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Abstract

Child pedestrian injury remains an important concern both nationally and internationally.
Although this topic has been of considerable interest among injury epidemiologists in the
last decade, child pedestrian injury remains largely unexplored by geographers. Using
both geographical and epidemiological techniques in data preparation, data
transformation and data analysis, [ attempt to isolate the spatial dimensions of risk while
also considering temporal patterns in injury frequency. Results suggest that features of
the social and physical environmental together put children living in the inner-city at
greater risk than children living in suburban areas. The observed core-periphery gradient
emphasises the importance of place in understanding human well being. The results also
suggest that alteration of the times that children go to school, particularly in the morning

hours, may reduce the frequency of collisions.
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1. Introduction

1.1 The Problem of Child Pedestrian Injury

Child pedestrian injury has been studied in considerable detail in the last few decades.
Research in New Zealand, Australia, the United Kingdom, the United States and Canada
has resulted in a substantive body of literature describing behavioural, environmental and
social factors of risk. Pedestrian injury rates have been dropping in many countries as
well; initiatives in Sweden have reduced child pedestrian injury mortality to near zero.

Despite this evidence, child pedestrian injury remains a leading cause of death in
many industrialised countries, including Canada. In 1996, 183 children aged 0-14 years
died in Canada as a result of motor vehicle-related collisions, 63 of which involved
pedestrians (Statistics Canada, 1996). When compared with 1996 data on other major
causes of death within this age group (208 deaths from all forms of cancer, 79 deaths
associated with respiratory illness and 126 deaths related to diseases of the nervous
system and sense organs), pedestrian injury fatalities are clearly a significant public
concemn (Statistics Canada, 1996).

Eliminating all automotive transport would reduce the pedestrian-automobile
collision injury rate to zero. Although most people would consider this to be an
unreasonable solution to the problem of pedestrian injury, it does illustrate the role that
society as a whole can play in influencing health. Our society makes a tacit decision that
a certain amount of injury and death from pedestrian-automobile collisions is an
acceptable consequence of the convenience of automotive transport. This research will
not discuss the ethical conflicts inherent in this statement; the argument merely suggests

that like many issues in health, child pedestrian injury is intertwined with social decision



making. Therefore, the study of pedestrian injury is important not only from a public
health and epidemiologic standpoint, but also from cultural, ethical, political and
economic perspectives.

This topic also has important implications for the broader issue of child health.
Recent research in Europe has suggested that environmental and educational
interventions to reduce risk of pedestrian injury have contributed little to modern
reductions in injury incidence (Hillman et al., 1990). Instead, evidence suggests that
these reductions are more a function of reduced outdoor play activity in children, and
greater restraints placed on independent activity among children in general. Concern
about traffic safety remains a chief parental concern (Hillman et al., 1990). Although
little research has explored the relationship between children’s outdoor activity and
health in detail, it is possible that this reduction in activity is related to decreases in
overall child health, perhaps most notably with regard to the increased prevalence of
childhood obesity (Shimai et al., 1993; Muller et al., 1999).

Recent technological and methodological advances offer new opportunities for
investigating the spatial variability of health and well-being in urban communities. In
recent years, geographic information systems (GIS) have become easier to use and have
dropped considerably in price'. Combined with the increased availability of data,
researchers are more able to integrate environmental and population data into geographic
studies of health outcomes. Important statistical problems associated with mapping rare
health outcomes have been addressed in the medical geography literature in recent years.
In the past, studying rare health outcomes in the urban setting was problematic because

there was no simple method for dealing with statistical uncertainty in incidence rates.



This challenge has been the object of considerable study in recent years, and methods
have been devised to address these problems.

Child pedestrian injury is well suited to the application of geographic theory and
methodology specific to the urban environment. Research in child pedestrian injury has
shown that characteristics of the urban environment are important determinants of risk.
The design of these urban environments—from the design of neighbourhoods to the
routing of traffic—is the occupation of urban planners, many of whom have backgrounds
in geography. Yet epidemiological and geographical research on the topic of child
pedestrian injury remain disparate. The addition of geographic methods and theory into
the epidemiology of child pedestrian injury is an important step in developing a complete
understanding of this health outcome. The exploration of spatial relationships may reveal
previously unconsidered factors of risk, and may offer some explanation of poorly
understood relationships. Prevention programs will also benefit from this
interdisciplinary approach. Knowing about areas where risk of injury is unusually high
may improve the effectiveness of educational and environmental intervention programs.
1.2. Objectives

The goal of this study is to present comprehensive and useful information on the
geographical epidemiology of child pedestrian injury in an urban environment. This
requires a methodological and theoretical approach that reveals the spatial and non-
spatial characteristics of a) the outcome itself and b) the factors of risk.

Three key objectives are addressed in order to meet the study goal. First, the
spatial, temporal and demographic distributions of child pedestrian injuries are described.

Secondly, determinants of risk are analysed in a multivariate framework where the



separate influences of various factors can be compared. Finally, the spatial distribution
of the relevant risk factors is investigated, and compared to the spatial distribution of
injuries.

The first objective is met by using recent data (1995-1999) on child pedestrian
injury in Edmonton to describe the differences in risk between genders, as well as
patterns in the time and date of injury. Various graphical representations and descriptive
statistics are used to identify temporal and demographic trends. A geographic
information system is used to present and analyse spatial relationships in these data. In
addition, a map of city-wide injury rates is developed which accounts for the
methodological complications associated with mapping rare data in small areas.

Objective two is met by using previous literature on child pedestrian injury to
choose variables for critical study. This study supposes that previous epidemiological
research in child pedestrian injury has successfully identified the main factors of risk, but
asserts that a geographical approach may add important knowledge to the understanding
of child pedestrian injury. Therefore, this study analyses factors of risk similar to those
explored in previous research, but uses a methodological and theoretical approach
ignored in most literature on child pedestrian injury. The study variables are analysed
using multivariate statistical techniques in order to understand the relative role of risk
factors in explaining the spatial variability of injury rates. This approach is important
since there are many factors of risk, and the relative importance of these factors can be
understood only after controlling for separate effects.

The final objective is met by using the information from the statistical model to

develop a spatial representation of risk factors. This map of combined risk factors is then



compared to the map of injury occurrence to aid in interpretation. It is also compared to a

map of residual error from the multivariate model.

1.3. Rationale
The results of this research do not offer information about risk to individual

children. Instead, this research offers a perspective on how risk varies among

neighbourhoods and over space®. This distinction is important for several reasons:

i) A study of neighbourhoods in an urban environment provides unique information
about risk in a spatial context and at a spatial scale that has been generally
unexplored in pedestrian injury research. In this way, this study is exploratory,
even in light of the breadth of epidemiological research.

it) This research provides information to local public health officials interested in
variability of risk over space. An accurate spatial representation of risk can be
useful for the development of prevention strategies aimed at education or
environmental modification.

iif) The techniques used should contribute to the methodological literature in small-
area research. As an analysis of rare events in a small area, this study of
pedestrian injuries will face the many problems associated with analysing rare
health outcomes. This study will explore the options for mitigating these
problems, and if successful, demonstrate a method appropriate for extracting

meaningful and representative results.



Notes

! Although base packages from major software vendors (ArcView and Maplnfo) cost thousands of dollars,
several new commercial packages offer full fumctioning geographic information systems under $200 (eg.
Manifold, Mapsmith). Free geographic information systems have been developed as well. GRASS GIS
can be downloaded for free from www.geog.uni-hannover.de/grass/welcome.html.

2 Occasionally the term “neighbourhood” will be used in place of the term “census tract” which is the more
precise term for the unit of study used in this research project. The neighbourhood subdivision as defined
by the municipality of Edmonton is similar in size to the census tract as defined by Statistics Canada. As
will be discussed in later sections, the census tract is assumed to be a region of geographic relevance to
children. For these reasons, the term neighbourhood was deemed appropriate for periodic use.



2. Theoretical Overview

This section outlines and discusses the key methodological and theoretical issues related
to this study. It includes a discussion of issues in geography and heaith research and an
overview of pedestrian injury literature.

2.1 Issues in Geographical Epidemiology

Although the spectrum of academic pursuits under the heading of geography
make simple definitions of the discipline difficult, in the strictest terms, geographic
research concerns itself with places. Geographic data that describe places or how
characteristics vary between places are an important resource in most quantitative
geographic research. Researchers transform these data into useful information about
causal relationships, spatial patterns, and changes over time.

The potential of geographical information to aid health researchers goes back as
far as the origins of epidemiology. John Snow’s research on cholera is a landmark study
in epidemiology. Geographical recreations of Snow’s study indicate a very strong spatial
pattem in his data; the mean centre of cholera deaths is located very close to the notorious
Broad Street pump (Meade, 1985). John Snow did not have the tools to observe detailed
spatial relationships between exposure to this contaminated water pump and death from
‘cholera, but it is clear that such knowledge could have aided his study, particularly if he
were restricted to a smaller sampling frame. Geographical methodology also played an
important role in understanding the causes of rickets and skin cancer (English, 1992).

Research on Lyme disease (Glass et al., 1995), exposure to radon (Kohli et al.,
1997), groundwater vulnerabilities to pesticides (Teso et al., 1996) and exposure to high-

voltage transmission lines (Wartenberg et al., 1993) are more recent examples of research



that has used geographic data and approaches to understand health. In most of these
examples, geographic information systems were important at every stage of study: data
obtained from geographic information systems were used for the development of study
hypotheses and geographic information systems were also necessary for data analysis and
presentation of the results.

As interest in geographic information and spatial data analysis grows among
health researchers, it is important to acknowledge the difficulties associated with such
research. Arguably, the two most important topics relevant to modern geographical
epidemiology involve the problem of analysing geographically aggregated data and the
role of contextual effects on health. Any researcher using geographic data to understand
the epidemiology of a health outcome must be familiar with these issues and how they
affect the meaningfulness and interpretation of their research.

2.1.1 Ecological-Level Research

Analytical ecological-level studies—those studies that analyse relationships
between geographically aggregated characteristics—have been the target of criticism
inside and outside of health research since early examination of the practice in the Fifties
(Susser, 1994). These are distinguished from individual-level studies that test
associations between the characteristics of individuals themselves. The correlation
between average income and cancer incidence in ten neighbourhoods is an ecological-
level relationship. The correlation between income and a dichotomous variable (cancer
vs. no-cancer) among ten individuals is an individual-level relationship. The term
“ecological fallacy” has been used to argue that correlations (usually of means) based on

aggregated data should not be used to make inferences about relationships at the level of



the individual (Selvin, 1958). Research by Robinson (1950) showed how correlation
between race and literacy varies considerably depending on whether the statistics are
based on individual-level or aggregated data. In one case, a 0.773 correlation between
race and literacy using aggregated data fell to 0.203 when based on individuals (Robinson
1950). Such systematic change in magnitude of correlation is explained by the fact that
aggregated data suppress the variability inherent in individual-level data. Thus
correlations based on such aggregations will generally show stronger associations. When
the intent is to measure the relationship between individual-level factors, like race and
literacy, ecological-level associations can provide misleading information.

Frequently researchers are forced to use ecological-level associations to
understand individual-level relationships. In most jurisdictions, cost and confidentiality
concerns prevent researchers from obtaining detailed information about individuals. The
classical epidemiological approach typically considers studies based on ecological-level
data as no more than inexpensive precursors to more detailed individual-level studies.
This idea is based on the positivist scientific tradition which established an early standard
for reasoning in most social sciences where cause-effect inferences are often harder to
make compared to the natural sciences (Little, 1998). Epidemiologists have used this
philosophical tradition not only as the basis for formulating hypotheses, but in assessing
the legitimacy of hypothesised causal relationships. In their introductory epidemiology
text, Henneckens et al. (1987) claim that there are three “positive” criteria fundamental to
assessing the validity of a cause-effect relationship: strength of association, biological
credibility and consistency of findings in other research. Put simply, if i) the magnitude

of an association between the cause and effect is strong, ii) there is a reasonable



physiological connection between the cause and effect, and iii) there is agreement among
other studies of this relationship, then causality can be inferred.

Interpreting meaningful associations between ecological-level risk factors—like
neighbourhood income—and broad, inclusive health outcomes—Ilike neighbourhood
mortality rate—is especially difficult given the requirements of cause-effect inference as
it is defined in the epidemiological tradition. Mortality includes all outcomes of death,
and therefore inferring clear causal links between this outcome and ecological-level risk
factors is impossible. It is not feasible to study any biological relationship between
neighb‘ourhood deprivation and mortality because neither variable provides a context for
clinical research, and therefore the second criteria can never be met. Even ecological-
level studies that compare the effect of specific variables on specific health outcomes
cannot satisfy these criteria. From this reasoning, it has been argued that although
ecological-level studies can show statistical associations between possible determinants
and outcomes, they cannot provide sufficient insight into these associations to infer
causal relationships. This explains the view that ecological-level studies are meant for
“quick and dirty” analysis preceding more detailed individual-level studies (Hennickens
et al., 1987).

Bias is also a potential problem in ecological-level studies, particularly when the
health outcome under study is non-specific. Ecological-level bias occurs when the effect
of a risk factor differs among areas under study (effect modification) or when
unconsidered risk factors are differentially distributed between areas (English, 1992).
The former is less of a problem in small-area ecological studies (like the comparison of

neighbourhoods) where geographic cultural variability is usually small. Multivariate
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analysis can also mitigate these problems when data are available, study areas are small
and the outcome under study is specific. However, when the mathematical and
theoretical problems relating to ecological-level associations are considered together,
research based on ecological-level studies is a common target of criticism.
2.1.2 Contextual Effects on Health

Despite these arguments, the ecological-level study remains a frequently used
method of analysis in the social sciences, particularly in sociology and geography. This
is partly an issue of data availability; however, some proponents argue that this approach
to research is a very important component of studies that investigate the role of the
physical or social environment on health. Perhaps the most important function of
ecological-level approaches is that they are effective tools for studying contextual
effects—how characteristics of groups (geographic or otherwise) affect individuals
(Susser, 1994). For example, the relationship between neighbourhood income and
neighbourhood mortality rate is contextual if, after controlling for individual-level
income, the income of the neighbourhood in which a person lives influences mortality
risk. Associations between group characteristics and a health outcome require one to
analyse characteristics of these groups specifically in addition to observing the
relationships at the level of the individual. Indeed, the key criticism of the ecological
approach—that ecological associations should be cautiously applied to individuals (the
ecological fallacy)-also applies to studies of individuals—individual-level associations
should be cautiously applied to groups (Susser, 1994). Thus, the “fallacies” are bi-
directional- the latter of which has been termed the “atomistic fallacy”. Using

Robinson’s analysis, when the inter-state relationships between literacy and race are of
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interest, the 0.773 correlation (based on aggregate data) is an appropriate measure, while
the 0.203 is not since the study resolution is the individual.

Compositional effects represent the more traditional interpretation of ecological-
level relationships (Shouls et al., 1996). Associations between ecological-level data are
compositional when they measure individual-level relationships. The association
between a community’s smoking rate and the prevalence of emphysema is probably a
compositional representation of an individual-level relationship. All other things being
equal, a non-smoker’s risk of emphysema is not dependent on whether or not he or she
lives in a community in which the smoking-rate is high or low (ignoring the possible
effects of second-hand smoke). Where there are many smokers, most of which have a
higher-than-average risk of emphysema, we would expect more cases of emphysema.
Thus it is the differential distribution of smokers that accounts for our ecological
associations. It may be that the smoking habits of a community of people do exact an
effect on the health of all individuals living there, regardiess of personal smoking status.
However, there are dominant associations based on the individual-level association
between smoking status and health that make it difficult to understand possible contextual
effects. Effectively separating these effects is both the chief purpose and greatest
challenge of the contextual researcher.

Methods in the study of contextual effects (independent of compositional effects)
continue to evolve, although there is a growing focus on multilevel modelling !. Shouls
et al. (1996) used such techniques to investigate self-reported health status and Diez-
Roux et al. (1999) to describe the role of the neighbourhood in influencing dietary

patterns to support the hypothesis that contextual effects have a role on health.
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However, these results are contrary to those found by Ecob (1996) who used similar
techniques to show that area of residence had no association with most self-reported
health measures. More recent research using multilevel statistical techniques has shown
similar results. Contextual effects explained a very small proportion of spatial variation
in health measures in a study using the Ontario Health Survey (Boyle and Willms, 1999).
The theoretical justification for research on contextual effects has been explored
in detail in the past few decades (Iverson, 1991). The focus on the effects that group
characteristics have on health was motivated by the realisation that physiology by itself
does not explain all aspects of regional or temporal variation in health outcomes
(Marmot, 1998). Rose (1991) acknowledges the role of the sociologist Emile Durkheim
in establishing the idea of how societies themselves influence the health of people.
Durkheim viewed suicide rates as functions of “collective characteristics™ and that the
very nature of societies influenced the occurrence of the phenomena in populations
(Rose, 1991). Marmot provides a revealing example to illustrate this point. In a given
modern industrialised region of the world, the rate of death from coronary heart disease is
relatively constant over time. Even with improvements in health-care and changes in the
population demographic, the rate remains relatively constant nationally (though perhaps
declining slightly), but vary considerably internationally, even between countries with
similar standards of health care. Marmot continues:
Those of us trained in medicine, or in social psychology, tend to start with the
characteristics of individuals—were the individuals who died smokers or did they
have high cholesterol? But the individuals who died this year will not contribute

to next year’s death rate. Thus, the characteristics of societies, over and above the
characteristics of individuals determine the death rate [...]. (Marmot, 1998).
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The fact that the rate of death from coronary heart disease is more or less constant over
time in the UK. suggests that something about the population and the places in which the
population live play a role in shaping the rate of death from coronary heart disease. Asa
result, a focus on populations, and the places in which populations live provides specific
insights into patterns of illness not typically visible in individual-level research.

2.2 Applying Geographic Knowledge in Health Research

2.2.1 Analytical applications

Spatial pattern detection is an important component of any urban health research.
Geographical data analysis has shown that industrial centres possess higher rates of
cancer than less industrial areas (Hoover, 1979). Environmental health researchers have
also shown considerable interest in spatial data analysis. Geographic information
systems have been used to study spatial relationships between air toxins and cancer
(Gatrell and Dunn, 1995) and childhood leukaemia and nuclear power plants (Gardner,
1992). Patterns resulting from such analyses, though often not unexpected, can indicate
that risk factors are unevenly distributed among the population.

