
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films 

the text directly from the original or copy submitted. Thus, some thesis and 

dissertation copies are in typewriter face, while others may be from any type of 

computer printer.

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleedthrough, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikeiy event that the author did not send UMI a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and continuing 

from left to right in equal sections with small overlaps.

ProQuest Information and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



U niversity o f A lberta

U sing  M u ltiple  D e t e c t o r s  f o r  A r tist  C la ssifica tio n

by

Qiongyun Zhang

©

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the 
requirements for the degree of M aster o f Science.

Department of Computing Science

Edmonton, Alberta 
Spring 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0-494-08181-3

1*1 Library and 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Bibliotheque et 
Archives Canada

Direction du 
Patrimoine de I’edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN:
Our file Notre reterence 
ISBN:

NOTICE:
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I’lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author’s 
permission.

L’auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n’y aura aucun contenu manquant.

1*1

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

The digitization of audio media has brought with it the questions of how to store and catalog it, 

what to do with the information and how to protect its authorization. Music Information Retrieval 

is concerned with using retrieval techniques to perform searches on music media. An important 

problem in music information retrieval is the classification of music. Automatic classification at a 

coarse level, such as distinguishing among classical, rock and jazz music, is not a difficult problem, 

but more fine-grained distinctions among musical pieces sharing similar characteristics are more 

difficult to establish. In the realm of Music Information Retrieval (MIR), there is a burgeoning 

interest in automatic song and artist identification from audio data. Such work would obviously 

be useful for anyone who wants to ascertain the performing or composing artists of a new piece 

of music. It could be also used for automatic music categorization, for a digital library database 

or the data management for Karaoke according to artists. It could aid preference-based search 

and recommendations for music. Another area where artist identification may benefit is copyright 

protection and enforcement. The artist identification problem can be divided into two parts: how 

to select promising audio features and what kind of machine learning techniques are suitable for 

the specific task. We implement a prototype system which can analyze features and predict the 

performing artist of a music piece using machine learning algorithms. We experiment with features 

and efficient 1-class learning techniques to build customized classifiers for the specific task of artist 

identification.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

I would like to thank:

• My parents for supporting me all the time through my ups and downs.

• My supervisors, Dr. Randy Goebel and Dr. Robert Holte for their understanding, continuous 

support and helpful guidence in my research.

• Dr. Michael Frishkopf for being my external examiner and helpful feedback.

• All other fellow students who shared the great time in my graduate life.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

1 Introduction 1
1.1 Introduction.......................................................................................................................  1
1.2 Research Goal........................................................................................................................  2
1.3 Contributions....................................................................................................................  2
1.4 S um m ary ...........................................................................................................................  3

2 Background on M achine Learning and A rtis t Identification 4
2.1 Features............................................................................................................................. 4
2.2 Classification.................................................................................................................... 5

2.2.1 Building and Using a Classifier............................................................................ 6
2.2.2 1-Class Classification and n-Class Classification................................................  7
2.2.3 Evaluation ...........................................................................................................  8

2.3 Related W ork ..................................................................................................................... 9
2.4 S um m ary ...........................................................................................................................  11

3 Feature E xtraction 12
3.1 Basic Elements of m usic ................................................................................................... 12

3.1.1 P itch.......................................................................................................................  12
3.1.2 L oudness..............................................................................................................  13
3.1.3 Timbre .................................................................................................................  13
3.1.4 Tempo....................................................................................................................  13
3.1.5 R hythm .................................................................................................................  14

3.2 Dataset Choices.................................................................................................................  14
3.3 Feature Extraction Strategy............................................................................................  15

3.3.1 Timbre Texture Features .................................................................................... 15
3.3.2 Rhythmic Content Features................................................................................. 18
3.3.3 Pitch Content Features ......................................................................................  19
3.3.4 Pianist Performance Features.............................................................................. 20

3.4 Feature Normalization.....................................................................................................  21
3.5 S um m ary ..........................................................................................................................  22

4 M achine Learning and Classification 23
4.1 Artificial Neural Network and Auto-encoder.................................................................  24
4.2 ^-Nearest Neighbor and 1-class k N N ..............................................................................  27
4.3 Support Vector Machines and 1-class SVM ..................................................................  29
4.4 Naive Bayes and 1-class Naive B ayes..............................................................................  31
4.5 Combining Multiple Classifiers.......................................................................................  34
4.6 Sum m ary ..........................................................................................................................  35

5 Evaluation of Classifier 37
5.1 Confusion Matrices...........................................................................................................  37
5.2 ROC Curves and Cost Curves.........................................................................................  39

5.2.1 ROC C u rv e s ........................................................................................................  39
5.2.2 Cost Curves...........................................................................................................  41

5.3 S um m ary .......................................................................................................................... 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6 Experiment Design and R esults 46
6.1 Experimental D esign.......................................................................................................  46
6.2 D atasets............................................................................................................................  47
6.3 Experiment Results..........................................................................................................  49

6.3.1 Different Inputs Into Meta-level Neurons............................................................. 49
6.3.2 Different Methods for Handling Imbalance.......................................................... 53
6.3.3 Combinations of Different 1-Class Detectors....................................................... 56
6.3.4 Picking up a C la ss ................................................................................................  62
6.3.5 Comparison............................................................................................................  64

6.4 Sum m ary .........................................................................................................................  68

7 Conclusion & Future Work 69
7.1 Contributions.................................................................................................................... 69
7.2 Lim itations......................................................................................................................  69
7.3 Future Work ...................................................................................................................  70

Glossary 71

Bibliography 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

1.1 Machine Listening P rocedure .......................................................................................... 2

2.1 A data flow diagram: relations between data, features and knowledge discovery . . .  5
2.2 Building a classifier using machine learning algorithm ................................................  6
2.3 Identifying the artist using pre-built classifier...............................................................  6

3-1 Song, Chunks and Windows............................................................................................. 14
3.2 Fast Fourier Transform on a sine w ave........................................................................... 16
3.3 The Mel scale function [LogOO]..........................................................................................  17
3.4 Process to create MFCC features [LogOO] ..................................................................... 17
3.5 A Beat Histogram Example [TEC01]................................................................................ 18
3.6 Pitch Histograms of a Jazz song (left) and an Irish folk song (right) [TEC01].............  19
3.7 Horizontal axis: tempo in bpm; vertical axis: loudness in sone. Movement to the upper

right indicates a speeding up and loudness increase. The darkest point represents the 
current instant, while instants further in the past appear fainter [WZ04]....................  21

4.1 A Multi-layer Neural Network.......................................................................................... 24
4.2 A n e u ro n ..........................................................................................................................  25
4.3 A Typical Auto-encoder Neural Network with 2 Hidden nodes. The network attempts

to learn weights that map the input patterns to an internal representation and then 
back again to patterns identical to the inputs.................................................................  26

4.4 k-Nearest Neighbors. Different values of k result in different classification [Mit97]. . 28
4.5 Linear separating hyperplanes for the separable case. The support vectors are circled.

The optimal hyperplane separates the training examples by a maximal margin. . . .  29
4.6 A polynomial mapping from two dimensional space to three dimensional space. The

examples are linearly separable after the mapping. Left: In input space this con­
struction corresponds to a nonlinear ellipsoidal decision boundary. Right: Using 
zi =  (zi)2,zo = sqrt(2xiz2) and Z3 =  (X2 ) 2 as features, a separation in feature space 
can be found using a linear hyperplane [MMR+01]. xi,xo are the two features in the 
original feature space: Z],zo,Z3  represent the three new features in the 3-D feature 
space.................................................................................................................................... 30

4.7 (Left): a hyperplane is constructed that maximizes the distance to the origin while
allowing for v outliers. (Right): construction of the smallest sphere under some 
threshold that contains positive data [MMR+01]............................................................ 31

4.8 A Naive Bayes classifier depicted as a Bayesian network in which the predictive at­
tribute ( / i , / 2 —/n) are conditionally independent given the target class...................... 32

4.9 A Single Layer Neural Network Stacked on Auto-encoder Detectors...........................  35

5-1 A Typical ROC Curve........................................................................................................ 40
5.2 Overlapped Distribution of Prediction V alues...............................................................  40
5.3 Comparison of Three ROC C u rv es ................................................................................. 42
5.4 Extreme Classifiers...........................................................................................................  43
5.5 A Set of Classifiers...........................................................................................................  44
5-6 Two ROC Curves..............................................................................................................  44
5.7 Two Cost Curves............................................................................................................... 45

6.1 Two sets of inputs to neural network.............................................................................. 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.2 Cost curves when the base detector is an auto-encoder. The lower curve is for the 
neuron trained with option 2; the upper curve is for the neuron with option 1 and the 
auto-encoder by its e lf . .....................................................................................................  50

6.3 Cost curves when the base detector is a 1-class kNN. The lower curve is for the neuron 
trained with option 2; the upper curve is for the neuron with option 1 and the 1-class 
kNN by itself.....................................................................................................................  51

6.4 Cost curves when the base detector is a 1-class SVM. The lower curve is for the neuron 
trained with option 2; the upper curve is for the neuron with option 1 and the 1-class 
SVM by itself. .................................................................................................................  52

6.5 Cost curves when the base detector is a Naive Bayes estimator. The lower curve is 
for the neuron trained with option 2; the upper curve is for the neuron with option 1
and the Naive Bayes estimator by itse lf . ........................................................................ 52

6.6 Cost curves for neuron and auto-encoder 16 using different sampling methods. The 
lower plot is the enlargement of the bottom left corner of the upper plot. The lowest
cost curve is produced by the original training method.................................................. 55

6-7 Cost curves for neuron 16, using SVM’s, with different sampling methods. At the
bottom left comer, the lowest curve is produced by the original training method. . . 57

6.8 Cost curves for neuron 16, using kNN’s with different sampling methods. At the
bottom left comer, the lowest curve is produced by the orignal training method. . . 58

6.9 Cost curves for neuron 16, using Naive Bayes, with different sampling methods. At
the borrom left comer, the lowest curve is produced by the original training method. 59

6.10 Performance of all the individual detectors...................................................................  60
6.11 Best Individual vs. P airs.................................................................................................  61
6-12 Best Pair vs. Triplets vs. Quadruplet............................................................................  63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

2.1 An example of feature-based d a ta ...................................................................................  4
2.2 A 2*2 Confusion M atrix ..................................................................................................  8
2.3 Approaches Used in Different Artist Identification Systems........................................... 10
2.4 Comparison of Classification Accuracy on 21-Artists D a ta s e t .................................... 11

4.1 An example of Naive Bayes Classifier.............................................................................  31

5.1 Confusion Matrix for the Classification System on 16-artists d a ta s e t ........................ 38
5.2 A 2-class confusion m atrix ...............................................................................................  41

6.1 16 and 21 Artists Datasets............................................................... ................................ 48
6.2 Movements of Mozart piano sonatas selected for analysis............................................  48
6.3 Pianists and recordings .................................................................................................. 48
6.4 Summary of Results for neuron input o p tio n s .............................................................. 53
6.5 Summary of results for alternative training m e th o d s..................................................  56
6.6 Using Individual Detectors............................................................................................... 61
6.7 Best Individual vs. Pairs.................................................................................................. 62
6.8 Best Pair vs. Triplets vs. Quadruplet............................................................................. 62
6.9 Confusion matrix for 16-class classification. Classifier built using auto-encoder. Class

label decided through max-selection approach................................................................. 65
6.10 Confusion matrix for 16-class classification. Classifier built using auto-encoder. Class 

label decided through kNN approach................................................................................ 66
6.11 Frame &: Song Level Classification Accuracy Comparison on 16 and 21 artists datasets 67
6.12 Song Level Classification Accuracy Comparison on 6 pianists datase t........................  68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1 

Introduction

This dissertation describes a machine learning approach to the problem of identifying a  performing 

artist in a piece of music.

1.1 Introduction

The digitization of audio media has brought with it the problem of what to do with the information; 

how to store it, catalog it, and make sure that only those authorized can inspect it. In the realm  

of Music Information Retrieval and Music Digital Library research communities, there is growing 

interest and work on automatic song and artist identification from audio data. Such systems would 

be useful for anyone who wants to ascertain the performing or composing artists of a piece of 

music. It could also be used for automatic music categorization, for digital library database or 

the data management for Karaoke according to artists. It could also aid preference-based search 

and recommendation for music. Another area where artist identification may benefit is copyright 

protection and enforcement [BEL02]. Depending on requirements for an application one wants to 

develop, the identification can be based on either a whole piece of music, or a short segment. For 

example, a system that works like a radio scanner to find specific artists music is supposed to be 

able to identify the artist, given a fairly short segment. For other applications such as automatic 

CD categorization, etc, the identification can be on the whole piece level.

Analogous to human listening procedure (Figure 1.1), an artist identification listening system 

generally has three parts: signal processing, learning and classifying. With a little training, if a 

human is familiar with a particular artist’s voice and style, one can usually recognize that artist’s 

work, even when hearing a song from the first time. The problem of artist identification is to 

automatically establish the identity of an artist using audio features extracted from songs in a

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Hearing Understanding Recognizing
Representation Analysis

Signal Processing M achine Learning Artist Classifying

Figure 1.1: Machine Listening Procedure

dataset of music pieces. It is a typical classification problem that arranges objects into categories or 

classes according to established criteria. For artist identification, each artist is considered as a class. 

It must be noted that “artist” is in ambiguous, since the artist a music piece features could be the 

composer, the performers, the instrument players, the producer, and so on. On the other hand, in 

some cases, like in rock and pop music, the performer, singer and the composer is often the same. 

In our work, we treat the performing musician as the artist.

1.2 Research Goal

The goal of the research described in the dissertation is to build an artist identification system using 

machine learning techniques, in order to perform classification among various artists that the system 

has been trained to recognize. Considering the vast space of existing artists, it is not practical to 

build a system that can handle all artists. Therefore our system is designed to be able to distinguish 

unknown artists from the ones it knows as well.

1.3 Contributions

Our contributions include the design, implementation, and experimentation with a new artist clas­

sification system. Our design is based on using four different machine learning methods to create 

a collection of 1-class “detectors”, and then combining this collection of 1-class detectors using a 

meta-learning approach, to create a complete classifier. Our approach is different than others in that 

we build the classifer incrementally, by training a 1-class detector for each class and then combining 

them linearly. Designed in this way, our classifier can handle the problem of lack of training data 

from unknown classes, and it is also possible to be further developed to reject unknown artists.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.4 Summary

This chapter has introduced and motivated the artist classification problem in music information 

retrieval. It has also stated the goal of our research.

