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Abstract 
 

Excellent pork meat quality for improved eating experience is becoming increasingly 

important to consumers and therefore the hog industry as a whole. One of the most interesting 

factors associated with eating experience is fat; fat plays a significant role in the acceptance 

(and rejection) of pork. Two depots of fat which significantly affect the industry are 

intramuscular fat (IMF) and backfat; IMF plays an important role in eating quality (tenderness, 

juiciness) and the backfat depth (BFD) ultimately determines the lean yield of the entire 

carcass, which is used for its valuation and producer payment. Therefore, the main objective of 

this study was to investigate the genetic underpinnings of IMF as well as its relationship to 

backfat, due to their economic relevance and importance for producers, consumers, and the 

whole industry.  

Nine-hundred and ninety-seven longissimus dorsi and backfat samples from purebred 

Duroc gilts were analysed with near-infrared spectroscopy (NIR) in order to generate IMF and 

backfat composition phenotypes for further use in genetic studies. Resulting phenotypes were 

compared against reference methods to determine accuracy. The IMF phenotypes had a high, 

positive relationship between the reference method and predicted phenotypes (p <0.0001). 

Backfat composition phenotypes had a low degree of accuracy from the NIR algorithm when 

compared to the reference method values (p <0.0001). In order to better understand the 

relationship between IMF and backfat, variance components were estimated using IMF and 

BFD phenotypes measured by various collection methods (NIR, ultrasound, subjective, 

traditional). Crossbred animals were investigated in addition to the purebreds; phenotypes from 

a total of 916 crossbred (Duroc × [Large white × Landrace]) pigs were used and 997 purebred 

Duroc gilts were used. Heritability estimates (±SE) for IMF were moderate-high (0.38±0.09) 
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in the purebreds and moderate in the crossbreds (0.24±0.07); heritability estimates (±SE) for 

backfat were high in the purebreds (0.46 ± 0.09) and crossbreds (0.49 ±0.09). There were 

moderate-high positive genetic correlations between IMF and BFD for all measurement 

methods in the purebreds (0.36 ±0.14) and crossbreds (0.44 ± 0.63). This indicates that IMF 

and BFD are good indicator traits for one another; that the selection of one would also select 

for the other. There was a high positive coefficient of correlation (r) between NIRIMF and 

ultrasound IMF (UIMF) as well as BFD and ultrasound backfat thickness (UBFD) which 

indicates that the method of phenotype collection could be substituted for the other and 

maintain similar accuracy in further studies. Finally, three genome-wide association studies 

(GWAS’) were conducted with IMF phenotypes from the purebred Durocs (UIMF, NIRIMF) 

and commercial crossbred pigs (UIMF) in order to investigate the genetic underpinnings of 

IMF. From this, five significant single nucleotide polymorphisms (SNPs) were identified in the 

purebred Durocs with association with IMF. No significant SNPs were identified in the 

crossbreds from GWAS; after application of an additional statistical method (LASSO) three 

SNPs with measurable effect size were identified. With further validation, the findings in these 

studies will help increase understanding of the genetic underpinnings of IMF and aide its 

independent manipulation from backfat. The findings from all studies can be utilised as 

reference for the hog industry to help develop novel genomic tools to identify animals with 

superior meat quality and improve Canadian pork.  
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Preface 
 

This thesis is a part of a larger research project, which has received research ethics 

approval from the University of Alberta Research Ethics Board, project code NSERC CRDPJ 

485526, July 1, 2016, titled “Identifying functional gene variants and non-additive effects to 

enhance the power of genomic selection of purebred pigs".  

The research in this thesis focuses on the pork fat depots of intramuscular fat (IMF) and 

backfat, primarily the genetic architecture of IMF in order to ultimately improve this trait 

through breeding. This thesis consists of 7 chapters. Chapter 1 and 2 include a general 

introduction as well as a thorough review of related literature in this area.   

Chapter 3 focuses on the generation of phenotypes for lean meat IMF content and 

backfat fatty acid composition from purebred Duroc samples through near-infrared 

spectroscopy (NIR). Samples were collected by Dr. Robert Mckay of Genstat consultants Inc 

(Brandon, MB) and shipped to the Agriculture and Agri-Food (AACF) in Lacombe. A portion 

of Chapter 3 was published in the Banff Pork seminar (2020) proceedings; including lean meat 

data analysis, predicted phenotypes and statistical analysis. I was responsible for the collection 

of NIR data and proximate analysis data as well as the abstract composition. Ivy Larsen with 

AACF Lacombe assisted with generation of prediction phenotypes through a SAS algorithm. 

Dr. Nuria Prieto was the primary author in the development of this algorithm; additional 

members contributing to this work include Drs. Graham Plastow (University of Alberta), 

Manuel Juárez (AAFC), Michael Dyck (University of Alberta) and Patrick Charagu (Hypor). 

Chapter 4 of this thesis focuses on the generation of variance component and 

heritability estimations with IMF and BFD phenotypes obtained from a purebred Duroc and a 

commercial crossbred population. Data collection for the crossbred and purebred animals was 
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obtained from Hypor, save for the NIR phenotypes which were generated as described in 

Chapter 3. These estimates were subsequently compared to values in the literature. The data 

analysis was performed primarily by myself with assistance from Dr. Marzieh Heidaritabar.  

Chapters 5 and 6 discuss the results of three genome-wide association studies (GWAS) 

performed with IMF phenotypes from the purebred Duroc and commercial crossbred pig 

populations. Data analysis was performed primarily by myself with assistance from Dr. 

Marzieh Heidaritabar. 

Chapter 7 is a summary of all the findings in this thesis with emphasis on their impact 

to the Canadian Swine industry.  

All chapters were written by myself with the assistance of my supervisor Dr. Graham 

Plastow, and reviewed by Dr. Michael Dyck, Dr. Manuel Juárez and Dr. Marzieh Heidaritabar 
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Chapter 1.0. General introduction 
 

1.1 Introduction 
 

Today, pork is the world’s most commonly eaten meat with approximately 40% of global 

meat consumption (United States Department of Agriculture (USDA), foreign agricultural 

service, OECD, 2017). Consumption increased by 2% in 2018 from 2017 and is expected to 

continue to increase; Canadian pork exports alone have increased by 1.26% from 2016 to 2019 

(Canada Pork International (CPI), 2020). To meet the growing demand and maximise profit 

margins, the focus of swine breeding over the last four decades has been on production 

efficiency and related traits such as feed efficiency, reproductive success, high growth rate and 

reduced backfat thickness for increased lean yield. Decreased carcass fatness was desirable, 

primarily in the 1980’s, due to the prevailing science at the time which equated dietary fat to 

negative health consequences. This leanness was quickly achieved, however, traits with 

positive genetic relationships to backfat thickness also decreased; this has led to an overall 

decrease in meat quality and consumer satisfaction. For this reason, there is a demand for better 

quality pork and the industry has more recently shifted focus to improving meat quality and 

related traits (Van Wijk et al, 2005; Papanagiotou et al, 2012).  

Meat quality is integral to the value of meat products, in fact, a negative experience with a 

type of meat may dissuade consumers from trying it again. Additionally, many pre and post-

mortem factors culminate in final product quality (Miller, 2002), but all ultimately relate to a 

sensory experience for the consumer. Often, what is considered a desirable characteristic 

differs between countries or regions. Such traits include visual assessment and taste 

preferences like colour and visual marbling, but also consumption related traits like tenderness 
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and juiciness. In general, the factors which are associated with palatability of fresh or 

processed meat products coupled with those related to economic losses from processing and 

distribution are summed to define fresh meat quality (Bray, 1966). Further, meat quality can be 

divided into quality attributes (QA) and quality characteristics (QC). QA include features 

which a consumer is primarily concerned with, those which influence initial purchase and 

repurchase of meat products. These include visual appeal, flavour, juiciness, and tenderness 

upon consumption, these are referred to as organoleptic attributes, as they engage the 

consumers senses of sight, smell, and taste (Bray, 1966; Glitsch, 2000; Becker, 2002). One of 

the most important attributes for a positive eating experience is tenderness (Fortin et al, 2005; 

Teye et al, 2006) which is significantly correlated with the amount of intramuscular fat (IMF) 

present in a piece of meat (Wood et al, 1999; Cannata et al, 2010; Lim et al, 2016). Though a 

consumer cannot visually evaluate IMF content, as it requires more scientific measurements to 

obtain an exact content percentage, they can assess the visible fat content in the lean, which is 

known as marbling. In addition to the importance of IMF content, the quality of backfat is 

economically important as it heavily influences the attributes and acceptance of further 

processed products. Any backfat which is trimmed from primal and commercial cuts goes on 

for further processing in a number of products (Kouba and Sellier, 2011), and in these further 

processed products, fat is one of the most variable ingredients utilised. As mentioned, the 

selection and breeding focus on leanness and maximum lean yield through reduction of backfat 

thickness has resulted in unintended decreases of correlated meat quality traits which has 

negatively impacted the overall acceptance of pork in a number of ways. Firstly, reduction of 

backfat thickness has simultaneously reduced IMF content, as they are positively related traits 

with a genetic correlation of approximately 0.37 (Grindflek et al, 2001; Hernández-Sánchez et 

al, 2013) and secondly, as backfat thickness decreases the proportion of polyunsaturated fatty 
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acids (PUFA) in the fat increases, which devalues the fat. This devaluation is primarily due to 

increased propensity for rancidity due to oxidation, and poor, soft texture (Teye et al, 2006; 

Seman et al, 2013). Interestingly, total carcass adipose tissue deposition and IMF have a low-

positive genetic correlation (r = 0.11) (Huff-Lonergan et al, 2002; Hernández-Sánchez et al, 

2013), however, both traits have moderate to high heritability (h2), averaging 0.69 (Rosenvold 

and Anderson, 2003) and 0.5, respectively (Sellier,1998; Rosenvold and Anderson, 2003; Zhao 

et al, 2009; Casellas et al, 2010; Lim et al, 2016). These values suggest that total carcass 

fatness and IMF content are independent traits which indicates the potential to breed for a 

commercial hog with desirable IMF content, but low total carcass fatness in order to maintain 

lean yield.  

Breeding for desirable traits, including meat quality, litter size or milk production, is 

the ultimate goal of selective breeding; this can be done within a single breed (purebred) or 

through careful crossing of breeds (crossbred). Crossbreeding is used extensively in the 

Canadian hog industry. This is done for many reasons, including hybrid vigor (heterosis), 

breed complementarity and favourable breed combinations (Falconer and Mackay, 1996; 

Yadav et al, 2018). A number of the benefits of crossbreeding, primarily on litter size, carcass 

and meat quality from using purebred sires and crossbred sows was discussed by Fahmy et al 

(1987). Various sire and dam crosses were assessed, and this work formed the basis of the 

typical Canadian commercial meat pig. Nowadays, this has centered on a terminal three-way 

cross of a Duroc boar to an F1 progeny sow of Landrace × Large White (Miar et al, 2014); the 

three-breed cross with a terminal sire has many advantages over a two-breed terminal cross, as 

it produces maximum hybrid vigor in the offspring (Yadav et al, 2018). In general, breeding 

programs select a boar primarily for meat quality traits (Schwab et al, 2006), feed efficiency, 

growth and carcass size (Hypor, 2018). The Duroc breed, specifically, is known to have higher 
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IMF content than other potential sire breeds such as the Pietrain, but also higher growth and 

feed efficiency than fatter breeds which contain higher IMF, such as the Berkshire. Growth and 

feed efficiency are important to ensure profitability of the final carcass (Fahmy et al, 1987; 

Alfonso et al, 2010; Choi et al, 2014). The sow is chosen for mothering ability, litter size and 

longevity in the breeding herd (Blomberg, 2010; Camerlink, 2018). In Canada, commercial 

sows are typically an F1 cross of Large Whites and Landrace. One of the benefits of 

crossbreeding is that it helps to capitalise on differing trait expression of each breed, including 

any within-line selection which has taken place to improve the purebreds. The traditional 

breeding methods which utilise statistical models to select superior animals for breeding tend 

to offer slow improvement for meat quality traits; this is due in part to the measurement 

requirements of records for meat quality traits such as IMF content, as they are traits expressed 

late in life and can only be definitively assessed post-mortem (Miar et al, 2014), and cannot be 

measured directly on selection candidates. The within-line selection of purebreds is done 

primarily to improve the performance of crossbred progeny under field conditions (Tusell et al, 

2016). This is beneficial for traits which cannot be improved simultaneously in two breeds, 

potentially due to opposing genetic correlations or results which oppose one another, such as 

meat quality traits and mothering traits; many meat quality traits do not benefit from heterosis 

as they are intended to be passed directly from the sire to the progeny. Meat quality traits have 

a wide range of reported heritabilities from low-high (Miar et al, 2014) and capitalising on 

heterosis is more useful for traits with low heritability. The study of purebreds has been shown 

to be able to accurately predict the phenotypes of crossbreds given that the genetic correlation 

of the crossbred and purebred animals for those traits is high (Bichard, 1971). Meat quality 

traits have been shown to have a high genetic correlation between crossbred and purebred 

animals (> 0.9) (Tusell et al, 2016). Additionally, the genetic improvement achieved in the 
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purebred herds directly affects the rate of genetic improvement in the commercial crossbred 

animals; a high rate of genetic progress in the purebreds will lead to a better result in the 

commercial crossbreds.  

Alongside the shift in breeding goals to improve meat quality, studies focusing on the 

genetic underpinnings of economically relevant traits have also taken place, primarily over the 

last two decades (Sellier, 1998; Rosenvold and Anderson, 2003; Van Wijk et al, 2005). Many 

of these studies have focused on the genetics, breed and nutritional implications of porcine 

adipogenesis, lipogenesis and deposition of IMF (Dalrymple and Guo 2017) with a common 

goal of the identification of causal mutations, candidate regions or candidate genes which 

explain some of the variance observed within the trait in order to better understand the role of 

genetics in trait expression. From these studies, there have been a number of potential 

candidate genes and regions identified including LEPR gene which regulates feed intake and 

energy metabolism through leptin (Ovilo et al, 2010), DGAT2 gene, which is significantly 

associated with backfat thickness (Renaville et al, 2014; Zhang et al, 2014) and MC4R gene 

which plays an important role in regulation of food intake and body weight in mammals (Kim 

et al, 2000; Fan et al, 2009; Wang et al, 2013; Rothschild et al, 2014; Silva et al, 2019). 

However, despite the ramped-up focus in this area and widespread identification of potential 

candidate genes, there is little consistency in this identification between studies (Dalrymple and 

Guo, 2017). Meat quality traits are often influenced by more than a single gene (Davoli and 

Braglia, 2007), with their final expression coming from many genes with small influence 

(polygenic traits). The inconsistencies in identification of candidate genes between studies may 

be due to this polygenic nature, which can complicate their study, as the effect size for each 

marker may be small and not always be detected by certain statistical approaches (low power). 

Detection depends heavily on the methods of the study as well as the sample size. In general, 
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meat quality traits including IMF have low to moderate h2 and are recognised as quantitative 

traits, meaning the phenotype is measurable and depends on the environment pre and post-

mortem in addition to the cumulative action of many genes (Rosenvold and Anderson, 2003). 

Alternatively, carcass composition traits (backfat thickness) are generally moderate to highly 

heritable (Sellier, 1998; Ciobanu et al, 2011; Miar et al, 2014). The expression of these traits 

varies not only among individuals of the same breed, but also between breeds, resulting in a 

range of measurable phenotypes. The noted heritabilities along with phenotypic variation make 

both meat quality and carcass composition traits suitable for genetic improvement, as traits 

with moderate to high heritability typically see large genetic responses from the application of 

quantitative methods (Ciobanu et al, 2011). Heritability is only one aspect needed to 

understand the expression and response of meat quality traits to selection. Heritability captures 

the proportion of genetic variance due to additive genetic values (narrow-sense heritability, h2) 

or the phenotypic variation due to genetic values including dominance and epistatic effects 

(broad-sense heritability, H2) (Wray and Visscher, 2008). Calculated heritabilities are most 

accurate for the population from which they were calculated from (Hermesch et al, 2000) and 

as such should be applied to different populations with caution. Additionally, as mentioned, 

many meat quality traits including IMF are polygenic. Certain genomic technologies such as 

genome-wide association studies (GWAS) can be very useful for obtaining a better 

understanding of a studied trait, which is useful when investigating complex traits, particularly 

those which are polygenic. 

Today, identification of large numbers of single nucleotide polymorphisms (SNPs), 

generation of sequence data and genome assemblies for many species, including pigs, have 

been made available. This has enabled the study of the genetic architecture of traits though 

investigation of the genetic association between markers and phenotypes. From this, a number 
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of quantitative trait loci (QTL) have been identified (Georges et al, 1995; Dekkers, 2004). 

Marker assisted selection (MAS) is able to exploit these identified QTL for selection purposes 

and has been utilised with success for traits controlled by a single gene (Cesar et al, 2017). 

However, a limitation of MAS is the consistent need to discover new SNPs as each SNP is 

associated with different traits. In order to overcome this, a new method of selection, genomic 

selection (GS), was proposed (Meuwissen et al, 2001). GS works with these large numbers of 

identified SNPs over the entire genome, rather than a few select identified QTL, in order to 

apply them into breeding programs (Van Der Steen et al, 2005; Goddard and Hayes, 2007). 

This provides an excellent opportunity for meat quality traits in particular as a genomic 

enhanced breeding value (GEBV), which are used to assess the value of an animal for potential 

breeding animals, can be predicted for an individual without a phenotypic record (Goddard and 

Hayes, 2007; De Los Campos et al, 2013). The GEBVs can be calculated through the 

estimation of SNP effects or the genomic relationships between the genotyped animal 

(selection candidate) and the reference (phenotyped and genotyped) population (Meuwissen et 

al, 2001); rather than requiring post-mortem analysis, the trait may be predicted in a breeding 

animal from their genotype. GS assumes that by using so many SNPs that all quantitative trait 

loci (QTL) will be in linkage disequilibrium1 (LD) with at least one genotyped SNP. It is 

important to note however, that effective research and the application of GS programs relies on 

the integration of both phenotypic data collection and pedigree information with the genomic 

efforts (Meuwissen et al, 2001; Van Der Steen et al, 2005).  

 
1 Linkage disequilibrium is the non-random association of alleles at different loci within a population. When the 
frequency of association of their different alleles is different from expected (higher or lower), if the loci associated 
randomly and were independent, these loci are said to be in linkage disequilibrium (Slatkin, 2008). 
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Identification of QTL or SNPs which have associations with a certain trait, can be 

achieved through quantitative methods such as a GWAS and can subsequently be considered 

when potential breeding animals are selected. Many statistical methods have been used for 

GWAS’ including single-SNP association analysis (Yang et al, 2017; Akanno et al, 2018). In 

pigs, the use of high-density SNP panels such as the Illumina PorcineSNP60 BeadChip (Ramos 

et al, 2009) and other higher density panels, such as 660K (Axiom Porcine 660K, 

https://www.thermofisher.com/order/catalog/product/550588#/550588), have been invaluable 

for the elucidation of candidate genes which explain variation observed in meat quality traits 

(Van Son et al, 2017). As such, appropriate phenotype collection to coincide with genotype 

records obtained from SNP chips is imperative. Precise and accurate phenotypes are necessary 

for the study of quantitative genetics, high-resolution linkage mapping, GWAS’ and for 

training GS models (Cobb et al, 2013). If a phenotype is inaccurate genetic gain will not be 

obtained.  

Increased understanding of the genetic architecture of a desired trait can be helpful for 

improved accuracy of certain quantitative selection methods (GS). The within-line selection of 

purebreds (nucleus herds) results in a modest amount of inbreeding in order to fix desirable 

alleles (Leroy et al, 2018); this can ensure that these are passed onto their crossbred progeny. 

Additionally, it has been shown that using crossbred information (pedigree or more favourably, 

genomic information) in combination with purebred information will improve the accuracy of 

selection (Wei and Van der Steen, 1991; Xiang et al, 2017; Sewell et al, 2018, Sevillano et al, 

2019). For crossbred animals, since their genome is inherited from the different parental 

breeds, the breed from which breed a SNP-allele was inherited may influence different effects. 

These different allele effects arise for multiple reasons: 1) depending on which parental breed 

the QTL was inherited from it may be in LD with different SNPs (Lopes, 2016), 2) different 

https://www.thermofisher.com/order/catalog/product/550588#/550588
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quantitative trait nucleotide (QTN)2 could be underlying a QTL in different parental breeds, 

(Wientjes et al, 2015), and finally 3) the parental breeds may experience different epistatic3 

interactions (Mackay, 2014). As such, identification of markers in crossbred animals with high 

IMF content is helpful for further improving accuracy of GS in the purebred animals. 

Additionally, pigs have been shown to be an excellent candidate species for GS based on the 

many QTLs affecting meat quality which have already been detected. This can increase the rate 

of genetic improvement within all tiers of the Canadian hog breeding system.  

1.2 Objectives 
 

The overall objective of the study was to investigate fat, primarily IMF and backfat, and the 

genetic architecture of IMF and to relate these to fat’s role in pork meat quality. The eventual 

goal, though out of the scope of this thesis, is the implementation of any newly identified SNPs 

into breeding programs to improve the crossbred expression of IMF, and thus improving meat 

quality traits. Positively (genetically) correlated traits generally increase and decrease together, 

proportional to their correlation and which trait is under direct selection. Genomics, 

particularly the incorporation of trait-specific markers can be useful by increasing the accuracy 

of GEBVs in a GS program for the trait under investigation and lessening the degree to which 

related traits are affected. For IMF and BFD, this is of particular importance, as the goal is to 

increase IMF without re-fattening pigs. This was achieved through assessment of IMF content, 

backfat fat composition (quality) estimates, examination of IMF and related traits in both 

purebred Durocs and commercial crossbred pigs and finally, implementation of a GWAS for 

IMF content in order to identify relevant SNPs and regions. The studies were completed 

 
2 A quantitative trait nucleotide (QTN) is an identified causative nucleotide within a quantitative trait loci (QTL) 
(Miles and Wayne, 2008).  
3 Epistasis is basically the interaction between genes at different loci (Cordell, 2002).  
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through discovery-based methods, which allowed us to freely investigate the traits of interest. 

The specific objectives and hypothesis for each study are as follows: 

1. Phenotypic data generation for purebred Duroc IMF content of the loin as well as for 

backfat quality using near-infrared spectroscopy. Reference methods of proximate 

analysis (IMF) and gas chromatography (backfat) were used to validate the predicted 

phenotypes. The goal is to build on the body of literature validating near-infrared 

reflectance (NIR) as a method of reliable phenotype production and to utilise these 

phenotypes in further genetic studies. Based on the assessment of the literature of NIR 

as a reliable method for  phenotype prediction including swine subcutaneous fat and 

meat composition, we expected to find a moderate-high positive relationship, indicative 

of accuracy, between the predicted phenotypes from NIR and those which were 

measured via reference methods (actual values). Our null hypothesis is that no 

relationship exists.  

2. Investigation of the relationships between IMF content, measured by various methods, 

and backfat depth, measured by various methods, in a commercial crossbred and 

purebred Duroc population. In addition to estimating the variance components for each 

single trait (heritabilities for backfat depth (BFD), ultrasound backfat depth (UBFD), 

near-infrared IMF (NIRIMF), ultrasound IMF (UIMF), subjective marbling score 

(SUBJ) were calculated), we conducted a bivariate analysis to compute genetic and 

phenotypic correlation between the aforementioned phenotypes. All results were 

compared to the literature; based on the well documented relationship between IMF and 

BFD found in the literature we expected to identify moderate-high positive correlations 

between these traits, as well as moderate – high heritabilities for these traits. Our null 
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hypothesis is that there is no relationship or a negative relationship between the traits 

and that estimated heritabilities are outside the range of those previously reported.  

3. Identification of SNPs and subsequent candidate genes related to IMF (UIMF and 

NIRIMF estimates of IMF) content in first a purebred Duroc population followed by a 

commercial crossbred pig population. This was done using a GWAS; the results of the 

GWAS were then compared to the current body of literature and to one another to 

investigate the genetic underpinnings of IMF in commercial crossbred and purebred 

pigs. We hypothesised that for all GWAS’ that we will identify a SNP which has a 

large effect size, explaining a sizable amount of the phenotypic variance seen in IMF; 

in the event there are no single SNPs with large effect size we expect to identify SNPs 

with a smaller effect size which still pass the threshold of significance. We have no null 

hypothesis for the GWAS’.   
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Chapter 2.0. Literature review 

 
2.1 Canadian hog industry 

Canada is home to a thriving agricultural and agri-food sector and pork is Canada’s 

fourth largest agricultural commodity, following canola, dairy and beef cattle (Brisson, 2015). 

Canada is the world’s 7th largest pork producer, hosting 2% of global production (Agriculture 

Canada, 2017) and exports continue to increase. In 2011, close to 60% of all domestic pork 

produced was exported (Maignel et al, 2011) and Canada Pork International (CPI) (2018) 

reports that in 2017, over 1.2 million tonnes of pork, pork by-products and value-added 

products were globally exported. This resulted in over $4 billion dollars of revenue, increased 

from $3.2 billion dollars in exports in 2016 (Aurora, 2017), and just over a billion dollars in 

1998 (CPI, 2018). Canadian pork is primarily exported to the USA and Japan. The USA 

imports more tonnes of product; however, Japan spends more money on what is chosen to 

import. In 2019, the USA spent $1.251 billion dollars on just under 320 000 tonnes of 

Canadian pork and pork products, and Japan spent $1.403 billion on just under 262 000 tonnes 

of Canadian pork and pork products (CPI, 2019). The primary difference is import choices; 

Japan imports significantly less than the USA does in all categories (fresh/frozen/chilled fat, 

offal, and processed), but the products which it does import are of a higher economic value. 

Canada’s entire agricultural and agri-food industry sector was reported as 6.7% of Canada’s 

annual GDP in 2016, (Agriculture and Agri-food Canada, 2017), totalling $111.9 billion 

dollars. Pork exports alone contributed $3.5 billion dollars to Canada’s GDP in 2012 

(Canadian Pork Council, 2012).  

Traditionally, Canadian pigs were grown on small-medium scale farms in conjunction 

with other livestock animals or crops, predominantly for subsistence (Brisson, 2015). Today, 
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however, farms are large, often specialised in a single animal product, and fewer in number. 

This change has made small-scale operations less economically viable and encourages their 

large-scale growth (Machum, 2005). Over the last 45 years, the meat packing industry has 

undergone a massive shift, coinciding with the changes in farm size (Macdonald, 2003). 

Significant consolidation of small plants and increased vertical integration allowed large firms 

to capitalise on economies of scale (Macdonald, 2003). For the pork industry specifically, this 

consolidation has allowed packers to procure large contracts with producers and space the 

arrival of specified numbers of hogs to maximise efficiency (Harper, 2009). Desired weight is 

specified in the contract and can be within a narrow window, therefore uniformity of animals 

significantly affects the producer’s profit. Carcass homogenization and achievement of desired 

carcass traits are affected by many factors, including animal nutrition, environment, and 

genetics. Incentive payments according to the contract and carcass grading and purchase 

matrices, known as the payment grid, are incentives for producers to follow these guidelines 

and incorporate the genetics into their breeding herd. During the 1980’s, a majority of pigs 

were sold on a live weight basis (Hayenga et al, 1985), just 10 to 12% were sold on a carcass 

basis. Some producers felt that more emphasis should be placed on carcass quality (Hayenga et 

al, 1985), which would help improve the consistency and quality of pork, drive up its demand, 

value and maximize payment received for an excellent carcass. Emphasis on carcass leanness 

has also been as a result of health-conscious consumers pressuring the industry for leaner meat, 

and to combat the poor perception of pork during the 1980’s as a low quality, ‘blue collar’, 

protein source (Dougherty, 1987). During this time, the prevailing research also equated animal 

fats, particularly saturated fatty acids, and high fat intake with negative health consequences 

(Kritchevsky, 1998; La Berge, 2008). As a result, premiums for particular traits, primarily 

increased lean muscle and decreased backfat, were built into the purchase matrices by the 
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packers for producers to follow (Hayenga et al, 1985; Martin, 2008). The shift from fat pigs 

and fatty pork to lean pigs and lean pork was achieved rapidly, in just two decades of dedicated 

selection producers had made huge progress (Schwab et al, 2006). Selection and breeding 

focusing solely on leanness and reduction of backfat resulted in unintended decreases of 

correlated meat quality traits and negatively affected meat quality. The efficient production of 

these lean pigs was also a major goal. Feed comprises 60 to 70% of the cost of growing pigs 

(Renaudeau et al, 2012; Martinsen et al, 2015), and the energy costs of protein deposition 

compared to fat deposition ranges from 9.00 to 11.25 kcal/g and 12.73 to 12.96 kcal/g, 

respectively (Cleveland et al, 1983). Therefore, reduced feed intake whilst increasing average 

daily gain were some of the other traits selected for in order to grow a more efficient lean pig 

(Cleveland et al, 1983). Additionally, some drug therapies, specifically ractopamine, were also 

investigated for their role in growth efficiency. Ractopamine use significantly improves growth 

performance, lean growth, and carcass composition (Williams et al, 1994); although 

ractopamine is not banned in Canada, it is banned in many countries which Canada exports to. 

