.2 Parametrizing likelihoods

The principal data-driven component of Bayesian inference is the likelihood. When com-

bined with prior probabilities, the posterior is calculated as

p(M |E) =
p(E|M)p(M)

p(E)
(4.3)

p(E) =
∑
M

p(E|M)p(M) (4.4)

When ambiguous modes are present, obtaining likelihoods p(E|M) can be quite challenging,

as the conditioning variable M is unknown in ambiguous mode circumstances. In the

discrete case, when no prior samples are taken, the likelihood is obtained as

p(E|M) =
n(E,M)

n(M)

However, if we are calculating p(E|m1) and there is an ambiguous mode {m1,m2} in the

data, then we need to take into account the data in {m1,m2} that belongs to mode m1.

Thus, the likelihood is calculated as

p(E|m1) =
n(E,m1) + θ{ m1

m1,m2
}n(E, {m1,m2})

n(m1) + θ{ m1
m1,m2

}n{m1,m2}

Let us now revisit the term, support as given in [50], which is calculated in the same manner

as probability, except that now ambiguous modes can be used as the conditioning variable

S(E|M) =
n(E,M)

n(M)

where, again, the boldface M indicates that the mode can be ambiguous. The previous

likelihood expression can then be given as

p(E|m1) =
n(E,m1) + θ{ m1

m1,m2
}S(E|{m1,m2})n{m1,m2}

n(m1) + θ{ m1
m1,m2

}n{m1,m2}

In this chapter, it is assumed that S(E|M) is derived from discrete evidence, but continuous

evidence can be used in its stead as well; note that the utilization of continuous evidence is

addressed in Chapter 6.

The expression for the likelihood p(E|M,Θ) accounted for only one ambiguous mode,

but in general the likelihood can be expressed to take into account multiple ambiguous

modes:

p(E|M,Θ) =

∑
M⊇M

θ{MM }S(E|M)n(M)∑
M⊇M

θ{MM }n(M)
(4.5)

where the summation limit M ⊇M cycles through all historical modes and includes every

historical mode mk that can support the mode in question M . Note that the term Θ

includes the variables in Θ that can support the mode M ; other variables in Θ do not play

any role in calculating p(E|M).
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4.2.3 Informed estimates of likelihoods

As with Dempster-Shafer theory (mentioned before in Chapter 2), the presence of ambiguity

in the historical data will result in probability ranges, as the likelihoods depend on variables

in Θ. The lower-bound probability is called Belief while the upper-bound probability is

called Plausibility

Bel(E|M) = min
Θ
p(E|M,Θ) (4.6)

Pl(E|M) = max
Θ

p(E|M,Θ) (4.7)

In addition to the belief and plausibility, there is also a probability between these two

boundaries that represents the best estimate of the likelihood. This best estimate can be

obtained by using prior probabilities. For example, let us consider an ambiguous mode

{m1,m2}. If there is complete ignorance as to whether any of the data belongs to mode m1

or mode m2, then the data should be divided evenly according to the principle of insufficient

reason. However, if there is prior knowledge that mode m1 happens three times as frequently

as mode m2, (p(m1) = 3p(m2)), then it stands to reason that 75 % of the data in {m1,m2}
belongs to m1 and 25 % belongs to m2. This would equate to the following parameters:

θ̂{ m1
m1,m2

} = p(m1|{m1,m2}) = 0.75

θ̂{ m2
m1,m2

} = p(m2|{m1,m2}) = 0.25

These estimates of θ{ m1
m1,m2

} and θ{ m2
m1,m2

} are called informed estimates as they make use

of prior information. In general, the informed estimate of a proportion parameter is given

as

θ̂{Mm} =
p(M)∑

M⊆m
p(M)

(4.8)

where the summation limit M ⊆ m cycles through all unambiguous modes M that are

contained within the historical (and potentially ambiguous) mode m. Note that logically,

informed estimates in Θ̂ are also subject to the conditions in Eqn (4.1) and (4.2). The

informed likelihood can serve as an educated guess as to what the likelihood value should

be and is important for techniques mentioned later on in this chapter.

4.3 Fagin-Halpern Combination

While a parametrized expression now exists for the likelihood in Eqn (4.5), applying Bayes’

rule in Eqn (4.3) is quite difficult, and successive combinations will yield more complex

results. Fagin and Halpern [72] proposed a conditioning rule that can be used to combine
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likelihood ranges with prior probabilities.

Bel(M |E) =
Bel(M, e)

Bel(M,E) + Pl(M̄,E)

Pl(M |E) =
Pl(M, e)

Pl(M,E) +Bel(M̄,E)

where M̄ denotes all specific modes that are not M . When applied to Bayes’ rule of

combination, the Fagin Halpern combination rule can be given as

Bel(M |E) =
Bel(E|M)Bel(M)

Bel(E|M)Bel(M) +
∑̄
M

Pl(E|M̄)Pl(M̄)
(4.9)

Pl(M |E) =
Pl(E|M)Pl(M)

Pl(E|M)Pl(M) +
∑̄
M

Bel(E|M̄)Bel(M̄)
(4.10)

This rule gives the largest possible boundary, and is suitable for combining a single likelihood

term with a prior probability. The difficulty is that when successive combinations are used

(which can happen when applying this method dynamically), the Fagin Halpern rule yields

boundaries that quickly grow to a point where the end result is uninformative.

For example, if we consider evidence E where certain elements E1 are independent of

the other elements E2, (E = [E1, E2], E1 ⊥ E2), then

p(E|M) = p(E1|M)p(E2|M)

When we consider ambiguous modes, p(E|M,Θ), the same applies

p(E|M,Θ) = p(E1|M,Θ)p(E2|M,Θ)

If we use Fagin Halpern combination to combine the two results

Bel(E|M) =
Bel(E1|M)Bel(E2|M)

Bel(E1|M)Bel(E2|M) +
∑̄
M

Pl(E1|M̄)Pl(E1|M̄)

Pl(E|M) =
Pl(E1|M)Pl(E2|M)

Pl(E1|M)Pl(E2|M) +
∑̄
M

Bel(E1|M̄)Bel(E2|M̄)

the end result would yield probability boundaries larger than the original boundaries by

maximizing and minimizing the original expression p(E|M,Θ). As a result, Fagin Halpern

boundaries are too conservative for separating likelihoods, and are also too conservative for

sequential combination as done in dynamic applications.

4.4 Second-Order Approximation

Up to this point, we have considered two solutions:
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1. Directly applying the Bayesian solution in Eqn (4.3) to the parametrized likelihood in

Eqn (4.5), but it was found that the expression grew successively more complicated

with each combination step

2. Applying the Fagin-Halpern method in Eqn (4.9) and (4.10). This was found to be

suitable for combining a single likelihood with a belief, but since probability bound-

aries grew with each successive combination, it was found to be unsuitable for sepa-

rating evidence into independent groups and for dynamic application.

In order to retain some of the properties of the first (direct) solution while maintain-

ing fixed simplicity like the second (Fagin-Halpern) solution, we propose a second-order

approximation. We can first express Eqn (4.5) as a second-order function, and perform

combination, ignoring higher-order terms. Thus the parametrized likelihood will remain to

be a second-order expression with respect to Θ. While this is an approximate solution, due

to the fact that the domain of Θ is restricted to values between 0 and 1, there is generally

not enough room in the domain to deviate strongly from second-order behaviour. Hence,

the second-order approximation is reasonable throughout the entire domain of p(E|M,Θ).

Finally, the second-order apprixmaiton is exact at its reference point. In this case, we set

the reference point for Θ to be the informed probability, which is our best guess at the

value for Θ. Thus the second-order approximation inherently makes use of a best-guess

probability that can be easily obtained from this method.

4.4.1 Consistency of Θ parameters

One important advantage of the second-order combination rule has over the Fagin-Halpern

combination method is the ability to assume consistent Θ parameters. Let us consider a

case where we would like to separate p(E|M,Θ) into two independent distributions so that

p(E|M,Θ) = p(E1|M,Θ)p(E2|M,Θ) (4.11)

For the Fagin-Halpern method of combination, it is assumed that Θ can take on different

values for E1 than E2. In making this assumption, the probability boundaries are grown in

such a way as to encompass all possible probability results from all values of Θ given that

they are allowed to independently vary for E1 and E2. In reality, the values of Θ used for

E1 must be the same values used for E2 if the independent combination in Eqn (4.11) is to

hold true.

Whether directly combining independent likelihoods p(E1|M,Θ) and p(E2|M,Θ), or

combining their approximation, because all values of Θ must be the same between the two

sources of evidence, the terms in Θ can be collected. Thus, when applying the combination

rule to second-order approximations, zeroth, first and second order terms of Θ are collected,

and higher order terms are ignored.

When evaluating evidence at different time intervals p(Et|M t,Θ), the values of Θ do not

change with time because same historical data with the same values of Θ are used to evaluate
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the likelihood at each different time step t. Thus, not only is collecting Θ terms valid when

combining likelihoods form independent evidence, it is also valid when applying the second-

order rule in a dynamic fashion. Dynamic application of the second-order combination rule

will be covered later on in this chapter.

4.4.2 Obtaining a second-order approximation

The second-order approximation of a function f(x) is given by the Taylor Series

f(x) ≈ f(x̂) + J(x− x̂) +
1

2
(x− x̂)TH(x− x̂)

where x̂ is a reference point around which the approximation is taken (the approximation

is exact at x̂ but becomes worse when x is further away from x̂), J is the Jacobian matrix

(first-order derivatives evaluated at x̂)

Ji =
∂f(x)

∂xi

∣∣∣∣
x̂

and H is the Hessian matrix (second-order derivatives also evaluated at x̂)

Hi,j =
∂2f(x)

∂xi ∂xj

∣∣∣∣
x̂

When applied to our problem, the second order approximation of p(E|M,Θ) is calculated

with respect to Θ. A convenient reference point for Θ is the informed estimate Θ̂. For the

Jacobian, the expression is given as

JM [i] =
∂p(E|M,Θ)

∂θ{ Mmi
}

∣∣∣∣∣
Θ̂

Note that because values of Θ are not variable in the conditions stated by Eqn (4.1) and

(4.2) (these non-varible conditions exist whenever mi 6⊃ m), the following derivatives have

zero value

∂p(E|M,Θ)

∂θ{ Mmi
}

∣∣∣∣∣
Θ̂

= 0 ∀ mi 6⊃ m

The expressions for the partial derivatives with respect to p(E|M,Θ) are obtained by dif-

ferentiating Eqn(4.5). For compactness of notation, we introduce S and n and θ̂ as vectors.

S = [S(E|m1), S(E|m2), . . . , S(E|mn)]

n = [n(m1), n(m2), . . . , n(mn)]

θ̂ =
[
θ̂{ Mm1

}, θ̂{ Mm2
}, . . . , θ̂{ Mmn

}
]

For non-zero conditions, the partial differentials for the Jacobian are then given as

∂p(E|M,Θ)

∂θ{ Mmi
}

∣∣∣∣∣
Θ̂

=
niSi∑
k nkθ̂

−
ni
∑

k Sknkθ̂k(∑
k nkθ̂k

)2
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Terms for the Hessian are given as

HM [i, j] =
∂2p(E|M,Θ)

∂θ{ Mmi
} ∂θ{ Mmj

}

∣∣∣∣∣
Θ̂

with similar zero-derivative conditions

∂2p(E|M,Θ)

∂θ{ Mmi
} ∂θ{ Mmj

}

∣∣∣∣∣
Θ̂

= 0 ∀ mi 6⊃M
mj 6⊃M

For non-zero conditions, the second-order partial differentials for the Hessian are given as

∂2p(E|M,Θ)

∂θ{ Mmi
} ∂θ{ Mmj

}

∣∣∣∣∣
Θ̂

= −niSj + njSi(∑
k nkθ̂k

)2 +
ninj

∑
k Sknkθ̂k(∑

k nkθ̂k

)3

With terms for the Jacobian and Hessian already defined, the resulting second order ex-

pression is

p(E|M,Θ) = p̂(E|M) + JM (Θ− Θ̂) +
1

2
(Θ− Θ̂)THM (Θ− Θ̂) (4.12)

where p̂(E|M) is the informed likelihood estimate

p̂(E|M) = p(E|M, Θ̂)

4.4.3 The second-order Bayesian combination rule

After the second-order approximation has been obtained for the likelihood, it can be com-

bined with priors. Priors may also contain associated ambiguity (especially in the case of

dynamic application) so we consider a general case where both the priors and the likelihoods

are represented by second-order expressions.

p(E|M,Θ) = p̂(E|M) + J(E|M)(Θ̂−Θ) +
1

2
(Θ̂−Θ)TH(E|M)(Θ̂−Θ)

p(M |Θ) = p̂(M) + J(M)(Θ̂−Θ) +
1

2
(Θ̂−Θ)TH(M)(Θ̂−Θ)

p(E) =
∑
m

p̂(E|M)p̂(M)

Bayesian combination is performed by taking the following product:

p(M |E,Θ) =
1

p(E)
p(E|M,Θ)p(M |Θ)

By collecting terms with respect to (Θ̂−Θ), the posterior probability is expressed as

p(M |E,Θ) = p̂(M |E) + J(M |E)(Θ̂−Θ) +
1

2
(Θ̂−Θ)TH(M |E)(Θ̂−Θ) (4.13)
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where the terms p̂(M |E),J(M |E),H(M |E) are calculated as

p̂(M |E) =
1

p(E)
p̂(E|M)p̂(M) (4.14)

J(M |E) =
1

p(E)

[
J(M)p̂(E|M) + J(E|M)p̂(M)

]
(4.15)

H(M |E) =
1

p(E)

[
H(M)p̂(E|M) +H(E|M)p̂(M)+ (4.16)

JT(M)J(E|M) + JT(E|M)J(M)

]
These expressions form the second-order update rules. In addition these rules can be used

to combine independent likelihoods

p(E|M,Θ) = p(E1|M,Θ)p(E2|M,Θ)

However, there is no normalization constant p(E), thus the second-order rules for combining

independent evidence are

p̂(E|M) = p̂(E1|M)p̂(E2|M) (4.17)

J(E|M) =
[
J(E1|M)p̂(E2|M) + J(M |E1)p̂(M |E2)

]
(4.18)

H(E|M) =
[
H(E1|M)p̂(E2|M) +H(M |E1)p̂(M |E2)+ (4.19)

JT(M |E1)J(M |E2) + JT(M |E1)J(M |E2)

]
4.5 Brief Comparison of Combination Methods

An example comparing the Fagin-Halpern and Second-Order boundaries is borrowed from

[52]. In this example, evidence is available from six conditionally independent sources for

a seven-mode system. When a new piece of evidence was available, the sources of evidence

yielded the support as given in Table 4.1. These six sources of evidence are combined with

the following prior:

[p(m1), . . . , p(m7)] = [0.27 , 0.09 , 0.09 , 0.19 , 0.11 , 0.15 , 0.11]

Combination was done using the exact method (which resulted in a very complicated func-

tion), the second-order method, and the Fagin-Halpern method. The posterior probability

results are shown in Figure (4.1). Three probabilities are shown, the plausibility (indicated

by the lightest bar), the informed probability (indicated by the mid-coloured bar) and the

belief (indicated by the darkest bar). From what can be seen from six combinations, the

Fagin-Halpern probability ranges are extremely large, as was expected, with a range of

practically 0%–100% for all modes. Such a result is definitively inconclusive for diagnosis.

By contrast, the second-order method yields probability boundaries that are much closer

to the true result.

74



Table 4.1: Support from example scenario

Mode
Support s(E|M)

# of Observations
e1 e2 e3 e4 e5 e6

{1} 0.29 0.15 0.17 0.17 0.20 0.40 164

{2} 0.14 0.25 0.15 0.15 0.15 0.25 82

{3} 0.30 0.20 0.32 0.22 0.10 0.30 79

{4} 0.20 0.20 0.23 0.59 0.22 0.22 89

{5} 0.23 0.19 0.17 0.20 0.36 0.21 64

{6} 0.17 0.24 0.14 0.14 0.13 0.23 62

{7} 0.09 0.08 0.11 0.11 0.14 0.34 103

{1, 2} 0.18 0.21 0.20 0.16 0.16 0.34 31

{1, 3} 0.29 0.21 0.39 0.18 0.15 0.40 31

{1, 4} 0.29 0.24 0.19 0.39 0.22 0.31 32

{1, 5} 0.27 0.16 0.21 0.30 0.34 0.44 29

{1, 6} 0.20 0.22 0.15 0.14 0.22 0.27 29

{1, 7} 0.16 0.31 0.28 0.14 0.16 0.36 34

{2, 6} 0.22 0.21 0.19 0.22 0.26 0.24 18

{3, 4} 0.25 0.23 0.27 0.34 0.16 0.27 21

{4, 5} 0.21 0.19 0.25 0.43 0.27 0.31 20

{5, 6} 0.29 0.20 0.15 0.23 0.23 0.24 16

{4, 5, 6} 0.19 0.19 0.26 0.32 0.30 0.22 18

4.6 Applying the Second-Arder Rule Dynamically

4.6.1 Unambiguous dynamic solution

One of the strongest motivations for using the second-order combination rule is its ability

to express ambiguity, even after successive combination. Successive combination is heavily

used when solutions are applied in a dynamic manner to take into account autodependent

modes. The dynamic solution to the autodependent mode problem has been discussed in

Chapter 2, but it was only applicable to the case where no modes had ambiguity. However,

the second-order probability expression in Eqn (4.13) has been formulated in such a manner

that would enable easy application in a dynamic setting.

From the fundamentals, it was noted that the probability transition solution was

p(M t|Et−1) =

n∑
i=1

p(M t|mt−1
i )p(mt−1

i |E
t−1) (4.20)

where p(mt−1
i |Et−1) is the posterior probability of mode mi at time t− 1. The probability

transition rule calculates a prior probability at time t (p(M t|Et−1)) using the posterior

probability from t− 1 (p(mt−1
i |Et−1)). This resultant prior p(M t|Et−1) is used as the prior

probability, to calculate the posterior at time t using Bayes’ Theorem

p(mt
i|Et) =

p(Et|M)p(M t|Et−1)∑
M p(Et|M)p(M t|Et−1)

(4.21)
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Figure 4.1: Diagnosis result for support in Table 4.1

4.6.2 The second-order dynamic solution

In this chapter, the second-order version of Bayes’ theorem has already been derived. The

remaining work is to define the second-order probability transition rule. Consider a second-

order posterior probability that was obtained at time t− 1

p(M t−1|Et−1,Θ) = p̂(M t−1|Et−1) + J(Mt−1|Et−1)(Θ̂−Θ)+ (4.22)

1

2
(Θ̂−Θ)TH(Mt−1|Et−1)(Θ̂−Θ)

The second-order prior probability at time t can be obtained by directly applying Eqn (4.22)

to Eqn (4.20)

p(M t|Et−1,Θ) =
n∑
i=1

p(M t|mt−1
i )p(mt−1

i |E
t−1,Θ)

If we consider each second-order term for p(M t−1|Et−1,Θ) in Eqn (4.22), a second order

transition rule can be made for each term when transitioning to M t.

p̂(M t|Et−1) =

n∑
i=1

p(M t|mt−1
i )p̂(M t−1|Et−1) (4.23)

J(Mt|Et−1) =

n∑
i=1

p(M t|mt−1
i )J(Mt−1|Et−1) (4.24)

H(Mt|Et−1) =

n∑
i=1

p(M t|mt−1
i )H(Mt−1|Et−1) (4.25)

This resulting probability is used as a prior probability at time t, which can be updated
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to a posterior using the previously proposed second-order Bayesian combination rule:

p̂(Et) =
∑
M

p̂(Et|M)p̂(M t|Et−1)

p̂(M t|Et) =
1

p̂(Et)
p̂(Et|M)p̂(M t|Et−1)

J(M |E) =
1

p̂(Et)

[
J(Mt|Et−1)p̂(E

t|M) + J(Et|M)p̂(M
t|Et−1)

]
H(M |E) =

1

p̂(Et)

[
H(Mt|Et−1)p̂(E

t|M) +H(Et|M)p̂(M
t|Et−1)+

JT(Mt|Et−1)J(Et|M) + JT(Et|M)J(Mt|Et−1)

]
4.7 Making a Diagnosis

After using the second-order combination rule to merge prior probabilities and likelihoods,

the results can be used for diagnosis. The second-order approximation is convenient as it

can be used to define four quantities useful for diagnosis:

1. The informed probability p̂(M |E)

2. The belief Bel(M |E)

3. The plausibility Pl(M |E)

4. The expected probability EΘ[p(M |E,Θ)]

4.7.1 Simple diagnosis

The first quantity p̂(M |E) can be used as a simple diagnosis reference. This is a convenient

quantity to use because it is explicitly available in the second-order result. In fact, if one

simply wishes to obtain a simple diagnosis, p̂(M |E) is the only term that needs to be

calculated; J(M |E) and H(M |E) are not needed. One simply chooses the mode which has

the largest informed posterior p̂(M |E).

4.7.2 Ranged diagnosis

It may be desirable to also convey information about the ambiguity associated with a

diagnosis. For example, if evidence is located in a region where historical data tends to be

ambiguous, the probability range will be large. Conversely in regions where historical data

tends to be unambiguous, the probability range will be small. Probability ranges can be

calculated according to

Bel(M |E) = min
Θ
p(M |E,Θ)

Pl(M |E) = max
Θ

p(M |E,Θ)
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Because the expression is quadratic, the resulting minimization and maximization problems

can be solved using quadratic programming methods; hence converting the expression to

a second-order approximation greatly simplifies the minimization and maximization proce-

dures. Note that the following constraints must be applied:

0 ≤ θ{ Mmk
} ≤ 1

While the probability boundaries are approximate, the function p(M |E,Θ) is generally

well-approximated by the second-order approximation over its domain (limited between 0

and 1 for all Θ). The probability boundaries serve to give an estimate on how reliable the

diagnosis is, and how adversely it is affected by ambiguity in the historical data.

4.7.3 Expected value diagnosis

One can also use the second-order approximation to obtain an expected value EΘ[p(M |E,Θ)].

However, in doing this, one is required to treat Θ as a random variable and construct a

probability distribution for it. Due to the fact that elements in Θ can be seen as probabilities

themselves

θ{ Mmk
} = p(M |mk)

an appropriate distribution for Θ is the Dirichlet distribution, a probability distribution

often used to define the distribution of probability estimates.

The Dirichlet Distribution for expected values of p(M |E,Θ)

Let us consider Θ{ •mk
}, the set of elements in Θ that pertain to the ambiguous mode mk

Θ{ •mk
} =

[
θ{m1
mk
}, . . . , θ{mn

mk
}
]

These elements behave like a complete set of discrete probabilities, which follow the Dirichlet

distribution

f( Θ{ •mk
} | α{ •mk

} ) =
Γ
(∑

i α{
mi
mk
}
)

∏
i Γ(α{ mi

mk
})
∏
i

θ{ mi
mk
}α{

mi
mk
}−1

=
1

B(α)

∏
i

θ{ mi
mk
}α{

mi
mk
}−1

α{ •mk
} =

[
α{m1

mk
}, . . . , α{mn

mk
}
]

where B(α) is a normalization constant. As previously mentioned, the values Θ{ •mk
}, can

be seen as probabilities and must be on the interval between 0 and 1; furthermore, they

must sum to unity. The terms α{ •mk
} are shape parameters that can be interpreted as the
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number of prior samples. Thus the Dirichlet distribution is a probability distribution of

probability estimates given the samples. The expected value of θ{ mi
mk
} is given as

E(θ{ mi
mk
}) =

α{ mi
mk
}∑

α{ •mk
}

(4.26)

As an example to aid in the interpretation of a Dirichlet distribution, let us assign the

following values to the parameters:

θ{ mi
mk
} = p(mi|mk)

α{ mi
mk
} = n(mi|mk)

where p(mi|mk) is the probability of mode mi given ambiguous mode mk and n(mi|mk) is

the frequency of mode mi given ambiguous mode mk. The Dirichlet distribution is given

as

f( p(M |mk) | n(M |mk) ) =
Γ (
∑

i n(mi|mk))∏
i Γ(n(mi|mk))

∏
i

p(mi|mk)
n(mi|mk)−1

Using this Dirichlet distribution, the expected value of θ{ mi
mk
} can be calculated as

E[p(mi|mk)] =
n(mi|mk)∑
j n(mj |mk)

=
n(mi|mk)

n(mk)

This is the probability one would expect to obtain given the samples n(mj |mk). Note that

the expected values are always in the interval of 0 and 1, and sum to unity (given mk) as

is required.

The previous Dirichlet distribution was used to denote the PDF f(Θ{ •mk
}) for Θ pa-

rameters pertaining to a single ambiguous mode. Now we would like to express a PDF

f(Θ) pertaining to all ambiguous modes. Note that parameter sets for different ambiguous

modes are independent of each other, resulting in the following expression for f(Θ)

f(Θ) =
∏
k

f(Θ{ •mk
})

This probability distribution defines the possible values of Θ and will be used for calculating

the expected value.

Calculating the expected value of p(M |E,Θ)

The posterior probability p(M |E,Θ) was previously given in Eqn (4.13); by making use of

the probability distribution over Θ in f(Θ), the expected value is given as

E[p(M |E)] =

∫
Θ

[
p̂(M |E) + J(M |E)∆Θ +

1

2
∆ΘTH(M |E)∆Θ

]∏
k

f(Θ{ •mk
}) dΘ

= Const +

∫
Θ

[
J∗(M |E)Θ +

1

2
ΘTH(M |E)Θ

]∏
k

f(Θ{ •mk
}) dΘ (4.27)
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where

Const = p̂(M |E)− J(M |E)Θ̂ +
1

2
Θ̂TH(M |E)Θ̂

J∗(M |E) = (J(M |E) − Θ̂TH(M |E))

The second-order expression of p(M |E,Θ) is linear with respect to Θ and contain terms no

higher than second-order. Because of this, the expected value can be expressed in terms of

means and variances, which have well-known solutions for the Dirichlet distribution.∫
Θ
θ{ Mmi

}
∏
k

f(Θ{ •mk
}) dΘ = E(θ{ Mmi

})∫
Θ
θ{ Mmi

}θ{ Mmj
}
∏
k

f(Θ{ •mk
}) dΘ = E(θ{ Mmi

})E(θ{ Mmi
})∫

Θ
θ2{ Mmi

}
∏
k

f(Θ{ •mk
}) dΘ =

[
E(θ{ Mmi

})
]2

+ Var(θ{ Mmi
})

For the Dirichlet distribution, the means and variances are given by

A(mi) =
∑

mk⊂mi

α(mk|mi)

E(θ{ Mmi
}) =

α(M)

A(mi)

Var(θ{ Mmi
}) =

α(M)[A(mi)− α(M)]

A(mi)3 +A(mi)2

where α(M) represents the prior sample of the unambiguous mode M . If one uses the

frequency of mode occurrences n(M), the shape parameters α(M) will be quite large and

the expected value of p(M |E,Θ) will be nearly identical to the informed estimate. This is

because a large shape parameters α(M) yield a very sharp distribution centred at Θ̂. If

one is unsure about the accuracy of Θ̂ it is best to divide all α(M) by a common factor so

that the largest α(M) is no larger than 10 (values larger than 10 can result in fairly narrow

distributions).

The means and variances can be applied to Eqn (4.27). First, one has to separate the

squared terms of Θ associated with variance

E[p(E|M)] = Const+∫
Θ

[
J∗(M |E)Θ +

1

2

[
ΘT (H(M |E) −HD)Θ + [Θ2]T (HD 1)

]]
f(Θ) dΘ

where HD is a diagonal matrix containing the diagonal elements of H(M |E), and 1 is a

vertical vector of ones. Furthermore, Θ is a vertical vector of parameters, and Θ2 is a

vertical vector containing squared values of Θ. By expressing the integrals as expected

values and variances, the solution is reduced to

E[p(E|M)] = Const + J∗(M |E)E(Θ) +
1

2
E(Θ)T (H(M |E) −HD)E(Θ)

+
1

2
[Var(Θ) + E(Θ)2]THD 1 (4.28)
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This can be solved in order to obtain the expected value of the posterior.

When EΘ[p(M |E,Θ)] approaches p̂(M |E)

As was mentioned earlier, if the number of prior samples n(M) is large, one can justify

using the informed estimate p̂(E|M) by assuming strong prior knowledge. In such a case,

the prior samples α are large so that α→∞. The expected values and variances will then

take the following values:

E(θ{ Mmi
}) = θ̂{ Mmi

}

Var(θ{ Mmi
}) = 0

If this occurs, it can be shown that Eqn (4.27) will revert to the informed estimate p̂(M |E).

E[p(M |E)] = Const + J∗(M |E)Θ̂ +
1

2

[
Θ̂T (H(M |E) −HD)Θ̂ + [0 + Θ̂2]THD 1

]
= Const + [J(M |E) − Θ̂TH(M |E)]Θ̂

+
1

2

[
Θ̂T (H(M |E) −HD)Θ̂ + Θ̂THDΘ̂

]
= Const +

[
J(M |E)Θ̂− Θ̂TH(M |E)Θ̂

]
+

1

2
Θ̂TH(M |E)Θ̂

=

[
p̂(M |E)− J(M |E)Θ̂ +

1

2
Θ̂TH(M |E)Θ̂

]
+ J(M |E)Θ̂−

1

2
Θ̂TH(M |E)Θ̂

= p̂(M |E)

This result justifies using p̂(M |E) when the prior sample size is large, or equivalently, if one

has high confidence in the priors. However, if one is not confident in the value of Θ̂, (or

equivalently, if one is not confident that prior probabilities adequately represent proportions

in the ambiguous modes) one should use small sample sizes of α and calculate the expected

value for diagnosis.
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Chapter 5

Accounting for Ambiguous Modes:
A Dempster-Shafer Approach

5.1 Introduction

Inference methods for ambiguous hypotheses have existed since the late sixties with Demp-

ster [49] and Shafer [50] being the first to contribute major publications in this field; a field

which later became known as Dempster-Shafer theory. First, being proposed as a gener-

alization to Bayesian inference, Dempster-Shafer theory was shown to be able to account

for both probabilistic uncertainty and ignorance, the claim being that Bayesian inference

cannot adequately express ignorance. Since its inception, there has been a vast amount

of literature published on Dempster-Shafer theory, which includes a wide arrangement of

combination rules, methods of interpretation, and criticisms, (criticisms are mainly due to

the subjective nature of Dempster-Shafer theory).

A solution to the diagnosis problem with ambiguous modes has been proposed in Chapter

4 using the parametrized Bayesian method; however, Dempster-Shafer theory provides an

alternative solution. It may seem that Demspter-Shafer theory can be readily applied to

the ambiguous mode problem, but further investigation reveals some difficult challenges

that ultimately requires restructuring and generalization of some of the basic concepts of

Dempster-Shafer theory. Nevertheless, because of the intended scope of Dempster-Shafer

theory is quite broad, the method in this chapter does not require certain assumptions to

be made about Θ as in Chapter 4.

5.2 Dempster-Shafer Theory

5.2.1 Basic belief assignments

The principal difference between Dempster-Shafer theory and Bayesian inference is the

interpretation of probability. In the Bayesian sense, all of the supported hypotheses must

be mutually exclusive. For example, let us borrow the problem in Chapter 4 with a valve
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and a sensor, with each of the two components having three states.

m1

m2

m3

m4

m5

m6

m7

m8

m9


=



c1 = 1 , c2 = 1
c1 = 1 , c2 = 2
c1 = 1 , c2 = 3
c1 = 2 , c2 = 1
c1 = 2 , c2 = 2
c1 = 2 , c2 = 3
c1 = 3 , c2 = 1
c1 = 3 , c2 = 2
c1 = 3 , c2 = 3


All modes in this case, are exclusive hypotheses. When there is ambiguity in any of these

modes, overlap between the hypotheses will exist. Probability can only be applied to a set

of exclusive hypotheses, which in our case is an unambiguous mode m.

p(M) =
n(M)

n

Dempster-Shafer theory however, makes use of a Basic Belief Assignment (BBA) which is

equivalent to the support function defined Chapter 4.

S(M) =
n(M)

n

1 =
∑
M

S(M)

where M can contain ambiguous modes (for example, mk = {m1,m2,m3} which occurs

when c1 = 1 is observed and c2 is missing); when ambiguous modes are in the data, overlap-

ping hypotheses can occur. Dempster-Shafer theory aims to express the probability in terms

of the BBA. When invoking the Θ parameter notation given in Chapter 4, the probability

is expressed as

p(M |Θ) =
∑

mk∩M 6=∅

θ{Mmk
}S(mk)

where M is the mode of interest, and θ{Mmk
} is an unknown proportion parameter that

represnts the probability of M given mk.

θ{Mmk
} = p(M |mk)

The parameters θ{Mmk
} have a set of constraints. The first constraint

0 ≤ θ{Mmk
} ≤ 1

states that, because θ{Mmk
} is a probability, it cannot be larger than 1, or smaller than 0.

In two special cases, θ{Mmk
} is not random at all, but must take on specific values based
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on logical constraints. In the first case, if the mode of interest M completely contains the

mode mk, then all the support to mk must apply to M .

θ{Mmk
} = 1 ∀ M ⊇mk (5.1)

For example if the mode of interest M is the ambiguous mode {m1,m2,m3} and the sup-

ported mode is {m1,m3} then all support given to {m1,m3} in the history must also be

given to {m1,m2,m3}.
In the second case, if the mode of interest M has nothing in common with the mode

mk, none of the support given to mk can apply to M .

θ{Mmk
} = 0 ∀ M ∩mk = ∅ (5.2)

Outside of these conditions, θ{Mmk
} is a flexible (or unknown) value between 0 and 1.

0 ≤ θ{Mmk
} ≤ 1 ∀ M +mk , M ∩mk = ∅ (5.3)

5.2.2 Probability boundaries

Dempster-Shafer theory concerns itself with boundaries on the probability. The plausibility

and belief can be obtained by maximizing and minimizing p(M |Θ) over the unknown pa-

rameters Θ. The optimization in this problem is linear with respect to Θ and is constrained

by previously mentioned conditions. Because the BBA S(mk) values (which serve as coef-

ficients on Θ) are non-negative, the belief can be obtained by setting all flexible values of

Θ to zero.

Bel(M) = Ex(M) =
∑

mk⊆M
S(mk)

Because the condition mk ⊇M excludes support from all flexible values of Θ, it is called

the exclusive condition Ex(M). For Dempster-Shafer theory, the exclusive probability is

the solution to the belief or lower bound probability.

In a similar manner, the plausibility can be obtained by setting all flexible values of Θ

to 1.

