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Abstract 

Nitrous oxide (N2O), a potent greenhouse gas, significantly contributes to the carbon footprint 

of wastewater treatment plants (WWTPs), with a global warming potential 300 times that of 

CO2 and also notorious for its ozone-depleting effect. Modelling can be a valuable alternative 

to quantification of N2O emissions through monitoring campaigns. Traditional mechanistic 

models have been limited in their application by impractical calibration processes and a lack of 

validation for complex treatment systems such as reactors combining biofilm and flocculent 

biomasses and/or highly dynamic operations. Conversely, machine learning (ML) presents a 

promising avenue, leveraging abundant WWTP data. However, the scarcity of comprehensive 

methodological ML frameworks for environmental engineering and the complexity of ML 

challenge their acceptance among practitioners. This thesis bridges evaluating and refining both 

modelling approaches to enhance predictability and highlights the areas for future research 

focus. 

In this thesis, two-pathway nitrification and a multi-step denitrification N2O model was adapted 

to an Integrated Fixed-Film Activated Sludge (IFAS) system operating within a Sequencing 

Batch Reactor (SBR), using data from a laboratory-scale experiment. The model, characterized 

by a one-dimensional (1-D) biofilm, underwent a two-step calibration process informed by 

sensitivity and identifiability analyses. While it achieved good alignment with experimental 

data, revealing the model's predictive capacity, its application to different operational 

conditions in the validation data illustrated limitations in generalization. Further, through 

extensive simulations (over 1500), the influence of dissolved oxygen (DO), temperature, and 

ammonia levels was explored. These simulations highlighted the critical role of temperature in 
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setting optimal DO levels, crucial for balancing N2O emission reduction with enhanced 

ammonia removal efficiency. 

Parallel to the mechanistic approach, this thesis pioneers a comprehensive ML methodology for 

N2O emissions modeling using a long-term dataset from a full-scale WWTP. Recognizing the 

need for an online monitoring tool that also supports decision making, the proposed approach 

emphasizes not just model accuracy, but it also considers model complexity, computational 

speed, and interpretability. Various algorithms, including k-Nearest Neighbors (kNN), decision 

trees, Deep Neural Networks (DNN), and ensemble learning models such as extreme gradient 

boosting (XGBoost), adaptive boosting (AdaBoost), and random forest were evaluated. A novel 

adjustment of a parametric multivariate outlier removal method aligned with data distributions, 

minimizing data loss. An effective feature selection strategy optimized the balance between 

data acquisition, model performance, and complexity—cutting feature count by 40% without 

compromising accuracy. Additionally, an integrated method combining feature selection with 

hyperparameter optimization (HPO) was introduced, leveraging a Genetic Algorithm (GA), 

specifically NSGA-II, against the Nelder-Mead algorithm to navigate the intricate, nonlinear 

data landscape. This comparison underscored effectiveness of GAs in streamlining model 

complexity and enhancing performance, paving the way for the development of interpretable, 

computationally efficient ML tools especially for real-time applications. 

This thesis reveals that while the applied N2O mechanistic model offers acceptable predictions 

within the operational schemes used for calibration, its applicability to varied settings is limited. 

Despite the complexity of calibration, mechanistic models emerge as indispensable tools for 

scenario analysis, enhancing design and planning with precise "what if" explorations. In this 
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context, the study underscores the critical influence of temperature in guiding optimal DO 

setpoints for effective ammonia removal and emission mitigation. On the ML front, models like 

kNN and AdaBoost not only demonstrated high accuracy in long-term emission prediction but 

also challenged the assumed necessity for deep learning, offering simpler, yet effective 

alternatives.  

The developed holistic modelling framework aids the application of ML models as practical 

tools for ongoing process monitoring, owing to their accuracy, lower complexity, and 

adaptability.  

This thesis contributes to the field by developing methodologies of employing mechanistic and 

ML models for prediction and mitigation of N2O emissions. The thesis offers a methodological 

framework for N2O emission modelling using ML, with insights that hold potential for broader 

application in the field of wastewater treatment, equipping practitioners with a robust toolkit 

for addressing environmental challenges. 
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Chapter 1. Introduction 

1.1 Background 

The increasing effect of climate change resulting from elevated anthropogenic greenhouse gas 

(GHG) emissions is having a significant impact on the water sector including droughts, extreme 

weather events, flooding, and water quality issues (Höhne et al., 2020). Given the urgency 

needed to fight climate change and the paradigm shift towards sustainability, many 

infrastructure sectors have been extensively studying the pathways towards decarbonization 

(i.e., net-zero GHG emissions). Meeting the Paris Agreement goal of limiting the temperature 

increase to 1.5°C requires more sectors to commit to net zero GHG emissions by 2050, 

including the water sector (Rogelj et al., 2018). However, pathways to net zero GHG emissions 

in the water sector, particularly the wastewater treatment sector, are different and more complex 

than other infrastructure sectors. GHG emissions from wastewater treatment plants (WWTPs) 

are generally classified into three main scopes (Brotto and Lake, 2022). Scope 1 GHG emissions 

are those that are produced directly during biological wastewater treatment processes, primarily 

methane (CH4), and nitrous oxide (N2O). Scope 2 includes the indirect GHG emissions 

associated with electricity consumption during the operation of WWTPs. Lastly, scope 3 refers 

to the GHGs produced indirectly outside the utility's control, such as emissions resulting from 

purchased chemicals and construction materials. Among others, scope 1 GHG emissions are of 

significant concern because the non-CO2 emissions have a stronger global warming potential 

(GWP) than CO2 over 100 years. In particular, N2O is a very potent GHG that is emitted during 

biological nitrogen remval processes and can contribute up to 80% of the total carbon footprint 

of a WWTP (Daelman et al., 2013). N2O has a GWP that is approximately 300 times stronger 
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than that of CO2, and is also claimed to be the main ozone depleting substance of the 21st century 

(Ravishankara et al., 2009).  

Estimation of N2O emissions from WWTPs has thus become necessary as the first step of 

mitigation, given the temporal and spatial variability shown in previous studies. There is a lack 

of a practical and low-cost approach for quantification of N2O emissions. Monitoring 

campaigns have demonstrated to exhibit notable constraints, including substantial costs and 

intricate processes (Vasilaki et al., 2020b). Factors such as the campaign's duration, sampling 

frequency, and measurement techniques have been found to considerably influence the 

outcomes, thereby further restricting the applicability of monitoring campaigns. Mathematical 

modelling has been explored as an alternative approach to quantify N2O emissions and 

overcome the limitations linked to traditional monitoring campaigns. A mathematical model 

can also be used to select mitigation strategies and optimize process operation for less N2O 

emissions. Depending on the desired application, a model can be used as a stand-alone tool 

during the design stage of a WWTP, part of a digital twin, deployed on a software (soft) sensor 

for online monitoring, or be used to implement a model predictive control (MPC).  

Over the last decade, N2O models have been developed based on the knowledge of production, 

consumption, and mass-transfer mechanisms, often called “mechanistic models”. These 

mechanistic models varied in complexity as a result of the increasing advancements in the 

knowledge of N2O biological pathways. However, uncertainties remain; mechanistic models 

were not able to accurately depict process dynamics in full-scale applications and showed 

difficulties in the calibration process (Seshan et al., 2024).  
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On the other hand, as a large amount of data is becoming available in WWTPs from sensors 

and laboratories, a data-driven approach that can predict N2O emissions based on available data 

holds significant promise in replacing mechanistic models. Machine learning (ML) emerges as 

a potential modelling approach. However, a limited number of studies focused on the 

quantitative prediction of N2O emissions using ML models based on full-scale long-term data 

(Hwangbo et al., 2020, 2021; Vasilaki et al., 2020a)  

This thesis investigates the capabilities of mechanistic models, specifically the two-pathway 

N2O model based on Pocquet et al. (2016), to predict N2O emissions from dynamically operated 

reactors, uncovering their limitations and challenges. With a focus on enhancing decision-

making, it also evaluates the effectiveness of ML models in predicting N2O emissions. This 

work offers a methodological framework for future N2O emission modelling using ML, with 

insights that hold potential for broader application in the field of wastewater treatment. 

1.2 Problem Statement and Research Motivation 

The urgency to combat climate change has placed a spotlight on the water sector, especially on 

minimizing GHG emissions from WWTPs. Notably, N2O emissions account for the most 

significant portion of the carbon footprint of WWTPs, emphasizing the need for accurate 

monitoring and understanding of the factors driving these emissions. Traditional monitoring 

campaigns, while essential, face challenges such as high costs and complex implementation. 

Mathematical modelling presents a promising alternative to N2O quantification by monitoring. 

Over the past decade, there have been significant efforts to develop mechanistic models, 

leveraging advancements in understanding N2O production mechanisms. However, the field 

lacks consensus on a definitive mechanistic model for N2O emission prediction. This is largely 
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due to the complexity of the biological pathways involved, the remaining uncertainties in the 

production mechanisms, and the over-parameterization of these models. Furthermore, these 

models’ capability to accurately represent N2O emissions from different combinations of 

operational conditions, influent types, and biomass types, has not been fully explored. In 

particular, dynamic systems with mixed biomass types, like flocculent sludge and biofilm, is 

yet to be thoroughly investigated. Such an investigation is critical to assess the full potential of 

N2O mechanistic models. 

Concurrently, WWTPs are generating large volumes of data through laboratory analyses and 

online sensors and analyzers. This data presents an opportunity for a data-driven approach, 

employing ML models to predict N2O emissions. While a few studies have ventured into using 

ML for this purpose, significant challenges remain in their deployment and successful 

implementation. For instance, using these models in online monitoring and prediction requires 

attention not only to accuracy but also to interpretability of the results, which is vital for 

informed decision-making. Additionally, the complexity of a model often impacts its 

interpretability, and generally, a less complex model is preferred. This preference aligns with 

operational needs, as models requiring fewer features are more desirable due to the cost and 

complexities associated with collecting the data. Addressing these aspects necessitates further 

investigation and adaptation of the ML workflow to meet the specific requirements of 

wastewater applications, particularly in predicting N2O emissions.  
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1.3 Research Objectives 

The primary goal of this thesis is to advance the modelling of N2O emissions from wastewater 

treatment processes, aiming to enhance decision-making capabilities. This involves exploration 

of traditional mechanistic models and a focused effort on improving the accuracy, simplicity, 

and interpretability of machine learning models to effectively serve this purpose. The main 

objective was approached through three specific objectives as per the following:  

1) To develop a validated N2O two-pathways mechanistic model for dynamic 

operation: Here, the focus is on assessing the N2O two-pathways mechanistic model's 

ability to predict N2O emission dynamics from an Integrated Fixed-film Activated 

Sludge Sequencing Batch Reactor (IFAS-SBR). This evaluation will serve as a critical 

test of the model's applicability and accuracy in real-world scenarios. 

2) To establish a comprehensive machine learning framework for N2O emission 

prediction:  This objective focuses on creating an all-encompassing framework for N2O 

emission prediction in full-scale WWTPs. It involves exploring various stages of ML 

project modelling, with an emphasis on balancing model performance against 

complexity and interpretability. 

3) To optimize the developed machine learning framework through enhanced 

applicability:  The final objective revolves around enhancing the previously developed 

ML framework. This will involve optimizing ML model complexity, particularly 

through focused hyperparameter optimization and strategic input feature selection, to 

improve the model's overall effectiveness and applicability. 
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1.4  Thesis outline 

The thesis is organized into the following chapters: 

Chapter 1 introduces the sustainability challenges faced by the wastewater sector, particularly 

in terms of GHG emissions. It outlines the research objectives and provides a structural 

overview of the thesis. Additionally, this chapter includes a concise review of previous 

modelling efforts for N2O emissions in wastewater treatment processes, a statement of the 

problem, and the motivation behind the current research. 

Chapter 2 provides a literature review on the production and emission of N2O from biological 

wastewater treatment processes, and the current mechanistic and ML models used for N2O 

emissions prediction. 

Chapter 3 investigates objective 1 to examine the capabilities of current mechanistic models 

on prediction of the N2O emissions from a laboratory scale Integrated fixed Film Activated 

Sludge Sequencing Batch Reactor (IFAS-SBR). The model was calibrated and validated using 

data representing different operational schemes of the IFAS-SBR. A multi-step calibration 

protocol, inclusive of sensitivity and identifiability analyses, is employed to refine the model.  

This chapter also explores scenario analyses using the calibrated model to derive optimal 

operational conditions for N2O mitigation and efficient nitrogen removal. 

Chapter 4 addresses objective 2 to develop a framework for ML models predicting N2O 

emissions from full-scale WWTPs. A 16-month monitoring campaign dataset available in 

literature (Daelman et al., 2015), is utilized to develop the framework. Various ML models of 

different categories have been tested including decision trees, k nearest neighbors, random 
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forests, extreme gradient boosting, adaptive boosting, and deep neural networks. The developed 

framework focused on balancing the model performance, the complexity of the model, and 

interpretability of model results. 

Chapter 5 details objective 3 to refine the ML framework developed in Chapter 4 by focusing 

on a coupled feature selection and model hyperparameter optimization. The developed 

algorithm uses multi-objective optimization using genetic algorithms.  

Chapter 6 synthesizes the main findings from the preceding chapters, offering conclusions and 

drawing broader implications of the research. It also presents recommendations for future work 

and potential areas for further investigation in the field of N2O emissions modelling in 

wastewater treatment. 
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Chapter 2. Literature Review 

2.1  Biological nitrogen removal processes 

2.1.1 Conventional nitrogen removal pathways 

Biological nitrogen removal from wastewater is traditionally achieved through two primary 

processes: nitrification and denitrification. Nitrification, an aerobic process, is conducted by 

two distinct autotrophic groups of organisms: ammonia-oxidizing bacteria (AOB) such as 

Nitrosomonas and Nitrosospira, and nitrite-oxidizing bacteria (NOB) such as Nitrobacter, 

Nitrospina, and Nitrospira. AOB converts ammonia, which is the predominant nitrogen species 

in wastewater, into nitrite (NO2
-) in a two-step reaction. Initially, ammonia is oxidized to 

hydroxylamine (NH2OH) by the enzyme ammonia monooxygenase (AMO). This reaction is 

followed by the oxidation of NH2OH to NO2
-, catalyzed by hydroxylamine oxidoreductase 

(HAO). Subsequently, NOB oxidizes NO2
- to nitrate (NO3

-). Notably, the nitrification process 

consumes inorganic carbon (IC) and impacts alkalinity levels (Sin et al., 2008). In contrast, 

denitrification involves the reduction of NO3
- to nitrogen gas (N2) by ordinary heterotrophic 

organisms (OHO), such as species within the genera Pseudomonas, Paracoccus, and Bacillus. 

This multi-step process takes place under anoxic conditions and requires organic carbon as both 

the carbon source and electron donor. 

2.1.2 Anammox and Comammox pathways 

In addition to conventional nitrogen removal pathways, anammox (anaerobic ammonium 

oxidation) (van Loosdrecht and Jetten, 1998), and Comammox (complete ammonia oxidation) 

(Daims et al., 2015), were also discovered. Anammox allows for the direct conversion of NH4
+ 
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and NO2
- into N2 in the absence of oxygen, while Comammox possess the remarkable ability 

to oxidize NH4
+ directly to NO3

- in a single organism. 

2.1.3 Shortcut nitrogen removal processes 

The engineering of nitrogen removal processes, traditionally reliant on nitrification and 

denitrification, is characterized by substantial energy and resource demands (Zou et al., 2020). 

Nitrification necessitates oxygen and alkalinity, whereas denitrification requires an organic 

carbon source. This challenge can intensify when treating waste streams with high ammonia 

concentrations and low biodegradable organic carbon content, such as dewatered anaerobically 

digested sludge, where ammonia levels can exceed 1 g-N/L. Consequently, there is a pressing 

need to minimize carbon and oxygen consumption. The partial nitritation-denitritation process 

emerges as a viable solution, significantly reducing the environmental footprint of nitrogen 

removal. 

Through the partial nitritation-denitritation approach, NOB are suppressed, enabling the 

oxidation of NH4
+-N to NO2

--N without progressing to NO3
--N. This intermediate product, NO2

-

-N, serves as a substrate for heterotrophic denitrification, directly converting to N2, thereby 

bypassing a portion of the traditional process. Implementing this method can result in up to a 

25% reduction in aeration costs and a 40% decrease in external carbon requirements compared 

to conventional nitrification-denitrification strategies (Daigger, 2014). 

The effectiveness of partial nitritation-denitritation hinges on the selective inhibition of NOB 

and the encouragement of AOB growth. To achieve this, strategies such as maintaining low DO 

levels and high ammonium concentrations have been employed, exploiting the sensitivity of 

NOB to these conditions (Kirim et al., 2022). High ammonium concentrations, in particular, act 
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as a potent inhibitor of NOB (Shao et al., 2019). Additionally, the selective out-competition of 

NOB is facilitated at elevated temperatures, which disproportionately accelerate AOB growth 

rates. This differential growth dynamics permit the operation of systems under solids retention 

times (SRT) conducive to the exclusion of NOB, further optimizing the process efficiency. 

2.2  Mechanisms of N2O Transformation in Biological Nitrogen Removal Processes 

2.2.1 Production and removal of N2O through biological pathways 

The production of nitrous oxide (N2O) during nitrogen conversion processes can occur through 

mechanisms involving either AOB or OHO (Kampschreur et al., 2009). While N2O is not an 

obligate product in ammonia oxidation, AOB is often the predominant source of N2O, 

producing it through two main pathways: nitrifier nitrification (NN), and nitrifier denitrification 

(ND). N2O is also an intermediate in the heterotrophic denitrification process, where it can be 

both produced and consumed. Figures 2-1 shows the N2O transformation processes through 

biological pathways during the conventional biological nitrogen removal, showing the possible 

intermediates and the enzymes catalyzing biological reactions. 

In the NN pathway, also referred to as NH2OH oxidation pathway, N2O is produced as a 

byproduct of the incomplete oxidation of NH2OH to NO2
- in the presence of oxygen. However, 

the exact mechanism of the NN pathway is debated. One suggested mechanism is that N2O can 

be produced from the chemical decomposition of NOH that is formed during NH2OH oxidation, 

leading to N2O production (Poughon et al., 2001). The other possible mechanism is the 

production of N2O as a result of the reduction of NO, which itself is a product of NH2OH 

oxidation (Stein, 2011). Further supporting this mechanism, Caranto and Lancaster (2017) 

found that NO acts as an obligate intermediate during ammonia oxidation. Consequently, this 



 
 

11 
 

implies that, in addition to AMO and HAO, there might be another enzyme involved in the 

ammonia oxidation reactions, contributing to the production of NO followed by N2O.  

 

Figure 2-1 N2O biological pathways 

N2O can also be produced through the ND pathway by reduction of NO2 to nitric oxide (NO) 

through nitrite reductase (NirK) followed by its reduction to N2O through nitric oxide reductase 

(NOR) (Mampaey et al., 2013). While these reactions occur together with the ammonia 

oxidation process that requires aerobic conditions, it was shown that the reaction rates increased 

under microaerobic conditions, however, unlike the denitrification process by OHOs, the ND 

pathway does not require organic carbon (Pijuan and Zhao, 2022). Although there are various 

suggested hypotheses about the mechanisms and conditions controlling the activation of the 
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ND pathway, whether a combination of these mechanisms or only one mechanism is required 

still remains an open question.  

Looking deeper at the metabolic pathways of AOB unveiled the role of electron carriers to 

transport electrons from oxidation to reduction reactions (Ni et al., 2014). These carriers 

facilitate electron transfer within the oxidation-reduction reactions, oscillating between reduced 

(Mred) and oxidized (Mox) states to sustain the energy flow necessary for metabolic processes. 

During the oxidation of NH3 to NH2OH, Mred acts as an electron donor to the oxygen atom, 

transitioning to its Mox form in the process. Subsequently, the conversion of NH2OH to NO2
- 

involves a two-step oxidation where Mox accepts four electrons, thereby reverting to Mred. NO 

serves as an intermediate in this series of reactions that is further reduced to N2O via the NN 

pathway, where Mred donates an electron to NO, once again being oxidized to Mox. Additionally, 

in the ND pathway, NO2
- is sequentially reduced to NO and then to N2O, with Mred contributing 

an electron to each step and being oxidized back to Mox. 

Despite the remaining uncertainties in the understanding of N2O production mechanisms by 

AOB, there is agreement on the effect of dissolved oxygen (DO). The NN pathway is generally 

favored under high DO, and the ND pathway is predominant under limited DO conditions 

(Pijuan and Zhao, 2022). In addition to DO, the contribution of these pathways was shown to 

be influenced by the concentration of different available nitrogen species in the wastewater. For 

example, Wunderlin et al. (2013) found that ND was the dominant pathway for N2O production 

by AOB during domestic wastewater treatment. However, under high ammonia and low NO2
- 

concentration, the NN pathway was more relevant. 
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The production of N2O by OHO can also take place during the heterotrophic denitrification 

reactions. Heterotrophic denitrification consists of four consecutive steps that involve reducing 

NO3 to NO2, then NO, N2O, and finally N2 (Zumft, 1997). N2O is thus both produced and 

consumed by OHO during denitrification, whereas net production of N2O can occur when the 

rate of production is higher than the rate of consumption (Tallec et al., 2008). This discrepancy 

can take place as a result of various operational and environmental disturbances including 

chemical oxygen demand (COD) loads and uptake rates, pH and temperature (Richardson et 

al., 2009). It is important to realize the only means to remove N2O from the liquid phase is by 

heterotrophic denitrification and that new process configurations are under development to fully 

exploit this mechanism (Guo and Vanrolleghem, 2014).  

Moreover, in a study by Pan et al. (2013a), the impact of electron competition among reduction 

of different nitrogen oxides was investigated during denitrification with methanol as a carbon 

source. The results revealed that the intensity of electron competition governed the N2O 

accumulation during denitrification. 

2.2.2 Production of N2O through abiotic pathways 

Beyond biological pathways, N2O production also occurs through chemical pathways, 

including the chemical decomposition of NH2OH at high pH, and NH2OH oxidation by HNO2, 

O2, or Fe3+, alongside HNO2 reduction by Fe2+. However, Su et al. (2019) found that abiotic 

N2O production accounts for less than 3% of total N2O output in conditions where pH ranges 

from 6.5 to 8, becoming significant only in acidic environments with a pH below 5. 
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Figure 2-4 N2O production via abiotic pathways 

2.3 Estimation of N2O Emissions by Emission Factors (EFs) According to IPCC 

Emission factors (EFs) are essential tools for empirically estimating N2O emissions, as outlined 

in the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 

(Bartram et al., 2019). This method calculates N2O emissions using a formula that incorporates 

both the emission factor and activity data:  

Emission Rate (ER)=Emission Factor (EF)×Activity Data (AD)  

EF and AD values are determined based on three tiers, reflecting data availability. Tier 1 uses 

default EFs provided by the IPCC, suitable for countries with limited data. Tier 2 involves 

country-specific EFs and ADs, while Tier 3 applies to facilities with capabilities for plant-

specific monitoring, using EFs and ADs derived from plant-specific data. The IPCC's Tier 1 

approach, being the only tier with default EFs, is predominantly used as a steady-state empirical 

model for GHG estimation (Bartram et al., 2019). EFs for N2O are delineated based on 
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treatment technology types, including centralized aerobic treatment, anaerobic reactors, and 

various other technologies. Despite their utility, EFs' effectiveness is limited by their inability 

to account for the dynamic operational and environmental conditions affecting N2O emission 

rates, such as dissolved oxygen (DO) (Kampschreur et al., 2009), and temperature (Adouani et 

al. 2015). Seasonal changes in temperature can result in temporal variations in N2O emissions, 

increasing the need for long-term monitoring campaigns. Vasilaki et al. (2019) showed a 

relationship between the reported EF and the duration of the monitoring campaign, with higher 

EFs reported in longer monitoring campaigns. This high sensitivity of N2O emissions to 

operational, seasonal and environmental conditions has also been extended to potential 

variations in N2O emissions among parallel reactors operated in the same WWTP (Chen et al., 

2019). The previously reported N2O emissions have also demonstrated spatial variations, 

indicating that the location of a sampling point can influence the results of the measurement 

campaign (Duan et al., 2020; Gruber et al., 2021). 

2.4  Mechanistic Modelling of N2O Emissions 

2.4.1 Introduction to mechanistic modelling 

2.4.1.1 Activated Sludge Models (ASMs) 

Mechanistic models are mathematical models that are formulated based on the underlying 

mechanistic understanding of the interactions occurring within treatment systems. Activated 

Sludge Models (ASMs), developed under the auspices of the International Water Association 

(IWA), represent a series of models that have evolved over the years (Henze et al., 2000). 

Beginning with ASM1, introduced in the late 1980s (Henze et al., 1987), these models have 

progressively incorporated more complex processes such as in ASM2, ASM2d, and ASM3. 
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The ASMs typically integrate transformation processes in terms of biomass growth, substrate 

utilization, and the formation of by-products in a mass-balance equation (Gujer, 2008). These 

biological conversions such as biomass growth and substrate utilization are modelled according 

to Monod kinetics, typically describing reaction rates using estimated kinetic and yield 

coefficients using stoichiometric parameters. ASMs model the biological nitrogen removal 

processes carried out by different microbial species such as OHOs, AOB, and NOB. The 

influence of environmental parameters like temperature, pH, and dissolved oxygen are also 

integrated in the models using empirical formulas and switching functions, affecting the rate of 

biochemical reactions (Henze et al., 2000). When applied to completely mixed reactors to 

model the changes of the system dynamics over time, this typically results in a set of ordinary 

differential equations (ODEs), in which they can be solved using one of the available numerical 

solvers integrated in simulators. 

ASMs have been widely applied in the design, optimization, and control of wastewater 

treatment processes. They enable the simulation of various operational scenarios, and facilitate 

the prediction of effluent quality. Furthermore, these models aid in understanding the impacts 

of influent characteristics and operational strategies on the performance of biological treatment 

processes. 

Advanced use of mechanistic models requires deep knowledge of the underlying process 

mechanisms by the modeller. For a model to be reliably used, calibration is performed to ensure 

agreement between measured and simulated data (Gillot et al., 2009). The knowledge and 

expertise of a modeller is thus needed to ensure that the parameters estimated through the 

calibration process are in an expected range. To further test the model capabilities, validation 
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is conducted using data other than data used for model calibration. A challenge to mechanistic 

models is when the model is not able to generalize when the operational and environmental 

conditions change, requiring another calibration conduct.  

