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Abstract

Reserve estimates are critical to mining projects. Mine productivity and equipment 

selectivity must be balanced and considered in the estimation of recoverable reserves. 

This has been a long-standing challenge in mining geostatistics since the early days 

of the discipline. Many techniques have been developed and others have evolved to 

address this problem.

This thesis reviews conventional and emerging approaches to resource/reserve 

estimation. Specifically, change of support models, kriging, uniform conditioning 

and simulation are considered. These different approaches are then illustrated using 

data from a gold deposit, and compared on the basis of their grade tonnage curves. 

This comparison revealed that the indirect lognormal, discrete Gaussian model, uni­

form conditioning with kriging and simulation yielded reasonable and comparative 

results. The use of kriging and the affine correction performed poorly relative to the 

other methods. Guidelines for consideration and implementation of these methods 

are provided.
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Chapter 1

Introduction

Recoverable reserves/resources are integral to all mineral projects. Different types of 
estimates are required at different stages of the mine life: global reserves are needed 
at the project development stage, while local reserves are required for detailed mine 
planning and pit optimization. The estimation of reserves requires economic eval­
uation and detailed open pit/underground planning. The estimation of reserves is 
made more complex when one considers issues related to equipment and the corre­
sponding scale of mining production.

There are three types of block models, or estimates, that can be considered for 
any mining operation (Paraphrased from [7]). Each model type has a different goal 
and different resource/reserve predictions:

T ype 1 (B est E stim ates): Models whose block grade estimates are constructed
to be the best estimate at a location using the data available are classified as type 
1 models. The main consideration when constructing this type of model is to best 
predict the unknown value at a location where there is no sample. Kriging was 
developed to provide this capability. These models do not necessarily provide good 
estimates of the global resources or reserves because they are often too smooth and 
do not anticipate the additional information tha t will be available at the time of 
mining. This motivates us to consider alternative models.

T ype 2 (Tuned for R eserves): Models whose block grade estimates are used
to predict the tonnes and average grade of ore material that will be recovered over 
the life-of-mine are classified as Type 2. Typically, type 2 models are constructed 
at the initial mine planning stages from relatively sparse exploration drilling. The 
estimates are used for long term mine planning, and pit optimization. The estimates 
are made with the knowledge tha t they will not be used for final selection at the 
time of mining. For this reason, the location of the high and low grade estimates 
is not essential. It is important that type 2 estimates make an accurate prediction 
of the recoverable reserves at the time of mining. The estimation parameters are 
tuned to give unbiased recoverable reserve estimates given the available information 
and any information on future grade control and mining practices.

T ype 3 (D ecision  M aking): Models whose block grade estimates are used for
selection at the time of mining are classified as Type 3. Individual block volumes
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Figure 1.1: Stages of reserve estimation.

correspond to a selective mining unit (SMU). The estimates at this stage are usu­
ally associated with the mining equipment and some assessment of the consequences 
associated with under and over estimation. The grade of each block typically es­
timated from neighboring blast hole (BH) grades or dedicated grade control drill 
samples. The use of these estimates and subsequent hand smoothing to distinguish 
between ore and waste is commonly known as grade control.

Consider Figure 1.1. At the initial stages of mine exploration the only data 
available is sparsely sampled exploration holes; typically core from diamond drilling 
or cuttings from reverse circulation drilling. At the time of grade control, additional 
samples will be available. These are taken from blast hole cuttings or from dedicated 
grade control drilling. Grade control estimates are used to decide where the actual 
mining will take place.

The idea of type 2 estimates is to use the sparsely sampled exploration holes 
to predict the material that the shovel or loader will actually mine. The estimates 
need to account for the selectivity of the mining equipment, the future information 
available from the grade control samples, and any errors that may occur. The 
challenge with these estimates is tha t they are often locally biased, that is, high 
values are too high and low values are too low. This happens because the estimates 
are compensating for future information that is not available at the present time.

The notion of a selective mining unit, or SMU, is confusing. Many people as­
sociate an SMU with the mining equipment. This is correct at the time of mining; 
however, during the reserve estimation, the SMU does not coincide with the mining 
equipment, it has to be correctly sized to accurately predict the results of the min­
ing. The SMU has to account for the mining equipment, the imperfect information 
at the time of mining and dilution. The SMU size will change from initial mine 
exploration and planning to the mine development and mining stages.

Recoverable reserves are a function of the selectivity that can be achieved by 
the equipment being used. Large equipment is more productive than small equip­
ment, but this comes at the price of selectivity. Larger mining equipment cannot 
distinguish ore and waste as easily or accurately as small mining equipment. The 
selective mining unit (SMU) could be defined as the smallest volume of material 
on which ore waste classification is determined [19]; hence it is a clear measure of 
the equipment selectivity and has a large impact on the reserve calculation (see [10] 
for more information). As mentioned above, the SMU also accounts for imperfect 
selection due to incomplete information.

2
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F igure 1.2: Typical setting for reserve calculation: samples are represented by the X’s; 
the SMU’s denote the small blocks, v\ the panels as represented by the larger blocks, V ; 
and the deposit is considered as the entire area, A.

While SMU’s are considered the smallest volumes for production, reserves are 
calculated for larger mine planning blocks, typically referred to as panels. Cal­
culation of panel grades, tonnages, and ore/waste classification are based on the 
constituent SMU’s within the panel. The panel reserves can be further upscaled 
to provide an estimate of the reserves for the entire deposit. Figure 1.2 shows a 
schematic illustration of the relation between these scales of production, planning 
and reporting.

Achieving the balance between productivity and selectivity is a challenge, yet 
the effect of dilution due to scale of production presents another issue for consider­
ation. Consider assays from an exploration drilling program. There will typically 
be samples with very low grades and samples with very high grades; these extreme 
values contribute to a histogram with high variance. If the samples are composited 
to a larger scale, higher grade material will be averaged with lower grade material. 
The effect of this averaging leads to a histogram of composited data tha t has a lower 
variance than the assays (see Figure 1.3). Clearly, the distribution of grades within 
the deposit changes as the size of the sample, or block, increases.

Given these complex, inter-related issues, it is easy to see why so many different 
resource estimation methods have been developed for different deposit types and 
settings. Incorporating scale effects in the resource estimate is very important. 
There are analytical change of support models to correct the point scale histogram 
to one that approximates the SMU scale histogram. Global resources can then be 
calculated directly from the upscaled histogram. Local resources can be estimated 
through linear, non-linear, and simulation based algorithms. The local resources 
can be upscaled to get global resources.

This thesis will compare some of the more common reserve estimation techniques 
on the basis of (i) applicability, (ii) amount of time and effort required for implemen­
tation, and (iii) accuracy of the results. A background review of volume variance, 
resource and reserve calculation, and the information effect is first presented. This

3
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Figure 1.3: Change in the histogram with a change in the support size (redrawn from 
Deutsch, 2001).

is followed by a distinction between global and local resource estimation methods. A 
comparative example is included to demonstrate the differences between the meth­
ods. A contrived example illustrates the calculation of an effective SMU size that 
can be used for reserve estimation by incorporating the information effect.

1.1 B ackground

The scale issue remains a long standing challenge in geostatistics; certainly the 
mining industry has struggled with its complexity since the pioneering work of Krige 
and Sichel in the 1950s [11, 18]. Since tha t time, many researchers have worked to 
quantify the affect of volume on the spatial variability of the phenomena, and how 
this affects the variability in the grades distribution. A brief summary of average 
variogram (gammabar) values, dispersion variances, and how they relate to block 
size is given.

Another problem tha t must be considered is dilution. Dilution is im portant for 
two reasons: (1) the mining equipment, or method, cannot mine at a scale small 
enough to select between ore and waste; Free Selection, and (2) there will always be 
errors in classifying material as ore and waste due to sampling errors and incomplete 
sampling; Perfect Selection. The reserve calculation should account for dilution, not 
being able to freely select ore and waste, and misclassified blocks, not being able to 
perfectly classify each block. The impact that additional sample information has is 
called the information effect.

Recoverable reserves can be calculated from a histogram of grades, or from an 
estimated block model. The methodology and notation are presented.

4
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x h
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v V

Figure 1.4: Schematic illustration of two arbitrary volumes, v and V , separated by a lag 
distance, h.

1 .1 .1  S ca le  E ffect

G am m abar. The average variogram, or gammabar, 7  (V", v), is a widely used mea­
sure to estimate the variability between two arbitrary volumes. Gammabar values 
represent the mean value of 7 (u) when the head of the variogram describes the block 
V (u) and the tail describes the block u(u') where u and u ' are location vectors (see 
Figure 1.4). The blocks v and V  may or may not be the same size, they may be 
separated by some distance, and/or they may be irregularly shaped.

Gammabar values can be calculated exactly with the following integral:

Alternatively, the gammabar can be numerically approximated by a sextuple sum­
mation (3 directions for each volume) taken over the discretization of the two vol­
umes. This is simple, relatively fast and works for any variogram type and size/shape 
of the volumes. This flexibility makes the numerical approach the common modern 
approach.

Consider the case of calculating the gammabar of a volume with itself. If the 
volume v is very small, say a point support, the 7  (v , v) will be equal to zero since 
the separation vector, h, will equal zero. In contrast, a much larger volume, say 
the domain will involve averaging the variogram of points separated by very large 
distances, h; this results in a 7  (A, A)  nearly equal to the variance of the field. Thus, 
as the volume increases, the gammabar values will also increase and tend towards 
the variance of the field.

D ispersion  Variance. The dispersion variance, D 2(v,V),  is a measure of the 
variability of the small volume v within a larger volume V.  Dispersion variances 
can be estimated in one of two ways: (1) use the available data and estimate the 
block variance by upscaling the data directly, and (2 ) estimate the block variance 
using the fitted variogram model. Ideally, both methods would be used and any 
differences reconciled. However, there is usually insufficient data to perform method 
1. As a result, method 2 has become the accepted default practice for estimating 
block variances.

The dispersion variance can be written as:

where zv is the are the sample points with a volume v contained within the larger 
volume V ,  and m y  is the mean of the larger volume V .  This requires sufficient data

7  (V, v ) = ——  [  dx [  7  (x — x 1) dx'
V  ■ V J y {u ) J V(U<)

( 1 .1 )

D 2 (v,V)  = E [ ( z v - m v )2]

5
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for calculating the dispersion variance. The dispersion variance can be rewritten in 
terms of the variogram [9]:

D 2 (v,V)  = i ( V , V ) - 7 {v,v) (1.2)

Equation (1.2) allows the easy calculation of a dispersion variance given a variogram 
model and a volume. Any dispersion variance estimated with the variogram is 
sensitive to the nugget effect.

Dispersion variances are additive. The additivity of variance property was used 
to establish Krige’s relation [2, 9]:

D 2 (v,A) = D 2 (v ,V)  + D 2 (V,A)  (1.3)

Therefore, the variance of the small blocks v in the area A  is equal to the variance 
of the small blocks v within the big blocks V  plus the variance of the big blocks V  
in the area A,  tha t is v C V  C A. This equation can be rearranged to solve for any 
of the terms.

1 .1 .2  P e r fe c t  an d  Free S e le c tio n

It is impossible for the mining equipment to perfectly mine all the ore as ore and all 
the waste as waste. The notion of perfect and free selection is important. Consider 
the ore/waste map shown in Figure 1.5. Ore is shown as dark gray and waste is 
shown as light gray. The dark black line is a proposed ore/waste boundary for 
the mining equipment. Perfect selection assumes that each block could be perfectly 
mined as a cube. Free selection assumes that each ore block can be mined as ore, and 
tha t each waste block can be mined as waste. These are not realistic assumptions. 
The few waste blocks contained within the ore will likely be mined as ore, and the 
orphaned ore blocks will likely be mined as waste.