As such, all federally inspected abattoirs, which produce 97% of all Canadian pork, require 

hogs to be ractopamine free and producers comply to the Canadian ractopamine-free 

certification program (Canadian Pork Council, 2020).  

Though the lean meat goal had been achieved, decreases in certain meat quality 

characteristics, including intramuscular fat (IMF), and subsequent organoleptic qualities 

assessed by consumers, such as reduced tenderness and reduced juiciness created a new set of 

issues for the pork sector.  

2.2 Pork fat and meat quality 

Overview 
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Meat quality is a broad topic which encompasses intrinsic and extrinsic factors relating 

to consumption satisfaction of the final product; many pre and post-mortem factors also 

significantly affect consumption quality. This section will first focus on the general definition 

of pork meat quality and factors which influence this. Subsequently, this will narrow into an 

investigation of fat; fat quality, deposition, genetic influence of deposition, noteworthy depots 

(IMF), and finally, consumer preferences.  

Pork meat quality 
 

Overall quality of pork is a combination of technological quality, carcass traits, and 

consumer acceptability of the product (Lee et al, 2012). There are a large number of traits to 

assess when investigating meat quality, all of which ultimately relate to a sensory experience. 

Some of these include water holding capacity (WHC), peak shear force (PSF), colour of both 

muscle and fat, ultimate muscle pH, visual appeal, tenderness, juiciness and flavour (Zhang et 

al, 2015). These are all assessed post-mortem and can be affected by slaughter practices and 

carcass handling techniques. Additionally, pre-mortem factors can significantly affect the 

assessed traits; these include environment, diet, transportation to slaughter facilities, age, breed 

(genetics) and method of slaughter. Ultimately, the most important factors depend on the 

preference of those evaluating the product (Purslow, 2017) which can vary between 

individuals, regions and countries.  

As a society progresses and changes, so does the colloquial definition of meat quality; 

if meat becomes readily available, safe and free of disease, consumers then look more closely 

at intrinsic qualities, such as preferred flavour and texture (Purslow, 2017). More narrowly, 

meat quality is divided into quality attributes (QA) or quality characteristics (QC), the former 

being the set of criteria used by consumers for qualitative inspection, and the latter being those 

measurable through scientific tests and processes (Becker, 2002). QA include the visual appeal, 
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flavour, juiciness, and tenderness upon consumption, and engage the consumers’ senses of 

sight, smell, and taste; therefore, they are referred to as organoleptic attributes. These 

characteristics come into play upon purchasing and repurchase of meat products and are 

primarily based on consumer preference (Glitsch, 2000). QC are objective and quantitatively 

measured and thus have values calculated for evaluation (Becker, 2002). Some traits may be 

evaluated in both sets of standards, such as IMF and marbling (visual IMF in the lean). QC 

IMF can be estimated by precise instruments such as near-infrared (NIR) on meat samples, 

ultrasound in live animals, or through the use wet chemistry for an exact value. When 

evaluated under QA, it is called marbling; many standards exist for the subjective evaluation of 

visual marbling including the National Swine Improvement Federation Standards (NSIF), the 

National Pork Producers’ Council standards (NPPC), and the Canadian loin marbling 

standards.  

Upon carcass processing, a number of measurements may be completed to assess 

specific meat quality traits. Firstly, IMF (visual marbling), meat colour and fat colour may be 

subjectively assessed using reference standards provided by Canada Pork International for 

export quality (Canada Pork International, 2015). Additional measurements taken at the packer 

include ultimate pH (PHU), and carcass temperature; these measurements would not be done 

on every carcass, but rather on a representative percentage. Backfat thickness is measured on 

each carcass as it is this measurement which ultimately determines the valuation of the carcass 

and final payment for the producer. The equation used for carcass valuation is shown in Figure 

2.1. In general, the thinner the backfat, the greater the lean yield calculated and greater 

payment.  
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Figure 2.1 

  
 

Figure 2.1, which shows two equations used for the calculation of carcass lean yield. 
A: Algorithm used by a well-known grading probe for calculation of estimated lean yield. Adapted from National Pork 
Carcass & meat quality evaluation standards handbook, 1997 
B: Hand equation for Canadian lean yield calculation. Known in shorthand as LY2000. Adapted from Marcoux et al, 2007 

 
The role of fat in pork, for satisfactory consumption of meat and processed products as 

well as for carcass economic valuation will be discussed in depth throughout this section, and 

the high value these depots have will become clear. 

What is fat?  
 

Triglycerides are the primary storage lipid in animals, they are deposited when energy 

supplied is in excess of biological needs and are the main constituent of fat depots. They are 

made of esters of fatty acid chains attached to a glycerol molecule. Fatty acids can be 

synthesised de novo or absorbed from dietary sources, and glycerol is derived from dietary 

glucose (Dunshea and D’Souza, 2003). Due to the innervation of blood vessels and capillaries 

throughout porcine adipose tissue (Seman, 2008), dietary glucose is easily supplied. One 

triglyceride is made of three esterified fatty acid chains which are attached to the glycerol 

backbone. Each fatty acid chain is either saturated (SFA), polyunsaturated (PUFA), or 

monounsaturated (MUFA). Unsaturation is a measure of the carbon-carbon double bonds in the 

hydrocarbon chain of the fatty acid, as carbon-carbon double bonds increase, carbon-hydrogen 

single bonds decrease (Ockerman, 1996). An unsaturated fatty acid contains less than the 

maximum amount of hydrogen due to the presence of the double bonds between the carbons in 

A: Henessey grading probe = 67.2327 - 0.7877 (FAT) + 0.1086 (LEAN) + 0.0087 (FAT)2 - 0.0004 (LEAN)2 - 
0.0002 (FAT x LEAN) 

B: Canadian Lean Yield = [weight of side ribs + commercial belly +the muscles of the half carcass – (the weight 

of the jowl muscles + the muscles between the neck bones + the muscles around the picnic ribs)] *100 / [weight of 

the dissected tissues (skin, fat, lean, bone) of the carcass including the feet, tail and jowl] 
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the tail. MUFAs have one double bond, PUFAs have two or more double bonds and SFAs have 

none. The presence of double bonds, their location in the fatty acid and finally, the number of 

bonds influences the fatty acid’s properties. Subsequently, the primary type of fat deposited 

will influence the properties associated with that fat depot.  

Fat quality 
 

Subcutaneous fat, further categorised into backfat, belly fat, intermuscular and IMF are 

the principle depots of adipose tissue in pigs with regards to carcass and meat quality. Quality, 

quantity, texture, colour and thickness of pork fat is economically relevant as it heavily 

influences meat quality parameters, including firmness, colour, peak shear force, organoleptic 

parameters for consumers, visual assessment prior to purchase, the attributes and acceptance of 

further processed products, and ultimately the value of an entire carcass (thickness) (Teye et al, 

2005). Generally, fat is described by and ranked into one of two broad categories, ‘good’ or 

‘poor’, based on colour and consistency/texture (Srensen et al, 2012). Good fat is firm and 

white and comprised primarily of SFAs. Poor fat is oily, wet, off coloured, and contains a high 

concentration of UFAs and a high water: lipid ratio which contribute to an undesirable, soft 

texture (Kouba and Sellier, 2011). In the abattoir, carcass cut up follows an efficient and 

defined procedure; first, the carcass is split into halves (lengthwise) and is then further divided 

into four ‘primal’ cuts of the shoulder, leg, loin and belly (Marcoux et al, 2007; CFIA, 2012). 

These primal cuts are then marketed to grocery stores and butchers where they are further cut 

into sub-primal or retail cuts for consumer purchase and consumption, though some packers 

may do this step as well (Alberta Agriculture and Forestry, 2018). Texture-wise, hard fat is 

preferred from a packer perspective as the cohesive nature between the muscle and the fat keep 

large muscles of the primal cuts together prior to further cutting (Srensen et al, 2012). Soft fat 

decreases cutting efficiency and causes uneven slicing due to sticky knives. The majority of 
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backfat and subcutaneous fat is trimmed from retail cuts prior to selling, and this fat goes for 

use in other value-added products (Kouba and Sellier, 2011). In these further processed 

products, fat is one of the most variable ingredients used; is it suggested, by the National Pork 

Producer’s Council, that a good quality pork fat must contain less than 15% PUFAs. Overall, 

the fatty acid composition of subcutaneous fat plays an integral role in the texture, flavour and 

processing efficiency of value-added products. Fat comprised of SFAs is preferred for further 

processed products, as it provides positive eating attributes and a more consistent product for 

sausage producers (Baer et al, 2013). PUFAs are associated with negative properties, such as 

fat capping in hot dogs and oil/fat seepage (Baer et al, 2013). As discussed, PUFAs are also 

less oxidatively stable than SFA and have an increased propensity for lipid peroxidation which 

can lead to reduced shelf life and rapid development of rancidity, resulting in off-flavours 

noted during consumption (Cameron et al, 2000; Cannata et al, 2010). Animal nutrition 

significantly affects the final composition of fat. Feeding an antioxidant such as vitamin E at a 

supra-nutritional level to the pigs prior to slaughter can reduce this risk (Turner et al, 2014), 

though this is not widely implemented.  

As a result of breeding programs with the focus of efficient, lean growth, we have 

inadvertently attained low quality fat due to the relative increase in PUFA concentration in all 

adipose tissue which is associated with high-lean carcasses (Wood et al, 2008) and total 

carcass fat reduction. As backfat thickness decreases, the proportion of PUFA increases, 

devaluing the fat quality. It is well documented in the literature that decreased fat deposition 

results in an increase of unsaturation in the fat; lower deposition associated with leaner pigs 

results in higher PUFA and MUFA proportions (Correa et al, 2008). The level of unsaturation 

in swine adipose tissue follows a negative gradient from the outside to the inside of the body 

(Kouba and Sellier, 2011; Soladoye et al, 2017). This significantly affects subcutaneous fat 
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(backfat), which is generally deposited in two layers (Seman et al, 2008). The first layer 

deposited is the outermost layer, and it is more heavily concentrated in PUFA’s than the 

second (innermost) layer, which contains higher levels of SFAs. This is attributed to less de 

novo synthesis of SFA and MUFA and a higher incorporation of dietary fatty acids in pigs 

during the first stages of lipid deposition, the early stages of growth (Wood et al, 2008). 

Interestingly, since backfat at the dorsal portion of the loin is highly accessible for ultrasound 

analyses and on-floor measurement it has been the chief site of assessment during the pursuit 

of leaner carcasses (Kouba and Sellier, 2011).  

Measures of pork fat quality which are evaluated on the packing line include subjective 

colour, and texture (Seman, 2008). Any measures done in the abattoir must be quick, 

inexpensive and require minimal to no equipment, as the abattoir is a fast-paced environment 

where evaluators do not often have more than 15 seconds with each carcass (Sørensen et al, 

2012). Such assessments are prone to error, lack repeatability and rely primarily on qualitative 

analyses; cumulatively, these tests are known as the subjective fat quality scores (Seman et al, 

2013). A commonly used, more scientific method of fat quality analysis is Iodine Value (IV); 

IV is reported as the grams of iodine that 100 grams of a fatty acid takes ups in a halogenation 

reaction. Iodine monochloride is introduced to the fatty acid, and at the site of any C=C double 

bonds, an iodine molecule is incorporated to create a di-halogenated bond. One carbon is 

bonded to an iodine and one to a chloride, of which the total quantity can later be measured. 

Saturated fatty acids take up no iodine, and do not undergo the halogenation reaction 

(Vlab.Amrita, 2011), therefore their IV is zero. IVs greater than 70 indicate the fatty acids are 

primarily unsaturated and likely an oil, a value less than 70 indicates increased saturation of the 

fat. Generally, iodine value is calculated after the fatty acid profile of fat is determined via gas 

chromatography (GC) (Seman et al, 2013). However, as discussed, rapid methods are more 
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practical for kill-floor evaluations. The NitFomTM (Frontmatec, Denmark) is a hand-held 

device which uses NIR and is capable of rapid IV calculation from scanning carcass 

subcutaneous fat. The accuracy, when compared to GC, is very high (Christensen et al, 2019). 

Classification of carcasses based on their IV, soft or firm, can allow processors to sort 

carcasses for appropriate cutting recipes and to provide feedback to producers on their feeding 

programs (Christensen et al, 2019). Though a producer is not paid for improvement of fat 

quality, optimization of fat firmness will positively affect the hog industry by improving 

overall product quality via slicing efficiency and extend shelf life due to reduced PUFAs. For 

the estimation of individual fatty acids, categories of SFAs, UFAs and adipose tissue 

composition in meat or subcutaneous fat, methods have been developed using NIR technology 

(Prieto et al, 2009). This technology has been shown to provide highly accurate results at full 

production speed. NIR technology works by passing infra-red (IR) light through a sample via a 

probe. Certain molecular bonds absorb the IR light maximally at different wavelengths; the 

NIR instrument analyzes the proportion of light that is reflected by the sample material. This 

returns a spectrum which can then be analyzed against standards to determine the composition 

of that sample (Davies, 2005).  

Fat deposition in pigs 
 

Adipose tissue or fat tissue is differentiated from the mesenchyme cells during fetal 

development, and these cells then differentiate into loose connective tissue which are filled 

with lipid as the pig grows (Seman, 2008), these are known as adipocytes. Immature 

adipocytes contain barely any fat content, and that which is present contains high proportions 

of water and connective tissue, causing it to be grey and soft (Wood, 1984). As the animal 

matures, more energy is diverted into fat deposition and therefore these adipocytes fill with 

lipids, primarily triglycerides. This displaces water and lowers the relative percentage of 
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connective tissue in the fat depot, which alters the texture and increases quality of the fat 

(Seman, 2008). This tissue is also the site of a significant amount of de novo fatty acid 

synthesis. In fact, approximately 75% of fat deposits in pigs are from de novo synthesis in the 

adipose tissue. The remainder are absorbed and incorporated into tissues, unchanged, from 

dietary sources (O’Hea and Leveille, 1969; Lawrence and Fowler, 2002). As such, diet and 

feed intake play large roles in not only the cost of raising pigs, but also in deposition of fat. 

Additionally, sex is an important factor for fat deposition, as gilts tend to be fatter than boars 

(Farnworth and Kramer, 1987; Kouba and Sellier, 2011), and barrows fatter than gilts 

(Dunshea and D’Sousza, 2003).  

Subcutaneous fat is subdivided into backfat and belly (omental) fat, along with inter 

and IMF which are the other primary adipose depositions. The allometric growth, the 

measurement of unequal development rates of different organs or parts of an animal, in regard 

to fat depots, is of interest for fat depot development (Collins Dictionary of Biology, 2005). 

The allometric growth of kidney fat is approximately 1.24 times, significantly higher than both 

subcutaneous fat and intermuscular fat at 1.01 and 0.87, respectively (Wood, 1984). IMF is 

deposited in the late/final stages of growth, making it a ‘late’ maturing fat depot. Feed energy 

supplied for heavy, fast growing animals to support protein deposition can be allocated to IMF 

deposition upon reaching their mature weight (Wood et al, 1999). Generally, fat is deposited 

when energy from the diet is supplied in excess to daily metabolic requirements. The accretion 

of fat tissue costs approximately four times more energy than the accretion of an equal amount 

of lean tissue (De Lange, 1998). Lean growth and deposition of muscle is very efficient in 

today’s meat pigs. Too much fat deposition may result in producers receiving less money for a 

carcass based on the above described grid system, but also costs significant money in feed.  
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Growing heavy, lean pigs is more economically efficient than heavy fat pigs due to the 

energetic costs of deposition between lean and fat (De Lange, 1998), though meat quality and 

palatability decrease from lack of lipid (Frank et al, 2016). Late maturing breeds, such as 

Duroc or Yorkshire, tend to have less fat deposited at the time of slaughter than early maturing 

breeds, and what fat is deposited has a higher concentration of water due to the immaturity of 

adipocytes (Wood, 1984). The Duroc breed (modern type4), however, is also associated with 

higher IMF than other breeds (Schwab et al, 2006). Breed effects in fat deposition substantially 

influence total carcass fatness, as well as deposition to the various depots (Kouba and Sellier, 

2011). Fat deposition in pigs follows a defined pattern, meaning the same depots will be 

deposited, however, fat partitioning sees significantly more genetic variation between breeds 

and populations (Kempster, 1980). This deposition of fat, its ultimate quantity and relationship 

to various factors including genotype is discussed in a study by Wood et al. (2004) where the 

effects of diet, breed and protein deposition were investigated in relation to fat deposition and 

subsequent eating quality of the meat. Four breeds were investigated: two modern, Duroc and 

Large White, and two traditional5 (Tamworth and Berkshire). Carcasses of the traditional 

breeds were significantly fatter and had less lean deposition, indicating the genetics relating to 

fat deposition significantly affected the carcass composition of these animals. Different breeds 

grow at different rates, and inherently have different predispositions for fattening (Farnworth 

and Kramer, 1987). 

Genetic influence on fat deposition 
 

 
4 Modern type breeds, also called conventional, improved or commodity, are breeds which have undergone 
selection in order to meet the demands of industry and consumers. Modern breeds are ‘fast growing’ types, their 
carcasses contain more lean protein deposited and less fat (than traditional breeds) when given the same diet 
(Wood et al, 2004).  
5 Traditional breeds, also called unimproved or heritage, are breeds which have not undergone significant 
selection to meet consumer and industry. They tend to be fatter and slower growing (Stachowiak et al, 2016).  
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 In addition to dietary influences, sex, and other environmental factors, genetics 

play a large role in the deposition of fat. Although pork meat quality is predominantly 

polygenic, there are a few major genes specific to pork quality, namely the Halothane (HAL) 

gene (Fujii et al, 1991; Hamilton et al, 2000; Brewer et al, 2002; Rosenvold and Andersen, 

2003; Yang et al, 2017) and the Rendement Napole (RN-) gene (Le Roy et al, 1990; Hamilton 

et al, 2000; Brewer et al, 2002; Rosenvold and Andersen, 2003; Yang et al, 2017). Major 

genes have large, single gene effects on meat quality. They are considered major genes if the 

mean value for a homozygous individual compared to individuals not carrying the gene is 

equal to or greater than one phenotypic standard deviation for the affected trait (Sellier and 

Monin, 1994; Rosenvold and Andersen, 2003). These genes, along with their identified 

causative mutations and subsequent removal from breeding stock will be discussed in detail in 

section 2.4.  

Differential breed expression (phenotypic variation) can significantly affect meat 

quality. The pyramidal structure of the hog industry capitalises on differential breed expression 

of selected traits and also take advantage of the benefits of crossbreeding in order to improve 

the quality of the final product. Since 2001, there have been over ninety studies done focusing 

on the genetics, breed and nutritional implications of porcine adipogenesis, lipogenesis and 

deposition of IMF with little consistency in specific genes implicated in these processes 

(Dalrymple and Guo 2017). From investigation of previous literature, a number of genes have 

been identified with association to IMF development in pigs. These are presented in Table S2.1 

in Supplementary information 2.0. The majority of identified candidate genes which exert 

influence on fat deposition are involved in the various adipogenesis pathways as well as lipid 

metabolism (Kouba and Sellier, 2011; Xing et al, 2015). Four primary genes identified by 

Dalrymple and Guo (2017), which are supported by identification in five or more of the over 
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ninety studies, are acetyl-CoA carboxylase (ACACA), fatty acid synthase (FASN), stearoyl-coA 

desaturase (SCD), and fatty acid binding protein 4 (FABP4 or A-FABP). ACACA encodes the 

protein acetyl-CoA carboxylase alpha, which catalyses the rate limiting step for de novo fatty 

acid synthesis (Xing et al, 2015). FASN is a lipogenic gene which encodes the fatty acid 

synthase protein (FAS), this protein catalyses the synthesis of SFAs (Jensen-Urstad and 

Semenkovich, 2012). SCD codes for an enzyme which catalyses the conversion of SFA stearic 

acid into MUFA oleic through addition of a double bond (Renaville et al, 2014). FABP4 or A-

FABP codes for the fatty acid binding protein used for lipid transport inside fat cells and is 

involved in regulation of IMF deposition (Ensembl 95, 2018 - 

https://uswest.ensembl.org/index.html). Xing et al. (2015) showed that full Songliao black pig 

siblings with opposite backfat phenotypes had differing upregulation of various genes. In 

individuals with high backfat, ACACA, SCD, and FASN were highly expressed, which are 

associated with fatty acid synthesis. There have been studies which suggest the possibility of a 

major gene relating to IMF content in pigs, specifically originating from the Meishan breed 

(Janss et al, 1997; de Koning et al, 1999). This gene, MI, has a recessive allele which increases 

IMF content. The same authors, though, subsequently elucidated a number of QTL with 

reduced individual effect (Janss et al, 1997). Similarly, in the Duroc population, the supposed 

major gene (MI) was actually found to correspond to two QTL after further analysis (Sanchez 

et al, 2007). 

An important piece to understand in regard to genetic influence on fat are the genetic 

and phenotypic correlations of related traits, as well as their individual heritabilities. A genetic 

correlation (𝑟𝑔) is the proportion of variance which two traits share due to genetic causes 

(Falconer and Mackay, 1996). Calculation of 𝑟𝑔 can be done with the following formula; 

https://uswest.ensembl.org/index.html
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𝑟𝑔 =  
𝑐𝑜𝑣(𝑔1𝑔2)

√𝑉𝑔1𝑉𝑔2
   (1) 

where 𝑐𝑜𝑣(𝑔1 , 𝑔2) is the given genetic covariance between two traits, 𝑉𝑔1 is the genetic 

variance of trait 1 and 𝑉𝑔2 is the genetic variance of trait 2 (Searle, 1961; Falconer and 

Mackay, 1996). Correlations of 0 indicate that the genetic effects on one trait are independent 

of one another, however, a value of 1 implies that all genetic influences on the two traits are 

equal. Often, the genetic correlation between two traits mirrors the phenotypic correlation 

observed between them (Cheverud, 1988). Phenotypic correlation between two traits is 

affected by the individual trait’s heritability as well as their genetic correlation and is the 

correlation between records of two traits on the same animal (Searle, 1961). A phenotypic 

correlation can be calculated using the following formula: 

𝑟𝑝 = 𝑟𝑔 √ℎ1
2ℎ2

2/√(1 − ℎ1
2)(1 − ℎ2

2)   (2) 

where ℎ1 
2 and ℎ2

2 are the heritabilities of the two traits, and 𝑟𝑔 is their genetic correlation 

(Searle, 1961). Understanding of a trait’s heritability and genetic correlations are important for 

selection purposes. Traits can be independently highly heritable, but not be genetically 

correlated, similarly, they can be completely genetically correlated, but with low individual 

heritabilities. Many traits which comprise pork quality generally have low to moderate 

heritability (0.15 to 0.3) (Rosenvold and Andersen, 2003). An exception to this is IMF, which 

is moderately to highly heritable (h2 = 0.47 to 0.53) (Hernández-Sánchez et al, 2013; Lim et al, 

2016). Total carcass adipose tissue deposition and IMF have a low-positive genetic correlation 

(r2 = 0.11) (Wood, 1990) which is much lower than the genetic correlation of IMF and backfat 

thickness, which ranges from 0.37 to 0.64 (±0.05) (Solanes et al, 2009; Hernández-Sánchez et 
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al, 2013). It is important to be mindful of correlated traits during selection, as they must be 

factored into the expected outcome (Miar et al, 2014). Simply selecting for animals with 

increased IMF will also increase backfat thickness, which is not the goal; an increased 

understanding of the genetic architecture of each trait is important for achieving a marbled 

carcass with decreased/maintained fat depth. This is a key point of focus for this thesis, as 

improving IMF in the crossbred is the ultimate goal but increasing backfat thickness (re-

fattening pigs) is contradictive to industry goals and will harm overall profitability. It is evident 

that utilising genetic tools for the independent manipulation of these traits will be necessary.  

Intramuscular fat (IMF) 
 

The amount of IMF deposited can affect what the fatty acid composition of the depot 

will be; as discussed in the previous section, decreased fat deposition, associated with leaner 

pigs, results in higher PUFA and MUFA proportions in the fat (Correa et al, 2008; Webb and 

O’Neill, 2008). Additionally, regardless of total carcass fat deposition, remnant backfat and 

intermuscular fat is trimmed from retail cuts prior to consumption, (Kouba and Sellier, 2011; 

Listrat et al, 2016) which leaves IMF as a primary fat depot for consumption. For optimal 

eating quality, ideal IMF content as determined by sensory panels is considered to be > 3%, 

however the typical commercial hog in Canada averages just 1.5% in the longissimus dorsi 

(loin) muscle (Meadus et al, 2018). Low IMF is associated with a dry, flavourless and tough 

product. Unfortunately, overcooking often adds to this dryness. Pork is also commonly 

associated with Trichinella spiralis, a parasite which results in the disease trichinellosis in 

humans who eat undercooked pork products. Trichinella spiralis can infect pigs which are 

swill fed (uncooked garbage/kitchen scraps), those which are exposed to pig carcasses, raised 

outdoors with potential exposure to wild hogs or through vectors such as rats (Murrell et al, 

2006). Today, however, the risk is much lower due to modern farming techniques (CFIA, 
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2013). Lingering food safety fears over Trichinella spiralis contributes to the overcooking 

pork, adding to the results of a dry, tough, and unappealing product, but is unnecessary based 

on these guidelines (USDA, 2020).  

As discussed, marbling, or IMF, is one of the most important meat quality traits as it 

significantly affects the eating quality of meat as it is positively correlated with many eating 

quality traits, including juiciness, flavour and tenderness (Wood et al, 1999, Fernández et al, 

1999b; Cannata et al, 2010; Lim et al, 2016). Tenderness, widely considered the most 

important attribute for eating quality (Fortin et al, 2004; Teye et al, 2006), is significantly 

correlated with the amount of IMF or marbling present. IMF is deposited in between individual 

muscle fibers and between bundles of muscle fibers and this is believed to contribute to 

opening of the muscle structure, diluting fibrous protein with fat, and therefore decreasing the 

shear force associated with the cut (Wood et al, 1999). Juiciness is increased in pork with 

increased IMF, as during cooking the fat helps to retain moisture, as well as increased flavour 

due to the Maillard reaction6 (Teye et al, 2006). Total IMF content depends upon many factors, 

including genetics, breed expression, nutrition, and environment. Ultimately, it is the number 

and size of intramuscular adipocytes which determine the final IMF amount (Won et al, 2018), 

along with the genetic background of the animal. As discussed, in section 2.1, breeding focus, 

primarily in the 1980’s, was placed on increased efficiency of lean growth and reduced backfat 

thickness for decreased carcass fatness due to the dominant health science at the time which 

equated fat (animal fat, particularly) with negative health consequences (Kritchevsky, 1998; La 

Berge, 2008). Unfortunately, the relatively high genetic correlation for backfat and IMF 

 
6 The Maillard reaction, also known as non-enzymatic browning, is the chemical reaction which occurs between 
amino acids and reducing sugars in the presence of heat (minimum 140°C) that results the browning of food while 
forming new aromas and flavors (Feiner, 2006).  
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indicates that selection for reduced backfat thickness would inadvertently also select for 

decreased IMF. When discussing IMF, we primarily investigate the loin (longissimus dorsi), 

which is the most routinely consumed cut and it is also typically the leanest cut; this has been 

achieved through the reduction of visible fat (marbling), compounded by breeding goals to 

achieve the same (Webb and O’Neill, 2008). This reduction of marbling in pork was initially 

well received, so much so that the National Pork Board commissioned the ‘other white meat’ 

ad campaign, launched in 1987 to combat any lingering stigma of pork being regarded as a low 

quality, fatty meat. However, complaints of blandness in pork became abundant, as compared 

to the flavourful counterpart, which was historically available, this new lean meat lacked taste 

(Wood et al, 1999). A majority of consumers choose lean loins over more marbled loins based 

on visual inspection, however, during a taste panel with the same consumers, the taste, 

juiciness and tenderness associated with loins having increased IMF was unanimously 

preferred (Font-i-Furnols et al, 2012). This phenomenon is consistent in other markets, as well. 

