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Abstract

Patients with renal anemia are usually treated with recombinant human erythropoi-

etin (EPO) because of insufficient renal EPO secretion. Clinically, this treatment

process is labor intensive. It requires trained personnel to assess monthly Hgb levels,

consider intra-patient variability and make adjustments every 2 or 4 weeks based on

their experience. The purpose of this paper is to develop decision supporting tools

to help medical personnel design optimal treatment plans. The establishment of a

good hemoglobin (Hgb) response model is a necessary prerequisite for dose optimiza-

tion design. First we apply physical-informed neural networks (PINN) to build the

Hgb response model under EPO treatment. Neural network training is guided by the

physiological model to avoid overfitting problems. During the training process, the

parameters of the physiological model can be estimated simultaneously. To handle

differential equations with impulse inputs and time delays, we propose approximate

analytical expressions for the pharmacokinetic (PK) model and weighted formulations

for the pharmacology (PD) model, respectively. The improved PK/PD model was

incorporated into PINN for training. Tests on simulated data and clinical data show

that the proposed method has better performance than the simple data-driven mod-

eling method and the traditional physiological modeling based on the least squares

method. But the original PINN does not allow control input, nor can it receive

changing initial states, which indicates the original neural network architecture is not

suited for the prediction model. In this context, we apply the new physics-informed

neural networks for control (PINNC) which is enhanced with network input interfaces

for control actions and initial states. This new structure enables the model predic-
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tive control (MPC) design for renal anemia treatment. The generated optimal EPO

dosage value can be considered as a decision supporting information.
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Chapter 1

Introduction

1.1 Motivation

Renal anemia is a kind of disease caused by deficiency of erythropoietin (EPO) secre-

tion by the kidneys due to impaired renal function and some toxic substances in the

plasma of uremic patients interfering with the production and metabolism of red blood

cells (RBC).[1] The primary function of RBC is to transport oxygen from the lungs to

other tissues as well as to transport carbon dioxide back to lungs. Oxygen deficiency

will stimulate kidneys to produce endogenous EPO. It is the major regulating agent

of erythropoiesis because it can stimulate the proliferation of RBC production. For

chronic kidney disease patients, endogenous EPO production is insufficient because

of renal inadequacy. The reduced endogenous EPO will cause an insufficient number

of RBC and finally cause anemia. Clinical manifestations include palpitations, dizzi-

ness, drowsiness, etc.[1] Renal anemia is a common complication of chronic kidney

disease and a risk factor for cardiovascular complications. Although hemodialysis can

improve patients’ clinical symptoms, it cannot cure anemia of patients.

The efficacy of exogenetic EPO in the treatment of renal anemia has been well doc-

umented.[2] EPO is a glycoprotein with 165 amino acids. During fetal development,

EPO is mainly produced in the liver. After birth, 80% of EPO production occurs in

the kidneys. In addition, many organs such as the heart, brain, pancreas and retina

also produce and locally release small amounts of EPO. As a cytokine and growth

1



factor, it can affect many organs. When oxygen delivery to specific cells within the

kidney is reduced, secretion of EPO increases while circulating in the plasma and stim-

ulating bone marrow progenitor cells, thereby increasing erythrocyte production.[3]

If the increase in erythrocyte numbers relieves the hypoxic signal, EPO expression

is downregulated. Despite its clinical effectiveness, there are potential drug-induced

risks in patients treated with EPO. Because in practice, clinicians usually adjust the

frequency and dose of EPO based on current hemoglobin (Hgb) measurements and

previous dosing rules. It requires rich clinical experience for doctors. While a low

Hgb level leads to anemia, too high Hgb levels can increase the risk of Hgb variation

patterns and even mortality for the patient.[4] Therefore, it is important to develop

decision support tools that can help the medical staff determine the appropriate dose

and frequency of EPO to maintain the target Hgb level and reduce the cost of treat-

ment.

1.2 Methods Background

Model identification is a traditional concept widely used in science and engineering.

The early model establishment is based on the physical principle of process knowl-

edge and domain expertise like Newton’s law and Maxwell’s equations. The physical

principle is represented as mathematical formulations such as algebraic equations,

ordinary differential equations and partial differential equations. This physics-driven

model is a kind of white box model, through which we can understand every physi-

cal quantity of the system. However, many complex systems contain elusive physical

laws and they cannot be described by quantitative analysis or even characterized by a

suitable choice of variables, which leads to plant-model mismatch. Additional factors

including multi-scale modelling, high dimensionality, discreteness, time delay, and un-

certainties also cause difficulties and computational bottlenecks for online control.[5]

Therefore, because of the plant-model mismatch and low computational efficiency,

even when we know the physical models of process systems, it may be hard to apply
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the models in online controller design.

With the increase of computing power, the data-driven model becomes popular

over the years. Based on learning from training data, appropriate data-driven models

like regression, genetic algorithms and artificial neural networks can approximate

the hidden relation between inputs and outputs efficiently. In this process, explicit

knowledge of the system’s physical behavior is disregarded and it is a black-box model

lacking interpretability and extrapolation. Besides, the dataset used for the training

model is often difficult to collect in engineering. As a result, the trained data-driven

model is not accurate and universal for engineering applications.

Recently, the gray box model combining the physics-driven model and data-driven

model together attracts researchers’ attention.[6] Physical principles like constraints,[7]

expert knowledge[8] and model structure[9] are incorporated in data-driven model.

This hybrid modeling method improves the interpretability and predictive power of

neural networks. Meanwhile, this modified modeling approach shows the potential to

be applied in model-based controller design due to its high computational efficiency.

The model-based automatic controller has been adopted in the biomedical field.

For example, model predictive controllers have been used successfully in the control of

blood glucose in diabetes[10] where patients are simulated by a system of differential

equations and the prediction model is described as an autoregressive–moving-average

(ARMA) model. The model predictive controller will assess the predicted states

and produce a series of optimal control inputs in accordance with control goals over

a finite prediction horizon. The first insulin dosage input will be adopted in the

system. The preceding processes are then repeated when MPC moves on to the next

cycle. This design philosophy can also be applied to renal anemia treatment. But

in practice, medical records data contain noise, bias and may be inadequate, which

makes data-driven methods like artificial neural networks have underperformed.

Equation 1.1 represents the feedforward function of a basic single hidden layer

neural network.[11] W1, W2 are weighting matrixes and b1, b2 are bias vectors respec-
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tively. Function σ(·) means activation functions like Sigmoid function and Rectified

Linear Unit (ReLU) function.

y = σ(xW1 + b1)W2 + b2 (1.1)

The network parameter estimation is according to the cost function shown in Equation

1.2

θ∗ = argmin
θ

J(θ;Lossdata) (1.2)

where θ = {W1,W2, b1, b2} is the set of network parameters, Lossdata indicates the

residual between training data and prediction data. This optimization is based on

gradient descent and backpropagation. The i th iteration of parameter update is

described as Equation 1.3

θi+1 = θi − ηi∇θJ(θ
i;Lossdata) (1.3)

where η is the learning step size. The parameter estimation results mainly depend

on the Lossdata.