Pl(M) = In(M) =
∑

mk∩M 6=∅

S(mk)

The condition mk ∩M 6= ∅ includes support from all flexible values of Θ, and so is called

the inclusive condition In(M). In this way, the inclusive probability is the solution to the

plausibility or upper bound probability.

5.2.3 Dempster’s rule of combination

Dempter’s Rule of combination is made to combine two BBAs of M from independent

sources, and is said to be a generalization of Bayeisan combination. Dempter’s rule can be
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expressed as

S1,2(M) =
1

1−K
∑

M=mi∩mj 6=∅

S1(mi)S2(mj)

K =
∑

∅=mi∩mj

S1(mi)S2(mj)

Here, to find out the combined support S1,2(M) of the mode M we search for all modes in

S1 and S2 that intersect to yield M (expressed as M = mi ∩mj 6= ∅). However, there is

no such thing as support to the empty set ∅ which denotes conflict. Support to conflict is

denoted as K, and is normalized out (as 1−K), because BBAs are not allowed to support

conflict.

In Dempster-Shafer theory, a BBA is called Bayesian if it contains no support for am-

biguous hypotheses. In our application, the BBA is Bayesian if support is only given to

unambiguous modes. If BBAs are Bayesian, then Dempster’s Rule will revert to Bayes’

Theorem.

S1,2(M) =
1

1−K
∑

m=mi∩mj 6=∅

S1(mi)S2(mj) =
1

1−K
S1(M)S2(M)

K =
∑

∅=mi∩mj

S1(mi)S2(mj) = 1−
∑
m

S1(M)S2(M)

so that the end result is

S1,2(M) =
1∑

m S1(M)S2(M)
S1(M)S2(M)

which indeed resembles Bayes’ Theorem.

Dempster’s Rule will always yield support to intersections between S1(mi) and S2(mj).

Because of this, ambiguity is reduced after every combination; the idea is that information

from S1(mi) will be applied to ambiguity in S2(mj) and information from S2(mj) will be

applied to ambiguity in S1(mi). Applying information to each others’ ambiguity will reduce

the uncertainty between the two BBAs.

Because each combination results in a reduction in ambiguity, the more combinations

that are performed, the more that the resulting BBA will resemble a Bayesian BBA. In

fact, if any BBA is combined with a Bayesian BBA, the resulting BBA will be Bayesian. In

such a case, precise information from the Bayesian BBA will be applied to the uncertainties

in the other BBAs, resulting in zero uncertainty after combination.

5.2.4 Shortcut combination for unambiguous priors

If the prior probability is Bayesian, Dempster-Shafer combination of any BBA will yield a

Bayesian result. In such a case, a short-cut solution is available to calculate the posterior

which is much less computationally intensive than applying Dempster’s rule directly. In
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addition, when implementing a dynamic solution, successive combinations yield a Bayesian

result, thus it makes sense to use a Bayesian prior in order to cut computational loads.

Choosing Bayesian priors not only reduces computational loads, it also yields a dynamic

application that is fully compatible with the dynamic Bayesian method; the posteriors are

always Bayesian, thus probability transition technique will be the same as in the dynamic

Bayesian solution.

Let us consider a BBA S1(M) that is a Bayesian prior p1(M), and another BBA S2(M)

which contains ambiguity. Using Dempster’s rule for combination

S12(M) =
1

1−K
∑

M=mi∩mj 6=∅

p1(mi)S2(mj)

Now the condition

M = mi ∩mj 6= ∅

is only true when mi = M and when mj ⊇ M . Because of this, we can factor out p1(M)

and replace the condition with mj ⊇ m.

S12(M) =
1

1−K
p1(M)

∑
mj⊇m

S2(mj)

Now because M is unambiguous, the condition mj ⊇ M is equivalent to mj ∩M 6= ∅ so

that

S12(M) =
1

1−K
p1(M)

∑
mj∩M 6=∅

S2(mj)

From earlier results, we can see that the S2 term amounts to the inclusive probability of M

(or equivalently, the Dempster-Shafer plausibility).

S12(M) =
1

1−K
p1(M)In2(M) (5.4)

Because 1−K is a normalization constant (so that
∑

M S12(M) = 1) we can define 1−K
as

1−K =
∑
M

p1(M)In2(M) (5.5)

Eqn (5.4) and (5.5) together define the short-cut evaluation of Dempster’s rule with a

Bayesian prior.

Dynamic application

When using the shortcut rule, the posterior result is always Bayesian, thus the transition-

rule is still the same

St(M) =
∑
k

p(M t|mt−1
k )St−1(mk)
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After Dempster’s rule was applied at a time step t−1, the resulting probability St−1(mk) can

be converted to the prior St(M) at time t using the transition rule. Desmpter’s combination

rule is then used to update St(M) with more evidence.

5.3 Generalizing Dempster-Shafer Theory

In the previously discussed Fagin-Halpern combination rule, boundaries grow after each

combination, and in the second-order Bayesian method boundaries tend to stay relatively

constant; however in the Dempster-Shafer method, boundaries tend to shrink after succes-

sive combinations. The reason for this is that Dempster’s rule does not make the assumption

that Θ values are identical but that they are independent and that information from one

BBA can make up for the ambiguity in another. As a rule for application, if reference data

from different information sources is taken from the same time window, it is best to use the

second-order Bayesian method, because Θ values will be identical. However, if the evidence

data for each source comes from different time intervals, it is better to apply Generalized

Dempster-Shafer theory as Θ values will be independent.

Applying Dempster-Shafer theory to our problem does not come without difficulties, as

will be seen later on in this section; the BBA does not adequately describe how ambiguity

affects the likelihood. Because of this, the BBA and Dempster’s rule need to be generalized

in order to better fit the problem in question.

Previously, when discussing Dempster-Shafer theory, we concerned ourselves about the

probabilities of all modes in the history p(M); however, we are only interested in diagnos-

ing unambiguous modes p(M). From this point forward, we will be only considering the

problem of diagnosing unambiguous modes p(M) with potentially ambiguous modes M in

the history.

5.3.1 Motivation: Difficulties with BBAs

The difficulty with using Dempster-Shafer theory is representing the likelihood as a BBA.

Demspter-Shafer theory can be used to describe direct probabilities with ambiguity.

p(M |E,Θ) =
∑

mk∩m6=∅

θ{ Mmk
}S(mk|E) (5.6)

where the BBA terms in S are given as

S(M |E) =
n(M , E)

n(E)

This is the case where we sample data at random from the entire evidence history, D, and we

assume that the mode frequencies in D represent the mode probabilities for the population.

When evaluating the probability directly, we consider the number of times the mode M

and evidence E occur simultaneously (n(M , E)) and divide by the total number of times

the evidence E occurs (n(E)).
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The disadvantage for direct evaluation is that in most cases, some modes occur quite

rarely, thus we cannot trust that D is representative of the mode frequency. Furthermore,

dynamic application of the direct method is difficult. Instead it may be better to obtain the

priors using process knowledge (from both this process, and possibly other similar processes)

and use Bayes’ Theorem to combine likelihoods from the data with these priors. The results

of utilizing such an approach are increased flexibility in sampling from D, and the ability

for easy dynamic implementation.

Evaluating likelihoods however, poses a problem for Dempster-Shafer theory; the likeli-

hood with respect to S and Θ is given in Chapter 4 as

p(E|M,Θ) =

∑
mk⊇M

θ{ Mmk
}S(E|mk)n(mk)∑

mk⊇m
θ{ Mmk

}n(mk)
(5.7)

which is very different from Eqn (5.6). There are in fact, two main functional differences

between the Dempster-Shafer problem in Eqn (5.6) and our problem in Eqn (5.7).

Difference 1

In the Dempster-Shafer problem, the term S(mk|E) functions as a non-negative coefficient

on θ{ Mmk
} which means that increasing θ{ Mmk

} never decreases p(M |E,Θ)

∂ p(M |E,Θ)

∂ θ{ Mmk
}
≥ 0 (5.8)

In our problem, because we have a fractional expression now, it is possible for an increase

in θ{ Mmk
} to result in a decrease in p(E|M,θ{m}) (an example of this is shown later)

∂ p(E|M,Θ)

∂ θ{ Mmk
}

� 0 (5.9)

Because derivatives are no longer non-negative, Bel(E|M) is not necessarily solved by using

the exclusive probability, and Pl(E|M) is no longer solved by using the inclusive probability.

Difference 2

In the Dempster-Shafer problem, the term S(mk|E) functions as a constant coefficient on

θ{ Mmk
} with respect to m. This means that as long as mi and mj are both inmk, the partial

derivatives of p(mi|E,Θ), p(mj |E,Θ) are the same with respect to their θ parameters on

m.

∂ p(mi|E,Θ)

∂ θ{ mi
mk
}

=
∂ p(mj |E,Θ)

∂ θ{mj

mk
}

mi,mj ⊂mk (5.10)

In our problem, because of the fractional expression, the normalization constant on the de-

nominator can change with respect toM , thus the partial derivatives of p(E|mi,Θ), p(E|mj ,Θ)
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are not necessarily the same with respect to their θ parameters on m.

∂ p(E|mi,Θ)

∂ θ{ mi
mk
}
6= ∂ p(E|mj ,Θ)

∂ θ{mj

mk
}

mi,mj ⊂mk (5.11)

Example of differences

Let us consider a simple two-mode system with one ambiguous mode so that

• m1 = m1

• m2 = m2

• m3 = {m1,m2}

The historical data for this system is presented in Table 5.1.

Table 5.1: Frequency counts from example

m1 m2 {m1,m2} All M

e1 12 4 7 23

e2 5 9 6 20

All e 17 13 13 43

Now let us consider a case where e1 is observed. We can see that directly evaluating the

probability of m yields

p(m1|e1,Θ) =
12

23
+ θ{ m1

m1,m2
} 7

23

p(m2|e1,Θ) =
4

23
+ θ{ m2

m1,m2
} 7

23

One can observe that the derivative of these expressions with respect to θ{ M
m1,m2

} is 7/23.

This result is identical for both m1,m2 and is also non-negative. Conversely, when evalu-

ating the likelihoods of E given the modes m1 and m2 we obtain

p(e1|m1,Θ) =
12 + θ{ m1

m1,m2
}7

17 + θ{ m1
m1,m2

}13

p(e1|m2,Θ) =
4 + θ{ m2

m1,m2
}7

13 + θ{ m2
m1,m2

}13

We can further see that the derivatives can be obtained as

∂ p(e1|m1,Θ)

∂ θ{ m1
m1,m2

}
=

−37

(17 + θ{ m1
m1,m2

}13)2

∂ p(e1|m2,Θ)

∂ θ{ m2
m1,m2

}
=

39

(13 + θ{ m2
m1,m2

}13)2

We can see that the derivative of p(e1|m1,Θ) is always negative, while the derivative of

p(e1|m2,Θ) is always positive. Thus the derivatives for likelihoods are not identical nor are

they non-negative.
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Implications of the differences

The implication of these results is that we cannot adequately express the likelihood expres-

sion p(E|M,Θ) in Eqn (5.7) in the Dempster-Shafer BBA format presented in Eqn (5.6).

A more general form of the BBA is required to express p(E|M,Θ), and a new combination

rule must also be constructed.

5.3.2 Generalizing the BBA

At this point, we have established that the Dempster-Shafer BBAs make use of three as-

sumptions which are not true for our Bayesian inference problem:

1. The function p(E|M,Θ) is linear with respect to Θ

2. The derivatives of p(E|M,Θ) are always positive with respect to Θ

3. The derivatives of p(E|M,Θ) with respect to θ{ Mmk
} are identical for all M if mk is

held constant

The objective of the Generalized BBA is to relax assumptions (2) and (3) in order to

express p(E|mi,Θ) as a first-order approximation of Θ

p(E|m,Θ) = G[:,m]TΘ[:,m] (5.12)

Here, G and Θ take structures that allow us to easily define a generalized Dempster’s rule

of combination. In this thesis G[:,m] denotes the mth column of G, while G[m, :] denotes

the mth row of G.

A first-order approximation is used in this chapter, firstly because Dempster’s rule of

Combination is a linear operation and difficult to generalize over higher orders. Secondly,

combination operations tend to reduce ambiguity and thus tend to reduce the influence of

Θ on the final result; this reduced influence of Θ results in posterior functions p(M |E,Θ)

that are increasingly linear (and increasingly constant) as combinations are performed,

depreciating the relevance of higher-order terms.

In this thesis, Θ is the matrix form of Θ, with each row representing the potentially

ambiguous mode mk, and each column representing an unambiguous mode mi so that

Θ[k, i] = θ{ mi
mk
}

The matrix G has the same dimensions as Θ where elements can be calculated as

G[k, i] =


0 mi ∩mk = ∅

p̃(E|mi) mi = mk
∂p(E|mi)
∂θ[k,i] mi ⊂mk

(5.13)
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where

p̃(E|mi) = p(E|mi, Θ̂)−
∑

mk⊃mi

θ̂{ mi
mk
} ∂ p(E|mi,Θ)

∂ θ{ mi
mk
}

∣∣∣∣∣
Θ̂

∂p(E|mi)

∂Θ[k, i]
=
∂ p(E|mi,Θ)

∂ θ{ mi
mk
}

∣∣∣∣∣
Θ̂

Note that Θ̂ is the reference value of Θ, around which the approximation is centered. In

Chapter 4, Θ̂ was defined as the informed probability. In this chapter, because of the

properties of Dempster’s rule, it is best to use the inclusive value of Θ.

Θ̂ = Θ∗

where

• Θ∗ is the inclusive value, which sets all flexible values to 1

• Θ∗ is the exclusive value, which sets all flexible values to 0

Note that the mathematical conditions for flexible values were given in Eqn (5.3). With G

and Θ defined in this manner, Eqn (5.12) is able to express the likelihood as a first-order

approximation.

One important feature of G is that the mode can be extracted by the values taken on by

the row of G. For example, let us consider a three mode system, with possible ambiguous

modes {m1,m2}, {m1,m3}, and {m2,m3}. The structure of G is defined as

G =



m1 m2 m3

m1 G{m1
m1
} 0 0

m2 0 G{m2
m2
} 0

m3 0 0 G{m3
m3
}

{m1,m2} G{ m1
m1,m2

} G{ m2
m1,m2

} 0

{m1,m3} G{ m1
m1,m3

} 0 G{ m3
m1,m3

}
{m2,m3} 0 G{ m2

m2,m3
} G{ m3

m2,m3
}


We can therefore recover the mode from the appropriate row of G by analysing the zero

elements. For example, the fourth row of G is

G[4, :] =
[
G{ m1

m1,m2
} G{ m2

m1,m2
} 0

]
→ {m1,m2}

where each column in this row pertains to modes m1,m2,m3. Because the third element

is zero, m3 is not supported, and hence, {m1,m2} is supported. Thus for every row of G,

zeros indicate that the corresponding modes are not supported. In a similar manner, we

can see that the row

G[2, :] =
[

0 G{m2
m2
} 0

]
→ m2
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only supports m2. In this way, we can see that the mode can be recovered by determining

which elements in G[k, :] are equal to zero.

This generalized form of the BBA, because it is a generalization, can be used to ex-

press Dempster-Shafer BBAs as well. If we consider the conditions set forth by Eqn (5.8)

and Eqn(5.10), and the GBBA construction method in Eqn (5.13) we can set about two

conditions where the GBBA can be classified as a BBA.

1. Every non-zero element in G must be non-negative

2. Every non-zero element in a given row G[k, :] must have identical values

By taking the GBBA structure from our previous three-mode system, G would be a BBA

if it took the form

G =



m1 m2 m3

m1 S(m1) 0 0
m2 0 S(m2) 0
m3 0 0 S(m3)

{m1,m2} S{m1,m2} S{m1,m2} 0
{m1,m3} S{m1,m3} 0 S{m1,m3}
{m2,m3} 0 S{m2,m3} S{m2,m3}


which is the GBBA structure that would be formed if the direct method (as opposed to the

Bayesian likelihood method) was used.

Probability boundaries on GBBAs

When GBBAs are applied, the inclusive and exclusive probabilities have similar definitions

to BBAs

Ex(M) =
∑
mk⊆m

G[mk,m] = G[:,m]TΘ∗[:,m] (5.14)

In(M) =
∑
mk⊇m

G[mk,m] = G[:,m]TΘ∗[:,m] (5.15)

where Θ∗[:,m] sets all flexible θ values to 1, while Θ∗[:,m] sets all flexible θ values to

0. While the inclusive and exclusive probability definitions are similar, they are not the

solutions to the belief and plausibility.

Bel(M) = min
Θ
G[:,m]TΘ[:,m] 6= Ex(M)

Pl(M) = max
Θ
G[:,m]TΘ[:,m] 6= In(M)
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5.3.3 Generalizing Dempster’s rule

As previously mentioned, Dempster’s Rule of combination is given for BBAs in the following

form:

S(mk) =
1

1−K
∑

mk=mi∩mj 6=∅

S(mi)S(mj) (5.16)

1−K =
∑

mk=mi∩mj 6=∅

S(mi)S(mj) (5.17)

In a similar manner, the Generalized Dempster’s Rule of Combination is applied to the rows

of G that pertain to mk (or equivalently, G[mk, :])

G12[mk, :] =
1

1−K
∑

mk=mi∩mj 6=∅

G1[mi, :] ◦G2[mj , :] (5.18)

1−K =
∑

mk=mi∩mj 6=∅

meanx6=0(G[mi, :] ◦G[mj , :]) (5.19)

where X ◦ Y denotes the Hadamard (or element-wise) product between X and Y , while

meanx6=0(X) is the mean of the non-zero values of X.

The interesting property about the Hadamard product is that it conserves properties of

the intersection x ∩ y operation. For example, we can see that

[ 0 X2 0 ] ◦ [ 0 Y2 Y3 ] = [ 0 X2Y2 0 ]

Analogously, when obtaining sets from these row vectors, we can see that

m2 ∩ {m2,m3} = m2

When taking this into account, we can see that the Generalized Dempster’s Rule of combi-

nation truly generalizes Dempster’s rule. For example, let us consider two BBA values for

{m1,m2} and {m2,m3}. In Dempster’s rule, we could allocate the product

S{m1,m2}S{m2,m3}

to mode m2. In the Generalized Dempster’s rule, the Hadamard product

[S{m1,m2}, S{m1,m2}, 0 ] ◦ [ 0 , S{m2,m3}, S{m2,m3}]

= [ 0 , S{m1,m2}S{m2,m3}, 0 ]

is allocated to mode m2 (which one can see from the product result). When the GBBA

is consistent with a Dempster-Shafer BBA, the Hadamard product serves no purpose as

all nonzero elements in the ambiguous mode mk have the same support, regardless of the

unambiguous modes M ⊂ mk supported. The same final result can be obtained without

Hadamard products as long as the sets and the BBA are known. However, when an ambigu-

ous mode mk in a GBBAs allocates different support to each unambiguous mode M ⊂mk,

the Hadamard product allows us keep track of how mk supports each M ⊂mk.
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5.3.4 Shortcut combination for unambiguous priors

The Generalized Dempster’s rule shares another property with Dempster’s rule, that is, re-

peated combination will result in shrinking ambiguity, and that combination with a Bayesian

prior will result in an unambiguous posterior. In fact, the Bayesian shortcut for the Gener-

alized Dempster’s rule is the same as the Bayesian shortcut for Dempster’s rule. If p1(M)

is a Bayesian prior, which is combined with a GBBA (G2), the resulting GBBA (G12) can

be expressed as

G12(mi,mi) =
1

1−K
p1(mi)In2(mi) (5.20)

G12(mi,mj 6=i) = 0

1−K =
∑
M

p1(M)In2(M) (5.21)

This can be shown by analysing the Generalized rule of combination. However, we first

need to define p1(M) as a GBBA

G1 =

 p1(m1) 0 0

0
. . . 0

0 0 p1(mn)


From the Generalized rule,

G12[m, :] =
1

1−K
∑

m=mi∩mj 6=∅

G1[mi, :] ◦G2[mj , :]

From this we can see that the condition m = mi ∩mj 6= ∅ is only satisfied when mi = m

and when mj ⊇ m. This allows us to factor out G1[m, :] which yields

G12[m, :] =
1

1−K
G1[m, :]

∑
mj⊇m

G2[mj , :]

We can see that for row 1 of G1, the form is [X, 0, . . . , 0] which means that the first row of

G12 will also take the form [X, 0, . . . , 0], where all elements other than the first one is zero.

In the same manner, the second row of G1 and G1,2 will take the form of [0, X, 0, . . . , 0], so

on and so forth. From this we can see that

G12[m,m] =
1

1−K
G1[m,m]

∑
mj⊇m

G2[mj ,m]

G12[mi,mj 6=i] = 0

Now, one can observe that the summation term is identical to that of inclusive probability

described in Eqn (5.14), and that G1[m,m] = p1(M). Thus,

G12[m,m] =
1

1−K
p1(M)In2(M)

G12[mi,mj 6=i] = 0
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where the normalization constant assures that the diagonal sum of G12 is 1.

1−K =
∑
M

p1(M)In2(M)

This results provides a quick method to combine GBBAs with a Bayesian prior. In addition,

the result validates the consistency of the Generalized Dempster’s rule with Dempter’s

original rule.

Dynamic application

When using the shortcut rule, the posterior result is always Bayesian, thus the transition-

rule is still the same

Gt(M,M) =
∑
k

p(M t|mt−1
k )Gt−1(mk,mk)

After Dempster’s rule was applied at a time step t−1, the resulting probability Gt−1(M,M)

can be converted to the prior Gt(M,M) at time t using the transition rule. Desmpter’s

combination rule is then used to update Gt(M,M) with more evidence.
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Chapter 6

Making Use of Continuous
Evidence Through Kernel Density
Estimation

6.1 Introduction

When discussing material in Chapters 4 and 5, it was assumed that evidence was discretized

in order to construct alarms. However, in the case of process monitors, the raw evidence is

often continuous and discretization can result in the loss of valuable information. It is shown

in this chapter that for a single monitor, discretization can be optimized to yield exactly

the same result as continuous methods, but in higher dimensions, optimal discretization

can be a challenge as the optimal regions can take on strange shapes.

Often times, parametric methods are used to estimate continuous distributions. How-

ever, parametric methods make assumptions about distribution shape. In the case of process

monitors, the distributions can take very unusual shapes (for example, under certain sit-

uations, the control performance monitor results from the FCOR algorithm [34] will have

bimodal behaviour with peaks near 0 and 1). The Gaussian Mixture Model approach is

parametric but uses multiple Gaussian distributions to approximate the data distribution.

The challenge for the Gaussian mixture model is that one is required to know beforehand

how many Gaussian distributions are required, and estimation algorithms (such as EM) are

not guaranteed to converge to the globally optimal solution. Furthermore, while Gaussian

mixture distributions model multi-modal distributions quite well, there is still difficulty

with distributions exhibiting non-linear behaviour between variables.

This chapter discusses kernel density estimation, a density estimation technique for con-

tinuous variables that is non-parametric. The main advantage of kernel density estimation

is that it naturally follows the shape of the data and can adequately model the distribu-

tions regardless of the shape taken. Furthermore, the process of obtaining a kernel density

estimate is not iterative, but is obtained in a single step; because of this, kernel density

estimates yield the same consistent result for a single data set. However, much like the dis-

96



crete method, the kernel density method suffers from the curse of dimensionality in which

performance will degrade in higher dimensions. Nevertheless, the performance degrades at

a slower rate for kernel density methods.

This chapter discusses many important aspects of kernel density estimation, including

performance relative to discrete methods, how to obtain the critically important bandwidth

parameter and how to reduce dimensionality.

6.2 Performance: Continuous Methods vs. Discrete Meth-
ods

In previous chapters, discrete evidence was used mainly because of its ease of interpretation

and the fact that any distribution can be discretized to estimate the probability distribution.

Discretization is a non-parametric method in the sense that it does not require knowledge

of the distribtion shape in order to approximate it (however, discrete distributions are cat-

egorical and have parametric properties such as the ability to perform Bayesian parameter

updating). The drawback of discretization however, is that it results in a loss of informa-

tion. By contrast kernel density estimation is a method that is applicable to continuous

distributions and does not suffer as much from loss of information by discretization. It is

also non-parametric, able to fit any type of distribution, which was the one key advantage

to discrete methods. The comparison between discrete and kernel density methods is shown

in Table (6.1)

Table 6.1: Comparison between kernel and discrete methods

Discrete Kernel Density

Computationally light (when
implemented intelligently)

Computationally heavy
(proportional to data)

Suffers from information loss
Does not suffer from
information loss

Performance suffers
exponentially with increased
dimensionality

Performance suffers
exponentially with increased
dimensionality (but much slower
than the discrete case)

The advantages of the kernel density approach over the discrete approach are intuitive as

there is much less loss of information. Mathematically, it has been shown that kernel density

estimation converges to the true probability density function faster than discretization [73].

However, most readers may not be merely concerned about the accuracy of the density

function estimate, but are more concerned about the false diagnosis rate. The material that
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follows in this section will help readers understand the diagnosis performance characteristics

of both methods.

6.2.1 Average false negative diagnosis criterion

In order to assess diagnostic performance, we must first choose a valid performance criterion.

In this chapter, we calculate the average false negative diagnosis rate FN as our performance

criterion.

Our criterion takes note of every instance of a false diagnosis. In this chapter, the event

that mode M diagnosed (or chosen) is denoted as C(M). From this, the events of true and

false diagnosis can be expressed as

• C(M)|M represents a (true) diagnosis of M , when M is the true underlying mode.

• C(M̄)|M represents a (false) diagnosis of M̄ when M is the true underlying mode

(where M̄ represents some mode other than M).

The average false diagnosis rate can be calculated as

FN =

nm∑
k=1

p(C(m̄k)|mk)p(mk)

where p(mk) is the prior probability of mk (a flat prior could be used if the prior probabilities

are not known). When using Bayesian methods (which account for prior probability) the

diagnosis is based on the maximum posterior probability.

C(mk) if mk = arg max
M

p(E|M)p(M)

The posterior probability density function is a likelihood function of E (i.e. p(E|M))

weighted by the prior probability p(M). For certain regions of E, the mode M will be

diagnosed (ideally, this is when E closely resembles data in M). Our notation of this region

of E is given as

E|C(M) = The region of E where M is diagnosed

Because E is continuous, we obtain p(C(M̄)|M) by integration over the regions of E where

M is not diagnosed.

p(C(M̄)|M) =

∫
E|C(M̄)

p(E|M)p(M) de

This formal definition of FN requires integration, which can be quite difficult to perform.

In practice, the value of FN is much easier to estimate using Monte Carlo simulations. This

approach can be performed by taking the following steps:

1. Use training data to construct likelihoods p(E|M).
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2. Obtain validation data in proportion to the prior probabilities (for example, if the

probability of m1 is 40%, then 40% of the data must come from m1).

3. Go through each of the data points Et (taking note of its true mode M t), and evaluate

the posterior probability

p(M |Et) =
p(Et|M)p(M)

p(Et)

4. Find the mode with the maximum posterior probability, and set it as the diagnosed

mode C(M).

5. In this step, we tally the diagnosis results, thus if Et is correctly diagnosed we add

one to the tally of correct results ncor

ncor = ncor + 1 if C(M) = M t

Otherwise, if Et is incorrectly diagnosed, we add one to the tally of incorrect results

ninc

ninc = ninc + 1 if C(M) 6= M t

6. After tallying results for all Et, the false negative rate FN can be obtained using a

simple quotient

FN =
ninc

ninc + ncor

6.2.2 Performance of discrete methods vs continuous methods

When evaluating performance of methods between continuous and discretized evidence, one

will arrive at two conclusions:

1. Continuous methods perform better than discrete methods, unless discrete methods

are optimized in terms of boundary selection, at which point their performance is

equal.

2. In a one-dimensional system, the optimal discretization boundary is easy to obtain,

but in higher dimensions, defining the optimal discretization boundary can be difficult,

if not infeasible.

When discrete methods perform as well as continuous

The discrete method performs as well as the continuous method when the discretization

regions coincide with E|C(M)

E|C(M) = The region of E where M is diagnosed
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As an example of defining optimal cutoff boundaries, let us consider a two-mode system

where each mode is Gaussian, having the distributions given in Figure (6.1(a)). When

continuous methods are used, we diagnose the mode that has the highest probability; thus

if Mode 1 has a higher density function than Mode 2, Mode 1 is diagnosed. From this

example, we can see that the diagnosis region for E|C(m1) is where E < 0 and the region

for E|C(m2) is E ≥ 0. Let us consider a case where E < 0, even if Mode 1 is more probable,

it may not be the true mode because Mode 2 has non-zero probability in this region. In

Figure (6.1), we see the overlapped regions shaded in a darker area, and these regions

represent the false negative rates FN . If this region is small, we have a low probability of

misdiagnosis.
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(b) Misdiagnosis rate of continuous method

Figure 6.1: Grouping approaches for kernel density method

If we consider the discrete case, we must create discretization boundaries to analyse

the probability distribution. The best boundaries for discretization are the ones set by the

continuous distribution, in this example, we have one discrete region where E < 0 and one

discrete region where E ≥ 0. The resulting false negative rate is shown in Figure 6.2(a)

which is identical to the continuous false diagnosis rate.

Now, let us consider the case where we have no knowledge of the continuous distributions.

In this case we set the discretization regions to a new arbitrary location, where one region

occurs at E < 0.5 and another region occurs at E ≥ 0.5 as shown in Figure 6.2(b). Values

of E to the left of this boundary will diagnose m1, and values of E to the right of this

boundary will diagnose m2. When the boundary is shifted to this location, we can see that

the shaded region representing FN has somewhat grown. This is because when shifting this

boundary from 0 to 0.5, the probability of falsely diagnosing Mode 2 (the right part of the

dark region) decreased, but at a slower rate than the probability of falsely diagnosing Mode

1 (the left part of the dark region) grew.

From this example we can see that the optimal discretization region is given by the

continuous distributions, and that shifting this region in any way will result in an increase

in false diagnosis rates. Discrete methods can perform as well as continuous methods, but
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(b) Misdiagnosis rate of suboptimal discrete

Figure 6.2: Discrete method performance

optimal discretization requires knowledge of the continuous distributions, which begs the

question as to why one would discretize the evidence in the first place. A short answer

to this question is that the motivation for discretization is not for performance but for

computational simplicity.

In addition to comparing performance between discrete and continuous cases, this exam-

ple illustrates a useful procedure for optimal discretization; that is, to analyse the continuous

distributions (either defined parametrically or through kernel density estimation), and note

the regions where the continuous density for a target mode M is highest. This approach

however, is only straightforward in one-dimensional cases because discretization boundaries

can be more complex in higher dimensions.

The feasibility of optimal discrete methods in higher dimensions

In cases of dependent evidence E in dimensions two or higher, optimal discretization be-

comes a much more complicated endeavour than in our previous example, as discretization

regions become more difficult to define (as they can be non-linear).

As an example on the difficulty of discretization, consider the two-dimensional three-

mode system in Figure 6.3. In this case, we have three Gaussian distributions, and two of

them are quite correlated (this type of behaviour can occur quite easily in practice).

The challenge with this system is that it is easiest to define discretization boundaries

one at a time for each piece of evidence (this is called the element-wise approach). In this

way, the discretization boundaries will be linear and follow the direction of the axes as seen

in Figure 6.4(a). However, as one can see, this discretization scheme is quite suboptimal.

When boundaries are drawn in this manner, region 1 will diagnose Mode 1, regions 2 and

4 will diagnose Mode 2, and region 3 will diagnose Mode 3. This scheme will yield a

false negative rate of FN ≈ 0.1233. However, one can see that in this figure, the modes

are actually quite well separated (the kernel density method has a false negative rate of
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Figure 6.3: Two-dimensional system with dependent evidence

FN = 0.0020).

If one will allow a more complex method to define the boundary, one can use visual

inspection to draw linear boundaries as done in Figure 6.4(b). In such a case, the false

diagnosis rate will be much closer to optimal FN = 0.0025. However, optimally defining

linear boundaries in higher dimensions becomes a very difficult task, especially when data

takes on non-linear shapes.
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Figure 6.4: Two-dimensional discretization schemes

6.3 Kernel Density Estimation

6.3.1 From histograms to kernel density estimates

As previously mentioned, kernel density estimation is a non-parametric method used to

estimate continuous probability density functions. The process of arriving at a kernel density

estimate from discrete frequency data is an intuitive one. First, let us consider a histogram
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visualization of a distribution in Figure 6.5 which is synonymous to discretization. In this

case, we divide the x axis into discrete segments, and we count the frequency of data points

residing in each bin.
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Figure 6.5: Histogram of distribution

In the histogram, we divide x into discrete segments, but what if we allowed the segments

to be centred around each data point? This would mean that centred around each data

point, we would place a rectangular function (with area 1/(n × bin width), so that the

distribution integrates to unity). After summing these rectangular functions, the end result

(the centred histogram) will be slightly smoother than the histogram as seen in Figure 6.6.
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Figure 6.6: Centered histogram of distribution

The centred histogram is actually a kernel density estimation. The kernel in his case, is

a block, with area 1/(n×width). Instead of using this kernel, we could choose a smoother
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kernel, for example, a Gaussian density function divided by n. This would yield the result

in Figure 6.7.
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Figure 6.7: Gaussian kernel density estimate

6.3.2 Defining a kernel density estimate

From the example above, a kernel density estimate takes a set of sampled data points and

places a kernel function, centred around each data point. As shown in Figure 6.8, the kernel

functions (denoted by the blue dotted line), centred around five data points (denoted by

the black dots on the x axis) will sum up to yield a smooth function (denoted by the solid

black curve).
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Figure 6.8: Kernels summing to a kernel density estimate
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Mathematically, the kernel density estimation procedure can be defined as

f(x) ≈ 1

n

n∑
i=1

1

|H|1/2
K
(
H1/2(x−Di)

)
(6.1)

where D denotes a multivariate data set with n entries, K(x) represents the kernel function,

and H represents the bandwidth, which will be discussed in more detail later on. The kernel

function itself can take on many forms as long as it is non-negative and the integral over

the entire domain is equal to one. ∫ ∞
−∞

K(x) dx = 1

The two most popular kernels are

1. The Epanechnikov kernel (due to its asymptotic efficiency)

2. The standard multivariate normal kernel (due to its excellent differentiation properties

and its ease of application in higher dimensions)

In our applications, we will use the standard multivariate normal kernel.

