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Abstract

A hypergroup is essentially a locally compact Hausdorff space in which the product
of two elements is a probability measure with compact support. Such spaces have
been studied by Dunkl, Jewett and Spector. Hypergroups naturally arise as double
coset spaces of locally compact groups by compact subgroups.

Let A" be a (commutative) locally compact hypergroup with a left Haar measure.
Let L!(A’) be the hypergroup algebra of A" and U'C,(R’) be the Banach space of
bounded left uniformly continuous complex-valued functions on A.

In this thesis. we show, amoné other things, that the topological (algebraic) centers
of the Banach algebras L!'(A’)™ and U'C.(A’)" are L'(R’) and M(R). the measure
algebra of A", respectively. Some applications to L'(K’). L*(K)™™ and M(A')™" are
given.

Let PY(R) = {f € L*A) : f = 0. |Iflh = 1}. Then P'(R) is a topological
semigroup under the convolution product of L!(A’) induced in P!(K’). We say that
A has property (p) if there exists a left invariant mean on C(P'(R’)). the space of
bounded continuous functions on P!(A’). We study hypergroups with property (p)
and its relation with amenability of A"

A short proof of the existence of Haar measure for commutative hypergroups is also

given.
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Chapter 1

INTRODUCTION

The theory of hypergroups was initiated by Dunkl [12]. Jewett [33] and Spector [57
in the early 1970°s and has received a good deal of attention from harmonic analysts.
Hypergroups are sufficiently general to cover a variety of important examples includ-
ing double coset spaces, yet have enough structure to allow a substantial theory to
develop. Although the definitions of hypergroup given by the three authors are not
identical. the ideas are essentially the same and all interesting examples are hyper-
groups by all the definitions. Jewett calls hypergroups “convos™ in his paper [33].
In [46], Pym also considers convolution structures which are close to hypergroups.
A fairly complete history is given in Ross’s survey article [51] (see also [52]).

Let L}(G)™" be the second dual algebra of the group algebra L!(G) of a locally com-
pact group G. Civin and Yood were the first authors who made in [6] an extensive
study of L}(G)™".

In [63]. Young proved that L'(G) is Arens regular if and only if G is a finite group.



Another proof of Young's result was later given by Clger in [38]. This result was
extended to hypergroups by Skantharajah in [56. Theorem 5.2.3].

Watanabe proved that L!(G) is an ideal of L'(G)™" if and only if G is compact [64].
Later, Grosser proved this result in [25] using functional analytic methods.

The results on the second dual algebras obtained prior to the vear 1979 were sur-
veyed in the article by Duncan and Hosseiniun [10].

Renewed interest in the second dual algebra of the group algebra L!(G) emerged by
publication of [31] by Isik. Clger and Pym. where among other things. it was shown
that if G is a compact group, then the topological center of L'(G)™ is precisely
LY(G).

Lau and Losert in [38] showed that L!(G) is the topological center of L}(G)™ for
any locally compact group G. In [39], Lau and Clger study related results on weakly
sequentially complete Banach algebras with bounded approximate identity.

Let {"C,(G) be the Banach space of all bounded left uniformly continuous functions
on G and UC,.(G)" be its dual Banach space. Then U'C,(G)" under the restriction
of the multiplication on L!(G)™ is a Banach algebra. In [37], Lau showed that the
topological center of UC,(G)" is M(G), the algebra of bounded regular Borel mea-
sures on G.

Let A" be hypergroup with a left Haar measure A. Let L}(A") denotes the hyper-
group algebra of A (see [21] and [22]) i.e. all Borel measurable functions o on A" with

lolh = [ lo(z)]dA(z) < oc (with functions equal almost everywhere identified).

~



and the multiplication defined by
oxu(e)= [ olzxyu(@dMy)  (see [33.55.5)).

Let the second dual L'(K)* (= L*(RK)") of L}(R’) be equipped with the first
Arens product [10]. Then L'(R’)™ is a Banach algebra with this product. The

topological center of L'(R)™" is defined by

Z(LYR)™) = {m € L'(K)™ : the mapping n —> mn is

w*" — continuous on L'(R)™}.

Let UC,(R") be the Banach space of all bounded left uniformly continuous complex-
valued functions on A" and UC,(KR)" be its dual Banach space. Then there is
a natural multiplication on U'C.(KR’)" under which it is a Banach algebra. More

specifically. for m,n € UC{R)", fe UC,(K).and r € K
(mn. f) = (m.nf) where nf(zr) = (n. - f).

where . f(y) = . f(t)dé. =4é,(t). This product is in fact the restriction of the first
Arens product on L'(A')™ to U'C.(R’)". The topological center of U'C.(R)" is defined

by

-

Z(UC(KR))={m € UC,(K)" : the mapping n —> mn is
w" — continuous on ['C.(R')"}.
Note that when K is commutative, then Z(L'(R)*") and Z(U"C.(RK’)") are precisely

the algebraic centers of L'(A)™ and U'C,(R")" respectively.

3



The main purpose of this thesis is to establish the results of Lau [37] and Lau and
Losert [38] for hypergroups. The method of the proof which we shall use also pro-
vides a new proof of Lau’s result in [37, Theorem 1] in the group case. Many of
our results are on hypergroups with left Haar measures. It is still unknown if an
arbitrary hypergroup admits a left Haar measure, but all the known examples of
hypergroups do.

This thesis consists of six chapters and one appendix. Chapter 2. section 2.2 con-
tains a summary of definitions and notations used throughout the thesis. Section 2.3
deals with some well-known results on the second duals of Banach algebras. while
section 2.4 concerns with some technical lemmas necessary to prove our main results
on chapters 3 and 4. In particular. the technical lemma 2.4.5 in this section plays a
key role in proving our main results (Theorem 4.2.5 and Theorem 3.4.3).

In chapter 3, we prove that the topological center of the Banach algebra [ 'C.(A')"
is M(R’). The results of this chapter generalize the corresponding ones for locally
compact groups in [37].

Motivated by Lau and Losert in [38] in chapter 4. we show that the topological
center of the Banach algebra L'(A")™" is L!(RA’) and as a corollary we have. L!(R)
is Arens regular if and only if K is finite [36].

Some applications of the main theorems are given in chapter 5. First we generalize
a result of Watanabe in [64] that L'(R") is an ideal of L!(A’)™ if and only if A is
compact. Here we show. among other things. that the compactness of A is equiv-

alent to UC.(R’) = WAP(LY(R)) (weakly almost periodic functionals on L}(A’))



and A is compact if and only if L!(RA’) is an ideal of M(A’)"". and that L>(A") has
a unique topological left invariant mean if and only if A" is compact.

Let PY(K)={f€ LYR):f >0, [ flli=1}. Then P}(R) is a topological semi-
group (a semigroup with jointly continuous multiplication and Huasdorff topology')
under the convolution product in L!}(A’) and when equipped with the norm topol-
ogy. Let C(P!(K)) denote the space of all bounded continuous functions on P!(A’).
By a left invariant mean ou C(P!(R’)) denoted by LIM, we mean a linear functional
m € C(P'(R"))" such that ||m]| = m(lpy(x)) = 1 with m( ;6) = m(f) where ;8(g) =
6(f=g) (*is the convolution product on P}(A")) for all f € P'(R’). 8§ € C(P'(R)).
We say that A" has property (p) if there erists a LIM on C(P'(R’)).

Motivated by the work of Ganesan in {16]. we study hypergroups with property (p)
in chapter 6. Examples of hypergroups with property (p). are given in section 6.2.
Here, we also study the relationship between amenability of the semigroup PT(A’)
and P(R).

In appendix A. we give a proof on the existence of Haar measure for commutative
hypergroups. by using Markov-Kakutani fixed-point theorem. based on an idea of
Izzo [32]. A proof of this result was originally given by Ross [50] with a completely

different method.



Chapter 2

Notations and Preliminary results

2.1 Introduction

In this chapter. we irclude some definitions and notations used throughout the
thesis. Section 2.2 is an introduction to locally compact hypergroups. associated
functions spaces and invariant means. Section 2.3 deals with some notation and
preliminary results on second duals of Banach algebras. In section 2.4. we establish
some properties of Z(L!(K')*" necessary to prove our main results in chapters 3 and
4. In particular, the technical Lemma 2.4.5 in this section plays a key role in proving
the main results. Also in this section, we collect some facts about the Arens product

on L'(A)™ which will be used in the sequel.



2.2 Locally compact hypergroups

Let X be a locally compact Hausdorff space. The following notations are used

throughout the thesis:

C(X) The bounded continuous functions on X

Coo(X) The set of continuous functions with
compact support on X

CH(X) The members of Cgo(X) which are

non-negative

Co(X) The set of continuous functions vanishing at oc

Ip The characteristic function of the nonempty
set DC X

D The closure of D C X

M(X) = Co( X)) The regular Borel measure on X
M*(X) The members of M(X') which are

non-negative

R The Dirac measure concentrated at x € X
sptu The support of measure u € M(X)
A= The second dual of Banach algebra - equipped

with the first Arens product
Z(A™) The topological center of Banach algebra 4™

S Topological semigroup

-



Always. an unspecified topology on M*(X) is the cone topology. This is the weak

topology induced on M*(X) by the family C(X) U {1}.

Definition 2.2.1 A hypergroup is a non-void locally compact Hausdorff space R

which satisfies the following conditions:

M(K) admits a binary operation * under which it is a compler algebra.

The binary mapping = : M(K) x M(K) — M(K) given by (u.v) —> p *xv
is non-negative (u*v > 0, whenever u.v > 0) and continuous on MT{K) x

M*(R).
Ifz.y € K, then 6, * 4, is a probability measure with compact support.

The mapping (z.y) — spt(é:+8,) of K x R into the space E(K’) of compact
subsets of K is continuous, where E(R’) is given the topology with subbasis
given by all

Ec(V)={Ae€e&R):ANTU #0.ACV}
where U, V' are open subsets of K. This topology is studied by E. Michael [{1].

See [33. §2.5] also.

There ezists a (necessarily unique) element e. called the identity. in K such
that

0;%6.=08,%6, =4, forallz € K.

There ezxists a (necessarily unique) involution r —— ¥. a homeomorphism of
K onto itself such that (1"5 =1 for all r € K. satisfying:

8



(a) Forz.y € K. € € spt(8; *4,) if and only if r = §

(b) If 1 is defined for uy € M(K) by z(A4) = u(A) for all Borel subsets A of

K, where A= {# : z € A}, then (u* v) =Dt

The definition of hypergroups above is the one given by Jewett [33] who called them
convos. A survey of the subject appears in Ross [51].