To improve the performance of neural networks, we can take advantage of the

underlying known physics information during the training process. Equations 1.4-1.6

show a generic differential equation group

N(t, x;u(t, x; θ)) = 0, t ∈ [0, T ], x ∈ D (1.4)

I(t0, x;u(t0, x; θ)) = 0, x ∈ D (1.5)

B(t, x;u(t, x; θ)) = 0, t ∈ [0, T ], x ∈ ∂D (1.6)

where u(t, x; θ) is the solution that we need, θ is the set of parameters in solution

function, t and x are time and position vectors, N(·) implies a general differential

operator that may include derivatives, linear and nonlinear terms. I(·) and B(·)

indicate the initial and boundary conditions respectively. To calculate the parameters
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θ of the solution u, we can consider the residual of this differential equation group as

following

rN(θ) =

∫︂
[0,T ]×D

(N(t, x; θ))2dt dx (1.7)

rI(θ) =

∫︂
D

(I(t0, x; θ))
2dx (1.8)

rB(θ) =

∫︂
[0,T ]×∂D

(B(t, x; θ))2dt dx (1.9)

The solution parameters can be obtained based on this optimization problem

θ∗ = argmin
θ

rN(θ) (1.10)

s.t. rI(θ) = 0, rB(θ) = 0 (1.11)

The core concept of physics-informed machine learning is to incorporate the resid-

ual of physical model Lossmodel into the cost function 1.12 of neural network

θ∗ = argmin
θ

J(θ;Lossdata, Lossmodel)

= argmin
θ

J(θ;Lossdata, rN(θ) + λ1rI(θ) + λ2rB(θ)) (1.12)

where λ1 and λ2 are weighting parameters. Time derivatives and spatial derivatives in

Lossmodel can be calculated by automatic differentiation. Then, based on the gradient

descent algorithm, the network parameters are updated through Equation 1.13 until

the end of training.

θi+1 = θi − ηi∇θJ(θ
i;Lossdata, Lossmodel) (1.13)

Figure 1.1 is a simple example[12]. We have a dataset generated by a bifurcation

function 1.14.

y2 = x (1.14)

If the training data are axially symmetric like the Figure 1.1a, the pure data-driven

neural network with loss function 1.15 will give us an result like the red line in the
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Image 1.1b.

Lossdata =
1

n

n∑︂
i=1

(yi − ynet(xi))
2 (1.15)

With an improved learning setup, we can incorporate the physical model 1.14 into

the loss function as Equation 1.16. In this way, we can represent one of the modes of

the solution in the plot 1.1c. This simplified example highlights the key capabilities

of physics-informed learning approaches. In this thesis, we will embed the established

physiological dynamics model with neural networks and implement this combined

model in model predictive controller design for renal anemia treatment by EPO.

Lossmodel =
1

n

n∑︂
i=1

(ynet(xi)
2 − xi)

2 (1.16)

(a) Training dataset for pure data-driven
neural network

(b) Result of pure data-driven neural net-
work

(c) Result of improved network with
physics information

Figure 1.1: Pure data-driven neural network and improved network with physics
information
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1.3 Thesis Outline and Contributions

The rest of the thesis is organized as follows. Chapter 2 begins with the physiological

erythropoiesis modeling used in this work. Then we introduce the basic principle

of PINN modeling and propose approximate model equations to the physiological

model where impulse input sequence and unknown time delay parameter term exist.

After modification of the original physiological model, the PINN method is employed

for this problem followed by a test study through a simulation example. Using the

proposed approach, we demonstrated the superior performance of the proposed mod-

eling method over pure data-driven autoregressive with extra input (ARX) modeling

method and traditional physiological modeling with the least squares method through

clinical data. Chapter 3 focuses on the PINNC. We introduce the new network archi-

tecture and principle. Self-loop predictions based on PINNC for Van der Pol oscillator

system and Hgb response are shown. Chapter 4 is mainly about the classical MPC

and zone-MPC results on these two dynamic systems. Finally, in chapter 5, we present

future work.

The main contributions of the thesis include:

1) Proposed a method to estimate the parameters of the physiological model using

PINN technique

2) Developed a PINNC model structure which combines the physiological modeling

and neural network modeling technique, which forms a basis for model predictive

control.

3) Proposed a model predictive control framework for optimal anemia treatment

through EPO dosage optimization, based on the PINNC model.
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Chapter 2

System Identification for
Hemoglobin Response Models

2.1 Introduction

Model-based automatic controller design methods have become a popular research

area in the biomedical field. A good model for the Hgb-EPO relationship is a nec-

essary prerequisite for feedback controller design. Existing methods of erythropoiesis

modeling can be divided into two main categories. One is physiologically driven

modeling, which usually uses a combination of pharmacokinetic (PK) and pharma-

codynamics (PD) models to describe the dynamics of Hgb concentration following

the administration of intravenous EPO.[13–15] Traditional methods such as non-

linear least-squares fitting [16] or genetic algorithms[17] can be used for parameter

identification. The other is data-driven modeling, which has been widely applied in

medicine[18] like blood glucose dynamics prediction[19], automating administration

of hypnotic agents[20] and automated detection of schizophrenia[21]. It sets EPO

dose data and Hgb measurements as input and output, respectively. Then through

system identification like neural network or autoregressive model methods, we can

get the erythropoiesis model.[22, 23] These two methods have their advantages and

disadvantages. By building a physiologically driven model, we can get the details of

the operation status of the system. Besides, if the theoretical basis for modeling is

correct, the physiologically driven model can work well. But in practice, conventional

8



solvers often have difficulties in finding physiological parameters for ill-posed inverse

problems.[24] On the other hand, although a data-driven model can approximate

complex functions, it is sensitive to data noise and may not perform in prediction.

Given the above problems, this chapter aims to develop a more efficient method to

build an erythropoiesis model with clinical data. The proposed method uses physics

informed neural networks (PINN) to identify the model parameters. This kind of

neural networks has been applied in many fields like hydromechanics[25] and systems

biology[26] and achieved good results. Just like the framework of PINN proposed in

paper [27], the front part of the neural network is similar to the ordinary fully con-

nected neural network. After getting the value from the network and calculating the

gradient, the physical model equation residuals are incorporated in the loss function

to incorporate the physics information. In this way, PINN achieves good estimation

and robustness to noise and disturbances.

2.2 Physiological Model

To help physicians make patient-specific decisions on the optimal dosage of EPO

treatment, a model that describes the Hgb response to the EPO dosing is necessary.

Regarding the Hgb response to EPO dosage, an example of a clinical data record

is shown in Figure 2.1. Hgb level is recorded around every 2 weeks, patients with

late-stage renal disease receive EPO treatment 1 to 3 times per week.[28]

Paper [29] has proposed a physiological erythropoiesis model to describe the Hgb-

EPO relationship. The model consists of PK and PD model equations. The PK

model describes how the body affects specific exogenous chemical substances through

absorption and distribution mechanisms after drug administration, as well as changes

in the metabolism of substances in the body, and the effects and excretion pathways of

drug metabolites. The PD model explains pharmacological effects on living systems,

including reactions and binding to cellular components, and the biochemical and

physiological consequences of these effects.[30]
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Figure 2.1: A clinical example data of EPO dosages and Hgb responses.

The PK model can be described as:

dE(t)

dt
= − V · E(t)

Km + E(t)
− α · E(t) + dose(t) (2.1)

Ep(t) = E(t) + Een (2.2)

kin(t) =
S · Ep(t)

C + Ep(t)
(2.3)

Een =
C ·Hen

µ ·KH · S −Hen

(2.4)
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The PD model is defined as follows:

dR(t)

dt
= kin(t−D)− 4x1(t)

µ2
(2.5)

dx1(t)

dt
= x2(t) (2.6)

dx2(t)

dt
= kin(t−D)− 4x1(t)

µ2
− 4x2(t)

µ
(2.7)

Hgb(t) = KH ·R(t) (2.8)

In the PK model equations, E(t) denotes the amount of exogenous recombinant

human EPO, Een denotes the endogenous EPO, Ep(t) is the total EPO of the dynamic

pool in plasma, kin(t) is the red blood cells (RBC) production rate, and dose(t) is the

EPO dosing in international unit (IU) which is modeled as a train of impulses.[31]

Additionally, the model contains some parameters: Hen is the Hgb level due to en-

dogenous EPO, µ represents the mean RBC life span, V is the maximum exogenous

EPO clearance rate, Km stands for the exogenous EPO level that produces half-

maximum clearance rate, α is the linear clearance constant, S represents the maximal

RBC production rate stimulated by EPO, C is the amount of EPO that produces

half-maximum RBC production rate.[28]

In the PD model, states R(t) represent the population of red blood cells (RBC),

states x1(t) and x2(t) are internal states that aid in calculating R(t), Hgb(t) is the

hemoglobin level which can be detected clinically, parameters D is the time required

for EPO-stimulated RBCs to start forming, KH is the average amount of Hgb per

RBC (mean corpuscular hemoglobin, or MCH, in a complete blood count) which takes

the value of KH = 29.5pg/cell.[28]

The initial conditions can be determined from the data as following

R0 =
Hgb0
KH

(2.9)

x10 =
µ · (Hen − µ ·KH · Ṙ0)

4KH

(2.10)

x20 =
KH ·R0 −Hen + µ ·KH · Ṙ0

KH

(2.11)
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where Hgb0 and Ṙ0 can be estimated from the data. The prior history of the ex-

ogenous EPO is set to be zero. In this PK/PD model, there are eight parameters

(α,C,D,Hen, Km, µ, S, V ) to be identified.