K(z) =
1√

(2π)d
exp(zT z)

where d is the dimensionality of the data. By using this kernel, the kernel density estimate

takes the following form

f(x) ≈ 1

n

n∑
i=1

1√
(2π)d|H|

exp
(
[x−Di]

TH−1[x−Di]
)

(6.2)

This estimate is non-parametric, but its smoothness hinges on the bandwidth parameter

H. In the same way that width of bins in a histogram affect its smoothness, the kernel

bandwidth H will affect the smoothness of the kernel density estimate.

When performing Bayesian diagnosis, the kernel density estimate is used to express the

likelihood term

p(E|M) = f(E|M)

p(M |e) =
p(E|M)p(M)∑
M p(E|M)p(M)

6.3.3 Bandwidth selection criterion

Selecting the bandwidth is not a trivial problem. The goal of bandwidth selection is to

select a bandwidth that minimizes the asymptotic mean integrated square error (AMISE).

One might recall the popular mean squared error (MSE) criterion

MSE = E
[
(f̂(x)− f(x))2

]
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where in this case f̂(x) is the kernel density estimate and f(x) is the real density estimate.

The MISE integrates this error over all values of x

MISE =

∫
E
[
(f̂(x)− f(x))2

]
dx

The MISE is generally intractable hence, the asymptotic approximation is used instead. In

the univariate case, the AMISE is given by [73] as

AMISE =
1

4
h4R(f ′′)µ2(K)2 + (nh)−1R(K) (6.3)

where n is the number of data points and h is the bandwidth (which, is a scalar for the

univariate case), and where

R(K) ≡
∫
K2(z) dz

µ2(K) ≡
∫
z2K(z) dz

[73] also defined a multivariate version of the AMISE criterion which is given as

AMISE
[
f̂(x;h)

]
=

1

4
µ2(K)2

[
vechT (H)

]
Ψ [vech(H)] +

R(K)

n
√
|H|

(6.4)

where

µ2(K) =

∫
Rd

zi
2K(z) dz ∀i

R(K) =

∫
Rd

K(z)2 dz <∞

Ψ =

∫
Rd

vech(M)vechT (M) dz

M = 2D2[f(z)]− dg
(
D2[f(z)]

)
In the multivariate AMISE criterion expression, vech(H) takes the lower diagonal of H

and strings it out column-wise into a vector. In addition, D2[f(z)] is the Hessian of f(z),

and the operator dg(A) sets all off-diagonal elements of A to zero (the equivalent of the

diag(diag(A)) command in MATLAB).

6.3.4 Bandwidth selection techniques

The bandwidth selection criterion makes the assumption that we know the real density

function f(x). Obviously, if we knew the real density function f(x), we would not need a

kernel density estimate. The main idea of using the AMISE criterion however, is to select

an optimal bandwidth for a distribution we know; this bandwidth will be close to optimal

for similar distributions. In practice, the concern with selecting appropriate bandwidths

has more to do with the amount of data and its general spread than it has to do with the

specifics of the distribution.
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Optimal bandwidths for multivariate normal distributions

The most popular method to select bandwidths is to use the optimal kernel density estimate

for multivariate normal distributions. This bandwidth is defined as

HN =

(
4

n(d+ 2)

) 2
d+4

Σ

where Σ is the covariance matrix of the target multivariate normal distribution. Now in

practice Σ is not available to us, but the sample covariance matrix S can be easily obtained,

resulting in the following bandwidth selection

HN =

(
4

n(d+ 2)

) 2
d+4

S

If the relationships between the variables is linear, it is best to use the full covariance matrix

estimate S. However, if the variables exhibit non-linear relationships, one may wish to set

the off-diagonal elements of S to 0 so that the diagonal elements are all that remain.

Adaptive bandwidth estimation techniques

One problem with choosing a single bandwidth is that the distribution tends to be over-

smoothed near the peaks of the distribution, but tends to be under-smoothed near the tails.

This is analogous to the problem of histogram bins being well-estimated in regions of high

probability, but very sparse and disjoint in regions of low probability.

In order to improve performance in these extreme cases, the bandwidth is modified

so that the kernel function’s height is proportional to the probability at that point. The

reasoning behind this is that if the kernel’s hight is proportional to the point’s probability,

then each kernel is expected to have the similar number of data points within its domain.

The bandwidth height is modified by setting a localized scalar λi in front of every

individual bandwidth

Hi = λ
−2/p
i HN (6.5)

The scaling parameter λi can be calculated using a “pilot” density estimate f̂pHN
(x), which

is obtained using the optimal normal bandwidth HN .

λi =

(
f̂pHN

(D[i])

g

)α

where α is a user-defined parameter and g is the geometric mean of f̂pH(D[i]), such that

log(g) =
1

n

∑
i

log
[
f̂pH(D[i])

]
If one desires the kernel height to be proportional to the probability at that point, the user

defined parameter α should be set to 1; however [74] found that α = 1 was too aggressive
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for univariate cases and suggested that for univariate cases one should set α = 0.5 (which

is a half-way point between the aggressively adaptive α = 1 and the non-adaptive α = 0).

[63] also commented on this phenomenon after rigorous theoretical analysis, suggesting that

the α = 0.5 should also work well in higher dimensions. However, [63] also mentioned that

adaptive kernel density estimation is useful for smaller sample sizes, but converges to the

true density slower as the sample size increases. Thus, for larger sample sizes, smaller values

of α should be used.

One can see that when setting Hi = λ
−2/p
i HN , it results in a kernel density estimate

given as

f̂(x) =
1

n

n∑
i=1

1

|Hi|1/2
K
(
H

1/2
i (x−Di)

)
=

1

n

n∑
i=1

1

|λ−2/p
i HN |1/2

K
(
H

1/2
i (x−Di)

)
=

1

n

n∑
i=1

λi

|HN |1/2
K
(
H

1/2
i (x−Di)

)
so that the height of each kernel is modified by λi.

6.4 Dimension Reduction

One point of difficulty for kernel density estimation is the problem of dimensionality. Much

like its discrete counterpart, the difficulty of estimating kernel densities increases exponen-

tially with respect to its dimension; this is referred to as the curse of dimensionality. The

rate at which the difficulty increases is of the order O
[
n−4/(d+4)

]
.

As an example, let us consider a one-dimensional system. In order to adequately estimate

a kernel density, around 40 data points will be needed; the amount of required data points

to achieve the same quality of estimation is shown in Table 6.2. As one might observe, for

every additional dimension, the amount of data required is increased by a factor of 401/5.

Table 6.2: Curse of dimensionality

Dimension Required Data Points

1 40

2 84

3 175

4 366

5 765

6 1600

Because of this problem, kernel density applications for large systems must always con-

sider a dimension reduction scheme. In this chapter, we will consider two main schemes,
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independence assumptions and independent component analysis (ICA).

6.4.1 Independence assumptions

One method to reduce dimensionality is to introduce independence assumptions. For ex-

ample, let us consider a six-dimensional system E = [E1, E2, E3, E4, E5, E6]. If, for mode

M , the first three pieces of evidence can be considered independent of the second three,

[E1, E2, E3] ⊥ [E4, E5, E6] then we can calculate the joint probability as a product

p(E|M) = p(E1, E2, E3|M)p(E4, E5, E6|M) if [E1, E2, E3]|M ⊥ [E4, E5, E6]|M

Even though the joint probability is six-dimensional, we can break the problem down into

two kernel density estimates: p(E1, E2, E3|M) and p(E4, E5, E6|M) which are both three-

dimensional distributions. In this way, a six-dimensional problem was reduced to a three-

dimensional one.

If one suspects some evidence to be independent, there is a test that can be used to

verify whether this assumption can be made. The mutual information criterion (MIC) can

be used to check for independence.

MIC(E1, E2) =

∫
E1

∫
E2

p(E1, E2|M) log

(
p(E1, E2|M)

p(E1|M)p(E2|M)

)
dE1 dE2

The MIC can be calculated numerically by using kernel density estimates for p(E1, E2|M),

p(E1|M), and p(E2|M), and then numerically integrating the result over a suitable range

of E1, E2.

It may not always be possible to break down the evidence into purely independent

groups. However, a much more lenient conditional dependence assumption can also result

in dimension reduction. Consider a case where all evidence E = [E1, E2, E3, E4] is caused

by a single underlying factor, which is best observed by E1. If this is the case, then it is

reasonable to break down the dimensions by conditioning with respect to E1

p(E1, E2, E3, E4|M) = p(E1|M)p(E2|E1,M)p(E3|E1,M)p(E4|E1,M)

= p(E1|M)
p(E1, E2|M)

p(E1|M)

p(E1, E3|M)

p(E1|M)

p(E1, E4|M)

p(E1|M)

By using conditional probability, highest dimension of this problem has been reduced from

four to two. A variation of the MIC (the Conditional MIC or CMIC) can be used to test

for conditional independence

CMIC(E1, E2) =

∫
E1

∫
E2

p(E1, E2|Er,m) log

(
p(E1, E2|Er,M)

p(E1|Er,M)p(E2|Er,M)

)
dE1 dE2 dEr

=

∫
E1

∫
E2

p(E1, E2, Er|m)

p(Er|M)
log

(
p(E1, E2, Er|M)p(Er|M)

p(E1|Er,M)p(E2|Er,M)

)
dE1 dE2 dEr

where Er is the reference evidence.
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6.4.2 Principal and independent component analysis

In addition to making independence assumptions, one can also attempt to explain the data

with respect to a set of independent components. Independent component analysis (ICA)

is a generalization of principal component analysis (PCA) and is a useful tool for dimension

reduction. Both techniques assume a model where the data observations y are assumed to

be linear combinations of latent variables f

y − µ = At

The difference between PCA and ICA is that in PCA, the independent latent variables

t are assumed to be Gaussian, and in ICA, they can follow any distribution (hence, the

generalization). Both PCA and ICA aim to define the loading matrix A. The procedure

for PCA is standard and will not be discussed. For ICA, a variety of algorithms exist, some

of which have been discussed in [75]; the same author provided a MATLAB package in [76]

for an algorithm that is both computationally efficient and reasonably accurate.

6.5 Missing Values

As in the discrete evidence case, it is possible for some values to be missing from the data.

For the discrete case, Bayesian marginalization and the EM algorithm are typically the most

popular solutions. For missing values in kernel density estimates, kernel density regression

for the missing values is an effective and popular solution.

6.5.1 Kernel density regression

The zeroth-order (Nadaraya-Watson) method

Kernel density regression was first proposed by [77], shortly after the widely cited paper

on kernel density estimation [61]. It can be derived by first noting the following regression

function

ŷ = g(x) =

∫
yf(y, x)dy

f(x)

We let the joint probability estimate for f(y, x) be

f̂(y, x) =
1

n|Hx|1/2|Hy|1/2
n∑
i=1

K
(
H−1/2
x [Xi − x]

)
K
(
H−1/2
y [Yi − y]

)
f̂(x) =

1

n|Hx|1/2
n∑
i=1

K
(
H−1/2
x [Xi − x]

)
where K(x) is a kernel function (such as the standard multivariate normal distribution).

The kernel functions are set to be independent between x and y to facilitate the integration
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over y (independent kernels do not suggest that x and y are independent, but that the

bandwidth matrix H is simply diagonal).∫
yf̂(y, x)dy =

∫
y

1

n|Hx|1/2|Hy|1/2
n∑
i=1

K
(
H−1/2
x [Xi − x]

)
K
(
H−1/2
y [Yi − y]

)
dy

=
1

n|Hx|1/2
n∑
i=1

K
(
H−1/2
x [Xi − x]

)∫ y

|Hy|1/2
K
(
H−1/2
y [Yi − y]

)
dy

=
1

n|Hx|1/2
n∑
i=1

K
(
H−1/2
x [Xi − x]

)
Yi

This results in the following estimator for y

g(x) =

1
n|Hx|1/2

∑n
i=1K

(
H
−1/2
x [Xi − x]

)
Yi

1
n|Hx|1/2

∑n
i=1K

(
H
−1/2
x [Xi − x]

)
=

∑n
i=1K

(
H
−1/2
x [Xi − x]

)
Yi∑n

i=1K
(
H
−1/2
x [Xi − x]

) (6.6)

This result amounts to a weighted average of historical Y values based on the proximity of

the corresponding X values to the query value x; hence, it is a locally weighted average.

The first-order method

The Nadaraya-Watson method is a fairly popular method of non-parametric (or kernel

density) regression. However, it has been shown to be biased toward flat functions of y

with respect to x. In order to reduce this bias, the first-order method was proposed. Here,

instead of using a locally-weighted average, we wish to use a locally-weighted linear model

yi = α+ βT (Xi − x) + εi

We can arrive to the ordinary least squares solution by setting

Zi =

[
1

Xi − x

]
and then performing the following operation to obtain a linear model[

α̂(x)

β̂(x)

]
=

[
n∑
i=1

ZiZ
T
i

]−1 [ n∑
i=1

ZiYi

]

Due to the way this problem was posed (being centered around x when we defined Z), α̂(x)

serves as our estimate of y.

ŷ = ĝ(x) = α̂(x)
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However, for the kernel density variation, we use the kernel as a weighting function to create

a locally weighted linear solution[
ĝ(x)

β̂(x)

]
=

[
n∑
i=1

K
(
H−1/2
x [Xi − x]

)
ZiZ

T
i

]−1 [ n∑
i=1

K
(
H−1/2
x [Xi − x]

)
ZiYi

]
(6.7)

The locally weighted linear solution does not suffer as much from the bias toward flat

regression estimates. Higher-order solutions also exist, but their improvement over the

first-order method tends to be quite minimal.

6.5.2 Applying kernel density regression for a solution

Let us consider a data set X wherein some data entries are incomplete

X =

[
Xc

Xic

]
Within each incomplete data entry, there are values that are present, denoted as z, and

values that are missing denoted as y. For each incomplete data entry, Xic[i], we use kernel

density regression ĝ(z|Xc) on z (based on the complete data set Xc) to estimate the missing

values y.

ŷ = ĝ(z|Xc)

X̂ic[i] = [z, ŷ]

We now have a complete data estimate

X̂c =

[
Xc

X̂ic

]
This complete data estimate can either be used as the kernel density estimate, or we could

perform another iteration of the estimation procedure.

ŷ = ĝ
(
z|
{
X̂c \ X̂ic[i]

})
X̂ic[i] = [z, ŷ]

where
{
X̂c) \ X̂ic[i]

}
denotes as set difference (or simply that we remove X̂ic[i] from the

dataset X̂c. This iterative scheme converges fairly quickly; it seldom requires more than ten

iterations. For most intents and purposes, a single iteration will yield an adequate result.

6.6 Dynamic Evidence

Previously, it was shown that the likelihood for autodependent discrete evidence can be

obtained as

p(Et|Et−1,mk) =
n(Et, Et−1,mk)

n(Et−1,mk)
(6.8)
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where n(Et, Et−1,mk) is the number of times that Et, Et−1 and mk are jointly observed in

history while n(Et−1,mk) is the number of times that n(Et−1) and mk) are jointly observed

in the history. This solution was modified in the previous chapters to include prior samples

in order to prevent possible division by zero.

A very similar solution can be made by using the kernel density method to estimate the

likelihood. In order to condition on both Et and Et−1 the rule of conditioning is applied

p(Y |X) =
p(X ∩ Y )

p(X)

By applying the rule of conditioning to the kernel density estimation solution is given as

p(Et|Et−1,M t) =
p(Et, Et−1|M t)

p(Et−1|M t)
(6.9)

This result requires two kernel density estimates to be evaluated:

1. p(Et, Et−1|M t) for the likelihood of joint present and past evidence (given the mode

M t)

2. p(Et−1|M) for the likelihood of past evidence (given the mode M t)

The resulting ratio of likelihoods can be used in the same manner as a likelihood; for

example, when used in Bayesian diagnosis, the dynamic solution is applied as follows:

p(Et|Et−1,M t) =
p(Et, Et−1|M t)

p(Et−1|M t)

p(M t|Et, Et−1) =
p(Et|Et−1,M t)p(M t)∑
M p(Et|Et−1,M t)p(M t)

Dimensionality reduction

The use of dynamic evidence however, has the problem of adding dimensionality to the data.

Thus, when applying a dynamic evidence solution, dimensionality reduction techniques

(such as ICA and dependence analysis) are even more vital to perform. Because of the curse

of dimensionality, it is desirable to test whether it is necessary to include past evidence in

the likelihood. Again, this test can be performed using the MIC, but with a focus on past

and present evidence

MIC(Etk, E
t−1
k ) =

∫
Et

k

∫
Et−1

k

p(Etk, E
t−1
k |m) log

(
p(Etk, E

t−1
k |M)

p(Etk|M)p(Et−1
k |M)

)
dEtk dE

t−1
k

If MIC(Etk, E
t−1
k ) is a small number (generally less than 0.2), then we do not need to

include past evidence for this particular evidence source Ek.
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Chapter 7

Accounting for Sparse Modes
Within the Data

7.1 Introduction

In this chapter, we consider how to address the problem of diagnosing a system when

modes are missing entirely. Recall that operating modes must include information of all

system components; however, as the number of components increases, the number of possible

operating modes will tend to grow exponentially. Because of this, modes that are missing

entirely is a very pertinent issue to systems having more than a small number of components

(for example, an eight component system will have at least 28 = 256 modes).

This chapter discusses two approaches one can take to deal with the problem of missing

operating modes.

1. The first approach is to focus on diagnosing the state of each component; this approach

is fairly easy to perform in practice, as it is a simple re-structuring of the original

diagnosis problem.

2. The second approach is to use process modelling and bootstrapping to simulate the

missing faulty scenarios; this approach is difficult to implement in practise as it re-

quires sufficient process knowledge to simulate faulty behaviour. Furthermore, if the

system is large, a very large number of simulations will be required in order to cover

every possible mode.

The two techniques are independent and do not interfere with each other, consequently,

applying both techniques simultaneously requires no modification of either technique.

7.2 Algorithms

This chapter discusses two separate algorithms: the first algorithm focuses on diagnosis in

component space the second algorithm focuses on generating data for unencountered modes.

114



7.2.1 Algorithm for component diagnosis

Overview

Fault diagnosis focuses on collecting data to estimate the distributions p(E|M); however, if

there is a large number of possible modes in M , this will result in the historical data having

to be divided into a large number of modes. Some modes will be well represented in their

data, but many of them will have little data or no data at all. By contrast, if we evaluate

p(E|C), where C represents the state of the component of interest, there should be data

from each state of the component.

Consider a basic control loop in Figure 7.1. Here, the components of interest are the con-

trol valve, the actuator, the sensor and the process (which could have multiple components

itself).

Figure 7.1: Overall Algorithm

The overall aim of component diagnosis is to diagnose the state of each component, and

then diagnose the mode. The probability of the state for a component i can be calculated

according to Bayes’ rule.

p(Ci) =
p(E|Ci)p(Ci)∑
Ci p(E|Ci)p(Ci)

If this system had three states for each component, the total number of modes (and required

distributions) would be 34 = 81. By contrast, considering each component one at a time

would require the estimation of 4 × 3 = 12 distributions, which is a dramatic reduction in

terms of the diagnosis space. While it may be a challenge to find data that would correspond

to 81 modes (and hence 81 different conditions), it is much easier to find data from which

each component state is realized so that only 12 conditions need to be realized. This result

leads us into the main advantages of the component diagnosis technique:

1. Reduction in problem complexity for modes: The primary reason we consider

the component diagnosis technique is that it reduces the number of modes we have to

diagnose. Using the mode-based diagnosis approach, the complexity of the problem

grows exponentially with each new component. By contrast, using the component-

based diagnosis approach, the complexity of the problem grows linearly with each

new component. An eight component system with two modes each will have 28 = 256

modes to diagnose under the mode-based approach, but the same system will have 2×
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8 = 16 modes to diagnose under the component-based approach. Since the component-

based approach has one sixteenth as many modes as the mode-based approach, there

is a much smaller probability that modes will be missing if the component-based

approach is applied.

2. Reduction in problem complexity for evidence: Each piece of evidence tends

to be sensitive toward a few components. Because the mode-based approach con-

siders all components, all available evidence should be used; this can lead to fairly

high-dimensional distributions. However, if we adopt the component-based approach,

we only need to consider the evidence that is sensitive toward that component; the

rest can be discarded. This allows us to effectively reduce the dimensionality of the

evidence; recall that in Chapter 6, evidence dimension space was a problem for kernel

density estimation, and even more for discrete methods. Using the component-based

approach allows us to reduce evidence dimensionality in a manner that is easier than

testing and assuming independence (which was the solution suggested in Chapter 6).

While the component based approach has its merits, it also has one key drawback. The

component based approach assumes that the component states are independent of each

other, which is not a true assumption if for example, a problem in once component tends

to cause problems in another component. In such cases the mode based approach will

outperform the component based approach if sufficient data is available for each mode.

Selecting monitors for components

When diagnosing between modes, any available sensor or monitor could be helpful as long as

it can help distinguish at least one mode from another. Similarly, when diagnosing between

components, one chooses a set of sensors or monitors that are sensitive to changes between

any states in that component. Because modes include the states of all components, the

number of sensors needed to distinguish a single component will tend to be fewer than the

monitors needed to distinguish between modes.

In component diagnosis, it is important only to select monitors and sensors that are

sensitive to changes in that particular component. Other sensors will be sensitive to other

components, and including them may result in misleading information especially if not every

mode is realized in the data. The use of fewer sensors and monitors for each component

has the added advantage of dimension reduction. In most cases, using the MIC criterion

to reduce dimensionality is unnecessary when component based diagnosis is used. One can

use the false negative criterion to determine how sensitive a particular sensor or monitor is

to a mode, which can be calculated by following a series of steps

1. Select a component of interest. For example, let us consider a four-component system

[C1, C2, C3, C4], where the first component C1 is of interest.
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2. Search for historical data for situations where only the component of interest changes.

One would select modes that have different values in C1 but the values of C2, C3, C4

remain constant. It is best to select a set of constant values C2, C3, C4 where abundant

data is present for all values of C1. Note that because we are only testing one evidence

source at a time, the dimension is small making data requirements easier to meet (100

data points is a good sample size, but 40 will suffice). This means we can be quite

flexible with data collection for this purpose.

3. Group the data according to the different states in C1; data from each state value in

C1 will be used to evaluate the likelihood p(Ei|C,D) (where D is the historical data).

4. Select a monitor/sensor of interest Ei and obtain corresponding data Di for that

instrument. Evaluate the set of historical data likelihoods p(Di|c1
k, D) based on the

monitor/sensor of interest.

5. Use the likelihoods from one state p(Di|c1
k) to diagnose the state based on the maxi-

mum likelihood (Ĉ1 is the diagnosed state with the maximum likelihood).

6. Determine how frequently the data from state c1
k is diagnosed as some other state

n[Ĉ1 6= c1
k|c1

k]Ei when Ei is used to make the decision. This is referred to as a false

negative frequency.

7. Obtain the false negative probability for each component state k by normalizing the

false negative frequency

P [Ĉ1 6= c1
k|c1

k]Ei =
n[Ĉ1 6= c1

k|c1
k]

n[c1
k]Ei

8. The false negative rate is obtained as

FNEi =
1

n− 1

n∑
k=1

P [Ĉ1 6= c1
k|c1

k]Ei (7.1)

where n is the number of states component Ci can take. FNEi = 1 indicates that

Ei is perfectly uninformative, and where FNEi = 0 indicates that Ei is a perfect

classifier.

9. Based on FNEi decide whether or not Ei should be included to estimate the state of

the component of interest C1. Generally, it is best to select Ei when FNEi is low (for

example, less than 0.5).

10. Repeat steps 4-9 for other monitors/sensors

11. Repeat steps 1-10 for other components of interest
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Constructing and evaluating probabilities

After the included evidence has been selected for each component, we can construct their

respective likelihood functions (either by discrete means or kernel density estimation). The

simplest manner to construct the likelihood function p(E|C) is to estimate the function

based on data from all modes where C has the desired state. However, modes that occur

frequently will be given a lot of weight in this function. It is often better to select the most

likely mode where the component state C(k) is true (denoted as M ⊃ C) so that

p(E|C) = max
M⊃C

p(E|M)

Note that if all of the evidence E is selected for every component, then the component

diagnosis results will be the same as the mode diagnosis results if the component states are

independent. The improvement of the component diagnosis result stems from the fact that

only evidence sensitive to the component is used to diagnose the component’s state. When

this is done, it is possible to evaluate any of the possible modes so long as all states for each

component are present in the data.

The posterior probability of the component state is obtained by using Bayes’ Theorem

p(C|E) =
p(E|C)p(C)∑
k p(E|ck)p(ck)

(7.2)

where

p(C) =
∑
M⊃C

p(M)

One can diagnose the most probable state as the true component. Once all the components

C1, C2, . . . Cp are diagnosed (as Ĉ1, Ĉ2, . . . , Ĉp ) we can diagnose the mode that contains

the appropriate component states.

m̂ = [Ĉ1, Ĉ2, . . . , Ĉp]

By assuming all component states are independent, it is also possible to evaluate the pos-

terior probability of the modes

p(M |E) =
∏
k

p(Ck ⊂M |E) (7.3)

where Ck ⊂ m indicates that Ck is contained in the mode M , or equivalently, Ck takes the

value specified by that component of M . Obviously, the most probable mode is the one

that contains all diagnosed component states.

7.2.2 Algorithm for bootstrapping new modes

Bootstrapping for new modes is done in a manner similar to the technique presented in

Qi and Huang [48]; however, in this chapter, the underlying fault parameters are varied in

order to simulate new scenarios. Considering a control loop with various components, the

algorithm can be done by taking the following steps which are briefly described below:
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1. Create a model structure for each system component which includes all relevant fault

parameters and unknown parameters if any.

2. If there are unknown parameters obtain data for model identification (for the most

reliable results, open-loop testing) and use gray-box modelling to identify unknown

parameters.

3. Obtain residual error information by subtracting predicted output from observed out-

put.

4. Whiten residual errors by identifying an AR model and applying its inverse to the

residual errors.

5. Estimate a kernel density function from the whitened residual errors.

6. Simulate new process data using the identified model by manipulating the fault pa-

rameters. Disturbances can be generated by sampling from the kernel density function

(smoothed bootstrapping) and applying the AR model to the sampled estimates.

7. Apply monitoring algorithms to both simulated and real process data. Monitor results

are used as reference data for Bayesian diagnosis.

Step 1: Create model structures

This step is highly process dependent. If there are multiple components to the system

(such as the case with a control loop), each of the components has to be modelled. The

model structure should be given such that fault-related parameters can be easily seen and

manipulated. An example of this is given later on with respect to the hybrid tank system.

Because the model in question must make use of parameters that have physical meaning, the

model structure must be derived using a white box or gray box approach, where white box

models are based on first principles and have no unknown parameters, and where gray box

models are constructed based on first principles, but can have simplifications and unknown

parameters (to be estimated using data).

Step 2: Use data to identify gray box models

If one cannot construct a white box model (which is usually the case), one can use data to

estimate unknown parameters in a gray box model. Consider a dynamic model f(x, u,Θ)

with states x, inputs u and unknown parameters Θ.

dx

dt
= f(x, u,Θ) + εx

This model is subject to an observation function h(x) to yield the observed values y

y = h(x) + εy
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where the observation function h(x) is assumed to be known. The predicted values of y can

be obtained by using an ordinary differential equation solver (such as the RK45 method) to

solve for x given u, and then predict y using the observation function h(x). The estimated

value of Θ can then be obtained by minimizing an error expression

x̂(t) = RK45 [f(x(t−1), u(t−1),Θ)]

Θ̂ = arg min
Θ

∑
t

[h(x̂(t))− y(t)]T R−1 [h(x̂(t))− y(t)]

where R is a positive-definite (often diagonal) weighing matrix that represents the noise

variance of each instrument. The purpose of R is to give an appropriate weight to each

element of the observation vector y(t). If y(t) has only one element, R = 1 is sufficient,

and if all elements of y(t) take the same units, R = I will also be sufficient. Otherwise, one

might want to take the variance of each element in y in order to obtain a suitable metric

for scaling.

Step 3: Obtain residual errors

Residual error calculations require estimates of the hidden state, which can be obtained us-

ing Kalman filtering. In general, the state models are nonlinear, thus an ordinary Kalman

filter will not suffice. It is recommended that more advanced techniques such as the Ex-

tended Kalman filter (EKF), the Unscented Kalman filter (UKF), the Ensemble Kalman

Filter (EnKF), or the Particle Filter (PF) are used. Due to a combination of easy computa-

tion and effectiveness, the Unscented Kalman Filter (UKF) a popular choice for nonlinear

state estimation problems.

The UKF estimates the state given a system that has the following conditions:

dx

dt
= f(x, u,Θ) + εx

y = h(x) + εy

εx ∼ N(0, Q)

εy ∼ N(0, R)

where εx ∼ N(0, Q) indicates that εx is Gaussian white noise with mean zero and covariance

Q (similar conditions are assumed for εy ∼ N(0, Q)). If one already has suitable values of

Q and R, the residual errors of x and y can be obtained via the unscented Kalman filter.

The residual errors on x (denoted as ε̂x) can be obtained using

x(t) = UKF [f(x(t−1), u(t−1)), p(t−1), h(x), y(t), Q,R]

x̂ = RK45 [f(x(t−1), u(t−1),Θ)]

ε̂x = x− x̂

where x is the more reliable estimate (as it uses observations y), and x̂ is the predicted

value without considering noise (a less reliable estimate which does not use y).
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Meanwhile the residual errors on y (denoted as ε̂y) can be obtained using

ŷ = h(x(t))

ε̂y = y − ŷ

The values for Q and R are often used as tuning parameters which express the reliability

of the model and observations respectively. Large values in Q assume the model is less

reliable, but large values in R assume that the observations are unreliable. It is also possible

to estimate Q and R from data using a technique that is similar to the EM algorithm. The

technique makes use of the following steps:

1. Start with initial values for Q and R. If the system changes slowly and the model is

fairly accurate, a good initial estimate of R can be obtained using

R0 =
1

2(n− 1)
diag

[
n∑
i=2

(y(i)− y(i− 1))2

]

where diag(x) is the same as the MATLAB command diag(x) which takes a vector

x and constructs a diagonal matrix out of it. An initial value of Q can be obtained by

analysing the R0 and the observation function h, generally, it is best to choose large

values for Q initially, so that the observations carry more weight than the model.

2. Use Kalman filtering to estimate states given values chosen for Q and R

f(x) = f(x, u(t−1),Θ)

x(t) = UKF(f(x), x(t−1), p(t−1), h(x), y(t), Q0, R0)

where u(t−1) is assumed to be a constant over the given time interval.

3. Estimate a new value for Q using

x̂ = RK45 [f(x(t−1), u(t−1),Θ)]

Q1 =
1

n

n∑
i=1

[x(i)− x̂(i)]× [x(i)− x̂(i)]T

4. Estimate a new value for R using

ŷ = h(x̂)

R1 =
1

n
diag

[
n∑
i=1

(y(i)− ŷ(i))2

]
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5. Repeat steps 2-4 until the log likelihood of the data L converges

L = Lx + Ly

Lx = −n
2

log
[
(2π)dx |Q|

]
− n

2

∑
i

[x(i)− x̂(i)]TQ−1[x(i)− x̂(i)]

Ly = −n
2

log
[
(2π)dy |R|

]
− n

2

∑
i

[y(i)− ŷ(i)]TR−1[y(i)− ŷ(i)]

where dx is the dimension of x, and dy is the dimension of y.

After obtaining Q and R, one can further tune these values to suit their needs. Scaling for

smaller values of Q will result in smoother state estimates but will be less responsive to

observations; conversely scaling for larger values of Q result in rougher state estimates but

will be more responsive to observations.

Step 4: Whitening residual errors

Bootstrapping (and its smoothed counterpart) requires that the residual errors be indepen-

dent and identically distributed (IID). Often times, the residual errors are autocorrelated

but can be whitened by applying an auto-regressive (AR) model. This is done by first

identifying and AR model for both ε̂x and ε̂y

ε̂x(t) +A1ε̂x(t−1) + . . .+Anε̂x(t−n) = ε̂wx (t)

ε̂x =
1

A(z)
ε̂wx

The whitened residuals are obtained by inverting the model so that

ε̂wx = A(z)ε̂x

Note that the same whitening procedure should be performed on ε̂y.

Step 5: Kernel density estimation

Recall that the kernel density estimate can be calculated as

f(x) ≈ 1

n

n∑
i=1

1√
(2π)d|Hi|

exp
(
[x−Di]

TH−1
i [x−Di]

)
where D represents the data points (in this case D = ε̂wx , d is the dimension of x, and Hi

is the bandwidth at xi. Also recall that if one is using a uniform bandwidth, Hi = H can

be calculated using the normal bandwidth reference rule

HN =

(
4

n(d+ 2)

) 2
d+4

S (7.4)
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where S is the sample covariance matrix of the data D = ε̂wx or D = ε̂wy . The kernel density

estimate consists of data and bandwidth matrices corresponding to the data points. Note

that the adaptive bandwidth technique mentioned in Chapter 6 can also be used.

For this step, since the data D = ε̂wx and D = ε̂wy are already obtained, one simply needs

the bandwidth matrix to complete the kernel density estimate.

Step 6: Simulate new data via smoothed bootstrapping

The kernel density estimate forms the basis of the smoothed bootstrap. One can sample

from the kernel density estimate by means of a two-step process

1. Randomly select a data point ε̂wx (i) or ε̂wy (i) from the history, where i is a random

integer between 1 and n with uniform probability.

2. Add Gaussian noise to ε̂wx (i) or ε̂wy (i) with mean of zero and covariance Hi. Note that

adding Gaussian noise samples a Gaussian distribution centred around the selected

data point instead of sampling the data point itself; by sampling the kernel function

around the data point, ordinary bootstrapping is converted to smoothed bootstrapping.

The sampling and noise-adding is repeated for the number of times the simulation is desired.

After smoothed bootstrapping, the AR filter is used to generate disturbances that act

similarly to the original case.

ε̂x =
1

A(z)
ε̂wx

ε̂y =
1

A(z)
ε̂wy

The disturbance sequences can be applied to the process and observation models (f(x, u,Θ)

and h(x) respectively) to generate new samples for y. New modes can be created by varying

the parameters Θ in the gray box model f(x, u,Θ) that corresponds to different faults, but

the step of generating noise from bootstrapping remains the same for each new simulated

mode.

Step 7: Apply monitoring algorithms

The monitoring algorithms are process specific, and can be applied to the additional simu-

lated data in the exact same manner as the original data.

7.3 Illustration

In this illustration, we will consider the hybrid tank system which will also be presented

in the practical application later on (in Section 7.4); a schematic is available in Figure 7.2.