We shall denote the maximal subgroup of K by
G(IK)={z€R:6.%6:=04.}.
For a Borel function f on A and £ € A'. .f denotes the left translation

)= flzxy) = [ fi) dbz =40,

and f; the right translation

fely) = fly=z) = /A F(t) d6, + 8:(t).

if the integrals exist. We write ,.,f and fr., for ,( -f) and (f,): respectively.
Many of our results require the existence of a left Haar measure. Throughout. A’
will denote a hypergroup with a left Haar measure A. Hence. by definition. A is
a non-negative regular Borel (not necessarily bounded) measure on A" such that
dr # A = A for every r € K. The modular function A is defined on A" by the identity
A * &y = A(z)A. Unless otherwise stated, we use the definitions and notations of
Jewett [33]

If A is compact, then it admits a left Haar measure and all the known examples



also do [33. §5]. Compact hypergroups are unimodular [33. §7].
A hypergroup R’ is called commutative if 6. #d, = &, * 4 forall r. y € A"

A subhypergroup is a non-empty closed subset H of A" with H=Hand H+«H C H.

Example 2.2.2 [13] Let Z* be the non-negative integers and Z* U {x} its one-
point compactification. Let 0 < a < 1/2. Let 8. be the identity element and

define
Om *0p = Omin(m,n) fmneZ*. m#n

r

0 ift <n.

Ga(D) = e te=n

l—-a

af ift=n+k>n.
and it = n for all n.
The compact commutative hypergroup obtained this way is denoted by H, which
studied by Dunkl and Ramirez. The nomalized Haar measure on H, is given by
(1 —a)d* ifk# .
A({k}) =

0 otherwise:

and H = {1.2,---,oc} is a subhypergroup of H,. For more examples see [33. Chapter

9. PP. 49-60].
For non-empty sets C. D of R, write
C * D = Uzecyep spt(dz * 4,).

For C C R and y € R, let C*y denote the subset C*{y} in A" For a subhypergroup
H. let
K/H={z*H: z€R}

10



and

K//H={H=+z*H:z€R}
equipped with the quotient topology.

Lemma 2.2.3 Let K be a locally compact non-compact hypergroup. Then there
erists a family {C; : i € I} of compact subsets of K, indexed by I. y;.zi € K. 1 €
such that C:° (the interior of C;) is non-empty. UiefCi® = K. {C; :t € I} is closed

under finite unions, and

(a) the families {C; xy; : 1 € [} and {C; * =i : 1 € I} are pairwise disjoint.

() Cixyi*§iNCpxzpx2,=0,iFjandp#q.i.jpqel.

Proof: Let {C; : i € I} be a family of compact subsets of K with C,° nonempty.
R = UiesC:° and that the index set I has minimal cardinality among all such
families. By taking finite union of such sets. we may assume that {C : 7 € [} is
closed under finite unions \We may also assume that [ is well ordered in such a way
that each nontrivial order segment {i € [ : i < j}. j € [. of I has smaller cardinality
than /. We now proceed with the selection of y;, z;, ¢ € I by transfinite induction.
Assume that y;,z; have been selected for j < i, then y; has to meet the following
requirements:

from (a) forp <t

C;*y;ﬂcp*yp=@,

from (b) forany p#¢q.j <t

(Ci*xyi) *5;) N((Cpxzp) %) = 0.

11



and (by changing : with ; in (b))

(Ci*yi) * ) N((Cp* ) x 3) = 0.

Now by using 4.1B in [33] they are equivalent to

yi & Cix(Cp*yp) (1)

yi ¢ (Cix (((Cp * zp) * £3) * yj)) (2)

yi € ((Cp*z)*Z)*(Ci*y;)forjpg<iand p#q (3)
respectively.
Such choice of y; is possible. since the collection of compact sets (see [33. 3.2B}) on

the right hand side of (1). (2) and (3) do not cover A". by minimality of I. Similarly.

we can find z; such that

g Cix(Cp*zp) p<ut

KX

12

i ¢ Ci* (((Cp * yp) * gq) * ;)

~

and z; @ ((Cpo*yp) *Yg) * (Cj* z;5) for j.p.gq<iand p#q.

?

Now by transfinite induction the proof is complete. o

Lemma 2.2.4 Let R be a hypergroup and U a symmetric neighborhood of the iden-
tity e € K. Then there erists a subset M of R such that for any finite subset
{g1:92.---gn} of R the set gy xga *---x g, * U U contains at least one element of

M and the set gy x g, * - - - * g, * U contains at most one element of M.

12



Proof: Let

A={TCHK:forany p#q€T, thereisa finite subset {gi.g>.---.gn}

of K suchthat p¢qxAxA, where A=U*g.=---=gi}.

Then A is non-empty and any chain {T,}aer in A has an upper bound UaerT,- So
by Zorn's Lemma A has a maximal element M. By using (33, 4.1A. 4.1B]. we have
MnNg*«U=*=U #0 for all g € K. Now for {g1.92,---,gn} an arbitrary finite subset

of A. we have

MNg #go*---%gax U U = M0 (Urggngpeimgn T* U ) =

Uregiaga=-=gn (MNr«U =) # 0.

To show that M intersects g; * go * - - - * g, * [ at most at one point. let there be s;
and s; in M such that s; # s, and s; € gy g2 *---x g, = [ for { = 1.2. Then by
using [33. 4.1A. 4.1B] we have 5; € s A * A. where A is [ * g, *--- * g» and this

contradicts M € A. So the proof of the Lemma is complete. =

The function f is given by f(z) = f(#). The integral [ ...dA(z) is often denoted
by [...dz.

Let (LP(RK),|.lls).1 € p < oc, denote the usual Banach spaces of Borel functions
on A [33.§6.2]. Then L°(A’) is a Banach algebra with the essential supremum norm
- llec: LZ(K) = L'(K)" [33, §6.2.], and C(R’) is a norm-closed subspace of L>(A’)

in a natural way. We say that X C L*(R) is left [right] translation invariant if

13



+f € X [f- € X] and is topologically left [right] translation invariant if o= f = .\
[f*o€ X]for fe X.o€ P(K)={o€ L' (R):0>0.]| o|=1}.

In addition, we make use of the following abbreviations:
UC.(K)={f € C(K):z~ .fis continuous from K into (C(R).|| - |<)}-

UCi(R) = {f € C(R) : £ — f, is continuous from K into (C(R’).|| . ||x)}-
It is known that

UC.(K)={f €C(R): 2z~ .f is continuous from K into

C(R’) with the weak-topology }

Each of the spaces ['C,(K) and UC((R’) is a normed closed. conjugate closed. trans-
lation invariant and topologically translation invariant subspace of C(A’) containing

the constant functions and Cy(A’) [55. Lemma 2.2.] and

(i) UC/(R)=LYK)*UC.(R) = L'(R)* L=(K);

(ii) UC(K)=UC,(R)=*LYR) = L2(K)* L' (K) [55. Lemma 2.2.]
Note that I'C.(R’) and U'C;(A’) are in general not algebras [53. Remark 2.3(b)].
For 0 € L'(R), we write o(z) = A(#)o(%) then ||o|| = flo],. If f € LP(R).1<p <
oc.z € K, then || - fll, < |Ifll, and this is in general not an isometry [33. §3.3]. The

mapping £ — .f is continuous from A to (LP(K),|.||;).-1 £ p < . [33. 2.2B

and 5.4H].

14



It is easy to show that L'(A") has a bounded approximate identity(B.A.I) {¢, : 1 €
I} C CH(R) such that [je;]fy =1 (see [55. Lemma 2.1]).
Let X be a subspace of L2(K’) containing the constant functions and closed under

conjugation. A complex linear functional m on X is called a mean on X if we have:
(i) essinf f < m(f) <esssup f

for f € Xg. the real valued functions in X.
Like the group case, it can be shown that a complex linear functional m on X is a

mean if and only if each pair of the following conditions holds:

(ii) (f € X. f > 0) implies m(f) 2 0.

(iit) m(1x) = 1.

(iv) | m lI= 1.
See [44. Propositioﬁ 3.2, p. 23] or [43. Proposition 0.1].

Let X be a subspace of L(K) with 15 € X that is closed under complex

conjugation and is left translation invariant. A mean on X is called a left invariant
mean [LIM] if m( .f) = m(f) forall f € X. 2 € K. A mean on X is called a

topological left invariant mean [TLIM] (topological right invariant mean [TRIM]) if

m(o* f) = m(f) (m(f *o) = m(f)) for all f € X, 0 € P}(R).



2.3 Second duals of Banach algebras

From now on, for a Banach space X, we denote by X~ and X" its first and second
dual, respectively.

Let 4 be a Banach algebra. For any f € A® and a € A we may define a linear
functional fa on A by (fa.b) = (f,ab).(b € A). One can check that fa € A" and
ifell < lIfllllall- Now for n € A™ we may define nf € A™ by (nf.a) = (n. fa):
clearly we have ||nf]| < ||In[|||fl|- Next for m € A, define mn € A™ by (mn. f) =
(m.nf). We have ||mn|| < ||m||||n||. and A" becomes a Banach algebra with the
multiplication mn, just defined. referred to as the first Arens product. versus another
multiplication on A™" called the second Arens product. which is denoted by mon

and defined successively as follows:

(mon, f) = (n. fm). in which (fm.a) = (m, af). where (af.b) = (f.ba).

herein m.n, f.a, and b are taken as above.

From now on A" will always be regarded as a Banach algebra with the first Arens

product.

Let Z(A™") denote all m € A™ such that
mn=mon
for all n € A™. We call Z(A™™) the topological center of A™".

Proposition 2.3.1 Z(A*") is a closed subalgebra of A™™ containing A.
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For a proof see [10. p.310] or [38, Lemma 1].

Proposition 2.3.2 Let m € A™. The following are equivalent:
(a) m € Z(A™);

(b) the map n = mn from A™ into A™ is w™ -w” continuous:

(c) the map n — mn from A™ into A™ is w*™ -w" continuous on norm bounded

subsets of A™.

For a proof see [10. p.313].

Note that for n fixed in A=". the mapping m —— mn is always u” -w" continuous.