The organoleptic experience associated with pork consumption is strongly correlated to fat 

quantity and quality. Such consumption-related attributes, including texture and flavour in 

meats are all associated with fat, thereby influencing its acceptability and palatability for 

consumers (Drewnowski, 1992). It is evident that a balance between leanness for initial 

purchase, and fatness for repurchase, of pork products must be achieved (Lim et al, 2016). It is 

therefore abundantly clear the importance that IMF plays in meat quality. 

Consumer consumption preferences  
 

Consumer perception of excellent quality pork relies on how important specific traits 

are to any given purchaser (Meuwissen et al, 2007); due to the importance of acceptance to the 

industry, high importance is placed on meat quality attributes which relate to eating experience. 

One of the most interesting factors associated with eating experience is fat; fat plays a 
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significant role in the acceptance (and rejection) of pork. As discussed, the visual inspection of 

pork prior to purchase is an important part of consumer acceptance and many consumers use 

marbling as a visual measure, and lean meat with minimal marbling is often preferred at that 

point (Font-i-Furnols et al, 2012). This holds true for a majority of North American consumers, 

although different cultures and countries have different preferences. Pigs from the standard 

Canadian meat pig cross have significant variation in their IMF content, but currently, it is 

often < 1% - 1.5% (Wood et al, 1990; Meadus et al, 2018). Export markets vary in their IMF 

preferences; USA consumers prefer 2.5 - 3%, whereas 1% is the preference in the United 

Kingdom (Listrat et al, 2016). Japan is of particular importance for Canada as they are a major 

customer for high value Canadian pork exports (Canada Pork International, 2019). In general, 

Asian consumers highly value flavour and juiciness over leanness, and therefore emphasis is 

placed on cuts with moderate to abundant IMF during purchasing (Frank et al, 2016). Marbling 

in Canadian pork is graded on a 6-point scale from Canada Pork International (CPI, 2015). 

Pork with a score of 3 or above is recommended as premium retail meat, which is then often 

exported to countries with this preference. Traditional breeds such as the Berkshire (Kurobota), 

are highly valued in Japan as their meat contains significantly more marbling than lean meat 

pigs, a trait highly valued in Asian culture (Frank et al, 2016). However, Berkshire pigs grow 

much slower and are more expensive to feed than commercial crossbred [Duroc x (Landrace x 

Large white)] pigs in Canada. Companies which supply genetics to the greater Canadian pork 

industry often have sires of different breeds and lines of a single breed which have been 

selected for traits valued by all consumer markets, such as IMF content, balanced with growth, 

in order to improve the profitability of a producer’s herd (Hypor, 2018).  

Consumers purchasing raw pork often use three to four meat characteristics to make a 

choice (Ngapo, 2017). Aside from marbling, colour of meat is generally one of the first 
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characteristics noted and preference for pork colour is diverse and can vary significantly within 

even a single country (Ngapo, 2017). High marbling content can distort the colour of a pork 

loin chop as it increases reflectance, recorded objectively as lightness (L*), and can cause it to 

appear paler to an untrained consumer eye. In extreme cases, this can result in pork being 

mistaken for PSE. Striking a balance for enough IMF to satisfy consumption preferences, but 

not excessive to devalue the visual appeal is important. Albertan consumers have been shown 

to prefer a dark red pork colour with little fat cover (Ngpao, 2017). Aside from colour, drip 

loss is another visual characteristic assessed by consumers to make their meat choice. Drip loss 

is the water lost from meat during storage, such as in the wrapped trays on retail shelves 

(Warner, 2014). Packages with excessive moisture content are visually unappealing and can 

indicate the product is inferior, as drip loss is considered an important trait for palatability and 

overall acceptance of meat (Warner, 2014; Dalrymple and Guo, 2017). Overall, consumer 

satisfaction with pork is the ultimate goal when setting breeding goals to achieve excellent 

meat quality and Canadian hog system utilises a specific breed cross in order to optimise meat 

quality for the consumer. 

2.3 Crossbreeding  
 

The Canadian hog industry is a pyramidal structure composed of three tiers; nucleus 

farms are at the top of the pyramid, and this is where genetic improvement is achieved (Figure 

S2.1, Supplementary information 2.0). Here, animals are selected based on their own 

performance in a purebred herd. Nucleus farms are also very high-health farms, which is very 

important to maximise the results of genetic improvement. By reducing the stress of disease 

and other potential environmental stressors, full genetic potential can be expressed and 

measured. The middle tier are the multiplier herds, where purebred dam lines are crossed (F1 
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animals) in order to produce large numbers of breeding animals. These crosses can be 

purchased by commercial farms as replacement gilts. The bottom tier is the commercial farms, 

which mates purebred sire semen with F1 dams to produce a terminal, F2 commercial cross 

which is destined for market. This structure is known as terminal crossbreeding. 

Terminal crossbreeding offers many benefits for final product quality, and also daily 

performance of the animals, such as feed efficiency which improves overall profitability. The 

crossbred nature of market pigs exploits hybrid vigor, breed complementarity, beneficial breed 

combinations and differential breed expression of desired traits (Falconer and Mackay, 1996; 

Oldenbroek and Van Der Waaij, 2015; Yadav et al, 2018). In a technical bulletin from the 

Government of Canada (Fahmy et al, 1987), multiple combinations of purebred sires and 

crossbred dam were investigated for the desirability of progeny’s carcass and meat quality, 

among other traits. This work founded the typical Canadian commercial meat pig; a three-way 

cross of a Duroc boar to an F1 progeny sow of Landrace × Large White (Miar et al, 2014). The 

Duroc breed, specifically, is known to have higher IMF content than other potential sire breeds 

such as the Pietrain, but also higher growth and feed efficiency than fatter breeds which 

contain higher IMF, such as the Berkshire; growth and feed efficiency are important to ensure 

profitability of the final carcass (Fahmy et al, 1987; Alfonso et al, 2010; Choi et al, 2014). The 

sow is chosen primarily for mothering ability, litter size and longevity in the breeding herd 

(Blomberg, 2010; Camerlink, 2018). The three-breed cross with a terminal sire has many 

advantages and produces maximum hybrid vigor of any crossbreeding system (Yadav et al, 

2018). This maximum hybrid vigor is realised in both in the F1 sow and the commercial 

progeny; since replacement gilts are generally purchased from multiplier herds rather than 

produced on farm, sires can be chosen with no attention to maternal traits (Yadav et al, 2018). 

Hybrid vigor, also known as heterosis or outbreeding enhancement is the unique phenomenon 
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in which crossbred animals outperform the average performance of their purebred parents 

(Falconer and Mackay, 1996) and is one of the main reasons crossbreeding is applied. 

Heterosis can be calculated as the crossbred average for the trait minus the purebred average, 

divided by the purebred average (Spangler, 2013); heterosis can results from epistasis, 

complete- or over-dominance effects, which occurs when a heterozygous individual (Bb) with 

1 copy of a particular allele will produce a phenotype that is equivalent or more beneficial than 

that of the homozygous individual (BB) (Falconer and Mackay, 1996; Oldenbroek and Van 

Der Waaij, 2015). This is particularly beneficial for traits with low heritability, such as PHU 

(h2 = 0.11 - 0.20; Cameron et al, 1990; Hermesch et al, 2000; Van Wijk et al, 2005) which may 

be otherwise difficult to improve with selective breeding (Oldenbroek and Van der Waaij, 

2015). In fact, traits with a high heritability have lower estimates for heterosis than those with 

lower heritability. Additionally, heterosis can mask deleterious alleles, as crossbreds tend to 

have more heterozygosity and alleles with negative effects are frequently recessive 

(Oldenbroek and Van der Waaij, 2015). Heterosis is not the exclusive goal from crossbreeding, 

and in fact for some traits, particularly those with high heritability and are additive in nature, 

such as many meat quality traits selected for in the purebred lines (IMF), breed 

complimentarity is more beneficial to the progeny.  

Breed complementarity is another benefit of crossbreeding; which results from mating 

parents of different breeds which are specialised in different traits, as seen from the typical 

Canadian commercial cross. Breed complementarity is particularly beneficial for traits which 

may be negatively correlated but are both relevant for production, and as such cannot be easily 

improved in a single breed. Examples include loin muscle area (cm2) with number of piglets 

weaned (-0.015 ± 0.008), and lean growth rate (kg/d) with number of piglets born alive (-

0.082 ± 0.0033) (Chen et al, 2003).  
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Though there are significant benefits to crossbreeding, some limitations must be 

considered. In some cases, crossbreeding two genetically distant individuals or lines can result 

in outbreeding depression, a reduction of fitness in the progeny (Frankham et al, 2011). 

Additionally, traits with moderate-high heritability generally do not benefit from heterosis as 

significantly as those with low heritability do; this indicates that heterosis is not the primary 

mechanism through which these traits are improved in the progeny of a 3-way terminal cross. 

The genetic correlation between the performance of purebred and crossbred animals must be 

considered. If this is significantly less than one, the phenotype of the purebred parent may not 

be a good predictor of the crossbred’s phenotype. In previous studies, the genetic correlation 

for purebred and crossbred performance for meat quality traits were found to be high and 

positive (ranging from 0.69 to 0.99) (Tusell et al, 2016), but some have noted lower 

correlations (0.36) (Götz and Peschke, 1993). Depression of genetic correlations can be due to 

various factors, such as genotype by environment (Schou et al, 2019); this is common in the 

Canadian system due to the environments in which the purebreds and crossbreds are raised, 

causing this genotype by environment interaction (Oldenbroek and Van Der Waiij, 2015). The 

within-line selection of purebreds is done primarily to improve the performance of crossbred 

descendants under field conditions (Tusell et al, 2016). The high-health herds seen at the 

nucleus level do not face the same disease challenges that a crossbred animal at the commercial 

level may see, and traits such as growth may be affected due to lowered immune status and 

onset of disease. An example of this is the genetic correlation between daily weight gain 

(DWG) and osteochondrosis lesions (0.31) (Kadarmideen et al, 2004) indicating that animals 

with more lesions will put on less weight daily and grow more slowly. Additionally, the use of 

three-tiered breeding programs such as this can lead to genetic improvement lag, which is the 

time taken for genetic improvements achieved in the upper tier to reach the tier below 
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(Bichard, 1971). Genetic lag is ultimately determined by the summation of the following 

factors: the rate of genetic progress within the nucleus herd, the number of steps in the 

breeding system, the genetic superiority of the nucleus boars and of the gilts used in multiplier 

herds and finally, the generation interval at each level of the pyramid (See, 1995). In the 

Canadian breeding scheme, the estimated improvement lag is approximately 3.5 years 

(Bichard, 1977; See, 1995). Genetic improvement achieved in the multiplier and commercial 

levels directly depends on the rate of the genetic improvement achieved in the nucleus, a high 

rate of genetic progress at the nucleus layer will lead to a higher rate of progress on subsequent 

levels (Bichard, 1971; See, 1995); increased rate of genetic progress in the nucleus helps to 

reduce the size of genetic lag, as any improvement seen in the nucleus is additive. The length 

of time that animals are used in the lower tiers (litters /sow, number of services per boar), and 

the relative genetic superiority of boars and gilts in the nucleus herd which are transferred to 

the lower tiers also affects the size of genetic lag (Bichard, 1971; See, 1995). Improved 

evaluation accuracy and subsequent selection in the nucleus herd and use of semen from these 

superior selected boars in the commercial level (artificial insemination, AI) both help to reduce 

genetic lag seen (Bichard, 1971).  

2.4 Breeding approach: traditional to genomic 
 

Traditional  
 

Very basically, animal breeding is using selective mating of superior animals in order 

to increase the likelihood that these traits are expressed in the progeny and to increase the 

frequency of the best genes for the desired trait in the population (Falconer and Mackay, 1996). 

The statistical approach of best linear unbiased prediction (BLUP) is a traditional breeding 

method which uses observed phenotypic records of an individual or its relatives, and the 
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proportion of shared additive genetic relationships between animals (pedigree information) in 

order to estimate breeding value (EBV) of animals for each studied performance trait. Animals 

are ranked on their genetic potential through these EBVs, which allows for breeding decisions 

to be made which optimise the performance of the next generation (Henderson, 1975). This is 

the basis of genetic improvement programs, where the progeny of the individuals chosen for 

breeding are expected to have desirable expression of certain traits and is known as ‘selective 

breeding’ or a ‘selective breeding program’ (Hill, 2001). Such methods have been able to yield 

substantial improvements for animal production traits; however, carcass composition and meat 

quality traits are not as suitable for improvement by this method. This is because these traits 

must be measured definitively post-mortem and therefore cannot be measured on selection 

candidates, but rather, on relatives. It is therefore understood that genetic improvement of meat 

quality traits via traditional methods is both difficult and slow (Miar et al, 2014; Oldenbroek 

and Van Der Waiij, 2014). The accuracy of breeding value prediction is the correlation 

between true and estimated breeding value. This is estimated by regressing the estimated 

breeding value (A) onto the phenotype (P), which is the product of the true breeding value (A) 

and environmental influences (E) (Mrode, 2005). It is done with the following formula: 

𝑏𝐴𝑃 =
𝑐𝑜𝑣(𝐴,𝑃)

𝑣𝑎𝑟(𝑃)
=

𝑐𝑜𝑣(𝐴,𝐴+𝐸)

𝜎𝑃
2 =

𝜎𝐴
2

𝜎𝑃
2 = ℎ2   (3) 

where 𝑏𝐴𝑃 is breeding value prediction accuracy. The genetic variance for the trait is 𝜎𝐴
2, 𝜎𝑃

2 is 

the phenotypic variance for the trait and h2 is the heritability of the trait. This calculation 

allows comparison of different selection method accuracies; the higher the accuracy, the better 

the method for prediction of breeding values, and therefore higher potential genetic gain 

(Mrode, 2005).  

Marker-assisted selection (MAS) 
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Recently, advancements in computing power and technology has facilitated alternate 

approaches for breeding programs. Together, these have made genomic methods more 

common approaches for selective breeding programs, however, perhaps most importantly is the 

availability of many single nucleotide polymorphisms (SNPs) across the genome of many 

species, discovered by genome sequencing (Goddard and Hayes, 2007). Once a SNP is found 

to be associated with a certain trait, then the genotype at the SNP locus can then be considered 

when potential breeding animals are selected. This type of selection is known as marker-

assisted selection (MAS); MAS utilises a small number identified markers for selection 

purposes (Dekkers, 2004). This method has been used for the improvement of some significant 

meat quality traits in pigs through the manipulation of two primary genes, namely the protein 

kinase AMP-activated non-catalytic subunit gamma 3 (PRKAG3) gene (originally called 

“Rendement Napole” (RN-)) (Le Roy et al, 1990; Hamilton et al, 2000; Brewer et al, 2002; 

Rosenvold and Andersen, 2003; Yang et al, 2017), and the Halothane gene (HAL) (Hamilton et 

al, 2000; Brewer et al, 2002; Rosenvold and Andersen, 2003; Yang et al, 2017).  

A mutation in the PRKAG3 gene, which typically encodes for a muscle specific isoform 

of the regulatory gamma subunit of adenosine monophosphate-activated protein kinase 

(Rosenvold and Andersen, 2003) causes significant and prolonged pH decline post-mortem 

(Figure 2.3), leading to what has been termed “acid meat”. This is attributed to higher than 

average glycolytic potential in the muscle which prolongs the pH drop and degrades glycogen 

post-mortem (Gao et al, 2007). The high glycolytic potential post-mortem and elevated residual 

glycogen also results in excessive drip loss due to poor WHC, which results in low cooking 

and processing yields (Salas and Mingala, 2017). Multiple markers in the PRKAG3 genes have 

been found to be significantly associated with economically important meat quality traits. The 

first dominant allele identified in PRKAG3 results in a substantial reduction of technological 
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yield (5 to 6%). This yield reduction is directly related to the high glycogen content in animals 

with this mutation (Fernández and Tornberg, 1991; Milan et al, 2000), which can be up to 70% 

greater than that of an unaffected animal (Lundström et al, 1996; Garíepy et al, 1999).  

The second significant gene in pork quality which MAS was used is HAL. Pigs which 

are homozygous (nn) for the recessive HAL n (Hal-1843) allele have porcine stress syndrome 

(PSS) (Sather and Murray, 1989; Fujii et al, 1991). PSS is triggered when nn animals are 

subjected to pre-slaughter stress, even minorly, or exposed to the anesthetic gas halothane 

(Rosenvold and Andersen, 2003). Malignant hyperthermia susceptibility is a hallmark of this 

condition, and results in higher than average carcass temperatures, low pH early post-mortem 

and subsequent excessive protein degradation (Figure 2.2) (Gao et al, 2007) leading to pale, 

soft and exudative (PSE) meat. The mutation which causes this disorder, the Hal-1843 allele, 

was identified within the ryanodine receptor (RYRI) (SSC6) (Fujii et al, 1991), which is the 

calcium release channel in the sarcoplasmic reticulum; the biochemical alteration occurs in the 

calcium release channel (CRC1) of the sarcoplasmic reticulum of the muscle. The widespread 

testing for this identified mutation (HAL-1843) has allowed for the identification of normal 

(NN), carrier (Nn) and susceptible (nn) animals (Lazzaroni et al, 2007); this has helped to 

remove the deleterious allele from breeding stock (Dekkers, 2004). Interestingly, halothane 

positive animals (Nn and nn) have higher carcass yield and lean percentage than average. As 

such, some purebred lines maintain heterozygous animals in order to benefit from this 

(Lazzaroni et al, 2007). Overall, however these positive attributes are outweighed by the 

negative effects on meat quality (Gao et al, 2007) and the almost total removal of this 

deleterious allele has significantly improved pork meat quality (Sather and Murray, 1989; Fujii 

et al, 1991; Dekkers, 2004). 
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Figure 2.2 

 

 

Figure 2.2 in which time post-mortem, in hours is shown with corresponding relationship with pH. Where dark, firm and dry is 
shown as DFD, pale, soft and exudative is shown as PSE. Figure and description adapted from OMAFRA factsheet: (Du, 
2016) 

 
The genes (alleles) in the examples above are known as ‘major’, meaning that they 

have large, single gene effects on meat quality. This provided excellent opportunity to make 

significant advances for pork quality through MAS, however, meat quality traits are 

predominantly polygenic, meaning the final phenotype is a result from many genes with small 

effects (Rosenvold and Anderson, 2003). This is problematic, as SNPs with low minor allele 

frequency (MAF) and low effect sizes are not easily detected and MAS can be limited by this 

issue (Dekkers, 2004; Van Der Steen et al, 2005). Early association analyses, which used 

sparse microsatellite markers to detect QTL, were also limited due to large confidence intervals 

which were often many mega-bases in length, and any detected QTL may contain thousands of 

variants and candidate genes. Additional experiments in fine mapping were required in order to 

identify these genes and variants (Dekkers, 2004). The availability of ‘next’ or ‘second’ 

generation sequencing technologies has enabled the efficient generation of large amounts of 
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sequence data and genome assemblies for many species, including pigs, at a much lower price 

than was previously possible, which has further enabled significant marker discovery. This 

identification of thousands of SNP variants made possible by next generation sequencing has 

also been able to alleviate these issues.   

Genome-wide association study (GWAS) 
 

Genome-wide association studies (GWAS’) are a commonly used technique to identify 

QTL which are significantly associated with a trait of interest, providing insights to the genetic 

architecture behind a trait (Korte and Farlow, 2013). A GWAS utilises the principle of LD at 

the population level, relying on the LD between genotyped SNPs and ungenotyped causal 

variants (Visscher et al, 2012). In order to capture this, we utilise SNP marker panels of 

varying densities. The development of commercially available high-density SNP panels, such 

as the Illumina Porcine 60k BeadChip (Ramos et al, 2009), used for genotyping large number 

of animals, has been instrumental to the dissection of economically important traits through 

high-throughput analyses (Ramos et al, 2009). Previous studies have suggested various 

methods for selecting markers to use on SNP chips, including random, uniform or based on the 

principles of LD (Shashkova et al, 2019). Understanding that the strength of the statistical 

associations between alleles at different loci depends upon their allele frequencies (Visscher et 

al, 2012) has contributed to the recommendations for the selection of panel SNPs. SNPs are 

selected on the basis of their frequencies in order to increase the chance of detecting 

associations with nearby causative loci (Wray, 2005). As such, SNP chips are comprised 

primarily of common SNPs with MAF typically > 0.05 (Visscher et al, 2012), as rare variants 

(MAF < 0.01) will have low LD, with nearby variants, even if they are ultimately mapped to 

the same recombination interval (Visscher et al, 2012). Increasing the density of the SNPs on a 

chip would increase the likelihood that an ungenotyped causal variant will be in LD with a 
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genotyped SNP on the panel. Some chips are as low as 10K SNPs and can be up to 660K (Van 

Son et al, 2017; Zhang et al, 2018; Van Son et al, 2019), depending upon the availability of 

marker data for that species; the density of chip used for a given study may also depend on the 

funds available. Lower density chips are less expensive to use, and the use of imputation 

programs such as FImpute (Sargolzaei et al, 2014) or Beagle (Browning et al, 2018) can be 

used to infer high density genotypes from low density panels. Accuracy of 90% from 

imputation is sufficient in order to obtain genomic evaluations which are identical to those 

from using high-density panels (Wellmann et al, 2013). GWAS’ have been instrumental in the 

identification of quantitative trait loci (QTL) which contribute to the observed variation in 

economically important traits in many livestock species, including pigs. QTL for various 

carcass and performance traits have been reported on Pig QTL database in the tens of 

thousands (Hu et al, 2005).  

A number of limitations, however, exist when using GWAS’, particularly in regard to 

the statistical approaches and assumptions inherent to the method. These include stringent p-

values due to multiple testing, random associations due to population stratification, difficulty in 

detection of small, non-additive variants and rare variants with low MAF (Manolio et al, 

2009). Fortunately, many of these potential limitations can be addressed, and we understand 

GWAS’ are still widely used by animal scientists for investigation of various traits. Significant 

opportunity presents itself through GWAS’ as these may allow progress into the understanding 

and identification of genes and biological pathways which contribute to the expression of 

investigated traits. Particularly, since knowledge regarding the genetic basis of many meat 

quality traits is limited due to their complex nature, GWAS’ provides an excellent opportunity 

for these difficult to study traits. As we uncover more QTL and genes associated with our 

studied traits, further and more targeted work can be done to identify the causative mutations in 
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these genes and lead to a better understanding of the polymorphisms which contribute to the 

studied trait. Practically, identified variants which are significantly associated with relevant 

traits can be used in animal breeding programs in order to improve accuracy and aide in the 

selection for superior breeding stock. A GWAS is able to detect the underpinnings of genetic 

variation, however in order to move forward and act with these identified regions, an additional 

method, genomic selection, is required (Przeworski et al, 2005). With these identified markers 

incorporated into a GS model, the ability to independently manipulate IMF from other 

genetically correlated traits becomes feasible; this is the ultimate goal for meat quality, 

improving IMF whilst maintaining backfat levels so as to not decrease the lean yield of the 

carcass.  

Genomic selection 
 

Genomic selection (GS) has been proposed as a practical solution for improving 

difficult to measure traits. Instead of using clearly identified markers which are significantly 

associated with a trait, like traditional MAS, GS uses genome-wide marker panels which 

consists of thousands of SNPs and considers all of these effects (Meuwissen et al, 2001; 

Goddard and Hayes, 2007). Phenotypes are regressed on all available markers (Meuwissen et 

al, 2001), and it is assumed that all QTL will be in linkage disequilibrium (LD) with at least 

one marker. GS is a two-stage process in which the population set to undergo improvement 

must 1) be genotyped and phenotyped for the desired traits (training population), the effects of 

each QTL genotype are then estimated and finally all the QTL effects are summed in order 2) 

to obtain a genomic enhanced breeding value (GEBV) for potential breeding animals (selection 

candidates) (Goddard and Hayes, 2007). Prediction methods are used for estimation of GEBV 

to predict the genotypic value of selection candidates (validation population) which are not 

necessarily phenotyped.  
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 The GEBV can be calculated based on either the estimation of SNP effects or the 

genomic relationships between the genotyped individuals in the population (Meuwissen et al, 

2001). These methods are described in the following:  

As discussed by De Los Campos et al. (2013), SNP-effect methods provide excellent 

opportunity for improvement of meat quality traits. There are many statistical methods which 

can be used for SNP-effect based GS, including ridge regression BLUP (rrBLUP) and 

Bayesian least absolute selection and shrinkage operator (LASSO). These methods differ 

primarily based on the assumptions made about the distribution of SNP effects and how the 

SNP effect sizes are handled (Tibshirani, 1996; Meuwissen et al, 2001; Arbet et al, 2017). It is 

important to note that the effect sizes of markers associated with a trait may not be normally 

distributed throughout the genome, as is assumed in the infinitesimal models used in BLUP 

methods. Finite-loci models are used in other Bayesian methods, in which a few SNPs are 

expected to be associated with the trait, and all SNPs have a different size of effect on the trait. 

The assumptions in a model are important to take into consideration as in Bayesian methods, 

the accuracy depends significantly on whether the genetic architecture of the trait fits with the 

assumptions of the model (Zhang et al, 2018). In general, Bayesian methods are beneficial 

because of their use of prior distributions and assumptions of SNP effect distribution. The 

primary methods of BayesA and BayesB were first introduced by Meuwissen et al. (2001) and 

later, BayesC and BayesD were introduced and discussed by Habier et al. (2011). There are 

additional approaches which have emerged recently, which are variations on the original 

methods. 

BayesA assumes an inverse chi-square (𝜒2) prior distribution for the markers which are 

also assumed to have different variances. BayesA considers all markers and requires significant 

computing time and power due to the large numbers included in the model, and none of these 
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are assumed to be zero (Meuwissen et al, 2001). BayesB, alternatively, assumes many markers 

to have zero genetic variance and only a few markers to be non-zero; it also assumes an inverse 

𝜒2 prior distribution for those markers assumed to be non-zero. Finally, BayesC estimates 

common variance from the marker data as a prior distribution (Kizilkaya et al, 2010) and 

BayesD, which also uses a marker distribution that is an estimated scale parameter of the 

scaled inverse 𝜒2 rather than a set prior distribution (Habier et al, 2011).  