The hybrid tank system has four components each with two states, resulting in 16 modes

in all. The four components are the flow sensor into tank 1 (FM1), the flow sensor into
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tank 2 (FM2), the valve between tanks 1 and 2 (V1), and the valve between tanks 2 and 3

(V2). Modes will be described in terms of bias in FM1, FM2 (B1, B2 respectively) and leaks

caused by opening the valves V1, V2 (L1, L2 respectively); the mode vector in this example

is [B1, B2, L1, L2] where each component can take the state 0 (where the problem does not

exist) or 1 (where the problem does exist).

Figure 7.2: Hybrid tank system

The monitor selected for this system consists of an augmented Kalman filter and cal-

culated pump model prediction errors. For the original filter, the state model is given as

follows

d X1

d t
= A−1

c

[
U1

B1
− C1

[
X

1/2
1 + hr

]
+ L1

X2 −X1

|X2 −X1|1/2

]
+ εX1

d X2

d t
= A−1

c

[
−C2

[
X

1/2
2 + hr

]
+ L1

X2 −X1

|X2 −X1|1/2
+ L2

X2 −X3

|X2 −X3|1/2

]
+ εX2

d X3

d t
= A−1

c

[
U2

B2
− C3

[
X

1/2
3 + hr

]
+ L1

X2 −X3

|X2 −X3|1/2

]
+ εX3

Y = IX + εY

where the state vector X consists of the three level indicators, and the input vector U

consists of the flow rate measurements into Tanks 1 and 3. The state is augmented to

include four additional states, B1, B2, L1, L2 representing bias and leak parameters which
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are ideally constant

d B1

d t
= 0

d B2

d t
= 0

d L1

d t
= 0

d L2

d t
= 0

When augmented, the additional state covariance entries in Q are set to be small values as

the monitored values are believed to be relatively constant. Small values in Q also mean

that the monitored results are smooth.

The four monitored values are obtained by applying the unscented Kalman filter to the

augmented model. A MATLAB implementation of the unscented Kalman filter is available

on the MATLAB file exchange, courtesy of Yi Cao of Cranfield University, and is presented

below. For the original version, one can visit

http://www.mathworks.com/matlabcentral/fileexchange/18217-learning-the-unscented-kalman-

filter

1 function [x,P]=ukf(fstate,x,P,hmeas,z,Q,R)

2 % UKF Unscented Kalman Filter for nonlinear dynamic systems

3 % [x, P] = ukf(f,x,P,h,z,Q,R) returns state estimate, x and state covariance, P

4 % for nonlinear dynamic system (for simplicity, noises are assumed as additive):

5 % x k+1 = f(x k) + w k

6 % z k = h(x k) + v k

7 % where w ¬ N(0,Q) meaning w is gaussian noise with covariance Q

8 % v ¬ N(0,R) meaning v is gaussian noise with covariance R

9 % Inputs: f: function handle for f(x)

10 % x: "a priori" state estimate

11 % P: "a priori" estimated state covariance

12 % h: function handle for h(x)

13 % z: current measurement

14 % Q: process noise covariance

15 % R: measurement noise covariance

16 % Output: x: "a posteriori" state estimate

17 % P: "a posteriori" state covariance

18 %

19 %

20 % By Yi Cao at Cranfield University, 04/01/2008

21 %

22 L=numel(x); %numer of states

23 m=numel(z); %numer of measurements

24 alpha=1e−3; %default, tunable

25 ki=0; %default, tunable

26 beta=2; %default, tunable

27 lambda=alphaˆ2*(L+ki)−L; %scaling factor

28 c=L+lambda; %scaling factor

29 Wm=[lambda/c 0.5/c+zeros(1,2*L)]; %weights for means

30 Wc=Wm;

31 Wc(1)=Wc(1)+(1−alphaˆ2+beta); %weights for covariance

32 c=sqrt(c);

33 X=sigmas(x,P,c); %sigma points around x

34 [x1,X1,P1,X2]=ut(fstate,X,Wm,Wc,L,Q); %unscented transformation of process

35 % X1=sigmas(x1,P1,c); %sigma points around x1
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36 % X2=X1−x1(:,ones(1,size(X1,2))); %deviation of X1

37 [z1,Z1,P2,Z2]=ut(hmeas,X1,Wm,Wc,m,R); %unscented transformation of measurments

38 P12=X2*diag(Wc)*Z2'; %transformed cross−covariance
39 K=P12/P2;

40 x=x1+K*(z−z1); %state update

41 P=P1−K*P12'; %covariance update

42

43 function [y,Y,P,Y1]=ut(f,X,Wm,Wc,n,R)

44 %Unscented Transformation

45 %Input:

46 % f: nonlinear map

47 % X: sigma points

48 % Wm: weights for mean

49 % Wc: weights for covraiance

50 % n: numer of outputs of f

51 % R: additive covariance

52 %Output:

53 % y: transformed mean

54 % Y: transformed smapling points

55 % P: transformed covariance

56 % Y1: transformed deviations

57

58 L=size(X,2);

59 y=zeros(n,1);

60 Y=zeros(n,L);

61 for k=1:L

62 Y(:,k)=f(X(:,k));

63 y=y+Wm(k)*Y(:,k);

64 end

65 Y1=Y−y(:,ones(1,L));
66 P=Y1*diag(Wc)*Y1'+R;

67

68 function X=sigmas(x,P,c)

69 %Sigma points around reference point

70 %Inputs:

71 % x: reference point

72 % P: covariance

73 % c: coefficient

74 %Output:

75 % X: Sigma points

76

77 A = c*chol(P)';

78 Y = x(:,ones(1,numel(x)));

79 X = [x Y+A Y−A];

In addition, two more monitors are included to estimate flow meters using pump speed

signals. Under normal conditions, the output error (OE) model is estimated to predict flow

rates

U(t) =
B(z)

C(z)
S(t)

where S(t) is the pump speed. The two additional monitors estimate bias as

B1(t) =
U1(t)

B(z)
C(z)S(t)

B2(t) =
U2(t)

B(z)
C(z)S(t)
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7.3.1 Component-based diagnosis

Offline Step 1: Select components and choose reference modes

In the case of our data, the most frequent mode is the no fault mode [0, 0, 0, 0], thus

for the first component, we will be evaluating the false negative criterion (FN) between

m1 = [0, 0, 0, 0] and m9 = [1, 0, 0, 0]. Likewise, for the second component, we will be

evaluating FN between m1 = [0, 0, 0, 0] and m5 = [0, 1, 0, 0]; this procedure is then repeated

for the third and fourth components which compare m3 = [0, 0, 1, 0] and m2 = [0, 0, 0, 1]

respectively to m1 = [0, 0, 0, 0]. The list of modes for this system is given as follows:



m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

m11

m12

m13

m14

m15

m16



=



0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1



= ModeBV (7.5)

Let us consider the first component, where the reference modes are m1 = [0, 0, 0, 0] and

m9 = [1, 0, 0, 0]. We assume that MATLAB is used, and that data is already sectioned

into different modes in a cell array labelled Data so that Data{1} contains data for m1 =

[0, 0, 0, 0] and Data{9} contains data for m9 = [1, 0, 0, 0].

Offline Step 2: Calculate FN criterion for each instrument

The FN criterion for each instrument can be calculated according to the MATLAB code

below which follows steps 1-10 under Selecting monitors for components in Section 7.2.1.

1 function FN = FalseNegativeCriterion(Data)

2

3 ne = length(Data{1}(1,:)); %find the dimension of the data

4 ns = length(Data); %find the number of states for this component

5

6 %For each piece of evidence

7 for e = 1:ne

8 %For each state

9 for i = 1:ns

10 %Define the kernel density estimate

11 KDE(i,e) = fKernelEstimateNorm(Data{i}(:,e));
12 end

13 end

14

15

16 %For each component state

17 Pn = zeros(ns,ne);
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18 for s = 1:ns

19 %For each piece of evidence

20 D = Data{s};
21 n = length(D);

22 Lik = zeros(n,ns);

23 for e = 1:ne

24 %Estimate the likelihood from the KDE for each component state

25 for k = 1:ns

26 Lik(:,k) = fKernelDensity(D(:,e),KDE(k,e));

27 end

28 %Diagnose most likely mode (here, max defines largest element in rows)

29 [¬,Diagnosis] = max(Lik,[],2);

30

31 %Define the proportion of false diagnosis results

32 Pn(s,e) = sum(Diagnosis 6= s)/n;

33 end

34 end

35

36 %Define false negative criterion FN, a row vector with respect to evidence

37 FN = 1/(ns−1)*sum(Pn);

Given the selected modes for component 1 (m1,m9), one could obtain the false negative

criteria for each instrument using the following code

1 FN = FalseNegativeCriterion(Data(1,9))

After calculating the FN criteria for all pieces of evidence, one can make a decision as

to which pieces of evidence to include for that component.

Offline Step 3: Obtain kernel density estimates using selected monitors

For each mode that occurs in the data, we evaluate the kernel density based on the selected

evidence. Consider the variable EvidenceSelection which is a cell array that contains a

vector of selected evidence in each cell. The kernel density estimate can be obtained as

1 nc = 4; %number of components

2 nm = length(Data); %number of modes in the data

3

4 %for each component

5 for c = 1:nc

6 %obtain selected evidence

7 ind = EvidenceSelection{c};
8

9 %for each mode

10 for m = 1:nm

11 %estimante KDE using selected evidence

12 if ¬isempty(Data{m})
13 KDE(m,c) = fKernelEstimateNorm(Data{m}(:,ind));
14 end

15 end

16 end
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Online Step 1: Calculate likelihoods for a new data point

The Bayesian diagnosis algorithm starts off with evaluating likelihoods of modes. Here

however, we need to take into account different pieces of evidence selected for components.

Thus, the likelihood matrix Lik for evidence e will have columns pertaining to modes and

rows pertaining to components.

1 [nm,nc] = size(KDE);

2

3 %for each mode

4 for m = 1:nm

5 %for each component

6 for c = 1:nc

7 %selected evidence index

8 ind = EvidenceSelection{c};
9 %Evaluate likelihood of mode if it appears in the data

10 if ¬isempty(KDE(m,c).bwm)
11 Lik(m,c) = fKernelDensity(e(ind),KDE(m,c));

12 end

13 end

14 end

Online Step 2: Calculate component likelihoods

The component state likelihoods are calculated by going through all the modes having

that state, and using the largest likelihood. Determining whether or not a mode has the

right component state requires the use of the ModeBV variable defined in Eqn (7.5). As an

example, if we wish to figure out the modes where component 1 is equal to 0, we search

through all elements of the first column in ModesBV and note the rows where the element is

1. The code below, performs this search for all applicable modes and all component states.

1 [nm,nc] = size(ModesBV);

2 %Find the number of component states for each column

3 mc = max(ModesBV);

4

5 ApplicableModes = cell(1,nc);

6 %For each component, create a new ApplicableModes matrix

7 for c = 1:nc

8 ApplicableModes{c} = zeros(nm,mc(c));

9 %For each component state, search ModesBV

10 for ci = 0:mc(c)

11 %A binary matrix having 1 where the mode matches component state

12 ApplicableModes{c}(:,(ci+1)) = ModesBV(:,c)==ci;

13 end

14 end

After the search for applicable modes has been performed, we can calculate the likelihoods

for each component state by selecting the most probable likelihood out of all applicable

modes.
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1 LikC = cell(1,nc);

2 %For each component

3 for c = 1:nc

4 %For each component state

5 for ci = 1:(mc(c)+1)

6 %Use the maximum likelihood of applicable modes

7 aModes = find( ApplicableModes{c}(:,ci) );

8 LikC{c}(ci,1) = max(Lik(aModes,c));

9 end

10 end

The result LikC contains likelihoods for each component state under each component.

Online Step 3: Bayesian inference

For each component, there are prior probabilities for each state. The posterior can be

calculated using typical Bayesian methods.

1 %For each component

2 for c = 1:nc

3 Post{c} = LikC{c}.*Prior{c};
4 Post{c} = Post{c}/sum(Post{c});
5 end

Note that for each component c, LikCc contains column vectors of likelihoods, and Priorc

contains column vectors of prior probabilities of the same size. The mode can be diagnosed

by selecting the state values of highest probability for each component.

Online Step 4: Obtain posterior for modes (Optional)

If one wishes to display the posterior probability of the modes (assuming that the states

are independent), one can use Eqn (7.3), which, in MATLAB takes the following form:

1 PostM = ones(nm,1);

2 %For each mode

3 for m = 1:nm

4 %Find the component state indices

5 %because zero is first index, (index = value +1)

6 CompInd = ModeBV(m,:)+1;

7 %For each component

8 for c = 1:nc

9 %Product of applicable posterior probabilities

10 PostM(m) = PostM(m)*Post{c}(CompInd(c));
11 end

12 end

7.3.2 Bootstrapping for additional modes

Here we discuss the technique of bootstrapping for more data. Because the end-goal is to

produce more learning data, this entire technique is performed offline. If combining the two

techniques, the bootstrapping procedure is completed before the first step is taken in the

component space approach.
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Step 1: Identify the model

The original model is defined in MATLAB according to the function Tanks, which yields

the differential dX given the input flow rate U , current level X, and the parameters Ac

(tank cross section area), C1, C2, C3 coefficients for the drain, and B1, B2, original bias or

scaling parameters for the flow rates.

1 function dX = Tanks(U,X,Ac,C1,C2,C3,B1,B2,Ho)

2 dX(1,1) = ( B1*U(1) − C1*(X(1)+Ho)ˆ(0.5) )/Ac;

3 dX(2,1) = (−C2*(X(2)+Ho)ˆ(0.5))/Ac;
4 dX(3,1) = ( B2*U(2) − C3*(X(3)+Ho)ˆ(0.5) )/Ac;

5 end

The level prediction is obtained using the RK45 method

1 function Y = HybridTanks(U,X0,Ac,C1,C2,C3,B1,B2,Ho,Ts)

2 %Restrict the values from being negative

3 options = odeset('NonNegative',[1,2,3]);

4 %u has rows for t and columns for components (in this case 2)

5 [nt,nu] = size(U);

6 X = X0;

7

8 for t = 1:nt

9 u = OP(k,:);

10 dXu = @(t,X) Tanks(u,X,Ac,C1,C2,C3,B1,B2,Ho);

11

12 [¬,vX] = ode45(dXu,[0,Ts],X,options);

13 X = vX(end,:);

14 X(X>100) = 100; %Upper limit on X

15 Y(k,:) = X;

16 end

The parameter of the model Theta = [Ac,C1,C2,C3,B1,B2,Ho] can be identified by

the optimization technique of your choice; for example, in MATLAB, one can use fminunc.

1 %U, Y X0 and Ts are already defined earlier

2 Theta0 = [Ac,C1,C2,C3,B1,B2]; %Initial Parameters

3

4 %Set up objective function

5 Yhat = @(Th) HybridTanks(U,X0,Th(1),Th(2),Th(3),Th(4),Th(5),Th(6),Th(7),Ts);

6 Objective = @(Th) sum( sum( (Yhat (Th) − Y ).ˆ2 ) );

7

8 Theta = fminunc(Objective,Theta0);

The function fminunc is used for this purpose, but it may be desirable to include constraints

on parameter values. Furthermore, C1, C2, C3 could be forced to be equal, as the tank outlets

are identical. This helps reduce dimensionality of the search.

Step 2: Obtain residual errors

When identifying model error covariances, it is required that the Q and R matrices are

identified first. The first step is to set up the UKF so that state errors Xe = εx and

131



observation errors Ye = εy are reported.

1 function [X,P,Xe,Ye] = TankUKF(X0,Y1,U0,P0,Theta,Q,R,Ts)

2 %Set up differential equation model

3 dTank = @(t,X)Tanks(X,u,Th(1),Th(2),Th(3),Th(4),Th(5),Th(6),Th(7),Ts);

4

5 %Set up predictor for differential equation model

6 options = odeset('NonNegative',[1,2,3],'InitialStep',(Ts/10));

7 function Xf = Ftank(X,Ts)

8 X = X.*(X>0);

9 [¬,vX] = ode45(dTank,[0,Ts],X,options);

10 Xf = (vX(end,:))';

11 end

12

13 %state transition and observation functions

14 ftank = @(X) Ftank(X,Ts);

15 htank = @(X) X;

16

17 %UKF result

18 [X,P] = ukf(ftank,X0,P0,htank,Y1,Q,R);

19

20 %Residual error in X

21 Xe = X−ftank(X0);
22

23 %Residual Error in Y

24 Ye = Y1−htank(X);

Now that we have a function to define prediction errors in X and Y , we can iteratively

estimate Q and R

1 %Y, U, Ts and Theta are already defined

2 %Initial values for $Q$ and $R$ are already chosen

3 [nt,¬] = size(U);

4 X = Y(:,1);

5 P = Q;

6

7 %Obtain covariance constant for x and y log likelihoods

8 K = −0.5*( log( (2*pi)ˆ(length(Q))*det(Q) ) + log( (2*pi)ˆ(length(R))*det(R) ) );

9

10 %Cholesky decomposition for easy inversion

11 Qr = chol(Q);

12 Rr = chol(R);

13

14 LogLik0 = −1/0;
15 dLog = 100;

16

17 %Iterate the estimation of Q and R until log likelihood converges

18 while dLog > 1e−5
19 LogLik1 = 0;

20 for t = 2:nt

21 [X,P,xe,ye] = TankUKF(X,Y(t,:),U(t−1,:),P,Theta,Q,R,Ts);
22 Xe(t,:) = xe;

23 Ye(t,:) = ye;

24

25 %Use a more accuate expression for inversion

26 % sum((Xe\Qr).ˆ2) = Xe*inv(Qr)*Xe'

27 LogLikX = −0.5*sum((Xe(t,:)\Qr).ˆ2);
28 LogLikY = −0.5*sum((Ye(t,:)\Rr).ˆ2);
29 LogLik1 = LogLik1 + K + LogLikX + LogLikY;

30 end
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31 Q = cov(Xe);

32 R = cov(Ye);

33 dLog = LogLik1 − LogLik0;

34 end

This procedure not only estimates covariances Q and R, but also the residual errors εx = Xe

and εy = Ye can be obtained from the final iteration.

Step 3: Whitening residual errors

Residual error whitening can be performed by estimating an AR model, and applying it

to the data. There are many techniques that can be used to estimate an AR model, and

MATLAB has a command Model = ar(y,n) strictly for this purpose. It can be applied to

all elements of the noise in X and Y as follows

1 %n is your selected model order

2 for i = 1:length(Q)

3 ARx{i} = ar(Xe(:,i),n);

4 end

5 for i = 1:length(R)

6 ARy{i} = ar(Ye(:,i),n);

7 end

After the model has been learned, it is possible to whiten the residual errors by applying

the model. First, we want to create a data object so that

ε = [εt, εt−1, εt−2, . . . , εt−n]

This can be done using the following code

1 for k = 1:length(Q)

2 %Construct the desired noise sequence for each residual sequence k

3 XEk = zeros(length(Xe(:,k))−(n−1),n);
4 %For each coefficient of A

5 for i = 1:n

6 xe = Xe(:,k);

7 %remove the first n − i data points

8 xe(1:(n−i)) = [];

9 %remove the last i−1 data points

10 xe((end−i+2):end) = [];

11 %Place the result in the kth XE matrix

12 XEk(:,i) = xe;

13 end

14 XE{k} = XEk;

15 end

The output of the AR modeling step in MATLAB is such that

εwt = A(1)εt +A(2)εt−1 + . . .+A(n)εt−(n−1)

= εt ×A

In MATLAB, given the XE variable, the whitened output is obtained as
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1 %For each residual error sequence

2 for k = 1:length(Q)

3 A = (ARx{k}.a)';
4 Xew(:,k) = XE{k}*A;
5 end

The final product Xew contains the whitened residuals of Xe. This procedure is repeated

for residual error sequences in Y as well.

Step 4: Bootstrapping residual errors

When running a new simulation, new residual error sequences must be generated. This can

be done by first obtaining the kernel density estimate

1 %For each X residual error component

2 for k = 1:length(Q)

3 KDE xew(k) = fKernelEstimateNorm(Xew(:,k));

4 end

5

6 %For each Y residual error component

7 for k = 1:length(R)

8 KDE yew(k) = fKernelEstimateNorm(Yew(:,k));

9 end

Then, data points in the history can be randomly selected

1 %nt is the number of time samples desired in the simulation

2 XewBS = zeros(nt,length(Q));

3 %For each X residual error component

4 for k = 1:length(Q)

5 %Select data from KDE object

6 Data = KDE xew(k).data;

7 nd = length(Data);

8 %For as many time instances desired

9 for t = 1:nt

10 %Select random index from data

11 ind = round(nd*rand(1));

12 XewBS(t,k) = Data(ind,:);

13 end

14 end

If these data points were directly used to simulate the noise, the process would be regular

bootstrapping which samples directly from the historical data. Smoothed bootstrapping

on the other hand, samples from the kernel density estimate, which can be done by first

selecting the random piece of historical data (as done in bootstrapping) and then adding

noise that’s sampled from the kernel function. For the Gaussian kernel, one simply samples

from the standard normal distribution, and multiplies the result by the square-root of the

bandwidth. The result is a smoothed bootstrap sample, which is obtained by implementing

the following MATLAB code.
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1 for k = 1:length(Q)

2 %Select bandwidth matrix from KDE object

3 H = KDE xew(k).bwm;

4 %Smooth the bootstrap with Gaussian noise

5 XewBS(:,k) = XewBS(:,k) + randn(nt,1)*Hˆ0.5;

6 end

The smoothed bootstrapping procedure is performed on residual errors in X above, but the

process should also be repeated in residual errors on Y .

Finally, one has to reverse the AR model to predict a new sequence. The reverse model

takes the form

A(1)εt = −A(2)εt−1 − . . .−A(n)εt−(n−1) + εwt

where A(1) = 1 by convention. This reverse AR model can be applied using the following

MATLAB code

1 XeBS = zeros(nt,length(Q));

2 %For each component

3 for k = 1:length(Q)

4 %Obtain AR parameters and set up noise sequence

5 A = ARx{k}.a;
6 na = length(A);

7 y = zeros(nt+na,1);

8

9 %Reverse model: y = −A(2) y−1 − ... − A(n) y−(n−1) + XewBS

10 %Time starts at 1+length(A), as A pertains to past values

11 for t = ((1:nt)+na)

12 %Select past inputs for reverse model

13 %wrev reverses vector (we can only construct ascending)

14 ind = wrev( (t−(na−1)):(t−1) );

15 %Predict new output from reverse model

16 y(t) = −A(2:end)*y(ind) + XewBS(t−na);
17 end

18 %remove the first na inputs as they are not used

19 y(1:na) = [];

20 XeBs(k,:) = y;

21 end

This reverse modelling procedure should likewise be performed on residual errors in Y in

addition to X which was performed above.

Step 5: Simulating new data from the bootstrap

Once the bootstrapped noise sequence has been generated, this sequence has to be inserted

into a simulation. The simulation itself must contain all aspects of the control loop. For the

hybrid tank system, the control loop is shown in Figure 7.3. In this model, the appropriate

places to add the noise are indicated, as well as the appropriate places to sample outputs.

Simulation can be done using MATLAB code, Simulink or any other desired simulation

software.
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Figure 7.3: Hybrid tank control system

Step 6: Generate new data from monitoring

From the simulated data, monitoring algorithms can be applied. In this case, the monitors

include an augmented unscented Kalman filter for the four components (two sensors and

two valves) and a pump prediction model (for the two sensors).

7.4 Application

In this chapter, only the hybrid tank system will be considered for the following reasons

1. The model is simple enough for most audiences to grasp the nuances of the bootstrap-

ping technique.

2. The monitors for this system have already been explained, so that the monitor selec-

tion results for this system will be most meaningful.

3. Unlike the industrial system, we have control over what modes appear in the data so

that we can easily validate performance for modes that do not appear in the historical

data.

Experimental data was obtained for the 16 possible modes, roughly one hour’s worth of

data for each mode. The nonlinear model was estimated using the Prediction-Error method,

based on the lab data containing no faults. The closed-loop behaviour was then simulated

for each of the 16 possible modes.

The first purpose of this experiment is to assess how the bootstrap simulation approach

performs. The second purpose is to assess how well the mode-space method and component-

space method are improved by replacing simulated data with real process data. For the

mode-space method, replacing simulated data with process data for a single mode will

improve the result for that mode, resulting in a significant but localized improvement.

Conversely, for the component-space method, the same data replacement for the same
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mode should improve results in diagnosing all components, resulting in a slight but more

widespread improvement. For realism, real data is only applied to the most common modes,

namely, normal operation and modes with a single fault occurrence.

Because the system has already been modelled, the mode space and component space

methods are compared to another intuitive method, the model-based approach. The model-

based method functions similarly to the component-space method, except only the corre-

sponding UKF fault parameter estimate is used to diagnose the fault. If the UKF reading for

fault parameters exceeds a certain boundary, the corresponding fault is considered present.

7.4.1 Monitor selection

When setting up the component space diagnosis approach, the monitors had to be selected

based on their sensitivity toward that component’s faulty state. It was found that leaks

did not affect the pump-based bias monitors, thus these monitors were discarded when

diagnosing bias. Additionally, because of the complex interactions between bias and leaks

when implmenting the UKF, both bias and leak parameters were used for Tank 1 when

diagnosing leaks and bias in that tank. Likewise, both UKF parameters are included when

diagnosing bias and leaks in Tank 2. A summary of monitor inclusion is given in Table 7.1

Table 7.1: Included monitors for component space appraoch

Bias Tank 1 Bias Tank 2 Leak Tank 1 Leak Tank 2

UKF B1 yes no yes no

UKF B2 no yes no yes

UKF L1 yes no yes no

UKF L2 no yes no yes

Pump B1 yes no no no

Pump B2 no yes no no

7.4.2 Component diagnosis

The three diagnosis methods were tested using monitor results obtained from the laboratory

setup. For the first trial, diagnosis was performed using only simulated data for training.

For the second trial, diagnosis was performed using experimental data from the normal

operation. Finally, for the third trial, experimental data was included from all modes with

a single fault. In all runs, each method attempted to diagnose the mode and the individual

faults. Mode diagnosis results are shown in Table 7.2 and component diagnosis results are

shown in Table 7.2

One of the first observations that can be made is that it was more difficult to diagnose the

mode than it was to diagnose the individual component faults. This is expected, as the mode
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Table 7.2: Misdiagnosis rates for modes

all simulated real data: nf ≤ 0 real data: nf ≤ 0

model driven 42.7 % 38.5 % 30.3 %

mode space 50.3 % 40.3 % 22.1 %

component space 42.6 % 37.9 % 23.1 %

Table 7.3: Misdiagnosis rates for component faults

all simulated real data: nf ≤ 0 real data: nf ≤ 1

model driven 13.4 % 12.6 % 9.12 %

mode space 20.1 % 15.8 % 8.9 %

component space 12.3 % 11.3 % 6.6 %

will be considered as misdiagnosed even if all components are correctly diagnosed except

one. For example, if the three out of four faults were correctly diagnosed, the misdiagnosis

of a single fault would mean that the entire mode is misdiagnosed. Misdiagnosis rates are

therefore expected to be two to four times higher for modes than the individual faults.

It was also found that the performance of the mode space method was inferior to that of

the component space method. This is best explained by the fact that diagnosing based on

component space was simpler than diagnosing based on modes. There are fewer distributions

to estimate when diagnosing the presence of each fault. Furthermore, monitors not sensitive

to the fault can be discarded, further reducing dimensionality of the distributions to be

estimated.

While the component-based method has its merits in this application, we should note

that this method assumes that component states are independent of each other. That as-

sumption holds true for this system as the leaks and bias were introduced independently.

The mode space approach does not make such assumptions; thus, if sufficient data is avail-

able for all modes, the mode space method becomes more practical, as it can better take

into account interactions between states of different components.

Adding experimental data to the learning dataset (first the normal mode, and then

single fault modes) was found to improve performance, especially the mode space approach.

Improvements from adding experimental data indicated that the model was not completely

able to replicate the process; however, simulated data did provide valuable information

for diagnosis as performance was still acceptable when only simulated data was used as a

reference. Adding experimental data had a more balanced effect when it was introduced in

the component space approach. Every time experimental data was included for a mode, half
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of the distributions in the component space approach were effected, but only one distribution

in the mode space was affected. Thus, the component space approach had a more evenly

spread benefit.

These trends can be observed in Figure 7.5 where including the normal operating mode

(m1) decreased its misdiagnosis rate, but left other modes fairly untouched. This is also true

when experimental data from single fault modes (m2,m3,m5,m9) was added; misdiagnosis

rates for these modes decreased, but the other modes were left untouched. Conversely,

when observing Figure 7.4, including experimental data from these modes affected the

misdiagnosis rate of all modes, usually resulting in a decreased misdiagnosis rate for modes

on average.
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(a) No lab data: 50.3 % error
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(b) No lab data: 20.1 % error
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(c) Normal mode lab data: 40.3 % error
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(d) Normal mode lab data: 15.8 % error
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(e) Single fault lab data: 22.1 % error
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(f) Single fault lab data: 8.9 % % error

Figure 7.4: Diagnosis results for mode space approach
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(a) No lab data: 42.6 % error
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(b) No lab data: 20.1 % error
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(c) Normal mode lab data: 37.9 % error
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(d) Normal mode lab data: 12.3 % error
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(e) Single fault lab data: 23.1 % error
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(f) Single fault lab data: 6.8 % % error

Figure 7.5: Diagnosis results for component space approach
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Application
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Chapter 8

Accounting for ambiguous modes
in historical data: A Bayesian
approach

8.1 Introduction

This chapter discusses the application of the second-order parametrization method, which

is useful when the historical data contains ambiguous operating modes (i.e. uncertain cases

where more than one mode is possible). Ambiguity occurs when information is missing

from one or more problem sources. For example, let us say that there are two components,

an sensor and a valve. The sensor can develop bias, while the valve can become sticky. If

bias is known to exist, but it is unknown whether the valve is sticky or not, then there are

two possible modes, one mode having bias without stiction, and the other having bias with

stiction.

When ambiguous modes are in the data, the resulting probabilities can have ranges.

The second-order method is used to combine prior probabilities along with one or more

likelihoods in order to obtain a final result with probability boundaries. The approach

consists of the following steps:

1. Set up a method for calculating likelihoods given θ: p(E|M,Θ))

2. Calculate second-order approximation of likelihood expression

3. Combine likelihood expressions with the second-order combination rule to obtain final

diagnosis result

4. An option to group monitors together into approximately independent groups
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8.2 Algorithm

8.2.1 Formulating the problem

When ambiguous modes M are present in the data, the likelihood expression takes the

following form:

p(E|M,Θ) =

S(E|M)n(M) +
∑

mk⊃M
θ{ Mmk

}S(E|mk)n(mk)

n(M) +
∑

mk⊃M
θ{ Mmk

}n(mk)
(8.1)

where n(mk) is the number of times mk appears in the history, and S(E|mk) is the support

function for evidence E given mk; here, the term S(E|mk) is calculated in the same manner

as likelihood

p(E|M) =
n(E|M)

n(M)

S(E|M) =
n(E|M)

n(M)

The only difference from the likelihood is that mk can be an ambiguous mode. The terms

θ{ Mmk
} are unknown and represent the proportions of data in an ambiguous mode mk which

belongs to one of its specific modes M ⊂mk.

θ{ Mmk
} =

n(M |mk)

n(mk)
= p(M |mk)

The unknown parameters θ{ Mmk
} can be used to define the probability boundaries, namely,

the plausibility (the maximum probability) and the belief (minimum probability)

Bel(E|M) = min
Θ
p(E|M,Θ)

Pl(E|M) = max
Θ

p(E|M,Θ)

The challenge with the expression in Eqn (8.1) is that it is difficult to use Bayesian methods

to combine likelihoods with priors, as the resulting expressions are increasing in complexity

with respect to Θ (where Θ represents the collection of all θ parameters). In order to

manage this complexity, the second-order Taylor Series approximation is used. When this

approximation is applied, a simple updating rule can be derived and the resulting belief

and plausibility are relatively easy to obtain.

8.2.2 Second-Order Taylor series approximation of p(E|M,Θ)

The Taylor series approximation makes use of differentiation in order to make an approxi-

mation around a reference point Θ̂. The univariate expression is given by

f(x) ≈ f(x̂) +
d f(x)

d x

∣∣∣∣
x̂

(x− x̂) +
1

2

d2 f(x)

d x2

∣∣∣∣
x̂

(x− x̂)2 + . . . (8.2)
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where x̂ is a reference point around which the approximation is centred. However, the

expression p(E|M,Θ) is a function of multiple variables Θ, thus a multivariate Taylor

series approximation is needed. In this case, a second-order multivariate Taylor Series

approximation is desired:

∆Θ = Θ̂−Θ

p(E|M,Θ) = p(E|M, Θ̂) + J∆Θ +
1

2
∆ΘTH∆Θ (8.3)

where J and H are Jacobian and Hessian matrices

J =

[
∂ p(E|M,Θ)

∂ θ{ Mm1
}

∂ p(E|M,Θ)

∂ θ{ Mm2
}

. . . ∂ p(E|M,Θ)

∂ θ{ MmN
}

]

H =



∂2 p(E|M,Θ)

∂ θ{ Mm1
}2

∂2 p(E|M,Θ)

∂ θ{ Mm1
}θ{ Mm2

}
· · · ∂2 p(E|M,Θ)

∂ θ{ Mm1
}θ{ MmN

}
∂2 p(E|M,Θ)

∂ θ{ Mm2
}∂ θ{ Mm1

}
∂2 p(E|M,Θ)

∂ θ{ Mm2
}2

· · · ∂2 p(E|M,Θ)

∂ θ{ Mm2
}θ{ MmN

}
...

...
. . .

...
∂2 p(E|M,Θ)

∂ θ{ MmN
}∂ θ{ Mm1

}
∂2 p(E|M,Θ)

∂ θ{ MmN
}θ{ Mm2

}
· · · ∂2 p(E|M,Θ)

∂ θ{ MmN
}2


The expressions for the partial derivatives with respect to p(E|M,Θ) are obtained by differ-

entiating Eqn (8.1). For compactness of notation, we introduce S and n and θ as vectors.