Aggregate statistics can show a spatial or non-spatial pattern (Figure 2.1). These
maps present different information. Map A indicates an association between pairs of
moderately correlated variables, but the variable pairs are distributed randomly over
space. Map B indicates the same degree of association, however, pairs of larger
magnitude are located nearer to the centre of the map and pairs of smaller magnitude are
located nearer to the periphery. This is a spatial relationship that requires a map, or at the
very least a variable indicating proximity from the centre of the region, to impart the

researcher with complete knowledge of the processes at work. On map A, the geographic

14



Correlation=0.57 Correlation=0.57

Dark areas indicate variable pairs with larger magnitudes

15



representation of the relationship may be convenient for observing the spatial variation in
the phenomena; however, this map does not impart the researcher with new analytical
knowledge (except for the fact that there is no spatial pattern).

2.2.2 Geographic Knowledge and Prevention

In addition to helping researchers understand contextual influences and spatial
patterns of disease, the geographic theoretical framework also directly affects methods of
illness prevention. Obviously, clinical research and individual-level studies have done
much to improve human health in the past century. However, intervention and
prevention strategies that focus on populations and their neighbourhoods can also
contribute significantly to improvements in public health. The social, cultural and
physical environments exact a “nested” effect on the health of individuals: features at the
micro, meso and macro environmental scale interact to influence the context of a person’s
life (Andrews, 1985). Poverty, for example, is a social, political and cultural (ie. macro-
scale) process which affects the health of populations, but is often difficult, if not
impossible, to address at the level of individuals. Widespread increases in individual
wealth cannot occur without significant (if not revolutionary) changes in social and
political structure.

It is beyond the scope of this research to discuss the possibilities of major
political, and or social change as a strategy to improve health. However, the modification
of social or physical environments in which people live does not have to involve major
political or social upheaval. First, identifying characteristics of places that influence
health provides a focal point for environmental modification. If environmental factor X

increases the likelihood of undesirable outcome Y—independent of the immediate
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physiological causes of outcome Y—then X is a possible focus of intervention. Second,
the process of “ecological screening”—the identification of the geographic setting in
which risks are present—optimises the efficiency of prevention and promotion programs
(Andrews, 1985). Although combating childhood poverty may be beyond the abilities of
public health officials, poor communities can still be identified, and interventions can be
focussed on these communities.

Causal associations based on geographic knowledge—whether the study design is
based on points, small-areas or nations—should be made cautiously. Nevertheless,
geographic data analysis is an important method of study in much of the research in
medical geography and medical sociology and continues to be important in
epidemiological research. It is an analytical tool useful for researchers interested in
understanding spatial relationships between points or areas as well as researchers
interested in the role of contextual effects.

2.3 Theory and Epidemiology of Child Pedestrian Injury

Until the mid-Eighties, most studies of injury were descriptive with limited
analytical exploration of influences or causes of injuries (Rivara, 1990). Growing interest
in the analysis of injury can be credited to changing perspectives on injury theory. In
recent years, injury research has developed a conceptual framework that is similar to
health outcomes more traditionally studied in epidemiology, like the agent-host-
environment relationship observed in the study of communicable diseases (Guyer and
Gallagher, 1985). In the case of burn injury, for example, the agent is the heat energy

that damages the victim (host) and the environment is the physical and psychosocial
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setting in which the burn occurs—like the “child unfriendly’ old kitchen-stove (physical)
in a single-family household (psychosocial) (Guyer and Gallagher, 1985).

William Haddon was one of the first to discuss the need for developing research
approaches and prevention strategies that treat injuries like other health outcomes
(Haddon et al., 1964, Haddon, 1975). Haddon’s argument is that knowledge about injury
has advanced to the point where causal associations can be explored and identified. Like
other health outcomes, all injuries have a unique cause—exposure to mechanical,
chemical or thermal energy in a quantity or intensity that exceeds the ability of tissue to
resist damage or destruction (Haddon, 1980). Specific forms of injury are usually
subdivided into groups according to environmental settings or demographics of interest,
but the underlying relationship remains of conceptual importance. Injuries have a causal
structure which justifies the use of traditional prevention tools relating to the host-agent-
environment model. Hosts can be separated from the causes of injury by education or
behavioural modification, elimination of the sources of harm (the agents) and
modification of the environments in which the injury agents and hosts interact.

The recognition that the causes of injury have the same structure as other health
outcomes has justified more analytically oriented methods using the traditional
epidemiological tools. In the last decade, numerous case-control and cohort studies have
been conducted which have investigated the relationships between various factors and
risk of injury in children (Larson and Pless, 1988; Pless et al., 1989; Mueller et al., 1990;
Pless et al., 1995; Roberts et al., 1995; Narayan et al., 1997). Intemnational consistency in

results between these and other studies suggests that such methodological approaches to
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injury research have the potential to offer useful insights into understanding the
determinants of injuries.

In recent years there has been a growing interest in viewing the environment as a
key component of injury prevention. This has been an important dimension of injury
control in the last few decades because environmental modification does not require
repeated deliberate action on the part of individuals. The continuum between active
intervention strategies, which require persons to behave a certain way repeatedly (like
putting on a seat-belts) and passive strategies, which are “put in place” without requiring
the repeated action on the part of individuals (like air bags), is represented by a broad
range of strategies in injury prevention (Wilson and Baker, 1987). In recent years,
interest in passive strategies (which include environmental modification) has increased,
most likely as a result of the varied success of educational prevention strategies which
focus on modifying behaviour (Roberts, 1993a).

Risk of injury varies with the age, gender, socio-economic status and other
characteristics of individuals. For example, intentional injuries (like homicide and
suicide) are more likely to occur among young adult males (Powell and Tanz, 1999),
whereas hip fractures are more likely to occur among elderly women (Rozycki and
Mauli, 1991; Chan et al, 1997). Socio-economic status has also shown an important
association with injury risk in many studies. Low income has been shown to be a risk
factor for bum injuries (Warda L. et al., 1999), bicycle injuries in young children (Carlin
et al., 1995) and several types of adolescent injury (Williams et al., 1996). Although high
income has been shown to be a factor of risk for various sport-related injuries (ex.

Shugerman et al., 1992), this is probably a function of exposure (children from wealthier
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families are more likely to be exposed to certain activities: like skiing and horse riding),
and is overshadowed by the pattern of increased risk of injury in general to children of
lower income (Dougherty et al., 1990; Rivara, 1990; Durkin et al., 1994; Sparks et al.,
1994).

There are two common methods used in the study of child pedestrian injury: case-
control/retrospective cohort studies (individual-level) and geographic correlation studies
(ecological-level). Findings have varied over time; the general trend has been a change
in focus from behavioural and familial influences to the increased interest in
environmental and economic influences. An early example of the former can be found in
Backett and Johnston (1964) who conducted a case-control study in which family
characteristics, family income, and playground availability were studied in a cohort of
children aged 5 to 14. The authors found that familial characteristics—in particular,
health and occupation status of the mother—were strong determinants of pedestrian
injury risk (Backett and Johnston, 1964). Child behaviour continues to be studied in
injury research (Pless et al., 1995), often in combination with assessments of family
character and stability (eg., Husband and Hinton, 1972; Matheny, 1987; Horowitz et al.,
1988).

More recent studies have used similar methods to arrive at different conclusions,
suggesting that behavioural factors may have a small effect on injury risk independent of
socio-economic status (Rivara, 1990). In the past decade, research in Canada, the United
States, New Zealand and Australia has shown significant associations between risk of
pedestrian injury and socio-economic indicators. After controlling for parental status and

ethnicity, family income has been shown to be an important determinant of risk in New
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Zealand children (Roberts, 1994). Similar approaches have been used in other studies in
Australia and New Zealand, which have offered perhaps the most complete studies on
child pedestrian injury in the Nineties. Results have shown, fairly consistently, a
combined role between socio-economic and environmental factors in predicting injury.
For example, in an analysis of socio-economic status, availability of safe walking areas,
traffic volume and traffic speed, Stevenson et al. (1995) found relationships between both
traffic volume and low socio-economic status and increased risk of pedestrian injury.
Pless et al. (1989), Dougherty et al. (1990) and Joly et al. (1991) showed that the
relationship between increased risk of injury and low socio-economic status persists in
Canada, while Rivara and Barber (1985) have found similar relationships in the United
States.

In an attempt to explain the relationship between income and risk of pedestrian
injury, some researchers have explored exposure to road environments. These
researchers have asked whether variation in the number of roads children cross in their
daily activity explains variation in injury risk, and in particular, the variation in risk
between children of different socio-economic groups. Leading research in Australia and
New Zezaland shows the relationship between increased road exposure and increased risk
of injury (Stevenson et al., 1996). Recent research in Canada supports these results
(Macpherson et al., 1998). In an attempt to explain these results and the relationship
between increased injury risk and low income, Roberts et al. (1996) found family car
ownership to be a strong predictor of road exposure. This research supports the ideas of

Hillman et al. (1990) who argue that drops in injury mortality over the last 30 years are
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more a function of changing frequency of pedestrian activity than improvements in
education or environmental modification.

Whatever role individual behaviour and or socio-economic status may play, the
fact that passive preventative strategies show considerably more promise in reducing
injuries has pushed forward studies of environmental risk. Of the many environmental
risk factors that have been investigated, the volume and density of traffic show the most
consistent relationship of increased risk. Using a logistic regression model, Stevenson
(1997) showed an independent effect of traffic volume (OR=1.12)?. Roberts et al. (1995)
showed a strong relationship between traffic volume and injury risk, particularly in
neighbourhoods where the number of vehicles per hour exceeded 750 (OR=13.00).
Mueller et al., (1990) showed an increased risk at collision sites where traffic volume was
high (OR=3.1). Other factors of environmental risk have been identified, including:
unavailability of play-space (Mueller), presence of curb parking (Roberts; Agran et al.,
1996), traffic speed (Mueller; Agran), and percentage of excessive speed traffic
(Stevenson et al., 1995).

Although these studies have provided important insights into the relationships
between child pedestrian injury and the urban environment, family income and road
exposure, few offer insight into the geography or spatial distribution of risk. The only
way to develop a geographical understanding of risk—for example to identify what
neighbourhoods possess the greatest collection of risk factors associated with child
pedestrian injury—is to test these associations at the ecological-level. Several recent
studies of child pedestrian injury have investigated geographical aspects of risk.

Dougherty et al. (1990) investigated the relationship between income and variability in



injury mortality in Montreal and urban areas throughout Canada. The study found that
death rates were consistently highest in census tracts with median family income in the
lowest income quintile (Dougherty et al. 1990). A study by Joly et al. (1991) showed
similar results. These studies suggest that low income status of a geographic areais a
risk factor, and that income may not have a linear association with increased risk of child
pedestrian injury. This conclusion is supported in several case-control studies (Stevenson
et al,, 1995; Roberts et al., 1995).

The failing of these and most ecological-level studies of pedestrian injury is that
despite the indication from individual-level studies that environmental factors are
important determinants of risk, these studies do not combine their investigations of socio-
economic risk factors with assessments of the physical environment. This is not
surprising since most of these studies come from the epidemiological literature, which
typically regard such ecological-level studies as precursors to more rigorous individual-
level studies. However, since such comprehensive studies of both social and
environmental risk factors have not been conducted, the spatial properties of injury risk
(as represented by the independent effects of the risk factors) remain unknown.

Wang (1994) conducted an important study of the association between
environment and pedestrian injury in a comprehensive urban setting. This research used
collisions resulting in pedestrian injury between 1982 and 1990 in the city of Edmonton.
Results showed that in planned environments where pedestrian and automobile traffic are
separated from each other the frequency of collision was reduced. However, Wang did
not account for the effects of socio-economic confounding. Statistics from the Edmonton

Household Travel Survey show that individuals from wealthier families make a smaller



proportion of pedestrian trips than individuals from less wealthy families (City of
Edmonton Transportation Department, 1995). Wealthier families tend to live in suburban
neighbourhoods, which are generally planned. Without controlling for income variations
among neighbourhoods, it is difficult to conclude that it is the physical structure and not
the socio-economic composition of these neighbourhoods that influences the spatial
variability of injury rates. Thus, although Wang’s research studies environmental risk
factors—something that is lacking in the ecological-level literature in epidemiology—it
ignores the role of the social environment.

A further criticism of ecological-level pedestrian injury studies is that although
they employ geographic data, they neglect the study of spatial relationships. Their .
analyses do not include the investigation of areal patterning of injuries or risk factors, for
example. Complete understanding of the epidemiology of child pedestrian injury
requires an investigation of such patterns. This may also aid the development of
educational prevention programs or environmental modifications.
2.4 Conclusions

Research in health evolves with changes in the frequency of health outcomes,
medical and computer technology, theoretical considerations and statistical techniques.
Research in child pedestrian injury prevention has evolved from a focus on individual
behaviour and family characteristics to a focus on the role of the physical and social
environment. This is reflected in a change in emphasis of prevention strategies—a move
from active to passive approaches. Understanding the role of the environment in injury
risk requires an understanding of the physical and social environment, as well as

techniques of analysis that effectively assess the associations between these factors.
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Methods and theory in health and place, medical geography and geographic information
systems provide an important context for the analysis and description of child pedestrian
injury.

Although a few studies have given exploratory attention to the spatial dimensions
of pedestrian injury (eg. Braddock et al., 1994; Raybould and Walsh, 1995) there has yet
to be any comprehensive analysis in this area. In part this is due to a lack of detailed data
on injury cases, methodological problems relating to rare data, and a lack of tools to
integrate various data sources. Access to rich databases, the evolution of methods to
resolve methodological issues and the use of a geographic information system to integrate
data sources makes our study an important contributor to this area of research in child
pedestrian injury.

Ecological-level analyses are often used as a fast, low-cost tools for preliminary
analysis. However, ecological-level associations can provide information about
contextual effects as well as describe how risk varies over space. Ecological analysis and
child pedestrian injury have a natural conceptual partnership that has slowly developed
out of growing concern about environment risk. Ecological methods of analysis present a
meaningful picture of injury risk as a function of many factors, and not simply random
events occurring to individuals. The ecological picture puts pedestrian injury into a
context in which spatial processes—often undetectable at the individual level-can be
observed.

Although ecological-level studies have a tradition in child pedestrian injury,
previous research has lacked the detailed analytical exploration necessary to contribute

significantly to understanding the geography of child pedestrian injuries. The primary



failing is that none of these ecological-level studies have successfully shown independent
associations of important risk factors. Furthermore, geographic research in this area has
produced little information useful for injury prevention. Part of the problem has been the
difficulty in producing reliable maps of risk—in the form of rates or the representation of
risk factors themselves. Recently developed techniques in spatial statistics and
geographic information systems allow researchers to explore fully these geographical
issues in pedestrian injury. The re-exploration of this well-studied area of health research
using new techniques and a new theoretical approach can strengthen our understanding of

accepted risk factors and possibly offer new insights into patterns of risk.
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Notes

! Multilevel modelling is a relatively new technique which is motivated by an interest in studying
hierarchical relationships. Children in a given family possess individual characteristics as well as
characteristics common to other family members. Both of these factors differentiate them from children in
other families. In this example, multilevel modelling allows researchers to systematically differentiate
individual differences from the familial differences.

2 The odds ratio (OR) is a commonly used test of magnitude in epidemiology. Odds ratios above 1.00

suggest reflect increasing likelihood of an outcome occurring given an exposure. Odds ratios below 1.00
suggest a decreasing likelihood of an outcome occurring given an exposure.

27



3. Methods

This chapter serves two purposes. It describes the data and techniques of data analysis
used in this project, and it outlines and discusses issues of study design and techniques of
analysis.

3.1. Study Area

The population of the Edmonton census metropolitan area has grown over 16% in
the last 15 years—from 740 882 in 1981 to 862 597 in 1996 (Figure 3.1). Much of this
growth in population has occurred in neighbourhoods along the city’s perimeter.
Changes in the population of children (0-14) are similar—from 102 880 in 1981 to
126 365 in 1996'. The highest proportions of children (0-14) can be found in the
outlying areas of the city, a trend which persists over the last 20 years (Figure 3.2).

Slight variation in this demographic can be found in select regions of the city, most
apparently, a slight increase in the proportion of children in areas of Central and Central-
West Edmonton, and small decreases in parts of Southwest Edmonton. Generally
speaking, however, the spatial distribution of the children is relatively stable.

Traffic flow in Edmonton is shown on Figure 3.3. Notable traffic features are the
main freeways: Calgary Trail North and South, the Yellowhead Trail, the Whitemud
Freeway, St. Albert Trail and the main high traffic roadways like Stony Plain Road,
Jasper Avenue, 97 Street and 170 Street. These arterials represent the main routes used
by automotive commuters during weekday working hours. A more general assessment of
the pattern of traffic flow identifies increasing traffic densities closer to the downtown
core, and the Northwest industrial district, with lower densities in residential areas along

the city’s perimeter. A 1994 survey of all-purpose trips made by drivers also shows a
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strong core-periphery traffic movement pattern (City of Edmonton Transportation and
Planning, 1995).

The physical geography of the city is dominated by the North Saskatchewan River
Valley and to a lesser extent, its two main tributary valley systems: the Mill Creek and
Whitemud Creek ravines. In addition to being physical barriers to pedestrian travel, their
presence exhibits a relationship with the spatial distribution of various social and
demographic indicators throughout the city. The 1996 average dwelling value in
enumeration areas adjacent to the North Saskatchewan River Valley ($174 000) is larger
than the average dwelling value of all other enumeration areas ($116 000) (Statistics
Canada, 1996b). Average individual income shows a similar pattern—3$36 000 for areas
adjacent to the River Valley, $23 000 for all other areas.

The Edmonton transit system consists of 120 bus routes throughout the city, with
a ten-station single light rail transit (LRT) route extending from the city’s Northeast end
to the University of Alberta (City of Edmonton, 1996). In addition, there is a small fleet
of community buses that offer access to the main bus routes in low traffic residential
neighbourhoods (City of Edmonton, 1996). Despite the availability of the transit service,
its percentage of total daily person trips (8.6%) remains far behind automotive (77.7%)
and slightly behind pedestrian (11.5%) modes of transport in Edmonton (City of
Edmonton Transportation and Planning, 1995). The highest densities of bus routes
corresponds with highest areas of commercial activity—the downtown area and major
shopping malls (City of Edmonton, 1996). There are two peak hours of transit use: 8:30

a.m. and 4:00 p.m. (City of Edmonton Transportation and Planning, 1995). The LRT
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route provides important high-frequency service these same hours as well as brief peaks
during hockey and football games.
3.2 Study Resolution and Child Mobility

One hundred and thirty-eight urban census tracts were chosen as the units for
analysis. Census tracts were removed according to two criteria. First, tracts were
excluded if their total population of children aged 0 to 15 was equal to or less than 100
(Figure 3.4). This removed non-residential, low population census tracts. Second, tracts
were removed if they did not contain part of the main city road network. This removed
rural census tracts, which probably represent different environments of risk to
pedestrians, and deserve separate analysis.