Chapter 2 provides the background knowledge of machine learning and artist identification. It 

introduces challenges of feature extraction and selection, the concept of 1-class classification and 

multi-class classification, classifier building, and the overall strategy of classification process and 

classifier evaluation. Following that, the current state of art of the artist identification problem is 

described. Chapter 3 discusses our strategies for extracting features from audio data, to be used 

for our machine learning algorithms. In Chapter 4, several machine learning algorithms and our 

customized classifier combination technique are introduced. Chapter 5 gives a  detailed description 

of the measurements we use to evaluate classifiers. Chapter 6 describes the design of our experiments, 

and presents and analyzes the results. Chapter 7 provides some concluding remarks and discussion 

on limitations as well as ideas for future work.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

Background on Machine Learning 
and A rtist Identification

This chapter describes the basic concepts of machine learning including feature extraction and se­

lection, how to build classifiers using these features, how a constructed classifier is used to identify 

new instances and the evaluation of classifier performance. More specifically, we explain the dif­

ference between 1-Class classification and Multi-Class classification. Following the introduction of 

the background knowledge of machine learning, the current state of the art of artist identification is 

described in term of features and learning algorithms used in previous work.

2.1 Features

The basic building blocks of any machine learning system are a collection of features about things 

we would like to learn to make predictions about. Features are also called attributes or properties. 

A collection of features with their values forms a dataset in which each item describes an instance 

or example. Table 2.1 is an example of feature-based data.

Hair H eight W eight Lotion R esult
blond average light no sunburned
blond tall average yes none
brown short average yes none
brown short average no sunburned
red average heavy no sunburned
brown tall heavy no none
brown short light yes none

Table 2.1: An example of feature-based data

One learning task is to find a classifier or function that generalizes from the training data so 

that the classifier is able to predict the class for a new instance. As a fundamental unit of machine

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



learning, features describe the data and influence the nature of learning algorithms that can be used. 

Figure 2.1 shows the diagram of the transformation from data to features and then to knowledge 

discovered by learning algorithms.

Data

Features 
(R educed  D ata)

L earn ing  A lgorithm s

Feature
S e lec tion /E x traction

R u les Induced/
K n o w led g e  D isco v ered

Figure 2.1: A data flow diagram: relations between data, features and knowledge discovery

While machine learning techniques such as classification attempt to summarize data into a concise 

form that can be understood and reused, appropriate feature selection is required to make the 

learning more efficient and effective [LM98]. Robust and relevant features can benefit learning by 

providing an accurate description of the data. On the other hand, redundant and irrelevant features 

can degrade learning and the quality of the classifier. Therefore, the selection of features is a key to 

learning and the quality of a classifier. The features extracted from the audio data in our work and 

feature selection strategies will be described in detail in Chapter 3.

2.2 Classification

In general, the process of classification is completed in three major steps: learning a classifier 

from training data, classifying new unknown data using the classifier, and measuring the classifier’s 

performance. A learning algorithm defines the actual process to build a classifier model from training 

data and its performance on testing data is then measured by certain evaluation criteria to determine 

how close the model is to the data.

o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2.1 Building and Using a Classifier

In general, building and using a classifier involves a two-step process, as shown in Figures 2.2 and 

2.3: training (learning) and identification (classification). In the training step, a classifier is built 

using a machine learning algorithm that analyzes a set of training data, each labeled with the name 

of its class. In the prediction phase, the classifier built in the previous step is used to predict the 

class of unknown examples.

Training
Feature

Extraction
Feature

Machine  *
Learning

Classifier

Figure 2.2: Building a classifier using machine learning algorithm

A common technique for building a classifier is to apply a machine learning algorithm to a set of 

labelled training examples. Each training example has a set of features and a class label. The values 

of features in each training item (in our case, double-precision floating point values) along with the 

label (artist name) are used to build a classifier. More specifically, each of our training examples 

has features derived from a segment of a complete performance and the name of its singer. For each 

audio piece, we extract a set of features via a signal processing program. Chapter 3 gives a detailed 

description of the feature extraction strategies.

Unlabelled
Music
Piece

Feature

Extraction

Unlabelled
Feature
Vectors

Pre—built 
 ►>
Classifier

Prediction

Figure 2.3: Identifying the artist using pre-built classifier

Once the classifier is built, it can take a piece of audio data with an unspecified artist and uses 

the feature values extracted from the data to identify the artist. Figure 2.3 shows the procedure.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2.2 1-Class Classification and n-Class Classification

A classification task is typically viewed as placing an object in the appropriate class, from a choice 

of n classes. Usually by learning from training data, a classifier is able to recognize examples from 

all the classes it has seen in training and then categorize new examples in testing. A classifier can be 

either generative or discriminative. Generative classifiers learn a model of the conditional probability 

p(x\y) of the inputs x  and label y, and make their predictions by using Bayes rules [Mit97] to calculate 

p(y\x) for each class label y, and then picking the most likely label y [NJ02]. Naive Bayes [Mit97] is a 

typical generative learning method. Discriminative classifiers model the posterior probability p(y\x) 

directly, or learn a direct map from inputs x to the class labels. Discrinimative methods attempt to 

maximize the discriminability between classes without estimating class-conditional densities p(xjy) 

or assuming anything about the input distribution p(x). A good example of a discriminative classifier 

is a Support Vector Machine (SVM) [SPSTS01]. A widely held belief is that discriminative classifiers 

are almost always to be preferred to generative classifiers [NJ02], and a compelling reason is that 

one should solve the classification problem directly and never solve a more general problem as an 

intermediate step (such as modeling p(x\y)) [NJ02].

1-class classification tries to identify a class of target data and to distinguish it from all other 

possible classes. In the training step of a 1-class classifier, only positive examples of a class are fed 

to the learning algorithm. In the testing step, examples from that specific class are considered as 

positive and are supposed to be recognized by the classifier, while examples from any other classes 

are supposed to be classified as negative. 1-class classification has been suitable for applications 

where there is only information available regarding one class for training [HGR04]. For example, 

to build a classifier to verify authenticity of a bank cheque, there is usually only examples from 

legal customers for training as it is difficult to acquire sufficient counterfeit examples. Therefore 

the learning task can be viewed as a 1-class classification problem. It is also practical to build an 

ensemble of 1-class classification which can be combined to perform multi-class classification.

There are some 1-class classification methods existing in the field of machine learning, such as 

1-class SVM [SPSTS01], and Auto-encoder Neural Network [JMG95]. Many other machine learning 

algorithms can be customized to perform 1-class classification as well. For example, by using training 

data from only one class and setting a distance threshold, a 1-class ^-Nearest Neighbors classifier can 

be easily constructed. Likewise, a 1-class Naive Bayes classifier can be built with slight modification.

In our work, we build a 1-class classifier for each individual artist in the training data, using

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



both existing and customized 1-class learning methods. The details about these learning methods 

will be presented in Chapter 4.

The ultimate goal of our work is to build an n-class classifier that can identify a set of different 

artists. However when there tire a considerable number of classes in a learning task, the performance 

of an n-class classifier can degrade because of the large number of classes. An alternative is to build an 

n-class classifier by making use of an ensemble of different classifiers. For example, 1-class classifiers 

can be combined to do n-class classification based on the decision of each individual classifier.

In our system, we combine four different machine learning methods in various ways to provide 

the basis for our n-class classification experiments. The combination methodology will be discussed 

in Chapter 4.

2.2.3 Evaluation

To evaluate the performance of classifiers, it is important to define am appropriate evaluation cri­

teria. We will use a standard machine learning technique called cross validation [Mit97], Each 

set of labelled training instances is partitioned into n groups of training instances G\...Gn, each 

of them having approximately the same number of training instances. Then n different classifiers 

are constructed C\...Cn, where C, uses all of the groups as training instances except Gt. Following 

that, a confusion matrix is computed for each of the n classifiers, Ci using Gi as testing data. A 

confusion matrix [Mit97] is simply a  table that records the classification results of a classifier. Table

2.2 gives an example of a 2 * 2 confusion matrix in which there are two classes of data, positive and 

negative. The number in row i and column j  denotes the number of examples from class i being 

classified as class j .  In the example shown in Table 2.2, there are 100 positive examples and 100 

negative examples in the testing set. The classifier recognizes 90 positive examples out of 100, and 

incorrectly classifies the other 10 positive examples; it also correctly classifies 80 negative examples, 

while misclassifying the remaining 20 negative examples.

Predicted^-
A ctual^

Positive Negative

Positive 90 10
Negative 20 80

Table 2.2: A 2*2 Confusion Matrix

Various statistics [vR79] can be computed from the confusion matrix to evaluate the performance 

of a classifier. Based on these statistics, ROC Curves [Mar03] and Cost Curves [DH00] can be

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



constructed to evaluate our classifiers. Further details on the concepts of these evaluation tools will 

be presented in Chapter 5.

2.3 Related Work

A number of systems have been developed over the past years that support classification of artists 

using various prediction algorithms, based on different features. All these works slice a piece of music 

into small frames, extract features from each of these short frames and use these feature vectors as 

the data for training and testing. The classification results for all the frames in a piece vote together 

to decide the classification for the complete piece. Therefore, there are two accuracies, at the frame 

level and at the entire song level. Four typical systems related to our work are as follows:

• An singer identification system Minnow-match is developed and described in [WFL01], The 

dataset for this work is a 21 artists dataset, which includes data for 16 vocal singers and 

5 non-vocal artists. In this work, the author divides each piece into short slices and then 

automatically extracts various features and makes classifications using a neural network and an 

SVM. Features are computed using Fast Fourier Transform (FFT) [Coo87] and Mel Frequency 

Cepstral Coefficient (MFCC) [LogOO] on each of these short segments. The classifier is trained 

by a multi-layer ANN and SVM respectively. To solve the seeding problem of neural networks, 

a third approach is to combine the SVM with the neural network by feeding the resulting 

output of each SVM to a new neural network. The system classifies in a one-in- n singer space 

correctly around 50% for 21 singers at the entire song level.

• For the same task, Adam et al. use singing segments instead of using the entire track for singer 

classification [BEL02]. A multi-layer neural network classifier is trained, using Linear Predic­

tion Coefficient (LPC) [HarOl] for the task of locating segments of music that are dominated 

by singing voice. The classification is also performed by a neural network classifier. The inputs 

to the neural network are MFCCs calculated from each short time segment. Experimenting 

with the same dataset, as in [WFL01], the classification is reported to be improved by about 

15% compared with [WFL01] and comes to 65% for 21 singers at entire song level. Also 

the classification performance on 16 singers increases to 68%. At the segment level, the best 

resulted reported is about 36% for 16 singers and 32% for 21 singers.

• In another system by Kim and Whitman [KW02], voice coding features are computed by LPC 

instead of FFT and MFCC. Gaussian Mixture Model (GMM) [DHS00] and SVM classifiers are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



built to identify different singers. The author selected a subset of the dataset used in [WFL01] 

which contains the data for the 16 vocal artists. They added data for another singing artist, 

making a total of 17 artists in their new dataset. The best results of song classification using 

their approach is 41.5% for 17 vocal artists and a frame accuracy of 31%.

• The fourth application on artist classification is different than the aforesaid three in that this 

system learns to recognize six famous pianists playing the same set of piano concert pieces 

based on their performing style, instead of singers. The system extracts a num ber of low-level 

features related to tempo and loudness from the original audio CD recording by these pianists, 

and applies 6 machine learning algorithms to the task of learning classifiers based on these 

features. These learning methods include Naive Bayes, k-Nearest Neighbors (kNN), Decision 

Tree, Classification via Regression, Logistic Regression and a rule learning algorithm [WFOO]. 

Instead of doing n-class classification directly, the author converted it into n(n — l)/2  pairwise 

discrimination problems. The overall prediction accuracy is around 70%.

A uthors D ata Pre-processing Use
Voice
Seg­
m ent

Features Learner

Whitman et 
al.

1 out of every k slices of 
0.8-ls is taken as an exam­
ple.

No MFCC, FFT ANN, SVM, and 
SVM+ANN

Kim et al. Example frames are of 
1024 samples ( 100msec) 
taken every 512 samples 
( 50msec)

Yes LPC GMM, SVM

Berenzweig 
et al.

Example frames are of 32
msec long,
taken every 16msec.

Yes LPC for 
vocal seg­
mentation; 
MFCC 
for singer 
classification

Multi-layer neural 
network

Widmer et 
al.

Example frames are of the 
length of two bars

N/A tempo and
loudness
features

Naive Bayes, kNN, 
Decision Tree, Rule 
Learner, Classifica­
tion via Regression 
and Logistic Re­
gression.

Table 2.3: Approaches Used in Different Artist Identification Systems

Table 2.3 lists the different approaches used in the four previous research works. Table 2.4 lists 

and compares the best classification results obtained by the three singer identification systems since

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



they axe tested on the same dataset.

A uthors 16 artists  
(frame)

16 a rtis ts
(song)

21-artists
(frame)

21 artists
(song)

Whitman et. al N/A N/A N/A .50
Kim et. al .307 .415 N/A N/A
Berenzweig et. al .356 .683 .318 .649

Table 2.4: Comparison of Classification Accuracy on 21-Artists Dataset

As revealed in the related work, the singer identification systems depend on the voice features in 

music more than features from other various aspects of music. In terms of classification accuracy, the 

performance of these classifiers, especially at frame level, is still relatively low [KW02]. Therefore, in 

our work, we use a different and wider repertoire of features. Also, instead of using existing machine 

learning techniques to build an n-class classifier, we build a custom n-class classifier using different 

1-class machine learning algorithms. By using these different features and learning approaches, we 

hope for some improvement on the artist identification problem.

2.4 Summary

In this chapter, background knowledge on machine learning related to our work was briefly in­

troduced, including the major steps of learning and classification, selection and the importance 

of features, classifier construction and evaluation. In particular, 1-class and n-class classification 

were discussed. Also four different artist classification systems in the literature were described and 

compared regarding the features and learning methods used.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Feature Extraction

As previously introduced, audio features are the heart of the process of both classifier building and 

artist identification. This section introduces some basic elements of music and the strategies we used 

to extract audio features corresponding to these music elements.

3.1 Basic Elem ents o f music

Music contains complex structures of many interrelated elements. Generally speaking, elements 

that can be measured directly using scientific instruments comprise the physical properties of music. 

On the other hand, those that a human listener associates with the music sound are the perceptual 

attributes [SchOO]. For some perceived attributes of sounds, it is relatively easy to understand the 

physical correlates of the attributes. For example, as the frequency of a sine tone varies, the pitch 

of the sound varies in a simple ways. However, for other sounds and properties, the correlation 

between the physical and the perceptual can be difficult to understand.

3.1.1 P itch

In a piece of western music, multiple notes group sequentially in time into melodies, simultaneously 

into chords, and in both directions into structures such as “harmonies” and “key”. Each music note, 

when turned into sound, is perceived to have a pitch. The pitch of a sound is an attribute which 

may be positioned on a continuum from “low” to “high”.

By definition, the pitch of a sound means the frequency of a fixed-amplitude sine tone that most 

closely matches the sound [SchOO]. But this does not mean that sounds have a “correct” pitch that 

listeners can be asked to “identify”. The pitch of a sound is simply what a particular listener, in a 

particular context, feels that it is. The physical correlate of pitch is frequency. As the frequency of 

a sound changes, the pitch of the sound is perceived to change [SchOO].