S = [S(E|m1), S(E|m1), . . . , S(E|mn)]

n = [n(m1), n(m1), . . . , n(mn)]

θ =
[
θ{ Mm1

}, θ{ Mm2
}, . . . , θ{ Mmn

}
]

The partial differentials are then given as

∂ p(E|M,Θ)

∂ θi
=

niSi∑
k nkθk

−
ni
∑

k Sknkθk

(
∑

k nkθk)
2

∂2 p(E|M,Θ)

∂ θi ∂ θj
= −niSj + njSi

(
∑

k nkθk)
2 +

ninj
∑

k Sknkθk

(
∑

k nkθk)
3

Reference point: The informed transformation

The second-order Taylor series approximation requires a reference point for Θ in order to

obtain expressions for each likelihood. The informed transformation makes use of the most

credible assignment of Θ as a reference point based on prior probabilities. As an example, let

us consider a three-mode system with the following priors: p(m1) = 0.5, p(m2) = 0.25 and

p(m3) = 0.25. Now let us say that there is a body of evidence belonging to the ambiguous

mode {m1,m2}. If, according to the prior probabilities, mode m1 was twice as probable as
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mode m2 then the most credible allocation is

θ̂{ m1
{m1,m2}} = p(m1|{m1,m2}) =

0.5

0.5 + 0.25
= 2/3

θ̂{ m2
{m1,m2}} = p(m2|{m1,m2}) =

0.25

0.5 + 0.25
= 1/3

where θ̂ indicates a most credible estimate. Similarly, consider body of evidence belonging

to the ambiguous mode {m2,m3} where the priors of m2 and m3 are equal. The most

credible allocation in this case is

θ̂{ m2
{m2,m3}} = p(m2|{m2,m3}) =

0.25

0.25 + 0.25
= 1/2

θ̂{ m3
{m2,m3}} = p(m3|{m2,m3}) =

0.25

0.25 + 0.25
= 1/2

This technique to obtain credible allocation is called the informed transformation as it

is based on information from prior probabilities. In general, the informed transformation

θ̂{Mm} is given as

θ̂{ Mmk
} =

p(M)∑
M⊂mk

p(M)
(8.4)

This transformation also yields the informed likelihood p̂(E|M) by substituting Θ̂ in for Θ

in the likelihood expression in Eqn (8.1)

p̂(E|M) = p(E|M, Θ̂)

8.2.3 Second-Order Bayesian combination

Combination method

Two types of combination need to be considered: the combination of multiple likelihoods and

combination with a prior. In both cases, two second-order approximations are multiplied

together and all terms that are third order or higher are discarded. The difference lies in the

normalization. For combining likelihoods, normalization is not needed, but when combining

with a prior using Bayes’ Rule, normalization must be performed.

The goal for likelihood combination is to express the joint probability of two independent

pieces of evidence.

p(E1, E2|M,Θ) = p(E1|M,Θ)p(E2|M,Θ)

p(E1|M,Θ) ≈ p̂(E1|M) + J1∆Θ +
1

2
∆ΘTH1∆Θ

p(E2|M,Θ) ≈ p̂(E2|M) + J2∆Θ +
1

2
∆ΘTH2∆Θ

When ignoring terms of third order and higher, the joint probability must also be expressed

as second-order

p(E1, E2|M,Θ) ≈ p̂(E1, E2|M) + J12∆Θ +
1

2
∆ΘTH12∆Θ
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By multiplying the second order approximations of p(E1|M,Θ) and p(E2|M,Θ) and then

discarding terms that are third order and higher, one obtains a rule for updating key terms

p̂(E1, E2|M) = p̂(E1|M)p̂(E2|M)

J12 = p̂(E1|M)J2 + p̂(E2|M)J1

H12 = p̂(E1|M)H2 + p̂(E2|M)H1 + JT2 J1 + JT1 J2

After the independent likelihoods are combined, they can be combined with a prior distri-

bution p(M |Θ) in a similar manner in order to obtain the posterior estimate p(M |E,Θ).

However, for combination with a prior, the normalization constant K needs to be accounted

for. First, we define the prior

p(M |Θ) = p̂(M) + JP∆Θ +
1

2
∆ΘTHP∆Θ

In the static case, there is often no ambiguity in the prior, and in such a case JP and HP

are zero matrices. When combining the likelihood with the prior, normalization is required

K =
∑
k

p̂(mk)p̂(E1, E2|mk)

The second-order terms for the posterior probability are similar to the likelihood, except

now the terms are normalized by the inverse of K

p̂(M |E1, E2) =
1

K
p̂(mk)p̂(E1, E2|mk)

JF =
1

K
[p̂(M)J12 + p̂(E1, E2|M)JP ]

HF =
1

K

[
p̂(M)H12 + p̂(E1, E2|M)HP + JT12JP + JTPJ12

]
so that the second-order expression for the posterior probability is

p(M |E1, E2,Θ) = p̂(M |E1, E2) + JF∆Θ +
1

2
∆ΘTHF∆Θ

Diagnosis methods: The simple method

The diagnosis is made by determining which posterior probability has the highest value. A

simple posterior probability estimate is the second-order reference point, p̂(M |E1, E2) (or

the informed transformation). This value is already given in the second-order probability

calculations and requires no information from J or H. In fact, if the objective is to make

a diagnosis based on the simple point estimate, J or H do not need to be calculated at all.

One can simply use the Bayesian method based on the reference likelihoods p̂(E1, E2|M).

Diagnosis methods: The expected value method

The more complex and rigorous estimate is the expected value E[p(M |E)] which assumes a

distribution over the θ parameters and calculates the expected value of the posterior. The

posterior expected value is given as
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E[p(M |E)] = C + J∗E[Θ] +
1

2

[
E[Θ]THODE[Θ] + E[Θ2]THD

]
(8.5)

where HOD is the Hessian H with the diagonal elements being set to zero, and HD is a

column vector of the diagonal elements of H. The parameters C and J∗ are calculated as

C = p̂(M |E)− JΘ̂ +
1

2
Θ̂THΘ̂

J∗ = (J − Θ̂TH)

where Θ̂ is the same value as that given in Eqn (8.4). The terms E[Θ] and E[Θ2] are column

vectors with each element pertaining to E[θ{ Mmk
}] and E[θ2{ Mmk

}]. These expectations are

calculated assuming that θ follows a Dirichlet distribution; for each term, the expectation

results are given as follows:

E[θ{ Mmk
}] =

α( Mmk
)∑

mi⊂mk

α( mi
mk

)
(8.6)

E[θ2{ Mmk
}] =

α( Mmk
) + α2( Mmk

)[ ∑
mi⊂mk

α( mi
mk

)

]
+

[ ∑
mi⊂mk

α( mi
mk

)

]2 (8.7)

where α( Mmk
) represents the prior frequency of mode M happening given the ambiguous

mode mk. A natural value for α( Mmk
) can be calculated as

α( Mmk
) = p(M |mk)n(mk) = θ̂{ Mmk

}n(mk)

Diagnosing by means of the expected value is advantageous when n(mk) is small (hence,

historical data with a large number of ambiguous modes and few data points). Small

values of n(mk) lead to large variances of the Θ parameters. If there is a large number

of data points for an ambiguous mode, the variances of Θ will be much smaller, and the

expected values will be nearly identical to the much simpler point estimates obtained from

the informed transformation.

8.2.4 Optional step: Separating monitors into independent groups

Overview of motivation

If the evidence E is multivariate with a large number of components, the likelihood function

p(E|M) is high-dimensional and can be difficult to estimate, so it is often desirable to break

down E into independent groups. For example, if E has ten elements, and each element

can take on two values, then the distribution would be ten-dimensional with 210 = 1024

different possible values (resulting in a 1042 bin distribution). However, if elements in

E can be divided into two independent groups (E1 and E2) with five elements each, we

would end up estimating two five dimensional distributions with 25 = 32 bins each. A
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significant simplification over the former 1024-bin distribution. The joint probability could

be calculated through simple multiplication

p(E1, E2|M) = p(E1|M)p(E2|M) E1|m ⊥ E2|m

Note that evidence groups can change with each mode, so they only have to be conditionally

independent given the mode. This results in the following Bayesian combination rule

p(M |E1, E2) =
p(E1, E2|M)p(M)∑
k p(E1, E2|mk)p(mk)

=
p(E1|M)p(E2|M)p(M)∑

k p(E1, E2|mk)p(mk)

where p(E1, E2|mk) can be broken down differently depending on mk. Breaking down like-

lihoods into components gives added utility to the second-order combination rule; when

ambiguous modes are present, the second-order rule is needed to calculate the joint proba-

bilities and their respective ranges.

Dependency metrics

In order to break down the likelihood into separate components, a dependency metric is

required. A popular metric is the Mutual Information Criterion (MIC).

I(X1;X2) =

∫
X1

∫
X2

p(x1, x2) log

(
p(x1, x2)

p(x1)p(x2)

)
dx1 dx2 (8.8)

where X1 and X2 represent the domain of the PDF p(x1, x2). In this chapter, evidence

components x1 and x2 are discrete, thus the MIC is calculated via summation instead of

integration. The MIC yields a value of zero if X1 and X2 are independent, and a positive

value if they are dependent (and ideally a value of infinity if they are perfectly dependent).

8.2.5 Grouping methodology

The MIC values should first be arranged in a matrix, in a similar manner to covariance. In

order to avoid redundancy, we only consider the lower-left hand portion of this matrix

MIC(X) =


0 0 0 · · · 0

MIC(X2, X1) 0 0 · · · 0
MIC(X3, X1) MIC(X3, X2) 0 · · · 0

...
...

...
. . .

. . .

MIC(Xp, X1) MIC(Xp, X2) MIC(Xp, X3) · · · 0


By assuming independence between groups, elements of the MIC matrix will be assumed

as zero. In order to minimize the loss of information, elements of the MIC are sorted

from largest to smallest. The grouping algorithm starts with the largest MIC value, which

corresponds to Xa and Xb. The first group to be formed is thus {Xa, Xb}. The algorithm

then proceeds to the next MIC value. For any newly drawn MIC value for {Xa, Xb} one is

faced with one of four different scenarios:
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1. Scenario: Variables {Xa, Xb} are not contained in any previous groups

Solution: Start a new group which contains {Xa, Xb}

2. Scenario: Xa is contained in one of the previous groups but Xb is not

Solution: Add variable Xb to the group that contains {Xa}

3. Scenario: Xa and Xb are contained in two different existing groups

Solution: Consider merging the two existing groups together as long as the merged

group is not too large

4. Scenario: Xa and Xb are both contained in the same existing group

Solution: Do nothing, as the MIC(Xa, Xb) is already taken into account

This is performed until either all MIC values are accounted for , or if the MIC values become

small (for example MIC < 0.01.

8.3 Illustrative Example of Proposed Methodology

8.3.1 Introduction

We now go over a simple example of how to implement the proposed algorithm. Consider a

control loop as shown in Figure 8.1; let us assume that the sensor may be subject to bias,

and the valve may be subject to stiction. Consider two pieces of evidence in the form of

monitors; E1 is a bias monitor with outputs “bias” and “no bias”, while E2 is a stiction

monitor with outputs “siction” and “no stiction”. Positive results are given as (1) while

negative results are given as (0).

Figure 8.1: Typical control loop

8.3.2 Offline Step 1: Historical data collection

The first step is to go through the historical data and note the instances where each of the

four possible modes occurs.
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1. m1 [0, 0] where bias and stiction do not occur

2. m2 [0, 1] where bias does not occur but stiction does

3. m3 [1, 0] where bias occurs but stiction does not

4. m4 [1, 1] where both bias and stiction occur

Data should be collected according to each mode. In certain instances, one of these am-

biguous modes may also occur

1. {m1,m3} [×, 0] where bias is undetermined and stiction does not occur

2. {m2,m4} [×, 1] where bias is undetermined and stiction occurs

3. {m1,m2} [0,×] where bias does not occur and stiction is undetermined

4. {m3,m4} [1,×] where bias occurs and stiction is undetermined

5. {m1,m2,m3,m4} [×,×] where both bias and stiction are undetermined

Such data should be collected according to each ambiguous mode.

8.3.3 Offline Step 2: Mutual Information Criterion (optional)

This step is optional, and considering the data is only two-dimensional, the benefit of

assuming independence is insignificant in this case. However, for the sake of demonstration,

the MIC matrix can be calculated as follows

MIC =

[
0 0

MIC(1, 2) 0

]
where MIC(1, 2) is calculated as

MIC(1, 2) =
∑
E1

∑
E2

p(E1, E2|m) log

(
p(E1, E2|M)

p(E1|M)p(E2|M)

)
The MIC matrix must be calculated for every unambiguous mode. For each mode, the two

pieces of evidence are either considered independent or dependent. For example, let us say

that under Mode (1), the probability is distributed as given in Table 8.1.

Table 8.1: Probability of evidence given Mode 1

E = [0, 0] E = [0, 1] E = [1, 0] E = [1, 1]

n(E|m1) 70 10 15 5

p(E|m1) 0.7 0.1 0.15 0.05
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The MIC for Mode 1 is given as

MIC = p([0, 0]|m1) log

(
p([0, 0]|m1)

p([0,×]|m1)p([×, 0]|m1)

)
+ p([0, 1]|m1) log

(
p([0, 1]|m1)

p([0,×]|m1)p([×, 1]|m1)

)
+ p([1, 0]|m1) log

(
p([1, 0]|m1)

p([1,×]|m1)p([×, 0]|m1)

)
+ p([1, 1]|m1) log

(
p([1, 1]|m1)

p([1,×]|m1)p([×, 1]|m1)

)
= 0.7 log

(
0.7

(0.8)(0.85)

)
+ 0.1 log

(
0.1

(0.8)(0.15)

)
+ 0.15 log

(
0.15

(0.2)(0.85)

)
+ 0.05 log

(
0.05

(0.2)(0.15)

)
= 0.0088259

Because this number (0.0088259) is so small, the two monitors E1 and E2 can be considered

independent under this mode.

8.3.4 Offline Step 3: Calculate reference values

The reference values Θ̂ can be calculated offline after the data has been collected; in par-

ticular, we work with the subsets θ̂{mi} of Θ̂. The term θ̂{ mi
mi⊂ •} is defined as a vector

containing all modes that can support mi, for example,

θ̂{ m1
m1⊂ •} =

[
θ̂{m1

m1
}, θ̂{ m1

{m1,m2}}, θ̂{
m1

{m1,m3}}, θ̂{
m1

{m1,m2,m3,m4}}
]T

θ̂{ m2
m2⊂ •} =

[
θ̂{m2

m2
}, θ̂{ m2

{m1,m2}}, θ̂{
m2

{m2,m4}}, θ̂{
m2

{m1,m2,m3,m4}}
]T

Note that θ̂{m1
m1
} = 1 and θ̂{m2

m2
} = 1 by definition. Each element of θ̂{ mi

mi⊂ •} is calculated

as

θ̂{ mi
mk
} =

n(mi)∑
mj⊆mk

n(mj)
mi ⊆mk

For example, let us say that the prior probabilities of the four modes are given in Table 8.2

Then parameters θ̂{ mi
mk
} can be calculated, for example, as

Table 8.2: Prior probabilities

m1 m2 m3 m4

p(E|m1) 0.6 0.15 0.15 0.1
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θ̂{ m1
{m1,m2}} =

p(m1)

p(m1) + p(m2)

=
0.6

0.6 + 0.15
= 0.8

θ̂{ m2
{m1,m2,m3,m4}} =

p(m2)

p(m1) + p(m2) + p(m3) + p(m4)

=
0.15

0.6 + 0.15 + 0.15 + 0.1
= 0.15

However, if the term in the numerator is not contained in the denominator, the value of

θ̂{ mi
mk
} is zero, for example,

θ̂{ m1
{m2,m4}} =

0

p(m2) + p(m4)
= 0

This is because given the ambiguous mode {m2,m4} the probability of m1 is zero.

8.3.5 Online Step 1: Calculate support

When a new piece of evidence [E1, E2] becomes available, we calculate the support according

to

S(E1, E2|mk) =
n(E1, E2|mk)

n(mk)

For example, using the values in Table 8.1, if E = [0, 0] then S(E1, E2|m1) would be

calculated as

S([0, 0]|m1) =
70

70 + 10 + 15 + 5
= 0.7;

If E1 and E2 are considered independent given mk, the support is calculated separately

S(E1|mk) =
n(E1|mk)

n(mk)
S(E2|mk) =

n(E2|mk)

n(mk)

Using the same example, the probability given the independence assumption would be

S([0,×]|mk) =
70 + 10

70 + 10 + 15 + 5
= 0.8

S([×, 0]|mk) =
70 + 15

70 + 10 + 15 + 5
= 0.85

As comparison with the first result, the joint probability given the independence assumption

would be

S([0, 0]|m1) = S([0,×]|mk)S([×, 0]|mk) = 0.8 ∗ 0.85 = 0.68

which is fairly close to our original result, S([0, 0]|m1) = 0.7; thus validating the indepen-

dence assumption.
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8.3.6 Online Step 2: Calculate second-order terms

The second-order terms are calculated as a linearization around Θ̂. The required terms are

1. p̂(E|M) = p(E|M, Θ̂): required for probability boundaries and all diagnosis methods

2. ∂ p(E|M,Θ)
∂ θi

∣∣∣
Θ̂

: required for probability boundaries and expected value diagnosis method

3. ∂2 p(E|M,Θ)
∂ θi ∂ θj

∣∣∣
Θ̂

: required for probability boundaries and expected value diagnosis method

These terms can be calculated as follows:

p(E|M, Θ̂) =

∑
k Sknkθ̂k∑
k nkθ̂k

∂ p(E|M,Θ)

∂ θi

∣∣∣∣
Θ̂

=
niSi∑
k nkθ̂k

−
ni
∑

k Sknkθ̂k(∑
k nkθ̂k

)2

∂2 p(E|M,Θ)

∂ θi ∂ θj

∣∣∣∣
Θ̂

= −niSj + njSi(∑
k nkθ̂k

)2 +
ninj

∑
k Sknkθ̂k{m}(∑
k nkθ̂k

)3

where S and n are horizontal vectors containing the support and frequency of the modes

that can support mode M (both ambiguous and unambiguous). In order to illustrate, let

us consider a more complete version of Table (8.1) shown below in Tables (8.3) and (8.4)

Table 8.3: Frequency of modes containing m1

E = [0, 0] E = [0, 1] E = [1, 0] E = [1, 1]

n(E|m1) 70 10 15 5

n(E|m2) 14 59 6 21

n(E|m3) 13 7 58 22

n(E|m4) 12 8 23 57

n(E|m1,m2) 25 15 7 3

n(E|m1,m3) 20 20 6 4

n(E|m2,m4) 19 17 7 7

n(E|m3,m4) 19 8 7 16

n(E|m1,m2,m3,m4) 7 6 6 6

Each element in S and n pertain to an element in θ̂{mi}. For example, consider mode

1; the resulting vectors S and n are obtained as

S = [S(E|m1), S(E|{m1,m2}), S(E|{m1,m3}), S(E|{m1,m2,m3,m4})]

= [0.7, 0.5, 0.4, 0.28]

n = [n(m1), n{m1,m2}, n{m1,m3}, n{m1,m2,m3,m4}]

= [100, 50, 50, 25]
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Table 8.4: Support of modes containing m1

E = [0, 0] E = [0, 1] E = [1, 0] E = [1, 1]

S(E|m1) 0.7 0.1 0.15 0.05

S(E|m2) 0.14 0.59 0.6 0.21

S(E|m3) 0.13 0.07 0.58 0.22

S(E|m4) 0.12 0.08 0.23 0.57

S(E|m1,m2) 0.5 0.3 0.14 0.06

S(E|m1,m3) 0.4 0.4 0.12 0.08

n(E|m2,m4) 0.38 0.34 0.14 0.14

n(E|m3,m4) 0.38 0.16 0.14 0.32

S(E|m1,m2,m3,m4) 0.28 0.24 0.24 0.24

The function value, as well as the first and second derivative expressions are evaluated at

Θ̂. For m1, the parameter vector θ̂ is given as:

θ̂ =
[
1, θ̂{ m1

m1,m2
}, θ̂{ m1

m1,m3
}, θ̂{ m1

m1,m2,m3,m4
}
]

= [1, 0.6/0.75, 0.6/0.75, 0.6/1.0] = [1, 0.8, 0.8, 0.6]

Note that the terms J ,H only pertain to the variable terms in Θ, thus, in the case of m1,

θ{m1
m1
} = 1 is not included because it is a constant.

θ =
[
θ{ m1
{m1,m2}}, θ{

m1
{m1,m3}}, θ{

m1
{m1,m2,m3,m4}}

]
By taking derivatives according to the variable terms in Θ the Jacobian and Hessian can

be obtained along with the reference value. Note that the derivative can be taken for other

terms that are not variable, but their corresponding elements in J and H will be zero. For

the purposes of notation compactness, we will only be taking the derivative with respect to

θ, the variable elements in Θ for the mode in question. For example, when m1 is selected,

J and H take the following form:

p̂(E|m1) = p(E|m1, Θ̂)

Jm1
i =

[
∂ p(E|m1,Θ)

∂ θ1

∂ p(E|m1,Θ)
∂ θ2

∂ p(E|m1,Θ)
∂ θ3

]
θ̂

Hm1
i =


∂2 p(E|m1,Θ)

∂ θ21

∂2 p(E|m1,Θ)
∂ θ1∂ θ2

∂2 p(E|m1,Θ)
∂ θ1∂ θ3

∂2 p(E|m1,Θ)
∂ θ2∂ θ1

∂2 p(E|m1,Θ)
∂ θ22

∂2 p(E|m1,Θ)
∂ θ2∂ θ3

∂2 p(E|m1,Θ)
∂ θ3∂ θ1

∂2 p(E|m1,Θ)
∂ θ3∂ θ2

∂2 p(E|m1,Θ)
∂ θ23


θ̂

where the superscript m1 pertains to mode 1. Using data from Tables 8.3 and 8.4, when

E = [0, 0] is observed, the reference likelihood is:

p(E|m1, Θ̂) =

∑
k Sknkθ̂k∑
k nkθ̂k

=
0.7 · 100 · 1 + 0.5 · 50 · 0.8 + 0.4 · 50 · 0.8 + 0.28 · 25 · 0.6

100 · 1 + 50 · 0.8 + 50 · 0.8 + 25 · 0.6

=
70 + 20 + 16 + 4.2

100 + 40 + 40 + 15
= 110.2/195 = 0.565
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In a similar manner, the Jacobian terms are calculated as

∂2 p(E|m1,Θ)

∂ θ2
i

=
niSi∑
k nkθ̂k

−
ni
∑

k Sknkθ̂k(∑
k nkθ̂k

)2

=
niSi
195

− ni 110.2

1952
=
ni(195 Si − 110.2)

1952

Thus, the Jacobian can be expressed as

Jm1 =
[

50(195(0.5)−110.2)
1952

50(195(0.4)−110.2)
1952

25(195(0.28)−110.2)
1952

]
Likewise, the Hessian terms can be expressed as

∂2 p(E|m1,Θ)

∂ θi ∂ θj

∣∣∣∣
θ̂

= −niSj + njSi(∑
k nkθ̂k

)2 +
ninj

∑
k Sknkθ̂k{m}(∑
k nkθ̂k

)3

= −niSj + njSi
1952

+
ninj110.2

1953

=
ninj

(
110.2
195 −

Sj

nj
− Si
ni

)
1952

so that the Hessian takes the following form

Hm1 =


50·50

(
110.2
195 −

0.5
50 −

0.5
50

)
1952

50·50
(

110.2
195 −

0.4
50 −

0.5
50

)
1952

50·25
(

110.2
195 −

0.28
25 −

0.5
50

)
1952

50·50
(

110.2
195 −

0.5
50 −

0.4
50

)
1952

50·50
(

110.2
195 −

0.4
50 −

0.4
50

)
1952

50·25
(

110.2
195 −

0.28
25 −

0.4
50

)
1952

25·50
(

110.2
195 −

0.5
50 −

0.28
25

)
1952

25·50
(

110.2
195 −

0.4
50 −

0.28
25

)
1952

25·25
(

110.2
195 −

0.28
25 −

0.28
25

)
1952


Note that these Jacobian and Hessian terms do not assume independence, and are calculated

from joint probabilities of E1, E2; if independence is assumed, Jacobian and Hessian matrices

have to be calculated for each independent piece of evidence.

8.3.7 Online Step 3: Perform combinations

For some modes, E1 and E2 are considered independent; if this is the case for mode M ,

second order terms exist for each piece of evidence. These terms must be combined before

performing combination with the prior probabilities.

p̂(E1, E2|M) = p̂(E1|M) p̂(E2|M)

JL = p̂(E1|M)J2 + p̂(E2|M)J1

HL = p̂(E1|M)H2 + p̂(E2|M)H1 + JT2 J1 + JT1 J2

where JL and HL are the Jacobian and Hessian of the overall likelihood. If E1 and E2 are

considered dependent, then JL and HL are obtained directly from the previous step; no
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combination is required. These likelihood terms are then combined with the prior terms

p(M), JP and HP , in order to obtain the posterior terms p(M |E1, E2), JF and HF

K =
∑
k

p̂(mk)p̂(E1, E2|M)

p̂(M |E1, E2) =
1

K
p̂(M)p̂(E1, E2|M)

JF =
1

K
[p̂(M)JL + p̂(E1, E2|M)JP ]

HF =
1

K

[
p̂(M)HL + p̂(E1, E2|M)HP + JTLJP + JTPJL

]
Keep in mind that priors focus on the frequency of unambiguous modes; thus JF and HF

tend to be zero matrices.

In the case of our example, p̂(M) is given in Table 8.2; the likelihood reference p̂(E1, E2|m1)

was already given to be 0.565; by calculating the reference likelihoods for other modes, we

get the likelihood vector p̂(E1, E2|M) = [0.565, 0.198, 0.184, 0.168]. From this, the normal-

ization constant is

K =
∑
k

p̂(m1)p̂(E1, E2|m1)

= 0.565 · 0.6 + 0.198 · 0.15 + 0.184 · 0.15 + 0.168 · 0.1 = 0.413

When keeping in mind previous Jacobian and Hessian terms Jm1,Hm1 , and that Jaco-

bian and Hessian terms associated with prior probabilities are zero matrices, the posterior

probability along with the Jacobian and Hessian matrices are obtained as

p̂(m1|E1, E2) =
1

0.413
(0.6 · 0.565) = 0.821

Jm1
F =

1

0.413
(0.6Jm1 + 0.565[0]) = 1.45 Jm1

=
[
−0.0228 −0.0579 −0.0500

]
Hm1
F =

1

0.413

(
0.6Hm1 + 0.565[0] + (Jm1)T0 + 0TJm1

)
= 1.45 Hm1

=

 0.0490 0.0492 0.0244
0.0492 0.0493 0.0245
0.0244 0.0245 0.0122


8.3.8 Online Step 4: Make a diagnosis

Diagnosis using the point estimate p̂(M |E1, E2)

A diagnosis can be made using the reference posterior probabilities p̂(M |E1, E2). This is

the simplest method available and does not require the calculation of JF and HF . The

diagnosis is made by selecting the mode with largest corresponding value of p̂(M |E1, E2).
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In our example, the set of posterior probabilities was found to be

p̂(M |E1, E2) =
1

0.413


0.565× 0.6
0.198× 0.15
0.184× 0.15
0.168× 0.1

 =


0.8207
0.0719
0.0668
0.0406


From this example, one would diagnose mode 1.

Diagnosis using the expected value of p(M |E1, E2)

Instead of assuming a point value for p(M |E1, E2) using Θ̂, we could assume a distribution

over the possible values of Θ in order to calculate the expected value of p(M |E1, E2).

Consider mode 1 with its corresponding values JF and HF along with the corresponding

parameter vector θ from Θ that can be varied

θ =
[
θ{ m1
{m1,m2}}, θ{

m1
{m1,m3}}, θ{

m1
{m1,m2,m3,m4}}

]T
= [θ1,θ2,θ3]T

Note that because θ{m1
m1
} = 1 is not variable but constant, it is now excluded from θ. The

vector of expected values and expected squared values are given as

E[θ] = [E(θ1), E(θ2), E(θ3)]T

E[θ2] =
[
E(θ2

1), E(θ2
2), E(θ2

3)
]T

These expected values are calculated using Eqn (8.6) and (8.7)

E[θ{m1
mk
}] =

α(m1
mk

)∑
mi⊂mk

α(m1
mk

)

E[θ2{m1
mk
}] =

α(m1
mk

) + α2(m1
mk

)[ ∑
mi⊂mk

α(m1
mk

)

]
+

[ ∑
mi⊂mk

α(m1
mk

)

]2

where α( mi
mk

) is calculated using

α( mi
mk

) = θ̂{ mi
mk
}n(mk)

As an example, let us consider the prior probabilities in Table 8.2 and the mode frequencies

in Table 8.3, then the resulting α parameters would be

α( m1
m1,m2

) = θ̂{ m1
m1,m2

}n(m1,m2)

= 0.8× 50 = 40

The value for α conveys a degree of certainty on θ̂{ m1
m1,m2

} (where α→∞ indicates complete

certainty). If one wishes to reduce certainty on α it is possible to scale the values for α by

158



a value less than 1 (scaling by zero conveys complete uncertainty). Using these values for

α, the expectation E(θ1) is calculated as

E(θ1) = E[θ{ m1
m1,m2

}] =
α( m1

m1,m2
)

α( m1
m1,m2

) + α( m2
m1,m2

)

=
40

40 + 10
= 0.8

E(θ2
1) = E[θ2{ m1

m1,m2
}] =

α( m1
m1,m2

) + α2( m1
m1,m2

)

[α( m1
m1,m2

) + α( m1
m1,m2

)] + [α( m1
m1,m2

) + α( m1
m1,m2

)]2

=
40 + 402

50 + 502
= 0.643

When this techniques applied tom1 using the other ambiguous modes {m1,m3}, {m1,m2,m3,m4}
the elements of E(θ) and E(θ2) are given as follows:

E(θ) = [0.8, 0.8, 0.6]T

E(θ2) = [0.643, 0.643, 0.369]T

The next step is to obtain all the terms in the expression for the second-order expectation

E[p(M |E)] = C + J∗E[θ] +
1

2

[
E[θ]THODE[θ] + E[θ2]THD

]
The first terms C and J∗ are obtained using the reference parameter values θ̂. Note that

because the non-variable terms in θ̂ have zero Jacobian and Hessian elements, they are

omitted.

C = p̂(M |E)− Jθ̂ +
1

2
θ̂THθ̂

= 0.821−

 −0.0228
−0.0579
−0.0500

T  0.8
0.8
0.6

+
1

2

 0.8
0.8
0.6

T  0.0490 0.0492 0.0244
0.0492 0.0493 0.0245
0.0244 0.0245 0.0122

 0.8
0.8
0.6


= 0.725

J∗ = J − θ̂TH

=

 −0.0228
−0.0579
−0.0500

T −
 0.8

0.8
0.6

T  0.0490 0.0492 0.0244
0.0492 0.0493 0.0245
0.0244 0.0245 0.0122


=
[
−0.0910− 0.1263− 0.0840

]
Next, HOD is obtained by subtracting the main diagonal of H from H, meanwhile HD

is a vector of the main diagonal of H that was removed from HOD. For our example, HOD

and HD are given as

H1
OD =

 0 0.0492 0.0244
0.0492 0 0.0245
0.0244 0.0245 0


H1
D =

[
0.0490 0.0493 0.0122

]
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With all of the expectation vectors and matrix terms defined, the expected value E[p(M |E)]

can be calculated according to Eqn 8.5.

E[p(M |E)] = C + J∗E[θ] +
1

2

[
E[θ]THODE[θ] + E[θ2]THD

]
= 0.821

which is almost identical to the posterior probability of mode (1) obtained from the point

estimate.

Diagnosis using the probability ranges of p(M |E1, E2)

While the simple method and the expectation method yield point estimates of the proba-

bility, the second-order approximation can also be used to obtain probability ranges. The

probability is a function of Θ given by

∆Θ = Θ− Θ̂

p(M |E,Θ) = p̂(M |E) + JmF ∆Θ +
1

2
∆ΘTHm

F ∆Θ

The belief or lower bound probability is obtained by minimizing p(M |E,Θ) subject to

the constraint 0 ≤ Θ ≤ 1 while the plausibility or upper bound probability is obtained

by maximizing p(M |E,Θ) subject to the same constraints. Because this is a constrained

quadratic expression, the maximization and minimization problems can be solved using

standard quadratic programming techniques.

While the actual diagnosis can be obtained using either the point estimate or expected

value of p(M |E1, E2), the belief and plausibility can give additional information about the

uncertainty of the diagnosis. Consider a hypothetical result in Figure 8.2 where point

estimate is given by a dotted line, and the uncertainty regions are given in a lighter shades

of gray. In this example, the uncertainty region for mode 2 and mode 3 overlap. Thus while

the system is most likely operating at mode 2, it would be unwise to rule out mode 3, as

under certain circumstances, mode 3 could be more probable than mode 2.

8.4 Simulated Case

The proposed second-order method was tested on the simulated Tenessee Eastman problem.

In this simulation, data was masked as ambiguous based on its resemblance toward other

modes. In the masking process, distributions were estimated for each mode and a likelihood

ratio threshold was set, so that if another mode was likely enough, the data point was

classified as ambiguous. For example, consider the data from mode 1. If there is a data

point di (consisting of evidence) where the likelihood ratio R between mode k and mode 1

was large enough

R =
p(di|mk)

p(di|m1)
> Threshold
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Figure 8.2: Typical control loop

then the mode mk was added, rendering the mode associated with di ambiguous. By

manipulating the threshold, certain amounts of data can be classified as ambiguous. For

this simulation case, data was abundant, and the monitors showed fairly clear results.

In order to demonstrate the effectiveness of the second-order method, 50% of data was

deliberately removed from the history, and noise was added.

First, we took a look at the average probability boundaries given for the system. Here,

second order posterior terms were calculated and boundaries were calculated via quadratic

programming. The first set of figures (Figure 8.3) had an ambiguity threshold set so that

30 % of the data had modes with ambiguity. In the second set of figures (Figure 8.4) each

had 70 % of the data belonging to ambiguous modes. From these figures, one can see that

modes 2 and 4 were the easiest to diagnose, with the true probability being notably higher,

and with small probability boundaries. Modes 3 and 5 were the most difficult, with much

larger probability boundaries and a tendency toward mutual confusion. When the amount

of ambiguous mode data was increased from 30% to 70%, probability ranges grew, primarily

from modes 1 and 6; however, there was a slight increase in probability boundaries from

modes 2 and 4. Probability boundaries for modes 3 and 5 were already quite large with

30% ambiguous mode data; increasing the amount of ambiguous mode data from 30% to

70% had little effect.

