30851

TNESES CANADIENNES

I National Library Bibliothdque nationale CANADIAN THESES
of Canada du Canada ' ON MICROFICHE SUR MICROFICHE
Py ~
o

ha..r‘l ﬂ\o [N . e

NAME OF AUTHOR/NOM OF 1 AuTeur — e i topba

TITLE OF THESIS/T17RE DE LA ThEse—_Llg Bun-—Tiee Sbruchive oL aw
Shae A Clecko t

ALcol &8

C~ "‘"P;(V

UNIVERSITY/UNIVERSITE U&\Qg_q'.%;_ o0& Alletn

DEGREE FOR WHICH THESIS WAS SENTED/

MsSe

GRADE POUR LEQUEL CETTE THESE FUT PRESENTEE

YEAR THIS DEGREE CONFERRED/ANNEE D°OBTENTION DE CE GRADE

197¢

I

'“\Ou'llow‘x :

NAME OF SUPERVISOR/NOM DU DIRECTEUR DE THESE Barv 4

\ 4
Permission is hereby granted to the NATIONAL LIBRARY OF

CANADA 1o microfilm this thesis and to lend or sell copies

of the film.

The author reserves other publication rights, and neither the |

thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written bermitsim.

L’autorisation est, par la présente, sccordée 3 la BIBLIOTHE-

QUE NATIONALE DU CANADA de microfilmer cette thise et

~ de préter ou de vendre des exemplaires du film.

L’auteur. se rdserve Jles augms droits de publication.; ni la
thase ni de longs extraits de celle-ci ne doivent vétrc'imprim

ou autrement reproduits sans I'autorisation écrite de I'autewr.

oareoroart_e Lot (¢

. SIGNED/SIGNE. Cz“} nna e ——

e

: PERMANENT ADDRESS/RESIODENCE FIXE # Foy- 3’7’ & = 12 S*’,

Efap, At

a

e Al 4y

NL-®1 (3-74)

INFORMATION TO USERS

THIS DISSERTATION HAS BEEN
MICROFILMED EXACTLY AS RECEIVED

This copy was produced from a micro-
fiche copy of the original -document.
The quality of the copy is ‘heavily
dependent upon the quality of the
original thesis submitted for
microfilming. Every effort has

been made to ensure the highest
quality of reproduction possible.

PLEASE NOTE: Some pages may have
indistinct print. Filmed as
received.

Canadian Theses Division
Cataloguing Branch ,
National Library of Canada
_Ottawa, Canada KIA ON4

AVIS AUX USAGERS

LA THESE A ETE MICROFILMEE
TELLE QUE NOUS L'AVONS RECUE

d'une microfiche du document

original. La quilité de 12 coptc

dépend grandement de la qualité
de 1a thése soumise pour le
microfilmage. ' Noug avons tout
fait pour assurer upe qualtité
supérieure de reprodugtion.

NOTA BENE:> La qualité d'impressi
de certaines pages peut laisser &

»F

désirer. Microfilmee telle qu

nous 1'avons regue,

N

Division des théses canadiennes

Direction du catalogage

Bibliothdque nationale du Canada

Ottawa, Canada

K1A ON4

Cette copie a été faite a partie

on

THE UNIVERSITY OF ALBERTA

‘pHE RUN-TINE STRUCTURE OF AN ALGOL 68

STUDENT CHECKOUT COMPILER

by

. @ CHRISTOPHER BARK THONSON

e A THESIS “ '
SUBHITTBD 10 THE PACULTY OF GRADUATE STUDIES AND nzssnnca
‘ Iu PARTIAL PULPILLNENT OF THE REQUIRENENTS FOR THE

Al

DEGREE OF MASTER OF SCIENCE

DEPARTHENT OF CONPUTING SCIBNCE

EDSONTON, ALBERTA

PALL, 1976 | -

THR UNIVERSITY OF ALBERTA (\

PlCDLTY OF GRADUATE STUDIES AND RESEARCH

.The undersigned éettify that they have read, and
.répoinend to the Paculty of Graduate Studies and Research
f6r‘acceptance, the thesis entitled THE RUI-TIHE STRUCTORE
OF AN ALGOL 68 STQDB!T CHECKOUT COMPILER submitted bYy
.Achristopher Mark Tﬁonson in partial fulfillment of the

requirements for the degree of Master of Science.

ﬁXmM« 7
W

cseese ® OO G GO OROPOEGORD PSSO OS S

n .
e

'nu'z 3. ..ﬁp*f‘-—b‘—:. .’.c’.zé

<

Abstract

L
[}

A run°tin§ structure suitable for ilpleneniing a
checkout compiler for ALGOL 68 is described. Pirst, a set
of design objectives are giveh: then the structures and
_algorithms used Af run time are ﬁescfibed. Difficulties
with tracing are discussed. An outline is given of how

-

dumping might be done. Pinally, some pragamatic o

considerations are presented.

iv LT

- : Acknovledgesents

I vould iike to expiess RY appreciation to Colin
Broughton, author of the compiler portion of the PLASC
systea. his whip wvielding, coddling, and pointed
queégioninq vere monusental in keeping leL;n the straight-

and-narrov throughout the project.

I would alsoTlike to thank ®mY supervisor, Barry
<
Mailloux, for his support, and tolerance of my-railing at
aspects of the language which posed difficulties. Also, I

would like to thank Jim Heifetz, vho contribated sany ideas

in many long discnssions.

Table of Contents 4

Cprtet 1: Intr0d0c€iono ® @ ® © 0" 800 9SOS Q0 s ® 5 ® 8 000 e 1
:1.1 DGSign Goals......'.............-..0...............1
1.2 Aspects of the LanNg@Aag@.ceccccccccccccocsccascannscaall

Chapter 2: Run-Time StIUCtUr@e.ccccacccccccscccacsccnccal
2.1 Type of Object Machin€ec..cceececcccccccnscenaccanas?
2 pe Of Object COde....--.........-o..--o-.....-..-ﬂ
2.3 Memory AllocatioNec.cceccccccnccccccccccacocanccnasll
2.8 Storage StrUCtUre@S.c.cccccccvscecccccccccassacocnsl
Def BitS..cececccccccceccnccccccccnnnensacncancannel?
Refs.....“.-.-.......:......................Il...¢.13
ROWSB. cevecncccceoscccncccsscccccncncsccsssccaccnaselll
StructufeBccccccccvcncscccnccnsccccns P 1
Miscellaneous ObjectS.c.ccvccccenccacccccccnscaaasl?
Tasks and RangeScc.cccecscccavccsccacs cessasceccceaslB
Mode TemplateScccccccocccccccccssccscnscaancsesccaell

2.5 AlgOorithBSecvcececccnceccacenscasnccccscasancccsensldl
Denotation®...ceoceeeecneaeceeetncecntnnnnancaaad
Dereferencinge..ccccecccecccccecccciocncsapancasacaell
Assignment and ASCriptioN..cceccceccctrccccncccccesed
Slicing...26
Multiple Selection.e..cccciccccecccecccccnccncncesceald
Selection-..-.......-..-......-.......--...-.....-30
Roving and Enrovwingecescccecccecccecececccacccacnceasll
Declaration; Gemeration, and SKipeeececacosncnnceeaal
Block Entry and Bxit...ccececcecccccnccccacacecnneell
Calls and RetUINS.cccceccccccsccvscscnccscncaccceell
Loops....I.......Ql........."...IO.....'.Q..I..'.36
.Choice ClausSeS..cccccconccosrcsceccascsaccccacccccnal’l
Patallelis.......'..................l...l."“.‘..38
GOtOSeccecnceaccesoecccccoccnncccsarsoscscanaccsnsascaldl

2 6The Gatbage collectoronooiuol....Q.........l....'.“‘

]

Chapter 3: Error Checkinq..............................ué.
3 1 T’pes of nrors............-...................QOOQG
3.2 some Brror-Checking rechniqnes....................51

-~ .

. Chapter §: Ttacing and DuBpingececcccecccccacaccnnaccaceaas9d
u.1 rraciﬁg..........................-........‘...'...60

a 2 Du.plng.'...,..-.'......‘..............‘......'...63
Chapter 5: Some Pragmatic ansiderations.....:..-......66

References.....0-...‘...’..;.....;.‘OO'OO..-0,....-.....'...-6-9

C-U - - | ‘ ‘ .[-‘

\ vi

Chapter 1 .
7

Introduction

1.1 Desjign Goals -

ALGOL 68 is, in lanj vays, a suitable language for
teaching Coaputing SCiegée. The ianguage h;s vell-defined
-sfntax'and selantihg, ahdyelploys many of the concepts of
Computing Sqiehce. It is also a "growth" language, in that
a student can coﬁtinue to use it as hé becomes more
sophisticated. fﬁis iﬁ not to say, hovever, that it is
co-pleie: there is still a need for other langnages.i
| Hovever, there ig no doubt that ayétﬁdent—oriented compiler
.systen fo; ALGOL 68 is necessary to its»lcceptance as a tool

¢

for instruction.

In this thesis, such: a systes isA'desctibed. The
thesis‘concerqs itself printrily‘vifh the design of the run-
time ‘systel, 6:’ object-machine ‘interpreter. The primary
élphasis is on errorﬁchecking, tracing and du;ping, and howv
:'they afe aqconplishéd.' The desigi described herein has beeéen

>

implemented (as a separate project) on an iBH /370 as the

* ' 1

\
1

FLASC system (Pull Langunage ALGOL 68 Student Compiler,

(4, 10]))-

Many definitions have been given for the ters
"student compiler"” [, 3, 5, 6, 1], each differing
slightly. our design goals reflect wvhat ve mean by this

term: : -

1. Past compilation
In a student "cafeteria® progranni‘é environlgnt,
the emphasis is on compilation:, prograss’ are
cospiled repeatedly until they appear to be

correct, then are thrown avay. Por this reason,

consideration. . - —

2. Extensive run-time errof checking
It is essential that checks be made for
uninitialized vﬁlues, snbscripts 'ont of range,
scope violations, arithaetic overflovs, and
sisilar errors. All of these checks must be made
at run tise, éince it cannot be guaranteed that a

-

cospile-time check will suffice in general.

3. Tracing and dumping
It is important that the user be able to trace the
flov of his program, as well as the values of key
variahleg. Symbolic dd’ps are also of great use

in discovering vhat has actually occurred in a

efficiency of execution is a strictly secondatyv

L gl

6.

‘ensure that error messages both locate and \J

programs run.

Lucid error messages

Nothing ig less informative than a "96-ething vent
" .

vrong somevhere" message. Care must be taken to

: e
describe the error inm a clear, conpq&#ensik}z&¢ﬂ¢

manner. It is often advisable to give t

a8 i&u'

causes and solutions.

Indestructability \i %
The system aust be secure, in that the user must

be reStricted to his work space.

Cost limitation

There must be provisions for imposing time and

output limits on student rums.

Memory residency
The use of overlays -and utility datasets temds

both to increase cost and to degrade real-tise

perforsance.

No object modules /
The conpiler/run—tile systen vinteé;ac! is lgch -
sispler if object modules are not-produced. | This
éilplicity is reflected = in lowver cost of .
cobpilation. independe‘f‘co-pilation is géherally '

unnecessary in a student facility, and is properly

the domain of production compilers. This does

<

not, howvever, preclade this conpiier froa
processing object modules from other cospilers (of -

course, this violates security).

Many of the techniques described in this thesis are
very time- .na' space—consuling. Some can be do;0'10te
cheaply, but most cannot be improved by more tham a factor
of about two, which would have little ilpa;t upon the
rnnninqhtile of g’typical prograas. Prograa size is not

considered to be‘very important.

1.2 Agnss.ts of the Lapguage

At the outset of the project, the decision vas aade
to implement as‘nearly as possible the full language ALGOL
.68, as described in (11}, hereafter referred to as “the
report". There vere several reasons fbr this: ‘ (a) ‘ it vasﬁ
considered desirable to have a full-language implementation
(as opposed to yet another subset); (b) the 'langnage
described in the report has been carefully checked for
aibi§nities, and these have been removed; (c) a 'final
authority exists for appeals about the meaning of obscure
constructs; and perhaps IOSE importastly, (d) no_effott had
to be expended im the désign of the lahqdage to be
iiplelented: rather, d;slén of the ilplelentatibn‘ could

begin immediately. ©

During the course- of the "implementation, sosme

problems vere encountered in the language, il-ost all in the

- e
area of transput. This is primarily because, unlike the

rest of the language, transpuf is not at al} vell dgsctibéd‘
(the method of descriptién being a program), and ig riddlgd
vith errors. A fev deviations vere made to enhance the
human-engineering aspects of the system. One aspect of the
handling of loops -axl be ¢onsideted different fros the

report's definition. This is discussed later.

