
TIGUKAT�

An Object Model for Query and View Support

in

Object Database Systems

Randal J� Peters

M� Tamer �Ozsu
Duane Szafron

frandal�ozsu�duaneg�cs�ualberta�ca

Laboratory for Database Systems Research
Department of Computing Science

University of Alberta
Edmonton� Alberta
Canada T�G �H�

Technical Report TR ����	
October ����

Abstract

Object�oriented computing is in�uencing many areas of computer science including software en�
gineering� user interfaces� operating systems� programming languages and database systems� The
appeal of object�orientation is attributed to its higher levels of abstraction for modeling real world
concepts� its support for incremental development and its potential for interoperability� Despite
many advances� object�oriented computing is still in its infancy and a universally acceptable def�
inition of an object�oriented data model is virtually nonexistent� although some standardization
e�orts are underway� This report presents the TIGUKAT� object model de�nition that is the result
of an investigation of object�oriented modeling features which are common among earlier proposals�
along with some distinctive qualities that extend the power and expressibility of this model beyond
others� The literature recognizes two perspectives of an object model� the structural view and
the behavioral view� Most object�oriented formalisms have concentrated on one or the other of
these two perceptions� The TIGUKAT object model �i� favors formal speci�cations for both the
behavioral and structural components� and �ii� shows an integration of the two components into a
complete model de�nition� Furthermore� the model emphasizes �iii� a clean separation and precise
de�nition of object modeling features which are usually bundled and only intuitively de�ned in
other models� and �iv� a uniform approach to object modeling which encompasses all information�
including meta�data� as objects within the primitive de�nitions�

The establishment of a formal object model provides a theoretical foundation from which inves�
tigations of other object database features will be pursued� The �rst of these involves the de�nition
of an object query model with complete calculus and algebra speci�cations� including an equiv�
alence transformation proof between the two� Based on the query model� object views and view
management with update semantics will be examined� The intention is to incorporate very powerful
and dynamic object de�nition and manipulation language features into the model� In parallel with
this� a dynamic schema evolution policy will be developed for integrating new types into the model�
We are currently in the process of implementing the model presented in this report to establish
a workable software base with the long range goal of developing a full�featured object database
management system�

�TIGUKAT �tee�goo�kat� is a term in the language of the Canadian Inuit people meaning �objects�� The Canadian
Inuits� commonly known as Eskimos� are native to Canada with an ancestry originating in the Arctic regions of the
country�

Contents

� Introduction �

� Object Model Overview �

	�
 Example Database �

� The TIGUKAT Object Model ��

��
 Atomic Types� Classes and Objects �
�

��	 Behaviors and Functions �

��� The Object Primitive �
�

��� The Type Primitive � 	�

��
 Collections and Classes � 	�

��� Higher Level Constructs �

��� The Null Primitive ��

��� Database De�nition ��

� The Structural Model ��

��
 Objects and Values ��

��	 Structured Values ��

��� Abstract Objects ��

��� Object Graph ��

��
 Structural Example �

��� Schema Objects ��

� Comparison with Previous Work ��

�
 Related Work ��

�	 Conformance to Manifestos �
�

i

�	�
 Mandatory requirements �
�

�	�	 Optional Features �

�	�� Undetermined Mandatory or Optional �
	

�	�� Open Choices �
	

�� Conformance to OODB Task Group Recommendations � � � � � � � � � � � � � � � � �
�

� Conclusions and Future Work ��

Acknowledgements ��

Bibliography ��

ii

List of Tables

	�
 Behavior signatures pertaining to example speci�c types of Figure 	�	� � � � � � � � �
	

��
 Object equalities of Figure ��
� 	

iii

List of Figures

	�
 Primitive type system T �

	�	 Type lattice for a simple geographic information system� � � � � � � � � � � � � � � � �
�

��
 An object reference example� 	

��	 Super lattice of type T map� 	�

��� An example type schema� 	�

��� Three tiered instance structure of TIGUKAT objects� � � � � � � � � � � � � � � � � � �	

��
 Subclass and instance structure of m� and m� objects� � � � � � � � � � � � � � � � � � ��

��� Instance structure of default person creation example� � � � � � � � � � � � � � � � � � �

��
 Graphical representations of nodes in an object graph� � � � � � � � � � � � � � � � � � �

��	 Objects of Sherwood County� �	

��� Object graph of SCounty� Notingham and Forest� objects in Figure ��	� � � � � � � � � ��

��� Object graph of partial schema for type T zone� �

iv

Chapter �

Introduction

Object�oriented database systems are seen as the next evolutionary step towards advancing database
technology� In addition to subsuming the modeling power and expressibility of the �rst�generation
�i�e�� hierarchical and network� and second�generation �i�e�� relational� systems� an object�oriented
database management system �OODBMS� is well suited for overcoming their de�ciencies in han�
dling complex data with complex relationships� Furthermore� an OODBMS is suitable for integrat�
ing the semantically rich� and computationally complete� discipline of programming languages with
the persistence� performance and consistency features o�ered by traditional database systems�

Recent work on OODBMSs has resulted in a number of object model proposals� Most properties
of these models have emerged from prototypes built for speci�c application domains that object�
oriented technology is intended to serve� Consequently� these models vary considerably in the set of
features they support� Most of them incorporate a set of common core concepts� but the semantics
of these concepts lack precise formal de�nitions� There are a number of recent e�orts aiming to
formalize the characteristics of �object�orientation�� but the �eld is generally su�ering from the
absence of a universally accepted object model� along the lines of the relational model �Cod����
whose features are formally and unambiguously de�ned� This void makes it di�cult to reason
about the internal consistency of these models� investigate database features such as query models�
views� transaction management� etc�� and to generalize the results of various studies all of which
require a precise data model de�nition�

One result of our research is the development of an advanced object model through the iden�
ti�cation and formalization of object�oriented characteristics with su�cient power and �exibility
for supporting the advanced functionality demanded by OODBMSs� In this paper we propose a
formalization of an object model which includes many of the core concepts introduced by former
data models� along with additional features which extend its modeling power and expressibility� �
The establishment of the model reported here forms a basis from which investigations of other
object database features have commenced� The �rst of these involves the de�nition of an object
query model with complete calculus and algebra speci�cations� including an equivalence transfor�
mation proof� Second� object views and view management facilities with update semantics are
being pursued� The intentions of these two steps are to incorporate very powerful and dynamic
object de�nition and manipulation language features into the model� In parallel with these steps�

�In this proposal� the term �object model� is preferred over �object�oriented data model� because a model of
�objects� is one goal of the research� This perspective complies with the proposal of the ANSI Object�Oriented
Database Task Group �FKMT�	
�

a dynamic schema evolution policy is being developed� Finally� we are attempting to integrate the
performance and expressibility of the object query model �including views� with the computational
completeness of object�oriented programming languages� resulting in a methodology for developing
a coherent and type consistent object database programming language�

A fundamental feature of object models� which di�erentiate them from others� is their richer
semantics� This enables closer modeling of real world concepts� making object models more pow�
erful� On the other hand� it is more di�cult to specify a clean� well�de�ned� universally accepted
model� In fact� the power and expressibility of a general object model may prove too di�cult
to formalize because many important properties become intractable as the model becomes more
general �Mai���� However� certain precautions may be taken to avoid the pitfalls while developing a
sound and complete object model de�nition �KW��� Bee���� The resulting de�nition may be more
restrictive than a �general� model� but we trade some power and expressibility �which may not be
needed anyway� for tractability�

A model for objects involves the speci�cation of two basic components� One part consists of the
behavioral aspects which de�ne a universal conceptual abstraction of objects and the relationships
among them� The other is the structural de�nition which speci�es the internal organization of ob�
jects and how their relationships are structured� Subtleties� like the di�erences between objects and
values� which are hidden by the abstraction of the behavioral model are exposed at the structural
level� King �Kin��� states that there is a similarity between a structural object model de�nition and
the semantic data modeling approach �HM��� HM�
� AH��� HK��� PM��� JGF���� in the sense
that both are concerned with the representation of data and knowledge� He equates a behavioral
model de�nition to object�oriented modeling which involves access and manipulation of objects
from general programming languages and query languages� In this sense� the behavioral model is
like a calculus de�nition which speci�es the �what� of object existence and manipulation� while the
structural model is similar to an algebra which de�nes �how� the objects exist and are represented�
Thus� a natural conclusion of this perspective is that the two speci�cations are independent and
an equivalence relation between them should be expressible�

These two issues have traditionally been treated separately with object model formalization
studies emphasizing one or the other� A notable exception is �Bee��� which attempts to establish a
link between the two� even though the behavioral and structural de�nitions of that model are not
fully developed�

The structural and behavioral aspects are both important to the development of an object
model� but the two are independent� which accounts for the orthogonality of directions taken
by recent studies� However� these de�nitions must eventually be reconciled in order to form a
complete� unambiguous and operational model� This report presents the results of our research in
formal speci�cation and integration of behavioral and structural object concepts leading towards
the development of the TIGUKAT object model�

The behavioral features of our model extend those of an earlier model �S�O��a�� making it more
complete and signi�cantly more powerful� The emphasis of the earlier work was query processing
methodology in object�oriented database systems �S�O��b� S�O�
� Str�
�� and the object model
presented in �S�O��a� was restricted to include only those features which are essential for that
purpose� A result of that work was the identi�cation of necessary design requirements for an object
model de�nition with the appropriate primitives for object query model support � �OS�
� �OSP�	��
TIGUKAT evolved from these requirements and has the power to meet the demands of advanced
application domains that object�oriented technology is intended to serve� Furthermore� the model

	

is more complete in that both the behavioral and structural aspects are presented� the previous
work only considered behavioral notions�

The behavioral aspects are fundamental in developing a theory of objects �Ken��a�� However�
in order to fully understand the semantics of an object model it is imperative that the formal
behavioral model be coupled with a formal structural counterpart� Beeri�s formal structural model
�Bee��� has been chosen as a basis for the structural component that we integrate with our behav�
ioral model� Several modi�cations have been incorporated into Beeri�s model in order to extend
its capabilities to match the enhanced functionality provided by the behavioral component� The
integration of these two de�nitions results in a complete uniform object model speci�cation which
will serve as a favorable platform for the implementation of TIGUKAT�

The fundamental novel contributions of the TIGUKAT object model are as follows�

� a formal speci�cation and integration of both the behavioral and structural aspects of an
object model with the necessary power for handling advanced database functionality such as
object creating query languages� schema evolution� updatable views� rules� etc��

� a clean separation and a precise formal de�nition of many object model features which are
usually bundled and only intuitively de�ned in other studies� and

� a uniform approach to objects which includes meta�information as primitive objects in the
model resulting in a very powerful and �exible self�contained model�

The remainder of this report is organized into �ve chapters� In Chapter 	 we present an overview
of TIGUKAT�s features and de�ne the scope of its functionality� A geographic information system
�GIS� is also described and will be used as a running example throughout the report� In Chapter �
we present� in detail� the behavioral notions of the TIGUKAT object model� In Chapter � we
supplement the behavioral model with a structural de�nition which speci�es an implementation
independent representation for the conceptual objects of the behavioral model� including their rela�
tionships through behaviors� This is done in parallel to de�ning the integration with the behavioral
model� An object graph representation which pictorially illustrates the structural model is also
presented� In Chapter
 we survey earlier work in the area of object modeling� In particular�
we examine some models which have in�uenced the design of TIGUKAT� Furthermore� we com�
pare the characteristics of our model to the object�oriented manifestos �ABD���� SRL���� and the
NIST standards report �FKMT�
�� Finally� in Chapter � we reexamine the contributions of the
TIGUKAT object model and outline the subsequent research we will be pursuing as part of the
TIGUKAT project�

�

Chapter �

Object Model Overview

The object model proposed here is founded on a high�level behavioral speci�cation with object
uniformity being an integral part of the de�nitions� The semantics of TIGUKAT is speci�ed by a
complete set of de�nitions and is integrated with an example structural model to further clarify its
functionality� The model is behavioral in the sense that all access and manipulation of objects occurs
through behaviors �operations� which are de�ned on types� and it is uniform in that everything
in the model is a �rst�class object� The integration with a structural counterpart illustrates how
the behavioral concepts can be organized at a structural level� This gives indication of a basis
for a clean interface to an object storage manager subsystem� It is important to stress that the
choice of a structural counterpart is orthogonal to the behavioral speci�cation of TIGUKAT� The
only requirement is that the structural component support the full functionality outlined by the
behavioral model�

The uniformity aspects of TIGUKAT are similar to the approaches of DAPLEX �Shi�
�� its
object�oriented counterpart OODAPLEX �Day��� and FROOM �MB���� As mentioned earlier� we
adopt another signi�cant facet of these models� their functional approach to de�ning behaviors�
However� we go further by including enhanced functionality along with a full set of precise speci�
�cations and an integration with an example structural counterpart� Uniformity is paramount in
TIGUKAT and is carried through to both the behavioral and structural speci�cations�

The behavioral model evolves from the de�nitions of several primitives� The primitives form
a foundation that supplies the necessary tools from which other constructs such as user�de�ned
and system objects may be created and extended� These operations have a single� clean semantics
because of the uniformity incorporated into the primitives� The primitive components of TIGUKAT
include types� classes� collections� behaviors� functions atomic entities and� of course� objects� In
fact� at a conceptual level� all elements of the model have the uniform perspective of an object�
Thus� the primitive elements of our model consist of type objects� class objects� collection objects�
behavior objects� function objects and atomic objects� The primitive object system evolves with
other application speci�c objects by applying the primitive behaviors we provide� These include
behaviors for object creation� manipulation and management along with several others which are
de�ned in the following sections�

An object is an abstraction for encapsulating information into a single entity which may be
operated upon as an individual� An object is accessible only through a set of publically de�ned
behaviors which constitutes the interface of the object� this is known as the encapsulation property�

�

Furthermore� TIGUKAT supports strong object identity �KC���� meaning that every object has a
unique� immutable identi�er associated with it which di�erentiates the object from all others�

Object accessibility in TIGUKAT is achieved through the notion of object reference which is
the only expressible form of an object� A reference serves as a handle or locator for the object�
References are associated with a particular scope and their meanings may vary over di�erent scopes�
Unlike object identities� references need not be unique� That is� there may be many references to a
particular object� The exact speci�cation of scope and reference is outside the domain of TIGUKAT�
These are left to be precisely de�ned by application domains based on the model� For example�
di�erent object programming languages may have varying levels of scoping which may di�er from
scoping in query languages and graphical user interfaces�

Throughout this paper� we assume a functional programming environment as a global scope and
adopt the following pre�x notation and font variations to denote object references of the various
primitive kinds within this scope�

T name is a type object reference�

C name is a class object reference�

L name is a collection object reference�

B name is a behavior object reference�

name is some other application speci�c reference�

In this notation� the pre�xes T � C � L � and B distinguish between the various primitive
object types where the �name� part is an object speci�c reference name� The last notation� which
does not include any speci�c pre�x� refers to other system and user de�ned objects which are
not of a previously mentioned primitive kind� They may include any sequence of characters but
should not normally begin with one of the established pre�xes� For example� T person is a type
object reference� C person a class reference� L seniors a collection reference� B age a behavior
object reference� and a reference such as sherry without any speci�c pre�x represents some other
application speci�c object reference� In some cases� we prefer the use of mathematical symbols
over named references� This is done for both convenience and brevity� A full representation using
named references is always given as an alternative to the symbolic notations�

We separate the means for de�ning the characteristics of objects �i�e�� a type� from the mecha�
nism for grouping instances of a particular type �i�e�� a class�� A type is used to specify the structure
and behavior of objects of that type� The type serves as an information repository �template� of
characteristics common among all objects of that particular type� Types are organized into a lat�
tice structure using the notion of subtyping which promotes software reuse and incremental type
extensibility�

A class ties together the notions of type and object instance� A class is a supplemental construct
to a type responsible for managing all instances created using that type �known as the extent of
the type�� Objects of a particular type cannot exist without an associated class and every class
is uniquely associated with a single type� In other words� there is a total �into� mapping classof
which maps objects to classes and a total injective �one�to�one and into� mapping typeof which
maps classes to types� Thus� a fundamental notion of TIGUKAT is that objects imply classes
which imply types �i�e�� object �� class �� type��

Object creation occurs only through a class using the associated type as a template for its
objects� In this sense� our model is similar to others such as EXODUS �CDV���� but we automati�
cally maintain the extent of a type through its class� De�ning object� type and class in this manner
introduces a clear separation of these concepts�

In addition to classes� we de�ne a collection as a more general grouping construct� A collection
is similar to a class in that it groups objects� but it di�ers in the following respects� Firstly� no
object creation may occur through a collection� object creation occurs only through classes� This
means that collections only form groupings of existing objects� Secondly� an object may exist in
any number of collections� but its participation in classes is restricted by the lattice structure on
types� Finally� whereas a class groups the entire extension of a single type and its subtypes �i�e�
homogeneous objects�� a collection may be heterogeneous in the sense that it can contain objects
which may be of any type� The targets of queries are classes and collections� Subsequently� the
results of queries are also classes and collections� This approach provides great �exibility and
expressiveness in formulating queries and gives closure to the query model� which is often regarded
as an important feature �Bla�
� YO�
��

Other fundamental notions of TIGUKAT are those of behavior and the objects which implement
them� which we call functions �also known as methods�� In the same way as object speci�cations
�types� are separated from the groupings of their instances �classes and collections�� we separate the
de�nition of a behavior from its possible implementations �functions�methods�� Behaviors provide
the only means of operating upon objects� Behaviors de�ne a semantics which describe their
functionality� All objects supporting the functionality of a particular behavior incorporate that
behavior object into the interface of their type� Functions implement the semantics of behaviors�
we say they provide the operational semantics of the behavior� The implementation of a particular
behavior may vary over the types which support it� Nonetheless� the semantics of the behavior
remains constant and unique over all behaviors� The implementation of a behavior may consist
of runtime calls to executable code which is known as a computed function� Alternatively� it may
simply be a reference to an existing object in the database in which case it is called a stored function�
The uniformity of TIGUKAT considers each behavioral application as the invocation of a function�
regardless of how the function is implemented �i�e�� stored� computed� etc���

A semantic description of a behavior may be a complicated expression� One approach is to
de�ne the functionality of behaviors using denotational semantics �Sto��� All��� Sch��� CP���� A
common approach in other models is to de�ne a signature for the behavior which gives the behavior
a name �reference� used for behavioral application along with the type speci�cation of its arguments
and the type of its result� Although somewhat simplistic and semantically incomplete� a signature
expression does o�er a useful and necessary tool for de�ning the structure and interface of behaviors�
We incorporate signatures into our behavioral descriptions and are currently investigating other
approaches such as the denotational semantics for supplementing these de�nitions� In the remainder
of the paper we assume the existence of a mechanism for de�ning and distinguishing the semantic
expression of behaviors�

Functions are objects which may be broken down into constituent parts that include source and
implementation components� A source component would resemble a human readable de�nition of
the function�s operation �behavior� usually written in some object�oriented programming language�
but could additionally include English commentary and further semantic descriptions� The imple�
mentation component would consist of executable code �in the form of a computed function� or a
reference to a particular result object �in the case of a stored function�� The functional approach
adopted by TIGUKAT bene�ts from the signi�cant amount of research which has been done in

�

�������������������������������������� ����
����
�����
�����
������

�����
����
�����

Supertype Subtype

T atomic

T object

T class�class

T type�class

T behavior

T function

T type

��
��
��
�����
��
��
��
�������
��
�
��

�
��
��
�������

��
��
��
�������
�
��
�

��
��
��
�����
��
��
��
�������
��
�
��

�����
�����
�����
�����
������
�����
�����
�����
�����
��

���

����
��
��
��
��
���
��
��
��
��
��
��
���
��
��
��
��
��
��
�

��
�
��
��
��
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��

T null

T integer T natural

T string

T boolean

T character

T real

T collection T class

T collection�class

T bag

T poset

T set T list

Figure 	�
� Primitive type system T �

the areas of functional programming languages and functional theory such as the lambda calculus
�Bar�
� Rev��� and category theory �Pie��� LS����

The primitive type lattice of TIGUKAT is depicted in Figure 	�
� Uniformity dictates that
everything in the model be an object� types� classes� collections� behaviors� functions� and so
on� are all de�ned and managed as objects� The introduction of uniformity eliminates the need
for externally maintained meta�information since all information� including the meta�data� is self�
contained within the model as objects� An additional bene�t is that the limitless hierarchy of meta�
meta�meta� etc� information is eliminated by incorporating these levels into a single self�contained
structure�

Figure 	�
 illustrates the subtyping relationships of the primitive type system� Each box in the
�gure represents a primitive type and the edges between the boxes denote the well�known notion of
subtyping which is depicted from left to right �i�e�� the type T type is a subtype of type T object

and so on�� Types are identi�ed by an appropriate reference given within each box� The types
of Figure 	�
 are formally addressed in the following sections and a complete speci�cation of the
fundamental behaviors of each type are given in the design document for the implementation of
the model�

The type structure of Figure 	�
 is referred to as the primitive type system T � Every type
in T is associated with a corresponding primitive class object which may possibly contain some
other primitive objects� Furthermore� types de�ne primitive behaviors which are associated with

�

functions that implement the functionality de�ned by the behaviors� We de�ne the union of the
types in T with the set of all primitive classes� behaviors� functions and other instance objects as
the primitive object system O�

The type T null in T is a primitive type de�ned to be a subtype of all other types� It is a
system managed type and included to allow the use of nulls in a consistent fashion� The type
T null binds the type lattice from the bottom while the type T object binds it from the top�

From the type structure of Figure 	�
� we can begin to understand the uniformity of TIGUKAT
and the relevance of the statement �everything is an object�� Our model restricts dynamic type
creation in that all types must be in a subtype relationship with T object� Therefore� due to the
semantics of subtyping� all behaviors de�ned on the type T object are applicable to all objects of
the system� including the type object T object itself� This structured type lattice is important in
maintaining the uniformity of the TIGUKAT object model�

A structural model maps the behavioral de�nitions into a representation that is consistent with
a storage manager level interface� The structural level makes a cleaner distinction between atomic
entities of the system and the structured objects which are constructed from them� At this level� the
domains of the atomic types may be mapped into the semantics of values� which serve as identity�
state and reference all at once and give these kinds of objects the properties of immutability�

Sets� bags� partially ordered sets and lists are atomic types which impose various levels of
structuring on other domains� Sets are containers whose elements de�ne the identity of the set� Bags
are sets which allow duplication of elements� Partially ordered sets �i�e�� posets� are sets with an
ordering relation de�ned between pairs of its elements� total orderings are those posets which de�ne
the ordering relation between all pairs of elements� Finally� lists combine the properties of bags
and posets allowing both duplication and ordering of its elements� These types are all maintained
by the system and operations are provided for establishing references to objects of these types�
The instances of set� bag� poset and list structured types are referred to as structured values in the
structural model and are considered to be atomic and immutable� From the user�s perspective�
the entire domains of atomic types can be assumed to exist and can be manipulated using the
operations we de�ne� Exactly how this abstraction is maintained is implementation dependent�
For example� referenced objects could be automatically created when they are accessed for the �rst
time�

Abstract objects include the user�de�nable objects of the system �e�g�� application speci�c ob�
jects� executable functions� etc�� along with some of the primitive system objects �e�g�� primitive
types� classes� behaviors� etc��� An abstract object� as a whole� envelopes the properties of im�
mutability �and in this sense is atomic�� but abstract objects incorporate a separate state which
may change over time� There are two main reasons for considering abstract objects to be atomic�
The �rst is related to the notion of strong object identity� Changing the state of an abstract ob�
ject does not transform the object into some other object �i�e�� the identity of the object does not
change�� Rather� it is still the same object it was before� only now it carries di�erent information�
In other words� abstract objects are atomic in the sense of their existence� The second reason deals
with the representation of �possibly complex� objects in mathematical logic� In certain forums it
is bene�cial to consider abstract objects as atomic in this sense� because this perspective relates
them to the �rst�order semantics of logic which is well�de�ned �Bee����

The structural aspects of the model are clari�ed by the introduction of an object graph rep�
resentation which is de�ned in Chapter �� An object graph is used to portray the structure and

�

contents of an object database which uniformly stores application speci�c and primitive system ob�
jects alike� The nodes of the graph correspond to the atomic values� abstract objects and structured
values of the objects in an object database while the edges represent the relationships �de�ned as
behaviors� among the objects�

Each concept introduced in this section� although related� has a separate role in the model and
each has a distinct semantics� The chapters which follow discuss these concepts in more detail and
formalize their semantics� but �rst we describe a geographic information system �GIS� which will
be used as a running example throughout the remainder of the report�

��� Example Database

Object�orientation is intended to serve many application areas requiring advanced data represen�
tation and manipulation� A geographic information system �GIS� �Aro��� Tom��� is selected as
an example to illustrate the practicality of the concepts introduced and to assist in clarifying their
semantics� A GIS was chosen because it is among the application domains which can potentially
bene�t from the advanced features o�ered by object�oriented technology� Speci�cally� a GIS re�
quires the following capabilities�

� management of persistent and transient data�

	� management of large quantities of diverse data types and dynamic evolution of types�

�� a seamless integration of sophisticated computer graphic images with complex structured
attribute data�

�� handling of large volumes of data and performing extensive numerical tabulations on data�

� management of di�ering views of data� and

�� the ability to e�ciently answer a variety of ad hoc queries�

A GIS can be de�ned as an application �designed for the collection� storage and analysis of
objects and phenomena where geographic location is an important characteristic or critical for
analysis� � �In each case� what it is and where it is must be taken into account�� �Aro���� Some
examples of this include displaying the e�ective range of a police force� illustrating how logging
activities a�ect wildlife populations� or depicting the severity of soil erosion�

GIS technology is being applied to many areas� Some common ones include agriculture and
land use planning� forestry and wildlife management� geology� archaeology� municipal facilities
management� and more global scale applications such as ecology� Each of these areas rely on
statistical data� historical information� aerial photographs� and satellite images for analyzing and
presenting empirical data� for drawing conclusions about certain phenomena� or for predicting future
events through sophisticated computer simulations using the information at hand� GISs require
advanced information management and analysis features in order to be e�ective� Object�oriented
databases have the potential to provide this advanced functionality�

A type lattice for a simpli�ed GIS is given in Figure 	�	� The example is su�ciently com�
plex to illustrate the advanced functionality of the model we present� yet simple enough to be

�

��
��
�������

���
�
��
�������
��
�
��

��
��
��������

��
��
��
�������
�
��
���

��
�������

���
�
��
�������
��
�
��

��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
�

��
��
���
���
��
���
���
���
���
��
���
��
���
���
�

��
���
���
���
���
��
���
���
���
���
���
��
���
���
���
���
���
��
���
���
���
���
���
��
���
���
���
���
���
��
���
���
���
���
��
���
���
���
���
���
��
���
���
���
���
���
��
���
���
���
���
���
��
���
���
���
���
��
���
���
���
���
���
��
���
���
���
���
���
��
���
���
���
���
���
�

��
��
��
��
��
��
��
��
��
��������������������

����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
�����
����
�����
��

��
��
���
��
���
��
��
����������������������

��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
�
��
�
��
�
��
�
��������������������

��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
�

�
��
�
��
��
�
��
��
�
��
��
��
�
�
��
�
��
�
�
��
�
��
�
��
�

����
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
���
���
�

��
��
��
��
��
��
��
��
��
��������������������

��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

����
������

�����
�������
��������
��������

�� ��
��
�
��
��
��
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��

�
��
��
��
��
�
��
��
��
��
��������������������

���
��
��
���
��
��
���
��
��
���
��
��
���
��
��
��
���
��
��
���
��
��
���
��
��
���
��
��
�

����
����
����
����
�����
����
�����
�����
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
�
��
�
��
�
��
�
��
�
��
�
��������������������

���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
��
�

����
������

�����
�������
��������
��������

���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
���
�

��
��
��
��
��
��
��
��
��
��������������������

�
�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
�

����
���
����
���
����
���
���
����
���
����
���
���
����
���
����
���
���
����
���
����
���
���
����
���
����
���
����
���
���
����
���
����
���
���
����
���
����
���
���
����
���
����
���
�

�������
����������

���������������������

���
��
���
��
���
��
��
���
��
���
��
���
��
��
���
��
���
��
���
��
��
���
��
���
��
���
��
��
���
��
���
��
���
��
��
���
��
��

���
�����
����
����
���������
�����
������
��

��
��
��
��
��
�
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
�
�

���
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
�
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
�
�

��
��
��
��
��
��
��
��
��
��������������������

���
��
���
��
���
��
��
���
��
���
��
���
��
��
���
��
���
��
���
��
��
���
��
���
��
���
��
��
���
��
���
��
���
��
��
���
��
��

��
��
��
��
��
��
�
��
��
�
��������������������

����
���
����
���
����
���
���
����
���
����
���
���
����
���
����
���
���
����
���
����
���
���
����
���
����
���
����
���
���
����
���
����
���
���
����
���
����
���
���
����
���
����
���
�

��
��
��
��
��
��
��
��
��
��������������������

���
����
����
���
����
����
����
����
���
����
����
����
����
���
����
����
����
����
���
����
����
����
����
���
����
����
����
����
���
����
����
����
����
���
����
����
����
����
���
����
����
����
����
���
����
����
����
����
���
����
����
����
����
���
����
����
����
����
���
����
����
����
����
���
����
����
����
����
���
����
����
����
����
���
����
��

�������������
�������������������������

��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
�
��
�

�
�
��
�
��
��
�
��
�
��
��
�
���
�����
�����
�����
��

�
�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
�

��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��

��
�
��
�
��
�
�
��
�
��
�
��
���
���
��
���
��
���
��
��

�����
������

������
������

������
������

������
������

�������
������

������
������

������
������

������
�������

������
������

������
������

������
������

������
�������

������
������

������
������

������
������

�������
������

������
������

������
������

������
������

�������
������

������
������

������
������

������
�������

������
������

������
������

������
������

������
�������

������
������

������
������

������
������

�������
������

������
������

������
������

������
������

�������
������

������
������

������
������

������
���

��������������������������������������

��
��
��
��
��
��
��
��
��
��
�
��
�
�
��
�
��
�
�
��
�
��
�

�
��
�
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��

��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

���
���
���
���
���
���
��
���
���
���
���
����
��

���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
���
���
���
�

�������
��������

�����������������������

T dwellingT person

T land

T forest

T water

T riverT pondT clear

T developed

T map

T house

T null

T zone

T object

T location

T window

T displayObject

T geometricShape

T atomic

T altitudeT transport

T road

T type

T collectionT function

T behavior

T date

Figure 	�	� Type lattice for a simple geographic information system�

�

understandable without an elaborate discussion� The example includes the root types of the vari�
ous sub�lattices of the primitive type system T to illustrate their relative position in an extended
application lattice� The additional types de�ned by the GIS example include�

� Abstract types for representing information on people and their dwellings� These include the
types T person� T date� T dwelling and T house� Note that T date is a new atomic type
introduced by the application which is used to represent dates in a form acceptable to the
application�

	� Geographic types to store information about the locations of dwellings and their surrounding
areas� These include the type T location� the type T zone along with its subtypes which
categorize the various zones of a geographic area� and the type T map which de�nes a collection
of zones suitable for displaying in a window�

�� Displayable types for presenting information on a graphical device� These include the types
T displayObject and T window which are application independent and the type T map which
is the only GIS application speci�c object that can be displayed�

�� A type T geometricShape which de�nes the geometric shape of the regions representing the
various zones� For our purposes we will only use this general type� but in more practical appli�
cations this type would be further specialized into subtypes representing polygons� polygons
with holes� rectangles� squares� splines� etc�

Table 	�
 de�nes the signatures of the GIS speci�c types in the lattice of Figure 	�	� The
semantics of these behaviors will be illustrated in the chapters which follow� Furthermore� the
signatures for the types of the primitive type system T will also be developed�

Type Signatures

T location B latitude� T real

B longitude� T real

T displayObject B display� T displayObject

T window B resize� T window

B drag� T window

T geometricShape

T zone B title� T string

B origin� T location

B region� T geometricShape

B proximity� T zone� T real

T map B resolution� T real

B orientation� T real

B zones� T sethT zonei

T land B value� T real

T water B volume� T real

T transport B e�ciency� T real

T altitude B low� T integer

B high� T integer

T person B name� T string

B birthDate� T date

B age� T natural

B residence� T dwelling

B spouse� T person

B children� T person� T sethT personi

T dwelling B address� T string

B inZone� T land

T house B inZone� T developeda

B mortgage� T real

aBehavior was re�ned from supertype T dwelling�

Table 	�
� Behavior signatures pertaining to example speci�c types of Figure 	�	�

	

Chapter �

The TIGUKAT Object Model

In this chapter we concentrate on the behavioral issues of the TIGUKAT object model� We follow
a formal presentation of the high�level abstract functionality of the model and at times address
structural components to clarify certain points that are raised� However� a full integration of the
behavioral model with an example structural counterpart is delayed until Chapter ��

��� Atomic Types� Classes and Objects

Most data models include a set of basic primitive types referred to as atomic types� We include
the common types T boolean� T character� T string� T real� T integer and T natural as part
of our primitive model de�nitions� Furthermore� we include several primitive types for aggregating
objects such as T set for managing sets of objects� T bag for de�ning sets of objects with possible
duplication of elements� T poset for de�ning ordering relations on sets of elements� and T list for
specifying both ordering and duplication on sets� We refer to the collection of atomic types as the
atomic type pool� Other types may be easily added to this collection through the operation known
as subtyping�� For example� the GIS application schema of Section 	�
 extends the atomic types
with the type T date�

Atomic types de�ne the behaviors applicable to atomic objects of that type� Atomic objects
are equated to the notion of literals de�ned in �FKMT�
�� They are never explicitly created by
the user� Instead� they are assumed to exist and users manipulate system maintained references
to these objects� or create and use their own references derived from the primitive ones� For each
atomic type� there exists a corresponding atomic class which groups the instances of that atomic
type� Thus� we include an atomic class for each one of the atomic types�

Atomic types and classes are objects that are related to other types and classes in the model�
For example� the atomic types are all objects of the primitive type T type and are managed as
instances of the primitive class C type� The atomic classes are of type T class and belong to class
C class� This structure follows from the uniformity aspects of the model�

TIGUKAT de�nes the usual standard behaviors for atomic types �i�e�� behaviors which are com�
monly associated with objects of these types�� and provides conventional syntactic representations
of atomic objects to serve as references� Only brief descriptions are given here since these types are

�Subtyping is formally de�ned in Section ��
�

�

universally known abstractions� The full behavioral speci�cation of these types and their objects
is de�ned in the implementation of the model�

Objects of the type T real are represented as �oating point numbers �e�g�� �	���
� or ���E���
with behaviors for the usual arithmetic operations such as addition� subtraction� multiplication and
division along with relational operators ���������� Equality is excluded from this list because it
is de�ned as a behavior of the more general object type� Integer objects have the usual syntactic
denotation as a string of digits �e�g��
	��
� with an optional sign while naturals represent the
subset of positive integers exclusively� The type T boolean only includes the two instance objects
true and false which have the usual logical operations� Objects of type T character are represented
as a single character in single quotes �e�g�� �x�� that correspond to a particular collating sequence�
Characters support comparison operators through their ordinal values� Strings are of type T string

and are represented by a sequence of characters in double quotes �e�g�� �A string��� Strings support
comparison operators by examining the ordinal values of their component characters and also
include a variety of string manipulation behaviors�

Some atomic types �e�g�� T integer� T real� T string� represent an in�nite domain of atomic
objects� For all the atomic types� it is assumed that the instances of these types exist and that
atomic objects serve as state� identity and reference all at once� For example� the atomic type
T integer has an in�nite domain of objects whose elements serve as the reference� identity and
state of their existence� The integer reference
 refers to an integer object whose identity and state
is the universally known abstraction of the integer
� There is only one
� there always has been
and there always will be� Note that this does not restrict us from establishing additional references
to the integer
 such as �ve or V� The same argument holds for all types in the atomic type pool�

Structured object aggregates in TIGUKAT are provided by the primitive T set� T bag� T poset

and T list types� These types are used to build typed groupings of objects with varying levels of
duplication and ordering imposed upon the elements�

Sets have the standard mathematical notion of set where duplicates and ordering within a set
are irrelevant and where the axiom of extensionality de�nes set equality� A set of objects is denoted
as fo�� o�� � � � � omg where each of the oi is an object reference� A bag is an object container which
may hold duplicates� but where ordering is irrelevant� The type T bag de�nes a behavior � which�
given a bag and an object reference� returns the number of times that object appears in the bag�
A bag of objects is denoted as �o�� o�� � � � � om� where each of the oi is an object reference� A partial
order �poset� is a set with a re�exive� transitive and antisymmetric relation � de�ned on pairs of
elements from the set� Duplication within a poset is irrelevant� If every pair of elements in a poset
is comparable �i�e�� either a � b or b � a for all a� b in the poset�� we say the set is totally ordered�
A poset of objects is denoted as �o�� o�� � � � � om� where each of the oi is an object reference� Lists
are sets with both duplication and ordering properties imposed upon its elements� A list of objects
is denoted as �o�� o�� � � � � om� where each of the oi is an object reference�

These aggregate types may be specialized by subtyping the general types� One form of spe�
cialization is to de�ne a subtype which restricts the elements of its instances to be of a particular
type� We use parameterization to denote this form of re�nement� The syntax for this is given as
T sethT Xi� T baghT Xi� T posethT Xi and T listhT Xi where T X represents some other type speci�
�cation� This restricts the members of the aggregate type to be compatible with the type T X�� The
notion of type compatibility is described in Section ���� For example� consider the signature ex�

�The notations T set� T bag� T poset and T list are really only abbreviations for the parameterized notations
T sethT objecti�T baghT objecti�T posethT objecti and T listhT objecti respectively�

�

pression B zones � T sethT zonei de�ned on type T map of the example GIS schema� This denotes
a behavior B zones whose application to an object of type T map results in a set whose members
are all objects compatible with type T zone�

The aggregation types encompass the standard semantics and operations of mathematical sets
which include behavioral de�nitions for union� intersection� di�erence andmembership� The objects
of these domains are considered to be atomic� meaning that the contents of a set are immutable
and uniquely identify the set� Thus� behaviors which seem to update sets are really mappings from
one set to another� For example� one would refer to an integer set object containing the atomic
integer objects
 and � as f
� �g� The operation of inserting an atomic object � into this set is really
a mapping from the set object f
� �g to the new and distinct set object f��
� �g� These semantics
apply to all the atomic aggregate types� These types are similar to the immutable aggregate types
of other models �Day��� MB����

We do not include an explicit tuple type in our model� The notion of tuple can be cast into
ordinary object de�nitions� Tuples are entities with attributes which de�ne the value of the tuple�
Objects are entities with behaviors which de�ne the state of the object� A tuple can be mapped
directly into the representation we propose for an object by mapping attributes to behaviors and
values to state� Whenever a tuple de�nition is required� one may create a type where the attributes
of the tuple are de�ned as the behaviors of the type� The values of the tuple attributes are accessed
and manipulated by applying the behaviors to objects complying with the given type� Tuples and
objects have an inherent uniform representation� and de�ning tuples in this way makes for cleaner
and more concise semantics�

In addition to the atomic types� our model de�nes other primitive types for objects� types�
collections� classes� behaviors� and so on� The following sections elaborate on each one of these
primitives in turn�

��� Behaviors and Functions

Behaviors are objects which perform operations on objects and produce objects as results� Be�
haviors are de�ned on types and are applicable to the object instances which are compatible with
that type� Each behavior includes a semantic expression of its functionality� It is this semantic
expression which determines the uniqueness of a behavior� Types wishing to provide a particular
semantics �behavior� must de�ne the behavior object as part of their interface or have the behavior
inherited� Equality for behaviors is re�ned to incorporate equality of semantic expression�

Di�erent types may supply common behaviors �i�e�� semantics�� However� the implementation
of these shared behaviors over the types may vary� Each type can de�ne its own implementation
for each of its behaviors as long as the implementations provide the speci�ed semantics of the
behavior which is unique� In this way� we separate the notion of a behavioral speci�cation from
its implementation�s� much in the same way as �MB���� A type�s behavior represents the only
means of accessing and manipulating the properties of objects� Functions provide the necessary
implementation forum for realizing behaviors� The TIGUKAT object model is strictly concerned
with the behavioral aspects of operations and does not model implementation speci�c details�
Together� behaviors and functions represent the operational semantics of the system�

Behaviors are all instances of the type T behavior and the implementations of behaviors are
instances of the type T function� We use the standard mathematical arrow ��� notation as a

syntactic representation for functions and curry multiple argument functions� In this way� a wide
variety of other representations are supportable� A general function speci�cation is of the form
A � R where A represents the argument type expression of the function and R represents the
result type� In general� the argument and result type expressions may consist of any other type
speci�cations �including function speci�cations��

We assume that functions� de�ned as implementations of behaviors� are unary in the sense that
they have an argument expression A which consists of a single type that is compatible with the
type the function is being de�ned on and a result type R giving the result type of its execution�

Types have an extent of objects which are grouped by a corresponding class� Types de�ne a set
of behaviors which are applicable to the objects in its extent �i�e�� its class��� Behaviors represent
the only means of accessing and manipulating objects in a class and functions are the objects which
implement these behaviors�

The semantic de�nition of a behavior can be speci�ed in many ways� Some examples include
using the code which implements the function as a speci�cation� or using an informal English
description� or possibly a more formal denotational speci�cation� A simple method which is com�
mon among other models is the use of a signature expression for representing the meaning of a
behavior� Signatures are useful and necessary for describing behaviors� but they are inadequate for
characterizing the full semantics of behaviors� For now� we assume that a proper semantic speci��
cation mechanism for behaviors exists and that equality testing on behavioral semantics operates
reliably� We further assume the existence of a behavior B semantics �denoted �� ��� de�ned on the
type T behavior which returns the semantic speci�cation of the behavior to which it is applied�
For example� given a behavior b� the behavioral application B semantics�b� �denoted ��b��� returns
the semantic speci�cation of b� Currently� we only de�ne signatures for behaviors to give some
indication of their semantics� In subsequent research we will de�ne a more complete mechanism
for specifying behaviors�

A signature speci�cation consists of two elements� the name used to invoke the behavior and the
result type of its application� We assume that the name for invoking the behavior has a standard
string representation and the result type is one of the types available to the user� Since behaviors
are always de�ned on a particular type� a behavioral speci�cation may be thought of as a function
with a single argument �an object of the type it is de�ned on� and a single result �an object of the
type speci�ed as the result� which may be a function�� We formally de�ne the representation of
signatures as follows�

De�nition �	� Signature �f � R�� A signature is a speci�cation of behavior� It is denoted as
f � R which consists of a name �f� that is used to apply the behavior to an object and a result type
�R� which speci�es the type of the object resulting from the application of the behavior� �

In order to extract these two components of a behavior� we de�ne primitive behaviors on the
type T behavior� These behaviors include B name � T string to access the name of the signature
and B result � T type� T type to return the result type of the behavior for a particular type� The
names of behaviors cannot change over types which are in a subtype relationship with one another�
However� the result type of a behavior may vary as long as it is compatible with the result type of
the behavior at the supertype from where it was inherited� Type compatibility and subtyping is
discussed in Section ���� Table 	�
 de�nes the signatures of the GIS example database�

�The relationships between type� class and extent are formally de�ned in Sections ��
 and ����

�

Behaviors are applied to objects� The object receiving the behavior is always explicit� This is
similar to the classical or message�based object model outlined in �FKMT�
�� The application of
a behavior B i to an object o is denoted as a function call B i�o�� The result of this application is
an object which is in the extent of the result type speci�ed by the signature of B i�

For example� consider the signature B residence � T dwelling de�ned on the type T person

in Table 	�
� Applying B residence to an object of type T person results in the execution of the
function object associated with this behavior which returns an object that is compatible with the
type T dwelling� The behavior then returns an object reference to the applicant who interprets
this object as being of the type T dwelling� If we used a full signature speci�cation as is done in
�S�O��a�� the signature would be written as B residence � T person� T dwelling� Since a behavior
is speci�ed on a particular type� we omit the �T person �� part of the speci�cation and choose
to derive this portion from the type the behavior is de�ned on� Now consider an object sherry

which is an instance of type T person� The application of B residence to object sherry is denoted
as B residence�sherry� which results in an object reference that is in the extent of type T dwelling�

An optional representation for behavioral application is the dot notation �o�f�� The general form
of this application is given as object�B behavior�arg� which denotes the application of the behavior
B behavior to an object object using the object reference arg as an argument� This representation is
equivalent to the function application �B behavior�object���arg� or simply B behavior�object��arg�
assuming left associativity of function application� If no argument is required by the result type�
then the application is simpli�ed to object�B behavior which is equivalent to B behavior�object��
Referring back to a previous example� applying the behavior B residence to the object sherry using
the dot notation would be speci�ed as sherry�B residence� The result of behavior application is an
object reference which may additionally have other behaviors applied to it� Thus� the behavioral
application itself may be thought of as an object reference� The dot notation presents an optional
uniform speci�cation for behavioral application which has a direct translation to the standard
function application notation�

Functions have additional attributes such as source and implementation components� The
source component would be a human readable form of the function written in some language
including possible semantic descriptions or natural language explanations� The implementation
component would be the executable form of the function that is invoked when the function object
is called upon to perform its task� Some models �MB��� consider functions to be either stored or
computed� A stored function is one whose implementation is simply a reference �pointer� to a object
that is in the extent of the result type speci�ed in the associated behavior�s signature� A computed
function is one which executes some code in order to produce the result object� Regardless of
whether a function is stored or computed� a semantic description �i�e�� behavior� of that function
always exists� This description may be as simple as the signature speci�cation� or a complex
set of documentation together with a denotational semantics of its operation� The separation of
behaviors from functions in TIGUKAT allows it to support any kind of function� including stored
and computed� by abstracting the implementation speci�c details of functions with the semantic
consistency of behaviors� A syntax for specifying functions and developing their code is one of the
requirements of a database programming language for the system�

In Section ��� we de�ne subtyping �also referred to as behavioral inheritance� as a reuse mech�
anism on the behavioral speci�cations of types� However� this has no implications on the reuse
of implementations� Just because a type T � is a subtype of some other type T � does not mean
that the behaviors of T � borrow any implementation from the behaviors de�ned on T � �although
they may� or this may be the default�� Because of this� we de�ne a separate reuse mechanism

�

for implementations which we call implementation inheritance� Every behavior must relate each
type it is de�ned on with an implementation of the behavior for that type� These implementations
may be either the same function object in the subtypes� in which case we say the implementations
are inherited� or the implementations are completely di�erent objects� in which case we say the
implementation is rede�ned or overridden� When overriding a function� the newly de�ned function
must provide the semantics speci�ed by the behavior to which it is related�

Implementation inheritance on functions could be de�ned as a default in accordance with sub�
typing on types� That is� a subtype inherits all the behaviors and implementations of its supertypes
unless otherwise speci�ed� We have separated the inheritance of behaviors from the inheritance of
their implementations� One of the problems with inheritance arises from TIGUKAT�s support of
multiple inheritance� also referred to as multiple subtyping� Multiple subtyping means that a type
can be a direct subtype of several other types� This complicates matters since a con�ict resolution
policy is needed for choosing an implementation when inheriting semantically common behaviors
�with di�erent implementations� from several types� Note that con�ict resolution is not a prob�
lem with behavioral inheritance because it deals with semantics of behaviors which are preserved
over type boundaries while the implementation of these semantics may di�er over con�icting types�
A simple� but e�ective� solution for con�ict resolution is to have the user resolve the con�ict by
choosing one of the implementations or by rede�ning the implementation completely� Note that
this resolution process need only occur at type de�nition time� and after an implementation has
been established� the system can operate unambiguously�

The inheritance mechanism as well as the con�ict resolution policy is implementation dependent
and not part of the formal model de�nition� We have described some solutions which would be
su�cient in resolving the problems� but delay an exact solution until the implementation of the
model�

��� The Object Primitive

An object is a fundamental primitive in TIGUKAT because the conceptual level of the model deals
uniformly with objects� In Chapter 	 we describe an object as an abstraction for encapsulating
information and behavior into a single entity� The encapsulated portion of an object is referred to
as its state which is accessible only through a set of behaviors de�ned on the type for that object�
The state carries the information content of the object and each object has an associated identity
which serves as an immutable internal identi�er for the object throughout its existence� Thus� the
model views an object as a pair consisting of an identity and a state�

De�nition �	� Object� An object is de�ned as the pair �identity� state� where identity is the
immutable internal identi�er of the object and where state is an assortment of information carried
by the object which is separate from the object�s identity� �

An object identi�er �or oid� is associated with an object upon its creation and persists with the
object throughout its lifetime� In TIGUKAT� objects may be composed of other objects because
the semantics of objects are de�ned by behaviors which are objects that operate on other objects
and return objects as results� Therefore� the model automatically supports the notion of complex
objects� The state of an object may be naively thought of as a composition of references to other

�

objects which de�nes that particular state� In this case� each object includes an oid along with
some private state which holds the referential information for that object�

If we consider the domain of all objects as the collection of pairs consisting of all possible
combinations of identity and state� then two unwanted inconsistencies arise� First� this domain
will contain objects with the same identity� each associated with di�erent states� This is obviously
inconsistent because there is a single identity attempting to identify several semantically separate
states� Second� this domain will contain objects with di�erent identi�ers� each associated with the
same state� The inconsistency of this arrangement may not be as apparent� However� we consider
a state to be an integral part of an object which is bound to� and inseparable from� its identity� If
there are two or more identities associated with a single state� it is equivalent to saying there exists
an object which is identi�ed by more than one identity since the di�erent identities share the single
common state in its entirety� We overcome this potential source of confusion by considering a state
as a unique component of an object� Note that we are simply enforcing the formation of states
with identities to be unique and in no way are implying that the information carried by these states
are unique� For example� if we consider the information within a state as a bit stream in memory�
then the states of di�erent objects would occupy di�erent areas of memory� but the content �i�e��
bit streams� of these states may be identical�

To eliminate these inconsistencies� we form the following de�nition of a consistent set of objects
which gives a basis for object database construction� The de�nition assumes the existence of two
internal functions which take an object as input and return an internal component �identity or state�
of the object as output� The �rst function is denoted oid�o� which returns the object identi�er of
an argument object o� The second is called state�o� which returns the state formation associated
with the object o� It is important to note that since these functions return internal components of
objects� they are not normal functions with respect to the object functions de�ned in Section ��	�
These two functions are strictly internal to the system and in no way accessible to the user�

De�nition �	� Consistent Object Set �coset�� A set of objects O is consistent if and only if for
all objects oi� oj � O� oid�oi� �� oid�oj� and state�oi� �� state�oj� when i �� j� Alternatively� if OID
represents the domain of object identi�ers from O and STATE represents the domain of states�
Then a function stateof � OID� STATE which maps oids to states is a bijective mapping� �

The de�nition of a consistent object set adheres to the notion of strong object identity �KC����
That is� every object in a coset has an internal identi�er which is unique from all others in the
coset� This feature gives each object a unique existence within a coset and provides an unambiguous
association with the state of the object� We de�ne the primitive object system O as a coset of
objects�

Axiom �	� The primitive object system O is a coset� �

Some argue �SRL���� Bee��� that object identities should have the option of being either
system or user assigned� In our model� all object identities are maintained automatically by the
system without any user involvement� This is in keeping with the notion of strong object identity
and has additional bene�ts when it comes to reconciling the components of distributed object
bases and the variable interpretations that may exist among them� Nevertheless� user de�ned
identities are supportable in our model even in the presence of strong object identity as we de�ne
it� They are possible through application speci�c interpretations� For example� a user may choose

�

to recognize one of the behaviors of an object �e�g�� B social insurance number� as an identi�er for
that object and all other objects like it� Our model places no restrictions on this kind of customized
interpretation�

Object existence� access� and manipulation in TIGUKAT is based on the notions of reference�
scope and lifetime� This is similar to other model proposals �Sny��� Ken��b� FKMT�
� in that the
only user expressible form of an object is a reference within a particular scope� A scope de�nes the
visibility� access paths and lifetime of object references� A reference may be thought of as a pointer
�or handle� to an object� which in turn leads to the object�s identity and state� We use the notation
Ri�Si to denote an object reference Ri in scope Si� We shorten this to simply Ri when the scope
is obvious or immaterial� The Ri component is a reference name adhering to the pre�x notation
outlined in Chapter 	� The lifetime of an object is di�erent from the lifetime of a reference in that
an object�s lifetime is not necessarily dependent upon a particular reference within a certain scope�
That is� when a reference or a scope disappears� the objects being referenced do not necessarily
disappear along with it� but may persist past the lifetime of the scope or reference �i�e�� lifetime
of an object �� lifetime of a reference�� However� if an object no longer has any references �system
or user� maintaining its existence� then the object should be selected as a candidate for garbage
collection� From the database perspective there is also the issue of explicit deletions� Deleting an
object within a particular scope should guarantee that the object is no longer visible in that scope�
but how this a�ects its visibility within other scopes that are concurrently referencing the object is
part of a concurrency control mechanism and is not addressed in the primitive model de�nitions�
The exact semantics of object deletion and garbage collection is outside the scope of this paper�
Figure ��
 is an example of an object reference model which illustrates the relationships among
scope� reference� identity and state�

In Figure ��
 there are the two scopes S� and S�� The scope S� could be an application pro�
gramming environment while S� may be an interactive query processor� The exact semantics of the
scoping rules is de�ned by the application accessing the database and may vary over applications�
Scoping is not speci�cally part of the object model itself� Within scope S� there are the three
object references R�� R� and R�� References R� and R� refer to the same object identi�ed by I��
and R� refers to the object identi�ed by I�� Within scope S� there are two object references� R�

and R�� In this scope� R� refers to the same object as R� and R� do in scope S�� and R� refers
to the object identi�ed by I� which is unrelated to scope S�� This example clearly shows the one�
to�one and onto �bijective� mapping stateof from object identities to their states� and the various
mappings from references over scopes S� and S� to their associated objects� The heavy dark line
around the objects indicates the boundary of the TIGUKAT object model� If� for example� we
consider everything within the boundary as being persistent �i�e�� we assume a persistent object
store�� then if the scopes disappear� the objects will persist past the lifetime of the scopes� We
emphasize the separation of the object model which provides the object management facility from
the reference�scope model which makes use of this facility� When referring to objects we use the
terms �object� and �object reference� interchangeably�

All object manipulations are performed through behaviors� In order to maintain uniformity�
we introduce the existence of a type object called T object on which we de�ne behaviors that are
applicable to all objects in the system� Since object access is given through references� all behaviors
de�ned on objects are always applied to object references within a particular scope� this in turn
applies it to the actual objects �i�e� the identity and state� and returns a resulting object reference
in that scope�

	�

���
�����
����
�����
������
�����

�����
�����

���
�����
����
�����
������
�����

�����
�����

���
�����
����
�����
������
�����

�����
�����

������
�������
��������
�������
�������
��������
�������
�������
��������
�������
�������
��������
�������
�������
�������
��������
�������
�������
��������
�������
�������
��������
�������
�������
��������
�������
�������
��������
���

���
���
���
���
��
���
������������

���������

���
�����
����
�����
������
�����
�����

�����

��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
�
��
�
��
�
��
�
��
��������������������

������
�������
��������
�������
�������
��������
�������
�������
��������
�������
�������
��������
�������
�������
�������
��������
�������
�������
��������
�������
�������
��������
�������
�������
��������
�������
�������
��������
���

���
���
���
���
��
���
������������

���������

���
�����
����
�����
������
�����
�����

�����

I�

I�

I�

R�

R�

R�

R�

R�

Reference

Scope S�

Scope S�
state�

state�

state�

State

Object

oid

TIGUKAT

stateof

stateof

stateof

Figure ��
� An object reference example�

Scope S� Scope S� Scopes S� and S�
R� � R� R� � R� R��S� � R��S�
R� � R� R� � R� R��S� �� R��S�
R� � R� R� �� R� R��S� � R��S�
R� � R� R��S� �� R��S�
R� �� R� R��S� �� R��S�
R� �� R� R��S� �� R��S�

Table ��
� Object equalities of Figure ��
�

The �rst behavior we de�ne is that of equality� This behavior is necessary since we require a
mechanism to determine if two object references are actually referring to the same object� The
equality behavior is de�ned on the type object T object which makes it applicable to all objects�

Behavior �	� Object Equality� �B equal � T object � T boolean� ���� For any two object
references Ri and Rj and their respective scopes Si and Sj � the result of �B equal�Ri�Si���Rj�Sj�
is true if and only if Ri�Si and Rj�Sj map to the same object identity in the domain of object
identities �i�e�� the object identities are the same�� We introduce the in�x binary relational oper�
ator ��� as a shorthand for B equal� expressing the above behavioral application of B equal as
Ri�Si � Rj�Sj � We similarly de�ne the inverse relation �� to test for inequality� The result of
equality is an object reference to one of the atomic boolean objects true or false� Object equal�
ity�inequality is re�exive� symmetric and transitive� �

Table ��
 lists the equalities�inequalities which result in true among the references of Figure ��

over the two scopes� The �rst column shows the equalities in scope S�� the second in scope S� and
the third lists the equalities over both scopes�

This is the only kind of equality our model de�nes at the object level� It is quite strong in that
the only way two object references are considered equal is if they actually refer to the same object
identity� Our notion of object equality is the same as �identity equal� de�ned in �KC��� or ���
equality� de�ned in �LRV���� We do not de�ne� at this level� any notions of shallow or deep equality
found in other models �KC��� LRV��� Osb��� or extended versions of these which determine equality

	

at various levels �SZ��� SZ���� These notions can be de�ned as identity equivalence relationships on
the behavioral characteristics of objects and therefore should be left to customized interpretations
at the behavioral level rather than being part of the primitive model de�nition� For example� the
model may provide the classic shallow and deep equivalence through behaviors which evaluate and
determine the equivalence of objects based on the identity equivalence of their component behaviors�
However� this is strictly a design decision that should be left for the implementation phase of a
particular system� Dayal �Day��� also makes this argument by stating that there are many notions
of equality and those other than �identity equality� are best left for the �customizers� of the model
to de�ne the ones which are of most utility to them� For example� our model specializes equality
for behaviors to mean semantic equality and equality for atomic objects to mean value equivalence�

Note that equality testing at the object identity level is transparent to the reference model
and is an operation provided by the system through the internal oid�� function� This is necessary
since the identities serve as part of the representation of objects and are not objects themselves�
Including identities as objects� in one sense� cleans up the semantics of certain de�nitions� but poses
problems in many other aspects� The deciding argument which suggests that identities should not
be treated as objects has to do with the circularity of de�nitions which arise if identities are objects�
If an identity is an object� then by de�nition it must consist of an identity �and a state�� but this
new identity must be an object� which must consist of an identity �and a state�� etc�� A �x�point
for this recursive de�nition is not obvious and has led to the development of a consistent approach
which does not treat identities as objects�

Our model is strongly�typed� meaning each object is associated with a particular type� That is�
there is a strong implication from object to type �object �� type�� A type de�nes all the behaviors
applicable to the objects of that type� It is important in type�checking and query processing to
know the type of an object �S�O��b� �or a conformance of types for an object�� Therefore� it is
necessary to de�ne a behavior on objects which� when applied to an object� returns another object
that represents the type of the argument object� We say that every object maps to a particular
type� The B mapsto behavior is de�ned on the type T object making it applicable to all objects�

Behavior �	� Maps to �B mapsto � T type� ����� For an object reference o� the behavioral
application B mapsto�o� is de�ned to be the singleton type object reference T � that represents
the type of object o� We use the notation o �� T � to denote that object o maps to type T � �i�e�
�o �� T �� �� �B mapsto�o�� T ���� �

For example� if the object sherry is an instance of the type T person� then B mapsto�sherry�
returns the type object T person� Using the symbolic notation� we specify sherry �� T person�
Extending this uniformly to types� we have B mapsto�T person� returning the type object T type

and B mapsto�T type� returning T type as well� Thus� T type is a �x�point for the B mapsto

behavior� Symbolically we have�

sherry �� T person

T person �� T type

T type �� T type

A model must also supply a mechanism for removing objects from the system� In our model�
there can be many references to an object� Therefore� the removal of an object �within a particular

		

scope� consists of severing the link between the reference and the object itself� This process does not
necessarily destroy the object because other references may still be valid and in use �i�e�� reference
lifetime �� scope lifetime�� When no references to an object exist� we say that the object is dangling�
A garbage collection policy could be employed to reclaim the storage occupied by dangling objects�
Since this is an implementation issue� it is not part of the formal model de�nition� Concerning the
primitive and atomic objects� these are system de�ned objects and the system always maintains a
reference to them� Therefore� these objects are not endangered of becoming dangling objects and
being removed by a garbage collection manager�

There are other object behaviors whose development is delayed until the formalization of sub�
sequent primitive concepts because of their dependency on these concepts� We introduce these
behaviors after their foundations are established�

In summary� an object in the most general sense consists of an internal identity and a private
state which is manipulated through a set of public behaviors de�ned by the object�s type� Our
de�nition of object allowed for several inconsistencies when considering collections of objects and so
the de�nition of a consistent object set �coset� was formed as a basis for model development� Objects
are accessed via references within particular scopes and have a lifetime independent of scope� We
have de�ned some primitive behaviors on the type T object which include object equality B equal

��� and B mapsto ����� These behaviors are primitives on the type T object� and therefore are
universally known and applicable to all objects in the system�

��� The Type Primitive

Types de�ne the behavioral characteristics of objects� A type speci�es the set of behaviors which are
applicable to objects that have been created� or exist� in accordance with that type speci�cation�
Every object is associated with a type which gives the functionality of the object in terms of the
behaviors it supports� The idea of associating every object with a type is known as strong typing�

The uniformity aspects of TIGUKAT imply that types must also be objects with their own state
and identity along with their own type� The state of a type object consists of an internal structural
speci�cation of its instances �a template� along with references to encapsulated behaviors which
forms the public interface of its instances� The type which describes all other type objects is a prim�
itive in the model and is de�ned as the type T type which is also a type �i�e�� T type �� T type��
The type T type is a �x�point for the B mapsto type referencing behavior� The type T type must
supply the necessary tools to develop other types� These include tools for behavior de�nition�
subtyping� specialization� type�schema evolution� rules� etc� with the stipulation that these tools
are provided as behaviors which act upon other type objects so that the uniformity of the model
is maintained� Furthermore� the type T type must be accessible in the same manner as any other
object� Thus types� in addition to serving as descriptions of objects� are objects themselves and the
type T type serves as the description of all other types� this is known as the type
type property�
The issue of type
type is controversial� particularly in the area of programming languages� Fortu�
nately� some functional language speci�cations where the type
type property holds have emerged
�Car����

From the behavioral perspective� a type only de�nes the semantics for the behaviors of its
instances� To ensure encapsulation� the behavioral model only publicizes the interface of a type
while keeping the implementations private� Behaviors are either explicitly de�ned on a particular

	�

type or are inherited from a supertype� Behaviors which are explicitly de�ned on a type are called
native behaviors and those which exist due to subtyping are called inherited behaviors of the type�
We now de�ne two primitive behaviors on the type T type which return the set of native and
inherited behaviors for any particular type�

Behavior �	� Native Behaviors �B native � T sethT behaviori�� For a given type T � � the
behavioral application B native�T �� returns the set of behavior objects which have been explicitly
de�ned as native behaviors of type T � � �

Behavior �	� Inherited Behaviors �B inherited � T sethT behaviori�� For a given type T � �
the behavioral application B inherited�T �� returns the set of behavior objects which have been
inherited by type T � � �

The entire public interface of a type can be derived by forming the union of the native and inher�
ited behaviors of the type� For convenience� we de�ne a behavior B interface � T sethT behaviori
which returns the union of of the native and inherited behaviors as described� Additional operations
are de�ned on the interface sets to provide facilities for adding� deleting and updating behaviors�
These operations address issues of schema evolution which is part of the future research of this
project�

Two relationships among types have been identi�ed ��OSP�	�� The �rst is the concept of a type
specializing another type in a manner similar to what is described in �MZO���� The second is the
more popular� and stronger� notion of explicitly declaring a type to be a subtype of another type
�Car���� We de�ne specialize as a binary relation on types which determines whether one type
specializes another� A specialization is determined from the semantic characteristics of behaviors�

Behavior �	� Specialize �B specialize � T type � T boolean� �v�� A specialize relation v
between pairs of types T � � T � is a re�exive� transitive relation such that �B specialize�T ����T ��
�denoted T � v T �� is true if and only if B interface�T �� � B interface�T ��� This is interpreted
as� type T � specializes type T � if and only if the behavioral speci�cation of T � subsumes the
behavioral speci�cation of T �� If T � v T � and T � v T � � then either the behavioral speci�cations
of T � and T � are identical or T � and T � refer to the same type object �i�e�� T � � T ��� �

For every type� there may exist a collection of objects which belong to that type� This is known
as the extent of the type which is important in the context of subtyping� Subtyping� like specializing�
is a binary relation on types� but is stronger in the sense that it de�nes a partial ordering of the
type lattice and a subset inclusion relationships on extents�

Behavior �	� Subtype �B subtype � T type � T boolean� �	�� A subtype relation 	 between
pairs of types T � � T � is a re�exive� transitive and antisymmetric relation such that the behavioral
application �B subtype�T ����T �� �denoted T � 	 T �� is true if and only if type T � has been
explicitly declared as a subtype of type T �� The term T � 	 T � is interpreted as T � is a subtype
of T � and implies that�

� T � v T ��

	� the behaviors of T � are inherited by T � �i�e�� B inherited�T �� � B interface�T ���� and

	�

�� the extent of T � is a subset of the extent of T ��

We can equally say that T � is the supertype of T � � �

Subtyping is a stronger relationship than specialize in several respects� First� the subtype
relation �	� de�nes a partial order on types while specialize �v� does not� because specialize is not
antisymmetric� That is�

T � 	 T � and T � 	 T � �� T � � T �� but
T � v T � and T � v T � ��� T � � T �

Second� all behaviors of the supertype are automatically inherited by the subtype which implies
these behaviors cannot be native� Note that this only refers to the behavioral inheritance which is
di�erent from implementation inheritance� the implementation of inherited behaviors may change in
the subtype as long as they provide the semantics speci�ed by the behavior� For types in a specialize
relationship only� common behaviors may be rede�ned as native behaviors in each of the types�
Lastly� subtyping de�nes a subset inclusion relationship on type extents while no such property
is enforced for specialize� A type may be declared as a subtype of several other types� meaning
that a type can have many supertypes and also many subtypes� This is sometimes referred to as
multiple inheritance �Car���� but we prefer the termmultiple subtyping� It follows from this property
that a type can also specialize many types and be specialized by many other types� Multiple
subtyping requires a con�ict resolution scheme to select a proper implementation when a type
inherits semantically common behaviors �with di�erent implementations� from di�erent types� We
consider the de�nition of this protocol to be an implementation issue and therefore do not include
it as part of the primitive model de�nition� A simple approach is to enforce the user to resolve the
con�ict by either choosing one of the possible implementations or rede�ning the implementation
altogether� Note that con�ict resolution is only a problem in implementation inheritance and is not
required for behavioral inheritance due to our assumption that semantic de�nitions of behaviors
are powerful enough to express uniqueness which persists across type boundaries�

The de�nition of subtyping leads to the axiom of root type which imposes structure on the
schema of types and is important for the maintaining the model�s integrity and consistency�

Axiom �	� Root Type� for all types T � � T � 	 T object� �

The axiom of root type states that all type objects are subtypes of the type object T object

which forms the root of the type lattice� This axiom is important in that it forces all types in
the system to support the behaviors de�ned on type T object� meaning the behaviors de�ned on
T object are applicable to all objects in the system� In other words� the axiom forces everything
to be an object�

Every type� together with its supertypes� form a strong mathematical structure called a complete
lattice� We introduce this structure and establish its role in the model through the de�nition of a
supertype lattice behavior on the type T type� The following de�nitions reference a type system
denoted T � which we de�ne to include the primitive type system T together with all application
speci�c types supplementing T �

Behavior �	� Super lattice �B super�lattice � T posethT typei� ���� For a given type T � �
B super�lattice�T �� �denoted as �T � � returns a set of types� partially ordered by 	 �i�e�� a poset��

	

��
��
��
��
��
��
��
��
��
��������������������

��

��
��
��
���
��
��
��
���
���
��
��
��
���
��
��
��
��

�����
�����
������
�����
������
�����
������
�����
�����
������
�����
������
�����
������
�����
������
�����
������
�����
������
���

�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�

���
����
���
����
���
�����
����
����
���
����
�

��

�
��
��
��
��
��
��
��
��
�
��������������������

���
������
�����
������
�����
������
�����
������
������
�����
������
�����
������
�����
������
������
�����
������
�����
������
������
�����
������
�����
������
�����
��

T zone

T window

T displayObject

T object

T map

Figure ��	� Super lattice of type T map�

such that for all types T � � �T � � T � 	 T � and there does not exist a type T � � T � such that
T � 	 T � and T � �� �T � � �

From Axiom ��	� all types are a subtype of the type T object� Therefore� T object must be
in �T � for all types T � � Thus� �T � forms a complete lattice of types with T � being the most
de�ned element in �T � and the type T object being the least de�ned one�

For example� applying the super lattice behavior to the map type T map of Figure 	�	 �denoted as
B super�lattice�T map�� would result in the set of types fT map� T zone� T window� T displayObject�
T objectg� partially ordered by 	 which is represented graphically by the complete lattice shown
in Figure ��	�

By de�nition� any object of type T � must support the behaviors of all types in �T � � In other
words� any behaviors which operate on objects of a type T � � �T � must operate on objects of
type T � � Some have called this substitutability �SZ��� because an object of type T � can be used
�substituted� in any context specifying a supertype of T � � We re�ne the de�nition of conformance
from �Str�
� to describe this property� We �rst de�ne a conforms to relation on the type T object

as follows�

Behavior �	� Conforms�to �B conformsTo � T type� T boolean� ���� Given an object o and
a type T � � the behavioral application �B conformsTo�o���T �� �denoted o � T �� is true if and
only if �B mapsto�o�� v T � � The term o� T � reads object o conforms to type T � � �

The truth of the statement o� T � implies that all behaviors de�ned on type T � are applicable
to the object o� Given an object o which maps to type T � � o must conform to all types which
T � specializes� These include the types in �T � �since for all T � � �T � � T � 	 T � which implies
T � v T ��� plus all types that the types in �T � specialize� If we consider the possible groupings
of these types� each grouping forms what we call a conformance for the object o� A conformance is
formally de�ned as follows�

De�nition �	� Conformance �
�� A conformance for an object o is a set of types � � fT ��
T ��� � �� T ng such that for all types T i � �� o� T i� We use the notation o
 � to indicate that
object o has conformance �� �

A conformance for a particular object gives a typed perspective of that object� The types in a
conformance de�ne behaviors which are applicable to the given object� It is possible that some of the

	�

behaviors may be shared among the types in the conformance because of subtyping and specialize
relationships which may exist among the types� It is also possible that not all behaviors applicable
to the object are represented by the types in the conformance� An object has �possibly� many
conformances� which translates directly into the statement that a type can specialize �possibly�
many other types� However� for every object there exists a conformance such that adding a type to
the conformance does not add any additional type information for the object� and deleting a type
from the conformance would lose typing information� We call this conformance the most speci�c
conformance for the object�

De�nition �	� Most Speci�c Conformance �MSC���� A conformance � for an object o is a most
speci�c conformance if and only if there does not exist a type T � � T � such that o � T � and
T � v T � for some T � � �� where T � �� T � � We denote a most speci�c conformance for an
object o as MSC�o�� �

The most speci�c conformance for a particular object o is the one and only set of typesMSC�o�
that most speci�cally de�ne the behaviors of o� Every object has one and only one most speci�c
conformance� In general� for a given object o� the most speci�c conformance is a set consisting of
the single type which the object o maps to� In previous work �S�O��a� we have found that when
an object o is a set� there is another form of MSC to consider which is important for typing the
results of queries that are sets� This second form of MSC is useful for determining the set of types
which most speci�cally de�ne the common behaviors of the element objects in the set rather than
the conformance of the set object itself�

De�nition �	� Most Speci�c Set Conformance �MSCset���� The most speci�c set conformance
for a set of objects O �denoted MSCset�O�� is the one and only set of types � such that�

�
� �o � O� o
 �� and
�	� f� �T � � T � j �o � O� o� T � and T � v T � for some T � � � where T � �� T �g

�

The �rst statement indicates that � is a conformance for every object in O� The second states
that there is no type in the type lattice that more speci�cally de�nes the behavior of all objects
in O other than the types given in �� For example� consider the type structure of Figure ���� and
assume the existence of two objects o� and o� such that o� is in the extent of T � and o� is in
the extent of T �� Because of subtyping� o� and o� are also in the extents of T � and T �� The
MSC�o�� is fT �g and the MSC�o�� is fT �g� Using this schema� a query could generate and
return the generic set object fo�� o�g� The MSC�fo�� o�g� could be given as the generic set type
fT setg because of the lack of further type information� In contrast� theMSCset�fo�� o�g� is the set
of types which most speci�cally de�ne the behaviors of the elements of fo�� o�g �i�e�� objects o� and
o� respectively�� The result of this conformance is the set of types fT ��T �g because both o� and
o� inherit the behaviors of T � and T � and there is no other type which more speci�cally de�nes
both objects� The result could not have been fT �g because o� does not conform to T � and it
could not have been fT �g because o� does not conform to T �� it also couldn�t have been fT ��T �g
for the same reason� Furthermore� fT �g and fT �g are also incorrect because in these cases some
typing information is lost for the member objects� namely� behaviors B � or B � respectively�

MSCset�� will be used extensively in the query model to perform type checking and type
inferencing on the results of queries� The result of a query has the form of a set which may contain

	�

�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
� �

��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�

���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
��

��
��
��
��
��
��
��
�
��
���������������������

���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
��

����
�����

������
��������
���������
������

����
�����
����
�����
������
�����
�����

����

�

�

�

�

�

�

�

�

�

�

T �

T � T �

T �

	
supertypesubtype

o� o�

B �

B � B �

B �

Figure ���� An example type schema�

objects of several heterogeneous types� We can use MSCset�� on these query sets to determine the
most typing information �i�e�� behaviors� for the result objects and then can dynamically create
a subtype which consistently incorporates these behaviors� The usefulness of MSCset�� and an
algorithm for determining the most speci�c set conformance for a set of objects is presented in
�Str�
��

A �nal behavior we require on types is for determining the class of a given type� In order to
create objects of a particular type� there must be a class associated with the type to manage the
instances of that type� However� types do not require an associated class if there are no instances
of that type� For example� many object�oriented systems include abstract types whose sole purpose
is to serve as placeholders for common behaviors of subtypes and are never intended to have any
instance objects� In this case� there may be no reason to manage classes for abstract types� because
there are no instances of these types� However� a class may be formed if there is a need to categorize
the objects of the subtypes by a common class� Thus� the model enforces the one way implication�
class �� type� The de�nition of B classof is given as follows�

Behavior �	� Class of �B classof � T class� �C�� Given a type T � � the behavior B classof�T ��
�denoted as CT � � returns the class object �if it exists� C � associated with T � which manages the
extent of type T � � �

For example� if we assume that a class C map has been created and associated with type
T map� then the application B classof�T map� returns the class object C map� The notation CT map

represents an object reference which is equivalent to the references C map and B classof�T map�
�i�e�� CT map � C map � B classof �T map���

In summary� types represent the fundamental building blocks of objects� A type is a speci��
cation of both structure and behavior which is imposed upon objects created using the type as
a template� In this section we have concentrated on the behavioral aspects of objects� A type
de�nes the full behavior of all objects which map to the type� Some of the primitive behaviors we
de�ned on the type T type include interface related behaviors �B native� B inherited� B interface��
super�lattice ��� and class�of �C� all of which are supported by type objects� To characterize the
properties of types� we de�ned the specialize �v�� subtype �	�� and conforms to ��� relationships
and introduced the notion of a conformance ���� the more restrictive de�nition of most speci�c
conformance �MSC��� and the set related MSC denoted MSCset���

	�

��� Collections and Classes

The support of e�cient query processing and storage management requires mechanisms to group
related objects so that they may be managed� referenced and processed collectively� The collection
and class objects serve this purpose in TIGUKAT� The relative advantages and disadvantages
of providing a system�managed class as the only grouping mechanism for the extent of a type
versus supporting user de�ned and managed collections as clusters of instances has been debated
�YO�
� �OSP�	�� Beeri �Bee��� shows� at a structural level� that both can be supported� Our model
de�nes both classes and collections for grouping objects�

A collection is a general grouping mechanism� The set of all objects managed by a collection is
called its extent� It is common to equate the term �collection� with �extent�� There are two ways
in which objects are included in the extent of a collection� objects may be explicitly declared to
be part of a collection�s extent� or one may additionally specify a predicate on a collection which
enforces automatic inclusion of appropriate objects into the extent� The objects in the extent of
a collection all support a set of common behaviors� they must minimally support the behaviors of
T object� These common behaviors are de�ned by a type in the type lattice that is associated
with the collection when it is created� Every collection knows the type which de�nes the common
behaviors of the objects in its extent� The semantics of collection objects are given by behaviors
de�ned on the primitive type T collection� The following behavior returns the extent type which
de�nes the common behaviors of the objects in a collection�s extent� This extent type may be
speci�ed by the user or the system may automatically derive the type�

Behavior �	�� Type of �B typeof � T type� � �� Given a collection L � � the behavioral appli�
cation B typeof�L �� �denoted L �� returns the singleton type object which has been de�ned to
be the type of the objects in the extent of L � � �

The following behavior returns the entire extent of a collection� The result type of this behavior
is a set of objects and the behaviors of the elements in the set are de�ned by the B typeof type
associated with the receiver collection object� In the following behavioral de�nitions we use the
notation receiver to denote the type resulting from applying the B typeof behavior on a receiver
collection or class object�

Behavior �	�� Extent �B extent � T seth�receiveri� ���� For a collection L � � the behavioral
application B extent�L �� �denoted L ��� results in a set of objects explicitly declared to be part
of L � � together with the set of objects satisfying the inclusion predicate of L � � if de�ned� This
set of objects is called the extent of L � � The receiver of the B extent behavior �in this case L ��
determines the type of the member objects through the B typeof behavior �in this case L ��� so
the result type of B extent�L �� will be T seth�L � i� �

Collections may be heterogeneous in the sense that their extent may contain objects which map
to di�erent types that are not in a subtype relationship� This feature is essential for proper handling
of queries which may return objects of various types �S�O��a�� A collection always has an associated
type which speci�es the behaviors supported by all objects in the extent of the collection� This
may require the automatic derivation of new types �during projections and joins for example� in
order to provide as much type information as possible for the objects in the collection� Dynamic
schema evolution is used extensively by the object query model we de�ne�

	�

The specialized� better known� form of a collection is that of a class� We de�ne the type T class

as a subtype of the type T collection� Therefore� classes must support the B typeof and B extent

behaviors de�ned on collections� We specialize �re�ne� these behavior for classes as shown below�
Every class is required to be uniquely associated with a single type� This association occurs at
class creation time and persists with the class throughout its lifetime� The B typeof behavior for
classes returns the type which has been associated with the receiver class object�

Behavior �	�� Type of �B typeof � T type� � �� Given a class C � � the behavioral applica�
tion B typeof�C �� �denoted C � � returns the singleton type object which has been explicitly
associated with the class object C � � B typeof on classes is the inverse behavior of B classof on
types� �

The B extent behavior for classes is separated into two forms� The �rst form is similar to the
extent of a collection but is referred to as the deep extent in the context of a class� The second form
results in a subset of the deep extent and is referred to as the shallow extent� Shallow and deep
extents are well know concepts which have been discussed in other models �KC��� BCG���� S�O��a��
The result types of these behaviors are sets of objects whose members all support the behaviors
de�ned on the B typeof type of the receiver class object�

Behavior �	�� Deep Extent� �B extent � T seth�receiveri� �
��� The deep extent of a class C �

�writtenC � �� is a set consisting of all objects o satisfying the property that if B mapsto�o� 	 C �

then o � C ��� �

Behavior �	�� Shallow Extent� �B shallow � T set� �y�� The shallow extent of a class C �

�written C �y� is the subset of objects from C �� �C �y � C ��� satisfying the property that for
all objects o � C ��� if o �� C � then o � C � y� �

The shallow extent of a class includes only those objects created using the class�s B typeof

type as a template� The deep extent includes the objects of the shallow extent unioned with the
shallow extents of all subtypes of the class�s B typeof type� The shallow extents of classes are
disjoint groupings of objects� That is� for all classes C i� C j� C iy
 C jy is empty when i �� j�
The de�nition of deep extent imposes a subset inclusion relationship on the extents of classes� We
refer to this as subclassing which has a direct relationship to subtyping and is in keeping with the
conformance properties on types�

De�nition �	� Subclass� A class C � is a subclass of a class C �� meaning C �� � C ��� if and
only if C � 	 C � � We can equally say that C � is the superclass of C � � �

In our de�nitions� we separate a type from the declaration of its class and subsequent collections�
This design issue is a controversial one� Many former model proposals bundled these two concepts
calling it either a �type� or a �class� �GR�
� LRV��� BBB���� Str���� In our model we take special
care to separate the two notions and attach individual semantics to each one� We believe that a
type is simply a speci�cation mechanism whose semantics should remain as such� Types are used
to describe the structure and behavior of objects which should be separated from the grouping of
objects in order to provide �exibility in de�ning exact grouping semantics� In our model� classes

��

group the shallow and deep extents of types which has its basis on subtyping� In other models�
this de�nition may vary� The introduction of collections supplement classes by providing a very
general grouping mechanism which has a consistent semantics with the concept of a class� We feel
the inclusion and separation of these notions provide greater modeling �exibility and expressibility
than if they were bundled into a single concept�

The �nal behavior we de�ne on the type T class is that of object creation� All objects are
created through a particular class using that class�s B typeof type as a template� This has the side
e�ect of automatically placing the object in the shallow extent of the class which implies that it is
in the deep extent as well�

Behavior �	�� New �B new � receiver�� Given a class C � � the application of the behavior
B new�C �� has the result of creating a new object o such that o is consistent� o �� C � and
o � C �y �which implies o � C ���� The application B new�C �� denotes an object reference
to the newly created object o whose type is C � which is derived from the receiver class object
C � � �

The result type of B new is re�ned for each class to re�ect the type of that class �i�e�� B typeof��
This ensures that objects created by B new have the proper type� For example� the behavioral
application B new�C person� creates a new object of type C person � T person and places it
in the extent of class C person� The returned result of the application is an object reference to
the newly created T person object� The B new behavior on classes gives our model the necessary
ability to create new objects and to have them automatically placed into their respective class
extents�

In summary� we de�ne collections and classes for grouping objects with similar characteristics�
Collections are a more general� user declared� mechanism for grouping while classes are more
restrictive and automatic� We de�ne the type T class as a subtype of type T collection which is
intuitive since a class is a more specialized grouping mechanism than a collection� The behaviors
B typeof and B extent are de�ned on the type T collection and re�ned for its subtype T class�
The T class subtype adds behavior B shallow to return a restricted subset of its deep extent and
behavior B new for creating objects through a class�

��� Higher Level Constructs

Several of the primitives introduced in the previous sections are sometimes referred to as meta�
information because they are objects which provide support for other objects� For example� the
type T type provides support for types by de�ning the structure and behaviors of type objects and
the class C class supports classes by managing class objects in the system� These meta�objects are
objects themselves and therefore must be uniformly managed by means of the primitives� This is
possible through the introduction of higher level constructs we call meta�meta�objects� Our model
de�nes a three tiered structure for managing objects as depicted in Figure ���� Each box in the
�gure represents a class and the text within the box is the common reference name of that class�
The arrows represent instance relationships with the head of the arrow being the instance and the
tail being the class it belongs to�

The lowest level of our structure consists of the �normal� objects which depict real world entities
such as integers� persons� maps� behaviors and so on� plus most of the primitive object system O

�

object
instances

Type
object

instances

Collection

�
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��

�
��
�
�
��
�
��
�
��
�
��
�
����
�
��
�
��
��
��
�
��
�
��
�

�
�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
�

�
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��

���
���
���
����
���
�����
�
��
�
��
�
��
�
��
�
�
��
�

�
�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
�

���

��������������������������
��������
����

��

���������������������
��
��
��
��
��
��
��
��
�

�
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��

�
��
�
�
��
�
��
�
��
�
��
�
����
�
��
�
��
��
��
�
��
�
��
�

�
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��

���
���
���
����
���
�����
�
��
�
��
�
��
�
��
�
�
��
�

�
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��

�
��
�
�
��
�
��
�
��
�
��
�
����
�
��
�
��
��
��
�
��
�
��
�

�
�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
�

�
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��

���
���
���
����
���
�����
�
��
�
��
�
��
�
��
�
�
��
�

� �

� �

�
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��

�
��
�
�
��
�
��
�
��
�
��
�
����
�
��
�
��
��
��
�
��
�
��
�

�
�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
�

�
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��

���
���
���
����
���
�����
�
��
�
��
�
��
�
��
�
�
��
�

��
��
��
���
��
��
��
���
��
��
��
���
��
��
��
���
��
��
��
���
��
��
��
���
��
��
��
���
��
��
��
��

�
�
��
�
��
�
��
�
��
��
�
��
���
�
��
��
�
��
��
��
��
�
��

�
�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
�

��
���
��
���
��
��
���
��
���
��
���
��
���
��
���
��
���
��
���
��
��
���
��
���
��
���
��
���
��
��

�����
�����
������
����
��
��
�
��
�
��
�
��
��
�
��

�����������������������������
������

�������
��������

�����������������������������������
����
����
����
��
����
��
���
���
���
���
���
��
����
���
�����
������

��������������������������������
������
����
����
���
���
���
��
��
���
��
��
���
�
��
��
��
��
�
��
��
��
�
��
��
��
�
��
��
�
��
�
���
�
��
�
���
�
��
�
���
�
��
��
��
��
��
���
��
��
���
��
���
��
�������
��

����������������
��

���������������������
��������������������

�������������������
��������������������

����������������������������������
��

�������
�����
������
�����
����
������
�����
�����
���
����
���
����
���
����
��
��
����
��
��
���
��
��
���
�
��
��
��
��
�
���
�
��
���
�
�
��
���
��
�
��
���
�
��
�
���
�
��
�
���
�
�
��
��
��
�
�
���
�
��
�
�
���
�
��
�
���
�
��
�
���
�
��
�
���
��
�
���
��
��
���
��
��
�
���
��
�
���
�
��
��
���
��
��
��
��
��
���
��
�����
������

��
���������

���������
��������

��������
����������

�����������
���

������
�����
����
���
�����
����
���
�����
���
����
���
�����
���
�����
����
�����
�����
���������

����������

������������������������������
���
���
��
�
��
��
��
��
�
���
��
�
��
��
�
�
��
�
��
�
�
�
�
�
���
�
�
�
�
�
�
���
�
��
��
��
��
�
��
���
�
��
�
���
��
��
����
���
�������

����������
���

�������
�
�
�
��
�
��
�
��
��
�
��
�
��
�
�
��
�
��
�
��
�
�
��

�
�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
�

C class�class

C collection�classC type�class

C collectionC type

m��objects

m��objects

m��objects

C class

instances

Persons

Strings

Behaviors Dwellings Zones Functions

Geometric Shapes
Integers

Real World Objects Reals

Maps

Class object

Figure ���� Three tiered instance structure of TIGUKAT objects�

resides at this level� including the type and collection objects which illustrates the uniformity in
TIGUKAT� We de�ne this level as m� and classify its objects as m��objects� The second level
de�nes the class objects which maintain schema information for the objects below it� These include
C type� C collection and most other classes in the system� This level is denoted as m� and its
objects as m��objects� The reasons for placing the classes at this level are that classes maintain
the objects of the system �objects cannot exist without classes� object �� class� and classes are
associated with types which de�ne the schema information of their instances �classes cannot exist
without types� class �� type�� Thus� object �� class �� type and classes represent the binding
management between objects and the operations that can be performed on them as de�ned by
some type� The upper�most level consists of the meta�meta�information �labeled m�� which de�nes
the functionality of the m��objects and is used to give the de�nitional properties to these objects�
The structure is closed o� at this level because the m��class C class
class is an instance of itself
as illustrated by the looped instance edge� In the following discussion we show the interactions
among the various levels of the structure and how they contribute to the uniformity of TIGUKAT�
We refer the reader back to the primitive type lattice in Figure 	�
 on page � and a portion of its
companion primitive subclass lattice shown in Figure ��
� Each C x class in Figure ��
 is associated
with the corresponding T x type in Figure 	�
�

The model must have a way of consistently creating new types� The B new behavior on the
class C type is inadequate for this purpose because it simply creates new empty objects and a
type must always be created as a subtype of some other type�s�� minimally a subtype of T object�
B new cannot handle these semantics because it is a generic behavior for creating any kind of
object and only new type objects need supertype information� it would be inappropriate to place
these semantics on B new� Therefore� we must somehow specialize the B new behavior for types to
allow for the addition of arguments that specify the supertype�s� of the new type along with other
arguments such as its native behaviors� To accomplish this� we subtype the type T class with a
type T type�class �see Figure 	�
� and de�ne a behavior B newtype on this type� Then� in the
primitive class system� the class C type is created as an instance of the class C type
class �as

�	

C object

C collection

C type

C class

�������������������������������������� ����
�����
�����
����
������

�����
�����
����

Superset Subset
pppppppppppppppp pppppppppppppppp pppppppppppppppp pppppppppppppppp pppppppppppppppp pppppppppppppppp pppppppppppppppp ppppppppppppp

pppppp
pppppppp

ppppppp
ppppppp

pppppppp
pppppppp

pppppppp
ppppppp

ppppppp
ppppp

ppppp

Instance edge

C class�class

C type�class

��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
��
��
�
��
���
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
��
��
�
��
�

��
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��

��
��
���
��
���
���
��
���
��
���
��
���
���
��
���
��
���
��
���
���
��
���
��
���
��
���
���
��
���
��
���
��
���
���
��
���
��
���
��
���
���
��
���
��
���
��
���
���
��
���
��
���
��
���
���
��
���
��
���
��
���
���
��
��

ppp
pp
ppp
pp
ppp
ppp

ppppppppp
ppppppp

pppppppppppppppppppppppppppppppp
pp

pp

ppp
pp
ppp
pp
ppp
ppp

ppp
pp
ppp
pp
pp
ppp
ppp

pp

pp
ppp
pp
pp
pp
ppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
pp
ppppppppppppppppppppppppppppppppppppppp

pp
pp
p
pp
p
pp
pp
pp
pp

ppp
pp
ppppp

ppppp
p

pppppp
pppppppppp

ppppppppp
ppppppp

pppppppppppppp
pppppppppppppppppp

pppppppppppppppp
pp

ppppppppppppp
ppppppppppppppppppp

pppppppppppppppp
pppppppppppppppp

pppppppppppppppp

pp

pp
pp
p
pp
pp
pp
pp
pp
p

pp
pp
ppp
pp
pp
pp
pp
pp
p
pp
pp

pp
pp
pp

pp
pp
pp
pp
pp
pp
pp
p
pp
pp
pp
pp
pp
pp
pp
p
pp
pp
pp
pppppppppppp

pppppppppppp
ppppp

ppppppppp
pp

pp
pp
p
pp
p
pp
pp
pp
p
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p
pp
pp
pp
p
p

pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
p
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pppppppppppppppppppppp

pppp
ppppp
pppppp

p
pppp
ppppp
pp
pppp

ppp
ppppppppp

pppp

pppppppppppppppp

pppppppppppppppp
ppppppppppppppppppppppppppppp

ppp

ppp
pppppp

ppp
pppp

ppp
pp
ppp
pp
ppp
pp
pp
ppp
pp
ppp
ppp

ppp
p

pp
ppp

pp
ppp
ppp

ppp

pp
pppp

pp
pppp

ppp
pp
pppp

ppp
pppp

pp
pppp

pp
pppppppppppp

ppp
ppppppppp

ppppppppp
ppppp
pp

p
ppp
pppppppp
pppp

p
ppppppppppppppp

pppppppppppppppp pppppppp
pppppp

pp

p
ppp
pp
pp
pp
pp
pp
pp

pp
pp
pp
p
pp
pp
pp
pp
p

ppppp
pppppppppppppppppppppppppppppp

pp

p
ppp
pppppppp
pppp

p
ppppppp
ppp
ppppp
ppp
pppp
pppp
pppp

p
ppppppp
ppp
pppp

ppp
pppp
pppp
pppp
pppppppp
ppppppp
ppp
ppppppp
pp
p
pp
p
pp
pp
pp
p
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

p
ppp
pppp
pppp
pppp

pppppppppppppppp

pppppppppppppppp
pppppppppppppppp

pp
ppppppppppp

ppppp
ppppppp

ppppppppp
ppppppppp

ppppppp

pppp
pppppp

pppp
pp

pppp
pppp

pppp
ppp

p

ppp
pp
ppp

ppp
ppp
pp

pp
p
pp
pp
p
pp
pp
pp
pp

pp
pp
p
pp
p
pp
pp
pp
p
p

pp
pp
pp
p
pp
pp
pp
p
pp

pp
pp
pp
pp
pp
pp
pp
pp

pp
p
pp
p
pp
pp
p
pp
pp
pp
p
pp
p
pp
pp
p
pp
p
pp
pp
p
pp
p
pp
ppp
ppppp
ppp
ppppp
ppp
ppppp
pp
ppppp
ppp
ppp

C collection�class

other type objects
Instance edges to

other class objects
Instance edges to

Class Instance

Figure ��
� Subclass and instance structure of m� and m� objects�

shown in Figure ��
� and new types are created by applying the B newtype behavior to C type�
We again use the notation receiver to refer to the type that the receiver class is associated with�

Behavior �	�� New Type �B newtype � T sethT typei � T sethT behaviori � receiver�� Given
the classC type which is an instance of type T type�class� a set of types s such that T � 	 T object

for some T � � s� and a set of behaviors b� the behavioral application B newtype�C type��s��b�
has the result of creating a new type object o such that o is a subtype of all types in s and the
behaviors of b are incorporated into the interface of o as native behaviors� �

A class must be associated with a type in order to create objects of that type� Classes must
be associated with only a single type and no class may exist without an associated type� In
order to consistently support this� we subtype the type T class with the type T class�class �see
Figure 	�
� and de�ne its native behavior B newclass for creating and associating new classes with
a type� The m��class C class is structured as an instance of C class
class �see Figure ��
� and
new classes are created by applying B newclass to C class�

Behavior �	�� New Class �B newclass � T type� receiver�� Given class C class and type T ��
the behavioral application B newclass�C class��T �� has the result of creating a new class object
C � such that C � is in the shallow extent of C class and C � is associated with type T �� If
type T � does not exist� or is already associated with some other class� an error condition is raised
because a type may be associated with at most one class� �

In the same way as types are associated with classes� types are also associated with collections�
but a type may be associated with any number of collections� Therefore� we de�ne the type
T collection�class as a subtype of T class �see Figure 	�
� and provide the native behavior

��

B newcollection for creating new collections which is similar to the behavior for creating new
classes� The class C collection is created as an instance of C collection
class �see Figure ��
�
and new collections are created by applying B newcollection to C collection�

Behavior �	�� New Collection �B newcollection � T type� receiver�� Given classC collection

and type T �� the behavioral application B newcollection�C collection��T �� has the result of cre�
ating a new collection object L � such that L � is in the shallow extent of C collection and L �

is associated with type T �� The type T � may be omitted in which case the associated type of
the collection is maintained by the system and derived according to the members in the extent of
the collection� If type T � is given and does not exist� an error condition is raised� Types may be
associated with any number of collections� �

The introduction of the m��objects complicates the type lattice and instance structures� How�
ever� the bene�t of this approach is that the entire model is now consistently and uniformly de�ned
within itself� Figure ��
 shows the subset inclusion and instance structure of some of the m�� m�

and m��objects in relation to one another�

The class C object is an m��object which maintains all the objects in the system �i�e�� every
object is in the deep extent of classC object�� Thus�C object represents the entire database �i�e��
the deep extent of C object is a coset�� Two other m��objects� which are subclasses of C object�
areC type and C collection� These two classes maintain all the instances of types and collections
respectively� Class C collection is further subclassed by the m��object C class because every
class object is also a collection of objects� The class C class maintains the instances of all classes
in the system� Furthermore� C class is subclassed by m��objects C type
class� C class
class

and C collection
class� These three objects are class objects which maintain instances of other
collection style m��objects and allow for these m��objects to be specialized with re�ned object
management behaviors�

The class C type
class has the single instance object C type� Any behaviors de�ned on
type T type�class are applicable to object C type� The type T type�class de�nes the behavior
B newtype for creating new type objects� Since C type is an instance of T type�class� the
B newtype behavior is applicable to it and has the result of creating a new type object as an
instance of C type� thereby adding it to the type lattice�

The class C collection
class has the single instance object C collection� Any behaviors
de�ned by T collection�class are applicable to C collection� The type T collection�class

de�nes the behavior B newcollection for creating new collection objects� Since C collection is
an instance of T collection�class� the B newcollection behavior is applicable to it and has the
result of creating a new collection object as an instance of C collection�

The class C class
class maintains all them��classes� Its instances include itself� C type
class�
C collection
class and C class� because C class maintains instances of other classes� The type
T class�class de�nes the behavior B newclass for creating new instances of this m��class or one of
its subordinate m��classes� This can be useful for de�ning a m��class which includes behaviors for
creating default objects of a particular type� For example� consider the GIS database of Section 	�

and assume that type T person and class C person are de�ned� The only way to create a T person

object is to apply B new to class C person and this has the e�ect of creating a new empty person
object� Now� let�s say we require a behavior called B defaultPerson for creating new T person

objects with some of the T person behaviors of the new object receiving default information� We

��

C object

C collection C class C class�class

C person

�������������������������������������� ����
�����
�����
����
������
�����

�����
����

Superset Subset
pppppppppppppppp pppppppppppppppp pppppppppppppppp pppppppppppppppp pppppppppppppppp pppppppppppppppp pppppppppppppppp ppppppppppppp

pppppp
pppppppp

ppppppp
ppppp

ppppppp
pppppp
pppppppp

ppppppp
ppppp

ppppppp
pppppppp

pp

Instance edge

��
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��

���
������
�����
������
�����
������
�����
������
�����
������
�����
������
�����
������
�����
������
�����
������
�����
������
�����
������
������
���

pp
pp
p
pp
p
pp
pp
pp
p
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p
pp
pp
pp
p
p

pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
p
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pppppppppppppppppppppp

pppp
ppppp
pppppp

p
pppp
ppppp
pp
pppp

ppp
ppppppppp

pppp

pppppppppppppppp

pppppppppppppppp
ppppppppppppppppppppppppppppp

ppp

ppp
pppppp

ppp
pppp

ppp
pp
ppp
pp
ppp
pp
pp
ppp

pp
ppp

ppp
ppp
p

pp
ppp

pp
ppp

ppp
ppp

pp
pppp

pp
pppp

ppp
pp
pppp

ppp
pppp

pp
pppp

pp
pppppppppppp
ppp
ppppppppp
ppppppppp
ppppp
pp

p
ppp
pppppppp
pppp

p
ppppppppppppppp

pppppppppppppppp pppppppp
pppppp

pp

p
ppp
pp
pp
pp
pp
pp
pp

pp
pp
pp
p
pp
pp
pp
pp
p

ppppp
pppppppppppppppppppppppppppppp

pp

ppp
pp
ppp
pp
ppp
ppp

ppp
pp
ppp
pp
pp
ppp
ppp

pp

pp
ppp
pp
pp
pp
ppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
pp
ppppppppppppppppppppppppppppppppppppppp

pp
pp
pp
pp
pp
pp
pp
p
p

pppp
pppp

pppppppp
ppp

pp

Instance edges to

C person�class

person objects

Class Instance

Figure ���� Instance structure of default person creation example�

cannot de�ne this behavior on the type T class because then it would be applicable to all classes
and we only want it to apply to person objects� The solution lies in the m��objects�

Returning back to the GIS example database� let us assume that T person is de�ned as a
subtype of T object and behavior B defaultPerson is de�ned as an instance of type T behavior�
We �rst create a new type called T person�class as a subtype of T class which will incorporate
B defaultPerson as a native behavior of its interface� The following behavioral application does
this �the � represents assignment��

T person�class � B newtype�C type��fT classg��fB defaultPersong�

Following this� we need to de�ne an implementation of B defaultPerson and associate it with the
type T person�class� We�ll assume that this is done� Next� we create a companion m��class for
T person�class which we call C person
class as follows�

C person
class � B newclass�C class
class��T person�class�

Now� it is semantically consistent for all instances of C person
class to have the B defaultPerson

behavior applied to them� Thus� the �nal step is to create a class C person as an instance of
C person
class and associate it with the type T person�

C person � B newclass�C person
class��T person�

This series of behavioral applications results in the subclass and instance relationships shown
in Figure ���� Now� the class C person is in the deep extent of C class because C person is an
instance of C person
class and C person
class is a subclass of C class� Therefore� the behavior
B new can be applied to C person to create new empty person objects �i�e�� B new�C person�
creates a new empty person�� Furthermore� C person is also in the extent of C person
class
and thus the B defaultPerson behavior may be applied to it to create a new person with defaults

�

as de�ned �i�e�� B defaultPerson�C person� creates a new person with defaults as dictated by
the particular implementation�� This example illustrates the very powerful type de�nition and
structuring facilities which are available from the primitives of the TIGUKAT object model�

��� The Null Primitive

Nulls in our model have a simplistic semantics� The model de�nes a primitive type T null along
with its corresponding class C null� This class is de�ned to have a single primitive instance object
reference called null� The type T null is de�ned to be the subtype of all other types in the system�
This gives it the exact opposite semantics of the type T object which is de�ned to be the supertype
of all other types� We say that type T null lifts the domain of types and creates a complete lattice
of types� We de�ne a companion axiom for the axiom of root type �Axiom ��	� which describes the
type constraint of the null type�

Axiom �	� Null Type� for all types T � � T null 	 T � � �

As a subtype of all other types� the T null type re�nes the implementations of all application
speci�c inherited behaviors �i�e�� all behaviors except those of the primitive type system� in such
a way that applying a given behavior to its only instance object null� always returns the instance
object null� In this way� nulls represent a �x�point for non�primitive behavioral application over the
domain of objects� It is always safe to allow a function to return the object null because null will
always conform to all the types in the type lattice and therefore must conform to the result type
in the inherited signature� Nulls can be used as results of functions when more meaningful results
are not known�

For example� T null is a subtype of the type T person in the GIS example type lattice of
Figure 	�	 which is an application speci�c type� Therefore� T null re�nes the behaviors of T person

to return the object null when applied to its instance object null� Now� if for a speci�c instance
of T person� say sherry� the result of a certain behavior� say B age� is not known� we can assign
it the object null� Then� the application B age�sherry� returns the object null� and all subsequent
behavioral applications �except for those of the primitive type system� also return null�

��	 Database De
nition

With the modeling primitives established� we now de�ne an object database�

De�nition �	� Database �D�� An object database D is a consistent set of objects �coset� such
that�

� O � D�

The elements of the primitive object system O �which is a coset� Section ���� are
part of D�

	� for all objects o � D� for all behaviors B i � D� B i�o� � D and is consistent�

��

For all general objects and behavior objects in D� applying a behavior from D to
an object in D generates an object which is also in D and keeps D consistent�

A database de�nes a restricted enclosure of objects which facilitates a consistent� systematic
investigation of database features such as query processing� views and transaction management� A
database does not de�ne the relationships of its consistent object set with external objects outside
the domain of the database� For now� these relationships should be considered ill�de�ned and
inconsistent� although may prove useful in a distributed environments�

��

Chapter �

The Structural Model

Beeri�s work on formal structural object models �Bee��� has been chosen as a foundation for our
structural model de�nition� This chapter follows Beeri�s framework in de�ning a structural model
and shows its integration with the formal behavioral de�nition of TIGUKAT�

��� Objects and Values

Our model considers an object�oriented database �OODB� to be a collection of objects� Each object�
in order to exist� must be associated with at least one reference which gives access to the object
in the database� Thus� every object has the universal perception of a reference and our model has
a single uniform representation for objects� In this way� the model resembles the general naming
facility of O� �LR��b� or the �Name� operation of �Osb��� which allow names �references� to be
attached to individual objects� but our model applies a more uniform semantics to these features
by servicing all access to objects through references�

Beeri makes a strong case in distinguishing between the notions of �object� and �value� at the
structural level� However� he does point out that in the general intuitive sense� objects and values
should have the universal perception of objects� The latter perspective is de�ned by the TIGUKAT
object model presented in Chapter �� The structural model presented here introduces a separation
of these two notions because there is an inherently di�erent representation and semantics for values
at this lower level� These di�erences need to be resolved eventually� and the structural model seems
to be the appropriate place for this�

Beeri outlines several arguments which support the distinction of �values� from �objects�� The
reasons which seem most in�uential in this separation are�

� the perception that values represent universally known abstractions �such as the integers��
while objects denote application speci�c abstractions�

	� the notion that values are built into the system and are assumed to exist� while objects need
to be de�ned and introduced into the system�

�� the information carried by a value is itself and is immutable� while an object consists of a
separate mutable state that represents the information carried by the object�

��

Using these distinctions� the following de�nition of a value is formed� We qualify these as atomic
values because they are formed from the atomic types and they are immutable� Atomic values are
entirely under the management of the system�

De�nition �	� Atomic Value� An atomic value is any object from the domains of the atomic
types� Atomic values are prede�ned by the atomic types and are assumed to exist� Atomic values
are immutable�

Each atomic type has a standard representation for references to the atomic values of their
respective domains� These references are also assumed to exist and are maintained by the system�
The form of these standard references is purely syntactic and one interpretation is discussed in
Section ��
� Since these references are system maintained� they will never be released and will
persist throughout the lifetime of the database� thereby making them immutable�

Recall the de�nition of an object as an �identity� state� pair �Section ����� For atomic values� the
value itself serves as identity and state all at once� This property is what makes values immutable
to change� The distinguishing factor between objects and values seems to be that objects have an
immutable identity separate from a mutable state� while values represent identity and state all at
once� both of which are immutable� Beeri makes the distinction that values are used to describe
other things� while objects are the things being described� From a mathematical perspective�
one may consider values to be elements of the built�in domains� while objects are elements of the
uninterpreted domains�

��� Structured Values

The behavioral speci�cation of our model de�nes set� bag� poset and list types for developing
structured container objects� The objects which form the instances of these structured types
have the semantics of values and are quali�ed as structured values� These are equivalent to the set
structured values de�ned by Beeri� These structures may be subtyped to customize their semantics�
One example is the use of parameterization to de�ne containers whose elements are restricted to a
particular type� Beeri also de�nes tuple structured values which we do not explicitly include in our
model� We have cast the notion of tuple into the uniform concept of behaviors on types� A tuple in
our model is just a type de�nition with the behaviors representing the named slots �or attributes�
of the tuple�

The contents of a set object uniquely identi�es itself� This is in keeping with the mathematical
notion of set �i�e�� two sets with the same members are the same set��� Sets are structured values
which carry their own information in the same way as atomic values do� Thus� a set value de�nes
both its identity and state all at once and is therefore immutable� The act of updating the contents
of a set does not change the set object itself� but rather is a mapping from one set to another� For
example� consider the signature B zones � T sethT zonei de�ned on the type T map� For an object
o of type T map� B zones�o� returns a set whose members are references to T zone objects which
represent the zones contained within the map object o� Adding a zone to this set does not change
the original set of references� but rather modi�es the mapping of B zones for object o from the
previous set to reference the new set which re�ects the addition of the new zone� These properties
are inherited by the bag� poset and list primitive types�

��

Structured values are recursive in the sense that multi�leveled structured values �i�e�� sets of
sets� may be formed� These nested structures are considered to be structural values and updates
to them require the modi�cation of a function mapping to a new nested structural value which
re�ects the changes�

��� Abstract Objects

An abstract object is de�ned as an object which has the semantics of an immutable identity separate
from a mutable state� Application speci�c objects and the primitive type� class� collection and
function objects all �t into this category�

For a given abstract object� the values of its behaviors are given as signature speci�cations with
the result type of each signature replaced by the actual resulting object for that signature� For
example� we could specify the name behavior for an object o of type T person as B name� �joe��
or if the object context was not explicit� this could be quali�ed as B name�o�� �joe��

Beeri uses the semantics of atomic values in the treatment of abstract objects� meaning that an
abstract object is also immutable in a sense� It is true that abstract objects incorporate a state
which may change over time� However� modifying the state does not change the object as far as
its existence in relation to other objects is concerned� For example� given two objects o� and o�
where o� �� o�� no matter how the state of any of these two objects is modi�ed� the object o�
will never be identity equal to the object o�� They are two unique objects within the system and
will remain that way throughout their lifetime� In this respect� abstract objects are also atomic in
the structural model� From a mathematical perspective� attributing abstract object with atomic
properties is very useful since it allows �rst order semantics to be applied to them� This will be
useful when de�ning a query language for the model�

In the context of our model� there is a commonality between values and objects which captures
their atomicity� When talking about atomic values� structured values or abstract objects� we are
essentially referring to the identities of objects which are separate from their state� The di�erence
between values and abstract objects is that the state of the former is immutable while the latter
has a state which may change over time�

��� Object Graph

An object database can be structurally represented as a directed graph� The nodes of the graph rep�
resent the atomic forms of objects� atomic values� structured values and abstract objects� Directed
edges between nodes illustrate relationships �de�ned as behaviors� from one object to another�

A graph representation is important in several respects� First� it allows for a pictorial represen�
tation of the attributes and relationships of objects� This can assist in clarifying the contents and
structure of a database� Second� a graph representation has the advantage that graph theoretic
algorithms and proofs may be applied to extract and derive properties of the graph� There are
many examples of graph related applications that can assist in solving query processing �Yan���
and object data management problems such as type inferencing� optimization strategies for object
distribution and dynamic schema evolution�

��

a� Atomic value�

Ri

�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�

�
�
��
�
��
�
�
��
�
��
�
�
��
���
��
�
��
��
��
��
��
��
��

���

���������������������
�
��
�
��
��
��
��
��
��
�

���

�
���
����
����
����
������
����
���
����
����
�

b� Abstract object�

Ri

f� f� fi
���

�
��
�
��
�
��
�
��
��
��
��
�
��
��
��
�
��
��
��
���
���
���
�������

����������������������������
���
���
��
��
��
��
��
�
��
��
�
��
�
��
�
��
�
��
��
��
��
��
��
����
�����������������������������������

���
���
���
��
��
��
�
��
��
��
�
��
��
��
��
��
�
��
��
�
��

�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�

�
�
��
�
��
�
�
��
�
��
�
�
��
���
��
�
��
��
��
��
��
��
��

���

���������������������
�
��
�
��
��
��
��
��
��
�

���

�
���
����
����
����
������
����
���
����
����
�

f g

c� Set structured value�

� � �
���

Figure ��
� Graphical representations of nodes in an object graph�

Our graph representation de�nes several kinds of nodes that may be used in an object graph�
Figure ��
 illustrates the graphical representation of these nodes and the semantics of each is de�ned
as follows�

�	� �a� Atomic value nodes consist of a label which represents a standard reference de�ning their
value� Atomic values are terminal nodes of the graph which cannot have any outgoing edges�

�	� �b� Abstract objects consist of a box labeled with an explicit reference for identifying the
object� This label can be thought of as a structural model reference and has no implications
of the other scope speci�c object references that may exist� Abstract objects have an outgoing
edge for each behavior applicable to the object which is labeled with the name of the behavior
and which leads to a node resulting from the application of the behavior to the given abstract
object�

�	� �c� Set structured values consist of a node labeled with the symbols f g which has outgoing
edges labeled with ��� to each member object of the set� The only di�erences between sets
and its subtypes are that bags de�ne a duplication relation for the elements and posets de�ne
an oredering relationship between pairs of elements�

As with Beeri�s model� each object occurs only once in the graph� meaning each node represents
a unique immutable object in terms of its existence� The nodes of the graph can be thought of as
the object identities of the database and the edges leading to them can be thought of as object
references� Objects and values �nodes� can be shared by having multiple edges leading to them�

��� Structural Example

Consider the object de�nitions of Figure ��	� Each box represents a separate abstract object where
the header speci�es a reference for the object along with the maps to type for that object� Following
this� the behaviors for each object is listed and their associated values are given�

Figure ��� illustrates an object graph for the geographic objects SCounty� Notingham and Forest�

of Figure ��	� The map object SCounty is an abstract object with several outgoing behavioral edges
as shown� The B proximity behavior is not de�ned for the object and therefore points to the abstract
object null� The behaviors B resolution� B orientation and B title point to the atomic valued objects
��
� � and �Sherwood County� respectively� The B region behavior points to a T geometricShape

object which de�nes the geometric structure of the SCounty object� The B origin behavior points
to the T location object loc� which has B latitude and B longitude behaviors to the appropriate

�

Person� �� T person

B name� �Robin Hood�
B birthDate� null

B age� null

B residence� SForest

B spouse� Person�

B children� B children	Person�

B children	Person�
� fPerson�g

Person� �� T person

B name� �Robin Jr��
B birthDate� null

B age� null

B residence� SForest

B spouse� null

B children� null

Person� �� T person

B name� �Maid Marion�
B birthDate� null

B age� null

B residence� SForest

B spouse� Person�

B children� B children	Person�

B children	Person�
� fPerson�g

Person� �� T person

B name� �Sheri� of Notingham�
B birthDate� null

B age� null

B residence� NCastle

B spouse� null

B children� null

SForest �� T dwelling

B address� �Top Secret�
B inZone� Forest�

NCastle �� T house

B address� �
� Main Notingham Road�
B inZone� Notingham

B mortgage� ����

Forest� �� T forest

B title� �Sherwood Forest�
B origin� loc�

B region� ��������
��������
���������
��������
���������
��������
��������
���������
��������
������
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
���
��
��
��
��
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
����

��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
��

������������������������������������

B proximity� B proximity	Forest�

B proximity	Notingham
� �����

Notingham �� T developed

B title� �City of Notingham�
B origin� loc�

B region� ��
��
��
��
��
��
��
��
��
��
��
�
��
��
�
��
��
��
��
��
�
��
�

��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��

��
�����
������
�����
������
�����
������
�����
�����
���������
����

B proximity� B proximity	Notingham

B proximity	Forest�
� �����

SCounty �� T map

B title� �Sherwood County�
B origin� loc�

B region� �������
��������
��������
��������
���������
��������
��������
���������
��������
������
�
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
���
��
��
��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
���

���
��
��
���
��
���
��
���
��
��
���
��
���
��
���
��
���

������������������������������������

��
��
��
��
��
��
�
��
��
�
��
��
�
��
��
�
�

�
��
�
��
��
��
�
��
��
��
��
�
��
��
�

�������
�������
�������
�������
�������
������
������

B proximity� null

B resolution� ���
B orientation� �

B zones� fForest��Notinghamg

Figure ��	� Objects of Sherwood County�

�	

�
��
�
��
��
�
��
��
��
��
��
��
�
��
��
�
��
��
���
��
���
�����
��������������������������������

����
��
���
��
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
��
��
��
��
����
���������������������������������

�����
���
��
���
��
��
��
��
�
��
�
��
��
��
��
��
�
��
�
��
��f g

�����
�������
�������
�������
�������
��������
���
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
���
��
��
��
��
�
��
��
��
�
��
��
��
���

��
���
��
���
��
���
��
��
�������������������������

�������������������

��
�
��
��
��
��
��
��
�

�
��
��
��
�
��
��
�

���
�����
�����
�����
�����
���

��

���������������������
��
��
�
��
��
��
��
�
��
�

��
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
��

��
��
��
��
��
��
��
��
�
���������������������

B latitude

		��

�
��

B longitude

�
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
�

���
��
���
��
���
��
���
��
�
��
�
��
�
�
��
�
��
�
��
�
�

��
�����
������
�����
������
�����
������
�����
������
�����
������
������
�����
������
�����
������
�����
������
�����
������
�����
������
�����
�����

��
��
��
��
��
���
��
��
�����
��
��
��
���
��
��
��
�

��
�����
������
�����
������
�����
������
�����
������
�����
������
������
�����
������
�����
������
�����
������
�����
������
�����
������
�����
�����

���������������������
��
��
��
�
��
��
��
��
��

�������������������������������������� �����
�����
����
������
�����

�����
�����

���

���
��

��
���
���
���
����
���
���
���
���
���
���
���
��

�
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�

�
�
�
��
�
��
�
��
�
�
��
�
��
���
��
�
��
��
�
��
��
�
��
�
�

�����
�����
����
������
�����

�����
�����

���

���
��

��������������������
��
��
��
�
��
�
��
�
��
�
��

��

���������������������������
�������
����

��

�
�����
����
����
���������
����
����
����
���

��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��

�
��
��
�
��
��
��
��
�
��
�����
�
��
�
�
��
�
��
�
�
��
�
�

�
���
���
���
���
���
���
���
���
���
���
���
���
���
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
�
��
��
�
��
��
�
��
��
����
��
��
��
��
�
��
��
��
��

�
���
���
���
���
���
���
���
���
���
���
���
���
���
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��������
�������������
��
��
�
��
��
�
��
��
�
��

��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

������
�������
��������
�������
��������
�������
���
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
���
��
��
��
�
��
��
�
��
��
�
��
��
�
�����

���
���
���
���
��
���
���
���
������������������������

��������������������

��
�
��
��
��
��
��
�
��
��
�
�

�
�
��
�
��
��
�
��
��
�

���
�����
�����
�����
�����
���

���
���������������������

��
��
��
���
��
��
��
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��
�
��
�
��
��
�
��
��
�
����
�
�
��
�
��
�
��
�
�
��
�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
�
��
�
�
��
�
��
�
��
�
�
����
�
��
��
�
��
��
�
��
�
��
�

�
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
��
��
�
��
��
��
�
��
��
����
��
��
��
��
��
��
��
��
�

�
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�������
��������������
��
��
�
��
��
��
�
��
��
�

� �

Notingham Forest�

SCounty
B title

B origin

B resolution

B orientation

B region

B title

B proximity	Notingham

�Sherwood Forest�
�City of Notingham�

null
B proximity

�

�Sherwood County�

B origin

B proximity B proximity

B region

B proximity	Forest�

B origin

B title

B zones

B proximity	Notingham
B proximity	Forest�

	
���

���

B region

loc�

�
 ��
B longitude

loc�

B latitude

Figure ���� Object graph of SCounty� Notingham and Forest� objects in Figure ��	�

atomic valued objects ���� and ���
 respectively� Finally the B zones behavior points to a set
structured value which contains the two T zone element abstract objects Notingham and Forest��

There are a few anomalies to note for the zone objects Notingham and Forest�� First� the
B origin behavior for Forest� and SCounty share the same T location object loc� which is indicated
by its two incoming edges� Second� the B proximity behaviors for the two zone objects are de�ned
and point to function abstract objects which� when given another zone object as an argument�
produce the desired distance measurement representing the proximity of the argument zone to the
zone on which the function is de�ned� For example� B proximity applied to Forest� results in the
function abstract object B proximity�Forest��� This abstraction can be maintained by returning
the implementation function object associated with B proximity with the �rst argument �xed to
Forest�� The graph further indicates that an invocation of this function when passed the argument
zone Notingham will produce the atomic valued object 	
���� This function execution is represented
by the dotted line attached to Notingham in Figure ���� A similar application is shown on Forest�

for the B proximity behavior of Notingham which shares the same object as the previous execution�

The function executions shown by the dotted lines are not behavioral applications de�ned on
the type T zone� although they could be� Instead� they represent the result of executing a function
de�ned object and are included in this example to illustrate the power and �exibility that the
functional approach provides�

��

��� Schema Objects

Our model di�ers from Beeri�s in that he makes a clear separation between the data of a database
and its schema whereas we carry through the uniformity aspects of the behavioral model into the
structural model� This means that schema objects are represented using the same graphical struc�
tures as other objects and may be integrated into a single object graph representing all information�
In this way� the schema objects become part of the database which allows all database operations
to be performed on them in a consistent manner� The schema is distinguishable from the applica�
tion speci�c data� but in our model one could de�ne applications that operate on the schema data
transparently�

The uniformity of the schema is illustrated in the structural model by means of object graph links
�relations� between objects� From the de�nition of type T object� all objects inherit a B mapsto

outgoing edge to the type object which represents the declared type of that object� Furthermore� all
objects support the equality behavior between all other objects although this behavior is specialized
for some of the subtypes� Finally� all objects have a B conformsTo edge to a function which� when
executed with a type object argument� results in a true or false object depending on whether or not
the object conforms to the type object argument�

Objects of type T type have B native� B inherited and B interface behavior edges pointing to
sets of behaviors representing their various interface components that de�ne the functionality of
the type�s instances� There is a B super�lattice edge to a partially ordered set containing the union
of all supertypes for that object up to and including the root type T object� A type has a B classof

edge which points to the class object that maintains the instance objects of the type� Finally� there
are B subtype and B specialize edges to function objects which� when executed with another type
object argument� result in a true or false object depending on whether or not the original type is
in the given relationship with the second argument type�

Collection objects have a B typeof edge to the type object which is the declared type of the
objects in the collection� Collections also have an B extent edge to a set structured value whose
member edges point to the instance objects in that collection�

A class object has the same outgoing edges as collections do� plus an extra edge for its shallow
extent behavior �B shallow� to a set node which has an � edge to each object that is in the shallow
extent of the class� Recall that the shallow extent set is a subset of the deep extent �B extent� for
classes� Finally� there is an edge for the B new behavior to the last newly created object of the
appropriate type� The side e�ect of applying B new is to update itself to create a new object and
add the object to the class extents of the argument class �i�e�� the one at the tail of the edge��

Putting all these components together results in a fairly complex directed graph with cycles�
The advantage of this approach is that the schema has become part of the object graph� This
means that a query model based on the graph can query the schema objects in a uniform manner�
Furthermore� any graph�theoretic proofs or algorithms applicable to the object graph in general
may be consistently applied to the schema objects as well�

For example� consider the partial schema representation of the type T zone as an object graph
shown in Figure ���� The T zone object indicates a B mapsto behavior to the type object T type

of which it is also an instance� There is a B classof edge to the class C zone which maintains the
instances of T zone� The B conformsTo� B subtype and B specialize behaviors result in functions
that are applied to other T type objects and determine the truth or falsity of the relationship�

��

�
��
�
��
�
��
�
��
��
��
��
�
��
��
��
�
��
��
��
���
���
���
�������

����������������������������
����
��
��
��
��
��
��
�
��
��
�
��
�
��
�
��
�
��
��
��
��
��
��
����
�����������������������������������

���
���
���
��
��
��
�
��
��
��
�
��
��
��
��
��
�
��
��
�
��f g T object

T type

�
�
��
�
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
���
���
����
���������������������������������

����
��
���
��
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
��
��
��
���
���
����������������������������������

����
���
���
��
��
��
�
��
��
��
�
��
��
��
��
��
�
��
�
��
�
�f g���

�
�����
����
����
���������
����
����
����
���

�
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
�

���

���������������������
��
�
��
��
��
��
��
��
�
�

�
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
���
���
���
���
���
�����
�
��
�
��
�
��
�
��
�
��
�
�

B proximityB origin

B title B region

�

�

�

�

�����
�����
����
������
�����

�����
�����

���

�����
�����
�����
������
�����
����
�����

���

�
�
��
�
��
�
��
�
��
�
��
�
����
�
��
�
��
�
��
�
��
�
��
�
�

��
�
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��

��
��
��
��
��
��
��
��
�
�����
�
��
�
��
�
��
��
�
��
�
�

��

��������������������������������������

��������������������������������������

��������������������������������������

��������������������������������������

��
�����������

���
����
����
��
��
���
���
�
��
�
��
��
��
�
��
�
�
���
�
�
�
�
��
��
�
�
�
��
��
�
�
��
�
���
�
��
�
���
��
��
���
��
��
���
��
����
���
��
������������
���

��
��
��
���
��
��
��
�

T zone

�
�

C zone
B classof

B super�lattice

B native

B mapsto

B conformsTo	T zone

B specialize	T zone

B subtype	T zone

B subtype

B specialize

B conformsTo

Figure ���� Object graph of partial schema for type T zone�

There is a B super�lattice set which has element edges to the two supertypes of T zone �one of
which is itself�� Finally� the B native set of behaviors for T zone is shown to contain four functions
which are de�ned locally by T zone� The sets for B inherited and B interface are not shown� The
set for B inherited would contain behaviors B mapsto� B equality and B conformsTo which are
inherited from T object and B interface would simply be the union of these two sets�

Due to the complexity of these graphs� many of the relationships are not shown� However� we
hope that through the previous examples the reader has a �avor of how these links are managed
and realizes the inherent uniformity in the de�nitions we provide�

�

Chapter �

Comparison with Previous Work

In this chapter we survey some of the earlier work on object modeling� We �rst examine the con�
cepts presented in these models and indicate how they have in�uenced the design of TIGUKAT� We
follow this investigation with a brief discussion of TIGUKAT�s conformance with the guidelines out�
lined in the two manifesto papers �ABD���� and �SRL����� Futhermore� we consider TIGUKAT�s
compliance with the recommendations given in �FKMT�
�� These references are slightly outdated
in terms of current object technology� but nevertheless they contain many of the core concepts
important to the development of an object model�

��� Related Work

Codd�s landmark paper in
��� �Cod��� de�ned the relational model which provided a simple� but
powerful� method of organizing data� The main advantages of this approach are that it o�ers a
high degree of data independence� data consistency and language facilities based on the �rst�order
predicate calculus� The success of the relational model can be partially attributed to its precise
formal speci�cation which facilitates a systematic investigation of database management system
�DBMS� functions such as query processing� views and transaction management� However� it is
well recognized that the �at record based representation of the relational model results in a semantic
mismatch between the entities being modeled and the underlying DBMS �Ken����

Several approaches have been followed to incorporate more meaning into a data model� One
approach proposes modi�cations to the relational model in order to supply it with more power
�Cod���� Others have extended the relational model with data abstraction by including semantics
for specifying user de�ned types �OH��� Sto��� WSSH���� Some prototype systems employing this
approach include STARBURST �Haa��� and POSTGRES �SR��� RS��� SRH��� SK�
�� Another
approach allows for non��rst normal form relations which facilitates the modeling of nested relations
�OY��� RK��� SS��� DKA����� This extension takes the language features outside the domain of
�rst�order predicate calculus� thus higher�order languages for these nested relational models have
also been developed �AB��� JS�	� Sch�
�� Some more recent relational model extensions have
carefully incorporated properties of the object�oriented paradigm �discussed below� designating
them relational object models �RK��� SS����

An orthogonal approach to relational model extensions has been to develop a completely new
data model with advanced modeling power and expressibility� One class of such models are the

��

semantic data models whose key features are based on the abstraction mechanisms of classi�cation�
aggregation and generalization �SS��� which allow for complex information to be categorized and
accessed in meaningful ways� The pioneering models which fall into this category are the Entity�
Relationship �ER� model �Che��� and SDM �HM��� HM�
�� An overview of the entire �eld can be
found in �HK��� PM����

Some particular semantic data models with which TIGUKAT has similarities include�

� The functional data model and the data language DAPLEX �Shi�
� which de�nes entities
and functions as primitive modeling constructs� In DAPLEX� properties of entities and the
relationships among them are all modeled as functions� This places the computational power
of functional languages on properties and relationships in a uniform manner which facilitates
a greater semantic expression of them� TIGUKAT adopts this uniform functional approach�

� SIM �JGF���� is a commercially available DBMS based on the semantic data model SDM�
Entities are de�ned in terms of simple data�valued attributes and more complex entity�valued
attributes which represent a binary relationship between two classes of entities� Entities are
organized into meaningful collections called classes each of which is either a base class �a class
which is de�ned independently of other classes� or a subclass �a class which is de�ned in terms
of other classes�� This gives an inheritance hierarchy for entity classes� TIGUKAT separates
the notions of type and class and extends the basic notion of class by supplementing classes
with heterogeneous user�de�ned collections�

� The IFO data model �AH���� which formalizes the characteristics of semantic data models�
was developed to serve as a theoretical foundation for investigations of advanced data repre�
sentation� Our approach in de�ning TIGUKAT is proposed to establish a similar foundation
for our investigations of object�orientation�

Object�oriented models were developed to further enhance the expressiveness and abstractions
of semantic data models� Despite the wide variety of object�oriented models which have been
proposed� no universally agreed upon de�nition exists� The reason for this being that object�
oriented models have followed the same informal route of development as semantic models� How�
ever� there currently are several e�orts to standardize the features of object�orientation� Two
recent manifestos �ABD���� SRL���� have proposed various features of next generation DBMSs�
A side�e�ect of these manifestos is to outline some object�oriented concepts which have sifted
through the various model proposals over the years� In addition to these� Zdonik and Maier
�ZM��� de�ne a reference model which speci�es the common features that should exist in an
OODBMS� Wegner �Weg��� examines the goals� concepts and paradigms of object�oriented tech�
nology in the forum of object�oriented programming� Bancilhon and Kim �BK��� Kim��b� Kim��a�
discuss the issues which will be driving object�oriented research in the next few years� Kent
�Ken��a� de�nes a framework which emphasizes behaviors and their invocations as a means of
comparing the �objectness� of models� the X��SPARC�DBSSG�OODBTG report �FKMT�
� de�
�nes an open object model architecture and recommends some standards for object data man�
agement �ODM�� and several other classi�cations of object�oriented concepts have also appeared
�CW�
� SB�
� AC��� KC��� Ull��� Weg��� Kin��� Mai��� Nie��� Str���� These papers serve as
useful guidelines to measure the �objectness� of various models� The formal model proposed here
draws from all these reports and incorporates several of their core concepts� Several other models
that have also in�uenced our design are discussed below�

��

Kent �Ken��b� de�nes a model which speci�es a rigorous semantics for the existence of objects
through identities and has separated this from the access of objects which is achieved through
object references� Our model of object identity and reference is based on the concepts presented
by Kent�

Snyder �Sny��� de�nes a generalized abstract object model which includes a set of core concepts
and terminology that is meant to represent the essence of object models� These concepts intend
to be abstract enough so that any speci�c object model may be built from them by re�ning and
populating the general model� Our de�nitions are open and extensible because of the uniform
treatment of objects� Extensions are made through subtyping and re�nement of behaviors which
may uniformly be applied to the schema objects of the model�

Beeri�s model �Bee��� analyses and classi�es the formal aspects of common features found in
most current OODBMSs� He presents his ideas in a framework consisting of both the structural and
behavioral model components� The structural model deals with the concepts of structured objects
vs� values� object identity� inheritance graphs and declarative languages� The behavioral component
explores the higher�order concepts of object�orientation such as model uniformity� method semantics
and inheritance� The paper is a sketch of ideas and is meant as a motivator for object�oriented
theorists and designers� Emphasis on logic�oriented modeling is evident throughout the paper� The
structural model presented in Chapter � evolved directly from the concepts presented by Beeri�

Maier� Zhu and Ohkawa �MZO��� outline the structural object model TEDMwhich encompasses
prominent features of the object�oriented and logic programming worlds� From the object�oriented
side� the model incorporates support for object identities� complex objects� type structures and
property inheritance� Types in the model have both an intensional and extensional aspect� The
intensional view consists of the structural speci�cation of the type� while the extension represents
the collection of objects adhering to the structure of the type� Thus� the model separates the notion
of a type from its extent� However� the entire extension of a type is not automatically maintained
by the model �i�e�� there is no notion of a class� and in this respect resembles the structural model
of Beeri �Bee���� Our model supports the separation of type and extent� but additionally maintains
the extent of a type through a class which may have additional user�collections de�ned over them
to customize object structuring� In this way� we have a single accessible object �a class� which gives
the entire extent of a type without losing any of the �exibility of general collections� From the
separation of types and extents� the notions of specialize and subtyping evolve and are de�ned by
TEDM� The applicability of these relationships to type inferencing is the reason we have included
them in the design of TIGUKAT�

The PROBE Data Model �PDM� �MD��� draws from Shipman�s DAPLEX functional data
model� PDM de�nes entities which denote individual things such as PERSON or MATERIAL� and
functions to represent properties of entities and the relationships among them� PDM generalizes
functions of DAPLEX by de�ning a function as a relationship between collections of entities and
scalar values� This generalization allows functions with zero or more inputs and multiple outputs� or
arguments that serve as both input and output� PDM handles both stored and computed functions
but syntactically treats all function references as computed functions which is the approach taken
by our model�

OODAPLEX �Day��� extends DAPLEX into an object�oriented model by directly building on
the PROBE model� The extensions to DAPLEX include abstraction� encapsulation of behavior�
closure� and enhancement of the declarative language features by allowing for recursive queries and
additionally describing a companion algebra�

��

Iris �FBC���� FAC���� WLH��� is an object�oriented database management system which is
founded on the functional data model of Daplex �Shi�
�� The Iris model de�nes objects� types and
functions� Objects are classi�ed into the categories of literal �atomic� and non�literal �complex�
objects� The literal objects are the directly system representable atomic building blocks of the
non�literal objects� Iris completely encapsulates object properties into behaviors �i�e�� functions or
operations� which represent the only interface to objects� Thus� a high level of data abstraction and
data independence is supported by the model� Operations take objects as arguments and produce
objects as results� All objects are classi�ed into types which de�ne the operations applicable to
objects in the extent of that type� Types may be structured into subtype�supertype relationships
where multiple subtyping is supported� These �classes� of objects may overlap� meaning an object
may belong to several heterogeneous types simultaneously unless there is an explicit declaration
restricting classes to be disjoint �classes in subtype�supertype relationships must overlap�� There
is no support for separate user de�ned collections apart from classes� TIGUKAT adopts complete
encapsulation of behaviors which uniformly accept objects as inputs and produce objects as re�
sults� The structural model re�nes this perspective by distinguishing between atomic� abstract and
complex structured values� Our model supports heterogeneity through collections where classes are
restricted collections of objects that are in subset relationships with one another�

The Functional�Relational Object�Oriented Model �FROOM� �MB��� is an object�oriented
model with a goal of heterogeneous� persistent� distributed object management� The object model
of FROOM is functional in nature� similar to DAPLEX and PROBE� FROOM has a uniform
de�nition and treatment of objects and access to objects is gained only through behaviors which
are implemented via functions that are also considered to be objects� This uniform perspective of
objects is re�ned and formally incorporated into the de�nitions of TIGUKAT�

O� is a commercially available OODBMS �Deu��� Deu�
�� It consists of a formal model de�nition
based on the framework of a set�and�tuple data model �LRV��� BBB���� which includes set� tuple
and list constructors for modeling complex nested objects �LR��a�� The model supports subtyping
based on the set inclusion semantics developed in �Car��� which establishes classes of objects�
However� explicit user�de�ned collections are not supported� Furthermore� the system de�nes a
language independent object�oriented database programming language �OODBPL� �LR��b�� an ad�
hoc query language �BCD��� and transaction management facilities �VBD���� The query language
is a subset of the OODBPL and thus does not su�er from an impedance mismatch problem� The
success of O� as an implementation of an OODBMS� makes it a valuable guideline for developing
an object model with practical applicability in industry�

Several other experimental systems have provided insights into the development of object�
orientation and this proposal considers their contributions as well� Smalltalk �GR�
� was one
of the �rst commercially available software that incorporated features associated with object�
orientation� However� Smalltalk is an object�oriented programming language which lacks the func�
tionality of database systems� GEMSTONE �CM��� BMO���� is a prototype system which added
database features to Smalltalk making it one of the �rst OODBMSs� Other contributions come
from ORION �BCG���� KBC���� KGBW���� EXODUS �CDF���� CDV���� FAD �BBKV���� LO�
GRES�ALGRES �CCCR����� CACTIS �Hud���� CLASSIC �BBMR��� and EMERALD �BHJ�����

One unconventional approach which has generated ideas about object existence and reference is
the formal model proposal by Wand �Wan��� which uses the philosophy of ontology �Bun��� Bun���
in de�ning the notion of an object� His technique introduces an intriguing philosophical perspective
in de�ning the foundations of a formal object model� An ontological approach has applications in
the design of object models because these models are expected to have high levels of abstraction�

��

and the more abstract we become in our de�nitions� the more we embrace the issues of philosophy�

��� Conformance to Manifestos

Following �MB���� we organize the discussion along the structure of �ABD���� and refer to �SRL����
periodically� The characteristics of an OODBMS are segmented in �ABD���� into mandatory and
optional parts� There are also a number of features which the authors were not able to agree on a
classi�cation at the time� Furthermore� they specify several open design decisions that they thought
were best handled by the model designer because no consensus had been reached on them by the
scienti�c community and it was uncertain at the time which of the alternatives were more or less
object�oriented� We consider each of their issues in turn�

����� Mandatory requirements

Complex objects	 Our model supports complex objects� TIGUKAT is functional in that objects
�and their properties� are only accessible through the applications of behaviors� The model is
uniform in that everything is an object including behaviors and their implementations� Since
behaviors are mappings from objects into other objects� every object may be considered as
a complex object� Our model does not explicitly incorporate the notion of constructors�
Instead� we uniformly de�ne a type which exhibits the behavior of a desired constructor� For
example� our model de�nes an atomic set type whose instances are sets and whose behaviors
are operations on sets� We have similarly de�ned atomic types for bags� posets and lists�
Tuples in TIGUKAT are cast into the notion of behaviors on types which adheres to the
uniformity of the model� These implicit �constructors� may be uniformly applied to build
structures of any object in the system�

Object identity	 Our model supports strong object identity� meaning objects have a unique�
immutable� system managed identity� This contrasts �SRL���� which emphasizes the impor�
tance of user�speci�ed identities� The notion of user identities are always supportable through
behaviors which are de�ned and managed by the user� regardless of whether system identities
are de�ned or not�

Encapsulation	 Our model fully encapsulates the state of objects whose only access is through a
set of public behaviors de�ned on its type� Objects may be viewed as instances of abstract
data types�

Types and Classes	 We separate the notions of type and class and attach a di�erent semantics
to each one� We de�ne a type as a speci�cation tool �template� for objects and a class as
a grouping mechanism for instances of a type� A class has a number of restrictions de�ned
on it which impose a structure on the groupings of objects� We also de�ne a collection in
our model� not mentioned in �ABD����� that serves as a more general user�speci�ed grouping
mechanism�

Class or Type Hierarchies	 Our model de�nes two categories of �inheritance hierarchies�� The
�rst refers to the inheritance of behavioral speci�cations on types �called behavioral inheri�
tance� which is de�ned by specialize and subtyping relationships on types� The second is an
inheritance mechanism for the methods �functions in our model� which implement behaviors

�

�called implementation inheritance�� We are careful to attach individual semantics to each
one�

Overriding� overloading and late binding	 These notions are supported in TIGUKAT through
the separation of the behavioral and implementation inheritance hierarchies� We consider the
semantics of behaviors to be separate from the functions which provide those semantics� This
means that behaviors may be de�ned on many types �overloading� and that the implemen�
tation of the behavior may be di�erent �rede�ned� for each type �overriding�� Late binding
is more a language support issue and is not part of the formal model de�nition� However�
it does mean that an applications language for our model must facilitate the late binding
property�

Computational completeness	 Since our model is functionally based and uniform� any com�
putable function can be de�ned and attached to any behavior of a type in the system�
Furthermore� the query model will de�ne a set of operations on the model which will be
computationally complete� This we feel is in support of the computational completeness
requirement�

Extensibility	 Our model is fully extensible through the operations provided on the higher level
constructs as shown in Section ���� The additional bene�t is that these operations are uni�
formly provided as behaviors on primitive types�

Persistence	 Our model maintains orthogonality between persistent and transient objects� persis�
tence is orthogonal to type� The manner in which objects can be made persistent or transient
is a language issue which will be considered as part of the database language methodology�
The di�erent storage and management requirements of persistent and transient objects is an
implementation issue which is outside the object model considerations�

Secondary storage management	 This is an implementation design issue and is not part of the
object model speci�cation� �SRL���� explicitly states that these kinds of issues should not
be addressed in the data model and we refrain from doing so�

Concurrency and recovery	 This is a consideration for an object transaction model which is
not part of this proposal�

Ad hoc query facility	 One of our most prominent directions is looking at propagating the de��
nition of a query model into the structure of our object model� In doing so� we wish to extend
the query facility to a full object calculus and algebra which is computationally complete�

����� Optional Features

Multiple inheritance	 Our model provides multiple inheritance as explained in the manifesto
papers through what we prefer to call multiple subtyping� We attach a di�erent meanings to
the term inheritance which refers to the reuse of behaviors and implementations� The general
consensus nowadays is that multiple subtyping is a mandatory feature of an OODBMS�

Type checking and type inferencing It has already been proven �S�O��a� that much of the type
checking involved in query processing can be performed at compile time� Our subsequent
query model de�nition will also support type inferencing and dynamic schema which will
assist in deriving type information for queries which return objects of heterogeneous types�

Distribution Distribution is an issue related to the implementation of the model and should be
transparent within the model de�nition itself� We are not currently considering the problems
associated with distributing our system�

Design transactions Design transactions are part of a transaction model for the system which
is not considered in this proposal�

Versions We have not de�ned a version support mechanism for our model� However� the unifor�
mity aspects of the model may provide some assistance in developing one�

����� Undetermined Mandatory or Optional

View de�nition and derived data	 Views are part of the future work of this research� A view
mechanism with update semantics will be de�ned for our object model�

Database administration utilities	 This is an implementation consideration and is not part of
the core model de�nition� However� any computable function can be de�ned as a behavior
on objects in the system� Thus� required database administration utilities may be supplied
as behaviors on the primitive types or the type system may be extended to include objects
which facilitate these utilities�

Integrity constraints	 We have not included integrity constraints in our model de�nition� Again�
it is questionable if these should be part of the core model de�nition� However� our model has
the notion of predicates de�ned on collections� These may be helpful in easily supporting cer�
tain integrity constraints �e�g�� �the salary of all employees in this collection should be under
!�
������� Nevertheless� these predicates are not su�ciently powerful to specify constraints
over multiple collections �e�g�� referential integrity�� Furthermore� using the functional nature
of our model� behaviors may be de�ned for automatically maintaining the integrity of objects�
That is� the type implementor de�nes an update interface of behaviors which must be used
to modify objects and which maintains the integrity of the objects�

Schema Evolution	 The type system of our model is fully extensible through primitive behaviors
de�ned on the primitive types� The query model speci�cation of our model will include
dynamic schema evolution policies to assist in automatically deriving type information for
queries which return objects of heterogeneous types�

����� Open Choices

Programming paradigm	 Our model separates behavioral speci�cations from their implementa�
tions� This provides implementation independence� Since functions are a separate primitive
in the model� their implementation may be speci�ed in practically any language� The only
requirement is that they must adhere to the semantics de�ned by their associated behavior�

Representation system	 Our model supports a basic set of types which include the functionality
to uniformly extend all parts of the type system� including the atomic types�

Type system	 As indicated in the point above� we provide a basic type system which is fully
extensible�

	

Uniformity Our model uniformly treats all entities as objects� This includes all the primitives
such as object� type� class� collection and function� We feel this is an important feature in
several respects� From the modeling perspective� we have a clean� self�contained description
of the model with no dependence on external meta information� From the language point
of view� we have a single uniform approach in accessing and manipulating all information in
the system� In the query model this means the e�cient query operators may uniformly be
applied to the modeling primitives� thereby providing a powerful� ad�hoc access mechanism
to what is essentially meta�information�

��� Conformance to OODB Task Group Recommendations

Many of the notions covered by the manifestos are repeated in the ODM reference model �FKMT�
��
For this reason� we only point out those recommendations which di�er from the manifestos and
which are applicable to the object model component of an OODBMS�

� We use the �classical or messaging object model� paradigm where the recipient of a behavior
is always explicit�

� We de�ne exactly the notion of identity given in the report and use object references as the
�logical identi�ers� of objects�

� We de�ne a much clearer separation of type and class than given�

� As a consequence of the previous point� our de�nitions of subtyping� behavioral inheritance
and implementation inheritance have a much cleaner separation and semantics�

� We use the notion of �literals� to refer to atomic objects which encapsulate reference� identity
and state�

� We support the argument that the only equality needed in a model de�nition is that of
�identity equal��

The other components of the ODM reference model comply with those covered in Section
�	
or are related to non�data model issues such as storage management� query models� transaction
management and programming languages�

�

Chapter �

Conclusions and Future Work

The initial goals of this research were to identify and formalize a set of object�oriented characteris�
tics into an object model de�nition which exhibits su�cient power and expressibility for support�
ing the functionality of advanced applications such as geographic information systems� engineering
databases� o�ce information systems� knowledge base systems� and multi�media databases� These
applications are regarded as managers of complex data types with complex relationships� User ac�
cess to such systems are characterized by long�running� interactive transactions that involve large
and semantically diverse units of data� Thus� the functionality required of OODBMSs subsumes the
functionality of their predecessors� Yet� fundamental research on some of the common database fea�
tures such as query models� query processing� view mechanisms� schema evolution and transaction
management are quite sparse� Part of the reason is the lack of a universally accepted� su�ciently
powerful and formal object model� This proposal de�nes a formal behavioral object model and
integrates it with a formal structural counterpart� The coupling of these two components is an
essential �rst step towards meeting the advanced requirements demanded by OODBMSs� The
completion of this initial task establishes a theoretical foundation which facilitates a systematic
investigation of various other open issues concerning object database management�

The complete behavioral�structural object model forms a solid foundation for prototype devel�
opment of an OODBMS� The work on this prototype is currently underway� The structural model
is the interface between the high level conceptual behavioral model and a low level storage man�
agement subsystem� The prototype will initially concentrate on the implementation of the higher
level object model aspects rather than on low level object storage management� Therefore� we plan
to couple our prototype with an existing object storage manager subsystem such as the Wisconsin
Storage System �WiSS� �CDKK�
� or the O�Engine of the O� OODBMS �Deu�
� VBD���� This
approach will allow us to focus on the implementation of an object query language� object views
and object database programming language support� The issues related to object storage man�
agement are quite complex and require a signi�cant amount of research� especially in the forum of
distributed systems�

The fundamental object modeling contributions of this research are the following�

� a formal speci�cation of both the behavioral and structural aspects of an object model with
su�cient power for handling advanced database functionality�

� a formal integration of the behavioral and structural components�

�

� a clean separation and a formal de�nition of many object model features which usually are
only intuitively de�ned in other studies� and

� a uniform approach to objects which includes meta�information as primitive objects in the
model� a consistent object reference access method� and a homogeneous treatment of object
behaviors as functions�

The remaining major issues of our research not addressed in this report include the de�nition
of an object query model and query formalism with a complete object calculus and algebra spec�
i�cation that take into account update semantics� As mentioned� we will revisit the query model
de�nitions of �Str�
� and �S�O��a� to enhance them in accordance with the object model extensions
introduced in this report� Two issues that demand speci�c attention are the proper handling of
quanti�ers in both the calculus and algebra �requiring additional operators�� and the extension
of the object algebra by the inclusion of �object creating� operators� Currently� the algebra only
supports �object preserving� operators �SS����� These additions require the services of a dynamic
schema evolution policy which will be incorporated into the object model at this time�

Query models o�er a signi�cant advantage over conventional programming languages in that
queries support e�cient associative access to data� Using a declarative calculus� one formulates
queries by focusing on �what� information is required rather than �how� to go about retrieving the
information� accessing the information e�ciently is the responsibility of a procedural algebra� An
essential component contributing to the success of this approach is a calculus to algebra equivalence
proof which mechanizes the transformation from a declarative query into a procedural one that can
be optimized by applying a series of equivalence rewrite rules� When developing the query model�
it will be foremost to insure closure� �niteness and type consistency of the de�nitions�

The de�nition of an object query model will provide the necessary e�cient associative access
to objects� However� this model will initially only work on the physical database as de�ned by
its conceptual schema� A conceptual schema can have various meanings to di�erent applications�
meaning there can be several external schemas for a single conceptual schema� These various
perspectives should be speci�able in a model without having to rede�ne the physical or conceptual
schema for each application� The de�nition and management of external schemas will be speci�ed
as part of a view management facility which includes update semantics in order to provide e�cient
associative access and manipulation of objects in the database� Following the uniformity of the
model� views would be �rst class objects� Their precise semantics within this context and their
management strategies will be developed�

The object�oriented approach is seen as a suitable candidate for facilitating an integration
between the data abstraction and computation model of object�oriented programming languages
with the performance and consistency of an object query model� Traditionally� these two areas have
developed orthogonally to one another� An integration would alleviate many problems associated
with embedded languages in use today� We plan to investigate and characterize the properties of
such an integration in order to develop a methodology for specifying a seamless interface between
these two disciplines�

The realizable contributions of the subsequent research include�

� an object query model de�nition with complete object calculus and algebra speci�cations
including an equivalence proof�

�Object preserving algebras are restricted in that they cannot create new objects�

� a uniform de�nition of object views with a consistent semantics for view updates and view
management�

� a type consistent dynamic schema evolution policy� and

� a methodology for integrating the object query model with object programming languages�

�

Acknowledgements

The authors would like to express a sincere thank you to all those who contributed to the devel�
opment of the TIGUKAT model� We especially thank the other members of the Object Database
Group which include Boman Irani� Anna Lipka� Adriana Mu"noz� Ana Dom#$nguez and Youping Niu
for their numerous readings of earlier drafts of this work and for their many helpful comments�

�

Bibliography

�AB��� S� Abiteboul and N� Bidoit� Non First Normal Form Relations to Represent Hierar�
chically Organized Data� In Proc� of the �rd ACM SIGACT�SIGMOD Symposium on
the Principles of Database Systems� pages
�
%	��� Waterloo� Ontario� April
����

�ABD���� M� Atkinson� F� Bancilhon� D� DeWitt� K�Dittrich� D� Maier� and S� Zdonik� The
Object�Oriented Database System Manifesto� In Proc� 	st Int
l� Conf� on Deductive
and Object�Oriented Databases� pages ��%
�� Kyoto� Japan�
����

�AC��� G� Ariav and J� Cli�ord� Database Research and Systems� Key Issues in Perspective�
In G� Ariav and J� Cli�ord� editors� New Directions for Database Systems� pages
%��
Ablex Pub� Corp��
����

�AH��� S� Abiteboul and R� Hull� IFO� A Formal Semantic Database Model� In Proc� of
the �rd ACM SIGACT�SIGMOD Symposium on the Principles of Database Systems�
pages