1 .1 .3  In fo r m a tio n  E ffect

Ore and waste must be classified for mining. Classification is done using blast hole 
or grade control samples. The samples are collected near the time of mining and are 
used to estimate the block grades. Each block is classified according to its estimated 
grade. The estimated grades will never exactly match the true block grades. The 
amount of additional information that the grade control samples bring is called the 
information effect.

The information effect quantifies the affect that the grade control samples have 
on the recovered reserves. Widely spaced samples will not predict the mineral grades 
as accurately as closely spaced samples. The result is misclassified blocks and a 
reduction in the recovered mineral grade. The information effect can be accounted 
for in a reserve estimate.

1 .1 .4  R eco v era b le  R eserv e  C a lcu la tio n

A change in volume affects the spatial variability of the grades. A change in the 
grades distribution must necessarily affect the recoverable reserves calculation. This 
section reviews the different approaches for reserves calculation.

6
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Figure 1.5: Ore/waste classification map. The black line shows the ore/waste boundary 
for mining.

A mining operation can not economically recover all of the in-situ resources. 
Some portion of the deposit will be inaccessible or unprofitable to mine. Recoverable 
reserves are a subset of the resources that can be economically mined.

Assume tha t we only want to select material with a grade above a specified 
minimum or cutoff grade, zc. The cutoff grade can be defined based on many 
considerations; however, a simplistic formula could be used:

2C =  Q +  (C° ~ Cw) (1.4)
p ■ rec

where ct is the cost of processing the ore ($/tonne), ca is the cost of mining ore 
(S/tonne), cw is the cost of mining waste (S/tonne), p is the metal selling price, and 
rec is the fraction of metal recovered during processing. The units for metal price 
are dependent on the units the grade is in. If the grade is oz/tonne, then the metal 
price needs to be $/oz. The deposit is classified into ore and waste using the cutoff 
grade.

H istogram  B ased. Recoverable reserves can be estimated directly from a his­
togram. The tonnage, quantity of metal, and average ore grade can be calculated. 
There are two considerations that need to be made when calculating reserves from 
a histogram: (1) the size of the SMU’s that are being used for the reserve calcula­
tion, and (2) the volume that the histogram represents. Recall tha t a distribution 
changes, the variance and shape, as the support volume changes (Figure 1.3). The 
drillhole samples have a very small support volume. The blocks that will be mined 
have a much larger support volume. The distribution needs to be corrected from 
a “point” scale to a “block” scale. The methodology for the change of support is 
presented in the next chapter. However, it is im portant to note that the different 
sized SMU’s will have different block scale distributions, resulting in different reserve 
estimates. The tonnes of ore can change dramatically with a change in the volume 
being considered. If the gross tonnage includes areas that will never be mined, the 
tonnes of ore will be overestimated.

7
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Let To be the total tonnage of the deposit. The recovered tonnage is then:

r+oo
TA

r+oo
(zc) = T0 • [1 -  FZv(zc)} =  T0 ■ / f Zv (z)dz (1.5)

Jzc

where T a ( z c ) is the tonnage above the cutoff grade, f z (z) is the probability den­
sity function or frequency distribution of the grades, and Fz (zc) is the cumulative 
distribution function of the grades. The quantity of metal can then be calculated 
as: r+oo

Qa (zc) =  To • / z f z (z)dz (1.6 )
J  Zc

and the mean grade of the recovered material is given by:

=  (1.7)

Only global reserves can be calculated using the histogram based approach. It 
provides an estimate of the reserves for a given volume where the data is represen­
tative.

B lock B ased . Only SMU’s with a grade above the cutoff grade will be mined as 
ore. This leads to the definition of an indicator function that classifies the SMU as 
ore or waste according to:

where up refers to the SMU centered at location u^, zv (up) is the grade of the 
SMU, and zc is the cutoff grade. The tonnes of ore above the cutoff grade for any 
panel can be calculated using the indicator function and the SMU tonnage:

N„

Tv (ua; zc) = iv (up] zc) tv(up) u p E u a (1.9)
p=l

where Ty (ua ; zc) is the tonnage of ore above the cutoff grade for panel V  centered 
at location u Q, tv(up) is the tonnage of the SMU at up,  and (3 — 1 , . . . ,  N v where 
N v is the number of SMU’s contained within the panel, V.  The quantity of metal 
above the cutoff grade is:

N v

Q v  (ua; zc) = iv (up; zc) ■ tv (up) ■ zv (up) up <E u Q (1.10)
0=1

The mean grade of the ore is given by:

ii/r / \ Qv(Ua', %c)-My (ua ; zc) — — -7———y  (1-11)
V ^c)

The resource estimate for each panel can be upscaled for a global resource estimate.

N v

Ta {zc) — ^   ̂ zc) u a C A.
a= 1
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N v

Q a  (%c) —  ^  ^  Qviy^ot'i Zc) U q ,  € :  A.
a=l

M A (2c) -  Q a M
Ta (zc)

where a  — 1, . . .  , N y  and N y  is the number of panels within the deposit, A.
Recoverable reserves calculated from a block model should be consistent with 

reserves calculated from the appropriate histogram. Block based reserves will take 
more time to calculate, but more can be done with the block model; e.g. mine 
planning and selective reserves within a constrained area.

Now that we have seen the factors influencing recoverable reserve calculation, 
we will discuss the different methods used to estimate reserves.

9
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Chapter 2

Reserve Estim ation M ethods

The type of reserve estimation required changes at different stages of a mining 
project. In the early years, global reserves are required for disclosure and financial 
planning. During the later years, while production is taking place, local reserves are 
required for mine planning and scheduling. Different methods exist for estimating 
different reserve types.

2.1 G eo sta tistica l B ackground

All of the background details for geostatistics cannot be presented in the limited 
space available here. As much detail as possible will be presented, but the reader is 
referred to other sources for additional information.

See Isaaks and Srivastava for an excellent introduction to geostatistics including 
variograms, volume variance, and kriging [8]. Rivoirard gives a complete presenta­
tion of non-linear geostatistical methods, including hermite polynomials and uniform 
conditioning [15]. Goovaerts gives a thorough review of simulation in his book [5]. 
The book by Chiles and Delfiner is one of the most complete and modern geostatis­
tical references [2]. A recent book presenting the application of simulation to mining 
problems was written by Journel and Kyriakidis [10]. See Deutsch and Journel for 
an in depth explanation of a publicly available geostatistical software library [4].

2.2 G lobal R eserve E stim ation

Global reserves are calculated as a preliminary estimate of the reserves and for the 
calibration of tuned local estimates. At this stage, the location of the reserves within 
the deposit is not critical. Ensuring that the total recoverable reserves are accurate 
is the most im portant criteria at this stage.

It is common to estimate recoverable resources directly from the grade his­
togram [2]. However, the volume support of the sample data is not the same as 
the volume support of the blocks that will be mined. A correction needs to be ap­
plied to the histogram to account for the larger blocks tha t will actually be mined. 
A number of case studies have been published showing that very good results can 
be achieved with this method [16].

Recall tha t the variance of blocks within the deposit can be estimated using 
dispersion variance theory. Change of support models use this block variance to
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alter the sample histogram so it represents the blocks that will actually be mined. 
There are three common change of support models: (i) affine, (ii) indirect log­
normal, and (iii) discrete Gaussian model (DGM). These models are applied in a 
similar manner ; however, each change of support model makes different assumptions 
regarding the shape change of the histogram.

All change of support models make two common assumptions: (1) the variance 
decreases in a predictable manner as the volume increases, and (2 ) the mean does 
not change from one scale to the next. These are both the result of assuming linear 
averaging, which is correct for fractions or concentrations. Each model assumes a 
different shape change as the volume increases. These will be developed later in 
Sections 2.2.2 to 2.2.4. First, the volume variance relationships will be reviewed.

2 .2 .1  V o lu m e V arian ce R e la tio n s

As the block size increases, the variance decreases. We can define a change of 
support parameter, or variance reduction factor / ,  as the variance of the larger 
volume divided by the variance of the smaller volume:

1 D 2 (•, A) [ }

Substituting Equation (1.3) into Equation (2.1) gives:

D 2 ( ; A ) - D 2 (;V)
f D 2 ( ;A)

D 2 (•, v)
=  M

Recall tha t D 2(- ,A) is the variance of the points in the deposit A,  or a 2, and that 
D 2{;V) is the variance of the points within the blocks v , or j (v ,v) \

f  =  (2.3)

Therefore, /  is a function of the modeled variogram and the variance of the points 
within the deposit. The variance reduction factor is used directly for the affine 
variance correction and the indirect lognormal correction. It is used indirectly in
the DGM. The spatial continuity of the variable affects the calculated reserves.
Reserves for variables that are very continuous will not change substantially as the 
selection volume increases; whereas, reserves for variables tha t are not spatially 
continuous will change drastically as the support volume increases.

2 .2 .2  A ffin e  C h a n g e  o f  S u p p o rt

The affine change of support model assumes that the shape of the histogram does 
not change and the variance is reduced by / .  The reduction in variance is achieved 
by:

q' =  \ /7 -  (q ~ m) + m  (2.4)

where q is the quantile of the original value in the point scale distribution, m  is 
the mean of the distribution, and q' is the quantile in the corrected block scale 
distribution.

11
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The assumption that the shape of the histogram does not change is unrealistic 
for large changes in variance. The affine correction introduces artificial minima and 
maxima and the shape of the resulting histogram maintains the same asymmetry 
as the point scale distribution. The affine change of support model is only used for 
small variance reductions, that is, /  > 0.7 [9].

Recoverable reserves can be calculated using the affine corrected distribution 
with the histogram based approach from Section 1.1.4.

2 .2 .3  In d irec t L ogn orm al C orrection

The indirect lognormal correction is the change of support model if the point and 
block distributions were lognormally distributed. The indirect lognormal correction 
is applied in two steps. The first step is the variance reduction:

q' =  aqb (2.5)

where q is the original quantile, q' is the variance corrected quantile, and

/ ln ( / . CV*  + 1)
V In (CV2 + 1) ( *

m
y / f  ■ C V *  +  1)

VcW TT
m (2.7)

Where /  is the variance reduction factor and C V  is the point scale coefficient of 
variation (a/m).  The second step is to correct the mean of the block distribution 
back to the mean of the point distribution:

q" = q'™ (2 .8)m'

where q" is the final corrected quantile, m is the mean of the original distribution 
(also the target mean) and m'  is the mean after the first correction [8].

The indirect lognormal correction is considered to be more realistic than the 
affine correction. It assumes an arbitrary shape change and does not impose artificial 
minima and maxima. Larger reductions in variance can be achieved with the indirect 
lognormal correction, /  > 0.5.

2 .2 .4  D isc r e te  G a u ssia n  M o d e l

The discrete Gaussian model (DGM) is also used for change of support at different 
scales [15]. It is a function defined by a polynomial expansion that needs to be fit to 
the data. Once the polynomials have been fitted, the function provides a mapping 
of the point variable Z  to the Gaussian variable Y  and vice-versa:

2 (U) =  $(j/(u))
np

~  ^ 2  <f>nHn [y(u)] (2.9)
71 = 0

where np is the highest order term in the polynomial expansion, cj)n is a fitted 
coefficient for each term, and H n [y(u)] is the hermite polynomial value defined by

12
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the term of the expansion and the y value. Equation (2.9) is referred to as the 
Gaussian anamorphosis.