There are several aspects of the language which other
isplementations have gemerally excluded, but wvhich bhave been
i-ple;ented-in PLASC: parallel processing, flexible rovs,

andv unions. Parallel processing is usually omitted bgéad.e
itjpreclddes the use of a ‘traditional Algol 60 stack.
Plexible rows are often oaitted becaﬁég they also cannot be
done in a stack model. Unions are ngually \o-ifteﬁ' because
they conplicate the object code. Because the PLASC systes
i-blelents all of these, it requires §ope nonstandard data

structures to support thesm. These data structures are

" outlined in Chapter Two.

’of,conrse, the primary purpose of a checkout compiler
is_to discover errors. Let us comsider sose of the types of
errors that can be made in an ALGOL 68 progras. Host
obvious are syntax errors. These afe'not considered in thié
thesis, which is ‘concerned with run-time errors only. Errors
can - be made in the formation or use df modes: these can all
b§ detected at compile time. Tags éanrbe used without being

declared. This can usually (but not alyaysi) be detected at

¢
-

L - . .

» compile tinme. lttelpta»can be li&! to’ deréfefémce naueé
vhich have never been assigned to, of which are nil. This
can be\ﬂetected only“at:pun ;%le.volhet errors vhich must be

checked for at ruh &;na ‘inb}uag: out—of-f;nge subscripts(H
acritheetic 'overflovk, ttgh!?ﬁt -@ErOrsS, Scope vioiations,

mesory overflovs, nonterainating loops, runavgy“ recarsion,

deadlogk of parallei‘processbs; assertions that do not hold,

I

and argulents out of tanqe for stand operators and
] ' i _ .
procgdures. chapter Three descrihes these rrorg in more

detail, and outlines their handling in the PLASC systes.
) £ :

yr, , . ’ 3
-f}‘QSe other 'ilportant function of a checkout conpiler
1s to aid the user ‘in tracing the flow of . his p;ogt;-.x:aud,
in the evens of an~prror, dulping the values of vnriables.
There are many aspects of ALGCL 68 which lake dumping
difficult }andvtgacing ineffective. Chapter Pour deals vith

IR

these difficulties and some possible solntions to then.

. Chapter Five discusses some of the \ipraglatic

considerations of the PLASC systea.

Chapter 2

Rua-Time Structure

" ’ -

2.1 Type of Object Bachipe (

The first and most important decision to be made in
the design‘of an object machine is its basic nature; i.e.,
vhether it is to be a stack, accumulator, or general

register machine. This decision pervades the rest of the

design.

& .

In the PLASC ;Systel, a forn of stacﬁ machine Gas
choien. There are several reasons for this choice. The
»lOéf ilpqttant is that conpilation<is greatly‘siiplified,
code gene;atién béing essentially a traversal of the parse
tree. /A1l the ﬁroblelsv Aésocdtted vith register and
telpbrary.stq;age location 'allocatibn ate_~thqs avoided.
Somewhat 1less 'ilpo:taht is that the treatment of values at
.run tilé is qo-pletély nniforl; operands are glvaysafound in
a standard order at the «top .of tﬁé‘ vork stack, and all

results are left there. ' The stack lqchiné«has one important

drawback, hoyéver:_ execution jé very slow (especially on a

7.

/370). This is éonsideted to beé much less important than
the speed of coampilation. One ramification of using a stack
model is that support of garggqe collection“is quite
‘costly. This is becahse thé garbage coliector must be avare
of what is stored in the work stack during all phases of
computations, since a heap generator may be used during a
calculation; this wmeans that the only pointer to fhe
generated bbject is in the work stack. This is the only
situdeion where the work stack contents need be considered.
There are several iethods‘of coping.vith this need: using
self?identifying data structures, keeping a separate stack
containing thé modes of ,all the obiects on the wvork stack,
or keepihg a separéte stack containing all pointers inside
.objécts on the vork stack. The last method-vas chosen in
FLASC, primarily beéause it is fastest. Note, however, that
this-léthod may preclude a coampressing garﬁage colleztor,,if
(as in PLASC), only significant, rather than all, poihters

are kept. .Significant pointers are discussed latet, after

memory allocation has been described.

2.2 Type of Obdect Code

Use of a stack'hodél specifies a great deal Abont the
object codé, but two more ‘-ajor‘ deciéiois must be made:
vhéi er to generate Stgndalone 'or threaded code [2], and
\Qhe ﬁer or not to genérate oﬁjéct‘lédules. ihv_rtnsc, both
decisions‘ were ‘made with ;ilplic%ty of COngilatiqn in mind:

threaded code, no objéct modules. ' This implies that the

code is generated directly into memory, and is not teloc&téd
after conpilation: Thus the entireilanguage.processorc(LP,'
by wvhich both the compiler and tun?Eile systeliarg intended)
is resident at all times. 'This cdusules‘-a, éreat‘ deal of
space, but has the advintage that, since the LP is rensable,
no part of it n€éed be reloaded bDetween runms. \uére
importantly, the geﬁetated code can call directly those

parts of the run—-time systes fRTS) vhich are needed. Thete

is no need to "link edit" the gemerated code with the RTS.

Threaded code is a series of '§ubtontiqe"éa11s,
| interspersed with inline constants. On the /359, the calls
csare. BAL instructions, which p;ovide algean§~of accessing the

inline constants. For exasple, the call to ad& tvo 1ﬁ£égets
already on the work stack would appear as: |

BAL RET,XINTADD
DpC AL2(line,coluamn)

The second word (two halfvé) is. the source-listing
coo;Einate: this is provided fof the ef;or processﬁr, in the
‘ event of overflow. uofe}thaf'vhen XINTADD is‘entered, RBT‘
"points at the coordimate. To exit, XIHTADD branches to
offset fouri from RET. This_is the address 6f.the nexf BAL
in the code sequence.; bse of qtﬁis schele ilplieé tvo
ilporfant attributes of the RTS: at least part of it aust be
addressable .frOl the‘generéted.code (i.e., there lnsf be at
least opé base register pointing at the RTS), aqﬂ- fhe: RTS
igill be essentially a large collection’ofASnbtoutines, most

of thena quite small. oOf course, not all of the RTS can be

4

10

directlj addressable; even if all fifteen availaﬁle
registers vere used, this would liait its size to 60& by;és,
and not leaveiany vork registeérst Instead, a conproiise vas
reached: three fegisters are set asidebfor base tegistefs,
and a special ronﬁineunas written wvhich calls ot?er routines

not .normally addressable. Small, often-used routines such |
as integer addition are 1in the addressable portion, and
large, seldom-used -routines such as formatted input are in.“

the portion not directly addressable.

4

One very important attribute of this threaded-code
scheme is that (for generated code at iegst), the comaon
/370 probleas of addreSsability are completely avoided. This
vastly sinplifies code eamission. Bqﬁally important is the.
fact that only of fsets of entry points in the RTS need be
knovn by the code emitter. This leadslthﬁf.a auch sSwmaller
. nulﬁer of relocations need be made wvhen tﬁe LP is loaded;.

further reducing the cost of its use.

Hemory allocation in PLASC is fairly -silple.— xil
memory is alloéated' in blqcké vhich Sta:t uifh a standaid
ntitle". All‘blocks are allocated in the heap aréa. First-
fit allocation is dséd,Néiploying a roving pointer [9, 'pp;
837, 597]. rirsf-fit is used because‘littléf(if gpythingj
1S'known.abont the éffectiveness (or lack thgfeof) of ahy

other algorithm in an ALGOL 68 envirohient. It was'éhosédf.

*

LR

for its speed and simplicity. Standard titles are used to

si-plify garbage collection.

Note that there is no Algol 60-type stacg in this
scheme. On the contrary, because of the needs of parallel
pProcessing, a cactus-stack arrangement is used. To make the
stack =model work, lzcal stack frames (DSPs) are used, each
of vhich contains the work stack area ‘needed‘ by the code
generated for the range concerned. LSPs are described
later.

: _ o
Each block has two portions: a title and a data

area. The title contains four parts: flags, including the

) SO A
| F | -> next block |
4 4— —
| { -> mode i
L A ; M r'}
L A] R J
| | nest level !
[A d
L I
I
i data {
,
1 i
[} ']
A Block

garbage collector marks and freesallocated bit:f.# "ﬁextfu

pdinter used to chain blocks ang also determine their sizes:
af mode pointer which points ; a trée used by the garbage
collector to deterline:the.forl Stithe»data area{ and a nest;
iefel vhich is used in_thevsc;pe check. Garbage colléction

and scope checking ape described in later sections.

12

Local and heap cells differ primarily in the manner
by which fhey are freed. Local objects are collected 1into
stack fr;les; and freed explicitly yhen the range is exited,
whereas heap objects are allocated individually, and freed
- vhen the garbage collector discovers they are no 1longer in
use, Under this schele, it is normal to call the lénory

allocator only once per range, to allocate its LSP.

2,0 Storage Structures

ALGOL 68, dﬁe to its complexity, requires many data
structures at run time. In an effort to minimize complexity
in the PLASC RTS, two goals vere adopted: a minimum number
of structures should be used, and the use of then should bé
unifora. U;det this scheme, all fefs, fpr example, look the
same, regardless of uhat'théy rgfer to. This lethodolbqy
simplifies all the»algorithis which process tﬁe structures,

especially the garbage collector.

Def Bits

L

It is essential that a student LP cgeck for the use
of uninltlalized variables. The rLAsc system uses a special
bit, the def bit, to deteraine. the defined/nndeflned status
of- 9aéh' cell._ Because nore . than one hame may refer to any.
~one cell, def bits must be assocxated vith values, not
nases, even though they are checked only vhen names are

being dereferenced. Bost, but not all, values ‘have def.

bits.’ Anything possdésed by a‘tag hus one. Th&ﬁonly time
_an object does not have a def bit is when it is a structure

t @
or row (1njvhich case the snbobjects have thel), or 'when itr
is known to be defined The latter most connonly occurs in
str1ngs, vhich are assigned as units apd thus norlally nust

be wvell-defined. More on def bits later.

‘Def bits are checked whenever an object is ‘dved onto
the vokk stack. Most commonly this ‘vill ’be 'while
dereferencing a name or pushing an object possessed by a tag
onto the stack. Under no circumstances is an undefined
value alloved on the work stack (skip is considered to be

defined) .

Refs

As mentioned aboie, refs have a standard form. They

~

‘consist of a title pointer, which points to the title of the

i { -> title 3
| & v L
i v | => value |
— 4 4
t D8 | => def bit ¥

. A ‘!gqﬁgef)

storage block containing tﬁc ttllog a value {dinter' and a
~def Dbit poxnter. If the valudﬁ'g .a bool, thqe the VN field
is. used as a lask to tell which ht v1th1ii*~ t;he byte is
used. Similarly, the Dl fi‘ld ‘.'a mask for the def bit.