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.1.2 Loudness

The loudness of a sound is a perceptual attribute that can be felt as “quiet” or “loud”. Loudness 

can be defined operationally as the amount of energy in a sine tone. Loudness is typically correlated 

with the physical property intensity. The relationship between loudness and intensity is similar to 

that between pitch and frequency. Pitch and loudness are the two most well-studied attributes of 

sounds [SchOO].

3.1.3 Timbre

In music, timbre is the quality of a musical note which distinguishes sound of identical pitch and 

loudness. For example, consider a note of the same pitch and loudness played on a piano and a flute. 

While they have the same frequency, the human ear hears them as different, and with a little practice 

can identify the instruments involved. However, there is no simple set of physical properties that 

correspond to timbre, and there is no clear operational definition [SchOO]. Timbre can be roughly 

defined as all those qualities of a sound that allow a listener to distinguish sound of same pitch and 

loudness. These qualities might include:

• Spectrum: the aggregate of simpler waveforms (usually sine waves) that make up what we 

recognize as a particular sound. This is what Fourier analysis gives us [BPR+].

• Envelope: the attack, sustain, and decay portions of a sound (often referred to as tran­

sients) [BPR+].

Envelope and spectra are complex concepts, and include a lot of sub-categories. For example, 

spectral features are very important, as there are many different ways that the spectral aggregates 

can be organized statistically, in terms of shape and form. For example the relative “noisiness” of a 

sound is a result, in large part, of its spectral relationships. Facets of envelope (onset time, harmonic 

decay, spectral evolution, steady-state modulations) are not simply explained by just looking at the 

envelope of a sound [BPR+].

3.1.4 Tempo

Tempo identifies the rate of the beat of the music, and is measured by the number of beats per 

minute. The tempo of music is a perceptual sense that the sound is recurrent in time at regular 

intervals. A good operational definition of tempo would be the frequency of a click-track adjusted 

to have the same perceived speed as the stimulus. Like pitch and loudness, tempo is a perceptual

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



attribute that cannot be measured directly from a sound. A sound does not have a real tempo that 

a listener might judge “incorrectly”. The tempo of a sound to a listener is just whatever the listener 

thinks it is. Even though good musicians can agree on timing and tempo for the performance of 

music, it is not presently well-understood what the physical correlate of tempo is [SchOO].

3.1.5 Rhythm

Rhythm as a musical concept is intuitively easy to understand, but somewhat difficult to define. 

There is no ground truth for rhythm to be found in simple measurements of an acoustic signal. This 

places rhythm and tempo into the domain of perceptual attributes of sound.

3.2 D ataset Choices

In our work we use two different datasets, one is the 21 vocal and non-vocal artists dataset as used 

in [WFL01], [KW02] and [BEL02]; the other is a dataset made up of performance features of 6 

famous piano players [WZ04].

In the 21-artists dataset each artist has around 10 MPEG 1 Layer 3 (MP3) files. While using MP3 

files as our source data, we need to decompress them first. A whole MP3 audio file is sliced into non­

overlapping 30 second chunks. Each of these chunks is decompressed into a 22050Hz, 16-bit mono 

audio file, to prepare for later extraction of audio features. When extracting features, these audio 

chunks will be further sliced into windows, each of which will have a statistical processing program 

applied, such as the Fast Fourier Transform. The feature extraction strategy will be described in 

the next section. The segmentation procedure is shown in Figure 3.1. After the pre-processing, 

features extracted from those 30 second audio chunks make up the dataset used to train and test 

our system.

Song

Ch

Figure 3.1: Song, Chunks and Windows

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In the 6-pianist dataset, there are 12 piano sonata movements, and every player has recordings 

on all of the 12 pieces, which results in 72 recordings. Each piece is sliced into windows of two bars; 

each window has a set of features related to tempo and loudness. Thus, the raw data with this 

dataset for our experiments is tempo and overall loudness values measured for windows. Altogether, 

this procedure produces about 23,000 instances for the 6 players [WZ04].

3.3 Feature Extraction Strategy

The selection of descriptive features for a specific application is one of the main challenges in building 

machine learning systems. Based on available digital processing techniques and previous research 

work, there are a wide variety of audio features that can be extracted from an audio file. These 

correspond to several major music elements—timbre, loudness, beat/rhythm, pitch. Due to the 

availability of efficient digital signal processing software, we make use of an audio data processing 

program called Marsyas [TzaOO] to extract features for the 21-artists dataset. The features extracted 

by Marsyas are presented below. For the pianist dataset, as we are provided with the dataset which 

can be used directly, we need no extra work on feature extraction. The feature extraction strategy 

used in [WZ04] for the dataset will be briefly described as well in section 3.3.4.

3.3.1 Timbre Texture Features

Features to represent timbre texture are calculated from Short Time Fourier Transform (STFT) [Roy] 

that can be efficiently calculated using the FFT algorithm and MFCCs.

Fourier transform, in essence, decomposes a waveform or function into sinusoids of different 

frequency which sum to the original waveform. It identifies the different frequency sinusoids and 

their respective amplitudes [Wei]. FFT is an efficient algorithm to compute the discrete Fourier 

transform (DFT) and its inverse. It transforms a signal between the time domain and the frequency 

domain. Figure 3.2 shows the result of applying FFT on a simple sine wave. Adapted from the 

Fourier transform, STFT analyzes only a small section of the signal at a time using a technique called 

windowing the signal, and maps a signal into a two-dimensional function of time and frequency. In 

the discrete time case, the signal to be transformed is broken up into chunks, each chunk is Fourier 

transformed and the complex result is added to a matrix which records magnitude and phase for 

each point in time and frequency [Wei].

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



» 411* It

Figure 3.2: Fast Fourier Transform on a sine wave

Features calculated from STFT include spectral centroid, spectral roll-off, spectral flux, zero- 

crossing, MFCC and low-energy feature [TzaOO].

• Spectral Centroid: it is the centroid of the short-time Fourier transform magnitude. The cen­

troid is the balancing point of the spectrum—the frequency where the energy of all frequencies 

below that frequency is equal to the energy of all frequencies above that frequency. It is a 

measurement of “brightness”. The brighter the music is, the higher the centroid value.

• Spectral Roll-off: it is defined as the frequency below which 85% of the Fourier transform 

magnitude distribution is concentrated.

• Spectral Flux: defined as the squared difference between the normalized magnitudes of suc­

cessive spectral distribution. It is a measure of the amount of local spectral change.

• Zero-crossings: computed as the number of signal sign changes in a frame.

• Low-energy: the percentage of windows that have less Root Mean Square (RMS) energy than 

the average RMS energy across a frame. As it measures signal energy, it could be used for a 

measure of loudness.

MFCCs carry important information about the music’s instrumentation and its timbres, the 

quality of a singer’s voice, and production effects. MFCCs have also been used as dominant features

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F ra jiac tlH s

Figure 3.3: The Mel scale function [LogOO].

Waveform

Take Loo of 
amplitude spectrum

Convert to Frames

Discrete cosine transform

Mel-scaling and 
smoothing

Take discrete 
Fourier transform

*
MFCC Features

Figure 3.4: Process to create MFCC features [LogOO]

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for speech recognition [LogOO]. They axe perceptually motivated features that are also based on 

Fourier transforms [TEC01]. After taking the log-amplitude of the magnitude spectrum, the FFT 

bins are grouped and smoothed according to Mel frequency scaling. The Mel scale is based on a 

mapping between actual frequency and perceived pitch as apparently the human auditory system 

does not perceive pitch in a linear manner [LogOO]. The mapping is approximately linear below 1  kHz  

and logarithmic above. Figure 3.3 shows the Mel function. Finally, a discrete cosine transform is 

applied [LogOO]. Figure 3.4 shows the process of creating MFCC features.

3.3.2 Rhythm ic Content Features

The calculation of features for representing the rhythmic structure of music is based on the Wavelet 

Transform (WT) and the feature set is based on detecting the most salient periodicities of the 

signal [TzaOO]. A beat histogram is built by applying WT algorithms for an excerpt. Figure 3.5 is 

an example beat histogram.

ROCK

£
t

2001C0 ICO140

Figure 3.5: A Beat Histogram Example [TEC01].

A set of features are calculated in order to represent rhythmic content. These are:

• AO, Al: amplitude of the first and second histogram peak;

• RA: ratio of the amplitude of the second peak divided by the amplitude of the first peak;

IS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• PI. P2: period of the first, second peak in bpm(beats-per-minute);

• SUM: overall sum of the histogram (indication of beat strength).

3.3.3 Pitch Content Features

The pitch content feature set is determined by multiple pitch detection techniques [TzaOO]. Similar to 

rhythm content analysis, a pitch histogram is constructed first. Two versions of the pitch histogram 

are created: a Folded Pitch Histogram (FPH) and an Unfolded Pitch Histogram (UPH). Figure 3.6 

shows the UPHs for two songs. The difference between FPH and UPH is that in the folded case, 

all musical notes are mapped to a single octave [Tza02]. The FPH carries information regarding 

the pitch classes or harmonic content of the music whereas the UPH contains information about the 

pitch range of the piece [Tza02].

Figure 3.6: Pitch Histograms of a Jazz song (left) and an Irish folk song (right) [TEC01].

Based on pitch histograms, the following features are computed:

• FAO: amplitude of the maximum peak of the FPH. This corresponds to the most dominant 

pitch class of the song;

• UPO: period of the maximum peak of the UPH. This corresponds to the octave range of the 

dominant musical pitch of the song;

• FPO: period of the maximum peak of the FPH. This corresponds to the “main” pitch class of 

the song;

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• IP01: pitch interval between the two most prominent peaks of the folded histogram;

• SUM: overall sum of the histogram (indication of the strength of pitch detection).

3.3.4 Pianist Performance Features

Pianists do not play pieces of music mechanically, with constant tempo or loudness exactly as written 

in a music score. Rather, they speed up and slow down at different places, and stress certain notes 

and passages by various means. The most important parameter dimensions available to a pianist 

are timing and continuous tempo changes, dynamics (loudness variations), and articulation (the way 

successive notes are connected) [WZ04],

From the audio recordings, rough measurements characterizing the performances were obtained. 

Changes of tempo and general loudness are measured at the level of beats. From the varying time 

intervals between successive beats, the beat-level tempo changes can be derived. Overall loudness of 

the performance at these time points are extracted from the audio signal and taken as a very crude 

representation of the dynamics for that pianist [WZ04]. For each measured point, the following is 

stored: absolute time in seconds, local tempo in beats per minute (bpm) and loudness level measured 

in sone. These sequences of measurements can be presented as two sets of performance values, one 

presenting variations in beat-level tempo over time and the other beat-level loudness changes — 

or in an integrated 2D way, as trajectories over time [WZ04], as shown in Figure 3.7. Each sliced 

instance of two bars in length is a subsegment of the trajectory.

For each window Wi of the original raw data, the following features are computed both for tempo 

and loudness, as described in [WZ04]:

• average tempo and loudness value within a window

•  standard deviation a(wi);

• range of the value within the window R(wi) =  max(wi) — min{wi):

• norm alized features a'(wi) = a(wi)/ fi(wi);

• correlations between time and tempo;

• directness of movement measured by the ratio between the length of a direct movement 

between the end points of a segment and the length of the actual trajectory between the same 

points in a two-dimensional space.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.7: Horizontal axis: tempo in bpm; vertical axis: loudness in sone. Movement to the upper 
right indicates a speeding up and loudness increase. The darkest point represents the current instant, 
while instants further in the past appear fainter [WZ04].

• derivatives for tempo and loudness, including the maximum and the average of the absolute 

value of the derivative, and the normalized version.

3.4 Feature Norm alization

Since our features are extracted using different techniques and focus on various aspect of music, 

such as human voice, tempo, pitch, etc., the features actually fall into various ranges: different 

features have values in different orders of magnitude. It is very import to scale features into similar 

range before applying machine learning algorithms such as Artificial Neural Network (ANN), SVM, 

etc [Sar97]. Therefore, we need to scale features to make them have approximately the same effect by 

independently normalizing each feature to the same range. The main advantage is to avoid attributes 

in greater numeric ranges dominating those in smaller numeric ranges. Another advantage is to avoid 

numerical difficulties during the calculation [HCL03].

The term “scaling” is used more or less interchangeably with the term “normalizing” and “stan­

dardizing”, within various fields. Normalizing a feature vector often means dividing it by a norm 

of the vector; in the neural network literature, it also often refers to scaling by the minimum and 

range of the vector, to make all the elements lie between 0 and 1  [Sar97]. Standardizing a feature 

vector most often means subtracting a measure of location and dividing by a measure of scale. For

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



example, if the vector contains random values with a Gaussian distribution, one might subtract the 

mean and divide by the standard deviation, thereby obtaining a standard normal random variable 

with mean 0 and standard deviation 1 [Sar97]. In our work, we choose to normalize the features 

into range of [0 , 1 ] for training data and use the minimum and range of features in training data to 

perform normalization on the testing data.

3.5 Summary

This chapter provided some basic music elements that are involved in the work and their correspond­

ing physical or perceptual features. It also described the datasets we use and the feature extraction 

strategy applied to the source data to get features that are used to train classifiers.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Machine Learning and 
Classification

The chapter describes the established and customized machine learning algorithms we use to build 

the artist classifier. These algorithms include ANN, kNN, SVM and Naive Bayes. All these algo­

rithms are widely used in the machine learning literature. Their corresponding customized 1-class 

detectors Auto-encoder, 1-class kNN, 1 -class SVM and 1 -class Naive Bayes are also described in this 

chapter.

The vast space of artists makes the classification task tough for an artist identification system. 

On one side, the multi-class classification gets harder as the number of artists in the training dataset 

gets bigger. This raises the issue of classification scaling up. On the other side, it is impossible for 

an artist classifier to recognize all the artists around the world. Therefore we design our classifier 

to reject examples from unknown artists. This raises the issue of the lack of training data from the 

unknown artist space. To resolve these two issues, we choose to use 1-class learning methods to 

build detectors for each of the artists in the training dataset, then combine all the 1 -class detectors 

to perform multi-class classification. By combining these 1-class detectors, the multi-class classifier 

is built in a cumulative manner, and examples from unknown artists can be detected when none of 

these 1-class detectors recognizes it. On the other hand, the lack of examples for unknown artists 

is no longer a problem because for training 1-class detectors, negative examples are not needed. 

However, we did not deeply explore nor experiment much on the idea of rejecting unknown artists. 