Given the effects that different geographical aggregations can have on the results
of a study, the choice to use the census tract as the unit of study resolution deserves
special consideration. A thorough discussion of how resolution choices affect study
results can be found in Openshaw (1984), who offers important insights into the
modifiable areal units problem (MAUP). As discussed in Chapter 1, considerable
research has shown that different levels of data aggregation will result in different
degrees of associations, and most specifically, that increased aggregation often leads to
increased statistical correlation. Attempts have been made to address this problem using
weighting techniques, but disagreement in methods has discouraged intensive research in

developing a purely statistical solution (Norcliffe, 1982).
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Census tracts are formed in co-operation between Statistics Canada and local
committees which define these geographic units based on four principles (Statistics
Canada, 1991):

1- The boundaries of census tracts should correspond to existing, and when

possible, permanent physical features (like rivers and major roads)

2- The population of non rural census tracts outside of business or industrial

areas should have populations between 2500 and 8000

3- Census tracts are formed and/or split in a manner that corresponds as closely

as possible to economically and socially homogenous areas

4- Census tracts are made to be as “compact as possible”

Census tracts are designed with the intention of representing homogenous and
contiguous neighbourhood units useful for aggregated analysis, whereas enumeration
areas are established by survey administrators to optimise the efficiency of the Census
survey procedure (Statistics Canada, 1991). Census tracts are easier to compare over
time than enumeration areas since their boundaries are usually defined by physical
landmarks and the alteration of tract boundaries is generally discouraged (Statistics
Canada, 1991). Enumeration areas usually represent smaller populations and smaller
areas than census tracts, and are designed as building blocks for higher-order geographic
divisions. Enumeration areas are not constructed to represent local regions or
neighbourhoods with common characteristics.

Aside from the obvious difference in their spatial extents and the average
population that they contain, the enumeration area and the census tract have geometric

differences relevant to geographic research. Table 3.1 shows the differences in average
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area, average perimeter, the standard deviation of area, compactness and minimum and

maximum sizes of each within the study area®. The average area of the census tract is

T R Rt ) J

(Km.%) Mean Mean 95% CI Compactness

Mean SD Min. Max. | Perimeter (Km) Compactness| Lower Upper
cr| 2120] 2.170] 0485] 19.713 6.150| 4.440 4.350] 4.520|
EA | 0413] 1.780] 0.001] 15.641 3.100| 5.310 5.230 5.390}

larger than that of the enumeration area; however enumeration areas are both less
compact in shape, and have a larger range of sizes, with an extreme value near in area to
the largest census tract. Figure 3.5 shows a segment of the Edmonton map broken down
into census tracts (thick lines) and enumeration areas (thin lines).

Several factors discourage the use of enumeration areas as study units in this
project. Some Census data within the study area are suppressed in low-population
enumeration areas due to confidentiality concerns. This is considerably less of a problem
in census tracts; in fact, none of the 138 tracts which make up the study area have missing
Census data on variables used in this research. Confidentiality of child pedestrian injury
cases is better preserved in the census tract than the enumeration area as well. Census
tracts represent larger populations of people, and therefore, are better at maintaining case
anonymity.

The size of the study unit is also important. The larger the unit of study, the more
pedestrian activity of child residents will be captured within that unit (Figure 3.6). This
statement holds to the point of largest resolution where all urban pedestrian movement is

contained—the city boundary itself. Obviously, as the resolution of study area increases,
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regional heterogeneity increases, and the meaningfulness of the ecological-level
associations decrease. Therefore, a balance must be struck between capturing the
pedestrian movement of children and preserving a reasonable degree of data
homogeneity. The census tract best satisfies these conditions. It is also considerably
more difficult to make statistical inferences about smaller geographic units (with smaller
populations) than larger geographic units, when the data (in this case child pedestrian
injury) are relatively rare. This issue will be discussed in more detail later.

Most Edmonton census tracts are bordered by major arterials. A further argument
in favour of census tracts as study units is based on a possible boundary effect that these
arterials have on the movement of children. Research in cognitive mapping suggests that
the perceptions of neighbourhood in younger children are constrained by major roads
(Gould and White, 1986). If indeed these roads act as boundaries to child movement,
then the argument for using the census tract as the unit of study analysis is strengthened.

Another option would be to have geographically aggregated enumeration area
data into larger units that better represent neighbourhoods within which children operate.
Although such aggregation processes generally increase statistical associations (since
they reduce within-area variability and increase between-area variability) they have been
shown to bias results when the aggregation process is related to the dependent variable
(Hannan and Burstein, 1974). This process also reduces the generalisability of the study
results. The criteria by which Statistics Canada defines census tracts are not regionally
differentiated, therefore the results from ecological-level analysis of tracts can carry
meaning beyond Edmonton to similar cities in Canada. Finally, the aggregation process

has no optimal statistical solution. A decision must be made to classify areas according
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to some criteria, and this decision will affect the statistical associations under study
(Openshaw, 1984). Decisions on the classification of these areas according to the
independent variables will influence the results of a multivariate model. Variables not
used in the classification process will likely have more intra-group variability, and will
therefore express weaker relationships with dependent variables. At best the aggregation
of enumeration areas would slightly to moderately improve the statistical significance of
true relationships; at worst, such aggregation would bias the results in favour of the
variables used for grouping.

Yet another alternative would have been to use municipally defined standard
neighbourhoods as the unit of study resolution. These geographic areas are on average
both smaller than census tracts (though larger than enumeration areas) and more compact.
The chief reason for choosing the census tract over the standard neighbourhood area is
that tract data and tract geographic boundary files were immediately available and
geographically referenced to road and postal code information.

3.3 Residential versus Collision Environments

Case data are aggregated to census tracts based on the location of child residence.
A separate data source provides data on collision location, which could also have been
used to aggregate data. One reason I choose to use the former data source as a basis for
geographic analysis is theoretical: residential neighbourhoods represent places of
exposure. Homes are the origin of the vast majority of pedestrian trips made by children,
(Hillman and Whaley, 1979; City of Edmonton Transportation Department, 1995) and
therefore, residential neighbourhoods represent an important environment of exposure to

child pedestrians.
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Research shows that increased exposure to road environments corresponds to
increased risk of injury (Macpherson et al.., 1998). Most ecological-level and individual-
level studies that consider environmental risk of the collision areas fail to account for
spatial variability in pedestrian activity. In a study of environments around collision
sites, Mueller et al., 1990 found that neither crosswalks nor sidewalks had a protective
effect on pedestrian injury risk. However, this study did not account for the fact that
crosswalks simply get more pedestrian activity than other areas of streets. Had they
controlled for pedestrian traffic, their results may have confirmed the more sensible
conclusion that crosswalks do offer protection to pedestrians.

Unfortunately there is little comprehensive work that explores how the pedestrian
activity of children varies over space. One solution is to use information about family
income as a surrogate for frequency of pedestrian travel. Evidence suggests that family
income is inversely related to number of roads crossed (Roberts et al., 1994) and the
proportion of pedestrian journeys made (Hillman and Whaley, 1979). The collision
location database does not contain a socio-economic indicator for cases. One could
attempt to control for income by using the family income measure of the neighbourhood
in which the collision took place; however, this would assume that the cases live in these
neighbourhoods. When this assumption is false, the relationship that income has with
injury rate would be obscured, and in most cases, underestimated. Using collision
location areas also complicates the calculation of injury rates. When calculating a rate
using areas in which collisions occurred, the denominator is the population of children in

that area and the numerator is the number of collision events, none of which necessarily
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involved the children in that area. Thus these rates are poor—if not meaningless—
representations of injury risk.

Choosing to use the residential area as a unit of analysis is not without its own
problems. Although evidence suggests that children are most often injured in their
residential neighbourhoods (Mueller, 1990; Preston, 1974; Jolly 1991; Raybould and
Walsh, 1995), a proportion are still involved in collisions away from home
neighbourhoods. In these cases, the physical environment of the home neighbourhood is
probably unimportant, although the environment of the area in which the collision
occurred could still be a determinant of risk. As a result, any ecological-level analyses
using the residential neighbourhood as a unit of study will probably underestimate the
role of the physical environment in determining risk.

Both options offer challenges for conducting ecological-level analysis on
pedestrian injury. Aggregating collision location may result in an underestimation of the
importance of socio-economic factors, and prevents us from using rates as measures of
risk. Using residential locations may underestimate the role of the physical environment
in risk. This problem could be mitigated by linking the collision data to data on
residential location, then removing cases in which injuries occurred outside of the
residential neighbourhood. Unfortunately, results from a linkage of the health
administrative database and collision-location resulted in a file with only 61% of cases
linked to collision data. As no unique identifiers were available for linkage, probabilistic
methods were used, which may have resulted in a number of false links. Combined with
the fact that collision data obtained from police records are less up to date (1998/99 data

were not available for linkage), and have been shown to be less reliable than data
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obtained through health surveillance systems (Walsh and Raybould, 1995), I choose to
base the analysis on data aggregated from residential location.
3.4 Data Description
3.4.1 Child Pedestrian Injury Data

Data on injury cases were provided by the Alberta Centre for Injury Research and
Control which receives data through a monitoring system reporting all injuries admitted
to emergency rooms in the Capital Health Region since 1995. International classification
of disease version 9 (ICD-9) code E814.7 was used to identify all cases of motor vehicle-
related pedestrian injury reported in a four-year period (April 1995 - March 1999) for
children under 16 years of age. This excludes pedestrian injuries involving off-road
vehicles, bicycles and non-pedestrian (e.g. occupant) injuries resulting from motor-
vehicle collisions with pedestrians. This same ICD-9 code has been used in previous
studies of pedestrian injury in children (e.g. Roberts et al., 1992) and represents the most
precise category of pedestrian injury. Pedestrian injuries not reported to Edmonton area
emergency rooms could not be not included in the analysis. Injury severity was not
easily determinable from the data set, nor was it inferred from the location of injury on
the victim. Therefore there is no reliable manner with which to identify the most severe
cases. Since vital statistics data were not incorporated into this data set, any deaths that
occurred which were not processed through the emergency room are not included. In
addition to standard administrative data , each injury record included date of birth, postal
code of residence and gender of the injury victim. The postal codes of residence were

aggregated to the census tract using a postal code conversion file developed and
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maintained by Statistics Canada. This allowed for a meaningful ecological analysis as
well as preserving the confidentiality of injury victims.

Chart reviews of a sample of the cases did indicate some inconsistencies in the
coding of data. In a subset of cases reported to the University of Alberta Hospital,
several cases were miscoded as pedestrian-automobile collisions that were in fact
pedestrian-bicycle collisions. Assuming the other Edmonton hospitals had a similar
proportion of coding error, as many as a dozen cases (5%) may have been miscoded in
the data set. Because charts from all hospitals were not reviewed, the data set was not
modified to correct this miscoding.

3.4.2 Statistics Canada Census

This study uses several Census indicators obtained from the 1996 Statistics
Canada Census of the Canadian Population. The Canadian Census is conducted every
five years and collects data on approximately 98% of the households in Canada (Statistics
Canada, 1991). Census representatives hand out one of two questionnaires to each
household in Canada which are filled out by the household members themselves, and
mailed back to Statistics Canada. The information contained on the short questionnaire is
obtained from every household and contains information on household relationships, age,
sex and mother tongue of residents. The information contained on the long questionnaire
is obtained from one of every five households, and covers more detailed information
including employment status, education, income and dwelling characteristics.

The Census data were made available through the Data Liberation Initiative, a
dissemination program by which researchers at participating academic institutions can

obtain Census data free of charge and in a timely fashion. The University of Alberta data



librarian also released the 1996 Census geographic boundary files, street network files
and the postal code conversion files in the summer of 1998.

Statistics Canada recognises five sources of potential error in Census data:
coverage error, processing error, non-response error, response error and sampling error
(Statistics Canada , 1991). Of'these, the latter three are most likely to bias the results of
this study, and therefore, each will be discussed briefly. It should be noted, however, that
none of these potential errors in the Census data can be easily rectified in the context of
this study. This brief overview only serves to show that interpretations related to these
data must be made cautiously.

Non-response Error is the failure of the Census to gather responses from households. A
significant majority of non-responses have been identified as coming from Indian-
Reserves, which would not apply directly to this study. However, certain urban families
may be less available during the Census period; for example, families that vacation in the
spring may be underreported.

Response Error is the inability of a participant in the Census to understand parts of the
questionnaire. Any associations between demographic or socio-economic status and the
ability of a person to accurately answer questions in the Census may affect the survey
results.

Sampling Error results when a 20% sample value in the long questionnaire is not equal to
the value were 100% of the sample stratum asked the question. Below is a table with all
Census data used in this study, and an indicator as to whether or not data are 100% or

20% samples (Table 3.2).
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Population of Children X

Proportion of Low Income Families X
Proportion of Apartment Dwellings X
Total number of Dwellings X

Occasionally, Census data are rounded (to five or zero) which makes certain
variables less reliable (Statistics Canada, 1991). This is most often a problem for
variables with low frequencies—like number of male Greek speakers in an enumeration
area. Out of a concemn for individual privacy, some data are suppressed altogether. By
restricting the study to censué tracts, one would expect that rounding error and data
suppression do not pose a serious problem.

3.4.3 Child Population

The 1996 population of children in the study region aged 0-15 was used as the
denominator in rate calculations. As this represents only one year, and injuries were
gathered from four years of data, the population was muitiplied by four to obtain the
appropriate denominator for a rate calculation. This assumes that the population of
children remained constant in all Census Tracts between 1995 and 1999. As mentioned
previously, some localised variation in population can be found in Edmonton between
1981 and 1996, but over these four years, the author deems it reasonable to assume a
static population.

3.4.4 Proportion of Low Income Families
Virtually every modern study of child pedestrian injury at the individual or

ecological level has indicated the importance of family income (or an equivalent
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indicator) as a variable in determining risk. After controlling for behavioural, familial,
ethnic and cultural factors, income has been shown to be a feature of importance.
Perceptions of neighbourhood may influence pedestrian behaviour, and may vary
dependent on individual-level and contextual factors.

As this study lacks income data on individual cases, multilevel analysis of the
contextual versus compositional effects of income on child pedestrian injury is
impossible, and therefore the relative contribution of these effects in describing the
geography of risk cannot be investigated. As a result, the proportion of low income
families probably represents a mixture of both contextual and compositional effects. In
this study, statistical associations involving low income may be affected by cross-level
bias. However, the alternative—not including a socio-economic indicator—would be to
completely ignore the role of a well established determinant.

3.4.5 Proportion of Apartment Dwellings

The proportion of apartment dwellings in each census tract is obtained by dividing
the total number of apartment dwellings (located in apartment buildings above and below
five stories) by the total number of dwellings. Availability of play space in a child’s
neighbourhood may be a contributor to the risk of injury. Proportion of apartment
dwellings gives an indication of the yard space available in the neighbourhood, which
gives an indication of the availability of near-home safe play-space, especially for young
children. Like proportion of low income families, there are potentially contextual and
compositional factors at work, and therefore, this variable must be also interpreted
carefully. Individual children may be at greater risk if they live in apartments—since

they have no safe yard to play in on their own. Children living in a neighbourhood made
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up of mostly apartment dwellings may be at greater risk simply because there are not
many yards to play in overall—independent of whether or not the children live in an
apartment themselves.
3.4.6 Neighbourhood Planning Data

Planning data are derived from Wang’s neighbourhood classification (Wang
1994). Wang identified 5 categories of neighbourhood planning in Edmonton, the main
four of which will be used in this study: grid neighbourhoods, modified grid
neighbourhoods, independently designed neighbourhood units, and hierarchically
planned neighbourhoods. This study is expanding on Wang’s general conclusions by
using child pedestrian injuries in a multivariate statistical framework. This is best done
by incorporating a planning variable as close as possible to the same variables used by
Wang. The definitions below are based on Wang (1994) and Hodge (1991). Wang'’s
research suggests that there is an order of increased risk from grid neighbourhoods, which
are unplanned, to hierarchically planned neighbourhoods. For the purposes of this study,
planning type is included in this study as a single variable on a scale of one to four—one
being grid neighbourhoods, four being hierarchically planned (Figure 3.7). For more on
the use of contrasts in favour of dummy variables, see Cohen and Cohen (1975).
Grid neigbourhoods are unplanned neighbourhoods formed previous to the widespread
use of the car (Hodge,1991). These areas are considered unplanned because structures
were built based on the availability of land and commercial interest, not on principles of

pedestrian safety

48



Street or
= Arterial

= School

A- Unplanned grid neighbourhood B- Modified grid neighbourhood
C- Independent neighbourhood unit D -Hierarchically planned
neighbourhood

49



or traffic-flow efficiency. Residential lots face each other in front, and are separated in
the back by alleys.
Modified grid neighbourhoods consist of “partially structured” land use patterns.
Planned elements —like centrally located facilities- are combined with unplanned,
traditional street grids.
Independent neighbourhood units are influenced by the work of Clarence Perry, who
promoted land-use planning around service points—like malls and schools. Separate
neighbourhood areas were constructed around the service points, usually separated by
major arterials. In Edmonton, few of these neighbourhood units are divided by major
arterials (Wang, 1994). The idea of the neighbourhood unit was promoted in large part
out of drastic increases in automobile use and automobile related fatalities (Hodge, 1991).
Hierarchical neighbourhoods are similar to the independent neighbourhood units and are
designed around public service facilities—usually schools. Residential block patterns are
structured to separate pedestrian routes to these facilities from automobile traffic. Parks
are centrally located, and are also separated from main roadways (Hodge, 1991).

The municipal neighbourhood divisions Wang used to classify planning type do
not match perfectly with census tracts. On occasions where the neighbourhood
boundaries matched the census tract boundaries exactly, the census tract was assigned the
planning characteristics of the associated neighbourhood area. When multiple
neighbourhoods were contained in census tract, the census tract was assigned the

planning characteristics of the largest neighbourhood contained within it.
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3.4.7 Traffic Data

A traffic density index is calculated for each census tract using two sources of
data. The purpose of developing this index is to develop integrated data of general
volume characteristics of census tracts that accounts for the density of roadways and the
volume of traffic in neighbourhoods. Wang (1994) showed that planning characteristics
were irr;portant in explaining the variability of collisions between neighbourhoods;
however, this may simply be a function of general city traffic flow, which shows a
pattern of increased density from suburban planned areas to downtown unplanned areas.
Wang did use traffic flow data to help classify Edmonton neighbourhoods into particular
planning categories, but the variable was not systematically included in his analysis.
Therefore it remains uncertain whether or not his findings only reflect the fact that there
is less through traffic in suburban areas versus the actual environmental design that
determines risk to pedestrians.