14
The VM field could have been elil%nated by storing bools one
to a byte, thus achieving complete unifornity‘in addressing,
but it was decided (and 1ater‘regtetted) that rows of bools
should be packed, since these rows are typically huge,
making the 8:1 ‘épade improvement desirable. Under the

scheme used, bools are.alvays treated as special cases. I

Rovws are represented by two data structures. One, of
constant sizé (determined by thé hulber of dimensions), is
the descriptor,~vhich s norsally stored in the LSP. 1A flag
field indicates vhether there is really a bunch (sénetiles
there 1is no buﬂch). A bunch is the dynamic part of a rov;
bunches are described below. Thg:déscriptor also contains a
bunch title pointer, for us§ by the garbage co11ector, a
bunch >;a1ne_ pointer,. which points at the first element in -
the bnncﬁ, and a de£ vectbr pointet (vhidh may be zero). Def
bits of rov elements are collected into a vector and §toréd

in the bunch.

| The xe-aindér.'of the fields are used for slicing.
' Bach'dilensién has a three-vord .descriptor, éonsisting of
the upéér ;ndtlover bound, and the strfﬁe. The stride is a
maltiplication factor used in'indexing;'andﬁis the product
of the_@ﬂsizes!‘.of the ptévious; dimensions. It thus
indicatQS'the_spacing of the elements of a giveh ;diienSion{

The ites spacing is normally the size of each element in

(. 15

e |

-> bunch title]
4

L
-> bunch values|

-> def vector

p—-{h-—-‘n—-‘

def spacing

item spacing '’

def offset

item offset

dim#1 apb

dim#1 1lwbd

dind#1 stride -

dim#2 upb

1-—-1;—W-J-qp—T-—T-—ﬂ-—Wn—wp_w_-.‘;_q

¢
b o e e b whe e e w2 e o the e B ame b s e e e o e

W

A Rov Descriptor

bits, but may increase during multiple selections. The def
bit spacing is normally ohe, but may also increase during
multiple selections. The item and def bDit offsets are

norsally zero, but usually increase during slicing.

As lehtioned‘above, a bﬁhch is the dynalié part of a
;ou;. As such, its size can be deteramined only'at run time.
Thus, bunches are not put in LSPs, but are allocated at
generatioﬁ'tile in’thg’heap area. Each bunch starts vith a
‘ standatd title. An element-count field tells the garbage
: collector hov lany itens are in the bunch. The. trtnsient-

nale-count field is used for error checking during flexing

16

—
P | -> next block

'y
¥

| -> mode
#4

| nest

yu

element count

trans name count

data vector

def vector

p-—‘—_Tp-—q-—wp—wn—qp—q-l
NP SN W SR S S S

A Bunch

operatioans. ihe actual rov elements are stored sequentially
in the data vector, and their def bits (if any) are stored
in the same order.in the def vector. If the elements are
stoved, or known.to-be defined, theh theie will be no def
vector. If the row is flat, there villlsfill be omne elelenf
(even though the element count'vill bel;eto), vhich is used'

- during bounds checking.

s

Structures are very sisple. They are ‘concatenations
of their constituent fields, possibly in order of their
alignment requirements, folloved by def bits for the fields,
in any ordet. 1f i field is in turn a stracture, the field

is treated as a_separgté structure; i.e., substructures are

not broken apart . to incregsé storage utilization. This

17

method 1leads to uniform treatment of structures, even vhen

they are parts of other structures.

Biscellapeoys Qbijects

A complex number is a structure of two fields; the
real and the imaginary parts. ‘rolloving these are the twvo
def bits. Thus a complex is just like any'othet structure,
although the RTS treats it in the same manner as an int or

real in most cases.

A union consisfs of twvo fields. The first poimts at
the mode of the current value, and the second comntains the
value. The second field is large enough to hold the longest

of the possible values.

A procedure valueghas tvo fields,, The first is a
code pointer and the second contains the nest level (scope)

of the routine.

A format is stored as a tree, in much the same manner
as outlined in the report. A format value has two fields.
The first points at the format tree and the second contains |

the nest level.

A semaphore is a structure of ome field, a ref int,
. as suggested in the report. The int is allocated oh the

heap to avoid scope restrictionms.

A channel is simply an int at run tise, although the

18

user is not able to make use of this fact. 1A file‘is a
structure vith a single field, a pointer to an internal
block. The def bit for the field indicates the open/close
status of the file. The internal file block is much the

same as that described in the report.

Tasks apd Ranges

As previously sentioned, each range in the user
prograa has a local s}ack franme (Ls;) associated vith ig
(provided it contains deciarations other than loop control
variables). LSFs consist of fodr main parts. The overhead
portion. is a standard title followed by a flags field, a
pointer back to'the task display (TD, described below), a
pointer to the last (chronologically) LSF, a pointer to the
iast (recursively) LSF, and save .areas for the wvork and
title stack pointer registers. The user data area is next.
It consists of all the local stor#ge‘declated by the usef,

.together with any def bits required (this area is just a

structure). At the end are the work and title stacks.

'LSPs are chained chronologically (via the lasi' LSP
field) for the benefit of range exit, return, and goto,
vhich alvays process LSFs in reverse chronological order.
These routines often make use of the mode field in the title
to distinguish TLSPs. A separate chain (the pushed LSF
field) is uséd for recursion. . A1l LSFs on the push chain

are of the same type (i.e., belong to the same routine).

19

->» next block.

\~
-

=> anode

nest

-> task disp

-> last LSF

-> pushed LSF

curreant USP

¢urrent T§¥

]
8]
P—-‘n—db—.{-.—dh—.]p_.in—.rw-q

aser data

vork stack

title stack

-—-_"—_—q’——-T—qP—WP—.‘-T—”-qP-_-ﬂp_W

b———'-b———di———ah-b-*—db—db—-b—-b—dh—d

A Local Stack Frame
This chain is nsed to keep‘the task display accurate.

The work-stack area is used féf the sforage gf’ all
telpofary and intermediate results. Its size is béunded and
is determimed at compile time bj sisple-sinded "simulation®
of the code generated. The‘ilodnt of vork space needed 1is
bounded because elaborgtion of any cOnsgruct Hhich.teqnires
an unbounded amount of vork space (e.J.., gecnrsioh) causes &
block‘entty; an§ therefofe Allocates a nev vork-stack gfea.
“the size of vﬁich can be calculated later (but which will

also be bounded). The title stack is ‘provided for the

20
benefit of the garb:ge collector. EBach time an object
containing a title pointer is pushed onto the work stack,
this Atitle ‘poinfer is also pushed onto the title stack.
Thus title pointers are considered to be "signifiéant"
pointers (in the sense of Section 2.1), while value and def
pointers are not. These stacks grow from the hottom of the
diagram; that is, toward 'lov ienory. This facilitates

access to values inside the stacks, since the /370 does not

handle negative displacements very well.

Due to the block-structured nature of the language,
values stored in ﬁutet ranges must be accessible.’ This
requires some sort of t&sk' display (T0).” Parallel
processing :eqtires'ldltiple tps. In PLASC, each task or
process has a fB, .vhich po}nts to all the LSPs vhich are
active in that task. ;111 ™0s haieAthe same shape: creation
of .a nev task merely involves'r;plicating"the'old TD, then |
chaining appropfiately. .This 'ensures that all sibling
processes start out with identical icéess~to values. ' The
initial TD is the ®root® of all blocks in memory; the
garbage collector starts here in deteramining what blocks are
active. |

A

and an ‘LSP vector. The ovgrhead region consists of a

.TD comnsists of two uain'gatts:'an overhead region

'standard title; a flags field; pointers to the parent, next

sibling.-ahd eldest child TDs; a'coiﬂter of the number of

children alive; a 'pointér to any seamaphore upon vhich the

21

-> next block

->‘lode

nest

1 S

#——-1-_——1P—1-qb-qp-qr—qP—qu—Tp—qp-q .

P2 -> pirent TD

~> sibling TD

-> child TD

- p—-b—-‘b—-b-*.—.lﬁ—q

children

> semaphore

coordinates.

reg save area

LSP ptr vector

SO S WS S R SRS RN RPEIpS SUNDS SO SR

A Task Display

‘task may be vaiting; _the coordinates of the point of
suspension (if any); lih& a régistet save area. Thé LSF
~vector has one entry fbt'eachvtype of LSF in_ the progfau.
BEach range qhich has an LSF has its own sloﬁ in the TD. .The.
of fset 6: Any particular LSF is computed at coampile ti-e,'
and is used as an ‘inline féonstapi for primitives which

,

access global values.
)

- Mode Te!gigtgg

Whenever vit is neceSsary- to knov'the lodeldf some

qugct‘(snch as a block heade®@ by a title),'a pointer to a

22

Pl

mode template is used. MNode templates are trees, each node

Ll L J L 3
T | IoOT{ P |

A F'l

size of object

->g3ext level

node number

TD offset

WS base offset

TS base offset

-> routine name

¢ dimensions

¢ fields

field size
field offset

R field def offset
field mode
field name

--—_—————-dbﬁ—dh—d-—.db-dh—-b—'dh—dh—dh—-

-——-F-——'——T’-—T-—qﬂ—ﬂ'—qr—q-;wp;w-—wp-"q--q

A Node Teaplate Node

of- yhiéh is a wvord in the canmonical wmode spelling.
Structures and LSPs have nodes vith field déscriptors,
causing multi-way bfanches in the trees. Other mode words,

such as ref, result in unaty nodes.

‘The T and IOT fields indicate the type of node; the F
' field is for flags. The mode-number and routine- and field-
naxe fields are used for dulping. The TD-offset, and work-

and title-stack (¥S and TS) base-offset fields are used by

23

block entry. In the implementation, seﬁeral of the fields
are ovérlapped to save space, since a typical program will

have many tesplates.

L. I
Mode templates "are - used by most utilities dealing

with arbitrary objects.. These inclede the garbage
collector,.dereference routine, most error checks, including
defined, scope and bounds checks, generators, copy routines,
transput, etc. In general, wvhen a mode is not simple (e.g.,
real, ref 1nt), a mode tenplate pointer is glven to describe

it.

25 orithas
Most of the algorithss vhich 'lassaée the data
structures outlined above are quite simple in nature,‘
"althongh _scme are not obvious. The algorithls descrlbed
here can be broken into tvo btoad classeS° data-manipulation
I

algorithas, and control-strncture _algorithls. The former

are described first.

&

| Qenoiations |

Host denotationé‘ are handled by the co-piler and
require no tnn-tlle act;on othet than copylng them to the
vork stack, string denotations are sonevhat different. The
conpilér- passes a pointer and a length to the RTS and a
'descrlptor is built on the stack. lote, hovever, ‘that no

bunch is allocated and the string is not copied. This is

24

"one of the two cases when a rovvdoes not have a bunch.

Rov and structure denotations (i.e., displays) are
done by first elaborating'the fields, theh either en;oving'
or'enstructing (described'latér). Note th@t'ih the case of
structures, space - is allocated in ith§ vork_sfﬁck before
elaborating the fields, to give "gnSQrupt" a place to build

the structure from the fields.

petgfexgﬁﬁggg

Dereferencing» is normally quite siléle. For silple
modes such as ref'int; it consists of usinglthe réf on tﬁé
top of ‘the work stack to address the value and def bit,
check the gef bit, thgn éopy the value to the vork stack,
after popping off thd ref. uore‘COIpliéateed lodes-rﬁqhire
more effort. Often a mode telplqée vill have £o be
' tfayersed"loﬁking " for and checking the déf bits. Copyingf, ‘
the value to~£;e_vork stack may not be sufficie s if t e
object points at any bunches or fiies; fhey,'and any‘hﬁfr es -

they refer to, etc., must be reﬁlicated.

I

In an effort to Speéd_dp the RTS, speciél rdgfiﬁés
}uere‘written‘ to handle the common iodés such as int.
Strings,“ .ih‘< particular, are singled out for special
treatment. Normally, derefé;enqing a strin§ uogid injolve
copying the bunch, which would involve a memory allo@atipn.
If, however, the dereferenced value is.destiﬁed to be used

by a standard routine or.opér#tot, then no copy is made.

-

25

' Because more than one dereference can be made at a
single coordinate, the user is told the mode of the ref if
there is an error (i.e., if the ref is nil or the value is

undefined)..

Assignment and Ascription

There are three kinds of Assign-ent and two kinds of
ascription. Assignment can be done to a rov, a flex row, or
'a nonrow. Ascriétién-c#n be. done during a4dec1aration or a
ca..llf '§
Assignment to a nonrow.is simple, since a contiguous
object is copied from the work stack to the area specified
by”the_teceiving ref. After the copy, the sfack is‘ popped
and thé ‘def bit (if any) is turmed on. FNote that a scope
chéék,ot,bonndé check will often have‘to be made, especi&lly
if a“structnre‘or a ref is involved. Also, if ~the value
confains Tous, .then any bunches must be ;eplicﬁfed. Por -

reasons of efficiency, separate routines were vritten for

each of tﬁe si-plé»-odes.