Two additional Bayes methods, BayesR and BayesRC, are also of interest to discuss, 

particularly for practical animal breeding. BayesR has been shown to be equal to or superior in 

accuracy for QTL mapping and genomic prediction when compared to linear mixed models 

(Macleod et al, 2016). BayesR assumes that each variant is equally likely to affect the trait and 

no prior biological knowledge is included in the model. Additional assumptions are that the 

real SNP effects are derived from a series of normal distributions; the first distribution has zero 

variance and subsequent distributions go up to 1% of genetic variance (Erbe et al, 2012). This 

prior assumes that not all markers are in LD with a QTL and therefore have zero effect, with 

others having small to moderate effects (Meuwissen et al, 2001; Erbe et al, 2012). Any 

available biological knowledge is applied after the analysis in order to confirm candidate genes 

or mutations (Macleod et al, 2016). However, the way that this biological knowledge is applied 

has been criticized as arbitrary and biased. The BayesRC method is based on BayesR with 

small modifications; BayesRC incorporates prior biological knowledge into its analysis 

(Macleod et al, 2016). This incorporation is done by categorizing variants into classes which 

are likely to be enriched in causal mutations, as it is understood that these mutations may 

cluster in genes which are biologically relevant to the trait (Lango Allen et al, 2010), and each 

variant class is believed to differ in the probability that they contain causal variants for trait 

expression. The biological information can be obtained from numerous places, such as already 
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known causal variants, lists of previously identified candidate genes, or known genes of 

importance for trait expression (Macleod et al, 2016). In BayesRC, the prior distribution used 

is uniform across all variant classes, which ensures that only the biological information 

included will influence the analysis (Macleod et al, 2016). These statistical methods can be 

used to predict GEBVs and help to select superior animals.  

The second common group of statistical methods of GS are relationship-based 

methods; these methods use a genomic (realized) matrix (GRM) to predict GEBVs and can 

accurately predict relationships for individuals without their own phenotypic record. It does so 

by estimating the proportion of shared chromosomal segments between animals based on the 

similarities seen in SNP marker genotypes (Vanraden, 2007; Hayes and Goddard, 2010). A 

GRM replaces the pedigree – derived relationship matrix (A matrix) from traditional BLUP 

(Hayes et al, 2009). In a GRM between individuals, the realized proportion of the genome 

recognises those which are identical by descent (IBD7) between pairs of individuals (Hayes et 

al, 2009).The assumption of this approach is that only the additive genetic covariance between 

relatives is proportional to this realized IBD portion (Thompson, 2013). This method is termed 

a genomic BLUP (GBLUP) and is commonly used in livestock breeding programs and has 

proven successful in improving GEBV prediction accuracy (Hayes et al, 2009). Further, 

GBLUP was improved upon through implementation of a matrix which combines pedigree and 

genotype information in order to estimate the relationships between each pair of animals 

(genotyped and non-genotyped). This is known as single-step GBLUP (ssGBLUP) which uses 

 
7 A segment of DNA is deemed to be identical by descent (IBD) if it is identical between two or more individuals 
and is assumed to be inherited from a common ancestor without recombination. If all alleles on a maternal or 
paternal chromosome are identical, they are considered a match. Segments can appear to be IBD through new 
mutations, but this is known as identical by state (IBS) (Thompson, 2013).  
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all phenotypic, pedigree and genotypic information simultaneously, including phenotypic 

information for animals which are not genotyped (Teissier et al, 2018). The accuracy of 

prediction using genomic methods have been reported to be higher (0.07 - 0.31) than pedigree-

only based BLUP (0.09) (Daetwyler et al, 2012; Teissier et al, 2018).  

All BLUP methods mentioned (BLUP, GBLUP, ssGBLUP and rrBLUP) follow an 

infinitesimal model of SNP distribution, meaning that is assumed SNPs have a normal 

distribution and all contribute equally to the trait (Goddard et al, 2010); this variance per locus 

is calculated where the variance per locus = total genetic variance 

n
 and n is the total number of loci 

(Vanraden, 2007; Goddard et al, 2010). 

Based on the discussed attributes, it is understood meat quality traits are good 

candidates for improvement via GBLUP and rrBLUP methods (Samorè and Fontanesi, 2016). 

Additionally, the generation interval along with the accuracy of breeding values also affect 

genetic progress (Falconer, 1989). In order to reduce the amount of genetic lag, GS allows to 

considerably improve the accuracy of breeding values and decrease the generation interval 

(Lillehammer et al, 2011; Baby et al, 2014). Thus, genotyped animals, who may not yet 

display the phenotype of interest (or perhaps it is not obviously visible) to be included in 

breeding much earlier.  

Finally, the increased ability to predict crossbred performance based on purebred 

performance is a significant benefit to implementation of GS in pig breeding (Hidalgo et al, 

2016). The structure of the Canadian hog relies on this, as improvement of pork quality at the 

commercial level is ultimately what drives the acceptance and demand for pork. The selection 

in purebred lines at the nucleus herd is ultimately to improve crossbred performance in the 

field conditions; and circumvent the challenges posed by collection of commercial phenotypes 
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(fast processing speed, high labour and equipment costs, high quality of data required) 

(Dekkers, 2007). A number of studies have shown that GS can be successfully applied in 

purebred populations over traditional methods, this is due to the ability to account for genetic 

differences in crossbred and purebred animals, environmental effects and non-additive gene 

effects (Daetwyler et al, 2007; Dekkers, 2007).  

2.5 Conclusions 
 
 Pork quality is extremely important for consumer satisfaction and to maintain the 

domestic and international demand for Canadian pork. Backfat thickness ultimately determines 

lean yield, subsequent payment for a producer and is positively genetically correlated to IMF 

content. Through selection for a leaner pig to meet the demands of consumers and packers for 

increased lean yield and less fatty meat, pork has suffered a decrease in meat quality due to 

increased dryness and related traits from reduced IMF. It is evident that fat content is key in the 

acceptance of pork and pork products as intrinsic factors affecting pork quality, such as 

tenderness and flavour are vital in consumer satisfaction. Pork fat quality and quantity are 

integrated into many visual and flavour attributes assessed by consumers at the grocery store, 

and at home during consumption. The pyramidal breeding structure used in the Canadian hog 

industry is able to capitalise on breed expression of selected traits and also take advantage of 

the many benefits of crossbreeding in order to improve the quality of the final product. Genetic 

improvement occurs in the nucleus herds and a higher rate of progress here will translate to 

progress in the commercial level. Additionally, meat quality traits have been shown to have a 

high genetic correlation between crossbred and purebred animals and the study of purebreds 

for crossbred performance of these traits may be extremely beneficial to the improvement of 

meat quality for the market hog due to the discussed benefits of crossbreeding.   
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 The collection of high-quality phenotypes to use in genetic selection programs can be a 

huge cost associated with these studies as they often contain thousands of animals. The 

collection can also be laborious, particularly for meat quality traits, however the complete 

neglect to collect phenotypes would be a mistake as both the confirmation of success and the 

goals of a GS program lay in these phenotypes. As such, effective research and the application 

of GS programs rely on the integration of both phenotypic data collection and pedigree 

information with the genomic efforts (Van Der Steen et al, 2005). Over generations accuracy 

of GEBVs will decrease and retraining of the GS models is required. Additionally, it is 

understood that phenotypic records in a population will help to improve accuracies of GEBVs 

and subsequently of the selection program. Because populations and environments are not 

static, routine reintegration of new phenotypic information into the GS program is important 

for continued accuracy. Therefore, ongoing phenotype collection is important for GS programs 

and, as such, the development of inexpensive and accurate methods for phenotype collection 

would be extremely beneficial. Additionally, collection of phenotypes from commercial 

animals can help gauge the success and rate of genetic improvement. 

 Despite the practicality of GS in livestock breeding programs, GWAS’ are still an 

integral and practical method we can use to investigate the genetic underpinnings meat quality 

traits, particularly in research circumstances. A GWAS can be useful for obtaining a better 

understanding of a studied trait, which is useful when investigating complex traits, particularly 

those which are polygenic. Relying solely on GS and neglecting to investigate the underlying 

mechanisms of the trait could result in unwanted consequences in the resulting animals. 

Through the principle LD, we can understand and identify SNPs which may have a relationship 

to an ungenotyped causal variant. Perhaps most importantly, this increased understanding as 

incorporation of unique SNPs can allow us to manipulate IMF content independent of overall 
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carcass fatness (backfat) as increasing carcass fatness is not the goal. This can add to the 

growing body of work which investigates meat quality genetics and through studying relevant 

breeds to the Canadian hog system, any results can be practically applied to breeding programs 

by being added to custom SNP chips. Increased knowledge of functional gene variants will 

foster increased understanding and insights on the genomic architecture of economically 

relevant traits which impact pork quality. Through the integration of these identified functional 

gene variants into GS programs, we can more accurately estimate the overall genetic effects, 

additive and non-additive, of a trait which may be difficult or expensive to measure such as 

IMF. The generation of this new information can be additionally utilised to create novel 

genomic tools for the improvement of Canadian selection programs and breeding. Ultimately 

this can aide in the prediction of phenotypes in selection candidates themselves, as well as, 

perhaps most importantly, improve the accuracies of GEBVs and increase the rate of genetic 

improvement. 
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Supplementary information 2.0 
 
 

Table S2.1 Previously identified genes in literature with an association to 
intramuscular fat (IMF) in pigs. 

 

Gene Breed Sample 
size Chromosome Method of 

identification Function Reference 

H-FABP 

1 and 2. 
(Landrace X 

Large white or  
duroc) X 

(landrace X 
large white)     
3. Goland              

4. Danbred 

614 SSC6 

Single locus 
associations 
using Proc 

Mixed in SAS 
9.2 

Fatty acid 
binding 
proteins 

involved in 
intracellular 

fatty acid 
transport 

Renaville 
et al, 2014 

A-FABP 

 
Duroc 

983 

 
SSC4 

Isolation of A-

FABP 

containing 

phage clones, 

microsatellite 

analysis, 

chromosomal 

localisation 

and sequence 

analysis. 

A-FABP, also 

called FABP4 

is exclusively 

expressed in 

adipocytes and 

is one of the 

eight 

identified 

members of 

the fatty acid-

binding 

protein 

(FABP) 

family. 

Gerbens et 
al, 1998b. 

LEPR Commercial 
Canadian three-

way cross 

398 SSC6 

Custom SNP 
panel for meat 
quality traits 

and 
multimarker 

analysis using 
GLM 

procedure in 
SAS 9.2 

Candidate 
gene for meat 

quality, 
regulates feed 

intake and 
energy 

metabolism 
through leptin. 

High 
expression 
stimulates 
lipolysis of 
adipocytes 

Zhang et 
al, 2014. 

FASN 

1 and 2. 
(Landrace X 

Large white or  
duroc) X 

(landrace X 
large white)      
3. Goland              

4. Danbred 

614 SSC12 

Single locus 
associations 
using Proc 

Mixed in SAS 
9.2 

Fatty acid 
synthase 
(FAS), 

encoded by 
the FASN 

gene, catalyses 
de novo 

synthesis of 

Renaville 
et al, 2014 
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saturated fatty 
acids, 

DGAT2 

1 and 2. 
(Landrace X 

Large white or  
duroc) X 

(landrace X 
large white)      
3. Goland             

4. Danbred 

614 SSC9 

Single locus 
associations 
using Proc 

Mixed in SAS 
9.2 

Significantly 
associated 

with backfat 
thickness, L* 

fat colour. 
Plays a more 
dominant role 
in triglyceride 
biosynthesis in 

mammals 

Renaville 
et al, 2014 

IGF-2 
Large White X 

Meishan 
703 SSC2 

Marker-
assisted 

segregation 
analysis, DNA 

sequencing, 
genotyping, 

Northern blot 
analysis and 

real time PCR 
analysis for 

identification 
and 

categorization 
after 

phenotypic 
data 

collection. 

Implicated in 
myogenesis 

and lean meat 
content. A 

mutation in a 
single based of 
IGF2 has been 
described as a 
QTN, causing 
a major QTL 

effect on 
muscle growth 

and fat 
deposition in 

pigs 

Gao et al, 
2007; Van 
Laere et al, 

2003 

MC4R 

Duroc 

Synthetic boar 
X F1 (landrace 
X large white) 

sow 

Duroc X 
Shanzhu 

 

205 SSC1 

GWAS with 
results from 

60k SNP panel 
and 

subsequent 
estimates of 

genomic 
regions 

underlying 
correlations 
and genomic 

breeding 
values 

estimated. 
SNP position 
found using 
Sus Scrofa 
10.2 xin 

FASTPHASE. 

Expressed 
primarily in 
the nervous 

system, plays 
a large role in 
the regulation 
of food intake, 

energy 
balance and 

body weight in 
mammals. 

 

Rothschild 
et al, 2014, 
Silva et al, 

2019; 
Wang et 
al, 2013 

ACACA 

Duroc 

Songliao black 

 

350 (sub 
samples 

70). 
SSC12 

Functional 
categorisation 
of expression 
analysis with 
results from 

70 RNA 
samples, as 

well as 

ACACA 
encodes the 

protein acetyl-
CoA 

carboxylase 
alpha, which 
catalyses the 
rate limiting 

Cánovas et 
al, 2010 ; 
Xing et al, 

2015. 
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biological 
pathway 
analysis. 

step for de 
novo fatty acid 

synthesis. 

SCD 

1 and 2. 
(Landrace X 

Large white or  
duroc) X 

(landrace X 
large white)     
3. Goland              

4. Danbred 

614 SSC14 

Single locus 
associations 
using Proc 

Mixed in SAS 
9.2 

SCD codes for 
an enzyme 

which 
catalyses the 
conversion of 
SFA stearic 

acid into 
MUFA oleic 

through 
addition of a 
double bond 

acid 

Renaville 
et al, 2014; 
Xing et al, 

2015 

 
 

Figure S2.1  

 

 
 

Figure S2.1 visual representation of the 3-tiered pyramidal structure of the Canadian hog system.  
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Chapter 3.0 Phenotype prediction of loin intramuscular fat (IMF) and fatty 
acid content of backfat with near-infrared spectroscopy 

 

3.1 Introduction  
  

The use of accurate and consistent phenotypes for meat quality traits in genetic studies, 

such as GWAS’, is extremely important. In fact, effective research programs and practical 

application of GS programs rely on the integration of both phenotypic data collection and 

pedigree information with the genomic efforts (Van Der Steen et al, 2005). For genetic studies, 

which typically include thousands of animals, the costs of collecting phenotypic data may 

represent a major expense. Ensuring quality is of particular importance for phenotypes which 

are not direct measurements but rather subjective approximations or mathematical predictions 

of a meat quality trait, such as visual marbling or ultrasound IMF, respectively. In the case of 

predicted values, validation is needed in order to ensure that choices subsequently made for 

which SNPs or QTLs to utilise in future breeding or genetic selection (GS) programs. 

Accuracy of phenotypes for GS programs can help to increase the genetic improvement of 

meat quality traits in the selection stock and thereby improve the overall quality of product 

seen in the crossbreds.  

Two carcass and meat quality traits which are of particular importance to the industry 

are intramuscular fat (IMF) and backfat depth (BFD). Currently, there is focus on improvement 

of IMF independent from BFD. IMF is traditionally measured using wet lab techniques, such 

as soxhlet extraction. These methods are destructive and can be time consuming and expensive 

from a training, labour and equipment standpoint. Though the results from proximate analysis 

are very accurate and provide the most representative phenotype, it is not a methodology which 

can be utilised in situations which require fast results for many carcasses, such as in the 
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abattoir. In such situations, visual methods are widely preferred for fast evaluation of pork 

marbling, which is the term used to describe the appearance of visible IMF (Hocquette et 

al, 2010). Visual assessments are at a disadvantage when compared to wet chemistry 

techniques due to their subjective nature (Cheng et al, 2015). Poor precision, inaccuracies and 

inter-observer reliability when visually assessing carcasses has been noted in multiple studies 

(Strappini et al, 2011; Huertas et al, 2003). Backfat thickness and texture (firm or soft) are 

additional carcass traits measured at the abattoir. Backfat is then categorised into one of two 

broad categories, ‘good’ or ‘poor’ (Srensen et al, 2012). In general, firm fat contains high 

concentrations of saturated fatty acids (SFA) and soft fat is primarily unsaturated fatty acids 

(UFA). The fatty acid composition of this fat depot plays an integral role in the texture, flavour 

and processing efficiency of meat products, as a majority of backfat is trimmed from the 

primals and commercial cuts and goes on for further processing (Kouba and Sellier, 2011). Fat 

comprised of SFAs is preferred for further processed products, as it contributes to product 

consistency and positive eating attributes (Baer et al, 2013); the importance of backfat 

composition is evident. Rapid and subjective measures, such as the thumb test8 are not the 

most reliable or precise methods.  

In light of all this, more scientific measures for estimation of fat quality and IMF 

content are needed. For backfat quality, the calculation of the iodine value (IV), a measure of 

fat unsaturation can be used. Values greater than 70 indicate the fatty acids are primarily 

unsaturated, while values lower than 70 indicate more saturation. Low IVs typically result in 

 

8 Thumb tests, also known as ‘finger testing’ or ‘thumbing’ is the manipulation of fat by hand (Seman et al, 2013). 
This method is similar to what butchers would perform when assessing product; fat can be allocated to one a 
category (hard, medium/hard, medium, medium/soft, soft) based upon this hand feel (Maw et al, 2001).  

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048382/#B8
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higher cutting yield, longer product shelf life and a firmer fat, whereas high IVs have lower 

cutting yield, shorter product shelf life and soft fat. Today, IV can be calculated after the fatty 

acid profile of fat is determined via gas chromatography (GC) (Seman et al, 2013), the 

reference method. On the kill-floor, however, GC is not performed due to time, labour and 

cost, and destruction of the product required. Rapid methods which utilise hand-held 

equipment, such as the NitFomTM (Frontmatec, Denmark), are more practical for kill-floor 

evaluations. For the estimation of individual fatty acids, broad categories of SFAs, UFAs and 

adipose tissue composition in lean meat (IMF), methods have been developed using near-

infrared (NIR) technology (Prieto et al, 2009). This technology has been shown to provide 

highly accurate results at full production speed (Srensen et al, 2012; Gjerlaug-Enger et al, 

2011; Ripoche and Guillard, 2001). NIR technology works by passing infra-red (IR) light 

through a sample via a probe, a brief scan of the meat or subcutaneous fat sample is all that is 

needed for estimation of composition. Certain molecular bonds absorb the IR light maximally 

at different wavelengths; the NIR instrument analyzes the proportion of light that is reflected 

by the sample material. Returned spectrum are analyzed against standards to determine the 

composition of that sample (Davies, 2005).  

The speed and ease with which an evaluation method can be adopted by the industry is 

important. Processing lines in commercial abattoirs are fast-paced environments where graders 

do not often have more than 15 seconds with each carcass (Sørensen et al, 2012). In order for 

methodologies of phenotypic collection to become widely accepted and implemented they 

must be low cost and fast. For research purposes, the time, cost and complexity of phenotypic 

collection may be less of a barrier, but it is not best practice to utilise technologies which will 

never be feasibly implemented to industry. Therefore, accuracy must also be at the forefront of 

rapid collection technologies.  
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Overall, the generation of accurate, high quality phenotypes for many animals could 

provide multiple benefits, including increased understanding of the phenotypic variation seen 

in the commercial animals. The study described in this chapter aims to generate these 

phenotypes for IMF content and backfat quality, and through provision of these phenotypes for 

genetic efforts we can increase the accuracy of GS programs. We hypothesised, based on the 

strong, growing body of literature supporting NIR as an accurate phenotype generation 

method, that we would find a positive relationship between the predicted phenotypes and those 

measured by reference methods.  

3.2 Materials and methods 
 

Ethics statement 
 

This project was approved by the University of Alberta Animal Care and Use 

Committee. The animals used in this study were raised in a commercial herd following the 

Canadian Quality Assurance Program and the Canadian Council on Animal Care (CCAC) 

guidelines (Canadian Council on Animal Care (CCAC, 1993).  

Animals 
 

A total of 997 purebred Duroc female pigs (gilts) originating from a Canadian breeding 

company (Hypor Inc. Regina, SK, Canada) were used for this study. Feeding, raising and 

slaughter protocols, as well as meat quality measurements obtained have been described in 

previous studies (Miar et al, 2014; Zhang et al, 2015;Yang et al, 2017).  

Samples 
 

Lean meat samples were collected from the longissimus dorsi muscle between the 

second and third last ribs. All samples were obtained from the left side of the animal (facing 

the cranial end of the animal) The chop was weighed after all subcutaneous fat was trimmed; 
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this fat was independently bagged with the unique pig ID and used as the backfat sample in this 

study. All backfat samples were frozen in individual bags with their unique pig ID tag. All lean 

samples then underwent a 48-hour drip loss analysis prior to being frozen at -20°C and shipped 

to the Agriculture and Agri-Food Canada Lacombe Research and Development Centre (AAFC-

Lacombe, Lacombe, AB). In total, 997 lean meat samples and 996 backfat samples were used 

in this study.  

In the first shipment of fat and lean samples from Manitoba, a large number of loin 

samples near the top of the cooler thawed during the journey. There was noticeable drip loss 

and leakage seen in the sample bags which was not able to be accounted for during later 

moisture corrections as all samples were immediately placed into the freezer and the unique 

sample identifications were not recorded. It was not possible to separate these samples from the 

larger group for data analysis.  

Sample preparation 
 

In preparation for NIR scanning at AAFC-Lacombe, the frozen lean meat sample 

weights were recorded. Samples were removed from the -10°C freezer 24 hours before 

scanning was to begin and placed in a 4°C cooler to thaw. Thawed samples were blotted with 

paper towels to remove excess moisture and reweighed. The unique pig identification number 

was recorded at the time of each weight, and this tag remained with the sample throughout the 

preparation process. Samples were cut into quarters and then ground using a Blixer® 3 Series 

D 3 ½ Quart Robot coupe for a minimum of ten turns of the manual handle. Ground samples 

were placed on a black plastic layer on the laboratory benchtop with their unique ID tag on top. 

In preparation for NIR scanning, the frozen backfat samples were counted out and 

placed back into the freezer. Samples were removed from the -10°C freezer 24 hours before 

scanning was to take place and placed in a 4°C cooler to thaw. When scanning, five samples at 
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a time were taken from the 4°C cooler and placed on a black plastic layer with their unique 

identification tag. Pre-scan, all samples were measured with calipers from the skin to the 

thickest portion. 

 Near infrared spectroscopy 
 

All spectra were collected using an analytical spectral device (ASD) – portable 

standard-Res spectrophotometer model LabSpec®4 (Malvern Panalytical, 2019, Boulder, CO). 

The probe used was determined based on what type of sample was set to be scanned during 

that sample analysis period. If scanning fat, the ASD Proreflectance probe (Model C950230) 

was selected, while, for the lean samples, an ASD high intensity fiber optic contact probe 

(Model A122300) was used. After attachment of the appropriate probe, the machine was 

allowed to equilibrate for a minimum of 15 minutes. After equilibration, calibration of the 

software and NIR was conducted. All absorbance values were reported as the logarithm of the 

reciprocal of reflectance, log (1/R).  

 Lean meat protocol 
 

Each sample was scanned four times using the ASD high intensity fiber optic contact 

probe (Model A122300) moving the probe to a new location upon completion of each scan. 

Each scan took 50 readings (~5 seconds) over visible and NIR range (350-2500 nm) in 

reflectance mode and spectra was averaged by the equipment software. Once scanning was 

completed, samples were repackaged into whirlpackTM bags with unique ID tags, and the probe 

was wiped clean with a Kimwipes® Low-Lint Wiper and 70% ethanol. Approximately 5% of 

samples were chosen at random for proximate analyses as a validation for the phenotypes of 

IMF content predicted from the spectra. Prior to the next sample, a new ID corresponding to 

the unique pig ID was entered into the software to track the samples.  

Backfat protocol  
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The ASD LabSpec 4 Hi-Res analytical spectrometer (Malvern Panalytical, 2019, 

Boulder, CO) was set up as above. Each sample was scanned once using the handheld ASD 

Proreflectance probe (Model C950230). Each scan (~10 s) took 250 readings over the Visible 

and NIR range (350-2500 nm) in reflectance mode, and spectra averaged by the equipment 

software. In between scanning each sample, the probe was wiped with Kimwipes® Low-Lint 

Wiper and 70% ethanol, and a new ID corresponding to the unique pig ID was entered into the 

software to track the samples. When scanning, if the sample was less than 7.5mm thick, it was 

folded lengthwise to ensure enough fat surface area for the 6.5 mm probe to be in full contact 

with the sample throughout the scan. Finally, approximately 5% of samples were set aside for 

further analysis by gas chromatography (GC) as a validation method for the NIR predicted 

phenotypes.  

Proximate analysis 
 

Randomly selected lean samples, previously scanned with the spectrophotometer and 

repackaged into a whirlpack bag, were taken to a separate lab. Proximate analysis was run in 

accordance with the SOP from the meat and lipid laboratory at AAFC-Lacombe. Briefly, using 

AOAC approved methods (AOAC, 2016), one in twenty lean samples was analysed for total 

fat and moisture content using a CEM SMART system5 moisture analyser (Ontario, Canada) 

and a CEM Smart TracII fat analyzer (Ontario, Canada). 

All samples were analysed in minimum of duplicate, and in cases where fat moisture 

values did not match within 2.5% of the standard error of the mean, triplicate or quadruplicate 

samples were done; sample repetitions were done until two results were within 2.5% of the 

standard error of the mean. Values were recorded and exported to a USB stick upon 

completion of each set of samples.  
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Gas chromatography 
 

Fatty acid profile of the randomly selected backfat samples were analysed by gas 

chromatography (Varian 3800 GC, equipped with a 8100 autosampler, Varian, Walnut Creek, 

CA, USA) on a 30m capillary column (SP-2340, i.d. 25 μm, Supelco, Bellefonte, PA, USA) 

under conditions previously described by Dugan et al (2007), in accordance with the SOP from 

the meat and lipid laboratory at AAFC-Lacombe. Freeze dried adipose tissue was methylated 

directly using base catalyst to form fatty acid methyl esters (FAME) according to Yurawecz et 

al (1999). Briefly, 0.5 mL of internal standard (c10-17:1, 8mg/mL hexane) was added to 40 mg 

of freeze dried adipose tissue and methylated using 2 mL 0.5N sodium methoxide in methanol 

(Sigma-Aldrich Canada Co., 2149 Winston Park Dr., Oakville , Ontario, L6H 6J8) at 50 °C for 

15 minutes. Hexane (1.5mL) and water (5mL) were then added, and the upper (hexane) layer 

containing FAME taken and diluted for GC analysis. The FAME of the upper level were 

identified by comparison to standards (GLC- 463 and GLC-603, Nu-Chek Prep, Inc. Elysian, 

MN, USA) and integrated using Varian Star Chromatography Workstation software v6.41 

(Varian, Walnut Creek, CA, USA) (Turner et al, 2013., Dugan et al, 2007, Prieto et al 2017).  

Data analysis 
 

Spectral cleaning  
 

All spectra were prepared for analysis using Camo’s ‘The Unscrambler®’ software 

(Version 10.3, CAMO, Trondheim, Norway). This was done in two separate groups, lean meat 

and backfat, discussed respectively. First, the four scans for each lean meat sample were 

averaged to obtain a single value. Wavelengths between 400-1900nm were selected for 

analyses; 350:399 and 1901:2500 were removed due to excessive noise or chatter at beginning 

and end of scan. All spectral data underwent transformation from reflectance to absorbance. 

Absorbance data was then transformed to first and second Savitsky – Golay derivative, as well 
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as standard normal variate (SNV). SNV data then had the detrending correction applied, SNV-

D. The first and second Savitsky-Golay derivative was then applied to the detrended data. This 

method of spectral pre-treatments for smoothing and cleaning was then applied to the spectra 

collected from the lean meat and backfat samples to ensure that the averaging of four scans per 

sample did not result in missing of outliers. This set of smoothed NIR data also underwent to 

following statistical analysis.  