Mean daily traffic volume for 1996 is based on data collected by the Edmonton
Transportation and Planning Branch. These data are a compilation of axle counts taken
at measurement stations in order to make estimates of average weekday traffic. These
stations are combined with a map of arterials generated by Statistics Canada. Because
the volume data represent points, and arterials are represented by lines, an inference
procedure was developed to integrate volume data with the arterials in a consistent
manner. Figure 3.8 A-C shows the three most common cases of volume inference. An
arterial segment with a lone measurement station adopted a volume equal to the

measurement station, extending as far as the next intersection (case A). Arterial
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Traffic volume measured at points (in bold) is used to infer volumes for complete road
segments. Numbers in normal font indicate inferred volume. In case A, volume of the road
segment is based on the single measurement of the segment. In case B, volume is based on the
average of two measurements (for sections between measurements) or on a single measurement
(for sections between the measurement point and the end of the segment). In cases where the
segment has no measurement, volume is inferred based on the neighbouring segment (case C).
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segments with two or more measurements were assigned a volume to their sub-segments
according to case two: sub-segments between the points were given a value equal to the
average of the two points (case B). When segments on a major arterial lacked road
volume measurements, the nearest measurements on the same arterial were used as
estimates (case C). The majority of the estimates were based on cases A and B. Several
arterials on the street network map lacked any measurement altogether—in these cases,
the arterial is not included in the data set.

These traffic data were aggregated into census tracts by multiplying the length of
the road segment by the volume of the road segment and then summing this value for
each arterial segment in each census tract. Roads were counted twice if they represented
a border between two census tracts. This variable, henceforth referred to as the traffic
density index, describes the density of traffic in census tracts independent of major
freeways (which do not really represent a hazard to pedestrians since they are usually
separated by barriers, and walkways are above the roads themselves). These freeways
were identified in consultation with experts in the planning department. This index gives
an indication of the density of threatening traffic. As a measure of an environmental
characteristic, any direct relationship that this variable has on injury risk is probably
contextual. It is possible that traffic volume is overestimated on certain arterial segments.
The traffic measurement equipment is based on axle count, and therefore roadways with
considerable quantity of multiple-axle (three or more) traffic may have inflated index
values not reflective of the actual number of automobiles that travel the roadway,

although this is most likely an issue on freeways, most of which have been excluded.



3.4.8 Park Data

Park data were digitised using several real estate maps and a collection of air-
photos. Three kinds of parks were identified in the city of Edmonton according to criteria
related to their use by children: i) river valley parks which include the N. Saskatchewan
River Valley, the Whitemud Creek Ravine and the Mill Creek Ravine, ii) school parks
(defined as parks within 50m of a school) and iii) city parks (defined as parks more than
50m from a school) that are not already classified as River Valley parks. The proportion
of park space within a census tract was calculated by dividing the total area of school
park space by the total area of the census tract. School parks were selected because they
represent the parks that children are most likely to frequent independent of automotive
transport and parental supervision. As a measure of an environmental characteristic, the
park data represent a contextual factor of risk.
3.5 Mapping Methods
3.5.1 Injury Incidence and Rates

Techniques used to map incidents of injury are comparable to the mapping of
mortality as both represent discrete and relatively rare events. These techniques are not
only the basis for presenting disease frequency on a map, but often generate the
dependent variables used in ecological-level regression models. However, point maps
themselves have limited informational value with regards to relative risk since they give
no indication of injury events in terms of population at risk. For this reason, rate maps
are frequently used to portray risk.

Mapping mortality rates and disease incidence rates has been a frequent practice

among epidemiologists, geographers and public health officials. In addition to
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identifying regions with unexpectedly high rates of a particular health concern, mapping
health outcomes can provide information about sources of exposure. While the creation
of cancer atlases and the mapping of malaria and other vector borne diseases are perhaps
the most common recent application of mapping techniques in health, researchers have
expanded their scope into the mapping of injury (e.g. Raybould and Walsh, 1995;
Braddock, 1994).

The mapping of crude rates—health outcome in the numerator, population at risk
in the denominator—is a simple method of mapping variations in a health outcome over
space. When specific age groups are studied, the population of these age groups replace
total population in the rate equation, and the rates are generally more informative since
they are unconfounded by variations in age or other population structures between areas
(Meade et al., 1988). A map of these incidence rates identifies areas where the rates are
high or low in relation to other areas on the map, however, the map does not give an
indication as to whether or not the observed rates are above or below an expected value.

Mortality/morbidity ratios expand on the simple rate map by describing the
degree to which observations depart from a global (total study area) value. The following

formula illustrates:

E,'=P,'* GR 3.1

MR;= O/E; 3.2

The expected number of cases E in an area is determined by multiplying the population at
risk in the area (P;) by the global rate of occurrence (GR) (Equation 3.1). This expected

value is then used in the denominator of Equation 3.2 where the morbidity ratio for a
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given area (MR;) equals the total number of outcomes in that area (O;) divided by the
expected number of cases (E;). The MR is usually multiplied by 100. For areas in which
the observed number of cases is close to the expected number of cases, MR will be close
to or equal to 100. When the number of cases in an area is below the global expected,
MR will be less than 100; when cases are greater than the global expected, MR is greater
than 100.
3.5.2 Small Numbers Problem

The small numbers problem is perhaps the most important methodological issue
in disease mapping. Put simply, when population counts in areas are small and health
outcomes under observation are rare, rates in some areas may be “unstable”, and
therefore demonstrate an exaggerated spatial variation (Clayton and Kaldor, 1987). This
data instability is a function of sampling error that is typically observed in data described
by the Poisson distribution, where small changes in the number of events in some area
results in large changes in rates (Table 3.3). A one case increase in area B has a small

effect on the rate of the outcome; an equivalent change in area 4
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Area Case Populatio Rate Cases+ New Rate
A 1 100 0.01 2 0.02
B 10 1000 0.01 11 0.011
! Adapted From Pringle (1996)

results in a doubling of the rate of outcome occurrence. Neither morbidity ratios nor
morbidity rates are equipped by themselves to account for this variability. What resuits
in many circumstances is a map of misleading information—showing higher rates in

areas where the population counts are smaller, but where the inflated rates are probably a
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product of expected variability in a Poisson process. For data in which case counts are
high, such variability has little effect on rates. However, in the study of meaningful
geographic units—which are almost always small and contain low population counts—
this problem is likely to persist for almost every health outcome.

The mapping of empirical Bayes estimates offers an alternative to the classical
disease mapping techniques. This method has been designed to specifically address the
small numbers problem, offering a smoothing process to stabilise rates of rare health
outcomes in areas with low population counts. This method of data adjustment is based
on the Bayesian statistical tradition. Bayesian statistics address a perceived shortcoming
of classical statistical techniques which fail to account for “prior belief” in the study of
probability. The heart of Bayesian inference is the idea that scientific decision making
should be able to build on itself. Using prior knowledge from previous statistical analysis
or other sources of information, a researcher should be able to modify classical inference
measures to make more intuitive inferences about phenomena (Iverson, 1984).

In classical statistics, before a statistical inference is made, criteria are established
for accepting or rejecting a null hypothesis that in the long run, the observed phenomena
would not be unexpected. For example, experience suggests that in an unbiased coin-
flipping experiment of ten tosses, one might expect an equal number of heads and tails.
To test this assumption using the classical statistical method, we establish a criteria for
rejecting this claim that takes into account the size of the sample and the distribution of
the population. If the criteria for rejecting the null are obtained, then we proceed to
describe the population in terms of the sample. This procedure does not take into account

what we all know about physics, or the years of observations we’ve had flipping coins.
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Nor does this procedure of analysis easily incorporate new data—the statistical
significance of a second experiment is determined using the same criteria, and without
incorporating the previous experiment into the calculation. The Bayesian statistical
tradition offers a method of incorporating prior information—like what we know from
other statistical tests or philosophical inquiry—into a statistical inference. The philosophy
behind Bayesian inference is flexible enough for one to incorporate virtually any previous
knowledge into statistical decision making. This may explain why Bayesian inference
procedures remain rare outside of statistical journals (Moore, 1997). A more thorough
discussion of Bayes’ Theorem and the strengths and weaknesses of Bayesian approaches
to statistical decision making can be found in Iverson (1984) or Winkler (1972).
Empirical Bayes estimates are adjusted rates which take into account prior
knowledge about properties of the distribution of the observed data over space. There are
several methods with which one can calculate the prior distribution, but the gamma
distribution is most common (Pringle, 1996). Unlike the Poisson, which describes the
probability of n discrete events in a given space, the gamma distribution describes a
continuous variable, in this case, the rate. The two parameters that describe the
properties of the gamma distribution—a (scale) and v (shape)—are used to adjust the
incidence rate where O; , P; and GR are the observed cases, population and global

incidence rate respectively (Equation 3.3). A recursive formula is required to obtain
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(0: +Vv) * GR
P;*GR+ «

33

values of @ and v*. Although there are several methods with which to derive the prior
distribution parameters, this iterative calculation is the simplest. When the number of
outcomes in a given area is high and the population is large, this adjustment procedure
has a minimal effect, and the incidence rate is stable. Alternatively, when the number of
events and the population are small, the adjustment procedure has a more significant
smoothing effect.
As a general method for dealing with the small numbers problem, empirical

Bayes estimates offer an improvement over normal rates because they contain more
intuitive information than standard smoothing techniques (like log transformation).
Clayton and Kaldor (1987) used empirical Bayes estimates to stabilise data on lip cancer
in England. In their work they compared various methods of obtaining prior knowledge
(including gamma, log-normal and several other distributions). Langford (1994) made
use of empirical Bayes estimates to adjust relative risk of leukaemia and Saunderson and
Langford (1996) showed the usefulness of these adjustments in mapping suicide rates in
the United Kingdom. Pringle (1996) showed that empirical Bayes estimates show a

representative and intuitive picture of cancer deaths in Ireland. Perhaps the greatest
indication that the technique is gaining widespread acceptance among geographers is the

chapter devoted to it in Bailey and Gatrell (1995).
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3.5.3 Distance Calculations

Both collision location (by closest street intersection) and location of residence
(by postal code) are available for many cases in the data set. Measuring the distance
between these points gives a general indication of the range of distances in which
children are hit by automobiles. This measurement is the best available indicator of
distance between collision location and residence. Location of residence by street
address would result in more accurate measurements, but these data were not available
and would represent an unreasonable risk to case confidentiality. As the regions which
the postal code points represent are larger in outlying areas of the city, distances may be
biased—distances will tend to be larger for cases in which location of residence is in
outlying regions.
3.6. Statistical Methods

The primary analytical tool in this study is multiple regression modelling. Given
the theoretical and methodological issues complicating the use of ecological-level
analysis, it is particularly important that this study critically assesses both the
meaningfulness and robustness of the modelling procedure. All methodological issues
discussed below represent the main statistical concerns related to the statistical modelling
of these cases of child pedestrian injury to social and environmental risk factors.
3.6.1 Tests of Correlation

Correlation techniques measure coincident variation between variables, and are
therefore inappropriate tools for studying causal relationships. Despite this limitation, as
preliminary statistical techniques, tests of correlation are simple and easily applied

methods for isolating variables to be involved in more detailed investigation. The most



popular technique of correlation analysis is probably the product-moment correlation,
which measures relationships between normally distributed continuous variables (Ebdon,
1985).

A popular alternative among geographers is the Spearman’s rank correlation, a
non-parametric test of the association between ranked data (Shaw and Wheeler, 1994).
The Spearman’s rank correlation can be used to test naturally ranked data or ranked
continuous data, and is less sensitive to extreme values than the product-moment

correlation (Ebdon, 1985). This insensitivity can be beneficial when the goal of the

6xD?
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correlation procedure is to identify variables of importance for more advanced statistical
testing. Equation 3.4 can be used to calculate the Spearman’s rank correlation,
where N is the number of rank pairs, and D is the difference between ranks for given
observations. Neither correlation technique is without its limitations: the former is more
affected by extreme values in the data, the latter ignores extreme values altogether, and
therefore, both will be used where appropriate. Their purpose in this study is simply to
suggest which variables are most relevant for inclusion in the regression model.
3.6.2 Choice of Regression Techniques

The primary challenge of a study in small areas is dealing with data variability
and identifying areas where incidence rate is a reflection of real risk rather than a

function of random (and not unexpected) variation. In this study, the data are rare and the
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population of study areas is small, and therefore, 2 method must be chosen that takes into
account these uncertainties.

Traditionally, modelling rare data involves Poisson regression techniques.
Ordinary least squares regression of rare incidence data is often inappropriate since
models may predict nonsense values (values below zero) and in most cases violate
assumptions of constant error (Lovett and Flowerdew, 1989). The reweighted least
squares procedure used to obtain parameter estimates in a Poisson regression model does
not assume constant variance, and generates intuitive model estimates. Unfortunately,
there are very few established model diagnostic tools developed and tested for Poisson
regression modelling, making critical model assessment difficult. An alternative method
for dealing with non-constant variability in the incidence data is a weighted least squares
approach which adjusts each rate by the inverse of its variance. In this case the most
logical weights would be the population of children in each tract.

Both of these methods offer solutions that are embedded in the modelling
procedure itseif, making adjustments when the statistical model is executed (sometimes
called run-time adjustiments). The data incorporated into the model are not smoothed to
adjust for uncertainty, but instead, these issues are dealt with the through the modelling
process itself. As a fundamental goal of this study is to understand the variability of
rates, it is desirable to have a method which allows for the easy comparison of observed
and estimated values of the outcome. This is best achieved by first applying a smoothing
technique to the data and then running a statistical model using these smoothed rates. By
running a regression model of these smoothed rates, one can then observe differences in

the model estimates and the observed values. This is difficult to do using either of the
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methods mentioned above. Although the estimates generated from a Poisson model are
adjusted for data heteroscedasticity, the observed data are not. Therefore comparisons
between the observed and predicted values are difficult.

The best method for achieving the study goals is to generate empirical Bayes
estimates of the rates before the modelling procedure, then generate an ordinary least
squares model that predicts rates without applying a run-time smoothing process. This
way, observed and predicted rates are comparable, and one can gain both an effective
understanding of the spatial variability of risk and critically analyse the spatial
characteristics of model residual error. In order to substantiate this method, the model
parameters from the ordinary least squares model are compared to a run of the incidence
data using a Poisson regression model. If the same parameter estimates show importance
in both models, then this helps to validate our decision.

3.6.3 Linear Regression

Regression techniques are frequently used to understand relationships between
phenomena in the social and physical sciences. In the social sciences, experimental
conditions are rarely strictly controlled, and definitive conclusions are hard to make.
Nevertheless, regression methods remain very popular techniques for data analysis. Ifthe
intention is to understand the degree to which vector x; is a linear predictor of vector y;,

the basic formula of a linear regression equation takes the form:

Yi=Bo+Bixy; +¢; 33




In this bivariate regression formula, By is the intercept or model constant, B; is the
coefficient associated with observations of x; and e; is the variability in y; that remains
“unexplained” following the modelling process. The multiple linear regression equation
possesses the same properties as the bivariate case, the key difference being the number
of predictors. As in the bivariate case, the model R? gives an indication of the amount of
variance in y that is explained by the predictor variables x;,x2,X3... X. However, each
coefficient now represents a unit change in y given a unit change in x, while holding the
other coefficients constant. Independent or partialled effects of the independent variables
are calculated by examining the independent relationships between the dependent
variables and the residual error among the predictors. The method by which multiple
predictor coefficients are obtained is well summarised by Von-Eye and Shuster (1998).

There are three general assumptions in least squares regression models: absence
of specification error, absence of measurement error, and a “well-behaved” error term
(Lewis-Beck, 1980). Of these, the third can be subdivided into five assumptions: all error
terms have an expected value of zero, error terms are homoscedastic (constant variance
over all values of the predictors), error terms are not autocorrelated, error terms are not
correlated with the independent variable (s), and the error terms are normally distributed
(Lewis-Beck, 1980). The meaningfulness of a model’s parameter estimates is dependent
largely on the degree to which these assumptions are valid; therefore, careful
consideration of these assumptions is required before a modelling procedure can be
considered valid.

Controversy persists regarding the effects of assumption violations (particularly

with regard to the residuals) on multiple regression. Extreme violations of regression



assumptions probably do affect the likelihood that a given model represents something
meaningful. Generally speaking, asymptotic statistical theory (i.e., the central limit
theorem) suggests that techniques relying on these assumptions (like ¢ scores) are
statistically robust when sample sizes are larger (Statsoft, 2000). Unfortunately, there are
no obvious boundaries that a researcher can use to identify when a sample of
observations is large enough. Therefore, we will consider the affects of assumption
violations in detail.

3.6.4 Methods of Model Appraisal

Evaluating the ability of a modelling procedure to fit a given data set is dependent on
both theoretical and statistical measures. The theoretical discussion will be reserved for
Chapter 5. Below are the main statistical considerations for evaluating the fit and
suitability of the modelling procedure. Each model diagnostic will be addressed
specifically in Chapter 4. The software package Stata has a strong set of tools to assess
model fit, and will be relied on for most model diagnostics. Although not all methods
used are the same, the guideline for model assessment is based on Jerrett (1997).

When variables lacking meaningful explanatory power correlate with the relevant
variable(s) in the model; model coefficients may be biased (Berry and Feldman, 1985).
Similar problems occur when relevant variables are excluded from the model.
Specifically, variables in the model will correlate with the model error term, thereby
violating one of the necessary conditions of multiple regression. These are problems
associated with the mis-specification of the model, frequently termed specification error.
The relationship between relevant variables that are excluded from the model and

variables that are not excluded is an important determinant of this biasing process—the
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stronger the correlation between included and excluded variables, the greater the biasing
effect (Berry and Feldman, 1985).

Models with a strong theoretical basis are less likely to contain these types of
errors. These models are more likely to include all relevant predictors and exclude all
irrelevant predictors. A model with little or no specification error is more likely to be
representative of reality, and more likely to show meaningful relationships between
explanatory and outcome variables. It is particularly difficult, however, to systematically
identify missing model variables, or clearly identify a case of specification error.
Although the R’valueisa general measure of explained variance, other methods can
offer additional insight. In cases when theory fails to identify mis-specification, there are
statistical tools that can aid the researcher. In a study of the effects of mis-specification,
Ramsey (1969) developed a method for identifying the absence of missing variables. The
regression specification error test (RESET) approximates a missing parameter by adding
the powers of the predicted value (y%,y’,y") to the model. An F statistic is used to
determine whether the differences between these approximations is significant enough to
indicate that an important variable was omitted (Stata, 1997).