- Assignment of a flex rd§ 1s'glso,sinp1e. ' Here a
check of the transiént-na-e céunt nnét.bé ladé, in addition
tq the scope and bounds checks, bht»'ﬁhe operafion is
essentially a copy.of thegdescfiptor.».P:ovisionlis n;de for
réw of plain, to avoid the scope and ‘bounds checks andv

] : ,
replications. This is p:ilarily\fo: strings (flex row of

26
char). Note that the row values never have def bits: since
they are on the work stack, and thus must be defiﬂed.

;M

Assignient'of a row iS.COIpliCated-' If the receiving
rov is a contiguous siice (i.e., the vhole rbv, or some part
in wvhich all elements are adjacent in memory), then the
assignient can‘pfoceed:via’a siqple copy, after scope and
bounds checks. 1f, however, the receiving rov is a
noncontiguous slice, then each -receiving element must be
indexed individuilly, then a copy made from the bunch being -
assigned. WNote that-in any event, the elements of. the Trow
being assigned are in order in memory, and can be copied

simply, after any subbunches have been replicated.

‘Ascription is always'a‘ Copy.‘operafion, the source
being én. either the rcutreht, or the ptevions vork sfaCk
'_(qépending on whether in i deciaration or call), . and ‘the
lde§§ination in the cnrrent- Lsr; Bbth thelvofk and title
stacks are popped after the copy iE -@de; Usdaliy;_the def
bit -associatéd'vith thé'receiving location is not turned on
in the case 6: a declaration (see Chapigr Three), bnt it vis
alwafs turned'on in the case of a call.

icin
There % are several,kindﬁ of slicing: indexing, which
. | , . ‘
causes the number of dilensioqs to decrease; subscripting,
vhich yields a'scai;:; and trimming, wvhich does not change

the number of dimensions. Of course, all these can be done

27

on both ref rows and rows.

~One of the first decisions made regarding slicing was
that rows would not be operated on directly. Rather, they
are "en#gfetenﬁed". then sliced, then derefeféncéd. This
rédncesgﬁthé amount of copying done,‘ and simplifies the

algorith!s greatly.

'_Subscripting is probably the most common Qf' slicés,
so an gttenpt vas made to iake'it fasf. In contraét fo;
indexes and trims, vhich in‘the interest of - silp;icify are
done '6ne dimension at a time, subscripting'is done all at
once. That‘isg all the subscripts aré puéhed‘ontb the vork.
‘Zgagk,' and the addreséing caicuiation is done ih A'tight
1oop:: This may not seem significant~until ifﬂiis realiied
that indexihg and tfi-linéiyielq new déscriptoré, vhich must
be a11o¢ated‘specia1lj; | - |

~ The subscript vcaiculdtion proceeds accordinijté the
foraula ‘. | - | -~ '

acc +:= (index '(i)f';ub(i).)*stpide (i) . |
The result of thié qaiculation 1s>£he offset (in'-itelsi of
the element within the bunch. Tﬁg'taicﬁlatidﬁ of the-aﬁtnai '
addtesse# of the element and its def ‘bit are doﬁe by
nultipiying this value Aﬁy ‘the appropriate fspacing;” and
'adding the dffset,,then converting from bits to bytes, and

' adding the value or def pointer.

.Indexing is‘quite straightforiatd. The arguments ire,-

28

the ref row, the index, and .the bound‘ number. A new
descriptor is built in tne heap area, having one less
disension than the old one. lext; all the dimension
descriptors are COpied; except the one being deleted. ~fhese
remain unchanged because' the spacing of the remaining
elements in the bunch remains unchanged. The value and def
- offsets, however, are changed according to the formula

i offset +:= (index—lvb)tstride * spacing

This is to account for the'shift in the‘addressing caused bj

. selecting an element other than tne first (i.e.. theQ\

selegp@d by the 1lower bound) as the index for the

operation.
v

There are fonr\kinds of trils: renumber, triml (1owen
bound- onlyf, tiilu, (uppet bound only). and trimdb (both
_bounds); The algorithas for the 1ast three are very
siniiar. Benumbering kesfablisbing_ a nev' lovwer bonnd)
.-involves copying the desc:iptor and'adjusting the apper and
lower bonnds. ‘Offsets‘and sfrides renain nnchanged; because .
the bunch. is not affected. Triase is:also sinple; It copies
vthe descriptor, then adjusts the specified upper bound.
FStnides and_offsets are not changed. Triml and trimb,
because :they }change .a .louer bound, are more coaplicated.

. lfter copyinglthe descripno: and changing the bound(s), newvw
offsets are calculated according to the forlula | |

- offset ¢:= (newlvb~oldlvb)¢stride » spacing
“This is to account for the shift in the addtessing caused by

selecting an element. other than the first as the lowver bound \\\\

)

29

of the operation. The strides are not changed. Note that
triau, triml, and trimb are all required to involve implicit
:enulbering (ihe nev lwb is 1).' This is done 1last, by

siaply adjusting the bounds. No other change is involved.

In an effort to speed things up, trims allocate new
descriptors oniy vhen instructed to do so by the 'c0lpiler.
If a series of trims is being done, thenAonly one descriptor
need be alloceted; and then’ rezsed‘ in subsequent.

operationms. -

Of course, -in all sllcing operations, the indices are

,checked against the bounds to ensure correct specification.

'uultielg.gg;eotion

Hultiple selection is reél}y more like ;SIicing, than
selection, since both the'argulent and result are ref rowvs
(again row values are enreferenced). No;-ally,-'ak new

desdriptor is_allooated by a multiple selection.

only the iten offset, and the def‘offset and spaclng
are affected dnring the selection. The 1tel offset is
increased by the offset of the field within the structure.
The item spacing telains unchanged, beoause tﬁe items are
still [elbedoede vithin the - structuree (i.e., no copy is
-ade;. If 'there is:nofdef bit essocieted"wiih- the field
o(i.e., it is stoveQ),_'then nofhing’else is dohe.‘ If the
field has a def bit, then the def offset (vhiol;” aust

>

. W

30

previously have been zero, since the rov elements vere

stowéd'and thus had no def bits) is set to the suw of . the

old itenm offse;//;nd the. def bit offset within the
{ *

structure. The def spacing is set equal to the item spacing

(vhich is equal to the lemgth of the structure).

election - , T

There are two kinds of selections: ref selections ahd
' value selections. Here again, enrefetedcing'could have been
used, but it wvas decided (arbitrarily) to implement two

different routines.

Ref . selections are very straightforvard; after

checking for nil, the offset of the field is added to the
value pointer in -the ref, and the def offset of .the field

(if any) is added to the déf.pointer.

B

vValue selectioné are a bit more complicated. ' Since

the‘strnctnre is qﬁ £he.work stack, the field must be copied

out of the structure, then the work and title stacks popped,

then the field pushed onto the work st@ck, and the title .

stack pushed ‘(for the field titles). "It was decided that a

memory allocation was undesirable, so the field is copied

onto a lowver pirt of the work stack (i.e., the -¥s |is

puéhed), then copied back after suitable adjustnenté are
made to the‘is,pointet. ‘This is one of ‘several routines

vhiéh_usé nextra" work-stack space.

-

ol | | ' 31

Rowipg and Epxowing

There are four kinds of rowing, and two kinds of
enroving (used in row displays). A va;ue can be rowed to
form ; rov of mode; a ref to mode can bé roved to form a ref
to row of naode; a rows of mode can be rowed to form a row
rovs of mode; or a ref to rows of mode can be rowved to fférn
a ref to row rows of mode. A colﬁection of mode cdh be

enroved to row of mode: or a collection of rows of mode can

be enrowed to rov rows of mode.

In all types of rowing, there is one object on the
top of the Qork stack at entty,.and a rov or ref to row
there on e;it- A new deécriptor is always Suilt. in the
first'Case {mode to row og_-ode), a bunch is also built. Iﬁ>
the second case, -no bunch is built, since the rules for refs
'in the language require that no copy be done. This is one’
of the two cases when a row descriptor has the "no bunch"
flag turned_on. In the third case, the desériptor on the
vork stack is silpiy stretched by one dimension. The same

is true in the fourth case, except that, since the

, . \
descriptor is not on the stack, a new one must be allocated,

and a copy nade.

o ~ In both types"of enroving, therei is a gfonp of
objects on fﬁevstack at §n¥rj; and a row descriptor there on -
ekii, In both'cases; dev bunches Are allocated, and copies
made of'all subelements. In the first case, the objects on

the stack are copied sequentially into the bunch. " In the

32
«
second case, each of the o0ld bunches (l.e., each element

vithin them) is copied into the nev bunch.

In rowing, none of the stridés, offsets or spacings
is changed. The nev ' stride is the largest of the old
strides. In enrowing, the def spacing is set to one, the
def offs;t to zero, the iteam spacing to the size of the.
objects, and the item offset to zeto.‘ The stride of the new
éinension is fhe largest of the old“strides times the number
of objects copied from the stack. ' Any bunches created by
roving or enrowing |are vifhout def vectors, since all the
eléments within the bunches must be defined (they came oOff
the work stack).

' Declaratjon, Generation, and skip

.

Declarations, generators and skips are either trivial
or nearly inpossible, depending on the mode involved., Plain

modes are trivial. Stowved and anited modes are difficult;

Declaring a variable of plain or coiplex mode
consists only of building the ref (if any).. No action is
 taken to generate a plain mode, since space is allocated~ig
the LSF at .co-pile' time, and this is 1left as zeros.
‘FGeneratinQ plain skips,conS1sts Si;plj’of pushing sose zeros
onto the work stack, and, in the case of colplex, turning on

the def bits.

Generating a complicated value involvés more vork. If

33

the mode contains rows, then the bunches must be alloéated.

In order to 4dd this, all structures must be traversed,
looking for rows as fields, and all rows recursed, Jlooking
for subrovs. Por this purpose, as well as the handling of
heap allocation, a generate routine is needed. If it is
given a location for the value to be generated, then this
space is.used; othervise, space is allocated in the heap for
it. Only “¢he top léve; of ‘any #aode (except rovs) is so
allocated; space for fhe entire value is obtained in one

piece. Scope can be either local or primal, depending on

another paraseter giveﬁ' by the compiler. Aside froam the

initialization of row descriptors after allocating bunches,

all_ areas are left as‘ zeros. This includes all def big

locations, so values #:e initially undefined.

The declaration of a complicated value involves

elabqrating the bounds (if any), possibly replicating thenm

for repeated fields or modes, then ‘calling the generafot;

ascribing the ref qhicﬁ is returhed, then popping the bounds

(vhich are not popped by the generator, to allov for joined

- declarations), and turning on the def bits for the tags
declared. The reasom for turning on the def bits last is

given in Chapter Three.

Elaborating the bounds qf certain modes lay‘reQuire a

call. In particular, modes .whbse' actual bounds ~contain

. B _ P
generators which involve the curreant aode recursively will

cause the code generator to recurse indefivitely if the"

34

~

~ actual bounds are not made into a routine and called. Note,

‘hovever, that this does not solve all problems: the routine

must have the same scope as thd@ declaration, or bogus scope

errors may arise. This ilpiies a special kind of block

entry vhich does not éhange the' scope level.

Skips of complicated modes are done .as generators,

for si-plicity.' Since dgenerators return . refs, a

dereferencing must occur. Howvever, since skip is required

to be defined, all the def bits within the value must be

turned on. This requires a special routine. Note that it

is also necessary to fill in some value for' unions. To
enab;e this, the compiler suggests some mood (via the wmode
field of the teaplate] for the “"make defined" routinme to

use. If this mode is a row, then a banch must be

allocated.

Control-Structure Aldorithas

Control-structure ' algorithas are those vhich -

implement sjntactic structures vhich ilpiy trgnsfer‘ of
control, or which manage stack frames (i{e., block entry,

blbck exit).

Block entrj allocates space for a nev stack frame,
and . the nest level is set Eo’that of the old LSFP, plus one.

This increment does not occur if this is a block created by

N

N

35

the coapiler arouad an actual bound. The 0ld LSF is chained
to the new one, then theupointer in the task display is
‘updated, after being saved in the new LSF (this is the push
chain). Pinally, the nevlvork- and title-stack pointers are

set up, after saving the old ones in the old LSF.