Hermite polynomials are defined by Rodrigues’ Formula. The polynomial value 
can be calculated for any value of y and for any polynomial order n  using the 
following formula:

H -  1 dP9(v) /9
■ H p {y )  ~  /  T /  \  1 r> ( 2 . 1 0 )Vp! ■ g(y) dyP

Where p denotes the order of the polynomial and g(y) is the Gaussian pdf. For 
example, the first 6 Hermite polynomials are:

Ha(y) = 1 H3(y) =  - - F ( j /3 -  3y)

H\{y) = - y  H 4(y) = 57 5 (i/4 -  6J/2 +  3)
H2(v ) = - ^ { y 2 -  1) H b{y) = ~ ^ { y 5 -  10y3 +  152/)

After the zero and first order polynomials have been calculated, the following re­
cursive formula can be used to calculate the higher order polynomials, Hp(y), when
p >  2:

1 I p
Hp+i(y) = - ^ = j 4 /tfp(y) -  y j j ^ H p - ^ y )

We now need to calculate the cf> coefficients to finish fitting the anamorphosis 
function. The first order coefficient is:

fa  =  E {fay{u))}
= £{*(u)} (2 .11)

or the expected value of Z ( u). Higher order (j) coefficients can be calculated using:

fa = E i z (u ) ■ HP(y(u ))}

= J  0 (*/(u)) • Hp(y(u)) ■ g(y(u)) ■ dy(u)  (2 .12)

The last expression can be approximated with the data at hand, as a finite summa­
tion:

N 1
f a  ~  -  z{^a)) ■- p H p- i ( y {ua)) ■ g{y{ua )) (2.13)

a=2 VP

The fitted <j> coefficients must satisfy the following equality:

np
V a r { Z u} = f a  (2.14)

n =  1

where V a r { Z u j is the variance of Z  at the point support. If the summation is 
significantly different, the anamorphosis modeling should be checked.

There are two checks that can be done to determine the validity of the modeled 
anamorphosis function: (1) by comparing the Z  to Y  transformation function and 
(2) by comparing the global distribution from the data to the distribution from the 
anamorphosis. An example of the two plots are shown in Figures 2.1 and 2.2. The
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2 .0 _

 Experimental Anamorphosis

— -  Modelled Anamorphosis

CD
1 .0 .(0>

CD*6
0.5

0.0
2.0 3.0 4.00.0

G a u ssia n  V alues [Y(u)]

I
I

0.4 0.8

% Cu

F igure 2.1: Experimental and modeled Figure 2.2: Global distribution fit with
Gaussian anamorphosis. the Gaussian anamorphosis function..

experimental anamorphosis is shown as a thin line with the modeled anamorphosis 
shown as a thick dashed line. The original grade distribution is shown as the bar 
histogram and the fitted distribution is shown as a line. The experimental and 
modeled anamorphosis functions should be identical, and the properties of the two 
distributions should be similar.

The discrete Gaussian model is used for estimating the change of support from 
point scale to block scale. The variability and shape of the block scale distribution 
is controlled by the anamorphosis.

This anamorphosis function (Equation 2.9) can be modified to account for the 
change of support from point data to block data by the addition of a change of 
support coefficient r:

z(v ) =  $(y(u))
np

~  Z ]  rn<t>nHn [y(v)j (2.15)
n = 0

By calculating the value of r, we can determine the distribution of grades for volumes 
of support larger than the point samples.

The calculation of r requires the variance of the larger support volumes. Typ­
ically, there is not enough data available to do this explicitly. The variance of the 
larger blocks can be estimated using the modeled variogram of the point data; recall 
Equation (1.3).

D 2 (v ,A)  = D 2 ( ; A ) - D 2 (. ,v)

where v is the SMU support volume and • is the point support volume. Therefore we 
can calculate the variance of the larger blocks using the modeled variogram. Recall 
Equation 2.14:

np
Var  {Z.} =

n —1

Since this equality must be true for the point support, it must also be true for the 
block support. By including r in the equality, the equation becomes:

V a r { Z v} = D 2 (v, A)

14
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D 2 ( ; A ) - D 2 (;V)
np

(2.16)

where V a r { Z v} is the variance of Z  at the SMU support. The only unknown 
parameter is r. Any optimization method can be employed to find the value of r.

can be estimated. Global reserves are then estimated using the upscaled block 
distribution. The discrete Gaussian model is a fairly robust upscaling algorithm. 
It assumes a permanence of Gaussianity in Y  space. As a result, the distribution 
tends to a Gaussian shape as the variance at the block scale decreases.

Global reserve estimation has proven to be fairly robust. The estimated grade 
and tonnage above a cutoff is usually close to the results seen during mining. Local 
estimates are usually tuned using a global reserve estimate. The local estimation 
method is tuned so that the reserves match the reserves from the global method. 
Tuning the local estimates is discussed after the local reserve estimation methods 
have been discussed.

2.3 L ocal R eserve E stim ation

Although global resource estimation techniques can be used at initial mine evalu­
ation stages, they cannot be used when considering local areas in the mine. Pit 
optimization and short/long term planning require local estimation of the grades. 
Global reserves can be calculated using the local estimates and compared with the 
global reserves calculated previously.

Local resources or reserves are calculated using an estimation technique, such as 
ordinary kriging, or a simulation technique, such as sequential Gaussian simulation. 
The different methods and implementation suggestions are presented below.

2 .3 .1  K r ig in g

Kriging is a well-established estimation method. The estimates are calculated as 
a weighted combination of the data. The weights are chosen to minimize error 
variance. There are some limitations to kriging. The first major consideration is 
tha t the estimates are smoother than the underlying true grades and this smoothness 
depends on the data spacing. Secondly, kriging does not provide a good measure 
of uncertainty. The kriging variance depends only on the data configuration and 
the variogram values. The magnitude of the data values and the shape of the 
distribution are not considered when calculating the kriging variance.

Kriging can be used to estimate the grade of the SMU sized blocks. These block 
estimates are used for reserve calculation. It is a fast way to get recoverable reserves. 
However, the smoothing makes the calculated reserves unreliable [9].

A kriged estimate is a linear combination of the surrounding data values:

After calculating the change of support coefficient, the block scale distribution

n n
(2.17)
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where u  refers to a location in space, z * ( u )  is the estimate at location u ,  z ( u ; )  is
data at location u* are there are n data values, Aj is the weight assigned to the i th
data value, and m  is the global mean. This equation is simplified by working with 
residuals:

y(u) =  z(u) -  m

V*(u ) = J 2 Xi ‘ ^(u *) (2-18)
i ~  1

We need to solve for the kriging weights before the estimate can be calculated.
The weights are calculated by minimizing the kriging error variance. The kriging
variance is:

4  =  £ { [ y * ( u ) - r ( u ) ] 2 }

=  E  { [ y *  ( u ) ] 2 }  -  2 ■ E { Y *  ( u )  ■ Y  ( u ) }  +  E  {[T ( u ) ] 2 }

=  £  £  X^ E  ^  (u *) ' F  ~ 2 ' £  X*E  i Y  (u *) • ^  («)} +  C (0)
i = l j = l  i = 1

n n n

= E E AiAA - 2 ’E ^ - o  +  ff2 (2.1.9)
i = \ j = l  i —1

where 0 refers to the unsampled location, C i j  is the covariance between data points i 
and j ,  Ci Q  is the covariance between the i th data point and location being estimated, 
n  is the number of data points, and a 2 is the variance of the data. The optimal 
weights are determined by taking the partial derivative and setting them to zero:

! ^ -  = 2 . £ \ j Ci j - 2 - C io (2.20)
* j  = 1

n
= Ci0, i = 1, . . .  , n  (2.21)

j= i
Solving for the weights allows the estimate at u to be calculated. The estimation 
variance is a measure of uncertainty in the estimate at u .

Many flavors of kriging have been developed for different problems: (1) simple 
kriging, (2) ordinary kriging, (3) multi-Gaussian kriging, (4) lognormal kriging, (5) 
indicator kriging, and more. All of the available kriging methods use the same 
underlying principals for calculating an estimate; minimizing the error variance. 
The difference between the kriging types, is the transformation tha t is applied to 
the data before and after the estimation and the constraints imposed during the 
minimization. The readers are referred to the references listed earlier for additional 
information.

2 .3 .2  U n ifo rm  C o n d itio n in g

Kriging small blocks in relation to the data spacing can be problematic. However, 
we can estimate larger blocks, called panels, with kriging and get reliable estimates. 
Uniform conditioning is a technique that predicts the distribution of the SMU grades 
within each estimated panel [15]. In other words, given that we know the grade of

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.0

Proportion o f  the 
SM U  Distribution  
above C u to ff

2.0 2

<£ 1.02
ac3£
§ 0.0 J

3
D£

- 2.02

-3.02

-4.0 2
-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

Panel G aussian Transform

Figure 2.3: Conditional distribution of the smu grades within a panel given the panel 
estimate [17].

a large block, the panel that has been estimated, we can calculate the distribution 
of the SMUs that are in the panel.

Uniform conditioning uses the discrete Gaussian model to perform the change of 
support. Refer to Section 2.2.4 for the details of the discrete Gaussian model. Recall 
the change of support parameter r  that was used to upscale the sample distribution 
to the SMU sized blocks. Another change of support parameter, r', is required for 
the panels. The two change of support parameters can be used to upscale the sample 
distribution to the SMU or panel support volumes. In addition, they can be used 
to downscale the panel estimate to an SMU scale distribution.

Given tha t the panel grade is known, the distribution of SMUs within the panel 
can be calculated. The average of the SMUs is the panel grade, and the variance 
is based on the change of support coefficients. For a panel grade, y(V),  the SMUs 
within tha t panel will have a mean and variance of [15]:

E{y(v ) }  = ri - y ( V )

Var{y(v)}  = 1 -

Consider the panel estimate and SMU distribution in Figure 2.3. The recover­
able reserves are defined by the proportion and quantity of metal above the cutoff 
grade. These are easily calculated using the bivariate Gaussian assumption and 
th e  SMU anam orphosis function. T h e conditional exp ectation  line in Figure 2.3 is 
defined analytically from the bivariate Gaussian distribution between the Gaussian 
transforms of the SMU and panel grades. The fact that the slope is not 45 degrees 
is not an indication of conditional bias.

The proportion above the cutoff grade is [14, 15]:

P(zc) = P  [z(v) > zc\z(V)\
= P[y(v) > yc\y(V)}
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/
The quantity of metal can be calculated in one of two ways. The first is an integration 
of the conditional distribution above the cutoff grade [14]:

O O

Q(zc) =  J * v (y(v) )g(Y(v) \Y(V))d(y(v) ) (2.23)
Vc.

The second is by using the fitted hermite polynomials [15]:

=  e [z (v )Iz {v)>Zc\ Z ( V )

= E  |$ l)(T (n ))/V' (l,)>j/jF ( l / ) '
00 /  i \ n

=  £ « ■  7  H n(Y(V))
n —0 
00 00O O  O O  /  /  \  71

E E W  7  H n(Y(V))
„ _ n  n — fl \  ' /

(2.24)
n = 0  p = 0

where

Uq (yc) = 1 ~ G { y c) 

U°k (yc) = U*(yc) =
-1
y/k

u ; ( y c) = ^J^Hp(yc)Hn- i ( y c)g(yc) + I

The grade above cutoff is calculated using the estimated quantity of metal and 
proportion above cutoff:

« » - S 3
Note tha t this equation becomes unstable as the proportion of the block above cutoff 
decreases below 1%.