Outlying observations can exact a strong influence on somne regression models.
Although detection of outliers is sometimes possible with scatterplots of the dependent
variable and independent variables, understanding their role in the model often requires
an understanding of residual error. This is of critical importance since outliers do not
always have strong effect (also known as /everage) on a given model. Leverage versus
residual plots can give an indication of the role outlying observations have on the model.

A commonly employed method used to identify such observations is to observe changes



in the model following the temporary removal of observations from the data set. This can
give an indication of the relative effect of particular outliers. In cases where one outlying
observation is responsible for making one of the explanatory variables change from a
significant to an insignificant contributor to the model, caution must be applied to the
interpretation of that variable. Since issues relating to the stability of outlying
observations relates to issues of data stability discussed later, nothing more will be said
here except that outliers should be judged based on both the likelihood that they represent
real measurements and their effect on the overall model. Accurate observations should
not be removed from the model simply because they affect the results in an unexpected
manner. As the child pedestrian injury data are derived from an administrative database,
and not collected by the researchers, there are no simple ways to identify mistakes in the
data.

Ordinary least squares estimation produces regression parameters (B, By, ...Bn)
that are the best linear unbiased estimates when the regression assumptions are valid.
The combination of a non-normally distributed dependent variable, small sample size and
small R? virtually guarantees a non-normal distribution of residuals. As mentioned
previously, the effect of such non-normality is unclear. We shall use a combined test for
skewness and kurtosis to assess the normality of residual distribution (Stata, 1997).
However, we will not concern ourselves with minor departures from normality in the
residuals.

It is common in the social sciences to generate models in which the residual error
is not constant over values of a predictor, thus violating the assumption of

homoscedasticity. Regression parameter estimates in a heteroscedastic model are no
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longer the most efficient, and are more likely to differ from the true (population)
estimates (Berry and Feldman, 198S5). Ideally, this problem should be addressed by
revisiting theory—adding an important variable or obtaining better measurements.
Frequently, however, a statistical solution must be sought. One of the simplest solutions
for dealing with heteroscedastic dispersion of residuals is to transform one or more of the
model variables. Unfortunately, models containing transformed variables can be more
difficult to interpret, and also assume a functional form different from the non-
transformed model (Johnston, 1978). Stata offers a tool for the calculation of standard
error that is less prone to the effects of heteroscedastic residuals (Stata, 1997). If the non-
robust standard errors are similar to the robust, there is generally good reason to think the
parameter estimates are efficient, even in the presence of heteroscedasticity.

Multicollinearity is present in a regression model when the predictors are strongly
related to each other, such that a well fitting model contains few or no predictor variables
that have statistically significant partial coefficient values. In an explanatory model such
as the one used in this study, high multicollinearity can be particularly problematic, in
large part because theory alone is incapable of separating the effects of one independent
variable on the model while controlling for the effects of other strongly correlated
variables. The result is larger standard errors of the partialled coefficients, and lower
significance values (¢ scores) (Berry and Feldman, 1985). One of the easiest methods for
eliminating the effects of multicollinearity is to remove predictors which have a
correlation coefficient greater than .80 (Berry and Feldman, 1985).

Additivity is a term referring to the assumption that in a given multiple regression

model, the change in the dependent variable, given a change in one of the independent
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variables, is unrelated to the value of other variables in the model. The validity of this
assumption is important for the results of the model to be meaningful—the model
parameters are meant to represent the effects of change in one of the parameters while all
other independent variables are held constant. If one of the independent variables
demonstrates a non-additive or interactive relationship with another variable, then the
interpretation of the model becomes more difficult. One method of identifying the effects
of non-additive relationships is to run the regression model with mutiplicative terms
(predictors multiplied with each other). If a multiplicative term shows statistical
importance in the model, then the relationship between a given pair of variables may not
be additive. In these cases, the multiplicative term should remain in the model and
theoretical explanations for the non-additive relationship should be sought.

Nonlinearity refers to cases where change in values of the independent variable
correspond to changes in the dependent variable that are not the same for all values of the
independent variable. In bivariate regression, scatterplots can be useful indicators of non-
linearity in relationships. Quadratic terms (like the square or cube of a predictor) can be
added to a regression model to detect non-linear relationships. When the square of a
predictor provides a better fit than a normal predictor, then a non-linear relationship is
probably present.

Autocorrelation describes spatial or temporal associations between variables
(Kendall and Buckland, 1971). Autocorrelation of residuals in a regression model is an
important concern since least squares regression assumes that residuals are independent.
In ecological-level studies, spatial autocorrelation is a common concern. Spatial

autocorrelation refers to the clustering of variables in space. In ecological-level models,

69



model residuals are frequently tested for spatial autocorrelation in order to identify
important missing variables. In a study of precipitation in California, a clustering of
negative residuals on the lee side of the mountains indicated the role of these areas in
influencing the amount of rainfall, a factor unaccounted for the original model (Bailey
and Gatrell, 1995). Moran’s I is a commonly used measure of spatial autocorrelation,

and is calculated using Equation 3.6.
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Where x; and x; are the values of the variable x in areas i and j respectively, and w is the
spatial neighbour weight. In the calculations employed in S-plus, w is equal to 1 when
areas i and j are identified as neighbours, and 0 otherwise. The meaning of a given
calculation of Moran's I is dependent on the spatial arrangement of the data; however,
generally speaking, positive values indicate clustering, negative indicate dispersion, and
values near zero indicate a random arrangement (Ebdon, 1985).

In the study of spatial patterns, scale of analysis and the structure of the spatial
relationships can drastically alter results. In this case, the system which determines
neighbouring status is an important consideration. S-Plus offers a number of options for
calculating spatial relationships; among them first order (all adjacent areas are considered
neighbours) and adjusted first order. The adjusted first order neighbouring technique
involves two steps. First, all neighbouring areas fulfilling the first order criteria are

assigned a connective weight of one. Second, the average distance between the centroids
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of area i and all neighbouring areas j is calculated (Splus, 1998). Any area with a
centroid within this average distance is also assigned a weight of one. Second order
calculations will not greatly affect the number of joins in cases when the tracts are
rectangular and of similar size. Instead, it will add joins in cases of oddly shaped tracts,
and in the cases where the size of tracts in a region are variable. In this study, Moran's I
is calculated using both neighbour weighting techniques and results will be compared to
determine the best measure.

3.6.5 Modelling Smoothed Rates

The empirical Bayes estimates are adjusted for uncertainty before modelling. Thus the
dependent variable is the adjusted rate. As mentioned earlier, Poisson regression
involves a run-time adjustment, and therefore does not generate predicted values useful
for data mapping. A model of smoothed rates allows for the development of a map of
predicted rates in units comparable to the observed data. Recent work has suggested that
empirical Bayes estimates, while an improvement over unadjusted rates, tend to present
an *“over-shrunken” (that is, less variable) result in comparison to the true rate (Devine et
al. 1996). A constrained empirical Bayes estimation procedure was developed to address
this problem (Louis 1984). To address these possible complications of the technique, we
compare results of the least squares model to the results of a Poisson regression model.
Significant differences in results could suggest that constrained empirical Bayes estimates
should be used in favour of standard empirical Bayes estimates.

3.7 Software Tools

Maps were developed using the ArcView geographic information system and several of

its extensions. Deterministic data linkage was conducted in Arc¥View—for example, the
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joining of postal codes to their respective census tracts. ArcView s object oriented
programming language Avenue was used to program some of the functions used in the
analysis. Several statistical applications were used to analyse and present data for
analysis. Stata was used primarily to perform the analysis and describe the data. SPlus

was used to calculate several of the spatial statistics. SPSS was used to create most tables

and graphs.

72



Note

! The 1981 Canadian Census uses different age-grouping categories than the 1996 Census. In order to
allow for meaningful comparisons between these Census years, the 0-14 year age-group had to be used in
this particular comparison, even though this study includes children 15 years and younger in the analysis.
? Compactness is calculated by dividing the perimeter of the tract by the square root of its area.

3 This formula can be used to obtain values of & and v:

v_1o09*vy

a—Nzi:E,-!-a_Nzi:ei
2o LS+ )(o- 2 Y
az N'll Bi ! a’

O; is the observed events in area i, E; is the expected number of events in area i (Ei=Population; * Overall
Injury Rate). 61 is the standardised incidence rate for area i. Appendix C contains code that can be used
generate the values. For the first iteration, values of o and v should be equal to one. First we solve for v/a
(mean) then v/ (variance). A value of a is obtained by dividing the mean by the variance which is then
used to solve for v. These values are then substituted back into the equation. This process is repeated until

values of & and v converge. If the program does not converge (default setting is to seven decimal places)
then an index of two should be tried. Index values of three, four and so on should be entered until the data
converge.



4. Results

4.1 Univariate and Bivariate Analysis

4.1.1 Child Pedestrian Injury in Edmonton

The largest population of children (0-15) in the study area is located in the outlying
regions of the city (Figure 4.1). Within the ;tudy area, a total of 258 cases (0-15 years)
were identified. Cases are geographically referenced based on postal code. Records with
missing or incomplete postal code data are not included in this count. Within the
database (which covers the whole Capital Health Region), a total of 22 child pedestrian
injury records have missing postal code information and therefore the case count is
probably an underestimate of child pedestrian injury frequency in the study area. The
rate of emergency-room reported child pedestrian injury in the study area during this
study period is 50.23 cases per 100 000 persons. In comparison maps of the crude and
smoothed incidence rates of child pedestrian injury over the study period, the map of
smoothed rates shows considerably less spatial variability than the crude rate map (Figure
4.2). In this four-year period, several of the most populated suburban census tracts in
North and Southwest Edmonton recorded no injuries.

The greatest absolute change in injury rates after smoothing is in areas where the
population of children is small (Figure 4.3). In these regions, rates drop. Moderate
increases in injury rates occur in outlying areas where no injuries had occurred in the
period. Figure 4.4 shows how the crude incidence rates and empirical Bayes estimates
vary over space. The peak areas on the right correspond with the darkest areas on rate
maps in Figure 4.2. Although the empirical Bayes estimates show a similar overall

pattemn as the crude rates, several features of the graph are of notable interest. First,
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estimates are made in census tracts where the crude incidence rate is zero. This strongly
affects the description of events in space; an observation of “0” events in a census tract
with a large population does not have the same meaning as a “0” in a census tract with a
small population. Empirical Bayes estimates give an indication of risk in areas where no
events occurred by taking into account the population of the area, the properties of the
distribution, and the overall incidence rate. Second, the range of estimates is smaller.
The empirical Bayes estimates have collapsed maximum and minimum values, although
the general shape of the distributions is similar. Finally, the extreme values associated
with the lowest population census tracts have been dragged towards the overall rate.

The demographic characteristics of the cases show several interesting patterns.
Although the age group identified for study consists of all children under 16 years of age,
no children less than one year of age were recorded in the data set. The youngest child
reported in the data was one year and four months. The distribution of child pedestrian
injury by age shows a variable pattern, with an increasing trend with age (Figure 4.5).
The two spikes at ages six and nine break up what would appear to be a stabilisation from
age three to an increasing trend starting at age eleven. Overall there is a general pattern
of increase in number of injuries in progressively older age groups. The incidence ratio
of injury in three age strata (0-4, 5-10, 11-15) is calculated using the population counts
available in the census (Table 4.1). These ratios show the same trend as injury counts,
with frequency of injury increasing with age. The incidence ratios also show that the

largest proportion of injuries occurred in the oldest age stratum.
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Group | Male Pop. Female Pop. Total Pop. [Male  Female Total
[0to4 26| 20225 9] 19830 35| 40055 63.98 22.59] 43.49]
Sto9 53] 21005 361 20050 89| 41055} 125.58 89.36| 107.9)
10to 15 70| 24265 64 22975 134] 47240f 143.58] 138.64 141
loto15 149] 65495 109] 62855 258] 128350] 113.23 86.31 100]
! Incidence ratio equals observed cases per stratum divided by expected cases per stratum x 100

|(expected cases = stratum population * overall rate)
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Boys were involved in more collisions than girls; however, the gender differences
between age strata show a variable pattern. In the first age stratum, boys receive by far
the majority of injuries, with a smaller majority in the middle stratum. The pattern
changes in the oldest stratum where almost as many girls were injured as boys. The
highest incidence ratio is among boys in the 10 to 15 year-old stratum; the lowest among
girls in the 0 to 4 year-old stratum (Table 4.1). There is a six-fold increase in the
incidence ratio among giris from the youngest to oldest age stratum. This is a more
drastic increase than among boys, for whom the incidence ratio merely doubles from the
youngest to the oldest strata.

In a monthly breakdown of injury events by age group, the youngest age group
shows the greatest degree of monthly variability with the fewest number of events
occurring in the winter months, and more injury events occurring in the summer (Figure
4.6). The two older age groups show a more constant monthly frequency of injury, with
the oldest group experiencing roughly the same number of injuries each month. The
aggregate pattern (all three age groups combined) shows that with the exception of
January and March, the monthly frequency of injury is fairly constant. Injuries by age
group also exhibits a variable pattern over the days of the week, with Mondays and
Fridays having the highest frequencies, and Sundays having the lowest (Figure 4.7).
There is a notable mid-week dip in the number of injury events for the first age stratum,
while the two older strata possess a less variable pattern. The first age stratum also
reveals a higher proportion of injury on Saturdays than the other groups. A close look at
the monthly pattem of injuries against the days of week shows that the frequency of

accidents on a given day is dependent on the month in which the accident occurs (Figure
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4.8). In February and October, Mondays are frequently the days upon which collisions
occur. In March, April and December, collisions appear to occur less frequently on
Friday than on other months.

Time of injury by age group reveals a notable pattern (Figure 4.9). Numbers
along the horizontal axis represent the hours at which the case was reported to the
emergency room, and do not provide a perfect representation of the times at which a
collision event occurred. For many of the cases, time of admittance was recorded as
“0.00”. These cases are not included in the graph since they most likely represent
unknown time of admittance data and not admittance at midnight. The two oldest age
strata possess the largest degree of variation in the hourly frequency of injury, with the
highest frequencies in the mid-morning hours and mid-afternoon. The bi-modality of the
graph is mainly the resuit of high collision frequency in the oldest age strata. The oldest
stratum reveals the widest range of times of injury, with events occurring in morning and
late night hours. The middle stratum’s peak period of injury occurs in the mid afternoon,
with a smaller but noticeable peak in the morning. The youngest age stratum shows a
relatively constant spread of injury over daylight hours.

A graph of time of injury and peak traffic hours is presented on Figure 4.10.
School opening and closing hours are indicated by vertical bands. In Edmonton, each
school sets its own hours of operation, but for the majority of schools, classes begin
between 8:30 and 9:00 a.m. and end between 3:30 and 4:00 p.m. The vertical bands
represent these two time periods. The temporal correlation between these three factors is

strong, especially during the moming hours. However, since the times of injury
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occurrence represent hour of admittance to an emergency room and not the exact time of
collision, conclusions must be drawn cautiously.

In the four year period, 890 persons over 15 years of age were involved in a
pedestrian-automobile collision in the study area. Again this may be a slight
underestimate since cases without a recorded geographic identifier were not included.
The distribution of injury by hour of day among persons over 15 years of age is compared
to the distribution of injury among children age 15 or under in Figure 4.11. The mid-
afternoon is a peak period of injury occurrence for both adults and children. However, a
significant difference between the groups is observed in the earlier times of the day—
children are frequently injured in the 8:00 to 9:00 a.m. range, whereas adults are not.
There is also a peak period of injury for adults in the early moming hours that is not
paralleled among children.

4.1.2 Collision locations

Two measures can give an indication of the spatial relationship between
residential locations and sites of collisions: 1) distance (Euclidean or according to the
street network) and 2) whether or not the collision events occurred in the tracts of
residence. Data on collision location were obtained by matching case information with a
database of collision data maintained by Edmonton’s Traffic and Planning department.
Records were linked on age, date of collision occurrence and gender'. One-hundred and
fifty-seven records from the case file were successfully linked to the traffic department
data, and the distribution of distance is described in Figure 4.12. This graph gives a

strong indication that children are involved in these collision events near to home.

86



30+
204/ \

104 \//
O-Lu-“ v v v - v v y ’
1 357 9 11 13 15 17 19 21 23

Hour of

Number of Injuries

Frequency

<t 12 345 6 7 8 910111213 14 15+
Distance (Km.)

87



Nearly 123 (78%) of the matched cases were injured within three kilometres of home,
and 109 (69%) cases were injured within two kilometres However, of the 157 matched
cases, only 66 (42%) were injured in their census tract of residence.

Collision location to residential location distance is compared across four age
strata (Tables 4.2 and 4.3). Although the oldest and youngest age groups appear to have
large average distances, statistical assessment indicates that the differences are not
significant. The 2 x 4 contingency table shows a similar trend. The two middle age
groups show shorter distances when the data are grouped by distance categories (less
than/greater than 2 km). Collision location to residential location distance does not vary

significantly between boys and girls (%?,1 d.£=0.118,(p = 0.731))

ol

Age Group N Mean SD Median
{0tod 17 2.74 3.64 1.69]
Sto7 31 1.88 2.67 0.67
8to 10 29 1.83 3.55 0.37
11to 1S 80 227 3.27 0.92

F (152,4 d.f=1.820 (p=0.295)
Age categories based on Preston, 1972

Figure 4.13 presents the adjusted rate map overlain by a graduated point map.
The points represent locations at which collisions occurred. The size of the points

corresponds to distance from home—Ilarger points indicate that the child was farther from
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home when involved in a collision. Although the map suggests that collisions occurring
closer to the city core tend to occur farther from home than collisions that take place in
more peripheral areas, the values do not correlate significantly (=-0.068, p=0.394). Itis
apparent from this map that several Edmonton arterial segments are common sites of
collision occurrence. In particular, 118 Avenue (East Edmonton), 107 Avenue (Central
Edmonton), 87 Avenue (West Edmonton), 156 Street (West Edmonton) and 97 Street
(Central/North Edmonton) are arterials upon which a number of collision incidents
occurred over the study period. Ninety-one of the 157 collisions took place on a major
arterial. Eleven of the 91 took place at the intersection of two major arterials. Remaining
cases occurred on either residential or collector roads, or an arterial for which no volume
measurement was obtained. Of the 91 cases that occurred on a major arterial, most
occurred on arterials with an average daily traffic volume between 10 000 and 20 000

vehicles per day (Table 4.4).