&
If there is a value to be yielded by the block, then

. \ .
the'?alne is copied to the o0ld work stack before the block
is exited. Thefe is a special roﬁtine to do this. Note
that a scope chéeck may be required here. If there is no

value, then this routine is simply not called.

Calls and Returns
: ’

Calls are done in several stages. First, a return'
dddress and coord1nate are put on the work stack' then the
. argdlents are elaborateqd; | then the call prilary- is
elelorated, At'this time the actwal call takes place.
Cdntdol is transfered to the address given by the call

prllary (proc value). At the start of the proc, a block
h{l
entrfgls lade' then thd paraleters are ascrlbed from the o0ld
0

work stack. At this point' the call lschlplete. Rote that

thesarguments have beep popped off the old 'stack, and all
» & . i “;ﬁ- P
that remains there is the’getnrniaddress'and_cqordinate.

> S
hd 2 7
‘*«

ll Before tetnrning, if a value is to be yielded, it is

coPied onto the Qld vork stack, and popped off the cnrrent

one. A scope check must be made here. The value copied

goes'above the return address on the old s;ack; Because of

36

this, a different routine is used from that which copies

values at block exit. N

When the value (if,any) has been copied, a’b1ock exit
is done. Nowv the actual return takes blaée. Control is
transferred to the return address, and the address and_
-coordinate are popped off the work stack,’ The returned

value, if amny, is at the top of the stack.

The coordinate of the call is pushed for the'ﬁenefit
of the traceback routine. In the_evént of an error, a'tra¢e
of work stacks is used to find the coordinates of any
calls. In order to distinguish calls from ordinary block
entries, a flag is turned on in the LSF duriﬁg a ca11, 'ind'

turned off during the returq;

Loops

- There - are tvo_ la"; kin&s of,loop:‘those'vith and
those vithbut'contr01 ints. Loops vithout control int#
'(ioops vith' no- for, from, by or to part) consist of the
elaﬁoratibn of the while part (if any), folloved by a
c0nditiqna1 jump to tke exit (onittéd if no while part), the
loop body, then an nnéoﬁditional branch back.to the top 6f.

the loop.

Loops with control ints are of two types: those with
to parts, and those vithout them. In either case, the from

- and by parts are elaborated (they may be inplicit~ and

- 37
LI 4 . '
supplied by the compiler), and initializatior of the control
int takes plaée. bnext; the'tp part (if any) is elaborated, -
and the test of'thq control int is made, provided there is a
to part. Now the vhile part is dome, followed by the 1loop
body. At the end of the loop, the increment is perforamed..
if fhere'is a tb part, then overflow is not éﬁ error, and if
one occurs while incrementing the control int, the values of
A'thé control, by,'aﬂd to int; are jugg%ed to cause the test
to fail. This will happen if "TO maxint™ is given. If
thefe is no to part, then 6v§rflov Cause§ an errof.‘ In any
event, the control int is updated, ahd'a branch is made to

the test at the top of the loop.

Choice Clauses
. Boolean choices , (if clauses) - are "very_
sttaightforvatd;' The boolean expression is elaborated, and
a~conditiona1 branch is made around the then'part. There is
an unconditional branch at the end of the then part, if

there is an else part. The eise part, if any, followvs.

N,

\\\. o Integral‘ choices - (case clauses) are also quite..
si\gle._ The integral exérgSSion is elah%rated,.and _checked
for ! being in range. If it is in.range; then a‘pdinter.is
selected from the branch table, and the appropriate clause
is’ invdkedg If fhe int is out of range, the out branch isA-.

taken. If the clauséihas nb out part, the coapiler supplies

oné. Pollowing the btanch tahle_aré.the cases, each~(éxcept.

N

38

the laSt) follovéd by an unconditional branch around the

remaining cases.

United choices (caée 'cénforlity clauses) are more
conplicatéd. ~Pir§£,‘ th% current mood of the chooser is
found, fheh a search is made of‘ the branch table to see
-which part (in or put).shonld be chose;.' If no match is
fdund, then the stack is popped, and the out p;;t is taken.
If a match is found, then the stack is compressed (the value
_required laj be smaller than the union vhich contained it),
and the selected in partAis taken. If the mode teqniréd J;
the in part is a unian, then the value must be reunited (thé
0ld union cannot be used, since it may be of ba different
| size). As in the integral choicé, each'part (in or 6d£) is
folloved by an unconditional julp?to the gnd of the clause.
If there is no'outvpgrt,.the conpiler "gbvidés one, un1éss
all the ioods in‘the union ﬁave.beeﬁ peE%ioned in the in
parts.
, RN

Par : e

Parallel processes are handled as corou£in9s. Only
‘éne process is ever running at any.tiné;.all 6thers a:é‘theq
-vaiting for segyice.- Each 'proces§ (task) ‘has a ‘taskl’
display,A and théée‘ﬁisplays a:e'éhained togethet’to fét!}a
ﬁree. Schedniing,ié very simple: the task treg'is travérsed
iooking,fdt some process vhich_ié'ready to run (1.ef,.'vhich

has no 1live children, and is hot-vaiting on a semaphore).

39

The first process found is sfarted. If no process is found,

the program has deadlocked. No effort is made at either |

deadlock prevention or aggrevation. A¥process gives up the

CPU only when it "down"s a semaphore and is thus required to .

vait, or when it creates Child;en via a parallel clause.

',Hore elaborate schemes could be used for scheduling, perhaps

even timeslicing, but the cost would be very high, and,:.

everyone would have to ray, ‘not just those ' using

parallelism.

When a nev task is created,'the 0ld task display is

replicated, and chained. A1l stack frame pdinte:s resain

nnéltered, since the new process is alloved to access a}l

values7globa1 to the c;eating one. Note that since several.

. processes’ itel alvays created together (a parallel,cianse
must have lore'than bne‘unifj,.each process will initially
have a sibling. }The old process is lade5indctiye by'quing

. A ’ -
the number of - active children nonzero, and storing the

- registers and chbrﬂinateé. " The nevw processes haie'their

registers initialized to the same ‘valdes as in the old

“ptocess.' ‘this dimplies that in the new processes, all the
LSF pqinters'vill‘boiﬁt at theé same LSP;. !0 ‘harm arises

fto-~ this, vhoweve:,%_becanse ete:y-neu‘ptdcéss allocates a

. nev LSP immediately, so the same work- and -titlé-stackV

& o
pointers are stored‘repeatedly in the old LSPF.

When a,'ptogesé- terminates, 1t”si-biy‘gnchains its

 task display froiffgé others in the task tree, decrements

40

its parent's child count, and calls the scheduler. Processes
terminate only at the ends of parallel clauses or during

gotos.

Gotos

At first sight, gotos may seél'ghastly and impossible

~to inpleleot, since“they‘ can .junpb oot .of an indefinite
number of blocks,land an inﬁefidite'depth of recursion, as
.voll ss térninating»an-indéfinite nuaber of processes and
trahsput operafions; However, vith the strnctures outlined

' here, the goto is very simple to ilple-ent. B The conpiler

gives the»hranch gddrsss) and the iode;of‘theztsr belonging

to the range containing the laboi. Thei goto routine rheh'b.-_

loops, searching the LSr_ chain for a stack frame offrhe
correct~-ode. Baoh LSF of the' 1noorrect ;ode_ is exited.
7.Hhen the correct LSP is found,. the poi;ter frou it to its"
\\ttsk dxsplay is follovod, and the children fields of thisv
task\dlsplay are zerdéé., Thus all stack frames are properly‘
oexxted:\qnd all processes terlinated. The task displays and
LSPs aSSOC1Q§ed with ‘the terlinated processes are later‘
'garbage collected. Any transpnt operations in progress '
oduring the jul§ are - ilplicitly shnt down. ssince evantlf
routines are called using tﬁe;ssno oonrootions as anyl‘othor
call, and all ;tronsout rontihes.expeot tﬁe“case rhéro‘no- |

return is made.

'i'ThiS'siiple'ilpielertation of.goto cin:be'seen_,ssﬂ a

clear case of good triuaphing over evil.

‘2 special case of a goto occurs with the label
"stop"r' Stop is not handled as a label, but'-rather as a
special routine, since if the user were to invoke it in‘tbe‘
middle of his program, it ﬁonld be hignlj. undesirable to

throv awvay all'tne inforaation vhich might appear in a dump

by exiting all the blocks in the grograa. ‘Terllnation_

-~ occurs 1aaediately,”and in the'block containing the applied

occurrence of stop.

2.6 The garbage Collector

»The garbage collectbr'is~ a standard--noncolpressing
) 7’

aark—and—free garbage collector. The first'stage marks all

‘ blocks (titles) which can be reached froa the progran, and
-the second stage passes seguentially through aeaory, turning

off the narks and consolidating those areas not aarked intO'

tbe free list. rhe garbage collector is 1nvoked only - vhen .

- an' atteapt to allocate ‘a block of aeaory fails. If
insnfficient space is collected to satisfy the regnest'
‘causing the collect, the progral is teriinated. Hote that

,w runavay recnr ion vill canse this type of teraination.

The aarking algoritha 1s a liaited—stack, hard/soft-'

aark scheae, carefnlly designed to accept storage structures

»_of arhitrary size and conplexity., Initially._ standard'
: recursion is nsed (elploying a pre-allocated, fixed—size"

.stack)c,and each hlock enconntered is hard aarked. ﬂhenever; :_"

42

a hard-sarked block is encountered, a Freturn is made
immediately. -;f the stack overflovs, then a pointer to the
block» is added to a secondary (and much smaller, pre-
allocated) stack, so that marking can be resumed there
later. A return is made froa the overflou as if'narking‘had
contiuued norsally beyond that point. Under this scheme,
dne bhase of nurking'uill-lark~the tree (or graph)sup to a'
vce taln depth from the start node, and pointets vill be kept
~to unnarked, nodes at that depth.‘ Thus, when the prilary
stack_is about to underflow ‘(s;gnifying that wmarking is
cplplete), a pointgr is-reuoied from the secondary stack,
-and iarkin§ is resuued - Xf that stack is elpty. marking is

-

flnxshed, provided there are no soft: larks.

SOft larks occur vhen the secoudary stack overflovs.
The block causing the overflow is soft lurked, and a count

is updated. Then, " larking is/

vell. but vhen the larking wo ld nqg‘ally be. conplete ,(hoth‘*

stacks enpty), the count isx' eoked. If nonzero, then a '

'scan of memory is lade to locate a soft-narked block, und
w-latking resule;' at this block. If by some stroke of
providence a soft uark is encountered during norual -arking,
it is uade hard, and the count is decreaented. Barking is
conplete uhen the st.cks are both elpty, and‘the soft—uatki-,

'count is zero..-

‘ The oocurrenqe‘of a sottilurk‘is clearly a disaster.

This"is'ltne-'reuéonﬂ'forj‘havinglltheoseoond stack. It is

tinued as though'alllvere S

believed that while Chaining' of blocks in an ALGOL 68

43

-

program Bmay often be deep, it vill rarely be hoth vide and
deep.. That is, there will rarely be more than a few
(perhaps fire) deep chains in a program. Por this reason, a
small secondery stack (say, thirty-two entries) snould.be'

sufficient to ensure that only the user testing the garbage

collector vill ever cause it to gemerate a soft mark..

-

Marking begins with the initial task display. Under

normal circulstances;-all‘blocks can be reached from there.

'However. .under sone circnlstances the general copy routine

causes a dlsconnection in the. progral tree, so a special

nark pass' may be reqnired if the copy.routinevwas active

- vhen the garbage collect was initiated. Similarly, the user

may nave associated texts with files -which ‘have no other
pointers to the-, so lerklng lnst be done on all file
texts. .) ' N |

When narking is’ co-plete, a pass is made alonq the
block chain and all narks turned of? . If a block is fonnd}

o

which is not marked, or uhich has not heen flagged T a

A systenA block (e« g., file, hook,-ggofile block), then it is

narked as being free, and nerged uith nny ‘free neighbonrs.-

lote is made of the largest free block so found, to seef‘

- e
,5'

vhether ellocation will be snccessfnl.'