Based on the above physiological model, the unknown model parameters can be es-

timated using the clinical data for each patient. In this work, we use the inverse PINN

for the parameter estimation and use the classical nonlinear least squares method with

a traditional numerical solver as a contrast.

2.3 Physics-Informed Machine Learning

Paper [27] proposed the PINN which is a type of neural network trained to solve

supervised learning tasks while following given physical law described by partial dif-

ferential equations. It is shown by [32] that the method performs well to identify the

unknown model parameters.

The used PINN structure [26] is shown in Figure 2.2. Time is the input. States of

the physical system are output. The hidden layers perform nonlinear transformations

on the data.[33] It is similar to a fully connected neural network but adds three extra

layers to accelerate convergence. Input-scaling layer is designed to shrink the input

time domain through a linear scaling function. When differential equations solution

has a certain pattern, for example, the solution follows periodicity or attenuation,

the feature layer can be set as sin(kt) or e−kt respectively.[32] If states have different

magnitudes, the output-scaling layer can be used to scale them.

The main idea of PINN is to incorporate the physical model equation residual

(error) into the loss function of the neural network training. During the training

process, the network model parameters and the physical model parameters can be

estimated simultaneously. Consider a set of ODE equations

dxs

dt
= fs(xs, t; p) s = 1, · · · , S (2.12)

The loss function is composed of three parts as follows.
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Figure 2.2: Physics-informed neural network architecture

Loss(θ, p) = Lossdata(θ) + Lossode(θ, p) + Lossaux(θ) (2.13)

where

Lossdata(θ) =
M∑︂

m=1

wdata
m Lossdatam =

M∑︂
m=1

wdata
m

1

Ndata

Ndata∑︂
n=1

(ym(tn)− x̂m(tn; θ))
2 (2.14)

Lossode(θ, p) =
S∑︂

s=1

wode
s Lossodes =

S∑︂
s=1

wode
s

1

N ode

Node∑︂
n=1

(︃
dx̂s

dt

⃓⃓⃓⃓
τn

− fs(x̂s(τn; θ), τn; p)

)︃2

(2.15)

Lossaux(θ) =
S∑︂

s=1

waux
s Lossauxs =

S∑︂
s=1

waux
s (xs(T0)− xŝ(T0; θ))

2 (2.16)

Ndata is the number of sample time points {tn} where both the control input and

the output response are available. N ode is the number of collocation points {τn}

used to evaluate the model residual. Note that there is no response data needed

for those collocation points. Lossdata is based on the errors between measurements

of y1, y2, ..., yM and network outputs x̂1, x̂2, ..., x̂M at time t1, t2, ..., tNdata . Lossaux is
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similar to Lossdata, but it specifically considers the start time point T0 as an additional

source. Lossode is the key point of PINN. By automatic differentiation, the derivative

of output states x̂1, x̂2, ..., x̂S concerning input t at the time point τ1, τ2, ..., τNode can

be obtained. Then we can calculate the residual error according to the differential

equations and use it as a part of the loss function. In this way, differential equations

are integrated into the neural network, which attaches physical constraints to machine

learning. The weighting coefficients (wdata
1 , wdata

2 , ..., wdata
M ), (wode

1 , wode
2 , ..., wode

S ) and

(waux
1 , waux

2 , ..., waux
S ) are used to balance the loss terms. Finally, by minimizing the

loss function, the parameters θ of the neural network and unidentified parameters p

of differential equations are optimized together.

2.4 Modified PK/PD Model for PINN

To incorporate the physiological model into the PINN framework, we face two chal-

lenges from the original PK/PD model, which are explained below.

2.4.1 Impulse Input Sequences in PK Equation

Equation 2.1 is a differential equation with an impulse input sequence. This equation

describes the decay process of exogenous EPO in the human body. Based on a simula-

tion of this differential equation with parameters V,Km, α being set as 1660, 76.5, 0.25,

respectively, the black dash-dot curve in Figure 2.3 illustrates the trajectory of EPO

in the human body during 10 days after receiving 7000 IU EPO medications on the

second day.

In practice, dose(t) is a train of impulses. This causes two issues when PINN is used

to incorporate this physical equation. First, the width of the impulse tends to be zero

and the derivative dE(t)
dt

goes to infinity at the dosing time. It is impossible to directly

evaluate the differential equation residual dE(t)
dt

−
[︂
− V ·E(t)

Km+E(t)
− α · E(t) + dose(t)

]︂
.

Secondly, the profile of E(t) is not smooth under an impulse sequence input as shown

in the figure. It is not very efficient to approximate this nonsmooth function through
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Figure 2.3: Trajectory of E(t) under a single EPO dosage

the neural network. To address this issue, we propose a method to approximate this

differential equation based on the following observations.

According to the differential equation 2.1, when E(t) is much bigger than Km, the

equation can be simplified as

dE(t)

dt
≈ −V − αE(t) + dose(t) (2.17)

For this equation, the solution trajectory of E(t) is an exponential function as shown

by the red line in Figure 2.3 with α = 0.6. Compared with the exponential function,

the curve of differential equation solution E(t) decreases more quickly.

To improve the approximation accuracy, we propose the following exponential func-
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tion Equation 2.18 to approximate E(t),

E(t) =

N(t)∑︂
j=1

dosej · exp
[︃
−(a0 · e

−dosej
a1 + a2) · (t− tj)

a3

]︃
(2.18)

where a0, a1, a2, a3 are four undetermined parameters, tj and dosej correspond to

the j-th EPO administration time and dosage value, respectively. N(t) is the total

number of dosing times up to time tt. For example, if the patient receives 5000 IU

EPO treatment and 10000 IU EPO treatment on the 20th day and 60th day, the

corresponding (tj, dosej) are (20, 5000), (30, 10000). Using exponentiation of time

difference, this proposed exponential function can match the differential equation

solution better at the later stage.

To demonstrate the performance of the proposed model equation, we simulate

the original equation 2.1 to get the profile of E(t) under the EPO dose sequence

as shown in the top part of Figure 2.3. Afterward, we sample data from the true

solution (as shown by the black dash-dot curve in Figure 2.3) and then use the least

squares method to estimate the parameters in the proposed model equation 2.18. The

estimated parameter values are a0 = 1.87, a1 = 3640, a2 = 0.269, a3 = 1.53. The E(t)

trajectory calculated by the proposed exponential function Equation 2.18 is drawn

in Figure 2.3 by the blue line, which approximates the true response curve (black

dash-dot curve) very well.

In addition to the single impulse input study, the accuracy of the proposed model

equation is also tested over a sequence of EPO dosages which was obtained from

clinical data. The top part of Figure 2.4 is the EPO treatment record. The solution

of the differential equation and the approximate exponential function are shown in

the middle part of Figure 2.4, respectively. Notice that the bottom one is the zoomed

version of the red box in the middle figure to show more details. R2 of 958 days

E(t) value is equal to 99.76%. This result verifies that the proposed model equation

approximates the original exponential differential equation very well.
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Figure 2.4: Trajectories of EPO in the body based on clinical data

2.4.2 Time Delay in PD Equations

The other issue comes from Equation 2.5 and Equation 2.7. These two equations

are delay differential equations. The delay item D is the parameter to be estimated.
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Neural networks can predict system states at time t. However, when we calculate

the residual of model equations, state prediction at any time is required because

parameter D keeps changing with each iteration and it can be any value. But the

existing state prediction is limited to the existing input time. So it is not efficient to

estimate the delay parameter.