2.4.1.2 Biofilm models 

A biofilm consists of a solid matrix of extracellular polymeric substances (EPS) that embed 

microorganisms with pore water that contains both dissolved substances and suspended solids 

(Morgenroth, 2008). The transport of substrates to microorganisms takes place through 

molecular diffusion through the biofilm depth, causing a mass transfer limitation. When the 

ASMs are applied to completely mixed reactors with flocculent biomass, they assume that 

substrates are locally available to the microorganism and that there is no gradient in 

concentrations, so Monod kinetics can be directly included into mass balance equations leading 

to a system of ODEs as mentioned earlier. However, in biofilms, the mass-transfer across 

biofilm depth leads to inevitable gradients of substrate concentrations across the biofilm depth, 

leading to the need of both spatially and temporally continuous models that are represented by 

a set of partial differential equations (PDEs) (Gujer, 2008). In order to predict the reactor 

performance, the biofilm model should thus be capable of determining the local availability of 

electron donors, acceptors, or inhibitory compounds as a result of mass transfer. It should also 

be able to predict the distribution of different types and species of microorganisms over the 

biofilm given the substrate availability. However, choosing the biofilm model requires a 

balance between the requirements of the modelling study and the model complexity. Complex 

models such multi-dimensional models are specifically used when the geometry of substratum 

is very complex or the modeller is interested to answer questions related to biofilm spatial 
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distribution (Morgenroth, 2008). However, one-dimensional (1-D) multi-substrate multi-

species models can be sufficient in predicting substrate fluxes, multicomponent diffusion, and 

microbial competition to finally predict reactor performance. They only solve PDEs in the 

direction perpendicular to the substratum because it has the largest concentration gradients, 

while averaging values over areas parallel to the substratum.  

The 1-D multi-substrate multi-species model was subject to several developments since the 

1980s (Wanner and Gujer, 1984, 1986; Wanner and Reichert, 1996; Reichert and Wanner, 

1997), where the last two papers were implemented in AQUASIM (Reichert et al., 1998). The 

biofilm reactor in AQUASIM is split into three zones: solid matrix, pore water, and bulk volume 

(Reichert et al., 1998). The model relies on four conservation law equations, including an 

equation for particulate species in the biofilm matrix, particulate species in the biofilm pore 

water, substances dissolved in the pore water, and the porosity of the biofilm. Traditional 

Monod kinetic expressions can be integrated into the biofilm model. Nevertheless, it is worth-

noting that values of half saturation constants in biofilm models, which explicitly account for 

mass transfer limitations, are expected to be different from those derived from flocculent 

biomass experiments and often used in ASMs, which do not consider these limitations and may 

yield artificially high values (Morgenroth, 2008). 

2.4.2 Reviewing N2O mechanistic models 

The existing N2O mechanistic models that focus on N2O production by AOB can be classified 

into single-pathway, and two-pathway models. Initially, only denitrification by OHO was the 

focus of the developed models (Hiatt and Grady, 2008; Corominas et al., 2012). Furthermore, 
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other models focused on incorporating the abiotic production of N2O to have comprehensive 

models integrating the possible ways for N2O production.  

Single-pathway models are models that included either the NN or ND pathway solely. For the 

models focusing on the ND pathway, Ni et al. (2011) modelled the ammonia oxidation as two 

steps with NH2OH as an intermediate and included DO inhibition function to both the N2O 

production reactions. Another model developed by Mampaey et al. (2013) modelled the 

ammonia oxidation to NO2 as a one-step direct reaction, excluding NH2OH as an intermediate. 

The model also did not include inhibition of the ND pathway reactions due to high DO 

concentrations. A further modification was mde to this model by Guo and Vanrolleghem (2014) 

by the addition of a Haldane function to represent DO inhibition and limitation to NO2 and NO 

reduction reactions. 

Law et al. (2012) modelled the NN pathway as a two-step process with NOH as an intermediate 

of NH2OH oxidation and N2O is finally produced as a result of the chemical decomposition of 

NOH. In contrast, the model developed by Ni et al. (2013a, 2013b) described N2O production 

as a result of  NO reduction, which is produced from the oxidation of NH2OH. This model also 

assumed that NH2OH is the electron donor in the NO reduction reaction. The reaction schemes 

used in single-pathway models describing both NN and ND pathways are presented and 

compared in figure 2 – 5.  
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Figure 2-5 Comparison of the reaction schemes used in single-pathway models (Ni et al., 

2013b). Model-I: (Ni et al., 2011), Model-II: Mampaey et al. (2013), Model-III: (Law et al., 

2012), Model-IV: Ni et al. (2013a, 2013b) 

Two-pathway models integrate both the NN and ND pathways in a single model. A model 

developed by Ni et al. (2014) decoupled all oxidation-reduction reactions catalyzed by AMO, 

HAO, NOR, and Nirk, respectively. Electron carriers were introduced as an explicit variable in 

the model to bridge electron transfer and effectively decoupling the reactions. Another model 

was developed based on an extension of this model including Adenosine triphosphate 

(ATP)/Adenosine diphosphate (ADP)-based energy balance (Peng et al., 2015). The decoupling 
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approach further increases the model structure’s complexity and limits its applicability. Thus, 

oxidation and reduction were coupled and another two-pathway model was proposed by 

Pocquet et al. (2016) that describes both the NO and N2O production. The NN pathway was 

represented in this model as two aerobic processes involving oxidation of NH2OH to NO, 

followed by NO to N2O. The representation of the ND pathway in this model excluded NO as 

an intermediate to avoid its cycling between the two pathways, and NO2
- was directly reduced 

to N2O in this model. The indirect coupling (Ni et al., 2014; Peng et al., 2015), and direct 

coupling (Pocquet et al., 2016) modelling approaches were calibrated with experimental N2O 

emissions data and compared by Lang et al. (2017). Both approaches were able to adaptively 

predict N2O production. Moreover, both approaches could predict the impact of a DO increase 

on the contribution of NN and ND pathways. However, the direct coupling modelling approach 

is less complex and more understandable to modelling practitioners thanks to its ASM-based 

approach. Furthermore, this model considers NO as a state variable allowing for model 

calibration using NO data, if available.  

Unlike the models describing N2O production by AOB, there is a relatively general agreement 

on modelling N2O through the denitrification pathways. The Activated Sludge Model for 

Nitrogen (ASMN) describes denitrification as four-step independent oxidation-reduction 

reactions using different kinetics in each step (Hiatt and Grady, 2008). This model can predict 

the potential N2O net production due to variable kinetic parameters of each denitrification step. 

Furthermore, a model by Pan et al. (2013b) named as ASM-indirect coupling of electrons (ICE), 

used the decoupling approach to model the denitrification kinetics and introducing electron 

carriers as variables. 
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Despite the demonstrated insignificance of abiotic pathways at neutral pH (Su et al. 2019), 

models incorporating the abiotic production of N2O were also proposed. Harper et al. (2015) 

proposed a model that describes N-nitrosation using a second order chemical reaction that is 

function of NH2OH and NO2 concentrations. A comprehensive model was then developed to 

integrate abiotic pathways with biological pathways, named nitrifier nitrification, nitrifier 

denitrification, heterotrophic denitrification and abiotic pathways (NDHA) (Domingo-Félez 

and Smets, 2016).  

Although there have been significant developments in the mechanistic modelling of N2O 

emission, the application of these models suffers from several limitations, specifically regarding 

their calibration and their ability to depict N2O dynamics in long-term full-scale applications. 

Similarly, the calibration of mechanistic N2O models was also shown to be complicated and 

time-consuming process due to the large number of parameters included in these models, 

making them overparameterized with respect to the limited information content of the available 

data. The overparameterization of these models is evident from the large variation in the values 

of estimated parameters across different studies (Domingo-Félez and Smets, 2016). Such 

complicated calibration can be a barrier to the practical application of N2O mechanistic models, 

necessitating the need to find an alternative for such applications. In contrast, the knowledge-

based nature of mechanistic models allows their utilization for testing hypotheses and scenario 

analyses. Further exploration of the potential of mechanistic models is thus still required.    

2.4.3 Application of N2O models in biofilm systems 

Biofilm models for N2O applications are less investigated in literature (Nopens et al., 2022). 

Although the same rate expressions of the discussed N2O models can be applied to biofilm 
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treatment processes, biofilm models are generally associated with higher complexity.  Diffusion 

limitations and biofilm stratification are the main factors that can change the behaviour of N2O 

production and emission from suspended growth processes (Spérandio et al., 2022). Only a few 

studies utilized the two pathway AOB model integrated with ASMN for denitrification to 

describe N2O emissions from nitrifying biofilters, denitrifying biofilters, and granular sludge 

reactors using 1-D biofilm models (Fiat et al., 2019; Lang et al., 2019; Zhu et al., 2019). In the 

reported N2O emission results by Zhu et al. (2019), the model was able to provide EFs in winter 

and summer that are in agreement with experimental observations. Moreover, both Zhu et al. 

(2019) and Fiat et al. (2019) demonstrated that a mass balance on the gaseous phase was needed 

when modelling a nitrifying biofilter. Other studies focused on understanding the complex 

nature of biofilms and how it impacts N2O production and emission (Schreiber et al., 2009; 

Sabba et al., 2015). In the study by Sabba et al. (2015),  the metabolic model developed by Ni 

et al. (2014) was adapted to explore N2O emissions from a granular sludge reactor for 

sidestream nitritation. The results demonstrated that N2O emissions from nitrifying biofilms 

could be larger than from suspended growth systems under similar conditions due to the 

formation and diffusion of NH2OH. The stratification that exists in biofilms can result in 

production of NH2OH by AOB in the outer, aerobic zone and consumption in the inner, anoxic 

zone, leading to peaks in N2O production. 

2.5 Machine Learning (ML) Modelling 

Machine learning (ML) – a critical component of artificial intelligence (AI) - is a data-driven 

approach where a computer, in the form of a model or algorithm, learns hidden and complex 

patterns from data without prior requirements of domain knowledge (Mitchell, 1997). These 
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models can then apply this knowledge to make informed predictions or decisions. Central to 

ML models is the training process, which involves a dataset comprising numerous data points, 

typically structured in a table format with rows representing records and columns representing 

features. 

2.5.1 Introduction to ML models 

ML models are typically categorized based on how they learn from data into supervised, 

unsupervised, and reinforcement learning (Géron, 2019). In supervised learning, models are 

trained on labeled datasets where the outcome for each input is known, making them suitable 

for predictive tasks like regression and classification. Unsupervised learning models, on the 

other hand, work with unlabeled data and are adept at uncovering hidden patterns or structures, 

finding use in clustering and dimensionality reduction. Reinforcement learning is still relatively 

distinct, involving models that learn to make decisions through trial and error, rewarded or 

penalized for their actions. It is commonly employed in robotics and navigation.  

Among the categories of ML models, supervised learning is the most prevalent and relevant for 

wastewater treatment predictive models (Zhu et al., 2023). In particular, regression models can 

be used for quantitative prediction of the value of a variable of interest. For regression-based 

supervised ML, a variety of models are available varying in their ability to uncover complex 

and nonlinear patterns in the data to make accurate predictions. Below, some of the relevant 

models in regression problems are briefly reviewed.  

2.5.1.1  Decision trees 

Decision trees are widely used for both classification and regression problems. In the context 

of regression, decision trees can predict continuous values by learning decision rules inferred 
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from the data features (Breiman, 1984). The core idea is to recursively partition the data space 

into subsets, where each node in the tree represents a decision rule that splits the data based on 

feature values. This splitting continues until a stopping criterion is met, typically when further 

splitting does not significantly reduce prediction error or when nodes contain only a few 

observations (Quinlan, 1986). The final model is a tree where each leaf represents a predicted 

value, often the mean of the target variable for the observations in that leaf. One of the key 

strengths of decision trees is their interpretability; the hierarchical structure of decisions 

provides a clear and intuitive representation of how the input features affect the predicted 

outcome (Rokach and Maimon, 2008). 

2.5.1.2 k-nearest neighbours (kNN) 

The kNN algorithm is a versatile and intuitive method used in machine learning for both 

classification and regression tasks. In regression problems, kNN predicts the value of a new 

observation based on the values of its k nearest neighbors in the training set. The algorithm 

identifies the k closest points to the new observation in the feature space, typically using a 

distance metric such as Euclidean or Manhattan distance, and then computes the output as the 

average, or the weighted average of the target values of these neighbors (Altman, 1992). This 

non-parametric and instance-based approach allows kNN to adapt flexibly to the data without 

assuming a specific functional form for the relationship between features and the target variable.  

2.5.1.3 Ensemble models 

Ensemble models in regression represent a sophisticated and highly effective approach to 

predictive modelling in machine learning. These models combine multiple individual models, 

typically decision trees, to create a more accurate and robust predictive model than any single 
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constituent model could provide (Dietterich, 2000). The underlying principle of ensemble 

methods is that by aggregating the predictions of several models, the errors of individual models 

are likely to cancel out, reducing the overall prediction error (Maclin and Opitz, 2011). 

Common ensemble techniques include Bagging, Random Forests, and Boosting. Bagging 

(Bootstrap Aggregating) involves creating multiple models each trained on a different bootstrap 

sample of the data and averaging their predictions. Random Forests extend this idea by 

introducing randomness in the tree-building process to create a diverse set of trees (Breiman, 

2001). Boosting, on the other hand, sequentially builds models, each one focusing on the errors 

of its predecessor, to iteratively improve model performance (Freund and Schapire, 1997). 

These ensemble methods have been shown to significantly enhance prediction accuracy in 

regression tasks, especially in complex datasets with nonlinear relationships and interactions 

among variables. 

2.5.1.4  Deep learning models 

Neural networks, especially deep neural networks (DNNs), have emerged as a powerful tool 

for regression analysis in complex and high-dimensional data spaces. Deep neural networks 

consist of multiple layers of interconnected nodes or neurons, where each layer performs 

specific transformations of its inputs, thereby capturing complex, non-linear relationships in the 

data (LeCun et al., 2015). The depth of these networks – the number of hidden layers – enables 

the learning of hierarchical feature representations, making them exceptionally adept at 

modelling complex patterns. In regression tasks, the final layer of a DNN is typically designed 

to output continuous values. The training of DNNs involves optimizing a large number of 

parameters (weights and biases) using algorithms like backpropagation combined with gradient 
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descent, which adjusts these parameters to minimize prediction errors (Rumelhart et al., 1986). 

While DNNs can offer exceptional modelling capabilities, they require substantial data and 

computational resources, and their 'black box' nature can make interpretability a challenge. 

2.5.2 N2O modelling with ML 

The exploration of supervised ML models in N2O emissions prediction has been relatively 

limited, including both qualitative assessments using classification models and quantitative 

evaluations using regression models. For instance, Vasilaki et al. (2020b) combined 

classification models with unsupervised learning techniques to optimize the frequency of N2O 

off-gas sampling. By using support vector machines (SVM) and random forest methods, the 

study categorized emission levels in different zones, demonstrating the effectiveness of ML in 

planning monitoring campaigns for emission factor (EF) estimation and suggesting that even 

with reduced monitoring frequency, accurate annual EF estimations could be feasible. Another 

study by Vasilaki et al. (2020a) employed both classification and regression ML models 

alongside abnormal events detection to predict dissolved N2O concentrations in various phases 

of a full-scale sequencing batch reactor (SBR) treating anaerobically digested supernatant. The 

study's "knowledge-discovery framework" addressed the temporal and spatial challenges of 

SBR operation. The framework initiated with an SVM classifier to predict N2O consumption 

during the anoxic phase, followed by another SVM classifier for the anaerobic phase. Based on 

these classifications, SVM regressors then predicted N2O concentrations in the aerobic phase. 

The models exhibited high accuracy, but the complexity of the framework might pose a barrier 

to widespread adoption. Further, Hwangbo et al. (2020) utilized N2O emission data from a full-

scale activated sludge reactor to train supervised ML regression models. The study highlighted 
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the superiority of deep neural networks (DNN) over other ML models, claiming that other non-

deep learning models would fail to accurately predict N2O emissions. Subsequent work by 

Hwangbo et al. (2021) reinforced the superiority of deep learning for complex applications like 

N2O emissions prediction, demonstrating the use of long-short term memory (LSTM) models 

for improved forecasting accuracy. Lastly, Szeląg et al. (2023) developed an algorithm to 

choose the best-performing ML model for predicting N2O emissions using data generated from 

a mechanistic model that is calibrated on a short 4-day measurement campaign. Models 

included SVM, extreme gradient boosting (XGBoost), and multivariate adaptive regression 

spline (MARS).  

Although the main focus is predictive modelling of N2O emissions, it is worth noting that 

unsupervised ML has also been briefly employed in previous studies, aiming to understand N2O 

emissions. For instance, methods like clustering, principal component analysis (PCA), and 

change-point analysis have been used in studies by Vasilaki et al. (2018, 2020b) and Bellandi 

et al. (2020) to gain insights into N2O emissions data. In another study, Song et al. (2020) 

utilized a random forest model to identify key features influencing N2O emissions. 

In addition to ML models, another AI system was used to predict the risk of N2O emissions. 

This method, as discussed by Porro et al. (2022), leverages a knowledge-based AI framework 

augmented by rule-based fuzzy logic. The model incorporates the knowledge from literature 

about factors and conditions known to influence various N2O pathways to provide risk 

assessment of producing or emitting N2O in the form of a qualitative diagnosis (i.e., low, 

medium, or high risk). This qualitative risk assessment can be provided for each influencing 

factor, allowing for insights into active pathways and their mitigation. This approach was 
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applied to a full-scale WWTP and mitigation action was successfully implemented to reduce 

N2O emissions based on the risk due to both low-DO and high-DO conditions, assuming that 

they correspond to ND, and NN pathways, respectively.  

One notable distinction of this knowledge-based system, in comparison to ML models, lies in 

its reliance on predefined knowledge and rules. While ML models excel at identifying non-

linear patterns and relationships within data sets, the knowledge-based system with fuzzy logic 

operates within the confines of its programmed knowledge base. As a result, although it 

provides risk assessments based on current understanding, it lacks the capacity to autonomously 

uncover new insights beyond the scope of its embedded knowledge. 
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Chapter 3 - Modelling nitrous oxide emissions from nitritation-denitritation IFAS-SBR 

treating sidestream wastewater * 

3.1  Introduction 

Wastewater streams that  typically contain high levels of nitrogen, with concentrations that may 

exceed 1 g-N/L, such as anaerobically digested wastewaters, poses a threat to marine life and 

conflicts with stringent water quality standards (Smith, 2003). Nitritation-denitritation has been 

recognized as an effective alternative to conventional nitrification-denitrification treatments, 

which not only aligns with resource conservation efforts by reducing the need for added carbon 

sources but also saves energy by minimizing the aeration required, offering an integrated 

solution for nitrogen management in wastewater treatment (Zou et al., 2020). An Integrated 

Fixed-Film Activated Sludge Sequencing Batch Reactors (IFAS-SBR) can be utilized to 

improve nitrogen removal efficiency with a minimal reactor volume (Yang et al., 2020). The 

IFAS technology utilizes biomass carriers to an activated sludge system, thus combining 

attached and suspended biomass in a single system, referred to as “biofilm”, and “flocculent 

sludge”, respectively, and resulting in enhanced biomass retention capabilities, shock loads 

adaptability, and high contaminants removal. Biofilms are composed from a dense matrix of 

bacteria glued together by extracellular polymeric substances (EPS), and attach to surfaces 

(substratum).  

_________________________ 

* A modified version of this chapter has been submitted for journal publication in January, 

2024. 
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In contrast, flocculent sludge consists of loose aggregates or flocs of microorganisms, are 

suspended in wastewater.    

The SBR modes are flexible for various operational conditions such as control of phase 

durations, and easiness of analyzer installations. However, an exploration of the rate of 

production and emission of N2O and how it is related to the choice of operational conditions is 

required (Liu et al., 2022). Therefore, it is imperative to develop operational strategies that not 

only optimize nitrogen removal efficiency but also minimize N2O emissions from IFAS-SBR.  

Although the selection and optimization of operational conditions could be conducted using 

laboratory experiments (Zou et al., 2022), using mechanistic modelling could save time and 

cost by simulating the effect of these operational conditions on N2O emissions. However, the 

application of N2O mechanistic models to IFAS-SBR reactors performing 

nitritation/denitritation under dynamic conditions and feature hybrid biomass, has not been 

explored yet. There is a need evaluate the capabilities of current mechanistic models to describe 

N2O emissions from different reactor types and investigate their capabilities for informing 

operational process improvements to reduce N2O emissions. 

In this chapter, a dynamic model incorporating both AOB N2O production pathways and 

heterotrophic denitrification is applied to simulate data from a lab-scale IFAS-SBR reactor 

performing nitritation/denitritation to treat ammonia-rich wastewater. The model is calibrated 

and validated on a different operational condition to investigate the generalization ability of the 

current N2O mechanistic model to a wider range of operational conditions. The calibrated model 

is then used to compare the contribution of different pathways and the different types of 

biomasses (i.e., biofilm and suspended sludge) to production of N2O. Lastly, a scenario analysis 
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is conducted to investigate the reactor behaviour in terms of nutrients removal and N2O 

emissions under various combinations of operational and environmental conditions. Thus, the 

model could support a multi-objective optimization that aims to mitigate N2O emissions while 

maximizing nitrogen removal efficiency by IFAS-SBR, using the currently available 

knowledge in mechanistic models by the aid of simulations.   

3.2  Approach and methodology 

3.2.1 Reactor operation and dataset 

The experimental study utilized a 6L bench-scale IFAS-SBR, with 40% of the reactor volume 

filled with polyethylene carriers to support biofilm growth. The reactor maintained a constant 

temperature of 20°C and a 50% exchange ratio throughout the study. The experiment was 

conducted in two distinct stages, characterized primarily by variations in the frequency of the 

aerobic/anoxic phase alternation, thereby affecting the nitritation/denitritation dynamics. 

Specifically, the first stage involved operating the reactor with four subcycles, while the second 

stage increased this number to seven subcycles. This change resulted in different total cycle 

times and altered durations for both aerobic and anoxic phases to accommodate the increased 

number of subcycles. The total cycle time was 21.60 hours, while the duration of each aerobic 

phase was 3.50 hours during four subcycles operation, and 2.00 hours during seven subcycles 

operation. Moreover, each anoxic phase duration was 1.90 and 1.08 hours during four and seven 

subcycles operation, respectively. Throughout the aerated periods, the dissolved oxygen (DO) 

concentration was maintained at 0.6 ± 0.1 mg/L using a gas flowmeter. A concentrated chemical 

oxygen demand (COD) stock solution (sodium acetate anhydrous) at a concentration of 42.5 ± 

2.1 g/L was continuously supplied as an external carbon source during the non-aerated periods 
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to support anoxic heterotrophic reactions. The timing of COD addition was precisely matched 

to the duration of the non-aerated periods using a timer, ensuring optimal denitritation 

conditions. 

The ammonia-rich wastewater used in this study originated from the supernatant collected from 

anaerobically digested primary and secondary sludge obtained from a sludge settling lagoon in 

a local WWTP situated in Alberta, Canada, with ammonium (NH4
+) concentrations of 800-

1000 mg N/L, 400–600 mg/L chemical oxygen demand (COD), ~ 7.8 pH, 1–3 mg N/L NO3
-, 

and 4–6 mg N/L NO2
-. A detailed description of the experiment and wastewater characteristics 

can be found in Zou et al. (2022). 

3.2.2 Model structure 

A dynamic model was developed to simulate the IFAS-SBR implemented in the software 

package AQUASIM 2.1d (Reichert, 1998). The model structure comprised of a fully mixed 

compartment representing the flocculent sludge and a biofilm compartment representing the 

biofilm attached on the polyethylene carriers (substratum). A diffusion link with a high mass 

transfer coefficient connected the two compartments, ensuring that they shared the same bulk 

liquid concentrations for all state variables except for N2O that was excluded from the diffused 

state variables to accurately quantify N2O produced from the biofilm and flocculent sludge 

separately.  

The simulation of the SBR cycle involved dividing the total volume of the reactor (6.0 L) into 

a 3.0 L biofilm compartment and a variable volume completely mixed compartment with 

volume ranging from 0 to 3.0 L while maintaining a 50% exchange ratio of the influent. The 

SBR cycle encompassed three main phases: feeding, treatment, and decanting. During the 
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feeding phase, only inflow occurred, expanding the model's variable volume until reaching its 

maximum value. After feeding, the inflow to the reactor ceased, and the reactor volume 

remained constant during the treatment period. The decanting phase involved only outflow from 

the reactor with the same flowrate as the influent, leading to volume decrease until reaching its 

minimum value. During decanting, solids were preserved in the reactor model using 

bifurcations, i.e. all solids are returned back to the reactor except for the wasted sludge to 

maintain the experimental SRT. The treatment phase consisted of a series of aerobic-anoxic 

alternating subcycles. Each subcycle was implemented by simulating the aerobic and anoxic 

conditions through turning on and off the air supply to the reactor. For the mathematical 

representation of oxygen supply, a fully-mixed gas phase reactor was introduced and connected 

to the SBR through a diffusive link with an on/off time-dependent pattern to simulate the 

alternating aeration. Figure 3.1 shows the representation of IFAS-SBR in AQUASIM including 

the used compartments and links. 
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Figure 3-1 Schematic diagram of IFAS-SBR representation in AQUASIM. 

3.2.3 Biological conversion and N2O model 

The model included the biological conversion reactions by three species: AOB, nitrite‐

oxidizing bacteria (NOB), and heterotrophs. Ammonium oxidation processes and N2O 

production pathways was modelled according to Pocquet et al. (2016) including the following 

reactions: (1) ammonia mono-oxygenase (AMO) mediated oxidation: where NH4
+ is oxidized 

to NH2OH in the presence of oxygen; (2) HAO mediated oxidation: NH2OH is further oxidized 

to NO; (3) another HAO mediated oxidation: NO is oxidized to NO2
-; (4) NN pathway: This 

pathway involves the production of N2O through the reduction of NO, mediated by NOR, 

coupled with the oxidation of NH2OH to NO2
- (reaction 2); (5) ND pathway: The reduction of 
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NO2
- to N2O occurs with NO as an intermediate step, utilizing NH2OH as an electron donor. 