This will be our future work, as stated in Chapter 7. In order to combine the outputs from these 

1-class detectors, we put a single layer neural network over the 1-class detectors. By training the 

neural network and setting thresholds for its outputs, when testing example comes, a class label will 

be decided at the neural network level.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The terms that will be used throughout this chapter are defined as following:___________
1. X: a training dataset of m data points;

2. {xi.yi): the ith instance in the dataset X; x, is an n-dim ensional 
feature vector, yi is th e  ta rge t value (class label);

3. f j ( i i ): the  j th feature of th e  ith instance;

4. C: a  finite set where there  are s values C\,C2—CS;

5. Ck: kth ta rge t value o f finite se t C;

6 . F : R n C: the  m apping function from feature space to  ta rge t 
space;

7. yt: predicted  class label for ith instance.

4.1 Artificial Neural Network and Auto-encoder

Artificial neural networks provide a robust approach to approximating real-valued, discrete-valued 

and vector-valued target functions over continuous and discrete-valued attributes. The Backpropa- 

gation [Mit97] algorithm is the most common network learning method and has proven successful 

in many practical problems such as handwriting recognition, robot control, etc.

The networks are made up of nodes, called neurons, that are grouped into one or more layers 

(input, hidden and output), and connected via weighted edges, which are typically adjusted during 

training phase. A 3-layer ANN is shown in Figure 4.1. The weights of an ANN are learned during 

the training phase. The attributes of a training example are fed to the input layer and the weights 

are automatically adjusted so that the output layer indicates the correct label of the training in­

stance. The process repeats for all training instances. The trained network with the learned weights 

represents a classifier.

O u tp u tIn p u t

In p u t L ay e r
O u tp u t L ay e r

H idden  L ayer

Figure 4.1: A Multi-layer Neural Network

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



wOwl

Input
Functionwn

vJ O Outputt

Activation
Function

Figure 4.2: A neuron

A simple computation on neural network inputs is illustrated in Figure 4.2. The neuron has n inputs 

fi  and an extra input fo =  1, and accordingly n +  1  weights. The computation is split into two 

parts: a linear component, called the input function, which computes the weighted sum of the input 

units, and the second is a nonlinear component called the activation function, which transforms the
n

weighted sum into the final output. More specifically, the input function is in(xj) =  ^  fj{xi)wi and
j=o

the activation function is actually a sigmoid function: g(y) = . The final output ranges between

0 and 1, increasing monotonically with its input. Notice that the quantity - w 0 is a threshold that 

the weighted combination of inputs wif\(xi) + ... +  wnf n(xi) must surpass in order for the neuron 

to output a number over .5.

The procedure of learning weights of a single-layer neural network is as followings [Mit97]:

• Create a feed-forward network that allow signals to travel one way only, from  

input to output;

• Initialize all weights w ith random values;

• Until the term ination condition is m et, Do

for each training instance (xj,yj)

compute the linear combination of all the inputs to the input layer; 

compute the value of the output nodes using the activation function: 

evaluate the error between the expected target value and the output; 

update the weights of the network as following:

-  for each weight Wj, do AWj = AWj + T]{yi — yi)x, where q is the learning rate

-  for each weight wj, do Wj = wj + A wj

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The learning rate 77 is a positive constant which moderates the degree to which weights are 

changed at each step. It is usually set to some small value, e.g., 0.1 [Mit97]. The termination 

condition could be a fixed number of iterations through the loop, or once the error on the training 

examples falls below some threshold, or the weights converge, etc [Mit97].

Learning in multi-layer neural networks proceeds the same way as above. Sample inputs are 

presented to the network. If the output computed by the network is same as the target, nothing 

will be done. Otherwise, there is an error between output and target and then the weights are 

adjusted to reduce the error. It is more complicated than in single-layer network to update all the 

weights because there are many weights connecting each input to an output. The Backpropagation 

algorithm [Mit97] is used to adjust the weights for a multi-layer network, given a network with a 

fixed set of units and interconnections. Once the neural network is built and the thresholds are set 

for the outputs, it can be used to classify new instances. To do this, one must feed the features of 

the new instance to the input nodes of the network; the class label will be generated at the output 

layer according to the thresholds.

Hidden Nodes

o  -
n

Output Layer

Figure 4.3: A Typical Auto-encoder Neural Network with 2 Hidden nodes. The network attempts 
to learn weights that map the input patterns to an internal representation and then back again to 
patterns identical to the inputs.

By slightly changing the structure and learning scheme of neural network, an auto-encoder net­

work [JMG95] can be built using examples from only one class. An auto-encoder network, also 

called an auto-associator, is a neural network which learns to map from input nodes to output nodes 

through a narrow hidden layer [JMG95]. An auto-encoder network has the same number of output 

nodes and input nodes but a smaller number of hidden nodes. Figure 4.3 shows the structure of 

a typical one-hidden-layer auto-encoder neural network. An auto-encoder tries to encode as accu­

rately as possible the identity mapping from inputs to outputs. Since there is a reduced number

26

Input Layer Hidden Layer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of dimensions in the hidden layer, it creates a lower dimensional bottleneck through which input 

information must be squeezed. Thus, the hidden layer compresses the information from the input 

layer and then decompresses it at the output layer, as the name auto-encoder implies.

Similar to a general ANN, an auto-encoder is trained using Backpropagation, but only on positive 

instances of one class. Once trained, the attendee can be fed new instances that it tries to reconstitute 

at its output layer. The quality of the reconstruction is evaluated by computing the sum of the 

squared error at each corresponding input and output node. If this error is small enough, then the 

instance is labelled “positive” since it is likely to be an instance of the class; otherwise, it is labelled 

“negative” since it is likely to be a counter-example [Jap99].

The intuition behind the learning strategy of an auto-encoder is that when the auto-encoder 

is tested on new positive examples, it is expected to reconstruct them well since they involve a 

pattern similar to those of the positive training data examples. Since negative examples present 

patterns different from those of the positive data, the compression and decompression which allows 

the network to reconstruct the positive examples will not work on the reconstruction of negative 

patterns. Therefore, we expect that an auto-encoder succeeds in reconstruction of positive data and 

fails on negative data and, thus, new instances can be classified based on the failure or success of 

reconstruction [Jap99].

In order to determine whether a novel test example is a positive or a negative instance, an 

auto-encoder’s reconstruction error must be compared against some threshold, separating the pos­

itive from the negative class. By feeding a number of positive and negative examples to the auto­

encoder after its training phase, a threshold can be determined from the observation of these exam­

ples [Jap99j.

The ^-Nearest Neighbor algorithm assumes a ll  instances correspond to points in the 77,-dim ensional

tance. More precisely, let an arbitrary instance Xi be described by the feature vector < (x,). f 2 (xi)...fri(xi) >.

Then the distance between two instances Xi and x2 is defined to be d(x\,x2), where

If we consider each instance as in the form of < Xi,F(x{) >, F  is a mapping function F C

where C is the finite set of classification categories ci,c2 ...cs and s is the number of classes in

27

4.2 ^-Nearest Neighbor and 1-class kNN

space Rn. The nearest neighbors of an instance are defined in terms of the standard Euclidean dis-

n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the target space. The kNN algorithm for learning and classifying a new testing example is the 

following [Mit97]:

• Training: for each tra in ing  example < Xi,F(xt) > , add the  example to  the  list 

training-examples;

• Classification: Given a query instance x q to  be classified,

Return: the most commonly occurring class among the k training examples nearest to xq.

For example, if we choose k = 1, then the INN algorithm labels xq the class of its nearest training 

instance.

Figure 4.4 shows the operation of kNN algorithm for the case where the instances are points in 

two-dimensional space and where there are two target classes, positive and negative. An unknown 

testing example xq is shown as well. In this example, INN algorithm classifies xq as positive whereas 

5NN classifies it as negative.

Figure 4.4: k-Nearest Neighbors. Different values of k result in different classification [Mit97],

The kNN algorithm is easily revised to perform 1-class classification. To accomplish this, we divide 

training data for each class, and store them separately. When a  testing example is encountered, we 

calculate the distances of the new example to all the training data of class i. To perform classification, 

a distance threshold needs to be determined. If k = 1 , the distance to the nearest training example 

in class i is compared to the threshold to decide if the testing example belongs to this class. For 

larger values of k, we can have the algorithm calculate the mean value of the k nearest training 

examples and compare the average distance to the threshold.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3 Support Vector M achines and 1-class SVM

A simple SVM learns how to classify objects into two classes +1, —1 from a set of labelled training 

instances

where x,- 6  Rn, and yi € {—1, +1} for i = 1 ,2, ...m, where m  is the number of training instances. The 

main idea is to find the hyperplane that separates the training instances by a maximal margin, as 

shown in Figure 4.5. The margin is defined as the minimal distance of an instance to the hyperplane. 

In the Figure, there are 3 different hyperplanes. All of them can separate the two classed linearly, 

but the optimal hyperplane would be the one denoted as “Optimal Hyperplane” in the Figure, based 

on the definition of maximal margin. It is obvious that in the Figure the distance of the closest 

instance to that optimal hyperplane is larger than that of the other two hyperplanes. The instances 

lying closest to the separating hyperplane, both positive and negative, are called support vectors. 

If the training examples are separable by a hyperplane, we can use a linear function of the form 

F(x) = w ■ (x) + b [MMR+01]. If F(x) > 0, x  is classified into the positive class; otherwise, it is 

negative-

optimal
Hyperplan'

o
o

o
Hyperplant

o o
Margin

Hyperplane

Figure 4.5: Linear separating hyperplanes for the separable case. The support vectors are circled. 
The optimal hyperplane separates the training examples by a maximal margin.

More generally, an SVM provides a projection of the original training instances into a higher 

dimensional feature space via a nonlinear mapping [MMR+01]. The data xi ,x 2 ,...xm £ R n is 

mapped into a potentially much higher dimensional feature space R n' . Thus the learning problem is 

in the higher dimensional feature space Rn instead of Rn. For a given learning problem one can now 

consider the same algorithm in Rn instead of in Rn. There are many different mapping functions. 

Figure 4.6 is an example of a polynomial mapping function.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.6: A polynomial mapping from two dimensional space to three dimensional space. The 
examples are linearly separable after the mapping. Left: In input space this construction corresponds 
to a nonlinear ellipsoidal decision boundary. Right: Using z\ = (ij )2 ,z2 = sqrt(2xiXo) and zz = 
(x2 ) 2  as features, a separation in feature space can be found using a linear hyperplane [MMR+01]. 
X\, xo are the two features in the original feature space; 2 1 , 2 0 , 2 3  represent the three new features 
in the 3-D feature space.

Originally SVMs were designed for binary classification. For a multi-class problem, an SVM 

cannot be applied directly. Instead, a multi-class learning problem has to be divided into disjoint 

binary classification tasks. The division can be in the manner of one-against-the-rest or pairwise. 

To classify a new object, all binary SVM classifiers have to be invoked and their decisions combined 

to make a final decision.

To tackle the problem of 1-class classification, a 1 -class SVM algorithm was proposed in [SPSTS01]. 

The algorithm is to find some hyperplane w that separates the positive training data from the ori­

gin at threshold p. The origin is treated as the only negative example. If such a hyperplane and 

threshold can be found, then the estimation function

f(x)  = sgn(w • $(x) -  p) where sgn(a) =  1 if a > 0  and sgn(a) = 0  otherwise, and where $  is the

mapping function from R n to Rn .

will be used to decide whether a new patten x q belongs to positive class. If f ( x q) < p, x q is classified 

as positive. A different approach in [TD99] uses a sphere to describe the data feature space, which 

contains as many as possible of positive training data while keeping the sphere small. This algorithm 

has been shown to be equivalent to the approach in [SPSTS01], Figure 4.7 illustrates the two similar 

ideas.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.7: (Left): a hyperplane is constructed that maximizes the distance to the origin while 
allowing for v outliers. (Right): construction of the smallest sphere under some threshold that 
contains positive data [MMR+01].

For our multi-class task, am individual 1-class SVM is trained for each artist class. Suppose we 

have k classes, the i th SVM is trained with examples in the i th class. The examples of the other 

k — 1 classes are expected to be classified as “outliers” in the testing phase. Therefore, k SVMs need 

to be trained respectively, one for each of the k classes. The predictions of ail of the k 1-class SVMs 

have to work together to perform the final classification (see section 4.5).

4.4 Naive Bayes and 1-class Naive Bayes

A Naive Bayes classifier is a highly efficient and practical Bayesian network classifier [Mit97j. Naive 

Bayes classifier applies to learning tasks where each instance x is described by a conjunction of 

attribute values and where the target function F(x) can take on any value from some finite set 

C = C\,C0 ..C5 where s is the number of classes in the target space. For example, in Table 4.1, C 

represents Play Tennis and it has two values: Ci = true, c2 = false.

Play Tennis Tem perature W indy
normal high yes no

True 0.90 0.10 0.40 0.60
False 0.20 0.80 0.70 0.30

Table 4.1: An example of Naive Bayes Classifier

Given a new instance xq, described by the tuple of attribute values < f i{xq), f 2 (xq)...fn(xq) >, 

e.g., f i (x q) might be Temperature =  normal, fo(x ,) might be Windy = yes, the classifier is asked 

to predict the target class [Mit97]. To do that, the classifier must learn from training data, the

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.8: A Naive Bayes classifier depicted as a Bayesian network in which the predictive attribute 
( / 1 1 / 2 —/n) are conditionally independent given the target class.

conditional probability of each attribute } j ( x q) given each class label ck in C.  For example, the 

probability of Temperature = normal given Play Tennis = true,

PlTemperature =  normal\PlayT ennis = true) = 0.90

. Table 4.1 is called conditional probability table (CPT). By using the probabilities from the 

CPT, the probabilistic classifier will typically compute posterior probabilities for each class Pk = 

P(ck\fj {xq), f 2[xq)...fn(xq)) and then return the class label yl =  argmaxk{Pk).

The Naive Bayes classifier is based on the simplifying assumption that the attribute values are 

conditionally independent given the target value. In other words, the assumption is that given the 

target values of the instance, the probabilities for the individual attributes is: P (f\(xq), f 2 (xq)...fn(xq)\ck) 

IXf P(fj{x q)\ck). Given this assumption, we can derive a formula using Bayes Rule:

yq =  argmaxCkP(ck\fi(xq) , f 2 {xq)...fn{xq))

P (f i(xq) , f 2 (xq)...fn(xq))
= argmaxCkP (fi  (xq), f 2 (xg ).../„ (xq) | ck)P{ck)

= argmaxChP{ck) fly P(fj(xg)\ck)

where y denotes the class label output by the Naive Bayes classifier. Thus, when depicted graphically, 

a Naive Bayes classifier has the form shown in Figure 4.8.