Paper [29] has studied the low-pass filter nature of the RBC pool. As shown in

Figure 2.5, a twice-weekly dosing sequence is simulated and it generates pulsatile

and periodic EPO levels EP and corresponding production rate kin; but the periodic

dynamics are largely smoothed out by the low-pass nature of the RBC pool filter.[29]

Therefore, during the therapy, PK and cell production PD is relevant to the mean

value of the production rate, which is denoted as k̄in in Equation 2.19 where [iT, (i+

1)T ] is a single dose period. The Equation 2.3 can be reconsidered as a memoryless

nonlinear relationship between EPO doses and mean production rate k̄in,[29] which

means a similar mean production rate profile k̄in will lead to similar Hgb trajectory.

Figure 2.5: Low-pass nature of the RBC pool filter
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k̄in(dosei, T ) =
1

T

∫︂ (i+1)T

iT

kin(t)dt (2.19)

Based on the above analysis, we propose to convert the delay differential equations

into a different form which makes the estimation easier. The method is based on a

weighting function and the new equations are defined as follows:

dR(t)

dt
= λ1kin(t−D1) + λ2kin(t−D2)−

4x1(t)

µ2
(2.20)

dx2(t)

dt
= λ1kin(t−D1) + λ2kin(t−D2)−

4x1(t)

µ2
− 4x2(t)

µ
(2.21)

λ1 + λ2 = 1 (2.22)

The term kin(t−D) is replaced by the weighting function λ1kin(t−D1)+λ2kin(t−D2),

where λ1 and λ2 are parameters to be determined, and D1 and D2 are fixed as 4 and

7, respectively. This is based on the fact that the time required for progenitor cells to

be stimulated by EPO and finally become reticulocytes ready to mature into RBCs

is 4 - 7days.[3] The original delay parameter D can be estimated as

D = λ1D1 + λ2D2 (2.23)

Figure 2.6 shows the RBC production rate kin and the average weekly production

rate k̄in(T = 7) of the original form and the proposed weighting function respectively.

Here, λ1 and λ2 are both set as 0.5. It illustrates that during every dose period, there

is some difference between the original form kin(t − D) and the proposed weighting

function λ1kin(t − D1) + λ2kin(t − D2). For example, in the second dose period

(day 22 to 29), the original model solution includes two pulses whereas the proposed

weighting function produces three pulses with a smaller magnitude. However, the

average weekly production rate k̄in of the original form gets superimposed by the k̄in

of the proposed weighting function. The trajectories of Hgb level obtained from these

two methods in this short term are similar, as shown in Figure 2.7.
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Figure 2.6: Comparison between the average weekly production rate k̄in and kin

Figure 2.7: Hgb value of two methods in short term

Table 2.1: Parameters for PK/PD models

α Km V C D Hen µ S

0.25 46.5 2800 22.45 5.5 7.9 92.2 0.0084

Finally, we check the approximation performance over a long horizon. With pa-

rameters set as Table 2.1, the original model and the approximated model are both

simulated. Figure 2.8 shows these two Hgb trajectories of the original form and delay

differential equations with a weighting function. Root mean square error (RMSE)

between two curves equals 0.0712.

Above results show that the proposed PK/PD model modification approximate the

original model very well. They provide a basis for the PINN modeling as described
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Figure 2.8: Long term Hgb responses: original model and approximation model

in the next section.

2.5 PINN Using the Modified PK/PD Model

According to the proposed approximation model explained in Section 2.4.1- 2.4.2, the

overall physiological model used in the PINN is based on equations 2.24-2.31.
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E(t) =

N(t)∑︂
j=1

dosej · exp
[︃
−(a0e

−dosej
a1 + a2)(t− tj)

a3

]︃
(2.24)

Ep(t) = E(t) + Een (2.25)

kin(t) =
SEp(t)

C + Ep(t)
(2.26)

Een =
CHen

µKHS −Hen

(2.27)

dR(t)

dt
= λ1kin(t−D1) + λ2kin(t−D2)−

4x1(t)

µ2
(2.28)

dx1(t)

dt
= x2(t) (2.29)

dx2(t)

dt
= λ1kin(t−D1) + λ2kin(t−D2)−

4x1(t)

µ2
− 4x2(t)

µ
(2.30)

Hgb(t) = KHR(t) (2.31)

With the above model, the loss function corresponding to the model residual used

in the PINN is defined based on equation 2.32.

Lossode = wode
1 Lossode1 + wode

2 Lossode2 + wode
3 Lossode3 (2.32)

Lossode1 =
1

N ode

Node∑︂
n=1

[︄
dR̂

dt
|τn − (λ1k̂in(τn −D1) + λ2k̂in(τn −D2)−

4x1̂(τn)

µ2
)

]︄2

(2.33)

Lossode2 =
1

N ode

Node∑︂
n=1

[︃
dx1̂

dt
|τn − x2̂(τn)

]︃2
(2.34)

Lossode3 =
1

N ode

Node∑︂
n=1

[︃
dx2̂

dt
|τn − (λ1k̂in(τn −D1) + λ2k̂in(τn −D2)−

4x1̂(τn)

µ2
− 4x2̂(τn)

µ
)

]︃2
(2.35)

During the PINN training process, the neural network parameters and the param-

eters in the physiological model are simultaneously estimated. Based on the parame-

ters a0, a1, a2, a3, original parameters V,Km, α can be further estimated through least

squares method. Besides, the delay parameter D can be evaluated using equation

2.23.
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Table 2.2: Results: PINN1 (from noise-free data), PINN2 (from noisy data

α Km V C D Hen µ S

True 0.1 120 600 30 5.2 9 90 0.004

PINN1 0.0959 127 607 27.6 5.36 8.89 95.0 0.00378

PINN2 0.0966 127 616 30.2 5.38 9.07 84.6 0.00422

2.5.1 Test on Simulated Data

To demonstrate the proposed erythropoiesis modeling based on PINN, true parameter

values as listed in Table 2.2 and a set of EPO input sequences as shown in Figure 2.9

are chosen to generate a series of Hgb data by solving this PK/PD model. Then

Gaussian noise with zero mean and the standard deviation of σϵ = cµ is added to

Hgb data to simulate measurement noise, where µ is the standard deviation of orig-

inal Hgb data and c is equal to 5%. According to the noise-free Hgb data and the

noise-containing Hgb data, we use PINN to identify these parameters in the differ-

ential equations separately and compare the results. The algorithm is implemented

in Python with the open-source library DeepXDE.[34] The neural network is formed

from 5 fully connected layers and each one has 64, 128, 256, 128, 64 neurons. The fea-

ture layer adopts t, sin(t), sin(2t), sin(3t), sin(4t), sin(5t). The tanh function is set

as the activation function. In addition, we use the Adam optimizer[35] and 500000

iterations with a learning rate equal to 10−4.

Based on noise-free data and noise-containing data, we can estimate the parameters

for erythropoiesis modeling in Table 2.2. The fitting results based on the two cases

are shown in Figure 2.9. Corresponding RMSE are 0.0160 (no noise) and 0.0755

(with noise), respectively. The result shows these inferred parameters have a higher

degree of accuracy. The agreement between the Hgb solution based on the estimated

parameters and exact dynamics is good considering the noise in the training data.
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Figure 2.9: Simulated true Hgb responses and PINN model predictions

2.5.2 Application to Clinical Data

Clinical data of 291 patients are used to test the accuracy of the proposed method.