_ Inplicit in the above algorithl is thet blocks are
being collected, not .vords or hytes.v This is becanse the

principal entity handled by the qerbage collector is a .

pid

4y

tltle. Thus if a rov is allocated, and only one elelent cad
still be reached, tk entire bunch (and anything pointed at
by refs in it) vill be saved. This is, considered too tare.
an event to be concerned about. More important is the fact
that only title information is kept about the contents of
the_ work stack. That is, vhen an object is put on the vork
stack (so that the collector need know about it —-- it nmay
be the only pointer to some other object);‘only'its embedded
title pointers are noted for the ‘garbage collector (by
putting them on the ﬁitle . stack, which is ‘used during
marking to handle"telpetaries). &his:pteélddes having a

compressing garbage collector, since not all pointers are

' being considered.

There vere several reasons for not heving a
conpreééing. garbage déollector.' Pirst, and probably
forenost, .c01pressihg garbage collectors are very complex

and nearli ilﬁossible'to debug ‘(and they alvays have bugs

fgm—— the SPITBOL gathage collector still had bugs‘;hree years
after ~ distribation, in spite of several atte-pté.by the

. authors to.clean itldp). 'secend, they are.slower,_ and the

gain in .lelOtj utilization does not apbear to be_great
(first fi£"is almost alwvays over inineij-five percent
effective in its -use of -e-ery [9; pp.'nﬂ7-450]). fhird,
they tequite couplete knouledge of any te-poraries, vhich,
in this case, vould either mean pnshing all pointets of any
type, or - pushing the modes of objects on ‘' the work ° stack.

" This, however, vould mean that both stacks vould be pushed o

45

for modes like int, thch is much too costly.

The only apparent adfantage in having a compressing
garbage collector is_£hat leiary allocation is véry S&lple:
typically a subtraction from a pointer. . Hovever, since
there is little}reaSOn to heliéve that nelotylailocation is

’

a bottleneck, the extra cost of allocating by block is

deemed to be ‘acceptable.

Chapter 3

Error Checking

321 Iypes cf Brrors

fhere are some Sixty types of error vhich can occur
at run timse in ALGOL 68. This chapter describes some of
these, and the methods of vdétection used in PLASC.
Onfottnnately, there are whole classes of'errors vhich- are

not detected by PLASC. These are discussed later. -

¥

The wmost coﬁion rnn-tiie errors include: arithmetic
overflows, undefined v#lues, divisién .by zero, undeclared
tags (this teallj i# a run-time errdr;'note on;this later),
atie-pts to slice.'dereferkncé; assign ;tq or select frpl
‘ nil,l‘ memory overflovs, scope violatioas, deadlocks“of
parallel proceéses; subscripts.out of range, bonﬁds vhich do
not »nitch: (duiihg'~va$signlént),.- indefinite lodps or -
récursion, assertions which do not hblde-page or line iiiits
exceeded, inyal;d chatacteré 1hvinpnt, several dé?en_otﬁer =
tfanspui‘ertors; @nd'atgunénts of stamdard fnﬁctioné out of

‘rangee.

a6

47

To gain an appreciation for just hov many error
checks need be made - -in a typical program, consider the

following clause:
a :=b + c;

‘a', *h?, and 'c' are all ref ints. How many checks must be

performed here?

'Cleafly, an overflow check nuét be .made for the
addition. ~Mlso, it is apparent that undefined value checks
aust be nggp~on 'h' apnd *c*'. It iS less obvious that 'a‘',
“'bY, or 'c' might be nil. (Théy‘ may have been ref int
paraseters, ,and nil cduld ‘have been passed in.) Least
‘evidént is the faét ‘that ‘a', 'b', or ‘c*', may never have
been declared. since declaritiohé may have 5een‘skipped (see
next exanplé). Thns‘this‘innoéuous—lobking CIanse reqnires
n;gg checks, even though ‘most 'product;on colpiler§ ‘would

produce only three machine Apstractioas!

Because declarations are elaborated at run time, and
because units used for imitialization may contain gotos, it

is possible to jump ovér'so-e declarations:

. o
BOOL £;
read (f) ;
BEGIN o ' . o
~ INT i := IF £ THEN 1 BLSE GOTO a PI;
INTY Jo2= 2; . . ' .
a: print (i+j)
END o :

-

4t is ' declared if and omnly if 'f' is 'true'. This can be .

48

v

- determined only'at'run time. Thus, in a naive compiler, the
occurrence of ‘a tag aust ‘invoive a run-tine “check to
determine vhether it is declared, eveh though it appears in
a declaration! This kind of problem need not invelve"a

goto: ordering of declarations is also important; for

example, in
. [}

REAL a :=.p(2);
PRCC (RBAL) REAL p = sinj

'pt is unknovn ;hen tal‘is to be initialized. Note that,the'

1dentification rales of ALGOL 68 require that the inner 'p?

be identified, rather than some outer one.
~In a similar vein,vconsidet:'

IRT‘aE=3. b:=a+1, C:=h#2;

'Here, ‘'a' and 'b' are being nsed before they are gnaranteed ,

to -be defined, because of the rules of qollate:al'

| elaboration. -

Nov, also vith respect to collateral elaboration,‘

' consider the following exalple-

S!RI!G s':= Pabc":
8[3] = (s :=."ab“)[3];'

If the right-hand side of the second assignsent is.

elaborated before the left-hand side, then a subscript error

" occurs. If the left-hand side is elaborated before the

A

right—kahd side, then an attempt will be made to flex tst

.

B waieth i,

L -

DL L P VY
. 4

- . A ’
e \.;.“‘;ﬁ o
R "‘W": PN
0 .

49

L
. R

vhile there is a transient nanme oufstanding (on the work

v-
-

stack).

} oS o
Perhaps.thé'iﬁiﬁest‘of all checks is the scope check,

‘'wvhich ensures that no ref can be made to refer to a valuge
vhich vill ngo, awvay" before the ref does (i.e., no refs can
. be left 'pointinQ‘ off into outer space). Perhaps the
N ’ . .
silplest example which delonstrates that this check must be
done at run tlle is the folloving.
PROC copy = (RBP INT i) REFP INT I
"~ REF INT J; . . . :
BEGIN . o . ' ,
< INT k; : _ ;
~ - 3 1= copy (k)
END
' i
Hete;.'dqu' dould have been made arbitrarily complex,
vithout changing its function,. s% thét nb compiler could
detect the scope violation in the flfth line. This néans
that the check must be done at rnn tile. The check is often

':far fnon 51lp1e,¢&hongh, as the following shows:

[3] REF INT.ii = " B

= BEGIH .
(3] REBF INT j§ := (NIL, NIL, NIL);
g BOOL f; ‘read(f);
: IF £ THER j3j(2] := k PFI;
33 =
END; . ‘ .

4. -

(5
>

“Bete, a row of ref int is being yielded by the 'begin'
clause. The _scope of this rov will depend on the refs
vithin it. In particnlar, it is initially of prilal scope

f(and henée'c%f/gg assignedvtq v;nythingl,' because all its

50

constituent p&rts are nil (and thus primal). . Now, depending
on the run-time value of 'f', the scope is made local, by
assiqning:'ka L. Thus, depending on 'f*, there may be .a scope

error. But the only way to detect this is to break open the

row, and check each element for invalid scope. This same
a s ! : :

sort of‘thing has to be done with structures.

e

‘An overflow error can arise in loops: o

" POR i PRON maxint-2 Do
' print(i)
oD
Here, 'i*' will clearly overflow on the fourth iteration. The
only reason this is remarkable is that the report could be
_interpretéH to state that the loop should contlnue past the
fonrth iteration, but gives no clue vhat to print. It is

also i-portant to consider the inverse situatlon-

-

FOR i FROHN laxlnt—z 10 laxlnt DO
print (i).
.'~ ..

o

oD

Al

Here, nol ovetflou. shohld 'otcur,_.and the 1loop .shonld_
terainate vithout incident after thtee iterations. Hovever,
- if the algorithl given inf the repont is follovwed, an
» ovetflou vill occur during the incre-ent at the end of the
third - iteration. This was theispec1a1 case aentioned in

- Chapter Two. 4

Sadly, there is a very large class of very common

errors vwhich are not detected by FLASC, and, indeedi.cinnot :

]

51

<«
be detected by any LP. These involve constructs vhich are
undefined due to the rules of collaterality. These rules

state that the order of elaboration of thg tvo sidesci?f///’
assignations and operations, ‘the‘ arquments of calls a&ﬁ
élices,'and a host of other things is left undefined. Thds,
'any‘ program vwhich 'could yield different results with
different "legal®™ orders of elaboration is undefined. Hefe

are.some examples of this phenomenmon:

INT i 2= 1; . ' - '
PROC inc = (REP INT a) INT : a +:= 1;
i+ inc(i); #boont
(1 2= 2) + i: f#bhoont
STRING s := ®abc"; .
s[1] ¢+ (s 2= nabn); tbhoont#
sfinc (i)] := s[i]; ftboont
[6,6] INT 3; o
Jlinc(d),inc(i)] :="1; -#boonm#

The first two examples are ptobablf the simplest. Here,
depending on which side is done first, different results
vill occnr; The third invoives a more subtle p;oblél; One
of the ,véltd orders ié ﬁo perform an index,ﬁthen go do the
otheriéidq: tﬁen»cone back and dereference. This~resu1ts in
#n atteapt to flex while thete is a ttansient naner
outstanding. The fourth . will Quplicate one of the
charactgrs within the string, but‘.which one? ‘The fifth

‘could select differeni-elelents of the airgy.

3.2 Some Brror-Checking Techmigges
Hany: of the error checks are very}sttaightforvatd.

" For exalkle, Subscfipt checking is 'done'_dnring sl;cing,

52

since the descriptors have the necessary inforsation

available.

Checks for nil are very simplé: when a name is.
required wvhich cannot be nil, a check for a zero\ralue

pointer field is made (nil is alvays zero).

‘Most grithnetic errors (such as overflow, underflov,
. divide 'by zero, 'etc) are handled as program interrupts,
vhich are canght by the operating systel interface. ‘The‘
method used to tell the RTS that an interrupt has occurred
nis'vié_a BPI (branchlon progranm xnterrupt) "instruction"

This is a 'noop. Uthh follovs any instruction expected to
1nterrupt, specxfying a branch address and 1nter;upt type.
If an interrnpt of the specified type occurs, then the
:rbranch i"’aken. This allows ‘the RTS to recover from
interrnpts in a very controlled lanner.‘ Note that not all
interrupts result in an ‘error. overflow durihg a loop

increment (if the loop has a to part) is not an error.

ue-ory qverflows. as lentloned earliery are caught by

<

the garbaqe collector, after it tries and fails to recover:
sufficient'space to satisfy the cnrrent request for' lenory.
. Stack overflov (i.e., runauayirecnrsion) is caoght'indthe
same vay. | z o |

L]
Deadlock is detected by the schednler, vhen it cannot

rd

~find a ready task to dlspatch. _

Output lilit overruns age caught by the nevlined and

-

53

névpage_ routinés. This check is made only on the standard
Qutpui file. Tile;‘lilit overruns .aueA_caught by the
operating system -interface, and azgiohal flag is set. The
RTS'checksbthis flag prior io.executing any. function which
might result iu a loop. This includes gotos, Ioop bottois;

and calls.
[4

‘Assertions, vhich are handled by the'iSSERT operator,

are trivial to check.

The checks vhich pose difficulties are the undefined,
scope. bounds, and transxent-nale checks. 'fhése are now

~ described in some detail.

Undéfined-value ‘checking is the most peiﬂvasive'und~
expensiie check-nade..vIt is'estilated'that as luch. as ‘255
of the. run tise is spent doing undefined-value checking. "By
vay of- justxfication, this is also the\lost common etrot.:

made by studigts.