This reaction is mediated by NOR and NirK. Reactions 1, 2, and 3 require the presence of 

oxygen to proceed. Although reaction 4 does not explicitly require oxygen, it is dependent on 

the availability of oxygen as it is coupled with reaction 2. Therefore, reaction 4 cannot occur in 

the absence of oxygen. Reaction 5, on the other hand, is the only reaction performed by AOB 

that does not require the presence of oxygen. It is defined as an anoxic process inhibited by 

oxygen. The inhibition of reaction 5 by oxygen was incorporated into the model using a non-

competitive term, as described in Ni et al. (2011). To simplify the model representation and 

avoid the inclusion of an intermediate step involving NO, reaction 5 was lumped into a single 

reaction that directly reduces NO2
- to N2O. This approach effectively bypasses the NO loop in 

the model (Pocquet et al., 2016). The oxidation of NO2
- to NO3 by nitrite-oxidizing bacteria 

(NOB) was modelled according to (Hiatt and Grady, 2008), considering inhibitory effects of 

NO2
- and NH4

+. By considering these five reactions, the developed mathematical model is able 

to capture the key nitrogen transformation processes occurring within the IFAS-SBR flocculent 

sludge and biofilm. Furthermore, heterotrophic biomass included both aerobic growth on 

organics and anoxic heterotrophic denitrification. The denitrification process was modelled as 

four sequential steps reducing the NO3
- to N2 gas with NO2

-, NO, N2O as intermediates (Hiatt 

and Grady, 2008). Total ammonium and total nitrite were used as the substrates in the kinetic 

rate expressions and half-saturation constants were modified accordingly, following the 

approach adopted by Wan and Volcke (2022). The list of model state variables is included in 

Table 3.1, and the stoichiometric matrix is shown in Table 3.2, and the kinetic rate expressions 

used in the model are shown in Table 3.3. The decay of all species in the model was described 
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as a first order reaction producing both biodegradable and non-biodegradable particulates. The 

biodegradable particulates are then hydrolyzed to soluble organics. The hydrolysis process was 

modelled as a simplified rate as suggested by Lackner et al. (2008). 

Table 3-1 Description of model state variables 

Variable Description Unit 

XAOB Ammonia oxidizing bacteria biomass concentration g COD. m-3 

XH Heterotrophic biomass concentration g COD. m-3 

XNOB Nitrite oxidizing bacteria biomass concentration g COD. m-3 

XI Inert particulate organics g COD. m-3 

Xs Slowly biodegradable organics concentration g COD. m-3 

SNH Total ammonia nitrogen concentration g N.m-3 

SNO2 Total nitrite nitrogen concentration g N.m-3 

SNO3 Nitrate concentration g N.m-3 

SNH2OH Hydroxylamine concentration g N.m-3 

SNO Nitric oxide concentration g N.m-3 

SN2 Nitrogen gas concentration g N.m-3 

SO Dissolved oxygen concentration g O2.m
-3 

SS Readily biodegradable organics concentration g COD. m-3 

SN2O Nitrous oxide concentration g N.m-3 

SN2O_NN Nitrous oxide concentration produced from nitrifier nitrification  g N.m-3 

SN2O_ND Nitrous oxide concentration produced from nitrifier denitrification  g N.m-3 



 
 

38 
 

Table 3-2 Process stoichiometric matrix of the model variables used in this chapter 

Process SNH SNH2OH 

 

SN2 

 

SN2O 

 

SNO 

 

SNO2 SNO3 SO 

 

SS SN2O_NN SN2O_ND XAOB XNOB XND 

 

Xs XH 

 

XI 

 

AOB 

R1 -1 1      -1.14          

R2 −iNXB 
−1

YAOB
   

1

YAOB

   1 −
1.71

YAOB

    1      

R3     -1 1  −0.57          

R4  -1  2  -1     2       

R5  -1  4 -4 1    4        

R6            -1  iNXB − fXIiNXI 1 − fXI  fXI 

NOB 

R7 −iNXB     
−1

YNOB
 

1

YNOB
 1 −

1.14

YNOB

     1     

R8             -1 iNXB − fXIiNXI 1 − fXI  fXI 

Heterotrophs 

R9 
iNSS

YH

− iNXB       1 −
1

YH

 −
1

YH

       1  

R10 
iNSS

YHηY

− iNXB     
1 − YHηY

1.14YHηY
 

−1 − YHηY

1.14YHηY

  
−1

YHηY

       1  

R11 
iNSS

YHηY

− iNXB    
1 − YHηY

0.57YHηY

 −
1 − YHηY

0.57YHηY

   
−1

YHηY

       1  
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R12 
iNSS

YHηY

− iNXB   
1 − YHηY

0.57YHηY

 −
1 − YHηY

0.57YHηY

    
−1

YHηY

       1  

R13 
iNSS

YHηY

− iNXB  
1 − YHηY

0.57YHηY

 −
1 − YHηY

0.57YHηY

     
−1

YHηY

       1  

R14             
iNXB

− fXIiNXI 
1 − fXI -1 fXI  

Hydrolysis 

R15         1      -1   

R16 1             -1    

g COD/unit 

component 

0 -1.14 -1.71 -2.29 -2.86 -3.43 -4.57 -1 1 -2.29 -2.29 1 1 1 1 1 1 

g N/unit 

component 

1 1 1 1 1 1 1 0 iNSS 1 1 iNXB iNXB 1 iNXB iNXB iNXB 
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Table 3-3 Process rate expressions. 

Process                                Kinetic rate expressions 

AOB 

R1 

Ammonia oxidation 

(AMO) 

 𝑞𝑚𝑎𝑥,𝐴𝑂𝐵

SO

KAOB,1,O + SO

SNH

KAOB,NH + SNH
XAOB 

R2 

Hydroxylamine oxidation 

(HAO) 

μAOB

SO

KAOB,2,O + SO

SNH2OH

KAOB,NH2OH + SNH2OH

SNH

SNH +  10−12
XAOB 

R3 Nitrite oxidation (HAO) 𝑞𝑚𝑎𝑥,𝐴𝑂𝐵

SO

KAOB,2,O + SO

SNO

KAOB,HAO,NO + SNO
XAOB 

R4 

N2O production (ND 

pathway) 

𝑞𝑚𝑎𝑥,𝐴𝑂𝐵  η𝑁𝐷  
SNO2

KAOB,NO2 + SNO2

SNH2OH

KAOB,NH2OH + SNH2OH

KAOB,I,O

KAOB,I,O + SO

XAOB  

R5 

N2O production (NN 

pathway) 

qAOB,,NN η𝑁𝑁

SNO

KAOB,NN,NO + SNO

SNH2OH

KAOB,NH2OH + SNH2OH
XAOB 

R6 Decay bAOBXAOB 

NOB 

R7 Nitrite oxidation μNOB

SO

KNOB,O + SO

KNOBH,NH

KNOBH,NH + SNH

SNO2

KNOB,NO2 + SNO2 + SNO2
2 KNOB,I,NO2⁄

XNOB 

R8 Decay bNOBXNOB 

Heterotrophs  

R9 Aerobic growth μH

SO

KH,O + SO

SNH

KH,NH + SNH

SS

KH,S + SS
XH 

R10 Nitrate denitrification μHηg2

SS

KH,S,1 + SS

SNO3

KH,NO3 + SNO3

KH,O

KH,O + SO

SNH

KH,NH + SNH
XH 

R11 Nitrite denitrification μHηg3

SS

KH,S,2 + SS

SNO2

KH,NO2 + SNO2

KH,I,O,2

KH,I,O,2 + SO

KH,I3,NO

KH,I3,NO + SNO

SNH

KH,NH + SNH

XH 
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R12 Nitric oxide denitrification 
μHηg4

SS

KH,S,3 + SS

SNO

KH,NO + SNO +
SNO

2

KH,I4,NO
⁄

KH,I,O,3

KH,I,O,3 + SO

SNH

SNH + KH,NH

XH 

R13 

Nitrous oxide 

denitrification 

μHηg5

SS

KH,S,4 + SS

SN2O

KH,N2O + SN2O

KH,I,O,4

KH,I,O,4 + SO

KH,I5,NO

KH,I5,NO + SNO

SNH

KH,NH + SNH

XH 

R14 Decay bHXH 

3.2.4 Liquid-gas mass transfer 

Transfer of N2O from liquid to gas phase was modelled by diffusive links that connects the 

model compartments to a completely mixed gas compartment, representing the reactor head 

space. Uniform hydraulic pressure and gas phase composition were assumed across the 

reactor height. Therefore, the liquid gas transfer rate was calculated by: 

𝑅𝑁2𝑂  = KLa𝑁2𝑂  (𝐶𝐿 −  
𝐶𝐺

𝐻
)          3.1 

where 𝑅𝑁2𝑂 is the N2O transfer rate (g m-3d-1),  KLa𝑁2𝑂 is N2O volumetric liquid-gas transfer 

coefficient (d-1), 𝐶𝐺 is the concentration of N2O in the gas phase, H is Henry’s law constant, 

and 𝐶𝐿the concentration of N2O in the liquid phase. The mass transfer coefficient of N2O 

was calculated based on the gas-liquid oxygen transfer as follows: 

KLa𝑁2𝑂 = KLao √
𝐷𝑁2𝑂

𝐷𝑜
 

         .23  

where KLao represents the volumetric gas-liquid oxygen transfer, and D represents the 

molecular diffusivity of gas in water (m2d-1).   

KLao was defined with an on/off time-dependent pattern to simulate the alternating aeration. 

During aerated periods, the mass transfer coefficient of oxygen was assumed to be correlated 
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to the superficial gas velocity calculated from the air supply flow rate and the reactor cross 

sectional area (Wan and Volcke, 2022), using the following expression: 

KLa =
0.6 𝑄𝑎𝑖𝑟 𝑃𝑎𝑡𝑚

𝐴 (𝑃𝑎𝑡𝑚 +
𝑝𝑔 𝐻

2 )
          3.3 

where 𝑄𝑎𝑖𝑟  (m
3 d‐1) denotes the airflow rate, 𝑃𝑎𝑡𝑚 is the atmospheric pressure in Pa, 𝐴 (m2) 

is the cross‐sectional area of the reactor, 𝐻 (m) is the reactor height, 𝑝 (kg m‐3) is the density 

of water, and 𝑔 (m s‐2) in is the gravitational acceleration. During non-aerated periods, KLao 

was assumed to be Zero, simulating no superficial gas velocity and no oxygen dissolution to 

the liquid.  

3.2.5 Temperature effect 

The effect of temperature on growth rates was modelled using a modified Arrhenius equation 

(Henze et al., 2000). Using this expression, the effect of temperature varies between bacterial 

species depending on their activation energies. The effect of temperature on the diffusion 

coefficients was also modelled as suggested in Venard and Street (1975). For mass transfer, 

both the temperature (𝑇) impact on Henry’s law constant and the mass-transfer coefficient 

were included according to the following equations: 

H𝑇 = H𝑟𝑒𝑓e
α(

1
T

−
1

Tref
)
          3.4 

KLaT = KLa𝑇𝑟𝑒𝑓1.024(𝑇− 𝑇𝑟𝑒𝑓)          3.5 

 

 

Where H𝑇 and H𝑟𝑒𝑓 are the Henry’s law constants (M.atm-1) at temperature T and reference 

temperature T𝑟𝑒𝑓 (293.15 K), respectively; α represents the temperature dependency constant 
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(1500 and 2600 for O2 and N2O, respectively).  KLaT  and KLa𝑇𝑟𝑒𝑓 are the mass transfer 

coefficients at temperature T and at reference temperature T𝑟𝑒𝑓 (293.15 K), respectively. 

Furthermore, the effect of temperature on the diffusion coefficient has been included in the 

model using the following expression as in : 

D𝑖 (𝑇) = D𝑖 𝑇𝑟𝑒𝑓

𝜈𝑇𝑟𝑒𝑓

𝜈𝑇

T

Tref
 3.6 

Where  D𝑖 (𝑇) is the diffusion coefficient of substance (i) in water at temperature T; 𝜈𝑇 and 

𝜈𝑇𝑟𝑒𝑓 (Pa.s) represent the dynamic viscosity of water at temperature and Tref, respectively.  

3.2.6 Simulation initialization 

The model underwent a simulation spanning 150 days with each cycle operated with four 

subcycles. The determination of the initialization simulation's duration was achieved through 

a trial-and-error method, wherein the primary metric of focus was the removal rates of NH4
+ 

and NO2
-. The objective of initialization was to ensure the model's stable performance over 

time in terms of NH4
+ and NO2

-.  To ensure accurate simulation of the actual experimental 

reactor, the experimental SRT was used to calculate the sludge volume wasted from the 

completely mixed compartment of the SBR model. The simulation was run multiple times 

to determine the total simulation time at which the removal rates were relatively stable. 

Additionally, to ascertain the adequacy of the initialization simulation's total duration, it was 

cross-referenced with the standard benchmark of three times the estimated SRT. 

3.2.7 Sensitivity analysis  

A series of subsequent local sensitivity analyses was conducted to identify and select the 

model parameters that will be estimated in the calibration process based on their influence 

on model results. In each sensitivity analysis, simulations were based on the four subcycles 
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model and performed with a single parameter value changed at a time, while keeping all 

other parameters at their default values. To obtain a comprehensive sensitivity ranking across 

model parameters, the absolute-relative (AR) sensitivity was calculated at each time step and 

then averaged, resulting in a single AR sensitivity value for each parameter with respect to 

the selected state variables (NH4
+, NO2

-, and N2O), which also has the unit of the state 

variable. AR sensitivity of each parameter was estimated by measuring the absolute changes 

in variables for a relative change in parameter values. A parameter was considered influential 

if its calculated AR sensitivity exceeded 5% of the highest influential parameter's sensitivity 

for the corresponding state variable. Consequently, parameters with lower AR sensitivity 

values were excluded from the calibration process since their influence on the model outputs 

was comparatively minimal. During sensitivity analysis, parameters were set to default 

values as shown in Table 3.4. The sensitivity analyses conducted prior to the calibration of 

NO2
- and N2O also involved the default values of parameters except for the parameters 

estimated in the previous calibration.  

Furthermore, the form of the AR sensitivity functions of the state variables were examined 

in relation to the most influential parameters. If the form of a parameter's sensitivity function 

resembled that of another parameter, indicating a proportionality between their estimates, 

the parameter with the lower AR sensitivity value was considered non-identifiable and 

excluded from parameter estimation. This proportionality indeed implies that changes in one 

parameter's value can be compensated by changes in the other parameter (Gujer, 2008). The 

proportionality was evaluated by visual inspection of the correlation of the sensitivity 

functions of model parameters. For each variable, pairwise plots of sensitivity functions for 
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the most influential parameters were utilized to quantify the proportionality between the 

sensitivity functions of parameters with respect to the same variable. 

Table 3-4 Default values used for model kinetic and stoichiometric parameters 

Parameter Description Unit Value Source 

μAOB Maximum growth rate of AOB d-1 0.78 (Hiatt and Grady, 2008) 

KAOB,NH 
AOB affinity constant for total 

ammonia nitrogen 

mg-N. L-1 0.20 

(Wan and Volcke, 2022) 

(Vannecke and Volcke, 2015) 

KAOB,1,O 
AOB affinity constant for O2 

(AMO reaction) 

mg-O2. L-1 1.0  (Pocquet et al., 2016) 

KAOB,2,O 
AOB affinity constant for O2 (HAO 

reaction) 

mg-O2. L-1 0.3 (Lang et al., 2017) 

KAOB,NH2OH AOB affinity constant for NH2OH mg-N. L-1 0.90  (Pocquet et al., 2016) 

KAOB,NN,NO 
AOB affinity constant for NO (NN 

pathway reaction) 

mg-N. L-1 0.008  (Pocquet et al., 2016) 

KAOB,NO2 
AOB affinity constant for total 

nitrite nitrogen 

mg-N. L-1 75.8 

(Wan and Volcke, 2022) 

(Vannecke and Volcke, 2015) 

KAOB,I,O 
AOB inhibition constant by O2 

(N2O production via ND pathway) 

mg-O2. L-1 0.1 (Wan and Volcke, 2022) 

µH Growth rate of heterotrophs d-1 6.25 (Hiatt and Grady, 2008) 

KH,S 
Heterotrophs affinity constant for 

COD  

mg-COD.L-1 40 (Hiatt and Grady, 2008) 

KH,S,1 
Heterotrophs affinity constant for 

COD (anoxic NO3 denitrification) 

mg-COD.L-1 20 (Hiatt and Grady, 2008) 
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KH,S,2 
Heterotrophs affinity constant for 

COD (anoxic NO2
- denitrification) 

mg-COD.L-1 20 (Hiatt and Grady, 2008) 

KH,S,3 
Heterotrophs affinity constant for 

COD (anoxic NO denitrification) 

mg-COD.L-1 20 (Hiatt and Grady, 2008) 

KH,S,4 
Heterotrophs affinity constant for 

COD (anoxic N2O denitrification) 

mg-COD.L-1 20 (Hiatt and Grady, 2008) 

KH,I2,NO 
NO inhibition of heterotrophs 

(anoxic NO2
- denitrification) 

g N.m-3 0.5 (Hiatt and Grady, 2008) 

KH,I3,NO 
NO inhibition of heterotrophs 

(anoxic NO denitrification) 

g N.m-3 0.3 (Hiatt and Grady, 2008) 

KH,I4,NO 
NO inhibition of heterotrophs 

(anoxic N2O denitrification) 

g N.m-3 0.075 (Hiatt and Grady, 2008) 

KN2O 
Heterotrophs affinity constant for 

N2O 

g N.m-3 0.05 (Hiatt and Grady, 2008) 

η𝑁𝐷 

Reduction factor applied for the 

N2O production through ND 

pathway 

___ 0.250  (Pocquet et al., 2016) 

η𝑁𝑁 

Reduction factor applied for the 

N2O production through NN 

pathway 

___ 0.0015  (Pocquet et al., 2016) 

KH,I,O,2 
Heterotrophs O2 inhibition constant 

(anoxic NO2
- denitrification) 

mg-O2. L-1 0.1 (Hiatt and Grady, 2008) 

KH,I,O,4 
Heterotrophs O2 inhibition constant 

(anoxic N2O denitrification) 

mg-O2. L-1 0.1 (Hiatt and Grady, 2008) 
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fXI Fraction of inert COD in biomass 

g-COD. g-

COD-1 

0.08 (Henze et al., 2000) 

iNSS 

Nitrogen content of soluble organic 

substrate 

g-N. g-COD-1 0.03 (Henze et al., 2000) 

iNXB Nitrogen content of biomass g-N. g- COD-1 0.07 (Henze et al., 2000) 

YAOB Yield of AOB g-COD. g- N-1 0.15 (Henze et al., 2000) 

YNOB Yield of NOB g-COD. g- N-1 0.057 (Henze et al., 2000) 

YH Yield of heterotrophs g-COD. g- N-1 0.6 (Hiatt and Grady, 2008) 

ηY 

Yield reduction factor under anoxic 

conditions 

___ 0.9 (Hiatt and Grady, 2008) 

ηg2 

Reduction factor for µH under 

anoxic conditions in process 10 

___ 0.28 (Hiatt and Grady, 2008) 

ηg3 

Reduction factor for maximum 

growth rate under anoxic 

conditions in process 11 

___ 0.16 (Hiatt and Grady, 2008) 

ηg4 

Reduction factor for maximum 

growth rate under anoxic 

conditions in process 12 

___ 0.35 (Hiatt and Grady, 2008) 

ηg5 

Reduction factor for maximum 

growth rate under anoxic 

conditions in process 13 

___ 0.35 (Hiatt and Grady, 2008) 

ηY 

Reduction factor for yield under 

anoxic conditions 

___ 0.9 (Hiatt and Grady, 2008) 
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3.2.8 Model calibration and validation 

The model was calibrated using the data of four subcycles. Parameters estimated for 

calibration were chosen based on the sensitivity analysis results. In addition to parameters 

that were deemed non-identifiable, parameters delineating the elemental biomass 

composition, yield values, decay rates, and temperature coefficients were retained at their 

default values and excluded from calibration given the high agreement on their values in 

literature. The calibration commenced by estimation of the final chosen parameter set with 

the model being adjusted to align with the NH4
+ data, followed by the NO2

- data. Those 

parameters that had significant influence on NO2
- concentrations were subsequently 

assessed for their impact on NH4
+. If any such parameter exhibited an influence on NH4

+, 

it was incorporated into the calibration process of NO2
-. This sequential calibration protocol 

was pioneered by Corominas et al. (2011), and further developed by Mannina et al. (2011). 

The calibration aimed at minimizing the chi square (X2) objective function according to 

Gujer (2008) as follows: 

X2 = ∑ [
𝑦𝑚.𝑖 −  𝑦𝑖

𝜎𝑚.𝑖
]

2
𝑛

𝑖=1

    3.7 

where X2 denotes the sum of squared weighted deviations between the measured and 

simulated effluent concentrations, 𝑦𝑚.𝑖 the measured value of the state variable in the 

experiment, 𝑦𝑖 the corresponding model prediction of the state variable at the same time, 

𝜎𝑚.𝑖 the standard error of the measurement 𝑦𝑚.𝑖. The standard errors of state variables were 

assumed as 1% of the average measurements. Following the successful calibration for 

effluent NH4
+ and NO2

- concentrations, attention was directed toward calibrating the N2O 

concentration in the gas phase. The choice of parameters for this calibration was again 
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driven by the results of the sensitivity analysis. The step-by-step calibration approach 

employed in this study is illustrated in Figure 3.2. Post-calibration, the model underwent 

validation, employing data derived from experiments with seven operational sub-cycles, 

i.e. obtained under quite different operational conditions, providing a challenging 

validation test. 

3.2.9 Scenario analysis of reactor operational conditions 

The calibrated model was used in over 1500 scenarios simulating a wide range of DO, 

temperatures, and influent NH4
+ to investigate the combined effect of environmental and 

operational conditions, and influent nitrogen load on both N2O emissions and nitrogen 

removal. Specifically, the temperature varied from 5°C to 25°C, while DO during the 

aerated time was adjusted between the limits of 0.3 to 2 mg/L, and influent NH4
+ 

concentrations fluctuated between 700 to 1000 mg/L to represent cases of both regular and 

higher influent loading. The simulation results were aggregated and processed to show the 

average N2O concentration in the headspace during the simulation and the final effluent 

concentration of NH4
+. The results were then plotted into heatmaps to show the average 

concentration of either N2O or NH4
+ of every single combination of DO and temperature 

when simulated under different influent loads.  
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Figure 3-2 The procedure used for calibration of mechanistic model in the study. 
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3.3  Results and Discussion 

3.3.1 Sensitivity analysis and model calibration 

An initial simulation of the model was performed, operating under four subcycles with the 

model parameters set to reference values. Figure 3.3 captures the sensitivity ranking of the 

model parameters, providing insights into how various model parameters impact the values 

of state variables NH4
+, NO2

-, and N2O. Foremost, NH4
+ concentrations are majorly 

influenced by parameters linked to AMO-mediated reaction kinetics, where the maximum 

specific growth rate (𝜇𝐴𝑂𝐵) and the oxygen affinity constant (KAOB,1,O) were the most 

influential. Regarding NO2
-, the analysis demonstrated that its concentration is influenced 

not just by the 𝜇𝐴𝑂𝐵 of AOB but also by a collection of other factors, including oxygen 

affinity constants pertinent to both AMO and HAO-mediated AOB reactions (KAOB,1,O and 

KAOB,2,O) organic substrate affinity constants associated with heterotrophic anoxic 

reactions, and the ND pathway kinetics. NO2
- plays a pivotal role in both aerobic and anoxic 

metabolic pathways, in addition to its function as an electron acceptor for the ND pathway 

producing N2O, explaining its influence by a larger set of parameters compared to NH4
+ 

(Hiatt and Grady, 2008). The sensitivity results also show that N2O concentrations are 

heavily influenced by the affinity constants of anoxic heterotrophic organic substrate, in 

addition to parameters related to both AMO and HAO-mediated AOB reactions. This 

aligns with the current knowledge on N2O production pathways, as the reactions involving 

those parameters are the sources of NO2
- and NH2OH formations, which ultimately steer 

the production of N2O through the ND and NN pathways  (Ni et al., 2014). Meanwhile, the 

organic substrate affinity constants mark the anoxic denitrification reactions, with N2O 

featuring as an intermediate. The elevated influence of these parameters refers to the 
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significant contribution of anoxic heterotrophic pathways to the N2O sink in the IFAS-SBR 

reactor. This can be potentially attributed to the predominant low DO operation of the 

reactor, due to both the aerated/non-aerated alternate operation and the low DO even during 

the phases when aeration is active. Figures 3.4, 3.5, and 3.6 show the pairwise relationship 

between the sensitivity functions of the model most influential parameters with respect to 

NH4
+, NO2

-, and N2O, respectively. 
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Figure 3-3 Ranked absolute relative (AR) sensitivity results of model parameters towards 

model state variables (NH4
+, NO2

-, and N2O concentrations). The cutoff line is based on 

5% of the maximum AR sensitivity for each state variable. 
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Figure 3-4 The pairwise relationship between the sensitivity functions of model most 

influential parameters with respect to NH4
+

 

 



 
 

55 
 

 

Figure 3-5 The pairwise relationship between the sensitivity functions of model most 

influential parameters with respect to NO2
- 
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Figure 3-6 The pairwise relationship between the sensitivity functions of model most 

influential parameters with respect to N2O 
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The model was calibrated with data obtained from the IFAS-SBR reactor operation with 

four subcycles. The numerical values of the parameters obtained from calibration in 

comparison with default values are shown in Table 3.5. Figure 3.7 shows the experimental 

data and model simulations for the dynamics of the NH4
+ and NO2

- concentrations in a 

typical full cycle operated with 4 subcycles of aerobic/anoxic alternations. The model was 

able to predict the dynamics of NH4
+ and NO2

- during a full cycle. The rate of NH4
+ 

oxidation in the model was similar to the oxidation rate obtained from the experimental 

data. However, the NO2
- production rate in the simulation was a bit lower than the rate 

calculated from the experimental data. Moreover, simulation results showed that nitrogen 

(N2) production taking place during aeration (results not shown) indicating that NO2
- was 

still denitrified during aerated phases. Thus, during aeration denitrifiers have more 

contribution in the simulation than the actual experiment. This is a result of the relatively 

low DO concentration (0.6 mg/L) during aerated phases, which is not high enough to 

completely inhibit NO2
- denitrification in the model given their calibrated oxygen 

inhibition constants (KH,I,O,2 = 0.17). Similarly, the rate of NO2
- denitrification in the 

simulation looks lower than the rate in the experimental data because the DO during the 

non-aeration time did not completely drop to 0 mg/L in the experiment, and DO up to 0.3 

mg/L was measured during the non-aeration time (Zou et al., 2022). The estimated value 

of  KH,I,O,2 provided the best balance for the model to capture the high and low peaks of the 

experimental NO2
-. Experimentation with higher and lower values of KH,I,O,2 resulted in an 

increased ability of the model to solely capture either the high or low NO2
- peaks while 

missing the other peak (results not shown). This is potentially an indication of the limited 

ability of the model to predict target variables with higher accuracy. The model was neither 
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able to depict the full quantitative range of NH4
+ nor the NO2

- dynamics potentially due to 

using a multi-step calibration procedure. Although this procedure was used in previous 

studies (Lang et al., 2017), it has the disadvantage of potentially resulting in a  nonoptimal 

N2O formation during calibration of NH4
+ and NO2

- which could lead to deviations in the 

modelled NO2
- or NH4

+ (Wan and Volcke, 2022). 