- ‘] 1\;\ ,‘» R
. -

olume (mean daily vehicles) Collisions
Less than 10 000 15
10-20 000 55
20-30 000 29|
30-40 000 9|
40-50 000 5
50 000 and up 0

There are 113 collisions in this table because 11 cases
occurred at an intersection of two arterials, both of which
receive a measurement of volume in this table.
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4.1.3 Independent Variables

Proportion of low income families and road density possess the distributions
closest to the normal, while proportion of neighbourhood park-space and proportion of
apartment dwellings have a positive skew (Figure 4.14 A-E). The corresponding maps
give a spatial representation of the range of variability observed in the histograms. The
smallest proportion of low income families live in the Southwest portions of the city.
The largest proportion of low income families live in Central Edmonton, with pockets in
both the East and West ends of the city (Figure 4.14 A). Road density has an
approximately normal distribution, with various small clusters of high and low density
values throughout the city (Figure 4.14 B). The map of planning type shows the least
amount of spatial variation and the most notable pattern of clustering. Planning types
cluster in form, from higher order planning structures in Southeast and Southwest
Edmonton, to grid-planned in the central areas of the city. As can be judged from the
histogram, grid and hierarchically planned neighbourhoods are the dominating planning
structures at the level of the census tract (Figure 4.14 C). Percent low family income and
the road density index also show reasonably strong spatial clustering patterns. The
distribution of apartment dwellings is fairly variable throughout the city, with an
important exception in the city centre, where the proportion of apartment dwellings is
quite high (Figure 4.14 D). The proportion of park space has a similar skew; however,
there is no noticeable spatial clustering (Figure 4.14 E).

Visual comparison of the maps indicates that Central areas are typically grid-
planned neighbourhoods of lower income, higher traffic density and higher proportion of

apartment dwellings. Tracts surrounding the River Valley, particularly in the South end
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of the city, possess the opposite pattern—fewer low income families, lower traffic
densities and fewer apartments. A North-South contrast is evident in the spatial variation
of most study variables. Using the geometric centre of the study area as a dividing point,
the North End of Edmonton has a higher rate of injury, higher percent low income
families and a higher density of traffic.
4.1.4 Correlation Matrices

With the exception of the proportion of parkspace (parks), all variables show a
correlation to injury rate as well as a degree of inter-correlation between the independent
variables (Table 4.5 A). The largest correlation coefficients are found between
proportion of low income families (low_inc) and planning type (plan_typ), proportion of
low income families and proportion of apartments (apt), and planning type and the
smoothed child pedestrian injury incidence rate (inj_rate). Overall, the range of
statistically significant coefficients is fairly small—absolute values of the coefficients
range from a low of 0.206 to a maximum of 0.454. Although the degree of collinearity is
difficult to confirm from a correlation matrix, these results suggest that multicollinearity
may present a problem in the model as correlation between independent variables is of a
similar magnitude to correlations between independent variables and injury rate.

Proportion of low income families shows a positive relationship with all of the
variables except for planning type. An inspection of the maps would suggest that this is
the case—areas in which fewer low income families live seem to coincide with areas of
higher order planning. Alternatively, the lower income areas of the city—in particular,
Central Edmonton—coincide with the unplanned areas. Proportion of park space shows

a statistically significant correlation with planning type only.
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inj_rate -0.400* 138 * indicates statistically
apt -0.332* 133 Significant at 0.05 level
roadden -0.359* 138
parks 0.166 112
low_inc -0.337* 138

Since planning type is not a continuous variable, but is ordered into four
categories, the Spearman’s rank is a more appropriate test of concomitant variation (table
4.5 B). Three differences are worthy of note. First, the correlation between planning
type and the rate of injury is marginally weaker (p=-0.400) than calculated using the
product moment coefficient. Second, the correlation between planning type and low
family income is weaker (p=-0.337). Finally, proportion of park space went from a
moderate association to a non-significant association. Since planning type should not be
used in calculations of product moment correlation (it is neither continuous nor normally

distributed), these values probably give a better indication of correlation.
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4.1.5 Bivariate Regression

Bivariate regression models of the smoothed injury rate were performed for all the
independent variables individually (Table 4.6). The statistical significance of each
bivariate coefficient was used to indicate which independent variables are appropriate for
inclusion in further analysis. For each regression run, the confidence intervals of the

regression coefficients exclude the value of zero.

T o o R T i R
VAT RSSO S ROTG AT HEN Bala i adallan A

ey / 73 Cmm e

G B haa

Variable

Low Income 0.695| 0.138 0.423 0967} 5.053

|Constant 37.060] 3.403| 30.331 43.788| 10.892

Apartments 0.148} 0.060| 0.029 0.268] 2.453] 0.015{ 0.035
[Constant 48.743| 2.207| 44.378 53.108] 22.083| 0.000

Road Density 0.275} 0.057 0.162 0.388] 4.808] 0.000{ 0.139|
|[Constant 40.073 2987 34.167 45980 13.417| 0.000
Planning Type| -5.886] 1.123] -8.107 -3.665| -5.240} 0.000{ 0.162
lConstant 68.571] 3.337| 61972 75.170| 20.548, 0.000

In no case do the adjusted R? values exceed 0.20 and the shapes of the scatterplots
do not suggest strong relationships (Figure 4.15). The scatterplots of the smoothed rate
offer an interpretive advantage over the scatterplots of the raw rates since they do not
show the row of zero values typical in unadjusted plots of rare data (Figure 4.16).
Assuming the smoothing process is valid, then this is a far more desirable method for
presenting the data, since zero values give limited information about risk, and at the very
least make meaningful interpretation of the data more difficult.

Often scatterplots can help identify non-linear relationships between variables. In

this case, however, the broadly shaped distribution of points makes it difficult to identify
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any non-linear patterns if they did exist in these data. On the scatterplot of planning type,
tracts characterised as having the modified grid planning form appear to break from the
pattern with the remainder of the data. In particular, there is a gap between a cluster of
points at the low and high rates. Although this may suggest some curious relationships in
the model, this apparently anomalous series of observations is based on significantly
fewer observations than present in the other planning groups.

Together, the correlation analysis and bivariate regression models indicate that
four of the five variables of interest have an association with injury rate, and that there
are no obvious non-linear relationships. The explained variance is low for each of the
variables independently, and the multicoilinearity among the independent variables
indicates that one should not expect total explained variance in the multiple regression
model to be high. The next stage of analysis includes a multivariate model of the
smoothed injury rate based on the four variables that remain after bivariate and univariate
analysis: proportion of low income families, proportion of apartment dwellings, planning
type and road density.

4.2 Multivariate Analysis

The first stage of the modelling process is a fully inclusive model of variables
that remained following the univariate and bivariate analyses. Formalised modelling
procedures (eg. stepwise, backwards inclusion) were deemed inappropriate given the
breadth of research in child pedestrian injury. Such procedures solve models based on
statistical and computational criteria, and are better suited for exploratory research or

models with numerous independent variables of unknown effects (Von Eye and Schuster,



1998). Although multivariate ecological-level models are rare in pedestrian injury, the

importance of the variables of interest is supported by theory as discussed in Chapter 2.

Variable Coeff. SE  95% Conf.Int (L ,H) T P val.

Low Income 0.430] 0.154 0.126 0.734 2.796 0.006
Apartments -0.057 0.062] -0.180j 0.067, -0.910 0.364
Road Density 0.166 0.058 0.051 0.282 2.850 0.005
Planning Type -3.742 1.245] -6.204 -1.279} -3.005 0.003
{Constant 46.991 6.258] 34.614 59.369 7.509 0.000]

4.2.1 Multiple Regression Model
Three of the four predictors in the model have statistically significant partialled
regression coefficients (Table 4.7). Of equivalent importance is the value of the adjusted
R? in the multivariate model. This value is considerably larger than the R? of any single
bivariate regression run, which suggests that the multivariate model fits the data better
than the bivariate models. Although most of the data are on similar numerical scales
(road density, low income and proportion of apartments are roughly between 0 and 100),
planning type is on a different numerical scale, and therefore the coefficients are not a
good indicator of relative magnitude of effect on the rate of injury in census tracts.
Proportion of apartment dwellings does not have a statistically significant
partialled regression coefficient. When this variable was removed from the model, the
results are virtually identical to the four variable model (Table 4.8). As this model
includes fewer variables (all of which have non-zero coefficients) it will be used for

future steps of analysis.
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R? 02717 P val. 0.000
Adj. R? 0.255

Variable Coeff,. SE 95%ConfInt(L.H) T P val
Low Income 0.386| 0.146] 0.097] 0.674] 2.646]  0.009}
Road Density 0.162] 0.058] 0.047] 0277 2.786¢] 0.006
Planning Type -3.446] 1201 -5.821] -1.070] -2.869] 0.005
Constant 45.866]  6.130] 33.741] 57.990] 7.482]  0.000]

Low Income 0.152 0.103
Low Income+Planning Type 0.218 0.037
Planning Type 0.162 0.093
Planning Type+Road Density 0.222] 0.033
Road Density 0.139 0.116
Road Density+Low Income 0.216 0.040

Using the bivariate models as the initial guide, changes in planning type exacts
the greatest influence, and road density the weakest (Table 4.9). In the three two-
predictor models, the models with planning type included show the greatest associations
with the rate of injury. The smallest change between the three-predictor and two
predictor models comes with the addition of the low income variable to the planning type
+ road density model. An alternative method of judging relative importance of variables
is to compare the values of the coefficients that are standardised to a mean of zero and a
variance of one (standardised coefficients). Such standardised coefficients are calculated
for planning type (-0.240), road density (0.224), and proportion of low income families
(0.221). However, such standardisation procedures are most appropriate for normally

distributed data (planning type violates this property), and even then only indicate
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“explained” variance, and not relative importance in any real-world application (Achen,
1982). Nevertheless, evidence from Table 4.9 and the standardised coefficients do give
some indication of the relative role of each variable in the model.
4.3 Model Diagnostics
4.3.1 Residual Analysis

An important concern in any model building procedure is whether or not the
methodological assumptions required in regression analysis are valid. As most
assumptions are based on the behaviour of the residuals, these will be examined first.
The frequency distribution of the residual is moderately skewed, but the observations are
fairly evenly clumped about the centre of the histogram—suggesting little kurtosis
(Figure 4.17). The properties of the residual error are also described Table 4.10. Tests for
skewness/kurtosis indicate that the residuals depart slightly from the normal distribution.

Although the mean of the residuals is approximately zero, the median is not.

Skewness' 0.653
Kurtosis* 3.208
Ho: (Normal Distribution)

P value 0.013

! Normal distribution, skewness= 0.00
2 Normal distribution, kurtosis = 3.00
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The Cook-Weisberg test for heteroscedasticity indicates that error is not constant, and
may pose a problem in the model (Ho: Constant variance: 12.36, p=0.000). Residual
versus predictor plots give a visual representation of this heteroscedasticity for smoothed
(Figure 4.18 A) and crude (Figure 4.18 B). The conical shape is of common form—
showing increased residual error with larger values of the predictors.

The effect of heteroscedasticity on the parameter estimates can be determined by
calculating a more robust standard error and then comparing it to the normal standard
errors. Using Stata’s robust option, the robust estimators of variance did not differ
considerably from the normal standard errors (Table 4.11). Under the robust option, the
same parameter estimates reached statistical significance. This suggests that whatever
heteroscedasticity may exist in the model error, the parameter estimates remain the best
unbiased linear predictors of the population parameters. Further transformation of the

dependent variable is therefore considered unnecessary.
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Predicted values for regression models of injury rate are largest in census
tracts 45.00, 46.00 and 53.00. However, the predicted values are more extreme
(relative to other predicted values) in the regression of crude rates.
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4.3.2 Leverage Analysis

The scatterplots of residuals and predicted injury rates indicates that several
observations may lie outside the main body of observations. (Figure 4.18). Tracts 45.00
and 46.00 are both low income areas in Central Edmonton. The leverage versus residual
plot shows a cluster of points in the bottom left-hand comner, suggesting that most points
have both similar leverage and residual error (Figure 4.19). Of most concern is any
observation with large leverage and large residual error, but all points with considerably
higher than average leverage should be noted. In this model, one point of high leverage
clearly stands out, and several are worthy of note. Census tract 46.00 is an urban census
tract located in Central Edmonton (population 0-15=780), census tract 42.01 is on the
Eastern perimeter of the city (population 0-15=1055), and tract 11.00 is in South-Central
Edmonton (population 0-15=765). The tracts have no outstanding similarities with
respect to their demographic or physical characteristics, although tracts 46.00 and 42.01
both have high proportions of low income families. The effects of these observations on
the parameter estimates can be tested by running the model without them (Table 4.12).
The model R? increases, as do the parameter estimates. Most of the change is in the
proportion of low income families parameter estimate. Nevertheless, [ was not inclined

to remove these observations from the model since in either case their effect is fairly

Low Income Planning Type Road Density
0.255 0.386 -3.446 0.162

0.281 0.446 -3.529 0.130}f
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Census tracts 46.00, 42.01 and 11.00 all show noticeably large leverage on the
regression model. Of greatest concern is tract 46.00 which has one of the largest
predicted values in the model.
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4.3.3 Non-linearity, Non-additivity and Predictor Specification

Given the design of this study, there is no immediate reason to expect non-linear
or non-additive relationships in the model. Although income measures frequently
involved show non-linear associations in the regression models (Achen, 1982), in this
particular case, the low income variable is a surrogate for many factors that may have
complex associations with risk of injury—Ilike car ownership and child behaviour. The
functional form of these complex relationships would be difficult to detect given their
mixture into a single variable. The bivariate scatterplots did not show any noticeable
non-linear patterns. Regressions were performed using quadratic and cubic terms of each
predictor. In the presence of a non-linear relationship, these terms should show stronger
relationships with the dependent variable than normal predictors. Results give no
indication of such non-linear variation (Appendix B, pt 1).

Multiplied predictor pairs (X1; *X2;) were added into the model (Appendix B, pt
2). In an additive model, the multiplied pairs should not improve model fit, and should
not obtain statistically significant parameter estimates. In no cases do the multiplied
predictors gain statistically-significant regression coefficients, or substantially modify
the model R%.

Ramsey’s (1969) test for missing predictors can indicate that important model
variables are missing. Results do not indicate that there are any missing variables in the
model (Ho: missing variables (F=1.38, p=0.25)). However, missing variables may also
be identified by looking for spatial patterns in the residual error. Obvious patterns in
residuals over space may indicate a missing variable, or error in one of the existing

variables.
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4.3.4 Spatial Autocorrelation of Residuals

Table 4.13 shows the degree of spatial autocorrelation for the independent
variables, injury count, crude injury rate smoothed injury rate and the model residuals
using first order and adjusted first order neighbouring techniques. The results from the
neighbour weighting techniques differ—particularly for the model residuals which show
no spatial autocorrelation in the first order case and statistically significant spatial
autocorrelation in the second order case. The smoothed rates show spatial
autocorrelation in both cases, whereas injury rate and injury counts show positive spatial
autocorrelation in the second case only. All independent variables exhibit moderate to

strong spatial autocorrelation for both neighbouring methods.

First Order

Second Order

(Ho: no SA)

A) Study Variables Correlation Correlation
Low Income 0.485* 0.596*
Planning Type 0.763* 0.880*
Road Density 0.362* 0.489*
Injuries 0.061 0.247*
Injury Rate (unsmoothed) 0.079 0.243*
Injury Rate (smoothed) 0.131* 0.306*
Residuals -0.022 0.175*
Fitted Values 0.660* 0.774*
B) Pseudo-Random Values, Normal Distribution

Random1 0.053 0.188*
Random2 -0.054 0.113*
Random3 0.096* 0.274*
Random4 -0.010 0.169*

* Statistically Significant (p=0.05)
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Of more critical concem is the spatial autocorrelation in residual error. According
to the first order case, the residual error is not spatially autocorrelated, but in the second
order case, it shows spatial autocorrelation. Among all variables tested, the residuals
show the weakest spatial pattern. All variables become significantly spatially
autocorrelated in the second order neighbouring case. There is no clear answer as to
which technique best represents spatial patterning. However, to help make a decision as
to which technique is most appropriate, four randomly generated normally distributed
numbers were calculated for each tract, and then tested for spatial autocorrelation. One
would not expect randomly generated numbers to show spatial autocorrelation, and only
one of the four random variables showed spatial autocorrelation in the first order
neighbouring case. However, all four random variables showed spatial autocorrelation in
the second order neighbouring case. This suggests that the second-order neighbouring
technique probably gives a poor indication of spatial autocorrelation in this study area.

Although Moran's I gives no indication of spatial autocorrelation in residual error
overall, a map of residual error shows notable cluster of model under-prediction in West
Edmonton (Figure 4.20). Rates of injury were higher in these tracts which seem to form
a strip running South from the Northwest industrial region of Edmonton.

4.4 Risk Surface

Predicted values from the multiple regression model are used to generate a map of

risk (Figure 4.21). The results show predicted rates of child pedestrian injury as

described by Equation 4.1.

Y:=Bo + BiXj; + B2X5: + B3X3; 4.1
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Observations of each variable (X~ low income, X~ road density and Xs= planning
type) were added to the formula to obtain predicted rates for each census tract (Y;).
Compared to the map of residuals, which shows weak spatial patterns, the map of
predicted rates shows a strong core-periphery gradient in which the predicted injury rate
is generally higher in central areas of the city (Figure 4.21). This is consistent with the
pattern observed in maps of the independent variables earlier in this section. When
compared to the map of smoothed rates (Figure 4.2 A) the predicted map also shows a
greater degree of spatial clustering.
4.5 Alternative Regression Models

Appendix B (pt. 3) shows the results of a Poisson regression model. Although the
comparison of coefficients is difficult (as the predictor is a count in the Poisson model,
and a smoothed rate in the least squares model) in both cases, the same three variables
remain in the model. Appendix B (pt. 3) shows results from least squares regression on
subsets of case data. The 66 case subset includes only the cases that were successfully
linked to collision data and were injured in their tracts of residence. The 91 case subset
includes only the cases that were successfully linked to collision data and were not
injured in their tracts of residence. The 109 case subset includes cases that were
successfully linked to collision data and were injured within 2km of their residence and
the 123 case subset includes cases that were successfully linked to collision data and were
injured within 3km. The 157 case subset includes all cases which were successfully
linked to collision data.

Of these subsets, the 123 case set generates results most similar to the full data

set. In this subset, the same variables are statistically significant predictors of risk. Low
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income is not a statistically significant predictor in the 157 case subset. The 66 case
subset shows a statistically significant road density parameter estimate, while low income
and planning type are non-significant. The 109 case subset shows a statistically
significant planning type parameter estimate. Finally, the 91 case subset shows
significant parameter estimates for low income and planning type, but not for road
density. Poisson regression was performed on these subsets using count data. For each
subset, the same parameters attained statistical significance as in the least squares
regression of smoothed rates.