General statistics of the clinical data are shown in Table 2.3. After data preprocessing

including missing data interpolation, daily Hgb values of patients can be obtained.

The first half part of data is used to train and the second half is applied to test

the model. The result is compared with ARX modeling method and physiological

modeling with the least squares method.

For the physiological modeling with the least squares method, the delay differential

equations in the physiological model are solved by dde23 function in Matlab and

parameters are optimized using the lsqnonlin function in Matlab.[31] The first half

part of the data is used to train parameters, and the second half of the data is
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Table 2.3: Clinical data statistics

Number of patients 291

Hgb (g/dL) (Mean ± Std) 10.58 ± 1.11

EPO dose (IU/week) (Mean ± Std) 9244.04 ± 10376.34

Table 2.4: Parameters range

Parameter Nominal value Unit Range

µ 77 day (34, 120)[13]

Hen 6.8 g/dL (4.1, 9.5)[36, 37]

D 5.5 day (4, 7)[3]

C 22.4 IU (6.72, 38.08)

V 1655 IU/day (496.5, 2813.5)

α 0.25 IU/day (0.075, 0.425)

Km 76 IU (22.8, 129.2)

S 0.01 cell/day/dL (0.003, 0.017)

tested for model error. This parameter estimation based on the least squares is time-

consuming because it involves the solution of the delay differential equations many

times.

For the proposed method based on PINN, the network structure and optimization

are the same as the example in the test on simulated data. Part of the parameters

is limited in the physical significance range as shown in Table 2.4. The range for

other parameters which do not have reported values in relative literature is set as

(0.3p̄, 1.7p̄), where p̄ is the nominal parameter value. In this method, the training

and test rates are set at 50% separately. The number of collocation points N ode in

Equation 2.15 is set as 10Ndata.

Figure 2.10 show the Train RMSE distribution and Test RMSE distribution of

ARX modeling, least squares modeling and proposed PINN modeling based on all

clinical data.
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Figure 2.10: Training and test RMSE distribution on clinical data

There are 26 outliers in ARX test RMSE box plot, 17 outliers in the least squares

Test RMSE box plot, and 13 outliers in PINN Test RMSE box plot, which is caused by

the poor model fit. It can be seen in most cases the proposed PINN modeling method

is more accurate and its test error distribution is more concentrated. The proper

training error shows it overcomes overfitting and underfitting. This observation can

be explained through the following example patients.

For example, the fitting results of three patients are displayed in Figures 2.11, 2.12

and 2.13.
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Patient’s imitative effect in Figure 2.11 is overall good. The training set is well-

fitted and the obtained parameter model of the least squares method and PINN

method can predict the test set accurately. The consistency between EPO records

and clinical Hgb data shows there is no abnormal situation during the treatment of

patient 1, which allows the data-driven ARX model to also perform well

Figure 2.11: Fitting result of patient 1

The record of patient 2 is shown in Figure 2.12, from the 20th day to the 70th day,

there is a rapid increase of clinical Hgb data with a series of relatively low-level EPO

doses, which is a kind of exceptional situation. Besides, as this patient is treated with

very high dosages of EPO from the 200th day to the 240th day, instead, the clinical

Hgb record decreases during this period. It can be inferred that there are blood

transfusions, internal hemorrhages or similar situations in the therapy of patient 2.
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Figure 2.12: Fitting result of patient 2

Figure 2.13 shows that this patient receives similar dosages of EPO medications

from the 420th day to the 480th day. The recorded Hgb level keeps increasing in

the beginning but drops sharply around day 460, which proves there is a loss of

blood. These abnormal conditions are not under consideration in the PK/PD model

equations 2.1- 2.8. There is no doubt that if the abnormal data is fitted during

training, it will have negative effects on the model parameters and then influence

model generalization, which happens in the data-driven ARX methods as well as

least squares modeling methods. Our results indicate the physical information allows

the neural network to avoid overfitting and have better generalization ability. The

noise of measurement and abnormal data caused by intercurrent events are not fitted,

which improves the precision of the test set.
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Figure 2.13: Fitting result of patient 3

2.6 Conclusions

In this chapter, we applied PINN technique to model the Hgb response under EPO

treatment. This method combined the physiological PK/PD model and neural net-

work learning technology to estimate the parameters of PK/PD model while training

the neural network model. During the training of the neural network, physical laws

describing the physiological model are enforced by adding the model residuals to the

loss function. To address the problem that the PINN cannot easily handle the resid-

ual of the differential equation at the time instants with impulse inputs, we proposed

an approximate model to replace the PK model equation. In addition, to handle the

time delay in the PD differential equation, we proposed a weighting function-based
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formulation so that the delay parameter can be estimated by training the PINN. Tests

have been made on both simulated data and clinical data. The results show that the

proposed method has good accuracy and resistance to overfitting. This is due to the

incorporation of the physiological model into the neural networks.

The proposed modeling technique can help build an individualized model for pa-

tients with renal disease. Physicians can rely on this modeling technique to develop

patient-specific EPO dosing strategies to optimally manage the Hgb level of different

patients.
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Chapter 3

Physics-Informed Neural Networks
for Control

3.1 Introduction

In this chapter, we propose to use a modified PINN in the model predictive controller

design for EPO treatment. Model predictive control (MPC) is a feedback control

technique that can handle constraints in complex systems and help us to operate the

systems optimally. Ordinary differential equations or partial differential equations

are the main ideas to simulate dynamic systems. But sometimes the computational

cost of solving the differential equations is too high. Even with the improvement in

computing power, the efficient real-time model is still a major bottleneck limiting the

application of MPC. Currently, there are many data-driven system identification tech-

niques that can replace physical equations. Among these data-driven methods, neural

networks are most popular in recent years. Inspired by biological neural systems, it

is a powerful function approximator for simulating complex dependencies between

inputs and outputs. Especially recurrent neural network (RNN) and its variants in

Figure3.1 have good capabilities in handling sequence data.

Due to its novel capability for modeling complex dynamical systems, properly

designed artificial neural networks can serve as goal-seeking computational models

for solving various optimization problems in many applications,[39] including steel

pickling process control[40] and stochastic model predictive control for oil and gas
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Figure 3.1: RNN and its variants[38]

production[41].

But just like every data-driven method, traditional neural networks do not perform

well when facing noisy data and insufficient training datasets. As a result, an inac-

curate neural network model will have a destructive impact on model control. For

this problem, we propose to use PINN to replace physiological models and traditional

neural networks. The detail of PINN has been discussed in chapter 2. The physics

information implemented by the loss function can regularize the learning process,

which improves the performance of neural networks. But as shown in Figure 2.2, the

original PINN does not have an interface for control input. Besides, the initial states

are fixed in one value, which does not meet the requirement for rolling optimization

in MPC. Considering these limitations, we apply a modified PINN called Physics-

Informed Neural Nets for Control (PINNC)[42] in the controller design. The inputs

of PINNC are composed of time, initial states and control input. This architecture

makes PINNC applicable for MPC implementation. We demonstrate the efficiency of

this framework through Van der Pol system and EPO treatment system.

3.2 Physics-Informed Neural Networks for Con-

trol Architecture and Prediction

A good prediction model is necessary for controller design. The PINN discussed in

chapter 2 is the proper approximation model. The residual of differential equations is

added to the loss function to make the network more robust. But the original PINN
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can not be applied in MPC. We have to modify its architecture.

3.2.1 Network Structure and Training

A simplified PINN structure for ordinary differential equation is shown in Figure 3.2.

The network input is time t, which indicates this neural network represents the func-

tion 3.1. The control action and initial conditions are fixed. As a result, the original

PINN can infer the unknown parameters in model equations and is suitable for inter-

polation prediction. But it can not realize extrapolation prediction using extra input.