It vas ?onsidered essential that an accurate ~vay “be
found to perforn the undefined-value Check By accurate. it |
’is 1ntended that all prograls containing errors be stopped;
and that no valid. prograns be stopped. This critetion rules
out the nethod of setting aside a special value as undefined
(bes s itlis not clearvvhat value of'hool or_char to lakg
undefined). It éhou;dfbéiuogeu that both. ulfriv"[s] and
PL/C"[S]. use this method, ‘and in both it iS‘bossible to
cause eu:oneous teuninafious. :Por.exulplé, in thé. WATPIV

e
T

prograna,
INTEGER I, J, K B :
INTEGER N/201010101,/. _ r
pC 10 I=1,256 :
’ J = (I-1) M
- K=24J

10 PRINT 1, K

1 PORNAT (' *',A4)

. "STOP . -
END

the message "J UNDEPINED IN LINE 5" is given, even though._
this is patently.untrue. The silplest uay. to sqlve3 this
problem ~is to use a separate bit (a def bit) to Qise-the
defined status of the value. Havin§ decided to Ause an

'-"exttau bit, it -ust:next.be decided‘whene this bit should',
.be pat. Twvo possibilities arise: the bit can be put at soneil
fixed point wvith respect to the value' (e g., at the
.beginning jen"end), or it can be put at some arbitrary
location, unrelated to the location~ of the vaiue. ' The
forner has the advantage of higher speed and snalfet na-es,
while the latter bhas: the ‘adyantage of hetter ,storage }
_ntilization, espeeiallj-in:arrays; ‘lt‘sheuld aIse be ubtéa
athat unless the def bit is put at. the front of the valne,
'neither def hits nor values are handled in a unifotn lanner,"
vhicn yiolates' a; previous design goal. »It_was_deCided.onl
the basis df' hetten packinq in’iseus,. anqa the nniforn'ii
treatnent, to make the defihit'separate'fton the'valne,; '

AN

~ As some of the exalples in the last section showed,
vlthere are vays othet than a lack of initialization to give _

rise Ato~an_undefined value. In ansq. all these situationsi

55

are taken care of by'associating a def bit vith' the entity'
inrguestion.;-In~particu1ar.'each-tag has»a-defwbit (as does
' any vaine it may refer to). This.ishregardless.of wvhat node
the tag nmay be. >Thus, ihenever a tag is enconntered. its
def bit is checked to see if the tag has heen deciared. “In -
" ~order to catch collaterality errors in declarations, the def

bits for. the tags being declared are turned on at the very
end, so that if the tags appear in initializations, an error

wvill result.

Not all def checks. are"Sinple and-‘straightforvard.
Only those cases vhere the lode is not stowed lead to simple
solntion (i.e.,. sinply checking the bit pointed at by ‘the
,ref). Stoved modes have nultiple def’ hits, vhich lay be
difficult to address. I particular, a structnre is not
reqnired to have the def bits of its fields contignous and
~starting on a‘ nice boundary. ‘80 each must be addressed
separately. The addresses of the bits can, of cOurse; be
deterlined fron the node tenplate,' hut this is afslor ‘

Pt9¢°55?"'

_Rovs -ay or lay not have fast ‘def checks. If “the def'
'vector pointer is zero. then there is no check at a11, since
'ithis condition assures that the entire rov is, defined. ,'If;'

"_.there is a def vector.f then chances are. that it isi,

'contignons (this ‘happens when the elenents of the ‘Tow . are-..;

contiguons). If 8 then a. trick can be ased to check alle

the bits at once. This,is done-by_nsecofrghe;_CO!PA!B 'LOXG Qj“"

56

instruction of the /370. pad character of x'rr' is used
- in comjunction with ry length of zero to check all the def .
bits in all but the first and last hytes.» These must be
handled separately. . |
$ ‘ |) . C

_ If, hovever, the row is not contiguous, and 8o the
def bits are not contiguous, then each def bit must be
addressed separately. This is very slou.. ‘This sitnation.
~can arise vhen a ref row has been sliced. To iuplelent tnis
addressing, a work area is needed to store the indices. This“
gives rise to one of the few ilplelentation restrictions on
the language accepted- in PLASC, rous can have only up*«to
'.255 dinensions. . The guestion now arises'vhere,to/putfthis
vork area. rortunately, a ref lust appear between 'any two
?nchontiguous rovs in a: path through a data structure (i e.,
it is possible to have ncrov of ref to ncrov, hut not tof
‘have ncrov of ncrow). This means that the work area for
indices can be: statically allocated, since the def check
stops :Lf it encounters q% &'ef.‘ (Incidentally. other

recursive utilities have the same property, and use the sane‘

static vork area.) o '..'ng'”.

Of coutse this 'extended' def check is recursive in -
xhe lOdO.. !hat is, if the uode is struct of row -of union of
| struct cecs then the routine 'ill recurse. this ilplies _a*
stack.” Tbis stack is also statically allocated, and ilplies
E another of the ilplelentation restrictions of- PLlsc~vrovs,'

“structures and unions can he nested to a narinul depth of'

57

'255' withoutb an intervening ref. ‘(Again, other recursive

utilities use'this stack.)

.Scope checking corresponds rather closely to def
checking. ' _Here again, the mode - nust be recursed (in
-general), 1ooking for a11 title pointers, to. . co-pare their
‘ scOpe with that of the receiving nase. Again, if a reflis
encountered, the check does not go below that level, since
that ref must have the correct scope (it has been assigned,)

so a previous scope check-was done).

1Y

Bounds checking ‘must also do this 'recnrsion,
.hcolparing the honnds of the 'Source rows vith/those of the
.destination rovs (bounds 'checking is done only during
':assignlent);_, rhere. are tvo »conplications,~thongh. 'If‘a

f _particnlar level is flex, th‘h the check is hypassed, but

’k‘only for. that level. Other levels nust still be checked. It

a particular level is. flat, then not only nnst the honnds be

identical at this level (1 0 does not natch 2: o. even though,—5

'_hoth are flat), bnt checking nnst continue to 1evels belov

ijthat which is £1at. This neans that even flat bnnches nnst' '

' _have at least one elelent, as lentioned in Chapter TWo. o

S\h, Bven thongh lany (lost?) collaterality errors having :
'to do vith transient nanes v111 never be detected -(hecanse
- PLASC does things in a left—to-right order), sone sort off :
-g-check is reqnired to naintain 1ntegrity ‘of the data
f'strnctnres. .‘~f£;b; check is acco-plished by baving a f

transientqnale count (THC) associated vith each bnnch. This

\

58

count is updated vhenever a transient name pointing into
that bunch is created (via slicing), and downdated vhen the
' name is destroyed (via voiding or'derefe;encing). Assignment

to a flex row checks this ‘count, and giveS'an error if it is

A

‘not zero.

This counf updating is’done via two rdufines: 'deflex\.
and dectnc. Deflex takes a ref flex rovw, and returns ﬁ TRC
pointer and a trahsient.ref roﬁ. (transient refs 1look the |
same ’ as..othet fg}s). In thgfptoﬁess, it increments the
TNC. The TNC pointer is above the ref in "the stack, and
sfaysc; there though subsequent bactioﬁs (e.g9., slicing,
rdving, étc.).fHWhen a tranéi?nt tef >is‘~to be voided or
. deréferenced; dectnc is called. It chases the TNC pointer,

dédrelents the TNC, and deletes the pointer frbl the stack.

Note thqt ahén'a bglance of ref aﬁd transi;nt ref is
 -ade (jielding_-trahsient ref), a call is made fq another
routine; -aketrﬁns@ vﬁich pnshes:a ierofrnc'pointetvbnto the
stabk.‘iiherefore; dectnq pust.ﬁe brepafed to'aqceﬁt a zero
w-.poi#ter;j,wfhis‘.éituaiibﬁ Hiiifﬁlso 6ccur'ifv§_iil.iéf f%ei~‘

- row is towed. -

Chapter 4

A

‘Tracing onqlnqliing

- X
e - P R

. R L
of cou:se, not all e €» good nannets to

_.-"7

‘make themselves knovn hyf- C o iIIGQ‘dte and correct |

dxagnostic -essage.* AS wve all knowéwﬁnst the opposite is

Y

more conuonly the case. For this reason, it is extrengly'

. desirable to have some. sort of tracing and | dumping

&

‘facility. -~ A clear case for this is’ nade in [5], for the

PL/C coupiler. Traczng has also been inplelented 1n SNOBOL

(8] and SPITBOL [7}. These sysgpls provide especially

useful tracxng,facxlities; Unfortunately, ALGOL 68 does not

‘lend itself,toit:acing.4
. . R

#

"Du-ping»cah‘often be. as ilportant a~éebngginq aié'ﬁas
tracing. It has the advantaqe that it is\only done once, as"
.opposed to- tracing. which tends to be a continnous, paper-

wasting ptocess, Dunps are an invaluable ald in deterlining-

what "really happeoed' in the program. novever,.unless the
:dnlp, is sy-bolic,'it is of litﬁle oo no nso to the student

ose:, SPITBOL proyides}an'éxcollqnt'dulping facility.

59

i

.J.“..‘ A
YR 5. .

L3

60

Also qf.considerable diagnostic use'is sonéb sort of
flow trace (Jhich has also been implemented in PL/C). and,
in some cases, an execntion ptofile. “In almost all cases, a

- flow trace of; say,_ ehe last . 25, branches taken is
sufficient.. This \is siaple to provide. Gafheting of

wprofile information is also quite simple, ‘and can prove

, 1nva1uab1e in avoﬁaing vasted effort speeding ap seldon—nsed
modules. This facility has been provided in ALGOL W [1].

» [}
4.1 Tracing R (_

Unllke other 1anguages vhich provide snitable tracing
' facilities (most notably swosoL)§ ALGoL 68 has the
kgqtthogenalizad concept of a ref. This “‘causes | severe
&difficnlties in tracing. In fact, it nmakes tracipg'

ineffective.

Inlnqst‘lanpueges._"variahles" are trmced. In]fKIGOL
68, theie are no 'veriables., Instead, tags possess refs,
vhich point at values. his, in itself, causes . no
ptobiels. Houever, uhen an argulent is passed to a proc; it

‘may be passed as a ref. For exalple, in- e

<

.’ . PROC p = (REF INT J) -VOID : j¢:=1 . L
InT i; LT c :
. PR trace i PR o .
i:= 1‘ :
pi)

*iv is passed as a ref. But>hbe'can've.trice '1‘? Inside

tpt, it is knovn as '3', S0 any lessage should say ‘neg.= 2 in

61

line_ 1"; but then it is not clear fhat this 'j' is the sanme
‘thing as 'i*. If, on the other hand, ve say "i = 2 in line‘

1*, massive confusion could result.

There is, hovevec,;ea more - fundalentel probles
1nvolved here. 'p} need not be called with *i' as its
argunent; ‘How, then, do. wve decide vhathet or not to. produce‘
a irace'nessage? This p:oblel can be-solved.hy associating
a flag (like the def bit; a trace bit) with tie ialue, vhich
. would be checked during assignlent, and, if on, vonld result
.1n a message. ‘This technlgne vill still not tell us whether
to p:int~:"i' or 'j'ﬂr though k(i.e.,“ vhat printable-'

designation to use). fg

~ This problea of prietable’designafioas.is a serieﬁs '
one. There exist lany objects vhich vill never h‘ve thel,'
e.g., most hemp values. The problel is even vorse uhen the ‘
‘uset uishes to trace.pointers (1.e., ref refs, or ref ref'
refs) . aete.j not only is it 'unclear vhat printable

‘desxgnatzon to use. but also what to print as a value. "17_

| | Oneeppbssib1e~sdlntion to'this~d11e;la is to diSailov,
e_ tracing of any but "sinple" tags (i.e.. variahles of plain
lodes). This will still nmot cope vith ref parameters,
;hovever. Tﬁete are two alteinatiies opee- asseciate vith
the valne not onl.y a ttace bit, bnt also a trace string,.
vhich is to be nsed as the printahle designation duting?7

.~%$
tracing, or make no attelpt t trace the value in the p:oc,>

but instead proq?ce a possibly spnrious nessage npon return

P

62
fros the broc {this need”oniirbe done for ref pata-etefsj;-
Npither method is really satisfactory. The first prints
- messages with incorrect napmes in the-, while the second’
‘produces messages at the wrong time (as vell as producing

extra messages).

.

”ﬁtill another difficulty is' the multiple use of
similar tags. It is‘very coolon to have\eeveral 'iisiiin ;
program, and a message saying only h'i'.,vould' be
insufficient. It would also be difficult to tell the
compiler \how to trace the various. 'i's, especially if they
'occut in nested blocks. One possible soélution uonld be to
érint the COordindteSs-qgj the declaration along vith the

_message.