Statistical analysis 
 
Once spectra had been cleaned and smoothed, we utilised SAS® statistical analysis software 

(Copyright 2019 SAS Institute Inc., Cary, NC, USA) for the prediction of phenotypes. We 

utilised 339 fresh lean meat samples and 357 backfat samples from a previous study (Prieto et 

al, 2017) to train the model as a calibration set of samples. The statistical protocol and 

algorithms used for both phenotype predictions of IMF from lean meat and fatty acid 

prediction from backfat is previously described in Prieto et al (2017). Briefly, partial least 

squares regression (PLSR) was utilised for the estimation of IMF content (%) in the lean meat 

as well as for the FA content, FA ratios and the IV for the backfat samples. In this, individual 

spectra were treated as independent variables. An analysis of variance (ANOVA) was 

performed to obtain the accuracy of prediction of the NIR phenotypes to the proximate analysis 

data. Overfitting due to too many PLS factors was avoided and the accuracy of prediction was 

evaluated using the adjusted R2 (𝑅𝑎𝑑𝑗
2 ) coefficient of determination and the root mean square 

error prediction (RMSEP). In linear regression models such as the one used in this study, 𝑅𝑎𝑑𝑗
2  

values are a commonly used statistical measure to see how well the model predicts the 

dependent variable. The 𝑅𝑎𝑑𝑗
2  value measures the proportion of the variance for the dependent 

variable which is explained by the independent variable in that model (Harel, 2009) which is 
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the spectra in this study. The range of the 𝑅𝑎𝑑𝑗
2   measurement is -1 to 1, with values closer to 1 

indicating a strong, positive correlation and is calculated by the following formula; 

𝑅𝑎𝑑𝑗
2 = 1 − [

(1−𝑅2)(𝑛−1)

𝑛−𝑘−1
]   (1) 

Additionally, the RSMEP value is calculated by adding the squared prediction errors during 

cross-validation and is an efficient way to measure the uncertainty present in NIR predictions. 

Cross-validation, also known as bootstrapping, is used to check the validity of the multivariate 

model. Though this validity is also represented by the given F-value, this is an additional 

method to ensure goodness of fit of the model to the data (Ross, 2004). In this method, the data 

is split up into two sets, a training set and a test set. The training set is used to set up the model 

and then the test set is used for validation of the model. The RSMEP is calculated by the below 

formula. 

𝑅𝑀𝑆𝐸𝑃 =  √
𝑃𝑅𝐸𝑆𝑆

𝑛
=  √

1

𝑛
∑ (�̂� − 𝑦𝑖

𝑛
𝑖=1 )2   (2) 

Where PRESS is the predictive error sum of squares (PRESS) (Ross, 2004), n is the number of 

samples in the calibration set, �̂�𝑖 is the estimated responses which were gotten through cross-

validation, and 𝑦𝑖 is the number of measured responses (Prieto et al, 2017). This was used for 

validation of the lean meat model. Additionally, the coefficient of variation (CV) as used as an 

indication of the extent of variability in relation to the mean (Abdi, 2010). It is calculated using 

the following formula, 

𝐶𝑉 =
𝑆𝐷

𝜇
   (3) 

Where SD is the standard deviation and 𝜇 is the mean. This can also be expressed as a 

percentage by  

𝐶𝑉 =
𝑆𝐷

𝜇
 ×  100   (4) 
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In this study, CV is expressed by the former. The range of acceptable CV depends upon the 

area of study; in general, a CV which is < 5% is thought of as very good (Campbell et al, 

2010).  

Required sample corrections 
 

The lean meat samples underwent essentially two purge losses; the first drip loss prior 

to shipment to the AAFC-Lacombe facility and the second during thawing. In order to account 

for this, fat in the initial sample was calculated from the proximate analysis results by the 

following formula. 

Fat in initial sample = 100 × ( 
total fat in sample(%)

Initial chop weight(g)
 )   (5) 

Where the total fat in the initial sample is calculated by the proximate analysis fat result 

multiplied by the final chop weight; final chop weight being the chop after all purge loss 

events.  

Purge loss, total water weight and final moisture content were also calculated for all samples 

which underwent proximate analysis. These values were calculated in order to evaluate the 

accuracy of the phenotypes predicted from the spectral data. Based on the discrepancy seen 

between the predicted phenotypes and the calculated value for fat in the initial sample an 

adjustment factor was calculated. This was done by finding the average difference between the 

predicted fat phenotype and the actual fat in in the initial sample and subsequently applying 

this value to all the predicted NIR phenotypes. 

The backfat samples did not lose significant moisture from the single freeze thaw 

during shipment and as such, no purge loss corrections were calculated for these samples.  

3.3 Results and discussion 
 
Lean meat  
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Proximate analysis  

 
The average IMF and moisture content from proximate analysis were 2.20 ± 0.41 % 

and 73.22 ± 0.73% respectively. After correction for moisture, the fat in the initial, pre-drip 

loss sample, was calculated; this value averaged 2.05 ± 0.39%. Figure S3.1 in Supplementary 

information 3.0 contains these values, which represents the actual values for comparison and 

validation of the predicted phenotypes from NIR spectral data. 

Phenotype prediction 
 

The phenotypes of IMF predicted by the SAS algorithm (Prieto et al, 2017) for all 997 

samples as well as all statistical values calculated are provided in the Supplemental Workbook 

Dataset A (Appendix A). The SAS algorithm was run on the cleaned, averaged spectral data 

for both the SNV-D trended first and second derivative; the 𝑅𝑎𝑑𝑗
2  values for the predicted 

phenotypes was 0.76 and 0.78 , respectively. The RMSEP value was 0.183 for the second 

derivative and 0.193 for the first derivative, both with p-values < 0.0001. Though both 

derivatives returned promising values, moving forward, the results for the second derivative 

were used as this was the most accurate mathematical pre-treatment, based on the higher 𝑅𝑎𝑑𝑗
2   

value and the lower RMSEP value. The IMF predicted from NIR for all 997 samples averaged 

3.33 ± 042 %, which is higher than the calculated moisture corrected proximate analysis value 

by 1.28%, which grossly overestimates the fat content in the sample. This discrepancy would 

significantly change the composition of the sample and the eating quality. Additionally, if these 

phenotypes were used in a selection-based program the results would be unexpected and poor. 

As such, the predicted phenotypes for lean meat would not be recommended for decision 

making in selection-based programs such as genetic selection or breeding programs. In order to 

continue exploring the data for use in further studies, an adjustment factor was calculated 
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(Materials and methods, section 3.2; Table S3.2, Supplemental information 3.0). This 

adjustment factor, -1.26, was applied to all the predicted NIR phenotypes; this application 

resulted in the predicted IMF content for all 997 samples to an average of 2.06% ± 0.42, just 

0.01% higher than the calculated IMF from proximate analysis (Supplemental Workbook 

Dataset A, Appendix A). These corrected phenotypes are significantly more accurate, and as 

such, the further use these phenotypes would be appropriate. The level of IMF found in these 

samples, 2.06% is ideal for Canadian markets as minimum of 1.5% IMF is suggested to satisfy 

Canadian consumers (Listrat et al, 2016). Additionally, many consumers use marbling as a 

visual measure when choosing meat to purchase; preferences for marbling vary greatly, even 

within Canada (Ngpao et al, 2016), however consumers generally prefer lean meat with 

minimal marbling (Ngapo et al, 2016). As such, the level of IMF found in this study’s 

population would provide a positive eating experience for these consumers through appropriate 

fat content, increasing tenderness and juiciness (Wood et al, 1999; Fortin et al, 2005; Teye et 

al, 2005, Cannata et al, 2010; Lim et al, 2016), but would not discourage consumers by 

appearing too fatty.  

Limitations 
 

The calculated coefficient of variation was 8.9; high CV indicates a greater level of 

diffusion around the mean and can indicate limitations to the study. Such limitations may 

include the use of averaged spectra for each sample instead of individual scans. This may have 

led to the use of outliers or imperfect scans, so in order to investigate this the individual scans 

were cleaned and checked. The individual scans did not show any outliers for fat or moisture, 

and so it was established that the averaged data was appropriate. Another potential limitation 

was the fact that the training samples were fresh lean meat, but the study samples were 

previously frozen. This may have led to some discrepancies due to moisture loss, and though 
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this was accounted for with moisture loss calculations and the calculated adjustment factor, it 

may still have affected the final predicted phenotypes. This is supported by the low 𝑅𝑎𝑑𝑗
2   value 

for the moisture relationship of 0.12. This indicates a very low positive relationship for the 

predicted moisture and the calculated moisture, as this was calculated on the non-adjusted 

phenotypes (p-value < 0.05). The values resulting from the adjustment factor application 

averaged exactly the same as the actual values calculated from proximate analysis values. The 

actual, predicted and adjusted values along with their means are represented in figure S3.2 in 

Supplementary information 3.0. The factor was only applied to those predicted values that had 

corresponding proximate analysis values, in order to assess the efficacy of the adjustment 

factor to obtain more accurate values. The resulting improvement in accuracy of the predicted 

phenotypes is promising, showing that the widespread application to all predicted phenotypes 

would offer extremely accurate predicted phenotypes for IMF content.  

Backfat 
 

Gas chromatography 
 

The average SFA, PUFA, and mono-unsaturated fatty acid content (MUFA) were 32.17 

±1.45%, 23.92 ± 2.77% and 42.75 ± 2.48%, respectively. Calculated IV was 76.53 ± 3.20 

and 𝜔 -3 and 6 fatty acids were 1.96 ± 0.28 and 21.96 ± 2.6% respectively. All values 

calculated by gas chromatography can be found in Supplemental Workbook Dataset B 

(Appendix A). 

Phenotype prediction  
 

The SAS algorithm (Prieto et al, 2017) was run on the cleaned, averaged spectral data 

for both the SNV-D trended first and second Savitsky-Golay derivative. The mathematical pre-

treatment which provided the lowest RMSEP for IV was the second derivative and as such will 
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be the values further presented. The average IV from predicted values was 90.81±4.88 

compared to those calculated from gas chromatography results noted above. All iodine values 

are shown in table S3.3 in Supplementary information 3.0. The 𝑅𝑎𝑑𝑗
2  value was 0.4, indicating 

a weakly positive correlation, with a p-value < 0.001, RMSEP of 2.81 and low coefficient of 

variation at 3.24. These IV values are high for solid backfat samples, as typically values greater 

than 70 indicate that the unsaturation of the fats is so high that the sample may be an oil. None 

of the samples used in the study were excessively greasy or soft, though some were noted as 

quite thin. Additionally, there is a well-documented inverse relationship noted with proportion 

of 18:2 𝜔 -6 PUFA, linoleic acid, in subcutaneous fat and the total amount of fat, as indicated 

by backfat thickness (Wood et al, 2008). The measured thicknesses can be found in 

Supplemental Workbook Dataset B (Appendix A). These high IVs may indicate a limitation of 

this technique as a reliable method of fat quality; though IV has been widely utilised as a 

quality measurement, it may not be able to tell the full story of fat quality. As an example, IV 

is often used, in part, to assess the hardness of pork bellies, which is of particular importance 

for bacon yield, one of the most economically important cuts of pork (Mandigo, 2000). It is 

interesting to note that different bellies can have the same IV value yet vary in their structural 

stability. This is because pork bellies can vary in thickness, which accounts for approximately 

30% of their variation in firmness; just 14% was accounted for by their IV value (Soladoye et 

al, 2015). Due to this, it has been suggested that alternate methods of fat quality be looked at in 

addition to IV, in order to capture the full spectrum of fat quality. 
The predicted PUFA is an interesting phenotype to investigate based on the 

recommendations of good quality fat from an abattoir perspective. White, hard fat is preferred, 

as during carcass cut up, the cohesive nature between the muscle and the fat keep large muscles 
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of the primal cuts together prior to further cutting (Srensen et al, 2012). Soft fat decreases 

cutting efficiency and causes uneven slicing due to sticky knives. As discussed above, fat is 

often used as an ingredient in value added products, such as sausages. In these further 

processed products, fat is one of the most variable ingredients utilised. The National Pork 

Producer’s Council suggests that a good quality pork fat must contain less than 15% PUFA and 

greater than 15% stearic acid (C18:0) in particular (NPPC, 2010; Soladoye et al, 2017) for 

preferential texture and palatability. As individual fatty acids were not predicted, this was 

evaluated using the gas chromatography result. These also offer us more reliable values to 

investigate with, as the predicted phenotypes all had low 𝑅𝑎𝑑𝑗
2  values, indicating weak 

correlations to the actual values obtained via GC. No samples had great than 12% stearic acid. 

The predicted PUFA values, however, were all above 15%, both predicted and measured from 

gas chromatography. As thickness decreases, the proportion of PUFA in the fat increases, 

devaluing the fat quality from the processing perspective. Table S3.4 in Supplementary 

information 3.0 contains all values for stearic acid (C18:0) and PUFA category as well as the 

origin of their values. These levels of PUFA, seen both in the GC results and predicted values, 

may indicate that although the samples were not suffering from excessive soft or oily texture 

that they may experience oxidative instability more rapidly than fat which is higher in SFA. 

Such fat may not be ideal for further processing in value added products due to this and the 

increase propensity for rancidity due to increased unsaturation.  

In regard to all remaining predicted phenotypes; weak, positive relationships based on 

𝑅𝑎𝑑𝑗
2 , varying RMSEP values and coefficient of variation. Despite the low 𝑅𝑎𝑑𝑗

2  values, the 

majority have correspondingly low p-values, which indicates that the relationship shown is true 

based on the predictors and responses, not false positives or merely trends. Only predicted 𝜔 -
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6:𝜔 -3 has a p-value > 0.05, at 0.07, which shows a trend towards significance, but is not 

statistically significant. The relationship noted by the 𝑅𝑎𝑑𝑗
2   for this phenotype must be 

evaluated carefully, as the values are potentially due to error. These results indicate that our 

model may have some limitations in predicting backfat FA content, despite positive results in 

associated literature, including the paper from which the training samples were obtained (Prieto 

et al, 2017). As such, the predicted phenotypes for backfat would not be recommended for 

decision making in selection-based programs such as genetic selection or breeding programs.  

Limitations 
 

The most likely reason our prediction values are not very promising is not due to an 

inability of the NIR rather to do with the samples used in this study; the study samples were 

too dissimilar (frozen storage, breed collected from) to the training samples used to calibrate 

the prediction algorithm. The calibrations and standards used for sample evaluation were 

developed with a specific population and may not have been ideal for the study samples. 

Incorporation of training samples from different pig populations may improve the results. 

Additionally, the study samples were collected from the larger carcass and subsequently frozen 

and thawed prior to scanning. Each sample was a portion of the entire subcutaneous backfat 

layer. The training samples, however, were fresh and consisted of the entire length of the fat 

depot (Prieto et al, 2017). By only having a subsample of the subcutaneous fat at our 

disposable for the study, we may not have been able to get a true representative scan of the 

larger fat depot. Additionally, though seemingly imperceptible, there was some amount of 

moisture loss from freezing and thawing the study samples; no adjustments were made for 

moisture in the backfat samples and predictions as was done with the loin samples and this 

may have impacted the accuracy of prediction from spectra and final measurable effect. 
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Finally, many of the study samples were quite thin, and despite efforts to maximise surface 

area, it is possible that scanning was negatively affected. Without duplicate scans and although 

the spectra were cleaned, normalised and checked for significant outliers, it is possible that 

some imperfect spectra were used in the analysis and negatively impacted results. In the future, 

the ability to exclude imperfect spectra without excluding the sample entirely would be 

beneficial. For research studies, taking two scans per sample is recommended, however for 

processing speed at abattoirs this is not feasible. All predicted values for the study samples, GC 

results, along with statistics can be found in the Supplemental Workbook Dataset B (Appendix 

A). 

3.4 Conclusions 
 

Lean meat IMF content 

NIR spectroscopy was used to predict the IMF content in loin samples from purebred 

Duroc hogs backfat samples. The results were promising, as we saw a p-value <0.001, 𝑅𝑎𝑑𝑗
2   

value of 0.78, and RMSEP of 0.183  for the predicted phenotypes when compared to the 

proximate analysis validation, indicating strong positive relationship. Based on the high 

coefficient of variation, however, we understand that the study had some limitations. The two 

primary limitations are 1) the inability to completely correct for moisture loss in the study 

samples and 2) comparison of previously frozen samples to standards calibrated from fresh 

samples; using calibrations developed from different population is not best practice. In future 

studies, these limitations must be accounted for in order to predict the most accurate 

phenotypes. Based on the discussed limitations and high CV, it is not recommended to use the 

predicted phenotypes from this study as phenotypes for future GWAS’, GS or breeding 

programs. The adjusted phenotypes, however, were significantly closer to the calculated values 
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from proximate analysis. If the adjustment factor was applied to all predicted values in order to 

obtain new, corrected phenotypes, these could be used confidently in further studies. We are 

able to reject the null hypothesis; there is an accurate, high-positive relationship (p <0.0001 ) 

between predicted NIR phenotypes and those obtained via the reference method.  

Backfat  
 

NIR spectroscopy was used to predict full fatty acid profiles for purebred Duroc hog 

backfat samples, which were further used to calculate IV as a basic measure of fat quality. 

Based on the low p-values associated with each predicted phenotype and, we understand that 

NIR is a feasible and useful technology for the rapid prediction of fat composition. However, 

we also saw low coefficients of determination and high RMSEP values, which indicate poor 

relationships with the GC results. Due to this, we reject the null hypothesis that no relationship 

exists, however we understand that due to the previously described limitations that these 

phenotypes are of low quality. Many of the study samples were thin, which negatively 

impacted the scanning efficiency and accuracy of probe placement. Spectra returned were 

compared to standards calibrated from fresh samples, which also affected the final predicted 

phenotypes. Moving forward, the NIR phenotypes generated from this study are not 

recommended for use in any additional studies (GWAS, genetic selection or breeding 

programs). In future studies, the discussed limitations should be addressed. Despite our 

disappointing results, NIR is a reliable option for the collection of data for fat composition 

analysis in subcutaneous pork fat, as based on the large body of literature behind this method.  
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Supplementary information 3.0 
 
 

Table S3.1 Proximate analysis results with moisture corrections for lean meat 
samples from a purebred Duroc population 

 
 

Sampl
e IDA 

Moistur
e (%)B 

Fat 
(%)
C 

Chop 
Initia
l (g)D 

Chop 
Final 
(g)E 

Purge 
loss 
(%)F 

Water 
Purge 
(g)G 

Water 
weight 
chop 
final 
(g)H 

Total 
water 
weight(
g)I 

Final 
moistur
e (%)J 

Total 
fat in 
final 
sample 
(%)K 

Fat in 
initial 
sample 
(%)L 

7684 73.04 2.67 144.64 137.80 4.73 6.84 100.65 107.49 74.31 3.67 2.54 
7940 74.35 1.97 155.79 152.44 2.15 3. 35 113.34 116.69 74.90 3.00 1.92 
7773 72.98 2.39 159.01 148.65 6.51 10.36 108.48 118.84 74.74 3.55 2.23 
7961 73.33 2.63 143.44 123.26 14.07 20.18 90.39 110.57 77.08 3.24 2.26 
7687 72.86 2.76 129.68 122.43 5.59 7.25 89.20 96.45 74.38 3.37 2.60 
7014 73.68 1.43 137.54 125.02 9.10 12.52 92.11 104.63 76.08 1.78 1.30 
7003 73.72 2.41 169.17 160.96 4.85 8.21 118.66 126.87 75.00 3.87 2.29 
7167 73.00 2.31 183.04 164.49 10.13 18.55 120.07 138.61 75.73 3.79 2.07 
7025 73.09 2.18 140.57 129.57 7.82 11.00 94.70 105.69 75.19 2.82 2.01 
7568 74.10 2.22 193.11 187.76 2.77 5.35 139.12 144.47 74.81 4.17 2.16 
6056 73.72 1.97 139.00 130.35 6.22 8.65 96.09 104.74 75.35 2.56 1.84 
5957 73.70 1.79 137.45 132.40 3.67 5.05 97.58 102.63 74.67 2.36 1.72 
5800 74.34 1.85 178.68 173.56 2.86 5.12 129.02 134.13 75.07 3.20 1.79 
5053 71.49 2.33 156.70 132.09 15.71 24.61 94.42 119.04 75.96 3.08 1.96 
5374 73.24 2.07 170.81 155.29 9.09 15.52 113.73 129.25 75.67 3.21 1.88 
5530 71.80 2.19 182.21 153.32 15.86 28.89 110.08 138.98 76.27 3.35 1.84 
5222 73.00 2.19 211.49 193.22 8.64 18.27 141.05 159.32 75.33 4.24 2.00 
2868 73.80 2.47 132.36 126.95 4.08 5.40 93.68 99.09 74.87 3.13 2.36 
4622 73.20 1.81 175.90 156.57 10.99 19.33 114.60 133.93 76.14 2.83 1.61 
2839 72.08 2.86 150.88 137.06 9.16 13.82 98.79 112.61 74.64 3.91 2.59 
2720 73.49 1.86 166.73 157.84 5.33 8.89 115.99 124.88 74.90 2.94 1.76 
2825 72.13 2.87 160.13 142.15 11.23 17.98 102.53 120.50 75.25 4.08 2.55 
3262 72.42 2.03 119.02 104.61 12.11 14.41 75.76 90.17 75.76 2.12 1.78 
3135 72.06 2.82 153.79 138.71 9.81 15.08 99.95 115.03 74.80 3.91 2.54 
4307 74.11 1.70 139.34 130.69 6.21 8.65 96.85 105.51 75.72 2.22 1.59 
4772 72.95 2.34 144.82 129.28 10.73 15.54 94.31 109.85 75.85 3.02 2.08 
3609 73.09 2.03 145.94 139.04 4.73 6.90 101.62 108.52 74.36 2.82 1.93 
4350 73.88 1.91 127.18 118.77 6.62 8.41 87.75 96.17 75.61 2.26 1.78 
3620 74.14 1.90 154.08 151.26 1.83 2.82 112.14 114.95 74.61 2.87 1.87 
4217 72.93 1.78 136.66 126.98 7.09 9.68 92.61 102.29 74.85 2.26 1.65 
6329 73.13 2.49 136.92 131.17 4.20 5.75 95.92 101.67 74.26 3.26 2.38 
6179 74.03 1.72 200.92 194.90 3.00 6.02 144.28 150.30 74.81 3.35 1.67 
2993 73.99 1.73 130.09 125.68 3.39 4.41 92.98 97.40 74.87 2.17 1.67 
3119 72.21 2.48 128.37 121.44 5.40 6.93 87.69 94.62 73.71 3.01 2.34 
1472 72.54 3.28 139.47 135.81 2.63 3.66 98.51 102.17 73.26 4.45 3.19 
9886 73.34 2.86 169.71 166.16 2.09 3.55 121.87 125.42 73.90 4.75 2.80 
1624 72.86 2.17 133.02 124.18 6.64 8.84 90.47 99.31 74.66 2.69 2.02 
1623 73.73 1.96 121.46 117.10 3.59 4.36 86.33 90.69 74.67 2.30 1.89 
9881 74.08 1.63 145.75 140.82 3.38 4.93 104.32 109.26 74.96 2.30 1.57 
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A Unique pig ID associated with each sample.  
B Moisture result for lean meat sample returned from proximate analysis.  
C Fat result for lean meat sample returned from proximate analysis.  
D The weight of the lean meat sample pre 48-hour drip loss. 
E The weight of the lean meat sample after thawing, just prior to NIR scanning.  
F The difference between the initial and final chop weights, divided by the initial weight, multiplied by 100 to obtain the 

purged %. 
G The difference between the initial chop weight and final chop weight, reported in grams of water.  
H The final water weight in the chop, calculated by the final chop weight (g) multiplied by the moisture, divided by 100.  
I The water purge (g) plus the water weight chop final (g) 
J The total water weight divided by the initial chop weight.  
K Total fat in the final sample, post 48-hour drip loss and thaw purge loss. Calculated by the fat percentage returned from 

proximate analysis multiplied by the final chop weight.  
L Total fat in initial sample, pre 48-hour drip loss and freezing. Calculated by the fat in the final sample divided by the initial 

chop weight, multiplied by 100.  
 
 
 
Table S3.2 Corrected IMF content from proximate analysis ,predicted IMF content 

from NIR and calculated adjusted value with correction factor for lean meat 
samples from a commercial crossbred purebred Duroc population. 

 

Sample ID Fat in 
initial 

sample (%) 
actualA 

Predicted 
Fat (%)B 

Difference 
between 

predicted & 
actualC 

Adjusted 
Values (%)D 

1472 3.19 4.21 -1.01 2.94 
1623 1.89 3.34 -1.45 2.08 
1624 2.02 3.22 -1.20 1.96 
2720 1.76 3.16 -1.40 1.89 
2825 2.55 3.90 -1.36 2.64 
2839 2.59 3.79 -1.19 2.52 
2868 2.36 3.68 -1.32 2.42 
2993 1.67 2.75 -1.09 1.49 
3119 2.34 3.67 -1.33 2.41 
3135 2.54 3.94 -1.39 2.67 
3262 1.78 3.43 -1.65 2.17 
3609 1.93 3.23 -1.29 1.96 
3620 1.87 3.24 -1.37 1.97 
4217 1.65 2.66 -1.01 1.40 
4307 1.59 3.05 -1.46 1.79 
4350 1.78 2.97 -1.19 1.70 
4622 1.61 2.97 -1.37 1.71 
4772 2.08 3.48 -1.40 2.22 
5053 1.96 3.26 -1.30 2.00 
5222 2.00 2.96 -0.95 1.69 
5374 1.88 2.74 -0.86 1.48 
5530 1.84 2.95 -1.11 1.69 
5800 1.79 2.59 -0.80 1.33 
5957 1.72 3.19 -1.47 1.92 
6056 1.84 3.42 -1.58 2.16 
6179 1.67 3.04 -1.38 1.78 
6329 2.38 3.68 -1.30 2.41 
7003 2.29 3.62 -1.34 2.36 
7014 1.30 2.49 -1.19 1.22 
7025 2.01 3.28 -1.27 2.01 
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A Total 

fat in 
initial 

sample, pre 48-hour drip loss and freezing. Calculated by the fat in the final sample divided by the initial chop weight, 
multiplied by 100, as described in table S3.1. The average is found at the bottom of the column. 

B The predicted IMF content from NIR spectra. The average is found at the bottom of the column. 
C the individual sample differences from actual and predicted values. The average value of all the differences, given at the 

bottom of this column, is the adjustment factor subsequently applied to all predicted values.  
D The adjusted values for predicted phenotypes, calculated by applying the average difference between the actual and 

predicted values, -1.26, to all predicted phenotypes.  
 

 
Table S3.3 Iodine values calculated by gas chromatography (GC) and predicted by 

NIR algorithm for backfat samples obtained from a purebred Duroc population 
 

Sample ID GC iodine 
valueA 

Predicted 
iodine valueB 

1351 73.10 88.20 
1920 75.11 89.38 
1947 75.45 89.44 
2082 76.49 82.53 
2222 79.08 95.61 
2349 73.90 88.23 
2378 73.40 86.23 
2449 84.93 95.75 
2586 75.58 93.66 
2724 78.47 97.31 
2859 75.98 89.42 
3571 79.45 96.78 
3596 75.93 90.30 
3606 76.36 99.16 
3627 79.77 94.52 
3630 77.61 93.42 
4306 78.11 96.20 
4622 83.51 103.05 
4624 81.01 92.85 
4631 77.19 90.16 
4945 76.84 90.32 
5062 77.27 93.39 
5341 74.39 89.52 
5533 80.21 93.39 
5659 80.58 92.26 
5953 80.15 102.26 
5957 76.82 91.53 
6078 79.02 97.02 
6310 74.42 88.57 
6321 75.64 94.31 
6325 80.52 85.80 
7385 76.26 90.23 
7569 77.11 89.30 
7789 79.80 93.37 

7167 2.07 3.48 -1.41 2.22 
7568 2.16 3.32 -1.16 2.06 
7684 2.54 3.55 -1.01 2.29 
7687 2.60 3.72 -1.11 2.45 
7773 2.23 3.62 -1.38 2.35 
7940 1.92 3.32 -1.40 2.06 
7961 2.26 3.78 -1.52 2.52 
9881 1.57 2.75 -1.17 1.48 
9886 2.80 3.91 -1.11 2.64 

 2.053 3.32 -1.26 2.053 Average 
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8268 78.07 89.26 
8277 78.00 95.39 
8509 74.27 90.11 
8533 72.64 83.35 
8536 74.75 79.00 
8690 70.20 86.91 
8921 70.93 85.56 
8952 72.40 90.88 
8971 72.98 87.86 
9253 72.63 84.15 
9441 73.53 87.16 
9573 80.24 91.83 
9705 72.08 90.02 
9760 78.38 87.28 
9936 71.57 82.24 
9940 74.38 86.03 

AVERAGES: 76.53 90.81 

 
A The iodine values for 5% of the total samples, calculated from gas chromatography results 
B The iodine values for 5% of the total samples, calculated from phenotypes predicted with NIR spectra 
 
 

Table S3.4 Values for stearic acid and total polyunsaturated fatty acids by gas 
chromatography (GC) and predicted by NIR in backfat samples from a purebred 

Duroc population. 
 