After evaluating the probability boundaries, we proceed to evaluating overall diagnosis

performance. For the sake of simplicity diagnosis was based on the point estimate method

(from the informed transformation p̂(M |E) = p(M |E, Θ̂)). In Figure 8.5, mode diagnosis

performance was assessed. The performance metric used is percent of misdiagnosed modes.

Three different methods were compared:
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Figure 8.3: Probablility bounds at 30 % ambiguity
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Figure 8.4: Probablility bounds at 70 % ambiguity

1. Ideal Case: This refers to the case where ambiguity is not present. The original

Bayesian method is performed on data before masking techniques were applied.

2. 2nd Order Method: This referes to the case where the second-order Bayesian

method is performed on data containing ambiguous modes.

3. Incomplete Bayesian Method: This refers to the case where ambiguous modes

were present in the data, but they were ignored so that the original Bayesian method

can be performed on the remaining data set.
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The second-order method was compared to the incomplete Bayesian method, where

masked data was simply discarded, and the ideal case, where masked data was known. In

Figure 8.5(a), the three methods performed very similarly thus ignoring the 30 % of the

data that was ambiguous did not significantly affect the result. However, when the amount

of ambiguous data increased to 70 %, the incomplete Bayesian method ignores a significant

amount of data. Thus when there was more ambiguous data, the performance improvement

brought on by the second-order method was significant.
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Figure 8.5: TE mode diagnosis error

In addition to diagnosing modes, the state of each individual component was diagnosed.

For this system, the component states were:

1. A/C feed ratio step change (stream 4)

2. B composition step change (stream 4)

3. C header pressure loss

4. A,B,C, Feed Composition step change (stream 4)

5. D feed temperature (stream 2)

6. Reactor cooling water inlet temperature

7. Sticky reactor cooling water valve

In many cases, if a mode is incorrectly diagnosed, the correct mode is similar, usually

differing by one or two components. Consequently, component diagnosis tends to exhibit

better performance with fewer false results. Unsurprisingly, when diagnosing components,

the second-order method showed a performance improvement that was similar to the im-

provement shown when diagnosing modes. Results are shown in Figure 8.6.
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Figure 8.6: TE component diagnosis error

8.5 Bench Scale Case

This method was also applied to the lab-scale hybrid tank system where tank leaks and

sensor bias were to be detected. Again, data was masked based on its proximity to other

modes and diagnosis was based on the point estimate given by the informed transformation

p̂(M |E) = p(M |E, Θ̂).

Mode diagnosis results are available in Figure 8.7. When diagnosing modes, performance

seemed to be relatively unchanged even when 70% of the data was missing; this robustness

toward missing data was again likely due to the abundance of data. In contrast, Figure

8.8 shows results when diagnosing components, where it can be seen that the second-order

approach shows a slightly more significant improvement. While the frequency of diagnosing

the correct mode may not have significantly improved when the second order method was

applied, it appears that the incorrectly diagnosed modes bear more resemblance to the true

mode.
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Figure 8.7: Hybrid tank system mode diagnosis error
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Figure 8.8: Hybrid tank system component diagnosis error

8.6 Industrial Scale Case

Finally, this method was tested on industrial data, where the on and off conditions were

detected for each subsystem. Data was masked by taking into account proximity with

other modes and again, diagnosis results were based on the point estimate of the posterior

probability p̂(M |E) = p(M |E, Θ̂).

Mode diagnosis results are shown in Figure 8.9. In a similar manner as the experimental

system, diagnosis results are fairly uniform for both the cases with 30 % ambiguous mode

data and 70 % ambiguous mode data. When diagnosing components however (Figure 8.10),

the improvements for the second-order method appear to be more pronounced; thus, while

a similar number of modes may still be incorrectly diagnosed, it is evident that the incorrect

modes tend to resemble the correct mode more closely.
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Figure 8.9: Industrial system mode diagnosis error
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Figure 8.10: Industrial system component diagnosis error
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Chapter 9

Accounting for ambiguous modes
in historical data: A
Dempster-Shafer approach

9.1 Introduction

Dempster-Shafer theory (DST) has long been considered as a more general alternative to

Bayesian combination; DST directly accounts for ambiguity and has had a wide variety of

adaptation in the literature. However, Dempster-Shafer theory does not lend itself well to

making inference from history-based likelihoods containing ambiguous modes; becuase of

this, DST needs to be generalized in order better fit this task.

As in Bayesian combination, the goal is to combine information from independent sources

of evidence (including prior probabilities). The application of Generalized DST (or GDST)

takes the same form as the second-order method discussed in Chapter 8. This chapter gives

details on how to

1. Set up a method for calculating likelihoods given θ parameters p(E|M,Θ))

2. Calculate the Generalized Basic Belief Assignment (GBBA) for both priors and like-

lihoods

3. Combine the GBBAs to obtain a final diagnosis result

4. Group monitors together into independent groups (optional)
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9.2 Algorithm

9.2.1 Parametrized Likelihoods

Likelihoods are parametrized in the same way as in Chapter 8

p(E|M,Θ) =

∑
mk⊇m

θ{ mmk
}S(E|mk)n(mk)∑

mk⊇m
θ{ mmk

}n(mk)
(9.1)

where n(mk) is the number of times mk appears in the history, and S(E|mk) is the support

function for evidence E given mk, which, for discrete data is calculated as

S(E|mk) =
n(E|mk)

n(mk)

In this chapter, Eqn (9.1) is used as a basis for calculating Generalized BBAs (or GBBAs).

9.2.2 Basic Belief Assignments

Traditional Basic Belief Assignments

The Basic Belief Assignment (BBA) is a function with respect to the mode and is denoted

as S(mk); it is similar to probability except that it can yield support to ambiguous modes

as well (the boldface m is used to represent potential ambiguity). The probability p(M |E)

is calculated using S(m|E) according to

p(M |E,Θ) =
∑
mk⊇m

θ{ mmk
}S(mk|E) (9.2)

where the support function (or BBA) S(m|E) is given as

S(m|E) =
n(m, E)

n(E)
(9.3)

Here, n(m, E) is the number of times the mode m and evidence E jointly occur, while n(E)

is the total number of times evidence E occurs. In addition to probability, Dempster-Shafer

theory also concerns itself with belief (the lower-bound probability) and plausibility (the

upper-bound probability). Because p(M |E,Θ) is linear with respect to θ and the coefficients

S(m) on θ are positive, p(M |E,Θ) is maximized by setting θ to 1 whenever possible and is

minimized by setting θ to 0 whenever possible.

Bel(M |E,Θ) = min
Θ

[p(M |E,Θ)] =
∑
mk⊆m

S(mk|E)

Pl(M |E,Θ) = max
Θ

[p(M |E,Θ)] =
∑
mk⊇m

S(mk|E)

Unfortunately, the form of Eqn (9.2) is too restrictive to adequately represent the base

problem in Eqn (9.1). The two most detrimental restrictions of Eqn (9.2) lie in the terms
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S(m) (which function as coefficients on Θ). The first restriction is that terms in S(m)

are positive, and the second restriction is that terms must be identical for all unambiguous

modes contained in m. The reasons for relaxing these restrictions have been discussed in

Chapter 5, but they mainly boil down to the fact that Eqn (9.1) is non-linear with respect to

Θ. The task at hand is to obtain a generalized expression of the BBA that better represents

the problem presented in Eqn (9.1). This can be done by allowing the BBA to have negative

support, and to have different amounts of support for different modes in m.

Generalized Basic Belief Assignments

The generalized BBA (or GBBA) denoted as G is a matrix that can approximate the

expression of p(E|M,Θ) in Eqn (9.2)

p(E|M,Θ) = G[:,m]TΘ[:,m] (9.4)

where Θ is the matrix form of Θ and Θ[:,m] is the column of Θ that pertains to the specific

mode m (G[:,m]T is likewise the column of G pertaining to m). The expression in Eqn

(9.4) is a first-order approximation of Eqn (9.1)

As an example for the structure of G, let us consider a three mode system m1,m2,m3

with ambiguous modes {m1,m2}, {m2,m3}, {m1,m3}. The structure of G and Θ are given

as

G =



m1 m2 m3

m1 G{m1
m1
} 0 0

m2 0 G{m2
m2
} 0

m3 0 0 G{m3
m3
}

{m1,m2} G{ m1
m1,m2

} G{ m2
m1,m2

} 0

{m1,m3} G{ m1
m1,m3

} 0 G{ m3
m1,m3

}
{m2,m3} 0 G{ m2

m2,m3
} G{ m3

m2,m3
}



Θ =



m1 m2 m3

m1 1 0 0
m2 0 1 0
m3 0 0 1

{m1,m2} θ{ m1
m1,m2

} θ{ m2
m1,m2

} 0

{m1,m3} θ{ m1
m1,m3

} 0 θ{ m3
m1,m3

}
{m2,m3} 0 θ{ m2

m2,m3
} θ{ m3

m2,m3
}


Any value of Θ that is not set to 0 or 1 is considered to be unknown or flexible. The

approximation for p(E|M,Θ) is then given as

p(E|M1,Θ) = G[:,m1]TΘ[:,m1]

= G{m1
m1
}θ{m1

m1
}+G{ m1

m1,m2
}θ{ m1

m1,m2
}+G{ m1

m1,m3
}G{ m1

m1,m3
}
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The individual terms of G can be calculated according to the following heuristic

G[k, i] =


0 mi ∩mk = ∅

p̃(E|mi) mi = mk
∂p(E|mi)
∂θ[k,i] mi ⊂mk

(9.5)

where

p̃(E|M) = p(E|M, Θ̂)−
∑

mk⊃M
θ̂{ Mmk

} ∂ p(E|M,Θ)

∂ θ{ Mmk
}

∣∣∣∣∣
Θ̂

∂p(E|M)

∂Θ[k, i]
=
∂ p(E|M,Θ)

∂ θ{ Mmk
}

∣∣∣∣∣
Θ̂

Here, Θ̂ is the reference value of Θ which, for the generalized Dempster-Shafer method is

set to the inclusive value of Θ.

Θ̂ = Θ∗

where

• Θ∗ is the inclusive value, which is defined by setting all flexible values to 1

• Θ∗ is the exclusive value, which is defined by setting all flexible values to 0

When G is defined in this manner, Eqn (9.4) is a first-order Taylor Series approximation of

p(E|m1,Θ).

Belief and plausibility can also be calculated from Eqn (9.4) by minimizing and maxi-

mizing p(E|m1,Θ).

Bel(E|M) = min
Θ
G[:,m]TΘ[:,m]

Pl(E|M) = max
Θ
G[:,m]TΘ[:,m]

where Θ is the set of variable elements in Θ[:,m] (i.e. the elements not automatically set

to 1 or 0 by logic). Again, the variables values in Θ are constrained to be between 0 and

1. However, one should note that the elements in G are no longer positive. Consequently,

when calculating belief and plausibility, the minimum is no longer obtained by setting all

flexible values in Θ to zero; likewise, the maximum is no longer maximized by setting all

flexible values in Θ to one. Instead, the belief and plausibility should be obtained using

linear programming methods.

9.2.3 The Generalized Dempster’s Rule of combination

In the same way as Bayesian methods, the Generalized Dempster’s Rule of combination

can be used to combine information from multiple pieces of evidence (including prior prob-

abilities). Originally, Dempster’s Rule of combination is given for BBAs in the following
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form:

S(mk) =
1

1−K
∑

mk=mi∩mj 6=∅

S(mi)S(mj) (9.6)

1−K =
∑

mk=mi∩mj 6=∅

S(mi)S(mj) (9.7)

where K is a normalization constant, to ensure that the terms S(mk) sum to unity. In a

similar manner, the Generalized Dempster’s Rule of Combination is applied to the rows of

G that pertain to mk (or equivalently, G[mk, :])

G12[mk, :] =
1

1−K
∑

mk=mi∩mj 6=∅

G1[mi, :] ◦G2[mj , :] (9.8)

1−K =
∑

mk=mi∩mj 6=∅

meanx6=0(G[mi, :] ◦G[mj , :]) (9.9)

where X ◦ Y denotes the Hadamard (or element-wise) product between X and Y , while

meanx6=0(X) is the mean of the non-zero values of X.

Shortcut combination rule with Bayesian GBBAs

When the Generalized Dempster’s rule is applied and at least one of the two GBBAs

is Bayesian (having no support to ambiguous modes), the resulting GBBA will also be

Bayesian. In such a case, it is easier to apply a shortcut rule that will yield the exact

answer with much less computational burden. Here, we can consider the case where G1

is a is a Bayesian prior (expressed as P1(M)), and where G2 is an arbitrary GBBA, the

resulting GBBA (G12) can be expressed as

G12(mi,mi) =
1

1−K
P1(mi)In2(mi) (9.10)

G12(mi,mj 6=i) = 0

1−K =
∑
m

P1(M)In2(M) (9.11)

where In2(mi) is the inclusive probability of mi expressed as

In2(mi) =
∑

mk⊇mi

G2[mk,mi] = G2[:,mi]
TΘ∗[:,mi]

The end result isG12(mi,mi) being a diagonal matrix, with the main diagonals representing

Bayesian posterior probabilities. The shortcut combination rule is particularly useful in a

dynamic setting, where successive combinations will yield Bayesian posteriors pretty quickly;

it is better to simply use a Bayesian prior in the first step and use the short-cut rule for

every successive combination.
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9.3 Illustrative Example of Proposed Methodology

9.3.1 Introduction

To demonstrate how to use the Generalized Dempster’s rule, we consider the same example

as in Chapter 8, the control loop shown in Figure 9.1 where the same modes and evidence

are considered

Figure 9.1: Typical control loop

9.3.2 Offline Step 1: Historical data collection

Again, the first step is to go through the historical data and note the instances where each

of the four possible modes occurs.

1. m1 [0, 0] where bias and stiction do not occur

2. m2 [0, 1] where bias does not occur but stiction does

3. m3 [1, 0] where bias occurs but stiction does not

4. m4 [1, 1] where both bias and stiction occur

Data should be collected according to each mode. In certain instances, one of these am-

biguous modes may also occur

1. {m1,m2} [×, 0] where bias does not occur and stiction is undetermined

2. {m1,m3} [×, 1] where bias is undetermined and stiction does not occur

3. {m2,m4} [0,×] where bias is undetermined and stiction occurs

4. {m3,m4} [1,×] where bias occurs and stiction is undetermined

5. {m1,m2,m3,m4} [×,×] where both bias and stiction are undetermined

Such ambiguous cases should be classified under one of these ambiguous modes.
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9.3.3 Offline Step 2: Mutual Information Criterion (optional)

As in Chapter 8, this step is optional. One can reduce the dimensionality of the problem by

assuming independence where the mutual information criterion (MIC) yields a result close

to zero (such as less than 0.01).

MIC =

[
0 0

MIC(1, 2) 0

]
where, for example, MIC(1, 2) is calculated as

MIC(1, 2) =
∑
E1

∑
E2

p(E1, E2|m) log

(
p(E1, E2|M)

p(E1|M)p(E2|M)

)
As in the Second-Order Bayesian method, the MIC matrix must be calculated for every

unambiguous mode. For each mode, the two pieces of evidence are either considered in-

dependent or dependent. For example, let us say that under Mode (1), the probability is

distributed as given in Table 9.1

Table 9.1: Probability of evidence given Mode 1

E = [0, 0] E = [0, 1] E = [1, 0] E = [1, 1]

n(E|m1) 70 10 15 5

p(E|m1) 0.7 0.1 0.15 0.05

The MIC for Mode 1 is given as

MIC = p([0, 0]|m1) log

(
p([0, 0]|m1)

p([0,×]|m1)p([×, 0]|m1)

)
+ p([0, 1]|m1) log

(
p([0, 1]|m1)

p([0,×]|m1)p([×, 1]|m1)

)
+ p([1, 0]|m1) log

(
p([1, 0]|m1)

p([1,×]|m1)p([×, 0]|m1)

)
+ p([1, 1]|m1) log

(
p([1, 1]|m1)

p([1,×]|m1)p([×, 1]|m1)

)
= 0.7 log

(
0.7

(0.8)(0.85)

)
+ 0.1 log

(
0.1

(0.8)(0.15)

)
+ 0.15 log

(
0.15

(0.2)(0.85)

)
+ 0.05 log

(
0.05

(0.2)(0.15)

)
= 0.0088259

Because this number (0.0088259) is so small, the two monitors E1 and E2 can be considered

independent under this mode.
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9.3.4 Offline Step 3: Calculate reference value

Generalized BBAs use inclusive Θ values (Θ∗) as a reference for Θ in the same manner

as the second-order Bayesian method uses the informed values (Θ̂). The boldface notation

indicates that Θ∗ takes the form of a matrix; in this illustration, Θ∗ takes the following

form:

Θ∗ =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

θ∗{ m1
m1,m2

} θ∗{ m2
m1,m2

} 0 0

θ∗{ m1
m1,m3

} 0 θ∗{ m3
m1,m3

} 0

0 θ∗{ m2
m2,m4

} 0 θ∗{ m4
m2,m4

}
0 0 θ∗{ m3

m3,m4
} θ∗{ m4

m3,m4
}

θ∗{ m4
m1,m2,m3,m4

} θ∗{ m4
m1,m2,m3,m4

} θ∗{ m4
m1,m2,m3,m4

} θ∗{ m4
m1,m2,m3,m4

}


where each element of Θ∗ is calculated as

Θ∗[i, j] = 1 mi ∩mk 6= ∅

Θ∗[i, j] = 0 mi ∩mk = ∅

Resulting in

Θ∗ =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1
1 1 1 1


9.3.5 Online Step 1: Calculate support

For this application, we assume that the priors are unambiguous, so that the shortcut

method can be applied. When a new piece of evidence [E1, E2] becomes available, we

calculate the support according to

S(E1, E2|mk) =
n(E1, E2|mk)

n(mk)

If E1 and E2 are considered independent given mk, the support can be calculated separately

S(E1|mk) =
n(E1|mk)

n(mk)
S(E2|mk) =

n(E2|mk)

n(mk)
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The support can be arranged in matrix form as follows

S =



S(E|m1) 0 0 0
0 S(E|m2) 0 0
0 0 S(E|m3) 0
0 0 0 S(E|m4)

S(E|m1,m2) S(E|m1,m2) 0 0
S(E|m1,m3) 0 S(E|m1,m3) 0

0 S(E|m2,m4) 0 S(E|m2,m4)
0 0 S(E|m3,m4) S(E|m3,m4)

S(E|m1, . . . ,m4) S(E|m1, . . . ,m4) S(E|m1, . . . ,m4) S(E|m1, . . . ,m4)


where each column corresponds to an unambiguous mode, and each row corresponds to

an ambiguous mode. Note that for some modes (hence columns), evidence independence

is assumed, thus some columns have multiple entries to correspond to multiple pieces of

evidence.

For example, consider the data collected in Table 9.2 with the support calcualted in

Table 9.3.

Table 9.2: Frequency of modes containing m1

E = [0, 0] E = [0, 1] E = [1, 0] E = [1, 1]

n(E|m1) 70 10 15 5

n(E|m2) 14 59 6 21

n(E|m3) 13 7 58 22

n(E|m4) 12 8 23 57

n(E|m1,m2) 25 15 7 3

n(E|m1,m3) 20 20 6 4

n(E|m2,m4) 19 17 7 7

n(E|m3,m4) 19 8 7 16

n(E|m1,m2,m3,m4) 7 6 6 6

Table 9.3: Support of modes containing m1

E = [0, 0] E = [0, 1] E = [1, 0] E = [1, 1]

S(E|m1) 0.7 0.1 0.15 0.05

S(E|m2) 0.14 0.59 0.6 0.21

S(E|m3) 0.13 0.07 0.58 0.22

S(E|m4) 0.12 0.08 0.23 0.57

S(E|m1,m2) 0.5 0.3 0.14 0.06

S(E|m1,m3) 0.4 0.4 0.12 0.08

n(E|m2,m4) 0.38 0.34 0.14 0.14

n(E|m3,m4) 0.38 0.16 0.14 0.32

S(E|m1,m2,m3,m4) 0.28 0.24 0.24 0.24
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If E = [0, 1] is observed, the support matrix S takes on the following form:

S =



0.1 0 0 0
0 0.59 0 0
0 0 0.07 0
0 0 0 0.08

0.3 0.3 0 0
0.4 0 0.4 0
0 0.34 0 0.34
0 0 0.16 0.16

0.24 0.24 0.24 0.24


9.3.6 Online Step 2: Calculate the GBBA

The GBBA is calculated by taking the derivative of Eqn (9.2), which in vector form is

written as

p(E|mi,Θ) =
[S[:,mi] ◦ n]T Θ[:,mi]

nTΘ[:,mi]

where n is the vertical vector of mode frequencies.

n = [n(m1), n(m2), . . . , n(m1,m2,m3,m4)]T

In the case of Table 9.2, n is given as

n = [100, 100, 100, 100, 50, 50, 50, 50, 25]T

In MATLAB, given the variables S (in the form of S), Theta (in the form of Θ) and n

(in the form of n), probabilities can be calculated using the following code:

1 n m = length(S(1,:));

2 P = zeros(n m,1);

3 for m = 1:n m

4 Num = (S(:,m).*n)'*Theta(:,m);

5 Den = n'*Theta(:,m);

6 P(m) = Num/Den;

7 end

In a similar manner, we can calculate the derivatives as

∂ p(E|mi,Θ)

∂Θ[k,mi]

∣∣∣∣
Θ̂

=
n[k]S[k,mi]

nTΘ∗[:,mi]
− n[k] (n ◦ S[:,mi]) Θ∗[:,mi]

(nTΘ∗[:,m])2

which, in MATLAB can be obtained using

1 n = sum(N,2); %Find number of samples for each mode

2 [n M,n m] = size(S);

3 amb = (n m+1):n M; % indices of ambiguous modes

4 for m = 1:n m

5 Num = (S(:,m).*n)'*Theta(:,m); %Likelihood numerator
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6 Den = n'*Theta(:,m); %Likelihood denominator

7 P(m,1) = Num/Den; %Inclusive Likelihood

8

9 for k = amb % Only consider ambiguous modes for dP

10 if ModeStruct (k,m) == 1

11 %Abridged code which used Num and Den

12 dP(k−n m,m) = n(k)*S(k,m)/Den − n(k)*Num/(Denˆ2);

13 end

14 end

15 end

After calculating the derivatives, the GBBA will need reference probabilities. The reference

probability is calculated as

p̃(E|mi,Θ
∗) = p(E|mi,Θ

∗)−
∑

mk⊃mi

∂ p(E|mi,Θ)

∂Θ[k,mi]

∣∣∣∣
Θ̂

Θ∗[k,mi]

As an example, for mode 1, p̃(E|m1,Θ
∗) is given as

p̃(E|m1,Θ
∗) = p(E|m1,Θ

∗)− ∂ p(E|m1,Θ)

∂Θ[5, 1]

∣∣∣∣
Θ̂

Θ∗[5, 1]

− ∂ p(E|m1,Θ)

∂Θ[6, 1]

∣∣∣∣
Θ̂

Θ∗[6, 1]− ∂ p(E|m1,Θ)

∂Θ[9, 1]

∣∣∣∣
Θ̂

Θ∗[9, 1]

where Θ∗ is the matrix given in Offline Step 3. In MATLAB, the reference probability Pr

can be obtained using the following code

1 for m = 1:n m

2 Pr(m,1) = P(m,1) − dP(:,m)'*Theta(amb,m);

3 end

Using these inputs, the resulting GBBA is given as

G =



p̃(E|m1,Θ
∗) 0 0 0

0 p̃(E|m2,Θ
∗) 0 0

0 0 p̃(E|m3,Θ
∗) 0

0 0 0 p̃(E|m4,Θ
∗)

∂ p(E|m1,Θ)
∂Θ[5,1]

∣∣∣
Θ̂

∂ p(E|m2,Θ)
∂Θ[5,2]

∣∣∣
Θ̂

0 0

∂ p(E|m1,Θ)
∂Θ[6,1]

∣∣∣
Θ̂

0 ∂ p(E|m3,Θ)
∂Θ[6,3]

∣∣∣
Θ̂

0

0 ∂ p(E|m2,Θ)
∂Θ[7,2]

∣∣∣
Θ̂

0 ∂ p(E|m,4Θ)
∂Θ[7,4]

∣∣∣
Θ̂

0 0 ∂ p(E|m3,Θ)
∂Θ[8,3]

∣∣∣
Θ̂

∂ p(E|m4,Θ)
∂Θ[8,4]

∣∣∣
Θ̂

∂ p(E|m1,Θ)
∂Θ[9,1]

∣∣∣
Θ̂

∂ p(E|m2,Θ)
∂Θ[9,2]

∣∣∣
Θ̂

∂ p(E|m3,Θ)
∂Θ[9,3]

∣∣∣
Θ̂

∂ p(E|m4,Θ)
∂Θ[9,4]

∣∣∣
Θ̂


In MATLAB, obtaining the GBBA is a simple matrix concatenation

1 GBBA = [diag(Pr);dP]
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In our example, the GBBA is found to be

G =



0.16 0 0 0
0 0.57 0 0
0 0 0.08 0
0 0 0 0.10

0.02 −0.07 0 0
0.05 0 0.10 0

0 −0.06 0 0.07
0 0 0.02 0.01

0.00 −0.05 0.02 0.02


9.3.7 Combine BBAs and diagnose

In this example, the prior probability is unambiguous. Thus the shortcut method can be

used for combination. The first step to the shortcut method is to calculate the inclusive

probability P ∗(E|M,Θ)

p(E|M,Θ∗) = G[:,M ]TΘ∗[:,M ]

where Θ∗ is the inclusive probability, where all non-zero values are set to 1

Θ∗ =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1
1 1 1 1


The posterior probability can be obtained using the following short-cut expression

p(M |E) =
1

K
p(E|M,Θ∗)p(M) =

1

K
In(E|M)p(M)

K =
∑
k

p(E|mk,Θ
∗)p(mk)

After the BBAs are combined, the posterior probability p(M |E) has a single value for each

mode (it is not variable with respect to Θ), thus one simply diagnoses the mode based on

the highest posterior.

9.4 Simulated Case

The proposed second-order method was tested on the simulated Tenessee Eastman problem.

In the same manner as the second-order Bayesian method, data was masked as ambiguous

based on its resemblance toward other modes. If 30 % of the data is classified as ambiguous,
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then for every mode, it classifies the 70 % of the most likely data for this mode as unam-

biguous, but each remaining data point will have at least one additional mode associated

with it, based on its proximity toward other modes.

Results for the Generalized Dempster-Shafer method are compared to the ideal scenario

(where no modes were ambiguous), the incomplete Bayesian method (which ignored am-

biguous mode data) and the second-order method. Results in Figure 9.2 compare diagnosis

results based on modes, while results in Figure 9.3 compare diagnosis results based on the

individual components that make up the modes.

Results for all four scenarios were nearly identical under the case when 30% of the data

belonged to ambiguous modes, but more significant improvements were exhibited when

70% of the data came from ambiguous modes. These improvements showed that data

was beginning to become more scarce, as performance for the incomplete Bayesian method

(where ambiguous mode data was simply ignored) was beginning to decline. Results between

the second-order method and the Generalized Dempster-Shafer method were very similar.
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Figure 9.2: TE mode diagnosis error
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Figure 9.3: TE component diagnosis error
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9.5 Bench Scale Case

The generalized Dempster-Shafer method was also applied to the lab-scale hybrid tank sys-

tem. Diagnosis based on modes is shown in Figure 9.4 while diagnosis based on component is

shown in Figure 9.5. Performance in this case showed that the generalized Dempster-Shafer

method exhibited a slight improvement over the second-order method.

The main difference between the second-order method and the generalized Dempster-

Shafer method was that the second-order method distributes ambiguous mode data over

the specific modes in accordance to prior probabilities; however, the Generalized Dempster-

Shafer method includes all possible ambiguous mode data into each specific mode. If the

actual ambiguous mode distribution is significantly different from what one would expect

from prior probabilities, the Generalized Dempster-Shafer method will likely yield superior

results when compared to the second-order method.
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Figure 9.4: Hybrid tank system mode diagnosis error
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Figure 9.5: Hybrid tank system component diagnosis error
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9.6 Industrial System

Finally, the generalized Dempster-Shafer method was applied to the industrial system along-

side the second-order method. In contrast to the experimental system, the second-order

method had a slightly superior performance to the generalized Dempster-Shafer method

when applied to the industrial system. In this case, the second-order method yields supe-

rior results most likely because the real proportions Θ are similar to the estimated values

Θ∗ given by the prior probabilities. Results for mode diagnosis are shown in Figure 9.6,

while results for component diagnosis are shown in Figure 9.7.

Due to the abundance of data, excluding ambiguous mode data did not have a strong

effect when 30% of the data belonged to ambiguous modes, but differences became more

pronounced when 70% of the data came from ambiguous modes. There was also a more

pronounced change with respect to diagnosing components in contrast to diagnosing modes.
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Figure 9.6: Industrial system mode diagnosis error
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Chapter 10

Making use of continuous evidence
through kernel density estimation

10.1 Introduction

In previous application chapters, we have considered evidence that takes on a discrete form,

such as alarms which were obtained by discretizing a continuous performance metric. By

classifying a continuous performance index into low-resolution bins, information is lost.

However, using methods that can deal with continuous data preserves this information, and

as a result, continuous data methods can significantly improve performance.

The Kernel density estimation method (sometimes called the Parzen-Rosenblatt window

method) is a popular method for estimating probability density functions from data. It is a

non-parametric method that places a “kernel function” centred around each data point, so

that adding the kernel functions results in a smoothed probability density estimate. Kernel

density estimation is non-parametric and thus does not assume a predefined shape for the

distribution, allowing the distribution estimate to naturally follow the shape of the data

distribution, regardless of the shape it takes.

While kernel density estimation does not contain shape parameters, it does contain

a crucial smoothing parameter called the bandwidth. A variety of techniques exist for

estimating bandwidths, and this chapter will discuss two of the most popular approaches. In

addition to the required techniques for kernel densities, there are complementary techniques

that can help increase the accuracy of a kernel density estimate. This chapter focuses on

how to perform the following techniques:

1. Kernel density estimation

2. Bandwidth selection

3. Dimensionality reduction

4. Handling missing data
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10.2 Algorithm

10.2.1 Kernel Density Estimation

The goal of kernel density estimation is to estimate a density function f(x) using kernels

K(x) which are centred around each data point in the historical data set D. The kernel

K(x) can be any function that integrates to unity; it is preferable for K(x) to be a density

function. From a multivariate data set D with n entries, a kernel density estimate from the

kernel K(x)is obtained using the following sum:

f(x) ≈ 1

n

n∑
i=1

1

|H|1/2
KH

(
H1/2(x−Di)

)
(10.1)

Due to many desirable mathematical properties, a popular choice of kernel density estimate

is the multivariate Gaussian kernel

KH(z) =
1√

(2π)d
exp(zT z)

where d is the dimensionality of the data. Using this kernel results in the following kernel

density estimate

f(x) ≈ 1

n

n∑
i=1

1√
(2π)d|H|

exp
(
[x−Di]

TH−1[x−Di]
)

(10.2)

10.2.2 Bandwidth selection

Kernel density estimation is classified as a non-parameteric technique; nevertheless, Kernel

density estimates are affected by the parameter H in the same manner that histograms are

affected by bin width. When the bin width increases, the histogram becomes smoother,

but as the bin size decreases, the histogram takes a rougher shape. Similarly, shrinking the

bandwidth H will result in a jagged kernel density estimate, and increasing H will result in

a smoother kernel density estimate. Many different methods for selecting bandwidths exist,

and is still a somewhat active are of research [78] [79], but the more popular methods are

presented in this section.

Optimal bandwidth for normal distributions

Selecting a bandwidth to estimate normal distributions is a mature subject within literature,

and the result is well established. Based on the asymptotic mean integrated square error

(AMISE) criterion (mentioned in Chapter 6), the optimal bandwidth for estimating a normal

distribution with normal kernels is given as

HN =

(
4

n(d+ 2)

) 2
d+4

Σ (10.3)
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where Σ is the covariance of the normal distribution, d is the dimension of the data, and

n is the number of sample data points. In practice, the sample covariance S can be used

in place of Σ. While this bandwidth is optimal for normal distributions, for many other

distributions, this bandwidth can be larger than optimal resulting in an over-smoothed

distribution, especially if the distribution has more than one mode. Engineering judgement

can be exercised by inspecting the data to see if the shape deviates significantly from normal.

In higher dimensions, the direction of the data can change in different locations. Thus it

is often safer to use the main diagonal of the covariance estimate S instead of the full matrix,

as S will stretch the covariance matrix in a certain direction. Using the main diagonal will

eliminate directional preference.

10.2.3 Adaptive bandwidths

One problem often encountered in kernel density estimation is that when a single bandwidth

is used, peaks tend to be over-smoothed, while tails tend to be under-smoothed. Adaptive

bandwidth estimation is a common solution for this problem. In the adaptive bandwidth

estimation problem, a pilot density function is estimated in order to give a rough probability

for all the data points. These probabilities are used to scale the bandwidth. Intuitively,

larger probabilities result in narrower bandwidths and smaller probabilities result in wider

bandwidths.

In the first step, the pilot density is estimated using the optimal normal bandwidth HN

f̂pH(x) =
1

n

n∑
i=1

1√
(2π)d|HN |

exp
(
[x−Di]

TH−1
N [x−Di]

)
Then, we calculate a geometric mean probability g used as a standardization constant.

log(g) =
1

n

∑
i

log
[
f̂pH(D[i])

]
(10.4)

Next, we obtain a bandwidth matrix scalar λi for each data point.

λi =

(
f̂pH(D[i])

g

)α
(10.5)

where the parameter α is a user-defined parameter. For practical purposes, it is most often

set to α = 0.5 for moderate sample sizes (such as 100 sample points in the univariate

case), but should be reduced for larger sample sizes. The parameter λi is used to scale the

bandwidth as follows:

Hi = λ
−2/d
i HN (10.6)

A possible adaptation to this step is to use a local covariance estimate Si to account for the

local direction of the data. In this adaptation, we obtain a sample covariance estimate Si
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using the data closest to D[i] (for example, the closest 25% of the data, or use a weighting

function for the covariacne estimator) and scale it according to the following expression:

Hi = λ
−2/d
i

|HN |1/d

|Si|1/d
Si (10.7)

Finally, the kernel density estimate is given as

f̂(x) =
1

n

n∑
i=1

1√
(2π)d|Hi|

exp
(
[x−Di]

TH−1
i [x−Di]

)
(10.8)

10.2.4 Optional Step: Dimension reduction by multiplying independent
likelihoods

Kernel density methods, like discrete methods, tend to suffer performance degradation

when dimensionality is increased. For the discrete method, estimation difficulty increases

exponentially with respect to the number of monitoring inputs. For example, if 2 monitors

were used, each having 3 different states, there would be 23 = 9 bins required for estimation.