2.4 Some properties of Z (L1 (K)**)

In this section. we shall show some properties about topological center of L!(A)
which will be used to prove the main result of chapters 3 and 4. In particular. the

technical Lemma 2.4.5 in this section plays a key role in proving the main results.
Lemma 2.4.1 Let 6,v € LY(K), f € L=<(K) and m.n € L'(R)*". Then
(i) (vf.0) = (fo.¥).

(ii) vf = f*v € UCR). fo=ox*f € UC.(K) where o(x) = A(F)o(F) and

v(z) = v(%).

(iti) (vf) =¢(af). (fo)a = (fa)o and (of)o = f(s0) fora € KA.
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(iv) If m. n are means, then so is mn.
(v) If m is a TLIM and n is a mean, then mn is also a TLIM.
(vi) If n is @ TLIM and m is a mean on L*(K'), then mn = n.

Proof: (i), (ii) and (iii) immediate.

(iv) For ¢ > 0 in L}(K), we have 16 = 0 * 1 = ||9||;1 and (nl.o) = (n.lo) =
(n.|lolh1) =|| & li= (1.6) where 1 is the one function on A. Hence. by linearity
nl = 1. So (mn.1) = (m.nl) = (m.1) =1 and since ||mn|| < |m||]in|f. we are
done.

By using (iv). one can easily check (v).

(vi) Let {0.} C P}(R’) be a net such that o, — m in the w"-topology of L>*(A)".
then o,n — mn in the w*-topology of L*(KR’)". But {(o.n. f) = (n. fo.) = (n. f).

Hence, mn = n. a

Lemma 2.4.2 Let 0 # m € L*(R)". then there is a net {u,} in L'(K) such
that ||ua|| < |Im]|. all uo have compact support and u, — m in the w=-topology of

L=(R)".
Proof: Follows from Goldstine’s theorem and the density of Coo( A) in L' (K'). g

Lemma 2.4.3 If m € Z(LY(KR)™) and f € L>*(R). then fm € UC.(KR) and

(fm)(z *y) = (M. fray)-

—
[0 4]



Proof: We may assume that m # 0. Let {u,} be the net in the Lemma 2.4.2. Then

(n. fm) = (m o n. f) = (mn. f) = (m.nf) = lim(ua.nf) =

lign(uan.f) = lim(n. fu,).

for all n € L=(K)". That is, fu, — fm weakly for all f € L<(R’). Note that
fu, = u, * f € UC.(R) (Lemma 2.4.1(ii)). It follows that fm € UC.(K).

Furthermore, if f € L*(R’). y € A" then
fm(y) =lim i = f(y) =lim [ o) f(& * y)dz =
hm/ wa(2)f(z * y)dr = lim(ua. f,) = (m. f,)
(using [33. 5.3A]).
Now let o € L}(R), a € K. then by what we have seen above
o.(fm),) = (fm)o(a) = f(moo)(a) =

f(mo)(a) = (mo. f.) = (moo. fi) =(o.(fu)m)
since m € Z(L'(KR)™); i.e. (fm)a = (fo)m.
Now for z,y € K,

fm(z*xy) = (fm)(z) = (fi)m(z)
(m~(fy)-r) = (m-.fr-y>'

Hence. (fm)(z *y) = (m. o). O
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Note 2.4.4 That for m € L*(R )", f € L*(R)and r € K. m(-f) = (mfi. To
see this, first note that if {¢,} be an approximate identity of L!(A’). then for any

g € L*(K) go.+— g in w"- topology of L*(K). Hence by using 2.4.1(iii).

m(af) = w" — lign m((af)0a) = w” — 1ignm(f(&¢a)) =

wh - lién(mf)(&oa) =w — ligl a(mf)on = n( 'nf)'

Lemma 2.4.5 Let n € Z(LY(K)*") and u € L'(K) be such that (n —u)(f) =0 for

all f € Co(R). then n = u.

Proof: By Proposition 2.3.1. it is enough to show that any element of Z(L'(A")™")
vanishing on Co(R) is zero. So let n € Z(L'(R’)™) such that n(f) = 0 for all
f € Co(R’). First we show that n(f) = 0 for all f € L>*(R’) vanishing outside a
compact subset of A". Let = > 0 be given. since fn is continuous (Lemma 2.4.3)
we can find V' C {z : |fn(z) — fn(€)|] < £} such that V" is open with compact
closure. Put v = 5. then f * & € Co(K)(see 2.4.1(ii) and [33. 4.2E]): hence by

using 2.4.1(ii),
frnxi(e) =v(fn)(e) = (vf)n(e) = (f+D)n(e) = (n. fx2) = 0.
It follows from Lemma 2.4.3 that
()] = 1fn(e) = (fr = eDl = sl [ (o) = fr(e)de] € 5o [ de =<
= “x' =a hTTE

Hence, we may assume that K is non-compact. Now let {u,} be the net in Lemma

2.4.2, then replacing {u.} by a convex combination of {u.} if necessary. we may
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assume that for any f € L>(h’) :
| fua — fnil —0. (2.1

(see the proof of Lemma 2.4.3)

If n # 0 we may assume that n positive and |[n|| = 1. Now we claim that for any
probability measure u € M(K) , ||nu|l = 1.

Indeed, ul = 1 where 1 is the one function on K. So
(np.1) = (n.ul) =1

and since

lInpell < llmff flelt = 1.

thus
linull = 1.

Let 0 < = < 1/6. then there exists f € L(A’) such that
[(nu. ) >1—e. (2.2)

(using separation theorem for locally convex spaces) for any probability measure
it € M(K) with compact support. Let {C;: 1 € I} be a family of compact subsets
of A" and let y;.z; € K. and ¢ € [ satisfying the conditions of Lemma 2.2.3. For

each 1. define

flz=y;) ifz€Cixy.

0 otherwise:



and

flr*3) fzeCi*z

0 otherwise.

For any finite subset o of I, let
fi =Siecf] and f] =TS f .
Since the positive and negative parts of Re(f’). Im(f!). Re(f,) and Im(f,) are
monotonically increasing bounded nets of positive functions in L>(A’). there exists
f'. f"in L=(R’) such that

"

f'=>f and f. = f  (see[2. Example 15. P. 64])

in the w"-topology of L*<(A’).

By (2.1) we may choose a such that
| fus — fn|] < <. If'ua — finll <c and ||f u,—f nl| <=
Since each measure u, has compact support. the family {C; : i € I} is closed under

finite unions and A" = U{C? : i € I}, there exists ig € [ such that spt u, C C,. Let

g = ;‘_o and g° = f. . then

Tig

-t
~—
.

In(¢)]>1-3: and |n(g)|>1-3= (

1y
[IV]



Indeed, since lc,, (f5 )y, = lc,( f!'h0 ) in the w*-topology of L*(A’) and 1¢, (f,),,, =
1ciq fyg=5, fOr o containing i, it follows that lc, ¢' = lc,, fyy5,- namely ¢’ =

fuig=iio O Ciy- Hence by Lemma 243,

e > 1fualyie) = Frlyie)l = lualf],) = n(f],)l
= |ua(fy.o-§.o) - n(gl)l = lfua(yio * gio) - n(gl)l'
Now since

Lfn(yio * Jio)l = In(fygua )l > 1 -2 (by (2.2))

and

n

lfn(yio * gio) - fua(yfo * gio)l = |n(fy:0-§.°) - u-n(fy.u'ﬁxq )| <

we have

lfua(yio * gio)‘ 2>

Ifn(yio *gl'o)l - lfua(yio *!7:'0) - fn(yio *37.'0)! Sl=z—-z=1-2=
Consequently.
|n(g')l > Ifuo(yio * gio)l - 'fua(yl'o * !7{0) - n(g')l >1-3:

Similarly, |n(g")| > 1 — 3e.
By (a) and (b) of Lemma 2.2.3, the support of g’g" is contained in the compact
set Do = (Ciy * Yig * Jip) N (Ciy * zip * Ziy)- Let A € Co(R) with h =1 on Dg and

11 -h] < m (see [37, Lemma 4]), we have by (3) and what we have shown first.

(19'(1 = h)|.n) > In(g' — g'R)] = |n(g")| > 1 -3¢
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and similarly, (|g" (1 = R)|.n) > 1 — 3c.

Hence, by adding these inequalities.we get
(g1 + 1g" DL = h]),n) >2—6e > 1.

But ||(J¢’} + lg D(J1 — A])|| € 1. This contradicts the assumption |n]| = 1 and we

are done. O



Chapter 3

Topological Center of UC, (K)*

3.1 Introduction

Let A be a locally compact hypergroup with left Haar measure. {'C.(K’) be the Ba-
nach subspace of all bounded left uniformly continuous functions on A" and ["C'.(R')"
be its dual Banach space. For f € UC.(R") and m € UC.(K')". we define the func-
tion mf on R by mf(z) = (m, .f) where  f(y) = f(r=*y) for r.y € K. Then
mf € UC.(K).

Indeed, it is easy too see that mf € C(R’). Also

Amf)y) =mf(exy)= [ mft)ds; = 8,(t) =

Ir=y

(m, ,f)d&,*cfy(t)z(m,/ SFdos=8,(1) (%)

=y I=y

But the Bochner’s integral [, fdé; *d,(t)is ,( -f) since

(V]
D



[, fdiess 0O = e [ fdoexbe)

= (O, of)dz * 8y(t)

Ir=y

=/ , JOd = 8,(0)

= fe(t)dd = 8,(t)

=y

fe(z =y) = y( =f)(E)-

So (*) implies that

((mf)y) = (m. y( =f)) =m( f)(y).

le.

{mf)y=m( :f)- (3.1)

Hence

| 2(mf) = J(mAN < Im(=f) = mGAO < Nimllll 2f = o fIl-

Note that if m = §, for some a € R, then 4, f = f,.

Now we may define a product on UC,(R)" by (nm. f) = (n.mf) form.n € UC.(R')"
and f € UC,.(R). With this product, UC.(R)" is a Banach algebra.

In section 3.2, we show that this product is the restriction of the first Arens product
on L*(K)~ to UC.(K)".

Motivated by the work of Ghahramani, Lau and Losert in [20]. we show that

UC.(R) = M(R) & Co(R)* and that Co(R)* is a closed ideal of U'C.(A")" where
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Co(R)* = {f € UC.(R)" : flcotx) = 0}. Then by using this. we show that the
members of G(A’) are the only invertible means with positive inverse.