There are limitations to the uniform conditioning method. One is that it does not 
provide any spatial location for the SMUs contained in each panel. The high grade 
SMUs and the low grade SMUs could be anywhere. The second limitation is that 
two panels with the same estimated grade will have the same reserves irrespective 
of surrounding data.

2 .3 .3  C o n d itio n a l S im u la tio n

The local reserve estimation techniques presented above provide an estimate of the 
reserves. They do not provide a distribution of uncertainty. Conditional simulation 
allows us to generate multiple realizations for assessing global and local uncertainty 
in our model.

Simulation overcomes two limitations of kriging: (1) it corrects for the smoothing 
effect, and (2) it allows the joint uncertainty in the model to be assessed. Simulation
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reproduces the correct spatial variability by adding a random component to an esti­
mated value to get a simulated value and it uses the simulated values as conditioning 
points as the simulation progresses. By generating multiple realizations, the model 
uncertainty can be assessed at any scale from a single block to the entire deposit. 
In addition, the uncertainty for a mine plan can be calculated. For a given volume, 
such as a pit or production interval, the range of uncertainty is easy to assess.

The smoothing effect of kriging makes the variance of kriged estimates too small. 
The variance of a kriged estimate is [5]:

Var{y*  (u)} =  a 2 -  a%

where y* (u) is the kriged estimate at u, a 2 is the variance of the data and aE is 
the kriging variance. The variance of the estimates can be corrected by adding the 
missing variance to the simulated value:

2AS O )  =  y* (u) + R ( u)

Where ys  (u) is the simulated value at u and R  (u) is a random residual with a mean 
of 0.0 and a variance equal to the aE . The variance of the simulated values is now 
correct. The covariance between simulated values can be made correct by performing 
the simulation in a sequential fashion. The cells in the model are simulated in a 
random order, and the previously simulated cells are used as conditioning data when 
simulating subsequent cells in the model [5].

Sequential Gaussian simulation is a commonly used simulation algorithm, It 
is used to simulate continuous variables under a Gaussian paradigm. The steps 
required to build a simulated model are [4]:

1. transform the data to Gaussian units with a normal score transformation,

2. assign the data to the nearest grid node in the model,

3. determine a random path through all of the grid cells to be simulated,

4. construct the conditional distribution at a location using the nearby samples 
and previously simulated grid cells,

5. draw a simulated value from the conditional distribution,

6. add the simulated value to the pool of data,

7. go to the next node and repeat steps 4, 5, and 6 until all cells have been 
simulated,

8. back transform  the realization

9. go back to step 3 to generate another realization.

There are several other types of simulation: (1) turning bands, (2) LU decompo­
sition, (3) probability-fields, (4) sequential indicator simulation, (5) direct sequential 
simulation, and more. The readers are referred to the references listed earlier for 
additional information.
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Figure 2.4: Uncertainty in mine production for different time periods [3].

2 .3 .4  U p sc a lin g  L ocal R eserv es

Aside from local distributions of uncertainty, the move towards simulation from tra­
ditional estimation methods allows one other advantage. A realization of simulated 
values can be directly upscaled to any arbitrary volume and the change in resources/ 
reserves evaluated directly. No explicit change of support model is required, hence 
no distributional assumptions are imposed.

Upscaling in this instance generally involves taking the simulated grid and av­
eraging all relevant blocks within the volume of interest. For instance, if the panel 
volume represents a monthly production period, only those blocks within the pro­
duction area are averaged. As before, the panel volume need not be regular, poly­
gons may be considered, tha t may not be contiguous regions, representing multiple 
advancing faces in production. This averaging of multiple simulated grades yields 
the panel grade. Repeating this averaging process over multiple realizations yields 
a distribution of uncertainty in the panel grade; thus, the uncertainty of a panel 
grade can be directly obtained.

Local resources and reserves can be upscaled to any arbitrary volume, not just a 
larger panel. Monthly, quarterly, annual, or global reserves can be calculated from 
a small scale model. Upscaling multiple realizations allows the uncertainty in the 
larger production volumes to be calculated as well; see Figure 2.4. In practice, the 
biggest limitation to this approach is the computational effort to generate and store 
these multiple realizations.

2.4  T uned  E stim ation

HERCO analysis, Ilermitc Polynomial correction, is used to tune the kriging param­
eters so tha t the distribution of the estimated blocks matches the upscaled global 
distribution from the hermite polynomial change of support [6]. The first step is to 
choose an SMU block size and upscale the distribution using the Discrete Gaussian 
model. The second step is to perform a kriging of the SMU blocks with the data at 
hand. The results of the DGM and the kriging are then compared. If there are any 
discrepancies, the kriging parameters are modified until the kriging results match 
the results from the DGM. The usual modification made to the kriging parameters

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is to restrict the search and the number of samples used. This has become common 
practice and is referred to as Restrictive Kriging.

The advantage of a restrictive search is that the global reserves are correct. By 
restricting the search, the smoothing effect of kriging is mitigated and the distri­
bution of the estimates can be made to resemble the upscaled distribution. The 
disadvantage is that restrictive kriging introduces significant conditional bias. Ar­
eas that are estimated high will never be that high at the time of mining and areas 
tha t are estimated low will never be that low when they are mined. The aim is to 
get the global reserves correct.

Another tuning scheme was proposed to correct the smoothing effect of krig­
ing [1], The correction adjusts the variance of the kriging estimates to match the 
variance of the SMUs. For example; suppose that the SMUs have a variance of:

D 2 (v,A)

The smoothing effect of kriging results in the SMU estimates having a variance less 
than the true variance:

°zl  < D 2 (v ,A)

The variance of the estimates needs to be increased by the SMU estimation variance:

Tz*,cor =  +  <rlz; (2-25)

»  D 2 (v ,A)

where a^» rnr is the variance of the corrected SMU estimates, is the varianceZv ,COI Zv

of the kriged SMU estimates, and Cg is the kriging error variance for the SMU 
estimates. Correcting the estimates to a target dispersion variance is very similar 
to performing the HERCO analysis and restrictive kriging. It aims to get the global 
reserves correct.

In open pit mining, it is important to get the reserves correct at the early stages 
of mine development. During mining, all of the material contained within the pit 
will be mined and additional grade control samples will be available to classify the 
ore and waste. The conditional bias will not be significant and the recovered reserves 
will closely match the reserves estimated with the conditionally biased model. The 
same cannot be said of underground mines. Stopes are planned and mined essentially 
unchanged by additional information available in the future. It is important to get 
the local reserves correct for underground mines; in other words, the estimates must 
be conditionally unbiased [1].
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Chapter 3

Comparative Case Study of 
Reserve Estim ation Techniques

A full case study was prepared to demonstrate the complex, site-specific considera­
tions. The data set was provided by Placer Dome Technical Services. The particu­
lars of the mine will be kept confidential; however, the material in this Chapter is 
published with the permission of Placer Dome.

Four methods were used to calculate recoverable reserves for the case study: (1) 
change of support models, (2) ordinary kriging, (3) uniform conditioning, and (4) 
conditional simulation. A grade tonnage curve will be calculated from the results of 
each method. The different grade tonnage curves will be compared.

The SMU size for the study is lOxlOxlOm, and the panel size, for uniform con­
ditioning, is 60x60x20m. The following steps were done as part of the reserve esti­
mation:

• exploratory data analysis,

• spatial continuity analysis,

• direct estimation of the global resources,

• kriging for global resources,

• uniform conditioning for global resources,

• conditional simulation for global resources, and

• comparison of the results.

The results from each step are documented below and issues discussed.

3.1 D ata

The topography model of the mine was used to get a better understanding of the 
mining operation. The topography is shown in Figure 3.1. The composited drillhole 
data contained the x, y, and z locations of each composite along with the gold and 
silver grades. The drillhole traces are shown in Figure 3.2. Figure 3.3 shows the 
drillhole data with the mine topography. Figure 3.4 shows the samples for bench
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Figure 3.1: Topography of the existing mine.

\ .

Figure 3.2: Drillhole data set.
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Figure 3.3: Topography of the mine with the drillholes.

200. It is easy to see on the graph that the higher grade areas are located towards 
the middle of the deposit with the lower grades at the extremities. Figure 3.5 shows 
a vertical cross section of the deposit.

3.2 Exploratory D ata Analysis

The goal of the exploratory data analysis is to get representative statistics for the 
variables in the deposit. The important mineral for this study is gold.

The average gold grade is 0.44 grams/tonne (g/t) with a variance of 1.66. Fig­
ure 3.6 shows the gold histogram. The histogram on the left has an arithmetic axis, 
while the histogram on the right has a lognormal axis.

Samples are almost always collected in a spatially biased fashion. Declustering 
is used to determine statistics that are representative for the entire deposit from the 
biased samples. The sample spacing is relatively close near the center of the deposit. 
It is approximately 50m. Near the outside of the deposit the sample spacing increases 
to approximately 150m. A declustering cell size of 150m was chosen using the plots 
in Figure 3.7 and the average data spacing in the sparsely sampled areas. The 
declustering results are shown in Figure 3.8. As expected, the mean and variance 
of the gold grade decreased.

Sequential Gaussian simulation and the discrete Gaussian model for change of 
support require the data to be standard normal. This means the data must follow 
a normal distribution with a mean of zero and a variance of one. The gold grades
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Figure 3.4: Plan view of samples for bench 200 (Low grade samples are blue and high 
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Figure 3.5: Vertical cross-section looking west at 2000m Easting.
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Figure 3.6: Gold grade histograms.
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Figure 3.8: Declustered gold grade histogram.

were transformed to normal scores twice. The first time the declustering weights 
were not used. These normal score values will be used for calculating variograms. 
The declustering weights were used for the second transformation. These normal 
score values will be used for the conditional simulation.

3.3  V ariogram  A nalysis

The real space experimental variograms showed pure noise; changes to the lag spac­
ing, tolerance, or minimum number of pairs made little difference. Figure 3.9 shows 
the poor quality of the real space variogram maps. The spatial continuity is much 
easier to see in the normal score variogram maps (Figure 3.9). The major direc­
tion of continuity was chosen as -10° azimuth from north, the minor direction is 80° 
azimuth from north and the vertical variogram is straight down.

Since the calculated variograms for the original gold variable were pure nugget, 
some alternate measures of spatial continuity were evaluated. Specifically, correl- 
ograms, pairwise relative and the covariance were analyzed. The correlogram was 
the most stable measure and it was used for modeling the real space gold variogram 
(see Figure 3.10):

T  (h) — 0.25 + 1.12 • ExphmaX=85 (h) T 0.3 • S p h  fim a x = 44 0  (h)
h m in —6 0  /im m = 1 2 0
h v e r t= \ l  h v e r t= 250

The normal score variograms were much better behaved than the real space 
variograms. There was no need to consider a robust variogram measure. The
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Figure 3.9: Real space and normal score variogram maps. The real space variogram map 
is shown on the left and the normal score variogram map is shown on the right.

experimental normal score variogram is shown in Figure 3.10. The normal score 
gold variogram model is:

1  (h) 0.15 T 0.52 • E x p hm a x= 6 0  (h) T 0.3 • S p h hm ax= 1300  (h)
h m in —55 hmin=35Q
h vert= 90  h v e r t= 270

3.4  D irect E stim ation  o f  th e  G lobal R esources

The variance of blocks within the deposit was estimated using the modeled real space 
variogram. The gammabar value of the SMU sized blocks is 0.452, the estimated 
variance of the blocks within the deposit is 0.530, and the variance reduction factor 
for the change of support calculation is 0.540.