 

Figure 3-7 Profiles of NH4
+ and NO2

- in full cycle (four subcycles) comparing the 

measured experimental data (points) with model predictions (lines) Shaded areas 

represent times when the aeration is turned on and the dotted line shows the simulated 

DO in the bulk liquid.  

 

 



 
 

59 
 

Table 3-5 Numerical values of the parameters estimated in this study and the 

corresponding default values used before calibration. 

Parameter Description Unit 

Estimated 

value 

Default 

value 

Source 

μAOB 

Maximum growth rate of 

AOB 

d-1 0.39 0.78 

(Hiatt and 

Grady, 

2008) 

KAOB,NH2OH AOB affinity for NH2OH 

mg N.L-

1 

0.4 0.90 

(Pocquet et 

al., 2016) 

KAOB,NN,NO 
AOB affinity for NO (NN 

pathway reaction) 

mg N.L-

1 

0.005 0.008  

(Pocquet et 

al., 2016) 

η𝑁𝐷 

Reduction factor applied 

for the N2O production 

through ND pathway 

Unitless 0.35 0.250  

(Pocquet et 

al., 2016) 

KH,S 
Heterotrophs affinity for 

COD (aerobic) 

mg 

O2.L-1 

34.6 40 

(Hiatt and 

Grady, 

2008) 

KH,S,2 

Heterotrophs constant for 

COD (anoxic NO2
-

denitrification) 

mg 

O2.L-1 

20.6 20 

(Hiatt and 

Grady, 

2008) 

KH,S,3 

Heterotrophs affinity for 

COD (anoxic NO 

denitrification) 

mg 

O2.L-1 

19.2 20 

(Hiatt and 

Grady, 

2008) 

KH,S,4 

Heterotrophs affinity for 

COD (anoxic N2O 

denitrification) 

mg 

O2.L-1 

23.5 20 

(Hiatt and 

Grady, 

2008) 
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KH,I,O,2 

Heterotrophs O2 inhibition 

(anoxic NO2
-

denitrification) 

mg 

O2.L-1 

0.17 0.1 

(Hiatt and 

Grady, 

2008) 

KH,I,O,4 

Heterotrophs O2 inhibition 

(anoxic N2O 

denitrification) 

mg 

O2.L-1 

0.088 0.1 

(Hiatt and 

Grady, 

2008) 

Figure 3.8a compares the actual and simulated N2O concentration dynamics during a full 

cycle and the percentage of emissions produced during both anoxic and aerobic phases 

with model results. The model was able to predict the overall N2O concentration dynamics 

during the entire cycle in the headspace with R2, and RMSE of 0.82 and 34.9, respectively. 

During the time of aeration, the N2O concentration in the headspace increased until 

reaching its peak by the end of the aeration time before it stays constant after the aeration 

stops. The constant N2O concentration during the non-aerated periods is due to the absence 

of air flow, as the mass transfer coefficient in the model was linked to the air flow as 

described in equation (3.3).  
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Figure 3-8 Profile of N2O concentrations in the headspace (ppm) in a full cycle (four 

subcycles) experiment (right) comparison of the percentage of N2O produced during 

aerated and non-aerated periods as calculated from the model and experimental 

observations. 

3.3.2 N2O production pathways and quantification 

The model results from the calibrated model indicate that ND is the dominant pathway for 

N2O production in the IFAS-SBR reactor with 95% of the produced N2O coming from ND 

pathway. Although experimental findings suggested ND pathway dominance, direct 

quantification of each pathway's contribution remained elusive due to the lack of a method 

for measuring them explicitly (Zou et al., 2020). The ND pathway is often more significant 

at higher NO2
- and low DO concentrations (Peng et al., 2014). These conditions are 

unavoidable in case of nitritation-denitritation given that NOB are suppressed and thus, 

NO2
- will accumulate (Fux et al., 2006). Furthermore, the low DO during the aerated phase 
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of the currently studied reactor makes the ND pathway contribution even more significant 

(Yang et al., 2009). 

Figure 3.8b demonstrates that approximately 90% of N2O was produced through nitritation 

(i.e., when aeration was turned on) according to the model results, compared to 97% as 

deduced from the experimental observations. Further analysis of the model results, as 

shown in Figure 3.6, reveals that for the total N2O produced via the ND pathway, 89% 

occurred during aerated periods. Similarly, 96% of the N2O produced through the NN 

pathway also originated during these aerated periods. This finding aligns with the 

mechanistic understanding of the NN pathway, where the reaction requires oxygen, with 

NH2OH serving as the electron donor (Ni et al., 2013a). Interestingly, this observation 

applies to the ND pathway as well, even though their reactions are typically described as 

anoxic. The significant amount of N2O emissions by the ND pathway during the aerated 

phase can be explained by the operational conditions of the IFAS-SBR, where the DO 

concentration during the aerated phase is around 0.6 mg/L, which is not high enough for 

complete inhibition of the ND pathway. The fact that lower N2O was produced during the 

anoxic phase is due to the lack of competition for NO2
- by heterotrophs and AOBs during 

this phase, as heterotrophs, with their NO2
- affinity constant two orders of magnitude lower 

than that of AOB, can easily outcompete them. 

The calibrated model, which simulates the operation of four sub-cycles, was utilized to 

provide a detailed analysis of N2O production. The analysis revealed that 99.5% of N2O 

production during the simulation was carried by the ND pathway compared to only 0.5% 

by NN pathway, while no net production took place by HD pathway. In terms of biomass 

contribution, biofilm contributed with about 90% of the produced N2O compared to 10% 
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produced at the flocculent sludge. Figure 3.9 shows the distribution of N2O produced in 

both aerated and non-aerated phases within the biofilm and flocculent sludge by both NN 

and ND pathways, accounting for the total N2O production. The results show that most of 

the N2O production was carried out during the aeration phases with about 90% and 70% of 

the N2O produced in biofilm and flocculent sludge was produced during the aerated phase, 

respectively. This can be attributed to the production of both NO2
- and NH2OH during 

aeration, in which NO2
- serves as the electron acceptor for the ND pathway and NH2OH as 

the electron donor for both ND and NN pathways. During non-aerated conditions, the 

competition is higher for NO2
- as anoxic heterotrophs consume it at higher rates. 

Furthermore, the NH2OH would deplete due to the absence of its production in anoxic 

conditions. It should be highlighted that the simulation revealed no net N2O production 

through the HD pathways. Instead, during non-aerated periods, HD pathways functioned 

as a sink, partially consuming the N2O produced by the NN and ND pathways. This 

observation may be attributed to the supplementary COD during non-aerated periods, 

which likely reduced the competition for electrons that typically results in N2O production 

via the HD pathway. The figure also demonstrates that N2O produced during the aerated 

phase contributes a higher portion of the total N2O produced from the biofilm than of the 

total N2O produced in the flocculent sludge. This can be attributed to mass transfer 

limitation in the biofilm, where the low concentration of NH2OH can be even lower inside 

the biofilm matrix, causing limited availability of electrons for the ND pathway to take 

place in the biofilm.  
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Figure 3-9 Quantification of N2O production sources in terms of the two pathways (ND 

or NN), aeration conditions (aerated or non-aerated periods, right), and the type of 

biomass (biofilm or flocculant sludge, left) based on the simulations with 4 subcycles 

operation. The percentages represent the percentage of N2O produced with the condition 

of the corresponding node with respect to the other node. The heterotrophic 

denitrification pathway did not contribute to N2O production. 

3.3.3 Model validation 

Model validation was conducted with data of reactor operation with 7 subcycles; a different 

aeration alternation frequency from the data in which the model has been calibrated. Figure 

3.10 shows both the actual and modelled ammonia and nitrite concentration during a full 

cycle of operation. The model was able to generalize and reproduce the ammonia dynamics 

during the operation of one cycle. Overall, while the experimental data demonstrated 

complete removal of the initial ammonia concentration of 400 mg/L, the model predicted 

a residual concentration of 20 mg/L. This discrepancy equates to a 5% error in the 

calculated ammonia removal efficiency, reflecting the deviation due to a marginally lower 
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simulated nitrification rate compared to actual experimental conditions. This discrepancy 

may be attributed to potential differences in biomass concentration and composition 

observed between the calibration and validation experiments. Additionally, the adaptation 

of Ammonia-Oxidizing Bacteria (AOB) to the reactor's operational conditions, such as low 

dissolved oxygen (DO) levels, could also play a significant role. Notably, the transition to 

a seven-subcycle operation occurred one month after a period of operation with four 

subcycles, suggesting temporal changes in biological activity and reactor performance. 

This can result into higher growth rate or lower oxygen affinity constants leading to higher 

ammonia consumption than the model predicts. For nitrite, the model predicted the final 

concentration by the end of cycle as 60 mg-N/L, while the actual concentration in the 

reactor was 35 mg-N/L, corresponding approximately to the non-nitrified ammonia. 

Similar to the performance with the calibration data, the model also predicts a higher rate 

of NO2
- accumulation than the observed data used for validation, leading to over-estimation 

of both NO2
- high and low peaks. This can be attributed to a potential adaptation of the 

heterotrophic denitrifiers to the DO concentration in the reactor during the experiment, 

given the time difference between 4 subcycles operation (calibration data) and 7 subcycles 

operation (validation data). This potential adaptation can be simulated by changing the 

values of the affinity constants from the values estimated based on the calibration. This 

allows avoiding the elevated NO2
- denitrification rates during aerated phases that result in 

reduced NO2
- concentration at the end of aeration. Noteworthy, this modelling challenge is 

inherent to the nature of mechanistic models of biological wastewater treatment processes 

represented mainly by the activated sludge models (ASMs). Indeed, in these models 

parameters are assumed to be constant over the simulation time, limiting the model’s ability 
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to capture the variability of subprocesses such as the microbial community changes (Ni 

and Yu, 2010). An interesting solution to overcome this challenge is supplementing ASM 

models with a data-driven part to capture the unobserved dynamics, forming a “hybrid 

model” (Schneider et al., 2022).  

 

Figure 3-10 Profiles of NH4
+ and NO2

- during seven-subcycles operation of the reactor 

(validation data). Shaded areas represent times when the aeration is turned on and the 

dotted line shows the simulated DO in the bulk liquid. 

In Figure 3.11, a comparison is presented between the observed N2O concentrations and 

the corresponding predictions from the simulation over a complete cycle operated with 

seven subcycles. The simulation provided a qualitative match to the actual N2O emissions 

observed in the reactor but failed to capture the full range of N2O dynamics within the 
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reactor's headspace. The experimental observations showed that the flux of N2O to the 

headspace during aerated periods declined in the last two subcycles, and the concentration 

N2O in the headspace was significantly lower than in previous subcycles; a behaviour that 

was not captured by the model. While one may relate this to the aforementioned difficulty 

of the model to sufficiently remove NH4
+ in the last cycle, the discrepancy occurs in the 

last two subcycles, leading to continued production of N2O all the way till the end of the 

seventh subcycle, indicating that ND was the dominant pathway producing N2O in the 

simulation. The decline of N2O production in the last two subcycles in the experimental 

observations does not appear to be related to the exhaustion of NH4
+ in the mixed liquor, 

over 50 mg-N/L remaining at the end of the sixth subcycle, at which point the N2O 

production has already reduced significantly. This observation warrants further study. This 

discrepancy suggests that a more refined model could better represent the N2O flux under 

varying operational conditions. A similar limitation was noted by Wan and Volcke, (2022)  

in their study of a granular sludge partial nitritation-anammox reactor, which also 

demonstrated the model shortcoming to capture the full dynamics. One potential 

explanation for the model's inability to fully replicate the observed N2O dynamics is the 

initial conditions set for the IFAS-SBR model, especially the biomass composition, which 

were based on a four-subcycle simulation while the validation data represents the seven-

subcycle operational strategy. Considering that the experiment spanned several months, 

the interim allowed for substantial microbial community changes. These microbial 

community changes are evidenced by the shift in the functional gene ratio 

nosZ/(nirS+nirK) from 0.63 to 0.58 reported by (Zou et al., 2020). The nirS and nirK genes 

are responsible for reducing NO2
- to NO, while the nosZ gene codes for reducing N2O to 
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N2. This shift suggests a diminished N2O reduction capacity, which could account for the 

inability of the model to predict the higher N2O levels. Additionally, variations in biofilm 

thickness over time could alter the concentration profiles within the biofilm matrix, further 

influencing reactor performance. To address these limitations, future model developments 

could benefit from continuous multi-cycle simulations, but this will need data collection 

over several cycles. 

 

Figure 3-11 Profile of N2O concentrations in the headspace (ppm) in a seven subcycles 

experiment (validation data) comparing the measured experimental data shown as points 

with the model predictions shown as lines. Shaded areas represent times when the 

aeration is turned on. 
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3.3.4  Reactor performance and N2O emissions under various operational conditions 

The combined impact of both DO setpoint and liquid temperature on N2O emissions and 

NH4
+ removal was simulated under a wide range of influent NH4

+ concentration using the 

4 subcycles calibrated model. Figure 3.12 and 3.13 represent the average values of both 

the average N2O in the headspace and effluent NH4
+, respectively. The results were 

obtained from over 1500 simulations covering DO ranges from 0.2 to 2.0 mg/L, 

temperatures from 5 to 25 oC, and influent ammonia concentrations ranging from 700 to 

1000 mg/L. Figure 3.12 shows that the effluent NH4
+ concentration is inversely related to 

the temperature and DO, while Figure 3.13 shows that the N2O emissions increase with 

both temperature and DO. It is a well-established knowledge that NH4
+ removal gets better 

at higher DO, given the expected faster nitrification rate. However, the purpose of the 

heatmap was to find the optimal DO under varying temperature that achieves NH4
+ removal 

with minimal possible emissions.  Note that Figure 3.11 and 3.12 show the average effluent 

concentrations over a range of influent NH4
+ concentrations.  

N2O concentration in the headspace exhibited an increase with increasing DO in the 

aeration phase despite the fact that the majority of the N2O produced in this experiment 

occurred by the anoxic ND pathway. This can be explained that by the fact that higher DO 

will increase the reaction rate of the NN pathway during aerated periods regardless of the 

already-high production taking place during the anoxic phase by the ND pathway. This 

also matches with the correlation results shown in Figure 3.14. Indeed, the DO showed 

moderate to strong correlation with average NH2OH and NO over the reactor operation 

time. The N2O production by the ND pathway can also increase with DO during the aerated 

period as the increased DO will lead to higher nitrification rates, which means a higher 
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NO2
- and NH2OH accumulation, which are the electron acceptor and donor of the ND 

pathway, respectively (Kampschreur et al., 2009). Furthermore, because of the mass-

transfer limitation and the concentration gradient created by the biofilm of the IFAS 

reactor, the increase of DO may not lead to decreased N2O production by the ND pathway 

during the aeration periods, as there would exist areas inside the biofilm with low enough 

DO for the ND pathway to function. However, this will be completely dependent on the 

biofilm thickness, as an extremely low biofilm thickness may not create sufficient gradient 

to deplete DO at the biofilm base. 

The effect of temperature on N2O emissions is two-fold, as it affects both liquid-gas mass-

transfer of N2O and the overall kinetics of biological transformation reactions (Baeten et 

al., 2020). The current model has included the impact of temperature on mass-transfer by 

including its effect on both the saturation concentration of N2O in the liquid phase and the 

mass transfer coefficient. The saturation concentration of N2O in the liquid is expected to 

decrease with increased temperature, leading to a higher chance of N2O to escape to the 

gas phase. Furthermore, higher temperature results in lower viscosity and higher diffusion 

rate, increasing the mass transfer coefficient. The overall behaviour is that an increase in 

temperature leads to an increase in N2O emissions in addition to the increased enzymatic 

activities of both nitrifiers and denitrifiers at higher temperatures (Ahn et al., 2010). In 

contrast, it was demonstrated by Adouani et al. (2015) that a lower temperature slows down 

the activity of the N2O reductase, which could lead to an increase in N2O emissions. 

However, lower temperatures were associated with higher emissions in other studies, such 

as in Daelman et al. (2013), where the emissions were significantly higher when 

temperatures were as low as 9oC compared to 18oC.  However, it was not mentioned 
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whether the DO was changed during this lower temperature or not. A higher DO in the 

aerated zones might have been required during lower temperature to achieve the same 

nitrogen removal as in summer, causing the higher emissions.  

The impact of changing DO under several temperatures on NH4
+ removal and N2O 

emissions is contradictory. Under lower temperatures, a higher DO during the aeration 

phases may be needed to achieve the same ammonia removal. However, this may cause 

higher N2O emissions. Therefore, the heatmaps in Figure 3.12 and 3.13 could be used to 

identify the optimal operational zone. For the current reactor with the same other 

operational conditions, the optimal DO needs to be well-above 1.4 mg/L during aeration 

time to achieve NH4
+ concentration in the effluent below 25 mg-N/L when temperature is 

below 15oC. For the same temperature, DO during aeration phase needs to be controlled 

below 0.8 mg/L for the least N2O emissions. Under lower temperature the DO could be 

further increased without significant increase in N2O emissions. For example, at a 

temperature of 5oC, the DO could be increased up to 1.1 mg/L with almost the same N2O 

emissions rate. Moreover, the increase in NH4
+ removal as a response to DO increase is 

less significant under low temperature, making it more challenging to change the DO set 

point to satisfy both NH3 removal and N2O emissions. This result is in alignment with 

conclusions of other studies that suboptimal DO conditions are a key factor contributing to 

elevated N2O emissions and that multi-objective control is necessary, instead of single 

objective control that is only based on NH4
+, for instance, as in Hwangbo et al. (2021). 
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Figure 3-12 The combined effect of dissolved oxygen and temperature on NH4
+ effluent 

concentrations (mg N.L-1) as simulated with the calibrated model for an IFAS-SBR 

reactor under 4 subcycles operation at an influent NH4
+

 concentration of influent NH4
+ 

ranging from (700 – 1000 mg N.L-1). 
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Figure 3-13 The combined effect of dissolved oxygen and temperature on the average 

N2O concentration in the headspace (ppm) as simulated with the calibrated model for an 

IFAS-SBR reactor under 4 subcycles operation at an influent NH4
+concentration of 

influent NH4
+ranging from (700 – 1000 mg N.L-1). 
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Figure 3-14 Correlation between variables obtained from scenario analysis simulations 

3.4 Summary 

A mechanistic model for IFAS-SBR reactor was calibrated with detailed dynamic data, 

including N2O emissions. The model was able to predict the N2O dynamics in the 

calibration data in which the SBR cycle was composed of four aerated/non-aerated 

alternating subcycles, and partially qualitatively described the N2O emission dynamics 

during the validation data when the SBR cycle was operated with seven alternating 

aerated/non-aerated subcycles. The model has been used to reveal insights of N2O 

emissions dynamics and pathway contributions given the hybrid nature of the reactor 

biomass (biofilm/suspended) and the dynamic operation. Most of the N2O was produced 

during the aerated phase of the reactor operation through the nitrifier denitrification 
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pathway given the low dissolved oxygen concentration (≈ 0.60 mg/L) during aerated 

periods. The low levels of dissolved oxygen were sufficient to slow down heterotrophic 

anoxic reactions during aerated periods. Consequently, unlike in non-aerated periods, this 

reduction in activity decreased the competition for nitrite, facilitating its consumption via 

the nitrifier denitrification pathway and producing N2O. Moreover, biofilm was shown to 

be more contributing to N2O production than flocculent sludge in the studied reactor. 

As the model included the effect of temperature on both mass-transfer and microbial 

activity, it was used to provide insights on the optimization of operational strategies to 

achieve both N2O mitigation and NH4
+ removal during seasonal temperature changes. The 

reason of the potential increase in N2O emissions during winter time might be attributed to 

the potential increase of the DO setpoint necessary for achieving nutrient removal. This 

makes it challenging to achieve optimal operation for both NH4
+ removal and N2O 

emission mitigation in nitritation-denitritation reactors treating nitrogen-rich wastewater. 

A balance between NH4
+ removal and N2O emissions should be focused on during the 

operation of reactors with alternating aeration instead of controlling DO solely based on 

NH4
+ removal. Thus, a multi-objective controller is recommended.  
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Chapter 4 - Machine learning for modelling nitrous oxide emissions from wastewater 

treatment plants: Aligning model performance, complexity, and interpretability * 

4.1  Introduction 

4.1.1 Limitations of mechanistic models 

The advancements of mechanistic models describing N2O emissions from biological 

nitrogen removal processes were driven by the hypothesis that a comprehensive model 

structure would be capable of capturing complex patterns in full-scale applications. 

However, this often results in extremely complex and over-parametrized models 

(Domingo-Félez and Smets, 2016), leading to a challenging calibration and validation 

process with high variability in the estimated parameters across different studies (Vasilaki 

et al., 2018). For example, reported values in literature for affinity constants of two key 

variables in N2O production pathways: nitric oxide (NO) and nitrite (NO2
-), varied with 

two orders of magnitude (Domingo-Félez and Smets, 2016). Furthermore, efficient 

calibration of mechanistic models may require monitoring of pathway intermediates that 

are either difficult or expensive to measure in full-scale WWTPs such as hydroxylamine 

(NH2OH), and nitric oxide (NO), in addition to ammonia (NH4-N), nitrite (NO2
-), nitrate 

(NO3
-), and nitrous oxide (N2O). 

  

_________________________ 

* A modified version of this chapter has been published in September, 2023 in Water 

Research Journal 
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Furthermore, efficient calibration of mechanistic models would ideally require monitoring 

of pathway intermediates that are either difficult or expensive to measure in full-scale 

WWTPs such as hydroxylamine (NH2OH), and nitric oxide (NO), in addition to ammonia 

(NH4-N), nitrite (NO2
-), nitrate (NO3

-), and nitrous oxide (N2O). This can result in 

increased complexity and cost to the calibration process of mechanistic models to get a 

reliable quantitative emissions estimation. These challenges limit the usage of mechanistic 

models for preliminary estimation of emissions in future applications as they fail to provide 

process modelling that accurately describes N2O emissions, and supports a mitigation plan. 

Although mechanistic models are favorable because the interpretability and trust in model 

results that are generally inherent in the knowledge-based models, mechanistic models for 

N2O are still struggling to provide accurate predictions, still limiting their applicability. 

4.1.2 Machine learning as a potential candidate 

Given the limitations of mechanistic modelling, and the large operational data available in 

WWTPs from both sensors and laboratories, machine learning holds significant promise 

for N2O emissions prediction. Machine learning models are versatile and powerful, 

providing the ability to capture non-linear and complex relationships in the data. However, 

accuracy is not often enough for process models, especially when insights into the root 

causes of the problem are needed such as in the case of N2O emissions modelling. By 

choosing an interpretable model, machine learning can be utilized for process modelling 

serving not only to describe N2O emissions but also to identify crucial factors associated 

with emissions, and suggest appropriate corrective actions during dynamic conditions as a 

part of N2O emissions mitigation plan. Furthermore, opting for a  computationally efficient 

and less complex ML model offers enables real-time online monitoring and prediction of 
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N2O emissions, which could be deployed in soft sensors. A lack of collaboration with 

statisticians and computer scientists in the development of research in the area of 

wastewater data or information technology were also noted (Corominas et al., 2018). This 

increases the needs for further investigation in the machine learning methods to create 

methods more tailored to data generated from WWTPs. Thus, ML models should be seen 

through a more comprehensive vision that combines process modelling and understanding 

under the same framework.  

A more holistic evaluation of ML models is still needed to yield a model selection for N2O 

prediction application. The evaluation criteria should help achieving a high accuracy using 

relatively simple models to be used in the application of N2O emission soft sensors. 

Previous studies lack such a comprehensive approach that includes not only a 

comprehensive prediction accuracy, but also interpretability, model complexity, 

generalization ability, and computational speed. This can help use ML efficiently to 

provide reasonable insights on the primary sources of N2O emissions, contribute to 

providing a mitigation plan, in addition to the regular task of N2O emissions prediction. 

Only limited number of studies focused on the quantitative prediction of N2O emissions 

using ML-supervised regression models based on full-scale long-term (Hwangbo et al., 

2020, 2021). Hwangbo et al. (2021) used a deep neural network (DNN) for process 

modelling of the N2O emissions, and long short-term memory (LSTM) for N2O 

forecasting, based on full-scale facility data. Despite the high reported accuracy for process 

modelling in this study, DNN is still a highly complex and a low interpretable model 

(Montavon et al., 2017).  
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The overall objective of this chapter is to introduce a comprehensive ML-based modelling 

framework that encompasses efficient data preprocessing, ML model selection, and input 

feature reduction. Rather than advocating for a universal model, this paper offers a tailored, 

fit-for-purpose approach that adapts to the specific context of each case study. Data 

characteristics are therefore incorporated through exploratory data analysis and a robust 

data pre-treatment methodology. Model evaluation is approached from a holistic 

perspective, encompassing accuracy metrics, model complexity, computational power, and 

interpretability. Additionally, the trade-off between data acquisition associated costs and 

model performance is addressed by implementing an input feature selection technique. 

This study applies the framework to various models grounding a dataset obtained from a 

full-scale N2O monitoring campaign conducted at a reactor performing BNR with available 

sensor data.  