Section 3.3 consists of definition and properties of topological center of { 'C'.(K')". We
show that the topological center of UC,.(RA’)* contains M(A’) and that the members

of it are precisely those elements m of UC,(R’)" that the linear operator
n—+mn on UC.(R)"

is w* — w" continuous.
Section 3.4 contains the main results of this chapter. Here we prove that the topo-
logical center of UC,.(K)" is exactly M(R’). Our proof also provides a new proof in

group case given by Lau in [37].

3.2 On the Banach algebra UC, (K)"

In this section. we prove some lemmas which will be used to prove the main result of
this chapter. We also show that the elements of G(R’) are the only invertible means

with positive inverse.

Lemma 3.2.1 The product on UC.(K)" is the restriction of the first Arens product

on L=(R)" to UC,(K)".

Proof: For m € UC.(K)", let m denote an extension of m to L>*(A’). Then for
f € UC,(R) it suffices to show that (mf.é) = (mf,0) for anvy 0 € L'(R) with

compact support.

I~
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First, let m = 4, for some a € A, then using Lemma 2.4.1(iii)

(mf.0) = (m. fo) = (4. fo) = fd(a) = (fo)a(€) =
(fa)d(e) = (fa.0) = (8af.0) = (mf.0).
If m is positive and ||m|| = 1, then there exists a net my; = X2, \d;, of convex
combinations of point evaluations with ms — m in the w™-topology of UC.(R)".

So.
(m.f.0) = (. fo) = (m. fo) = liga(m. fo) =
lim(ms f. 0) = lim /;\ msf(r)o(z)dr  (x)
But msf € U'C.(K) and
Imaf(s) —msf(t)] = [(ms. of — US| of = Sflix-

So by [34. p 232], the family {maf} in U'C.(RK’) is equicontinuous. Since m;f — m f
pointwise. mgf — mf uniformly on every compact set in A" [34. Theorem 7.15].

Hence from (*) we have

(mf.0) = [ mf(z)e(z) dz = (mf.o). o

Note that we can even identify UC,.(R’)" as a closed right ideal of the Banach algebra
L>(R’)" with the first Arens product (see [39. p 13]).

Let Co(R)* = {m € UC.(K)" : m|c,k) = 0}.

Lemma 3.2.2 UC,(R)" = Co(K)* & M(R). If m € UC.(R)" and m = m; + u
for my € Co(K)* and u € M(K), then ||m|| = |[m|| + |jull and Co(R)* is a closed

ideal in UC.(R)".



Proof: We need to show that Co(A’)* is an ideal. The proof of the other parts is
the same as [20. Lemma 1.1].

Let h € Co(K),0 € LY(R). then ho € Co(R) (see Lemma 2.4.1(ii) and [33. 4.2E]).
Hence for n € Co(R)* it follows that (nh.¢) = (n.ho) = 0 i.e. nh = 0. Conse-
quently, for m € UC.(R)" (mn,h) = (m.nh) = 0. Hence Co(R')* is a left ideal in

UC.(K)". Let u € M(R') and h € Co(R). Then by using [33. §4.2] we have

hew(@) = [ h(z=9du(y) = JRENEL

[ (@) dust)
K

= [ (h)y)duty)

(n. ch) = ph(r).

where [i- fdu™ = [i- f(&)du(z) for f € Co(R). In particular. uh € Co( A )(see[33.
4.2.E]). Hence n € Co(A')* implies that np € Co(A)*. Now let m € UC,(RA')" be
arbitrary. Then m = ¢ + m; with g € M(R) and m; € Co(A'}*. If n € Co(h')~.
then nm; € Co(R)t. So nm = nu 4+ nm; € Co(A')* i.e. Co(A')* is a right ideal in

UC/(R). O

Proposition 3.2.3 Let m € UC,(K)" and G(R') be the marimal subgroup of hy-
pergroup R'. Then m is an invertible mean with positive inverse on UC.(R’). if and

only if m = &, for some z € G(K).

Proof: Sufficiency is clear. For necessity. let m € UC,.(R)" be an invertible mean

1

with positive inverse. Then m~! is a mean. since as the proof of Lemma 2.4.1(iv)
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ml=1land (m~'.1) ={m~!,ml)=(m 'm.1) = (b.1) = 1. Nowlet m = pu+m,
and m~! = v + m, with u.v € M(R) and m;,m; € Co(A')* (Lemma 3.2.2). then
8. = mm~! = uxv+pma+mir+myme and puma;+mur+mim; € Co(R)* (Lemma
3.2.2). Hence, uma + mv + mymy = 0 since §. € M(R) and 1 = [|4[| = |ip = vl <
il Iv]l < 1. Consequently. [jull = llvll = 1 and ||myf| = |Im,|| =0 i.e. m = u and
m~! = v. Hence {e} = spt(u *v) = {spt(u) * spt(v)} [33. 3.2F]. In particular. p

consists of a single point in G(K) i.e. u =4 for some r € G(RA). =i

3.3 Some properties of Z(UC, (K)")

Form € UC,(K)" and f € ['C,(R’). we may define a bounded complex function fm
on A by fm(z) = (m. f:). Generally fm is not in U'C.(R) but for m = 4, (a € i)
fm = fé, = .f € UCK). fn € UC(R)" and fm € UC.(K)for all f € UC-(K).
then we may define another product on U'C.(R’)" by (mon. f) = (n. fm).

Let Z(UC,(R)") denotes the set of allm € UC.(R')" such that fm € UC.(R) for all
f € UC.(K) and mn = mon for alln € UC.(K)~. One can check that Z(U'C.(R)7)

contains all point evaluation functionals 4;, r € A'.

Note 3.3.1 For m € UC,(R)~, define the linear operator L., from U'C.(K)" into
itself by

La(n) =mn. neUC.(K).
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Put

C={meUC.(K) : Ly is w* — w"continuous

on norm bounded subsets of ["C’.(A')"}

Lemma 3.3.2 MX(R)CC.

Proof: Let x € M(R’). we need to show that the map m — um is w™-uw" continuous
on any norm bounded subset of ['C.(A’)". Let {m,} be a net in U'C.(A")" with
[lma|l < ¢ converging to m € UC.(R')* in the w"-topology of U'C.(A’)" for some
constant c. Then for any f € U'C,(R’) and s.t € R we have |m,f(s) — m,f(t)] =
Kma. of — )| < cll sf = ¢f|l- Hence by [34. p. 232] the family {m,f} in UC.(R)
is equicontinuous. Since m,f — mf pointwise on A’. the convergence is uniform
on every compact set in A" [34, Theorem 7.15]. Let u € M(R’) be with compact
support. then (um, —um. f) = (u.mo f—mf) = [-(ma f—mf)(xr)dp(r) — 0. Since
the measures with compact supports are norm dense in M(A") and ||m, f|| < || f}i.

it follows that yum, — um in the w*-topology of UC.(A)" and we are done. a

Lemma 3.3.3 If m € C and f € UC,(R). then fm € C(R) and fm(r xy) =

(M. frey) for all z.y € K.

Proof: Let {z,} be a net in K converging to z; then the net {4.,} converging to

d: in the w*-topology of U'C,(K)* (see [33, Lemma 2.2B] and Lemma 3.2.2). Hence
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fr(za) = (M frn) = (m. 8, f) = (mbea. f) —

(mé.. f) = (m.o.f} = (m. f:) = fm(r).

since m € C and {d._} is bounded. Furthermore, we know that fm is also bounded:
consequently fm € C(R’). Now note that for any r.y € A" the Bochner’s integral
Jewy ft 402 % 8, exists. Indeed the map t — f; from the compact subset r*y of A into
[UC,(R) is continuous in the topology o(UC-(R").C) of U'C,(R’). and C separates

the points of {'C.(R) (C contains the point evaluations). Hence for any m € C

m. [ fedbow (1)) = [ (m. fi) dbe =8, (0) =

/fm(t)d&r*d'y(t)zfm(.r*y) (%)

I=y

On the other hand. the Bochner’s integral [, f.dé.*4, is equal to f;.,. Indeed for

any o € L'(R’) C C (Lemma 3.3.2). by using Lemma 2.4.1(iii). (*) implies that

fo(z *y) = (fo)y(z)

I

(o./r-y Fodé, % 6,(t))
= ((fy)o)(x) = ((fy)o)r(f) = (fy)ro(f) = (o(fy)r)>

Hence from (*) we have (m, f;.,)) = fm(z *y). o

Lemma 3.3.4 For m € 'C,(K)" the following are equivalent:
(a) m € Z(UC.(K)),
(b) The operator L,, is w™-w™ continuous.
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(c) meC.

Proof: First we show that (a) implies (b). Let {n,} be a net in ['C,(RA’)" converges
ton € UC,(R)" in the w*-topology of UC.(K’)". Then for any f € U'C,(R)
limmna(f) = lim(mna.f)

= limfmon,. f)

= lim(n,. fm)

= (mon.f)

= mn(f).
(b) implies (c) is trivial.

For (c) implies (a), let m € C and f € UC.(R"). Then by 3.3.3. fm € C(R’). To

see that fm € ['C.(R’), we first show that if 8 € C(A’)". a € A" then
(0 a(fm)> = (m‘sae-f)~ (=)
Indeed for § = 4, (z € R'). by using 3.3.3. we have

(0z. a(fm)) = o(fm)(z) = fm(axz)=(m, four) = (M. (fz)a)
= (m.d:(fr)) = (Mbe. fz) = (Mds. 4, f)

= (mé.d., f).

If 6 is a mean on C(R), then there is 3 = X725, \;d;,, convex combinations of point

evaluations, such that 83 — 6 in the w™-topology of C(A")". Hence
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(0. o(fm)) = lim{fs. o(fm))
= lim(md.06, f)

= (md.d. f)

by w*-w" continuity of L, on norm bounded subsets of {"C.(K’)". Consequently

(**) holds.

show that the map r — (fm) from A to C(R’) is weakly continuous. Let {r,} be

a net in A converging to r and § € C(A")". then by using (*x*)

i@, -, (fm)) = lim(mdz,0. )

= (m5,0.f) = (0- r(fm))'

by w™-w" continuity of L, on norm bounded subsets of ['(".(A'}". Hence. fm &€
UC/(R).

If n is a mean on U'C,(R’). there exists a net n, = Sl Xd. in Z(UC.(K)") (see
page 32) where A; > 0 and T2, )\; = 1 such that n, — n in the w™-topology of

UC.(R)"; then for each f € UC,(K).