These values were used to estimate the block scale distribution through the three 
change of support models previously documented. The results of the affine change 
of support are shown in Figure 3.11, the results for the indirect lognormal change of 
support are shown in Figure 3.12, and the results for the discrete Gaussian model 
are shown in Figure 3.13. All of the figures have the original gold grade histogram 
on the left and the variance corrected histogram on the right. The affine corrected 
histogram shows the artificial minimum and maximum that are introduced as part 
of the correction. The distribution tends towards the mean to reduce its variability. 
The indirect lognormal correction and the discrete Gaussian model do not impose an 
artificial minimum and maximum compared to the affine correction. The histograms 
from the indirect lognormal correction and the discrete Gaussian model appear m ore 
realistic than the affine corrected histogram.
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Figure 3.10: Real space and normal score variogram models. The real space variogram 
model is shown on the left and the normal score variogram model is shown on the right.
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Figure 3.11: Affine corrected histogram.
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Gold Grade Variance Corrected Value

F igure 3.12: Indirect lognormal corrected histograms.
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Figure 3.13: Discrete Gaussian model corrected histograms.

3.5  K riging for G lobal R esources

Ordinary kriging was used to estimate the grade for the SMUs directly. This was not 
expected to give good results but was done for comparison purposes. Figure 3.14 
shows the kriged SMU gold grades. The kriged panel estimates are shown in Fig­
ure 3.15. The panel estimates will be used for the uniform conditioning.

Figure 3.14: Ordinary kriging of the SMU’s directly.
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F ig u re  3 .15: Ordinary kriging of the panel grades for uniform conditioning.

Figure 3.16: Back transformed simulation, block averaged to the SMU blocks.

3.6  U niform  C on d ition in g  for G lobal R esources

The panel estimates were used to calculate reserves with uniform conditioning. The 
reserves were calculated for each panel and the results upscaled to provide global 
reserves.

3 .7  C on d ition a l S im ulation  for G lobal R esou rces

Sequential Gaussian simulation was used to build conditional simulations of the gold 
grade. The first step was to generate 51 realizations of the gold grade at a fine scale, 
and then upscale the results to the SMU blocks. Simulating to a very small block 
and then block averaging up to the larger SMU sized blocks allows for the change of 
support to be accounted for directly. Figure 3.16 shows one realization of the block 
averaged gold grades.
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3.8  C om parison  o f  th e  R esu lts

Now we can calculate and compare the grade tonnage curves for the different meth­
ods. The grade tonnage curves for gold are shown in Figure 3.17. The solid black 
line shows the average grade tonnage curve for the simulation results, the dashed 
black line shows the 90% probability interval (P05-P95) from simulation and the 
other colored lines represent the other methods. A number of im portant observa­
tions can be made: (1) the simulation results match very closely with the uniform 
conditioning results, (2) the discrete Gaussian and indirect lognormal change of sup­
port models are very similar to the simulation results, and (3) the affine change of 
support and the ordinary kriging results are poor. The change of support models 
are dependent on the parameters that define the change in variance, and thus can 
change dramatically with a small change in the variogram. In other words, the 
change of support models could be made to match the simulated results even better 
with revised change of support parameters. Figure 3.18 is a close up of the grade 
tonnage curve.

For interest sake, the e-type from the simulation results (that is the local average 
over all realizations) were also considered and the corresponding grade tonnage curve 
calculated. The grade tonnage curve is shown in Figure 3.19. Note that the e-type 
grade tonnage curve is very similar to the kriging curve. It does not provide a good 
estimate of the recoverable resources. Rather than averaging the grades and then 
calculating the grade tonnage curve (as done here), one should calculate the grade 
tonnage curve associated to all realizations, and then take the average of the grade 
tonnage curves (as illustrated by the black line on the plots).

The case study presented in this chapter made several assumptions. Most no­
tably was a fixed SMU size. The SMU was arbitrarily chosen for this study. Since 
the SMU size has a significant impact on the reserve calculation, any resource study 
should carefully select the SMU size. Methodology for choosing an SMU size is 
presented in the next 2 Chapters.

1.00 .6.00

Conditional Simulation 

Uniform Condition 

Ordinary Kriging 

Oiscrete Gaussian Model 

Indirect Lognormal Model 

Affine Model

o.oo o.oot—i—i—i—]—i—i—: i | i i i i
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Figure 3.17: Gold grade tonnage curve
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F igure 3.18: Close up of the gold grade tonnage curve.
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Figure 3.19: Average simulation grade tonnage curve or average grade tonnage curve.
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Chapter 4

Optimal Selection of Selective  
M ining Unit Size

The calculation of mineral resources and ore reserves from a block model requires 
the choice of a block of selective mining unit (SMU) size. Each block is assigned 
a grade or a distribution of grades. The resources/reserves are calculated from 
these block values. Selecting an appropriate SMU size requires consideration of 
the mining equipment, bench height, blasthole sampling, grade control practice, 
and affect of dilution. The use of large mining equipment will preclude use of an 
SMU size tha t is smaller than the volume of material that can be extracted by the 
equipment. Dilution is another important consideration that will affect the tonnes 
and grade of ore. Conventional grade control practice traditionally involves using 
information from blasthole samples and on-site visual inspections to refine the ore- 
waste boundary. We do not attem pt to address the use of visual controls on grade 
control. Clearly, if there are visual controls in the pit they must be considered.

This chapter proposes a methodology to determine the optimal SMU size to 
match actual production. Actual production is simulated on a representative area 
by simulating the collection of blasthole data and the consequent grade control. 
Then, the geostatistical resource estimation procedure is implemented for a range 
of SMU block sizes and the SMU size that gives a reasonable match to the actual 
production is recommended. The optimal SMU size will yield an estimate of tonnes 
of ore and grade of ore tha t is close to the actual production. An example is shown 
to illustrate the methodology. Different types of dilution and the affect of grade 
control data sampling on the SMU size are also discussed. 1

4.1 In trod u ction

T h e conventional defin ition  of the selective m ining unit (SM U ) is the sm allest volum e  
of material on which ore waste classification is determined [19]. The reality is more 
complex. It is impractical and impossible to freely select an SMU of ore in the 
midst of waste just as it is impossible to freely reject an SMU of waste in the midst 
of ore. Nevertheless, even large bulk mining equipment may have the ability to 
mine within a couple of meters of a boundary if the conditions are favorable. The

1A version of this chapter has been accepted for publication [12].
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SMU size depends on a number of different factors, including the mining equipment 
size, the mining method to be used, the direction of mining, and the depositional 
environment of the orebody.

Our unconventional definition of the selective mining unit (SMU) is the block 
model size that would correctly predict the tonnes of ore and diluted head grade 
tha t the mill will receive with anticipated grade control practice. Mutual exclusion 
of ore and waste material means that correctly predicting the tonnes of ore entails 
correct prediction of the tonnes of waste. This size must somehow be related to 
the ability of the equipment to select material, but it is also based on the data 
available for classification (blastholes and/or dedicated grade control drilling), the 
procedures used to translate that data to mineable dig limits, and the efficiency 
with which the mining equipment excavates those dig limits. Numerous sources of 
dilution must also be accounted for including internal dilution due to grade variabil­
ity within the SMU, external dilution resulting from geological/geometric contacts, 
and operational dilution that accounts for production errors, pressures and schedule 
demands.

Conventional grade control practice uses information from blasthole samples and 
on-site visual inspections to refine the ore-waste boundary. We do not attem pt to 
address the use of visual controls on grade control. Clearly, if there are visual 
controls in the pit they must be considered. A common way of translating blasthole 
data to dig limits is the outline-and-average method where ore or waste regions 
are delineated by a polygon that implicitly accounts for the equipment. Kriging is 
sometimes used to improve on the border between ore and waste. Simulation and 
loss functions have gained limited use in further refining the boundaries between ore 
and waste. The available data is a clear limitation to the resolution with which we 
can pick limits. Dedicated grade control sampling or closer spaced smaller diameter 
blastholes provide some refinement, but a cost-benefit analysis must be performed.

In practice, the tonnes/grade of ore tha t the mill receives is the result of a classi­
fication procedure with many subjective factors. The mill certainly does not receive 
the values in a long- or medium-term block model. There is much more information 
at the time of mining and the blocks are never freely and perfectly selected in any 
case. It would be impractical with existing software and computational resources 
to create many realizations and simulate the classification procedure on the mul­
tiple high-resolution models. We must consider the reality of block modeling for 
the present time. Thus, we are forced to choose an SMU size for the reporting of 
resources/ reserves.

Block estimates may be considered deterministically as is done in the vast ma­
jority of kriged block models. The modern probabilistic paradigm is to calculate 
a probability of waste, probability of ore, and grade of ore for each SMU block by 
simulation. The probabilities are associated to proportions, for example, 8 out of 10 
blocks with an 80% probability of ore are considered as ore, therefore we add 80% 
of each block’s tonnage to the ore tonnes and 20% to the waste tonnes.

Estimates of what the mill will produce and the amount of waste are based on 
our chosen SMU size. We require a method for selecting an SMU size that yields 
the same tonnage and grade as conventional grade control practice. This chapter 
proposes a method tha t uses conditional simulation to generate multiple realizations 
of grades, based on which tonnes of ore and grade of ore can be calculated for a
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range of SMU sizes. Comparison against the results of conventional grade control 
practice gives the optimum SMU size. Some examples are shown to illustrate the 
methodology.

4.2  P ro p o sed  M eth o d o lo g y

The proposed approach for SMU size selection uses information from both the an­
ticipated grade control practice and realizations from conditional simulation of the 
long term resource model (or the kriged model if that is the chosen method). The 
idea is to compare the tonnage and grade obtained from grade control with the 
tonnage and grade obtained after processing the realizations at a series of different 
SMU sizes. The first step is to choose a reasonably large and representative pro­
duction area, A, that likely represents quarterly production. Multiple areas could 
be chosen and/or different areas could be chosen within different rock types.

The following procedure is undertaken for each representative area, A:

1. Simulate a high-resolution realization accounting for all geological controls, 
trends, and available data in the region. The resolution of the realization 
should be 1/3 to 1/10 of the anticipated blasthole spacing and the bench 
height.

2. Sample the realization with blasthole grades at the anticipated spacing. Dedi­
cated grade control drilling could be considered at this step if tha t is planned.

3. Simulate the grade control practice to arrive at ore/waste dig limits. The idea 
is to mimic the actual grade control that will be implemented in the mine. 
The alternatives include outline-and-average, blasthole kriging, and simulation 
combined with profit maximization or loss minimization. It is difficult to 
anticipate all of the operational considerations; however, it may be a good 
idea to err on the side of conservatism. For example, blasthole kriging is a 
good starting point for this exercise to be followed by the best simulation and 
profit maximization. The slight conservatism of the blasthole kriging will be 
offset by operational dilution.