Sample 
ID 

Stearic Acid 
(C18:0) 

Gas 
Chromatograp

hy 

PUFA 
Gas 

Chromatog
raphy 

PUFA 
Predicted by 

NIR 

1351 11.6594 22.03 29.03 
1920 11.2942 22.41 28.16 
1947 10.9742 22.84 28.06 
2082 9.5728 21.01 22.08 
2222 10.8336 25.65 31.07 
2349 11.6168 21.73 27.41 
2378 11.4535 21.05 25.55 
2449 10.2593 30.51 32.77 
2586 10.8180 23.00 30.25 
2724 9.3507 24.15 30.57 
2859 11.4563 23.48 26.94 
3571 9.5247 25.29 31.00 
3596 10.2693 22.50 28.58 
3606 11.0650 23.59 35.30 
3627 11.4363 26.96 31.62 
3630 10.3400 23.74 30.56 
4306 11.3728 25.51 32.13 
4622 9.4890 28.61 34.88 
4624 10.6416 28.22 29.54 
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4631 11.1839 24.40 28.89 
4945 11.5615 25.57 29.41 
5062 11.5289 25.36 31.96 
5341 11.3514 23.12 30.00 
5533 11.3895 27.76 32.06 
5659 10.8383 29.36 31.23 
5953 9.4702 25.41 36.72 
5957 11.1413 23.83 29.01 
6078 11.7544 27.28 33.29 
6310 11.3942 23.45 27.62 
6321 12.3582 24.16 31.25 
6325 10.5700 27.80 28.24 
7385 10.9909 23.82 29.59 
7569 11.8945 25.39 29.26 
7789 11.8948 27.22 31.18 
8268 10.7008 25.77 28.35 
8277 10.5377 23.80 30.36 
8509 10.3623 21.31 28.15 
8533 10.9138 20.27 23.89 
8536 11.8807 23.28 21.25 
8690 12.8812 19.52 26.22 
8921 12.0533 19.72 26.93 
8952 11.6521 20.21 29.32 
8971 11.1270 20.33 26.82 
9253 10.9329 19.67 24.29 
9441 11.6227 21.03 26.47 
9573 11.4100 27.77 29.42 
9705 10.8040 19.93 28.56 
9760 9.8655 24.39 27.19 
9936 10.9334 20.21 25.39 
9940 11.2473 22.54 26.06 
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Figure S3.1 

 

 
 
 
Figure S3.1 Graph of the IMF values in the initial, pre drip loss sample, all values presented have been corrected for moisture. 

These values served as the actual values for comparison and validation of the predicted phenotypes from NIR spectral data. 
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Figure S3.2 

 

 
 

 
Figure S3.2 Graph of the IMF values initial sample (Actual, red circles) calculated from the proximate analysis data and 

corrected for moisture (See table S3.1) against the predicted phenotypes from spectral data (Predicted, green triangles) and 
values which have a uniform correction factor applied (Adjusted, black squares). All samples displayed in this graph are those 

which underwent proximate analysis so that the predicted and adjusted values can be validated through the actual values. 
 

 

3.5 Literature Cited  
 
Abdi, H. 2010. Coefficient of Variation in Encyclopedia of research design. Neil Salking, 

Thousand Oaks, CA:Sage . 1-5. 
 
AOAC International. In Latimer, G. W. 2016. Official methods of analysis of AOAC 

International.  
 
Baer, A., and Dilger, A. 2013. Effect of fat quality on sausage processing, texture and sensory 

characteristics. Meat Sci. 96(3). 1242-1249. 
 
Campbell, M. J., Machin, D., and Walters, S. J. 2010. Medical statistics: a textbook for the 

health sciences. John Wiley & Sons. 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

IM
F 

(%
)

IMF (%)

Actual IMF Vs Predicted and Adjusted 

Adjusted
Actual
Predicted



 101 

 
Canadian Council on Animal Care. 1993. Guide to care and use of experimental animals. Vol 

1, Ed 2. Olfert, E.D., Cross, B.M., McWilliams, A.A. Can Counc Anim Care, Ottawa, 
Ontario, Canada.  

 
Cannata, S., Engle,T.E., Moeller, S.J., Zerby, H.N., Radunz, A.E., Green, M.D., Bass, P.D., 

and Belk, K.E. 2010. Effect of visual marbling on sensory properties and quality traits 
of pork loin. Meat Sci. 85(3).428-434.  

 
CEM SMART system5 moisture analyser. Lab X, Ontario, Canada. 

https://www.labx.com/item/cem-smart-system5-microwave-moisture-analyzer-
reconditioned/3901797. 

 
 CEM Smart TracII fat analyzer. Lab X, Ontario, Canada. (http://cem.com/smart-trac-2/). 
 
Cheng, W., Cheng, J., Sun, D., and Pu, H. 2015. Marbling analysis for evaluating meat quality: 

methods and techniques. Compr. 14(5).523-535.  
 
Christensen, M., Pieper, T., and Lauridsen, T. 2019. Technical note, NitFomTM. Fronmatec , 

Denmark. https://www.frontmatec.com/media/3874/frontmatec-instruments-nitfom-
_technical-note_web.pdf  

 
Davies, A. M. C. 2005. An Introduction to near Infrared Spectroscopy. NIR News. 16(7). 9-11. 
 
Dugan, M.E.R., Kramer, J.K.G., Robertson, W.M., Meadus, W.J., Aldai, N., and Rolland, D. 

2007. Comparing Subcutaneous Adipose Tissue in Beef and Muskox with Emphasis 
on trans 18:1 and Conjugated Linoleic Acids. Lipids 42(6). 509-518.  

 
FAME standards. GLC- 463 and GLC-603, Nu-Chek Prep, Inc. Elysian, MN, 

USA.http://www.nu-chekprep.com/s.htm  
 
 Fernández, X., Monin, G., Talmant, A., Mourot, J ., and Lebret, B. 1999. Influence of 

intramuscular fat content on the quality of pig meat – 1. Composition of the lipid 
fraction and sensory characteristics of M. longissimus lumborum. Meat Sci. 53(1). 59-
65.  

 
Font-i-Furnols, M., Tous, N., Esteve-Garcia, E., and Gispert, M. 2012. Do all consumers 

accept marbling in the same way? The relationship between eating and visual 
acceptability of pork with different intramuscular fat content. Meat Sci. 91(4). 448-453.  

 
Fortin, A., Robertson, W.M., and Tong, A.K.W. 2005. The eating quality of Canadian pork and 

its relationship with intramuscular fat. Meat Sci. 69(2). 297-305.  
 
Gjerlaug-Enger, E., Kongsro, J., Aass, L., Ødegard, J, and Vangen, O. 2011. Prediction of fat 

quality in pig carcasses by near-infrared spectroscopy. Animal. 5(11). 1829-1841.  
  

https://www.labx.com/item/cem-smart-system5-microwave-moisture-analyzer-reconditioned/3901797
https://www.labx.com/item/cem-smart-system5-microwave-moisture-analyzer-reconditioned/3901797
http://cem.com/smart-trac-2/
https://www.frontmatec.com/media/3874/frontmatec-instruments-nitfom-_technical-note_web.pdf
https://www.frontmatec.com/media/3874/frontmatec-instruments-nitfom-_technical-note_web.pdf
http://www.nu-chekprep.com/s.htm


 102 

Hocquette, J.F., Gondret, F., Baéza, E., Médale, F., Jurie, C., and Pethick, D.W. 2010. 
Intramuscular fat content in meat-producing animals: Development, genetic and 
nutritional control, and identification of putative markers. Animal. 4(2). 303-319.  

 
Huertas, S. M., Gil, A.D., Piaggio, J.M., and Van Eerdenburg, F.J.C.M. 2010. Transportation 

of beef cattle to slaughterhouses and how this relates to animal welfare and carcase 
bruising in an extensive production system. Anim Welfare. 19. 281-285. 

 
Kouba, M., and Sellier, P. 2011. A review of the factors influencing the development of 

intermuscular adipose tissue in the growing pig. Meat Sci. 88(2). 213-220. 
 
Lim, K.S., Lee, K.T., Park, J.E., Chung, W.H., Jang,G.W., Choi, B.H., Hong, K.C., and Kim, 

T.H. 2016. Identification of differentially expressed genes in longissimus muscle of 
pigs with high and low intramuscular fat content using RNA sequencing. Anim Genet. 
48(2). 166-174.  

 
Listrat, A, Benedicte, L., Louveau, I., Astruc, T., Bonnet,M., Lefaucheur, L., Picard, B., and 

Bugeon, J. 2016. How muscle structure and composition influence meat and flesh 
quality. Sci world J. 2016(3182746).1-14. 

 
Maw, S.J., Fowler, V.R., Hamilton, M., and Petchey,A.M. 2003. Physical characteristics of pig 

fat and their relation to fatty acid composition. Meat Sci.63(2).185-190.  
 
Mandigo, R. W. 2000.Research Report. Pork Quality. Quality lean growth modeling-bacon 

quality assessment- NPB #97.  
 
Miar, Y., Plastow, G.S., Moore, S.S., Manafiazar, G., Charagu, P., Kemp, R.A., Van Haandel, 

B., Huisman, A.E., Zhang, C.Y., McKay, R.M., Bruce, H.L., Wang, Z. 2014. Genetic 
and phenotypic parameters for carcass and meat quality traits in commercial crossbred 
pigs. J Anim Sci. 92(7). 2869-2884.  

 
NitFomTM. Frontmatec, Denmark. https://www.frontmatec.com/en/other/instruments/carcass-

grading-traceability/nitfom  
 
National Pork Producers Council. 2010. Pork composition and quality assessment procedures. 

Des Moines, IA: National Pork Producers Council. 
 
Prieto, N., Dugan, M., Juárez, M., López-Campos, O., Zijlstra, R., and Aalhus, J. 2017. Using 

portable near infrared spectroscopy to predict pig subcutaneous fat composition and 
iodine value. Can J Anim Sci. 98(2). 221-229.  

 
Ripoche, A., and Guillard, A. 2001. Determination of fatty acid composition of pork fat by 

fourier transform infrared spectroscopy. Meat Sci. 58(3). 299-304.  
 
Ross, S. M. 2004. Introduction to Probability and Statistics for Engineers and Scientists. 3rd 

edition. Academic Press. EBSCOhost.  
 

https://www.frontmatec.com/en/other/instruments/carcass-grading-traceability/nitfom
https://www.frontmatec.com/en/other/instruments/carcass-grading-traceability/nitfom


 103 

SAS® statistical analysis software. Copyright 2019 SAS Institute Inc., Cary, NC, USA. 
https://www.sas.com/en_ca/software/stat.html 

 
Seman, D.L 2008. Pork Fat Quality: A processors perspective. American Meat Science 

association.1-7.  
 
Seman, D., Barron, W., and Matzinger, M. 2013. Evaluating the ability to measure pork fat 

quality for the production of commercial bacon. Meat Sci. 94(2). 262-266.  
 
Srensen, K., Petersen, H., and Engelsen, S. 2012. An on-line Near-infrared transmission 

method for determining depth profiles of fatty acid composition and iodine value in 
porcine adipose fat tissue. Appl Spectrosc. 66(2). 218-226.  

 
 Soladoye, P.O., Shand, P.J., Aalhus, J.L., Gariépy ,C., and Juárez, M. 2015. Review: Pork 

belly quality, bacon properties and recent consumer trends. Can J Anim Sci. 95(3). 325-
340.  

 
Soladoye, P.O., Uttaro, B., Zawadski, S., Dugan, M., Gariepy, C., Aalhus, J., Shand, P., and 

Juárez, M. 2017. Compositional and dimensional factors influencing pork belly 
firmness. Meat Sci. 129. 54-61.  

 
Strappini, A., Metz, J., Gallo, C., and Kemp, B. 2009. Origin and assessment of bruises in beef 

cattle at slaughter. Animal. 3(5). 
 
Tarmizi, A. H. A., Lin, S. W., and Kuntom, A. 2008. Palm-Based Standard Reference 

Materials for Iodine Value and Slip Melting Point. Analytical Chemistry Insights. 3. 
127-133.  

 
Teye, G,A., Sheard, P.R., Whittington, F.M., Nute, G.R., Stewart, A., and Wood, J.D. 2006. 

Influence of dietary oils and protein level on pork quality. 1. Effects on muscle fatty 
acid composition, carcass, meat and eating quality. Meat Sci. 73(1). 157-165.  

 
Turner, T., Mapiye, C., Aalhus, J., Beaulieu, A., Patience, J., Zijlstra, R., and Dugan, M. 2014. 

Flaxseed fed pork: n-3 fatty acid enrichment and contribution to dietary 
recommendations. Meat Sci. 96(1). 541-547.  

 
Valsta, L., Tapanainen, H., and Mannisto, S. 2004. Meat fats in nutrition. Meat Sci. 70(3). 525-

530.  
 
Van Der Steen, H. A. M., Prall, G. F. W., and Plastow, G. S. 2005. Application of genomics to 

the pork industry. J Anim Sci. 83. E1-E8. 
 
Varian-CP 3800 GC. Varian, Walnut Creek, CA, USA. 

http://users.stlcc.edu/Departments/fvbio/Chromatography_Gas_Varian_Usermanual.pdf    
 

http://users.stlcc.edu/Departments/fvbio/Chromatography_Gas_Varian_Usermanual.pdf


 104 

Varian Star Chromatography Workstation software v6.41. 2020 Agilent technologies Inc. 
Santa Clara, CA, United States. 
https://www.agilent.com/cs/library/usermanuals/public/914732.pdf  

 
Wood, J.D., Enser, M., Fisher, A.V., Nute, G.R., Richardson, R.I., and Sheard, P.R. 1999. 

Manipulating meat quality and composition. Proceedings of the nutrition society. 58(2). 
363-370.  

 
Wood, J.D., Enser, M., Fisher, A.V., Nute, G.R., Sheard, P.R., Richardson, R.I., Hughes, S.I., 

and Whittington, F.M. 2008. Fat deposition, fatty acid composition and meat quality: A 
review. Meat Sci. 78(4). 343-358.  

 
Yang, T., Wang, Z., Miar, Y., Bruce, H., Zhang, C., and Plastow, G. 2017. A Genome-wide 

Association Study of Meat Colour in Commercial Crossbred Pigs. Can J Anim Sci. 
97(4). 721-733.  

 
Yurawecz, M.P., Mossoba, M.M., Kramer, J.K.G., Pariza, M.W. and Nelson, G.J. (Eds.). 1999. 

Advances in Conjugated Linoleic Acid Research, Vol 1, Am. Oil Chem. Soc. 
Press, Champaign, IL.  

 
Zhang, Z., Wang, Z., Bruce, H., Kemp, R.A., Charagu, P., Miar, Y., Yang, T., Plastow, G.S. 

2015. Genome-wide association studies (GWAS) identify a QTL close to PRKAG3 
affecting meat pH and colour in crossbred commercial pigs. BMC Genet. 16(33). 508-
516.  

 
Zivkovic, A.M., Telis, N., German, J.B., and Hammock, B.D. 2011 Dietary omega-3 fatty 

acids aid in the modulation of inflammation and metabolic health. Calif Agric. 65(3). 
106-111.  

 
 

https://www.agilent.com/cs/library/usermanuals/public/914732.pdf


 105 

Chapter 4.0 Genetic and phenotypic parameter estimations for several 
fatness traits measured by various methods in a purebred Duroc and 

commercial crossbred population  

 

4.1 Introduction 
 

The focus of swine breeding in previous decades has been to increase lean yield and 

carcass leanness through reduction of backfat thickness. This carcass leanness was rapidly 

achieved, however, positively genetically correlated traits such as intramuscular fat (IMF) also 

experienced significant reductions, resulting in undesirable decreases in meat quality. When 

using a selection index9, the availability and application of genetic correlations enables 

estimates of responses of more than a single trait, which is invaluable for breeders (Hill, 

2013a). Of particular importance to the hog industry is the relationship of backfat depth (BFD) 

and IMF, as they are positively genetically correlated (0.28 ± 0.03- 0.38 ± 0.005) (Suzuki et 

al, 2005; Hernández-Sánchez et al, 2013). Due to this relationship, the selection for decreased 

backfat led to poorer product quality, significantly due to the unintended decrease of IMF; IMF 

is known to be extremely important for excellent eating quality of pork (Wood et al, 1999; 

Fernández et al, 1999; Cannata et al 2010; Lim et al, 2016). Due to consumers’ demands for 

better quality pork, the importance of improving meat and carcass quality is growing 

(Dransfield et al, 2005). Understanding the genetic correlations of economically relevant pork 

quality traits and carcass characteristics is necessary in order to implement a successful 

breeding program in which the emphasis is on product quality.  

 
9 A selection index is a method of artificial selection in which several economically relevant traits are 
simultaneously selected for, enabling breeders to make balanced selection decisions based on the emphasis of the 
breeding program (Hill, 2013b).  
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 In addition to genetic correlations, the heritability of a trait can significantly influence 

how a trait will be expressed in the progeny of any given breeding animal. Estimates of 

heritability are not only specific for the trait, but also for the population from which they were 

calculated. This is firstly due to the environmental influence and secondly due to differing 

genetic variance seen in different populations (Oldenbroek and van der Waaij, 2014). 

Heritability has been reported in the literature for BFD measured by ultrasound (UBFD) (Li 

and Kennedy, 1994; Miar et al, 2014) and IMF measured via ultrasound (UIMF), subjective 

scoring (SUBIMF), near-infrared technology (NIR) (NIRIMF) and proximate analysis 

(Hermesch et al, 2000; Newcom et al, 2005; Miar et al, 2014) in various pig populations. 

However, it has been shown that heritability is not a fixed value and regular recalculation for 

any given trait is wise, particularly given a change in environment or for different populations.  

 The objectives of this study were to first estimate the genetic and phenotypic 

correlations of BFD measured post-mortem with a ruler or ante-mortem via ultrasound with 

IMF measured in a variety of methods (NIR, ultrasound, subjective) in both a commercial pig 

and purebred Duroc populations. This was done in order to assess their relationships as well as 

identify any differences between the IMF and BFD measurement methods in terms of accuracy 

and repeatability. Additionally, the second objective was to estimate the heritabilities of BFD, 

ultrasound-backfat fat depth (UBFD), near-infrared IMF (NIRIMF) (purebred only), ultrasound 

IMF (UIMF) and IMF assessed subjectively (SUBIMF) in these same populations in order to 

compare and add these to the literature as well as provide industry with valuable information 

for selection indices. All methods for t1rait measurement are described in section 4.2 (Material 

and methods).  

Ultimately, this work helps to obtain a greater understanding of the genetic 

relationships of backfat and IMF in both a commercial and purebred pig population as well as 
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the various, common measurement techniques for these traits. Based on the well documented 

relationship between IMF and BFD found in the literature we expected to identify moderate-

high positive correlations between these traits, as well as moderate – high heritabilities for 

these traits. Our null hypothesis is that there is no relationship between the traits and that 

estimated heritabilities are outside the range of those previously reported.  

4.2 Materials and methods 
 

Ethics statement 
 
This project was approved by the University of Alberta Animal Care and Use 

Committee. The animals used in this study were raised in a commercial herd following the 

Canadian Quality Assurance Program and the Canadian Council on Animal Care (CCAC) 

guidelines (Canadian Council on Animal Care, 1993). 

Animals 
 
Two separate pig populations were investigated in this study: a crossbred population 

and a purebred population. Both populations have a common sire breed (Duroc). 

Crossbred pigs 
 
A subsample of 916 animals from a total of 1098 commercial crossbred pigs 

originating from a Canadian breeding company (Hypor Inc. Regina, SK, Canada) were used 

for this study. Animals without phenotypes available for all traits studied were removed; this 

subsample are animals with phenotypic data available. The pigs were a three-way cross 

between a Duroc sire and F1 hybrid (Landrace × Large White) dams. The majority of 

commercial pigs for slaughter in Canada are a result of this terminal cross (Miar et al, 2014). 

The animals used in the pedigree has 100% of the parents known and included 64 sires and 113 

dams over 1 generation. Feeding, raising, and slaughter protocols have been described in 
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previous studies (Miar et al, 2014; Zhang et al, 2015; Yang et al, 2017). The commercial 

population was 53.7% male (barrows) and 46.3% females (gilts).  

Purebred pigs 
 

A total of 997 purebred Duroc pigs originating from a Canadian breeding company 

(Hypor Inc. Regina, SK, Canada) were used for this study, all had phenotypic data available 

(no missing phenotypes). The animals used in the pedigree had 100% of the parents known and 

included 83 sires and 292 dams over 1 generation. Pigs were all female as slaughter took place 

at a commercial facility where no intact males are accepted and the nucleus farm from which 

the animals were sourced does not contain barrows as they are breeding facilities. The Duroc 

breed was chosen as this is the typical sire line in the Canadian commercial cross, and they are 

known for having higher IMF content than other common breeds (Schwab et al, 2006) and also 

higher growth and feed efficiency than fatter breeds such as the Berkshire; growth and feed 

efficiency are important to ensure profitability of the final carcass (Fahmy et al, 1987; Alfonso 

et al, 2010; Choi et al, 2014). Feeding, raising, and slaughter protocol have been described in 

previous studies (Miar et al, 2014; Yang et al, 2017; Zhang et al, 2015).  

Phenotypes  
 

The traits used in this investigation were backfat depth (BFD), ultrasound backfat depth 

(UBFD), ultrasound intramuscular fat (UIMF), near-infrared intramuscular fat (NIRIMF) and 

subjective marbling score (SUBIMF). BFD, in this study was defined as the depth of the fat 5 

cm off the midline and perpendicular to the hide between the 3rd and 4th last ribs; this was 

measured within 24 hours post-mortem with a ruler and is reported in millimetres (mm). 

UBFD was assessed via ultrasound on all pigs (purebred and crossbred), using the BioQ station 

(Biotronics Inc, Iowa USA) equipped with the Exago ultrasound scanner (IMV imaging). 

Scans were taken two days prior to slaughter, before shipping, just off of the midline (P. 
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Charagu, personal communication, June 18, 2020)10 . The proprietary algorithm used in the 

built-in software of the BioQ station (BioSoft Toolkox®, Biotronics Inc) provides an 

estimation of the BFD (mm). UIMF was assessed via ultrasound on each pig, both purebred 

and crossbred, also using the BioQ station (Biotronics Inc, Iowa USA). The proprietary 

algorithm used in the built-in software of the BioQ station provides an estimation of the IMF 

content in the muscle. Scans were done between the 3rd and 4th last rib, approximately 6 inches 

off of the midline at the apex of the loin and animals were scanned two days prior to slaughter, 

before shipping (P. Charagu, personal communication, July 22, 2019)11. They are reported as a 

percentage. SUBIMF was assessed on the longissimus dorsi (loin) muscle within 24 hours 

post-mortem, for both the purebred and crossbred animals, using the National Swine 

Improvement Federation (NSIF) marbling charts (NSIF, 1997). A single grader, Dr. Bob 

Mckay of Mckay-Genstat Consultants (Brandon, Manitoba) assessed all loin samples. They are 

reported as a single value, according to the following grades; 0 to 6: 0 = devoid, 1 = practically 

devoid, 2 = trace amount of marbling, 3 = slight, 4 = small, 5 = moderate, 6 = abundant. 

NIRIMF was available only for the purebred animals and phenotype generation is described in 

Chapter 3.0, section 3.2 (Materials and methods). The corrected NIR phenotypes, those which 

have the adjustment factor applied, were used in this study. They are reported as a percentage. 

The descriptive statistics for the 5 traits (UBFD, BFD, NIRIMF, UIMF and SUBIMF) 

including the standard mean, minimum, maximum and standard deviation were calculated in 

Microsoft Excel using the appropriate functions. Coefficient of variation (CV) was calculated 

with the following formula.  

 
10 Dr. P.Charagu, personal communication, June 18, 2020, describing the collection method for UBFD . 
 
11 Dr. P.Charagu, personal communication, July 22, 2019, describing the collection method for UIMF. 
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CV =  
SD

μ
 ×  100%    (1)                

Where SD is standard deviation and  is mean of the phenotypes. 

Bivariate analysis  
 

Genetic and phenotypic correlations were calculated using a series of bivariate analyses 

in ASReml (Gilmour et al, 2015). The statistical model used was the animal model. The 

significance of fixed effects and covariates was determined in ASReml using the REML 

procedure. Fixed effects fitted for all pairwise analyses (p < 0.05) can be seen in Table 4.1 

below.  

Table 4.1 Significant effects (fixed and random) in bivariate analysis 
 

Purebred Durocs 

Pairwise Analysis Fitted fixed effects* Fitted random 
effects* 

BFD - NIRIMF Sex, date of slaughter Animal 
BFD - UIMF Sex, date of slaughter Animal 

BFD - SUBIMF Sex, date of slaughter Animal 
NIR - SUBIMF Sex Animal 

UIMF - SUBIMF Sex, date of slaughter Animal 
NIRIMF - UIMF sex Animal 

UBFD - BFD Sex, date of slaughter Animal 
UBFD - NIRIMF Sex, date of slaughter Animal 
UBFD - UIMF Sex, date of slaughter Animal 

UBFD - SUBIMF sex Animal  
Commercial crossbreds 

BFD - UIMF Sex Animal 
BFD - SUBIMF Sex Animal 

SUBJ - UIMF Sex Animal 
UBFD - BFD Sex, date of slaughter Animal 

UBFD - SUBIMF Sex, date of slaughter Animal 
UBFD - UIMF Sex, date of slaughter Animal 
*Significance level for fixed and random effects set at p < 0.05. 

The animal model used for bivariate analysis includes random additive polygenic effects and is 

given by: 
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[
𝒚𝟏

𝒚𝟐
] =  [

𝑿𝟏 𝟎
𝟎 𝑿𝟐

] [
𝒃𝟏

𝒃𝟐
] + [

𝒁𝟏 𝟎
𝟎 𝒁𝟐

] [
𝒂𝟏

𝒂𝟐
] + [

𝒆𝟏

𝒆𝟐
]   (2) 

 
In this model where 𝒚𝟏 and 𝒚𝟐 are the vectors of phenotypic measurements for traits 1 and 2, 

𝑿𝟏 and 𝑿𝟐 are the incidence matrices which relate the fixed effects to vectors 𝒚𝟏 and 𝒚𝟐, 

respectively; 𝒃𝟏 and 𝒃𝟐 are the vectors of significant fixed effects for traits 1 and 2, 

respectively 𝒁𝟏 and 𝒁𝟐 are the incidence matrices relating the phenotypic observations to the 

vector of polygenic effects, 𝒂𝟏and 𝒂𝟐 for traits 1 and 2, respectively. 𝒆𝟏 and 𝒆𝟐 are the vectors 

of random residual effects for traits 1 and 2, respectively. Heritability was estimated using the 

variance components obtained from model (2) as:  

𝒉𝟐 =  
𝝈𝒂

𝟐

𝝈𝒂
𝟐+ 𝝈𝒆

𝟐    (3) 

Where 𝝈𝒂
𝟐 is the direct additive genetic variance and 𝝈𝒆

𝟐 is the residual variance).In order to 

assess statistical significance of genetic correlations, confidence intervals (CI) were calculated 

for the correlations by the following formula (Hazra, 2017): 

𝑪𝑰 = [ 𝒓𝒈 + (𝒔𝒆 ×  𝟏. 𝟗𝟔), 𝒓𝒈 − (𝒔𝒆 × 𝟏. 𝟗𝟔)]    (4) 

Where 𝒓𝒈 is the genetic correlation and 𝒔𝒆 is the standard error. The same formula was used 

for the phenotypic calculations, replacing 𝒓𝒈 with 𝒓𝒑. If the 95% confidence interval does not 

contain zero, then the genetic correlations are considered statistically different from zero at the 

0.05 significance level (p < 0.05); if the confidence interval contains zero, the genetic 

correlations are not considered significantly different from zero at the 0.05 level. 