(mon.f) = (n, fm)
= lim(n,, fm)
= lim(m o n,, f)
= lim(mn,,f)  (see page 32)
= (mn.f)
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by continuity of L,,. Now by linearity. we have mon = mn for all n € U'C.(R'j".

ie. me Z(UC(K)?). O

3.4 The topological center of UC, (K)"

The main result of this chapter is contained in this section.
Let ¢ € L}(K) and m € UC.(K)". Then the product om makes sense both as

an element of UC,(K)~ and as an element of L>=(K)" (see [39. §3. p 13]).

Lemma 3.4.1 Let = : L*(R)" — UC.(K)" be the adjoint of the inclusion map
of UC.(K) into L*(R’). Then 7 is w*-w" continuous and mn = m=(n) for all

m.n € L*<(R)".

Proof: It is easy to check that = is w™-w™ continuous. For the second part. swe first
define a continuous map f —— Ff of L>*(R’) into itself for each F € ['C.(R’)".
Note that for f € L*(R).0 € L'(K). we know fo € I'C,(R’) (Lemma 2.4.1(ii)). so
o — (F, f@) is a continuous linear functional on L'(A") and therefore an element
Ff of L*(R’). The adjoint of f — fF is a continuous and w”-continuous map
m — mF of L>°(R’)" into itself.

Thus for 0 € L}(K), f € L*(K),F €e UC.(KR)"., and m € L*(K)",

(Ff.o) =(F.fo) (%), (mF.f)y=(m.Ff) (x*).

Let {0;} C L!'(R") be a net converging to m in the w"-topology of L>(A’)*. Then



for any f € L=(R’). by using (*) and (**). we have
(mn, f) = lim(gin. f) = lim(é; o n, f) = lim(n. fo;) = lim(n(n). fo:) =
lim(r(n)f, 6) = lim{s, x(n)f) = (m,(n)f) = (m(n). ). O
Lemma 3.4.2
Z(UC(K)) ={m e UC.(K)™ : om € Z(L*(K)") forall o€ L'(A)}.
Proof: Let 0 € L'(KR) and m € Z(UC,(K)*). By page 37 we can consider om in
L'(R)=". To prove that om € Z(L*>*(K’)"). using Lemma 2.3.2. it is enough to show
that n — omn is w™-w" continuous. So. let n, — n in the w*-topology of L>(A')".
then 7(n,) — m(n) (since = is w™-w" continuous) in the w"-topology of U'C,(h)".
Hence. by using Lemma 3.3.4, for any f € L*(A’). we have:
(omna, f) = (0 0 (mna). f) = (mna. fo) = (mx(n.). fo) —
(mm(n). fé) = (00 (m=(n)), f) = (om=(n). f) = (omn._ f].
hence by Lemma 2.3.2 om € Z(L>=(K)7).
Conversely, let m € UC,(R)", n, — n in the w*-topology of U'C(A’)". Then for
f € UC.(K). there exist g € UC,(K) and ¢ € L'(K) such that f = go ([35. Lemma
2.2] and Lemma 2.4.1(ii)). Hence
(mn,. f) = (Mn,.gdé) = (¢ 0 (Mmn,),g) = (émn,,g) — (using 2.3.2)

(omn.g) = (mn.go) = (mn.f). O

Now we are ready for the main theorem of this section.
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Theorem 3.4.3 Z(UC,(R)") = M(K)

Proof: By Lemmas 3.3.2 and 3.3.4, it is enough to show that Z(U'C.(R")") C M(R').
Let m € Z(UC.(R)"). Then by Lemma 3.2.2, m = y + m, for g € M(R') and
m; € Co(K)*. It is enough to show that m; = 0. Let 0 € L}(R"). Since Co(A')* is an
ideal in UC,(R)* (Lemma 3.2.2) ¢m; € Co(R')* and om; € Z(L}(A")™") by Lemma
3.4.2 as well. Hence om; = 0 (Lemma 2.4.5). Let f € UC,(R). Then f = go for

some g € UC,(K) and o € L'(K) ([53, Lemma 2.2] and Lemma 2.4.1(ii)). and

(my. f) = (my,90) = (0om,.g) = (om;.g) = 0.

Hence. m; = 0 as desired. a
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Chapter 4

Topological Center of L! (K)**

4.1 Introduction

Let A be a hypergroup with a left Haar measure A and L'(R’) be the hypergroup

algebra of A" with multiplication defined by
o*u(z) = [A oz = y)u(@) dAy)  (see [33.§5.5]).

Let L!(A’)™ be the second dual Banach algebra of L'(R’) considered with the first
Arens product. In this rather short chapter, we show that Z(L'(A')™) = L'(R’) and

as a corollary we have, L!(R’) is Arens regular if and only if A is finite.

4.2 The topological center of L' (K)™

In this section, we shall show that the topological center of L}(A)" is L'(A).



Lemma 4.2.1 Let {e;}ic; be a bounded approzimate identity for L'(K’) and f =

UC.(R). then [i f(z)ei(z)dr —> f(e).

Proof: By Lemma 2.4.1(ii) and [55, Lemma 2.2, f = go for some g € ['C.(R’) and

o € L'Y(K). Then by using Proposition 2.3.2, Lemma 2.4.3. and [35. Lemma 2.2(i)]

/K f(z)ei(z) dz = (ei. ) = (ei, go) = (0€i.g) —> (0.g) = go(e) = f(e). O

Lemma 4.2.2 Let H be a compact subhypergroup of K with the normalized Haar
measure Ay and {U,} be a decreasing sequence of relatively compact neighborhoods

of H with H = N

n=1

.. Put p, = '\t_gﬁ')' then p, — Ay in the o(M(K).C(R))

topology of M(R).

Proof: Define {U',}2, in LY K/H) by U'n(z* H) =U'a(F) = [ palx = t) dApu(t).

then by [35. Remark 2.5. p 180] we have

,n r)dr = nl- r = r = 1.
g Hn(E)di /K/H/H” (z +t) dAgr(t) d /1\-" (r)dr =1

soU', € LY(K/H). We have also sptU', CU,/H.sinceif r«H =1 ¢ [./H =
{axH :a€U,}then zxtNT, =0. for all t € H (using [33. 10.3A]). Thus {U/'.}
is a bouned approximate identity in L*(A’/H). Now for f € Cgo(A’). by using [35.

Remark 2.5] and Lemma 4.2.1
Jouela) fleydz = [ F@(E) di s flex H) = [ f()dAu(t

where f'(z) = f'(z * H) = [y f(z = t) dAy(2).
Hence (un, f) = (An. f) for all f € Coo(R’). On the other hand {u.} has a w=-
cluster point in C(R')* , say u ( by Alaoglu theorem). Then i = Ay on Cgo(A') and
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therefore by continuity, on Co(K'). Now since ||Ag]| = 1 as an element of M/ (A') and

llgall = 1 — || Ak ]| = 1. so by [40, Theorem 3.9] we have u = Ay on C(R). a

Lemma 4.2.3 Let H be a compact subhypergroup of K" such that K'/H is metrizable
andm € Z(L®(K)"), then mAg € L'(RK’), where Ay is the normalized Haar measure

on H.

Proof: First we show that if, for 1 € M(R). there exists a sequence {u,} in
LY(R’) converging to g in the o(M(R’). C(R")) topology. then mu € L'(R’) for any
m & Z(L=<(R)"). Let u € L'(K) and m € Z(L>™(R")") and v = m|c,yx). then for

f € Co(R) by using Lemma 2.4.1(ii) we have

(mu. f) = (m.uf) = (v.uf) = (v=u. f) (see [33. 1.2E]).

Since mu € Z(L*(A)"). it follows from Lemma 2.4.5 that mu = v = u. Now
if f € L*(R), fm € UC,(R) (Lemma 2.4.3). Hence. (mu.f) = {(u. fm) =
lim,(un, fm) = limp(muy,, f). We know that mu, € L}(R’) for all n and that L}(R)
is weakly sequentially complete; it follows mu € L'(R"). Now let {{",} be a decreas-
ing sequence of relatively compact neighborhoods of H such that H =N, (.. Such
a sequence exists, since the canonical map = : A - A’/H is continuous. open and
onto and A is locally compact Hausdorff and A /H is Hausdorff. Put u, = 3=
then g, € LY(R") and u, — Ay in the o(M(K).C(R)) topology of M(R") (Lemma

4.2.2); so by what we have shown above, mAy € L!(R). a
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To show that Z(L*(R)") = L}(KA’), we need one more lemma.

Lemma 4.2.4 Let H be a compact subhypergroup of A" and m € Z(L>(K)"). If

f € L*(K) is right H-periodic (i.e. f- = f forall z € H ) then (m, f) = (mAy. f).

Proof: As the proof of Lemma 2.4.3 for any a € H. (fm), = (f,)m. Consequently.

by Lemma 2.4.3,
(m.f) = fm(e) = [y fm(e)drn(z)
Sy fm(z)dAu(z)

= (/\H,fm)——-(m’\f[?f)‘ =

Now we are ready to prove the main theorem of this section.

Theorem 4.2.5 Let K be a locally compact hypergroup with left Haar measure. then
Z(L=(R)") = LY(RK).

Proof: We follow the proof of Theorem 1 in [38], by Proposition 2.3.1. it is enough
to show that Z(L*<(R)") C L'(R’). Let m € Z(L>®(RA)") and u = m]cyn)- By
Lemma 2.4.5, it is enough to show that ¢ € L!(R’). Let B be a compact subset
of K with A\(B) = 0. We may assume that B contains the identity of A. Then
there exists a decreasing sequence of open relatively compact sets [, 2 B such that
(A + |e])(Urn \ B) — 0 (by regularity).

By induction, we construct a sequence o, in Co(A’) such that 0 <o, <1l.0, =1 on
B and that ¢, = 0 outside of U,NV,_;, where Vo = R and V;, = {y € R : o.(y) # 0}
forall n € INV.

For any n € IV. da(z.y) = [[(9a), — (0s),ll defines a continuous psedometric on
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R and C, = {z € R : d,(z.€) =0} is a compact subhypergroup of A"

Indeed C, is closed, it contains the identity and C, = C,, C C,. We note that (',
is compact, since C, C U,. Moreover, C, is a compact subhypergroup of A" by [33.
10.2F].

