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Abstract

This study describes two statistical methods, Analysis of Covariance (ANCOVA)
and the Johnson-Neyman method. The Johnson-Mcyman method is shown to be the
hetter method to use when an important assumptiors in ANCOVA is not met--the
homogeneity of within group regression slopes.

The Johnson-Neyman method is not as frequently applied as ANCOVA. Therefore,
this study also demonstrates how rescarchers can apply the Johnson-Neyman method
using Mathematica. Mathematica is the computer software package of choice when
doing the Johrson-Neyman methiod because it can be used to manipulate interactively
mathematical expressions in symbolic and numeric form. Three examples are presented
that demonstrate how rescarchers would proceed in performing the Johnson-Neyman
method using Mathematica.

Furthermore, a popular statistical package, SPSS, is used to perform a technique
similar to the Johnson-Neyman method, an ANCOVA with heterogencous within group

regression slopes. The advantages and disadvantages of both packages are discussed.
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Chapter ]
Introduction

Rescarch designs that make use of covariates are commonly employed by
behavioural rescarchers (Maxwell, O’Callahan, & Delaney, 1993). Cochran (1957)
suggests that some of the reasons for using covariates in a research design are (a) to
increase precision in randomized experiments, (b) to remove effects of nuisance
variables in observational or nonrandomized experiments, () to examine the true
nature of a treatment effect, and (d) to analyze data,when observations are missing.
The analysis of covariance (ANCOVA) is one statistical technique that is used to
analyze data that contains covariates. Another statistical technique that can be used is
the Johnson-Neyman method (Johnson & Fay, 1950). These two methods share two
assumptions:

yij = 1+ 04 + B (xj - X..) + &jj (1)
gjjs are NID (0, o2) (2)
where: yjj is observation i in group j,
U is a constant or group effect,
aj is a treatment cffect,
B (xij - X..) is a covariate effect, and
gij is the error.
The first of these assumptions is additivity or that an observation can be thought of as
a sum of independent parameters, and the second assumption is that gjjs are ncrmally
distributed with a population mean of zero, variance 62, and are independent of each
other (Bliss, 1970; Evans & Anastasio, 1968; Glass, Peckham & Sanders, 1972).
Nevertheless, ANCOVA and the Johnson-Neyman method differ on a third

assumption--the homogeneity of within group regression slopes. The use of



ANCOVA requires that the within group regression slopes be homogencous i.c., the
regression lines are parallel:

Bi=PB2=P3...=B 3).
Whereas with the Johnson-Neyman method this assumption is not necessary and the
within group regression slopes can be homogeneous or heterogencous.

Researchers' ability to differentiate between these two methods will enable proper
use of each method in the appropriate research situation. Ultimately, this will aid and
improve the quality of behavioural research. In addition, before rescarchers can
properly apply a statistical method, they must first understand the method and also
have the resources, such as the computer software, to carry out the analysis. Without
the resources, some statistical methods can be almost impossible to apply.

This study has three main purposes: (a) to briefly provide some background into
ANCOVA and the Johnson-Neyman method by describing for cach technique, its data
organization, assumptions, history and development, advantages and limitations, and
importance of its understanding; (b) to demonstrate how the Johnson-Neyman method
can be performed with available corputer software, such as Mathematica (Wolfram,
1988), because this statistical method is not as frequently or as casily performed as is
ANCOVA: and (c) to show how a technique similar to the Johnson-Neyman mcthod is
performed with a widely used statistical software package, SPSS (SPSS, 1994), and
compare SPSS and Mathematica in how well they handle the Johnson-Neyman
method.

Furthermore, this study is geared towards those researchers who would like to usc a
statistical technique such as ANCOVA but whose data does not mect the assumption
of homogeneity of within group regression slopes and, therefore need to use a less

restrictive statistical method.
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What is Analysis of Covariance (ANCOVA)?

Analysis of Covariance has been defined as:
"[A] way to adjust the sample average [by] first [adjusting] the
individual scores and then [computing] the average of the adjusted
scores, [obtaining] an adjusted averag:. The method used for this type
of adjustment employs the corrclation between the stratifying variable
and the dependent variable directly, through the corresponding linear
regression equation.  The resulting procedure is commonly referred to
as the analysis of covariance, and the variable used for stratification...is
called a covariate." (Marascuilo & Serlin, 1988, p. 598).

Although this definition is true, it is alse not very helpful because of its generality.
For example, the corrclation can be used for adjusting the scores, but frequently it is
the regression coefficient that is used. Moreover, one does not know for sure how the
adjustment is made, and whether only one regression coefficient is used for all groups
(because the within group regression slopes are all homogeneous) or a separate
coefficient for each group, for example, Yjj - bXij or Yjj - bjXi;. Nevertheless, this
definition is presented here despite its limitations because it provides a general idea of
thec ANCOVA.

Before discussing the above definition by explaining each idea that is contained
within the overall definition, it may be useful to first present an example of a situation
where analysis of covariance is applied. The following example is taken from
Marascuilo & Serlin (1988). All first-year students entering a university are required
to take a course in composition. An instructor who teaches one of the courses in
composition wants to find out if the course is equally effective for students in six
different programs: (a) business, (b) administration, (c) engineering, (d) chemistry,
(¢) English, (f) history, and (g) mathematics. One of the problems with simply using
the final composition exam scores to compare the groups of students is that the

students enter the composition course with varying verbal abilities. The instructor has,



however, access to each student's verbal SAT score and plins to use these scores as a
covariate. The instructor will compare the groups' composition means after adjusting
the composition scores for incoming verbal ability.

From the above example, it is clear that the instructor is intcrested in making
comparisons among groups of students on a single dependent variable. Normally,
when the comparison involves more than two groups, analysis of variance is used to
analyze the data. In this case, however, it is also known that the students differ on an
important variable that is very likely related to the dependent variable. The students
differ in verbal ability and this, it is assumed, may be related to how effective the
composition course is with the different groups of students as measured by the final
exam. Normally, when there is reason to believe that there is a variate or covariate
that, if included in the analysis of the dependent variablc vill provide “a method of
achieving increased precision over the corresponding analysis of variance by
employing statistical control of the sources of variation not directly controlled by the
experimenter” (Glass et al., 1972, p. 272), analysis of covariance can be used to
analyze the data.

Analysis of variance and analysis of covariance are similar statistical procedures,
the only difference between them being that the model for the former is extended to
accommodate the use of covariates in the form of linear regressions. Incorporating
relevant variables, such as covariates, into the model serves to improve the estimates
of the group parameters or group means (Pearce, 1983). By regressing the dependent
variable on the covariate, it is possible to determine the linear association or
correlation between these two variables, and to adjust the individual scores of the
dependent variable so that they do not reflect that variation which can be attributed to
the covariate (Cochran, 1957; Smith, 1957). The adjusted individual scores permit the

calculation of adjusted group averages which results in improved estimatcs of the



groups’ dependent variable values. A statistically significant difference between or
among the groups’ adjusted values suggests that the groups differ on the dependent
variable in spite of taking into account the covariate.

Because the adjustment in ANCOVA is based on the linear regression of the
dependent variable on the covariate, it is important that the relation between the
dependent variable and covariate be linear (Elashoff, 1969; Maxwell et al, 1993;
Pigache, Graham, & Freedman, 1976). Although, Rutherford (1992) claims
ANCOVA can be based on non-linear models, researchers prefer to work with linear
models due to their simplicity of calculation and interpretation.

The covariate in ANCOVA does not need to have any specific distribution, but the
dependent variable must meet certain assumptions (Bliss, 1970). Recall these
assumptions are:

yij = 1+ 0+ B (xjj - X..) + & (1)

gjjs are NID (0, c2). 2)

Morcover, ANCOVA can be used with data from individuals or groups of individuals
that are initially different on an important variable related to the response measure.
This important variable or covariate is considered a nuisance because it makes the
comparison of individuals or groups of individuals a problem since the individuals
differ on the covariate measure and any observed differences on the dependent
variable may be due not to any treaument effect, but rather. to the covariate. For
example, the composition instructor can only obtain accurate results regarding the
effectiveness of the composition course with the different groups of students if a
parameter is included within the analysis model which controls for the initial
differences among the students on the covariate. By incorporating the covariate into

the model, the instructor is controlling what would otherwise be a source of

unaccounted variability in the results.



Another way of looking at the function of the covariate within the model of
analysis is as a predictor. Because the use of the covariate within the model is partly
dependent on its correlation with the dependent variable, the covariate can be used as a
predictor of the response measure. The effectiveness of the covariate in predicting the
response variable is seen by the decrease in the residual variation in the model (Cox &
McCullagh, 1982; Smith, 1957). Thus, the covariance adjustment has two beneficial
effects: (a) it reduces the residual variation that would have been obtained had a
model that did not incorporate a covariate been used; in ANCQVA the covariate is no
longer interpreted as an unaccounted source of variation or error in the model, but
interpreted as an accounted source of variance (Cook & Campbell, 1979); (b) the
adjusted parameter estimates are improved because they take into account the

covariate's contribution.

Assumptions of ANCOVA

ANCOVA has three main assumptions: additivity, €;;s should be distributed
normally and independently around the regression line, with a mean of zcro and an
equal variance, and homogeneity of within group regression slopes. The last
assumption, homogeneity of within group regression slopes, will be explored further
because it is from violation of this assumption that the reed for the Johrson-Neyman
method becomes evident.

Huitemna (1980) claims that one of the most important assumptions related to the
use of ANCOVA is the homogeneity of the within group regression slopes. Indeed, he
states that a test to ensure homogeneity of regression slopes should be part of any
regular ANCOVA procedure. The reason for concern regarding the violation of this

assumption arises from the misleading results of the ANCOVA if homogeneity of



slopes is not confirmed, and the likelihood that this assumption is the one most often

violated (Maxwell et al., 1993; Rutherford, 1992).

Four examples are presented below. Each example serves to illustrate a possible
position of the within group regression slopes and the consequences of this position on
the interpretation of a treatment effect from the application of an ANCOVA.

Figure 1.1 illustrates the classic case in ANCOV A where the treatment effect, the

vertical displacement between estimated regression lines, is constant regardless of the

value of the covariate.

/bl (group b
Y ladj b2 (group 2)
X

Y2adj

Dependent Variable

Covariate

Figure 1.1 Homogeneous Within Group Regression Lines

This vertical displacement is usually, in ANCOVA, assessed at the grand covariate
mcan (X..) (Huitema, 1980; Marascuilo & Serlin, 1988). However, the treatment
effect could be assessed at any point on the covariate distribution because the within
group regression lines are homogeneous and, thus, the vertical displacement between
the within group regression lines is constant regardless of the covariate value. Without

homogeneity of regression slopes, interpretation of the ANCOVA treatment effect is



problematic because the vertical displacement between the within group regression
lines is not constant, but a function of the covariate value.

In Figure 1.2, the true within group regression lines are heterogeneous and they
intersect at the grand covariate mean, but the estimated regression lines that would be
fitted to the data from a traditional ANCOVA are represented by the broken lincs, of

equal slope, that fall on top of each other.

- b2 (group 2)
Y ladj £

Y2ad; bl (group 1)

Dependent Variable

X..
Covariate

Figure 1.2. Disordinal Within Group Regression Lines

In Figure 1.2, the results from a traditional ANCOVA would indicate no treatment
effect because the vertical displacement between the estimated regression lines
(broken lines) is zero at the grand covariate mean and throughout the covariate
distribution. This conclusion, however, is misleading. Obviously, if the rescarcher
knew of the true nature of the within group regression slopes a treatment effect could
be uncovered if the vertical displacement between the true lines was assessed below or

above the grand covariate mean. Furthermore, the vertical displacement between true



lines would have to be assessed at many different covariate values both below and
above the grand covariate mean to obtain an accurate representation of the results.
Similar to the situation illustrated in Figure 1.2, Figure 1.3 and Figure 1.4 show
other examples where a traditional ANCOVA does not provide an accurate
representation of the data because it fits estimated regression lines of equal slope even

when these lines do not represent the true nature of the within group regression lines.

Y1 adj

Y2adj

Dependent Variable

Covariate

Figure 1.3. Ordinal Within Group Regression Lines

Figure 1.3, for example, illustrates a situation where the true within group regression
slopes are heterogeneous and, therefore, the treatment effect is not constant but a
function of the covariate. The results from a traditional ANCOVA, however, would
likely indicate a large and constant treatment effect because the vertical displacement
between the estimated regressicn lines (broken lines) is substartial at the grand
covariate mean and throughout the covariate distribution. The result from a traditional
ANCOVA would be inaccurate because the vertical displacement between the true
within group regression lines does not remain constant for different values of the

covariate. A significant treatment effect may be present for a large covariate value but
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not for a low covariate value. As in Figure 1.2, the true nature of the treatment effect
in Figure 1.3 is a function of the covariate and in order to obtain an accurate picture of
the data, the estimated regression lines should be calculated to allow for the
identification of their unequal slopes.