Building a Naive Bayes classifier involves estimating all the P(ck) and P(fj{xq)\ck) terms, based 

on their frequencies in the training data. To use the classifier for predicting unknown examples,

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



it employs the pre-computed CPTs and applies the Bayes rule formula to the new example. For 

example, if given a new instance Temperature = normal, Windy = yes, it computes

P(PlayTennis = true\Temperature = normal, Windy = yes) =

P(PlayTennis = true) * P(Temperature = normal\PlayTennis = true)*

P(Windy = yes\PlayTennis =  true) =  0.5 * 0.9 * 0.4 = 0.18

and P(PlayTennis = f  alse\Temperature = normal, Windy =  yes) =  0.07. Therefore, the conclu­

sion is the target class is Play Tennis. The probabilities are actually PpiayTennis=true = ~it+So~7  = .72

and P p ia y T e n n is= fa ls e  =  .18+.07 =

An important problem for the Bayesian approach is how to handle continuous variables. It can be 

solved by either discretizing, or assuming that the data are generated by a single Gaussian [JL95]. 

Based on the assumption that the values of numeric attributes axe normally distributed, we can 

write

P{fj{xg)\ck) =  9 (fj(xq),lJ;Cr), where
(*,)-<■ >2

9Uj(xq),ii,<T) = - ^ ^ e  ^ 7 2

the probability density function for a normal (Gaussian) distribution. For each class and attribute, 

one can estimate the probability that the attribute will take on each value in its domain, given 

the class. For each class and continuous attribute, one must estimate the mean and standard 

deviation of the attribute given the class. Maximum likelihood estimation of these parameters is 

straightforward. The estimated probability that a random variable takes a certain value is assumed 

to be equal to its sample frequency. Under this assumption, the maximum likelihood estimates of 

the mean and standard deviation of a normal distribution are the sample average and the sample 

standard deviation [Sch92].

Instead of using one single Gaussian, a method called Flexible Naive Bayes using kernel 

density estimation was proposed in [JL95]- It is the same as Naive Bayes in all respects but one: 

the estimated density is averaged over a large set of data points

P(fj(xq)\ck) =
i

where i ranges over the training points in class c*, Pij is the value of feature j  of the ith training 

point and m  is the number of training points in class c*. Thus Flexible Naive Bayes must store 

every continuous attribute value it sees during training. The only statistic for the list of is the 

list of values of j th feature itself. When computing the weighted kernel density for a continuous

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



attribute to classify a new instance, the algorithm performs m  evaluations, one per observed value 

of f i  in the class cjt training examples. For the value of <7 ,  we set aCk =  -^=, m  is the number of 

training instances observed with class c* [JL95].

We can construct a 1-class detector using the Naive Bayes approach. By multiplying the es­

timated density over training data with class C;, for each feature value of a testing example, the 

product shows the likelihood of the testing example being in class c*. If a threshold is set, the out­

put likelihood from the Bayesian estimator for certain class a  can be used to perform classification. 

In our work, we construct such a 1-class estimator for each artist and combine them with all the 

other 1-class detectors to produce final decisions.

4.5 Combining M ultiple Classifiers

In our work, instead of setting thresholds for the classifiers built using the aforementioned learning 

algorithms and use them to perform classification directly, we use them as scoring functions. For 

auto-encoder and 1-class kNN, the output is reconstruction error and Euclidean distance respectively. 

The smaller the output is, the more the example in question is considered to belong to the class the 

auto-encoder or kNN is trained for. On the contrary, for 1-class SVM and Naive Bayes, a larger the 

output is a stronger indication that an example is a positive example of the class.

For each class, its four different types of 1-class detectors produce numbers in different ranges. 

They have to be scaled into a similar range before being combined with detectors for other classes 

to perform the final classification. In order to take a right decision based on the outputs from these 

multiple 1-class detectors, we need to find a combining rule which is able to resolve the conflicts 

when 1-class detectors disagree, i.e. more than one class is considered promising or no class can be 

considered sufficiently promising. This step is sometimes called Meta-leaming [CS95].

To combine our detectors, we use a single layer neural network stacked over the pre-trained 

multiple 1-class detectors to combine these different base detectors and to improve their performance. 

The base classifiers can be individual auto-encoders, 1-class kNN, 1-class SVM, 1-class Naive Bayes 

estimators or any combinations of them. Each neuron i of the neural network scales the outputs 

from its different 1-class detectors into the range of (0,1), and the output of the neuron i can be 

considered as an estimate of an instance being in class i. Figure 4.9 shows an example structure of 

our system.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



neuron 1

neuron 2
Instance

neuron □

Figure 4.9: A Single Layer Neural Network Stacked on Auto-encoder Detectors

In Figure 4.9, the neural network has same number of input neurons as auto-encoders. Each 

neuron gets inputs from all n auto-encoders and has another input which is 1. By learning the 

weights for these inputs, each neuron is supposed to learn to combine the pre-trained auto-encoders, 

amplifying the strength of good ones and reducing the negative impact of bad ones. Thus, each 

neuron and its base 1-class detectors comprise a new 1-class detector.

After training of all the base detectors, the single layer neural network can be trained by feeding 

the base detectors’ outputs for all the training data to the neural network. Classification decision 

is supposed to be produced at the neural network level, while the outputs from the neurons are 

numbers between 0 and 1, which can not generate a class label directly. Therefore, the other task 

for the training of the single layer neural network is to find some thresholding rule. For that purpose, 

we experimented with several different methods described and compared in detail in Chapter 6.

Once the training of the single layer network is done, testing examples can be fed to the stacked 

system to be classified. A testing example will first be pushed through all the 1-class detectors on 

the base level and the outputs from base level will be fed to the neural network. The output values 

from the n output neurons of the neural network will be compared and thresholded according to 

some pre-defined thresholding rule, and a class label will be picked for the testing example.

4.6 Summary

This chapter described four major classification techniques we employed in our research and their 

modification for the 1-class detection task. Instead of making these 1-class detectors into classifiers

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for each class and performing classification directly, we use them as components in the base level 

of our system. This chapter also stated our strategy for scaling and combining different 1-class 

detectors outputs which have different ranges and meanings, in order for the system to produce 

classification decisions.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Evaluation of Classifier

This chapter describes the evaluation criteria we use to measure the performance of each individual 

classifier, as well as the whole system. In order to take a deeper look into the individual classifiers 

to give a deeper analysis of their performance, we introduce some more sophisticated evaluation 

methodology, rather than using only classification accuracy [PFK98J. These more detailed evaluation 

tools includes Confusion Matrices [Mit97], ROC Curves [Mar03] and Cost Curves [DHOO].

5.1 Confusion M atrices

As described previously, a confusion matrix is a table which records the classification results. As a 

more complicated example than the one in chapter 2, Table 5.1 shows a confusion matrix for our 

system, trained and tested on data from 16 artist classes. Each entry in the table represents the 

number of music segments in the test set whose actual label is the row label and whose predicted 

label is the column label. For example, the number of testing segments of artist 3 that are incorrectly 

classified as artist 11 is 1. The sum column on the right end of the table indicates the number of 

test segments whose actual label is specified by the row label. The sum row at the bottom of the 

table indicates the number of test segments whose predicted labels is the column label.

As mentioned before, various statistics can be computed from the confusion matrix to evaluate 

the effectiveness of the classification system [vR79]. We use three standard statistics, precision, 

recall and accuracy. Given a n * n  confusion matrix M  and a set of class labels a, the definitions of 

these statistics are as follows. The precision for each label c* is:

Pi =  M aj Mki = M u/SU M frd where SU M fTd is the column sum of column i;

The recall for each label Li is defined as:

R i = M a /Z tZ iM ik  = Ma/SUM°bs where SUM°bs is the row sum of row i;

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CSCJo

&3co

©i-H
Cfi

t O

c$

CO1 r“Hcd

CMv*HO

o
O

©cC

00rt

cd

toCS

CMrt

O O O O C O C l C M t > - t — O O O i - ^ ^ O C Of l o ^ o o ^ n w i o o c o j o o o o o c o ^
N O O O H P J ^ W O W W N ^ N O O O O

00 Is- 00 ^  C5CSI O C 1 C 5 H C C C 5 0 0 ' ,C 
t— I N  r i  H  CJ N  N  M  i - I i- h i -h

CM

CM ©

ff =>
n  CO -2

£  o

CM H  CO
CO

CM CM CM CM i - h  i— i  CM © ^ h

CM

CO  W  ^  C O  H  CM 9  CM CM CM

H  N  CO H

CM aO

CM CO

CO CM CM CO

CM CO

CO

r - t  CM CO ^  Cw c d c to © t*- 00 © d d d c d

CM

O  H  CM CO ^  W5 O  H
ci ci cd .0 sd sd cd

CM
©

29
5

.5
29

©

.8
42

22 .5
91

©

.3
14

23

©
1-H©

44 .5
00

©

.5
79

© .6
67

©
©0000

29 .5
52

r-
©00

CO

.4
62

©

.6
32

r « -

.9
41

t o
©
o

r>-

©

*co

su
m * uw

a
COsc

©

o

a
CO>>

CO
c
.2
cdc>©
*co
CO

o
2*©

J
x

_o
* c o

O
a

to
a

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The accuracy of the classification system is defined by:

= YhZ i Mu/J2k=i Mkj = JZiZi M u/SU M  where SUM  is the sum of all the numbers in

the matrix M.

For example, the precision of class 3 is P3 =  16/17 =  .941, the recall of class 3 is R3 = 16/18 = 

.889. The accuracy of the classification system is A  = 184/295 = .624.

5.2 ROC Curves and Cost Curves

For classification problems, as previously mentioned, accuracy is often not an appropriate measure 

of classifier performance especially with imbalanced data, because using classification accuracy as a 

measurement assumes equal misclassification costs and that the class distribution is known for the 

target environment [PFK98]. Unfortunately, these assumptions do not hold for real-world data. To 

amend the problems of evaluating classifier using accuracy, ROC(Receiver Operating Characteristic) 

curves have been proposed, which measures classifier performance over the full range of possible costs 

and class frequencies [DHOO]. As an alternative to the ROC curve, the idea of a Cost curve [DHOO] 

can be derived from ROC curve and provides another method of classifier evaluation.

5.2.1 ROC Curves

Originating from the field of Signal Detection Theory developed during World War II from the anal­

ysis of radar images for enemy detection, Receiver Operating Characteristic (ROC) curves measure 

the ability of radar receiver operators to make important distinctions among enemy targets, friendly 

ships, and noise. They have been adapted and put into use for interpreting classification results 

since the 1970’s. Figure 5.1 shows a simple example of an ROC curve. The ROC curve is a two 

dimensional measure of classification performance. Basically it deals with binary classifications, and 

in its simplest form is a plot of the hit rate (true positive) vs. the false alarm (false negative) rate, 

as a decision threshold is varied [Mar03].

Each point on an ROC curve is constructed from a 2 * 2 confusion matrix, since it reflects binary 

classification performance, and a threshold as the cut point of examples from the two classes, i.e. 

positive and negative. Figure 5.2 shows the distribution of the outputs for positive and negative 

examples made by a classifier. The distributions overlap and consequently no classifier distinguishes 

positive and negative examples with 100% accuracy. By setting a threshold, we consider the examples

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5.1: A Typical ROC Curve.

above it to be positive and negative below it. The position of the threshold will determine the number 

of true positive, true negatives, false positives and false negatives. Using different thresholds may 

minimize one of the erroneous types of prediction results.

140

120
120

T N

60
F P

40
T P

20

P r e d i c t i o n  V a l u e

Figure 5.2: Overlapped Distribution of Prediction Values

Suppose we have prediction results in Table 5.2 when the threshold is set at 5. The true positive 

rate is 18/20 and the false positive rate is 4/96. These two numbers define the coordinates of a point 

on the ROC curve. Once the threshold changes, the true positive and false positive rate change 

accordingly and a new point of the ROC curve is made.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P re d ic tio n s  
A ctual Class!!

> 5 (Positive) < 5(Negative) Totals

Positive 18 2 20
Negative 4 92 96

Table 5.2: A 2-class confusion matrix

Notice that the true positive rate can be improved by moving the threshold to a smaller value, 

i.e. to make the criteria for a positive example less strict. On the other hand, the false positive 

rate can be reduced by moving the threshold to a bigger value to make the criteria for a negative 

example less strict. Thus, there will be a trade-off between true positive rate and false positive rate. 

Changing the definition of a positive example may improve one of the two rates, but the other will 

decline. By setting several thresholds, different points representing pairs of true positive and false 

positive rates can be calculated and an ROC curve is made by connecting these points.

An ROC curve demonstrates several things:

• It shows the trade-off between true positive and false positive rates.

• The closer the curve follows the left-hand border and then the top border of the ROC space, 

the more accurate the classifier is.

• The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate the 

classifier.

• The Area Under the Curve (AUC) is a measure of test accuracy.

Figure 5.3 shows three ROC curves representing excellent, good, and worthless classifier perfor­

mance plotted on the same graph.

5.2.2 Cost Curves

Traditional ROC analysis has as its primary focus determining which diagnostic system or classifier 

has the best performance independent of cost or class frequency. But there is also an important 

secondary role for selecting the set of system parameters for an individual classifier, which gives 

the best performance for a particular cost or class frequency [DHOO]. To directly compare the 

performance of two classifiers we can transform an ROC curve into a cost curve.

The x-axis in a cost curve is the probability-cost function (PCF) for positive examples.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.9  -

0.8  -

0.7 -

o
0.6  -

0.5 -

£o
£ 0.4  -

0.3 -

0.2 -

o.i -

0.1 0.2 0.6  0.7 0.8 0.9

Figure 5.3: Comparison of Three ROC Curves

PCF{+) =  w+/(w+ + urn) where 

w+ = p(+ )C (-|+ ) and = p (- )C (+ |- )

p{a) is the probability of a given example being in class a and where C(a\b) is the cost incurred if 

an example in class b is misclassified as being in class a.

PCF turns out to be simply p(+), the probability of a positive example, when the costs are 

equal. The y-axis is expected cost normalized with respect to the cost incurred when every example 

is incorrectly classified [DHOO]. This is simply the error rate of classification when the costs are 

equal.

To construct a cost curve from an ROC curve, a point (TP, FP) representing a classifier in ROC 

space is converted into a line in cost curve space using the equation:

y = (1 — TP  -  FP) * P C F (+) + FP

Figure 5.4 shows lines representing four extreme classifiers in the cost space. At the top is the 

worst classifier which is always wrong and has a constant error rate of 1. At the bottom is the 

best classifier which is always right, and has a constant error rate of 0. The classifier that always 

chooses negative has zero error rate when PCF(+)=0 and a error rate of 1 when PCF(+)=1 [DHOO]. 

The classifier that always chooses positive has error rate 1 when PCF(+)=0 and a zero error rate 

when PCF(+)=1. It is apparent that we should never use a classifier outside the shaded region of 

Figure 5.4, as it actually performs worse than the majority classifier which chooses one or other of 

the trivial classifiers that label everything with the majority class depending on PCF(+).