4.2 Approach and Methodology 

4.2.1 Raw data and process description 

This study utilized data gathered by Daelman et al., (2015) from a 16-month monitoring 

campaign at the Kralingseveer WWTP in the Netherlands. The plant treats 80,000 cubic 

meters of domestic wastewater daily, and features a plug-flow reactor followed by two 

parallel carrousel reactors. The focus of this work is solely on the northern carrousel reactor 

that included alternating anoxic/aerobic zones, with aeration achieved through surface 

aerators (Figure 4.1). The reactor was covered, and the off-gas was funneled into ducts, 

directed to a gas analyzer, and the N2O levels were measured. The reactor was also 

equipped with NH4
+-N [g/m3], NO3

--N [g/m3], NO2
--N [g/m3], temperature [oC], total 

suspended solids (TSS) [g/m3], along with three dissolved oxygen (DO) [g/m3] probes at 
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different locations (DO1, DO2, DO3). Concentrations of NH4
+-N [g/m3], NO3

--N [g/m3], 

and DO [g/m3] at the end of the plug-flow reactor were also available, representing the 

corresponding influent concentrations to the north carrousel. Moreover, influent flow rate 

[m3/d] and NH4
+-N loading [kg/d] to the north carrousel were available. 

 

Figure 4-1 Layout of Kralingseveer WWTP modified from Vasilaki et al. (2018) 

Descriptive analysis (Table 4.1) was employed to ascertain the attributes of each examined 

feature concerning their central inclination, to reveal the position of the distribution for 

each variable, spread to quantify the dataset's variation, and distribution to portray the 

symmetry of each feature. 
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Table 4-1 Statistical analysis of the dataset 

Variable Unit Mean Median Min Max Q25 Q75 Skewness Kurtosis 

Variance 

Inflation 

Factor 

NH4- N 𝑔𝑁 𝑚−3 1.67 1.12 0.00 24.62 0.85 1.39 4.96 29.36 2.75 

NO3
-
 -N 𝑔𝑁 𝑚−3 5.28 4.35 0.00 22.60 1.27 8.22 0.84 0.14 4.99 

NO2
-
 -N 𝑔𝑁 𝑚−3 1.13 0.74 0.00 11.51 0.29 1.59 1.89 4.59 4.885 

DO1 𝑔𝑁 𝑚−3 0.55 0.01 0.00 4.99 0.00 1.12 1.90 4.06 3.142 

DO2 𝑔𝑁 𝑚−3 0.63 0.14 0.00 4.99 0.00 0.95 1.67 2.46 3.460 

DO3 𝑔𝑁 𝑚−3 2.03 2.06 0.00 3.71 1.52 2.49 0.10 -0.32 17.804 

TSS 𝑔𝑁 𝑚−3 4.13 4.03 1.04 9.99 3.71 4.32 2.89 15.05 23.749 

TEMP ℃ 17.53 18.59 9.30 21.40 15.40 19.88 -0.69 -0.75 50.874 

NO3
-_In 𝑔𝑁 𝑚−3 2.77 2.19 0.08 12.99 0.84 3.98 1.18 1.05 5.834 

DO_In 𝑔𝑁 𝑚−3 2.45 2.45 0.14 4.99 2.23 2.57 0.91 4.24 16.137 

NH4_loading 𝑘𝑔 𝑁 𝑑−1 99.87 80.46 0.62 770.5 46.47 125 2.48 9.34 6.040 

Flow rate 𝑚3ℎ−1 3850 3174.04 280 14371 2484 4096 2.24 5.02 8.641 

NH4_In 𝑔𝑁 𝑚−3 11.60 11.25 0.12 33.64 6.94 15.55 0.37 -0.28 12.155 

N2O-N 𝑘𝑔 𝑁 ℎ−1 68.68 10.67 0.00 556 0.03 108.7 1.68 2.14 __ 

 

4.2.2 Data pre-processing 

4.2.2.1 Data synchronization and splitting 

Data were collected from sensors with varying frequencies across different features, 

ranging from 10 to 30 minutes. To ensure that all the features are reported at the same time 

stamp, resampling and merging steps were employed. Firstly, each feature's dataset was 
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individually resampled to have a uniform frequency of 30 minutes, representing the lowest 

common frequency. This resampling process harmonized the time intervals across all 

features, facilitating further merging of features using an outer join method. Moreover, data 

instances with missing values were removed from the final dataset. The methods employed 

utilized all available features, avoided data imputation and interpolation, and maintained a 

practical frequency for N2O emission reporting.  

The pre-processed dataset was then randomly split into training and testing sets using a 

standard ratio of 75% for training and 25% for testing.  The training data was further 

divided into k-fold cross-validation (CV) splits to optimize model hyperparameters 

effectively. Lastly, the dataset was scaled using normalization, keeping all the data in the 

range [0,1].  

4.2.2.2 Outlier detection 

The Mahalanobis distance was utilized for multivariate outlier detection, taking into 

account the correlations between variables by incorporating their covariance matrix. The 

process involves fitting the most appropriate statistical distribution model to the 

distribution of calculated distances, which is determined by comparing various distribution 

models and selecting the one with the least residual sum of squares (RSS).  

To enhance the robustness of the selection process, a range of statistical distributions is 

tested, and the distribution yielding the lowest RSS is chosen as the most suitable model. 

After selecting the best distribution, outliers are identified based on their statistical 

significance in relation to the chosen distribution. Data points exhibiting a significance 

level of less than 0.01 are considered potential outliers. 
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The Mahalanobis distance calculation involves the following equations: 

𝑆 =  
1

𝑛 − 1
 ∑(𝑋 − 𝑀)(𝑋 − 𝑀)𝑇 

4.1 

𝐷(𝑥) =  √(𝑋 − 𝑀)𝑇𝑆−1(𝑋 − 𝑀) 4.2 

Here, S is the covariance matrix, n represents the number of observations, X is the vector 

of the observations for a particular variable, M is the mean vector of the dataset, and T 

signifies the transpose operation. 𝐷(𝑥) represents the Mahalanobis distances calculated to 

the mean of the dataset. By incorporating the covariance matrix, the Mahalanobis distance 

effectively accounts for the relationships between variables, thus providing a more accurate 

identification of multivariate outliers. 

4.2.2.3 Feature scaling 

Model input features have different scales that can result in a different contribution to the 

regression model output depending on the specific scale of each feature, which can affect 

the accuracy of several models. Therefore, the entire dataset features and output have been 

scaled using the minimum-maximum normalization method that results in the scaled data 

being in the range [0, 1], according to the following equation: 

𝑥𝑖 −  𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 −  𝑥𝑚𝑖𝑛
 4.3 

where 𝑥𝑚𝑖𝑛and  𝑥𝑚𝑎𝑥 are the minimum and maximum value of each feature.  

4.2.3 Machine learning models 

4.2.3.1  Model development and optimization 

This study included ML models of varying complexity, including the intuitive k-Nearest 

Neighbors (kNN) algorithm that measures distances between data points and identifies 
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similarities. A Decision Tree (DT) was also developed for its simplicity as a branching 

structure that recursively divides data based on selected feature conditions. Additionally, 

ensemble models based on decision trees were also employed using several aggregation 

algorithms: bagging (Random Forest), gradient boosting (XGBoost), and adaptive boosting 

(AdaBoost). A benchmark Deep Neural Network was developed for comparison. 

Hyperparameters of the employed models were optimized using a grid search algorithm. 

Grid search explores a pre-defined grid space of hyperparameters to find the set of values 

that maximizes the model mean performance on the k-fold CV subsets. The list of 

optimized values of hyperparameters for each model, along with the corresponding ranges 

used in the grids as input for the algorithm, is provided Tables 4.2, 4.3, 4.4, 4.5, 4.6, and 

4.7. All modelling steps in this study were implemented in Python 3.9 using open-source 

packages such as NumPy, Pandas, Scikit-learn, Matplotlib, Tensorflow, and SciPy. 

Table 4-2 Hyperparameters of decision tree model 

Parameter Minimum Maximum Selected 

Tree depth 1 40 30 

Minimum number of samples in leaf 2 15 4 

Minimum number of samples to split node 2 15 9 

 

Table 4-3 Hyperparameters of k-NN model 

Parameter Minimum Maximum Selected 

N_neighbors 1 10 2 
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Table 4-4 Hyperparameters of random forest model 

Parameter Minimum Maximum Selected 

Number of estimators (trees) 50 1500 1250 

Splitting criterion (Squared error, absolute error) Squared error 

Max depth of base trees 1 40 20 

 

Table 4-5 Hyperparameters of XGBoost model 

Parameter Minimum Maximum Selected 

Number of estimators (trees) 50 1500 1200 

Learning rate 0.001 1.5 0.01 

Minimum child weight 3 6 5 

Subsample 0.5 0.8 0.7 

Max depth of trees 1 40 18 

Splitting criterion (Linear error, squared error, 

exponential error) 

squared error 

 

Table 4-6 Hyperparameters of AdaBoost model 

Parameter Minimum Maximum Selected 

Number of estimators (trees) 50 1500 800 

Learning rate 0.001 1 1 

Max depth of trees 1 40 18 
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Loss function (Linear error, squared error, 

exponential error) 

square 

 

Table 4-7 Hyperparameters of Deep Neural Netwo model 

Parameter Minimum Maximum Selected 

Number of hidden layers 1 8 5 

Number of neurons in layer 1 20 200 160 

Number of neurons in layer 2 20 200 120 

Number of neurons in layer 3 20 200 80 

Number of neurons in layer 4 20 200 40 

Number of neurons in layer 4 20 200 20 

Learning rate 0.0001 1 0.001 

Loss function   Mean-squarer error 

Activation function   Rectified linear unit  

Optimization algorithm   Adam 

Number of epochs   1000 (with early stopping) 

4.2.3.2 Preliminary model filtration 

The Akaike Information Criterion (AIC) was used to select a single model from each of 

the three groups, to focus on the most efficient models. AIC assesses the trade-off between 

the goodness of fit and the complexity of the model, making it a reasonable criterion for 

the preliminary filtration of models.  



 
 

87 
 

4.2.3.3 Model performance evaluation 

The accuracy of N2O estimations has been comprehensively evaluated using both statistical 

metrics and dynamic process evaluation using the out-of-sample test set. Regression-based 

metrics included the coefficient of determination (R2) – used to estimate the proportion of 

variance explained by the model – along with mean absolute error (MAE) and root mean 

squared error (RMSE), both of which were employed to provide information about the 

magnitude of error across different range of N2O emissions. This was supported by a 

detailed residual analysis to provide deeper insights on the model performance and detect 

potential areas of improvement. Furthermore, to evaluate the ability of the models to depict 

process dynamics, a zoomed time series plots were used to compare model predictions with 

the real N2O emissions. A cross-correlation analysis was also conducted to ensure that there 

is no time lag between the real ad estimated profiles of N2O emissions. Lastly, the degree 

of potential overfitting - where the model cannot generalize to new unseen data - was tested 

using the learning curves to gain insights about the potential improvement of model ability 

when data volume increases.  

In addition to accuracy evaluation, a comparative analysis of training and prediction times 

across models was conducted. The experiments were conducted on a system running 

Windows 11 with an Intel(R) Core (TM) i7-9750H CPU, operating at a base frequency of 

2.60 GHz. The system was equipped with 16.0 GB of RAM, and it operated on a 64-bit 

architecture. 

4.2.3.4 Feature selection 

A two-stage feature selection algorithm has been utilized to select the optimal set of 

features. The initial phase involves an adjusted version of the maximum relevance 
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minimum redundancy (mRMR) algorithm (Ding and Peng, 2003), which identifies the top 

𝑚 features that exhibit the highest relevance to the target variable while maintaining 

minimal redundancy among the previously chosen features, regardless of the used model. 

Relevance was assessed using mutual information based on the following formula: 

𝑀𝐼(𝑥; 𝑦) =  ∬ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑑𝑥𝑑𝑦 

4.4 

Where 𝑝(𝑥, 𝑦) is the joint probability function, 𝑝(𝑥)  and 𝑝(𝑦) are the marginal probability 

distribution functions of X and Y. Redundancy, on the other hand, was defined using the 

variance inflation factor (VIF) - a statistical metric that evaluates the severity of 

multicollinearity by quantifying the degree to which the variance of a specific independent 

variable’s estimated coefficient is inflated due to multicollinearity. For each feature, a 

linear regression was performed using this feature as the dependent variable and all other 

features as independent variables. The VIF of the feature is then calculated using the 

formula: 

𝑉𝐼𝐹 =  
1

1 − 𝑅2
 

4.5 

To pinpoint the optimal number of features 𝑚, the second phase of this algorithm 

incorporates a wrapper approach that applies the modified mRMR technique within every 

model to determine the Pareto Front solutions. These solutions embody the ideal balance 

between model performance and number of input features. 

4.2.3.5 Permutation Feature importance 

Permutation feature importance is a technique utilized to evaluate the significance of input 

features by permuting the values of each feature and measuring the resulting impact on 
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model performance. The degradation in model performance, quantified by mean squared 

error, is then attributed to the importance of the feature. Thus, feature importance is a 

model-agnostic measure, as it does not rely on any specific model characteristics or 

assumptions.  

4.3  Results and Discussion 

4.3.1 Data pre-processing 

The study is based on a final dataset with more than 10,000 datapoints over a time window 

of 300 days, which is the outcome of the data synchronization process applied to 13 features 

and the target variable (N2O emissions). Figure 4.2 presents the normalized box plots of all 

features, facilitating a common x-axis comparison. Overall, a heavy-tailed distribution can 

be observed for the majority of these features, a finding that is supported by the descriptive 

analysis of the dataset shown in Table 4.1. For instance, the skewness of NH4, TSS, DO1, 

and NO2
- features were 4.96, 2.89, 1.90, and 1.89, respectively. This is not uncommon in 

WWTPs where data collected from complex biological treatment processes may exhibit a 

skewed or bimodal distribution due to operational or seasonal changes in the process. 

Widely-adopted univariate statistical methods for outlier detection such as the interquartile 

range (IQR) presented by box plots, or Z-score methods would remove a large portion of 

the data (about 10% of the dataset in this study) with valuable information. This does not 

agree with the purpose of modelling in the wastewater domain, where the goal is modelling 

of the entire spectrum including extreme values that are likely to happen. Thus,  these 

methods must be avoided when the data is highly-skewed (Hubert and Vandervieren, 

2008).  
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A multivariate outlier detection method was implemented using the Mahalanobis distance. 

The detected outliers comprised less than 1% of the dataset. Among various statistical 

distributions, the distribution of the calculated Mahalanobis distances was found to fit the 

generalized extreme value distribution as shown in Figure 4.3. Modelling the statistical 

distribution of the calculated distances allowed a parametric detection of the outliers 

through selection of a threshold based on statistical significance. Data instances with 

Mahalanobis distance higher than the specified threshold (significance = 0.01) was 

identified as outliers. Using the Mahalanobis distance also accounted for dependence 

between features in the dataset, which is aligned with the nature of data collected from 

complex biological treatment processes, where correlations between variables are present. 

This multivariate approach can help to identify unusual or abnormal events from a process 

perspective, where traditional univariate outlier detection methods fail. Data points deemed 

as outliers in the multivariate context were not necessarily extreme values for the individual 

variables, showing the discrepancies between univariate and multivariate outlier detection 

methods. 
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Figure 4-2 Box plots of the normalized dataset features 

 

Figure 4-3 Distribution of the calculated Mahalanobis distances with the threshold line 

(at significance = 0.01) and the best statistical distributions 
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4.3.2 A holistic approach for modelling N2O emissions from WWTPs 

Previous efforts on modelling N2O emissions using ML models have focused solely on 

prediction accuracy. Quite to the contrary, the present study proposes a holistic approach 

that strikes a balance between model interpretability, complexity, needed computational 

power, in addition to a comprehensive performance evaluation of the model accuracy. The 

urge for such a holistic approach stems from the uncertainty around N2O production 

pathways, the complexity of wastewater treatment operations and multiple objectives of 

process modelling. The developed model shall serve not only as an online soft sensor that 

can accurately and efficiently predict N2O emissions with optimal computational 

complexity and speed, but also be interpretable to inform operators with key contributors, 

and support mitigation activities.  

A comprehensive accuracy evaluation is needed to provide a better understanding of model 

performance. Reported models in literature were evaluated majorly using the coefficient of 

determination (R2) which can be misleading, as illustrated in the work of Hwangbo et al. 

(2021), where R2 was only used for reporting model performance, neglecting potential high 

prediction errors in some output ranges. In this study, the accuracy of models was evaluated 

using R2, MAE, RMSE, a residual analysis. R2 was used to estimate the model’s ability to 

explain variance in predicted N2O, while MAE, RMSE, and residual analysis were used to 

provide a clear overview of the model prediction errors across the entire range of N2O 

values. Furthermore, including time series plots and cross-correlation analysis were 

conducted to evaluate the performance of models in terms of process dynamics. For that 

purpose, detailed time series plots were used to evaluate the ability of models to capture 

emission patterns, including local minima and maxima. This was supported by a cross 
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correlation analysis, ensuring there is no lag between real emissions and model estimations. 

Furthermore, the extent of overfitting was evaluated, in which a model may adhere too 

closely to the training data's noise and fail to generalize to unseen data. This was 

particularly considered during model development by employing the k-fold CV in 

hyperparameter optimization. 

To provide operators and decision-makers with action plan based on a soft sensor, trust in 

the model predictions is needed. As a prerequisite to trust, inclusion of interpretability to 

model selection and evaluation criteria is necessary. According to Lipton, (2018), model 

properties that enable interpretability can be categorized under model transparency, and 

post-hoc interpretability. Unlike black-box models, a transparent model provides an 

understanding of the underlined mechanism. Models such as deep neural networks (DNN) 

can be seen as black-box and less transparent models in comparison with simpler models 

such as decision trees, where the model can be presented to the user through visual artifacts 

(Ribeiro et al., 2016). However, a decision tree, for instance, may grow too deep that makes 

the user inference much challenging. Such cases are likely to happen when the data are 

high-dimensional or the model is allowed to become too complex. This necessitates the 

importance of considering both model complexity, and feature reduction while adoption of 

ML in WWTP applications. 

Furthermore, using the model in a soft-sensor application would require an attention to the 

computational power of the model, generally referring to the resources required to perform 

training and prediction using the model. These resources can include processing time, 

memory, storage, and the ability to leverage parallelism. In this study, processing time was 

used as a measurable metric for model computational power. A faster model is generally 
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more desirable for real-time monitoring applications, allowing for more frequent updates 

and high-resolution predictions (Torfs et al., 2022). 

In addition to the advantages of a lower data dimensionality – in terms of using fewer 

model features- to model complexity and interpretability, there is also a need to reduce the 

number of input features from a wastewater process perspective.  An overlooked fact in the 

previous studies is that increasing the number of input features needs more intensive data 

collection through either new routine measurements and/or sensor installations. This 

translates into higher cost, operational complexity, and higher implied uncertainty. Thus, a 

careful consideration of the number of model input features and data dimensionality should 

be part of a data-driven model development. A trade-off between model performance and 

the number of features is required, to ensure there are no unnecessary, redundant, or less-

important features used in the model. 

Therefore, in this study, a new definition for model comparison and selection, considering 

performance, generalization, complexity, data acquisition associated costs, and 

computational power, was employed, rather than solely focusing on accuracy metrics. First, 

a preliminary selection of models was performed. ML models were classified into three 

categories based on their varying degrees of transparency, and complexity. The first 

category encompasses simple models like kNN and Decision Trees, which provide easily 

understandable results and require relatively low computational resources. The second 

category includes moderately complex, partially transparent ensemble models such as 

AdaBoost, XGBoost, and Random Forest, which can achieve higher performance while 

maintaining a degree of interpretability and insight into the models' inner workings. The 

third category consists of complex, high-performance models like Deep Neural Networks 
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(DNN), which offer powerful learning capabilities at the cost of lower interpretability, 

transparency, and increased computational demands. Then, another model selection step 

was employed by choosing only a single model from each category based on a combination 

of accuracy and model complexity (using AIC), in which then a comprehensive evaluation 

was applied on the selected three models.  

4.3.3 Model selection and performance comparison 

Figure 4.4 shows the actual and predicted N2O values based on the test data using ML 

regression models across the three different categories. For the first group, DT achieved a 

lower accuracy potentially due to the piecewise constant approximation, where the model 

divides the input space into regions and assigns a constant value to each region. This leads 

to relatively low model performance when the data shows complex patterns, which is the 

case in the present dataset. However, the problem can be solved by using ensemble tree-

based models, which were adopted in the second category of models in this study. Among 

the three tested ensemble methods, AdaBoost gave both a better fit to the data and showed 

lower errors over the different ranges of the data than XGBoost, and Random Forest 

models. For the third group, the DNN validated the relatively high performance previously 

reported by Hwangbo et al. (2020). However, it did not demonstrate the highest 

performance among the experimented models in this study. 

Table 4.8 shows the AIC scores comparing models across each group to focus on the most 

effective models, finding the optimal compromise between model accuracy and 

complexity. For the first group, the kNN scored better than the decision tree. For the second 

group, AdaBoost scored a better AIC than RF and XGboost, indicating that both algorithms 
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needed a higher structural complexity to performance ratio, increasing the needed 

computational power for online applications.  

Therefore, moving forward, a single model representing each group (kNN, AdaBoost, and 

DNN) was used in the next steps of the present study. The selected models were not 

compared using AIC. Models with vastly different structures can yield unreliable results, 

as AIC’s validity hinges on the assumption of similar underlying assumptions of models.  
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Figure 4-4 Performance of the six models on the test dataset. The graphs show the actual 

vs the modelled N2O values with the actual trendline compared to the perfect agreement 

line (R2 = 1). 
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Table 4-8 Comparison of AIC of models among different groups 

Group Model AIC 

Group 1 

kNN 23,512 

Decision Tree 32,433 

Group 2 

AdaBoost 311,771 

Random Forest 961,766 

XGBoost 501,770 

Group 3 DNN 121,814 

 

4.3.4 Balancing data acquisition and model performance through feature selection 

Figure 4.5 compares the kNN and AdaBoost performances for different feature subsets 

selected by the modified mRMR algorithm with selection based on MI. The key difference 

between both approaches is that mRMR considers features relevance to the target output 

and redundancy between features, while MI only considers the former. It can be seen that 

the mRMR approach exhibited a consistent increase in model performance as more features 

are added, which tend to level off beyond eight features.  

On the other hand, the MI approach resulted in a fluctuation in the performance after adding 

new features in some cases, such is in kNN model (Figure 4.5b). This observation 

highlights the limitations of using relevance alone (represented by MI) for feature selection 

in datasets characterized by complex relationships and multicollinearity. While the widely-

used relevance-based methods rely on calculating relevance for each feature to the target 

variable using various criteria (MI, Pearson correlation, F-regression), this approach may 
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not be optimal for developing low-cost, less-complex, and highly-interpretable models due 

to the existence of redundancy in the selected features. This issue is especially pronounced 

when dealing with complex datasets like wastewater data, where multicollinearity is 

frequently present (Ching et al., 2021).  

Table 4.1 shows the VIF calculated for each feature in the dataset, highlighting the high 

multicollinearity (redundancy) in the data that needs to be treated. Including redundant 

features can lead to decreased interpretability and increased data collection, storage, and 

processing costs. This necessitates the consideration of redundancy while omitting features 

from the model, in which the modified version of the mRMR algorithm was utilized to 

address these challenges through considering both features relevance with the target 

variable and redundancy with other features. 

As evident from Figure 4.5a and b, utilizing the modified mRMR method demonstrated a 

more efficient and reliable approach for feature selection. Indeed, it can be seen as 

considering both maximizing relevance and reducing redundancy within the dataset. For 

instance, in the case of the AdaBoost model (Figure 4.5a), the features selected by the 

modified mRMR consistently contributed to better model performance than relevance-

based method (using only MI), indicating the method’s efficiency. As a modification to 

mRMR, redundancy was considered among the data features using the VIF to provide a 

more comprehensive representation of multicollinearity. The algorithm begins by selecting 

the feature with the highest mutual information with the target variable and recursively 

selects features that offer the most relevance compared to redundancy, as determined by 

the VIF. The highest VIF values in the present dataset were attributed to Temperature, TSS, 

and DO3. However, the modified mRMR algorithm favored the selection of these features 
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over others with lower VIF such as influent flow rate, ammonia loading, and nitrate 

concentration in the influent. 

 

 

Figure 4-5 The performance of models as a result of the K best features selection: A (on 

the left): AdaBoost model, B (on the right): kNN model, C (to the bottom): DNN model 

Table 4.9 presents the features selected by both methods (mRMR and MI) for varying 

numbers of features. The input feature subset chosen by mRMR not only improved model 

performance but was also more relevant from a process knowledge standpoint, offering a 

more insightful and convincing selection method for complex datasets. For instance, the 

top 5 selected features by the modified mRMR method were (NO2
-, NO3

-, NH4, DO1, 

TEMP), whereas the relevance-based method omitted NH4 from the top five important 
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features. Including NH4 aligns with the process knowledge as the concentration of NH4 is 

a crucial determinant of N2O concentration because it serves as the primary source of 

nitrogen in the influent. This agrees with Hwangbo et al. (2021)’s global sensitivity 

analysis results listing NH4 as one of the most influential feature on N2O emissions. 

Moreover, the residual NH4 concentration offers an approximation of the proportion of 

nitrogen that has undergone conversion in the biological nutrient removal (BNR) process. 

In addition, NH4 is identified as a precursor to hydroxylamine, which is the principal 

electron donor in the nitrifier nitrification pathway for N2O production (Ni et al., 2011). 

This underlines the significance of NH4 in both N2O production pathways, suggesting that 

its inclusion as an input feature is essential for a data-driven model with a high level of 

interpretability and accuracy. The relevance-based chose the DO at two intermediate 

locations in the carrousel while mRMR approach selected the DO at the end of the 

carrousel. An indication of the optimized selection by mRMR approach is obvious when 

using a powerful model such as AdaBoost that is able to extract most of the possible 

information from the available data. At this number of features, the AdaBoost performance 

increased from (R2 = 0.85) when using the relevance-based method to (R2 = 0.88) when 

using mRMR.  