But if C = N,C,. then K/C is metrizable and hence by Lemma 4.2.3. mAc €
L'(R). Consequently, Lemma 4.2.4 implies (u, f) = (mAc. f). for all right C-
periodic functions f. Also, since {V,.} is decreasing A(V.) — A(B) = 0. hence.
mAc(Vy) — 0 (since mAc € LY(R')). Since B C V, C U.. p(Vi) — p(B) conse-
quently, u(B) =0.

Now by regularity of u, we have p < A i.e. u € L}(R). O

Definition 4.2.6 4 Banach algebra A is called Arens regular if mn = mon for all

m.n € A™.

The following corollary was proved by Young in [63] and was cited as a corollary by
Lau and Losert in [38] for locally compact groups. For hypergroups. it was shown

by Skantharajah [56, Theorem 35.2.3].
Corollary 4.2.7 L'(R) is Arens regular if and only if K" is finite.

Proof: If K is finite, then L!(R) is reflexive, hence Arens regular.
If L'(R’) is Arens regular, by Theorem 4.2.5, L'(K)™ = L'(K). Hence. L*(R’) is
reflexive, consequently, of finite dimension. Therefore. A is finite. Note also that

then L!(K)"" has an identity (see [4, Corollary 8, P. 147}). o



Corollary 4.2.8 If K is commutative then L'(R’) is the algebraic center of the

algebra L'(R")™".

Definition 4.2.9 Let A be a Banach algebra and T be a bounded linear operator
on A. T is called a right multiplier if T(ab) = aT(b) for a.b € A. We denote by
RM(A) the set of all right multipliers of A which is a closed normed subalgebra of

all bounded linear operators on A.

Corollary 4.2.10 RM(L*(R)) is isometrically isomorphic to M(K').

Proof: This follows from Theorem 4.4 in [39]. Lemma 3.4.2. Theorem 3.4.3. and

Theorem 4.2.5. O
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Chapter 5

Some Applications

5.1 Introduction

In this chapter. we extend a known result on the second dual of the group algebra
L'(G) to hypergroups. S. Watanabe proved in [64] that if G is a locally compact
group then L!(G) is an ideal in L(G)™" if and only if G is compact. Later Grosser
has given a functional-analytic proof of it in [25]. We show that this result remain
valid for hypergroups. Some applications of the main theorems in chapters 3 and
4 are also given. Here we show, among other things, that the compactness of A’
is equivalent to UC.(R) = WAP(L'(R)) (weakly almost periodic functionals on
L'(K)) and we also show, A" is compact if and only if L!(A’) is an ideal of M(A')™".
Finally we prove that A is compact if and only if L>(A’) has a unique topological

left invariant mean.
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5.2 On the Banach algebras L' (K)™ and M (K)™

For a locally compact group G, the following lemma is due to S. Watanabe [64] (see

also [25]).

Lemma 5.2.1 Let R be a locally compact hypergroup. Then L}(K') is a left (right.two

sided) ideal in L'(R)™" if and only if K" is compact.

Proof: Suppose that L!(K) is a left ideal of L'(K)™ but K is not compact. Then
by regularity of A and theorems 7.2A, 7.2B in [33]. we can find a sequence {C,.} of
pairwise disjoint compact subsets of A" such that A(C;) > 1 for all n € IV. Put
[, =U~,C;and Ux = UZ,C; and let f.. 0 and f be respectively the characteristic
functions of [, *Cy.C; and Uy *C;. Then f,,f € L*(R) and o € L'(R). Also
fa(z) = f(z) forall z € K. Hence by the Lebesgue’s bounded convergence theorem.
f. — f in the w™topology of L*(R’). Now for any m € L*(R)". (m.of) =
(mo. f,) — (mo. f) = (m,of) by our assumption. Namely. of. — of in the weak

topology of L*(R’). However (using [33, 5.5A] and 2.4.1(ii)).

of(z) = fx(z) = [ flarplon)dy = [ flewpdy = [ [ fit)ddeeb,(t)dy >

for all £ € Uy. This means that ¢f does not vanish at infinity.

On the other hand for any = ¢ (U, *C, * C,) (compact set )

ofe)= [ fazxv)dy= [ [ fult)dbcws,(t)dy =0

( using [33. 4.1B]). This means that the support of of, is compact: hence of, van-

ishes at infinity.



Consequently. of, € Co(h’) for n € IN. Since Co(R’) is norm closed. of € Cy(A
and this is a contradiction.
Similarly when L!(K) is a right ideal. one can show that A" is compact.

Conversely, by [56, Lemma 35.2.4(v), p 115] we have

L®(K) =UC.(K)* ¢ UC.(R)"

where UC,(K)* = {6 € L=(KR)": &y =0}
Let A" be compact. Then U'C,.(R) = Co(R’) [33, 4.2F]. Thus for any m € L>(R')".

there exists m; € U'C,.(K)t and p € Co(R")” = M(R') with
m=m +pu. (5.1)
Now for o € L(R).
mo = mo + yo.

But by [36. Lemma 5.2.4(iv)] m;o = 0. Hence mo = po € L'(K’). Namely ['{K)
is a left ideal in L=<(A’)".
To show L!'(A’) is a right ideal, from (5.1). for any © € L'(R’) we have om =

om; + ou. But for any f € L=(R),
(¢m1? f) = (mlr f@) = 09

since fo = ¢ * f € UC.(R) (Lemma 2.4.1(ii)). hence om; = 0. Thus om = op €
L'(R’) and we are done. a

Now by using lemma 2.2 in [18] we have:
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Corollary 5.2.2 Let R and R, be compact hypergroups. Then any continuous

(algebra) isomorphism from L=(K;)" onto L=(K3)". maps L'(R}) onto L'(K).

Definition 5.2.3 A function f in L}(K)" is said to be weakly almost periodic if
the set {fé : 0 € LYK).||olly < 1} is relatively weakly compact. We denote by
WAP(LY(R)) the closed subspace of L>*(K) consisting of all the weakly almost

periodic functionals in L=(K)(see [39, p 4]).
Corollary 5.2.4 WAP(L'(R)) =UC.(R) if and only if K" is compact.

Proof: This corollary follows from Lemma 5.2.1, Theorem 4.2.5 and Corollary 3.7
in[39. O

The following is a special case of our Theorem 4.2.5.

Corollary 5.2.5 If K is compact and L'(K) has a sequential bounded approrimate

identity then Z(L>=(RK)") = L}(R).
Proof: This follows from Lemma 5.2.1 and Theorem [39. 3.4(a)]. o

Remark 5.2.6 Consider M (R with the first Arens product and let i : L'(R") —

M(R’) denote the inclusion map. Then

=~ : LY{K)™ — M(K)™ is an isometric algebra homomorphism. (see [19.
Lemma 1.1]) and *(L'(K)=") is an ideal of M(A)™ (see [19. Proposition

1.3]).



If we consider M(A') and L'(K’) as subspaces of M(R)™ and L'(K’)™" respectively.

under the canonical embedding, then we have:

Proposition 5.2.7 Let K be a locally compact hypergroup. Then i=~(L'(R)™) N

M(R) = L*(R)
Proof: Use Lemma 3.3 in [19] and Theorem 4.2.5. ]

Lemma 5.2.8 Let K be a locally compact hypergroup, then L*(K)x LP(K) = LP(R)

for1 <p<oc.

Proof: By [33. 6.2C] LP(R’) is a left Banach L!(A’)-module where | < p < x.
and we know that L!(R") has a two-sided approximate identity bounded by one [55.
Lemma 2.1.]. Now we show L'(R)* L?(K’) is norm dense in L?(R’).1 < p < x. Let
fe€LP(R),1 <p<acandc >0 begiven. Then there exists v € P!(R") such that
If—e*fl, <e

Indeed, for 0 < v € L}(RA’) with |lv|]| =1 and f € LP(R"). v = f € LP(R") [33. 6.2C].
Hence by Halder’s inequality, [;- (v * f — f)(z)g(z)dz € L'(R’) where g € L?(K)

and L+ % = 1. Now by using [33, 5.5A],

(wxf-f.g9) = [xl(w=*f)z)- f(z))g(z)dz
= [xlr YW)f(§*z)dy — f(z))g(r)dx (*)

= [ [ v(W)(f(§=*z) ~ f(z))g(z)dydx



is a linear functional on L?(A’). By using Fubini’s theorem and Hoélder's inequality.

(*) implies

e f—F.9) = |Jxv@Ur( 5f(z) = flz))g(r)dr)dy|
< Je @) Up I( 5f(x) — f(x))g(z)ldx)dy
< JxvWl of — fllsl glldy.

Now by considering the operator norm of a linear functional. we get

lox £ =l < [ el 5f = Fllody.

By 2.2B and 5.4H in [33] there is a neighborhood V" of the identity of A such that
lsf — flls < zforall y € V. Thus if fi-v(r)dr =1 and v(y) =0fory ¢ V..
then ||v * f — f]l, < =. This completes the proof of this claim. Now by the Cohen’s

Factorization Theorem [28. Theorem 32.22] we are done. o

Corollary 5.2.9 L}(R’) is an ideal of M(RKR)™ if and only if K’ is compact.

Proof: If L'(R) is an ideal of M(K)™". then it is an ideal in *(L!(A")™"). Hence
by Lemma 5.2.1. K is cor.npact.
Conversely, if A" is compact, then L'(R’) is a two sided ideal in L'(A")* (Lemma
5.2.1). Let m € M(K)™" and ¢ € L'(R’). Hence by Lemma 5.2.8. © = 0; * 0, for
some ¢,, o2 € L'(K) and om = ¢,6:m € L'(R’). since i**(L'(R")™) is an ideal in
M(K)™ (Remark 5.2.6). a

For the following corollary in the group case. see Corollary 5 in [37].
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Corollary 5.2.10 Let K be a locally compact hypergroup. Then K is compact if

and only if L°(RK’) has a unique TLIM.

Proof: If A is compact, then the normalized Haar measure is the unique left
invariant mean on UC,(R) = C(R’). Hence by [56. Remark 3.2.7(iii)(b)]. L>=(A)
has a unique TLIM.

Conversely let m be the unique topological left invariant mean on L>(A’). Then
for anv n € L>*(K)*, mn is also topologically left invariant (see Lemma 2.4.1(v)).
Hence mn = Am for some complex number A. Now let {n,} be a net in L*(RK’)"

converging to n in the w-topology. mn, = A,m and mn = Am. then

Ao =mng(l) = ny(l) = n(l) = A

Hence, for any f € L*(R).