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Always Wrong

Always Pick Negative

ua

A lw a y s  P irlr  P m ifiv i-

0.5

Positive Cost Function

Figure 5.4: Extreme Classifiers

By repeatedly converting points from ROC space, a set of classifiers can be represented in cost 

space, as shown in Figure 5.5. We can directly measure the vertical height difference at some 

particular probability-cost value. If one classifier is lower in expected cost (error rate) across the 

whole rage of the probability-cost function, it dominates the others [DHOO]. Each classifier delimits 

a half-space. The intersection of the half-spaces of the set of classifiers gives the lower envelope 

which is indicated by the dashed line in Figure 5.5.

Figure 5.6 shows two ROC curves and their corresponding cost curves are shown in Figure 5.7. 

The two straight lines are two trivial classifiers. Cost curve 1, which is the higher curve in Figure 5.7, 

corresponds to ROC curve 1, which is lower in Figure 5.6, and the lower cost curve 2 corresponds 

to the upper ROC curve.

The distance between cost curves for two classifiers directly indicates the performance difference 

between them [DHOO]. In Figure 5.7, the classifier represented by cost curve 2 outperforms the one 

by cost curve 1 because cost curve 2 has a lower or equal expected cost for all values of PCF(+). 

The maximum difference is about 200%(0.1 compared to 0.3), which occurs when PCF(+) is about 

0.4 or 0.5. Their performance difference is negligible when PCF(-i-) is less than 0.1.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o

00 Positive Cost Function

Figure 5.5: A Set of Classifiers

1

8.8

8
8 t

F a ls e  P o s it iv e  R a te

Figure 5.6: Two ROC Curves

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o

e. 15

9 .2e 9 .4 1
P r o b a b il i ty  C o s t  F u n c tio n

Figure 5.7: Two Cost Curves

5.3 Summary

This chapter gave detailed description about the classifier evaluation tools used in our work. Con­

fusion Matrices are used to illustrate the performance of the whole system straight-forwardly, while 

another standard machine learning analysis tool, ROC curves, gives deeper analysis for each 1-class 

classifier. An alternative to ROC curves, cost curves, gives more comprehensive insights regard­

ing imbalanced data distribution and misclassification cost. These tools provides better and more 

precise explanation about classifier performance than accuracy by itself.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6

Experiment Design and Results

This chapter describes the design of various experiments and analyzes the results. We conducted 

different experiments on a 16-artists dataset, a 21-artists dataset and a 6-pianists dataset, using 

different sampling methods, combinations of base 1-class detectors and multi-classifier combination 

strategies. The experimental results are shown and analyzed using the measurements introduced 

above.

6.1 Experimental Design

In this work, we designed a number of different experiments to find better system settings and to 

improve the performance of our classifier.

After training four different sets of base 1-class detectors using the 1-class learning methods 

described previously, we first need to scale the outputs from different detectors into the same range. 

We then combine the detectors by stacking a single-layer neural network over the base level. We 

tried two different sets of inputs for building the stacked neural network to illustrate the effect of 

each set of neuron inputs.

To combine all the 1-class detectors and find best combination of them at the base level, we 

tried different combinations of these detectors and fed their outputs to train the meta-level neural 

network. This experiment helped us finding the best setting for base level components and build 

the best 1-class classifier for each class.

When training the stacked neural network, for the ith neuron, both positive and negative training 

data is fed into it and there is a data imbalance. For example, for the 21-artists dataset, data from 

each class is approximately 1/21 of the whole training dataset, therefore, the number of examples 

from all the other classes is roughly 20 times as many as from the i th class. We designed several

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sampling methods to counteract the effect the data imbalance might have on the neural network 

training.

At the neural network output level, each neuron outputs a number between 0 and 1. To produce 

a final classification result, these neuron outputs have to be compared or combined according to some 

rule. To do this, we tried three methods to process the outputs of the neural network, including 

kNN, max-selection and a rescaling neuron on top.

The results of these experiments me presented in detail in Section 6.3. When experimenting 

with the 16-artists and 21-artists dataset, we randomly separate the feature vectors calculated from 

the 30 second segments. We use 80% of the data as training data, and 20% as testing data. All 

the experiments conducted for training our classifier and finding best setting of the system are at 

the segment level, instead of the song level. Note that for the 6-pianists dataset, we build only an 

auto-encoder, kNN and SVM for each class as 1-class detector. The Naive Bayes detector is not 

experimented on this dataset due to the problems caused by underflow in the process of estimation. 

Therefore, for this dataset, there me no results presented for experiments where the Naive Bayes 

detector is involved.

6.2 D atasets

One dataset we use is the same as in [BEL02]. The names of the artists in the dataset me listed in 

Table 6.1. Considering the fact there me 5 featured artists in the dataset whose musical productions 

me not vocal, we choose the 16 vocal artists to make up a sub-dataset as well as the whole dataset 

to train and test our classifier.

The other dataset we used is a collection of commercial recordings by six concert pianists of 

piano sonatas by Mozart. A sizable number of pieces me selected for performance measuring and 

analysis. The pieces, pianists and recordings me listed in Table 6.2 and 6.3.

In this dataset, 34 features me extracted from the recordings, characterizing changes of tempo 

and general loudness [WZ04]. This dataset is used to train our classifier to identify the performance 

of different pianists. However, in the original dataset we me provided with, there me 25 instances 

for which there me unknown feature values. As our system does not handle missing features, we 

discmd those instances. This should not make a big difference since 25 instances are only a small 

portion of the whole dataset which contains over 23,000 instances.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Class Label Name 16-artists dataset 21-artists dataset
al Beck Y Y
a2 BelleSebastian Y Y
a3 BuiltToSpill Y Y
a4 EricMatthews Y Y
a5 JasonFalkner Y Y
a6 Mercury Rev Y Y
a7 MichaelPenn Y Y
a8 RichardDavies Y Y
a9 Sugarplastic Y Y
alO TheFlamingLips Y Y
a l l TheMoles Y Y
al2 TheRoots Y Y
al3 Wilco Y Y
al4 XTC Y Y
ala ArtoLindsay Y Y
al6 AimeeMann Y Y
al7 BoaxdOfCanada N Y
alS Cornelius N Y
al9 DjShadow N Y
a20 Oval N Y
a21 MouseOnMars N Y

Table 6.1: 16 and 21 Artists Datasets

ID Sonata Movement Key
kv279-l K.279 1st mvt. C Major
kv279-2 K.279 2nd mvt. C Major
kv279-3 K.279 3rd mvt. C Major
kv280-l K.280 1st mvt. F Major
kv280-2 K.280 2nd mvt. F Major
kv280-3 K.280 3rd mvt. F Major
kv281-l K.281 1st mvt. Bb Major
kv282-l K.282 1st mvt. Eb Major
kv282-2 K.282 2nd mvt. Eb Major
kv282-3 K.282 3rd mvt. Eb Major
kv330-3 K.330 3rd mvt. C Major
kv332-2 K.332 2nd mvt. F Major

Table 6.2: Movements of Mozart piano sonatas selected for analysis

ID Name Recording
DB
RB
GG
MP
AS
MU

Daniel Barenboim 
Roland Batik 
Glenn Gould 

Maria Joao Pires 
Adreas Schiff 

Mitsuko Uchida

EMI Classicis CDZ 7 67295 2, 1984 
Gramola 98701-705,1990 

Sony Classical SM4K 52627, 1967 
DGG 431 761-2, 1991 

ADD(Decca)443 720-2, 1980 
Philips Classics 464 856-2, 1987

Table 6.3: Pianists and recordings

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.3 Experim ent R esults

6.3.1 Different Inputs Into M eta-level Neurons

Experim ent: Inputs to meta-level neurons.
Options:

1. feed only the output of the 1-class detector for class i to the i th neuron 
plus a constant input 1;

2. feed outputs of 1-class detectors for all classes to each of the neurons, 
plus the constant input.

Conclusion: option 2 combines 1-class detectors better than option 1.
As mentioned before, the single layer neural network stacked on the multiple 1-class detectors 

can be trained in two different ways by feeding different inputs into it, as described above. By 

experimenting with the two options with each of the pre-trained 1-class detectors and evaluating 

classifier performance by Cost Curves, we conclude that option 2 is a better solution than option 1 

as it better combines the outputs from the base level.

©

AE1 AE2

Option 1

N16JN1

1

AE2AE1

Option 2

Figure 6.1: Two sets of inputs to neural network

Figure 6.1 illustrates the difference between the two options. In this example, only an auto-

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



encoder is trained for each class. Their outputs are fed to the neural network in two different ways. 

One is to feed only the output of 1-class detectors for class i to the ith neuron plus a constant 

input 1; the other is to feed outputs of all 1-class detectors to each of the input neurons, plus the 

constant input. We construct a cost curve for each of the base 1-class detectors. Then a cost curve is 

constructed for each of the neurons after training and testing the stacked neural network. Figure 6.2 

shows the 3 cost curves for auto-encoder 6 (the higher curve), neuron 6 with option 1 (also the 

higher curve) and option 2 (the lower curve), trained using 16 classes vocal dataset. When there is 

only one type of 1-class detector used at the bottom level as shown in Figure 6.1, the cost curve 

produced by option 1 for neuron i is identical the one constructed for the base detector i. This is 

because with option 1, neuron i is trained only based on the output from its corresponding detector 

i, while with option 2, each neuron gets inputs from the detectors of all classes, and thus it learns to 

find interactions between detectors. The cost curve constructed for the testing results of a neuron in 

option 2 is usually better than the curve obtained in option 1. It proves that training each neuron 

using outputs from multiple 1-class detectors for all the classes improves the performance of every 

single 1-class detector.

1.39

9.9 10 0 ..4

Figure 6.2: Cost curves when the base detector is an auto-encoder. The lower curve is for the neuron 
trained with option 2; the upper curve is for the neuron with option 1 and the auto-encoder by itself.

Figure 6.3, 6.4 and 6.5 show the analogous set of cost curves using 1-class kNN, SVM and Naive

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bayes at the base level respectively. All these curves show that option 2 outperforms option 1 when 

only one 1-class detector component is used. These are typical cost curves for most of the classes, 

produced by the two input options, using different 1-class detectors.

To summarize, Table 6.4 lists the comparison between the two options. Since there are 3 types 

of 1-class detectors and 3 different datasets, the experiment is conducted on all the combinations of 

detector and dataset. Each number in the “option 1” row in the table shows the number of classes 

for which the Cost Curve produced with option 1 is better than option 2; each number in the “option 

2” row indicates the number of classes on which option 2 generates better Cost Curves.

e i

Figure 6.3: Cost curves when the base detector is a 1-class kNN. The lower curve is for the neuron 
trained with option 2; the upper curve is for the neuron with option 1 and the 1-class kNN by itself.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.13

9 0 .8 1

Figure 6.4: Cost curves when the base detector is a 1-class SVM. The lower curve is for the neuron 
trained with option 2; the upper curve is for the neuron with option 1 and the 1-class SVM by itself.

e.s

1.23

e i

Figure 6.5: Cost curves when the base detector is a Naive Bayes estimator. The lower curve is for 
the neuron trained with option 2; the upper curve is for the neuron with option 1 and the Naive 
Bayes estimator by itself.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D etector A uto-encoder kN N SVM Naive Bayes
D ataset 16 21 6 16 21 6 16 21 6 16 21 6
Option 1 0 2 2 2 2 1 1 0 0 4 6 -
Option 2 16 19 4 14 19 5 15 21 6 12 15 -

Table 6.4: Summary of Results for neuron input options

6.3.2 Different M ethods for Handling Imbalance

E xperim ent: 4 approaches to data imbalance for neural network training.
Options:

1. dynamic learning rate;

2. over-sampling;

3. under-sampling;

4. hybrid of over-sampling and under-sampling.

Conclusion: none of these approaches improve the classifier performance sig­
nificantly.

Consider there is an imbalance in the data used to train the neurons. For example, using 

the 16-artists dataset to train 16 individual auto-encoders, when the meta level is trained, the meta 

training data are outputs from the auto-encoders after 16 classes of original training data are pushed 

through the auto-encoders. Therefore, neuron i gets approximately 1/16 positive training examples 

and 15/16 negative examples which axe from the other 15 classes. This happens to all the other 

neurons also. To reduce the impact the data imbalance may have on the meta level training, several 

different strategies axe considered. They axe dynamic leaming-rate, over-sampling, under-sampling 

and the hybrid of over-sampling and under-sampling.

One way to solve the data imbalance is to use different learning rates for positive and negative 

examples. In the training phase, the learning rate for positive or negative examples changes depend­

ing on the ratio of number of negative examples to positive examples in training data set. If the 

number of negative examples is n times the number of positive examples for neuron i, when positive 

examples axe encountered during training, multiply the original learning rate r  for neuron i by n. 

when negative examples are encountered, keep the original learning rate r  unchanged.

Over-sampling means to copy the examples of the positive class n times, where n is the ratio of 

number of negative examples to positive examples. For example, if the training data is comprised 

of l /(n  -t-1) positive examples and n/(n  + 1) negative examples, we make n copies of all the positive 

data and therefore achieve a balance between positive and negative examples. The strategy is of low 

efficiency and requires more space.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Under-sampling, on the other hand, is to down-sample the data of the majority class. Again, 

if the training data is comprised of l/{n  + l)positive examples and n /(n  + 1) negative examples, 

we use 1 /n  of the negative examples so that positive and negative data are balanced. The method 

makes the training faster and requires much less space.

The hybrid is to combine over-sampling and under-sampling, i.e. to make copies of positive 

examples and also down-samples negative examples to balance the data from both sides. For ex­

ample, in the 16-artist dataset, for each class, the number of negative examples is roughly 15 times 

of the number of positive examples. We choose to over-sample the positive data by 3 times and 

under-sample the negative data to 1/5 of its original size.

To analyze the impact of these sampling methods on the performance of each classifiers, we 

compared them with different datasets and base detectors. The performance is evaluated by cost 

curves. Note that in both training and testing set, for each individual class, positive examples are 

approximately of 1/16 of all the examples for 16-artist dataset. Therefore, when analyzing the cost 

curves, what matters most is the left bottom corner of each cost curve graph.

Figure 6.6 shows the cost curves for the neuron for class 16, when auto-encoders axe the base 

detectors. In the upper figure, the square-dotted line represents the cost curve for neuron 16, 

trained with outputs from auto-encoders; all the other lines represent the performance of the neuron 

using dynamic learning rate and different sampling approaches. This is a typical example for this 

experiment. Among those curves representing dynamic learning rate and different sampling methods, 

the best one is produced using dynamic learning rate at first sight. However, looking at the area of 

our interest where PCF(+) = 1/16, we can find that at that point none of the sampling methods 

improves the performance of the classifier for class 16. The figure on right side enlarges the left 

bottom comer of the figure on the left, to give a closer look at the axea of our interest.

In the experiment using either 16 vocal class dataset or 21 class mixed dataset, most auto­

encoders and their corresponding neurons result in a similar picture to Figure 6.6.