Coefficients of correlation 
 

The coefficient of correlation (r) for the phenotypes of NIRIMF x UIMF and UBFD x 

BFD were calculated in Microsoft Excel for the relevant population using the following 

formula: 
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𝒓 =
𝑪𝒐𝒗(𝟏,𝟐)

𝝈𝟏𝝈𝟐
   (5) 

Where 𝒓 is the relationship coefficient, 𝑪𝒐𝒗(𝟏, 𝟐) is the population covariance of trait 1 and 2, 

𝝈𝟏 is the standard deviation of trait 1 and 𝝈𝟐 is the standard deviation of trait 2.  

4.3 Results and discussion 
 

Phenotypic descriptive statistics  
 

The means (𝝁), standard deviations (SD), number of records (n) , coefficients of 

variation (CV), minimum and maximum values for all investigated traits are presented below 

in Table 4.2A and Table 4.2B.  

Table 4.2A Descriptive statistics for BFD and IMF traits* in a purebred Duroc 
population. 

 
 

 

 

 

 

 
 

* Traits all measured by different methods, outlined in section 4.2 (Materials and methods). UBFD = Ultrasound 
BFD (mm), BFD = backfat depth (mm) , UIMF = ultrasound intramuscular fat, NIRIMF = Near-infrared 

intramuscular fat, SUBIMF= subjectively scored intramuscular fat. 
 

 
 
 
 
 
 
 

 

Purebred Durocs 
 SUB IMF UIMF NIRIMF UBFD BFD 

Mean (𝝁) 1.5 2.89 2.07 10.5 10.3 

Minimum  0 0.70 0.87 4.8 4 

Maximum  3 4.90 3.84 20 19 

Standard deviation 
(SD) 

0.59 0.75 0.42 2.21 2.45 

Coefficient of 
Variation (CV) (%) 

40.5 25.9 20.2 21.0 23.7 
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Table 4.2B Descriptive statistics for BFD and IMF traits* in a commercial pig 
population. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* Traits all measured by different methods, outlined in section 4.2 (Materials and methods). UBFD = Ultrasound 

BFD (mm), BFD = backfat depth (mm) , UIMF = ultrasound intramuscular fat, SUBIMF= subjectively scored 
intramuscular fat. 

 
Interestingly, the average UIMF for both purebreds and crossbreds are the same. This is 

unexpected, as the Duroc breed, specifically selected as a sire line for commercial crossbreds 

due to their increased IMF (among other growth and carcass traits) is expected to have higher 

(Schwab et al, 2006) IMF content. All other IMF measurements indicate a lower average IMF 

content for the purebred animals compared to the crossbred animals. The commercial crossbred 

animals not only have higher average backfat thickness than the purebred Durocs (15.5 mm vs 

10.3 mm), but also higher marbling scores; the subjective marbling score is approximately 1.5 

grades higher for the crossbreds (1= practically devoid, 2 = trace, 3 = slight). It is known that 

BFD and IMF are positively genetically correlated traits (Wood, 1990; Rosenvold and 

Commercial crossbreds 
 SUB IMF UIMF UBFD BFD 

Mean (𝝁) 2.9 2.89 15.9 15.5 

Minimum  1 0.7 7.9 6 

Maximum  6 6.6 33.7 32 

Standard deviation (SD) 1.01 0.92 3.4 4.20 

Coefficient of variation 
(CV) (%) 

34.9 31.8 21.8 27.1 

Commercial crossbreds (Female) 
 SUB IMF UIMF UBFD BFD 

Mean (𝝁) 2.6 2.70 14.5 14 

Minimum  1 0.7 7.9 6 

Maximum  5 6.4 25.4 27 

Standard deviation 
(SD) 

0.922 0.80 2.99 3.65 

Coefficient of 
variation (CV) (%) 

35.7 29.5 20.7 26.9 
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Anderson, 2003; Hernández-Sánchez et al, 2013; Miar et al, 2014); with the increased BFD 

seen in the commercial animals, higher IMF is not surprising, however, the quantity is higher 

than what is generally seen. The average IMF content of Canadian commercial hogs is just 

1.5% (Meadus et al, 2018) making this population of crossbred animals over 1% above the 

national average. It is possible that this unexpected result is related to sex, as the purebreds 

were only females and the crossbreds were approximately half males and half females. Sex is 

an important factor for fat deposition, as barrows are fatter than gilts (Dunshea and D’Sousza, 

2003). When comparing the purebred animals to only the female commercial animals (Table 

4.2B), despite small reductions in all values due to the removal of barrows, the commercial 

animals still have greater UIMF, higher SUBIMF, UBFD and BFD. Reductions of these 

averages from the removal of barrows are not significant, but this does indicate that the highest 

values were from male animals. 

Aside from sex or genetic factors, diet and environment can significantly influence fat 

deposition, including IMF. Approximately 75% of fat deposits in pigs are from de novo 

synthesis in the adipose tissue, the remainder are absorbed and incorporated into tissues, 

unchanged, from dietary sources (O’Hea and Leveille, 1969; Lawrence and Fowler, 2002). 

Both populations were raised separately, in different environments and were not fed identical 

rations, which may have influenced the phenotypic results noted in this study.  

Genetic parameters  
 
Heritabilities, genetic and phenotypic correlations for all investigated traits are presented in 

Table 4.3A (purebred Durocs) and Table 4.3B (commercial crossbreds).  
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Table 4.3A Estimates of genetic (below diagonal), phenotypic (above diagonal) 
correlations, heritabilities (diagonal) and their standard error of estimates among 

IMF and BFD for a purebred Duroc pig populations. 
 

 
Traits1 Purebreds 

UBFD BFD NIRIMF UIMF SUBIMF 

UBFD 0.482 (0.085) 0.808 
(0.0119) 0.396 (0.031) 0.4995 

(0.027) 
0.333 

(0.0298) 

BFD 0.946 (0.028) 0.44 (0.087) 0.37 (0.031) 0.407 
(0.0297) 0.34 (0.03) 

NIRIMF 0.319 (0.127) 0.299 (0.135) 0.491 (0.11) 0.504 (0.026) 0.483 (0.025) 

UIMF 0.439 (0.122) 0.344 (0.140) 0.775 (0.085) 0.438 (0.090) 0.364 (0.029) 

SUBIMF 0.359 (0.158) 0.397 (0.16) 0.930 
(0.0901) 0.792 (0.146) 0.234 (0.073) 

1 UBFD = Ultrasound BFD (mm), BFD = backfat depth (mm) , UIMF = ultrasound intramuscular fat, NIRIMF = 
Near-infrared intramuscular fat, SUBIMF= subjectively scored intramuscular fat.  
2 No correlations were significantly different from zero based on 95% CI  
 
 

Table 4.3B Estimates of genetic (below diagonal), phenotypic (above diagonal) 
correlations, heritabilities (diagonal) and their standard error of estimates among 

IMF and BFD for a and commercial crossbred pig populations. 
 

 
Traits1 Crossbreds 

UBFD BFD UIMF SUBIMF 

UBFD 0.543 (0.094) 0.738 (0.0192) 0.272 (0.0379) 0.219 (0.0391) 

BFD 0.999 (0.018) 0.429 (0.078) 0.368 (0.033) 0.297 (0.035) 

UIMF 0.430 (0.162) 0.428 (0.172) 0.241 (0.071) 0.228 (0.038) 

SUBIMF 0.479 (0.157) 0.405 (0.138) 0.376 (0.129) 0.245 (0.073) 

1 UBFD = Ultrasound BFD (mm), BFD = backfat depth (mm) , UIMF = ultrasound intramuscular fat, SUBIMF= 
subjectively scored intramuscular fat.  
2 No correlations were significantly different from zero based on 95% CI  
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Heritabilities  
 

Moderate to high heritability was obtained for all of the traits investigated in both 

populations. Estimates for purebred UBFD, BFD, NIRIMF, UIMF and SUBIMF were 0.48 (± 

0.09), 0.44 (± 0.09), 0.49 (± 0.11), 0.44 (± 0.09) and 0.23 (± 0.07) and crossbred estimates 

for UBFD, BFD, UIMF and SUBIMF were 0.54 (± 0.09), 0.43 (± 0.08), 0.24 (± 0.07) and 

0.25 (± 0.07). Almost all of these estimates are in line with previously reported heritability 

values. Heritability values from the literature for purebred Duroc BFD (0.44 ± 0.11; Newcom 

et al, 2005), commercial crossbred BFD (0.45 ± 0.07; Miar et al, 2014), purebred Duroc 

NIRIMF (0.50 - 0.62 ± 0.06; Gjerlaug-Enger et al, 2010), purebred Duroc UIMF (0.48; Jung 

et al, 2015), commercial crossbred UIMF (0.26 ± 0.06; Miar et al, 2014) and as well as 

commercial crossbred subjective carcass marbling score (0.23 ± 0.05; Miar et al, 2014) are all 

very close to the estimates from this study. The heritability reported in this study for SUBIMF 

(0.23 ± 0.07) is lower than previously reported heritability for marbling scores in purebred 

Durocs by Cabling et al. (2005) of 0.79 ± 0.08, but higher than those reported by Lo et al. 

(1992) which reported this to be 0.16 ± 0.07 in F1 Landrace x Durocs. There are many factors 

which affect heritability estimates and subsequently the range seen across the literature for 

certain traits. These factors include population size, the effect of heterosis on crossbred 

populations, completeness of pedigree, and, as investigated here, the assessment technique 

(Koots et al, 1994). 

 Of particular importance, and the focus of this thesis, is marbling and IMF content. The 

predicted values from this study are in line with the many literature estimates; there is a range 

of reported heritability (0.13 - 0.31; Lo et al, 1992; Sonesson et al, 1998; Schwab et al, 2009) 

for UIMF. Marbling is an important visual assessment which consumers use in order to gauge 
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the quality of meat prior to purchase. The range of heritabilities indicate that deposition of IMF 

is dependent upon not only genetics, but external factors (environment) as well; the higher the 

estimate of heritability, the higher proportion of the trait is controlled by genetics (Falconer and 

Mackay, 1996). Additionally, all estimates of heritability are specific for the population it was 

calculated from, which is another possible explanation to the range of reported heritability 

estimates. NIRIMF reported higher heritabilities than other, more traditional methods of 

assessment such as ultrasound and subjective scoring, which is a consistent finding in the 

literature (Gjerlaug-Enger et al, 2010). The reference technique to quantify IMF of proximate 

analysis was not investigated in the present study but reported heritabilities for this value are 

moderate to high (0.51 ± 0.13 - 0.69 ± 0.12; Lo et al, 1992; Newcom et al, 2005). Inflated 

phenotypic variability due to inaccurate measurements (among other factors) can have negative 

effects on h2 estimates, particularly by downwardly biasing the estimates (Ge et al, 2017). 

Therefore, it is possible that increased phenotypic accuracy may increase the accuracy of a 

heritability estimate values, given the same population.  

Heritabilities are used to predict responses to selection and to help breeders choose the 

best method for trait improvement (selection or management) (Cassell, 2009). Those traits with 

moderate to high heritabilities can be improved using genomic technologies, because a large 

degree of the variation seen in the trait is due to genetics. Overall, this study estimated BFD 

and IMF content to have moderate to high heritabilities, which is consistent with current 

estimates from the literature.  

Correlation estimates 
 

Genetic and phenotypic correlations for BFD and IMF content are presented in Table 

4.3A (purebreds) and 4.3B (crossbreds). No correlation estimates were found to be statistically 

significant (p < 0.05). This is possibly due to the relatively small sample sizes and 
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subsequently large standard errors (SE); because the SE is a function of the square root of the 

sample size, in order to decrease the SE by half, four times as many observations are required 

(Mcdonald, 2009). For the sake of the discussion, relevant correlations will be addressed. 

Additionally, phenotypic correlations are in general approximately equal to their corresponding 

𝑟𝑔 (Kominakis, 2003) and can, in some cases, be substituted for genetic correlations (𝑟𝑔) if the 

𝑟𝑔 is not precise; a lack of precision is related to small sample sizes and resulting long CI’s. 

The CI’s in this study are due to the relatively large SE’s (Chapter 4.0, model 4); increased 

length of a CI results in lower precision of the estimates (Nakagawa and Cuthill, 2007). In this 

case, since sample sizes are small, SE’s are increased, CI length is increased and precision is 

reduced, if a genetic correlation significantly deviates from the literature, the phenotypic 

correlation will also be investigated.  

Backfat depth measures (BFD and UBFD) were moderately correlated with all 

measures of IMF (UIMF, NIRIMF and SUBIMF) in both the purebred and crossbred animals. 

In the commercial crossbred animals, the estimated correlations for BFD x UIMF and 

SUBIMF are 0.43 (± 0.17) and 0.41 (± 0.14) respectively, UFBD x UIMF and SUBIMF are 

0.43 (± 0.16) and 0.48 (± 0.16) respectively. In the purebreds, BFD x UIMF, NIRIMF, and 

SUBIMF are 0.34 (± 0.14), 0.30 (± 0.14) and 0.40 (± 0.16) respectively. UBFD x UIMF, 

NIRIMF and SUBIMF are 0.44 (± 0.12), 0.32 (± 0.13) and 0.36 (± 0.16). It is well known that 

backfat and IMF are positively genetically correlated traits, and estimated values from this 

study (UIMF and NIRIMF) are similar to those from the literature for both the commercial 

crossbreds (0.48 ± 0.19; Miar et al, 2014) and in the purebred animals (0.28 ± 0.03; Suzuki et 

al, 2005). Estimates from the literature were statistically significant. The estimated 𝑟𝑔 for BFD 

and UBFD x SUBIMF, however, are higher in both the purebreds (0.40 ± 0.16, 0.36 ± 0.16) 
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and crossbreds (0.41 ± 0.14, 0.48 ± 0.16) than previous estimates. Miar et al. (2014) estimated 

a negative correlation of -0.16 ± 0.14 between carcass marbling score and UBFD in a crossbred 

pig population, as did Cabling et al. (2015) in a purebred Duroc population (-0.41). 

Interestingly, Willson et al, (2020) reported a positive genetic correlation for subjective 

marbling score and UBFD (0.30 ± 0.11) in a population of all female Duroc gilts. The estimate 

from Cabling et al. (2020), though similar to the genetic estimates from this study, is more 

similar to their phenotypic correlation estimates (phenotypic estimates for UBFD and BFD x 

SUBIMF in the commercial and purebred animals are 0.22 (± 0.04), 0.30 (± 0.04), 0.33 (± 

0.03) and 0.34 (± 0.03)). Although none of the estimates in this study were statistically 

significant different from zero, it is evident that there is a large range of correlation estimates 

for BFD and SUBIMF than with other methods of IMF assessment. A wide range can indicate 

differences due to breed, sampling, method of collection (section 4.2, Materials and methods, 

phenotypes) or technician (Koots et al, 1994); particularly since this measure is subjective, a 

larger range is not surprising.  

Overall, despite being not significantly different from zero, the correlation estimates 

provided in this study for backfat thickness and IMF content indicate that selection for 

increased IMF will also increase BFD, and vice versa. This relationship is well understood 

based on previously reported positive genetic correlations (Wood, 1990; Rosenvold and 

Andersen, 2003; Newcom et al, 2005; Miar et al, 2014, Hernández-Sánchez et al, 2013) as 

well as the known biological processes of fat deposition. In order to deconstruct this correlation 

and independently select traits which are positively correlated, increased understanding of the 

traits’ genetic architecture is important. This understanding is also important for the 

independent manipulation of these traits, which is of particular importance for IMF and BFD as 

the ultimate goal is to improve IMF without increasing BFD; it is believed that with such 
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increased understanding incorporated into GS models that BFD and IMF can be independently 

manipulated (Rosenvold and Anderson, 2003; Ros-Friexedes et al, 2013). 

Genetic and phenotypic correlations were investigated for traits which provided 

estimates for the same trait by different methods (NIRIMF, UIMF, SUBIMF and UBFD, BFD) 

in order to explore which traits may be good substitutes for one another. Ultrasound is a 

commonly used method for IMF assessment as it can be done on live animals prior to shipping 

(Jung et al, 2015), however this may not be feasible in all situations. NIR technology is 

primarily used post-mortem on carcasses or meat samples (Dixit et al, 2017). Subjective 

marbling score is an inherently less precise measure than NIR or ultrasound (Cheng et al, 

2015), can only be assessed post-mortem but also requires destruction of the longissimus dorsi 

in order to expose the surface of the muscle to assessment. In a previous study by Jung et al. 

(2015) who investigated UIMF and IMF by proximate analysis, they found that a genetic and 

phenotypic correlation of 0.75 was appropriate to substitute UIMF for proximate analysis 

values.  

In the purebreds, genetic and phenotypic correlations for NIRIMF x UIMF were 0.78 

(± 0.09) and 0.50 (± 0.03), NIRIMF x SUBIMF 0.93 (±0.09), 0.48 (± 0.03), and finally for 

UIMF x SUBIMF 0.79 (± 0.15) and 0.36 (±0.03). Interestingly, SUBIMF has the higher 

genetic correlation to NIRIMF and UIMF than NIRIMF x UIMF, however, this pair has higher 

phenotypic correlation than those with SUBIMF. The high genetic correlations seen with the 

SUBIMF are unlikely as visual measures are less precise and are at a disadvantage when 

compared to wet chemistry techniques due to the subjective nature of the assessment (Cheng et 

al, 2015). As such, these values are not dependable; despite the high estimate genetic 

correlation, SUBIMF is not a suitable substitution as it does not provide the precision needed 

for accurate phenotypes. Though none were statistically significant, the CI for the genetic 
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correlation of NIRIMF x UIMF was the smallest of all pairwise analyses, and the second 

smallest phenotypic CI, so based on these estimates and their SE, NIRIMF and UIMF would 

be suitable substitutes for one another.  

In the crossbreds, NIRIMF was unavailable, therefore only UIMF and SUBIMF were 

investigated. The genetic and phenotypic correlations for this pair were 0.376 (± 0.13) and 

0.23 (± 0.04), respectively. These are low correlation values and indicate that these are not 

appropriate substitutes for one another; further, substituting a subjective grade for a scientific, 

algorithm-based estimate is not an appropriate switch.  

UBFD and BFD were estimated to have high genetic and phenotypic correlations in 

both the purebreds (0.95 (±0.03) and 0.81 (±0.01), respectively) and crossbreds (0.99 (±0.02), 

0.74 (±0.02), respectively). Backfat thickness is an extremely relevant and economically 

important trait as it influences the valuation of carcasses and can also provide information 

about carcass fatness based on the previously described relationships of BFD and IMF. 

Ultimately, accurate phenotypic records are imperative to the success of a GS program and 

based on these estimates UBFD phenotypes could be confidently substituted for BFD. UBFD 

is a non-invasive method which could be assessed on selection candidates themselves, which 

offers many benefits for a GS program. Moving forward with genetic selection programs to 

improve IMF it is important to choose accurate phenotypes for two main reasons. First, 

training the GS model with phenotyped (and genotyped) individuals will foster favourable 

outcomes through improved accuracy of GEBVs. Phenotypes and genotypes are needed for the 

first (training) step in GS to estimate SNP effects, and the increased accuracy/precision of 

phenotypes will help to more accurately estimate these SNP effects; accurate marker effects are 

important for accurate GEBVs. The routine integration of new phenotypic information is 
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important as populations and environments are constantly changing. Secondly, these 

phenotypes may be used in further genetic studies, such as a GWAS, in order to uncover some 

of the genetic architecture of important traits, which can further be used to increase the 

accuracy of GEBVs through the integration of these identified functional gene variants into GS 

programs. With these, it is believed that we may be better able to estimate the overall genetic 

effects, additive and non-additive, of a trait which may be difficult or expensive to measure 

(IMF). Based on this study, UBFD or BFD, UIMF or NIRIMF are all appropriate phenotypes 

to use when available. This provides flexibility for breeders and based on available equipment, 

technician training, and feasibility in given various situations (pre-slaughter, abattoir, samples, 

live animals).  

Coefficients of correlation 
 

In order to compare the different methods of phenotyping the same trait: 1) NIRIMF 

and UIMF (purebred population), the two methods which estimate the percentage of IMF 

content and 2) UBFD and BFD (crossbreds and purebreds), the two methods which estimate 

depth of backfat, their correlation coefficients (r) were investigated. These were also chosen for 

investigation based on their pairwise analysis results, given that they were shown to be 

appropriate substitute measures for one another. The correlation coefficient obtained for 

NIRIMF x UIMF was 0.504, which is a moderate positive linear correlation; this indicates that 

these two variables are directly related, and have a moderate association to one another 

(Mukaka, 2012). This is shown in Figure S4.1 in Supplementary information 4.0. This is not 

unexpected, as it is understood that the method of collection for a phenotype can significantly 

impact its estimated values. Both NIR and ultrasound provide estimates based on algorithms, 

not precise values via wet chemistry, so it is not expected that they will be identical. 

Additionally, measuring IMF with these methods can be complex. When using NIR for 
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collection of these phenotypes, four scans were used to obtain a single averaged value for each 

ground loin sample; IMF it is not evenly distributed throughout the muscle and it is still 

possible that homogenisation was not perfect which would affect the accuracy of estimation. 

Increased heterogeneity of a sample decreases the accuracy of prediction (Dixit et al, 2017). 

The accuracy of phenotypic estimates for meat quality traits, such as IMF, also depends upon 

the cleanliness of the probe used – if there is residual meat left on the window between samples 

and probing, this will negatively affect the accuracy of the estimate (Alexandrakis, 2012). 

Finally, NIR measurements are sensitive to environmental factors including ambient light, 

temperature and spectrophotometer temperature (Marković et al, 2014); because not all 

samples were measured on the same day, it is possible that environmental factors impacted the 

accuracy of some estimates.  

Ultrasound technology also has some drawbacks; collagen and fatty acid profile may 

affect the accuracy of prediction (Maignel et al, 2010), as the black and white nature of the 

image does not detect the nuances that are present. Visually, intramuscular collagen can appear 

as ‘noise’ in the pictures, and it has been shown that a higher degree of unsaturation in the IMF 

can reduce the correlation between ultrasound assessment and subsequent proximate analysis 

(Maignel et al, 2010). Shadows and reflections may also be inaccurately determined (Miller, 

2000). Accuracy of ultrasound IMF measurements have been reported to be quite high, despite 

these limitations (Jung et al, 2015).  

 The correlation coefficient calculated for BFD and UBFD in from the purebred Duroc 

pigs and the crossbred pigs were 0.78, and 0.75, respectively; these are high positive 

correlations. These are shown in Figures S4.2 and S4.3 in Supplementary information 4.0. The 

depth of backfat is a simpler trait to estimate via ultrasound, as it is less heterogenous than IMF 

and is more suited to a black and white image. Therefore, the aforementioned limitations of 
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shadows and ‘noise’ would be less of a hindrance. These estimated relationships are not 

perfect, however, as there would still be the influential factors that cannot be accounted for via 

algorithm. Different technicians operating the ultrasound, animal movement and subsequent 

picture quality can all affect the final estimated value (Jung et al, 2015).  

 Limitations 
 
 Despite the promising results obtained from the estimation of variance components for 

these two pig populations, there was one primarily limitation associated with this study. In both 

the purebreds and the crossbreds, the data spanned only one generation and had a small sample 

size of animals. Increasing the size of the data set through inclusion of additional generations 

and animals will help to reduce the size of the confidence intervals via reduction of SE (Hill, 

2013a); large datasets are important for the accuracy of variance component estimates and the 

accurate description of relationships between traits in a given population as well as obtain an 

accurate relationship value between the animals in the data file. A second limitation which 

affected only the purebred analysis is the composition of the population; only gilts were used in 

this study. There is a well understood relationship between sex and fatness. Gilts tend to be 

fatter than boars (Farnworth and Kramer, 1987; Kouba and Sellier, 2011), and barrows fatter 

than gilts (Dunshea and D’Sousza, 2003). Future studies should have a mixed population 

including both sexes in order to more wholly represent the phenotypic variance.  

4.4 Conclusions 
 

Based on these results, we are unable to reject the null hypothesis because no 

correlations were significantly different from zero. It is the result of a type II error that we 

cannot reject the null hypothesis, as the relationship between BFD and IMF is well understood. 

The lack of significant results is likely due to the aforementioned limitation of small sample 
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size and single generational data used in this study. Due to this,  these variance component 

estimates must be interpreted cautiously. 

The improvement of meat quality is important for the pork industry, particularly the 

improvement of IMF in order to enhance eating quality. IMF is a polygenic trait with complex 

genetic architecture, but it is known to have a positive genetic correlation to backfat thickness. 

Genetic improvement of IMF is possible through selection. However, knowledge of related 

traits and their genetic parameters are important to make informed decisions and accurately 

predict the outcome of selection. The accuracy of genetic correlations and heritabilities depend 

upon the populations they are calculated from and are not static values and therefore the 

periodic recalculation of these parameters is wise. The understanding of these genetic 

parameters is helpful for the implementation of selection programs on which the emphasis is 

improvement of IMF. The selection for increased IMF in the purebreds has been shown to also 

increase BFD as both heritabilities are moderate-high, and their genetic correlation is also high. 

As such, parameters calculated would be valuable for designing a breeding program, and the 

moderate-high heritabilities indicate that BFD and IMF (particularly NIRIMF and UIMF) can 

be improved using genomic technologies. The calculated coefficient of correlation between the 

UIMF and NIRIMF indicates a moderate positive correlation and that between BFD and 

UBFD in both the commercial and purebred animals indicates a high positive relationship. 

Finally, based on their variance components NIRIMF and UIMF would be suitable substitute 

measurements as would UBFD and BFD. Moving forward with additional genetic work, such 

as genome-wide association studies (GWAS’), either phenotype would be appropriate to use, 

though it is important to be mindful that they are not identical and based of their different 

methods of measurement may provide different results. Overall, increased understanding of 
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how traits are related on a genetic level can be valuable and beneficial, particularly when 

attempting to predict the consequences of selecting for one trait on other traits.  

 

 Supplementary information 4.0 
 

Figure S4.1 

 
 

 

Figure S4.1 depicting the relationship of intramuscular fat phenotypes measured by NIR (NIRIMF) (y-axis) and ultrasound 
(UIMF) (x-axis) in the same purebred Duroc population. r = 0.504 
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Figure S4.2 

 

 
 
Figure S 4.2 depicting the relationship of backfat depth phenotypes measured by ruler (BFD) (y-axis) and ultrasound (UBFD) 

(x-axis) in the same purebred Duroc population. r = 0.779 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20

BF
D

UBFD

Relationship of BFD and UBFD in a purebred Duroc 
population



 128 

 
 
 
 
 

Figure S4.3 

 
 

 

 
Figure S4.3 depicting the relationship of backfat depth phenotypes measured by Ultrasound (UBFD) (y-axis) and ruler (BFD) 

(x-axis) in the same commercial crossbred population. r = 0.748 
 
 

 

4.5 Literature Cited 
 
Alexandrakis, D. 2012. NIRS in an industrial environment. Near Infrared Suppl. Eur Pharm 

Rev.17. 3.  
 
Alfonso, L., Zudaire, G., Sarries, M., Viguera, J., and Flamarique, F. 2010. Investigation of 

uniformity in pig carcass and meat quality traits. Animal. 4(10). 1739-1745.  
 
Cabling, M. M., Kang, H. S., Lopez, B. M., Jang, M., Kim, H. S., Nam, K. C., Choi, J. G., and 

Seo, K. S. 2015. Estimation of Genetic Associations between Production and Meat 
Quality Traits in Duroc Pigs. Asian Austral J Anim. 28(8).1061-1065.  

 

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

U
BF

D

BFD

Relationship of BFD and UBFD in a commercial crossbred 
pig population



 129 

Canadian Council on animal care. 1993. Guide to care and use of experimental animals. Vol 1, 
Ed 2. Olfert, E.D., Cross, B.M., McWilliams, A.A. Can Counc Anim Care, Ottawa, 
Ontario, Canada.  