(mna, f) = (Aam. f) = Aam(f) — Am(f) = (Am. f) = (mn. f).

i.e. L, is w"-w" continuous. Now by Theorem 4.2.5 and Lemma 2.3.2. m € L!(R)

and by [33. 7.2B] A" is compact. O



Chapter 6

Semigroup of Probability
Measures in Hypergroup Algebra

and Amenability

6.1 Introduction
Let R be a locally compact hypergroup with left Haar measure A and
P(K)={fe LY RK): f20.|flL =1}

Then P!(R’) is a topological semigroup ( a semigroup with jointly continuous mul-
tiplication and Hausdorff topology) under the convolution product in L!'(A") and
norm topology.

For a topological semigroup S, let [°°(S) denote the space of all bounded real-valued
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functions on S with the supremum norm. For f € S and 8 € {=(5). let ;0 and 6;
denote, respectively. the left and the right translate of § by f. i.e. (6(g) = 6(fg)
and 05(g) = 0(gf). g € S. Let C(S) denote the space of all bounded continuous
real-valued functions on S and let UC,.(S) denote the closed subalgebra of C(S)
consisting of all left uniformly continuous functions on S. i.e. all F € C(S) such
that the mapping f — ;F from § into C(S) is continuous when C(S) has the
supremum norm topology. Then both Banach algebras L'C,(S) and C(S) are in-
variant under translations and contain constant functions (see [42]). We call § is
(left) amenable if there exists a LIM on C(5).

We say that a hypergroup A has property (p) if C(P}(A’)) has a LIM. i.e. the
topological semigroup P!(R’) is left amenable. In this chapter we initiate a study of
hypergroups with property (p) and generalize some of the results of [16]. In section
6.2, among other things, we show that if H be a strongly normal subhypergroup (for
a definition see 6.2.3) of A". then A" has property (p) implies that A'// H (see Remark
6.2.2) has property (p). In particular, we show that the hypergroup joins A" = HVv.J
(see page 36) has property (p) if and only if J has property (p) where H is a compact
hypergroup and J is a discrete hypergroup with H NJ = {e} (see Corollary 6.2.11)
and a centeral hypergroup (see 6.2.13) has property (p) if Z(A)NG(R’) ( see 6.2.13)
is compact (see 6.2.14). We also show that existence of a LIM on U'C.(P!(R)) is

equivalent to existence of a LIM on U'C.(P*(R)) (see 6.2.16).

O
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6.2 Hypergroups with property (p)

We begin with some examples.

Example 6.2.1 (a) Every abelian hypergroup A™ has property (p). Indeed if A is
abelian, then so is P!(KA’) and we know that every abelian topological semigroup is
left amenable (see {39] and [8]).

(b) Every compact hypergroup K has property (p). To see this. first note that if A’
is compact then 1 € P}(R’). Let m on [**(P'(K)) be defined by m(F) = F(lx).
for all F € [*(P'(K)). Then m is a LIM on [*(P!(R’)). Indeed. it is clear that m
is a mean on [*(P!(R’)). Now by using the fact that f*1x = lx for all f € P'(R’).
one can see easily that m is left invariant on [**(P!(A")). This implies that A" has

property (p).

Remark 6.2.2 Let H be a compact subhypergroup of A" with the normalized Haar
measure o. As shown in [33. §14] the double coset space A'//H = {H*r+«H :r € K’}

is a hypergroup with convolution defined by

/K”H f d8tuentt * Ottoyett = /H fords, xo*d,.

for all positive Borel measurable functions f on A//H where = is the canonical
projection of A" onto A’///H. A Haar measure on A’//H is given by A= [i OHareg der.

By [33, 14.2H] the Haar measure A on K//H can be so chosen that
/K//H/dea*a,*ad,\(z)=/de1- (6.1)
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Let Ty be the mapping defined by Ty f(H*z*H) = [: fdo*dé. o for f € L'(A).
Then as shown in [35, Theorem 2.4.(ii)], Ty is a bounded linear map of L!( A"} onto

LY(K//H) with norm 1.

We next recall the definition of hypergroup joins which we shall use in this section.
Let H be a compact hypergroup and J a discrete hypergroup with H N.J = {¢}.
where e is the identity of both hypergroups. Let H U J have the unique topology
for which both H and J are closed subspaces of K. Let o be the normalized Haar

measure on H. Define the operation e on A as follows:
(i) If s.t € H, then §, @ 6, = &, * &;:
(i) fa.be J. a#b. then 8, 88, =4, * b
(iii) fs€ H, a€ J (a #¢), then §, 08, =4, 048, = 4,:

(iv) If a € J. a # e. and &5 * 6, = Lycsc3ds. the ¢’s are non-negative. only finitely

many are non-zero and Xsejc; = 1, then

bs006, =c.o+ Sbe.l\{e}c555-

We call the hypergroup K the join of H and J, and write A" = H V .J. Observe that
H is a subhypergroup of R, but J is not a subhypergroup unless .J or H is equal to
{e}. The hypergroup joins always has a left Haar measure [61. Proposition 1.1} and

K//H = J as hypergroups {61, Proposition 1.3].



Definition 6.2.3 A compact subhypergroup H of a locally compact hypergroup K
is called strongly normal if 6. * 0 = 0 * 8, for all z € K where o is the normalized
Haar measure of H. In this case, we havexx H = H*xx = H+*xr*H for eachr € K

and (6.1) takes the form

Joy J FEr @@ dA@) = [ Flx)dX(a)
Moreover, Ty is an algebra homomorphism [35, Theorem 2.4(iv)].

As an example. in the hypergroup joins A" = HVJ, where H is a compact hypergroup
and J a discrete hypergroup with H N J = {e}, H is strongly normal in A [61.

Proposition 1.2].

Theorem 6.2.4 Let H be a strongly normal subhypergroup of K'. Then if K has

property (p), so is K//H.

Proof: Let m be a LIM on C(P!(R)). Define m : C(PY(K//H)) =+ IR by m(F) =
m(F) (F € C(PY(K//H))) where F : P}(R’) - IR is defined by F(f) = F(Tyf)
for f € PY(K). Then clearly F is a bounded continuous function and m is a mean
on C(PY(K//H)). Indeed. it is easy to check that m is linear and positive. And for

F = 1pt (k). one can see F= 1pi(ky (see [26, Lemma 1.1 and Remark 1.5]). hence
m(F)=m(F)=1.

If g € PY(K//H), then there exists f € P!(R’) such that Ty f = g (see [26. Lemma

1.1} and [35, Theorem 2.4]). Now observe that for h € P!(R).

(1]
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(4F)(h) = ¢F(Tgh) = F(g*Tgh) =

F(Tuf * Tuh) = F(Tu(f * b)) = F(f xh) = ;(F)(h).
So (,F) = s(F). Hence
(M,  F) = (m,( F)) = (m. ;(F)) = (m.F) = (m.F).
Consequently r is a LIM on C(PY(K//H)). O

Definition 6.2.5 Let H be a compact subhypergroup of K'. We say that H is su-

pernormal in K if i« H*r C H.

Corollary 6.2.6 Let hypergroup R has property (p) and H is supernormal subhy-

pergroup in K. Then K/H has property (p).

Proof: This follows from the fact that any supernormal subhypergroup is strongly
normal. and the Theorem 6.2.4. m]
As an example, in hypergroup joins A" = H V G. where H is a compact hypergroup

and G is any discrete group with H NG = {e}, H is supernormal.

Definition 6.2.7 A subgroup N of a locally compact hypergroup K is called normal
if zN = Nz for all t € K. In this case K/N is a hypergroup with convolution
defined by [ ,n fddrx xdyx = [y fonwdé. xé, forall 7.y € K and f € Coo( R/ N)

(see [26, p 84]).



Note that any compact normal subgroup N of a hypergroup K is strongly normal

since, tN =Nz = NzN forallz € K.

Corollary 6.2.8 Let N be a normal subgroup of a locally compact hypergroup K .

If K has property (p) then so does K/N.

Theorem 6.2.9 Let H be a strongly normal compact subhypergroup in hypergroup
K. Then if there erists a left invariant mean on [*(P}(K[H)), then there erists a

left invariant mean on [*( PY(R)).
Proof: Let

I={fe€PYK): f isconstant on the cosets

r*H=H=*r. forall reAh}.
Then [ is a left ideal in P!(R’) i.e. PY(R)*I C I. Indeed. for f € [.g € P'(R)

g+ f(2) = [ glaxy) @ dy= [ glx=hey) fgxh)dy=

/Kg(r*h*y)f(y)dy=g*f(z*h).

Then by Theorem 2.4 in [35], I # 0. It is enough to prove that [ is a left amenable

semigroup. Let 6§ be a real valued function on /. Define
§: P(K/H)—~ R by 6(f)=6(fo=y)

where 7y : A — K/H is the canonical map (see [33, §14.1]). Then by Theorem

2.4(i) in [35]. fomy € P'(R’) is constant on cosets and therefore belong to /. Hence.

-\'
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6 is well defined. Let rn be a LIM on [*(P!(KA/H)) and define a linear functional r
on {%(I) by (m,8) = (m,8). Then m is a mean on [®(). Note that if f € [. then
f = f ony for some f € PL(K/H) (by definition of I). Now. by Theorem 2.4(i(c))

in [35], we have ( 10) = 70 since for any § € P'(K/H),

(;0)(3) = 0(Gonu)=0(f+gory) =0(forgrgory) =

Hence

(m. 18 = (. (;8)) = (. B) = (.0) = (m.0).
for any f € I.i.e. mis a LIM on [*([). o

Remark 6.2.10 Note that the expression “right-ideal ™ in the proof of Proposition
1.5 in [16] should be changed to “left -ideal™. Indeed. let S be a semigroup with at

least two elements and multiplication defined by:
ab = a. forall a.be S:

let I be the right ideal {a} = aS in S. Then [ is left amenable but § is not.

The following Corollary shows that there are non-compact. non-abelian hypergroups

with property (p).

Corollary 6.2.11 Let A = H V J be a hypergroup joins. where H is a compact
hypergroup and J a discrete hypergroup with HNJ = {e}. Then K" has property (p)

if and only if J has property (p).

W)
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Proof: We know that A//H = J ([61. Proposition 1.3]) and H is strongly normal
compact subhypergroup of A [61, Proposition 1.2]. Now by Theorems 6.2.4 and
6.2.9. we are done. a

The following example shows that we can not totally remove the condition “strongly

normal’ in Theorem 6.2.9.