The main purpose of these analytical procedures was to separate the spatial
variability of injury rates from the noise produced by non-spatial factors of risk. The
chapter also discussed the characteristics of the injury cases. The final map of predicted
rates shows a strong spatial pattern not immediately visible from the descriptive maps of
rates or point data. The next chapter will discuss the validity of the model as well as the

interpretation of the results as a whole.
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Notes

! The linking procedure involved clerical (non-computerised) comparisons of the three match criteria in the
two databases. Records which matched on gender, matched within one year of age and matched on date of
injury were assumed linked. This resulted in 157 successful links. This procedure results in a 0.03%
probability of false links: (p(false link) = p(false link on gender (1/2)) * p(false link on date(1/365))
*p(false link on age +/- one year (1/5)) = 2.8x10™.
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S. Discussion

Discussion of this study shall focus both on the ability of the results to fulfil the
objectives set out in Chapter 1, and on interpreting the results in light of the research
questions themselves. Step one is a detailed discussion of the theoretical issues involving
the regression model. Step two is a discussion of the predictors and their relationship
with injury. In step three I discuss the epidemiology and geography of risk to children
followed by a discussion of limitations of this project with final comments on
preventative strategies and opportunities for future research.

5.1 Model Evaluation

The interpretive value of the regression model is particularly important in this study. Of
primary concern are 1) the spatial variation in injury rates that the model explains and 2)
the degree to which the parameter estimates in the model are reliable and meaningful
ecological-level predictors of injury rate. The coefficient of determination, R?, is the
measure most frequently used to assess explained variance. In the final three-variable
model, R>=0.255. Although this indicates that a significant proportion of the variation in
injury rates over space remains unexplained by the model, this was not unexpected. An
ecological-level model describes variation among aggregate geographic units, not among
people. Many individual-level factors influence the probability of an injury event but
cannot be detected by models based on aggregate data. In a properly specified
ecological-level model, unexpiained variation appears as random noise, the existence of
which should not have a systematic effect on the model parameters. Throughout this

work, this noise has been referred to as residual error.

116



Examining the properties of this residual error is one of the easiest methods of
deciding whether or not the parameter estimates obtained in the regression model are
accurate and meaningful representations of independent associations with the dependent
variable. In an idealised regression model, the residual error is un-patterned. Whatever
the causes of the error, if the variation in the error is un-patterned there is good reason to
believe that the model (assuming it has non-zero parameter estimates) describes a
meaningful pattern in the dependent variable.

By calculating robust standard errors for the regression parameters, it would
appear that heteroscedasticity does not seriously affect the parameter estimates in the
model. Robust standard error calculations were similar to the standard error calculations
from the ordinary least squares model.

Examination of the leverage that certain observations have on the model also
suggests that residual error does not have a patterned effect on the reliability of the
parameter estimates. However, some of the observations with greatest Ieverage do have
common characteristics—two of the lowest income tracts were among the observations
with the greatest leverage on the model. Proportion of low income families was obtained
by Statistics Canada based on a 20% sample of families in each tract. It is possible that
the leverage these tracts represent in the model is influenced by sampling error. The
proportion of low income families in these tracts may be higher or lower than what would
be expected had a larger sample been collected. Little work has been done to examine
the effects of sampling error in the Canadian Census and its effects on regression models;
therefore, it is difficult to quantify the effect in this particular case. Observations with

higher than average leverage were temporarily removed from the model to judge the
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magnitude of their effect. The result was an increase in R? and 2 moderate decrease in
the low income parameter estimate. The overall effect of these observations is small
however, and therefore their presence was not deemed to invalidate the model.

Tests of spatial autocorrelation were performed to identify patterns of residual
error in space. Ecological-level regression models that show considerable spatial
autocorrelation of residual error may require a revisiting of theory, as such patterns may
indicate missing variables. In this study, Moran's I, a measure of study-wide spatial
autocorrelation, does not indicate a strong pattern of spatial autocorrelation. The map of
residual error does show a group of communities in West-Central Edmonton that possess
slightly to moderately higher injury rates than the model predicts (4.20). This region of
Edmonton is given special attention in a later section of this chapter.

The distribution of residual error was examined for normality by visually
inspecting the histogram as well as a statistical test for normality. Although there is
evidence of a non-normal distribution of the residual error, it is unlikely to greatly affect
the significance tests of the parameter estimates. Such tests of normality in residual error
are more important in cases where there are extreme departures from the normal
distribution, or in small sample sets. In most other cases where residual error is non-
normal, tests of significance (like F tests for significant partialled effects and t statistics
for non-zero regression parameters) are robust (Berry and Feldman, 1985).

The sum of these observations suggests that the parameter estimates are the best
linear unbiased estimates, and that the model represents a meaningful and repeatable
prediction of injury rates over space. Although the R? is not large, the model does

explain a notable proportion of variation in injury rates between census tracts in
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Edmonton. As this model is simple to interpret, and provides useful information about
risk over space, it is reasonable to accept it as a suitable analytical tool for describing
variability in injury rates between communities in Edmonton.

5.2 Predictors of Child Pedestrian Injury Rates

The degree to which a regression model can provide a researcher with useful
information is dependent on the theory underlying it, much of which determines what
variables should be included in the modelling procedure. The variables in ecological-
level regression models are often complicated by the fact that they may represent
compositional and/or contextual relationships. Five variables were chosen for study. Of
these five, three were shown to have independent effects in the model: planning type, low
income and traffic density. The two variables which did not remain important in the
model are discussed first.

Proportion of park area in census tracts shows no statistically significant
association with injury rate. The simple interpretation is that the availability of parks is
not associated with variability in injury rates over space. This may be because parks are
not important destinations for children. Parental decision-making may also affect the role
parks play in influencing risk; children who do not have easy access to parks may be
restricted from travelling to them altogether, thereby reducing their exposure to the road
environment, and reducing risk of pedestrian injury. Unfortunately, a general lack of
quantitative knowledge about child mobility—particularly in residential environments—
makes the interpretation of such a variable very difficuit.

Proportion of park space does correlate with planning type; more sophisticated

planning structures possess more park space, and this park space is usually separated
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from high volume roads. However, this study suggests that park space does not itself
have an effect on injury rétes. Individual-level studies have shown significant
relationships between play/park space and risk of injury (e.g. Mueller et al., 1990; von
Kries et al., 1998). However, none of these studies investigated the role of
neighbourhood planning on risk. Therefore, it is possible that the associations these
studies observed were relationships between the neighbourhood plan and not the quantity
of play area available to children. At the very least, these results suggest that the
relationship between play space and planning structure deserves more direct
consideration in case-control studies which explore environmental risk factors.

Although proportion of apartment dwellings shows a correlation with injury rate,
it fails to show an independent effect in the regression model. All three independent
variables with non-zero parameter estimates in the muitiple regression model do show
moderate correlation with proportion of apartment dwellings. After controlling for the
effects of these variables, proportion of apartment dwellings does not explain significant
variance in the dependent variable. Since this statistical control is based on aggregated
data, it does not exclude the possibility of significant individual-level effects. However,
as was the case for proportion of park space, previous studies which considered
apartment dwellings as factors of risk failed to consider all features of the neighbourhood
environment related to this variable. Results indicate that proportion of apartment
dwellings is redundant after including any of the other three predictors. This may also
suggest that proportion of apartment dwellings does not have a contextual effect on injury
risk. Ifa significant contextual effect were present (i.e., if living in a neighbourhood with

many apartments was a factor of risk, regardless of whether or not a given child lives in
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an apartment), then one would have expected to see an ecological-level correlation.
However as previously stated, it is difficult to speak conclusively on this matter since
data were not available to conduct robust contextual analysis.

The model indicates that the spatial variability in risk of injury is not related to the
presence or absence of public or private play-areas. This suggests that the relationship
between injury risk and availability of outdoor play areas in a neighbourhood—private or
public—may need to be re-evaluated in the case-control setting. This comment is made
cautiously, however, as individual-level relationships are not directly addressed by this
model. These observations may also be study-site specific. Edmonton has long winters
which probably discourage prolonged outdoor play by children. In cities with milder
winters, outdoor play-space may have a more protective effect since these resources
would be more frequently used.

Wang’s (1994) findings about planning type and injury frequency are supported
by this research despite the considerable differences in study design. After controlling
for low income and traffic density, tract injury rate is inversely proportional to the
sophistication of neighbourhood planning structure. The exact design features
responsible for the association are unclear, but since planning type has an effect after
controlling for traffic density, features other than the quantity of traffic on arterials must
be important. This could relate to traffic speed or fundamental properties of the plan
itself—like the degree to which pedestrian and automobile traffic are separated, and the
number and type of intersections.

Proportion of low income families shows an independent role in explaining

variability in rates between communities, however as a compositional effect, the exact
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properties of this relationship is unclear. The strength of the individual-level research
done in New Zealand and Australia suggests that the relationship may be related to
proportion of car ownership in these communities. As my model was incapable of
accurately isolating individual-level relationships, it is difficult to compare findings in
these studies. Family car ownership is probably lower in regions of the city with more
low-income families. All else being equal, children in these areas are probably making
more pedestrian trips. The relationship between car ownership and pedestrian trips taken
is supported both in the pedestrian injury literature (Roberts et al. 1996) and in the
Edmonton Household Travel Survey (City of Edmonton transportation and Planning
1995). Increased exposure to the traffic environment results in increased risk of injury,
which may account for the ecological-level association between low income and injury
rate.

The traffic density index is a measure of traffic volume in Edmonton census
tracts. The model indicates that traffic density remains a significant predictor of injury
rates even after controlling for planning type. Since the indicator is a measure of cars per
kilometre, it is unclear whether the association detected is the result of the quantity of
arterials in tracts, the volume of cars, or both. Although the traffic density index gives no
indication of traffic density on residential streets, it does give a general indication of the
quantity of road danger to children. Of the cases for which collision location was
obtained, the majority (~60%) were injured on arterial road segments. The presence of
these roads and their volume are important predictors of injury rates after controlling for

income and planning structure.
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Standardised coefficients indicate that the three variables “explain™ similar
amounts of variability in the dependent variable. In Chapter 4, Table 4.9 shows that the
addition or removal of any of the three variables results in a similar change in R2.
Despite the similarities between the three variables, the low income parameter estimate
shows less stability. When the highest leverage tracts are removed from the model, the
low income parameter experiences the greatest change. Although traffic density has the
largest range of observations (0-112) low income possesses a notable cluster of extreme
values, particularly in the high end. Together this evidence suggests that among the
significant model variables, low income has the most tenuous association with injury rate.
This may be related to the fact that proportion of low income families is compositional
while the other variables are contextual. It also may reflect the complex role that income
has on risk. Income is likely a surrogate for many variables—compositional and
contextual—some of which may have non-linear or otherwise complicated relationships
with pedestrian injury risk.

The regression model provides information consistent with most research on
pedestrian injury. Elemeats of both the physical and social environment show a
relationship with injury risk. Although this model does not contribute any new
information to the understanding of individual-level factors of risk, this was never the
intent of this study. However, it does provide an adequate framework for understanding

the spatial variability of child pedestrian injury rates.
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5.3 Features of Child Pedestrian Injury in Edmonton

5.3.1 Population Risk

Many of these resuits support findings in previous research on child pedestrian
injury. In the study period, more boys were injured than girls. Other studies show
similar findings (Rivara, 1990; Scheidt et al., 1995). However, the causes of this
difference are unclear. Previous research failed to show a relationship between gender
and the number of roads crossed (Roberts et al., 1996). The difference may be related to
the ways in which boys and girls use the road environments. These data reveal a trend
indicating that the gender difference in injury frequency varies less in older age groups
(Table 4.1). Although it is difficult to identify what factor is responsible for the
variability in risk between boys and girls, it would appear from evidence in this study that
this factor is less important as a child grows older. There is also a pattern in the time of
day when children are injured that is consistent with the literature. Children are most
often injured during two time periods: in the 8-9 am range and in a two to three hour
period in the mid to late afternoon. This pattern has appeared consistently over the last
twenty years (Wade et al., 1982; Calhoun et al., 1998) although the magnitude of the 9
am spike in these data is uncharacteristically large. Injuries occurring in the latter period
of the day represent a broader period of risk which also appears in many studies of
pedestrian injury in children. Lapses in driver and pedestrian attention at this time of day
may partially account for the pattern.

Despite the fact that only 157 of the 258 cases could be linked to collision
location data, the results reveal a pattern consistent in child pedestrian research—that

most children are injured near home. The exponential drop in distance between residence
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and collision location confirms the importance of neighbourhood environments as places
of pedestrian activity (Table 4.11). The shorter distances probably represent collisions
that occurred on home-based trips. The longer distances likely represent collisions that
occurred on pedestrian trips where the home was not a point of origin. There were no
data available indicating whether injuries occurred on home-based or non home-based
trips. However, it seems reasonable to suggest that in cases where the distance between
residence and collision location is small, trips are more likely to be home based (Figure
5.1). As the distance increases, the probability that a given trip is not home-based
increases.

The findings of this study do vary considerably with those of Joly et al. (1991)
which show that 96% of injury cases were injured in the census tract of residence.
Among cases linked to collision data, this study indicates that less than 50% of the child
pedestrians were injured in the tract of residence. Their study included more cases
(n=1233), involved a slightly different age group (0-14), and involved both bicyclist and
pedestrian injuries. However, it is unlikely that these differences alone can account for
the drastic contrast in findings. Although Montreal and Edmonton are considerably
different in terms of their urban design and history, since Statistics Canada uses similar
criteria for constructing tracts in Edmonton and Montreal, it is unlikely that tract size
accounts for the differences between the studies. Differences in pedestrian behaviour
between the cities may offer some explanation; however, little research has made inter-
urban comparisons of pedestrian travel habits. The most substantive difference between
study approaches is in the data collected—their study included both emergency-room

reported and police-reported injuries whereas this study is restricted to emergency-room
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reported injuries. How this may account for the difference in findings is unclear. Itis
possible that police reported injuries tend to occur closer to home than emergency-room
repﬁrted injuries. A direct comparison of the databases could explain this considerable
discrepancy. At the very least, this evidence emphasises 1) the importance of regionally-
based research in pedestrian injury and 2) that inter-regional comparisons are needed that
standardise data and study design.

Other results are also inconsistent with literature on pedestrian injury. These
results show that the frequency of injury increases with age. Several studies have found
that the highest frequency of injury occurs in five to nine year olds (Rivara and Barber,
198S; Pless et al., 1987; Mueller et al., 1987; Rivara 1990). Yet other research suggests
that younger children (under 6 years) are at highest risk (Read et al., 1963). As this
research examines more recent data than these older studies, results may represent a late
stage in a long-term trend of changing risk among children. It is possible that past and
current efforts to reduce risk—focussed most closely on pedestrian education—have done
much to improve child safety at younger ages. These data may indicate the importance of
developing alternative methods of injury prevention in the 10 to 15 year old age group.
This may be a function inter-regional differences. The social and/or environmental
context of Edmonton may put children between 10 and 15 at greater risk than children of
this age group in other study areas. These contrary findings stress the importance of

studying outcomes in their spatial and temporal context.
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3.3.2 Geography of Risk

Together, the smoothed rate map, the map of residual error and the map of
predicted rates derived from the regression model are the basis from which one can
understand the geography of child pedestrian injury. The map of smoothed rates shows a
variable pattern of injury between Edmonton communities, though not nearly as extreme
as the variability represented in the map of crude rates (Figure 4.2b). Communities in the
West-Central areas of the city and near the downtown show the highest rates. Injury rates
are lowest in the Southwest tracts of the city, which are made up of mostly higher
income, single dwelling households. Although a weak spatial pattern of rates was
detected using Moran s I, it is not obvious from the map where this clustering in rates is
concentrated. The map of injury rates alone provides little information about risk or
spatial processes that influence risk of injury. An attempt to base projections of future
injury rates using this information alone would prove difficult.

The map of residual error, although not spatially autocorrelated, does show a
cluster of slight under-prediction in West-Central areas of the city (Figure 4.19). This
under-prediction may be due to some factor of risk common to these areas. The linear
pattern of the under-prediction error suggests a cause related to traffic that is otherwise
unaccounted for by traffic density of major arterials. These tracts are located between
three regions of the city which attract significant traffic volume: the Industrial Northwest,
the City Centre and the West Edmonton Mall. It is possible that residential streets in
these areas experience high traffic volume. When considering cases for which collision
and residential location are known, this hypothesis seems unlikely as most cases were

injured on a major arterial, and not on a residential roadway (Table 4.4). Patterns of
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driver behaviour or regional-specific environmental factors unrelated to neighbourhood
planning or traffic density may also explain this pattern. A detailed study of these
neighbourhoods may be required in order to reveal the cause of this pattemn and provide
explanations for this anomaly.

The map of predicted rates generated from the regression model shows a strong
spatial pattern and is probably the most informative map generated in this study (Figure
4.21). This map shows pedestrian injury risk after removing the variability in rates
unaccounted for in the ecological-level model. Although there are communities with
high predicted rates scattered in various regions of the city, the map of risk factors clearly
p?edicts higher rates in Central areas of the city and lower rates in outlying regions.
Communities in the Central areas of the city have high proportions of low income
families, unplanned neighbourhood structure and higher traffic density. Other research in
medical geography has suggested similar patterns. For example, the core-periphery
gradient has been shown to be relevant in explaining distribution of infant mortality in
Finland (Vuorinen, 1987).

Although the range of rates is not large, the risk surface offers unique, although
not entirely unexpected, information about the spatial patterns of injury risk. The core-
periphery risk gradient is not visible in a map of rates alone. On this map, spatial patterns
are obscured by non-spatial individual-level processes that otherwise dominate risk of
injury. Unfortunately, the risk surface is also of limited value from a descriptive
standpoint. It would be inappropriate, for example, to view the risk surface as a predictor
of future trends child pedestrian injury. The model explains a relatively small proportion

of the variability in rates, and therefore would provide a poor estimation of future
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patterns. However, after developing an ecological-level model which effectively predicts
some of the spatial variability in rates, the risk surface indicates that areas in the city
centre have a greater combination of risk factors than outlying areas. Although this
generalisation is not perfect (as can be seen by the map of residuals), it does indicate a
spatial process at work that has not been widely discussed in the child pedestrian injury
literature.

5.4 Limitations of Research Approach

3.4.1 Residential Census Tract as the Study Unit

One of the key assumptions discussed in Chapter 3 is that children involved in collisions
are most frequently injured near home. This assumption is well supported by the child
pedestrian injury literature. This assumption is a very important element of this study’s
design and the main theoretical argument for choosing the census tract as the unit of
analysis. Evidence in Chapter 4 suggests that children are most frequently injured near
the home (~70% were injured within 2 Km. of their home). However, of the 157 cases
for which collision location data were obtained, less than 50% were actually injured in
their tract of residence.