Now if 15 monitors were used, the number of bins for estimation would balloon to over 14

million. Kernel density methods are more efficient at approximating densities, and thus

difficulty may not grow as fast as discrete/histogram methods, but dimensionality can still

be a problem.

If monitors are highly correlated, data tends to exhibit lower-dimensionality behaviour,

but independent monitors are more problematic. However, independent monitors have a

convenient solution. If certain monitors (or groups of monitors) can be considered indepen-

dent, E1 ⊥ E2, then their higher-dimensional joint likelihood p(E1, E2|M) can be calculated

by multiplying the lower-dimensional individual likelihoods p(E1|M), p(E2|M) together.

p(E1, E2|M) = p(E1|M)p(E2|M)

Assuming independence and verifying these assumptions through the MIC was previ-

ously discussed in Chapter 8. The procedure largely remains the same in this chapter,

except that now probability functions p(π1), p(π2), p(π1, π2) can be expressed as kernel den-

sity estimates

I(x1;x2) =

∫
x1

∫
x2

p(x1, x2) log

(
p(x1, x2)

p(x1)p(x2)

)
dx1 dx2 (10.9)

Because the integration is in only one or two dimensions, the integration can be per-

formed using quadrature (for example, via the MATLAB command “quad2d” performs

two-dimensional quadrature integration). When the MIC is applied to kernel density es-

timates, values less than 0.05 are considered negligible, while values greater than 0.2 are

considered significant.
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10.2.5 Optional Step: Creating independence via Independent Compo-
nent Analysis

Independent component analysis (ICA) assumes that data was generated by a linear combi-

nation of independent variables; it is similar to principal component analysis (PCA) except

that the latent variable t is not restricted to be Gaussian. Thus, ICA can be effectively

performed on data that is not multivariate normal. Nevertheless, there still is a restriction

in that observations y are assumed to be linear combinations of latent variables f

y − µ = At

The goal of ICA is to obtain the transformation matrix A, or more importantly, its inverse

W = A−1. While many algorithms for ICA exist (some are even based on the MIC), the

fixed-point algorithm has shown to exhibit both accuracy and speed. Software for this

algorithm has been previously developed under the MATLAB and Octave platforms and is

available at the following website: http://research.ics.aalto.fi/ica/fastica/.

Independent component analysis has been shown to be effective when observation inputs

consist of raw or relatively unprocessed data. However, if the data consists of monitors that

were tuned to be sensitive to underlying problem sources, ICA can reduce this sensitivity

and possibly result in poorer diagnostic performance.

10.2.6 Optional Step: Replacing missing values

When values are missing for a kernel density estimation, one cannot use the marginalization

methods that are used for discrete monitors. However, being able to assume independence

among smaller groups of observations makes missing values less of an issue. For example,

consider a system with nine observations y1, y2, . . . , y9. If it was possible to break them down

into three independent groups [y1, y2, y3] ⊥ [y4, y5, y6] ⊥ [y7, y8, y9], then if y7 is missing, we

would only have to discard y8 and y9; if independence was not assumed, then observations

y1, . . . , y6 would also have to be discarded along with y8 and y9.

If discarding missing data significantly reduces data reliability, then missing data entries

have to be estimated. This can be done by applying the following steps:

1. Estimate the kernel density function using only complete data entries

2. Estimate the expected values of the incomplete data entries

3. Using the estimated data entries, estimate the kernel density function which includes

the new data points

4. Repeat the log likelihood maximization based on the new kernel density function

5. Repeat steps (3) and (4) until the likelihood converges
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This approach resembles the EM algorithm, except that the missing values must be explicitly

calculated instead of its statistics. Such an approach is required because the kernel density

function is non-parametric.

After obtaining the kernel density estimate, one can use kernel density regression to

replace the missing values. There are two main techniques for kernel density regression: the

zeroth-order (Nadaraya-Watson) method, and the first-order method.

1. Zeroth-order (Nadaraya-Watson) method: For a point with known elements x

and missing elements y, we look at the historical record of data having both known

X and Y values. The value of y is calculated by a weighted average of the historical

Y values, weighted based on the proximity of their X components to X.

E(y) =

∑n
i=1K

(
H
−1/2
x [Xi − x]

)
Yi∑n

i=1K
(
H
−1/2
x [Xi − x]

) (10.10)

2. First-order method: The zeroth-order method tends to have a flat bias of the

function, particularly around peaks in y and around the edges of the data. In order

to correct this bias, the first-order method is proposed. Instead of taking a weighted

average of Y , weighted linear regression on Y is performed in stead. Given the point

x, y with known elements x and unknown elements y, we first obtain the regressor

variable Z as

Zi =

[
1

Xi − x

]
The weighted linear regression is then performed as[

E(y)

β̂(x)

]
=

[
n∑
i=1

K
(
H−1/2
x [Xi − x]

)
ZiZ

T
i

]−1 [ n∑
i=1

K
(
H−1/2
x [Xi − x]

)
ZiYi

]
(10.11)

The result of the regression is a vector, with E(y) as the first element (corresponding

to Zi = 1), with the remaining elements β̂(x) being ignored.

After finding E(y) for all missing data points, the completed data points can be added

to the data. For a second iteration, because estimates are obtained for missing values,

one can use the kernel density estimate from the completed data history to estimate E(y)

again. The steps of updating the kernel density estimate and filling in missing values can

be repeated until the likelihood converges.

10.3 Illustrative Example of Proposed Methodology

Again, we consider the example presented in Chapter 8, the control loop shown in Figure

10.1 where the same modes and evidence are considered The methodology of kernel density

estimation is data-intensive and cannot be easily summarized; thus the example will be

illustrated through MATLAB/Octave code.
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Figure 10.1: Typical control loop

Kernel Density Estimation functions

The code below is an optimized MATLAB/Octave implementation of kernel density estima-

tion which works in arbitrary dimensions. The main feature is that Cholesky decomposition

is used for the bandwidth so that it only needs to be performed once offline.

1 function DensityInfo = fKernelEstimateNorm(X)

2 [n,d] = size(X);

3 %A diagonal covariance matrix tends yield more stable results

4 S = diag(var(X));

5 %Optimal bandwidth for Gaussian estimation

6 H = (4/(n*(d+2)))ˆ(2/(d+4))*S;

7

8 %Inversion from cholesky decomposition (for speed and forced symmetry)

9 HRi = eye(d)/chol(H);

10

11 %we use the log of normalization constant for the kernel density to avoid NaNs

12 BWMd = det(H);

13 k = −0.5*log( (2*pi)ˆd*BWMd ) − log(n);

14

15 DensityInfo.bwm = H; %bandwidth matrix

16 DensityInfo.bwmZt = HRi'; %transformation to Z

17 DensityInfo.logk = k; %log of KDE normalizing constant

18 DensityInfo.data = X; %Data

The fKernelEstimateNorm command is used to set up the bandwidth parameters in a way

to allow efficient kernel density estimation from the fKernelDensity given as

1 function fx = fKernelDensity(x,DensityInfo)

2 %x is multivariate random variable realization (row vector)

3 %multiple rows in x will result in multiple probabilities

4

5 Data = DensityInfo.data; %KDE data

6 k(1,:) = DensityInfo.logk; %Log of KDE normalization

7 Zt = DensityInfo.bwmZt; %Transformation to Mahalanobis distance

8

9

10 %This function estimates multiple probabilities from multiple rows in x

11 %Data has nD rows, each are horizonal entries of x

12 [nX,p] = size(x);
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13 [nD,¬] = size(Data);

14

15 %Calculate kernel density (can take both static and variable kernels)

16 fx = zeros(nX,1);

17 for n = 1:nX

18 Xd = ( Data − ones(nD,1)*x(n,:) )'; %Raw distances

19 DM = sum( (Zt*Xd).ˆ2,1); %Mahalanobis distances

20 Pe = k − 0.5*DM; %Exponent of probability

21 fx(n,1) = sum(exp(Pe)); %Probability density

22 end

This function treats x as a set of row vectors, so that multiple rows will yield multiple

likelihoods. Note that the log normalization constant is added in the exponent; this is less

likely to result in numerical errors if k and DM are large. For the sake of speed, it is key to

ensure that the exponent exp(Pe) is evaluated for the entire vector Pe as this is much faster

than evaluating elements of Pe one at a time (due to parallel computation methods invoked

by MATLAB and Octave for vectors).

10.3.1 Offline Step 1: Historical data collection

As in previous cases, the first step is to go through the historical data and note the instances

where each of the four possible modes occurs.

1. m1 [0, 0] where bias and stiction do not occur

2. m2 [0, 1] where bias does not occur but stiction is does

3. m3 [1, 0] where bias occurs but stiction does not

4. m4 [1, 1] where both bias and stiction occur

In this chapter, we assume that no ambiguous modes exist, thus Bayesian methods are used.

Nevertheless, because the only aspect that changes is how the likelihood function p(E|M) is

calculated (as kernel density estimates are used) kernel density estimates can be combined

with the second-order Bayesian method or the Dempster-Shafer method in order to handle

ambiguity.

If we consider the MATLAB cell variable Data which contains data for each mode, we

can set up the kernel density estimates with the following code:

1 for m = 1:length(Data)

2 KDE(m) = fKernelEstimateNorm(Data{m})
3 end

Offline Step 2: Replacing missing values (optional)

If elements of E are missing, they cannot be used for learning unless the missing values

are replaced. The data is separated into two sections Dm = [Dc,Dic]. In MATLAB, it is

189



assumed that missing elements are represented by the value NaN; for example

Dm =


4.5 2.8 0.3 1.2
2.7 NaN 1.0 0.9
5.6 3.0 0.6 0.11
4.5 2.7 0.4 1.3
3.6 2.8 0.5 NaN


Each row represents a historical piece of evidence; from this example, rows 2 and 5 would

be moved to the set Dic while rows 1, 3, and 4 would be moved to the set Dc. This sorting

can easily be done in MATLAB; consider the data set for mode M denoted by Data{m}
that has some NaN entries in various rows. Sorting is done using the following code:

1 vNaN = sum(Data{m},2); %rows with NaN will sum to NaN

2 indIC = find(isnan(vNaN)); %identify rows with NaN

3 indC = find(¬isnan(vNaN)); %identify rows without NaN

4

5 %Place incomplete and complete data into appropriate data sets

6 Dc = Data{m}(indC,:);
7 Dic = Data{m}(indIC,:);
8 DcF = Dc;

9 DicF = Dic;

where “¬” is the “not” operator, written as “∼” in MATLAB. Note DcF represents the data

with missing sets filled in, but on the first iteration, the missing data are not filled in. For

each incomplete data entry, obtain the expected value of the missing entries using Kernel

density regression.

1 for i = 1:size(Dic,1)

2 dic = Dic(i,:);

3 Xind = find(¬isnan(dic));
4 Yind = find(isnan(dic));

5 KDE = fKernelEstimateNorm(DcF(:,Xind));

6

7 dic(i,Yind) = fKernelRegFirst(dic(Xind),DcF(:,Yind),KDE)

8 DicF(i,:) = dic;

9 end

The function fKernelRegFirst returns the expected value of the missing elements Yind

using the historical values of the missing component DcF(:, Yind) and the kernel density

estimate KDE (obtained using historical values of the available component DcF(:, Xind)).

While the basics of the function fKernelRegFirst have been already described, a number

of safeguards and efficiency-increasing steps are included making the code quite lengthy, thus

details fKernelRegFirst are placed in Appendix A. Once estimation has been performed

over all elements in Dic, one can add completed elements to the data.

1 DcF = [Dc,DicF]

Then, one can estimate missing elements Dic again with the new completed Dc dataset.
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10.3.2 Offline Step 3: Mutual Information Criterion (optional)

As in Chapters 8 and 9, this step is optional. The kernel density estimate is used to obtain

the probability terms p(E1|M)p(E2|M) and p(E1, E2|M) ; if MIC(1,2) is greater than some

threshold (0.01), it would be better to assume that E1 and E2 were dependent.

MIC =

[
0 0

MIC(1, 2) 0

]
where MIC(1, 2) is calculated as

MIC(1, 2) =

∫
E1

∫
E2

p(E1, E2|m) log

(
p(E1, E2|M)

p(E1|M)p(E2|M)

)
dE1 dE2

In MATLAB, the MIC can be calculated using numerical integration (the authors used

the two-dimensional quadrature command quad2d in MATLAB. Consider the example

above, where D is the historical record of the bivariate random variable E. In MATLAB,

the mutual information term can be expressed as

1 function MI = fMI(X,Y,KDE,KDEx,KDEy)

2 %X and Y are usually scalars, but quad2d prefers the ability to have matrix inputs/outputs

3 [ni,nj] = size(X);

4 MI = zeros(ni,nj);

5 for i = 1:ni

6 for j = 1:nj

7 p12 = fKernelDensity([X(i,j),Y(i,j)],KDE);

8 p1 = fKernelDensity(X(i,j),KDEx);

9 p2 = fKernelDensity(Y(i,j),KDEy);

10 MI(i,j) = p12*log( p12/(p1*p2) );

11 end

12 end

13 end

Note, if there are regions where p12, p1, p2 are very small (and approach zero), there runs

a risk that MI will be undefined. It is useful to note that, due to the logarithmic term, if

p12 approaches zero, then MI also approaches zero; thus, for reliability, statements made in

the code should be inserted to reflect this fact.

The mutual information criterion is obtained by integrating over the aforementioned

mutual information term

1 function MIC = fMIC(D)

2 x = D(:,1);

3 y = D(:,2);

4

5 %Kernel density for univariate and bivariate data sets

6 [KDE] = fKernelEstimateNorm(D);

7 [KDEx] = fKernelEstimateNorm(x);

8 [KDEy] = fKernelEstimateNorm(y);

9

10 %Set integration boundaries

11 minx = min(x) − 0.1*std(x);

12 maxx = max(x) + 0.1*std(x);
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13 miny = min(y) − 0.1*std(y);

14 maxy = max(y) + 0.1*std(y);

15

16 %hMI is a function to be integrated

17 hMI = @(X,Y) fMI(X,Y,KDE,KDEx,KDEy);

18

19 %Integrate to obtain MIC

20 MIC = quad2d(hMI,minx,maxx,miny,maxy)

21

22 end

The mutual information criterion can be arranged in a lower triangular matrix for grouping

1 MICmatrix = zeros(length{Data{m});
2 ne = length(Data{m}(1,:)); %number of evidence sources

3 for j = 1:ne

4 for i = (j+1):ne

5 MICmatrix(i,j) = fMIC(Data{m}(:,i,j))
6 end

7 end

When grouping, one prioritizes the elements in the MIC matrix which have large values. If

the value in the MIC matrix less than 0.05, the corresponding two pieces of evidence (by

row and column) can be considered independent.

10.3.3 Offline Step 4: Independent Component Analysis (optional)

If process data were used directly, applying ICA to transform the data may be advantageous.

The fixed-point algorithm [76] can be applied in order to solve for A in the expression

y = At+ ε

so that the new monitor inputs π∗ are calculated as

D∗m = A−1Dm = WDm

The transformed data D∗m can be used as input instead of the original data Dm.

Using the fast ICA package [76], the MATLAB code is used to produce the information

necessary for ICA, that is, the mean and the transformation matrix W .

1 Transform.mean = mean(data);

2 [¬,¬,W] = fastica(data','stabilization','on');

3 Transform.W = W;

The arguments ′stabilization′,′ on′ help the algorithm achieve more reliable results.

10.3.4 Offline Step 5: Obtain bandwidths

There are two main options for bandwidth matrices; the optimal bandwidth for Gaussian

distributions and the adaptive optimal bandwidth. The first option is applied to all data
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points, and for each mode, the bandwidth matrix is given a value of

Hm =

(
4

n(d+ 2)

) 2
d+4

Σm (10.12)

so that the kernel density estimate is given as

f̂pHm
(x) =

1

n

n∑
i=1

1√
(2π)d|Hm|

exp
(
[x−Di]

TH−1
m [x−Di]

)
where n is the number of data points in Dm, Di is the ith data point in Dm, d is the

dimension of the data in Dm and Σm is the covariance matrix of Dm. The equivalent

bandwidth selection step in MATLAB was already given as

1 for m = 1:length(Data)

2 KDE(m) = fKernelEstimateNorm(Data{m});
3 end

so that likelihood probabilities given x are given as

1 for m = 1:length(DATA)

2 L(m) = fKernelDensity(x,KDE(m));

3 end

As an alternative to the optimal normal bandwidth, one can use the adaptive bandwidths

Hk
m which are different for every kth element.

log(g) =
1

n

∑
i

log
[
f̂pH(Di])

]
λi =

f̂pH(Di)

g

Hm[i] = λ−1
i Hm

so that the kernel density estimate is given as

f̂pHm
(x) =

1

n

n∑
i=1

1√
(2π)d|Hm[i]|

exp
(
[x−Di]

THm[i]−1[x−Di]
)

When implementing on MATLAB, new commands have to be created:

• fKernelEstimateNorm

• fKernelDensityAdaptive

The adaptive bandwidth selector is given as

1 function [DensityInfo] = fKernelEstimateAdaptive(X)

2
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3 %Generate initial bandwidth matrix using optimal normal method

4 [n,p] = size(X);

5 KDE = fKernelEstimateNorm(X);

6 H0 = KDE.bwm;

7

8 %obtain scaling parameters Lam

9 fx = fKernelDensity(X,KDE);

10 g = exp( mean( log(fx)) );

11 Lam = fx/g;

12

13 %Scale bandwidth for individual points

14 for i = 1:n

15 BWMi = H0/Lam(i);

16 BWM(:,:,i) = BWMi;

17 Zt(:,:,i) = chol(BWMi,'lower')\eye(p);
18 dBWM(i,:) = det(BWMi);

19 end

20 %log of normalizing constant

21 logk = −0.5*log((2*pi)ˆp*dBWM) − log(n);

22

23 %Save results as a structure

24 DensityInfo.bwm = BWM;

25 DensityInfo.bwmZt = Zt;

26 DensityInfo.logk = logk;

27 DensityInfo.data = X;

28

29 end

while the adaptive kernel density estimator is given as

1 function fx = fKernelDensityAdaptive(x,DensityInfo)

2 %Unload key parameters

3 Data = DensityInfo.data;

4 Zt = DensityInfo.bwmZt;

5 k(1,:) = DensityInfo.logk;

6

7 %Data has nD rows, each are horizonal entries of x

8 [nX,p] = size(x);

9 [nD,¬] = size(Data);

10

11 %Calculate kernel density (can take both static and variable kernels)

12 fx = zeros(nX,1);

13 kz(1,1,:) = k;

14 for n = 1:nX

15 %find distances (distances are nD vertical vectors)

16 Xd = (Data − ones(nD,1)*x(n,:))';

17 %Multiply each transformation by the appropriate distance

18 for zi = 1:nD

19 Z(:,:,zi) = Zt(:,:,zi)*Xd(:,zi);

20 end

21 Pe(:,1) = kz − 0.5*sum(Z.ˆ2,1); %exponent of probability

22 fx(n,1) = sum(exp(Pe));

23 end

If likelihoods contain multiple independent groups, one has to construct the groups first,

for example, let us say that under mode 1, the independent groups are [1, 3, 4] and [2, 5] but

for mode 2, all evidence is dependent.

1 groups1{1} = [1,3,4];
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2 groups1{2} = [2,5];

3 Mgroups{1} = groups1;

4

5 groups2{1} = [1,2,3,4,5];

6 Mgroups{2} = groups2;

The optimal normal bandwidths are then obtained as

1 cKDE = cell(length(Mgroups),1);

2

3 for m = 1:length(Mgroups)

4 groups = Mgroups{m};
5 for c = 1:length(groups)

6 %use only data from relevent groups for each KDE

7 cKDE{m}(c) = fKernelEstimateNorm( Data{m}(:,groups{c}) );

8 end

9 end

Note, that one could also use adaptive bandwidths here.

10.3.5 Online Step 1: Calculate likelihood of new data

When this method is performed online, new evidence from monitors E is used as input to

calculate the probability. When kernel density estimation is applied

p(E|M) =
1

n

n∑
i=1

1√
(2π)d|Hm|

exp
(
[e−Di]]

TH−1
m [e−Di]

)
where Hm[i] is used instead of Hm if the adaptive kernel density estimation method is used.

Again, probabilities can be calculated using the fKernelDensity command

1 for m = 1:length(KDE)

2 L(m) = fKernelDensity(x,KDE(m));

3 end

Note that if the evidence is separated into independent components, there is a likelihood

p(Ec|M) for every component c. These component likelihoods have to be multiplied together

in order to obtain the net likelihood.

1 for m = 1:length(Data)

2 groups = Mgroups{m};
3 L(m) = 1;

4 for c = 1:length(groups)

5 L(m) = L(m)* fKernelDensity( x(groups{c}),KDE{m}(c) );

6 end

7 end

8 end
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10.3.6 Online Step 2: Calculate posterior probability

The posterior probability is obtained by combining the likelihood with a prior according to

Bayes’ Rule

p(M |E) =
p(E|M)p(M)∑
k p(E|Mk)p(mk)

Note that if there is more than one component,

p(E|M) = p(E1|M)× p(E2|M)× . . .× p(Enc |M)

In MATLAB, it is convenient to set the prior p(m) = P as a vertical vector along with the

likelihood p(E|m) = L. In this way, the vector of posteriors can be calculated as

1 P = (L.*P)/(L'*P);

10.3.7 Online Step 3: Make a diagnosis

The diagnosis is made by selecting the mode with the highest posterior probability.

10.4 Simulated Case

The Kernel density estimation method is used on the Tennessee Eastman problem, a popular

benchmark simulation system. As done in previous applications, each fault (or problem

source) is simulated, with some of the data being used for learning, while other parts of the

data are used for validation. The first set of results (in Figure 10.2) compare diagnosis results

from the discrete method against the optimal normal and adaptive kernel density estimation

methods. From this figure, kernel density estimation performs significantly better than the

discrete methods both for diagnosing modes and problem sources. However, adaptive and

optimal Gaussian kernel density estimation methods have similar performance to each other.

In addition, we consider how different grouping methods affect diagnosis rates. Four

different grouping approaches are considered.

1. The lumped approach does not assume independence, and considers all evidence as

a single multivariate variable.

2. The indepdnent approach is the complete opposite; it assumes that all pieces of

evidence are independent so that likelihoods are calculated for each piece of evidence

and the joint likelihood is combined by multiplying results together.

3. The grouped approach is a compromise between the lumped and independent ap-

proaches. It uses the MIC as an indicator to determine which variables are dependent

and which ones are not. The grouping algorithms mentioned in this chapter (as well as
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Figure 10.2: Tennessee Eastman, discrete vs. KDE

Chapters 8 and 9) are used to separate evidence into independent groups. Likelihoods

are calculated for each group and are multiplied together in order to obtain a joint

likelihood.

4. Finally, the ICA transformed method is used to transform the evidence into inde-

pendent components, so that likelihoods are obtained for each component; the joint

likelihood is again obtained through multiplying individual likelihoods together.

Chapters 8 and 9 have not compared grouping approaches for the discrete method, thus we

compare grouping approaches for the discrete method first. The grouping comparison for

the discrete method is shown in Figure 10.3. The grouping approaches are also compared

for the kernel density estimation method; the comparison for kernel density estimation is

shown in Figure 10.4. Because performance of optimal Gaussian and adaptive kernel density

estimation is similar, the optimal Gaussian method is used here as it is the simpler of the

two.

From Figures 10.3 and 10.4 one can see that different grouping techniques have a neg-

ligible effect on diagnosis performance regardless as to whether discrete or kernel density

estimation is used.

10.5 Bench Scale Case

The kernel density estimation method was also used on the hybrid tank system and com-

pared with discrete results. Comparison between discrete and kernel density estimation

methods is shown in Figure 10.5. Again, for both mode and component diagnosis, ker-

nel density methods exhibit a very significant improvement over the discrete method. In

addition, the adaptive and optimal Gaussian kernel density estimation methods perform

similarly yet again.

Grouping methods for the lab scale system are also compared. As seen in Figure 10.3,
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Figure 10.3: Grouping approaches for discrete method
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Figure 10.4: Grouping approaches for KDE method
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Figure 10.5: Hybrid tank, discrete vs. KDE

for the discrete method, the independent, grouped and transformed approaches all exhibit

a significant improvement over the lumped method. In contrast however, for the kernel
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density estimation method, all grouping approaches perform similarly (as seen in Figure

10.4).
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Figure 10.6: Grouping approaches for discrete method
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Figure 10.7: Grouping approaches for KDE method

10.6 Industrial Scale Case

Finally, the kernel density methods were compared to the discrete methods for the industrial

system. In Figure 10.8, yet again we see a significant improvement when kernel density

estimation methods are used instead of discrete methods.

Different grouping approaches were tried on the discrete method when applied to the

industrial system and results are shown in Figure 10.9. Here, the independent, grouped

and transformed approaches outperformed the lumped approach; because process measure-

ments were directly used and a large number of instruments were applied, the transformed

approach performed slightly better than the other methods. However, it should be noted

that the transformed method is application specific and can result in worse performance
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Figure 10.8: Solids handling, discrete vs. KDE

for applications that it is not well suited for. When the different grouping methods were

applied to the optimal Gaussian kernel density estimation method, the other approaches

still exhibit superior performance over the lumped method.
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Figure 10.9: Grouping approaches for discrete method
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Figure 10.10: Grouping approaches for KDE method

201



Chapter 11

Dynamic application of continuous
evidence and ambiguous mode
solutions

11.1 Introduction

Previous work [5] [4] addressed the topic of taking into account mode and evidence de-

pendency when implementing Bayesian diagnosis techniques online. However, the dynamic

techniques that were previously introduced were specific to unambiguous modes and dis-

crete evidence. This chapter aims to tie up previous loose ends so that autodependent

nature of modes and evidence can be taken into account.

When considering the material in this thesis, the existing autodependent mode procedure

[4] is only affected by the introduction of ambiguous modes (continuous evidence will not

affect the autodependent mode procedure). Likewise, introducing ambiguous modes will not

affect the autodependent evidence procedure. Thus, this chapter proposes two solutions that

can be applied independently:

1. Taking into account autodependent modes with ambiguous modes in history

2. Taking into account autodependent continuous evidence

11.2 Algorithm for autodependent modes

In this section, we consider the probability of each unambiguous mode at time t, and its

propagation over time as illustrated in Figure 11.1. At time t, the probability of the mode

set M is predicted from time t − 1. The prediction is done via transformation by the

probability transition matrix A. After prediction, it is updated by the evidence obtained

at time t (denoted as Et). Updating through evidence is done using Bayes’ Rule. The

predict-update procedure is applied recursively so that diagnosis is made by probability

that is constantly being updated.
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Figure 11.1: Mode autodependence

11.2.1 Probability transition matrix

The probability transition matrix A is used to predict the probabilities of each mode at the

next time step.

p(M t) = Ap(M t−1)

where p(M t) and p(M t−1) are column vectors of probability. The probability transition

matrix A can be constructed as follows:

A =


p(mt

1|m
t−1
1 ) p(mt

1|m
t−1
2 ) · · · p(mt

1|mt−1
n )

p(mt
2|m

t−1
1 ) p(mt

2|m
t−1
2 ) · · · p(mt

2|mt−1
n )

...
...

. . .
...

p(mt
n|mt−1

1 ) p(mt
n|mt−1

2 ) · · · p(mt
n|mt−1

n )


where p(mt

i|m
t−1
j ) is the probability of mode i occurring given mode j occurring at the

previous time instant. The transition probability matrix is constructed in such a manner

that each column must sum to unity.

11.2.2 Review of second-order method

In Chapter 8, where the second-order Bayesion rule of combination was introduced, the

likelihood was expressed in terms of the parameter set Θ.

p(E|M,Θ) =

S(E|M)n(M) +
∑

mk⊃M
θ{ Mmk

}S(E|mk)n(mk)

n(M) +
∑

mk⊃M
θ{ Mmk

}n(mk)

The second-order Bayesian method re-expressed the likelihood in terms of a second-order

approximation

∆Θ = Θ− Θ̂

p(E|M,Θ) = p̂(E|M) + JmL ∆Θ +
1

2
∆ΘTHm

L ∆Θ
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where JmL is the likelihood Jacobian for mode M and Hm
L is the likelihood Hessian for mode

M . In a similar manner, the prior probability was expressed as

p(M |Θ) = p̂(M) + JmR ∆Θ +
1

2
∆ΘTHm

R ∆Θ

Here, if using prior probabilities from experts, it is common that priors do not have any

ambiguity; in such cases, JmR and Hm
R are set to be zero matrices. By using the second-

order rule of combination (introduced in Chpater 8), new Jacobians and Hessians can be

calculated:

p(M |E,Θ) = p̂(M |E) + JmP ∆Θ +
1

2
∆ΘTHm

P ∆Θ

where the second-order terms are calculated as

p̂(M |E) =
1

K
p̂(E|M)p̂(M) (11.1)

JmP =
1

K
[p̂(M)JmL + p̂(E|M)JmR ]

Hm
P =

1

K

[
p̂(M)Hm

L + p̂(E|M)Hm
R + (JmL )T (JmR ) + (JmR )T (JmL )

]
K =

nm∑
k=1

p̂(E|mk)p̂(mk)

11.2.3 Second-order probability transition rule

By merit of the probability transition matrix, the probability of mode k can be expressed

as

p(mt
k|Et−1) =

n∑
i=1

A(k, i)p(mt−1
i |E

t−1) (11.2)

where, by applying this transformation, the posterior p(mt−1
i |E) at time t−1 is transformed

into the prior p(mt
k) for time t. In this chapter we apply the rule in Eqn (11.1) to the second-

order probability expressions developed in Chapter 8 to create a second-order probability

transition rule. First, let us consider the parameterized probability

p(mt
k|Θ) = p̂(Mk) + Jmk

R ∆Θ +
1

2
∆ΘTHmk

R ∆Θ

By applying the probability transition rule in Eqn (11.2) to the parametrized probabil-

ity above, one can collect terms, and obtain a new probability transition rule set for the

reference probability, the Jacobian and Hessian respectively.

p̂(mt
k) =

n∑
i=1

A(k, i)p̂(mt−1
i |E) (11.3)

Jmk
R =

n∑
i=1

A(k, i)Jmi
R (11.4)

Hmk
R =

n∑
i=1

A(k, i)Hmi
R (11.5)
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Thus, when transitioning to the next time step, the probability transition rules in Eqn

(11.3), (11.4) and (11.5) are applied to each reference probability, Jacobian, and Hessian

respectively in order to obtain the prior for the next time step. Updating can occur in the

usual manner, i.e. the second-order Bayesian combination rule (however, keep in mind that

Jacobians and Hessians for priors no longer tend to be zero matrices).

11.3 Algorithm

11.3.1 Algorithm for dynamic continuous evidence

The problem of autodependent discrete evidence has been dealt with previously by Qi and

Huang [5]. The goal was to take into account evidence dependence as indicated in Figure

11.2. Here, the likelihood must contain previous evidence p(Et|Et−1,M) which can be

combined with prior probabilities p(M) to obtain a posterior p(M |Et, Et−1)

p(mi|Et, Et−1) =
p(Et|Et−1,mi)p(mi)∑
k p(E

t|Et−1,mk)p(mk)

The key challenge is to estimate the likelihood p(Et|Et−1,M).

Figure 11.2: Evidence autodependence

Review of discrete evidence solution

In Chapter 2 it was previously shown that the likelihood for autodependent evidence can

be estimated as

p(Et|Et−1,mk) =
n(Et, Et−1,mk)

n(Et−1,mk)
(11.6)

where n(Et, Et−1,mk) is the number of times Et, Et−1 and mk jointly occur in the history,

while n(Et−1,mk) is the number of times n(Et−1) and mk jointly occur in the history. This

solution also included the ability to use prior samples, and these prior samples can be simply

combined with the historical data.
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One of the challenges was that introducing autodependence increased the evidence space,

as now we must condition on both Et and Et−1. Correlation ratio tests were proposed to

determine if some dependencies could be neglected and thus narrowing the evidence space

by independence assumptions. In this work, the mutual information criterion (MIC) is

used as the independence testing method, as it functions for both discrete and continuous

evidence.

Continuous evidence solution

One problem with the solution in Eqn (11.6) is that one cannot obtain n(Et ∩ Et−1 ∩mk)

directly from continuous data. In Chapter 10, the kernel density estimate was used to

approximate the likelihood

p(E|M) =
n(E,M)

n(M)

p(E|M) ≈ 1

NK

n∑
i=1

1

|H|
K(H−1/2e) = f̂(E|M)

Thus, the conditioning over continuous evidence n(E,M) was smoothed over using a kernel

density estimate. In order to condition on both Et and Et−1 the rule of conditioning is

applied

p(Y |X) =
p(X ∩ Y )

p(X)

By applying the rule of conditioning to the kernel density estimation,

p(Et|Et−1,M t) =
p(Et, Et−1|M t)

p(Et−1|M t)
(11.7)

From this result, one can see that two kernel density estimates are required:

1. The joint present and past evidence p(Et, Et−1|M t)

2. The past evidence p(Et−1|M t) (which is also equal to p(Et|M t) )

Thus, for dynamic evidence, one can estimate a kernel density function p(Et|M t) as before,

but an additional step is required: that the kernel density estimate of the present and past

observations p(Et, Et−1|M t) also be estimated. To obtain the posterior, simply combine

this new likelihood with a prior using Bayes’ Theorem

p(Et|Et−1,mt
i) =

p(Et, Et−1|mt
i)

p(Et−1|mt
i)

p(mt
i|Et, Et−1) =

p(Et|Et−1,mt
i)p(m

t
i)∑

k p(E
t|Et−1,mt

k)p(m
t
k)
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Dimensionality reduction

As was mentioned in Chapter 10, dimensionality can be an issue when dealing with a large

number of instruments. However, dimensionality becomes an even more significant issue

when taking dynamic evidence into account as p(Et|Et−1,mt
i) has twice the dimensional-

ity as p(E|mt
i). Thus, dimensionality reduction techniques, such as grouping via mutual

information criterion become an even more relevant practice.

11.3.2 Combining both solutions

The second-order probability transition rules in Eqn (11.3 - 11.5) and the continuous au-

todependent solution in Eqn (11.7) are complementary solutions that can be independently

applied. When applying both solutions, the corresponding Bayesian network diagram takes

the form shown in Figure 11.3.