The ore/waste dig lines can be further smoothed (some erosion/dilation al­
gorithm) to account for dilution considerations and the fact tha t they cannot 
be mined exactly. Then, the ore/waste dig lines are used with the reference 
high-resolution grades to calculate the expected tonnes of ore, tQ — all tonnes 
flagged as ore regardless of grade, and the grade of ore, z0 — the average grade 
of all material flagged as ore. The idea will be to determine the SMU size that 
matches these reserves.

4. Use the drillhole samples, which are available at a coarser spacing than the 
blasthole data, to generate multiple realizations of grades at a high resolution. 
These realizations will match the sparser exploration drilling and the geological 
controls in an approximate manner. It is important not to be too optimistic, 
for example, the geological boundaries cannot be frozen for the entire exercise.

5. Choose a range of possible SMU sizes and block average all the realizations to 
the SMU size by simply calculating a density-weighted average of the grades.
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F igure 4.1: Schematic illustration of graphs constructed for optimal SMU size selection: 
tonnes of ore versus SMU size (left), and grade of ore versus SMU size (right). Note that
in each graph the optimal SMU size is selected for the case where the cutoff grade is below
the mean grade.

Apply the cutoff grade to all realizations and for all locations, u  € A, and 
obtain the probability to be above the cutoff grade (P (Z (u) > zc)), probability 
to be below the cutoff grade (P (Z (u ) < zc)), and the average grade above the 
cutoff grade (zG(u)). Calculate the tonnes of ore, t0, and the grade of ore, z„.

6 . Plot the results of both the grade control and the simulation approach in a two 
graphs: (1) tonnes of ore versus SMU size, and (2) average grade of ore versus 
SMU size. In each graph, the conditional simulation results are plotted to 
yield a functional relationship, while the grade control values provide a single 
true value that plots as a horizontal line. The optimal SMU size is the size 
at which these two lines intersect. Figure 4.1 shows a schematic illustration 
of these graphs, showing two different functional relationships tha t depend on 
whether the cutoff grade is above or below the mean grade. The optimal SMU 
size is shown for the latter case.

Many of the considerations previously mentioned do not intervene directly in 
this procedure. Moreover, there is a risk that the results are too optimistic because 
the same geostatistical parameters are used for both the reference realization, grade 
control and the simulation for resource assessment. The procedure could be refined 
to account for more factors, and result in a slight increase in the observed SMU size.

4.3 Application

A synthetic example is used to illustrate the methodology. A reference data set 
is generated via unconditional simulation with a histogram and a variogram. The 
variogram is arbitrarily chosen with a maximum continuity direction at 35 degrees 
azimuth with the following model:

7(h) =  0.05 +  0.55Exp _  1 inn (h) +  0.40Sp/i _  (h)
Q'hmax 1100 (h) +  OAOSph

tihmax =  OO

ahmin = 900 Qfimin -  2000
O'vert = 10 Qvert -  10
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Figure 4.2: Reference model: histogram (top left), variogram (top right), map of reference 
data (bottom left), and the map of the reference ore-waste classification (bottom right).

The reference data are generated at a resolution of lm  x lm  x 5m that spans an 
area of 600m x 600m. The block height corresponds to an arbitrarily small 5m 
bench. Assuming a specific gravity of 2.7, this volume corresponds to a quarterly 
production volume of just under 5 million tonnes (at nominally 55 000 tonnes/day). 
A cutoff grade of 5.0% is applied to each location and a reference ore-waste map is 
obtained. Figure 4.2 shows the reference data histogram, variogram and maps.

C o n v en tio n a l G ra d e  C o n tro l. Blasthole data are sampled from this reference 
map at nominally 10m x 10m spacing. A small random component is added to the 
sampled data to mimic potential sampling errors in the field. These blasthole data 
are then used to perform estimation of the grades at a fine 2m x 2m x 5m grid using 
ordinary kriging (Figure 4.3). For the two maps, the cutoff grade is applied to show 
only those values strictly above the cutoff grade. An ore-waste contact outline is 
drawn corresponding to the trimmed map of estimates because it gives a less noisy 
approximation of the boundary between ore and waste.

This ore-waste outline is applied to the reference grade map to determine the 
mill’s production (Figure 4.4). For an assumed specific gravity of 2.7, there are 
2.426 million tonnes of ore at an average grade of 7.35%, and there are 2.434 million 
tonnes of waste. These become the reference or base values for t0 and zQ for checking 
against the following simulation approach.
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Estimated Grades with BH Data
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0. to o . 200. 300 . 400. 500. 600.

BH Data above cutoff Estimated Grades above cutoff
6000001

F ig u re  4.3: Maps of: (1) blasthole (BH) samples at nominally 10m x 10m spacing (top 
left), (2) estimated grades using ordinary kriging all BH data (top right), (3) only those BH 
samples above the cutoff grade of 5% (bottom left), and (4) only those estimated grades 
above the cutoff grade (bottom right). Outline based on the estimated grades map is shown 
in (3) and (4).

Reference Data with OW Outline
Grade w ithin P olygon

-D

Number ol Data 
number trimmed 

mean 
std dev 

coel of var 
maximum 

upper quartile 
median 

lower Quartile

179678 
160322 
7 346 
2 175 
296 

21.703 
0.570 
7 060 
5.770 
2 501

F ig u re  4 .4: Map of reference grade for ore (left) and histogram of grades within the ore 
polygon (right).
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Sim ulation-based Grade Control. Exploration drillholes are sampled from the 
reference map at approximately 50m x 50m spacing. These samples are used to 
construct a conditional simulation model for small 5m x 5m block sizes. The ten 
realizations generated are then block averaged to a range of possible SMU sizes: 
10x10, 15x15, 20x20, 25x25, 30x30, 40x40, and 50x50. Figure 4.5 shows an example 
of the block averaged results for one realization at the eight different SMU sizes.

For each block model, the cutoff grade is applied and the probability and grade of 
ore are calculated. Figure 4.6 shows the maps for the probability and average grade 
above cut off for SMU sizes 10x10, 20x20, 30x30 and 40x40. Using these maps, the 
tonnes and grade of ore are calculated and compared against the reference values 
using the ore-waste contacts (Figure 4.7). Based on the tonnes of ore, the optimal 
SMU size is approximately 20m x 20m; however, based on the grade of ore, the 
choice of SMU size should be 6m x 6m.

Figure 4.7 shows that for an approximate SMU size of 20m x 20m blocks, the 
tonnes of ore and waste would match the mill’s production. For this same SMU, 
the grade of ore would be 7.22%, while the mill would produce 7.35% (a percentage 
difference of 2%). Alternatively, if we tried to match the grade of ore, then the 
optimal SMU size is approximately 6m x 6m blocks, resulting in an estimated 2.37 
million tonnes of ore, instead of the reference production of 2.42 million tonnes of 
ore (a difference of 4%). For this example, the appropriate choice in SMU size will 
match the tonnes of ore, since the mismatch between the estimated and actual grade 
of ore differs by only 2%.

S en s itiv ity  A nalysis. To determine the sensitivity of the optimal SMU size to 
user-selected parameters, the cutoff grade and reference polygon were varied and 
ore/waste tonnages recalculated for this example.

The cutoff grade was varied from a low of 3% to a high of 7%, and the results of 
SMU size vs. tonnage/grade were used to calculate an optimal size for each cutoff 
(Figure 4.8). The optimal SMU size based on grade had inconsistent results that 
were all very small compared to the SMU size based on tonnage. The optimal SMU 
size appears to reach a maximum around a 5% cutoff grade. The mean grade for 
all the ore is 5.211% and the median is 4.991%. It appears the optimal SMU size is 
largest when the cutoff is near these statistics; however, other cases would have to 
be examined to confirming this relation.

To analyze sensitivity of the SMU selection to the polygon used for determining 
the reference values, initial polygons digitized by seven different people were used to 
obtain different reference values. An semi-automatic dig limit optimization program 
was also used to find a polygon [13]. Ore tonnages were used to determine the 
optimal SMU sizes because of the larger spread in the values. The different reference 
values are shown along with actual recovery at a cutoff grade of 5.0% in Figure 4.8. 
The resulting optimal SMU sizes range from below 5m to over 50m, suggesting that 
the results of this kind of study would be better used for comparison rather than 
obtaining absolute values. Also, the results using different cutoff grades must be 
done by the same person to give consistent results. Another alternative to obtain 
consistent results would be to use an optimization software such as the one used 
here.
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Simulated Real. 5; Size: 05 x 05 Simulated Real. 5; Size: 10 x 10

Simulated Real. 5; Size: 15 x 15 Simulated Real. 5; Size: 20 x 20

Simulated Real. 5; Size: 30 x 30Simulated Real. 5; Size: 25 x 25

Simulated Real. 5; Size: 40 x 40 Simulated Real. 5; Size: 50 x 50

F ig u re  4.5: One realization from conditional simulation at 5m x 5m blocks (top left). 
This realization is block averaged to seven different SMU sizes: 10x10, 15x15, 20x20, 25x25, 
30x30, 40x40, and 50x50.
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ProbfGrade above 5 % )1 0 x  10 Ave. Grade above 5 % 10 x 10

ProbfGrade above 5% )20x 20 Ave. Grade above 5%  20x20

ProbfGrade above 5% )30x 30 Ave. Grade above 5%  30x30

Prob(Grade above 5 %) 40 x 40 Ave. Grade above 5% 40x40

Figure 4.6: Probability (left) and grade (right) of ore maps for SMU sizes: 10x10, 20x20, 
30x30, and 40x40.
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F ig u re  4.7: Tonnes of ore (left) and grade of ore (right) versus SMU size. The reference 
values are plotted as solid, horizontal lines.
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F ig u re  4.8: Sensitivity of optimal SMU size to cutoff grade (left) and to ore waste polygon 
used to determine the reference tonnes of ore (right). For the sensitivity to cutoff grade, the 
solid line corresponds to the optimal SMU based on tonnes, while the dashed line corresponds 
to the optimal SMU based on grade. For the sensitivity to the polygon, the solid line shows 
the relation of ore tonnage to the SMU size, while the dashed lines represent the reference 
tonnes of ore as determined by different ore/waste limits. The thickest, longest dashed 
line corresponds to the polygon obtained from the semi-automatic dig limit optimization 
program.
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4.4  D iscu ssion

In certain instances, an analytical approach could also be taken to determine the 
appropriate SMU size. For example, if the distribution of tonnes is known to be 
normally distributed with mean fi and standard deviation a 2, then the relation 
between the recovered tonnes given a cutoff grade can be calculated as ([9], p. 480) 
(a similar type of function is also available for a lognormal case):

T(z) = T0 (4.1)

Historical production data provides input information regarding the cutoff grade, 
the recovered and total in situ tonnes, as well as the mean grade of the processed 
material. Rearranging Equation (4.1), the standard deviation of the ore tonnage is 
given by.