To select the best number of features, the modified mRMR was used as a wrapper method, 

where each model was fed with an increasing number of the best features selected by the 

mRMR approach and the model performance was recorded. As shown in Figure 4.5a and 

b, the performance of kNN and AdaBoost has leveled off after the incorporation of eight 

features. Similar conclusions can be derived for the DNN, despite that mRMR exhibited a 

better performance than MI only for eight or less features. 
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Table 4-9 Comparison of the features selected based on both the relevance-based method 

using mutual information (MI) and the maximum relevance minimum redundancy 

(mRMR) method 

No Best features (mRMR) Best features (MI) 

1 TEMP TEMP 

2 TEMP, NH4 TEMP, DO3 

3 TEMP, NH4, NO3 TEMP, DO3, NO2 

4 TEMP, NH4, NO3, DO1 TEMP, DO3, NO2, DO2 

5 TEMP, NH4, NO3, DO1, DO2 TEMP, DO3, NO2, DO2, TSS 

6 TEMP, NH4, NO3, DO1, DO2, DO3 TEMP, DO3, NO2, DO2, TSS, DO1 

7 TEMP, NH4, NO3, DO1, DO2, DO3, TSS TEMP, DO3, NO2, DO2, TSS, DO1, NH4_In 

8 

TEMP, NH4, NO3, DO1, DO2, DO3, TSS, 

NO3_In 

TEMP, DO3, NO2, DO2, TSS, DO1, NH4_In, 

NO3 

9 

TEMP, NH4, NO3, DO1, DO2, DO3, TSS, 

NO3_In, DO_In 

TEMP, DO3, NO2, DO2, TSS, DO1, NH4_In, 

NO3, NO3_In 

10 

TEMP, NH4, NO3, DO1, DO2, DO3, TSS, 

NO3_In, DO_In, NH4_loading 

TEMP, DO3, NO2, DO2, TSS, DO1, NH4_In, 

NO3, NO3_In, DO_In 

11 

TEMP, NH4, NO3, DO1, DO2, DO3, TSS, 

NO3_In, DO_In, NH4_loading, Influent 

TEMP, DO3, NO2, DO2, TSS, DO1, NH4_In, 

NO3, NO3_In, DO_In, NH4 

12 

TEMP, NH4, NO3, DO1, DO2, DO3, TSS, 

NO3_In, DO_In, NH4_loading, Influent, NH4_In 

TEMP, DO3, NO2, DO2, TSS, DO1, NH4_In, 

NO3, NO3_In, DO_In, NH4, Influent 

Thus, eight features were selected as the optimal number of features to allow a trade-off 

between enhancing model performance and minimizing data cost. This method allowed 

obtaining the Pareto front solution- an ensemble of solutions offering an ideal equilibrium 
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for this multi-objective optimization, defined as a balance between model performance and 

the number of features. As shown in Table 4.10, employing an effective feature selection 

method resulted in about 40% reduction in the amount of data needed with reduction of 

model performance in terms of R2 by only 1%. Also, a decrease by 50% was achieved in 

the model computational time, allowing less resources and better opportunities for 

incorporation in a more frequent real-time monitoring of N2O emissions and utilization in 

digital twins. It is noteworthy that this does not assume generalization of specific input 

features to other cases. Rather, it demonstrates the framework - through application to a 

full-scale dataset - that researchers and engineers can employ to curtail input features across 

other case studies. 

Table 4-10 Accuracy metrics and processing time of models before and after feature 

reduction (best performance highlighted in bold) 

Model 

Accuracy metrics Processing time (s) 

R2 MAE RMSE Training  Prediction 

kNN 

Full features 0.91 14.10 31.13 0.010 0.09 

Feature reduced 0.88 18.00 37.23 0.008 0.04 

AdaBoost 

Full features 0.95 12.51 24.69 64 0.85 

Feature reduced 0.94 13.12 26.27 33 0.49 

DNN 

Full features 0.94 12.93 25.33 368 0.20 

Feature reduced 0.90 21.91 33.92 227 0.15 
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4.3.5 Model comprehensive evaluation 

4.3.5.1 Model accuracy 

Figure 4.6 depicts the dynamic evaluation of N2O emission process modelling by the 

feature-reduced kNN, AdaBoost, and DNN models on the test data. The presented plots 

focus on two zoomed windows of five- and three-days from two different periods, 

highlighting distinct profiles of N2O emissions. Figure 4.7, 4.8, and 4.9 show the N2O 

prediction profile during the entire time window for the test dataset. Table 4.10 shows the 

relevant accuracy metrics for these models. AdaBoost exhibited the best performance 

across all metrics (R2 = 0.94) and fitted most of the extreme high and low N2O emissions. 

Although the DNN demonstrated a better overall performance than the kNN, achieving R2 

values of 0.90 and 0.88, and RMSE values of 33.92 and 37.23, respectively, MAE scores 

of 21.91 were recorded for DNN and 18.00 for kNN. Upon analyzing the dynamic 

performance and residual characteristics of both models, the discrepancy between RMSE 

and MAE can be attributed to the distinct overestimation patterns exhibited by each model 

(refer to Figure 4.6). DNN predictions exhibited higher emissions compared to actual data, 

albeit with smaller magnitude. These elevated emissions extended over longer time periods 

when contrasted to the kNN model’s predictions. In contrast, the kNN model displayed 

fewer spikes but produced higher residual errors, which contributed more notably to RMSE 

than to MAE. The analysis of residuals for the three models also reveals that the most 

significant errors appear in instances of extremely low or high N2O emissions. This can be 

attributed to the high skewness of the actual N2O emissions, which suggests the potential 

for improvement through training the models with more balanced data. This pattern was 

less pronounced in the case of AdaBoost, which thus demonstrated the best overall 
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performance. Nonetheless, a potential area for improvement is in the accuracy of predicting 

actual peak values. Additionally, the cross-correlation analysis revealed that no lag could 

be observed between the actual and estimated N2O emissions across the three models 

(results now shown). Both the statistical and dynamic evaluation of the three models 

demonstrated that AdaBoost outperformed both DNN and kNN for the overall 

performance, especially for describing extreme N2O emissions. This finding agrees with 

the most recent survey on machine learning models performance on tabular data indicating 

that DNN is mostly outperformed by gradient-boosted tree ensembles for tabular 

supervised learning tasks (Borisov et al., 2022). Lastly, the learning curves presented in 

Figure 4.10 show that, while the models show perfect performance on training sets, they 

also performed very-well on the cross-validation sets, indicating no significant overfitting 

and showing that the models will still likely benefit from getting trained on more data. 

The analysis for model performance conducted in this study highlights the importance of a 

comprehensive model evaluation, as each metric provides a unique perspective on model 

performance and no single metric should be used in isolation. Evaluation of model 

performance should include both various statistical metrics and dynamic process 

evaluation over the entire data window, instead of viewing only zoomed time windows. 

Such a comprehensive approach is absent from existing literature for N2O emissions.  
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Figure 4-6 The performance of AdaBoost, kNN, and DNN models compared to the test 

dataset during two zoomed windows 
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Figure 4-7 The performance of AdaBoost compared to the test dataset during the full-

time window 
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Figure 4-8 The performance of kNN compared to the test dataset during the full-time 

window 
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Figure 4-9 The performance of AdaBoost compared to the test dataset during the full-

time window 
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4.3.5.2 Processing time 

The processing times were also measured given their importance in an online monitoring 

application such as soft sensors. Therefore, both training and prediction times have been 

measured and compared across kNN, AdaBoost, and DNN models as shown in Table 2. 

The results highlight the superiority of simpler models such as kNN in facilitating 

exceptionally rapid processing to generate predictions, while maintaining a relatively good 

prediction performance. However, it is imperative to conduct holistic assessment of 

algorithmic suitability for online applications, encompassing factors such as memory 

efficiency, batch vs. online updates, scalability, and resource constraints. Furthermore, 

DNN showed the longest training time among the three models, confirming its complexity. 

It is noteworthy that while the differences in processing time may appear negligible, these 

times are based on the current dataset; their amplification is plausible with expanding data 

volumes, an aspect crucial in online applications. Notably, incremental learning, a 

technique where a model gets updated with new data batches without retraining the model 

from scratch, holds promise for the AdaBoost model (Zhang et al., 2019). This potential 

for model adaptation over time could further contribute to reducing the processing times 

as the model becomes more refined. 

4.3.5.3 Extent of overfitting 

Figure 4.10 shows the model's performance for both the training and cross-validation 

datasets when calculated using various sizes of the training data (as a proportion of the total 

training data). These plots – referred to as the learning curves – are used to diagnose 

potential overfitting, where models perform exceptionally well on the training data but fail 

to generalize effectively to new, unseen data, leading to poor performance on validation or 
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test datasets. The AdaBoost model showed a gap between the training and validation 

dataset curves, raising a concern about overfitting. However, achieving the highest 

performance on the test dataset indicates that AdaBoost is indeed generalizing well to new, 

unseen data, and that the overfitting concerns may not be as severe as initially perceived. 

Moreover, the fact that the validation score improves with an increase in data volume 

further suggests that potential overfitting issues in the model could be mitigated over time 

by providing more training data. While DNN showed less severe overfitting problems with 

a smaller gap between learning and validation curves, the lower performance on the test 

data than AdaBoost and the fluctuations on the learning curves might be attributed that the 

model is sensitive to specific data points, causing their performance to fluctuate as they 

encounter different subset of the data. Finally, the kNN model showed intermediate gap 

between the learning and validation curve with both curves improve with larger data 

volume, indicating the possibility of benefiting from larger dataset and online training of 

the model.  
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Figure 4-10 (on the left): kNN, (on the right): AdaBoost, (bottom): DNN 

4.3.5.4  Residual analysis of models 

Residual analysis across models involved assessing their behavior concerning observed 

N2O concentrations and input features. The residual behavior against observed N2O 

concentration showed that AdaBoost consistently displayed lower error magnitudes, while 

the kNN model exhibited higher errors for extreme N2O values and the DNN model for 

lower N2O values compared to AdaBoost. It was observed that all models displayed 

random deviations from zero error in the mid-range N2O values. However, a non-uniform 

trend emerged with respect to extreme low and high N2O concentrations, revealing 

increased negative and positive errors respectively. This non-uniform trend does not span 

the entire spectrum of N2O values. Rather, it is primarily evident in the presence of a 

relatively high number of zero N2O values within the dataset. This unique characteristic 

poses challenges due to dataset imbalance and requires careful consideration in interpreting 

model performance. Furthermore, residuals analysis against input features was conducted 

by plotting residuals against each of the input features. The analysis showed that no 

correlation exists between model errors and model input features as presented in Figures 
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4.11, 4.12, 4.13, and 4.14. This confirms the absence of bias or heteroscedasticity in the 

models. 

  

 

Figure 4-11 Residual analysis of kNN, DNN, and AdaBoost models 
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Figure 4-12 Residual plot of kNN model predictions against each input feature including 

the calculated Pearson correlation between each input feature and the model residual 
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Figure 4-13 Residual plot of AdaBoost model predictions against each input feature 

including the calculated Pearson correlation between each input feature and the model 

residual 
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Figure 4-14 Residual plot of DNN model predictions against each input feature including 

the calculated Pearson correlation between each input feature and the model residual 
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4.3.6 Process understanding and feature importance analysis 

Compliance between model feature importance and wastewater domain knowledge has 

significant impact on model interpretability, trustability, and decision-making process. 

Experts and stakeholders are more likely to accept the adoption of data-driven models when 

the model decisions are based on the same domain knowledge factors. This also validates 

that the model is learning from the correct resources, increasing confidence and trust in 

model outcomes. In the next steps, the feature importance ranking is investigated for the 

three selected models and their compliance with the process meaning.  

4.3.6.1  Model-based feature importance 

One of the advantages of ensemble tree-based models, such as AdaBoost, lies in their 

capacity to compute feature importance based on each feature's contribution to individual 

decision trees. In this study, the model revealed that NO2
-, NO3

-, and TEMP accounted for 

50% of the importance when considering all available features, and these same features 

were ranked as the top three contributors, making up 60% of the importance following 

feature reduction (Figure 4.15). Out of the eight features selected by the mRMR method, 

seven were found to have the highest feature importance ranking when using all features 

as the model input, which underscores the built-in feature importance method's reliability 

in AdaBoost, provided the model performs well on training and validation data. 
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Figure 4-15 AdaBoost built-in feature performance 

Nonetheless, the most crucial feature identified by this method differs from that indicated 

by mRMR used for feature selection. This discrepancy arises because data-driven models 

can sometimes exhibit bias, relying on features that contribute to overfitting the data, 

possibly due to a less complex relationship with the target variable. Although this does not 

negate the feature's potential as a strong predictor of the target variable, it should not be 

used for feature selection since it overlooks redundancy. This observation can be 

corroborated by examining Pearson's correlation matrix, as illustrated in Figure 4.16, it 

demonstrates that NO2
- has the highest linear correlation with N2O, which aligns with the 

selection as the highest important feature based on AdaBoost built-in feature importance 

method. 
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Figure 4-16 The Pearson correlation matrix of the entire dataset features 

4.3.6.2 Model-agnostic feature importance and model interpretability 

Permutation importance was used to estimate the importance of features in kNN, 

AdaBoost, and DNN models as shown in Figure 4.17. Common across all three models is 

the heightened importance assigned to NO2
-, registering permutation scores at 65%, 45%, 

and 35% for kNN, AdaBoost, and DNN, respectively. This elevated impact on model 

performance can be attributed to its central role in the nitrifier denitrification (ND) 

pathway, in which AOB rely on NO2
- as the electron acceptor to produce N2O under low 
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DO conditions (M J Kampschreur et al., 2009). The contribution of the ND pathway to the 

total N2O was reported to be the main pathway when there is NO2
- accumulation, 

confirming the importance of the NO2
- feature in the model (Wunderlin et al., 2013). Also, 

the three models agreed on the high importance of temperature, with permutation scores of 

78%, 42%, and 45% for kNN, AdaBoost, and DNN, respectively. The effect of temperature 

on N2O emissions can be explained by the increased enzymatic activities of both nitrifiers 

and denitrifiers at higher temperatures (Ahn et al., 2010). A negative correlation was 

demonstrated between temperature and NO2
- in Figure 4.16, which can relate to higher 

N2O emission by the ND pathway. This is in line with the study of  Philips et al. (2002), 

where it was found that  NO2
-  accumulates at low temperatures in WWTPs. Adouani et al. 

(2015) found that lower temperatures slow down NO and N2O reductase activities, 

inducing N2O emissions. Another essential factor to consider is the impact of temperature 

on N2O solubility, influencing the rate of liquid-gas mass transfer. This, in turn, can have 

implications on the rate of N2O emissions (Baeten et al., 2020). While these studies confirm 

the high impact of temperature on N2O emissions, the exact mechanisms remain to be 

further investigated.   
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Figure 4-17 Permutation feature importance of feature reduced models: kNN, AdaBoost, 

and DNN models. The graph shows the relative change of model mean squared error as a 

result of feature imputation 

Additionally, there was a strong agreement among the three models regarding the moderate 

permutation scores of NO3
-, with values of 45%, 25%, and 10%, for kNN, AdaBoost, and 

DNN, respectively. The effect of NO3
- can be explained by the fact that its accumulation 

can lead to incomplete denitrification in the anoxic part of the carrousel when there is a 

lack of carbon source, leading to poor N2O consumption by heterotrophic biomass (Chen 

et al., 2019). This can result in N2O generation via the heterotrophic denitrification pathway 

(Daelman et al., 2015). Furthermore, the permutation effect of NH4 on N2O emissions was 

significantly lower than both NO2
- and NO3

- in the three investigated models, which agrees 

with the conclusions of Daelman et al. (2015) that the ND pathway was more dominant in 

the present dataset. However, the insignificance of the NN pathway can still not be 

confirmed as the NH4 permutation score was 12% in AdaBoost, and about 7% in kNN. In 

addition to nitrogen species, the permutation of all DO features was still relatively high for 
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the entire set of models. Despite the moderate correlation between DO2 and DO3 (r = 0.64), 

they had a similar impact on model performance. This can be attributed to the high 

heterogeneity in the DO concentrations due to aeration using surface aerators and the plug 

flow arrangement of the reactor, leading to a steep DO gradient along the carrousel. Even 

with a moderate degree of correlation between DO at different locations, this DO 

heterogeneity can explain data points representing complex interaction between N2O 

pathways.  

Besides the importance rankings, permutation scores varied in magnitude for the same 

feature across different models. Specifically, DNN and AdaBoost displayed comparatively 

lower magnitudes across all features when contrasted with kNN. This discrepancy 

underscores kNN's heightened sensitivity to features in comparison to the relatively more 

robust nature of AdaBoost and DNN. This observation points to the increased intricacy 

inherent to AdaBoost and DNN, enabling them to effectively capture complex interactions 

between features. 

4.3.6.3 Understanding N2O production pathways’ contribution 

Despite that NO2
- is a key parameter influencing N2O production through the ND pathway, 

it was not reported on previous datasets and not included in high accuracy models 

(Hwangbo et al., 2020, 2021). Whether this is due to insignificant contribution of ND 

pathway in the mentioned dataset or due to the existence of other variables that shares 

mutual information remains unclear. To investigate the pathway contribution in the current 

dataset, NO2
- has been omitted from the input features to investigate the impact that this 

might have on feature importance ranking and model performance. Figure 4.18 shows that 

NO2
- removal has changed the permutation feature importance ranking with a higher 
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weight to DO3 in all models compared to before NO2
- removal. This might be perceived 

as evidence of the higher contribution of ND pathway as the models extracted the same 

information in NO2
- from DO3 because the ND pathway only activates at both low DO and 

accumulated NO2
-. NO2

-  has been identified as one of the major factors that influence the 

N2O generation from WWTPs (Duan et al., 2021). This aligns with the pathway knowledge 

when NO2
-  is being used as the electron acceptor in the ND pathway and getting reduced 

sequentially to NO, and N2O catalyzed by nitrite reductase (NIR) and nitric oxide reductase 

(NOR) (Yu et al., 2010). This pathway has been also considered the main contributor to 

N2O production by AOBs (Yang et al., 2009).  However, previous modelling of N2O 

emissions using regression ML models does not include NO2
-  as an input feature 

(Hwangbo et al., 2020, 2021). The high performance achieved by the DNN model in the 

latter study cannot be used as evidence of the insignificance of ND pathway contribution 

to N2O emissions in the reported case. Insights on pathway contributions should be better 

provided in the case of presence of NO2
- to allow a comprehensive feature importance 

analysis that supports model interpretability. This aligns with the recommendation by the 

original study that collected and analyzed the same dataset (Chen et al., 2019). It is 

noteworthy that the purpose of this analysis is to improve interpretability by ensuring that 

the model is using the correct features, which is a different objective than maximizing 

model performance. The models in this study showed a drop in performance in response to 

NO2 elimination in terms of R2 values, registering at 0.83, 0.91, and 0.89 for kNN, 

AdaBoost, and DNN, respectively (a more comprehensive analysis was not performed). 

The drop may seem insignificant from the perspective of model performance, especially in 

the DNN. This might be attributed to the complexity of DNN that allows it to capture 
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complex relationships from features potentially sharing part of the same information; 

something simpler models are not able to do. Hence, the model and features choice are 

highly dependent on the objective and the available resources. 

 

Figure 4-18 Permutation feature importance of feature reduced models: kNN, AdaBoost, 

and DNN models after elimination of Nitrite (NO2) from the dataset 

4.4   Process and environmental implications 

There is a growing interest in incorporating GHG emissions into the evaluation of WWTP 

performance, which will probably lead to decisions supporting the mitigation of GHG 

emissions. One of the means to reduce GHG emissions is the selection of process control 

and operational strategies that account for N2O emissions. By employing an ML framework 

to generate model predictions consistent with process knowledge, it becomes possible to 

evaluate emission-influencing factors on a case-by-case basis using instance-based model 

explainability tools. Empowered by this approach, operators and decision-makers can 

confidently make informed choices regarding control and operational strategies. These 

choices effectively integrate the reduction of N2O emissions with other control objectives. 
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In this study, surface aerators in the reactor were solely controlled based on NH4
+-N 

concentrations, representing the conventional control approach based on effluent quality. 

Nevertheless, this approach seems insufficient in terms of mitigation of N2O emissions 

from the present WWTP. As a result, a more comprehensive control strategy founded on 

multiple variables should be considered, including NO2
--N and DO levels at various points 

within the carrousel to eliminate peaks in NO2
--N, reducing N2O emissions accordingly. 

Nevertheless, the development of a comprehensive control philosophy requires further 

investigations. For instance, one can dynamically adjust the length and duration of anoxic 

and aerobic phases as needed to prevent unfavorable DO conditions. This concept aligns 

with the conclusions drawn by Daelman et al. (2015), who identified suboptimal DO 

conditions as a key factor contributing to elevated N2O levels in the present WWTP. Given 

the intricate nature of this control objective, a ML-based model predictive control (MPC) 

strategy might also be applied. A similar approach was proposed by Hwangbo et al. (2021). 

In this context, a soft sensor relying on the developed ML model may play a crucial role, 

either by integration into the MPC system or by supplying accurate N2O emission data to 

the MPC. This data will serve as valuable historical information for training the predictive 

model within the MPC framework. Employing this strategy emphasizes the sustainability 

aspects of WWTPs rather than solely focusing on performance indices. 

4.5 Summary 

This study confirmed the potential of ML models as viable alternatives to conventional 

N2O quantification methods, and as a replacement for mechanistic models given their 

limitations in full-scale applications. It was demonstrated that such models hold the dual 

advantage of describing N2O emissions, while also guiding decision-making processes 
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through a balanced consideration of model performance, processing time, complexity, and 

interpretability. Such advantages can be harnessed by adopting the comprehensive 

framework established in the present study incorporating 1) data preprocessing considering 

the specific characteristics of wastewater data, 2) input feature reduction that only 

considers the most relevant and least redundant feature set, 3) development of ML models 

with different degrees of complexity, 4) comprehensive evaluation of model performance, 

and 5) facilitating model interpretability using feature importance analysis.  

The developed framework showed a potential to a fit-for-purpose soft-sensor application 

that models and provides understanding of N2O emissions from WWTPs. The framework 

was successfully applied to a full-scale long-term dataset using models spanning three 

levels of complexity and interpretability. Among the ML-models tested, AdaBoost 

demonstrated a good balance between accuracy, processing time, complexity, and 

interpretability. While the DNN displayed a marginally lower accuracy, it also came with 

a higher processing time and larger complexity. On the other hand, kNN compensated its 

least optimal accuracy with the lowest complexity and processing time, which may still be 

useful for some applications. Finally, utilizing an interpretable model can provide 

necessary insights for a multi-variate control approach considering GHG emission 

mitigation in addition to effluent quality compliance.  
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Chapter 5 - An integrated feature selection and hyperparameter optimization 

algorithm for balanced machine learning models predicting nitrous oxide emissions 

from wastewater treatment plants* 

5.1  Introduction 

Various ML models were employed in the wastewater field to learn from input data in 

order to predict a continuous output variable, such as deep neural networks and tree-based 

models. Such learning process, known as model “training”, aims at optimizing the value of 

model parameters to best fit the training data. The efficacy of model training dictates 

model’s overall performance and its ability to generalize to new data. Significantly, model 

training is influenced by the tunning of its “hyperparameters”. Hyperparameters are the 

external configuration settings of a machine learning model that are not learned from the 

data but are set prior to the training process. These settings control various aspects of how 

the model learns and operates.  

Among the tree-based algorithms used for prediction models, Adaptive boosting 

(AdaBoost) showed high performance in prediction of N2O emissions from WWTP in 

chapter 4. The AdaBoost algorithm works by combining multiple weak learners to form a 

strong regressor, in which the number of weak learners (such as decision trees) to be used 

is an example of a hyperparameter.  

 

_________________________ 

* A modified version of this chapter has been submitted in December, 2023 for publication 

in Journal of Water Process Engineering 
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This hyperparameter plays a crucial role in the performance of the AdaBoost model, in 

addition to other hyperparameters such as the maximum depth of each weak learner (tree). 

A model with a low number of estimators might underfit due to the low model complexity 

that fails to capture high non-linearity in the data. Conversely, complex models are adept 

at uncovering hidden relationships within the data and able to achieve higher performance 

thanks to their enhanced flexibility. However, the use of highly complex models comes 

with certain drawbacks. They demand significant computational resources, requiring more 

time and memory for both training and making predictions on new data instances. 

Additionally, complex models are more prone to overfitting, resulting in poor performance 

when exposed to new data instances (low generalizability) (Bishop, 2006). Furthermore, 

increased complexity can negatively impact the interpretability of the model (Molnar, 

2022). Therefore, the attainment of a trade-off between model complexity on one side, and 

model accuracy and interpretability (denoted as “model performance” hereafter) on the 

other side is a crucial consideration in the application of ML models (Doshi-Velez and 

Kim, 2017). 

N2O modelling is no exception that a trade-off between model performance and complexity 

is crucial for successful model development. In fact, it can be argued that such a trade-off 

is more significant in the case of N2O modelling given the limited capabilities of its 

mechanistic models to quantitively describe N2O emissions (Wan and Volcke, 2022). An 

optimal balance between performance and complexity can be achieved by (i) input feature 

selection to optimize the number of features induced complexity (feature complexity), 

and/or (ii) hyperparameter optimization (HPO) to reduce the model architecture induced 

complexity (architecture complexity).  
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Different methods for input feature selection can be used, generally divided into model-

based and filter-based methods (Hvala and Kocijan, 2021). Filter-based methods are 

independent of the model and focus on the statistical relationships between features. They 

utilize statistical metrics like Pearson correlation, Spearman correlation, F-test, or 

information theory metrics such as Mutual Information. These methods assess features 

based on their individual statistical properties, disregarding the model's structure, and have 

been frequently used in ML models in wastewater applications to reduce dimensionality 

and the resulting model complexity (Deepnarain et al., 2019; Zaghloul and Achari, 2022). 

Model-based methods, in contrast, rely on the model itself to determine the predictive 

power of the input features. This is done by using validation data, where the model's 

performance with various subsets of features is evaluated to identify those that contribute 

most to its predictive accuracy. Another method for effective feature selection is the 

minimum redundancy maximum relevance (mRMR) method which selects the highly 

relevant features while minimizing multicollinearity. While it is considered a filter-based 

method, a recent study utilized mRMR as a wrapper-method where the number of features 

is determined based on model performance. As a result, it effectively streamlined the 

complexity of the examined models, ensuring they are both efficient and less complex. 

Moreover, it was demonstrated that the selected features using mRMR are well-aligned 

with the mechanistic understanding, which underscores the method's ability to identify 

pertinent features based on their relevance to the predictive modeling of N2O emissions. 