As a consequence, it is not qualified for MPC application. The modified PINNC was

proposed in paper [42]. Figure 3.3 explains the network structure. Compared with

original MPC, the modified PINNC has two more inputs for control action u and

initial conditions. As initial conditions and control actions change with each rolling

optimization, the proposed PINNC can generate model predictions based on these

inputs. The output of this network is given by Equation 3.2.

Figure 3.2: Original PINN structure

x(t) = f(t) (3.1)
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Figure 3.3: PINNC structure

x(kT + t) = f(t, x(kT ), u(kT )), t ∈ [0, T ] (3.2)

It’s worth noting that in PINNC, we consider multiple equidistant time intervals,

each interval is represented by [kT, (k + 1)T ]. Traditional PINN tends to degrade

rapidly for long time intervals and can only accept input t in the time duration of the

training data.[42] Through the shorter period of T, PINNC solves this degradation

problem. Given the initial condition x(kT ) and input u(kT ), all the states during

this time interval can be predicted by trained PINNC. After getting x((k + 1)T ), we

can use the final states as new initial states for the next time interval and repeat this

process iteratively.

Furthermore, for the differential equations with input delay defined by Equation

3.3, not only the current input but also these previous control actions are required.

In this case, the control input of previous periods is also added to the neural network.

The network architecture is given in Figure 3.4.

dx

dt
= f(t, x(t), u(t), ..., u(t− τT )) (3.3)

The loss function is composed of two parts as follows.

Loss(θ, p) = Lossdata(θ) + Lossode(θ) (3.4)
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Figure 3.4: PINNC architecture with two inputs

where

Lossdata(θ) =
M∑︂

m=1

wdata
m Lossdatam

=
M∑︂

m=1

wdata
m

1

Ndata

Ndata∑︂
n=1

(ym(tn)− x̂m(tn, xn, un; θ))
2, tn ∈ [0, T ] (3.5)

Lossode(θ) =
S∑︂

s=1

wode
s Lossodes

=
S∑︂

s=1

wode
s

1

N ode

Node∑︂
n=1

(︃
dx̂s

dt

⃓⃓⃓⃓
τn

− fs(x̂s(τn, xn, un; θ), τn)

)︃2

, τn ∈ [0, T ]

(3.6)

In general, the loss function of PINNC is similar to that of PINN. The difference

is that in PINNC, the value of time input t is in the time interval, instead of the

whole duration of the training dataset. xn and un are corresponding initial states and

control input. Besides, the auxiliary loss function is not included because we do not

need to enforce one fixed initial condition. The training process is also the same as

PINN. A related study has shown that, if the differential equations can represent the

processing system accurately, it is sufficient for the training dataset to contain only the

initial conditions.[42] But taking full advantage of additional data into loss function

can accelerate convergence and improve the accuracy of neural networks. Automatic

differentiation is also employed for calculating the residuals of model equations.
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3.2.2 PINNC in Self-Loop Prediction

Before applying the PINNC into MPC, we need to ensure the PINNC approximation

model is sufficiently accurate. Based on a series of given input, the PINNC can

operate as self-loop prediction as Figure 3.5.

Figure 3.5: Self-loop structure

The initial state for network input can be either the true value measured from

the processing system or the model prediction of the previous time interval. In the

self-loop prediction, we do not use any true data from the process, except the first

initial state, to test the accuracy of PINNC over a prediction period. The self-loop

function can be described as follows:

x̂((k + 1)T ) = f(T, x̂(kT ), u(kT )), k ∈ N (3.7)

The first initial state x(0) is given. Time t in Equation 3.7 is set as the time

interval value T , which depends on the dynamics of the process system. One forward

propagation is operated every T period. We can see this recurrent approach is different

from traditional numerical integration methods that need to calculate integration over

the continuous inner interval.[43] Inevitably, recursion calculation will cause error

accumulation. But after implementing the PINNC into MPC, we will update the
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initial states according to the plant model results. In consequence, the Equation 3.7

can be replaced by the following equation:

x̂((k + 1)T ) = f(T, xplant(kT ), u(kT )), k ∈ N (3.8)

where the xplant describes the plant model states. The error accumulation is largely

eliminated.

3.3 Test of PINNC Modeling Performance

3.3.1 Van der Pol Oscillator

Physicist Balthasar van der Pol proposed the Van der Pol oscillator.[44] At first it was

introduced to describe the limit cycle in electrical circuits. Later it was widely used

in both the physical and biological sciences. We can use this system as an illustration

example. The Van der Pol oscillator equations are defined as follows:

x1̇ = x2 (3.9)

x2̇ = µ(1− x2
1)x2 − x1 + u (3.10)

where x1 and x2 are two system states, u is referred to the control input, µ represents

the damping parameter. Then we solve these ordinary differential equations based

on a group of randomly generated input. This dataset can be applied to train the

PINNC model. In our training, parameter µ is set as 1, control input belongs to [-1, 1]

and generates 50 seconds dataset. Usually, Node is bigger than Ndata, which indicates

we adopt more collocation points than data points. A sufficient number of points will

allow the neural network to perform better. But considering this example is simple, we

use Node = Ndata = 100. Time interval T is equal to 0.5s. For the hyperparameters,

the learning rate is 0.001, Adam is used to optimize the loss function, the neural

network has 4 hidden layers of 20 neurons each. After 50000 epochs, we get the proper

PINNC model. Based on this model, the self-loop prediction on training data can be

seen in Figure 3.6. Then we create another control input u series for 25s randomly
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and generate a test set by solving the Van der Pol oscillator. The comparison of the

test set and PINNC self-loop prediction is shown in Figure 3.7. Although prediction

error is accumulated during recursion calculation, the prediction trajectories match

the test set very well.

Figure 3.6: PINNC prediction for the Van der Pol oscillator on training set

Figure 3.7: PINNC prediction for the Van der Pol oscillator on test set

In addition, we also compare the PINNC model with pure data-driven neural net-

works. During another training, Node is set as 0, which implies the residual of phys-

iological model Lossode is not considered. After the same training, we obtain a pure

data-driven neural network. Facing the same test set, the pure data-driven neural

network generates prediction as Figure 3.8.
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Figure 3.8: PINNC model (with zero weight on model residual) prediction for the
Van der Pol oscillator on test set

Table 3.1: Parameters for patients’ original model

α Km V C D Hen µ S

0.384 129 497 38.0 5.61 6.15 90.4 0.00565

In Figure 3.8, the prediction can fit the test set in the beginning. Nevertheless,

with error accumulation, the problem that data-driven model precision is lower than

PINNC is exposed.

3.3.2 Hgb Response Prediction

Hgb response under EPO treatment is a more complex system. The establishment

process of PINNC for this model is similar to that of Van der Pol oscillator system.

Through discussion in chapter 2, we apply original PINN to infer the unknown pa-

rameters of each patient’s physiological model. One patient is picked to illustrate

the proposed method. The physiological model and corresponding parameters are

defined as Equations 2.1-2.8 and Table 3.1. In this experiment, we solve these equa-

tions based on clinical EPO dosages records to generate the training set. Using the

trained PINN model to get the training data is another feasible method.

When building the loss function of PINNC based on the original form 2.1-2.8,

we will face the same questions mentioned in chapter 2. Impulse input differential
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Table 3.2: Parameters for patients’ modified model

a0 a1 a2 a3 C D Hen µ S

2.5 2760 0.0572 1.73 38.0 5.61 6.15 90.4 0.00565

Equation 2.1 makes it impossible to directly calculate the residual and it is not efficient

to approximate this nonsmooth function through neural networks. On the other hand,

the delay parameter is a fixed value instead of a changing variable. So we do not need

to change the delay differential equations into weighting forms again. As a result,

the modified physiological equations used for calculating the model loss function of

PINNC are Equation 3.11 to Equation 3.18.