It is possible to estimate the effects of this failed assumption on the model. Asa
compositional effect, the role of low income is unlikely to change. This variable is a
surrogate for the relationship between family income and injury risk at the individual-
level. As such, the location of the injury in relation to the home is not immediately
relevant. However, the other variables—planning type and road density—are contextual
effects. They describe a property of the environment of risk—in this case, the residential

census tract. For cases that were injured in an area outside the tract of residence, the
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characteristics of the home environment may have no relevance on risk. Thus the
resultant model may under-represent the association between the physical environment
and injury.

The degree to which this problem affects the model may be small, however. All
independent variables are highly spatially autocorrelated. Since neighbouring regions
tend to share similar characteristics, it is likely that neighbouring residential areas possess
similar environmental characteristics. Thus these particular variables probably still
describe—for many cases, by proxy—the environment in which the collision took place.

The choice to use residential areas allows me to generate meaningful rates such
that the numerator (number of injuries) and denominator (population of children at risk)
are consistent and intuitive. Researchers studying the region of collision use the same
variables to calculate rates, however, such calculations result in considerably less
intuitive results. In these cases, the denominator represents the number of children living
in the area of collision. This is meaningfully only if the assumption that children live in
the same regions in which they are injured is true. Otherwise this denominator does not
relate directly to the population at risk of injury. Until reliable links can be made
between data on collisions sites (usually collected by the police) and data on residential
locations (usually collected through health administrators) most ecological-level research
on child pedestrian injury will be forced to make the assumption that children live in the
same tracts that they are injured.

5.4.2 Roadway versus Non-Roadway Injury
Previous studies using data obtained through similar injury surveillance systems

have indicated that most (>80%) child pedestrian injuries in the 0-15 year old stratum
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occur on roadways (Calhoun et al., 1998). Nevertheless, no reliable data could be
obtained which identified whether or not a particular case was injured while crossing a
road, or walking in a driveway. The data set does include an ICD-9 Ecode that classifies
the location of injury (to distinguish road from driveway injuries) but this is very poorly
coded in the emergency room database.! Research on pedestrian injury in children
indicates that the aetiology of driveway injuries differs from those involving on-road
collisions. For one, it is unlikely that factors like traffic density or neighbourhood design
would have an equivalent relationship with injury risk as on-street collisions. This
difference is unaccounted for in this model, and may affect findings.
3.4.3 Smoothed Rates

The smoothed injury rates were used in order to generate more reasonable
estimates of injury risk. Typically, regression models of rates based on rare data are
weighted by the inverse variance of the dependent variable (in this case child population)
or rates are rejected altogether in favour of Poisson regression modelling. The choice to
model empirical Bayes estimates has not been examined in detail, however, and problems
associated with this technique may have affected the model. I addressed this somewhat
by comparing the least squares model of smoothed rates to a Poisson regression model of
injury counts. The results show a strong similarity between the models. However, until
more research is done to explore the modelling of these rates, the degree to which this
technique can be applied is unclear and should probably be accompanied by more widely

applied methods.
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5.5 Child Pedestrian Injury —Prevention in Time and Space

5.5.1 Regionally Specific Prevention

The findings indicate that risk of child pedestrian injury probably varies between
neighbourhoods. In fact, evidence suggests a general city-wide pattern in risk.
Prevention programs—educational or environmental—should consider this pattern to
improve the efficiency of resource allocation. Traffic calming measures are probably
unnecessary in neighbourhoods of Southwest Edmonton where residential traffic volume
is low and where most trips by children involve automotive transport. On the other hand,
environmental modification may be more important in central areas of the city where
through traffic on residential streets is high and where more children rely on pedestrian
transportation.

5.5.2 Space-time Interaction

The convergence of pedestrians and automobiles is the ultimate first-cause of
collision events. When an automobile and a pedestrian converge in time and space and
the sum of the converging forces exceeds the ability of the pedestrian’s body to avoid
damage, an injury occurs. Therefore it is of little surprise that most prevention strategies
aim at reducing this convergence.

Behaviourally focused preventative strategies direct their attention to children;
children are taught to behave in a manner that reduces this dangerous interaction with
automobiles. This involves teaching children to cross roads more carefully and to avoid
roads with high traffic volume. Driver behaviour can also be modified. Changes in
driver behaviour—like driving slowly in areas where children are active—increases the

driver’s ability to react to a situation in which a child is crossing the road unsafely. Both
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of these approaches represent active prevention approaches that require individuals to
make appropriate decisions in order to reduce the convergence of children and
automobiles in space and time. A mistake on the part of a driver or child in a given
situation can result in a collision. Although such education programs which aim to
improve the habits of drivers and pedestrians are critical components of risk reduction,
they are limited by the fact that all humans, regardless of education and age, are bound to
make mistakes.

Other methods of prevention attempt to reduce the convergence by changing the
environment. This can be large scale—as is seen in super-block neighbourhood planning
that completely separates pedestrian and automobile traffic— or small scale—like speed
bumps and one way streets. These modifications are designed to reduce automobile and
pedestrian convergence independent of individual habits. Physical barriers that entirely
restrict interaction between pedestrians and automobiles necessarily reduce the frequency
of collisions to zero. However, the lack of feasible methods of environmental
modification without affecting the efficient traffic flow of automobiles has hampered the
widespread introduction of these methods of prevention.

The most desirable strategy for reducing the frequency of child pedestrian injury
would be to reduce risk without reducing the opportunities for children to travel
independently in their neighbourhoods. Roberts (1993) claims that greater financial
equality is an important component for reducing risk of injury and may explain the strides
that Sweden has made in reducing child pedestrian injury rates. This argument rests on
the assumption that increased wealth among the poor will result in an increase in the

number of automobile trips, a decrease in the number of pedestrian trips, and therefore a
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reduction in pedestrian injury among poor children—a high risk group. Although there is
evidence to support such arguments, this approach would further restrict the independent
travel of children, an important component of their mental and physical development and
well-being. Furthermore, increased automobile use would likely result in increased
automobile to automobile collisions. Although this approach would probably reduce the
frequency of pedestrian injury among children, it may have consequences that make the
treatment worse than the disease.

A rarely discussed method for reducing the space-time convergence of pedestrians
and automobiles would be to change the frequency with which the paths of children and
automobiles cross in time. Torsten Haagerstrand, an important figure in space-time
geographical research, developed a visual model useful for understanding the manner in
which individuals interact in space and time (Figure 5.2). These results suggest that
times of peak child pedestrian activity coincide with periods of the day when automobile
traffic density is high. As long as these times of day are coincident, and frequencies of
pedestrian and automobile traffic do not change, collision events will continue to occur.
If these peak periods of traffic flow were staggered, the frequency of spatial convergence
between pedestrian and automobiles would probably drop. This time change may offer a
conceptually and financially feasible method for reducing rates of injury. One option is
to consider changing the times in which children go to school. At present, children travel
to and from school at times of the day that coincide with peak periods of car travel.
Staggering school times so that classes start and end at times less coincident with peak
traffic flow could reduce the frequency of collisions between automobiles and child

pedestrians. The time staggering need not be considerable if done while incorporating
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knowledge about local traffic flow times. The map of traffic flow suggests areas of the
city in which changing school hours might be a particularly useful strategy (Figure 3.3).
There is a strong core-periphery gradient in which traffic flows from the outer regions of
the city to the downtown. School hours could be modified while considering distance
from the city core.

Admittedly, the times that schools operate are probably at least in part related to
the times of peak traffic flow. Parents who drive their children to and from school will
continue to generate considerable traffic during the school commuting hours, whatever
the school hours of operation. Furthermore, the inconvenience associated with staggering
these times may introduce new problems. Obviously, such changes would require
community-level consultation and the consideration of particular neighbourhood
concerns. However, this idea offers a new and feasible approach for reducing risk of
injury to children.

The core-periphery gradient in risk over space combined with knowledge about
peak periods of traffic flow may provide a simple starting point for intervention by
altering school times. This may be a particularly important step for those who are
interested in reducing injury risk among children in the older age group. Surveys of peak
traffic times in each of these areas would offer information about the degree of temporal
staggering necessary to effectively reduce pedestrian and automobile interaction. At the
very least, future research should consider studying relationships between the times of

school attendance and the risk of injury.
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Notes

! In our data set the vast majority of cases were assigned an “undetermined” setting of injury location.
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6. Conclusions

From the outset I have emphasised that this research is limited to describing risk in terms
of neighbourhoods rather than individuals. Such ecological-level research is important to
understand the geographic properties of health outcomes as well as offering information
useful for prevention and resource allocation. These methods are especially important at
the scale of this study. Most people in the world live in urban environments, and each
city offers a unique context of observation. Methods that explore differences between
neighbourhoods can be useful for understanding how to improve these environments and
as a result, the health, safety and overall quality of life.

The results of the regression model, although complicated by several
methodological issues, do not depart considerably from most research in pedestrian
injury. The description of the demographic spatial and temporal trends does add to the
understanding of child pedestrian injury for both epidemiologists and geographers. By
isolating the spatial variability in injury rates, it is now possible to identify a notable
pattern in the spatial variability of risk. This emphasises the importance of considering
geographic location in the design of case-control studies. First and foremost, research
that does not focus on environmental risk factors should still incorporate the geographical
location of cases and controls into the study design—either by matching on location itself
or by including location as a variable of study.

Two important steps would do much to further the understanding of pedestrian
injury. First, there must be more work on the travel habits of child pedestrians in the
urban environment. Some research has studied the frequency of roads crossed and the

total number of trips taken; however, these studies have offered little to develop a good
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generalised idea of pedestrian travel in children. What are the destinations of choicz
among child pedestrians during after-school hours and the weekends? What distances are
children likely to walk to school and other destinations at various ages? Do children
from poorer families have different travel habits than children from wealthier families?
What role does parental concern play in affecting the pedestrian activities of children? In
addition to expanding our knowledge about injury risk, such research may help us
understand the relationship between physical and mental health and independent child
activity.

Second, researchers should consider investigating the links between the two main
sources of information on pedestrian injury—hospital records (which typically contain
information about residence) and police records (which typically include information
about collision location). A comparison of the cases reported in the study period, and the
identification of systematic differences between these sources of information should be
investigated. The collection of residential data—like postal codes—on police records
could improve the linkage process as well. Although ambulatory records often contain
information on injury cases that can be linked to hospital records (in the Capital Health
Region an ambulatory record is attached to the patient chart) the records are frequently
incomplete and are not always specific. The formal linkage of these three data sources
could prove effective in identifying collision locations while avoiding complications
associated with database merging.

At the heart of this research is an emphasis on bringing together methods in
geography and epidemiology. In this study and many other applications in health,

researchers in these fields must consider methods and theory derived from both
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disciplines. The clinical and population based epidemiological studies tell us about the
factors of immediate risk. The ecological-level approach emphasises the role of the
society and the environment in determining risk. Both research areas are important for

understanding the complex issues underlying human well being.
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Appendix B
Additional Regression Tables

1) Regression models of squared and cubed terms

Obs.

R .285 pval.

Adj. R 0.264 Ad]. R 0.267

Variable Coefl. SE T sig.ivl. Varisble Coeff. SE T sig.Ivl.
Low Income* 1.060 0.451 2.351 0.020] |Low Income* 0.778 0.266 2.934 0.004
‘Trafflc Density* 0.154 0.058 2.653 0.009} |Traffic Density* 0.157 0.058 2719 0.007
Planaing Type* -3.622 1.200 -3.019 0.003| |Pianning Type* -3.583 1.194 -3.000 0.003
Low Income* -0.012 0.008 -1.579 0.117} |Low Income’ 0.000 0.000 -1.756 0.081
Constant* 39.172 7.426 5275 0.000{ |Constant® 40.608 6.781 5.989 0.000

FG,134)

12610

Obs. FG,1349) 12.640| |Obs. 138

R 0275 pval 0.000| [R* 0.275 pval. ©.000
AdJ. R® 0.254 AdJ. R 0.253

Variable Coefl. SE T sigivl. Variable Coefl. SE T sig.ivl.
Low [ncome* 0.378 0.146 2.585 0.011] |Low Income* 0.380 0.146 2.601 0.010
Traffic Density* 0.313 0.192 1.632 0.105| |Traffic Density* 0.243 0.120 2, 0.045
Planning Type* -3.419 1.203]  -2.843 0.005| |Ptanning Type* -3.421 1.203 -2.843 0.00§
Teaflic Density -0.001 o002l -0.328 0.405] [Traffic Density® 0.000 0.000 0.774 0.440
Constant® 43.026 7.031 6.119 0.000| [Constant* 43.803 6.692 6.545 0.000
|+ Significant parameter estimate (0.05)

2) Regression models of Interaction variables

VLTI T A T

oo

e

Obs. 138 F(3,134) 13.430 138 F(3,139) 12.410
R 0.288 pval 0.000| |R? 0272 pval. 0.000
Adj. R .266 Adj. R* 0.250

Variable Coefl. SE T  sigvl Variable Coefl. SE T  sighvl.
Low Income* 0173 0.267 2.898 0.004] |Low Income 0.363 0.285 1.273 0.205
Traffic Density* 0.331 0.114 2915 0.004| |[Traffic Density* 0.161 0.059 2.750 0.007
Planning Type* -3.475 1192}  -2915 0.004] Planning Type -3.700 3.013 -1.228 0.222
LI*TD -0.008 0004} -1.728 0.086| |LI*PT 0.011 0.116 0.092 0.927
Constant* 37.978 7.607 4993 0.000| |Constant* 46.597 9.198 5.055 0.000

= S

sig.ivl.
| Law Income* 0.400 0.146 2.737 0.007
Traffic Density 0.020 0.132 0.149 0.382
Planning Type* -5.909 2372 -2.492 0.001
LLI*PT 0.054 0.045 1.200 0.231
Constant® 52.590 8.286 6.347 0.000
* Significant parameter estimate (0.05)
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Low Income® 0.018 0.006 2.876 0.004
|Road Density* -0.181 0.058 -3.146 0.002
Planning Type* 0.008 0.003 2.906 0.004
Constant* -7.859 0300{ -26238]  0.000
* Significant parameter estimate (0.05)

2) Regression model of subsets based on location of collision and residence

138 F(3,134) 3984
R 0.082 pval 0.009
Adj. R 0.061
Variable Coeff. SE T sighl
Low Income 0.030 0.071 0.429 0.669
Road Density® 0.060 0.028 2.133 0.035
Planning Type -0.798 0.584]  -1.368 0.174

Note: When the same subsets were run using
a Poisson regression model of injury counts,
the same predictors reached statistical
significance for each subset.

F(3,134) 7.920 138
R 0.151 pval. 0.000| |R2 0.140 pval 0.000
AdJ. R 0.132 Ad]. R2 0.121 ]
Variable Coefl. SE T L | Variable Coefl. SE T sight |
Low Income® 0212 0.103 2.066 0.041{ |Low Income 0.1011406 0.087 1.167 0.140
| Road Density 0.040 0.041 0.984 0.327| |Road Density 0.060 0.035 1.723 0.087
Planning Type* -2.090 0.846]  -2.470 0.015| |Planning Type* -1.782 0714}  -2497 0.014
Constant® 17.975 4.319 4.162 0.000] [Constant* 21.834 3.644 5.992 0.000

F(3,134)

10998

R 0.207 pval 0.000{ (R 0.198 pval 0.0004
Adj. R 0.190 Adj.R 0.180

Variable Coeff. SE T sight Varisble Coefl. SE T sight
Low Income* 0.194 0.092 2117 0.036! |Low Income 0.246 0.137 1.797 0.075
Road Density* 0.094 0.037 2.568 0.011! |Road Density* 0.120 0.055 2192 0.030
| Planning Type* -1.725 0.756] -2.282 0.024| | Planning Type® -3.062 L1271l -2ne 0.007
Constant* 21.086 3.858 5.466 0.000! |Constane* 29.534 5.753 5.133 0.000|
| * Significant parameter estimate (0.05) i
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Appendix C,

/#—eeeeeee—-Niko Yiannakoulias September 27, 1999———*/

/*Code may be used and modified without permission of author. However, the
author assumes no responsibility for problems associated with this code. It

was originally compiled to run on an WinNT platform and should run

on and system running a version of DOS older than 3.3. This program uses standard
functions and therefore is portable to 2 Unix/Linux environment.

I* */

#include <stdio.h>
#include <math.h>
#define TRUE |
void main()

FILE *input;

FILE *output;

float O[1000];
float E[1000};
float theta[1000};
float var{1000];
float ebe[1000];
float SMR[1000};
float talpha;

float thu;

char answer{];
float ctuid(1000];

float nu,alpha,sumtheta,sumvar,mean,variance,indox,successes;
int m,i,N,iterations,temp;
output=fopen(“output.txt”,"w");

printf{” \n");

printf(” Calculates empirical Bayes estimates.\n");

printf(” Max number of records:1000\n");

primtR®  Required fields: 2 numeric (observed and expected)\n™);
printf(® \n");

printf("Enter Filename (include extension):\n");
scanf{"%s" answer);

input=fopen(answer,"t");

for(i=1;i<=1002;++i)

{
fscanf{input,"%f  %f %f\n", &ctuid(i), LKO[GLKE[D:
i{IIO[i}==0&&E[i]=0)

printf{"End of File\n");
break;

}
++N;

ifN>=1001)
{

printf{"Too many records\n™);
exit(1);
13

}
printi("%d Records\n",N);
i(f(N==0)
printf{"File doesn't exist\n");
) exit(2);

printf{"Enter index value:\n");
scanf{"%f",&indox);
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alpha=indox;nu=indox;talpha=indox;mu=indox;
while(TRUE)
{

sumtheta=0;sumvar=0;
for(=1;i<=N;++)
{

theta{i}=((O[iFnu)/(E[i}+alpha));
sumtheta=sumtheta+thetafi];

il;
var{if=(1+alpha/Efi])*((theta[i]-(nw/alpha))*(theta{i]-(nw/alpha)));
, sumvar=varfij+sumvar;

mean=sumtheta/N;

variance=sumvar/(N-1);

alpha=mean/variance;

nu=mean*alpha;

if{{(talpha-alpha)*(talpha-alpha))<0.0000001 &&((tnu-nu)*(tnu-nu))<0.0000001)
{

} break:
talpha=alpha;

tu=nu;

++iterations;

if (iterations===1000)

{
printf{"No convergence, try a new index\n");
break;

}
}
fprintf{output,areaid obs exp smr ebe\n™);
for(i=1;i<=N;++)

{
SMR{i}=100*((Oi/E[D);
ebe{i}=100*((Ofi}+nu)/(E[il alpha));
forintfloutput,™63.2f.%£,%£,%K.%fn" cruid(i},O[i],E[i], SMR{i].be(i]);

printf{"%d Iterations\n",iterations);
fclose(input);
fclose(output);
}
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