Instead of using auto-encoders, we also use the set of 1-class SVM’s as the base detectors for 

the stacked system. Similar to the case of auto-encoders, most of the classifiers do not benefit a 

lot from using dynamic learning rate and sampling rate. Figure 6.7 is an example of the set of 

cost curves constructed for neuron 16, with different sampling methods, using 16-artist dataset. 

Although for some of the classifiers, the curves generally get lower than the original one (see Figure

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0 .5
*16ae n !6  * 2 .ec"  •••♦* 

• r a t*  16a* M 6 * 2 .c c “ •—«- 
“ o v t r  16a* n l6  *2.cc* — 

“und*r 16a* n l6  * 2 .cc"  - -* •  
’h y b rid  16a* n !6  *2 .cc"  —

1-x --------

*16a* n l6  * 2 .cc "  •••«■• 
“r a t *  16a* n l6  * 2 .cc"
“ov*r 16a* n l6  * 2 .cc "  ? * * • ' 

“und*r 16a* n I6  * 2 .c c “'- - * «  
'h y b rid  16a* n !6  *2 .oe"  — •*-

1-x

e.is

0 .0 5  -

0 .050 0, 0.151 0 .2

Figure 6.6: Cost curves for neuron and auto-encoder 16 using different sampling methods. The 
lower plot is the enlargement of the bottom left corner of the upper plot. The lowest cost curve is 
produced by the original training method.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.7). when PCF{+) is small, they are still close or even higher than the original curve, which means 

no essential improvement is gained. Dynamic learning rate results in a better cost curve than all 

the other sampling techniques, but is still worse than the original training method.

Figure 6.8 and 6.9 are cost curves constructed for neuron 16, trained using kNN’s (k=l) and 

Naive Bayes detectors respectively, with different sampling methods, using 16-artist dataset.

Table 6.5 lists the results on the experiments we have conducted. Each number in the table 

indicates the number of classes for which a method produces the best cost curves for small PCF{+) 

values. We can see that changing the learning rate or sampling method does not improve the 

performance significantly. Our analysis leads to the decision not to make use of dynamic learning 

rate or any special sampling methods.

Detector Auto-encoder kNN SVM Naive Bayes
Dataset 16 21 6 16 21 6 16 21 6 16 21 6
default 8 13 - 10 15 - 9 13 - 5 5 -

dynamic L-rate 5 3 - 1 5 - 3 5 - 0 3 -
over-sampling 0 3 - 4 1 - 0 1 - 4 6 -
down-sampling 1 1 - 0 0 - 2 0 - 1 2 -

hybrid 2 1 - 1 0 - 2 2 - 6 5 -

Table 6.5: Summary of results for alternative training methods

6.3.3 Combinations of Different 1-Class Detectors
Experim ent: Combinations of 1-class detectors.
Options:

1. only use one type of 1-class detector;

2. use two types of detectors;

3. use three types of detectors;

4. use all the four types of detectors.

Conclusion: using all four types of detectors improves the performance of
 each neuron the most.___________________________________________________

In the previous section, we have used just one type of base detector at a time. In this section, we

consider using combinations of different types of detectors. All possible combinations are considered.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



*16sva n l6  e2 .c c ' 
“r a t e  16*v» n l6  e 2 .c c ' 
"over 16sv» r>16 e 2 .c c ‘ 

"under I6su»  n l6  e 2 .c c ' 
'h y b rid  16sva nJ6 e 2 .c c 1

1-x

8.88 .48 1

“16*v* nl6 e 2 .cc"  
“r a t e  16sv« n l6  e 2 .e e "  —** 
"over 16svb nl6 e 2 .cc"  

“under I6sv«  nl6 e2 .cc* - '--*  
'h y b rid  16sv« nl$ e2 .oc*  —

1-x

e.is 0.28 .85 8.10

Figure 6.7: Cost curves for neuron 16, using SVM’s, with different sampling methods. At the bottom 
left corner, the lowest curve is produced by the original training method.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



*16knn n l6  e2 .cc*  
“r a t e  16knn n !6  e2 .cc*  — 
"o v er 16knn n !6  e 2 .c c "  

•u n d er 16knn nl& e 2 .e c *  - - * •  
'h y b rid  16knn n !6  e2 .cc*

1-x
0 . 4

9 9 .2 9 .4 9.8 1

•16knn n l8  e 2 .c c *  -  
" r a t e  16knn n l£  e2 .cc*  -  
•o v e r  16knn n l6  e 2 .c c *  r  

"under 16knn n l6  e 2 .c c * '-  
‘h y b r id  16knn n l$  e2 .o c*  -

1-x

9 .1 9 .159

Figure 6.8: Cost curves for neuron 16, using kNN’s with different sampling methods. At the bottom 
left comer, the lowest curve is produced by the orignal training method.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



*16nb n ib  *2.cc* 
* ra t*  16nb n ib  *2.cc* 
•o v er 16nb n l6  »2.cc* 

•under Ifenb n l6  e2.cc* 
’hybrid  16nb n l6  e2.cc*

e 0 ..4 8.8 1

*16nb n l$  e2 .ec*  -  
• r e t e  16nb n l6  e 2 .c c "  -  
*ouer 16nb n lS  e2 .cc*  ?  

•u n d er 16nb n l6  e2 .cc .?’-  
1 h y b r id  16nb n !6  e2 .ec*  -  

/** x -  
. /  1-x -

15

e
e

Figure 6.9: Cost curves for neuron 16, using Naive Bayes, with different sampling methods. At the 
borrom left comer, the lowest curve is produced by the original training method.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



By comparing the cost curves constructed from these experiments, we conclude that using the whole 

ensemble at the bottom level produces the best 1-class classifiers as the performance of each neuron 

is improved the most.

8.5
"18ae r>8 e2 .cc" 

‘ 16knn n8 e2 .cc" 
"16sv» n8 e2 .cc" 

"16nb n8 e 2 .c c '1.45

1-x

8.4

1.35

8.3

8.15

8.85

8 8.4 8.8 8.8 1

Figure 6.10: Performance of all the individual detectors

Figure 6.10 compares the four cost curves of neuron 8, by using the four different base level 

1-class detectors. Table 6.6 lists the number of winning cost curves using each individual 1-class 

detector for each dataset. From the numbers in the table, we consider the auto-encoder as the best 

individual 1-class detector as it produces more winning cost curves than SVM and Naive Bayes and 

slightly more than kNN.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.5
"16ae n8 e2.cc" 

"16ae 16knn n8 e2.cc" 
"16ae 16sva n8 e2.cc* 
"16ae 16nb n8 e 2 .cc ' 

“ 16knn 16sw» n8 e2.ce" 
"16knn 16nb n8 e2 .cc “ 
"16nb 16su» n8 e2.cc"

0.45

1-x

8.35

0.3

0.25

0.2

•■a..

0.8 10.2 0.40

Figure 6.11: Best Individual vs. Pairs

A uto-encoder kNN SVM N aive Bayes
16 artists 8 6 1 1
21 artists 8 8 4 1
6 pianists 3 3 0 -

Table 6.6: Using Individual Detectors

Figure 6.11 shows the cost curves of neuron 8 using auto-encoder only against using pairs of 

1-class detectors. The auto-encoder is worse than some pairwise combinations of 1-class detectors. 

Table 6.7 provides a complete summary of the results of the comparison. Based on the table, we 

can see that in most cases, one or more pairs of 1-class detectors outperform the auto-encoder. Also, 

we consider the pair of auto-encoder and kNN as the best pairwise combination.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16 artists 21 artists 6 pianists
AE 3 2

AE&kNN 6 8 -
AE&SVM 2 4 -
AE& NB 1 0 -

kNN& SVM 2 3 -
kN N& NB 2 4 -
NB& SVM 0 0 -

Table 6.7: Best Individual vs. Pairs

Now we compare the performance of the pair with all the triple and quadruple. In Figure 6.12, 

the curves from neuron 1, using the best pair, all the triplets and the quadruple combination are 

shown together. In this example, the cost curve for the best pair is in the middle, which means its 

performance is better them some triplets and worse than others. However, look at the bottom left 

corner, which is the area of our interest, the lowest curve is the one for the quadruplet. Therefore, 

in this figure, the winning combination is the quadruplet. The complete experiment results are 

recorded in Table 6.8. We conclude that by using more types of 1-class detectors, the performance 

of each 1-class classifier is no worse than using combinations of fewer types, although it is not always 

significantly better. In other words, the more information the neurons get, the better they learn to 

integrate the 1-class detectors.

16 artists 21 artists 6 pianists
A E + k N N 1 0

A E + k N N + N B 3 2 -
A E + k N N + S  VM 1 1 -
A E + N B + S V M 3 6 -

k N N + N B + S V M 2 1 -
all 4 types 6 11 -

Table 6.8: Best Pair vs. Triplets vs. Quadruplet

6.3.4 Picking up a Class
Experim ent: 2 approaches to deciding the class label from the neural network 
outputs.
Options:

1. max-selection;

2. kNN;

Conclusion: kNN works slightly better then max-selection.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.5
"16ae 16knn n8 e2 .cc“ — *—

"16ae 16knn 16nb n8 e2.cc" — t—
"16ae 16knn 16sv» r8  e2 .cc“ G—

l “ 16ae 16nb 16sv» r8  e2.cc" — «—
-,- 16knn 16nb 16sv» n8 e2.cc" --*■—

ensenble n8 e2.cc

8.45

1-x8.4

8.35

8.3

8.25

8 .2

8.15

t . l

85

8
8 0.4 8.6 0 . 8 1

Figure 6.12: Best Pair vs. Triplets vs. Quadruplet

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As the neural network at the top of our system outputs a set of values between 0 and 1, in 

order decide a class label for a testing example, the outputs from the neurons on top need to be 

thresholded or compared to each other. To do this, we tried two approaches.

First, we simply select the maximum among all the neuron outputs and classify the testing 

example with the class that neuron represents.

The second approach uses the kNN algorithm. For every example in the training dataset, the 

neural network outputs a vector of values < vi,V2 -.vn > where n is the number of artist classes. 

During the training of the neural network, such vectors are recorded for all training example and 

they comprise a new training set T. When an unknown testing example comes, the kNN algorithm 

compares its output vector to each vector in T  and a class label is then assigned to the testing 

example.

It turns out that the max-selection and kNN approaches both work well. Table 6.9 and 6.10 

show the confusion matrices of the classification results using the two approaches with the 16-artists 

dataset. Both of the matrices have relatively big number along the diagonal line, and small number 

elsewhere. In term of classification accuracy, kNN is slightly better max selection. kNN also produces 

relatively better precision and recall than kNN.

Based on these experiments, we decide to use max-selection approach as the strategy to pick up 

a class label.

6.3.5 Comparison

To compare our results with others, we conducted the classification on the 3 datasets. For the 

16-artists and 21-artists datasets, we split the dataset into two parts, one for training, the other for 

testing, as described in [WFL01, KW02, BEL02], The split is at the song level, i.e. the songs whose 

segments are in the training set entirely disjoint the songs whose segments are in the testing set. In 

order to get a class label for a complete song instead of a segment, the output for each segment of 

a song has to be combined by a summarizing rule. In our first approach, we tried adding the scores 

produced by each neuron for all the segments and pick the neuron that produces the maximal sum 

of the scores and the class of that neuron is assigned to the song. Our second approach is to pick 

the artist that has been selected most often when the individual segments are classified. The two 

approaches produce similar classification results. Table 6.11 lists our best segment level and song 

level classification accuracy and the results from others. Note that the length of frame (segment) in 

our work and in the other 3 systems are all different. Since the song classification results from the

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



czo
g

o
t*HcS

iO
1-Hc3

»-hC3

CO
fHc0

CM
1-H
cS

O
cS

oc3

00Cw

b-eZ

O
cC

iO
CS

-?r
Cw

cm

ft =*u X
-D

£  o

C t f l O O O N r t e O r t T f O N i O O W H  OtOOOWOOiOOOWCCOOOWrtNWN 
L O ^ O O i O W C O ^ O O H C O O O - t i O N i O

^HOOOOOO' ^CiMUDMOHCCOOO' ? 
^ i - h i - h i - h i —i i - h C M i - H i - h C M C M C M C M i - h » - H i —<

CO

CM CM

CM CM CM 00

CO

C O C M C M i- h i—i CO H  ^ J h

CM

O
CM

CM CM CO H  CM H

00  CM

N  H  CM H

CM CM

1.0

b -  CM CM

LO

M ^ ' 3 ' 3 ' 2 I£ (:2 <= 3 2 3 S 2 2 ; 2 i 2 SC t J C K j C S t C r t C S d j - ^ j - j - c - r t f i

2
i O

16
2

O
1—H
C M

C it-h .6
84

24 .4
17

29 .3
45

22 .9
09

33

l O

f H .5
71

b- .2
86

o
1 -H .5

26
23 .6
09

C M
i - H .4

17

C O
i - H .5

38

o
i - H .5

26

b-
r« H .9

41

ot-H .5
00

l O
r H

b-
O

U
c .

5
‘ c o

su
n * G

p
2

ucC
o
s .

5*

G
COI
X

b p

o

G

2
* G
G03
O
-QC3

o

c
G

G
o

•4-3
o
C3
bOc

3
S
GCC
CO
C3

Co
cC
G

G
CO
CO

2
01
o

2
X

O
O

o
o
2
-O

£

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



uo

©
1-H
cd

©
^H
cd

TT
i-Ha

CO
1-H
cd

cm
^H
cd

Ô
HCd

©
cd

00
cd

t*-
cd

©
cd

©
cd

CO
cd

04
cd

t  f
O

i-H"d*cO©©i-H©OCO©i-^©' ,3*©CM© S W C O O i O N O O M i O N O S N C l W  ic t  00 lO O lO O N Hi h-« © O ^  © t"- '■d*

OOCOOO,? CJ Wi ONOHCOC5CO,t‘
h h h h M h h M W M W H H H

N  H  h  O

CO

^H iH  "'d' CM

00

N w H t-H

© cm

CM CM © H C O M H C O N H t

CO CM 00 1-H CM CM

©

00

h n « ^ i o o n m o S 2 h 2 3 h !2c d c d c d c d c d . w . w C d c d ^ ^ j H ^ j - ^ j j j

©
©
©

16
7

r*H
^H .5

45

©

.8
12

CO
^H .6

25
14 .2
86

20 .9
50

32 .5
62

©̂
H .5

26

©
i-H .2

00
t—H .6

43
42

CM
©

00 
r —H .4

44

©̂
H .6

67

^H
CM .4

76

t*-
i-H

CM0000

CO
i-H .4

62

t" -
i-H

^H

T2S»
A.
g

cc pr
ec

isi
on

cd
C

2
2

HP
o

o©
cd

O

ou
01o
cd
h0

acn

a

cducn

£
x
cdc
eo

o
O

CO

3cdH

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



frames, we list the classification accuracy at the frame (segment) level as well.