(4-2)
G -i ( l  -  »To )

Thus, in order to match tonnes of ore, the appropriate SMU size would have a 
dispersion variance equal to the square of Equation (4.2), that is D 2(v,A )  =  er2. 
We also know that

D 2(v , A) =  j(A ,A )  -  ~i{v,v) (4.3)

where
7 ( A , A ) ~ /  J  7 ( y - y ' W

A ( u )  / l ( u ' )

and
i i v -,v ) =  —  J  J  7 ( 2 / - y')dy'

u (u )  w (u ')

Given the variogram model and the size and geometry of the domain of interest, 
the calculation of i (A ,  A) can be obtained numerically. If the domain can be con­
sidered ergodic, then q(A, A) =  crjlata. The value of j ( v , v )  is given by rearranging 
Equation (4.3): _____  ______

l { v , v )  =  7 (A, A) -  D 2(v , A)

In practice, y(v, v ) is calculated numerically be discretizing the volume into point 
locations and the average variogram is calculated over these discretized points. This 
type of calculation requires knowing the volume over which the variogram must be 
averaged, which is unknown. For a simple rectangular block with a square base and 
known height, the sides of the square base can be determined by using the auxiliary 
functions and charts provided by Journel and Huijbregts ([9], p. 112, 129). Charts 
are given for the case of a simple, isotropic spherical and exponential variogram. 
For instance, given that the variogram is spherical with a range of 200m, the bench 
height is 25m, and j ( v , v )  =  0.3, then the ratio of a side to the range (1/a) is 
approximately 0.38 ([9], p. 129). The size of the SMU is calculated as 0.38*200 or 
76m x 76m.

Although charts and auxiliary functions can be used, many simplifying assump­
tions about the distributional shape, block geometry and even the spatial continuity 
are required to determine the SMU size analytically. The proposed methodology is
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more flexible in that simplifying assumptions are not required, and it can be applied 
to any deposit.

The results of applying the proposed methodology shows tha t the SMU size does 
not need to correspond directly with the smallest mineable volume chosen by the 
mining engineer. Different SMU block sizes account for the fact that dig limits are 
drawn for grade control so a portion of the field is not mined for ore. The assumption 
of perfect selection combined with dilution from larger blocks can yield results that 
match the short term mine practice of selecting only a portion of the field and using 
samples tha t are closer together.

The underlying simulation models are generated at a fine scale, consistent with 
the support of our drillhole samples. These models are always averaged up to larger 
scales for the purposes of ore reserve estimation. A big advantage of geostatistical 
simulation is that we can consider multiple SMU sizes (based on this exercise) to 
match the mills production.

It will not always be possible to match both the tonnes of ore and the grade of 
ore tha t would be produced by the mill. The graphs obtained from the example 
shows tha t the optimal SMU size depends on whether we are matching tonnes or 
grade. The tonnes of waste is also an issue, but this is inversely related to the 
tonnes of ore so consideration of tonnes of ore automatically accounts for the tonnes 
of waste.

Selection of the appropriate SMU is a compromise between getting the right 
estimates for tonnage of ore and getting the right grade for this material. This 
compromise depends on the magnitude of difference associated with selecting one 
SMU over the other, which amounts to determining (1) whether the discrepancy 
between the actual and estimated grade is too significant to accept even though the 
tonnage is correct, or (2) whether the discrepancy between the actual and estimated 
tonnage is too large to accept even though the grade of ore is correct.

It is possible to obtain a graph where the simulation results at different SMU 
sizes intersects the reference value at multiple sizes. Figure 4.9 shows an example 
of one such case. More studies are required to sort all of these details out. Our 
goal could be to match metal content. Another concern is tha t the simulation 
results may never intersect the reference value (Figure 4.10). This is related to 
the available data — there may be too few samples to obtain “good” simulations. 
The distribution of sampled drillhole data may be inconsistent with the distribution 
of more closely spaced blasthole grades. Considering multiple realizations and/or 
discarding realizations tha t are too inconsistent would make the results more stable.

Although ore/waste limits may be drawn by the mine geologist, some dilution 
of the delineated zone is expected due to site operations such as errors in survey 
staking, and sloughing of blasted material. These result in dilution due to mine 
operations. There are a number of ways that we could account for this type of 
dilution. The initial ore/waste limits identified in conventional grade control practice 
can be dilated and eroded to account for these forms of operational dilution. The 
tonnes and grade of ore can then be calculated using these modified ore/waste 
outlines. Comparison with the simulation results would then be checked using these 
revised estimates. The selection may also be improved by on-site visual refinements 
by the geologist or equipment operator. This is more difficult to account for in a 
simulation context.
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Figure 4.9: Example of multiple optimal SMU sizes from graphs of tonnes of ore (left) and 
grade of ore (right) versus SMU size. The reference values are plotted as solid, horizontal 
lines.
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Figure 4.10: Example of non-intersection of graph of tonnes of ore (left), and multiple 
intersection of grade of ore (right) versus SMU size. The reference values are plotted as 
solid, horizontal lines.
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External dilution due to sharp geological boundaries is another im portant con­
sideration. These contacts may distinguish between the mineralized host rock and 
barren rock; thus, poorly delineated ore/waste contacts can result in a significant 
amount of dilution. In these cases, more exploration drilling may be required to 
identify these regions. Simulation of two different populations is recommended to 
obtain more reliable reserve estimates and, consequently, better SMU size selection.

In addition to SMU size, sample quality and spacing impact recoverable reserves. 
As the sample spacing increases, or as the sample error goes up, there will be a larger 
proportion of blocks tha t are misclassified. These misclassified blocks are ore blocks 
mined as waste and waste blocks mined as ore. An exercise is presented in the 
following Chapter to quantify the effect that sample spacing and error have on the 
recovered reserves. The effect can be included into the reserve estimation process 
by adjusting the SMU size accordingly.
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Chapter 5

Information Effect

Ore and waste material are classified with incomplete and imperfect information. 
The blasthole or grade control drilling is spaced too far apart for error free estimates 
of grade. This leads to some ore being classified as waste and some waste being 
classified as ore. This incomplete knowledge and the resulting misclassification is 
called the information effect [17].

The information effect influences the recoverable reserves at the time of mining. 
It should also be accounted for in the early stages of reserve estimation. This chapter 
presents a methodology for calculating the information effect and the impact that 
it has on the estimated reserves. The results from the proposed methodology are 
compared to a theoretical result.

This chapter proposes a methodology for calculating the information effect and 
accounting for it in the subsequent reserve calculation. This involves generating a 
reference model, outlining the methodology, performing the calculations and com­
paring the results.

5.1 M eth o d o lo g y

There are two methods tha t can be used for calculating the information effect:
(1) using an assumption about the information effect and incorporating it into a 
change of support model, or (2) simulating the expected grade control sampling and 
calculating the effect on the reserves directly. The first method accounts for the 
information effect by smoothing the block scale distribution. The variance of the 
block distribution is reduced to account for the information effect. For a low cutoff, 
the number of tonnes recovered increases at a diluted ore grade. At a high cutoff, 
the number of tonnes will decrease with a lower ore grade. The second method uses 
a reference model and simulates sampling classification and the affect on reserves.

The theoretical approach requires an assumption for the impact that the infor­
mation effect has on the recovered ore. The larger the impact, the smoother the 
block scale distribution becomes. For example: say the variance of blocks v is es­
timated to be 20.0 using a gammabar value. Reserves could be calculated using 
the calculated block variance, but that assumes that the selection of the blocks v is 
perfect, which is never the case. To account for the misclassified blocks, the vari­
ance can be reduced and the reserves calculated with the reduced variance [2]. It 
is unclear how to reduce the block variance. It is usually done by using experience
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at similar deposits. The simulation approach can be used to calculate the variance 
reduction that should be used for a specific sampling regime.

The simulation approach aims at quantifying the information effect by simulat­
ing the grade control drilling and material classification. There are four steps in 
simulating the grade control and mining: (1) simulate the grade control drilling by 
extracting samples from the reference model, (2) use the extracted samples to esti­
mate the gold grade for the mining blocks, (3) classify the grade control model using 
the kriged estimates, and (4) calculated the profit for the area using the reference 
model and classification model. No explicit assumptions are made for dilution. We 
assume tha t each block can be selected freely from the blocks around it.

A mining block size of 5m was used for this example. The reference model will be 
upscaled to provide an ideal profit that is only attainable with perfect information 
and selection. The results of the distribution upscaling and information effect will 
be compared to the ideal profit.

Profit will be used to compare the results. Grade, tonnage, or quantity of metal 
could have been used, but profit summarizes all of these variables with a single num­
ber. The profit calculation is straightforward: the profit for each block is calculated 
using the reference model for the block grades and the classification model to decide 
if it is ore or waste. The profit for each block is calculated as:

rr m f i t  l i . l  =  /  ^  ' P  ' V e C  “  C°  “  C* ’ ^  ^  ^
|  cw, otherwise

where z* (u) is the estimated grade at location u, zv (u) is the actual grade from 
the upscaled reference model, zc is the cutoff grade, p is the gold price, rec is the 
processing recovery, c0 is the cost of mining ore, ct is the cost of processing ore, and 
cw is the cost of mining waste. The total profit is the sum of the profit for each 
block in the model. The following parameters were used for the profit calculation:

ct = 12 %

c0 =  2 %

CW — 1 ^/t

P =  18 ^/g

rec ~  80%

The cutoff grade is a function of the above economic parameters. The cutoff grade 
was calculated using the following formula:

Ct  “ I "  {C o C-v j )
z c — p • r 

= 0 .90%

The calculated cutoff grade is within an acceptable range for open pit gold mines.
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F igure 5.1: Reference gold distribution.

5.2 R eferen ce D istr ib u tio n  and M od el

A reference gold grade model was constructed using unconditional simulation and 
a reference gold distribution. The reference model is shown in Figure 5.1. The 
following variogram was used to construct an unconditional model using simulation:

7  (h) = 0.1 +  0.9 • S p h ahmax=A0 (h)
a h m in —40 
a vert=  10

Back transforming the unconditional simulation provided the 2-D reference gold 
model; see Figure 5.2. The reference model is 200 blocks x 200 blocks and each 
block is lm  x lm  x 5m. The reference model will be used for simulating grade 
control sampling, classification and calculating the actual recovered ore.

The ideal profit was calculated by upscaling the reference model to the 5m x 
5m mining block. The ideal profit will never be attained during mining. It was 
only used as a reference for comparing results. The maximum profit attainable is 
16 million dollars.

5.3 T h eoretica l R esu lts

The profit for SMU blocks of different sizes was calculated using the economic pa­
rameters and the upscaled block distribution from the discrete Gaussian model. To 
upscale the reference distribution to larger blocks, the block scale variance is needed. 
The block variance is calculated using gammabar values for the different block sizes. 
Recall the dispersion variance equation:

D 2 (V,A) = D 2 ( ; A ) - D 2 (;V)
= a2 — 7  {v, v)
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F igu re  5.2: Reference 2-D gold model.

Figure 5.3 shows the block variance for the different SMU sized blocks. The variance 
of the blocks decreases as the block size increases; this was expected. The reference 
distribution was upscaled to the larger block supports using the DGM.

As the variance of the SMU decreases the distribution becomes smoother. This 
is analogous to introducing dilution to the recovered ore. Dilution decreases the 
recovered grade and will often reduce the profit seen from the model area. The profit 
for the different SMUs is shown in Figure 5.4. As expected, the profit decreases as 
the SMU size increases.

For a 5x5m SMU, the profit from the discrete Gaussian model matches the ideal 
profit exactly. It is unrealistic to expect that the ideal profit is achievable. The 
imperfect information used to classify material at the time of mining will result in 
a lower profit. A larger effective SMU size is needed for estimating the recoverable 
reserves with the DGM. The simulation study presented next can be used to choose 
the larger effective SMU for reserve estimation.

5.4 S im u lation  R esu lts

The ore waste classification improves as the amount of grade control sampling in­
creases. Sparse grade control drilling results in more misclassified material. Simu­
lated samples were taken at a drillhole spacing starting at lm  x lm  and increasing 
up to 35m x 35m. Kriging was done for each case to get a classification map and 
then a profit was calculated for each sample spacing case.