‘ Due: to these‘andlotoet more esoteric difficnities, it
‘was decided thaf tracing shonld not be attelpted in PLASC.
The phllosophy bdiind this decision vas that since ‘tracing
could not be gnaranteed'to vork, it should not be- inclnded;\
-_at all. It vas felt that the use: could perforl auch hetter_ik
and - (to hin) more leaningfnl tracing ‘than the coppiler, by

nsing the egnlvaient of print calls. TO’ lake this a bit .

more pdlatgble. a'>trgce ca11 (uhich 1ooks and ac
print) has been incldded;- This routine checks: the Rajde

~a user-accessihle boolean vatiahle "ttaco flag“ 1an prints 3
' nessages only vhen it 1s true. , : d o ’
. . L. ¢ . .’ .

- particnlatly useful tracing feature in SHOBOL ;: ?

fiﬁd&ibﬁ tracing, which gives a aessage each time a fnnctio;' ' ,l

I N

u.V

63

i
»

is entered oryleft, This lessage gives the function ﬂine,
the level of nesting,iAnd the arguments and"result ~of the

function. Unfortunately, all of the difficulties aris1ng in

\

value tracing recur here: the proc may not &ave a printable .

.desiqnation,.and it may not Be.p0551ble to print the values
. of the argnnents or Aresnlt in a meaningful way. This is

very likely to be the case for arguments, since they would
. . l

T~ . . - X '\?' ! S)
bollﬁdly be refs. Punction tracing was therefore not

atteapted. :

_]
B;gnch tracxng and profile gathering have, houever,

been 1nclnded. Thegse keep t::z% of "major decision

‘}-‘“‘v:

points". These are the varions points in the prograns ‘where
control ‘flou “is' altered from the sequential. *uch points

inclnde the. branches implicit in vifv, ‘case', ’«"do"s and

:jparallel constrncts, as vell as the explicit ones in gotos,'

£

calls and returns. The . branch tracé dumps the last 25 najor :

': p01nts passed, ‘while the profile gives a connt aof how many

| tines each najor poxnt " has beenipassed. The profile is‘

*foutpqt‘as ‘a Dbar graph{‘ sorted by coordinate.'e?brofile

. L _ _ .
information is pptional.
4.2 nn_-zins".» | PR s

- G.'.

' oo
handle.ﬁ Igéﬁg possiblb (and not nnreasonably difficult&“ to

ot

-give a conﬂﬁete. absqlntely accurate dump. ﬂouever, {his is

e . . o P » o
o Dae - AV ‘ / -) ‘.4. ; .
. > v AT, .

e
- . E

64"

not 1likely to 'be vhat the user vants, especially mot the |

first-year student user. Such a dump for the program given

in the last section might look like:

o ’Stack frame

. ' : p
A' 2 ' j . '1
Ce T . stack frame : main
v, S P: 02 ,
b’ &'-““ ', l. '3 L"’\‘ . -
‘f AT T Wrimal environ A e
gL
(ref) -> #4 ¥ 2) , N
‘ ; ,;b gz -(proc) : pgpeﬁanre ,rf?". e ;ﬁ?
N gt T 43 (ref) iﬂ,)‘ta B]
S R TS RN
S . ﬂ,) f},;ﬁ?* S .
m g ~Jl e

*(It, is poss1b1e tii tkis Case for the RTS to give the na-e”"

'p' ta the fi;st stack tia'aw:,’j although in some cases it
cou;d th give any ﬁ?!?f) In this simple gase, the dulp may
f?ﬁﬁj&b(a¢éeptaﬁlef gﬁt vhat happens vith Wore complicated
p?oérﬁis?‘ Infparticular, in snch-a scheme, strings would be

dumped as rows of characters. For example:

]

[3] CHAR s := 'ahc"'
REP CHAR c = é[Z]. _ v
INT i3 : .

’light produce:

stack frame | 7y
s ‘41 . . _ : 4 -'ﬁ

Ge

ol 42
-1 3.

I3
[TR I}
-
-

'c1“(réf)“
#2 (ref)
#3° (ref)

a0 00 o0
|
v
L]
~J
”
e

-
N
Sl
o 00 00

»
~
£

1[4

, o] #8
> '05 (int) : ondefined

J." -

¥,
s

65

#6 (char) : "a"
#7 (char) : "b"m
#8 (char) : ®c"

'Note that in general, rows and structures (intluding LSFs)

have to be brokem open in this manuer, to display the
subnames properla‘b It is suggested that the nser vould luch

rather see:

-

. stack frane

s = Mabch
‘C = Wpn" -
i = undefined SR

even though this does not preserve sone of the ihforlatioh

about the refs in the progral.. nérlally this detailed

-inforlatlon is required only for refs to heap values (i.e.,.

- linked 1lists). In thls casf’ the dump must necessarily

assume a'foriat similar to the first one‘given, since there

" wil), not eornally be any primtable designations to give to

‘nodes in tbe lists. Rows, of gourse, alvays present' a

[0}

problem, since they are usually large, andvnnst.he diggapyed

ele-enffby;elelent. ' .

-

w 3 . : Fony
A L. o

~Dunpiqg in PLASC is still,nndergpipgxevolngioe. b8

currently the user can select betveenj»a " full or “partial
dump, ‘in sinple' or ceiplete“foreat, Avpattial dump omits

objecte not inm Lsrs (i'e.,’reu- buiches.'and: heap valneS).

;'Conpletem for-at is the fif%t shovn ahove- silple format is

D e

-the 1ast Rous and strnctnres are dampéd elelent?by-elelenti

tegardless “of fornat, hut in,colplete fornat, an extra levelf

of indirection is given. e

L T .

ERENG

o oty
St

N &

Chapter 5

Sose Pragmatic Considénqtions

As no déubt became apparent in Chapper Tvo,‘tﬁé PLASCif
systea was vritten in /370'a£56ih1§r; The reasons for bthis

‘are quite Silple' all the alternatives examined either
required vritlng and/or laintaining the vérsibh of the
conpiler in vhich PLASC vas to he vritten, or vas orders of?
magnitude too clumsy or ineffxcient to be used (PL/I was in
this category). Both authors of PLASC had considetable
przor experience in writing large asselhlet prograls, so it‘kf
was felt that few problels vou&d arise due to poor “»
nnderstanding or progra-llng practice. This has turnedv out

tq be the case.- ' ' : | : ‘ -
;] -

o

The coipiler and - run—time Systel comprise about 40000
) R ' - - e L
‘lines of code, and”occupy abont 120K bytes of lelory; jAn

additional 40K bytes are required for standard tahles. A

snall progral (<200 lines) will conpile and rumn in less than
o ¢
250K bytes. - 7 R S

| TN : o . o N BNV

‘*l

- Because_-it is. in assembler, and because the /370 -
.- g ' ' _4 . « _ L;

66. | o

-

~——

vill aot run on a /360 wifhout very costly operatiang system
support to interpret these vety'COlnonly-nsed'ﬁ7370-specific

instructions. PLASC is, hovever, opernfing' system
' A .

independent; It runs under HNTS, 0S/VS, and - CP/CHS. Other '

operating 'systels can be accoamodated by revriting the

operating s’stel interface, vhich is about 2000 1lines of

P A
code.

>

:) ° _‘\IA. .
At the time of this writing, the compiler is nearing
coapletion, and the RTS is complete except fpt_sone‘pafts.of_

formatted transput and dumping. MNost of the RTS has been

tested by running hand-coded prograus.

_Eossihlj the best way to emsure the doom of a student

compiler is to. prodnce' obscure and innccdrnte diagnostic

lessages. A great deal‘ of careful thought has been pnt into

the PLASC diagnostics, and it is felt that most of them are

\

‘nov adeguate. This, hovever, cnnnot be verified antil the

- systena has actually been usedéhy stndents; rhis vill ‘oécur

soon. ihen it is knovn what types of errors are ‘most

cosmon, the ditgnostios (a?d conpile-tile fixups) can and

»

v_will be nade -Q%n lore effectiﬁe. . o ;

s,!
g very 1&?55§?nt consileratjpn concerning any stndent
conpiler is the cost of ik; _In the tests petforled,

" the tun-tine caﬁ}f&& MSc vco-par;u avorahiz vith‘ thnt ‘of

: conpnrable. It 1s eipectqd that € Hd

PL/C, the only avnilable systen diigiftbnld be considered i

a%ion costs vill be
“ﬁv,w

‘. S .
. .. PN

s;; ? i. . _. . | » - .67'

instructions MVCL, ICH, STCM and CLCL are so. useful, _PFLASC

>

. .'.“. ‘ ' 68 . ‘
g‘{t‘{‘-{‘iﬁ - 'Zn_"

somevhat lover than'those of PL/C." . ~-‘\:'
merass v o B : A S

Is it wvorth it? There wvas a severe‘and eonStant
tenptation to Ehange the“lnngnnge'te make the ’syétei both
easier and - IO;Q efficient, bu& this vas not yielded to.
Perha§§J;;2 of the lost valuable lessons to come out of: this
effort is that a‘language should be designed vith errors in
mind. LLGCL 68 vas not, and conseqnently it has lany types
of errors vhich are difficult to ‘understand, detect, or
recover from. Both the syntax and the senantics suffer fron.
this. However, eOIpared to the othe: Phree lajor genernl—‘
purpose languages (ron'rnu, ALGOL 60, and) PL/I) = ALGOL’ 68 y
provides a flexibility‘and natnrnlness thatvlakes'it a nicer~

language to pcogral in. It is therefore considered valnnble‘

to have a checkout conpiler for this langunge.

ket
v

[R
R ‘#‘a" ”

References

[1] Bauer, H., Becket. Se, Grahal, Sep "ALGOL W

Ilplenentation" Tech. Rep. CS98, Conputer SCience :

Dept., Stanfqrd University, (May 1968).

BT
-

(2] Bell, J.R., "Threaded Code", Comm. ACH 16, 6 (June

. 1973), pp. 370-372. '

o g? .
{a] Boulton, P. P.,- Jeanes, D.L., “The . Sttucture and

Perfornance of PLUTO, a Teaching—Oriented PL/I*

-
Conpiler Sysﬁkl", IR!OR 10, :

e © 180-150.

1Y

< [e¢] Broughton, ;: G., Thé-son, c.u., "lspects of anlenenting

~

an ALGOL 68 Student CO-piler" Proc. 1975
e Internat. Conf. on ALGOL 68. stillvater, 0k1ahona,

‘(gune 1975),_pp, 23—37‘

[5] Canay, I Cev ﬁilcox, R. i., "D931gn and Ilplelentation
of a Diagnostic Co-piler for. PL/I" Comm. ACH 16,

-

v3 (Barch,1973), PpP. 169-179.

A

(6] Cress, P., Dirksen, P., Graham, J.W., FORTRAN IV with

.:§ - 'WATFOR apd WATFIY, Prentice-Hall, Englewood
3 ' - <
W :

Cliffs, New Jersey, 1970.

. [7]'Dévar, R.B.K., "SPITBOL Version 2.0", Illinois'Institnte
'of Technology, febrdary 1971. |
. . -

J.

[8] Grisvold. R.Bey Poage, J F..~Folonsky, ‘I.P., The §BQBOL

' P;gg;glnigg Lapguage, second Bdition, Prentice—
N " Hall, Bnglewood Cliffs, New Jersey, 1971.

.o < '.‘ : >' -)\O
{91 Knuth. D-E-. Ih_e A__ of s;g.np.nm msmuns voln-e 1,
Second Bdit;on, Addison—Wﬁ7Qey, Reading, | '
AY b'

Ed

o uassachnsettSJ 1973.

f[1oq rho-son, C.HM., "Ertor Checking, Ttacing. and Dn-ping in
‘:5 _h»' an 1LGOL 68 Checkout COlpiler“ Proc. Pourth o ‘
K ‘Internat. Conf. on the. Ilple-entation and Design .75%§
| .,‘of Algorithlic Languages, Nev York Univetsity, Few .
. b !o:k, (June 1976), (to appq&r),‘

) Also in- SIGPLAN Ngggges, to #ppear.f

- - o o

U[11j Va;‘ﬁijngaardeh; ét’al-, "Beviéed Report-on the ,' ._7
llgorithlic Language LLGOL 68", Acta Infornatica

5, 1-3. (Jannary 1976). _