Figure 1.4 illustrates a similar situation as the preceding examples. In this case,
however, the true within group regression slopes are heterogeneous but group 1 is
always superior to group 2. In all these examples, except for the first exzmple, in
order for the researcher ‘o get a complete and accurate picture of the data, the
estimated regression lires should be calculated so that unequal slopes can be
identified. The ANCOVA does not allow for lines of unequal slope to be identified
because it fits estimated regression lines of equal slope to the data even when this is

inappropriate.

% - bl (group 1)
= Yladj

>

5

E Yoadi [ ==a= b2 (group 2)
[0]

(]

X..
Covariate

Figure 1.4. Crdinal Within Group Regression Lines

Hence, homogeneity of within group regression slopes is a key assumption in
ANCOVA. Satisfying this assumption confirms that the group trcatment effect is

consistent over the range of the covariate. In other words, the treatment effect can be



cvaluated at the grand covariate mean without worry that the treatment effect will
change with different values of the covariate (Huitema, 1980; Marascuilo & Serlin,
1988). However, it is important not to confuse the need for independence between the
treatment and the covariate and the relationship between the dependent variable and
the covariate. The covariate is and must be related to the dependent variable for it o
be useful in the ANCOVA design, and this relationship is readily seen from the slopes
of the within group regression lines. On the other hand, the covariate and the

treatment must be independent in order for the treatment effect to not become a

function of the covariate.

History and Development of ANCOVA

The idea of using covariates in the analysis of data originated with R.A. Fisher in
1932 in his book entitled, Statistical Methods for Research Workers. In his work,
Fisher demonstrated how ANCOVA combined the advantages of two widely
applicable procedures--regression and ANOVA (Cochran, 1957; Fisher, 1932). In
applying ANCOVA he recommended examining the data before deciding whether or
not to make an adjustment with a covariate. Fisher suggested that if the residual error
decreased when the covariate was added then it should be included, but if the residual
error stayed the same then adding a covariate was not necessary. Furthermore, Fisher
claimed that the chief advantage of ANCOVA was in the guidance it gave in the
design of an observational program because it increased the value of the design by
accounting for relevant variables that would, if left unaccounted, likely bias a study. It
is interesting that in his original formulation of ANCOVA, Fisher did not mention the

important assumption of homogeneous regression slopes for the proper interpretation

of ANCOVA resulis.
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Three years later, in his book, The Design of Experiments, Fisher (1935) elaborated
many of his original ideas. For example, he wrote that to accurately assess any
difference between means, the magnitude of the variation from uncontrolled causes
should be calculated, and the uncontrolled causes should be made into covariates. He
also wrote that the precision of experiments can be increased by eliminating causes of
variation which are commonly uncontrolled in observational studies. Fisher also
discussed how ANCOV A can be generalized for the use of 2 or 3 covariates, and how
ANCOVA is the process of calculating the average treatment effect based on onc
value of the covariate. Once again, however, there is no mention that within group
regression lines ought to be tested for homogeneity or that treatment effects can

become a function of the covariate if the within group regression slopes are

heterogeneous.

Advantages and Limitations of ANCOVA

Many of the advantages in using ANCOVA have already been mentioned. In
general, ANCOVA increases the precision of estimated group effects in randomized
experiments , and adjusts for preexsisting group differences in nonrandomized studies
(Maxwell et al., 1993). However, these advantages need to be qualified because there
are limitations to them that should be considcred. For example, Maxwell et al. (1993)
state that ANCOVA, as originally conceived by Fisher, is a method for increasing the
precision of estimated group effects in randomized studies. Unfortunately over the
years, ANCOVA has been used primarily as a method for adjusting preexisting group
differences and the assumptions required in this case are more stringent than those
required when assignment is randomized (Maxwell et al., 1993). Furthermore,
according to Maguire and Haig (1976), applying statistical techniques that supposedly

control nuisance variables in Not Truly Experimental (NTE) resecarch may add a more

12



serious problem than it solves. For example, if a construct is conceptualized partly
from the relationships it shares with otirer contructs and variables, then when a
“nuisance” variable is statistically removed from the construct under study, in effect,
the construct changes. Therefore, it may be preferable to accept the complexity of an
experiment or study and describe it in its entirety in order to arrive at any conclusions

than to try and statistically remove important variables that, in their absence, may

change the contruct of interest.

Why Is It Important to Understand ANCOVA:
A Summary

It is important to understand the statistical procedures that are employed to analyze
data primarily because the results and conclusions obtained from a study are
contingent on the specific procedures that were used with the data. This dilemma is
compounded with the use of computer software packages.

Statistical software packages are often treated as magic boxes that will make sense
of and manage data. It is important to remember that statistical software packages
should be used to reduce or even eliminatc the need for researchers to calculate messy
equations, and efficiently and accurately handle large data sets. Software packages
should not replace conceptual understanding on the part of the researcher. Just like a
calculator is used for convenience and ease by children after they have mastered
mathematical procedures on their own, statistical software packages should be used for
their convenience and ease by researchers after they have understood the statistical
methods they wish to employ. Although, understanding ANCOVA may not be
considercd essential precisely because of the many statistical software packages that

provide simple ANCOVA analyses without requiring much knowledge from the user,

13
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proper interpretation of output from these software packages is contingent on a
knowledgeable user.

70 summarize, a key assumption in the use of ANCOVA and the one that is likely
most often violated is the homogeneity of within group regression slopes (Maxwell et
al., 1993; Rutherford, 1992). In those cases where homogeneity is not present and
within group regression slopes are heterogeneous, the group trcatment effect becomes
a function of the covariate. This can produce seriously misleading results. For
example, a claim may be made that two groups do not differ on a certain variable, but
this lack of treatment effect may be observed only for a finite range ir the distribution
of the covariate and the groups may differ markedly at other points along the covariate
distribution (see for example Figure 1.2).

Given that this ANCOVA assumption should be met, how can its violation be
avoided? The violation of the homogeneity assumption can be avoided by always
testing for homogeneity of slopes before proceeding with an ANCOVA. Ii the within
group regression slopes are homogeneous, the test simply confirms the homogencity
and a traditional ANCOVA can be used to analyze the data. On the other hand, if the
within group regression slopes are not homogeneous, but heterogeneous, ANCOVA is
no longer the statistical procedure of choice. The procedure that should be employed
when the within group regression slopes are heterogeneous is the Johnson-Neyman
method (Johnson & Fay, 1950). The Johnson-Neyman method has been described by
some researchers as simply a more general form of the ANCOVA since it provides not

only similar information, but additional information as well (Rogosa, 1980, 1981).
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Chapter 11
An Introduction to the Johnson-Neyman Method

The Johnson-Neyman method can be used instead of ANCOVA if researchers want
an analysis similar to ANCOVA (both methods incorporate a linear regression of the
dependent variable on the covariate in order to increase the accuracy of the estimated
group parameters), but without having to meet the restriction of homogeneous within
group regression slopes.

The Johnson-Neyman method can be a very useful tool in behavioural research for
the following reasons: (a) social scientific data does not always meet the required
ANCOVA assumptions. Forexanple, there are situations where interactions surface
between the independent variable and the covariate, and consequently, the assumption
of homogencity of within group regression slopes is violated (Cronbach & Snow,
1977); (b) educators and theorists may be interested in more than just the treatment
differences between groups at a single point along the covariate distribution, and they
may be interested in knowing the effects of different covariate values on a treatment
effect; and (c) researchers may expect, from the basis of their research, an interaction
between the independent variable and covariate, and may want to know a priori the
statistical technique to use with the data. For instance, in the area of Aptitude
Treatment Interaction (ATI), Cronbach and Snow (1977), claim that the heterogeneity
of within group regression slopes is part of what is expected in the results of their
studies.

The Johnson-Neyman method can be simply defined as a statistical procedure that
makes possible the identification of covariate values which yield statistically
significant group or treatment differences on a dependent variable (Rutherford, 1992).
The Johnson-Neyman method makes this possible by producing a “region of

significance” where significant treatment differences are assessed for a range of
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covariate values (Johnson & Fay, 1950). For example, the region of significance, in
the case of two groups and one covariate, is a coordinate space where the dependent
variable and covariate are represented by coordinates on the Y and X axes,
respectively. The region of significance encompasses all those group difterences that
are identified from the vertical displacement between the within group regression
lines, drawn at specific values of the covariate.

In summary, the Johnson-Neyman method can circumvent the assumption of
homogeneous within group regression slopes by producing a region of significance.
In addition, some researchers recommend using the Johnson-Neyman method even in

cases where one would normally use ANCOVA (Rogosa, 1980, 1981).

Assumptions of the Johnson-Neyman Method

The Johnson-Neyman method and ANCOVA share two main assumptions which
are (a) additivity and (b) &jjs are normally and independently distributed with a mean
of zero and variance, 62. However, these two methods differ on a third assumption:
ANCOVA requires that within group regression slopes be parallel while the Johnson-
Neyman method does not require that this assumption be met.

Pigache et al. (1976) suggest that some additional conditions be considered before
the Johnson-Neyman method is applied. These conditions are complex issucs and are
mentioned here for the interested reader who may wish to investigate them in greater
depth. Briefly, these conditions, which fall under research design considerations, are:
(a) pre-treatment levels not subject to random error, (b) independence from
measurement carry-over effects, (c) regression toward the mean in prediction, and (d)

problems of extrapolation.
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History and Development of the Johnson-Neyman Method

Originally, the Johnson-Neyman method was developed in an attempt to provide a
solution to the problem of matching subjects (Johnson & Neyman, 1936). Johnson
and Neyman claimed that the method of matching subjects possessed two weaknesses:
First, matching individuals on one trait was difficult, and matching subjects on a
number of traits was even more difficult. Second, treatment effects found between
groups may be observed not because of any genuine effect, but may originate from an
underlying variable that was systematically “unmatched” among the subjects when the
,ubjects were matched on a specific trait. For example, if two groups are created so
that individuals in one group match individuals in the other group on 1.Q., a danger
arises from this systematic matching. The danger lies in that the groups may have
been systematically “unmatched” on another important variable, such as motivation.
Although, the groups may be matched on 1.Q., they are *“unmatched” on motivation,
and an observed effect between the groups may not be due to a treatment, but iheir
different motivationai levels. In an effort to relieve the researcher from the process of
matching subjects, Johnson and Neyman demonstrated that both these weaknesses
could be overcome by regressing the dependent variable on the trait used for matching
the groups. Through regression, Johnson and Neyman argued, researchers would not
necd to match subjects, but could instead make use of all subjects irrespective of their
trait values. Moreover, the use of a larger number of subjects in an experiment had the
addcd benefit of increasing the power of the experiment.

Although, Johnson and Neyman (1936) developed their technique as a solution to
the problem of matching subjects, it actually may not change the problem. By
matching the subjects on one variable (the covariate) in order to compare them on the
dependent variable, can cause an “unmatching” to occur on other, potentially

important variables relevant to the dependent variable (Maguire & Haig, 1976). Thus,
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this may be an important consideration to keep in mind when applying any statistical

procedure that will “match” subjects.

Non-Simultancous and Simultaneous Confidence Limits in
the Johnson-Neyman Method
The region of significance in the Johnson-Neyman method can also be formulated
in terms of a confidence interval (Potthoff, 1964, 1983). First, recall that the region of
significance contains those covariate values that are associated with statistically
significant group differences. That is, the vertical displacement between the within
group regression lines is large enough to be statistically significant. Outside of this
region of significance, no differences will be found between the groups for any
covariate value. Now, if a 95 percent confidence interval were calculated for cach of
the treatment difterences that is found within the region of significance, the number
zero will not fall within any one of the confidence intervals constructed. Thus, for any
point that falls within the region of significance, its corresponding confidence interval
will also show the point's significance. A problem that arises, however, is the
distinction between two forms of confidence intervals that can be constructed from the
region of significance--simple confidence intervals and simultaneous confidence
intervals. Simple confidence intervals are associated with the region of significance
labeled, R, and simultaneous confidence intervals are associated with a smaller subset

of the region of significance labeled, R' (Potthoff, 1964).

Simple Confidence Intervals

Rogosa (1980) 1abels simple confidence intervals, pick-a-point intervals, because
they should be used only when assessing treatment differences at a single point along

the covariate distribution. To this extent, simple confidence intervals are analogous to



19

the way ANCOVA assesses treatment differences--treatment differences are assessed
at only one point along the covariate distribution because it is assumed that the
regression lines are parallel. The reason that simple confidence intervals should be
used only when making group comparisons at a single covariate value is to control the
probability of making a Type I error. For example, when a 95 percent simple
confidence interval is constructed for a specific group comparison, there exists a 5
percent cha.ice that the confidence interval will show a significant group difference
when, in fact, there is no difference at all between the groups. Hence, if simple
confidence intervals were constructed to assess a multitude of treatment differences,
and there exists a 5 percent chance of making a type I error with every confidence
interval constructed, the chances of committing a type I error with multiple

comparisons are much higher than 5 percent.

n “onfidence Interval

Simultaneous confidence intervals are recommended when more than one
comparison of group treatment differences is desired. That is, when group differences
are asscssed at many points along the covariate distribution. The reason that
simultancous confidence intervals are suggested for this purpose is because they are
calculated so that a 5 percent error rate is maintained over a set of comparisons (the
probability of making a type ! error in a single 95 percent simultaneous confidence
interval is much smaller than 5 percent) and, therefore, even when making many
comparisons the probability of making a Type I error is held constant at 5 percent.

Aitkin (1973) argues, however, that the simultaneous confidence interval is too
conservative for practical purposes. For example, he claims that, in most cases,
researchers are interested in knowing about group differences for a finite range of

covariate values and not necessarily for all covariate values within the region of
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significance, R'. To this end, he recommends the use of Gafarian simultancous bands,
which allow researchers to choose a finite set of data points in which to examine group

differences (see Gafarian, 1964).

Advantages and Limitations of the Johnson-Neyman Method

The Johnson-Neyman method has definite advantages. The most salient advantage
in using this method is that it can be applied to data that contain heterogencous within
group regression slopes. In social scientific research this is an attractive advantage
because not all data with covariates will have homogeneous within group regression
slopes and, thus, fit within the framework of ANCOVA.

A second advantage is thai when dealing with heterogeneous within group
regression slopes, the Johnson-Neyman method assesses treatment effects for a range
of covariate values. By producing a region of significance, the Johncon-Neyman
method indicates which covariate values yield significant treatment cffects, and whicia
do not. This is accomplished first by showing, within the boundaries of the region of
significance, all values of the covariate that are associated with significant group
differences (in the case of 2 covariates, the combination of covariate values are
identified), and second by the exclusion of those values of the covariate that are not
associated with significant group differences from the region of significance. The
boundaries that form the region of significance act as gatekeepers in the process of
determining which covariate values are associated with significant group diffcrences
and which are not. Knowledge that a covariate value resides within the region of
significance is just as important as the knowledge that a covariate value resides outside
th~ region of significance because this is relevant information concerning the

magnitude of the covariate value under which a treatment effect is observed or not.
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It is important to note that the boundaries of the region of significance, which
demarcate at which point significant group differences begin and end, can be
established with a contrast matrix. For example, (a) one could use a “pick-a-point
procedure,” a covariate point of interest, or a series of covariate points to define a
region. In the latter case, it is through trial and error that values are entered into the
contrast matrix; or (b) one could use a symbolic value to find the values of the
covariate at which significant treatment differences appear (it is important to consider
that some programs do not allow entry of contrast matrices or they allow only
contrasts with 1 degree of freedom). Essentially, the attractiveness of the Johnson-
Neyman method is well stated by Rogosa (1980, 1981), who confirms that the
Johnson-Neyman method provides not only the same information as ANCOVA, but
more information with fewer restrictions.

The Johnson-Neyman method does have its limitations, however. First, there
are no statistical computer software packages that perform the Johnson-Neyman
method. (Mathematica can be used to perform the Johnson-Neyman method, but
Mathematica is not considered a statistical software package). Moreover, this is not a
statistical procedure that can be easily done by hand with a pocket calculator.
Thercfore, the availability of computer software dictates whether this method is
cmployed or not. There have been attempts to circumvent the complex calculations
involved with the Johnson-Neyman method. For example, Carroll and Wilson (1970)
developed a program designed to perform all the calculations necessary for the
Johnson-Neyman method, but it was slow (one half hour per problem) and it did not
provide a graphical output of the region of significance.

Currently, there are statistical computer packages that will perform an ANCOVA
with heterogeneous within group regression slopes, for example SPSS (1994) and SAS

(1982), but the procedures do not provide the region of significance. Thus far,
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Mathematica may be the only computer software that can successfully perform the
calculations necessary to the Johnson-Neyman method and provide the region of
significance in both numerical and graphical form (Maples (Abell & Braselton, 1994),
a computer software package, may also be used to perform the Johnson-Neyman
method since it has been shown to be similar to Marhematica).

A second limitation to the Johnson-Neyman method is advanced by Abelson
(1953), who cautions against using the Johnson-Neyman method when homogeneity
of within group regression slopes is present. Abclson claims that if one performs the
Johnson-Neyman method with homogeneous regression slopes that yield significant
treatment effects, the corresponding region of significance may tumn out to be so large
that it includes all covariate values, it does not add any vaiuable information to the
analysis, and is performed at the expense of a great deal of computation. Today,
researchers such as Rogosa (1980, 1981) argue to the contrary, claiming that the
Johnson-Neyman method can be used even when homogeneity of within group
regression slopes is present. Obtaining a large region of significance that potentially
includes all covariate values may not contribute new information to the analysis but it
also does not rob the analysis from any valuable information. Furthermore, if the

calculations are done by computer, the computational labour is not a problem.

Importance of Understanding The Johnson-Neyman Mcthod
The importance of knowing and understanding the Johnson-Neyman method for
social scientific researchers lies in that this statistical procedure can be very useful in
their research. There arc many instances in educational research where groups or
treatments differ on important concomitant variables (Cronbach & Snow, 1977). For
example, groups of students frequently differ on verbal or mathematical ability

measures, and these measures often serve as covariates in testing or evaluation of new
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programs or curriculum initiatives. Thus, in educational research it is often the case
that within group regression lines are not homogeneous and traditional ANCOVA

procedures are, therefore, not justified to be used. In these cases, the Johnison-Neyman

method is the method of choice.

Past Application of the Johnson-Neyman Method:
Non-Computer Based

Previous non-computer based applications of the Johnson-Neyman method are
difficult to reproduce here because of the amount of space that would have to be
dedicated to the mathematical calculations. It is not the intent of this study to
concentrate on the mathematical details of the Johnson-Neyman method. For those
who are interested in reading about the original mathematical application of the
Johnson-Neyman method or its derivation, Johnson and Neyman (1936) and Johnson

and Fay (1950), respectively, provide complete mathematical details.
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Chapter 111
Mathematica and Application of the Johnson-Neyman Method

To circumvent the manual computational labour of the Johnson-Neyman method,
Carroll and Wilson (1970), using a programming language labeled TELECOMP, wrote
a computer program capable of executing the Johnson-Neyman method with two
covariates. Although, the program performed all necessary calculations, including
identification of the parameters that form the region of significance, it required too much
time to execute and did not test for homogeneity of within group regression slopes.
Researchers had to confirm this assumption independently before using the program.

Today, Mathematica (Wolfram, 1988), a software package that can be used to
manipulate interactively mathematical expressions in symbolic and numeric form,
successfully executes all calculations necessary for the Johnson-Neyman method,
including a graphical output of the region of significance. In the simplest case, users
identify the mathematical problems or equations that need to be solved and Mathematica,
in turn, provides the solutions. In addition, users can plot equations by employing
specific Mathematica commands and operators.

The option to plot equations on Mathematica is a highly useful feature for the user
wishing to perform more complex applications of the Johnson-Neyman method.
Although Mathematica can always solve polynomials (finding a solution to the
Johnson-Neyman problem usually involves solving a polynomial which leads to finding
the region of significance) when (a) there is one unknown, and (b) the highest power is
4, if these two conditions are not met it may prove to be mathematically impossible to
provide an exact algebraic solution and plotting the polynomial becomes the method of
choice by which the region of significance is identified.

Before presenting three examples that illustrate the use of the Johnson-Neyman

method with Mathematica, a brief description of the general linear model is necessary
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hecause it is used to define all variables, equations, and contrasts relevant to performing
the Johnson-Neyman method in Mathematica. Furthermore, a description of the

semantics used in Mathematica is given.

The Geneial Linear Model

The general linear model, in its most elementary form, is defined as Y=X[+¢; where
Y is a vector of order (N,1) whose elements represent values of the dependent variable
for N observations; X is a design matrix of order (N.n) and of rank n (N>n) whose
clements represent the independent variables; B is a vector of order (n,1) whose
clements represent the population parameters to be estimated; € is a vector of order (N,1)
whose elements are the population error values.

The design matrix (X) may be constructed in a number of different ways depending
upon the parameters rescarchers wish to estimate. For example, Searle, Speed, and
Henderson (cited in Hunka, 1993) claim that the three most commonly used design
matrices are the Z-restricted model, u—model, and set-to-zero model. Although, all of
these design matrices can be used in solving for the Johnson-Neyman method, each
estimates different parameters. Commonly, researchers use the Z-restricted model and
p—model because the parameters are more easily interpreted than the set-10-zero model.
It is important, however, that researchers be aware of the design matrix they select
because interpretation of parameter estimates and construction of contrast matrices are
contingent upon the design matrix used. Lastly, an estimate of {3 is solved through the
ordinary least squares method B=(X"X)-1X"Y.

Use of the Z-restricted design matrix in a simple one-way analysis of variance
(ANOVA) design with j groups produces estimates of an overall mean or a constant
effect Y, and treatment effects o (j=1,2,...,g-1) such that Za;j=0. The Z-restricted

design matrix is created for an ANOVA design as follows:
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Xi1= 1 for all observations i

X; j+1= 1 for all observations i in group j, otherwise a zero, except

when i is in group j+1=g; then

Xij+i,1=-1 forall i
Thus, for a three group ANOV A with two obscrvations in each group, the design matrix

would be as follows:

X149

[ G G SO Sy

The parameters estimated by the design matrix xj are Y, &1, and 02. In order for the
design matrix above to be used for an ANCOVA, some slight changes are needed. For
example, if one covariate measure is included in the ANOVA design, three additional
columns must be appended to the design matrix, cach one containing the covariate

values for a specific group.

1101007

110200
el 101040
2—

101070

1-1-100 8
L 1-1-1009.

Now, the parameters estimated by x2 are [, a1, 02, 81, 82, 83; the 8 parameters are
estimates of individual within group regression coefficients. With the 6 parameters, the

o parameters are interpreted as treatment effects adjusted at a covariate value of zero.
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If a y-model design matrix had been constructed instead of the Z-restricted design
matrix, cach of the first three columns of the design matrix would contain a one if the
observation is in group j, otherwise a zero. For example, the three group ANOVA

design with two observations in each group would take the following form:

(100
100
010
010
001
_()OI_J

X34

The parameters estimated by x3 are iy, M2, and p3. To modify this design matrix, once
again, for an ANCOVA with one covariate, the same procedure is used as was uscd

with the X-restricted model--three additional columns are appended, each column

containing the covariate values for the specific group.

X 44

SO -
SO =0
—-—0 oo C
S COCN —
SONhAMhOO
WoooOoOoOoC

The parameters, thus, estimated by this modified design matrix x4 would be L1, Y2, U3,
81, 82, 83. Once again, the Y parameters are interpreted as group means adjusted at a
covariate value of zero, and the 8 parameters are estimates of the individual within group
regression coefficients.

In ordcer to test specific hypotheses, contrast matrices are formed and their associated

sum of squares calculated. For example, the sum of squares of a specific contrast
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matrix K’, of order (r,n) and rank (r), that is associated with the hypothesis K'B~-m=0)

in which m is set to zero and P is estimated from B=(X"X)-1X"Y, is calculated by

SSk=(K’B)’[K’(X’X)-IK]-IK’B 4

In addition, to test for the statistical significance of the hypothesis associated with

contrast K’ at an o level of 0.05, the following relationship should hold:

(K’BY [K’(X"X)IKIIK’B - r Mse x Fo 05.ak:afe 20 (5)

where Msc = appropriate Mean Square Error for the data
dfk = the degrees of freedom (k) associated with the specific contrast
formed

dfe = the degrees of freedom for the error term

-----

potential effects, including the region of significance in the Johnson-Neyman method.
For those readers interested in further information regarding the general lincar model,

refer to Searle (1971).

Mathematica_Semantics

All variables, equations, and contrasts must be specified with a particular syntax in
Mathematica. For ease of understanding the Marhemarica commands used to do the
Johnson-Neyman method, 12 syntax descriptions and examples are illustrated below:

(a) Inputinto Mathematica is portrayed in bold courier font.

eg, 20x+ 5



(b) Output from Mathematica is portrayed in plain Courier font.

e.g., 15
(c) An operation is positioned to the left of an argument with the argument in

square brackets.
e.g., Inverse[x] where x =[ (l) % ]
(d) A (.)is a matrix multiplier.
e.g., x =(5,5) matrix; y = (5,5) matrix
X.y

(¢) An assignment is made with the equal symbol (=).

eg, a=5x=2
() A vector or list is defined by enclosing a list of number(s) within one set

of curly brackets.

eg., {4,55,7,.., n}
(g) A matrix is defined by enclosing subsets of numbers belonging to the
matrix within single curly brackets and the entire set of numbers within

another sct of curly brackets.
e.g., {{4,5, 2}{5, 1, 3},{7, 8, 9}}
(h) A right slanted slash (/) performs a division.
e.g., 20/5=4
(1) A left slanted slash () signals a line continuation.
()) A space between or among a set of numbers or symbols is a
multiplication operator.

e.g., 5 4 returns the result 20
(k) Two right slanted slashes (/) followed by an N gives numerical

values, expresses result in real form.
e.g., 4/5//N returns the result 0.80
(1) All Mathematica operators have the first character in upper case.

e.g., Inverse[x]

29
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Many of the operations that are input into Marhematica 1o solve for the Johnson-
Neyman problem generate very long output. Such long output takes a lot of space and
detracts from the primary purpose of showing how the Johnson-Neyman method is
performed with Mathematica. Therefore, to save space but not to diminish from a
complete and comprehensive demonstration of how the Johnson-Neyman method is
performed with Mathematica, all output from Mathematica is shown for the first
example only. For the second and third example, the output is selectively shown, and
only when it is relevant towards the application of the Johnson-Neyman method, for
example, the polynomial equation needed to solve the Johnson-Neyman method.

In addition, the following general steps are executed for each example:
(a) The design matrix is defined.
(b) The Y vector is defined.
(c) The transpose of X is multiplied by X to form X’X.
(d) The inverse of X'X is calcuiated.
(e) The transpose of X is post-multiplied by Y.

(f) Estimated parameters are calculated by B = [X’XJ'1X"Y.
(g) The contrasts (K’) are defined and used to solve for SSk (sum of

squares for contrast K').
(h) The contrasts are tested for statistical significance.
(i) The region of significance is found by forming the polynomial from
SSk = (K’'BY’[K’(X’X)- IK]- 1(K’B)
and then subtracting the constant r MSe Fo 05, dfe,dfk and solving for the

unknowns embedded in K’ by setting
(K'B)'[K’(X’X) IK]-/(K’B) - r MSe Fo 05, afe,afk = 0-



31

Example 1: Two Groups and One Covariate
In order to demonstrate the Johnson-Neyman method as it is applied with
Muarhematica. a data set taken from Huitema (1980) is used for purposes of the analysis.
The data set is made up of 30 subjects that are divided into two different therapy
coaditions. The dependent variable is an aggressiveness score on a behavioural

checklist; the covariate represents individual scores on a sociability scale. The X-

restricted modcl will be employed in all examples.
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The Z-restricted model, as defined above, has four columns. The first column estimates
the constant effect 1, the second column estimates the treatment effect for group 1, the
third column estimates the within group regression coefficient for group 1, and the
fourth column estimates the within group regression coefficient for group 2.

y=(10,10,11,10,11,11,10,11,11.5,12,12,11,11,312.5,12,
5,6,6,7,8,9,9,9,10.5,11,12.5,12.5,14,14.5,16}

The 4 vector is ordered with respect to the dependent variable; the first 15 values

correspond to group 1 and the last 15 values correspond to group 2.

Basic Caiculations

xx=Transpose[x] .x

({(30., 0., 87., 83.}, {0., 30., 87., -83.},
{87.1 87., 635-' Oo}l {83-' —83-1 O.' 558.5}}
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Inverse [xx]
{{0.174963, -0.012642, -0.0222393, -0.0278804},
{-0.012642, 0.174963, -0.0222393, 0.0278804},

-21
{-0.0222393, -0.0222393, 0.00766871, 2.5411 10 }.

-21
{-0.0278804, 0.0278804, 1.69407 10 ., 0.0100773})

xy=Transpose[x] .y

{316., 16., 990., 952.75}

In order to estimate the parameters, 1, &, and & contained in vector B, X'X is calculated
along with its inverse, and XY.

b=Inversel[xx] .xy

{6.5061, 3.35075, 0.208589, 1.23698}
The parameter estimates given by vector B are u=6.5061; o1=3.35075; 61=0.208589;

and §2=1.23698.

Qontrasls
ssklk_,xx_,b_]:=

(k.b).(Inverselk.Inverse[xx].Transposel[k]]).
Transpose[(k.b)]

The above expression corresponds to SSk=(K’B)’[K’(X’X)-1K]-1K’B and, thus,
calculates the sum of squares associated with a specific contrast. This expression will
be used to assess the sum of squares for all contrasts. Essentially, onc substitutes a
specific contrast matrix, Ky, into k_; X’X into xx_; and B intob_.

Contrast K1, shown below, is used to assess the homogeneity or heterogeneity of the
within group regression slopes. Contrast K1 has one degree of freedom.
Parenthetically, the contrast used to assess heterogeneity of within group regression
slopes is principal to the Johnson-Neyman method. The outcome of this contrast will

determine how treatment effects are interpreted. For example, if contrast K is
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significant (indicating that the within group regression slopes are heterogeneous) the
treatment effects cannot be assessed as they wouid be in a traditional ANCOV A because
the homogeneity assumption has been vinlated. In this case, the treatment effects must

be assessed as a function of the covariate. On the other hand, if K is not significant,

the treatment effects can be assessed as they would be normally with the ANCOVA.

kl:{{ololll_l}}

{(Ol OI 1/ —1)}
The null hypothesis associated with Kj is the following:

Ho: K1B = [0 0 1 -1] = [8,-5,] = [0]

The sum of squares associated with Ky is 59.5964 and its mean square remains 59.5964
because K1 has only one degree of freedom. In addition, the mean square error for this
example is 0.42.

ssk[kl,xx,b]

59.5964
In order to compute the F statistic for K1, 59.5964 is divided by 0.42 and the F value

produced is 141.896 which is statistically significant at an o level of 0.05. Thus,
homogeneity of within group regression slopes is rejected and heterogeneity is assumed
of the regression coefficients. This result also means that the treatment effects must be

interpreted with regard to the covariate and the Johnson-Neyman method is used to

assess the treatment effects.
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Contrast K2 is set up (see Appendix 1) to find the points along the covariate

distribution where significant treatment effects are found.

k2={{0,2,p,-p}}
{{Or 21 pl -p])

[
o
81
&2 |

[ 20, + p8&  -pd; ] = (0]

]

Ho: K2B= 0 2 p -p]

The sum of squares associated with K2 is expressed in Mathematica in the form of a
polynomial because K2 contains the symbolic, unknown value, p. An indicator of
Mathematica’s power is illustrated by the expression ssk[k2,xx,b] which can produce
numeric or symbolic results--something unique in a computer language.
d=ssk[k2,xx,b]

(6.70149 - 1.02839 p)

0.699852 - 0.200479 p + 0.017746 p

In order to solve for the unknown value p, (K’B)' [K’(X'X) 1K]J"1K’B - r Msc x
Fo.05:dfk:dfe = 0 is used. First, (K’BY'[K’(X’X)"1K]-IK’B is known in the form of the
polynomial above (d). Second, : Mse x Fg 0s;atk;afe (=1, dfk=1, dfe=26) is calculated,
1 0.42 4.26

1.7892

Now, Mathematica’s Solve operator is used to find the values of p that yield significant

treatment effects and bind the region of significance.
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Solve[d~-1.7892 ==0,Dp]
{{p -> 6.03625}, {p -> 7.0504}}
Location of point p at p=6.03625 and p=7.0504 bind the region of significance. That

is, these two points demarcate the points along the covariate distribution where

significant treatment differences are observed.
The region of significance is plotted using Marhematica’s Plot operator.

Plot [d-1.7892, {p,0,11},AxesLabel~->{"p","88"}}

SSs

60
S0
40
30
20
10

N
2 4 6 8 10
Figure 3.1.: Region of Significance--Two Groups

and One Covariate

In Figure 3.1, the function intersects the p axis at two points, p=6.04 and p=7.05.
These two points demarcate the origins of the region of significance; the region where
statistically significant treatment effects are observed. For instance, all values of p for
which the plot is above the horizontal axis yield statistically significant treatment effects
at an o value of 0.05 or less. Hence, statistically significant effects between the two
therapy conditions are observed when subjects have, as a group, average sociability

scores equal to or less than 6.04 and equal to or greater than 7.05.
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Example 2: Three Groups and Two Covanaies
The preceding example involved only two groups and one covariate. The present
example will address the application of the Johnson-Neyman method to a slightly more
difficult data set. This hypothetical data set (N=15) is taken from Hunka (1995). In
order to make the example less abstract, the three groups will be said to represent three
instructional conditions: Seminar, lecture, and peer-leamning. The two covariates
represent motivation level and verbal ability, respectively. The dependent variable

represents scores on a written test.

Data Input
x={{1,1,0,3,0,0,4,0,0},{¢(1,1,0,3,0,0,5,0,0},
{t1,1,0,4,0,0,6,0,0},{1,1,0,4,0,0,5,0,0},
{(1,1,0,5,0,0,6,0,0},{1,0,1,0,2,0,0,4,0},
{1,0,1,0,4,0,0,5,0},{¢(1,0,1,0,5,0,0,2,0},
{1,0,1,0,5,0,0,1,0},(1,0,1,0,7,0,0,6,0},
{11‘11'1101015101017}:{11"11'1101013101 OIS}I
{11-11'1101014101016}1(11-11-1101015101 015}1
{11-11-110101 6101 017}}

Once again, the Z-restricted design matrix is used to define the model. This design
matrix has a total of nine columns and allows estimation of i, ay, &2, 811, 821, 831,
812, 822, and 837.

vy={10,9,9,7,7,3,3,3,4,4,6,4,6,4,7}

The Y vector is again ordered with respect to the dependent variabie. For this example,

the first 5 values correspond to group 1, the second 5 values correspond to group 2, and

the last 5 values correspond to group 3.

Basic Calculations
xx=Transpose[x] .x

Inverse [xx]
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xy=Transpose[x].y

X'X, Inverse[X’X], and XY are calculated so that the B vector can be computed as
shown below:

b=Inverse[xx] .xy

{4.27825, 8.12175, -1.7418, -1.6, 0.218722, 0.0169492,
0.4,-0.039604, 1.22729)

The paramcter estimates given by the vector B are 1=4.27825, o1=8.12175,
o2=-1.7418, 811=—1.6, 621=0.218722, 831=0.0169492, 812=0.4, &22=-0.039604,
and 632=1.23729.

Contrasts
k1={{0,0,0,1,-1,0,0:0,0}:
{ololololll-llololo}l
{0101010:010111—110}1
{01010101010:0111"1}}
- _
1l
o
o2
311 ~ _
511-8
0001-10000 821 17021 0
Ho: Kip= |0 0001-1000 &1 | - | 828 | _|o
' 0000001-10 §1n-8 0
00000001 -1 812 12022 0
829 [ 822-83 ]
| 832 |

Contrast K} in this example is used to determine the homogeneity or heterogeneity of the
within group regression slopes corresponding to both covariates simultaneously. For

example, the first two rows of K1 assess the homogeneity of within group regression
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slopes for covariate 1, while the last two rows of K1 assess the homogeneity of within
group regression slopes for covariate 2.
The sum of squares associated with K1 is 11.1612 and its mean square is 2.7903

because K1 has four degrees of freedom.

ssk{kl,xx,bl]
11.1612

mskl=11.1612/4

2.7903
The F statistic associated with K1 is obtained by dividing 2.7903 by 0.654833, the

mean square error for this data set. The F value for K1 is 4.26109 (Fo 05 critical = 4.33)
which just barely misses statistical significance at an a value of 0.05. However,
because 4.26109 is so close to statistical significance, for purposes of illustrating the
Johnson-Neyman method in this example the within group regression slopes for
covariate 1 and for covariate 2 are taken to be heterogeneous. Due to heterogeneity, the

treatment effects must be assessed as a function of the covariate.

The Johnson-Neyman Method: Finding the Region of Significance

Contrast K2 is set up (see Apendix 2), as was explained previously in Example 1, to
find the points along the covariate distribution where significant treatment differences are
found.

k2={{0:1:"1:p:‘Plorq:'QJO}:
{0,1,2,0,p,-p,0,4q9,-q9}}



Ho: KoB= [Ol-lp-p 0q-q 0] 831
0120p-p0gq-q

_ [ al-a2+p811-p521+q512-q522 :, — [0}
0

01 +202+p021-pd31+q822-32

As can be noticed from K2, it is more complex than the contrast used to obtain the
region of significance in Example 1. The reason for this is, of course, that in this
cxample the region of significance is being defined for two covariates in three different
treatment conditions, instead for only one covariate in two different treatment
conditions. In this example, the values to which covariate adjustments are to be made
are represented by p and q.

The sum of squares associated with K2 is again in the form of a ratio of two

polynomials, although this time it is of degree 6, instead of degree 2 as in Example 1.

d=8s8k[k2,xx,Db]

39
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Simplify([d]

6 2
(1.33883 10 (1166.63 - 402.764 p + 102.544 p

3 4
11.6942 p + 1. p - 396.463 g + 17.3844 p q -

2 3 2
4.60751 p q - 1.91442 p g + 92.9572 g +

2 2 2 3
2.15573 p g + 3.53078 p g - 11.913 q

3 4
2.59113 p g + 1.21071 q )) /

2 3
(132786565 - 6850808 p + 15736360 p - 650736 p +

4 2
407916 p - 88417620 g - 20000708 p g - 3977568 p g
3 2 2
- 1130560 p q + 31277440 q + 6441283 p g +

2 2 3 3
1666092 p q - 5365800 g - 1244232 p g +

4
484660 q )

The sum of squares associated with K2 is quickly calculated as a polynomial with
Mathematica. This same calculation attempt~1 by hand would not only take an
inordinate amount of time, but would run the risk of calculation crrors. In addition,
even if this calculation could be programmed, as Carroll and Wilson (1970) attempted to
do, it may not be possible to also program the solution set for p and q that is required to
construct the region of significance. For example, it is essentially impossible to solve
the polynomial equation in Fortran and to also solve for the p and q point sets (S.

Hunka, personal communication, May, 1995).
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This region of significance must be solved and displayed with the Mathematica
operator Plot3D because the use of two covariates gives rise to a polynomial with two

unknowns, thus, violating one of the requirements for an explicit algebraic solution.

P1°t3D[(d'6.73168) ’ {p: '10115}1 {Q,-S, 20}1
PlotPoints->30,PlotLabel-~->
"Polynomial Surface at ss=0",
AxesLabel->{"x1","x2","88"},
PlotRange->{-3,0}1]

Polynomial Surface at ss=0

Figure 3.2. Region of Significance--Three Groups and
Two Covariates

In Figure 3.2 displayed above, the first covariate, p (x1), ranges from a value of -10 to
15, and the second covariate, q (x2), ranges from a value of -5 to 20. These ranges are
wide enough to encompass the covariate distributions of the data, as well as to provide a
reasonable display of the results. The vertical axis represents values obtained from the
equation:

ss=(K’B)’[K’(X’X)"IK]'IK'B - r Mse x Fo 0s:dik:.dfe ~ (6)
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Recall that these “ss” values need to be at least zero or larger for significant differences
to be observed among the groups. Notice also that Figure 3.2 illustrates the results of
equation 6 for values of ss in the range -3 to 0 only. The reason for this is that ss=(0) is
the minimum value at which significance appears for the point sets of p and q. Because
the plot of equation 6 was truncated at ss=0), Figure 3.2 shows a flat upper surface.

Equation 6 can be used to identify--based on a contrast’s sum of squares and rank,
mean square error, and selected F value--if the contrast is statistically significant.
Hence, the region of significance is assessed by finding the values of covariate 1 and
covariate 2 that, in conjunction, yield a value of ss=0 or greater on the vertical axis.
Those covariate values, that taken simultaneously, produce a minimum value of zero on
the vertical axis are associated with significant treatment differences. For example, if the
subjects in the three instructional conditions had average covariate values of 15 and 19
for covariate 1 and 2, respectively, the three instructional conditions would show to be
significantly different from one another (because a combination of 15 and 19 reach a
value of zero on the vertical axis). Any combination of values for p and q which fall on
the flat surface of Figure 3.2 will produce significant treatment differences at an alpha
value of 0.05 exactly.

The region of significance can also be represented in another form by using
Mathematica’s Contour Plot operator. In Figure 3.3 covariate 1 (p), labelled x1, is
shown on the x- or horizontal axis, while covariate 2 (q), labelled x2, is shown on the
y- or vertical axis. The region of significance {at an 0=0.05) is that second outcrmost
layer (contour line) of the figure which represents the result of zero from equation 6.
Those values of covariate 1 and covariate 2 that fall within the second outermost layer
are associated with significant treatment differences. From Figure 3.3, a covariate
point-set of (0,0) is significant (p=.016), but (10,5) is not (p=.529). The contour lines

represent alpha levels of 0.1, 0.05, .025. and 0.01 which correspond to the valucs of
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4.536, 6.736, 9.508, and 14.307 respectively on the y axis. These values are found

from calculating r Mse x Fg.ggk:dfe for various values of o and represent the minimum

vaiue required for the sum of squares to produce significance.

ContourPlot[(d-6.73168),{p,-10,15}, {qgq,-5,20},

AxesLabel->{"x1","x2"},
Contours->{4.536,6.736,9.508,14.307}

FrameLabel->"Regions of Significance"]

Regions of Signficance

v -

r -

20}

15

10

x2

-10 -5 0 5 10 15
x1
Figure 3.3. Contour Plot--Alternative Representation
of Region of Significance

Example 3: Two Way Analysis of Covariance and the
Johnson-Neyman Method
Thus far, the examples have involved comparing groups at only one factor. That is,

the Johnson-Neyman method has been applied exclusively to one-way ANCOVA data



sets. In this section, the Johnson-Neyman method is applied to a two-way ANCOVA
data set, where groups are compared on two factors. In applying the Johnson-Neyman
method to a two-way ANCOV A design, an important point must be noted. With the
addition of another factor to the ANCOVA design, the assumption and verification of
homogeneous within group regression slopes is further complicated. For example, in a
one-way ANCOVA with two groups, heterogeneity of within group regression slopes is
a concern among the two groups at factor A. On the other hand, in a 2 by 3, two-way
ANCOVA with six groups, heterogeneity of within group regression slopes is a concern
among all levels of factors A and B, as well as within cells (AxB).

Following the work of Hendrix, Carter, and Short (1982), a hierarchical approach is
used in application of the Johnson-Neyman method to the analysis of a two-way
ANCOVA . The hierarchical approach is employed only as an example for the Johnson-
Neyman method and is presented without a discussion of its merits. In the hierarchical
approach, the covariate is wreated as a separate factor, thereby transforming the analysis
into a sort of three-way ANCOVA with the covariate representing the third factor. For
example, for a data set that comprises two factors, A (two reading programs) and B
(three ability levels--low, medium, and high), and one covariate (score on a motivation
scale), a T-restricted design matrix is constructed to estimate the following parameters:

W, o, By, B2, oBi11, 0fi12, 8, b, B13, P28, B115, P25
From the above parameters, it can be seen that the covariate is paired with all the
treatment and interaction terms. The result is that for each treatment and interaction term
(ANOVA term) there is a corresponding ANCOVA term (where the ANOVA term is
paired with the covariate). In addition, as a consequence of the hierarchical approach,
the complete Z-restricted design matrix, whose parameters are represented above, is not

always used but subsets of the complete matrix are used to assess the effects of different

parameters.
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The general procedure of this approach is as follows:

1. The effect of the covariate parameter is assessed in the context of a reduced model.
If the covariate effect is significant at a predetermined alpha value, then:

I'he effect of all covariate werms are assessed together (pooled) in the context of a full

jaDd

model.
If the pooled covariate terms’ effect is significant at a predetermined alpha

value, then:
3. The eficct of the highest order ANCOVA term is assessed in the context of a reduced

model.
If the highest order ANCOVA term is significant at a predetermined alpha value,

then interpret its corresponding ANOVA term as a function of the covariate. If
not significant, pool this term with the error and interpret corresponding

ANOVA term without respect for the covariate.

4. The cffect of all sccond order ANCOVA terms are assessed together (pooled) in the

context of a reduced model.
If the pooled second order ANCOVA terms’ effect is significant at a

predetermined alpha value, then:
5. The effect of individual second order ANCOVA terms are assessed in the context of
a reduced model.
If any or all terms are significant at a predetermined alpha value, interpret the

corresponding ANOVA terms with respect to the covariate. If not significant,
interpret the corresponding ANOVA terms as usuai without respect for the

covariate.
The data set that is used to demonstrate the Johnson-Neyman method as applied to a
two-way ANCOVA is taken from Hunka (1993). The data set comprises two factors, A
(two rceading programs) and B (three ability levels--low, medium, and high), and one

covariate (score on a motivation scale). There are six groups with five observations in

cach group.
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Data Input: Assessment of Covariate--Reduced Design Matrix |

x1={{(1,1,1,0,1,0,40},¢(1,%1,1,0,1,0,35},
{1,1,2,0,1,0,40},{(1,1,1,0,1,0,50},
f£-,1,1,0,1,0,45},4{1,1,0,1,0,1,30},
+i.1,0,1,0,1,40},{(1,1,0,1,0,1,45},
{(1,12,0,1,0,1,40},{(1,1,0,1,0,1,40},
{1111'11-11'11—1150}1{1111'1;’1'-1,—1,40},
{1111'1'-11'11-1140}1{111l—11"1l-11'1130}1
{1,-1,1,0,“110150}1{1:"11110:'110130}1
{1,-1,1,0,-1,0,35},¢(1,-1,1,0,-1,0,45},
{11’111101-110130}1{11'11011101’1150}1
{11'11011101-1130}1{11'11011101-1:40}'
{11—11011101'1145}1{11-11011101"1140}1
{11'1:“11'1:111:45}1{11-11'11'11111:30}1
{11-11-11_11111125}1{11-11-11-11111150;1

{11‘11—11-11111135}}

Design matrix x; estimates parameters 1, &1, B1, B2, «Br1, oB12, 8. This is called a
reduced model design matrix because, although, the main effect of the covariate terim is
assessed, the other covariate terms that arise from treating the covariate as a factor are

not assessed.

Basic Calculations
xlxl=Transpose[x1l] .x1
Inverse[xl1xl]
xly=Transpose([xl1l].y
bl=Inversel[xlxl] .xly

{61.9354, -2.23287, 3.98695, -0.313054, -0.586014,
0.992308, 0.759441}

The parameter estimates given by bj are p=61.9354, o.1=—2.23287, $1=3.98695,
B2=—0.313054, of11=-0.586014, aff12=0.992308, and 5=0.759441.

Contrasts

Next the significance of the covariate is determined.

kl={(0,0,0,0,0,0,1}}
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sskl[kl,x1x1,bl]
824.752

The sum of squares associated with contrast K1 is 824.752 and its mean square remains
the same because K1 has only one degree of freedom. The F statistic relevant to K1 is
824.752 divided by 26.1064, which is the mean square error for this data sct. The
resulting F value is 31.5919 and it is statistically significant at the 0.05 alpha level.

Because the test of the covariate effect turned cut to be significant, the next step is to
test the pooled results of all the ANOVA sum of squares terms involving the & term

(ANCOVA terms) using a liberal o level of 0.25 (Hendrix et al., 1982). If this contrast

is significant, the highest order ANCOVA term with a full model is tested.
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D nput: Assessment of Pooled ANCOVA terms and Highe >

terms--Complete Design Matrix 2

,1,0,40,40,40,0,40,0},
,35,35,35,0,35,0},
,40,40,40,0,40,0),
,50,50,50,0,50,0},
’

RRPRHEBHEBRPBRBBEBHERBRR R~

45,45,45,0,45,0},
30,30,0,30,0,30},
40,40,0,40,0,40},
45,45,0,45,0,45},
,40,40,0,40,0,40},
1,40,40,0,40,0,40},
,-1,-1,50,50,-50,-50,-50,-50},
-1,-1,-1,-1,40,40,-40,-40,-40,-40},
-1,-1,-1,-1,40,40,-40,-40,-40,-40},
-1,-1,-1,-1,30,30,-30,-30,-30,-30},
,-1,-1,-1,-1,40,40,-40,-40,-40,-40},
{1,-1,1,0,-1,0,50,-50,50,0,-50,0},
{(1,-1,1,0,-1,0,30,-30,30,0,-30,0},
{1,-1,1,0,-1,0,35,-35,35,0,-35,0},
(1,-1,1,0,-1,0,45,-45,45,0,-45,0},
{1,-1,1,0,-1,0,30,-30,30,0,-30,0},
(1,-1,0,1,0,-1,50,-50,0,50,0,-50},
{1,-1,0,1,0,-1,30,-30,0,30,0,-30},
{1,-1,0,1,0,-1,40,-40,0,40,0,-40},
{1,-1,0,1,0,-1,45,-45,0,45,0,-45},
{1,-1,0,1,0,-1,40,-40,0,40,0,-40},
{1,-1.,-1,-1,1,1,45,-45,-45,-45,45,45},
{1,-1,-1,-1,1,1,30,-30,-30,-30,30,30},
{(1,-1,-1,-1,1,1,25,-25,-25,-25,25,25},
{(1,-1,-1,-1,1,1,50,-50,-50,-50,50,50},
{1,-1,-1,-1,1,1,35,-35,-35,—35,35,35}}

0
0
0
0
0
1
1
1
1

- %" m N O, M N W™ NS N NN
1 OO0 O0COoORRLRPLRPK

e & &8 8 8 & 8 88N

SN MR HREPBPOOOCOR

[ T T S UL N L L I I )
HOOOCOORRRRE

S I . T T T U Y

- - - - - - - - - - - - -

PP N A e T Y el Tl ]
RPRRARRRPREBRERREBREREREBRRRERERN

The design matrix x7 estimates the parameters [, 0, B1, B2, oB11, P12, B, 0, P13,

B28, af113, ofs120.

Basic Calculations
x2x2=Transpose[x2] .x2
Inverse [x2x2]
x2y=Transpose[x2].y

b2=Inverse([x2x2].x2y //N
(63.1534, -3.73357, -11.8854, 17.3295, -17.1499,
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5.12561, 0.724983, 0.023949, 0.379097, -0.438998,
0.410433, -0.101601}

The parameter estimates provided by b2 are p=63.1534, o=-3.73357,
B1=—11.8854, 2=17.3295, afi11=—17.1499, of12=5.12561, 6=0.724983,
06=0.023949, B16=0.379097, B26=-0.438998, of3116=0.410433, and
0B128=-0.101601.

Contrasts
The contrast matrix for the pooled results of all ANCOVA terms (ad, B18, B26, ap119,

o 126) excluding & is:

k2 {{01010101070101110]0,0[0}[
{0,0,0,0,0,0,0,0,1,0,0,01},
{(0,0,0,0,0,0,0,0,0,1,0,0},
{0,0,0,0,0,0,0,0,0,0,1,01},
{0,0,0,0,0,0,0,0,0,0,0,1}}
ssk{k2,x2x2,b2]

207.335

207.335/5

41.467

The sumn of squares associated with contrast K7 is 207.335 and its mean square is
41.467. To obtain an F statistic for this contrast, 41.467 is divided by 21.84 which is
the mean square error for this data set. The resulting F value is 1.89867 and it is
significant due to the liberal a level of 0.25. Because contrast Ky proved to be

significant, the next step is to test the highest order ANCOVA terms (03115, o 120).

0,0,0,0101110}1
+0,0,0,0,1}}
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s8s8k[k3,x2x2,b2]
116.324

116.324/2

58.162

The sum of squares associated with contrast K3 is 116.324 and its mcan square is
58.162. To evaluate the significance of contrast K3, the F statistic is computed by
dividing 58.162 by 21.84. The resulting F value is 2.6631 and it is significant at an &
level of 0.25. Therefore, the ANOVA term corresponding to this highest order
ANCOVA term must be interpreted with reference to specific values of the covariate.

In the next phase, the second highest order ANCOVA terms are asscssed. First, they

are assessed as a set and, if significant, the individual terms are tested.
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PN AN P AN A A S o e ey iy e, W
Ll ol el i I T T T W QY

AR L D T T T S S O O S

o~
-
- -

{1,
{1,
{1,
{1,
(1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,

W
]

PR R R PR R R R R R R R

1,

Il OCOOCOORPKRME

s & % % & & 8 & uow

T HHEPBRRROOCOCOR

,1,0,40,40,40,0},
.35,35,35,0},
,40,40,40,01},
.50,50,50,0},
.45,45,45,0},
,30,30,0,30},
,40,40,0,40},
.45,45,0,45},
,40,40,0,40},
,40,40,0,40},
-1,-1,5%0,50,-~-50,-50},

I & % & & & & % & & o

-1,-1,-1,-1,40,40,-40,-40)},
-1,-1,-1,-1,40,40,-40,-40},
-1,-1,-1,-1,30,30,-30,-30},
-1,-1,-1,-1,40,40,-40,-40},

1, 01—1101501-5015010}f

-1'1, 0,-110130,-30130l0}I

-1,

1, 0,"‘1' 0135'_351 3510}1

-1,1,0,-1,01451'4514510}1

-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,

1,0,-1,0,30,-30,30,0},
011101'1,50,‘5010,50},
011101-1:30,-30,0130},
011101‘1,40,-40g0,40},
0,1,0,-1,45,-45,0,45},
011101‘1,40,‘40,0,40},
-1,-1,1,1,45,-45,-45,-45},
-11-11111,30,—30,”30,—30},
_11_1:111,25,-25,“25,-25},
-11_11111'50,“50,"50,-50},
-1,-1,1,1,35,-35,-35,-351}}
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The design matrix x3 estimates the parameters |, &1, B1, B2, oB11, B12, 8, b, B196,

B29.

Basic Calculations

x3x3=Transpose{x3].x3

Inverse [x3x3]

x3y=Transpose[x3].y



b3=Inverse[x3x3].x3y //N
{64.4238, -1.97997, -4.45452, 15.3776, -0.564518,
0.858056, 0.699082, -0.014337, 0.209902, -0.394475}

The parameters as given by b3 are 1=64.4238, a=~1.97997, B1=—4.45452,
B2=15.3776, af11=-0.564518, of12=0.858056, 6=0.699082, 05=—0.014337,

B16=0.209902, and B25=—0.394475.

Contrasts
First all the second highest order ANCOVA terms are tested (o, B13, f20) as a sct.

If, from this contrast, there is any indication that individual ANCOVA terms may be
significant, the individual ANCOVA terms are tested next.

0 i 0 ' 0 Y 0 ¥ ’ 0
0,0,0,0, . 1
0 ’ 0 I 0 ri 0 Fi r 0
ssk[k4,x3x3,b3] //N
91.0111

91.0111/3

30.337

The sum of squares associated with contrast K4 is 91.0111 and its mean square is
30.337. The F statistic associated with this contrast is obtained by dividing 30.337 by
25.4718, the mean square error corresponding to this data set. The resulting F value is
1.191 and its probability value is 0.338455. Although, this F value is not highly
significant at an alpha value of 0.25, individual ANCOVA terms will be tested for the

purpose of illustration.
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{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
(1,
{1,
{1,
{1,
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-1,-1,50,50},
-1,-1,-1,40,40},
i,-1,-1,-1,-1,40,40}.,
1,-1,—1,"1,“’1: 30130}1
1,-1,-1,-1,“11 40140}1
-1,1,0,-1,0,50,-50},
-1,1,0,-1,0,30,-30},
-1,1,0,-1,0,35,-35},
-1,1,0,"1, 0, 451-45}1
-1,1,0,-1,0,30,-30},
-1,0,1,0,-1,50,-50},
-1,0,1,0,-1,30,-30},
'11011101"11401"40}1
-1,0,1,0,-1,45,-45},
-1,0,1,0,-1,40,-40},
-1,-1,-1,1,1,45,-45},
-1,-1,-1,%1,1,30,-30},
-1,-1,-1,1,1,25,-25},
-1,-1,-1,1,1,50,~-50},

1
0
0
0
0
1
1
1
1
1

{(,-1,-1,-1,1,1,35,-35}}

The design matrix x4 estimates the parameters W, o1, By, B2, «B11, @f12, 8, ad.

Basic Calculations

x4x4=Transpose([x4] .x4

Inverse[x4x4]
x4y=Transpose([xd4] .y

b4=Inverse[x4x4] .x4y

{62.3556, -1.15189, 4.02366,

0.987434,
0.749376, -0.0271542}

-0.357804, -0.560695,
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The parameters as given by by are p=62.3556, o;=—1.15189, $,=4.02366,
B2=—0.357804, of;1=—0.560695, 0f;2=0.987434, 8=0.749376, a6=—0.0271542.

Contrasts
K5 tests the second order ANCOVA term od.
k5={({0,0,0,0,0,0,0,1}}

ssk[k5,x4x4,b4] //N
0.909571

The sum of squares associated with contrast Ks is 0.909571 and it mean squarc remains
the same because Ks has only one degree of freedom. The corresponding F statstic for
this contrast is obtained by dividing 0.909571 by 27.2517, the mean square crror for
this model. The resulting F value is 6.0333767 and its probability value is 0.856712.
Hence, the ANOVA term o can be interpreted in the usual covariance manner given that

its corresponding ANCOV A term is not significant at an alpha value of 0.25.

The B3 terms are tested next. For these contrasts, however, the design matrix above

cannot be used because it does not estimate the B3 parameters. Thus, design matrix x3

is used.

Basic Calculations

The basic calculations are the same as those computed for design matrix x3.

Contrasts

Ks tests the second order ANCOVA terms B18 and f29.

0
1

- 0~

,0,0,0,0
IOIOI

1lo}l
0,0 }

}
ssk[k6,x3x3,b3] //N
90.1015

90.1015/2
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45.0507
The sum of squares associated with contrast Kg is 90.1015 and its mean square is

45.0507. The F statistic corresponding to this contrast is obtained by dividing 45.0507

by 25.4718, which is thc mean square error for model x3. The resulting value is

1.76865 and its probability value is 0.196216. This value is significant at an alpha

value of ().25.

I'he Johnson-Neyman Method: Finding the Region of Significance--Reduced Design
Matrix 5

From the preceding apr: ne non-covariate or ANOVA term had a
corresponding ANCOVA ¢ as not significant. Thus, the o term can be
interpreted without re; ~wenc -pecific valv~ of the covariate. On the other hand,

and afd had corresponding ANCCVA terms that were significant. Hence, 3 and of§
must be interpreted with reference to specific covariate values. This suggests that the

Johnson-Neyman method should be used.
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1,0,40,40,0,40,01},
35,35,0,35,0},
40,40,0,40,0},
50,50,0,50,0},
45,45,0,45,0},
30,0,30,0,30},
40,0,40,0,40},
45,0,45,0,45},
40,0,40,0,40},
,40,0,40,0,40},
-1,50,-50,-50,-50,-50},
-1,40,-40,-40,-40,-40},
{1,1,-1,-1,-1,-1,40,-40,-40,-40,-40},
{1,1,-1,-1,~1,-1,30,-30,-30,-30,-30},
{1,1,-1,-1,-1,-1,40,-40,-40,-40,-40},
{1,-1,1,0,-1,0,50,50,0,-50,0},
{1,-1,1,0,-1,0,30,30,0,-30,0},
{1,-1,1,0,-1,0,35,35,0,-35,0},
{1,-1,1,0,-1,9,45,45,0,-45,0},
{1,-1,1,0,-1,0,30,30,0,-30,0},
{1,-1,0,1,0,-1,50,0,50,0,-50},
{1,-1,0,1,0,-1,30,0,30,0,-30},
{1,-1,0,1,0,-1,40,0,40,0,-40},
{1,-1,0,1,0,-1,45,0,45,0,-45},
{1,-1,0,1,0,-1,40,0,40,0,-40},
{1,-1,-1,-1,1,1.,45,-45,-45,45,45},
{1,-1,-1,-1,1,1,30,~-30,-30,30,30},
{1,-1,-1,-1,1,1,25,-25,-25,25,25},
{1,-1,-1,-1,1,1,50,-50,-50,50,50},
{1,-2,-1,-1,1,1,35,-35,-35,35,351}}
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The design matrix above represents a reduced model because ad has been removed

since it was not significant; in other words, this term was pooled with the error term.

The 11 columns of x5 represent the same parameters as described before with the

exception that ad has been excluded.
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j"‘ ,]. l,in.
x5x5=Transpose[x5] .x5
Inverse [x5x5]
xSy=Transpose[x5].y
bS=Inverse[x5xS5].x5y //N

{63.5101, -2.77672, -11.759, 17.295, -17.0887, 5.35673,
0.716368, 0.376881, -0.439183, 0.409472, -0.10757}

The parameters as given by bs p=63.5101, o;=-2.77672, B1=-11.759, B=17.295,
afy1=—17.0887, afB2=5.35673, 6=0.716368, B16=0.376881, 326=-0.439183,
0116=0.409472, af120=—0.10757.

k7={{01011:'1,0,0,0;p,-p,O,O}, (See Appendix 3)
{0, 0,1121 0, 0,0,L):zp: 010})

d=ssk[k7,x5x5,b5]

Simplify(d]
7 2
(5.29619 10 (1547.81 - 78.045% p + p )

2
(1467.79 - 73.9983 p + p )) /

2
(1241710687245 - 121302490290 p + 4482241741 p -

3 4
74231352 p + 464996 p )

The contrast K7 is a ratio of two polynomials (degree of seven and one unknown). In
¢ider to solve for this polynomial, (K’B)'[K’(X’X)-1K]-1(K’B)- r Mse Fo.05:dfk;dfe =0,
is again employed. First, the (K'B)’[K’(X'X)-1K]-1(K’B) part of the equation is
already known in the form of the polynomial d. Second, r Mse F.05;dfk;dfe (r=2,
dfk=2, dfe=19) is calculated as 2 x 21.84 x 3.57 = 155.94. Now, Mathematica’s

Solve operator is used to find the roots of the polynomial.
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Solve[d-155.94 ==0,p]l
{{p -> 38.2609 - 5.59376 1},
{p -> 38.2609 + 5.59376 1}, {p -> 38.4314},

{p -> 65.2595}}

Using the Mathematica Solve operator, the zero roots of equation d are solved and,
thus, p is known. The p values are those specific covaiiate values for which significant

treatment (B) differences appear at o=.05. Now, the region of significance may be

plotted using Marhematica’s Plot operator.

Plot [d-155.94,{p,30,80},AxesLabel->{"p","88"}]
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Figure 3.4. Region of Significance--Factor B

In Figure 3.4, the function intersects the horizontal axis at two points, p=38.43 and
p=65.25. Tucse t= ¢ »oints demarcale the origins of the region of significance; the
region where statistically significant treatment effects are observed. For example, all
values of p for which the curve is above the horizontal axis produce statistically
significant treatment effects at an o value of G.05 or less. Hence, statistically significant
effects among the three ability levels are obscrved when subjects have average covariate

values equal to or greater than 38.43 and equal to or less than 65.25.
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Conlrast: o

The same procedure is followed to find the region of significance for the of treatment
effects as was followed to find the region of significance for the B treatment effects.

k8={{0,0,0, 0,1,-1,0,0, 0,p,-pl. (See Appendix 4)
{0,0,0,0,1,2,0,0, 0,p,2p}}

v=8sk[k8,x5x5,Db5]
Simplify(v]
7 2
(5.13934 10 (1711. - 82.6029 p + p )

2
(1562.22 - 78.1149 p + p 1)) /

2
(1182134225205 - 1i5470204070 p + 4267804355 p -

3 4
70720200 p + 443394 p )

The sum of squares associated with contrast Kg is ayain a polynomial of degree sever

with an unknown value p. The polynomial is solved for its zero roots in the same way it
was done for B.
Solve({v-110.00 ==90,p]

{{p -> 21.1638), {p -> 39.3597 - 5.89808 I},
{p -> 39.3597 + 5.89808 I}, {p -> 83.5509}}

Now, the region of significancr can be plotted. Notice that instead of using the value
155.94 in place of r x Mse x Fo.25;dfk;dfe (r=2, dfk=2, die=19), the value 110.00 is
used. The reason for this is that the alpha level has to be relaxed in this example (the F
value changes t00) because the region of significance is very small. Thus, if the 0.05
alpha value is used it is too conservative to detect any region of significance,
consequently, when one attempts to solve for the zero roots of the polynomial v,

Mathemaiica gives back only imaginary roots; that is, they are not mathematically real

TOOts.
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In Figure 3.5, the function intersects the horizontal axis at two points, p=21.16 and
p=83.55. These two points demarcate the origins of the region of significance; the
region where statistically significant interaction effccts are observed. For example, all
values of p for which the curve is above the horizontal axis produce statistically
significant of treatment effects at an o value of less than 0.05. Hence, statistically
significant interaction effects are observed when subjects have an average covoniate
value equal to or less than 21.16 and equal to or greater thn 83.55. However, notice
that the covariate points, at ‘which zsgrificant interaction effects arc observed, lic outside
the range of the sovariate valuzs i the data set used for this exzmpie.

Plot[v-llﬂ.%u,{p,O,lOO},AxesLabe1->{"p",“ss“}]
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Figure 3.5. Region of Significance--Interaction AB

In this case, for all practical purposes, the groups do not differ on the dependent
variable. Nevertheless, i is still of theorctical interest to know at which covariate

values, if they had existed ir the data set, the groups would have shown to he different.
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Chapter IV
SPSS and Application of the Johnson-Neyman Method

SPSS does not specifically solve the Johnson-Neyman problem, i.e., the Johnson-
Neyman method is not listed in SPSS as an optional analysis tool. However, it is
possible to perform an ANCOVA with heterogeneous within group regression slopes on

'S; that is, the rescarcher can calcal: © hether the within group regression slopes
are heterogeneous on SPSS, but the researcher cannot obtain a region of significanc
anything of this sort on SPSS. Normally, a check for the homogeneity of within group
regression slopes in an ANCOVA procedure is not done by SPSS and, consequently,
the onus is on researchers to verify the homogeneity assumption before proceeding with
a traditional ANCOVA design. If researchers do not know to check for homogeneity of
within group regression slopes, and proceed with an ANCOVA, the results from the
ANCOVA may be misleading.

A possible method by which to check for homogencity of within group regression
slopes in SPSS will be illustrated. This method is not explicitly described in SPSS
manuals, and it is difficult to understand why it would not, considering that the
homogeneity assumption in the application of an ANCOVA is critical.

For the two examples that will be used to show how one would go about testing for
homogeneity of within group regression slopes in SPSS, the same data that was used to
show how the Johason-Neyman method was applied in Mathemutica, is used.
Mathematica’s Example 3 will not be demonstrated because it becomes toc complex to

perform on SPSS. Data from Examples 1 and 2 are used.



62

Example 1: Two Groups and One Covariate

Datg Input

The data are entered differenty in SPSS from the way they are entered into
Mathematica, for example, with two groups and one covariate, the following variables
must be input into SPSS:

Group Score Covariate

From this input SPSS implicitly creates a column that reflects the covariate multiplied by
group inembership, which will assess the covariate by group interaction. If this
interaction is significant it indicates that the within group icgression slopes for the data
set are heterogeneous. If ine interaction is not significant, then there is no need to
interpret treatment effects as a furction of the covariate, and a traditional ANCOVA can
be used.

Once users have set up their data matrix,
1. choose ANOVA MODEL option from the STATISTICS menu
2. choose GENERAL FACTORIAL within the ANOVA MODEL option
3. within GENERAL FACTORIAL specify the dependent variable, independent

variable, and covariate(s); specify each variable by name -- dependen’
variable=score; independent variable=group; covariate=covariate

4. choose the MODEL option within GENERAL FACTORIAL and double click on
CUSTOM (CUSTOM allows users to customize the model and this is needed
because an additional effect--group*covariate--is required so that the homogeneity of
within group regression slopes can be assessed.)

5. under the CUSTOM option, sclect the variables group, covariate, and request

interaction
6. Execute the ANOVA analysis

The analysis proceeds and the results obtained from SPSS are given in Table 4.1.
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Table 4.1.
Analysis of Covariance. Customized Model
*kkkkkApalysis of Variance--design 1 ******

Tests of Significance for SCORE using UNIQUE sums of squares

Source of Variation SS DF MS F Sig of F
WITHIN+RESIDUAL 10.92 26 A2

GROUP 64.17 1 64.17 152.79 .000
Cov 11776 1 117.76  280.37 .0010
COV * GROUP 59.60 1 59.60 141.90 .000
(Mcdel) 166.05 3 55.35 131.78 .000
(Total) 176.97 29 6.10

R-Squared = 938
Adjusted R-Squared = 931

The values produced by SPSS are similar to those obtained by Mathematica. In terms of
the general linear model the model parameters that are being estimated (the effects shown

in Table 4.1) are g,0, 8, o1 8. To better understand what these parameters and their

values represent, each effect is explained in terms of the hypothesis tested. First, the
group effect tests the null hypothesis Ho:0.j=0 based on each groups’ adjusted score on
the dependent variable. This test is calculated at a covariate value of zero. The group
cffect in Table 4.1 indicates that the null hypothesis is rejected and the groups do differ
in their adjusted scores at a covariate value of zero. Second, the covariate effect tests the
null hypothesis that the pooled regression slope (for the two groups) is zero (Ho:9=0) in
the context of the model parameters. The covanate effect in Table 4.1 indicates that the
null kypothesis is rejected and the pooled regression slope is not likely equal to zero in
the population; that is, it is likely rclevant to include the covariate in the analysis because
the relvionship between the dependernit variable and the covariate is different from zero.
Finally, tie COV*GROUP effect tests the nuli hypothesis that the within group
regression slepes are homogescous (Ho:a16=0). The COV*GROUP effect in Table
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4.1 indicates that the null hypothesis is rejected and the within group regression slopes
are heterogeneous. In light of this effect, the treatment effec s will not remain constant
throughout the covariate distribution and should be examined at different covariate
values.

Table 4.2 provides the results of the data analysis obtained from a non-customized
model. That is, the additional ©{fcct--COVARIATE*GROUP--implicitly provided by
SPSS was not chosen and no attempt was madc to deviate {from the regular, common

SPSS ANCOVA procedure.

Table 4.2.

Analysis of Covariance. Regular Model

**%*x* Analysis of Variance--design ]******
Tests of Significance for SCORE using UNIQUE sums f squares

Source of Variation SS DF MS F Sigof F
WITHIN+RESIDUAL 70 52 27 2.61

REGRESSION 97.92 1 97.92 37.49  .000
GROUP 5.96 1 5.96 2.28 .142
(Model) 106.45 2 53.23 20.38  .000
(Total) 176.97 29 6.10

R-Squared = .602
Adjusted R-Squared = .572

In terms of the general lincar model the model parameters that are being estimated (the
effects shown in Table 4.2) are y, o1, 8. The REGRESS!ION cffecr shown on Table
4.2 tests the null hypothesis that the pooled regression slope is zero in the context of the
model parameters. This effect is significant and so the null hypothesis is rejected and it
can be concluded that the contribution of the regression is likely relevant in this analysis.
The GROUP effect tests the null hypothesis (Ho: o1=0) that the groups do not differ

based on their adjusted dependent variable means at a covariate value of zero. From
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Table 4.2, it is seen that the null hypothesis is not rejected and the groups do not differ
at a covariate value of zero. What this analysis does not provide, however, is a test for
the homogeneity of the within group regression slopes. In Table 4.1 this effect is tested
by the null hypothesis, o18=0, and it is significant. Thus, if users want to proceed w..h
the type of analysis represented in Table 4.2, the onus is on them to check for
homogeneity of the within group regression slopes. If users do not verify this, the
mistake of concluding that the group effcct is constant at all covariate values, could be
made.

Although rescarchers can plot the within group regression slopes on SPSS and see
how they intersect, there is no provision for plotting a region of significance and
assessing at which points along the covariate distribution significant treatment effects are
observed. Users interested in finding the points along the covariate distribution where
significant treatment differences are found, must try to do so through trial and error by
testing various covariate values. In addition, the grou)» effect in Table 4.1 is different
from the group effect in Table 4.2. The rzason for this difference lies in tiie different
models used to compute the effects. In the first analysis (Table 4.1) the model estimates

parameters |4, o1, 8, 018, and in the second analysis (Table 4.2) the model estimates

parameters J, o, d.

Example 2: Three Groups and Two Covariates
Data Input
With three groups and two covariates the model specification becomes more complex.
For example, with two groups and two covariates, the following variables must be input

into SPSS:
Group Score Covl Cov2



66

The user would follow the same procedure as in Example 1 to customize the model.

The output SPSS generates tollowing this analysis is given in Table 4.3,

Table 4.3.

Analysis of Covariance. Customized Model

****x* Analysis of Variance--design 1 *****x*
Tests of Significance for SCORE using UNIQUE sums of squares

Source of Variation SS DF MS F Sigof F
WITHIN+RESIDUAL 3.93 6 .65

GROUP 11.76 2 5.88 8.98 016
COVl1 i 3n 1 1.38 2.11 197
Z0V2 1.78 1 1.78 2.72 150
COV1 * GROUP 3.28 2 1.64 2.51 162
COV2 * GROUP 3.34 2 1.67 2.55 158
(Model) 75.00 8 9.38 1432 402
(Total) 78.93 14 5.64

R-Squared = .950
Adjusted R-Squared = .884

The results from this analysis are similar to the results obtained from Mathematica. In
terms of the general lincar model the model parameters that arc being estimated (the
effects shown in Table 4.3) are p,03, 002, 81, 82, 0811, 0d12, ®d21,0622. Although
the nuil hypotheses tested here are similar to those tested in Table 4.1, an explesstion of
each effect in Table 4.3 is still presented. First, the group effect tests the null hypothesis
(01=0, ap=0) that the three groups do not differ based on their adjusted values of the
dependent variable at a covariate value of zero . From Table 4.3, it is clear that, at a
covariate value of zero, the three groups do differ and the null hypothesis is rejected.
Second, the covariate 1 effect tests the null hypothesis that the pooled regression slope
for covariate 1 is zero (8;=0). From Table 4.3, and using a liberal alpha value of (.25,

the effect for covariate 1 can be considered significant and the null hypothesis is
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rejected. The covariate 2 effect tests essentially the same hypothesis (82=0). The effect
for covariate 2 is considered significant in light of the alpha value of 0.25. An important
point to kecp in mind when interpreting the effect of a pooled regression slope is that
when within group regression slopes are very different (heterogeneous) and pooled
(averaged), the act of pooling the slopes may mask or cancel their effects. For example,
in a situation where two within group regress:on slopes are equal but opposite sign,
taking the average of the slopes would result in a straight line. This result would
misrepresent the true nature of the slopes. Third, the COVI1*GROUP effect tests the
null hypothesis that the within group regression slopes for covariate 1 are homogeneous
(Ho:[0611=0, 0.812=0]). From Table 4.3, this effect is significant and indicates that the
within group regression slopes for covariate 1 are heterogeneous. The COV2*GROUP
effect tests essentially the same hypothesis (Ho:[ad21=0, a822=0]). The effect for this
test is also significant and it is concluded that the within group regression slopes for
covariate 2 are heterogeneous. In light of the information that the within group
regression slopes for both covariates are heterogeneous, treatment effects should be
assesscd at many different values along the covariate.

Table 4.4 provides the results produced by SPSS if the model had not been

customized.
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Table 4.4.