One should be aware, however, that the inverse is not true: the selection of features should 

not be interpreted as proof for causality between the feature and the model output. 
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Despite the significance  of feature selection in reducing the overall model complexity and 

easing data acquisition efforts, the role of HPO in managing model complexity is often 

overlooked, particularly in wastewater research studies utilizing ML tools (Zhu et al., 

2023). To the best of our knowledge, the common practice for HPO, in prior ML 

wastewater studies, is employing grid search or random search algorithms. For example, 

grid search was used to select the optimal hyperparameters of Support Vector Machine 

predicting N2O emissions (Vasilaki et al., 2020b, 2020a). These algorithms focus on 

exhaustively or randomly testing a pre-defined space of hyperparameters to identify the set 

that yields the best performance on validation or cross-validation sets (Bergstra et al., 

2011). However, the grid/random search approaches are highly dependent on the pre-

defined hyperparameter space and do not consider the trade-off between model 

architectural complexity and performance. To address such a challenge, Hwangbo et al. 

(2020) utilized metrics like AIC (Akaike information criterion) and BIC (Bayesian 

information criterion) to identify the optimal structure of a deep neural network from a pre-

defined set of model architectures. However, this approach still did not investigate a wide 

grid-space of solutions and is expected to miss a possible optimal model structure. 

Moreover, more automated/generalizable approach is still needed. A more advanced HPO 

approach can be conducted using metaheuristic search algorithms. An example is the 

optimization of the architecture of a deep neural network predicting wastewater was 

implemented by (Zhu et al., 2022) using genetic algorithm (GA), particle swarm 

optimization (PSO), and grey wolf optimization (GWO).  

Nevertheless, there are several limitations to the approaches commonly used in literature 

to HPO and feature selection. The HPO focuses solely on model performance, overlooking 



 
 

134 
 

an explicit representation of model complexity, potentially leading to unnecessary 

complexity. Furthermore, both input feature selection and HPO methods are typically 

performed in two isolated steps. While this practice can lead to high accuracies, the present 

article argues that it leads to suboptimal models in terms of complexity-trade off resulting 

in unnecessarily complex models which keeps such models prone to overfitting, limited 

generalizability, and limited interpretability.   

The primary objective of this chapter is to do develop an approach aimed at optimizing 

model complexity alongside performance, addressing a critical gap in current N2O 

emission prediction methodologies. By investigating the synchronization between input 

feature selection and HPO, their combined effect on model complexity and performance is 

elucidated.  The performed comprehensive analysis includes an exhaustive grid search 

across a wide spectrum of input features and model hyperparameters, highlighting the 

significance of the developed algorithm that integrates and automates input feature 

selection coupled with HPO. This methodology leverages GA for identifying the optimal 

model configuration, which is then compared against a simpler search algorithm to 

demonstrate its superiority. It is hypothesized that this integrated strategy will not only 

bolster model efficiency but also enhance generalizability, thereby mitigating the risk of 

overfitting. Furthermore, this study seeks to underscore the often-overlooked importance 

of model complexity in environmental engineering applications of ML tools, with a 

particular emphasis on modeling N2O emissions from WWTPs. This research offers 

invaluable insights and tools for engineers and researchers striving to navigate the 

complexities of ML in environmental applications. 



 
 

135 
 

5.2 Approach and Methodology 

5.2.1 Model training and evaluation 

5.2.1.1 Adaptive boosting model 

The Adaptive Boosting (AdaBoost) regression model was employed in this study, an 

ensemble technique known for its ability to improve the accuracy of weak learning 

algorithms (Freund and Schapire, 1997). AdaBoost was designed by sequentially applying 

a decision tree regressor, to repeatedly modified versions of the data. Each subsequent 

model in the sequence focuses on the instances that were incorrectly predicted by the 

previous models, thereby adaptively boosting their importance in the dataset. The final 

prediction is made through a weighted average of the predictions from all learners in the 

ensemble, thus reducing both bias and variance, and leading to improved prediction 

accuracy. The model training and evaluation was performed using Sklearn open-source 

library in python. Below is a simplified mathematical overview of our AdaBoost 

implementation. Initially, the weights (𝑤𝑖 ) for all training instances (𝑁) are set equally: 

𝑤𝑖 =
1

𝑁
          5.1 

A weak learner is then trained to make predictions (𝑦𝑖) for each data point, and the loss 

(𝐿𝑖) for each prediction is calculated using the square loss function, normalized by the 

maximum absolute error: 

𝐿𝑖 = (
𝑦𝑖 −  𝑦𝑖

^

max |𝑦𝑖 −  𝑦𝑖
^|

)

2

  5.2 

 

The average weighted loss (𝐿) for the weak learner is computed as: 
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�̅� = ∑ 𝐿𝑖 𝑤𝑖  5.3 

This loss informs the performance weight (𝛽) of the weak learner: 

𝛽 =
�̅�

1 −  �̅�
 5.4 

Subsequently, the weights for the next learner are updated, reflecting each instance's loss 

and the previous learner's performance: 

𝑤𝑖 → 𝑤𝑖 𝛽
1− 𝐿𝑖   5.5 

The final prediction model is determined by the value corresponding to the weighted 

median of all individual learner predictions, where the weight of each learner is inversely 

proportional to its error.  

5.2.1.2 Model evaluation and comparison 

The comparison among different models was based on the root mean squared error (RMSE) 

and the mean absolute error (MAE) calculated using the following formulas: 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦𝑖

^)2𝑛
𝑖=1

𝑛
 

5.6 

 
𝑀𝐴𝐸 =

∑ |𝑦𝑖 −  𝑦𝑖
^|𝑛

𝑖=1

𝑛
 5.7 

where 𝑦𝑖 is the model predictions, 𝑦𝑖
^ is the true value, and n is the number of data points. 

Moreover, a more comprehensive evaluation strategy was used when comparing the 

outcomes of the developed algorithm integrating feature selection and HPO against the 

uncoupled method used in Chapter 4 to allow for a nuanced understanding of the trade-offs 

between predictive performance and model complexity. Thus, the mean error (ME) and 

coefficient of determination were also calculated, as follows: 
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 𝑀𝐸 =

∑ (𝑦𝑖 −  𝑦𝑖
^)𝑛

𝑖=1

𝑛
 5.8 

 
𝑅2 = 1 − 

∑ (𝑦𝑖 −  𝑦𝑖
^)2𝑛

𝑖=1

∑ (𝑦𝑖 −  𝑦𝑖)2𝑛
𝑖=1

 5.9  

5.2.2 Investigation and data analysis of the hyperparameters-input features grid space  

To investigate the combined effect of hyperparameters and the number input features on 

model accuracy, the exhaustive grid search method coupled with cross-validation was 

employed. For each n number of input features selected by mRMR method, the 

hyperparameters of the AdaBoost regressor were optimized using the GridSearchCV 

available in Sklearn. This exhaustive method systematically explores a wide range of 

hyperparameter values, providing an extensive understanding of the hyperparameter space  

(Bergstra et al., 2011). The grid of potential values for key hyperparameters, including the 

number of estimators, learning rate, decision tree maximum depth, and the used loss 

function, were defined with the ranges presented in Table 5.1. For each combination in this 

grid, the AdaBoost regressor is trained and evaluated, based on the average model 

performance across cross-validation sets. K-fold cross-validation was employed, which 

involves dividing the dataset into K distinct subsets, iteratively training the model on K-1 

subsets and validating it on the remaining subset. The exhaustive exploration of the 

hyperparameter space through grid search with cross-validation enables a thorough 

exploration and data analysis of the combined features and hyperparameter space. 

5.2.3 An integrated algorithm for feature selection and hyperparameter optimization 

An enhanced and automated algorithm that integrates mRMR feature selection with a 

multi-objective hyperparameter optimization has been developed, as illustrated in Figure 

5.1. This algorithm emphasizes the tuning of hyperparameters for the model, utilizing every 
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possible set of n input features to ensure that the optimal combination of features and 

hyperparameters is identified. Moreover, the hyperparameters are optimized through a 

multi-objective optimization algorithm that select the set of hyperparameters that 

maximizes the model performance and minimizes the ML model’s complexity. This 

enables an optimized hyperparameter optimization process that results in a less complex 

yet accurate model, which is necessary for online applications of N2O emission prediction. 

Thus, the following objective functions were utilized to represent the fitness evaluation and 

selection: 

𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 =  
1

𝑛
 ∑(𝑌𝑠 − 𝑌𝑜)2 5.10 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 = 2𝑇𝑟𝑒𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑝𝑡ℎ × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠    5.11 

where 𝑌𝑠 represents the simulated data, 𝑌𝑜 the actual testing data, 𝑛 the number of 

observations, 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 the number of weak learners in the model, 

max_depth is the maximum depth of each decision tree. For the multi-objective 

optimization problem, two algorithms were compared: Nelder-Mead and GA. 

5.2.3.1 Nelder-Mead optimization algorithm 

The Nelder-Mead algorithm is a numerical minimization method that is used for 

optimization of non-linear problems, and is often called “Simplex” algorithm. The 

algorithm starts with N+1 arrays of hyperparameter values, where N is the number of 

hyperparameters that need to be optimized, representing a polytope with N+1 vertices in 

an N-dimensional space. The fundamental operations include reflection, expansion, 

contraction, and shrinkage, which iteratively adapt the polytope in the parameter space 
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based on the objective function's response. These operations enable the algorithm to 

navigate through the optimization landscape without the need for derivative calculations, 

a major advantage. The first step is reflection, where the algorithm mirrors the worst 

performing point across the centroid of the other points in the polytope, creating a new 

point. This process is akin to reflecting an image across a mirror line, seeking a better 

position in the search space. Then, expansion extends the simplex further in the direction 

of the reflected point, reaching towards areas of potential lower function values, essentially 

capitalizing on the successful direction found during reflection. If reflection fails to yield 

an improvement, the algorithm tries contraction. This step pulls the simplex inwards, 

towards the centroid, aiming to probe the nearby space more carefully for a better solution. 

Lastly, when both reflection and contraction fail to find a better solution, the algorithm 

employs shrinkage, aiming to reduce the overall size of the simplex, bringing all its points 

closer to the best point.  

These operations allow the Nelder-Mead algorithm to adaptively search the parameter 

space. The combination of these steps enables the algorithm to efficiently explore and 

exploit the landscape of the objective function, moving towards the optimum solution even 

in the absence of gradient information. The Nelder-Mead algorithm is efficient in 

optimization of low-dimensional problems.  

5.2.3.2 Genetic algorithm 

Genetic algorithms are popular metaheuristic optimization algorithms that are inspired by 

the process of natural selection (Holland, 1992). The nondominated sorting genetic 

algorithm II (NSGA-II) is a widely used algorithm in solving multi-objective optimization 

problems (Deb et al., 2002), and has been used in machine learning applications in the 
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water engineering field (Li and Vanrolleghem, 2022). The algorithm starts with initializing 

a population of individual solutions (chromosomes) that are evaluated using the predefined 

fitness evaluation function. Chromosomes with the highest fitness are selected as the parent 

chromosomes for the subsequent processes and other chromosomes are eliminated. The 

non-dominated sorting allows determining a set of optimal solutions on the Pareto front 

thar are ranked by the evaluation of their fitness. Moreover, a two-point crossover was used 

to produce new offspring from the parent chromosomes until the new offspring count reach 

the total population count. This operator randomly selects two points within the individuals' 

sequence of hyperparameters and exchanges the segments between these points, creating 

offspring with mixed traits from both parents. Lastly, mutation was also utilized to 

randomly modify chromosomes with a chosen probability of 20%. The implementation of 

NSGA-II for optimizing the AdaBoost model parameters utilized the DEAP (Distributed 

Evolutionary Algorithms in Python) framework. This optimization was designed to target 

four critical hyperparameters of the AdaBoost model: the number of estimators, the 

maximum depth of the decision trees, the learning rate, and the loss function. NSGA-II’s 

non-dominated sorting employed allows determining a set of optimal solutions on the 

Pareto front thar are ranked by the evaluation of their fitness. 

5.2.4 Model interpretability 

Feature importance was leveraged to interpret the AdaBoost model results by quantitatively 

measuring the impact of each feature on the predictive power of the model. In the context 

of AdaBoost, the feature importance scores are computed based on the contribution of each 

feature to the reduction of variance in the predictions across all the trees in the ensemble 

(Louppe, 2014). This method aggregates the weighted importance scores assigned to each 
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feature within the individual decision trees constituting the AdaBoost ensemble. The 

weights are proportional to the reduction in prediction error brought about by each feature, 

reflecting their relative importance in the model's decision-making process. By analyzing 

these importance scores, we can interpret the model in terms of which features are most 

influential in predicting the outcome, thereby providing insights into the underlying model 

outcome-generating process.  

 

Figure 5-1 General scheme of the suggested automated procedure for optimal model 

selection using both mRMR for feature selection by calculation of MI and VIF, and HPO. 
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This was implemented using the NSGA-II and Nelder-Mead algorithm. Kmin and Kmax 

are the boundary of the number of features that are to be investigated.  

5.3 Results and Discussion 

5.3.1   Exhaustive search grid search output 

For HPO in developing ML tools for wastewater applications, grid search optimization has 

been predominantly used. For example, it was employed to optimize ML models for biogas 

production from anaerobic digestion (Sappl et al., 2023), bio-hydrogen from dark 

fermentation (Hosseinzadeh et al., 2022), and activated sludge effluent quality (Wang et 

al., 2021; Park et al., 2022; Xu et al., 2023). Despite being computationally expensive, grid 

search optimization has always been adopted thanks to its success in achieving high 

accuracy (Ly et al., 2022). Yet, grid search optimization does not consider the possible 

associated increase in model complexity. Such an increase may negatively affect the 

model’s computational efficiency, interpretability, and susceptibility to overfitting. In this 

section, we pre-defined a large range of values for Adaboost’s key hyperparameters, see 

Table 5.1. Adaboost model was selected given its high performance in predicting N2O 

emissions from WWTPs and its high ability to magnify its performance as a result of HPO. 
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Table 5-1 Definition of the investigated hyperparameter grid-space 

Hyperparameter Minimum  Maximum 

Number of estimators 100 1200 

Maximum depth of tree 2 30 

Learning rate 0.001 1.25 

Loss function Linear, square, exponential 

 

Model complexity stems from the employed number of features (features-driven 

complexity) and/or the selected hyperparamters (HP-driven complexity). Figure 5.2 shows 

the averaged effect of various combinations of number of estimators and the number of 

input features on the AdaBoost model performance. Each cell represents the average 

RMSE of the model aggregated over various combinations of other hyperparameters using 

k-fold cross validation data. The heatmap values exhibit highly irregular pattern indicating 

there is no clear trend of the combined effect of the number of model estimators. However, 

it was shown that the lower number of features (i.e., four input features) scored higher 

RMSE values within the range of plotted number of estimators. However, it was shown 

that the model utilizing only four input features—namely NH4, NO2, NO3, and TEMP— 

scored higher RMSE values within the range of the plotted number of estimators.  
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Figure 5.3 represents the results of conducting the same analysis and aggregation for the 

maximum depth of decision tree and the number of input features. Unlike Figure 5.2, this 

heatmap exhibits a clear pattern of the effect of tree depth on the model performance. 

Models with maximum tree depth higher than 10 performed significantly better than 

models with shallower decision trees. This behavior is aligned with the mathematical 

representation of the ensemble models, where the number of nodes in the model grows 

exponentially with increasing the tree depth. This increases the model overall complexity 

and ability to capture more non-linear relationship.  

Furthermore, it can be deduced from Figure 5.2 and 5.3 that the combined approach of 

searching the hyperparameter grid space in association with the number of input features 

can lead to finding two closely performing models with varying degrees of complexities. 

For example, based on Figure 5.3, the average performance of models with 13 input 

features with tree depths higher than 15 achieved performances similar to models with 9 

features with tree depths higher than 20. This indicates that the expected deterioration in 

performance resulting from feature reduction can be mitigated by further optimizing the 

model hyperparameters; something that cannot be fully achieved without coupling the 

feature selection and hyperparameter optimization processes. This synergetic effect is not 

typically considered in ML models in environmental engineering applications that 

performed HPO. For example in (Xiao et al., 2018), grid-search were used to select the 

optimal hyperparameters for tree-based extreme gradient boosting (XGBoost) to predict 

PM2.5 concentrations. Another example is Hwangbo et al. (2021) where the DNN  model 

hyperparameters were optimized using grid-search without considering the effect of 

number of features on the model complexity and the resulting hyperparameters.  However, 
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the HPO implemented in these studies overlooked the potential increase in model 

complexity that might be associated with minor performance increase, which may 

adversely affect the model’s computational efficiency, interpretability, and vulnerability to 

overfitting. 

 

Figure 5-2 Heatmap of RMSE calculated using cross-validation based on every 

combination of number of AdaBoost decision tree estimators and the number of input 

features. A lower value (red) stands for a higher model performance, and higher values 

(blue) stands for lower model performance. 
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Figure 5-3 Heatmap of RMSE calculated using cross-validation based on every 

combination of number of explored AdaBoost based decision tree maximum depth and 

the number of input features. A lower value (red) stands for a higher model performance, 

and higher values (blue) stands for lower model performance. 

5.3.2   Investigating model complexity-performance relationship 

To further investigate the synergetic effect of model hyperparameters and number of input 

features on model performance, a comparative analysis between four extreme models with 

adverse degrees of complexity and input features was performed as shown in Figure 5.4. 

The four selected models represented high and low complexity based on hyperparameters 

matched with the minimum viable and maximum available number of input features. The 
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hyperparameter values and the number of input features for each model (Models 1 – 4) are 

shown in Table 5.2, as well as the same information for the model that was ultimately 

selected with the proposed approach (Model 5).  

Model 1 displayed the lowest prediction error values across training, testing, and cross-

validation datasets, in comparison with the other models. RMSE and MAE values of 27 

and 12.5 were obtained for the testing dataset. The significantly higher RMSE values is a 

result of the skewed data distribution which typically inflates RMSE values, which was 

discussed in detail in Chapter 4. Interestingly, model training error, either RMSE or MAE, 

showed significantly lower values which were near zero. Such discrepancy between 

training and testing is indicative of overfitting where the model's complexity leads to a 

memorization of the training data, including noise, thereby impairing its ability to 

generalize to new, unseen data. In contrast, Model 2, which maintains the maximum 

number of input features but with extremely much lower complexity compared to Model 

1, showed smaller gap between training and test error metrics, aligning with the hypothesis 

that the reduction in complexity prevented model overfitting and thus resulted in more 

consistent performance across various datasets. Meanwhile, it achieved similar RMSE, 

with a test value near 27, and slightly higher MAE, around 16 for the test dataset.  

Similar to Models 1 and 2, Models 3 and 4 were trained using only four input features, with 

high complexity for Model 3 and low complexity for Model 4. Both models exhibited very 

similar performance on testing. The RMSE and MAE values were higher than those of 

Model 1 and 2, with an RMSE of 39 and 38, and an MAE of 19 and 20 for the test dataset 

for Model 3 and 4, respectively. This confirms that using a small number of features will 

have a performance penalty, despite the increased complexity. Model 3 showed the highest 



 
 

148 
 

gap between training and testing datasets, indicating that the increased complexity with 

fewer features tends to increase overfitting. Whilst Model 4 exhibited a slightly higher error 

than Model 3 due to its lower complexity, its performance across training, testing, and 

cross-validation is indicative of less overfitting. 

 

Figure 5-4 Performance comparison of the four selected models based on RMSE and 

MAE for the training, cross-validation, and testing sets. 
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Table 5-2 Definition of all the AdaBoost model candidates 

Model Number 

of Input 

Features 

Number of 

Estimators 

Decision 

Tree 

Depth 

Selection Method 

Model 1 13 850 30 High features high complexity - Manual 

selection from grid-search results 

Model 2 13 250 10 High features high complexity - Manual 

selection from grid-search results 

Model 3 4 900 30 High features high complexity - Manual 

selection from grid-search results 

Model 4 4 150 15 High features high complexity - Manual 

selection from grid-search results 

Model 5 8 231 11 Based on coupled optimization of 

complexity and performance using 

genetic algorithm and mRMR 

Model 6 8 800 18 Based on uncoupled optimization of 

performance and feature selection based 

on mRMR  
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The overfitting and generalization ability of the four models were further investigated by 

plotting the learning curves for each model, offering insights into diagnosing their bias and 

variance with varying volumes of data volumes used for model training.  Figure 5.5 shows 

that the models with high complexity (Model 1 and Model 3) have a persistent gap between 

training and cross-validation RMSE at all data volumes, pointing to the model's ongoing 

struggle with overfitting due to its high complexity. For the less complex models (Model 

2 and Model 4), showed a converging behaviour between the model training and cross-

validation RMSE, suggesting that the models captured less variance from the data, and that 

the models benefit from more data.  

Combined together, it can be deduced that HP-driven complexity makes the model very 

prone to overfitting. Moreover, the model’s potential to overfit increases as complexity 

increases and the number of features is limited. This is in spite of the fact that a slightly 

higher performance can always be achieved at higher HP-driven complexity. This is more 

observed at higher number of features.  
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Figure 5-5 Learning curves comparison of five models based calculated as the RMSE 

of the model prediction for both the training and cross-validation datasets when the 

model is being trained on varying sizes of data as a percentage of the full training 

dataset. 

Prior to deployment of ML models for N2O applications, trust in the model predictions is 

needed by operators and decision-makers. A model will be trusted if the model predictions 

are aligned with domain expert knowledge, which requires the model to be interpretable in 

the first place. There is a relationship between model complexity and interpretability; 

models with less complexity are easier to understand in terms of the underlying 

mechanisms, but are possibly not able to capture the highly nonlinear patterns in the data. 
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On the other hand, highly complex models can yield predictions with significantly higher 

accuracy without understanding how predictions are being made, often called “black-box” 

models. However, for the same model, a wide range of complexities can be found, based 

on number of features and values of hyperparameters, indicating that the same relationship 

between complexity and interpretability is valid. It is necessary to investigate the 

implications of the level of complexity of the selected model on the interpretability of 

model results. 

Figure 5.6 shows the feature importance as derived from AdaBoost. In models trained with 

13 input features, the model with greater complexity demonstrates a propensity to attribute 

increased importance to the most influential feature (NO2). This contrasts with the model 

of lower complexity, where importance values are slightly more evenly distributed among 

the features. This observation suggests that high complexity models may be more sensitive 

to the most predictive features, potentially capitalizing on complex interactions or non-

linear relationships that are less pronounced in simpler models. On the other hard, models 

trained with only four input features showed an increase in the overall feature importance 

values. This compensatory mechanism suggests that when the model is constrained by 

fewer features, each feature's contribution is inherently amplified to maintain predictive 

performance. This is consistent with the principle that in a model with fewer inputs, each 

input assumes a greater relative significance. The observed patterns in feature importance 

underscore the complex relationship between model complexity, interpretability, and 

predictive performance. Increased model complexity resulted in an elevated dependence 

on single, yet highly important, feature (NO2). However, the increased dependence on a 

single feature without significant increase in model performance on the testing data is 
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indicative of overfitting. Furthermore, given the different pathways affecting N2O net 

production such as nitrifier nitrification, nitrifier denitrification, heterotrophic 

denitrification, and abiotic pathways, it is less likely that a single feature can contribute 

most to N2O production data.  

It is essential to acknowledge that while the feature importance scores provide valuable 

insights into the predictive capabilities of various parameters within the model, they do not 

directly imply causation. For instance, the importance attributed to features like NO2 

reflects their statistical significance in the context of the predictive framework, rather than 

a definitive causal relationship with N2O emissions. Future research could benefit from 

incorporating causal discovery methods alongside predictive modeling to further elucidate 

the underlying mechanisms that drive N2O emissions based on the model. 
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Figure 5-6 A comparison of feature importance score calculated based on the AdaBoost 

algorithm for (a) Models with 13 input features with varying complexity. (b) Models with 

four input features with varying complexity. (c) Model with number of input features and 

hyperparmeters selected based on the developed algorithm combining mRMR and NSGA-

II 
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5.3.3   Selection of optimization algorithm  

The previous analysis demonstrated that a multi-objective optimization algorithm is needed 

to strike the desirable balance between model performance on one side, and HP-driven 

complexity and feature-driven complexity on the other side. Hence, in this section, an 

extended search of optimal combination of input features and model hyperparameters were 

implemented using both the Nelder-Mead and the NSGA-II algorithm to select the model 

with the best performance – complexity trade-off based on cross-validation. In contrast to 

the Nelder-Mead algorithm where the optimal solution is given, the NSGA-II provides 

Pareto front set of solutions. Figure 5.7a and b show a comparison in terms of both RMSE 

and complexity between the NSGA-II Pareto front solutions plotted as boxplots and the 

Nelder-Mead’s optimal solution showed as points.   Based on Figure 5.7a, it is clear that 

the solution provided by the Nelder-Mead’s algorithm showed higher RMSE than most of 

the pareto front solutions provided by NSGA-II for all number of input features. The RMSE 

provided by Nelder-Mead exceeded the 75th quantile for all input features and the 

maximum RMSE for some input features of the solutions provided by NSGA-II. 

Conversely, Figure 5.7b shows that the complexity functions of the models selected as 

optimal by Nelder-Mead was lower than the 25th quantile for all input features and the 

minimum complexity for some input features of the solutions provided by NSGA-II.  

Figure 5.8 shows a detailed visual comparison of model performance across a spectrum of 

complexity levels and input feature counts, as determined through the multi-objective 

optimization processes using both the Nelder-Mead algorithm and NSGA-II's most 

effective solutions. This three-dimensional scatter plot highlights the relationship between 

the number of input features, the model's complexity, and the resulting average RMSE 
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obtained from cross-validation datasets. It was demonstrated that the increase in 

complexity does not always yield higher model accuracy. For example, Figure 7 shows 

different levels of complexity for the NSGA-II points with a very similar RMSE at the 

same number of features. Such an unnecessary complexity may be chosen by an algorithm 

that only focuses on adding accuracy – even if minor – such as grid search. The results also 

confirms that the NSGA-II was able to yield more balanced models in their Pareto Front 

solutions, with achieving overall higher RMSE than the Nelder-Mead algorithm, which 

failed to provide reasonable trade-off between performance and complexity. The 

superiority of NSGA-II over Nelder-Mead can be attributed to the fact that the optimization 

objective is highly non-linear and irregular, as shown in Figure 5.2. This non-linearity was 

also shown in previous research optimizing deep neural network to predict wastewater 

treatment plant variables in the hyperparameter space of the deep neural network (Zhu et 

al., 2022).  Developing an automated approach that performs HPO while considering model 

complexity and preventing overfitting is of great importance to environmental engineering 

applications, particularly modelling N2O emissions. However, according to the literature 

analysis of the highly cited environmental engineering research articles performed by (Zhu 

et al., 2023), about 80% of these studies did not perform an automated HPO such as grid 

or random search. Moreover, using the best provided hyperparameters calculated by grid-

search automated tools provided by open-source packages such as Python Sklearn without 

deeper exploration of the explored grid might lead to selection of a highly complex model 

that only adds minor extra-performance to other solutions. An approach to overcome this 

issue was implemented by (Xiao et al., 2018), where the possible parameter set were 

explored and parameters that provide an improvement in accuracy larger than a certain 
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threshold were selected. However, grid and random search algorithms are unidirectional 

compared to metaheuristic algorithms such as NSGA-II, where the optimal solutions get 

updated based on the feedback from the cross-validation fitness function evaluation (Zhu 

et al., 2023). This makes genetic algorithm such as NSGA-II superior to other optimization 

methods, given the complexity of the problem shown in the nonconvex grid-space shown 

in Figure 5.2 and Figure 5.3. The limitation of such algorithms is the high requirement of 

computational resources. However, this can be mitigated by utilization of parallel 

computing, where the algorithm is implemented in parallel parts with each part using one 

of the available logical cores of the computer processor achieving a faster overall 

implementation of the algorithm. 

It is obvious from the optimization results that the optimal number of input features to the 

model are ranging from 8 – 10 features to yield reasonable performance and complexity. 

The choice of the number of features to be used in the deployed model within this range 

can be highly dependent on decision made by the responsible engineers and researchers. 

This decision might consider the complexities and cost associated with data acquisition. 

For example, the current dataset has three DO sensors, a privilege that might not be 

available for other facilities. Nevertheless, the present automated approach can help 

providing the range that satisfies the performance and model complexity requirement. The 

selected set of model hyperparameters and number of input features as the optimal model 

- denoted in this study as “Model 5” with its hyperparameters defined in Table 3 – followed 

the same approach. Model 5 showed performance similar to the models with a large number 

of features (Model 1 and 2) in terms of RMSE. This further shows the efficiency of the 
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algorithm to find the optimal set of input features, and model hyperparameters while 

keeping model performance high.  

 

 

Figure 5-7 Comparison of the performance of the Pareto-front solutions (box-plots) 

provided by the NSGA-II and the optimal solution by Nelder-Mead algorithm (red cross 

points) for each number of input features based on (a) RMSE of the cross-validated 

results. (b) Complexity represented by the logarithm of the function representing number 

of maximum nodes in the AdaBoost algorithm. The black diamonds represent outlier 

(values > 75th percentile + 1.5 * Interquartile range (IQR)). 
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Figure 5-8 Three-dimensional scatter plot representing a comparison between the best 

selected solutions from the NSGA-II Pareto-front and the optimal solutions by Nelder-

Mead algorithm 

5.3.4   Model performance comparison and evaluation  

Table 5.4 contrasts the performance of the optimized model using the coupled GA and 

mRMR methods (Model 5) with that of the model utilizing uncoupled feature selection and 

grid search-based HPO (Model 6), as implemented in Chapter 4, across both training and 

testing datasets. Performance metrics, including R2, RMSE, and MAE, reveal a minimal 

performance decrement as a consequence of the complexity reduction achieved by the 

developed approach in this study. Notably, the discrepancies between the metrics for 
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training and testing datasets are more pronounced for Model 6 than for Model 5. This 

discrepancy underscores the effectiveness of the developed algorithm in minimizing model 

complexity, thereby mitigating overfitting and enhancing the model's generalization 

capabilities across unseen data. The investigation of ME revealed further insights into the 

performance of both models. For Model 5, the ME during training is observed at 1.71 while 

being reduced to 0.76 during the testing phase, suggesting that despite the slight bias, the 

model is able to generalize well to unseen data with a more balanced prediction error. 

Model 6 presents a different pattern, with a negligible ME of -0.06 during training, which 

shifts to a more pronounced negative bias (ME of -2.33) in the testing phase. This shift 

implies that while Model 6 achieves nearly unbiased predictions on the training set, it tends 

to underestimate the target variable when exposed to new data. The negative ME in the 

testing phase for Model 6 could indicate a model that, despite being well-calibrated to the 

training data, struggles to maintain this accuracy when predicting on unseen data, 

potentially due to overfitting or insufficient generalization. The contrasting ME values 

between the training and testing phases for both models underscore the importance of 

balancing model complexity and generalization capability. Model 5 demonstrates a more 

consistent performance, suggesting a better trade-off between model accuracy and 

complexity thanks to the integrated algorithm used for input feature selection and HPO. In 

contrast, Model 6, despite its minimal bias in training, reveals vulnerabilities in its 

predictive stability across different data sets. Furthermore, Model 5 did not suffer from the 

potential overfitting demonstrated in Model 6, as shown in the learning curves presented 

in Figure S2, where the gap between model performance on the training and cross-

validation sets is decreased when increasing the data volume used for model training. These 
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results suggest the efficiency of the developed algorithm to yield a more efficient and 

accurate model compared to conventional methods reported in literature.  

Direct comparisons with existing literature on ML models for N2O emission prediction 

may be hindered by variations in datasets, monitoring campaign lengths, and the range or 

lack of detailed performance metrics. N2O To our knowledge, the study by [44], which 

reports the highest performance using machine learning on long-term datasets, achieved an 

R2 of over 0.90 with a complex DNN. Notably, our previous research (Model 6) 

implemented in Chapter 4 reached an R2 of 0.94, showcasing high accuracy. The 

significance of the current study, however, lies in the developed algorithm's ability to attain 

comparable accuracy with Model 5—a more streamlined and less complex model. This 

advancement underscores our approach's efficacy in simplifying the model without 

sacrificing performance, marking a significant contribution to the field of environmental 

ML applications. 
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Table 5-3 Comparison of performance of the optimized model using the developed 

algorithm coupling GA with mRMR and a model with the uncoupled approach (HPO and 

mRMR) 

Metrics Model 5 Model 6 

R2 
Training 0.98 1 

Testing 0.94 0.94 

RMSE 
Training 10 1.9 

Testing 27.25 26.27 

MAE 
Training 7.3 0.7 

Testing 16.6 13.12 

ME 
Training 1.71 -0.06 

Testing 0.76 -2.33 

 

5.4 Summary 

The present study highlights the critical balance between model complexity and 

performance, underlining the importance of integrating input feature selection and HPO 

for effective ML model development. The followed approach synchronized feature 

selection and HPO successfully addressed the challenge of model overfitting to enhance 

the model's generalizability and interpretability. The use of mRMR for feature selection, 

coupled with advanced HPO methods like the NSGA-II algorithm, provided an innovative 

way to optimize both the model's complexity and its performance. The results underscore 

the superiority of the GA in navigating the complex, non-linear optimization landscape, as 

evident from the comparative analysis with the Nelder-Mead algorithm. 
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The presented methodological framework is crucial for environmental engineers and 

researchers utilizing ML tools, particularly for modelling N2O emission. Future research 

should focus on further refining this integrated approach, exploring its applicability to other 

environmental parameters, and testing its effectiveness in different WWTP contexts. 

Additionally, considering the computational demands of such advanced modelling 

techniques, there is a need for developing more efficient computational strategies or 

harnessing cloud computing resources to make these methods more accessible to 

researchers and practitioners in the field. 
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Chapter 6: Synthesis, Conclusions, and Future Directions 

6.1  Introduction 

This thesis is the outcome of an exploratory journey through two different modelling 

approaches for N2O emissions from WWTPs: mechanistic (i.e., knowledge-based), and 

machine learning (i.e., data-driven) models. Each chapter has contributed distinct insights 

and findings, reflecting the multifaceted nature of this research. This final chapter aims to 

weave together the diverse strands of research presented in the preceding chapters, drawing 

concluding remarks and mapping out potential avenues for future research. By synthesizing 

these elements, this chapter seeks to provide a cohesive summary and a forward-looking 

perspective. 

6.2  Comparative overview of modelling approaches 

Process models could be primarily used as either a prognostic, diagnostic, or educational 

tool (Hug et al., 2009). Prognostic models are used to predict outcomes based on a specific 

input, such as using a model to predict the N2O emissions from a biological reactor based 

on a specific influent characteristics and operational conditions. On the other hand, 

diagnostic models can be used to analyze and understand existing conditions or past events. 

They help in identifying causes of observed phenomena. An example of diagnostic usages 

of models in the context of the current research is the determination of the pathways and 

operational conditions causing N2O emissions from a biological treatment reactor. These 

models are crucial for problem-solving and improving understanding of studied systems. 

Lastly, educational models are designed to teach and explain complex systems and 

processes to water professionals, students, policymakers, or the general public, but this is 

out of the context of the current research. A deeper look on the status of advancements in 



 
 

165 
 

the WWTP’s N2O emissions field would lead to a realization that there is a need for N2O 

models to be both prognostic and diagnostic. Using the model for a model-informed 

quantification is a clear and indispensable goal of the models; however, quantification and 

reporting of N2O is merely useful beyond the level of data collection for generating 

country-wide EFs. Rather, utilities would be mainly looking forward to getting insights 

associated with the predictions that could help to mitigate N2O emissions. In this context, 

the desired model should both be accurate, practical, and interpretable to serve the intended 

purposes.  

Mechanistic models are inherently interpretable thanks to the first-principal equations 

embedded into the models, and can be referred to as “white-box” models, where the user 

could see how predictions are made and understand the root-causes of N2O emissions. 

Nonetheless, as evident from the results of the mechanistic model calibrated in Chapter 3, 

they struggle with accuracy, especially when validated with data generated from 

operational conditions different from those when collecting the calibration data. The 

accuracy remained limited despite the fact that the model was calibrated and validated 

using data collected from intense and well-conducted laboratory-scale experiments, which 

are a more controlled environment than full-scale applications. The model shortcoming in 

extrapolation to another operational scheme in the validation data might be attributed to 

the need for different values of kinetic parameters. Given the time span between the two 

operational phases in the experiment, the microbial species could have been acclimated to 

the operational and environmental conditions requiring an update in their values when 

operating on different conditions. The acclimation to operational conditions was previously 
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investigated in literature (Sabba et al., 2024); however, its effect on N2O emissions should 

be further investigated.  

Moreover, the calibration process of N2O mechanistic models was shown to be impractical. 

Therefore, in Chapter 3, a multi-step calibration protocol was suggested, including 

sensitivity and identifiability analyses. While this can be understood in the context of 

academic research where this investigation can lead to better calibration schemes, this 

complex protocol limits the practical applications of mechanistic models. This was also 

evident through several calibration protocols that have been suggested for N2O mechanistic 

models’ calibration using full-scale datasets (Blomberg et al., 2018; Zaborowska et al., 

2019; Solís et al., 2022).  Moreover, there is no consensus yet on a calibration protocol that 

has been successfully tested on several case studies, and using long-term data. The 

attempted calibration efforts are, however, intricate, hindering their potential to be 

automated. The problem of impractical calibration is because the N2O mechanistic models, 

including the two-pathway model used in the current research, suffer from the 

overparameterization problem. This means that the model has a large number of parameters 

and there is insufficient informative data (Dochain and Vanrolleghem, P.A, 2005), making 

the calibration process complicated. For instance, the model calibrated in Chapter 3 has a 

total of 38 kinetic and stoichiometric parameters, not including parameters related to mass-

transfer, diffusivity, and temperature effects. Given this case of overparameterization, 

either re-estimation of all parameters or studying which parameters to be better estimated 

would be a time-consuming process. In the case of the current research, sensitivity and 

identifiability analyses were used to reduce the number of parameters to be estimated, 

resulting in eventually calibrating the model by only estimating 10 parameters. Although 
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this number of parameters was remarkably lower than the total number of parameters, the 

number of identifiable parameters cannot be generalized given that there is no full 

agreement in literature on the set of parameters to be estimated. However, there is an 

agreement on some parameters, such as μAOB, and the oxygen affinity constants for AOB. 

It is also worth noting that the selection of parameters to be estimated depends on the cut-

off specified to select the most influential parameters from sensitivity analysis, whether it 

is a fraction of the certain parameters starting from the ones with the highest influence or 

taking the (n) most influencing parameters (Dochain and Vanrolleghem, P.A, 2005).  

Another factor that affects the final subset of estimated parameters is the practical 

identifiability analysis (Dochain and Vanrolleghem, P.A, 2005). In the mechanistic model 

in Chapter 3, investigation of the sensitivity functions of the parameters with respect to the 

same state variable was used to detect collinearity among model parameters, helping to 

reduce the number of parameters that can practically be estimated during calibration. This 

approach effectively highlights how variations in parameters influence the model outputs, 

thereby pinpointing parameters that exhibit a lack of independent identifiability due to their 

interdependencies. However, other methods for parameter selection were also used in 

literature, with the analysis of confidence intervals generated from parameter estimations 

as the most prevalent (Solís et al., 2022). Although this also offers insights into poor 

identifiability, it does so from a broader perspective. Large confidence intervals are 

indicative of parameters that cannot be estimated with precision, a phenomenon that may 

not solely stem from identifiability issues but could also be attributed to other factors such 

as model overfitting, the inherent complexity of the model in relation to the volume of 
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available data, or both. Thus, fundamentally, the results obtained from this method should 

not be generalized given that the utilized data may affect the final outcome. 

On the other hand, ML are data-driven models that are generally considered opaque, and 

often referred to as “black-box” due to the high complexity of the model hindering 

interpretability. This complexity makes the modelling approach powerful and capable of 

capturing hidden and non-linear relationships in the data, allowing for a high accuracy that 

could be leveraged for N2O emissions predictive modelling. In Chapter 4, many models 

showed acceptable to high accuracy and captured most of the dynamics in N2O emissions 

from a full-scale WWTP. For example, an AdaBoost model demonstrated high accuracy 

across various statistical, and dynamic metrics, enabling the model to be utilized for 

prediction of N2O emissions. However, the optimized model had a complex architecture 

that might reduce interpretability. Interpretability is needed not only to understand the 

factors affecting N2O emissions and guide decision-making, but also for justifying that this 

is the right model for the use case and that the model does not rely on spurious relationships. 

Here, the interpretability was investigated using post-hoc methods, such as permutation 

feature importance, in which a global interpretation of how the model makes decisions was 

investigated and successfully aligned with the domain knowledge to ensure the model 

overall validity. As the increased complexity generally reduces interpretability, a reduction 

in complexity was another model development goal. The type of model is not the only 

factor affecting complexity; in particular, factors such as number of input features and 

model hyperparameters also have a great effect on the resulting model’s complexity. This 

was achieved using a combined feature selection-hyperparameter multi-objective 

optimization method using GA in Chapter 5. These efforts were effective in developing a 
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framework that leads to high accuracy models with relatively low complexity in terms of 

number of features and model architecture, and reduced overfitting.  Although reducing 

overfitting is indicative of a model’s ability to generalize, a distinction should be made 

between overfitting and generalization. Generalization is the model's ability to apply its 

learned patterns to new, unseen data effectively. This ability is crucial for the model to be 

useful after deployment in full-scale WWTPs, where data conditions and characteristics 

can change over time. Therefore, further demonstration of ML models is still needed to 

confirm their generalization ability in N2O emissions applications. 

6.3  Data requirements and utilization 

Developing an effective model, irrespective of its type or purpose, fundamentally requires 

a thorough data collection phase. Emphasizing the importance of data gathering is crucial 

given its profound impact on modelling accuracy. Particularly, the number and type of 

monitored variables, which represent the different attributes or characteristics measured, 

bring unique challenges and considerations in data collection, particularly when 

contrasting mechanistic models with ML models.  

Contrary to ML models, which are inherently data-driven, mechanistic models do not 

primarily rely on extensive datasets for their construction. However, data variables are 

essential for providing input to these models, as well as for their calibration and validation. 

This process involves utilizing the monitored variables that represent the model's state 

variables. For example, the mechanistic model in Chapter 3 was calibrated using NH4
+, 

NO2
−, and N2O data. Although the primary purpose of the model is to describe N2O 

concentrations, calibration using NH4
+ and NO2

− data was essential given their interaction 

with the autotroph kinetics and stoichiometry that would eventually affect N2O 
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concentrations, and the required mass balance of nitrogen species. However, the model 

could not be calibrated using NO and NH2OH data despite being critical intermediates in 

N2O production pathways. This is a primary challenge in creating accurate N2O 

mechanistic models because not all potentially relevant species are commonly measured in 

full-scale WWTPs. Thus, the provided mass balance of nitrogen species by the model 

cannot be fully calibrated or validated by experimental data. These intermediates are not 

available in most of the current N2O calibration attempts using full-scale datasets 

(Blomberg et al., 2018; Zaborowska et al., 2019; Solís et al., 2022). Other variables were 

used as input to the model, such as influent characteristics, DO concentrations in the bulk 

liquid, and the dosing rate and concentration of the supplemented carbon source. These 

variables, while not explicitly used in calibration, are essential to ensure that the model 

operates under the same conditions as the experiment. 

On the other hand, unlike mechanistic models, ML models have a higher flexibility in terms 

of the variables needed as input to the model. An ML model could be adapted and trained 

using the available features. Nevertheless, a small number or irrelevant input variables 

might not be enough to train a reliable model that is not biased due to missing an important 

feature. However, the model performance might not be affected if another feature is 

available that is highly correlated to the missing feature. Moreover, if the collected data 

has an extremely large number of features, the data are considered highly dimensional. A 

model trained on high dimensional data has a high risk of overfitting. In Chapter 4 and 5, 

the mRMR feature selection method was leveraged to select the most relevant data to the 

target variable, yet include the least possible redundancy. Aside from reducing data 

dimensionality, feature selection was important to reduce the number of features used in 
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the model to reduce the complexity of future monitoring campaigns in WWTPs. A high 

number of monitored parameters means higher cost and increased complexities resulting 

from sensor installation or lab measurements.  

Another challenge is when a variable is absent from the dataset used for ML model training, 

while the variable is known to have a mechanistic effect on N2O emissions. An example is 

the ML model trained in this research, where features such as pH, and chemical oxygen 

demand (COD) were missing, despite the potential effect they might have on the N2O 

emissions. Although the model may still benefit from further improvements, the absence 

of these variables did not demonstrate a significant negative effect on the model 

performance. This can be attributed to the specifics of the reactor and process under study, 

as pH will likely not have a significant effect on N2O emissions as long as the pH variability 

remains within the neutral pH range (Su et al., 2019). Likewise, the impact of COD on N2O 

emissions will potentially affect the rate of N2O emissions under low COD/N ratio 

conditions (Pan et al., 2013b), which was not the case in the experimental data used in 

Chapter 4 and Chapter 5. This emphasizes the need for a process understanding of the 

experimental data before using ML tools and also the need for continuous monitoring of 

model performance after deployment. If monitoring of the model performance is not 

performed, there is a potential risk of inaccurate model results in case the operational and/or 

influent conditions changed in the future. Thus, the model is likely to perform better if the 

operational conditions are not too far from those present during collection of the training 

data. 
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6.4  A comprehensive methodological framework for ML models 

In Chapter 4 and 5, a comprehensive methodological framework was introduced and 

refined that considers the development of an ML model to predict N2O emissions. This 

framework focused on the aspects that help ML models be more suitable particularly for 

online monitoring applications that can support decision-making processes. By adopting 

these goals, the objective of the framework focused not only on high accuracy, but also 

complexity reduction and interpretability improvement. Moreover, the lack of familiarity 

with ML in the environmental engineering field and the special challenges of wastewater 

applications, especially N2O emissions, urged the need for providing tailored ML 

methodologies that tackle such challenges. The following is the final refined framework 

for ML models that has been developed in thesis: 

❖ Data pre-processing: in addition to regular pre-processing activities such as 

missing data handling, data synchronisation, feature scaling, the developed 

framework focuses on making the outlier detection method more adaptive and 

interpretable. An adaptive method applicable to the special characteristics of 

wastewater data was needed: wastewater data include high interactivity between 

features and are characterized by skewed distributions. The developed method 

using Mahalanobis distance identifies multivariate outliers using a parametric 

method by fitting the best distribution to the calculated distances, and selection of 

outliers based on a threshold. Unlike complex non-parametric methods in which 

the adopted algorithm is less transparent, the developed method is understandable. 

Moreover, the method does not rely on a specific distribution just as the 

interquartile (IQR) boxplot method. 
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❖ Preliminary model selection: to help proceed towards the optimal models, this 

step ensures having a variety of models with different levels of interpretability and 

complexity. The models are trained, optimized, and compared using AIC. 

❖ Feature selection and hyperparameter optimization: in Chapter 4, feature 

selection was efficiently conducted using the mRMR method to reduce the number 

of features with the minimum effect on model performance, and hyperparameters 

were optimized using an exhaustive grid search method. The overall model showed 

high performance on the testing dataset. However, this overlooked the dimension 

of complexity as it was addressed only from the perspective of number of input 

features. This gap was considered in Chapter 5 by integration of feature selection 

and hyperparameter optimization and using a using multi-objective GA 

optimization to select hyperparameters that both achieve high performance and low 

complexity. This modification further improved the model to be more efficient by 

reducing complexity. 

❖ Comprehensive performance evaluation: performance metrics act as an alarm to 

poor model choice, misconducts in data pre-processing, or sub-optimal 

hyperparameters. As it is a way to judge the model performance, the evaluation 

metrics should be comprehensive to represent the model performance and 

shortcomings under different scenarios. The developed framework focused on a 

holistic performance evaluation by using different statistical metrics such as 

RMSE, MAE, and R2, dynamic evaluation such as time series plots, and cross-

correlation, in addition to error analysis. 
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❖ Feature importance analysis: the decision-making process of the models was 

investigated globally by feature importance methods such as permutation feature 

importance. The decision-making process of the model was aligned with domain 

knowledge to ensure that the model does not rely on spurious relationships. This 

step is not stand-alone from previous steps, and all steps affect each other. For 

example, the feature selection that reduces redundancy using mRMR method helps 

the model rely on more realistic relationships.  

6.5  Conclusions 

This thesis has explored the topics outlined in the preceding sections, leading to the 

following conclusions: 

• The calibration of a mechanistic model against experimental data revealed the 

selected model’s potential for accurate predictions within the same operational 

scheme used for calibration. However, its generalization across varying operational 

schemes was limited, underscoring the challenges in adapting such models to 

diverse treatment settings. 

• The calibration process for the mechanistic model was found to be both time-

consuming and complex, highlighting a critical gap in the field: the absence of a 

standardized approach for calibrating models to N2O emissions data in wastewater 

treatment scenarios. 

• The concentration of N2O in the reactor headspace increased with increasing the 

DO during the aerated periods in an IFAS-SBR reactor with alternating aeration 

operation, an indicating increase in N2O emissions. 
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• Through scenario analyses of the mechanistic model, temperature was found to 

influence setting a DO setpoint that satisfies ammonia removal and N2O emission 

mitigation in an IFAS-SBR reactor with alternating aeration operation. 

• Mechanistic models can still be a valuable tool for exploring "what if" scenarios, 

aiding in the design and planning phases by leveraging the best available 

knowledge to anticipate N2O emissions. 

• ML models, including k-nearest neighbours, adaptive boosting, and deep neural 

networks, demonstrated high accuracy and reliability in predicting N2O emissions 

from a full-scale, long-term dataset.  

• Deep learning is not essentially needed to predict N2O emissions as assumed in 

previous studies, as simpler models, such as kNN, achieved comparable, if not 

superior, performance. 

• Comprehensive evaluation of the performance of ML models revealed comparative 

insights across different models’ performance to aid model selection.  

• The develop multivariate outlier detection using the Mahalanobis distance provided 

a simpler and more interpretable methodology than non-parametric methods, and 

more adaptable than traditional statistical approaches. 

• Feature reduction through the mRMR method successfully reduced the data 

acquisition efforts without significantly compromising model accuracy, thus 

facilitating more efficient monitoring and measurement strategies in WWTPs. 

• The developed method to integrate feature selection with hyperparameter 

optimization through a multi-objective genetic algorithm (using NSGA-II) 

successfully enhanced the efficiency of model tuning.  
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• Using the NSGA-II algorithm was superior for the above multi-objective 

optimization problem than a more traditional optimization algorithm such as the 

Nelder-Mead method. 

6.6  Recommendations for future research 

Based on the research, experience, and insights gained through the work done in this thesis, 

it is recommended that further investigation of ML approaches, or a combination of ML 

and mechanistic approaches termed “hybrid modelling” can be pursued, through study of 

the following research gaps: 

❖ The mechanistic model in this study explored the potential combined effect of 

temperature and influent NH4 loads on N2O emissions and the required DO for 

optimal N2O mitigation and NH4 removal. The findings warrant further 

experimental investigation to validate these results, including the effect of 

temperature and pH on N2O emissions. 

❖ Comparing the efficiency of model calibration with and without data on the 

intermediates such as NH2OH and NO is needed to assess the necessity of their 

availability in calibration and validation data.  

❖ Developing good modelling practices and a unified calibration protocol for N2O 

emissions will make mechanistic modelling by practitioners feasible. 

❖ In this research, the interpretability of ML models was approached by reducing 

complexity and applying post-hoc global interpretability methods, such as 

permutation feature importance. For future work, it is recommended to explore the 

use of instance-based interpretability methods, like Shapley or SHAP values 

(Molnar, 2022), to gain deeper insights into specific instances where the model 
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faces difficulties. Additionally, investigating the impact of designing features that 

embody a mechanistic understanding on the interpretability of ML models would 

be valuable. This could help in further elucidating how feature engineering 

influences model transparency and decision-making processes. 

❖ The input features to the developed ML models for N2O prediction did not include 

certain variables that could potentially affect N2O emissions under other conditions, 

such as pH and COD load, due to their unavailability in the online monitored data. 

Future work should explore the feasibility of incorporating these variables, derived 

from low-frequency laboratory measurements, into the input variables used to train 

the ML model. This investigation could provide insights into improving model 

accuracy, predictive capability, and mitigating potential bias that may arise in case 

of change in the operational conditions. 

❖ The outstanding performance of ML models demonstrated in this research, coupled 

with the knowledge-based approach of mechanistic models, suggests that hybrid 

modelling warrants further exploration. For robust development and evaluation, it 

is advisable to utilize long-term datasets. Additionally, it is crucial to investigate 

the optimal structure and methodology for the hybrid model. This includes 

determining the precise functions and integration strategies of both the mechanistic 

and data-driven components within the model, to maximize the effectiveness and 

accuracy of the hybrid approach. A detailed illustration of hybrid modelling, its 

types, and anticipated opportunities is available in (Schneider et al., 2022). 
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