�%
�	� Waterloo� Ontario� April
����

�All��� L� Allison� A Practical Introduction to Denotational Semantics� Cambridge University
Press�
����

�Aro��� S� Arono�� Geographic Information Systems� A Management Perspective� WDL Pub�
lications�
����

�Bar�
� H�P� Barendregt� The Lambda Calculus� Its Syntax and Semantics� North�Holland�

��
�

�BBB���� F� Bancilhon� G� Barbedette� V� Benzaken� C� Delobel� S� Gamerman� C� Lecluse�
P� Pfe�er� P� Richard� and F� Velez� The Design and Implementation of O�� An
Object�Oriented Database System� In Proc� of the �nd Int
l Workshop on Object�
Oriented Database Systems� pages
%		� Springer Verlag� September
����

�BBKV��� F� Bancilhon� T� Briggs� S� Khosha�an� and P� Valduriez� FAD� a Powerful and Simple
Database Language� In Proc� 	�th Int
l Conf� on Very Large Databases� pages ��%
�
�
Brighton� England� September
����

�BBMR��� A� Borgida� R�J� Brachman� D�L� McGuinness� and L�A� Resnick� CLASSIC� A Struc�
tural Data Model for Objects� In Proc� ACM SIGMOD Int
l� Conf� on Management
of Data� Portland� Oregon� June
����

�BCD��� F� Bancilhon� S� Cluet� and C� Delobel� A Query Language for the O� Object�Oriented
Database System� In Proc� �nd Int
l Workshop on Database Programming Languages�
pages
		%
��� Gleneden Beach� Oregon� June
����

�

�BCG���� J� Banerjee� H�T� Chou� J�F� Garza� W� Kim� D� Woelk� N� Ballou� and H�J� Kim�
Data Model Issues for Object�Oriented Applications� ACM Transactions on O�ce
Information Systems�
�
���%	�� January
����

�Bee��� C� Beeri� A Formal Approach to Object�Oriented Databases� Data
 Knowledge
Engineering�
��
�%��	�
����

�BHJ���� A� Black� N� Hutchinson� E� Jul� H� Levy� and L� Carter� Distribution and Abstract
Types in Emerald� IEEE Transactions on Software Engineering� SE�
��
���
%��� Jan�
uary
����

�BK��� F� Bancilhon and W� Kim� Object�Oriented Database Systems� In Transition� ACM
SIGMOD Record�
�������%
��
����

�Bla�
� J�A� Blakeley� DARPA Open Object�Oriented Database Preliminary Module Speci��
cation� Object Query Module� Technical report� DARPA� December
��
�

�BMO���� R� Brentl� D� Maier� A� Otis� J� Penney� B� Schuchardt� J� Stein� E�H� Williams�
and M� Williams� The GemStone Data Management System� In W� Kim and F�H�
Lochovsky� editors� Object�Oriented Concepts� Databases� and Applications� Addison
Wesley�
����

�Bun��� M� Bunge� Treatise on Basic Philosophy� Vol �� Ontology I� The Furniture of the
World� Reidel� Boston�
����

�Bun��� M� Bunge� Treatise on Basic Philosophy� Vol �� Ontology II� A World of Systems�
Reidel� Boston�
����

�Car��� L� Cardelli� A Semantics of Multiple Inheritance� In Int
l Symposium on Semantics of
Data Types� pages

%��� Sophia�Antipolis� France� June
����

�Car��� L� Cardelli� A Polymorphic ��calculus with Type�Type� Research Report
�� DEC
Systems Research Center�
�� Lytton Ave� Palo Alto� California ����
� May
����

�CCCR���� F� Cacace� S� Ceri� S� Crespi�Reghizzi� L� Tanca� and R� Zicari� Integrating Object�
Oriented Data Modeling with a Rule�Based Programming Paradigm� In Proc� ACM
SIGMOD Int
l� Conf� on Management of Data� pages 		
%	��� Atlantic City� N�J��
June
����

�CDF���� M� Carey� D�J� DeWitt� D� Frank� G� Graefe� M� Muralikrishna� J�E� Richardson� and
E�J� Shekita� The Architecture of the EXODUS Extensible DBMS� In M� Stonebraker�
editor� Readings in Database Systems� pages ���%
�
� Morgan Kaufmann Publishers�

����

�CDKK�
� H�T� Chou� D� Dewitt� R�H� Katz� and A�C� Klug� Design and Implementation of
the Wisconsin Storage System� Software � Practice
 Experience�

�
������%��	�
October
��
�

�CDV��� M� Carey� D�J� DeWitt� and S�L� Vandenberg� A Data Model and Query Language
for EXODUS� In Proc� ACM SIGMOD Int
l� Conf� on Management of Data� pages
�
�%�	�� Chicago� Illinois� September
����

�

�Che��� P�P�S� Chen� The Entity%Relationship Model� Towards a Uni�ed View of Data� ACM
Transactions on Database Systems�
�
���%��� March
����

�CM��� G� Copeland and D� Maier� Making Smalltalk a Database System� In Proc� ACM
SIGMOD Int
l� Conf� on Management of Data� pages �
�%�	
� Boston� Mass�� June

����

�Cod��� E�F� Codd� A Relational Model for Large Shared Data Banks� Communications of
the ACM�
��������%����
����

�Cod��� E�F� Codd� Extending the Database Relational Model to Capture More Meaning�
ACM Transactions on Database Systems� ����� December
����

�CP��� W� Cook and J� Palsberg� A Denotational Semantics of Inheritance and its Correctness�
In Proc� of the Int
l Conf on Object�Oriented Programming� Systems� Languages� and
Applications� pages ���%���� New Orleans� Louisiana� October
����

�CW�
� L� Cardelli and P� Wegner� On Understanding Types� Data Abstraction� and Poly�
morphism� ACM Computing Surveys�
�������
%
		� December
��
�

�Day��� U� Dayal� Queries and Views in an Object�Oriented Data Model� In Proc� �nd Int
l
Workshop on Database Programming Languages� pages ��%
�	� Gleneden Beach� Ore�
gon� June
����

�Deu��� O� Deux� et� al� The Story of O�� IEEE Transactions on Knowledge and Data Engi�
neering� 	�
���
%
��� March
����

�Deu�
� O� Deux� et� al� The O� System� Communications of the ACM� ���
�����%��� October

��
�

�DKA���� P� Dadam� K Kuespert� F� Anderson� H� Blanken� R� erbe� J� Guenauer� V� Lum�
P� Pistor� and G� Walch� A DBMS Prototype to Support Extended NF� Relations�
An Integrated View on Flat Tables and Hierarchies� In Proc� ACM SIGMOD Int
l�
Conf� on Management of Data� pages �
�%���� Washington� DC� May
����

�FAC���� D�H� Fishman� J� Annevelink� E� Chow� T� Connors� J�W� Davis� W� Hasan� C�G�
Hoch� W� Kent� S� Leichner� P� Lyngbaek� B� Mahbod� M�A� Neimat� T� Risch� M�C�
Shan� and W�K� Wilkinson� Overview of the Iris DBMS� In W� Kim and F�H�
Lochovsky� editors� Object�Oriented Concepts� Databases� and Applications� Addison
Wesley�
����

�FBC���� D�H� Fishman� D� Beech� H�P� Cate� E�C� Chow� T� Connors� J�W� Davis� N� Derrett�
C�G� Hoch� W� Kent� P� Lyngbaek� B� Mahbod� M�A� Neimat� T�A� Ryan� and M�C�
Shan� Iris� An Object�Oriented Database Management System� ACM Transactions
on O�ce Information Systems�
�
����%��� January
����

�FKMT�
� E� Fong� W� Kent� K� Moore� and C� Thompson� X��SPARC�DBSSG�OODBTG
Final Report� Technical report� NIST� September
��
�

�GR�
� A� Goldberg and D� Robson� SMALLTALK���� The Language and its Implementation�
Addison�Wesley�
��
�

��

�Haa��� L�M� Haas� et� al� Starburst Mid�Flight� As the Dust Clears� IEEE Transactions on
Knowledge and Data Engineering� 	�
��
��%
��� March
����

�HK��� R� Hull and R� King� Semantic Database Modeling� Survey� Applications� and Re�
search Issues� ACM Computing Surveys�
�����	�
%	��� September
����

�HM��� M� Hammer and D� McLeod� The Semantic Data Model� A Modeling Mechanism for
Database Applications� In Proc� ACM SIGMOD Int
l� Conf� on Management of Data�
pages 	�%��� Austin� Texas� May�June
����

�HM�
� M� Hammer and D� McLeod� Database Description with SDM� A Semantic Database
Model� ACM Transactions on Database Systems� ������

%���� September
��
�

�Hud��� S�E� Hudson� CACTIS� A Database System for Specifying Functionally�De�ned Data�
In 	��� Int
l Workshop on Object�Oriented Database Systems� pages 	�%��� Paci�c
Grove� California� September
����

�JGF���� D� Jagannathan� R�L� Guck� B�L� Fritchman� J�P� Thompson� and D�M� Tolbert� SIM�
A Database System Based on the Semantic Data Model� In Proc� ACM SIGMOD
Int
l� Conf� on Management of Data� pages ��%

� Chicago� Illinois� September
����

�JS�	� G� Jaeschke and H� Schek� Remarks on the Algebra of Non First Normal Form Re�
lations� In Proc� of the 	st ACM SIGACT�SIGMOD Symposium on the Principles of
Database Systems� pages
	�%
��� Los Angeles� California� March
��	�

�KBC���� W� Kim� N� Ballou� H�T� Chou� J�F� Garza� and D� Woelk� Features of the ORION
Object�Oriented Database System� In W� Kim and F�H� Lochovsky� editors� Object�
Oriented Concepts� Databases� and Applications� Addison Wesley�
����

�KC��� S�N� Khosha�an and G�P� Copeland� Object Identity� In Proc� of the Int
l Conf on
Object�Oriented Programming� Systems� Languages� and Applications� pages ���%�
��
Portland� Oregon� September
����

�Ken��� W� Kent� Limitations of Record�Based Information Models� ACM Transactions on
Database Systems� ��
��
��%
�
� March
����

�Ken��a� W� Kent� A Framework for Object Concepts� Technical Report HPL������� Hewlett
Packard Labs� April
����

�Ken��b� W� Kent� A Rigorous Model of Object Reference� Identity and Existence� Technical
Report HPL�����
� Hewlett Packard Labs� April
����

�KGBW��� W� Kim� J�F� Garza� N� Ballou� and D� Wolek� Architecture of the ORION Next�
Generation Database System� IEEE Transactions on Knowledge and Data Engineer�
ing� 	�
��
��%
	�� March
����

�Kim��a� W� Kim� Object�Oriented Databases� De�nition and Research Directions� IEEE
Transactions on Knowledge and Data Engineering� 	�����	�%��
� September
����

�Kim��b� W� Kim� Research Directions in Object�Oriented Databases� In Proc� of the �th ACM
SIGACT�SIGMOD�SIGART Symposium on Principles of Database Systems� pages
%

� Nashville� Tenn�� April
����

�

�Kin��� R� King� My Cat is Object�Oriented� In W� Kim and F�H� Lochovsky� editors� Object�
Oriented Concepts� Databases� and Applications� Addison Wesley�
����

�KW��� M� Kifer and J� Wu� A Logic for Object�Oriented Programming �Maier�s O�Logic
Revisited�� In Proc� of the �th ACM SIGACT�SIGMOD�SIGART Symposium on the
Principles of Database Systems� Philadelphia� Penn�� March
����

�LR��a� C� L#ecluse and P� Richard� Modeling Complex Structures in Object�Oriented
Databases� In Proc� of the �th ACM SIGACT�SIGMOD�SIGART Symposium on the
Principles of Database Systems� pages ���%���� Philadelphia� Penn�� March
����

�LR��b� C� L#ecluse and P� Richard� The O� Database Programming Language� In Proc� 	�th
Int
l Conf� on Very Large Databases� Amsterdam� August
����

�LRV��� C� Lecluse� P� Richard� and F� Velez� O�� an Object�Oriented Data Model� In Proc�
ACM SIGMOD Int
l� Conf� on Management of Data� pages �	�%���� Chicago� Illinois�
September
����

�LS��� J� Lambek and P�J� Scott� Introduction to Higher Order Categorical Logic� Cambridge
University Press�
����

�Mai��� D� Maier� Why isn�t there an Object�Oriented Data Model� In Proceedings of IFIP

th World Computer Conference� San Francisco� CA� August�September
����

�MB��� F� Manola and A�P� Buchmann� A Functional�Relational Object�Oriented Model for
Distributed Object Management� Technical Memorandum TM����
�

����
�
� GTE
Laboratories Incorporated� Waltham� MA� December
����

�MD��� F� Manola and U� Dayal� PDM� An Object�Oriented Data Model� In K�R� Dittrich
and U� Dayal� editors� Proc� of the 	st Int
l Workshop on Object�Oriented Database
Systems� pages
�%	
� IEEE Computer Science Press�
����

�MZO��� D� Maier� J� Zhu� and H� Ohkawa� Features of the TEDM Object Model� In Proc�
	st Int
l� Conf� on Deductive and Object�Oriented Databases� pages ���%��
� Kyoto�
Japan�
����

�Nie��� O� Nierstrasz� A Survey of Object�Oriented Concepts� In W� Kim and F�H� Lochovsky�
editors� Object�Oriented Concepts� Databases� and Applications� Addison Wesley�
����

�OH��� S� Osborn and T�E� Heaven� The Design of a Relational Database System with Ab�
stract Types for Domains� ACM Transactions on Database Systems�

�����
�%����

����

� �OS�
� M�T� �Ozsu and D�D� Straube� Issues in Query Model Design in Object�Oriented
Database System� Computer Standards
 Interfaces�
��

�%
���
��
�

�Osb��� S�L� Osborn� Identity� Equality and Query Optimization� In Proc� of the �nd Int
l
Workshop on Object�Oriented Database Systems� pages ���%�

� Springer Verlag�
September
����

� �OSP�	� M�T� �Ozsu� D�D� Straube� and R�J� Peters� Query Processing Issues in Object�Oriented
Knowledge Base Systems� In F�E� Petry and L�M� Delcambre� editors� Advances in
Databases and Arti�cial Intelligence� JAI Press�
��	� In press�

�	

�OY��� Z�M� Ozsoyoglu and L�Y� Yuan� A New Normal Form for Nested Relations� ACM
Transactions on Database Systems�
	�
��

%
��� March
����

�Pie��� B�C� Pierce� A Taste of Category Theory for Computer Scientists� Technical Report
CMU�CS����	��� Carnegie Mellon University�
����

�PM��� J� Peckham and F� Maryanski� Semantic Data Models� ACM Computing Surveys�
	�����

�%
��� September
����

�Rev��� G�E� Revesz� Lambda�Calculus� Combinators� and Functional Programming� Cam�
bridge University Press�
����

�RK��� M�A� Roth and H�F� Korth� The Design of �
NF Relational Databases into Nested
Normal Form� In Proc� ACM SIGMOD Int
l� Conf� on Management of Data� pages

��%

�� San Francisco� May
����

�RK��� N� Roussopoulos and H�S� Kim� ROOST� A Relational Object Oriented System� In
Proc� �rd Int
l Conf� on Foundations of Data Organization and Algorithms� pages
���%�	�� Paris� France� June
����

�RS��� L�A� Rowe and M�R� Stonebraker� The POSTGRES Data Model� In Proc� 	�th Int
l
Conf� on Very Large Databases� pages ��%��� Brighton� England� September
����

�SB�
� M� Ste�k and D� Bobrow� Object�Oriented Programming� Themes and Variations�
The AI Magazine� pages ��%�	�
��
�

�Sch�
� H� Schek� Toward a Basic Relational NF� Algebra Processor� In Proc� Int
l Conf� on
Foundations of Data Organization� pages
��%
�	� Kyoto� Japan� May
��
�

�Sch��� D�A� Schmidt� Denotational Semantics� A Methodology for Language Development�
Wm� C� Brown Publishers�
����

�Shi�
� D�W� Shipman� The Functional Model and the Data Language DAPLEX� ACM
Transactions on Database Systems� ��
�� March
��
�

�SK�
� M� Stonebraker and G� Kemnitz� The POSTGRES Next�Generation Database Man�
agement System� Communications of the ACM� ���
�����%�	� October
��
�

�Sny��� A� Snyder� An Abstract Object Model for Object�Oriented Systems� Technical Report
HPL����		� Hewlett Packard Labs� April
����

�S�O��a� D�D� Straube and M�T� �Ozsu� Queries and Query Processing in Object�Oriented
Database Systems� ACM Transactions on Information Systems� ��������%���� October

����

�S�O��b� D�D� Straube and M�T� �Ozsu� Type Consistency of Queries in an Object�Oriented
Database System� In ECOOP�OOPSLA
�� Proceedings� pages 		�%	��� Ottawa�
Canada� October
����

�S�O�
� D�D� Straube and M�T� �Ozsu� Execution Plan Generation for an Object�Oriented
Data Model� In Proc� �nd Int
l� Conf� on Deductive and Object�Oriented Databases�
pages ��%��� Munich� Germany� December
��
�

��

�SR��� M� Stonebraker and L�A� Rowe� The Design of POSTGRES� In Proc� ACM SIGMOD
Int
l� Conf� on Management of Data� pages ���%�

� Washington� DC� May
����

�SRH��� M� Stonebraker� L�A� Rowe� and M� Hirohama� The Implementation of POSTGRES�
IEEE Transactions on Knowledge and Data Engineering� 	�
��
	
%
�	� March
����

�SRL���� M� Stonebraker� L� Rowe� B� Lindsay� J� Gray� M� Carey� M� Brodie� P�Bernstein� and
D� Beech� Third�Generation Data Base System Manifesto� ACM SIGMOD Record�

������
%��� September
����

�SS��� J�M� Smith and C�P� Smith� Database Abstractions� Aggregation and Generalization�
ACM Transactions on Database Systems� 	�	��
�
%
��� June
����

�SS��� H� Schek and M� Scholl� The Relational Model with Relation�Valued Attributes� In�
formation Systems�

�	��
��%
���
����

�SS��� M� Scholl and H� Schek� A Relational Object Model� In Third Int
l Conf� on Database
Theory� pages ��%
�
� Paris� France� December
����

�Sto��� J�E� Stoy� Denotational Semantics� The Scott�Strachey Approach to Programming
Language Theory� M�I�T� Press�
����

�Sto��� M� Stonebraker� Inclusion of New Types in Relational Data Base Systems� In M� Stone�
braker� editor� Readings in Database Systems� pages ���%���� Morgan Kaufmann Pub�
lishers�
����

�Str��� D�D� Straube� An Introduction to Object�Oriented Databases� In

th Simposium
Internacional de Sistemas Computacionale� Monterrey� Mexico� March
����

�Str�
� D�D� Straube� Queries and Query Processing in Object�Oriented Database Systems�
PhD thesis� University of Alberta�
��
�

�SZ��� G� Shaw and S� Zdonik� An Object�Oriented Query Algebra� In Proc� �nd Int
l Work�
shop on Database Programming Languages� pages
��%

	� Gleneden Beach� Oregon�
June
����

�SZ��� G� Shaw and S� Zdonik� A Query Algebra for Object�Oriented Databases� In Proc� �th
Int
l� Conf� on Data Engineering� pages

�%
�	� Los Angeles� California� February

����

�Tom��� C�D� Tomlin� Geographic Information Systems and Cartographic Modeling� Prentice�
Hall�
����

�Ull��� Je�rey D� Ullman� Database Theory� Past and Future� In Proc� of the �th ACM
SIGACT�SIGMOD�SIGART Symposium on the Principles of Database Systems� pages

%
�� ACM Press� March
����

�VBD��� F� Velez� G� Bernard� and V� Darnis� The O� Object Manager� An Overview� In Proc�
	�th Int
l Conf� on Very Large Databases� Amsterdam� August
����

�Wan��� Y� Wand� A Proposal for a Formal Model of Objects� In W� Kim and F�H� Lochovsky�
editors� Object�Oriented Concepts� Databases� and Applications� Addison Wesley�
����

��

�Weg��� P� Wegner� Dimensions of Object�Based Language Design� In Proc� of the Int
l Conf on
Object�Oriented Programming� Systems� Languages� and Applications� pages
��%
�	�
Orlando� Florida� October
����

�Weg��� P� Wegner� Concepts and Paradigms of Object�Oriented Programming� OOPS Mes�
senger�
�
���%��� August
����

�WLH��� K� Wilkinson� P� Lyngbaek� and W� Hasan� The Iris Architecture and Implementation�
IEEE Transactions on Knowledge and Data Engineering� 	�
����%�
� March
����

�WSSH��� P�F� Wilms� P�M� Schwarz� H�J� Schek� and L�M� Haas� Incorporating Data Types in
an Extensible Database Architecture� In Proc� �rd Int
l Conf� on Data and Knowledge
Bases� Improving Usability and Responsiveness� pages
��%
�	� Jerusalem� Israel�
June
����

�Yan��� M� Yannakakis� Graph�Theoretic Methods in Database Theory� In Proc� of the �th
ACM SIGACT�SIGMOD�SIGART Symposium on Principles of Database Systems�
pages 	��%	�	� Nashville� Tenn�� April
����

�YO�
� L� Yu and S�L� Osborn� An Evaluation Framework for Algebraic Object�Oriented
Query Models� In Proc� �th Int
l� Conf� on Data Engineering� pages ���%���� Kobe�
Japan� April
��
�

�ZM��� Stanley Zdonik and David Maier� Fundamentals of Object�Oriented Databases� In
S� Zdonik and D� Maier� editors� Readings in Object�Oriented Database Systems� pages

%��� Morgan Kaufmann Publishers�
����

�

