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A bstract

This thesis is concerned with simultaneous estimation of the time delay and system 

parameters of continuous-time transfer function models. Estimation of the delay is 

different from the estimation of the rest of the parameters due to the fact that the 

delay does not appear explicitly in the model equation. The initiative undertaken 

in this research is based on the idea of bringing the delay term within the param­

eter vector. The idea was facilitated by a specific formulation of a linear filter for 

continuous-time identification. A new filter structure has been proposed and the en­

suing iterative method has been developed in a novel way to estimate the delay plus 

other system parameters.

Over the last few decades, a significant number of new methods and techniques for 

system identification have been developed. More theoretical aspects of the identifica­

tion problem such as the convergence of the parameter estimates have been addressed 

in much details. However, many practical problems in real world applications of dif­

ferent identification techniques remain unsolved. In this work, aspects of system 

identification with respect to practical implementation are considered.

Lack of availability of uniformly sampled data is a common yet often overlooked prob­

lem in real industrial data. A simple algorithm for identification from non-uniformly 

sampled output data has been proposed based on the idea of model based prediction. 

Techniques based on step test are commonly used in process industries for identifica­

tion. Novel identification methods based on open loop and closed loop step test data 

have been proposed in this thesis that use raw industrial data without preprocessing. 

The methods are applicable even if the step input is applied when the process is not 

at steady state.
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A multiple input multiple output (MIMO) model identification method is introduced 

that involves transformation of MIMO data into its single input single output (SISO) 

equivalents and uses SISO model identification algorithms for the purpose of identi­

fication. Model validation is a complementary step to the identification exercise. A 

validation scheme for SISO and MIMO continuous-time models is also presented in 

this thesis. The proposed method is applicable for models with delays.
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Chapter 1 

Introduction

1.1 Prologue

The way a particular field of science develops depends on a combination of two forces: 
the socio-technical developments created by the evolution of the neighboring fields of 
science and the demands of the application world (Gevers 2003). A careful review of 
the developments in the field of system identification would reveal that the first of the 
two forces has much greater effect on the development process while the demands of 
the application world have not been taken into consideration to the required extent. 
An answer to the simple question: “what fraction of identification methods devel­
oped so far have been used in industries?” would help to understand the status of 
the problem. A natural question follows; “How can the requirements of industries be 
taken into account?” In this work, an effort has been made to develop new methods 
for system identification that address some practical issues of the application world. 
The research initiative is based on the view that requirements of the practical appli­
cations can be met by tailoring methods to match the nature of industrial data, by 
enhancement of the methods extensively used in industrial applications, by develop­
ing generalized framework for different problems (e.g. single input single output and 
multiple input multiple output model identification) and so on. It is the opinion of the 
author that although numerous techniques and software are available for system iden­
tification, industries are still in need of appropriate tools for simultaneous estimation 
of the time delay and the system parameters of continuous-time models. There are 
problems associated with industrial data that have not been dealt within the identi­
fication algorithms. Also, widely used tools such as the step response based methods 
require data in a particular form that is not readily available from industries. Work 
on multiple input multiple output (MIMO) continuous-time model identification is in

1
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its infancy although there has been a considerable amount of research for identifying 
single input single output (SISO) model and the problem of continuous-time model 
validation is yet to be addressed. With these perspectives in mind, initiatives have 
been taken in this work to

•  simultaneously estimate the model parameter and the time delay

• estimate parameters from raw data

•  estimate parameters from non-uniformly sampled data

• enhance the step response based identification techniques

•  consider MIMO identification within the SISO framework

• develop a scheme for model validation.

As mentioned earlier, the problem was seen from an application perspective and the 
presentation is more concerned with development of appropriate theories to be useful 
for implementation purposes. Consequently the more theoretical problems such as 
the proof of convergence of iterative algorithms have not been addressed.

An important focus of this work is the problem of estimation of the process time 
delay. In system identification, the time delay estimation and the estimation of other 
model parameters are often considered as two disjoint problems and different ap­
proaches are taken for their solutions. In this work, the delay is treated in the same 
way as the other parameters and estimated simultaneously. The approach under con­
sideration is that of the linear filter method for continuous-time identification. It is 
the treatment of the delay that makes the proposed work different from the existing 
linear filter methods. To emphasize the importance of time delay estimation and 
highlight the significance of the current work a brief discussion on time delay and 
a review of time delay estimation methods are presented. But first a note on the 
motivations for continuous-time identification (CTID) and some general discussion 
on CTID is provided.

1.2 W hy continuous-time identification (CTID)?

One of the primary objectives of system identification is to know the system. It is 
essential to know and understand a system before it is handled, i.e., manipulated or

2
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controlled (Unbehauen and Rao 1998). Understanding requires proper analysis of the 
system and models are the most appropriate tools to analyze. For the purpose of 
analysis, it is easier to relate to and characterize a process from the parameters of its 
continuous-time model. The coefficients in discrete-time models do not offer the same 
ease and appeal of physical interpretation as do the parameters in continuous-time 
models (Unbehauen and Rao 1990). On the other hand, characterizing systems by 
discrete-time models makes sense as the mathematical characterization of the systems 
matches the serial processing nature of the digital computer (Young 1981). This has 
led to significant activities in the field of discrete-time identification (DTID). However, 
the uniqueness of continuous-time identification (CTID) and the advantages of the use 
of continuous-time models have led to increasing interest in CTID over the last few 
years. The inherent continuous-time nature of physical systems, strong correlations of 
the model parameters with the system properties, the use of continuous-time models 
in controller design etc. acted as major motivating forces for CTID. For details 
on the advantages of CTID the interested readers are referred to (Sinha and Rao 
1991, Unbehauen and Rao 1998, Rao and Unbehauen 2006). Numerical illustrations of 
the relevance of direct continuous-time identification have been discussed in (Rao and 
Garnier 2002) and the advantages of CT models in terms of the physical interpretation 
have been provided in (Young et al. 2003, Zak et al. 2003).

1.3 CTID: Basic principle and a brief review

Continuous-time identification is a vast area rich in well established methods. A num­
ber of survey papers (Unbehauen and Rao 1990, Young 1981), books (Sinha and Rao 
1991, Unbehauen and Rao 1987) and review papers (Unbehauen and Rao 1998, Rao 
and Unbehauen 2006) give a broad overview of the existing methods. CT models and 
the associated CTID methods can be categorized based on different criteria e.g. para­
metric vs. nonparametric, time domain vs. frequency domain, direct vs. indirect and 
so on. We consider time domain identification of continuous-time transfer function 
(or equivalently linear ordinary differential equation) models of linear time-invariant 
systems using the direct approach.

The main challenge in continuous-time identification arises due to the appearance 
of the derivative terms in the estimation equation. Generation of the derivatives from 
the input output measurements is not desirable due to the presence of noise in the 
data. This problem is overcome by performing some suitable linear dynamic (LD) op-

3
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eration on the estimation equation. The LD operation is such that it, while retaining 
the parameters of the continuous model in their original form, facilitates generation 
of the appropriate measurements for the parameter estimation equation and over­
come the need for computing derivatives of the signals. As presented in (Unbehauen 
and Rao 1987), figure 1.1 describes the basic procedure for parameter estimation in 
CTID. The general scheme for the estimation of a continuous-time model involves

y(t)u(t)

Informe tion on 
system structure

System

LD operationLD operation

Parameter
estimation

Formulation of the parameter 
estimation equation

> Primary stage

Secondary stage

Parameters

Figure 1.1: General scheme for continuous-time parameter estimation.

two stages, namely the primary stage and the secondary stage. In the primary stage, 
performing the linear dynamic operation, the continuous-time representation of the 
system is converted into a set of algebraic equations indexed in accordance with the 
time samples. In the secondary stage, the CT parameters are estimated by an ade­
quate statistical estimation procedure from the system of algebraic equations. Most 
of the well-known linear regression methods can be used in the parameter estima­
tion stage with some modifications (Garnier et al. 2003). A classical approach in the 
secondary stage has been to use the least-squares (LS) method. However, the LS 
method almost always gives biased estimates. The reason for this has been that the 
estimation of the derivatives almost always corrupted the noise sequence and made 
it colored (Gillberg 2004). Instrumental variable methods have been widely popular 
as a means for reducing this bias (Young 1981).

Different CTID methods differ on the basis of the linear dynamic operation involved 
in the methods. There are mainly three different approaches for linear dynamic op-

4
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erations: the method of modulating functions, the linear filter methods and spectral 
characterization of signals. Details on these three approaches can be found in the 
books (Sinha and Rao 1991, Unbehauen and Rao 1987). Brief discussion on the dif­
ferent approaches can be found in the theses (Gillberg 2004, Mehta 1996, Missailidis 
2000). Detailed reviews on modulating functions are available in (Preisig and Rippin 
1993a, Preisig and Rippin 19936, Preisig and Rippin 1993c). A long list of references 
on CTID methods is also available in (O’Dwyer 2000). This work considers a linear 
filter method and a brief review of the existing linear filter methods is provided in 
chapter 2.

Linear filtering is one of the most commonly used linear dynamic operations for 
continuous-time identification. In fact, many of the linear dynamic operations can 
be interpreted as pre-filtering of input and output signals (Sagara and Zhao 1991). 
Process signal pre-filtering is indeed a useful way to improve statistical efficiency in 
system identification and yields lower variance of the parameter estimates (Garnier 
et al. 2003). The linear filter used for CTID plays the above role in addition to its 
role in avoiding direct differentiation of the noisy signals.

1.4 Time Delay

1.4.1 Definition, occurrence and im portance

The time delay is an important physical property of a system. It is a measure of 
the time for which the response to an applied force is delayed in its effect (Shinskey 
1967). It may be defined as the time interval between the start of an event in one 
point in a system and its resulting action at another point (O’Dwyer 1999). When­
ever material or energy is physically moved in a process or plant there is a time delay 
associated with the movement (Seborg et al. 1989). Time delay is also referred to as 
dead time, transportation lag or distance-velocity lag. In addition to this pure time 
delay, apparent time delays may also result due to measurement processes or in the 
identification exercise when a higher order process is approximated by a lower order 
model.

Time delays arise in physical, chemical, biological and economic systems as well as 
in signal processing operations. A long list of examples of time delayed systems of 
different fields are presented in (O’Dwyer 2000) and the references therein. One dis-

5
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tinctive characteristic of the process control field, as compared to control of most 
mechanical or electrical systems, is the common occurrence of time delays (Seborg 
et al. 1989). There are few processes where it is not present in some form (Shinskey 
1967). O’Dwyer (2000) refers to a large number of sources and presents a list of 
processes such as pulp and paper manufacturing, diffusion systems, activated sludge 
processes, heating and ventilation systems, combustion processes, fertigation process, 
etc. as examples of processes having time delays. Latour et al. (1967) quoted a va­
riety of sources to support the use of models with time delays for processes such as 
liquid-liquid extraction, mixing in agitated vessels, some heat exchangers, distillation 
columns and some chemical reactors.

Time delay has a  significant bearing on the achievable performance for control sys­
tems (Wang and Zhang 20016). Many popular control synthesis techniques, such as 
the m in im u m  variance controller, exhibit poor or even unstable control performance 
if the delay is not correctly known. Moreover in general, a fundamental requirement 
for the proper tuning of control algorithms is the knowledge of phase contribution of 
the delay over the frequency of interest (Ferretti et al. 1991). When there is a long 
dead time in a process, the control performance obtained with a PID controller is 
limited. From a frequency response perspective, a time delay adds significant phase 
lag to the feedback loop, which adversely affects closed-loop stability. To improve the 
performance of systems with time delay, special control strategies such as the Smith 
predictor scheme have been developed which provide time-delay compensation. But 
these model based strategies depend largely on the model of the process. In case of 
inaccuracy in the model, controller performance deteriorates, perhaps to the point of 
instability. Schleck and Hanesian (1978) performed a detailed study analyzing the 
effect of model errors on the Smith predictor for a first order plus time delay process 
and found that if the assumed time delay is not within 30% of the actual process 
time delay, the predictor is inferior to a PI controller with no time delay compensa­
tion (Seborg et al. 1989).

For applications where the parameters of the estimated models are used as a measure 
of some physical properties e.g. in (Milinkovic 1997), the delay estimation, if any, 
should be correct. Otherwise, the inferred physical property can be grossly inaccu­
rate. Also for cases where the models are used for prediction, the correct estimation 
of delay is equally important.

In summary, irrespective of the end use of the process model, if the process con-
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tains a delay, then estimation of the delay is important for the model to be useful.

1.4.2 R eview  of tim e delay estim ation m ethods

Due to the common occurrence of the delay and the importance of its accurate es­
timation, time delay estimation techniques have drawn widespread interest in the 
research community. As a result, a large number of methods have evolved to “obtain 
an estimate of” or to “choose” time delay. In this section we will discuss methods 
which may be considered similar to our approach in terms of model structure and 
estimation procedure. More specifically we will consider techniques that deal with 
estimation of delay and other parameters. But as there are a large number of methods 
that estimate only the time delay we will review some of these very briefly. We will 
consider the time delay estimation problem from a control perspective and not from 
a signal processing perspective. This limits the discussion to the so called active time 
delay estimation problem.

Before presenting the review let us formulate the problem mathematically. A linear 
single input single output (SISO) system with time delay is described by a continuous 
time model as:

y(t) = G(p)u(t -  6) + v(t) (1.1)

where,

Gî W )
A(p) = anpn +  +  +  aip +  a0

B{p) = bmpm + + ............+  h p  + b0

G(p) is the process model without the delay, y(t) and u(t) are measurable process 
output and input, respectively, v(t) is the measurement error, p = d/dt is the deriva­
tive operator and 5 is the process delay in units of time.

The objective of system identification is to find an estimate of the parameters aj, i = 
1 • ■ • n. bj, i — 0 • • • m  and 6. While the parameters cq and bj appear explicitly 
as coefficients of the signals and their derivatives, the delay 6 appears implicitly in 
the estimation equation. This makes the estimation of the delay different from the 
estimation of other parameters.

7
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M ethods to estim ate only the delay

In many of the methods available in the literature, the parameters other than the 
delay are considered to be nuisance. A detailed review of such methods can be found 
in (Bjorklund 2003) where the time delay estimation (TDE) problem is classified as 
the so called active TDE and passive TDE problem. The TDE problem encountered 
in the field of control is categorized as active TDE problem where both the input and 
output are known. The active time-delay estimation methods are further classified 
into several classes. We will discuss only one of the classes namely the time-delay 
approximation methods as it is the most commonly used. In the methods belonging 
to this type, the input and output signals are represented in a certain basis and the 
time-delay is estimated from an approximation of the relation (a model) between the 
signals in this basis. Depending on the basis there are the following subclasses.

Time domain approximation methods

The basis consists of impulse functions. The time delay is the delay for the im­
pulse response to start (Bjorklund 2003, Carlemalm et al. 1999, Isaksson 1997, Kurz 
and Goedecke 1981). Finding the maximum of cross-correlation between input and 
output, which is a common method (Hero et al. 1998, Carter 1993), is in principle 
the same thing.

For dynamic systems if we use the time instant corresponding to the maximum of the 
impulse response as an estimate of time delay, we would get a bias in the estimate 
(Bjorklund 2003). One has to separate first the time delay and dynamics of the sys­
tem to get the time delay. Also we need to estimate the impulse response from the 
input output data which itself can introduce errors. The uncertainty of the estimate 
of the impulse response may result in inaccuracies as shown by Bjorklund (2003). 
Moreover thresholding itself is a non trivial job for these methods.

Frequency domain approximation methods

The basis consists of complex sinusoids ewt. A time delay (<5) is equivalent to a phase 
shift and is estimated from the phase of e~lui (Grennberg and Sandell 1994, Houghton 
and Reeve 1995, Isaksson 1997). In these methods an approximation of the system 
including the time delay is presented in the frequency domain. A Laguerre model was 
used by Isaksson et al. (2001) for the approximation. Model of other structures such

8
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as FIR, ARX or OE can also be used. Time delay can be estimated using the phase 
of the discrete-time allpass part (DAP methods). Bjorklund (2003) showed with the 
help of simple examples how the uncertainty in the zero location can lead to failure 
of the DAP estimates and concluded that DAP methods are inherently non-robust. 
Zero guarding is needed to make the methods more robust.

Laguerre domain approximation methods

The time delay is estimated from a relation between the input and output signals ex­
pressed in continuous time or discrete time Laguerre functions (Fischer and Medvedev 
1999). A necessary condition for the Laguerre domain approximation estimation 
methods to be successful is that the input and output signals can be represented 
accurately in the Laguerre domain. But this is hard for random binary type signals. 
Also several parameters have to be selected by the user for this purpose.

M ethods to  estim ate the delay and system  parameter

In this section we will present a brief review of the methods tha t estimate delay 
plus other process parameters. A detailed review on these methods can be found 
in (O’Dwyer 2000). These methods can be broadly classified into time domain and 
frequency domain methods. They may be off-line or on-line and can be applicable 
either in open loop or in closed loop environment. However, the review is limited to 
the time domain methods.

Methods based on step response

In fact most, if not all, time domain methods to directly estimate the time delay 
along with other parameters are based on the step test. Many of these methods 
can be categorized as graphical methods where a few points of the step response are 
used to get a model of limited orders. A number of these graphical methods for 
open loop are described in (Oldenbourg and Sartorius 1948, Rake 1980, Seborg et al. 
1989, Unbehauen and Rao 1987). For the closed-loop environment the delay is often 
approximated by a rational polynomial. There are some step test methods applicable 
for model with first or second order. A detailed review on the step response based 
techniques appears in chapter 3. The main limitation of the graphical methods is 
that they use only a few points of the step response and consequently may not be 
robust to noise.

9
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Another group of identification methods uses the area under the step response curve to 
estimate the process parameters. The method of moments (Ingimundarson and Hag- 
glund 2001) for closed loop identification of FOPTD model is one of the often-cited 
method belonging to this category. Wang and Zhang (20016) proposed an integral 
equation approach for open loop systems that uses various order integrals of the step 
response data to identify models of any order.

Identification methods from step response data enjoy the advantages of the sim­
plicity of the experiment. However, the parameters identified may vary with process 
operating conditions and with the size of the step change and its direction (Seborg 
et al. 1989). Smith and Corripio (1985) concluded that the precision of step response 
methods to estimate second or higher order process parameters is very low.

Approximation of time delay

In this class of methods the time delay term is approximated by methods such as 
Pade approximation, Laguerre approximation etc. or by a truncated Taylor series 
expansion. The result of this approximation is generally an augmented model. The 
parameters of the resulting model are then estimated using a conventional delay-free 
parameter estimation method from which the delay may be deduced. Alternatively, 
the method of over-parameterizations (Ferretti et al. 1991) is used which involves 
subsuming the delay term into an extended z domain numerator polynomial. The 
parameters are estimated recursively and the delay is calculated from the identified 
numerator polynomial.

The approximation methods become computationally intensive if a high order ap­
proximation is used. On the other hand, a lower order approximation introduces 
error in the approximation. As a result, there exist a trade-off between accuracy 
and computational load. Also the high order numerator polynomial increases the 
likelihood of the presence of common factors in the numerator and denominator poly­
nomials, rendering identification more difficult (O’Dwyer 1999).

Model set estimation

Methods in this category estimate a number of different models for different de­
lays within a predefined range and often for different set of model orders. A suitable
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cost function that is a measure of the model quality is estimated for every set of 
model parameters. Finally the set that gives the optimum value of the cost function 
is chosen. Some of the multiple model estimation methods e.g. in (Hsia 1977, Young 
2002) obtain the model orders along with other parameters and delay while others 
e.g. (Rao and Sivakumar 1976, Unbehauen and Rao 1987) estimate only the delay 
and process parameters.

The attractiveness of model set estimation methods is that the grid search will fa­
cilitate the estimation of parameters corresponding to the global minimum of the 
cost function, even in the presence of local minima provided that enough models are 
estimated. However, this is computationally intensive (O’Dwyer 1999).

Optimization techniques

The so called gradient methods are the most commonly used optimization techniques 
used for simultaneous estimation of time delay and process parameters. These meth­
ods involve updating of the parameter vector and delay based on the information on 
a cost function. Typical gradient algorithms are the Newton-Raphson, the Gauss- 
Newton and the steepest descent algorithms, which differ in their updating vectors. 
Examples of gradient methods can be found in (O’Dwyer 1999). A major problem 
with the gradient methods is that the error surface is often multimodal. This is why 
locating global optimum needs multiple optimization runs each initiated at a different 
starting point which makes the method computationally intensive.

1.5 Organization of the thesis

As mentioned earlier, the purpose of this work is to develop methods for simultane­
ous estimation of the time delay and remaining system parameters of continuous-time 
transfer function models. The linear filter method is used to facilitate the conversion 
of the separate (delay and system parameters) identification problem into a simulta­
neous parameter estimation problem. On the constraint side of the problem are the 
demands of the real application world. Search for a solution to this problem led this 
work in different directions and the resulting developments are summarized. The con­
tents of this thesis have been divided into seven different chapters. The main chapters 
(Chapter 2- 6) are independent of each other to some extent and each contains a brief 
review of the relevant literature. Presentation of results are also done chapter-wise.
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A brief summary of each individual chapter appears next.

•  The current chapter, chapter 1, provides an introduction to the thesis. It in­
cludes a discussion on continuous-time identification and a  review of the esti­
mation of time delay.

•  Chapter 2 dwells on the linear filter method. It introduces the new filter struc­
ture and details the linear filter method based on the new filter. In fact, chap­
ter 2 contains the core work of this thesis that is subsequently used in the 
remaining chapters. The problems of the least squares estimation and its solu­
tion and other implementation issues of the proposed linear filter method have 
also been addressed in this chapter.

• Chapter 3 focuses on identification of models from non-uniformly sampled data. 
A specific type of non-uniformity in data, common in data from process indus­
tries, is considered. An alternative form of the linear filter proposed in chapter 2 
is presented in this chapter. An iterative prediction scheme is proposed that 
makes the linear filter method applicable for non-uniformly sampled output 
data. Details of the input only model used in the iterative prediction algorithm 
is also provided.

•  Novel identification techniques from open loop and closed loop step response 
data are presented in chapter 4. The methods directly use raw industrial data 
without preprocessing. Also one is not required to first bring the process to a 
steady state before the step input is applied.

•  Chapter 5 deals with MIMO system identification. A decomposition technique 
that enables the use of SISO identification methods for the identification of 
MIMO processes is introduced.

•  Model validation is often seen as an integrated part of model identification. In 
chapter 6 a model validation scheme based on the asymptotic local approach is 
presented. The procedures for validation of both SISO and MIMO models are 
detailed therein.

•  Finally in chapter 7, the main contributions of the thesis are summarized and 
future directions on work in this area are outlined.
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Chapter 2 

A N ew  Linear F ilter M ethod

2.1 Introduction

The origin of filtering for the purpose of identification can be traced back to an ar­
ticle by Valstar (1963). In that article, rarely cited in the literature of linear filter 
methods, the author introduced a number of filters for the purpose of, as the author 
named it, ‘tracking’ transfer functions. Along with the idea of integration approach, 
the basic of low-pass filtering was presented by Valstar in terms of a r-c (resistor- 
capacitor) circuit. In a contemporary study, Young (1964) developed a technique of 
process parameter determination very similar to the low pass filtering approach intro­
duced by Valstar (1963). However, the mathematical justification provided in (Young 
1964) for the use of signals originating from the successive low pass filtering of the 
process forcing function and output variable is somewhat different and possibly more 
straightforward. Although the article by Young (1964) appeared as a discussion on 
the article by Valstar (1963), it is the simplicity of the presentation and closeness to 
the spirit of continuous-time identification that gave Young’s article more popularity 
in the field of system identification. In fact this method, commonly known as method 
of multiple filters (MMF), formed the basis of linear filter methods developed subse­
quently. The MMF, also known as the state variable filter (SVF) method, has been 
used in continuous-time identification since then and further developments (Wang 
and Gawthrop 2001) as well as application (Wang et al. 2004b) have been reported 
in the literature.

JA modified form of this chapter has been published as:

Ahmed, S., B. Huang and S. L. Shah (2006). Parameter and delay estimation of continuous-time 
models using a linear filter, Journal of Process Control, 16(4) 323-331
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Similar to the SVF method is the Poisson moment functional (PMF) approach which, 
to the best of the author’s knowledge, was introduced first by Fairman (1971). Later 
on different researchers e.g., Bastogne et al. (2001), Garnier et al. (2000), Saha and 
Rao (1983) made significant contribution and made the PMF method the most pop­
ular of the linear filter methods used in continuous-time identification.

The integral equation approach which we consider within the framework of linear 
filter method was first proposed by Diamessis (1965). The integral filter can be 
treated as just another filter with all of the poles in the origin. Subsequent develop­
ments of the integral equation approach can be attributed to Whitfield and Messali 
(1987), Sagara and Zhao (1990), Wang and Zhang (20016), Hwang and Lai (2004) 
and so on.

Use of filters with different structures and user specified parameter(s) led to the 
search for an optimal filter. Young and Jakeman (1980) presented the refined in­
strumental variable method for continuous-time identification (RIVC). The method 
was later revisited by Young (2002). The RIVC method is considered as the optimal 
linear filter method for continuous-time identification. In this approach, the filter 
has the transfer function where H(s) is the denominator of the process transfer 
function. Since A(s) is unknown, it is generated within the algorithm via an iterative 
procedure. However, the idea to iteratively use the process denominator for filtering 
input output data was presented first by Steiglitz and McBride (1965) for discrete­
time identification.

The purpose of our work is to develop a linear filter method to simultaneously esti­
mate the process parameters and the time delay of a process. Most of the currently 
available linear filter methods estimate the process parameters provided that the time 
delay is known in the parameter estimation step. This complicates the identification 
scheme and makes the identification algorithm a disjoint two-step procedure. The 
goal of this work is to develop a method that considers the delay as another parame­
ter of the model and estimates the entire parameter set wholistically. We will provide 
a brief review on the time delay estimation techniques used in different linear filter 
methods. But first we discuss the basic mathematical formulation of the linear filter 
(LF) methods.
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2.2 M athematical formulation of the LF m ethod

To describe the general approach of the LF method, let us consider a linear time- 
invariant single input single output (SISO) model with time delay described by

G is the process model without the delay, y{t) and u{t) are measurable process out­
put and input, respectively, v(t) is the measurement error, p  =  d/dt  is the derivative 
operator and S is the process delay in units of time.

In the parameter estimation stage it is assumed that the orders of the process, n 
and m, are known and n > m. Also, without loss of generality it can be assumed 
that a0 =  1 . So the objective is to derive an estimate of the parameter vector, 
[an an_i ■ ■ ■ a,i bm 6m_x • • • bQ d]T, from a given set of measurements of y(t) and u(t).

To describe the general formulation of the linear filter methods, we express the dif­
ferential equation model presented in eqn(2 .1 ) in equation error formulation

y(t) = G(p)u(t -  5) +  v(t) (2 .1)

where,

A(p) = anpn + .............. 1.-I-............+  dip +  a0

B(p) — bmpm +  1 + ............+  bip + &o

a«y{n)(t) = b mu (m)(f -  5) +  e(t) (2 .2)

where,
=  [an a„_! • • ■ a0] G Mlx(n+1) 

b m = [bmbm- i - - -b 0] £ l lx(m+1> 

y(»)(t) =  [y(»)(t) ■ ■ ■ y(0)(t)]T €  R(n+1>Xl

- 5 ) =  [u{m)(t -  5) ■ ■ ■ u{0)(t -  <5)]r  G R(m+1)xl 

e(t) = A{p)v(t)

y^A and vfA are ith order time derivatives of y and u, respectively, i.e. yA(t)  =  ply(t) 
and uA(t) = p%u(t).

Taking Laplace transformation on both sides of eqn(2.2), we can write 

ansny(s) =  b ros mU{s)e~Ss+ cn_1s”- 1+  E(s) (2.3)
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Y(s), U(s) and E(s) are the Laplace transforms of y(t), u(t) and e(t), respectively, 
and

s" =  [s" s" ” 1 • • • s°]T G R(n+1)xl (2.4)

The elements of c„_i capture the initial conditions of the output and are defined by

c„-i =  [c„_i c„_2 ---Co] € Mlx" (2.5)

C n-t =  hjy"-1(0), i =  1 • • • n  (2.6)
h . =  [()lx ( n - i )  ^  G R lx „  (2  7 )

y (n_1)(0 ) =  [y(n_1)(0 ) y(”_2)(0 ) • • ■ y(0 )]r  G Rnxl (2 .8 )

Here, we consider that the input is initially at rest. However, non-zero initial con­
ditions of the input can be handled in the same way and this has been presented in 
chapter 4. Now, consider a causal filter described in Laplace domain as F(s). If we 
apply the filtering operation on both sides of eqn(2.3) we end up with the formulation

ansnF(s)Y(s)  =  b msmF(s)U (s)e~Ss +  c ^ s " - 1! ^ )  +  F(s)E(s)  (2.9)

Taking inverse Laplace transformation, £ -1, eqn(2.9) can be expressed in time domain

a-nYF'1 (*) =  b rouSr) (t -  (5) +  c„_1f" - 1 (t) +  eF(t) (2 .1 0 )

with

y p ( t )  =

y$(t)  =  £ - 1[siF(s)Y(s)] 

f n ~ \ t )  =  £ - 1 [s"-1F(s)]

Next, the filtered variables and their time derivatives are generated and eqn(2.10) is 
reformulated to give a standard form of least squares equations. In some methods, 
certain algebraic manipulations are carried out to avoid the derivative operation. 
In the linear integral method, time derivatives of signals are not involved; however, 
different order integrals of the variables are needed. The different linear filter methods 
differ in terms of the structure of the filter. Described below are the structures of 
different filters commonly used in literature.
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2.3 Structures of existing filters

State variable filters (SVF)

The minimal order state variable filter has the form
n

(2 .11)

PM F filter

The minimal order form of the Generalized Poisson Moment Functional (GPMF) 
approach uses the filter of the following form

The optimal RIVC filter is defined theoretically as 1/A{s) where A(s) is the denomi-

the algorithm via an iterative procedure.

2.4 Tim e delay estim ation in LF m ethods

In the literature on linear filter methods, Only a few articles considers the problem of 
time delay estimation. In most cases it is assumed that there is no delay or the delay 
is known. Rao and Sivakumar (1976) presented the iterative shift algorithm that can 
be categorized as a model set estimation technique. In this approach, the available 
data is divided into a number of segments and for a guessed value of the delay the 
other model parameters are estimated using the poisson moment functional method. 
The basic idea is that the estimated parameters will be invariant with data on various 
subintervals if the delay is correctly guessed. W ith this in mind an error function is 
defined as the sum of the distances between two parameter vectors estimated using 
data from successive subintervals. Parameters are then solved by minimizing the error 
function with respect to the delay. Saha and Rao (1983) proposed another method

(2 .12)

For the basic PMF approach (3=1  while for Normalized PMF (3 = A.

RIVC filter

nator of the system transfer function. Since ^4(s) is unknown, it is generated within
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also based on the PMF approach for processes having time delay smaller than the 
sampling interval. In this technique the filtered delayed input is expressed in terms 
of the filtered input at the previous and the following time instants by making a 
linear interpolation. Thus the input function appears with the unknown delay term. 
The estimation equation is then rearranged to place the delay term in the parameter 
vector and estimate it along with other parameters. Hsia (1977) proposed a model set 
estimation technique that consists of computing least-squares parameter estimates for 
a number of assumed time delay values which are integral multiples of the sampling 
interval and choosing that parameter set which yield the minimum mean squared 
error. Another approach is to choose the delay term in the same way as model orders 
are chosen. Young (2002) estimated model parameters for a set of model orders 
and delay; then based on the coefficient of determination and Young’s information 
criterion chose the time delay and the model orders.

2.5 Development of a new linear filter method

2.5.1 O bjective

Linear filter methods have been used in the field of continuous-time identification 
over a considerable time period. Due to the effectiveness and simplicity of the ap­
proach, they have found widespread applications and drawn much interest from the 
system identification community. However, the estimation of time delay along with 
continuous-time model parameters has remained an unsolved problem.

In this work, the primary objective is to develop a new linear filter method that 
would estimate the time delay along with other model parameters. Also the method 
should not be limited in application for any specific type of input signal.

2.5.2 Basic idea

In the parameter estimation equation of the linear filter method (eqn(2.10)), the time 
delay appears as an implicit parameter and cannot be estimated directly. To be solv­
able using the idea of regression analysis, the time delay should appear as an explicit 
parameter in the parameter vector. To get the delay in the parameter vector it is 
necessary that it appears explicitly in the estimation equation.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To have an explicit appearance of the delay term in the estimation equation and 
get it as an element in the parameter vector, we propose a filter having a first order 
integral dynamics along with a lag dynamics of order n. The filter transfer function 
F(s) may have the following different forms

The reason to include an integrator in the filter is to generate an integration term of 
delayed input in the estimation equation. This integrated delayed input signal, which 
represents a certain area under the input curve, can be expressed by subtracting 3 
sub-areas from the integrated input signal. By doing so, the delay, S, becomes an 
explicit parameter in the estimation equation. Details on this idea is provided in the 
following section.

In this thesis, the discussion is limited to the filters I  and I I I .  Filter I I  has the 
disadvantage of having distinct poles to be specified by the user. However, use of a 
filter having distinct poles have certain advantages for special type of systems having 
their poles far apart or the multiple time-scale systems.

Filter I  is similar in structure to that of the state variable filter (SVF) and PMF 
filter and have the advantages of these structures. One specific advantage of the 
PMF structure is that the different order derivatives of the filtered signals can be 
expressed in terms of filtered signal and the derivative operation is avoided. However, 
filter I  has two user specified parameter. In most cases (3 is set equal to A and only 
the A is to be specified. Filter I I I  can be considered as an extension of the RIVC 
filter and has the advantages of the RIVC filter. It uses the idea of adaptive filtering 
and needs only an initial guess of A(s). The existing literature as well as the current 
study shows that the initial choice of A(s) has little effect on the parameter estimated 
finally. In fact the RIVC filter is claimed to be the optimal filter as its frequency re­
sponse exactly matches the frequency response of the process.

In this chapter we will present detailed mathematical derivation for the filter I. The 
mathematical formulation for the filter I I I  is presented in chapter 3. Before present­
ing the mathematical derivation first we summarize the necessary assumptions:

•  The system is time-invariant and causal

•  The polynomials A(p) and B(p) are co-prime

1 ' s(s +  A)"
(3n

s(s +  Ai)(s +  A2 ) ■ • • (s +  An)
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•  The disturbance v(t) is independent of u(t)

2.5.3 M athem atical formulation

In this section we present the new linear filter method for the filter having the following 
structure.

F(s) = (2.13)
s{s +  A)"

For this filter, the different order derivatives of a filtered signal can be expressed as 
linear combination of the signal filtered with a set of filters having only lag dynamics 
of different orders. Mathematically this can be expressed as

S qF(s) = AqFn(s) (2.14)

with

f n nnZ)f3n(-X y-*  i = l - - - q , j  = ( n - q  + i) - - -n
fin  , ,
E—  i = q + l, j  =

A
0

i = q + 1, j  = n + 1 
i = 1- ■ -q, j  = n + 1 and j  < (n — q + i)

Ag e

(2.15)

o* = ____:___
3 j ! ( * - i ) !

Fn(s) - X1

(s +  A) (s +  A) 2 (s +  A)n sj 

Adopting these notations, eqn(2.9) takes the form

aJlAnF n(s)F(s) =  bmAmF„(s){7 (s)e_5's +  c„_!An_iFn(s) +  E F(s)

(2.16)

(2.17)

(2.18)

where, An and Am are defined in the same way as A q. Taking inverse Laplace 
transform, £ _1, on eqn(2.18), at the k — th sampling instant i.e. t — tk, we can write

where,

3nAnyjf,n(4fc) bmAmUFn(tk ^) T  C71—lAjj—iF^tfc) +  ep(ffc) (2.19)

yF n ( t k )  =  [ y f M  y f 2 { t k )  • • • v u i t k )  y i { t k ) ] T  e r("+1)x1 
Y{8)

Vfi(t) =  £  1 

vi( t )  =

(s +  A)* 
Y(a)
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Similarly u Fn{tk — S) contains the filtered input and the integral of input

UFn(tk - S )  = [uf l (tk -  6) ••■ufn(tk - 6) Ur(tk -  5)]TR("+1)xl (2.20)

Fn(tfc) contains the impulse response of the filters

F n(tk) =  [ / i(tk) • • • f n(tk) /z(4 )]T € R(n+1)xl (2 .21) 

(2 .22)
1 1 t ^ e - ^

f I{t)= £,~1 [ - 1 = 1
5

(2.23)

Assuming a0 =  1, eqn(2.19) can be rearranged to give a least-squares equation (LSE) 
form

where,
A„ : A„ with its last row removed, A„ € R n x (n+1)

A„ : la s t  row  o f  An, A„ G R l x (n+1)

&n : a n with its last column removed, a„ E Rlxn

As shown in eqn(2.20), the last element of u pn(tk — 5) is the integrated delayed 
input signal. Now 5 can be expressed as 5 =  (d + a)At,  where A t  is the sampling 
interval, d is an integer number and a  is a pure fraction (0 <  a  < 1). Now if it is 
assumed that the input signal is piecewise constant, we can write for any sampling 
instant t = t k,

j=k-d

However, it is not necessary to consider that the input is piecewise constant. A 
similar derivation for input signals that are not piecewise constant is provided in

A „ y / . ; ,  i j ' k )  & n A n y  Fn ( t k )  +  b m A m u p n ( t fc d )

+Cn-lA„_iFn(tfc) -|- eir(tfc) (2.24)

fc-i
(2.25)

k- 1
1=1 

k—1

Ui{tk -  (5) =  ^ 2  uA t  -  X !  ~  -  (Uk-d-i -  uk- i ) a A t  -  uk^ 5
1= 1  j=k-d

k- 1

=  (Uj ~  Uk-i)At -  (ufe_d_i -  uk- i ) a A t  -  Uk-i6  (2.26)
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u

g23-L eft side o f=  
j&SSS - 2nd term of right side 
|SB3- 3rd term of right side 

- 4th term o f right side

t

Figure 2.1: Graphical representation of eqn(2.26)

chapter 3 (eqn(3.25) and eqn(3.26)). Here, uftf) is abbreviated as Ui. Eqn(2.26) can 
be presented graphically as in figure 2.1. In this figure, the integrated delayed input, 
Ul(tk — 5), is the area under the input signal up to time tk — 6, while the integrated 
input signal, it/(ifc), is the area under the input curve up to time tk. Also the 2nd, 
3rd and 4th term of eqn(2.26) represents the areas as shown by the legends. From 
the figure, it is seen that by subtracting these 3 areas from ui(tk), we get U[(tk — S). 
Applying eqn(2.26), upn (tk — 5) can be restructured in an extended form

Applying these, we can rewrite eqn(2.24) as

A„yF„0h0 = -^ A „ y FJf,0 + broAmu+n(tfc-<5)
+ b m Amu£n (tfc — 5) +  cn_iAn_iF„(ffc) +  eFitk) (2.28)

where,
Am : last column of Am

Up (t — 5) : Up (t — 5) with its last row removed

u Fn(tk -  5) Ufn(tk - S )

Ui(tk) X̂ j=fc—c/(̂ b ^k—i)A t (v,k-d—i f̂c—
-Uk-iS

G R (ra+2)x l (2.27)
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u p (t — 5) : last row of u ^ ( t  — 5)

Now b mAm =  b^u where u =  Am{m + l , n  4 - 1) as2 Am(l : m, n  +  1) =  0. Us­
ing this, eqn(2.28) can be presented in standard least-squares form

7(*fc) =  4>+(tk)9+ + eF{tk)

where,

7 ( t k ) 

4>+(tk)

A„y Fn(tk)
-A „ y  Fn(tk) 

Amu  Fn(tk - S )  

- v u k- 1 
A„_iF„(tfc)

^  j (̂2n+m+2)xl

p lx (2 7 i+ m + 2 )

(2.29)

(2.30)

(2.31)

(2.32)@+ — [*bi bm  b05  c n_ i]  G 

Eqn(2.29) can be written for tk = td+i,ta+ 2  • --tN and combined to give the equation

T =  $+0+ +  E f (2.33)

with
r = [7 (̂ +1) 7 (̂ +2) • • • 7 (*w)]T

— [<t>+(td+1) ^ + ( W 2) ‘ ' ' M ^ n )]1

(2.34)

(2.35)

Solution of eqn(2.33) gives the parameter vector 9+. From 6+ we can directly get a„ 
and b m. 5 is obtained as 5 = 6+(n + m  + 2)/9+(n + m  + 1). To retrieve y ("- 1)(0) 
from c„_i, eqn(2 .6 ) can be written for i = 1 • • ■ n  to give

( c ^ f  =  H y ^ H O ) 

where, H  =  [(hi)T (h2)r  • • • (hn)r ]r  G R " x". Finally

y("-1)(0 ) =  (H ) - 1 ^ ) 2

(2.36)

(2.37)

We see that using this method we can estimate the initial conditions along with 
other parameters. But the number of parameters to be estimated becomes large 
which is 2n +  m  + 2. The elements of F n(tk) as in eqn(2.21) shows that for a stable

2For any matrix M , M (r i  : r2,c i : c2) refers to the elements from row ri to row 7-2 and from 

column ci to column c2
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filter parameter, i.e. positive A, the first n terms decay exponentially and after a 
certain time become negligible. Only the last term //(f) which is a constant remains 
significant. So after a certain time tss, we can write

Cre—1 An_xFn(tfc) — Cn_iA_n—\fl(tk) (2.38)

where, An_: is the last column of An_i. But A„_x(l : n — 1, n +  1 ) =  0. So we can 
write

cn_iAra_1 / / ( f fc) =  co/x/j(tfc) (2.39)

with fi =  A„_i(ra, n +  1).

Now eqn(2.28) can be written as

7  (tk) = 4F(tk)9- +  eF(tk)

where,

-A nyF„(tfc) 
AmUpn(ffc — 5)

- u u k- 1

0_  =  [ ^ l b m b0S c 0f  e R lx{n+m+3)

j (̂n+m+3) x 1

(2.40)

(2.41)

(2.42)

If we are not interested in estimating the initial conditions but want to estimate 
other parameters in the presence of initial conditions, eqn(2.40) can be written for 
tk = t ss - ■ ■ iff and combined in the same way as in eqn(2.34) and (2.35) to give

T = +  Ef (2.43)

2.5.4 Param eter estim ation algorithm

Note that 6 appears both in and fL in eqn(2.43). So, to solve the equation to get 
6L, it is necessary to devise an iterative way. A straightforward approach of successive 
iteration can be implemented that uses the estimated value of an iteration step as 
the guess for the next step. The iteration procedure is terminated when 6 converges. 
The iteration steps are described in Algorithm 2.1.

The least-squares estimate of 6_ that minimizes the sum of the squared errors is 
given by

§ls = - 1 (2 .4 4 )
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But the least-squares solution does not give an unbiased estimate in the presence 
of general forms of measurement noise such as the colored noise. Even if the mea­
surement noise is assumed to be white with zero-mean, the filtering operation causes 
coloring of the noise. So, the LS solution is not unbiased even for a white mea­
surement noise and we need a bias elimination scheme. A popular bias elimination 
procedure is to use the instrumental variable (IV) method. A bootstrap estimation 
of IV type where the instrumental variable is built from an auxiliary model (Young 
1970) is considered here. The instrument matrix T' is generated by replacing the 
yfi in the 4>_ matrix by x jz i.e,

- A  „xFn(tfc)
+  6)Amu£n(ffc

- v u k- 1

£ ]j(n+m+3)x ̂ (2.45)

where

i (t) =  A 3 h „ ( t - v s ) (2.46)
A LS(p)

where, B LS(p), ALS(p) and 5LS are the least squares estimate of the numerator poly­
nomial, the denominator polynomial and the delay. The IV-based bias-eliminated 
parameters are given by

§iv = - 1 ^ T r  (2 .4 7 )

The IV estimate can also be calculated in a recursive or recursive/iterative manner.

Extensive simulation studies show that the iterative procedure converges monoton- 
ically except for non-minimum phase processes. However, for non-minimum phase 
processes it always exhibits monotonic divergence. Based on this, for such processes, 
we suggest the following ad hoc procedure. Details on the results based on which the 
following procedure is developed is given in Appendix A.

Special procedure for NM P processes

The iteration procedure described in the previous section is a fixed point iteration 
scheme expressed as 8 =  g(6) =  6L (n + rn +  2 )/fL (n +  m  +  1 ) where, 6L is given 
by eqn.(2.44) and eqn(2.47) with $  =  $(5) and T =  4f(8). For minimum phase pro­
cesses, g(S) maps 5 in the region of monotonic convergence while for non-minimum 
phase(NMP) processes, it maps 6 in the region of monotonic divergence. Here we use 
the following result to make the divergent scheme for NMP process converge.
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Algorithm 2.1: Iterative procedure for simultaneous estimation of system parameters 

and the delay.

Step 1: Initialization Choose the filter parameter, A, and the initial guess of the delay,<5o-

Step 2: LS step i — 1. Construct T and by replacing 5 by Jo and get the LS solution 

of 6L
§LS =  (2 .4 8 )

§]_ = §^s . Get Ai(p), Bi(p) and from Ql_.

Step 3: IV step i = i + 1. Reconstruct <&_ with 8 = Estimate

m  = ^ p - u { t~ 8 i- 1) (2.49)
Ai-iip)

and construct f t - .  Get the IV solution of 6%_

§i = (2.50)

Obtain Ai(p), Bi(p) and <5j from 0l_ and repeat step 3 until 8i converges.

Step 4: Termination When 5i converges, the corresponding 8l_ is the final estimate of 

parameters.

I f  a fixed point iteration scheme x  = gi(x) diverges monotonically, another scheme 
x — x A  \[x — gi(x)] with r > 0 , will converge monotonically if gi(x) is bounded by 
the region y = x  and y = (r + l)x  +  c where c is a constant satisfying that y passes 
through the fixed point.

Simulation results for a large number of process models show that for an appropriate A 
and input, for NMP processes g(5) maps 8 within the region 5 = 5 and 5 =  (r + l)5+c  
with r  =  1. Hence expressing the estimation equation as <5 =  5 +  [5 — g(5)] will lead 
to convergence. So, if the diverging scheme gives

5f+1= g 1(8i) (2.51)
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To make the scheme converging, we choose

&1+1 =  ^  +  [<5i — 5i(<5i)] =  Si + [<$i — <5f+1] (2.52)

We define AS = Si~Sf+1 and for successive iteration for a value of S%) 5i+ 1  is computed
as

<5i+ 1  =  5i +  AS (2.53)

The iteration steps otherwise remain the same.

2.5.5 Im plem entation issues 

Choice o f <5o:

As seen in Algorithm 2.1, the initiation of the iteration procedure involves selection 
of <5o. Through simulations it was found that a choice of even 0 leads to convergence 
of the iteration procedure. Of course, an initial guess close to the true value saves 
computation. Hence, we suggest choosing So based on available process knowledge. 
In case of unavailability of process knowledge, we suggest choosing Sq =  0.

Choice of filter parameters:

In theory, there is no constraint on the choice of the filter parameters except that they 
should be non-zero real numbers and A should be positive. But due to the presence 
of noise, the quality of models depends significantly on the filter parameter A. On 
the other hand, (3 is found to have little or no effect on the parameter estimates as 
long as it is not very different from A. But, there is no explicit rule to choose A. The 
basic requirement is that the filter should cover the frequency band of the process. 
As the filtering operation is similar to that of PMF approach, guidelines available in 
literatures (Bastogne et al. 2001, Homssi and Tilti 1991, Roy et al. 1991) to select 
filter parameters for PMF method can be followed.

Based on these guidelines and simulation results, we suggest choosing A slightly higher 
than the bandwidth of the system and choosing f3 — A. But a very low value of A is not 
recommended. In practice, the system bandwidth is unknown. Hence, an iterative 
procedure can be applied to choose A. Process information can be used to get an ini­
tial idea of the minimal and maximal values of A € {Ami„ • ■ • Amax}. A suitable value
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of iteration step, Astep, can be chosen based on the range of A. The mean squared 
error (MSE) can be used as the criterion to minimize. Finally

^c h o se n  =  ^  MSE(X)  (2.54)

Choice o f tss :

To satisfy eqn(2.38), it is sufficient to choose tss such that any linear combination of 
the first n  elements of Fn(tfc) as in eqn(2.21) becomes negligible. This can be satisfied 
by choosing tss such that all the elements themselves are very small. Now, looking 
at the elements, we see that these are nothing but unit impulse responses of filters 
of different orders having the same real equal poles. From the characteristics of unit 
impulse response, we know that the response of the filter having the highest order 
dies down at the last. Hence it is sufficient that we choose tss that makes

f n{tk) =  7— ^ 7 7 7  < e for t k > tss (2.55)(n - 1 )!
where, e is a user specified small number.

2.6 Simulation study

For the simulation study, the inputs are either random binary signals (RBS) or multi­
sine signals generated using the idinput command in MATLAB with levels [—1 1],
The number of available samples is 2000. The sampled noise free outputs are cor­
rupted by discrete-time white noise sequences. The noise to signal ratio(NSR) is 
defined as the ratio of the variance of the noise to that of the noise free signal. Also 
we set (3 = A. Simulink was used to generate the data and numerically simulate the 
filtered input and output. The process and filters were represented by continuous­
time transfer function block. The input signals were passed through a zero order hold 
(ZOH) block. For plant data, the input may not remain constant over the sampling 
interval. This will have an impact on the quality of the estimated model. However, 
if the sampling interval is small, which is typical for continuous-time identification, 
the error will also be small.

2.6.1 Exam ple 1: Importance o f fractional delay estim ation

A first order process is used to demonstrate the importance of the estimation of 
fractional delays (i.e. delays that are not integer multiples of the sampling interval).
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Figure 2.2: Nyquist plots for example 1.

The process has the following transfer function

G (s) =  ( 2 ' 5 6 )

The sampling interval was 2 seconds. So the delay is equivalent to 3.4 sampling 
intervals. The input was a multi-sine signal with frequency band [0 0.05]. The band 
contains the lower and upper limits of the passband, expressed in fractions of the 
Nyquist frequency. The NSR was 10%. A zero initial condition was set for this 
example. We here compare the results with the models obtained using the PMF 
method of the CONTSID3 toolbox. Figure 2.2 shows the Nyquist plots of the true 
model, the model estimated by the proposed method and the two models obtained 
from the CONTSID toolbox (for delay of 3At and 4At, respectively). The figure 
clearly shows that neither of the frequency responses of the models estimated using 
the CONTSID toolbox matches the frequency response of the true model while the 
model estimated by the proposed method matches with the true process as expected.

3 CONTSID (CONtinuous Time System IDentification) is a MATLAB based toolbox containing 

most of the identification methods found in the literature for CT model identification from DT data 

and is available at http://www.iris.cran.uhp-nancy.fr/contsid/
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2.6.2 Exam ple 2: Effect of filter and noise

The same process as in example 1 is used to demonstrate the effect of filter and noise 
on the quality of estimated models. Figure 2.3 shows the effect of the filter constant

9
True
delay

7

>%TO
CD

Q 5 ® 0
E

— 0.05 ' 
•  0.1 
* 0.15 
> 0.2

X increasing

I-

3

1
5 7 91 3

No. of Iterations

Figure 2.3: Effect of filter parameter on the rate of convergence.

(A) on the convergence rate of the iteration step. This result is for a single noise 
sequence having N S R  =  10%. The legends show the value of A. We see that as A 
increases, the time constant of the filter decreases and faster convergence is achieved. 
But a higher value of A means that the passband of the filter is wider with lower noise 
attenuation which affects parameter estimation. Figure 2.4(a) shows the effect of filter 
constant on parameter estimates. The results are that of 500 Monte Carlo simulations 
(MCS) runs. The mean values of 500 estimates are plotted bounded by the estimated 
±  values of the sample standard deviation. The figure shows that when the filter 
bandwidth is smaller than the process bandwidth, the results are poor. Still for a 
wide range of the filter constants good estimates are obtained. Figure 2.4(b) shows 
the effect of noise on parameter estimates. These results are also from 500 MCS. 
For this study A is set at 0.15 as from figure 2.4(a) we see that the best results are 
obtained for that value of A. It is seen that as the noise level increases the estimates 
get poorer. Nevertheless, for noise as high as N S R  =  15%, we get reasonably good 
estimates.
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Figure 2.4: Effect of filter parameter and noise on parameter estimates.
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2.6.3 Exam ple 3: Second order system  m odeling

In this example a number of second order processes are considered. The NSR for all 
cases are 10%. Table 2.1 shows the true and estimated models of different second or-

Table 2.1: True and estimated models for different second order processes.

True models Estimated models

1.25e” °-234s 1 .2 5 (± 0 .0 2 )e -°'239(±0 042)'1
0 .25s2+ 0 .7 s + l 0.25(±0.029)s2+ 0.697(± 0 .02)s+ 1

2e- 4 1 s 2 (± 0 .0 4 )e -413(±0'742>s
100s2+ 2 5 s + l 99.4 (±19 .7)s2+ 2 5 (± 0 .6 7 )s+ l

( 4 s + l ) e “ 0-615s (4 (± 0 .5 4 )s+ l(± 0 .0 7 ) )e -° -61(± 0-°9>
9s2+ 2 .4 s + l 9 (± 0 .7 6 )s2+ 2 .4 (± 0 .2 )s+ l

( - 4 s + l ) e - ° - 6153 ( -4 (± 0 .0 9 1 3 )s + l(± 0 .0 6 ) )e -a6157(±ao7>s
9 s2+ 2 .4 s + l 8 .99 (±0 .15 )s2+ 2 .4 1 (± 0 .1 5 )s+ l

der processes ranging from slow to fast ones and from underdamped to overdamped. 
Processes with a zero in the numerator of the transfer function are also considered. 
For the non-minimum phase process the special procedure described in section 2.5.4 
is applied. The parameters shown here are the mean of 500 Monte Carlo simulations. 
The numbers in the parentheses are the estimated standard deviation of the 500 es­
timates.

Also we consider here a fifth order process with no delay modeled by a second order 
process with delay. The process has the transfer function

G«  = (T h f  <2-57)

with yn-1 (0) =  [0.1 0.1 0.1 0.1 0.1]T. The t ss was set as 350AC A RBS was used as 
the input for this example.

Figure 2.5 shows the identification results from 500 MCS. In the top figure vali­
dation data are shown. The dashed line is the output from the true model and the 
solid line is that from the estimated model. The parameters of the estimated model 
is the mean of 500 MCS. The figure at the bottom shows the step responses of the 
500 estimated models (black lines) and that of the true fifth order model (white line).
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Figure 2.5: Validation data (top) and step responses (bottom) for example 3.

2.7 Experimental evaluation

In this section, identification results of a laboratory process are presented. This ex­
ercise is carried out using the data set from a dryer {dryer.mat) available in the 
CONTSID toolbox. Details on the process and experiment are obtained from (Gar- 
nier 2 0 0 2 ) and described below.

The SISO laboratory set-up is a bench-scale hot air-flow device. Air is pulled by 
a fan into a 30 cm tube through a valve and heated by a mesh of resistor wires at the 
inlet. The output is the voltage delivered by a thermocouple proportional to the air 
temperature at the outlet of the tube. The input is the voltage over the heating device.

The input signal is a Pseudo Random Binary Signal (PRBS) with maximum length. 
The sampling period is 100 ms. There are two data sets, one for identification and 
the other for validation, each containing 1905 measurements collected under the same 
conditions.

A first order model with time delay was estimated for this process. Figure 2.6 shows 
the validation data set. The simulated output matches the measured one quite well. 
Here, no a priori knowledge of the time delay is used and an initial guess of 0 con­
verged to the final estimate of 0.53 sec.
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Figure 2.6: Validation data for dryer, solid line: Simulated, dashed line: Measured.

2.8 Concluding remarks

In both discrete-time and continuous-time identification, time delay estimation and 
parameter estimation are often considered two disjoint or separate problems and 
different approaches are applied for their solution. Among the few exceptions are some 
optimization based techniques and step response based methods. In this work a new 
linear filter method is proposed that simultaneously estimates model parameters and 
the delay. Detailed mathematical derivation has been provided to show how the delay 
term can be brought in the parameter vector using a filter of a novel structure. Finally 
an algorithm for the solution of the resulting iterative procedure is provided. The 
ability to estimate fractional time delay is a unique feature of the proposed method. 
Through simulations, it is shown that the proposed algorithm is robust in the presence 
of significant noise and gives satisfactory results over a wide range of values of filter 
parameter. Finally, the performance of the proposed procedure is demonstrated by 
experimental application to estimate the delay and model parameters of a laboratory 
scale process.
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C hapter 3

Identification From N on-uniform ly  
Sam pled D ata1

3.1 Overview

A common problem that prevents many of the identification methods to be appli­
cable in real processes is the unavailability of uniformly sampled data. In process 
industries, the strategy of sampling may be different for different variables resulting 
in non-uniformly sampled data matrices. A simple form of non-uniformity is sampling 
at unequal intervals. Multi-rate data is another form of non-uniform data where dif­
ferent variables are sampled at different sampling intervals. For example, from a time 
and cost consideration, concentrations are less frequently measured than tempera­
tures and pressures. The less frequently sampled variables have sampling intervals 
as integer multiples of the sampling interval of the most frequently sampled variable. 
Another form of non-uniformity is data with missing elements where measurements 
of all variables are available at some time instants, but at others, measurements of 
only some variables are available. In chemical processes, data can be missing for two 
basic reasons: failure in the measurement devices and errors in data management. 
The most common failures are, sensor breakdown, measurement outside the range 
of the sensor, data acquisition system malfunction, energy blackout, interruption of 
transmission lines etc. The common errors in data management are wrong format 
in logged data, crashes in data management software, data storage errors and so on

1This chapter is a modified form of the following article:

Ahmed, S., B. Huang and S. L. Shah (2006). Parameter and delay estimation of continuous-time 
models from irregular output data, In Proc. ADCHEM  2006, Gramado, Brazil
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(Imtiaz et al. 2004). In robust analysis of data, observed values which lie far from the 
normal trend of the data are considered as outliers and often discarded or treated as 
missing. Also highly compressed data or unequal length batch data, which may not 
immediately appear as non-uniform data, can be analyzed within the framework of 
non-uniform data analysis. An extreme form of irregular data may be asynchronized 
data for which different variables are sampled at different time instants.

The problem of non-uniform data has been considered in discrete-time identification 
literature e.g. in (Isaksson 1993) for ARX models and in (Raghavan 2004, Ragha- 
van et al. 2005) for state-space models using the expectation maximization (EM) 
algorithm. Use of the lifting technique for identification from multi-rate data has 
been reported in a number of articles e.g. in (Li et al. 2001, Wang et al. 2004a). In 
continuous-time identification literature, methods have been proposed for unevenly 
sampled data in (Huselstein and Gamier 2002, Larsson and Soderstrom 2002) where 
the problem of non-uniform sampling is handled by adopting numerical algorithms 
suitable for the data type. Methods for frequency domain identification from non- 
uniformly sampled data have been presented for continuous-time autoregressive (AR) 
models in (Gillberg and Gustafsson 2005), for autoregressive moving average (ARMA) 
models in (Gillberg and Ljung 2004) and for output error (OE) models in (Gillberg 
and Ljung 2006). In fact, continuous-time identification methods can handle the 
uneven sampling problem by nature provided that appropriate numerical techniques 
are used. However, the inherent assumption of the numerical methods on the inter­
sample behavior of the variables may introduce errors in the parameter estimates. 
Pintelon and Schoukens (1999) presented a frequency domain identification technique 
for continuous-time models where missing elements in both of the input and the out­
put signals are considered. The basic idea behind this method is to treat the missing 
data as unknown parameters of the identification problem.

In this work we consider non-uniformly sampled data with missing elements in the 
output signals. In general, input variables of an identification exercise are the manip­
ulated variables of the process and are available regularly and at a faster rate. On the 
other hand some quality variables may be sampled at slower rates or may be missing 
at some time instants. More often the quality variables are the output for the model 
to be identified.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2 Proposed iterative prediction algorithm

3.2.1 The algorithm

For identification with non-uniformly sampled data, we propose an algorithm based 
on iterative prediction. However, it is not possible to develop a single algorithm that 
can deal with every type of data irregularity. We will consider a specific type of non- 
uniform data where the input is available at all sampling instants but not necessarily 
in regular intervals while the output is available at some sampling instants and missing 
at others. This is a more general form of synchronized data. Multi-rate data can be 
considered as a special form of this non-uniform data. As the initialization of the 
iterative procedure, a so called input only model is used. A distinguishing feature 
of these models is that the current output is expressed in terms of only current and 
previous inputs. So the parameter estimation equation can be formulated only at 
those time instants when the output is available. The estimated model is then used 
to predict the missing values to get a complete data set. Next, this complete data set 
is used to estimate the parameters of the continuous time model using the procedure 
described in section 3.3. This model is then used to predict the missing outputs. This 
procedure is carried on iteratively by replacing the prediction from previous model 
by that from the current one until some convergence criteria are met. The iteration 
algorithm is presented graphically in figure 3.1 and the different steps of the iteration 
procedure are detailed below.

3.2.2 Input only m odelling

For the purpose of initial prediction, we consider a model that expresses the output 
in terms of only the input. A number of such input only approaches, both in discrete­
time and continuous-time, are available in the literature. Different basis function 
methods may be used to serve this purpose. In this work, we use one of the orthogonal 
basis function models, namely a Laguerre polynomial model in continuous time for 
the initial prediction.
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Figure 3.1: Graphical representation of the iterative prediction algorithm for identifi­

cation from non-uniformly sampled data.

Laguerre polynom ial model

The use of Laguerre functions in identification goes back to Wiener (1956). In the 
transform domain, the Laguerre functions are given by (Lee 1932)

(s -  KyLj(s) = y/2~k- (3.1)
( 5  +  /c)J’+1

where, k is the parameter of the Laguerre model to be specified by the user. Let z3 (t) 
be the output of the j  — th Laguerre function, with u(t) as its input, i.e.

z j(s ) = Li (s)u (s) (3.2)

where, Zj(s) and U(s) represent the Laplace transform of z3{t) and u(t), respectively. 
The output of a stable plant with input u(t) can be approximated by a truncated 
I — th  order Laguerre polynomial model

VO) =  '5 2 aJzj(t )
j = 0

(3.3)

where, a = [croi^i • • • ai\T, is the parameter vector for the Laguerre model. Theo­
ries and proofs of the convergence of the Laguerre model can be found in (Makila 
1990, Parington 1991, Wang and Cluett 1995).
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We denote the time instants when the output is available by t°bs with i = 1,2 ■ • • M, 
where, M  is the number of available output data. Also if the time instants when 
the output is missing are denoted by t™s with k =  1,2 ■■■ N  — M, with N  being the 
length of the input vector, we can represent the incomplete output vector as

Yincom ple te — {Yobs (3.4)

with
' y ( t f s) ' - y { t f is)

Y obs
y ( t f ) Y  =1 m is

y { t f s)

. y(t°Ms) . . y ( d v ) .

(3.5)

In the initial prediction stage using the Laguerre polynomial model, the estimation 
equation (eqn(3.3)) is formulated only at the time instants when the output is avail­
able to give

»(«?*) =  (3-6)
j = 0

Next eqn(3.6) can be formulated for t°bs with i = 1,2 • • • M  to give an equation in 
least squares form

Y0bs Z0(,so:

where,

Y*obs

z0{tlbs) Z l( tf )
Z o { t ? s ) Z 1 { t f s )

Z o V f c )  *1 (t°MS ) ■

Finally, the parameter vector can be obtained as

zi(t?s)

(3.7)

(3.8)

d — (ZobsZobs) ZobsYobs 

The missing elements of the output can be predicted using

i
m ‘' ) =

i = 0

(3.9)

(3.10)

The estimated value of the missing elements can then be inserted into the output 
vector to get a complete data set

Y com p le te  { Y>bs F n  /s ) (3.11)

This complete data is then used for the identification of the transfer function model 
of the process.
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3.3 Parameter estim ation using complete data

As shown in the previous section, using the prediction from the input only model, 
we get a complete data set with regularly sampled input and output. Now, we can 
use the linear filter method described in the previous chapter to estimate the model 
parameters. As stated earlier, we describe the identification method for the filter

-  j m  (3-12>

To describe the necessary formulation, let us start with the differential equation model 
described by eqn(2 .2 )

any (n) (t) =  bmu (m) (t -  S) + e(f) (3.13)

For the purpose of simplicity in presentation, we will assume that the process input 
and output are initially at rest. It has been shown in chapter 2 and chapter 4 how one 
can handle the initial conditions. Based on this assumption of initial steady state, 
for the causal filter F(s) we can write

s^snF(s)Y(s) = b ms mF{s)U(s)e~Ss +  F(s)E(s) (3.14)

For the filter in eqn(3.12), we denote F(s) by

n »  =  (3 .i5 )

By defining U(s) in the same way as F(s) is defined in eqn(3.15), we can express
eqn(3.14) as

M ^ K s )  =  b ms™-1C/(s)e-5s +  £(s) (3.16)

where, the subscript (•+) means that the s" - 1  vector has been augmented by i ,  i.e.,

r
s

s n - l  g n - 2  . . . s 0 (3.17)

Using partial fraction expansion, the transfer function of the filter, l/sA(s),  can be 
expressed as

1 -  +  1 (3.18)
sA(s) A(s) s

where, C(s) = - (a „ s n _ 1  +  a„_isn - 2  4 f- ai) . Eqn(3.18) can be used to represent
the filtered input

u m  =

=  C(s)U(s) +  UT(s) (3.19)
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Applying eqn(3.19), we can restructure eqn(3.16) to give a standard least squares 
form

Yj{s) = —a^s”_1y (s ) +  b msm~1U_(s)e~5s

+b0 [C(s)U(s) +  Ur(s)} e~Ss +  £(s) (3.20)

where,
&n : an with its last column removed, a„ G Rlx" 
bm : bm with its last column removed, b„ € Klxm

Taking inverse Laplace Transform, we get the equivalent time domain expression 
for any sampling instant t = tk

with

y^tk)  =  - a ny (n ’(tk) + bmu(m (tk -  S)

+ & 0  [%Lc(tk ~  6 )  +  U i ( t k  — ^ ) ]  +  C (L c )

i n * ) 'y^tk)  = fJ 1 

u . i t k - 5 )  = 2 - 1 [C(s)0 a)e-5a]

ui(tk -  S) £ _ 1 -U(s)e
s

■5s

(3.21)

(3.22)

(3.23)

(3.24)

The integral of the input and of the delayed input for any time t  =  tk is given by
rtk

(3.25)

P̂k P̂k
u i( tk — S) = / u(t)dt — / [u(t) — u(tk)\dt — u(tk)S (3.26)

«/ 0 J  ti~—5

ptk
Ui{tk) =  /  u(t)dt

Jo

Eqn(3.26) can be presented graphically as in figure 3.2. Here, in this figure, the 
integrated delayed input, ui(tk — 6), is the area under the input signal up to time 
tk — 5, while the integrated input signal,ui(tk), is the area under the input curve up 
to time tk . Also the 2nd and 3rd term of eqn(3.26) represent the areas as shown by 
the legends in figure 3.2. From the figure, it is seen that by subtracting these 2 areas 
from Uj(tk), we get uj(tk — S).

Applying eqn(3.26) in eqn(3.21) and rearranging it to give a standard least squares 
form we get

Vjitk) = 1]{tk) +  bmuj" l)(tk -  5)

+bou(tk)S + ( (tk) (3.27)
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Figure 3.2: Graphical representation of eqn(3.26) Note that the input is not piecewise 

constant.

where,

u+* 1]{tk - S )  =

u(m—1}(^  _

u(tk -  8) 
u+(tk -  5)

Or equivalently 

where,

r*k
u+(tk -  8) = u^itk -  8) + Ui(tk) -  / [u(t) -  u{tk)\dt

Jtks

i{tk) = 4>T{tk)o + C{tk)

i ( t k) = y f ik )
' - y (n_1)(ifc)

<K4) =
u(tk)

6 =  [an bm b08]

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

Eqn(3.30) can be written for tk =  td+i,td + 2  ■■■tN and combined to give

r = <S>6 + c

3.3.1 Param eter estim ation

Solution of eqn(3.34) gives the parameter vector 6. From 0 one can directly get an 
and bm. 8 is obtained as 8 =  6(n +  m  +  2)/6(n + m +  1). But in estimating 6 by
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Algorithm 3.1: Linear filter algorithm for simultaneous estimation of the delay and model 

parameters from complete data.

Step 1-Initialization: Choose an initial estimate Ao(s) and Sq.

Step 2-LS step: Construct F and $  by replacing A(s) and 5 by Ao(s) and 6q and get the

LS solution of 9

0LS =  ($T$ )“1$ Tr  (3.35)

91 — 0LS. Get Ai(s), B\(s) and from 91. Set i — 1.

Step 3-IV step: i = i +  1. Construct F, $  and '3/ by replacing A(s), B(s) and 5 by

and Si- 1  and get the IV solution of 9

Qi =  (3 .36)

Obtain A^(s) ,Bl(s) and Si from 9% and repeat step 3 until A; and Si converge.

Step 4-Termination: When Ai and Si converge, the corresponding 9l is the final estimate

of parameters.

solving eqn(3.34), there are two problems. First, we need to know A(.s) and 5, which 
are unknowns. This obvious problem can be solved by applying an iterative procedure 
that adaptively adjusts initial estimates of A(s) and 5 until they converge. Second, 
The least squares estimate of 6 that minimizes the sum of the squared errors is given 
by

§LS = [$ r $ ] -1 $ Tr  (3.37)

As discussed in chapter 2, the LS solution is not unbiased even for a white mea­
surement noise and we need a bias elimination scheme. Here we will use the same 
instrumental variable (IV) method as used in chapter 2 where the instrumental vari­
able is built from an auxiliary model (Young 1970). The instrument vector is given 
by

- x (" - 1}(4)

u  ̂ { h - S )  
u{tk)
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where
x(t) — G(p, 6lf ) u ( t  — 5) (3.39)

and G(p, O18) is the process model estimated from least squares solution. The IV- 
based bias-eliminated parameters are given by

§iv = i ^ t t (3.40)

The iterative identification algorithm for simultaneous estimation of the delay and 
other parameters from a complete data set is summarized in Algorithm 3.1. The 
iterative prediction algorithm for identification from irregularly sampled output is 
summarized in Algorithm 3.2. The initial prediction step of the iterative algorithm

Algorithm 3.2: Iterative prediction algorithm for parameter estimation from irregu­

larly sampled output.

Step 1-Initial Prediction: Using only the observed output, estimate the parameters of 

the input only model using eqn(3.9). Predict the missing element of the output using 

eqn(3.10). Use these predicted values, Y®lis to replace Ymis in eqn(3.11). i = 0.

Step 2-Iterative Prediction: i = i + 1. Estimate the continuous time model parameters 

using the complete data set Ycompiete = {V06s Y ^ 1} and applying Algorithm 3.1. 

Use the estimated model, 6l, to get the i — th prediction of the missing values, Y^lis.

Step 3-Comparison: Compare M SE lobs with M SE lofJ . If their is significant improve­

ment, go back to step 2  and repeat the iteration.

Step 4-Termination: When MSE'Lobs converges, the corresponding 0l is the final estimate 

of parameters.

involves choice of the parameters of the Laguerre polynomial model, namely k and I. 
Generally, we choose k on the basis of the knowledge of process cut-off frequency. A 
value slightly higher than the cut-off frequency is chosen. The order of the polynomial 
model, I, is chosen as few order higher than the order of the transfer function model.

Replace by Y lmiim is
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3.3.2 Criterion of convergence

The proposed iterative procedure is based on the idea of iterative prediction. Conse­
quently, a natural option for criterion of convergence is the prediction error. As the 
output has missing elements, we can define the mean squared error at * — th stage of 
iteration based on the observed output and their predicted values

M

U S E '*■ =  i ? E  W '* '  " * ( * ? * ) ]2 <a41>
k= 1

where, yl is the prediction of the model obtained in the i — th  stage of iteration. 
Convergence of this M S E  criterion is equivalent to the convergence of the model 
prediction and the model parameters.

3.4 Simulation results

To demonstrate the applicability of the proposed methods, we consider here a second 
order process having the following transfer function

G{s) = e-°-615s (3.42)
w  9s2 +  2.4s +  1 v '

A complete data set of 2000 samples with a uniform sampling interval of 30 millisec­
onds (ms) is generated using a random binary signal (RBS) as the input. Discrete
time white noise is added to obtain a noisy output signal. The signal to noise ra­
tio (NSR) is 10%. Table 3.1 summarizes the parameter estimation results from 100 
Monte Carlo simulations (MCS) when the entire data set is used for identification.

To test the performance of the algorithm proposed for irregular data, we generate 
three sets of irregular data that differ in terms of their amount of missing data. For 
case (i) every 3rd sample is taken out to generate a data set for 33% missing data (ii) 
every 2nd for 50% missing and (iii) every 2nd and 3rd for 67%. The model estimated 
using the iterative algorithm is compared with the model estimated using only the 
available data i.e. data at the time instants when both input and output are available. 
To compare different models with a single index we define a total error criterion that 
is a combined measure of bias and variance. We denote it by E totai where

E »‘« = W, (3.43)

6i is the true values of the ith parameter and is its estimated value. Ng is the 
number of parameters. Figure 3.3 shows the total error for the results from 100
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Table 3.1: E stim ation  results using the entire data set.

Estimated parameters

Parameter True value Mean Variance

0-2 9.00 9.0068 0.0387

Ox 2.40 2.4309 0.0465

bx -4.00 -4.0201 0.0570

bo 1 .0 0 1.0109 0.0068

S 0.615 0.6302 0.0253

0.4

0.3 -

.s
ifi °'2 ^

0.1

♦  Model from available d a ta

•  Iterative algorithm

20 40 60
% Missing data

80

Figure 3.3: Improvement of model quality using the iterative algorithm for the simu­

lation example.
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MCS runs. The estimated values of the parameters are the means of 100 estimates. 
The error corresponding to 0% missing data refers to the model estimated using the 
entire data set and can be taken as the benchmark. When 33% of the data are 
missing, the model estimated using only the available data has error comparable with 
the benchmark value and the iterative algorithm has little room to improve. This 
suggests that the available data are enough to give a good model. Consequently the 
error level of the model estimated using the iterative algorithm remains almost the 
same. However, when more data are missing the error corresponding to the model 
estimated using the available data is much higher than the benchmark value and the 
iterative algorithm reduces the error to a level comparable with the benchmark.

3.5 Experimental evaluation

Figure 3.4: Photograph of the mixing process.

The iterative prediction algorithm is evaluated using an experimental data set 
from a mixing process. The set-up consists of a continuous stirred tank used as a 
mixing chamber having two input streams fed from two feed tanks. Salt solution and 
pure water run from the feed tanks and mixed together in the mixing chamber. A 
constant volume and a constant temperature of the solution in the mixing tank are 
maintained. Also the total inlet flow is kept constant. The input to the process is 
the flow rate of the salt solution as fraction of total inlet flow. The output is the 
concentration of salt in the mixing tank. We assume a uniform concentration of salt 
throughout the solution in the tank. The concentration is measured in terms of the 
electrical conductivity of the solution. A photograph of the set-up is shown in fig-
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ure 3.4.

The input signal is a random binary signal. The sampling period is 20 seconds. 
A total of 955 data points are used for this study. To study the effect of % data 
missing and evaluate the performance of the iterative prediction algorithm, missing 
data were chosen on a random basis and the algorithm was applied. The study is 
carried out for 30%, 50% and 70% missing data. To generate a certain data set, say 
with 30% of its elements missing, 30% of the available output data are taken out on 
a random basis. The identification algorithm is then applied with the remaining 70% 
data points. The same procedure is applied 100 times with a different data set chosen 
each time containing only 70% of the total data. Finally we get 100 estimates of the 
parameters. The total error is then calculated from the estimated mean and variance 
of the 100 estimates. To calculate the bias error, the model estimated using the entire 
data set is taken as the nominal or true value. Figure 3.5 shows the performance of 
the proposed iterative algorithm for the mixing process data. While the error lev­
els for models estimated only from the available data points are high, the iterative 
algorithms gives final estimates of the parameters with a much lower levels of error.

0.006

0.004 -

«s 
■5

LLJ

0.002 

0  -
0 20 40 60 80

% Missing data

Figure 3.5: Improvement of model quality using the iterative algorithm for the mixing 

process.

♦  Model from available da ta

•  Model from Iterative 
Algorithm_______________

♦
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3.6 Concluding remarks

Identification from non-uniform data has been considered in discrete-time identifica­
tion but mainly for multi-rate data. In continuous-time identification, it is assumed 
that the methods are capable of dealing with non-uniform data provided that ap­
propriate numerical techniques are used. However, the inherent assumption of the 
numerical methods on the inter-sample behavior of the signals that results in certain 
arbitrary interpolation, may introduce errors in the estimation of continuous-time pa­
rameters. We present a simple algorithm to deal with non-uniformly sampled output 
data. It has been demonstrated using simulated and experimental data that the qual­
ity of the model estimated using the proposed model based prediction algorithm is 
much better than the quality of the model estimated using only the available output 
data.
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C hapter 4 

Identification from Step R esponse

4.1 Introduction

Step response based methods are most commonly used for system identification, es­
pecially in the process industries. The most comprehensive survey of application of 
identification and parameter estimation techniques to physical and chemical processes 
was conducted by Gustavsson (1973). A number of identification applications e.g. on 
extraction process, distillation unit, blast furnace, paper-making process, digesting 
unit, cement kiln etc. are reported in that survey where step input excitation was 
used and it was concluded that the step was found to be the most popular input used 
for identification in physical and chemical processes.

The theoretical development of step response based identification techniques also has 
a long history. The first method to estimate the parameters of a first order plus time 
delay (FOPTD) model from step response was proposed by Kiipfmuller (1928) who 
indeed first introduced the idea of step response. This graphical technique, described 
by Oldenbourg and Sartorius (1948) and later by Rake (1980) and Unbehauen and 
Rao (1987), involves drawing a tangent to the inflection point of the response curve 
and formed the basis for a number of similar methods both for first and second order 
models. Strejc (1959) proposed an improvement of Kupfmiiller’s method in which the 
parameters are estimated on the basis of two points suitably chosen on either side of 
the flexion point. Oldenbourg and Sartorius (1948) describes another method that 
estimates two non-identical time constants of a second order model from a measure of 
lengths of different segments of the flexion tangent. There are a number of methods 
that measure the time required for the output to reach certain percent of its final

1An article on this topic has been submitted for publication:

Ahmed, S., B. Huang and S. L. Shah (2006). Novel Identification Method from Step Response, 
Submitted to Control Engineering Practice
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steady state value and use nomographs to calculate the parameters of different order 
models. Tahl-Larsen (1956) described a procedure that from the time required to 
reach 10, 40 and 80 percent of the final value estimates the parameters of a third 
order model with non-identical poles using a set of graphs. There are also a number 
of graphical methods available that estimate the parameters of models of any order 
having real poles and of second order having imaginary poles. For details of such 
methods readers are referred to (Rake 1980, Seborg et al. 1989, Unbehauen and Rao 
1987). Sundaresan et al. (1978) outlined the limitations of the graphical methods and 
presented an algorithm that estimates the time delay and the time constants of both 
under-damped and oscillatory second order processes from the first moment of the 
normalized step response curve, the slope of the tangent at the inflection point and 
the time corresponding to the point of intersection between the tangent and the final 
value of the response curve. Some other developments on the graphical method have 
been reported in (Huang and Clement 1982, Huang and Huang 1993, Rangaiah and 
Krishnaswamy 1994).

A group of methods that involves estimation of the area under the response curve, 
has also been the subject of extensive research. Such methods, often termed as the 
area methods, have been reported in (Bi et al. 1999, Hwang and Lai 2004, Rake 
1980, Wang and Zhang 20016). The method by Wang and Zhang (20016) estimates 
the model parameters and delay simultaneously and is robust in the presence of noise; 
however, it may give multiple estimates of the delay and is not applicable when the 
output is initially at an unsteady state. The method by Hwang and Lai (2004) is 
based on the pulse response; however, it uses data corresponding to one step of the 
pulse at a time and can estimate the model parameters and delay when the process 
output is initially not at steady state. This method may also give multiple delays.

Another class of methods, namely the method of moments, has also emerged as 
an efficient technique for parameter estimation. Use of different order moments for 
parameter estimation has been reported in (Ba Hli 1954). This method has also been 
described in (Unbehauen and Rao 1987). The characteristic area method (Nishikawa 
et al. 1990), often termed simply as an area method (Astrom and Hagglund 1995), 
is indeed a variant of the method of moments. An improved method of moment 
has been proposed in (Ingimundarson and Hagglund 2000) which is also reported 
in (Ingimundarson 2003). The method of moments has been detailed in (Astrom 
and Hagglund 1995). Identification from step response has also been considered us­
ing the Laguerre network in (Wang and Cluett 1995) and combined with the state
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variable filter method in (Wang et al. 20046). A recursive least square algorithm is 
presented in (Tuch et al. 1994) to estimate the time delay of a continuous-time model.

For estimation of the open loop process parameters from a closed loop test apply­
ing a step change in the set-point, Yuwana and Seborg (1982) proposed a method 
for FOPTD model under proportional only controller where Pade approximation is 
used for the delay term. Jutan and RodriguezII (1984) proposed some modification 
of the method including the approximation of the delay term by a functional form. 
Refinement of the method has also been proposed in (Lee 1989, Chen 1989) and a 
comparison of performance of these methods was reported in (Taiwo 1993). The 
method was extended for SOPTD systems by Lee et al. (1990). Closed-loop identi­
fication using the method of moments has been reported in (Nishikawa et al. 1990). 
Viswanathan and Rangaiah (2000) proposed an optimization technique and Coelho 
and Barros (2003) proposed an integral equation approach that estimates the open 
loop model parameters using the estimated controller output signal. The method 
by Yuwana and Seborg (1982) was extended for unstable processes by Kavdia and 
Chidambaram (1996) but only for P controllers. For unstable processes with a PID 
controller, a method is proposed by Ananth and Chidambaram (1999) that uses the 
coordinates of the peaks of the underdamped closed loop response curve to estimate 
the parameters.

Identification of real processes is often not quite straight-forward (Gustavsson 1973). 
A number of problems are involved. In this work the main concern is about two spe­
cific issues related to the form of data. To formulate the problem some industrial data 
are presented in figure 4.1. For proprietary reasons the processes are not described. 
However the process descriptions are not necessary to understand the objectives of 
this discussion.

In general, identification methods are developed to deal with variables in deviation 
form while data from industries are not available in that form. To obtain data in 
deviation form, the initial steady state values are subtracted from the raw values. 
However, the initial steady state values are often not known correctly due to two 
reasons: (i) presence of noise and (ii) often step input is introduced before the system 
is at the desired steady state. The data presented in figures 4.1(a) and 4.1(b) show 
that indeed the outputs were at some steady state values before the step inputs were 
applied. However, due to the presence of noise, it is not easy to determine the steady 
state value exactly. Figures 4.1(c) and 4.1(d) show other situations where the step
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Figure 4.1: Step responses of different industrial processes.

inputs were applied before the outputs had reached steady state. For such cases, the 
initial steady state values are unknown and consequently we cannot convert the data 
into deviation form.

Another important issue is whether a method is applicable in the presence of ini­
tial conditions. A common approach is to formulate the estimation equation at the 
time instants after the effect of initial conditions becomes negligible. Certainly this 
is not applicable for step responses. To the best of knowledge of the authors there is 
no step response based method available in the literature that can handle non-zero 
initial conditions. In addition, if the input is applied before the system reaches the 
desired steady state, it is not possible to get the data in deviation form.
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In this work we present a new approach for identification from step response that 
does not need the data in deviation form. This allows us to use industrial data with­
out the required preprocessing. Moreover, the proposed methods can estimate the 
initial conditions along with the process parameters. So it is not necessary to bring 
the process to a steady state condition before the step input is applied.

In some cases, such as for unstable processes, it may not be possible to perform 
open loop tests. For such situations, we consider an identification method tha t for­
mulates the estimation equation in terms of the open loop model parameters using 
closed loop step response and setpoint data. Solution of the estimation equation 
directly gives the open loop model parameters.

4.2 Identification using raw data

4.2.1 D eviation vs. raw form

First, let us see how data in deviation form are obtained from the raw data. Here the 
subscript (•r) denotes the corresponding variable in raw form and variables without 
the subscript are in deviation form. These two quantities are related to as follows.

where, yss is the steady state value of the output corresponding to the steady state 
value of the input before the step is applied. Figure 4.2 describes graphically the raw 
and deviation form of the variables. To get the variable in deviation form we need to 
know the value yss which, as mentioned earlier, is sometimes difficult to measure or 
may be unknown. However, if we consider yss as unknown we can simply write

where, q is the initial unknown steady state value of the output. Taking Laplace 
transform on both sides, we get

y i t k )  = y r ( t k )  -  y s s (4.1)

y i t k )  =  y r ( t k )  -  q (4.2)

y (s) =  r r («) - 1 (4.3)
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Figure 4.2: Variables in deviation and raw form.

4.2.2 Open loop identification

A new identification method is proposed that uses the data in their raw form. The
basic idea is to consider the initial steady state of the output as another unknown
parameter in the estimation equation. Also the method estimates the initial condi­
tions along with the model parameters. The necessary equations are first derived in 
terms of the deviation variables. Later using eqn(4.3) the estimation equation will 
be presented in terms of the raw form of the variables. To describe the necessary 
mathematical formulation, let us consider a linear single input single output (SISO) 
system with time delay as described by eqn(2 .2 )

a„y(n) (t) =  b rou (m) (t -  6) + e(t) (4.4)

Taking Laplace transformation on both sides of eqn(4.4), we can write

ansnT(s) =  b msmU(s)e_<5s+  c ^ s " -1-!- E(s) (4.5)

The notations have been defined in chapter 2. Next, we will devise a linear filter 
method for the estimation of the parameters. As discussed in chapter 2 , filters having 
different structures can be used for the estimation of the system parameters and the 
delay. Here, we use the filter described in chapter 3 having the transfer function

7 W )  ( 4 ' 6 )

where, A(s)(= ansn) is the denominator of the process transfer function. Now, if we 
denote P(s) = and apply the filtering operation on both sides of eqn(4.5) we
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end up with the formulation

a„s nP{s)Y{s) =  bmsm P(s)U(s)e~Ss +  cn_lS +  P (s)£ (s) (4.7)

Using partial fraction expansion, the transfer function of the filter, can be
expressed as

1 - C ( a ) + i  (4.8)
s^4(s) A(s) s

where, C(s) =  —(a„sn - 1  +  a„_is" - 2  +  • • • +  ax). Using the notations Y(s) = 
Y T(s) = and similar notations for U(s) and then rearranging the estimation 
equation to give a standard least-squares form we get the expression

y J(s) =  —ans”_1F(s) 4 - b msm_1 t/(s)e_5s

+b0 [C{s)U(s) +  U^s)] e~5s +  c„_xs"“^ ( s )  +  £(s) (4.9)

where,
an : a„ with its last column removed, a„ E Mlxn 
b m : b m with its last column removed,bm E K.lxm
Now using eqn(4.3) we can write the above equation in terms of the raw form of the 
output y

Y r * ( s )  -  q P \s )  = - a „ s n_1u;(s) +  a«s”- 1gP(s) +  bmsro- 1f/(s)e-5s

+  h  [C(s)t/(s) +  UT(s)] e~5s +  cn_1s " - 1P(s) +  £(s) (4.10)

For a step input, if the step size is denoted as h, i.e. u(t) = ur(t) — uss = h, we have

U(S) = -  (4.11)
S

^  = W ) ^ ) = h P { s )  ( 4 ' 1 2 )

Using eqn(4.11) and (4.12) and rearranging eqn(4.10), we get an estimation equation 
in the Laplace domain

hC(s)P(s) +  4 g-5Sy / ( s )  =  -a ^ s"  % (s)  + hbmsm 1P(s)e Ss +  b0

+  [cn_x +  M  s”- 1P(s) +  qP'is) + £(s) (4.13)

Inverse Laplace transform gives the equation in time domain for any time t == tfc

y / ( 4 )  =  - sqlyL{n- 1)(tk) + hbmP m- \ t k - 6 )  + b0 [hPc(tk - 5 )  + h[tk - S ]]

+  [cn_i +  a„q] P 71-1 (tfc) +  q P \ t k ) +  C ( t * )  (4-14)
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The term P„(f) contains the impulse response of the filter and is defined by

P n(tk) = [.Pn(tk) ■ • • P0(tk) f  e  R(n+1)xl (4.15)

Pi(t) = Z ’ 1 [s‘P(s)] (4.16)

P J(t) =  £" P(s)

Pc(t) = Z~l (P(s)C(s)}

(4.17)

(4.18)

Now for the step input
h[tk — 5] =  htk — hd (4.19)

Applying eqn(4.19) in eqn(4.14) and rearranging it we get an estimation equation in 
least-squares form

y / ( 4 ) =  - a nyI_{n- 1)(tk) + hbmP ™ -\tk - 5 )  + b05h 

+  [Cn - 1  +  & n< i\ P "  1 ( t k )  +  +  ( ( t k )

where,

P I T \ t k - 6 )
P m ~ \tk - S )

Pc(tk — 5) + t k
Or equivalently 

where,

7  (tk) =  (j)(tk)d +  c (tk)

i  (tk) = y / ( t k)

- y r{n- l)(tk) 
hP ™ -\tk - 6 )  

4*(tk) h

P \ t k)
@ [<hi b0S Cn—i T

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

Eqn(4.22) can be written for t k,k  = 1,2 • • ■ N, where N  is the total number of available 
data points, and combined to give the estimation equation

r = + c (4.26)

4.2.3 Identification under closed-loop conditions

Due to safety or economic reasons it may not be always possible to open control loops 
for identification. Also for unstable and marginally stable processes open loop test
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is not a practical option. In this section a closed loop identification method based 
on a step change in the set-point is introduced. The method directly estimates the 
parameters of the open loop transfer function model along with the time delay from 
closed loop data. We assume that the controller is completely known.

For a process model described by eqn(4.4) and for a known controller, K(s), the 
fundamental relation between the output and set-point for an initial steady state 
condition of the setpoint can be described by

, bmsmK (s)e -6s nf , , +  d m_1sm“ 1e -a'  , , fAn^
T(s) —---------------   . .— t~R\S) H------------    , ,— 7--b rF(s) (4.27)

v ' ansn + b msmK(s)e~Ss v a„sn +  b msmK(s)e~Ss v ' v ’

where, R(s) is the Laplace transform of the set-point, r(t), and W (s)  is the error 
term. Now, in equation error form the closed loop expression relating the output to 
the set-point can be expressed as

artsny (s) =  b msmK (s)e -Ss \R(s) -  T(s)] +  c ^ s ” - 1 +  d ^ s " ^ - 55 +  V(s) (4.28) 

where,

d m_! =  [dm_! dm _ 2 ■■■dole Rlxm (4.29)

dm-i =  giym_1(0), z =  1 • • ■ m (4.30)
g . =  [0 lx(m-i) ^  g Rlxm ( 4  3 ^

y (m-1)(0) =  [ y ^ i O )  y {m- 2\ 0) • • ■ y(0)]T (4.32)

Other notations have been defined in chapter 2. Now applying the filtering operation 
on both the output and the set-point with the filter P(s) = and rearranging the 
equation we get

y J(s) =  —aT1sTl_1y(s) +  bmsm_1iF(s) [R(s] -  £(«)]

+b0K(s) [R^s] -  F J(s)] e -5s +  c ^ s ^ P i s )  

+dm„1sm- 1P{s)e-5s + e(s) (4.33)

The controller transfer function K(s) is different for different controller structures. 
For a PID controller we can write

K(s) = K p +  K'(s) (4.34)

K'(s) = —  + K d s (4.35)
s

where Kp, K j  and K d are the proportional, integral and derivative constants, respec­
tively. For P only controller K ’(s) = 0 and for PI controller K ’(s) =  Following
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these notations and using eqn(4.8) we get

R(s)
K (s)R r(s) = K(s)-

sA(s)
= K P [# (« )  +  C(s)R(s)] +  K ' t f R ^ s )  (4.36)

For a step change in set-point of magnitude h, R(s) = K  Applying eqn(4.36), we can 
write eqn(4.33) for a step change in the set-point as

Y !(s ) = - a ^ s ^ Y i s )  A  b msm~1AT(s) [hP(s) -  y  (s)] e~Ss

+  b0 [.KPh js 2 +  hC(s)P(s) +  K '(s)hP (s)/s  -  K {s)Y!{s)\ e~5s 

+  cn_lS n~lP(s) +  d ro_lS m- 1P(s)e~Ss +  e(s) (4.37)

In closed loop operation, for a proper controller structure the overall gain of the loop 
is unity. So in this case it becomes straightforward to get the data in deviation form 
from their raw values and we can write eqn(4.3) as

Y(s)  =  Yr(s) -  ^ (4.38)

where, h0 is the initial steady state value of the set-point. Using eqn(4.38) we can 
write eqn(4.37) after rearrangement

y /( s )  -  hoP^s) = -E ^s” 1 [y (s) -  hoP(s)]

+ bmsm- 1AT(S) [hP(s) -  ( Y r ( s )  -  h0P{s))] e 

+  b0 [.K ph/s 2 +  K PhC(s)P(s) +  h K \s ) P I {s) 

—K(s)YrI (s) + h0K (s )P I {s)] e -5s 

+  cn_1P n- 1 (s) +  d m_1P m_1 (s)e_5s +  e(s)

—Ss

(4.39)

Taking inverse Laplace transform the above equation can be expressed in time domain 
at any time t = tk

y j ( t k) -  hoPr(tk) =  - a „  (yp(n- 1)(« fc)-^oP n“ 1(ifc)]

+  b ro [(h +  h0) P T H h  - 8 ) -  yr{™-1}(tk -  6)

+ b0 [Kph[tk -5 }  + K PhPc(tk -  5) +  /iP^,(tfc -  <5)

+  hoPx(tk - 5 ) -  y/R {tk -  8)

+  cn_iP " 1(tk) + dm_ iP m 1(tk - 5 )  + e(tk) (4.40)

Here, Px(t) = £ _1 [A’(s)P(s)] and other similar terms are defined in the same way. 
Now using the equation h[tk — 4] =  htk — h8 we can get the estimation equation in a 
least-squares form

l+ ( tk )  =  4>+ (h)& +  +  s ( t k ) (4 -4:1)

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where,

7 +(tk) = y / { t k) -  hQP \ t k) (4.42)

KP^-\tk - 5 ) - y ^ - 1\ t k - 5 )

P  n - \ t k )

P  m- x(tk - 5 )
Q{tk) =  Kphtk + KphPc(tk — S) + hP^,(tk — S) + hoP^(tk — S) (4.44)

Eqn(4.41) can be written for t =  tk, k = 1,2 • • • AT, where N  is the total number of 
available data points. To formulate the estimation equation for t k < S, we need output 
data before the step input is applied. Hence we suggest recording some output data 
before the setpoint is changed. Combination of the N  equations gives the estimation 
equation as

4.2.4 Param eter estim ation

The parameter vector can be obtained by solving eqn(4.26) for open loop data or 
eqn(4.46) for closed loop set-point and output data. However, there are two problems 
associated with the solution. First, for both of the cases we need to know 4(s) and 5, 
which are unknowns. This problem can be solved by applying an iterative procedure 
that adaptively adjust an initial estimate of ^4(s) and d until they converge. Second, 
the least-squares solution does not give unbiased estimate in the presence of general 
forms of measurement noise such as colored noise. To solve the bias problem, the 
instrumental variable (IV) method discussed in chapter 2 is used. The same bootstrap 
estimation of IV type where the instrumental variable is built from an auxiliary model 
(Young 1970) is considered. For the open loop method the instrumental variable is 
defined as

(4.46)

M k) = [ -y£n -1)(*fc)
(j){n : 2n +  m  +  2 , 1 )

where, yr(t) = y(t) +  q, y(t) =  £ - 1 [Y(s)] and

(4.47)

(4.48)
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For identification under closed loop condition, following the above procedure, the 
instrument matrix is obtained by replacing the y(t) in (j>+(t) by y(t) i.e..

-y p (n_1)(ifc) +

&(tk) -  u/K(tk -  (5)
<f)+(n +  m  +  2  : 2 n +  m +  2 , 1 )

where, yr(tk) =  y(tk)  + h0 and

b ms mK(s)e~Ss
Y(s)

fins" + b ros mK(s)e~Ss
R(s) +

A  r i  T X  1 | J  ^771 1 /3  *5cn_is -+■ a m_is e 
a„sn +  b ms mK(s)e~5s

(4.49)

(4.50)

The iterative IV scheme is embedded within the iteration steps of the proposed 
method and no additional step is required.

From 0 or 0+we directly get the parameters a ,0  b m, 5, q and cn_i. To retrieve 
y ("-1)(0 ) from cn_i, eqn(2 .6 ) can be written for % =  1 • • • n to give

(c„-i)5

where, H  =  [(hi)r  (h2)r  • • • (hn)T]T G

H y(n" 1}(0) 

xn. Finally

(4.51)

( n — 1) (0) =  (H)_ (cn-j.) (4.52)

4.2.5 Convergence o f the iterative scheme

Extensive simulation study shows that the iterative procedure converges monoton- 
ically except for processes showing inverse response. Also the effect of the initial 
conditions on the response curve is similar to the inverse response for some cases. For 
both of these cases the iteration scheme diverse monotonically. To make the diverg­
ing scheme converge we use the same ad hoc procedure as described in (Ahmed et al. 
2006) and in chapter 2 which has also been detailed in Appendix A.
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4.3 Simulation study

4.3.1 Open loop identification  

Example 1: Effect o f initial condition

To demonstrate the effect of initial conditions on the estimation of the process model, 
a first order process having the following transfer function is used

1 9^
G < “ )  =  2 0 F T I e ‘ 7 '  < « 3 >

Figure 4.3 shows the response of the process to three successive steps. At the be­
ginning of every step the process is very close to steady state. Data presented here 
are free of noise. For noisy data it is even harder to determine the steady state con­
dition. Now to apply most of the methods available in literature, a preprocessing 
of the data is required. An approximated steady state value is first subtracted from 
the raw measurements to get the data in deviation form. To show the effect of this 
preprocessing, we will present results obtained using the MATLAB SYSID Toolbox. 
Besides other requirements such as regular sampling, SYSID Toolbox can handle data 
only in deviation form. If an initial steady state value is estimated from the data and 
data are preprocessed using that value, for the three steps, the toolbox gives three 
different models. Figure 4.4(a) shows the step response of the three models obtained 
using the estimated deviation form data from the three steps. From the figure we 
see that although the process reached very close the steady state values before the 
steps were applied, the estimated models differ from the true model as well as among 
themselves. In particular the gain values are different. On the other hand, if we use 
the proposed method, we get three models having almost the same parameters. The 
step response of the three model estimated using the proposed method are shown 
in figure 4.4(b). Here we see that the responses coincide and overlap with the step 
response of the true process.

It is worthwhile to mention here that in MATLAB there are some options to pre- 
process the data e.g., to remove mean and to choose a particular segment of data. 
The often used quick start option indeed detrends the data and chooses a suitable 
segment of the step response to do the identification. Though we are not presenting 
here any results using MATLAB’s preprocessing steps, the SYSID toolbox gave very 
different models when the data from the three steps were used and the data were 
preprocessed using the quick start option. Simply removing the means also fails to
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Figure 4.3: Output response of the process (example 1) to three successive steps in the 

input.
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Figure 4.4: Step responses of the estimated models using(a) MATLAB SYSID Toolbox 

(b) proposed method (example 1).
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produce consistent results for step response based identification.
Figure 4.5 shows the step responses of the same process when it is initially far

3Q.
3O

100

15

14

13

12
1000 50

Time

3Q.
3o

15

14
100500

3
CL

22

18

14
1000 50

Time Time

Figure 4.5: Step responses from initial conditions far away from steady state (exam­

ple 1).

away from the steady state conditions. It is readily understandable that any sort 
of preprocessing by subtraction of an approximated steady state value may produce
misleading results. In some cases the estimated gain may even have a wrong sign.
However, using the proposed method we get models whose step responses coincide
with that of the true process as shown in figure 4.6.

4.3.2 Identification under closed loop condition

Example 2: Unstable process

We consider here a second order process with a PI controller. The process and
controller are represented by the following transfer function.

CM  -  i ^ V " - 04* <««>

K(s)  = 10 +  — (4.55)
s
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Figure 4.6: Step responses of the estimated models using data when process initially 

at far away from steady state (example 1).

This open loop unstable process has been considered in (Garnier et al. 2000), however, 
without any delay. The sampling interval was set to 1 ms. Figures 4.7(a) and 4.7(b) 
show the closed loop response of the unstable process and that of the estimated model 
for the same controller. The identification data set shows that the process was at an 
unsteady state when the step change was made in the set-point. The validation data 
show that the method gives a good estimate of the model parameters in the presence 
of initial condition. To study the effect of noise on the parameter estimates, 100 Monte 
Carlo simulations were carried out for a NSR of 10%. For this study a zero initial 
condition was assumed. Figure 4.8 shows the Bode diagram of the 100 estimated 
model for both least squares (LS) and instrumental variable (IV) estimation. It is 
seen that although the quality of the estimates are satisfactory for both cases the IV 
estimates are better than the LS estimates.

Example 3: Nonlinear unstable bio-reactor

Continuous bio-reactors are typical nonlinear unstable processes for which open loop 
identification is not possible. The processes have significant time delays arising from 
the measurement procedure. In this example a linear transfer function model with 
time delay is estimated from a closed loop step response of the nonlinear model 
of a bio-reactor. The following dynamic equations, steady state models and the
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Figure 4.7: Closed loop step response of the process and model (exam­

ple 2). (a)Identification data (b) Validation data.
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Figure 4.8: Bode diagram of the 100 Monte Carlo estimates (a)Least square estimates 

(b) Instrumental variable estimates (example 2).
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corresponding parameters of a bio-reactor are considered:

(/t
-  =  ( y - D ) x  (4.56)

^  =  D(Sf - s) _ A e (4.57)
dt y0

* = ir.Tjfm, <4-M>
Here, a: and .s are the concentrations of the cell and substrate, respectively, p  is the 
specific growth rate, pm is the maximum specific growth rate, y0 is the yield, K s and 
Ki are the constants of the substrate inhibition model and D  is the dilution rate 
which is the manipulated variable to control the concentration of cell in the reactor. 
The values of the parameters are

sf = 4 g/g pm =  0.53/T1 y0 = OAg/g K s = 0.12g/g

A delay of 1 h is considered in the measurement of x. The reactor exhibits an unstable
steady state at (x = 0.9951, s =  1.5122) for a nominal value of dilution rate D  =
0.36/i_1. The closed loop response of x, for a change in the set-point from 0.9951 to 
1.1941, is obtained for a PID controller kc{\ +  A-s +  t d s )  with kc = —0.7356,7 7  =  4 
and t d  =  0.2. To avoid the derivative kick, the derivative action is applied only to 
the output and not on the error signal. The model and model parameters of the 
bio-reactor are taken from (Agrawal and Lim 1986, Ananth and Chidambaram 1999)

— Nonlinear P rocess
-  -  Linearized Model
—  Estimated Model

1.4

o>
x‘ 1.2

1

40 45 50 55 60
Time (hr)

Figure 4.9: Closed loop step response of the nonlinear bio-reactor model, linearized 

model and the estimated linear model (example 3).
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A first order plus time delay model with an unstable pole was estimated from the 
measured closed loop response. The closed loop response of the estimated model is 
plotted along with the closed loop response of the nonlinear model in figure 4.9. The 
figure also shows the closed loop response of the linearized model given in (Ananth 
and Chidambaram 1999). It can be seen from the figure that the match between the 
response of the estimated model and that of the nonlinear model is better than the 
match between the response of the linearized and nonlinear model.

4.4 Experimental evaluation

4.4.1 O pen loop identification

A number of step tests from different unsteady initial conditions are performed in 
a laboratory scale mixing process. In chapter 3 a brief description and a pictorial 
representation of the process is provided.

Figures 4.10(a), 4.10(b) and 4.10(c) show the concentration profile of the salt so­
lution in the tank resulting from a step change in the feed flow rate. It can be seen 
from the figures that the initial concentration in the tank were not at steady states 
when the step changes were made. Figure 4.11 shows the step response and fre­
quency responses of the three models estimated from the three sets of data. It can 
be concluded from the responses that the different data sets result almost the same 
estimated models.

3
o
3Q.
C

7300 8300 9300 10300

3O.
3o
3Q.
C

1.38 1.581.48 1.68 1.75
Time(sec) Time(sec)

3Q_
3O

2.1 2.3 2.35
Time(sec)

(a) (b) (c)

Figure 4.10: Step response of the mixing process with different initial conditions.
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Figure 4.11: Step and frequency responses of the three identified model of the mixing 

process.

4.4.2 Identification under closed loop condition

The proposed closed loop identification technique is applied for the identification of 
a continuous stirred tank heating (CSTH) process shown in figure 4.12. The cylin­
drical glass tank is equipped with steam coil with a controlled input facilitating the 
manipulation of steam flow to control the temperature of water in the tank. Also the 
level of water is controlled by manipulating the inlet water flow. The water outlet 
and condensate flow is controlled only manually. A number of thermocouples are 
placed at different distance in the tank outlet flow line that introduce time delay in 
the system. The set-up is under Emersons Delta-V distributed control system (DCS).

In this exercise, the set-point for the temperature of water in the tank is changed from 
30° C  to 40° C  and the temperature of the outlet water was measured and recorded 
at 5 seconds intervals. A PI controller having a gain of 4.85 and reset time of 100 
seconds was in place for the control loop to manipulate the steam valve. The level 
of water in the tank was controlled to be constant. A second order plus time delay 
(SOPTD) model was estimated as the open loop transfer function between tempera­
ture and steam flow. Figure 4.13 shows the closed loop response of the process and 
the estimated model for the PI controller. It can be concluded that the two responses 
match quite well.
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Figure 4.12: Part of the CSTH process.

44
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Figure 4.13: Closed loop response of the heating tank process and its estimated model 

for a step change in steam flow.
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4.5 Conclusions

Identification from step response is a popular and commonly used method. In spite 
of this there are challenges in applying these methods in real life implementations. 
In this chapter two specific issues related to step response based identification have 
been addressed. Detailed mathematical derivations have been presented to show how, 
under both open loop and closed loop framework, process model parameters and the 
delay can be estimated from raw data even when the process is not initially at steady 
state. Formulation of the estimation equation in terms of raw form of the variables 
is an unique feature of the proposed algorithms that allows the use of industrial data 
without much preprocessing. Through simulations, the applicability of the methods 
has been demonstrated for a diverse group of processes including a nonlinear process. 
Finally, the performance of the methods is evaluated by experimental evaluations 
under both open loop and closed loop conditions.
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C hapter 5 

Identification o f M IM O system s

5.1 Introduction

Most industrial processes are multivariate in nature and it is the complex interaction 
of different variables that makes control of such processes difficult. This challenging 
problem has acted as a major driving force for research into multivariate control that 
has resulted in an upsurge in process control interest both in academia and in indus­
try. Much of the research has focused on new developments in model based control 
technologies that require a model of the multivariate process. The performance of any 
such technology depends mainly on the quality of the model used. However, there is 
an impression in the process control community that the development in the field of 
system identification is behind the development of the control algorithms (Zhu 1998). 
This impression apparently contradicts the fact that system identification is one of 
the most active areas of control research. Over the last several decades extensive 
work on system identification has been done resulting in publication of a large num­
ber of books and numerous research articles. However, an astonishing fact is that 
most of the identification results developed so far are not used by industrial control 
engineers. Some reasons for this failure in technology transfer have been pointed out 
by Zhu (1998). We believe that the limitations of the available methods act as a ma­
jor barrier in their applications. Methods requiring a specific test procedure or those 
applicable for processes with specific order cannot find general acceptability due to 
obvious reasons.

The theoretical developments of MIMO system identification has been mainly based 
on the state space framework. Unfortunately, state space identification methods have 
not found widespread application in process industries. Outside the domain of state
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space, most of the identification methods for MIMO systems available in the literature 
results in a nonparametric frequency response as in (Melo and Friedly 1992) instead 
of the transfer functions. Another group of methods as in (Mei et al. 1992, Wang 
and Zhang 2001a) first obtain the frequency response and then estimate the step 
response of the individual input-output channels from which one can get the transfer 
functions. The procedure to obtain the frequency response from a transfer function 
is trivial whereas to obtain the transfer function from a frequency response is not 
straightforward. For the purpose of simulation, prediction or controller design the 
transfer function models are much more useful than the nonparametric frequency re­
sponse models. For the same model accuracy, a parametric model needs much shorter 
test time; or put another way, for the same test data, a parametric model can be much 
more accurate (Zhu 2000). Regarding test signals, most of the methods use the idea 
of sequential step test. In this technique a step input is applied to one manipulated 
variable while the other inputs are kept constants. However, data from a single vari­
able test may not contain good information about the multivariable character of the 
process. Also, step signals may not have enough excitation energy to obtain dynamic 
information of the process (Zhu 1998). Sequential relay experiment that has gained 
much popularity in the MIMO identification research also suffers from the limitations 
of single variable test. Contrary to the single variable thinking, several authors have 
proposed the idea of simultaneous excitation (Zhu 2000). The sequential test pro­
cedures requires proper supervision. Another issue in MIMO identification is that 
methods are specific for open loop or closed loop operation or for relay feedback ex­
periment. Ideally, if possible, the identification test should be done under closed-loop 
condition. One advantage of closed-loop test is obvious: the controller helps to keep 
control variables within their limit. What is less obvious is that a model identified 
from closed-loop operation gives better control performance (Hjalmarsson et al. 1996) 
provided that the identification method can handle closed-loop data properly (Zhu 
1998).

In view of the limitations of the existing methods, we present a general framework for 
continuous-time MIMO process identification that is applicable to both closed loop 
and open loop identification with minor modification. We consider direct approach 
for closed loop identification which requires no knowledge of the controller and indif­
ferent on the controller structure. With respect to the test signals, both sequential 
testing and simultaneous testing can be applied in this procedure. More importantly, 
the results of the algorithm are the continuous-time transfer functions of the indi­
vidual input-output channels of the process that can be used for controller design,
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simulation or prediction or from which we can directly get the nonparametric models. 
Additional advantage is that the time delays are estimated simultaneously with the 
other process parameters.

This work is motivated by an earlier work of Li et al. (2005) where the authors 
developed a closed-loop identification procedure for two-input two-output (TITO) 
processes with known decentralized controllers using the idea of sequential step test. 
In line with this development, we present here a general algorithm for MIMO process 
with any order including processes for which the number of inputs is different from 
the number of outputs. The developed technique is applicable for open loop as well as 
closed loop identification. Also the processes can be excited simultaneously through 
all its channels and the input signals are not necessarily step inputs. The method 
proposed by (Li et al. 2005) approximates the time delay by Taylor series expansion 
which may introduce significant error in the parameter and delay estimation. The 
algorithm developed in this work does not use any approximation for the time delay.

The basic idea behind the identification scheme is to decompose the MIMO data ma­
trix into a number of equivalent SISO data matrices. The main advantage extracted 
from this decomposition is that the parameters of each individual transfer function 
are estimated separately. This disintegrate the complex parameter estimation equa­
tion of the MIMO process into a set of independent equations each corresponding to 
the individual transfer function of a single input output channel. However, a single 
experiment is not enough for this algorithm to be applied. Rather, we have to perform 
Nu (number of inputs) similar experiments either sequentially or separately with dif­
ferent input signals each time. The requirement is that the experiments should start 
at steady state conditions of the process. It is to be noted that the sequential step 
testing or relay testing are equivalent to the multiple test procedure adopted in this 
method.

In this work we present an identification method applicable under both open loop 
and closed loop operation. However, only the direct approach of closed loop identifi­
cation is considered which is similar to open loop identification except that the process 
input and output data are collected from closed loop experiments. This gives rise to 
some issues in parameter estimation. Before going into the mathematical derivation 
a brief discussion on these issues is presented.
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5.2 Issues in closed loop identification

Closed loop identification has been categorized in the literature in different ways. 
Gustavsson et al. (1977) classified closed loop identification techniques based on the 
assumptions on the availability of knowledge of the controller. This classification was 
later adopted by Soderstrom and Stoica (1989) and Forssell and Ljung (1999) where 
three major groups are considered:

1. The direct approach: Ignore the feedback and identify the open loop system 
using the measurements of the inputs and the outputs assuming no knowledge 
of the controller or the set-point signals or extra inputs.

2. The indirect approach: Assume complete knowledge of the controllers and using 
extra inputs or set-point signals a closed-loop transfer functions are estimated 
from which the open loop process parameters are extracted.

3. The joint input-output approach: Assume an unknown regulator with a certain 
structure and regard the input and output jointly as the output of a system 
driven by some extra input or set-point signals and noise. Use an identifica­
tion methods to determine the open loop parameters from an estimate of this 
augmented system.

The indirect approach of closed loop identification not only needs complete knowl­
edge of the controller but also assumes its simple structure. The joint input-output 
approach, too, is suitable for controllers having simple structures. However, in prac­
tice controllers may have complex structure or may be nonlinear. Also the input 
constraint may induce some nonlinear relation between the controller output and the 
error signal. Because of the limited applicability of these two approaches, when the 
objective of the identification exercise is to obtain the open loop model, the direct 
approach is the obvious choice. According to Ljung (1999), this approach should be 
seen as the natural approach to closed loop data analysis.

However, there are some difficulties associated with the direct approach. When closed 
loop data are used for open loop identification, a major difficulty arises because the 
closed loop data contains two relationships. The forward path relationship from the 
input to the output caused by the process and the feedback path relationship from 
the output to the input caused by the controller. The next part of the discussion 
is extracted from (Doma et al. 1996). The feedback path can cause a bias in the 
open loop model even when independent external test signals are added to the sys­
tem. This is particularly important in nonparametric models, such as step response
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models, because the identified model can easily become a mixture of the open loop 
dynamics and the negative inverse of the controller dynamics.

The extent of this bias is determined by many factors, but two of them relate to 
process operation. The tuning of the controller determines the strength of the feed­
back path relationship. A very de-tuned controller means that the control actions 
will be so sluggish that the forward path dominates the data. In this case the closed 
loop data is almost open loop data and the bias caused by the feedback path is very 
small. The other factor that influences the extent of the bias is the magnitude of 
disturbances that may affect the process during the data collection period. This is 
a signal-to-noise issue. If the magnitude of the disturbance is small compared to the 
magnitude of the external test signal, then the feedback path is also small compared 
to the forward path. In the extreme, there will be no bias in the open loop model 
identified if there are no disturbances.

A practical closed loop identification method can not demand that the controller 
be de-tuned during data collection or simply wait for periods of small disturbances. 
Fortunately, the bias caused by the feedback path can be reduced by filtering the 
data. In addition to filtering the data, the bias can be further reduced by choosing 
the correct structure of the open loop model. Feedback controllers are designed to 
have dynamics that are different from the open loop process dynamics. In the ex­
treme case, a deadbeat controller has dynamics that contain the exact inverse of the 
open loop process dynamics. Feedback controllers invariably respond without delay 
when the dependent variables deviate from their setpoints, whereas a physical process 
normally has some delay. Hence, the presence of deadtime is an important difference 
between the controller dynamics and the open loop process dynamics. Since the 
feedback path relationship originates in the controller, choosing a structure for the 
open loop model that matches the forward path dynamics will force the identifica­
tion method to ignore the feedback path relationship. This is an important aspect of 
parametric model identification where the structure of the model is explicitly chosen. 
Nonparametric models such as step response models have virtually no structure. This 
makes them vulnerable to the feedback path relationship in closed loop data.

The theoretical developments on the bias issue in closed loop identification can be 
found in (Forssell and Ljung 1999, Goodwin and Welsh 2002, Karimi and Landau 
1998, Van den Hof 1998).
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Figure 5.1: Block diagram of a MIMO open-loop process with Nu inputs and N y 

outputs.

5.3 M athematical formulation

5.3.1 From M IM O to SISO

The basic idea in the proposed approach is to decompose the MIMO data matrix 
into equivalent SISO data matrices by doing some algebraic manipulation. The main 
advantage of this decomposition arises from the fact that in the parameter estimation 
steps, parameters of each transfer function are estimated at one time. Thus a set 
of estimation equations are solved each giving the parameters corresponding to a 
specific transfer function. The mathematical manipulation for open loop and closed 
loop setups is described below.

Open loop identification

Consider the MIMO system in open loop described in figure 5.1. where, Uj, j  =
1.2 ■ ■ ■ Nu are the inputs, xi} i =  1 , 2 --- are the noise-free outputs and ?/*, i —
1. 2  • • • Ny are the noisy measurements of the outputs. So, the dimension of the 
MIMO system is Nu x N y. The basic relations between the outputs and the inputs 
can be described using the Laplace domain expressions

N u

x i = (5.1)
3=1

Yi =  Xi + Ei, i = 1,2 - ■ ■ Ny. (5.2)

where, Gij is the transfer function between the i — th output and j  — th  input. We 
will use upper case letters for variables in the Laplace domain and the corresponding 
lower case letters for that in the time domain. However, the indices (s) and (t ) de­
noting the two domains will be frequently omitted for simplicity. Here Ei represents
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the disturbance term and we assume that the disturbances in the output signal that 
is not from the input excitation can be lumped into the additive terms Et.

As mentioned earlier, for a process with Nu inputs, Nu different experiments are 
to be performed. One or more or all of the inputs can be changed at each experi­
ment. Irrespective of how the inputs are changed, the mathematical formulation will 
be presented based on the assumption that all the inputs are changed during each 
experiment. Described below is the procedure for the I — th  experiment. N u similar 
experiments are to be carried out using different sets of inputs each time.

Experiment I: Excite the process through its different input channels with the in­
put signals u\, j  — 1,2 • • • Nu and record the input and output measurements.

The input output relation for the I — th  experiment can be described by

N n

x !  = E ° « uS-
J= 1

i = 1 ,2 ---Ny. (5.3)

Eqn(5.3) can be written for all the outputs i.e. for i =  1,2 • • • Ny and can be combined 
and represented in a matrix form

1* 
*

*

'  Gn
G21

Gi 2
G22

r
. 

,

&
 

: 
£ 

• 
i Gnv 2

G\nu
G2Nu

1.........

1---- 
"

•STH
’

1

........1

is
?

1

(5.4)

Nu experiments result in a set of N u equations similar to eqn(5.4). Combination 
of all the equations in a single expression gives

where,

x =GU (5.5)

■ XI XI • • •

X = XI Xf . . . G (5.6)
- x k X k y N u

r ul m ■ ■ ■ '
u = Ul Ui . . .  u ? ' x Nu (5.7)

1--
--- £ U 2n u 1
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Eqn(5.5) can be solved for G  to give 

u-1 can be expressed as

U

G =  X U - 1

n

n

det( U)
n1 n1 •••
n? n| ••• n k

n k

(5.9)

(5.10)

(5.11)

where, II =  adj(U), the adjoint matrix of U with 11̂  is the cofactor of Uf, the element 
corresponding to the i — th row and j  — th  column of U. det(•) is the determinant of 
the corresponding matrix. So we have

G =
xn

det(U)
The (i, j)- th  element of X II is given by

x n ( i , j ) = J ] x f n J
fc=l

Also we have
N u

det(U) =  Ui Ui for 1 <  i <  7V„

N u

(5.12)

(5.13)

(5.14)
fc=i

(5.15)

From eqn(5.9) we get the expressions for individual transfer function

xn(i,j)
* * * (« )  E & o f n f

The following are the explicit expressions for the individual transfer functions for a 
2 x 2  process.

Gn

G y i

Gn

Gn

x \u l -  X \U \ X u
u\ui -  ufm2 u
x j u j - x i u t  _ X u  
U\ul -  CTO u
x \u i - X \U \ X u
Uffl -  uful u
XIUI -  X \U l  X u
UIUI -  UIUI -  u

(5.16)

(5.17)

(5.18)

(5.19)
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Prom the above expression we can see that the MIMO system has been transformed 
into single input single output systems with the same input signal passing through 
the different process transfer functions.

However, X \  are not available, rather we have the output measurements as T/. If
we assume that the noise terms in Yi3 can be combined to a single term by, we have

Yij = Xij + Vij (5.20)

or
Yij =  GijU +  (5.21)

Eqn(5.21) forms the basis for the estimation of the transfer function Gy. Here for all 
of the transfer functions the input expressed in the Laplace domain is

U =  U\Ul -  UlUl (5.22)

The equivalent expression in the time domain is

u =  u\ * u\ — u\ * u\ (5.23)

where, the symbol * corresponds to the convolution operation. Similarly the output 
expressions can be expressed in the Laplace domain

Yu = Y M - Y ? u l (5.24)

Yu =  Y?u{ -  Y^Uf (5.25)

y 21 II & 1 a (5.26)

y 22 =  Y i U l - Y ^ U l (5.27)

The expressions in the time domain for the outputs for the 2 x 2  process are

yu = Vi * u2 - y l * u\

2/12 = ia * u\ - y \ * w

2/21 = y\
2* u2 - y l * u.

2/22 = yl * u\ - y l * u‘

( 2  x 3), (3 X 2), (3 x 3) !

(5.28)

(5.29)

(5.30)

(5.31)

in Appendix B.
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h

Controller Process
Nu

Figure 5.2: Block diagram of a MIMO process under closed loop with dither inputs. 

Identification under closed loop conditions

Closed loop identification can be performed by exciting the process through the set- 
point channels or an extra signal, known as the dither signal, can be added to the 
input signal with the set-point constant. We will adopt the dither signal option. The 
set-up is described in figure 5.2. We consider the direct approach for closed loop iden­
tification where the process model is estimated directly using the process input and 
output information and ignoring the feedback mechanism. The fundamental problem 
with closed loop data is the correlation between the unmeasurable noise and the input 
which results in a bias error in the least squares solution of the parameters. However, 
the bias problem is not specific to closed loop identification. Open loop identification 
methods e.g., the linear filter method also gives a biased estimates unless some bias 
correction scheme is in place. The point here is that any open loop identification 
algorithm that incorporates in itself a bias elimination mechanism can be directly 
applied to direct closed loop identification with necessary modification in the bias 
elimination scheme.

In fact the direct closed loop identification approach differs from the open loop method 
only in the bias elimination scheme. All the mathematical derivation and estimation 
procedure remains the same.

5.3.2 Param eter estim ation

The previous section presents how the MIMO system can be decomposed into equiva­
lent SISO systems. It has been shown that the decomposition procedure finally yields 
an estimation equation for individual transfer functions that can be described in the
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form of a general expression

Y(s) = G(s)U(s) +  V(s) (5.32)

It has been shown that irrespective of the dimension of the process or the process 
configuration i.e open or closed loop, an equation similar to the above expression can 
be derived. They differ in how the equivalent inputs and outputs data are obtained. 
Here, we describe U and Y  as the SISO equivalent of the MIMO process for an input 
output channel. The expressions for the equivalent input and output differ based on 
the process dimension.

To estimate the model parameters one can use any SISO identification technique. 
We will use the linear filter method described in chapter 3.

Linear filter m ethod

Without going into further details of the method, following eqn(3.37), we directly 
give the the estimation equation as

qLS = [$ T$] 1 $ Tr

where,

$  =  [c f r i h)  (t>{t2 ) ■ • • ( p ( t N ) ] T  

r  = [7(*i) l i h )  ■ ■ ■ 7 ( tN)]T

with

7 (4 ) 

<t>(h)

y f ik )

u

- y (n_1)(tfc)

u(tk)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

As mentioned earlier, the least squares solution does not give an unbiased estimate. 
One of the most effective solution to the bias problem associated with the least square 
algorithms is to use the instrumental variable (IV) method since they do not require 
any a priori knowledge of the noise statistics. However, choice of the instrument is 
important for the IV method to be effective. The next section describes how to obtain 
the instruments for the different set-ups.
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5.3.3 Choice o f instrum ents

Gilson and Garnier (2003) have demonstrated effective use of an IV scheme for direct 
identification of systems under closed loop. It has been proved in (Gilson and Hof 
2 0 0 1 ) that in the discrete-time case, a tailor-made instrumental variable method is 
equivalent to the bias-eliminated least-squares method that gives an asymptotically 
unbiased estimates of model parameters. This result also holds in the continuous-time 
case (Gilson and Garnier 2003).

In chapter 2 we presented an IV method to get a bias free estimate of the open 
loop process parameters. A bootstrap estimation of IV type was adopted where the 
instrumental variables are built from an auxiliary model. However, the IV method 
mentioned above cannot be applied directly for the closed loop method because the 
input signal is now correlated with the noise.

Open loop m ethod

For open loop identification, the input is not correlated with output. However, for 
colored noise the least square estimate is not bias free even for open loop identification. 
Following the procedure discussed in section 3.3.1, the instrumental variable for open 
loop identification can be defined as

^(tk) =
(**)

u

- x (n-i)

f ^ i t k - S )
u{tk)

(5.38)

where,
x  = g ( s , eLS)u (5.39)

Closed loop method

To develop an IV method we will use the knowledge of the extra input signal known as 
the dither signal. So the required data set {y\{tk) ulj( tk) wlj(tk)} k  =  1,2 • • • N, j  =
1,2 ■ Ny, j  =  1,2 ■■■ Nu, I = 1,2 ■ ■ ■ Nu should contain the extra input signals Wj 
along with the process inputs and outputs. To generate the IV matrix we first define 
the part of the input due to the dither signal. For a 2 x 2 process this can be defined 
as

w — w\ * wl — w\ * w\ (5.40)
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The part of the outputs y due to w is given by

Z  = Gij(s,9LS)W (5.41)

Finally the instrumental variable can be defined.

' - z  <-n-V (tk)

W k )  =
w(tk)

(5.42)

5.4 Simulation study

To demonstrate the performance of the proposed methods and study the effects of 
different experimental conditions, a benchmark processes commonly used in the lit­
erature for identification of MIMO systems, namely the Wood and Berry distillation

The binary distillation column, a typical representative of industrial processes having 
strong interaction and significant time delays, has long been used in identification 
literature (Melo and Friedly 1992, Li et al. 2005) as well as in the field of controller 
design (Huang et al. 20036, Wang et al. 1997).

5.4.1 Sim ulation conditions

To obtain necessary data for the purpose of identification, a SIMULINK block rep­
resenting the MIMO process was created. The individual transfer functions were 
represented by continuous-time transfer functions followed by time delay blocks. For 
the closed-loop simulation, controllers were applied using PID controller blocks. For 
all the cases, the inputs were multi-sine signals generated using the idinput function 
in MATLAB. The sampling time for all the inputs and outputs was 0.2 seconds which 
is approximately ^ t h  of the smallest time constants. For continuous-time identifica­
tion sampling intervals are recommended as ^  (Garnier et al. 2003), where r  is the 
time constant of the process. For each experiment a total of 2000 data points for 
each of the variables were generated. The outputs were corrupted using white noise 
sequences of appropriate variances to give the desired noise to signal ratio (NSR).

column (Wood and Berry 1973) having the following transfer function matrix is con­
sidered

12.8e~6 —18.9e"3s

G(*)= ^  -i2̂ -  (5.43)
1 0 .9 s+ l 14.4S+1
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For the closed-loop experiments, a decentralized controller was used. A proportional 
only controller used by Melo and Friedly (1992) was used in this simulation study.

Gc(s) =
0.1 0 
0 -0.05 (5.44)

5.4.2 R esults

Open loop identification

The 2 x 2  process was subject to open-loop experiment with different NSR. Presented 
below are the identification results of 100 Monte Carlo simulations (MCS). The mean 
value of the 1 0 0  estimates of the parameters are shown along with their standard 
deviation. Each subfigure presents the parameters of an individual transfer function 
of the Wood-Berry column.
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Figure 5.3: Results of Open loop instrumental variable method.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

15

12
0 5 10 15

22

20

18

. f ..3'-1 . .1 .

A-

" T

A .... | ....
I

....4-
...♦ ...4..... ....*

NSR(%)
5 10 15

NSR(%)

(a) G 11 (b) G 12

14

10

 ♦ .......
6

0 5 1510

19 -

8 16 -

0 5 10 15
NSR(%) NSR(%)

(c) G n (d) G22

Figure 5.4: Results of Open loop least squares method.

Closed loop identification

Following the procedure described in section 5.3.1, the process was subjected to a 
closed loop experiment. The multi-sine inputs used in the open-loop tests were used 
for the closed-loop experiments as dither signals.

Comparison of the IV and LS m ethods

To compare the performances between the instrumental variable (IV) and the least 
squares (LS) based methods we use the total error criterion defined by eqn(3.43). 
Figure 5.7 represent the errors as a function of the NSR for the open-loop and closed- 
loop methods. Here it is seen that for the open-loop identification the IV and the LS 
methods have the same level of errors. However, for closed-loop identification, the IV 
method gives better performance than the LS method.
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Figure 5.5: Results of closed-loop instrumental variable method.

5.5 Conclusions

Over the last few decades, significant developments of continuous-time single input 
single output (SISO) model identification has taken place whereas the identification 
of multiple input multiple output (MIMO) model has remained as a challenging task. 
In this chapter, a new identification technique for MIMO models has been introduced 
that uses a SISO algorithm in the parameter estimation stage. The main challenge 
of MIMO model identification is the dimensionality of the parameter vector. In this 
procedure, the MIMO data matrix is decomposed into a set of SISO data matrices 
each of which corresponds to one input output channel of the MIMO model. The 
SISO equivalents of the MIMO data are then used to estimate the parameters of each 
transfer function individually. Thus the problem of high dimensionality of the MIMO 
parameter estimation equation is overcome and the entire parameter vector is finally 
obtained from the solutions of a set of estimation equations. The explicit expressions 
for the equivalent inputs and outputs of different order models have been provided.
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Figure 5.6: Results of closed-loop least squares method.

Using a simulation example the applicability of the method has been demonstrated 
for both open loop and closed loop identification. The robustness of the method to 
noise has also been tested.
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C hapter 6

M odel V alidation

6.1 Introduction

Model validation is considered as an integral part of system identification. Once a 
model of a process is identified, it is important to have model validation as the last 
quality control station before the model is delivered to the user (Ljung and Guo 1997). 
Also, it is equally important to continuously validate the model after it is placed for 
use and to maintain its quality by detecting changes in the parameters. Model vali­
dation is naturally related to detection of parameter changes (Huang et al. 2003a).

Methods for model validation through residual analysis have been reported in the 
literature; see e.g. (Box and Jenkins 1976, Ljung 1999, Ljung and Guo 1997, Soder- 
strom and Stoica 1989) and the references therein. The residual analysis techniques 
involve correlation test procedures consisting of tests using the autocorrelation func­
tion of the residuals and the cross-correlation functions between the residuals and the 
inputs. These tests are based on the principle that if the model structure is correct 
and the estimated parameters are unbiased, the residuals should form an independent 
random sequence and should be unpredictable from all past inputs, outputs and resid­
uals (Mao and Billings 2000). From statistical efficiency point of view, Benveniste et 
al. (1987) have suggested an asymptotic local approach for model validation. It is 
shown by (Basseville 1998) that regular residuals as used by most model validation 
algorithms are not sufficient statistic. Basseville (1998) further shows that by utilizing 
the information of the gradient of the prediction error, the local detection algorithm 
provides more information than the regular residual analysis and is asymptotically
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sufficient statistic.

In recent years, new developments of model validation algorithms based on the local 
approach have been reported. Huang and Tamayo (2000) and Huang et al. (2003 a) 
have presented model validation method for industrial model predictive control sys­
tems. The problem of multivariate model prediction in the presence of time variant 
disturbance dynamics has been addressed in (Huang 2000). Huang (2001) also pre­
sented an on-line model validation algorithm for processes under closed-loop. Model 
validation in a prediction error framework has been presented by (Gevers et al. 2003).

The references mentioned above mainly deal with the validation problem of discrete­
time models. The literature on continuous-time model validation is sparse and to the 
best of the knowledge of the author, the change detection of the time delay has not 
been reported in the literature. In this chapter we present validation methods for 
SISO and MIMO continuous-time models having time delay. The methods treat the 
delay as another system parameter and capable of detecting its change.

The validation scheme is based on the local approach for detecting changes in the 
model parameters. Before presenting the validation methods, we first briefly describe 
the local approach for change detection as presented in (Basseville 1998) and (Bas­
seville and Nikiforov 1993).

6.2 The local approach for change detection

The detection algorithms for additive and non-additive changes differ greatly in terms 
of complexity. For additive changes, it means the transformation of observations into 
residuals and detecting the change in the mean value of a Gaussian process. This 
is also termed as basic problem. But for non-additive changes, neither transforma­
tion into innovations nor to parity checks provide a sufficient statistics. Rather the 
sufficient statistics is the likelihood ratio. But using the likelihood ratio for change 
detection is computationally complex (Basseville and Nikiforov 1993). Also it is a 
non-linear function. The local approach is one of the tools that simplify the complex 
change detection problem into a basic problem. The relevant sufficient statistic here 
is the efficient score (Basseville and Nikiforov 1993). The efficient score is recovered 
by linearizing the log-likelihood ratio over a local point, namely the nominal model 
of the process.
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Before going into the mathematical statement of the problem, it is necessary to point 
out the difference between model validation and change detection. Model validation 
is seen as an off-line process where the objective is to verify whether the model esti­
mated previously is valid. On the other hand, change detection algorithms axe often 
run on-line to detect changes in the model parameters. Mathematically both of the 
problems can be formulated as a test between two simple hypotheses say H0 versus 
Hi. These two problems take slightly different forms.

M odel validation:

Ho-.e = e0 

H l ' e  =  e° +  7 N

On-line change detection:

H0 : 6 =  d0 for k = 1 , . . . ,  N

Hi : there exist some r  € (0 , 1 ) such that 

6 — 6o for 1 < k < tN

6 = do -\— 7=  for tN  < k < N
V n

Here, 60 is the parameter vector of the true system, unknown but represented by ob­
servations, 6, which is obtained under normal operating conditions. 6 is an arbitrary 
vector with dimension same as that of 6. So, if the current parameter vector matches 
that at normal run, it is concluded that model is valid, otherwise, it is concluded that 
the model no longer represents the system. The formulation of 6 tells that the change 
may take place in any of the parameters. The role of the local approach is that it 
transforms the hypothesis test problem into the monitoring problem of the mean of 
a Gaussian vector. In the local approach it is assumed that the two hypotheses get 
closer to each other when N grows to infinity and this is the asymptotic point of view.

Detailed mathematical derivation of the local approach can be found in (Basseville 
1998, Basseville and Nikiforov 1993, Zhang et al. 1998). Here, we provide the sum­
mary.

for k =  1 , . . . ,  N  

for k =  1 , . . . ,  IV
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Primary residuals: A vector-valued function p(9,xt) is a valid primary residual if

Eep(9, x t) = 0  for 9 =  90

and

Egp(6, x t) 7  ̂0 for 9 G u>(90)\90

and if it is differentiable in 9. Here, iu(90 )\9 0 is read as a neighborhood of 90 exclusive 
of 9q and x t =  [u(t] y(t)]T. Improved Residual: For a given primary residual p(9,xt), 
the improved residual is defined as:

1 N
zN(o) = - f = Y ; p ( e , x t) (6 .i)

where N  is the size of the sample. For sufficiently high N

6 r (0 )~  N{0,E{9o)) i f9  = 90

6v(0)~ N ( - M ( 9 o)9,E(0o))

where,

E(90) = ^ 2  Cov(p(9Q,x 1),p(90,x t))
t= —  OO 

1 N
~  j^ ^ 2 p { d o ,x t)pT(9o,Xt)

t=l
/  j  N - i

+ E v - E w « .  ,x t)pT(9o,xt+i)
i= i  1 t = i

+p{90, x t+i)pT(9o, x t))

We see that the residuals are different from the residuals defined in other fields. For 
example, residuals of regression analysis for a variable is a scalar. But here the 
residuals are vector valued and from their definition are sufficient statistics.

6.2.1 The detection  problem

According to the above results, detection of changes in the model parameters, 9, 
is asymptotically equivalent to the detection of change in the mean of a Gaussian
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vector. The generalized likelihood ratio (GLR) test to detect change in the mean of 
a  Gaussian vector is the x 2 (chi-square) test. Basseville (1998) has shown that the 
GLR test of H\ against H() can be written as

xhobai = Sn (9o)t z - \ 0 o)m (9o) (M(0o)TE - 1 (0o)M(do ) ) - 1 M(60)Tx - \ e 0)£N(e0)
(6 .2)

If M(6q) is a square matrix, then this test can be further simplified to

X%obai=tN{e  o)r S - 1 (do)^(0o) (6.3)

Xgiobai has a central x2 distribution under H0 and a noncentral x2 distribution under 
Hi. The degree of freedom of X2giobai the row dimension of 9. A threshold value, x 2 > 
can be found from a standard x 2 table or can be calculated from training data based 
on the false alarm rate a  specified by the user. If x%obai *s f°und to be larger than 
the threshold value, it is concluded that there is a change in the parameter vector.

6.2.2 The isolation problem

Once a change in the parameter vector is detected, it is often desired to know which 
or which sets of parameters have changed. This is called the isolation problem.

To isolate the parameter or set of parameters undergone a change, 9 is to be par­
titioned into 9a and 9b and 6 is to be partitioned into 9a and 9b accordingly. Then 
the isolation problem can be formulated as the following hypothesis test:

Ho ' 6a = 0 versus Hi : 9a ^  0 (6.4)

The test is read as no change in parameters in the set of 9a versus change in parameters 
in the set of 9a. To test the hypothesis, two tests can be performed, namely the 
sensitivity test and the minmax test. The sensitivity test assumes 9h =  0 while in the 
minmax test 9b is treated as nuisance, i.e. 9b is not necessarily zero.

Sensitivity test

To perform the sensitivity test, the matrix M{9o) is partitioned into two matrices M a 
and Mb, i.e.

M(90) =  [Ma Mb] (6.5)

This partition corresponds to the partition of 9 i.e. the column dimension of Ma is 
the same as the row dimension of 9a and the column dimension of Mb is the same as
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the row dimension of 6b- Based on this partition, the sensitivity test is written as

x l  = i l F - : i a (6 .6 )

where,

ia = M Z X - \0 o)Zn (8o) (6.7)

Faa = M ^ ~ 1(60)Ma (6 .8 )

X2a has a x 2 distribution with na degrees of freedom.

M inmax test

The Minmax test is performed by defining

F  = M T(60) ^ - 1(60)M(d0)

and then partitioning it into 

F
’ Faa Fab

Fba Fbb
M j E - \ 6 0)Ma M JE - 1 (0 o)M6 

M f Y r \ 9 0)Ma M b Y,~1(60)Mb

Then defining

(6.9)

(6 .10)

(6 .11) 

(6 .12)

(6.13)

(6.14)

x 2: = (6.15)

where, xl* has a %2 distribution with na degrees of freedom. By comparing xl* with 
a pre-specified threshold, it can be determined whether the parameters in 6a have 
changed. In practice, as recommended by , minmax test for all possible sub-vector 6a 
are performed and the one having the largest value indicates the non-zero sub-vector.

e, =  E (0o)£jv(0o) 

lb

Ca =  I

F *  =

FahFbb lb
Faa ~  F ab F bb F fba

the test is written as

6.3 Validation of continuous-time models using the  

local approach

An important feature of the local approach is that the algorithm can be developed 
along the same line as model identification. Many established methods to enhance
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identification algorithms can be readily transferred to the local detection approach. 
The main task here is to find appropriate primary and improved residuals that are 
capable of detecting small changes while robust to varying disturbances.

Validation of discrete-time models has been reported in the literature and different 
aspects of the validation schemes have been investigated. Here we will present local 
approach for validation of continuous-time models. As mentioned earlier, the main 
task is to find the appropriate residuals. Now, the residual is dependent on the error 
that is minimized in the identification procedure. As commonly done, the error is 
defined as the equation error or the output error. Here, we will derive the expressions 
for residuals for both equation error and output error and study the performance of 
the resulting methods in terms of their efficiency in detection the changes in model 
parameters.

6.3.1 Equation Error (EE) approach

Consider a SISO system given by

Y(s) = G(s)e~SsU(S) + E(s) (6.16)

G(s) = ^^  A(s)

where s is the Laplace operator and A(s) and B(s) are polynomials in s and G(s) = 
is the process transfer function.

A(s) =  &nsn +  a„_is" 1 +  • • • +  dis +  do

B(s) =  bmsm +  bm—iSm 1 +  • • • +  bis +  bo', n  ̂  m

The parameter vector for this process is defined as 6 =  [an a„_ i ■ ■ ■ a0 bm bm—i • ■ • bo 5] •
In EE based approaches, the error term is defined as

E e e ( s )  = A(s)Y(s) -  B(s)e~SsU(S) (6.17)

Evaluation of the above error involves differentiation of the input and output. How­
ever, it is a general practice in continuous-time identification to avoid direct differ­
entiation of the noisy data. Rather, different linear dynamic (LD) operations are 
performed. In the linear filter approach, the differentiation operation is performed 
on filtered data. For the purpose of model validation, we also want to avoid direct 
differentiation and following the linear filter approach, we define the equation error 
as

Eee(s) = A(s)Y(s) -  B(s)e~5sU(S) (6.18)
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where, T (s) and f/(s) are the filtered output and input respectively. The filter may 
be defined in different ways as mentioned in chapter 2 .

The cost function that is minimized for the parameter estimation is defined as

1 N 1

^EE =  ~N 2~e e ^'1 ^  (6.19)t=i

where, e E E ( t )  =  & ~ 1E_e e ( s ) is the equation error expressed in the time domain. Now, 
the gradient of JEe  can be calculated as

9JEE =  (0-20)

where,

m  N t=l

J .U \  &—E E C b $ )  i n  m  \n t )  =  Q0  (6 -2 1 )

To obtain the expression for the gradient, we use the Laplace domain expression of 
the equation error. The expression for </> in the Laplace domain can be obtained as

^  -  B{s)e->'mS)]

= [snT (s)--- ll(s )  - s me-SsU (s)  e~SsU{s) B{s)se~SsU{S)}T

Taking inverse Laplace transform, we get the time domain expression for eft

cj)(t)= y{n\ t ) - - - y ( t )  u{E\t*)  (6 .22)

where, t* =  (t — 6) and uB(t) =  I r 1 [B(s)U_(s)}.

The estimated parameter 90 must satisfy the following equation
N

M
1 N

— ^  <fi(t)eEE(t, 60) = 0 (6.23)
t=i

which gives the following results
N

 ̂ =  0  if e = eo
t- 1  
N

-ft Q) ±  0  if 0 G u(d0)\60
t - 1

Hence, we find the primary residual for equation error model

p(6,xt) = $ ( t ) e E E ( t , e )
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Next, we define the improved residual

(6.24)

The expression for M(9q) can be obtained as

M(6 o)

-  \ )

1 N 1 N 
= (6.25)

t = l  t = 1

where,
0

$ '(s ) =  ^ W ) ' " K * )  - s me -SsU (s)  e~SsU(s) B(s)se-*aU(S)Y

So,

/ o  •• 0 0 . . .  0 0  \

0  •• 0 0 . . .  0 0

0  •• 0 0 . . .  0 sm+1 e~SsU(s)

0  •• 0 0 . . .  0 s
V o  •• 0 sm+i . . .  g --B(s)s2

< 0 . . .  0 0 0 0  >

0 . . .  0 0 0 0

t) = 0 . . .  0 0 0  M(m+I)(**)

0 . . .  0 0 0 w(1)(t*)

v ° . . .  0 . . .  M0 )(f) S \ f )  /

(6.26)

(6.27)

6.3.2 Output Error (OE) approach

In OE based methods the parameters of an appropriately structured system model 
are chosen so that they minimize a suitably defined measure or norm of the error 
between the model output and the observed output of the system to be identified 
(Unbehauen and Rao 1987),i.e.

Eoe(s ) = VW  - (6.28)
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where, G(s) =  4^fyis the estimated model. Now the goal of an OE algorithm is to
minimize the following objective function

N ^ 2t= 1

The gradient of J o e  can be calculated as

1 N 1
JOE = ^ Y , o eO E M  (6-29)

where,

Vfo 0)eOE{t, 0) (6.30)

a\ deOE{t,&) ^ 0 i\
^  '  =  80   ̂ '

The estimated parameter 9q must satisfy the following equation

1 N
- J 2 ^ eoE(t,0 o) =  0 (6.32)

to yield the following results:

1 N
— <p(t)eoE(t, 0 ) =O  if 0 = 0O

t=i 
1 N

Tf ^ 2  (P(t )eOE(t, 9 ) ^ 0  if 0 G u(0o)\0o 
t=i

Hence, we find the primary residual for output error model as:

p{9,xt) =  ip(t)eOE{t,0)

Next, we define the improved residual as:

1 N
€n(0) =  —7=  ^ 2  P r o s i t ,  6) (6.33)

t=1

where

= ^  ~ r u ( s ) " ' _

The time domain expression can be presented as

i p ( t , 9 ) = [ y ^ ( t * ) - - - m  - M( - ) ( f ) . . . - M( f )  y(1)(t*)]T (6.34)
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=  H VQ’ e ) v T^  °) +  ^  £  ¥’'(*> 0)e (f>0)
t = i  t = i

(6.35)

y /(s ,0 )
-<5s5

s# ^]4(s)
/  - 2B(s)f2"

B(s)
W s ) s”^ W ' " ^ ^ W  - s mU( s ) - - - - U( s )  B(s)sU(s)

2B(s)sn sn+7n
[AMI3 [A(s)]3 [A(s)]2 [A(s)]2 [A(s)]2

- 2  B(a)sn -2 B (s )  sm l —B(s)s
[A(s)]3
gn+m

[A(S)]2

[AMI3 (A(s)]2 [A(S)]2

[AMP 0  0 AM
e -5sC/(s)

sn
[A(s)]2

- B ( s ) s n+1
[A(s)F 0  0  
—B(s)s  s ^ 1 1

Afi)
—B (s ) s2

[AM ]2 [A(,)P AM  AM AM  /

- 2  y (2n)(t*) ■•• - 2  y{n)(t*) u(n+m\t*)  ••• «<">(**) -y (n+1)(f*) \

- 2  y W ( f )  • •• - 2  y(t*) u ^ ( t* ) « ( r ) - y (1)( r )
•• u(m)(t*) 0 0 u(m+i)(r)

«<">(**)
- f * +1>(f*) •

u(t*) 0  

- y {1)(t*) u<-m+V(t*) •••
0

u(1)( f )
u(1)(f*)

- y (2)( r )  )

Here t* = (t -  6), u {i)(t) =  £  1 [^ jC /(s) , ^ (i)(*) =  £  1 » an d  !/W (*) =

£ _ 1  [ ^ j i > w ] | ( , ( « ) = i 5 - 1  [ p r f ^ W ]  •

6.3.3 MISO m odel validation

This section describes how we can obtain the primary and improved residuals for 
MISO systems. Let us consider a MISO system given by the following model:

Y(s)  = G1(s)e~hsU1(s) +  ■ • • +  Gk(s)e-s*sUk(s) +  V(s)

- ^ ( ^ 0  ~  ^ i,r ii& * +  1 ^  i "~f~...................+  1 ^  T  0
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Algorithm 6.1: Continuous-time SISO model validation algorithm.

(1) Error estimation: Estimate the error term using eqn(6.18) (for the EE method) or

eqn(6.28) (for OE method).

(2 ) E rror gradient: Obtain the vector representing the error gradient, 0(EE) using

eqn(6.22) or ip (OE) using eqn(6.34).

(3) Residuals: Calculate the improved residuals o) using eqn(6.24) (EE) or eqn(6.33)

(OE).

(4) Residual gradient: Obtain the matrix <j>' (eqn(6.27)) or ip' (eqn(6.36)) and calculate

the residual gradient M{6q) using eqn(6.25) (EE) or eqn(6.35) (OE).

(5) Calculation of y2: Calculate the X̂ iobai value using eqn(6 .2 ) or eqn(6.3), whichever

is appropriate.

(6 ) D etection test: Compare the X2gi0bai value with a pre-specified threshold. If X2gi0bai

smaller than the threshold, the model passes the validation. Otherwise conclude that 

the model is in error and proceed with the isolation test.

(6 ) Isolation test: Calculate x l  for sensitivity test using eqn(6 .6 ) for every possible subset 

of parameter 9a and compare it with the appropriate threshold. If x l  is larger than the 

threshold the corresponding 6a is said to be in error. For the minmax test, calculate 

xl* using eqn(6.15) for every possible 9a and the one having the greatest value is said 

to be in error.
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B i(s )  — bitJnismt +  hi,mi- i s m“ 1 + .............+  biti s  +  bito

The parameter vector 0 is given by

0 =  [°l,ni ' ' ' a l,0 bijTni • • • b\fl <5i...........ak,nk ' ' ' f̂c,0 ‘ ' ‘ bk,0 bk]T

Defining
0 ^  0 biiTni • • • b{ o 5fc]

0 = [eWTg(2)T . . . eWT]T

The goal of an OE algorithm is to minimize the following objective function

J  =  v  E  ;(»W -  ^  E  «)t=l

where 

Defining 

We get

y ( # )  =  +  ■ ■ • +  Gfc(s)e^ C 7 fc(s)

ri(s |0 « ) =  G i& e-^U iis )

y(t\Q) =  y i ( 0 1]) + V2(0 2)) + ■■■ Vk(t\e{k))

The gradient of J  can be calculated as

N

80 N  ■

where

%  = j j T , W ’d)eW )
t = 1

ip(t, 0) 9y{t\0)
80

The gradient of J  is zero for 0 =  0O and non-zero in the neighborhood of 0O. 
can define the primary and improved residuals as:

p(0,xt) = ij>(t)e(t,0)

N

where,

0)  =
dy(t\0)

80

— Wxr~  /  ipi(t,0W) )
dyMOW)

dykitftW)
\  d e w  J

lp2 (t,0{2)) 

\  ^ fc(f,0(fe))

102

(6.37)
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(6.39) 

So, we
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where
H t  Am, =  m n w )

I QQ{i)

ipi(t, 6 ^ )  can be found from eqn(6.34)

A(t,e«>) -  f iM r ) ' " £ ( r )  - £ \ t «)

where t“ = (t — Si), u/'iti =  £  1

dip(t, 9)

A i( s) 'Ui(s)] and £0)(t|6>W) =  £  1 [ - ^ ^ ( s ^ W )

9)  =
89

^ V 4 M (1)) o 
0 ^ M < 2>)

0
0

0 0

(6.41)

where
M t  0(0) =  ^ M W) 
W ’ ’ 899)

Following the derivation of eqn(6.36) we can find

/ - 2 g 2n\ r )  -• ■ - 2 &(n)(i*) • ■ u l n\t* ) - g n+1)(t*) \

—2 y j n\t* ) • -2 y i(t*) ^ ( f * )  • ■ Ui(t*)
u An+m)(t*} . . • Uj("0(t*) 0 0 u /TO+1)( r)

Ui(t*) 0 0 UiW (t*)
V - i (n+1)(i*) •• • - fc{1)(**)
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Here we define and £_(*|0W) =  p f^p & (f|0 w )
We also get

N  , N

M(0) N  > jr  N
4=1 t = l

iV

AT

E
t= 1

■02(i) 0{2))^ i  (t, 0{1)) fa it, 8(2))Tp2 (t, 8(2))

1 w 
f E

 ̂ 0(Ai)) ^ r (*, ^(i)) 8{k))ip2 it , 0(2))
^ ^ ( t , 0 (1)) e ( i , 0 )  0

0 fa {t,0 {2))e[t,8) •••

4=1

f a i t , 6 {1) ) ^ l { t , 0 { k ) ) \  

f a i t ,  8 w ) i l > l { t , 8 ( k ) )

M t,(>{k))iPl(t,0{k))
0 \
0

V 0
( Mi{8) M2{8) M k(0))

where

M 1{0)
N

N

E
4=1

(  f a { t , 8 ^ ) ^ { t , 8 ^ )  + fa i t ,8 ^ )e fa 8 )  \  

f a ( t , 0 ( 1'>) l /%( t ,  0 (1 ) )

M2(0)
1 N  i E

4=1

N

\
(

M *(») =  f E
4=1

1 p k ( t , 0 ^ ) l / f [ ( t , 0 ^ )  )
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6.4 Simulation study

In this section, we study the performance of the proposed model validation meth­
ods. The measure of performance used in this study are the detection rate and the 
isolation rate. These two quantities are calculated based on the results of 100 Monte- 
Carlo simulation runs. The detection rate for a particular parameter, expressed in 
percentage, is defined as the number of successful determination of the change out of 
the 100 runs. The isolation rate is defined as the percent of times a detected change 
is pointed towards the corresponding parameter successfully.
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The following elements are considered as potential factors influencing the performance 
of any validation algorithm

•  Degree of change in the parameters.

•  Presence of noise.

•  Data length.

It is obvious that a large change in parameters will be easily detected and isolated 
while a high NSR will inhibit detection and result in poor isolation. Now, for the 
sake of brevity, we will present the performance in terms of a ratio between change
in parameters and the NSR, both expressed in percentage, which we will denote as
Ae

N S R -

An important implementation issue for the local approach is the choice of thresh­
old for the x 2 test- Prom the application point of view, the selection of the threshold 
is as important as the generation of the residuals. Details on the effect of threshold 
based on simulation and real industrial data have been provided in (Cheng et al. 
2003). Theoretical value of the threshold can be obtained from a standard %2 table 
for a specified false alarm rate and for the degrees of freedom of the corresponding 
problem. In real life implementations, it is a common practise to choose the thresh­
old from a training data set due to noise characteristics. In our study we choose the 
threshold using the training data.

For the equation error approach, we need to choose a filter. For the current study we 
chose a filter of the form , which, in the linear filter literature, is known as
the normalized PMF filter.

6.4.1 A  SISO exam ple

To test the performance of the EE and OE methods and evaluate the effects of the
above mentioned factors, we take the following process as example

G(s) = 1 - ■ e~7s (6.42)
w  20s + 1  v ’

We will denote the parameter vector for this process as 0 =  [a b <5] =  [20 1 7]. A 
RBS signal was used as input to the process. The sampling interval was chosen to
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be 1 second. A discrete-time white noise sequence with specific NSR was added to 
the noise-free output. A training set of 5000 data points were used to numerically 
evaluate the parameter E(#o) and also to determine the threshold. Test data of differ­
ent lengths were used to estimate the y2 value and comparing it with the threshold, 
validity of the model is concluded. Once a change is detected, a minmax test is per­
formed for the purpose of isolation. The threshold estimated from the training data 
based on 2% false alarm rate was found to be 12.7. The theoretical value found from 
the standard x 2 table was found to be 9.9.

Figures 6.1 show the detection and isolation performance of the EE and OE methods 
for different value of the ratio 1000 data points were used for this test. It can 
be concluded from the detection and isolation results that any change in the gain 
parameter for this first order system is readily detected and isolated. The rate of 
detection and isolation for the time constant is also high. The methods are less sen­
sitive to small changes in time delay. However, when we have either large change in 
parameters or the number of available data is more, both the detection and isolation 
is very close to 100% for all of the parameters including the delay.

Also it is demonstrated by the simulation results that the OE based algorithm shows 
better performance than the EE algorithm except for the case of time delay. For the 
EE method, the detection and isolation rates are slightly higher for small changes in 
the delay.

Figures 6.2 show the effect of available data points on the efficiency of the EE and 
OE method in detecting and isolating a change. As can be seen from the graphs, 
except for the case of isolation of the change in the time delay, for =  1, using 
1000 data points, changes in the parameters can be detected and isolated at a rate of 
almost 100%. For the detection and isolation of the delay more data points are needed.

Effect of noise

In this section, we present some results on the effect of noise level and noise dynamics 
on the performance of the EE and OE based methods. The performance is measured 
on the basis of the rate of false alarm. The false rate is defined as the detection rate 
when there is no change in the process model based on 100 Monte Carlo simulation 
runs.
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Table 6.1 shows the false alarm rate of the OE and EE method when the noise is 
white. The threshold was chosen numerically based on the x 2 values obtained using 
the OE method and the training data and for a false rate or 2%.

Table 6.1: False alarm rate for white noise.

NSR 5% 10% 15% 20%

OE 2 2 2 2

EE 3 3 4 4

When colored noise sequences were added to the test data, for the threshold men­
tioned above, the false alarm rates of the OE and EE method were found to be very 
different. Table 6.2 shows the results of false rate for colored noise. The colored 
noise sequences were generated by filtering white noise sequences with the following 
discrete-time filter.

Table 6.2: False alarm rate for colored noise.

NSR 5% 10% 15% 20%

OE 0 0 0 0

EE 5 9 16 22

6.4.2 M ultivariate m odel validation

A MIMO process can be considered as a set of MISO processes and in this section, 
we present simulation results on the validation performance of the proposed method 
using a MISO process having the following output equation.

1 95p~7s 1/=~4s
y W  = ^ T T ^ ) +  3 o J T I c/!(s) +  £ W  (6'44)
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The parameter vector for this process is

#  =  [a l , l  ^ 1 , 1  ^ 1 , 1  ^ 2 , 1  £>2 , 1  <̂ 2 , l ] T

=  [20 1.25 7 30 1 4]t

RBS signals were chosen for both u\ and u?. The sampling interval was 1 second. 
A random noise signal corresponding to a NSR of 10% was added with the noise free 
output to generate the noisy output signal. Results obtained from 100 Monte-Carlo 
simulation runs are presented in Figures 6.3 and Figures 6.4. The threshold was 
selected for this example according to a false alarm rate of 5%. The detection and 
isolation rates are near 100% for the gain parameters for AjA > 1 and N  > 100. 
Although such a small change of other parameters cannot be detected and isolated at 
100% rate, when either the change is larger or the length of available data points are 
more, the detection and isolation rate can reach as high as 100% for all parameters.

6.5 Concluding remarks

Local approach based model validation methods for discrete-time models have been 
studied by several researchers. We present here validation methods, also based on 
the local approach, for continuous-time models with time delay. The ability to detect 
change in the delay is a unique feature of the proposed algorithms. The different for­
mulation, namely the equation error and output error formulation of the validation 
problem of single input single output models have been provided and comparative 
study based on simulation results have been presented. Comparatively better perfor­
mance in detection and isolation and insensitivity to disturbance give the output error 
based method preference over the equation error method. Also validation method for 
multiple input single output models have been presented with simulation results. The 
proposed methods can efficiently detect and isolate changes in different parameters 
provided that the change is significant compared to the noise level and an informative 
data set is available.
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C hapter 7 

C onclusions

7.1 Contributions of this thesis

The main contributions of this thesis can be summarized as follows:

• A new linear filter method has been proposed for simultaneous estimation of 
the time delay and parameters of continuous-time transfer function models. In 
order to implement the idea of bringing the delay term within the parameter 
vector of an estimation equation, a novel structure of a linear filter is proposed 
that facilitates the estimation of the delay and model parameters following an 
iterative procedure. The method can estimate fractional time delays and is 
applicable regardless of the order of the model.

• In an effort to meet the requirements of the application world, methods tai­
lored to cope with industrial data have been proposed. A simple procedure 
based on the idea of iterative prediction has been presented for identification of 
continuous-time models from irregularly sampled output data.

• Novel methods for identification from both open loop and closed loop step re­
sponse data have been presented. The methods do not require data in their 
deviation forms. Consequently, raw industrial data without the required pre­
processing can be used directly for identification.

• A continuous-time multiple input multiple output (MIMO) model identification 
method is introduced that uses the idea of decomposition of the MIMO data 
matrix into its single input single output (SISO) equivalents. The decomposition 
allows the use of SISO identification methods for the identification of MIMO 
models while the requirements for the MIMO test procedure are met.
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• Validation techniques for continuous time SISO and MIMO/MISO models are 
presented. Ability to detect and isolate change in the delay term of the models 
is a unique feature of the proposed model validation method.

7.2 Recommendations for future work

Research initiatives on the topic of the current research and the following related 
fields are worthy of further investigation:

• In this thesis, simultaneous time delay and parameter estimation problem has 
been considered within the frameworks of linear filter methods for continuous­
time identification. Other approaches of continuous-time identification may 
also be explored to search for development of more convenient, simpler, yet 
numerically robust methods.

• Several methods proposed in this thesis involves iterative solutions. However, 
the theoretical analysis of the convergence of the iterative algorithms has not 
been addressed. Initiatives can be taken to analyze the theory of the converging 
phenomena of the iterative schemes which may also provide more insights of the 
algorithms.

• Fixed point iteration methods have been used in this work for the iterative 
solutions of the parameter estimation equations. It is worthwhile to investi­
gate how the statistical properties of the estimated parameters can be obtained 
theoretically. Also the possibility of obtaining computationally less intensive, 
numerically more robust and more accurate algorithms can be investigated.

•  The multiple input multiple output model identification method presented in 
this thesis requires that Nu (number of inputs) number of experiments to be 
performed and the tests should start from steady state conditions of the outputs. 
It is worthwhile to investigate whether the requirement of initial steady state 
conditions can be relaxed. This will facilitate the use of data with non-zero 
initial conditions. But more importantly, data from a single test would be 
considered enough as one would be able to use different segments of data as 
representatives of different experiments.
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A ppendix  A

Convergence o f fixed point 

iteration

A .l  Fixed point iteration

To solve an equation f (x)  =  0 using the procedure of fixed point iteration, the basic 
step is to express the equation as x  = g(x). The function g(x) can be said to define a 
map on the real line over which x  varies, such that for each value of x, the function 
g(x) maps that point to a new point, x. Usually this map results in the points x  and 
x  being some distance apart. If there is no motion under the map for some x  =  xp, we 
call xp a fixed point of the function g (x) and which is also a zero of the corresponding 
function f (x) .

Now, suppose tha t we are able to choose a point xo, which lies near a fixed point, 
we might speculate that under appropriate circumstances, we could use the iterative 
scheme, x n+i = g(xn), with n = 0,1,2, • • •, and continuing it until the difference be­
tween successive x n is as small as required for the desired precision, an approximation 
of the fixed point of g(x) can be obtained. This is the basic principle of a fixed point 
iteration scheme.

The main topics of this discussion are

1. The convergence and divergence criteria of a fixed point iteration scheme

2. Methods to make a diverging scheme converge
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3. Simple transformation that makes a scheme converge monotonically which oth­
erwise diverges monotonically.

We would make an assumption that within the range of the value of x  we are inter­
ested in, the function f ( x )  has only one solution, which is a typical assumption of a 
fixed point iteration scheme, which means that there is only one fixed point of g(x).

A .2 Convergence criterion

Let us consider the following simple function

f (x)  — x — m{x — a) (A.l)

Now, for solution using fixed point iteration, the straightforward choice for g(x) is

g(x) =  m{x — a) (A.2)

For the first case, we put a value m  =  1.5. For this case, we denote g{x) by ga(x).
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Figure A.l: Graphical representation of fixed point iteration.

From figure A .l we see that, any initial value of xo, other than xp, the subsequent 
values of x[s are farther away from the fixed point which is the phenomenon of diver­
gence. Here we observe the phenomenon of monotonic divergence.
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Now, if m  =  0.5, we can see that the iteration scheme converges monotonically. 
For this case, g(x) is denoted by gb{x) in figure A.l.

In general, we can divide the area over which the function g(x) maps x, into four 
sub-areas as shown in Fig.A.2. The criteria of convergence and divergence can be 
summarized as:

M onotonic convergence g(x) bounded between y = x  and y =  xp.

Oscillating convergence g(x) bounded between y = xp and y =  —x.

M onotonic divergence g(x) bounded between y = x  and x — xp.

Oscillating divergence g(x) bounded between y =  —x  and x  =  xp.

Figure A.2: Convergence and divergence regions of fixed point iteration.

A .3 M ethods to make a diverging scheme converge

Considering the function f (x)  =  x  — m{x — a), with m  =  1.5, we saw that expressing 
it as x  =  gi(x) where g%(x) =  m{x — a), does not lead to convergence. For such a
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case, to develop a converging iteration scheme, an available option is to express the 
equation in a different way, e.g. x = g2 (x), where <72 (^) is bounded by the region of 
convergence. Say for the above example we can write

x  =  —x  +  a (A.3)
m

Another option to express f (x)  =  0 as x — gfix) =  x  +  f (x) .  If gz(x) maps x  in the 
region of convergence, we can reach the solution. For the current example this can 
be done as writing x = x  +  [x — rn(x — a)]. For the given values of m  =  1.5 this also 
maps x in the region of convergence.

Now expressing f (x )  =  0 as x = x  +  f ( x )  does not lead to convergence always. 
Say for the above example if m  — 3.5, then x  =  x  +  \x — 3.5(cc — a)] does not map x 
in the region of convergence. Such an equation can still be solved using the method 
of fixed point iteration by expressing it as x  =  x  +  ^[x — 3.5(x — a)]. With a suitable 
choice of r, it is obvious that such a scheme will converge.

Now to put the current problem into perspective, we will consider only the prob­
lem of monotonic divergence. From the discussions in the previous section we can 
summarize the monotonic convergence/divergence criteria as

If a fixed point iteration scheme x = gi (x) diverges monotonically, another scheme 
x = x  +  ^[x — gi(x)\ will converge monotonically if  gi(x) is bounded by the region 
y = x  and y — (r + l)x  +  c where c is a constant satisfying that y passes through the 
fixed point.

A .4 The iterative procedure for parameter and de­

lay estimation

So far we have discussed on the convergence of fixed point iteration in general. Next, 
we will consider the iterative procedure presented in chapter 2 for simultaneous esti­
mation of the model parameters and the delay. We present the discussion in terms 
of the answers to the following questions.

Does it belong to  the category o f one-dimensional fixed point iteration ?
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Our answer to this question is yes. Here, though we are considering estima­
tion of all the parameters including 6, the iteration is only on <5. So, from the 
point of view of fixed point iteration, it can be said that we have expressed the 
equation as 5 =  g(S), which is the general formulation of a fixed point iteration 
scheme for the estimation of a single parameter.

Is the iteration scheme convergent ?

The iteration procedure is monotonically convergent except for non-minimum 
phase processes. However, for non-minimum phase processes it is monotonically 
divergent. The theoretical proof of this convergence/divergence phenomena is 
beyond the scope of this research. The above statement is done based on exten­
sive simulation study. For a large number of processes with different orders and 
zeros and poles scattered over a wide range, simulation results show that for 
non-minimum phase processes g(6) lies in the region of monotonic divergence 
while for minimum phase processes it lies in the monotonically convergence 
region. A number of simulations shows the same trend.

How to make the divergent scheme converging ?

As mentioned in the previous section, if expressing an equation in the form 
S = gi(6) does not lead to convergence, alternative expression as S = g2(5) can 
be tried. Here, we had 6 =  gi(S) = Q(n +  m  +  2)/Q(n +  m  +  1) where, 0 is given 
by eqn(2.48) and eqn.(2.50) with $  =  <f>(<5) and T =  T(5). and it was found 
that only for non-minimum phase processes this does not converge. But from 
simulation we found that if we express the function as 6 = g2(S) — 5+£[<5—<7i(<f)] 
the iteration converges for r  =  1. So, if the diverging scheme gives

= s i M  (a .4)

To make the scheme converging, we choose

$ + i =  S i +  [Si -  f t ) ]  =  S i +  f t  -  5 f+ 1] (A.5)

We define A5 =  A; — Sf+l and for successive iteration for a value of d,, Sl+i is 
computed as

=  <5j +  A<5 (A.6)

Note that eqn(A.6) is applied only for the non-minimum phase processes. For
the minimum phase processes, the original fixed point scheme, where <5j+i =
5 i(dj), leads to convergence.
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A ppendix  B 

SISO equivalents o f M IM O  

variables

B .l  Input and outputs expressions

Given below are the single input single output (SISO) equivalent expressions of input 

and output signals for different order multiple input multiple output (MIMO) models.

Two input three output (2 x 3) process

U — u\ * V-2 — u\ * u\

yu = y \ * u l - y l * u \  

ya = y\ * u \ -  yj * u\ 

i = 1,2,3.
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Three input two output (3 x 2) process

U =  u\  * U2 * ^3  ~  U1 * u2 * u3 ~  u2 * U1 * u3 +  u2 * U1 * u 3 +  u3 * U1 * u2 ~  u3 * U1

ya = y\ * (u\ * -  v% * ui) ~ Vi * (u\ * u3 -  *4 * ul) + vt * ( u 2 * ul ~ ul * us)

ya = y\ * (ul * 4  -  Ml * ul) -  yf * (u\ * uf -  uf  * t4) + yf * (m| * u22 - u\ *  u\)

Viz -  Vi * (u\ * u \ - u \ *  ul) -  yf  * (u{ * u l ~ u \ *  u^) +  yf  * (u\ * u 2 - u \ *  u\)

i = 1,2.

Three input three output (3 x 3) process

u — u\ * ul * ul — u\ * u\ * ul — ul * ul * ul +  u\ * uf * ul + u\ * u2 * u\ — u\ * uf

yn = Vi * (ul * 1*3 -  u 2  * ul) -  yf * (u\ * ul -  ul * ul) + yf * (u\ * u\ ~ u 22* u\)

Vi2 = - y 1i * ( u l * u l - u l * u l ) + y 2i * ( u \ * u l - u \ * u \ ) - y f * ( u \ * u l - u l * u \ )

Viz = y} * (ul * u l ~ u \ *  ul) -  yf * (u\ * u l ~ u f *  u\) +  yf * («} * ul - u f *  u\)

i = 1,2,3.
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Four input four output (4 x 4) process

u  = l if  * (u \  * u f  * u f  — u f  * u f  * w4 — m3 * W2 * u t  +  UZ * m2 * u 4 +  u 4 * u f  * u f  — u f  * u f  * u f  )

- u f  * (u f  * M3  * u f  +  «2  * w 3  * m4 +  m3 * m2 * u t  ~  u \  * u 2 * u 4 ~  u \  * U2 * u 3 +  U\  * U2 * u l )  

+ u f  * ( u f  * u f  * u f  — u \  * U3  * u f  — u f  * u f  * u f  +  M3  * u \  * u f  +  u \  * u f  * u f  — u \  * u f  * u \ )

—u f  * (u f  * u f  * U4  +  u f  * U3  * u |  +  u f  * u f  * u f  — u f  * u f  * u |  — u f  * u f  * U3  +  u f  * u f  * u f  )

y n  =  y f  * ( u f  * u l  * u f  -  u l  * «3 * u \  — M3 * u f  * u \  +  u f  * u \  * u f  +  u |  * u f  * u f  -  u f  * u f  * u f  ) 

~Ui  * (wi  * u f  * u f  +  u f  * u f  * u f  +  u f  * u f  * u f  — u f  * u f  * u f  — u f  * u f  * u f  +  u f  * u f  * u l )

+Vi  * (u 2 * u l  * u f  — u \  * u f  * u f  — u f  * u l  * u f  +  M3 * u l  * u l  +  u \  * u l  * u f  — u f  * «2 * U3)

- y f  * ( u l  * u f  * u f  +  u f  * u f  * u f  +  u f  * u f  * u f  -  u f  * u f  * u f  -  u f  * u f  * u f  +  u f  * u f  * u l )

y i2 =  —y f  * ( u f  * u f  * u f  +  u f  * u f  * u f  +  u f  * u f  * u f  — u f  * u f  * u f  — u f  * u f  * u f  +  u f  * u f  * u f )

+ y f  * (u f  * u |  * u f  — u \  * u f  * u f  — u f  * u f  * u f  +  u f  * u f  * u f  +  u l  * u f  * u f  — u f  * u f  * u l )

—y f  * (u f  * u f  * u f  +  u f  * u f  * u f  +  u f  * u f  * u f  — u f  * u f  * u f  — u f  * u f  * u f  4 - u f  * u f  * u | )

+ y f  * (u f  * u f  * u f  — u f  * u f  * u f  — u f  * u f  * u f  +  u f  * u f  * u f  +  u f  * u f  * u f  — u f  * u f  * u f )

Viz =  y f  * ( u f  * u f  * u f  — u f  * u f  * U4 — u f  * u f  * u f  +  u f  * u f  * u f  +  u f  * u f  * u f  — u f  * u f  * u f

—y f  * (u f  * u f  * u f  +  u f  * u f  * u f  +  u f  * u f  * u f  — u f  * u f  * u f  — u f  * u f  * u f  +  u f  * u f  * u f

+ y f  * (u f  * u f  * u f  — u f  * u f  * u f  — u f  * u f  * u f  +  u f  * u f  * u f  +  u f  * u f  * u f  — u f  * u f  * u f

—y f  * (u f  * u f  * u f  +  u f  * u f  * u f  +  u f  * u f  * u f  — u f  * u f  * u f  — u f  * u f  * u f  +  u f  * u f  * u f )

y i4 =  — y f  * ( u f  * u f  * u f  +  u f  * u f  * u f  +  u f  * u f  * u f  — u f  * u f  * u f  — u f  * u f  * u f  +  u f  * u f  * u f )

+ y f  * (u f  * u f  * u f  — u f  * u f  * u f  — u f  * u f  * u f  +  u f  * u f  * u f  +  u f  * u f  * u f  — u f  * u f  * u f )

—y f  * (u f  * u f  * u f  +  u f  * u f  * u§  +  u f  * u f  * u f  — u f  * u f  * u§  — u f  * u f  * u f  +  u f  * u f  * u f )

+ y f  * (u f  * u f  * u f  — u f  * u f  * u f  — u f  * u f  * u f  +  u f  * u f  * u f  +  u f  * u f  * u f  — u f  * u f  * u f )

i =  1 ,2 ,3,4.
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