E(t) =

N(t)∑︂
j=1

dosej · exp
[︃
−(a0e

−dosej
a1 + a2)(t− tj)

a3

]︃
(3.11)

Ep(t) = E(t) + Een (3.12)

kin(t) =
S · Ep(t)

C + Ep(t)
(3.13)

Een =
C ·Hen

µ ·KH · S −Hen

(3.14)

dR(t)

dt
= kin(t−D)− 4x1(t)

µ2
(3.15)

dx1(t)

dt
= x2(t) (3.16)

dx2(t)

dt
= kin(t−D)− 4x1(t)

µ2
− 4x2(t)

µ
(3.17)

Hgb(t) = KH ·R(t) (3.18)

The required parameters in modified equations are also inferred during chapter 2

as Table 3.2.

In view of the time delay in equations, the EPO input of the last period is added

to the neural network. The network architecture in Figure 3.4 is applied. τ is equal

to 1. Considering the Hgb treatment process, we set the sampling period T as 7 days.

The neural network has 5 hidden layers, and each layer has 128, 256, 512, 256, 128

neurons. Moreover, Ndata = 945. Node = 9450. Adam optimizer is used and the

40



learning rate equals 0.0001. After 50000 epochs of training, we obtain an appropriate

PINNC model for the renal anemia treatment system. Figure 3.9 illustrates the self-

loop PINNC prediction on the training set. Besides, multiple test sets are applied to

check the performance of this neural network. Firstly, we halve the EPO dosages in

the training set and compare the model self-loop prediction with the solution of the

original PK/PD model. Figure 3.10 shows the result.

Figure 3.9: PINNC prediction based on training EPO dosages

Then another patient’s EPO dosages records are used to test this PINNC. Com-

parison is explicated in Figure 3.11.

Finally, we calculate the mean value and standard deviation of EPO training data.

And in light of the mean value and standard deviation, a group of EPO dosages

is generated by Gaussian distribution, which is also put into the neural network as
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Figure 3.10: PINNC prediction based on half EPO dosages

a control action. In Figure 3.12, these two Hgb trajectories based on this random

control input are shown.

In general, the PINNC simulation matches the test set very well. Clearly, there

is error accumulation. But in the MPC context, the solution of the optimal control

problem is robust regarding this error for larger time horizons, such that this PINNC

approximation model is acceptable within the MPC framework.[45]

3.4 Conclusions

In this chapter, we discuss the modified PINN structure for the application in MPC.

The original PINN can not meet the requirement to update the initial states and con-

trol input. Therefore, we propose to use the PINNC to replace the dynamics predic-
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Figure 3.11: PINNC prediction based on another patient’s EPO dosages

tion model. This framework makes PINN suitable for controller design. Meanwhile,

this kind of neural network can also use physics information to improve performance.

In the self-loop example of Van der Pol oscillator and Hgb response prediction, we

have shown this PINNC model is accurate enough for control purposes.
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Figure 3.12: PINNC prediction based on random EPO dosages
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Chapter 4

Model Predictive Control and
Simulation Results

4.1 Introduction

In this chapter, the trained PINNC model described in chapter 3 will be applied to

the MPC design. Since MPC was introduced in the 1970s, it has been successfully

applied in the electric power technology[46], thermal energy storage systems[47] and

process industries[48], as well as in robotics[49]. The main advantages of MPC over

other controllers are its ability to handle system constraints, non-minimum phase

processes, changes in models and its straightforward applicability to large, multi-

variable processes.[50][51] In the following sections, we start with an introduction to

MPC and then explore the control effect on Van der Pol oscillator and anemia treat-

ment. Besides, the measurement noise and abnormal situations during treatment are

considered.

4.2 Model Predictive Control

MPC development can be traced back to late 1970s when Richalet introduced the

first MPC strategy based on quadratic programming.[52] The core idea of MPC is

rolling-horizon optimization as shown in Figure 4.1. After sampling current states,

MPC predicts future states based on prediction model. Then it will evaluate the

predicted states and generate a series of optimal control inputs according to control
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objectives on a finite prediction horizon. The first control action in the series will be

implemented into system. After that, MPC goes to the next cycle and repeats the

above steps.

Figure 4.1: General concept for MPC[53]

The Block diagram of MPC system with PINNC is revealed in Figure4.2. The

PINNC is connected to the plant system which is simulated by physiologically based

differential equations in this experiment.

Usually, quadratic functions can be chosen as cost functions to penalize the error

in the reference tracking. A general quadratic cost function for MPC optimization is
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Figure 4.2: MPC structure with PINNC model

given as:

min
u[k],...,u[k+N−1]

J =
N∑︂
j=1

∥x[k + j]− xref [k + j]∥2Q +
N−1∑︂
j=0

∥∆u[k + j]∥2R (4.1)

s.t. x[k + j + 1] = f(x[k + j], u[k + j]), j = 0, ..., N − 1 (4.2)

∆u[k + j] = u[k + j]− u[k − 1], j = 0, ..., N − 1 (4.3)

h(x[k + j], u[k + j]) ≤ 0, j = 1, ..., N (4.4)

g(x[k + j], u[k + j]) = 0, j = 1, ..., N (4.5)

where k and x[k] represent the recurrent time step and states of the dynamic system,

xref is the set-point reference value over the prediction horizon, the penalization of

the quadratic error between the model prediction x and the reference xref and control

input changes ∆u over the prediction horizon form the cost function J , matrices Q

and R are weighting coefficients respectively, N is control horizon; Equation 4.2 is the

constraint imposed by prediction model f, Equation 4.3 refers to the relation between

the manipulated variable u and the control input changes, Equation 4.4 and Equation

4.5 represent the constraints in the real system like input range.[42]
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Equations 4.1-4.5 define an optimization problem. There are many well-established

methods. In this work, we use interior-point method based optimization solver.[54]

From the above discussion, we can see the classical MPC aims at a set-point target.

It is fine if we want the system states to follow the desired trajectories. But for many

practical control questions, the controller goal is to keep the desired state in a defined

zone instead of a specific value. This target zone is often required in biomedical control

systems like the regulation of blood glucose and the treatment of anemia. To integrate

this target zone into MPC, we use zone model predictive control (zone-MPC)[55] for

renal anemia treatment control. As shown in Figure 4.3, zone-MPC divides the

trajectory into three parts including one permitted range and two undesired areas.

Hgb predictions beyond the upper bound and below the lower bound are marked as

yellow dots and red dots. The control target is to optimize predicted Hgb to stay

in the permitted range, which is marked as green dots, through manipulating EPO

dosages.

Figure 4.3: Zone model predictive control[55]

Like ordinary MPC, zone-MPC uses rolling optimization to calculate optimal ma-

nipulated variables and takes the first control input into action based on recurrent

states. The significant part of zone-MPC is the cost function. Instead of driving the

model output to a specific set point, the cost function of zone-MPC will penalize the

prediction out of the defined zone and allow the model output to stay in the permitted

48



range. The cost function is illustrated below:

min
u[k],...,u[k+N−1]

J =
N∑︂
j=1

∥xrange[k + j])∥2Q +
N−1∑︂
j=0

∥∆u[k + j]∥2R (4.6)

s.t. xrange[k + j] = C[k + j] · (x[k + j]− xref [k + j]), j = 1, ..., N (4.7)

C[k + j] =

{︄
0, if xLB ≤ x[k + j] ≤ xUB

1, otherwise
j = 1, ..., N (4.8)

xref [k + j] =
1

2
(xLB + xUB), j = 0, ..., N − 1 (4.9)

x[k + j + 1] = f(x[k + j], u[k + j]), j = 0, ..., N − 1 (4.10)

∆u[k + j] = u[k + j]− u[k − 1], j = 0, ..., N − 1 (4.11)

h(x[k + j], u[k + j]) ≤ 0, j = 1, ..., N (4.12)

g(x[k + j], u[k + j]) = 0, j = 1, ..., N (4.13)

C[k+j] is a penalty coefficient, which penalizes the prediction out of the permitted

range. There are multiple approaches to set the value of xref [k + j]. For example,

we can choose the value of the upper bound and lower bound. In this work, the

mean value of two bounds is the reference value in Equation 4.9. Actually, the effects

of these methods are similar because finally, they can lead to similar cost function

values by setting different weighting matrix Q. It has been proved that zone-MPC has

robustness against plant model mismatch as well as against measurement noise.[56]

But because there is no penalty to restrain states in the permitted range, the optimal

output may be close to the upper bound or lower bound. To solve this problem,

usually we can choose a tighter range than the actually desired scope.