Analysis of Covariance. Regular Model

**xx*x* Anglysis of Variance--design 1 *****x
Tests of Significance for SCORE using UNIQUE sums of squares

Source of Variation SS DF MS F Sigof F
WITHIN+RESIDUAL 15.09 10 1.51

REGRESSION .51 2 .25 17 .847
GROUP 48.54 2 24.27 16.08  .001
(Model) 63.84 4 15.96 10.58  .001
(Total) 78.93 14 5.64

R-Squared = .809
Adjusted R-Squared = .732

In terms of the general linear model the mode! parameters that are being estimated (the
effects shown in Table 4.4) are p,0q, 02, 81, &. Once again, the regression effect
tests the null hypothesis that the pooled regression slopes for covariate 1 and 2
simultaneously are zero, (Ho:[81=0, 8,=0]). The regression cffect is not significant,
but this result contradicts the pooled regression effects obtained in Table 4.3. From
Table 4.3, the pooled regression slope for covariate 1 is considered significant at an
alpha value of 0.25 as is the pooled regression slope for covariate 2. This regression
effect in Table 4.4 may be masking the true nature of the pooled cegression slopes for
covariate 1 and 2. The group effect tests the null hypothesis that the three groups do not
differ based on their adjusted dependent variable values at a covariate valuc of zero
(Ho:[01=0, ai2=0]). From Table 4.4, the group effect is significant and the null
hypothesis is not accepted. However, givei hat the within group regression slopes are
heterogeneous, this group effect cannot be generalized to the entire range of the covariate

distribution.
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Comparison of Mathematica and SPSS. A.-.szitages and Limitations

When performing the Johnson-Neyman method, Mathematica is preferable to SPSS
because it gives the researcher a method by which to obtain the region of significance.
Since the region of significance is likely the most important aspect of the Johnson-
Neyman method that sets it apart from the ANCOVA, the computer package used to
perform the Johnson-Neyman method should be capable of producing this important
information.

It would be a mistake for researchers, however, to conclude that because
Mathematica is the better package to use for the Johnson-Neyman method that it is the
better package when it comes to data analysis in general. The effectiveness of a
computer package depends on a number of factors. Some of these factors are: statistical
knowledge of the user, speed, type of analysis desired, and the “user-friendliness” of
the package. These factors, taken together, can detcrmine whether a particular computer
package is desirable to the user.

Both Mathematic and SPSS have strengths and weaknesses, albeit in differen.
arcas. In addition, many of the advantages of a particular statistical package can be
disadvantages if they do not match the preferences of the user. For example, one of
Mathematica's advantages is that researchers can easily input whatever specific statistical
modecl they wish 1o use in the analysis of their data. The benefit of this lies not only in
the flexibility that i provides the researcher, but also that it allows one to always know
exactly what is being tested and how it is being tested. As the examples with
Marhematica show, after the data are entered, the user must continue to specify every
step thereafter. This control over the path the data analysis takes gives the user a great
deal of flexibility. FHowever, in using Mathematica, the user must be comfortable with
many of the details of the statistics employed, as well as the semantics of Mathematica,

and it is these prerequisites that may inhibit some researchers from using Mathematica.
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On the other hand, SPSS does not make the same demands of users. In SPSS, after
the data are entered, users do not have to input anything else. After the data are entered,
users must make selections from a series of menus as to how they want o proceed next.
So, if researchers want to pertorm an ANCOVA, they select this analysis tool from a
specific menu (they may also choose particular options within the ANCOVA menu),
indicate the variables to be included in the analysis, and execute the procedure. Of
course, one has to have a certain amount of statistical knowledge because one will
ultimately have to interpret what SPSS provides as output, but users do not need to
construct any design matrices to test specific models or contrasts. Although, this is an
advantageous feature for some SPSS users, it can also be a disadvantage for those users
that would like more of an interactive, flexible software program in which to analyze
their data. In addition, SPSS can run applications and produce output that can be
misleading for users who lack the knowledge behind some of the statistical precedures
they execute. For example, it was shown that an ANCOVA with heterogencous within
group regression slopes could be run on SPSS as a traditional ANCOVA. There were
no cautionary messages from SPSS that the within group regression slopes were
heterogeneous. The onus, then, is on the user to check this assumption beforchand.

In terms of speed, type of analysis desired, and “‘user-friendlincss,” Mathematica
can be slow if the procedure is complex and requires a great amount of computer
memory, but on the whole it is very fast in most analyses. Use of Mathematica is
geared towards users who want more degrees of freedom in how they go about
manipulating and analysing their data regardless of the type of analysis that is desired.
The user-friendliness of Mathematica is contingent on the user. For example, for those
users who may not enjoy inputting their own models and contrasts, Mathematica may
not be for them. On the other hand, for rescarchers who cherish the flexibility it

provides and enjoy inputting their own models, Mathematica can be very effective.
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SPSS is also fast in its application of procedures and is geared towards persons who
arc satisficd with the options that SPSS provides. In addition, more sophisticated users
can input SPSS commands themselves by using the syntax window (although, the user
can only use commands that SPSS recognizes). Lastly, many persons find SPSS
attractive because they are able to quickly execute statistical procedures.

The best conclusion is to be familiar with whatever statistical package is being used
and with the statistical techniques being performed. When considerable effort is put into

the background and rescarch design of a study, the same effort should be extended to

the data analysis.



Chapter V
Summary and Discussion

This study had three goals. First, to briefly describc ANCOVA and the Johnson-
Meyman method, including each methods’ organization of data, assumptions, history
and development, advantages and disadvantages, and importance of its understanding.
Second, to demonstrate how the Johnson-Neyman method is performed with available
computer software--Mathematica --because this statistical method is not as frequently
performed as is ANCOVA. Finally, to demonstrate how to perform a technique similar
to the Johnson-Neyman method on a widely used statistical software package such as
SPSS, and to discuss which computer package is preferable to usce for applying the
Johnson-Neyman method.

There are two conclusions that may be gamered from the pre..cnt study. First, that it
is important to understand and apply appropriate statistical methods to rescarch data
since the results obtained and the conclusions drawn from analyses are contingent upon
the very statistical methods used to analyze data. For example, as Huitema (1980)
asserts, one of the most important assumptions related to the use of ANCOVA is the
homogeneity of within group regression slopes. The violation of this assumption is of
great concern since the results obtained from an inappropriate application of ANCOVA
can be very misleading, e.g., when there appears to be results from a traditiona!
ANCOVA indicating no treatment effects between groups, and this retalt is oGt constant
for all covariate points along the covariate distribution (see Figure 1.2).

In the cases where rescarchers know that within group regression slopes are
heterogeneous, it is advantageous, if not critical, to know that the Johnsut-deyman
method should be used instead. Although, the Johnson-Neyman method is not as

frequently or as easily applied as is ANCOVA, it is to the rescarcher’s advantage to



krow of the Johnson-Neyman method und how it can be used to accus ately organize and
analyze the data.

A second conclusion that can be drawn from this study is that the Johnson-Neyman
method can be applied to data effectively when the computer software package
Muaihematica is used. Although, SPSS can be uscd to do 2 technique similar to the
Johnson-Neyman method, the researcher cannot produce a region of significance.
Moreover, the region of significance is the essential product of the Johnson-Neyman
mcthod and that which makes the Johnson-Ncyman method so attractive For example,
on SPSS one can do an ANCOVA so that it also tests the validity of homogeneous
within groap regression slopes i.e., show whether tiie slopes are significantly different
or not. However, the treatment effects are still calculated at a covariate value of zero
only. So, the results of such an analysis should simply caution resenrchers from
as:uming that the treatment effect remains the same at all points alor ¢ the  Hvariate
distribution. These results, however, help researchers only half-w. Y "hat researchers
need 1 most accurately interpret the results (treatment effect(s)) of their studies is the
region of significance; that is, where along the covariate distribution are there .. nificant
treatment effects. For this main reason--the inabiiity of SFSS io produce a region of
significance--Mcthematica is the s¢’tware of choice in performing the Johr:son-Neyman
method.

Fin .1y, the advantages of using A:athematica for solving the Johnson-Neyman
method should be emphasized. Because Marhematica is an interactive computer
software program, it provides users with a great deal of flexibility and control over their
analyses, especially important when the technique or problem that is being solved is
complex. Although it can be argued that all software programs «:ncluding statistical
software packages) ave, to some extent, interactive because users must at least choose

options from menus, Marhematica is at the high end of an interaciive program because
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users are not choosing options, but actually constructing their own models and the path
their analysis will take. In addition, Xarthematica does supply uscrs with a multitude of
operators that can be used to construct, evaluate, and analyze a variety of expressions.
For example, in Chapter three i: was shown how Mathematica's Solve operator could

be used to selve the voly: smial pecded to obtain the region of significance for two

gioaps and ope cov = . loreover, Maihematica's graphing capabilitics make
sivsilie obt. " ling the . of significance when an algebraic solution is not possible,

such as in .he t 2e group and two covariate example.

Now thatt.. edures and advantages of using the Johnson-Neyman method, and
Mathematica for solving the Johnson-Neyman method have been presented in this
study, what is required +:; incrcase the use ¢f the Johnscu Meymar methua? The
answer to this question is not an easy one because there are im:iry reasor., why particular
statistical method< do nat “catch on” in use. The first explznation for ~vhy A Johnson-
M:yman method may not be used as much as it cou’ s that Mathematica may demand
oo much statistical knowledge and “input” from the user. Itis true that reeseve ers may
be very turned off by the idea that they have to construct their own models s:.d contrasts
and the time this could potentially take. The second reason is likely more true of humen
nature and it is the adherence o familiar ways of doin;s ‘hings, such as analyzing data
with familiar methods ana computer packages, and the resistance 1o new techniques.

Some ways that these two obstacles to the greater use of the Johnson “.cyman
method and Mathematica could be overcome is to present and distribute the contents of
this study in differeat scholarly journals. For example, it may be helpful to have a
technical paper for users who already know about the Johnson-Neyman method and
want to know how the method can be performed on Mathematica, and another paper for
potential users who may not know of the Johnson-Neyman method, that presents the

benefits of the Johnson-Neyman method to their research. In addition, rescarchers



could start having students use Mathematica in class assignments which include the

Johnson-Neyman oracedure.
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Appendix 1
Conirast K2 In Example 1

In Example 1 contrast K2 is given as
M ay LY 62

ko= 0 2 p -p

There are two regression liries (for the two groups) and the problem is to express SSk as
a function of the covariate values p foliowing the general form ci the null hypothesis
giver as K'B=0 in which § is estimated by B. The required hypothesis can be expressed
as

(ag +81p) - (a2 + 82p) =0
The left-hand side provides

oy +81p - (a2 +82p) = ap +61p -« - 62p

weause 1or the 2-restricted mciel Eaj = 0, then
az = -ap
o] +&;p+oy-82p=201+ §1p - Hp

The last statement provides the valucs in tihe contrast matrix to be 0 forp, 2 forag , p

for 81, and -p for &y .
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Appendix 2
Contrast K2 in Example 2

In Example 2 the contrast matrix K7 is given as

p o o2 ;v 81 81 %12 82 832
ko= O 1 -1 p -p 0 q -q 0]
0 1 2 0 p -p 0] q -q

There are three regression lines (for the three groups) and the problem is to express SSk
as a function of the covariate values p for the the first covariate, and q for the second
covariate, following the general form of the nuli hypothesis given as K'B=( in which
is estimated by B. Given the 3 terms
{1) ag +811p + 3129
(2) az +821p + 8229
(3) a3 + &31P + 8370
the required hypothesis canbe ¢ ;= “n two statements as
(g +811P + 8120) - (a2 + 025 + 8220) =0
(g +821p + 8220) - (a3 + 831p + 832q) = 0
Expanding and collecting the t erms,
(1)~ @) =0y +811p + 8129 - (a2 + &21p + 8220) = ay + 811p + 8129 - a2 - 521P - 6229
(2) - () =az +821p + 8220 - (a3 + 831p + 8320) = @z + 821p + 8229 - a3 ~ 331p - 5329
Because Zoj = 0, then
o =-02- 0]
and subs. tuting for a3 in (2)-(3)
o + 821P + 8229 + 02 + - 831Pp — 8329 =« + 202 + 821p — 831 + 220 -

8329



The first row of the contrast matrix is given by the coefficients of (1)-(2), and the

second row by (2)-(3).

81
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&dppendix 3

L ontrast K7 In Example 2

5. Fwgmple 3 the contrast matrix K7 is given as

82
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Appendix 4
Contrast Kg In Examle 3

b weinss o matrix Kg in Example 3 is given as

H aj B1 B2 afty ofy2 8 P18 P28 aPBpid afy2d
kg= O 0 0 0 1 -1 0 0 0 p -p
0 0 0 0 1 2 0 0 0 p 2p

Using the same general procedure as used in Appendix 3, the following results:

(1) aBi1 + af118p
(2) B2 + af28p

(3) afy3 + af38p

Test of Ho: is that (1) - (2) =0and (2) - 3) =0
ZaBjk = 0 and EBjkd = 0 (j=1:k=1,2,3) so,
apj3=-ap2 - ofy; and

aP 36 =-0fi128 - aff11d

(- (2 = ofy1 +aBpidp - (@B12 + aP128p) = afiyg + af118p — aB12 — of128p
() - (3) = o2 + aB128p - (@13 + aP138p) = aB12 + af120p — of13 - afy3ér
= a2 + of128p - (- of12 - ofg:) - (-aPB123p - aB115p)
= a2 +of120p + afi2+ afyy + of128p + of11dp
=afr) + 20B12 + aBp18p + 203 128p

The ceefficients of (1)-(2) provide for row one, and (2)-(3) provide for row two of the

contrast matrix.