Example 6.2.12 Let SL(2, IR) be the locally compact group (with the usual topol-
ogy) of 2x2 matrices with determinant 1 and SU(2) the compact subgroup of unitary
matrices in SL(2, IR). Then SL(2. IR) contains the discrete (closed) free subgroup
F, on two generators [44. Corollary 14.6]. so it dose not have property (p). But the
hypergroup SL(2, IR)/SU°(2) is commutative [33, 15.3] and hence has property (p)

(see also [33. §15.6]).

Definition 6.2.13 Let R be a hypergroup. and let Z(K') = {r € R : §, =, =
0 * &, for each y € K'}. Then R is called a central hypergroup or Z-hypergroup
if K/(Z(K) N G(R')) is compact where G(RK) = {r € K : 6, *éx = 6.} is the
mazimal subgroup of R [26]. Central hypergroups admit left Haar measures and are

unimodular (see [26, p 93] and [49. §4]).

Corollary 6.2.14 Any central hypergroup K (Z-hypergroup) has property (p) if

Z(R)NG(R) is compact.

Proof: This follows from Example 6.2.1(b) and Theorem 6.2.9. a



Discussion 6.2.15 If hypergroup A has property (p). then A" is amenable. [ndeed.
if A" is a hypergroup, then L!(A’) is an Lau-algebra as defined in [43] (see [36]).
Consequently it follows from Theorem 4.12 in [36] that A is amenable if and only if
for any two right ideals I;, [ of PY(K), d(l,. I) =0 (where d(I,. ;) = inf{||fi —
f2lli - fL € L, f2 € IL}) (see [14, Theorem 1.7] for the group case).

Now if K has property (p), then PY(K) is left reversible i.e. I NI, # O for any
closed right ideals I}, I; in P'(K) (see [30, §4]). Consequently A" is amenable.
The converse is not known even in the group case. However. there is an amenable
locally compact group G for which P!(G) is not amenable as a discrete semigroup

(see [16]).

Notation 6.2.16 Put P*(R) ={f € L}(R): f>0.||f|lL >0}. Then P*(R)isa

topological semigroup under the convolution product of L!(K’) induced in P*(A’).

Lemma 6.2.17 Let K be a locally compact hypergroup. Define 8 : P*(R') — P'(R’)

by 0(f) = I-I-fth- for f € PY*(R'). Then 0 is a continuous. surjective homomorphism.

Proof: Clearly 6 is surjective and it is easy to check that 6§ is continuous. Now by

using the fact that {|f = g|ls = || fll1 llgll: for all f,g € P*(A’). we have

f*g _ f g

7ol ~ T ol — 2W) 8-

0(f*g)=

This shows that 6 is a homomorphism. |

Proposition 6.2.18 Let R be a locally compact hypergroup. Then there erists a
LIM on UC,(PY(R)) tf and only if there ezists a LIM on UC,(P*(R)).
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Proof: We follow an idea in [16. Proposition 1.3]. If P*(A) is left amenable then
Lemma 6.2.17 shows that there exists a LIM on UC.(P!(R’}). For the converse.
let m be a LIM on UC,(P}(K)) and 8 € UC.(P*(K)). Define § on P*(R’) by
0(g) = (m, 0lpr(x)), 9§ € PT(K)- Then 0 is continuous. Moreover if f € P'(RA).

then

0(g * f) = (M, g-1Olpr (i) = (m, f(:0)lpr (i) =
(m. §(oBlpr (&) = (m. ,Blpi(ry) = 8(g)-
i.e.
6(g* f)=0(q) forall fe P{(R) and g€ PT(R). (*)

Also note that (_,,05 = gé for all g € P¥(R). Let {e,} C P!(R’) be an approximate
identity for L}(R’) (see [55. Lemma 2.1]). Then by using (*) and continuity of §. for

g € P*(R), we have

9

) = lim 6( €,)-

6(g) = limb(ea = g) = LimB({glls €. *

This shows that for anv A > 0, lim, é(A €a) exists. Define § on IR* by 8()\) =

lima 6()\ €,). Let m be a LIM on [®(IR*) and define i on U'C.(P*(R’)) by
(2,0) = (m.6).

Then one can check that j is a mean. Now we show that j is left invariant. For any

f.fL € P*(K),

(£8)(f1) = 18(f1) = 0(f * fi) = limf(ea = f * f1) = lim8(| ful] || f]] €.).
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Hence. for any A > 0.
(16)() = lim( ;8)(A ea) = Lim Bl flls €a) = BASN) = g [B1(A).

ie. (48) = 1 [0). Therefore

(@ 0) = (. (18)) = (M. y,[60]) = (R.8) = (z.6).
This proves j is a LIM on UC,(P*(K)). o

Remark 6.2.19 (1) It follows from Lemma 6.2.17 that if P*(R’) is left amenable.
then P!(R) is left amenable. However. we do not know if the converse is true.
Indeed. if § € C(P*(R)). then the function 8(g) = (m. ,0|pi(x)) defined
in the proof of Proposition 6.2.18 may not be continuous on the topological
semigroup P*(R’), unless § € UC,.(P*(R)), even when A is a group. Conse-

quently, there is a gap in the proof of Proposition 1.3 in [16].

(2) Both Lemma 6.2.17 and Proposition 6.2.18 remain valid for an Lau-algebra L.



Appendix A

Existence of Haar Measure on

Commutative Hypergroups

A.1 Introduction

A fundamental open question about hvpergroups is the existence of Haar measure
for any hypergroup. If a hypergroup A" is compact or discrete. then A possesses a
Haar measure. All known examples have a Haar measure [33. §3]. Spector in [57]
claims that any commutative hypergroup possesses a Haar measure but as Ross in
[50] mentioned there are several technical problems in his proof. Ross in [50] has
given a lengthy proof for existence of Haar measure on commutative hypergroups.
Recently Izzo in [32] has given a short proof of the existence of Haar measure on
a commutative locally compact group by using the Markov-Kakutani fixed-point

theorem [7, pp. 155-156]. Based on his idea. we give a short proof of the existence
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of Haar measure on commutative hypergroups.

For the reader’s convenience, we include the Markov-Kakutani fixed point theorem.
Let S be a compact convex subset of a Hausdorff topological vector space and F be
a commutative family of continuous affine mappings of S into S. Then there exists

p € S such that A(p) = p for all A € F (for a proof see [7]).

Note A.1.1 For a vector space X. let X# be the space of all linear functionals on
X with the weak topology induced by X. Then, if C is a closed subset of X# such
that the set {Az : A € C} is bounded, for any r € X. then C is compact (see [l1.

PP. 423-424]).

Theorem A.1.2 Every commutative hypergroup K has a left Haar measure.

Proof: Let Cgo(A)¥# be the space of all linear functionals on Coo( A'). We consider
on Coo( A')#¥ the weak topology generated by Coo(R). It is clear that if there exists a
A € Coo(R)# such that f(A) =0 for all f € Cgo(A). then A = 0. So Coo(h)#* with
this topology is a locally convex space (see[13, P. 50]) . Let [ be a fixed symmetric
neighborhood of the identity e € K with compact closure. Let S be the set of all

positive linear functionals .\ on Cgo(K') that satisfy the following two conditions:

(i) A(f) <1 whenever f<1in C{(R) and sptf Ca;*ax*---*a, x [ for

some finite subset {a;.as,---.a.} in A,
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(ii) A(f)>1 whenever f<1inCH(A)and f=lonay*axyx---=a, =" ="

for some finite subset {a;,az,---,a,} in K.

Then one can easily check that S is closed and convex. Moreover. any f € Ca(A)
can be written as a finite sum of non-negative continuous functions. each of which
has support in a * U for some a € R. To see this, let sptf = C. (compact set). Then
C C Ui<icn ai* U for some a; € K, 1 <t < n. By the partition of unity on compact
sets, there are h; € Cgy(RA’) such that 0 < %.L < 1l on C. That is for any r € C.
0 < hi(z) < f(z) and hy(z) + ha(z) + --- + ha(x) = f(x). Now it follows from (i)
that the set {\(f): A € S} is bounded. So by Note A.1.1. § is compact.

To see S is non-empty, let M be as in Lemma 2.2.4. Put A(f) = X_,cys f(s). then
A € 8. Indeed. if f € Cg)(A) and f <1 with sptf Ca;*ay*---*a, = [ for some
a; € K. 1<i<n.then by Lemma 2.2.4, M intersects a;*a;*- - -xa, *{" at most at
one point. Hence A(f) < 1.If f € C§(A) and f = 1 on a;*a,*- - -xa, **{" for some
a; € R, 1<1i<n.thenagain by Lemma 2.2.4, M intersects a;*a;*---*xa,*{"={"
at least at one point. So A(f) > 1.

For each z € R let T; : Coo(R)¥ — Coo( A)¥ is defined by T:A(f) = \(.f) for
f € Coo(K). Then it is easy to see that T’ is affine and T.(S) C S. Indeed. let \ € S.
If fe CH(K)and f <1 withsptf C ay*ay*---*a,*U forsomea; € A. 1<:i<n.
then . f € C&(R) (see [33, 4.2E]) and . f < 1 with spt(.f) C F*a;*xaz*---*a, ="
Soby (i) AGf)<LIfeCH(R)and f=1ona;*a*---*a, =L+ for some
a; €K, 1<i<n.then ;feCH(R)and f=lonF*a*ay*---*xa, = =[".

Soby (ii), A(f) 2 1.



Also T; is continuous, since if lim, A, = A in §. then for any f € Coo( A').
im |T:Ax(f) — T-A(f)] = lim|Aa (= f) — Al=f)] = 0.
Moreover for z.y € K,
T(TyA) = Teay A = Ty A =T (T )

for any A € Cgo(K)*¥. This shows that the family F = {T: : r € A’} and S (as
above) have all properties in Markov-Kakutani fixed-point theorem. So there exists

Ao € S such that T> Ag = Ao for all z € KA. In another words
T:(Aof) = No(2f) = No(f) forall a€ A and f € Ce(hA).

Now since all elements of S are non-zero positive linear functionals on Cgo(A’). by

[33. §5.2] the proof is complete. a

Remark A.1.3 We do not know if the above proof can be modified to show that
everv amenable hypergroup has a left Haar measure using Day's generalization of
Markov-Kakutani fixed-point theorem [9. Theorem 1] (see also [48. Theorem 4.2]

and [56, Theorem 3.3.1]).
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