Figure 11.3: Evidence and mode autodependence

When applying both methods, one obtains the prior probability from the previous pos-

terior according to the second-order transition rule:

p̂(mt
k) =

n∑
i=1

A(k, i)p̂(mt−1
i |E)

Jmk
R =

n∑
i=1

A(k, i)Jmi
R

Hmk
R =

n∑
i=1

A(k, i)Hmi
R

p(mt
k|Θ) = p̂(mt

k) + Jmk
R ∆Θ +

1

2
∆ΘTHmk

R ∆Θ

Then, the second-order terms p̂(Et|Et−1,mt
k), J

mk
L and Hmk

L are calculated for the likeli-

207



hood expression

p(Et|Et−1,M t,Θ) =

S(E|M t)n(M t) +
∑

mk⊃Mt

θ{Mt

mk
}S(Et|Et−1,mk)n(mk)

n(M t) +
∑

mk⊃Mt

θ{Mt

mk
}n(mk)

where the support S(Et|Et−1,mk) is calculated as

S(Et|Et−1,mk) =
f̂(Et, Et−1|mk)

f̂(Et|mk)

where mk is a potentially ambiguous mode. The notation f̂(Et, Et−1|mk) indicates that

the kernel density estimate uses evidence from times t and t− 1 collected under the mode

mk (which can either be ambiguous or unambiguous). When values of S(Et|Et−1,mk) are

obtained, the terms p̂(Et|Et−1,mt
k), J

mk
L and Hmk

L can be obtained by taking derivatives

of the resulting expression for p(Et|Et−1,M t,Θ).

Once the second-order terms p̂(Et|Et−1,mt
k), J

mk
L and Hmk

L have been obtained, they

are combined with the previously obtained p̂(mt
k|Et, Et−1) Jmk

R and Hmk
R terms using the

second-order Bayesian combination rule.

11.3.3 Comments on usefulness

Mode autodependence

The effectiveness of taking account mode and evidence autodependence can vary quite

significantly depending on the application. Taking autodependence of modes into account

is particularly effective when modes change relatively slowly and if evidence is noisy. Noisy

evidence can lead to relatively frequent false diagnosis results; however, if modes change

relatively slowly, taking mode autodependence into account creates a time-weighted average

on the diagnosis results. However, mode autodependence will create a diagnosis tool that

is sluggish to respond when mode changes, as a strong prior would have been created from

the previous mode over time.

If taking modes autodependence into account results in a system that is too sluggish,

one can replace the transition matrix A with an exponent to the power of n which represents

an acceleration factor.

A = An

For example, if n = 2, then it is assumed that the modes switch twice as frequently as

previously thought. As n grows larger, the system responds more quickly to change. In

fact, if n → ∞, the resulting probability transition matrix will yield a flat prior for every

time step which has the fastest possible reaction to a change in the process.
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Evidence autodependence

Evidence autodependence tends to make the Bayesian diagnosis method slow to detect

changes in the mode. In cases of strong evidence autodependence, the evidence trajectory

follows a clear pattern in transition regions where values of evidence tend to slowly drift

toward typical values for the new mode. This slow transition is often due to filtering or

averaging done by the monitor. By documenting these transition regions, one now has a

transition pattern which can be used to more quickly recognize changes in the operating

mode; this is particularly beneficial if fast detection is desired. If one is more concerned

about diagnosing slow-changing modes over longer-term periods, the benefits of accounting

for evidence autodependence are much less significant.

In summary, taking account autodependence in the evidence is most effective for systems

that have strongly autodependent (or slow-responding) evidence and frequently changing

modes. Primarily, this is because of the time-sensitive nature for diagnosing systems with

rapidly changing modes. Furthermore, taking autodependence into account is most man-

ageable when the possible operating modes are few, as it requires data to be collected from

transition regions between all modes.

11.4 Illustrative Example of Proposed Methodology

11.4.1 Introduction

Again, for the tutorial, we consider the control loop system shown in Figure 11.4.

Figure 11.4: Typical control loop

11.4.2 Offline Step 1: Historical data collection

The first step is to go through the historical data and note the instances where each of the

four possible modes occurs, and collect data belonging to the mode.

1. m1 [0, 0] where bias and stiction do not occur
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2. m2 [0, 1] where bias does not occur but stiction does

3. m3 [1, 0] where bias occurs but stiction does not

4. m4 [1, 1] where both bias and stiction occur

If ambiguous modes exist in the data, one must also collect data according to the ambiguous

modes that appear in the history. For this system, the possible ambiguous modes are

1. {m1,m3} [×, 0] where bias is undetermined and stiction does not occur

2. {m2,m4} [×, 1] where bias is undetermined and stiction occurs

3. {m1,m2} [0,×] where bias does not occur and stiction is undetermined

4. {m3,m4} [1,×] where bias occurs and stiction is undetermined

5. {m1,m2,m3,m4} [×,×] where both bias and stiction are undetermined

Because the methods deal with kernel density estimation and other computationally inten-

sive techniques, the application will be given in terms of MATLAB code.

11.4.3 Offline Step 2: create temporal data

Let us consider the MATLAB cell variable Data which has all data collected into modes,

both unambiguous and ambiguous. We can construct a new data set that includes the data

from the previous time step (called the one-step temporal data). This is done by copying

the data, deleting the first row of one set, and deleting the last row of the second set, then

combining the two data sets.

1 for m = 1:length{Data}
2 e1 = Data{m};
3 e2 = e1;

4 e1(end,:) = []; %Delete last row of previous evidence

5 e2(1,:) = []; %Delete first row of current evidence

6 DataT{m} = [e1,e2];

7 end

11.4.4 Offline Step 3: Mutual Information Criterion (optional, but rec-
ommended)

As done in the kernel density estimation procedure, the mutual information criterion is used

to group evidence into independent groups. However, grouping must now be done for two

sets of data, the original data Data and the temporal data DataT.

1 MICmatrix = zeros(length{Data{m});
2 ne = length(Data{m}(1,:)); %number of evidence sources

3 for j = 1:ne
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4 for i = (j+1):ne

5 MICmatrix(i,j) = fMIC(Data{m}(:,i,j))
6 end

7 end

8

9 MICmatrixT = zeros(length{DataT{m});
10 ne = length(DataT{m}(1,:)); %number of evidence sources

11 for j = 1:ne

12 for i = (j+1):ne

13 MICmatrixT(i,j) = fMIC(DataT{m}(:,i,j))
14 end

15 end

where fMIC is the function described in Chapter 10. Using the mutual information criterion

matrices, the original data, and the one-step temporal data can be grouped into roughly

independent groups Groups for original data, and GroupsT for one-step temporal. The

MATLAB cell variables Groups and GroupsT contain cell arrays groups for each mode.

The cell array groups pertains to a specific mode and contains vectors that consist of

grouped instruments; each vector represents a group.

If one does not wish to break the evidence down into independent groups, it is still

recommendable to evaluate the MIC in order to evaluate autodependence. For autodepen-

dence, the MIC is evaluated for two data sets: x0 which is the original data set, and x1

which is the same as x0 except that it is shifted by one time sample. When evaluating the

MIC for kernel densities, if the MIC is less than 0.1, autodependence can be ignored.

Offline Step 4: Kernel Density bandwidths for original and one-step temporal
data

Kernel density estimation is done in the same manner as done in Chapter 10, where band-

width and data are stored in KDE. However, now ambiguous modes also need to be estimated,

and kernel density estimates now exist for both original and one-step temporal data.

1 for M = 1:length{Data}
2 %Kernel Density Estimate for original data

3 groups = Groups{M};
4 for g = 1:length{groups}
5 KDE{M}(g) = fKernelEstimateNorm(Data{M}(:,groups{g}));
6 end

7

8 %Kernel Density Estimate for one−step temporal data

9 groups = GroupsT{M};
10 for g = 1:length{groups}
11 KDE{M}(g) = fKernelEstimateNorm(DataT{M}(:,groups{g}));
12 end

13 end

211



11.4.5 Offline Step 5: Calculate reference values

Again, we make use of the parameter matrix Θ̂ in the same manner as the second-order

Bayesian method.

Θ̂ =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

θ̂{ m1
m1,m2

} θ̂{ m2
m1,m2

} 0 0

θ̂{ m1
m1,m3

} 0 θ̂{ m3
m1,m3

} 0

0 θ̂{ m2
m2,m4

} 0 θ̂{ m4
m2,m4

}
0 0 θ̂{ m3

m3,m4
} θ̂{ m4

m3,m4
}

θ̂{ m4
m1,m2,m3,m4

} θ̂{ m4
m1,m2,m3,m4

} θ̂{ m4
m1,m2,m3,m4

} θ̂{ m4
m1,m2,m3,m4

}


11.4.6 Online Step 1: Obtain prior second-order terms

One obtains prior second-order terms for this step, from the posterior second-order terms

in the previous step.

1 %number of historical modes and unambiguous modes

2 [nM,nm] = size(ThetaHat);

3

4 for m = 1:nm

5 Prior(m).probability = 0;

6 Prior(m).jacobian = zeros(1,(nA*nm));

7 Prior(m).hessian = zeros((nA*nm),(nA*nm));

8

9 for k = 1:nm

10 Prior(m).probability = Prior(m).probability + Posterior(m).probability*A(m,k);

11 Prior(m).jacobian = Prior(m).jacobian + Posterior(k).jacobian*A(m,k);

12 Prior(m).hessian = Prior(m).hessian + Posterior(k).hessian*A(m,k);

13 end

14 end

11.4.7 Online Step 2: Calculate support

When a new observation e has been made, one can calculate support for each mode. If

multiple independent groups are present, the kernel density estimates can be multiplied

together

1 %we have observed current evidence e1

2 %we collected previous evidence e0

3 eT = [e0,e1];

4 S = ones(length(Data),1);

5 for M = 1:length(Data)

6 groups = Groups{M};
7 for g = 1:length(groups)

8 %Numberator and Denominator P(e1 |e0,m)=P(e0,e1 |m)/P(e0 |m)
9 PN = fKernelDensity(eT(groups{g}),KDET{M}(g));

10 PD = fKernelDensity(e0(groups{g}),KDE{M}(g));
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11

12 %If groups are independent, estimate support by multiplying

13 S(M) = S(M)*(PN/PD);

14 end

15 end

11.4.8 Online Step 3: Calculate second-order terms

Using the calculated support values (S), one can obtain the second-order terms as was

previously done in Chapter 10.

1 function Lik = O2Terms(S,N,ThetaHat)

2 [nM,nm] = size(ThetaHat);

3 nA = nM − nm;

4

5 %Theta parameters for ambiguous modes

6 ThetaA = ThetaHat( (nm+1):end,:);

7

8 for m = 1:nm

9 %Initialize second−order terms

10 Lik(m).probability = 0;

11 Lik(m).jacobian = zeros(1,(nA*nm));

12 Lik(m).hessian = zeros((nA*nm),(nA*nm));

13

14 %Obtain numerators and denominators for the likelihood

15 SN = S.*N; %Multiplication of S and N, useful for later

16 Num = SN'*ThetaHat(:,m);

17 Den = N'*ThetaHat(:,m);

18

19 Jac = zeros(1,nA);

20 Hes = zeros(nA,nA);

21

22 %Find indices where Theta values are not forced to be zero

23 Ind = find((ThetaA(:,m)6=0))';
24 for i = Ind

25 Jac(1,i) = SN(i)/Den − Num*N(i)/(Denˆ2);

26 end

27

28 for i = Ind

29 for j = Ind

30 Hes(i,j) = −(N(i)*SN(j)+N(j)*SN(i))/(Denˆ2) + 2*Num*N(i)*N(j)/(Denˆ3);

31 end

32 end

33

34 %Find indices relevant to the current mode

35 ActiveInd = ((m−1)*nA+1):(m*nA);
36

37 Lik(m).probability = Num/Den;

38 Lik(m).jacobian(ActiveInd) = Jac;

39 Lik(m).hessian(ActiveInd,ActiveInd) = Hes;

40

41 end

11.4.9 Online Step 4: Combining prior and likelihood terms

After obtaining the prior and likelihood probabilities, we can perform the second-order rule

of combination in order to obtain the posterior second-order terms.
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1 function Post = SecondOrderComb(Prior,Lik)

2 nm = length(Prior); %number of modes

3 %Normalization Constant

4 for m = 1:nm

5 K = K + Prior(m).probability * Lik(m).probability;

6 end

7

8 for m = 1:nm

9 PP = Prior(m).probability;

10 PL = Lik(m).probability;

11 JP = Prior(m).jacobian;

12 JL = Lik(m).jacobian;

13 HP = Prior(m).hessian;

14 HL = Lik(m).hessian;

15

16 Post(m).probability = 1/K*(PP*PL);

17 Post(m).jacobian = 1/K*(JP*PL + JL*PP);

18 Post(m).hessian = 1/K*(HP*PL + HL*PP + JL'*JP + JP'*JL);

19 end

The diagnosis can be made by selecting the posterior likelihood Post(m).probability

which has the maximum value (the point estimate method), or one can also use the expected

value method which makes use of the second-order terms to calculate an expected value, as

mentioned in Chapter 10.

11.5 Simulated Case

To create autodependent modes during the simulation, the mode was switched at random

according to a given switching probability. Autodependence in evidence however, is a func-

tion of the monitors and cannot be easily created. Nevertheless, evidence autodependence

can be easily reduced by sampling monitor data at a slower rate. Thus, highest amounts

of autodependence in the evidence are present when monitor data is sampled at its native

frequency.

Four methods of interest were tested on the Tennessee Eastman simulation. The first

method did not use any autodependent techniques, the second method only took into ac-

count autodependent modes, the third method only took into account autodependent ev-

idence, while the final method took into account autodependence in both modes and ev-

idence. When the dynamic evidence was considered, the MIC was evaluated in order to

determine if autodependence was strong enough to be considered.

Results for the four techniques can be seen in Figure 11.5. For the Tenessee-Eastman

simulation, it was found that autodependence in evidence was quite weak, as can be seen

in the results. However, even before the results were obtained, it was noticed that the MIC

values for autodependence averaged at around 0.05, which is a relatively weak value for

autodependence (recall that if the MIC was less than 0.1, autodependence was ignored).

The low autodependence in evidence was probably caused from a slow sampling time.

In contrast to mode autodependence however, modes tended to change relatively slowly,

thus modes tended to have strong autodependence in the simulation. As is seen in Figure
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11.5, taking mode autodependence into account had significant performance improvement.
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Figure 11.5: Comparison of dynamic methods

11.6 Bench Scale Case

The bench scale system exhibited fairly different behaviour from the simulated system.

In the bench scale system, the modes were set to switch relatively quickly and data was

sampled at a slower rate. MIC values for autodependence tended toward values of 0.08

which is closer to the threshold where autodependence is taken into account. From Figure

11.6, one can see that taking modes and evidence autodependence into account has a modest

effect on the performance.
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Figure 11.6: Comparison of dynamic methods
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11.7 Industrial Scale Case

For the industrial system, data was sampled relatively quickly, but only small groups of

data were selected as modes changed extremely infrequently. In order to better assess

conditions where modes were switching, validation data for each mode was divided into

groups, and these groups were shuffled so that it would appear that modes switched more

frequently. Results can be seen in Figure 11.7. In this case, one can see that accounting for

autodependence in the evidence had a stronger effect than accounting for autodependence

in the modes. The efficacy of accounting for evidence autodependence is mainly due to

the fact that autodependence was relatively strong (MIC values averaged at 0.2) and that

modes switched relatively quickly.
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Figure 11.7: Comparison of dynamic methods
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Chapter 12

Concluding remarks and
recommendations for future work

12.1 Concluding Remarks

12.1.1 Summary of proposed solutions

The principal objectives of this thesis were to further develop the work in a data-driven

Bayesian approach to detect and diagnose problematic components in process systems. Top-

ics related to enhancing this approach include ambiguous modes, Dempster-Shafer theory,

kernel density estimation and bootstrapping, all of which had their fundamentals explained

in the tutorial chapter. Mores specifically, the main contributions of this paper can be

summarized as follows:

• A parametrization sheme (respect to probability parameters Θ) was developed in

order to formulate the likelihood estimation problem to account for ambiguous modes.

Additionally, in order to perform Bayesian inference, a second-order approximation

(with respect to Θ) of Bayes’ Theorem was developed.

• The Dempster-Shafer Theory solution was derived using the Θ parametrization and

it was shown that Dempster-Shafer Theory was relevant for estimating direct proba-

bilities, but was not relevant for estimating likelihoods. A modification of Demspter-

Shafer Theory was proposed in order to express the Basic Belief Assignment (BBA)

to better-fit the problem at hand. Demspter’s Rule of Combination was also modified

so that it can be applied to the new generalized form of the BBA.

• Kernel density estimation was proposed as a solution to implement continuous evi-

dence in our Bayesian diagnosis solution. It was shown through examples and through

proofs that continuous methods perform as well or better than discrete methods. So-

lutions to missing the evidence problem and dimensionality issues were also discussed.

• Bootstrapping and component-wise diagnosis were proposed as methods to deal with

spares modes within the process data. A modification over the previous bootstrap-
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ping approach (called smoothed bootstrapping which is related to kernel density es-

timation) was proposed in order to achieve better sampling properties. While the

Bootstrapping technique requires process knowledge, adopting component-wise diag-

nosis can be readily implemented in any framework. It also enjoys the advantage of

reducing dimensionality, an issue discussed in Chapter 6.

• Implementing kernel density estimation and ambiguous modes will affect the previ-

ously proposed solutions for auto-dependent data and auto-dependent modes respec-

tively. Chapter 11 extends the auto-dependent data and mode concepts presented

in earlier work in order to enable their application toward ambiguous modes and

continuous evidence.

12.1.2 Unified Bayesian framework

Each of the proposed methods can be applied simultaneously with the others (with exception

of the second-order Bayesian method and the Generalized Dempster-Shafer method, the user

must chose one of these two techniques); in this way, each of these solutions can be fit to a

final unified framework, implemented as follows:

Offline Step 1: Break the system down into components

This step is mentioned in Chapter 7 where we break the system down into smaller com-

ponents in order to reduce the mode dimension. In this way, the mode is described as a

vector of P component states M = [C1, C2, . . . , CP ]. After the system is broken down, it

is also recommended that one tests the sensitivity of the monitors for each mode. Remov-

ing insensitive monitors reduces dimensionality and improves robustness of the diagnosis

method.

Offline Step 2: Fill in data from missing modes

If there are any missing modes, and if there is adequate information about the system,

it is possible to simulate data for extra modes using the bootstrap method mentioned in

Chapter 7. Breaking down the system into components however, will reduce the likelihood

that important modes will be missing.

Offline Step 3: Perform grouping for each component

In this optional step, the user can employ the Mutual Information Criterion to locate

independent groups of monitors, and further reduce the dimension of the data. Breaking

down the system into components and selecting only sensitive monitors however, will result

in an already reduced dimension; grouping should only be considered if the dimension is

large (e.g. greater than 5).
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Offline Step 4: Identify any ambiguous modes and determine the size of Θ

In this step, one should identify any modes that are ambiguous. One may consider discard-

ing ambiguous modes if the amount of data pertaining to these modes is small (e.g. less

than 10%). Note that breaking down the system into smaller components can reduce the

proportion of data belonging to such modes; furthermore, each component will have its own

Θ parameter set. Using these ambiguous modes, one should determine the size of Θ.

Offline Step 5: Construct prior probabilities

Prior probabilities of unambiguous modes (or component sates) should be constructed; if

taking ambiguous modes into account, the Jacobian and Hessian matrices of the prior’s

second-order approximation should also be constructed (they can be zero matrices).

Offline Step 6: Construct kernel density estimates

If continuous data is available, it is highly recommended that kernel density estimates be

used over discrete estimates. The kernel density estimate

p(E|C) ≈ f(E|C)

should be constructed according to Chapter 6 for all component modes in C (including

ambiguous modes if present). In addition, if one wishes to take into account autodependent

evidence, the additional kernel density estimate

p(Et, Et−1|C) ≈ f(Et, Et−1|C)

should be obtained so that the conditional likelihood can be estimated as

p(Et|Et−1C) ≈ f(Et, Et−1|C)

f(Et−1|C)

Note that the kernel density estimate f(Et−1|C) is the same as f(Et|C), the only difference

is that Et−1 is used as input instead of Et.

Offline Step 7: Fill in missing historical evidence

If there are any missing monitor values, one can use the kernel density regression technique

to fill in missing data.

Offline Step 8: Define probability transition matrix

If one is considering the effect of autodependent modes, a probability transition matrix

should be constructed. This matrix is essentially a tuning parameter, but one can use data

to estimate the switching probability of modes or component states.
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Online Step 1: Probability transition

Using the posterior estimate from the previous step (or an initial posterior) use switching

probabilities to obtain the prior probabilities for the current time. If considering ambiguous

modes, the update rule take the following form:

p̂(Ct|Et−1) =

n∑
i=1

p(Ct|ct−1
i )p̂(Ct−1|Et−1)

J(Ct|Et−1) =

n∑
i=1

p(Ct|ct−1
i )J(Ct−1|Et−1)

H(Ct|Et−1) =

n∑
i=1

p(Ct|ct−1
i )H(Ct−1|Et−1)

Online Step 2: Kernel density estimation

At each time step, new evidence Et is obtained. Using this evidence, one can construct

probabilities from kernel density estimates. When considering autodependent evidence, the

support function is

S(Et|Et−1,C) ≈ f(Et, Et−1|C)

f(Et−1|C)

Otherwise, a simple kernel density estimate can be used

S(Et|C) ≈ f(Et|C)

Online Step 3: Define likelihood function

If ambiguous modes (or equivalently, component states) are present in the data, one has to

define the likelihood as a function of Θ

p(E|Et−1, C,Θ) =

∑
C⊇C

θ{CC }S(Et|Et−1,C)n(C)∑
C⊇C

θ{CC }n(C)

This expression must then be converted to the second-order approximation format

p(E|Et−1, C,Θ) ≈ p̂(E|Et−1, C) + J(E|Et−1,C)∆Θ +
1

2
∆ΘTH(E|Et−1,C)∆Θ

If there are no ambiguous modes, the likelihood will simply be

p(E|Et−1, C) = S(Et|Et−1,C)
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Online Step 4: Combine likelihood functions

If the evidence is separated into independent groups, one must use the second-order combi-

nation rule to obtain a combined likelihood estimate. For example, if evidence is separated

into two independent groups E = [E1, E2] one can obtain the combined second-order like-

lihood as

p̂(E|C) = p̂(E1|C)p̂(E2|C)

J(E|C) =
[
J(E1|C)p̂(E2|C) + J(C|E1)p̂(C|E2)

]
H(E|C) =

[
H(E1|C)p̂(E2|C) +H(C|E1)p̂(C|E2)+

JT(C|E1)J(C|E2) + JT(C|E1)J(C|E2)

]
Online Step 5: Combine likelihood and prior functions

Once the likelihood of all evidence is obtained, the likelihood can be combined with the

prior (obtained in Online Step 1).

p̂(Ct|Et) =
1

p(Et|Et−1)
p̂(Et|Et−1, C)p̂(Ct|Et−1)

J(Ct|Et) =
1

p(Et|Et−1)

[
J(Ct|Et−1)p̂(E

t|Et−1, C) + J(Et|Et−1,C)p̂(C
t|Et−1)

]
H(Ct|Et) =

1

p(Et|Et−1)

[
H(Ct|Et−1)p̂(E

t|Et−1, C) +H(Et|Et−1,C)p̂(C
t|Et−1)+

JT(Ct|Et−1)J(Et|Et−1,C) + JT(Et|Et−1,C)J(Ct|Et−1)

]
Online Step 6: Diagnose components and modes

From the component posteriors, one can diagnose each component separately (which would

define a mode) or construct mode probabilities using the product rule

p(M t|Et) =
∏
P

p(CtP |Et)

If p(CtP |Et) is a second-order function with respect to Θ, one must use the second-order

combination rule to obtain the second-order product. To diagnose a mode from the second-

order product, reference probabilities p̂(M t|Et) or the expected values EΘ[p(M t|Et,Θ)f(Θ)]

can be used to obtain a diagnosis.

12.1.3 Summary of application cases

Three test-bed systems were also introduced in order to evaluate the performance of each

of these techniques.

1. The well-known Tennessee-Eastman simulation simulated a chemical process, and

includes a built-in set of faults. This system was used to evaluate
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• The second-order Bayesian approach for ambiguous modes (Chapter 8)

• The Generalized Dempster-Shafer approach for ambiguous modes (Chapter 9)

• The kernel density estimation approach for continuous data (Chapter 10)

• Dynamic adaptations of the second-order Bayesian approach and the continuous

evidence approach (Chapter 11)

2. A bench-scale hybrid tank system exists among the experimental systems owned by

Dr. Huang’s research group. This system has lines between the tanks that can be

opened to produce leaks. This system was used to evaluate

• The Bootstrapping and component-based diagnosis approaches to address sparse

modes (Chapter 7)

• The second-order Bayesian approach for ambiguous modes (Chapter 8)

• The Generalized Dempster-Shafer approach for ambiguous modes (Chapter 9)

• The kernel density estimation approach for continuous data (Chapter 10)

• Dynamic adaptations of the second-order Bayesian approach and the continuous

evidence approach (Chapter 11)

3. Data from a solids handling facility in the Canadian Athabasca Oil Sands was used as

a final test-bed solution. This system has been operating under a number of modes

that are typically given by a scheduling variable. This system was used to evaluate

• The second-order Bayesian approach for ambiguous modes (Chapter 8)

• The Generalized Dempster-Shafer approach for ambiguous modes (Chapter 9)

• The kernel density estimation approach for continuous data (Chapter 10)

• Dynamic adaptations of the second-order Bayesian approach and the continuous

evidence approach (Chapter 11)

12.2 Recommendations for Future Work

The following topics may be worthy of future investigations:

• The current implementation of Bayesian diagnosis is strictly a supervised learning

problem. However, kernel density estimation provides a powerful framework for clus-

tering which can be used as a tool to help perform the separation of data into modes

(a task that must be performed before this Bayesian framework can be used).

• Unsupervised learning through kernel density estimation may also be potentially used

to address the ambiguous mode problem. Data from ambiguous modes can potentially

be sorted out into their respective specific modes by a combination of kernel density

clustering and the use of specific mode reference data.
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• Further opportunities in unsupervised learning can also be used to help reduce data di-

mensionality. Work by Gonzalez et al. [29] showed that Bayesian networks and kernel

density estimation complement each other quite well to decompose high-dimensional

non-linear distributions into a more manageable form. Unsupervised learning of

Bayesian networks through kernel density estimation would be a very interesting (and

potentially challenging problem) worthy of investigation.

• In this work, two bandwidth selection techniques were proposed for kernel density

estimation: the optimal Gaussian bandwidth and an commonly-used adaptive kernel

technique. In a related paper [54], an advanced bandwidth selection method was tested

with disappointing results. Bandwidth selection is an active area or research in kernel

density estimation, and several authors [62] [73] rigorously describe the performance

metrics of bandwidth selectors. It may be advantageous to consider other bandwidth

selection techniques.

• Diagnosing a mode will prompt the user to either maintain current operation or take

action to rectify the situation. Taking action often has economic consequences. For

practical implementation, it is important to consider the economic implications of

each decision made so that the recommended actions are economically optimal.
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Appendix A

Code for Kernel Density
Regression

While kernel density regression has been presented Chapter 10 in a relatively simple manner,
there are a number of safeguards and efficiency schemes that need to be put in place. As
such, the code is too complex to be considered in standard chapter material and is instead,
presented in the appendix.

A.1 Kernel Density Regression

This section contains the overall code for kernel density regression (it works for both stan-
dard and adaptive kernels) with both zeroth order (fKernelRegFirst(x,Y,KDEx)) and
first order (fKernelRegZeroth(x,Y,KDEx)) being considered. In order to increase speed, a
three-dimensional matrix toolbox was constructed and various functions from that toolbox
were used (the functions are explained in Section A.2). Such functions are relatively easy
to identify as they start with the character z.

Zeroth-order kernel density regression

1 function y = fKernelRegZeroth(x,Y,KDEx)

2

3 X = KDEx.data;

4 Zt = KDEx.bwmZt;

5

6 %Data has nD rows, each are horizonal entries of x

7 [nX,p] = size(x);

8 [nD,¬] = size(X);

9 [¬,¬,nz] = size(Zt);

10 y = zeros(nX,length(Y(1,:)));

11

12 %Calculate kernel density (can take both static and variable kernels)

13 if nz == 1 %The usual case, for non−adaptive kernels

14 clear('Weight');

15 for n = 1:nX

16 Xd = (X − ones(nD,1)*x(n,:))';

17 Z = Zt*Xd;

18 Weight(1,:) = exp( − 0.5*(sum(Z.ˆ2,1)) );

19 y(n,:) = (Weight*Y)/sum(Weight);

20 end

21 else %If the kernel is adaptive, we have to multiply by different matrices

22 clear('Weight')

23 for n = 1:nX
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24 %entries are column vectors strung out depth−wise
25 Xd = zcols((X − ones(nD,1)*x(n,:))');

26 Z = z matmultiply(Zt,Xd);

27 Weight(1,:) = exp(− 0.5*sum(Z.ˆ2,1));

28 y(n,:) = (Weight*Y)/sum(Weight);

29 end

30 end

First-order kernel density regression

1 function y = fKernelRegFirst(x,Y,KDEx)

2

3 X = KDEx.data;

4 Zt = KDEx.bwmZt;

5

6 %Data has nD rows, each are horizonal entries of x

7 [nX,p] = size(x);

8 [nD,py] = size(Y);

9 [¬,¬,nz] = size(Zt);

10 y = zeros(nX,py);

11

12 %Calculate kernel density (can take both static and variable kernels)

13 if nz == 1 %The usual case, for non−adaptive kernels

14 clear('Weight');

15 for n = 1:nX

16 %Obtain Weights

17 Xd = (X − ones(nD,1)*x(n,:))';

18 Z = Zt*Xd;

19 Weight(1,1,:) = exp( − 0.5*(sum(Z.ˆ2,1)) );

20

21 %Obtain regression denominator

22 Z = [ones(1,1,nD);zcols(Xd)];

23 oZ = z matmultiply(Z,z transpose(Z));

24 Den = sum( z matmultiply(Weight,oZ), 3);

25

26 %Obtain regression numerator

27 oY = z matmultiply(Z,zrows(Y));

28 Num = sum( z matmultiply(Weight,oY), 3);

29

30 B = Den\Num;
31

32 y(n,:) = B(1,:);

33 end

34 else %If the kernel is adaptive, we have to multiply by different matrices

35 clear('Weight')

36 for n = 1:nX

37 %entries are column vectors strung out depth−wise
38 Xd = zcols((X − ones(nD,1)*x(n,:))');

39 Z = z matmultiply(Zt,Xd);

40 Weight(1,1,:) = exp(− 0.5*sum(Z.ˆ2,1));

41

42 %Obtain regression denominator

43 Z = [ones(1,1,nD);Xd];

44 oZ = z matmultiply(Z,z transpose(Z));

45 Den = sum( z matmultiply(Weight,oZ), 3);

46

47 %Obtain regression numerator

48 oY = z matmultiply(Z,zrows(Y));

49 Num = sum( z matmultiply(Weight,oY), 3);

50

51 B = Den\Num;
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52

53 y(n,:) = B(1,:);

54 end

55 end

A.2 Three-dimensional matrix toolbox

MATLAB matrix operations only support two-dimensional matrices, but higher-dimensional
equivalents can be implemented through element-wise multiplication and summation which
support higher dimensions.

Multiplying Matrices

In this work, matrix manipulation must be done repeatedly for each element of data used
in the kernel density estimate. Consider Figure A.1, on one side, there is a typical 2D
matrix multiplication, but on the other size, there are two 3D matrices, where 2D matrix
multiplication is to be repeated over the z axis.

Figure A.1: z matmultiply

The simple way to do this is to use a for loop

1 for z = 1:length(A(1,1,:))

2 C(:,:,z) = A(:,:,z)*B(:,:,z);

3 end

However, this method is slow. What is desired is to replace the for loop with this statement
that can be executed efficiently

1 C = z matmultiply(A,B)

This is done by the following function:

1 function C = z matmultiply(A,B)

2

3 [ma,na,oa] = size(A);

4 [mb,nb,ob] = size(B);

5

6 %minimize for loops by looping the smallest matrix dimension

7 C = zeros(ma,nb,oa);

8

9 %if na 6= mb | | oa 6= ob

10 % fprintf('\n z matmultiply warning: Matrix Dimmensions Inconsistent \n')
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11 %else

12

13

14 if na == 1 && mb == 1 %outer product of two matrices

15 C = repmat(A,[1,nb]).*repmat(B,[ma,1]);

16 elseif ma == 1 && na == 1; %A is a set of scalars

17 C = repmat(A,[mb,nb]).*B;

18 elseif mb == 1 && nb == 1; %B is a set of scalars

19 C = A.*repmat(B,[ma,na]);

20 elseif ma > nb %rows of A less than columns of B

21 for j = 1:nb

22 Bp = zeros(nb,mb,ob);

23 Bp(j,:,:) = B(:,j,:);

24 C(:,j,:) = sum(A.*repmat(Bp(j,:,:),[ma,1]),2);

25 end

26 else %rows of B less than columns of A

27 for i = 1:ma

28 Ap = zeros(na,ma,oa);

29 Ap(:,i,:) = A(i,:,:);

30 C(i,:,:) = sum(repmat(Ap(:,i,:),[1,nb]).*B,1);

31 end

32 end

33

34 end

Rearranging Matrices

Some code has also been used for rearranging 3D matrices. For example, for taking the
transpose of all depth-wise matrices (as seen in Figure A.2) is obtained using the function
z transpose

1 function Xt = z transpose(X)

2 [nx,ny,nz] = size(X);

3

4 Xt = zeros(ny,nx,nz);

5

6 if nx < ny

7 for xi = 1:nx

8 Xt(:,xi,:) = X(xi,:,:);

9 end

10 else

11 for yi = 1:ny

12 Xt(yi,:,:) = X(:,yi,:);

13 end

14 end

Figure A.2: z transpose
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In addition, matrices can be converted into n depth-wise columns or n depth-wise rows
using zcols and zrows.

1 function Azr = zrows(A)

2 Azr(1,:,:) = A';

3 end

4

5 function Azc = zcols(A)

6 Azc(:,1,:) = A;

7 end

(a) zcols (b) zrows

Figure A.3: Converting matrices depth-wise
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