Whitman et al. Kim et al. Berenzweig et al. Our results
frame | song frame song frame song frame | song

16-artists - 1 .307 .415 .356 .683 .337 .489
21-artists - | .50 - - .318 .649 .337 .447

Table 6.11: Frame & Song Level Classification Accuracy Comparison on 16 and 21 artists datasets

The results show that our classifier outperforms the system in [KW02] by Kim et al., is close 

to the one in [WFL01] by Whitman et. al, but a lot worse than the classifier in [BEL02] by 

Berenzweig et al. By comparing our approach to [BEL02], the reasons could be that in [BEL02] 

the experiment was done using only voice segments for the 16 vocal artists. That can decrease the 

noise in the training and testing data. Because only voice segments were used for vocal artists, 

[BEL02] focused on voice features such as MFCC’s and ignore other aspects of music. The short 

length of frames sliced for each song results in more training and testing frames than the segments 

we used in the experiments. The result for each short frame is more fine-grained than result for our 

30 second segment.

For the 6-pianists dataset, we train and test the classifier on short segments from the pieces 

the same as [WZ04]. Our 1-class detectors can discriminate one class from all the others, while 

in [WZ04], classification is done for each pair of pianists. Specifically, the n-class problem was 

converted into n(n — 1) pairwise problems, one for each possible pair of pianists. For each pianist 

pair, the classifier was tested on 24 recordings (12 pieces, played by each of the two pianists). Thus, 

24 predictions were made for each pair.

In order to do the comparison, we need to convert the overall accuracy into pairwise accuracies 

in [WZ04]. Our experiments are done in one-against-others manner for each 1-class detector. To 

get pairwise classification results, we analyze the outputs from each of the neuron pairs, tested on 24 

recordings for each pair of pianists. Table 6.12 lists the classification accuracies of [WZ04] and our 

results. In [WZ04] 6 differert classifiers were trained and tested. In our experiment, we built our 

classifier using auto-encoder, 1-class kNN and 1-class SVM respectively; the best result presented 

in the table was produced using 1-class kNN as base detector. Our classifier performs better than 3 

classifiers in [WZ04], but loses to the other 3 classifiers.

The different designs of the experiment make our learning and classification task tougher than 

the one in [WZ04] in that their pairwise classifier training only involves 2 classes each time, while 

the training of each 1-class detector in our system involves all the 6 classes. Therefore, there is much

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pairs cOl c02 c03 c04 c05 c06 ours
AS-DB .667 .583 .625 .667 .667 .625 .583
AS-GG .583 .667 .708 .708 .583 .542 .625
AS-MP .625 .708 .750 .667 .708 .667 .625
AS-MU .583 .583 .625 .667 .458 .542 .500
AS-RB .625 .708 .708 .708 .792 .792 .708
DB-GG .667 .625 .708 .750 .583 .542 .708
DB-MP .667 .667 .667 .625 .625 .625 .667
DB-MU .625 .667 .625 .625 .583 .542 .625
DB-RB .708 .792 .792 .792 .708 .708 .708
GG-MP .625 .708 .667 .708 .583 .625 .625
GG-MU .667 .708 .667 .750 .542 .583 .750
GG-RB .500 .625 .708 .708 .583 .667 .542
MP-MU .500 .625 .542 .542 .542 .458 .583
MP-RB -583 .667 .833 .833 .542 .625 .583
MU-RB .583 .708 .667 .708 .583 .500 .583

ave. .614 .669 .686 .697 .606 .603 .628

Table 6.12: Song Level Classification Accuracy Comparison on 6 pianists dataset

more noise in our training data, which adds to the difficulty for classifier training. Despite this fact, 

our classifier still produced decent song level accuracies.

6.4 Summary

This chapter described the design of the experiments to find the best setting for our systems. 

It presented the results for each individual experiment, conducted on different datasets. It also 

compared our approach with previous work by other research on the same datasets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7

Conclusion Sc Future Work

Section 7.1 summarizes the contributions of this research. Section 7.2 discusses the limitations in our 

work, and section 7.3 provides some directions for future work, corresponding to these limitations.

7.1 Contributions

We have succeeded in building an artist identification system, designed as a multi-class classifier 

for identification of different music artists. We have described the architecture of the system, the 

strategies we used for feature extraction, our customized classifier building approach and classifier 

evaluation, and presented and evaluated the results of the experiments we designed. Our approach 

is novel in that we make use of 1-class learning algorithms to build classifier for each class and then 

linearly combine them by stacking a neural network on top of them to form the multi-class classifier.

We compared our classification results with others. For the 16 and 21 artists datasets, our 

classifier produced close to better results than two of the previous work [WFL01, KW02], but worse 

them [BEL02]. For the 6-pianists dataset, although we cannot compare our segment accuracy with 

the piece accuracy in [WZ04], from the segment level results, we can hope for close or even better 

classification results at the piece level.

In addition, since we designed our system in that way, the lack of examples from unknown artist 

is no longer a problem and it is feasible to enable reject option in the system as a potential add-on.

7.2 Limitations

As mentioned previously, features are a key component of any machine learning task. As described 

in Chapter 3, the features extracted from the 21-artists dataset for learning algorithm are produced 

by the Marsyas software. Although it provides us with a ■variety of different features, the quantity

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and quality of these features are dependent on the software. We may lose some other robust and 

stable features not used we use in our system. On the other hand, among the features we currently 

have, we can’t tell which features benefit the learning and which do not. Neither do we know which 

features work the best together for the learning.

For the datasets themselves, there are some limitations. For example, for the 16 and 21 artists 

datasets, there are approximately 10 pieces for each artist. The number of examples for each artists 

is fairly small, and there axe not many examples for us to explore how the difference between different, 

albums by an artist might affect the learning and classification.

Another limitation of our work is the absence of reject option [Cho70]. As we designed, our artist 

identification system is supposed to not only classify artists it recognizes, but also reject those artists 

it never encountered in training. By training 1-class classifier for each artist class and combining 

them to perform final classification, our system can be developed to reject unknown artist when a 

testing instance is not accepted by any of those 1-class classifiers. To do this, the outputs of the 

multi-class classifier need to be thresholded so that rejections can be made based on the thresholds. 

We have not done much exploration and experimented on these ideas. This function unit is not 

included in the current system.

7.3 Future Work

For the feature selection issue, we will experiment with some existing feature selection algorithm, 

e.g., Wrapper Model [KG97]. By finding the most distinguishing feature subset from our data, we 

expect some improvement on the classification performance of the system.

Regarding reject option, some ideas about finding thresholds for linearly combined multiple 

classifier have been introduced in [FR01, RFV02]. Reject option will be some future work for our 

research.

Another interesting piece of future work would be experiments with the 6-pianists dataset using 

the the features describes in [SHSTW04]. In this paper, a set of advanced features are tested on 

the same dataset for the same learning task and the performance is better than the one reported 

in [SHSTW04]. We would like to train our classifier using the new features and compare our 

classification results to their system.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Glossary

ANN

Artificial Neural Network

FF T

Fast Fourier Transform

GM M

Gaussian Mixture Model

kN N

fc-Nearest Neighbors

LPC

Linear Prediction Coefficient 

M FCC

Mel Frequency Cepstral Coefficient

M IR

Music Information Retrieval 

STFT

Short Time Fourier Transform 

SVM

Support Vector Machine

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[BEL02]

[BPR+]

[Cho70]

[Coo87]

[CS95]

[DHOO]

[DHSOO]

[FR01]

[HarOl]

[HCL03]

[HGR04]

[Jap99]

[JL95]

[JMG95]

[KG97]

Adam Berenzweig, Dan Ellis, and Steve Lawrence. Using voice segments to improve 
artist classification of music. In Proceeding of 22nd International Conference on Virtual. 
Synthetic and Entertainment Audio, pages 79-86, Espoo, Finland, June 2002.

Phil Burk, Larry Polansky, Douglas Repetto, Mary Roberts, and Dan Rockmore. Music 
and computers. An interactive web-text. http://ecunusic.dartmouth.edu/ book/.

C.K. Chow. On optimum error and reject trade-off. IEEE Transactions on Information 
Theory, 6:41-46, 1970.

James W. Cooley. How the FFT gained acceptance. In Proceedings of the ACM confer­
ence on the history of scientific and numeric computation, pages 133-140, Princeton. 
NJ, May 1987.

Philip K. Chan and Salvatore J. Stolfo. A comparative evaluation of voting and meta- 
learning on partitioned data. In Proceedings of 12th International Conference on Ma­
chine Learning, pages 90-98, Tahoe City, California, USA, July 1995.

Chris Drummond and Robert C. Holte. Explicitly representing expected cost: an 
alternative to ROC representation. In Knowledge Discovery and Data Mining, pages 
198-207, 2000.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. New 
York: John Wiley & Sons, 2000.

Giorgio Fumera and Fabio Roli. Error rejection in linearly combined multiple classifiers. 
In Proceedings of 2nd International Workshop on Multiple Classifiers Systems, volume 
2096, pages 329-338, Cambridge, UK, July 2-4, 2001.

A. Harma. A comparison of warped and conventional linear predictive coding. IEEE 
Transactions on Speech and Audio Processing, 9:579-588, 2001.

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practiced guide to support vec­
tor classification. Technical report, Department of Computer Science and Information 
Engineering, National Taiwan University, 2003.

Chao He, Mark Girolami, and Gary Ross. Employing optimized combinations of one- 
class classifiers for automated currency validation. Pattern Recognition, 37(6):1085- 
1096, 2004.

Nathalie Japkowicz. Concept Learning in the Absence of Counter-Examples: An 
Autoassociation-Based Approach to Classification. PhD thesis, Rutgers University.
1999.

George H. John and Pat Langley. Estimating continuous distribution in bayesian classi­
fiers. In Proceedings of 1 1 th Conference on Uncertainty in Artificial Intelligence, pages 
338-345, Montreal, Canada, August 1995. Morgan Kaufmann Publishers.

Nathalie Japkowicz, Catherine Myers, and Mark A. Gluck. A novelty detection ap­
proach to classification. In Proceedings of 14th International Joint Conference on Ar­
tificial Intelligence, pages 518-523, 1995.

R. Kohavi and G.H.John. Wrappers for feature subset selection. Artificial Intelligence. 
97:273-324, 1997.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ecunusic.dartmouth.edu/


[KW02] Youngmoo E. Kim and Brian Whitman. Singer identification in popular music record­
ings using voice coding features. In Proceeding of 3rd International Conference on 
Music Information Retrieval, pages 164-169, Paris, France, 2002.

[LM98] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and Data
Mining. Kluwer Academic, 1998.

[LogOO] Beth Logan. Mel frequency cepstral coefficients for music modeling. In Proceedings of
1st International Symposium on Music Information Retrieval, Plymouth, MA, October
2000. http://ciir.cs.umass.edu/music2000.

[Mar03] Caren Marzban. A comment on the ROC curve and the area under it as performance
measures. Technical report, Center for Analysis and Prediction of Storms, University 
of Oklahoma and Department of Statistics, University of Washington, 2003.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.

[MMR+01] Klaus-Robert Mullers, Sebastian Mika, Gunnar Ratsch, Koji Tsuda, and Bernhard
Scholkopf. An introduction to kernel-based learning algorithms. IEEE Neural Networks, 
12(2):181-201, May 2001.

[NJ02] A. Ng and M. Jordan. On discriminative vs. generative classifiers: A comparison of
logistic regression and naive bayes. In Advances in Neural Information Processing 
Systems 14, pages 841-848, Cambridge, MA, 2002. MIT Press.

[PFK98] Foster J. Provost, Tom Fawcett, and Ron Kohavi. The case against accuracy estimation
for comparing induction algorithms. In Proceedings of 15th International Conference 
on Machine Learning, pages 445-553, Madison, WI, 1998.

[RFV02] Fabio Roli, Giorgio Fumera, and Gianni Vemazza. Analysis of error-reject rrade-off in
linearly combined classifiers. In Proceeding of 16th International Conference on Pattern 
Recognition, volume 2, pages 120-123, 2002.

[Roy] Chris Roy. Short time fourier transform, from wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/STFT.

[Sar97] Warren S. Sarle. Neural network FAQ, 1997. ftp://ftp.sas.com/pub/neural/FAQ.html.

[Sch92] Robert J. Schalkoff. Pattern Recognition: Statistical, Structural, and Neural Ap­
proaches. Wiley, 1992.

[SchOO] E. Scheirer. Music-Listening Systems. PhD thesis, MIT Media Lab, 2000.

[SHSTW04] Craig Saunders, David R. Hardoon, John Shawe-Taylor, and Gerhard Widmer. Using 
string kernels to identify famous performers from their playing style. In Proceedings 
of 15th European Conference on Machine Learning and 8th European Conference on 
Principles and Practice of Knowledge Discovery in Databases, pages 384-395, Pisa, 
Italy, September 2004.

[SPSTS01] Bernhard Scholkopf, John C. Platt, John Shawe-Taylor, and Alex J Smola. Estimating
the support of a high-dimensional distribution. Neural Computation, 13:1443 -  1471, 
July 2001.

[TD99] D. Tax and R. Duin. Data domain description by support vectors. In Proceedings of 7th
European Symposium on Artificial Neural Networks, pages 251-256, Bruges, Belgium, 
April 1999.

[TEC01] George Tzanetakis, Georg Essl, and Perry Cook. Automatic musical genre classification
of audio signals. In Proceedings of 2nd International Symposium on Music Information 
Retrieval(ISMIR), pages 205-210, Bloomington, Indiana, USA, October 2001.

[TzaOO] George Tzanetakis. Marsvas: A framework for audio analysis. Organized Sound.
4(3):169 -  175, 2000.

[Tza02] George Tzanetakis. Pitch histograms in audio and symbolic music information retrieval.
In Proceedings of 3rd International Symposium on Music Information Retrieval, pages 
31-38, Paris, France, October 2002.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ciir.cs.umass.edu/music2000
http://en.wikipedia.org/wiki/STFT
ftp://ftp.sas.com/pub/neural/FAQ.html


[vR79]

[Wei]

[WFOO]

[WFLOl]

[WZ04]

C. J. van Rijsbergen. Information Retrieval Butterworths, London, UK, 1979.

Eric W. Weisstein. Fast Fourier Transform. From Mathworld-A Wolfram Web Re­
source. http: /  /  mathworld.wolfram.com/FastFourierTransform.html.

Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools with 
Java implementations. Morgan Kaufinann, San Francisco, 2000.

Brian Whitman, Gary Flake, and Steve Lawrence. Artist detection in music with Min- 
nowmatch. In Proceedings of IEEE Workshop on Neural Networks for Signal Processing, 
pages 559-568, Falmouth, Massachusetts, September 2001.

Gerhard Widmer and Patrick Zanon. Automatic recognition of famous artists by ma­
chine. In Proceedings of 16th European Conference on Artificial Intelligence, pages 
1109-1110, Valencia, Spain, 2004. IOS Press.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