Consider the case where the grade control samples are 12m apart. The simulated 
samples are shown in Figure 5.5. The samples were extracted on a regular grid from
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Figure 5.5: Simulated grade control samples.

0.06

the reference model and then used to estimate the grade of the SMU blocks. An 
ore/waste indicator was calculated from the kriged grade control model. Where 
the estimate was above the cutoff of 0.9, the material was considered ore, and 
where the grade was less than the cutoff the material was considered waste. The 
ore/waste map is shown in Figure 5.6. The profit was calculated using the ore/waste 
classification and the reference model. With a sample spacing of 12m, the profit was 
15.6 million dollars. This is 97.5% of the ideal profit. These steps were repeated 
for the different sample spacing scenario’s considered. Part of that 2.5% would be 
required for mineability.

Figure 5.7 shows the profit versus sample spacing. When the sample spacing is 
lm  x lm , the classification model from kriging matches the ideal classification model 
exactly because every value is sampled. As the sample spacing increases the profit 
realized decreases. If the proposed grade control sampling is known, the percent 
decrease from the ideal profit is known. The percentage reduction can be used to 
determine the effective SMU size tha t can be used for reserve estimation.

5.5 C om parison

Both the DGM and simulation based approaches for quantifying the information 
effect produced the predicted results. For the theoretical case, as the block variance 
decreases, the block scale distribution becomes smoother, or less selective, and the 
profit realized decreases. And for the simulation case, as the sample spacing increases 
the quality of the classification decreases and the resulting profit decreases as well.
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Perfect ClassificationImperfect Classification

Figure 5.6: Comparison of imperfect and perfect ore/waste classification. The imperfect 
classification is on the left and the perfect classification is on the right.
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Figure 5.7: Profit from the simulation approach versus sample spacing.
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F ig u re  5.8: Choosing an SMU size.

The simulated sampling, grade control, and mining results can be combined with 
the theoretical change of support results to choose an SMU size that can be used 
for reserve estimation. Choosing the reserve SMU size in this manner allows for 
the information effect to be incorporated into reserves calculated from a change of 
support model or from a simulated model.

Recall the profit versus sample spacing plot in Figure 5.7 and the profit versus 
SMU size in Figure 5.4. Say that the mine is planning to drill grade control samples 
on a 15x15m spacing and the mining equipment is capable of mining 5x5m blocks. 
According to the results of the study, the profit using a 15x15m grade control sam­
pling program will be just under 97% of the total attainable profit. To accurately 
estimate the mineable reserves, while accounting for the information effect, an SMU 
size tha t will estimate the same profit as the grade control study should be used. 
The SMU size gives the same estimated profit is 21m. Figure 5.8 shows how the 
SMU size was chosen for this example. Reserves estimated with an SMU size of 21m 
will account for the information effect.
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Chapter 6

Conclusions and Future Work

Recoverable reserves are the backbone of any mining project. Mining companies 
will invest millions of dollars to develop a mine using an estimate of the recoverable 
reserves. Over or under estimating the reserves can result in a significant loss to the 
mining company. There are different methods for calculating recoverable reserves 
and several im portant considerations that must be taken into account. The goal of 
any recoverable reserve estimate is to predict the tonnes and grade of the material 
that will be mined as ore once mining commences. The estimate must account for 
the mining equipment, the imperfect information that will be available at the time 
of mining, dilution and other operational considerations.

Selective mining units (SMUs) are used for calculating reserves. The notion of a 
selective mining unit is confusing. Many people associate an SMU with the mining 
equipment. This is partially correct; however, for reserve estimation, the SMU does 
not coincide with the mining equipment selectivity, it has to account for the mining 
equipment, the imperfect information at the time of mining and dilution. The SMU 
size may change from initial mine exploration and planning to the mine development 
and mining stages.

Mining equipment cannot perfectly select ore and waste. Inevitably, some ore 
will be mined as waste and some waste will be mined as ore. The size of the equip­
ment and the nature of the deposit contribute to dilution. Assumptions regarding 
selectivity and dilution are made during reserve estimation. These assumptions 
come from previous experience on similar deposits. Dilution can be accounted for 
by adjusting the SMU size. Increasing the SMU size for calculating reserves incor­
porates dilution into the reserve estimate. Chapter 4 presented a methodology for 
selecting the SMU size to account for mining dilution.

The classification of ore and waste for mining will always be done with limited 
information. The information effect has a similar effect on the reserves as dilution; 
ore lost as waste and waste included as ore. The spacing of the grade control 
or blasthole samples relates to the information effect. Dense drilling provides more 
information about the deposit and improved selection, while widely spaced sampling 
leads to a large information effect, tha t is, worse selection. The information effect 
can be included in a reserve estimate by increasing the size of the SMU. As the 
SMU size increases, it implies an increasing information effect, or that an increasing 
number of blocks are being misclassified. Chapter 5 presented a methodology for 
selecting the SMU size to account for mining dilution.
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The SMU size should account for the information effect and dilution simulta­
neously. Although the methods were presented in different chapters, they could be 
applied at the same time so tha t one SMU size for reserve calculation can be deter­
mined. Reserves calculated with this SMU should provide an accurate estimate of 
the recovered reserves.

Data based methods use the sample data and a change of support model to 
estimate the upscaled SMU distribution. Recoverable reserves are then calculated 
using the upscaled histogram. They provide no spatial location of the high and low 
grade areas. Therefore, they cannot be used for mine planning or pit optimization. 
It has been shown that global reserve estimation methods provide accurate estimates 
of the recoverable reserves. For this reason, they are typically used to tune the local 
reserve estimates.

The affine change of support model makes an unreasonable assumption that 
the histogram will not change shape as the support volume increases. For this 
reason, the affine model is not recommended. The indirect lognormal model assumes 
that the point scale distribution and the block scale distribution are lognormal. 
The shape of the histogram does change as the support volume increases for other 
distributions. The indirect lognormal model will produce acceptable results when 
the data are approximately lognormal. The discrete Gaussian model works on the 
normal score transform of the data and a fitted polynomial to perform the change of 
support. The discrete Gaussian model can be fit to almost any input distribution, 
but it makes the assumption that the distribution tends to Gaussian as the block 
size increases.

Local reserves are calculated with estimation or simulation. These include build­
ing a block model and assigning a grade to each block in the model. Estimation 
methods provide a single grade estimate at each location, while simulation can pro­
vide the uncertainty at a particular location.

Simple and ordinary kriging are common methods for estimating local reserves. 
Ordinary kriging does not rely on a global mean. The estimates from simple and 
ordinary kriging are smooth. They do not accurately represent the variability of the 
deposit and do not account for the future information that will become available. 
In general, they do not provide good estimates of the recoverable reserves.

Although kriging does not accurately predict the reserves, a block model is 
needed for mine planning and pit optimization. Reserve tuning and estimate correc­
tion methods have been developed to correct kriged estimates so they match global 
reserves. The kriging parameters could be adjusted to make the kriging reserves 
match the reserves calculated from the discrete Gaussian model. A correction has 
been proposed for simple kriging that corrects the smoothing effect. It aims to in­
crease the variability of the kriging estimates so tha t they match the SMU variance. 
This has the effect of making the distribution of estimates the same as the distribu­
tion of the SMUs from a change of support model. Both of these corrections aim at 
forcing the reserves from a local estimate to accurately predict the global reserves.

Kriging can be used to estimate blocks larger than the SMU with confidence. 
The smoothing effect of kriging can be mitigated by estimating blocks tha t are large 
in relation to the data spacing. Ordinary kriging of larger panels combined with 
uniform conditioning produced good results. Uniform conditioning estimates the 
distribution of the smaller SMU blocks within the larger panels using the discrete
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Gaussian model for the change of support. The panel estimates are more robust 
than the smaller SMU estimates and uniform conditioning correctly estimated the 
SMU distribution within each panel. A drawback of uniform conditioning is tha t it 
does not provide a spatial location of the SMU sized blocks. This makes it difficult 
to do a detailed mine plan or pit optimization compared to a block model at the 
SMU scale.

Simulation methods are useful for constructing local reserve models for the pur­
pose of uncertainty assessment. The benefit of simulation is the ability to assess 
local uncertainty. The local uncertainty could be for a single block, a month of a 
mine plan, a year of production, or for the life of the mine. Simulation is the only 
practical way to assess the uncertainty for an arbitrary production period. The 
downside of simulation is that it takes more time to generate and post process the 
realizations compared to the histogram based methods or uniform conditioning.

Averaging, or the expected value, is useful for presenting a summary of a simu­
lation study. The expected value must be taken after any non-linear transformation 
or transfer functions. For recoverable reserves, that means the expected value of the 
realizations should not be calculated before the grade tonnage curve, the expected 
value should be taken from the multiple grade tonnage curves calculated from the 
multiple realizations.

Sum m ary o f  C ontribu tions

This thesis has reviewed a variety of techniques for recoverable reserve estimation. 
Perhaps the most important contribution is this comprehensive review in light of 
recent developments in geostatistical simulation. Aspects of these would form the 
basis for establishing best practice standards for reserves assessment. More specifi­
cally, the following contributions should be considered:

• SM U  size calibration: Selecting an appropriate SMU size requires con­
sideration of the mining equipment, bench height, blasthole sampling, grade 
control practice, and affect of dilution. Chapter 4 presented a methodology 
to determine the optimal SMU size to match actual production. Actual pro­
duction is simulated on a representative area by simulating the collection of 
blasthole data and the consequent grade control. Then, the geostatistical re­
source estimation procedure was implemented for a range of SMU block sizes 
and the SMU size that gives a reasonable match to the actual production is 
recommended. The optimal SMU size will yield an estimate of tonnes of ore 
and grade of ore tha t is close to the actual production.

• Inform ation effect: Ore and waste are mined with incomplete information. 
As the sample spacing increases, there will be a larger proportion of blocks 
tha t are misclassified. Chapter 5 presented a methodology for determining 
an effective SMU size tha t accounts for the information effect. Grade control 
sampling, ore/waste classification, and profit were simulated from a reference 
model for a range of sample spacing. The profit from the simulation exer­
cise was then compared to the profit from a theoretical change of support 
model using a range of SMU sizes. An effective SMU size can be chosen so
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tha t estimated reserves match the reserves calculated taking into account the 
information effect.

Notwithstanding these contributions, there are many areas for future research.

F uture W ork

Reserve estimation requires an SMU. Choosing the SMU size is a difficult task. Even 
though some methodologies were developed in this thesis, more work is needed to 
understand the mining process and how to account for it in the reserve estimation. 
An area for future work is to build a mine simulation program tha t will simulate 
the shovel mining, loading the trucks, stockpiling and feeding to the plant. The 
simulator could be used to assess the impact of a grade control sampling program, 
the effect of different sized equipment, and other significant variables.

More tools are needed for the assessment of uncertainty. Many advancements 
have been made over the past few years for building complex multivariate simulated 
models, but little progress has been made for post processing and using the results 
to their full potential. A simulated model could be used to assess the uncertainty 
in the first 5 years of a mine plan. If the uncertainty is too large, the areas of 
high uncertainty could be targeted for infill drilling to reduce the uncertainty to an 
acceptable level.

Significant effort is required to build simulated realizations to assess uncertainty. 
Carrying the uncertainty through all stages of mine planning would be a benefit to 
mining companies. There are currently no mine planning tools tha t can process 
multiple realizations at one time. A true optimized pit needs to account for all 
possible grade realizations, not just a single realization.
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