4.3 Simulation Results

4.3.1 Van der Pol Oscillator Control

We still use the Van der Pol oscillator system as an example. The plant system is

simulated by Equations 3.9 to 3.10. Prediction model is the PINNC model introduced
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in chapter 3. Prediction horizon is 5T (2.5s). Control input value is limited in [-1, 1].

The first control target is to make state x1 track objective trajectory using classical

MPC. Diagonal matrix Q and R in cost function 4.1 are chosen as

Q =

⎡⎣20 0

0 0

⎤⎦ R = [1] (4.14)

The tracking result of 60 seconds is presented in Figure 4.4. Controlled state x1

can fit the green dot reference trajectory very well.

Figure 4.4: Classical MPC of the Van der Pol oscillator with PINNC

After introducing the classical MPC application in Van der Pol oscillator control,

we explore further the performance of zone-MPC. The upper bound and lower bound

of state x1 in Equations 4.8, 4.9 are set as 0.5 and -0.5. The simulated result in Figure

4.5 meets our expectation. The x1 trajectory oscillates near the bound.
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Figure 4.5: Zone-MPC of the Van der Pol oscillator with PINNC

4.3.2 Anemia Treatment Simulation Results

Finally, we implement the PINNC approximation model for automatic EPO dosages

control in renal anemia treatment. The zone-MPC for this question is formulated by
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min
EPO[k],...,EPO[k+N−1]

J =
N∑︂
j=1

∥Rrange[k + j])∥2Q +
N−1∑︂
j=0

∥∆EPO[k + j]∥2R (4.15)

s.t. Rrange[k + j] = C[k + j] · (R[k + j]−Rref [k + j]), j = 1, ..., N (4.16)

C[k + j] =

{︄
0, if HgbLB ≤ KH ·R[k + j] ≤ HgbUB

1, otherwise
j = 1, ..., N (4.17)

Rref [k + j] =
1

2KH

(HgbLB +HgbUB), j = 0, ..., N − 1 (4.18)

X[k + j + 1] = f(T,X[k + j], EPO[k + j], EPO[k + j − 1]),

X[k + j] = {R[k + j], x1[k + j], x2[k + j]}, j = 0, ..., N − 1 (4.19)

∆EPO[k + j] = EPO[k + j]− EPO[k − 1], j = 0, ..., N − 1 (4.20)

0 ≤ EPO[k + j] ≤ EPOmax, j = 1, ..., N (4.21)

In clinical treatment, the EPO dosage value is larger than zero. And in considera-

tion of the patient’s safety, we set an upper limit of EPO input which is the maximum

EPO value in the patient’s treatment records. This constraint is referred to as inequa-

tion 4.21. For this experiment patient, the maximum EPO is 20000. Related research

has revealed the healthy range for Hgb is from 11.6 to 15 grams per deciliter.[57] We

choose a tighter range [12, 14] for the lower bound and upper bound in Equations

4.17, 4.18. Additionally, we have discussed the abnormal situations during treatment

in the last chapter. Internal bleeding and infections are simulated as well. The RBC

population is multiplied by a parameter Ad as Equations 4.22,4.23.

Rk,new = AdRk (4.22)

x2,k = Rk,new − 4x1,k

µ
(4.23)

This parameter is equal to 1 when there is no abnormal situation. Internal bleeding

will cause an impulse decline of Ad, while an infection will lead to a step disturbance.

This results in the descent of Hgb. These disturbances make this simulation more

realistic and also test the model’s robustness. The role of the plant system to be

controlled is taken by the PK/PD Equations 2.1-2.8 with parameters in Table 3.1
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which is solved by Euler method. The prediction horizon equals 4T (28 days). And

the tuning parameters of zone-MPC are Q=1000, R=0.2. The result of 728 days’

simulation can be seen in Figure 4.6. The patient’s Hgb level starts at 8.5, but later

it is basically stable at the healthy range. Although internal bleeding happens on the

175th day and infection takes place from 525 th day to 581 th day, the controller can

successfully respond to these disturbances and drive the Hgb level back to normal.

Figure 4.6: Solution of PINNC-based zone-MPC with disturbance
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Furthermore, we take the measurement noise into consideration. It is modeled as

a series of Gaussian noises which is added in the plant system and influences Hgb

measurement value. The mean of the distribution is 0 while the standard deviation

is 0.3. The disturbance and noise are combined together and generate the result in

Figure 4.7. EPO dosages hold steady when Hgb is in the permitted range. If it is

close to bound, the controller will change the dosage value. Generally, we still get a

satisfactory control result lasting two years.

Figure 4.7: Solution of PINNC-based zone-MPC with disturbance and noise

4.4 Conclusions

In this chapter, we present the applicability of PINNC in the context of MPC for

Van der Pol oscillator and anemia treatment. Benefitting from the accurate PINNC

prediction model, MPC is able to find the optimal control input value. In the Van

der Pol oscillator system, tracking trajectory and restricting the state within a target
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zone is achieved through classical MPC and zone-MPC respectively. Facing the more

complex anemia treatment system, zone-MPC can lead to the proper EPO dosage

value. According to the optimized therapeutic schedule, the patient’s Hgb level can

be controlled in the target range. This zone-MPC system with PINNC model is

qualified as a decision supporting tool.
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Chapter 5

Conclusions and Future Work

In this thesis, we study the human body Hgb response modeling and control problem

under EPO treatment. The main aim of the thesis is to investigate the physics-

informed neural network based approaches, which have been proven to be an efficient

method for combining the data-driven neural network modeling and the physical

model obtained from first principles. The modified PK/PD model residuals are added

to the loss function during training to force the neural networks to follow physical

principles and infer unknown parameters. Since the original PINN is not created to

handle changeable control actions and variable initial states, it is not suitable for

control tasks. Therefore we propose to employ the improved PINNC with network

input interfaces for control actions and initial states in MPC. The applications of

PINNC in the context of MPC for Van der Pol oscillator and anemia treatment

successfully solve the trajectory tracking and zone tracking problem. The optimal

EPO dosage value can serve as a guide for clinical therapies.

In chapter 2, we apply PINN technique to model the Hgb response under EPO

treatment. The differential equations with impulse input and the delay differential

equations are replaced by the approximation equations and weighting functions. Ben-

efiting from the incorporation of the physiological model into the neural networks,

the test results show that the proposed method can build individualized models for

patients with renal disease with good accuracy. But these proposed methods are
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not general approaches and have some limitations. More complex differential equa-

tions will not be replaced easily. We are exploring the feasibility of using integration

to convert the differential equations with impulse input so that the residual of the

equation can be calculated. In addition, some papers have studied how to transform

delay differential equations into ordinary differential equations or partial differential

equations, which also inspires us to combine these methods with PINN in the future.

In chapter 3, to solve the problem that the original PINN is not capable of updating

the initial states and control inputs, we trained the PINNC as the prediction model

and it performs well on the self-loop prediction of Van der Pol oscillator and Hgb

response example. Actually, this kind of neural network should also have the potential

for parameter identification. We intend to use the PINNC for systems with uncertain

parameters. Moreover, we mainly solve ordinary differential equations in this paper.

In the future, we can apply this framework to differential-algebraic equations and

partial differential equations as well.

Finally, during the controller design of chapter 4, the classical MPC and zone-MPC

are chosen. Although they can achieve the desired effect, there are some improved

methods like recursive zone MPC[58] and stochastic MPC using conditional value at

risk[28]. We plan to try these methods which can bring better effects and solve more

complicated questions.
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