 
Cannata, S., Engle, T.E., Moeller, S.J., Zerby, H.N., Radunz, A.E., Green, M.E., Bass, P.D., 

and Belk, K.E. 2010. Effect of visual marbling on sensory properties and quality traits 
of pork loin. Meat Sci. 85(3).428-434.  

 
Cassell, B. 2009. Using heritability for genetic improvement. Virginia cooperative extension. 

https://www.pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/404/404-084/404-
084_pdf.pdf  

 
Cheng, W., Cheng, J., Sun, D., and Pu, H. 2015. Marbling analysis for evaluating meat quality: 

methods and techniques. Compr. 14(5). 523-535.  
 
Choi, J. S., Lee, H. J., Jin, S. K., Choi, Y. I., and Lee, J. J. 2014. Comparison of Carcass 

Characteristics and Meat Quality between Duroc and Crossbred Pigs. Korean J Food 
Sci Anim Resour. 34(2). 238-244.  

 
Dixit, Y., Casado-Gavalda, M.P., Cama-Moncunill, R., Cama-Moncunill, X., Mariewicz-

Keszycka, M., Cullen, P.J., and Sullivan, C. 2017. Developments and challenges in 
online NIR spectroscopy for meat processing. Comp Rev Food Sci F.16(6). 1172-1187. 

 
Dransfield, E., Ngapo, T.M., Nielson, A.N., Bredahl, L., Sjödén, P.O., Magnusson, M., 

Campo, M.M. and Nute, G.R. Consumer choice and suggested price for pork as 
influenced by its appearance, taste, and information concerning country of origin and 
organic pig production. Meat Sci. 69(1). 61-70. 

 
Dunshea, F.R., and D’Souza, D.N. 2003. A review- Fat deposition and metabolism in the pig. 

Conference: Australasian Pig Science Association, At Fremantle, Volume: 
“Manipulating Pig Production IX”.J. Paterson (Ed). Encyclopedia of Genetics, 
Academic Press. 127-150 

 
Fahmy, M. H., Trottier, L., and Gagne-Giguere, S. 1987. The use of crossbreeding to improve 

swine production in Canada. Research station Lennoxville, Quebec: Agriculture 
Canada. http://igcs.azurewebsites.net/PDF%20FILES/E-02-
Crossbreeding%20Swine.pdf  

 
Falconer, D.S., and Mackay, T.F.C. 1996. Introduction to quantitative genetics. Dorling 

Kinderseley Pvt. Ltd. Longman group, Essex, UK, Edn. 4(1). 
 
Farnworth, E.R., and Kramer, J. 1987. Fat metabolism in growing swine: A review. Can J 

Anim Sci. 67.301-308.  
 
Fernández, X, Monin, G., Talmant, A., Mourot, J., and Lebret B. 1999. Influence of 

intramuscular fat content on the quality of pig meat - 2. Consumer acceptability of m. 
longissimus lumborum. Meat Sci. 53(1).67-72.  

https://www.pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/404/404-084/404-084_pdf.pdf
https://www.pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/404/404-084/404-084_pdf.pdf
http://igcs.azurewebsites.net/PDF%20FILES/E-02-Crossbreeding%20Swine.pdf
http://igcs.azurewebsites.net/PDF%20FILES/E-02-Crossbreeding%20Swine.pdf


 130 

 
Ge, T., Holmes, A.J., Buckner, R.L., Smoller, J.W., Sabuncu, M.R. 2017. Heritability analysis 

with repeat measurements and its application to resting state functional connectivity. 
PNAS. 114 (21). 5521-5526.  

 
Gilmour, A. R., Gogel, B. J., Cullis, B. R., Welham, S. J., and Thompson, R. 2015. ASReml 

User Guide Release 4.1 Functional Specification. Hemel Hempstead: VSN 
International Ltd. 

 
Gjerlaug-Enger, E., Aass, L., Ødegård, J., and Vangen, O. 2010. Genetic parameters of meat 

quality traits in two pig breeds measured by rapid methods. Animal. 4(11).1832-1843.  
 
Hazra A. 2017. Using the confidence interval confidently. J Thorac Dis. 9(10). 4125-4130. 
 
Hermesch, S., Luxford, B.G.,and Graser, H.U. 2000. Genetic parameters for lean meat yield, 

meat quality, reproduction and feed efficiency traits for Australian pigs: 1. Description 
of traits and heritability estimates. Livest Prod Sci. 65(3). 239-248.  

 
Hernández-Sánchez, J., Amills M., Pena R., Mercade A., Manunza, A., and Quintanilla, 

R.2013. Genomic architecture of heritability and genetic correlations for intramuscular 
and back fat contents in Duroc pigs. J Anim Sci. 91. 623-632.  

 
Hill, W.G., Goddard, M.E., and Visscher, P.M. 2008. Data and Theory Point to Mainly 

Additive Genetic Variance for Complex Traits. PLOS Genetics. 4(2). 1-10.  
 
Hill, W.G. 2013a. Genetic Correlation, Editor(s): Stanley Maloy, Kelly Hughes, Brenner's 

Encyclopedia of Genetics (Second Edition), Academic Press. 237-239.  
 
Hill, W.G. 2013b. Selection Index. Editor(s): Stanley Maloy, Kelly Hughes, Brenner's 

Encyclopedia of Genetics (Second Edition), Academic Press. 360-361.  
 
Hill, W.G. 2013c. Heritability. Editor(s): Stanley Maloy, Kelly Hughes, Brenner's 

Encyclopedia of Genetics (Second Edition), Academic Press. 432-434.  
 
Jung, J.H., Shim, K.W., Na, C.S., and Choe, H.S. 2015. Studies on intramuscular fat 

percentage in live swine using real-time ultrasound to determine pork quality. Asian-
Australas J Anim Sci. 28(3).318-322.  

 
Kominakis, A.P. 2003. Phenotypic correlations as substitutes to genetic correlations in dairy 

sheep and goats. J. Anim. Breed. Genet. 120.269-281.  
 
Koots, K.R., Gibson, J.P., Smith, C., and Wilton, J.W. 1994. Analyses of published genetic 

parameter estimates for beef production traits. 1. Heritability. Anim Breed. 62. 825-
853.  

 
Kouba, M., and Sellier, P. 2011. A review of the factors influencing the development of 

intermuscular adipose tissue in the growing pig. Meat Sci. 88(2). 213-220. 



 131 

Lawrence, T. L. J., and V. R. Fowler. 2002. Growth of Farm Animals, 2nd ed. CABI 
Publishing, Wallingford, UK.  

 
Leroy, G., Baumung, R., Boettcher, P., Scherf, B., and Hoffmann, I. 2016. Review: 

Sustainability of crossbreeding in developing countries; definitely not like crossing a 
meadow. Animal. 10(2). 262-273. 

 
Li, X., and Kennedy, B. W.1994. Genetic parameters for growth rate and backfat in Canadian 

Yorkshire, Landrace, Duroc, and Hampshire pigs. J Anim Sci. 72(6). 1450-1454.  
 
Lim, K.S., Lee, K.T., Park, J.E., Chung, W.H., Jang, G.W., Choi, B.H., Hong, K.C., and Kim, 

T.H. 2016. Identification of differentially expressed genes in longissimus muscle of 
pigs with high and low intramuscular fat content using RNA sequencing. Anim Genet. 
48. 166-174.  

 
 Lo, L.L., McLaren, D.G., McKeith, F.K., Fernando, R.L., and Novakofski, J .1992. Genetic 

analyses of growth, real-time ultrasound, carcass, and pork quality traits in Duroc and 
Landrace pigs: II. Heritabilities and correlations. J Anim Sci. 70(8). 2387-2396.  

 
Maignel, L., Daigle, J.P., Gariépy, C., Wilson, D., and Sullivan, B. 2010. Prediction of 

intramuscular fat in live pigs using ultrasound technology and potential use in selection. 
Proceedings of the 9th World Congress on Genetics Applied to Livestock Production, 
Leipzig, DE.  

 
Marković, S., Poljanec, K., Kerč, J., and Horvat, M. 2014. Inline NIR monitoring of key 

characteristics of enteric coated pellets. Eur J Pharmaceut Biopharmaceut. 88. 847-855.  
 
McDonald, J.H. 2009. Handbook of Biological Statistics, 2nd ed. (Baltimore, MD: Sparky 

House Publishing).  
 
Meadus, W.J., Duff, P., Juárez, M., Roberts, J.C., and Zantinge, J.L. 2018. Identification of 

Marbling Gene Loci in Commercial Pigs in Canadian Herds. Agriculture. 8(122).1-9.  
 
Miar, Y., Plastow, G.S., Moore, S.S., Manafiazar, G., Charagu, P., Kemp, R.A., Van Haandel, 

B., Huisman, A.E., Zhang, C.Y., McKay, R.M., Bruce, H.L., and Wang, Z. 2014. 
Genetic and phenotypic parameters for carcass and meat quality traits in commercial 
crossbred pigs. J Anim Sci. 92. 2869-2884.  

 
Miller, D. C. 2000. Accuracy and application of real-time ultrasound for evaluation of carcass 

merit in live animals. Animal Science facts, North Carolina State University. 
https://projects.ncsu.edu/project/swine_extension/publications/factsheets/010b.htm  

 
Mukaka, M.M. 2012. Statistics corner: A guide to appropriate use of correlation coefficient in 

medical research. Malawi Med J. 24(3). 69-71.  
 
Nakagawa, S. and Cuthill, I.C. 2007. Effect size, confidence interval and statistical 

significance: a practical guide for biologists. Biol Rev. 8. 591-605.  

https://projects.ncsu.edu/project/swine_extension/publications/factsheets/010b.htm


 132 

 
Newcom, D.W., Baas, T.J., Schwab, C.R., and Stalder, K.J. 2005. Genetic and phenotypic 

relationships between individual subcutaneous backfat layers and percentage of 
longissimus intramuscular fat in Duroc swine. J Anim Sci. 83(2). 316-323.  

 
O'Hea, E., and Leveille., G.A.1969. Significance of Adipose Tissue and Liver as Sites of Fatty 

Acid Synthesis in the Pig and the Efficiency of Utilization of Various Substrates for 
Lipogenesis. Nutr J. 99 (3). 338-344.  

 
Oldenbroek, K., and van der Waaij, L. 2014. Textbook animal breeding: animal breeding and 

genetics for BSc students. Wageningen: Centre for Genetic Resources and Animal 
Breeding and Genomics Group, Wageningen University and Research Centre. 
Reference Module in Life Sciences. Elsevier.  
 

Ros-Freixedes, R., Reixach, J., Bosch, L., Tor, M., and Estany, J. 2013. Response to selection 
for decreased backfat thickness at restrained intramuscular fat content in duroc pigs1. J 
Anim Sci. 91(8). 3514-3521.  

 
Rosenvold, K., and Anderson, J.H. 2003. Factors of significance for pork quality- A review. 

Meat Sci. 64. 219-237.  
 
Schwab, C.R., Baas, T.J., Stalder, K.J., and Nettleton, D. 2009. Results from six generations of 

selection for intramuscular fat in Duroc swine using real-time ultrasound. I. Direct and 
correlated phenotypic responses to selection. J Anim Sci. 87(9). 

 
Schwab, C. R., Baas, T. J, Stalder, K. J. and Mabry, J. W. 2006. Effect of long-term selection 

for increased leanness on meat and eating quality traits in Duroc swine. J Anim Sci. 84. 
1577-1583.  

 
Sonesson, A. K., de Greef, K. H. and Meuwissen, T. H. E. 1998. Genetic parameters and trends 

of meat quality, carcass composition and performance traits in two selected lines of 
large white pigs. Livest Prod. Sci. 57. 23-32.  

  
Suzuki, K., Irie, M., Kadowaki, H., Shibata, T., and Al, E. 2005. Genetic parameter estimates 

of meat quality traits in duroc pigs selected for average daily gain, longissimus muscle 
area, backfat thickness, and intramuscular fat content. J Anim Sci. 83(9). 2058-2065.  

 
Timberlake, W.E. 2013. Heterosis. Editor(s): Stanley Maloy, Kelly Hughes, Brenner's 

Encyclopedia of Genetics (Second Edition). Academic Press. 
 
Willson, H.E., Rojas de Oliviera, H., Schnickel, A.P., Grossi, D., and Brito, L. 2020. 

Estimation of genetic parameters for pork quality, novel carcass, primal-cut and growth 
traits in Duroc pigs. Animals. 10(5). 1-25.  

 
Wood, J.D.1990. Consequences for meat quality of reducing carcass fatness. In J.D. Wood & 

A.V Fisher (Eds.). Reducing fat in meat animals. London: Elsevier Applied Science. 
334-395. 



 133 

 
Wood, J.D., Enser, M., Fisher, V., Nute, G.R., Richardson, R.I., and Sheard, P.R. 1999. 

Manipulating meat quality and composition. Proceedings of the nutrition society. 58. 
363-370.  

 
Yang, T., Wang, Z., Miar, Y., Bruce, H., Zhang, C., Plastow, G. 2017. A Genome-wide 

Association Study of Meat Colour in Commercial Crossbred Pigs. Can J Anim 
Sci .97(4). 721-733.  

 
Zhang, Z., Wang, Z., Bruce, H., Kemp, R.A., Charagu, P., Miar, Y., Yang, T., Plastow, 

G.S. 2015. Genome-wide association studies (GWAS) identify a QTL close 
to PRKAG3 affecting meat pH and colour in crossbred commercial pigs. BMC 
Genetics. 16(33).1-12.  

 



 134 

Chapter 5.0 A Genome-wide association study (GWAS) for intramuscular 
fat (IMF) in purebred Duroc pigs 

 

5.1 Introduction  
 

Genome-wide association studies (GWAS’) are a commonly used technique to identify 

QTL which are significantly associated with a trait of interest, providing insights to the genetic 

architecture behind a trait (Korte and Farlow, 2013). Through the principle of linkage 

disequilibrium (LD) at the population level, specifically between genotyped single nucleotide 

polymorphisms (SNPs) and ungenotyped causal variants (Visscher et al, 2012), a GWAS is 

able to identify SNPs that are common in the population and are in association with causal 

variants (Goddard et al, 2016). To capture these SNPs, animals are genotyped with a SNP 

panel (Chips); animals are genotyped with a SNPChip, which is then used as their genotype for 

a GWAS. The genotype of an animal is used in conjunction with their phenotypic record in 

order to evaluate the results. The results of a GWAS can be used to help identify biological 

pathways for complex traits (Goddard et al, 2016), to better understand the genomic 

architecture of a trait, predict future phenotypes, or to identify the causal variants (Goddard et 

al, 2016) responsible for trait variation. This identification may be done by not only the 

detection of the causative mutation itself, but also by investigation of the regions surrounding 

the identified SNPs and subsequent biological pathway analysis. GWAS’ have been successful 

in the identification of quantitative trait loci (QTL) responsible for observed variation in 

economically important traits in many livestock species. In fact, tens of thousands of QTL have 

been reported for pigs alone on the Pig QTL database for hundreds of different traits including 

performance, disease, and carcass traits (Hu et al, 2005). 
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The improvement of intramuscular fat (IMF) in pigs has become of particular interest 

recently and a GWAS is a practical method to investigate the underpinnings of such meat 

quality traits. Total IMF content, or marbling, present in pork is significantly correlated with 

tenderness upon consumption (Wood et al, 1999; Cannata, et al, 2010; Lim et al, 2016), which 

is widely considered as the most important attribute for eating (Fortin et al, 2004; Teye et al, 

2005). In the 1980’s, breeding goals focused on the reduction of backfat thickness in order to 

create a lean carcass, which was fitting with the consumer demands of the time (La Berge, 

2008). Unfortunately, this also reduced IMF content significantly, leading to a dry product with 

poor eating quality. Consumer acceptance is critical to the pork industry; both the initial and 

re-purchasing of products is key to its longevity and prosperity (Lim et al, 2016). Due to this 

demand for better quality pork, industry’s focus has more recently shifted to improving meat 

quality and related traits (Van Wijk et al, 2005; Papanagiotou et al, 2012) with high 

importance placed on attributes which relate to eating experience. Uncovering the biological 

factors related to IMF is necessary to the practical application of genetic selection programs; as 

we uncover more QTL and genes associated with IMF, further and more targeted work to 

identify the causative mutations in these genes can be done. Identified variants which have 

significant association with IMF can be used in animal breeding programs to aide in the 

selection for superior purebred breeding stock. 

 Due to the pyramidal structure of hog industry, genetic improvement achieved in 

purebred herds directly affects the rate of genetic improvement in the commercial animals; a 

high rate of genetic progress in the purebreds will lead to a higher genetic gain in the 

commercial crossbreds. The study of purebreds has been shown to be able to accurately predict 

the phenotypes of crossbred progeny, given that the genetic correlation of the crossbred and 

purebred animals for those traits is high (Bichard, 1971); meat quality traits have been shown 
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to have a high genetic correlation between crossbred and purebred animals (0.99) (Brandt and 

Täubert, 1998). Total carcass fatness and fat tissue accumulation is significantly influenced by 

breed effects (Kociucka et al, 2016); the Duroc breed, the typical sire in the Canadian 

commercial cross [(Duroc × (Landrace × Large White)] (Miar et al, 2014) is therefore a 

relevant and logical choice for investigation of the genetic underpinnings of IMF. Additionally, 

Durocs are known to have higher IMF content than other potential sire breeds such as the 

Pietrain (Schwab et al, 2006), but also higher growth and feed efficiency than fatter breeds 

such as the Berkshire; growth and feed efficiency are important to ensure profitability of the 

final carcass (Fahmy et al, 1987; Alfonso et al, 2010; Choi et al, 2014) Through the 

improvement of IMF content in purebred Duroc pigs, the performance of crossbred progeny 

under commercial conditions will benefit from breed complementarity by maximising the 

combinations of favourable alleles. We expect this under the assumption that the identified 

alleles associated with increased IMF are to be fixed in the Duroc and that they are additive in 

nature. IMF has a wide range (low to high) of reported heritability (0.26 ± 0.06 – 0.48) (Miar 

et al, 2014; Jung et al, 2015) and moderate correlation to backfat thickness (0.38 ± 0.005) 

(Switonski et al, 2010; Hernández-Sánchez et al, 2013) which suggests that it can be 

manipulated separately from backfat (Rosenvold and Andersen, 2003; Miar et al, 2014). Based 

on these factors, IMF appears to be a good candidate for genomic analysis and marker-based 

breeding and selection programs. In this study, we hoped to identify SNPs with a significant 

association with IMF content of the longissimus dorsi and further, to compare the results to 

those from the literature and in the Pig QTL database (Hu et al, 2005). For this, we chose to 

perform two GWAS’ focusing on IMF content with phenotypes measured by a different 

method (ultrasound and NIR).We hypothesised that we will identify a SNP which has a large 

effect size that explains a sizable amount of the phenotypic variance seen in IMF; in the event 
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there are no single SNPs with large effect size we expect to identify SNPs with a smaller effect 

size which still pass the threshold of significance. We have no null hypothesis for the GWAS’ 

5.2 Material and methods 
 

Ethics statement 
 

This project was approved by the University of Alberta Animal Care and Use 

Committee. The animals used in this study were raised in a commercial herd following the 

Canadian Quality Assurance Program and the Canadian Council on Animal Care (CCAC) 

guidelines (Canadian Council on Animal Care, 1993).  

Animals 
 

A subsample of 891 animals from a total of 997 purebred Duroc pigs originating from a 

Canadian breeding company (Hypor Inc. Regina, SK, Canada) were used for this study; 

animals used had both phenotype and genotype data available. All pigs were female; this was 

primarily because slaughter took place at a commercial facility where no intact males are 

accepted and the nucleus farm does not contain barrows, as they are breeding facilities. 

Additionally, females were used because IMF content can only be definitively measured post-

mortem and cannot be measured on selection candidates themselves; the males have greater 

potential of being used for commercial breeding and therefore their female siblings are used in 

this study. Feeding, raising, and slaughter protocol have been described in previous studies 

(Miar et al, 2014; Zhang et al, 2015; Yang et al, 2017). The Duroc breed was chosen as this is 

the typical sire line in the Canadian commercial cross, and they are known for having higher 

IMF content than other common breeds (Schwab et al, 2006) 

Genotypes 
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Tissue samples were collected from the ear on all pigs using Biopsytec samplers which 

were then sent to the Hendrix Genetics DNA laboratory in Plougragan, France. Genomic DNA 

was isolated from tissue using the Thermo Fisher Scientific Ltd (Ottawa, ON, Canada) DNA 

extraction instruction manual and genotyping was done by Geneseek Laboratory in Nebraska, 

USA with an Illumina 50K Porcine beadchip (Illumina, Inc., San Diego, CA, USA). SNPs with 

the following features were excluded during quality control procedures of 50K; minor allele 

frequency (MAF) < 0.01, genotype call rate < 0.95, and departure from Hardy-Weinberg > 

0.15. Any SNPs which were unmapped were also excluded, as were those on the sex 

chromosomes; non-autosomal SNPs were removed as the recombination landscape of the sex 

chromosomes is known to be different than on autosomes, which can cause distortion in the 

subsequent analysis (Bosse et al, 2012; Zhang et al, 2018). Imputation of any missing 

genotypes was done with FImpute version 2.2 (Sargolzaei et al, 2014). Finally, 35,809 SNPs 

and 891 animals remained from the original of 45, 436 SNPs and 997 animals on 18 autosome 

chromosomes for the GWAS.  

Phenotypes  
 

Two methods of IMF assessment were investigated: 1) IMF was assessed via 

ultrasound on each pig using the BioQ station (Biotronics Inc, Iowa USA). The proprietary 

algorithm used in the built-in software of the BioQ station provides an estimation of the IMF 

content in the muscle (UIMF). Scans were done between the 3rd and 4th last rib, approximately 

6 inches off of the midline at the apex of the loin. Animals were scanned two days prior to 

slaughter. 2) IMF was assessed via NIR on ground longissimus dorsi samples (NIRIMF). 

Phenotype generation is described in Chapter 3.0, section 3.2 Materials and methods. The 

corrected NIR phenotypes, those which have the adjustment factor applied, were used in this 

study. All phenotypes were corrected in ASReml using the following model (1) (Gilmour et al, 
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2015) to obtain residuals (adjusted phenotypes), which were further plotted to evaluate the 

distribution. 

𝒚∗ = 𝒚 −  𝝉    (1) 

Where 𝒚 is the vector of uncorrected phenotypes and 𝝉 is the p x 1 vector of fixed effects 

(Gilmour et al, 2015). 𝒚∗ is the vector of adjusted (corrected) phenotypes for fixed effects. The 

residuals (adjusted phenotypes) are presented in Figures S5.1 and S5.2 in the Supplementary 

information 5.0. For UIMF, the only fixed effect with significance at p < 0.05 was date of 

slaughter. Fixed effects with significance at p <0.05 for NIRIMF were sex and date of 

slaughter. Heritability of both traits in the purebred population was also calculated in ASReml 

(Gilmour et al, 2015), as described in chapter 4.0, section 4.2 materials and methods. The 

descriptive statistics for UIMF and NIRIMF were calculated in Microsoft Excel using the 

standard mean, minimum, maximum and standard deviation functions. CV was calculated 

using the following formula:  

  𝐶𝑉 =  
𝑆𝐷

𝜇
 ×  100%   (2) 

Where SD is standard deviation and  is mean of the phenotypes. 

Genome-wide association study (GWAS) 
 

Using Rstudio software (RStudio team, 2018) and the RRBLUP package (Endelman, 

2019), two single-SNP association analyses were performed. The following model was used: 

�̂� = 𝒁𝒖 + 𝑺𝒓 + 𝒆    (3) 

Where �̂� is the vector of observations (phenotypes) adjusted for fixed effects in ASReml (see 

above), the only significant fixed effect was date of slaughter (p < 0.05). 𝒁 is the design matrix 

which associates random animal genetic effects to the observations; 𝒖 is the vector of genetic 

values for all animals (random animal effects). 𝒓, which models the additive SNP effect as a 
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fixed effect, is a vector containing the SNP genotype indicator variable coded as -1 (AA), 0 (AB), 

and 1 (BB). 𝑺 is the design matrix corresponding to 𝒓 and 𝒆 is a vector of random residual effects. 

It is assumed that animal effects and residual effects are normally distributed as: 𝒖 ~ 𝑁(0, 𝑮𝜎𝑢
2) 

and 𝒆 ~ 𝑁(0, 𝑰𝜎𝑒
2) where 𝜎𝑢

2 and 𝜎𝑒
2 are the genetic and residual variances, respectively. 𝑮 is the 

genomic relationship matrix based on genotypes (Van Raden, 2008) using the following model; 

                              𝑮 =   
𝑾�́�

2 ∑ 𝑝𝑖(1−𝑝𝑖)
   (4) 

where 𝑾 is the matrix of SNP genotypes corrected for expected genotype frequencies. 𝑝𝑖 is the 

allele frequency at the ith SNP. Allele frequencies of the purebred population are used to make 𝑮. 

Multiple testing was controlled for through the use of false discovery rate (FDR). FDR was 

calculated using the following formula (Van Den Oord, 2007). 

                             𝐹𝐷𝑅(𝑡) =  
𝑚𝑡

#{ 𝑃𝑖≤𝑡}
     (5) 

In this model, FDR is calculated by dividing the estimated number of false positives (mt) by 

the total number of p-values smaller than t (significant markers) (#{𝑃𝑖 ≤ 𝑡}). In other words, 

FDR is the number of false positives in all of the rejected hypotheses. Genome-wide 

significance level was set at 5% type 1 error and suggestive significance was declared at 10%. 

FDR was used to avoid false positives from multiple testing. Significant SNPs identified in the 

GWAS are expected to be in high linkage disequilibrium (LD) with SNPs that are located 

physically nearby. In the purebred Duroc pig population, LD (r2) has been found to be 0.23-

0.26 for distances up to 0.5Mbp (Badke et al, 2012; Veroneze et al, 2014). With this in mind, 

QTLs were defined as 1 Mbp window around any SNP identified as significant by the GWAS: 

0.5 Mbp upstream and 0.5 Mbp downstream. Any loci which are further than 0.5 Mbp in this 
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purebred population have a low chance of being in LD with a significant SNP and are unlikely 

to be connected to the studied trait. The pairwise LD (𝑟2) between the identified significant 

SNPs was calculated using PLINK software (Purcell et al, 2007) using the following equation: 

                𝑟2 =
𝐷2

𝑃𝐴(1−𝑃𝐴)𝑃𝐵(1−𝑃𝐵)
   (6) 

where A and B are two alleles, and p is the frequency of the alleles (A, B). D2 is the squared 

result of DAB = pAB − pApB where pA and pB are the population frequencies of alleles A and B, 

respectively. When a population is large, mates randomly, and is not affected by selection or 

migration then, pAB = pApB. However, if a population is affected by any of those factors or by 

genetic drift then, pAB ≠ pApB (Balding et al, 2019). Each pair of alleles has its own D value 

(Slatkin, 2008; Song and Song, 2007). The LD was plotted using Haploview software (Barrett 

et al, 2005).  

 The first two principle components were plotted against one another to visualise any 

population stratification, all animals originated from the same farm and breeding population 

(Figure S5.3 in Supplementary information 5.0). Additionally, a scree plot with eigenvectors 

was also created. Each eigenvector corresponds to an eigenvalue; the magnitude of this 

eigenvalue indicates how much of the variability seen in the data will be explained by its 

eigenvector (Richardson, 2009). Both the scree plots and principle component analysis were 

done using the Factoextra package (Kassambrara and Mundt, 2020) using Rstudio software 

(RStudio team, 2018).  

Post GWAS analysis 
 

Any identified significant SNPs were investigated using BIOMART in Ensembl with a 

1 Mbp window and subsequent identified genes within this region were searched in the 

Ensembl Genome Browser (https://www.ensembl.org), the National Center for Biotechnology 
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Information Database (NCBI) (https://www.ncbi.nlm.nih.gov), and in the pigQTL database 

(Hu et al, 2005). To obtain additional functional information, the candidate genes were also 

searched in the Human Gene Database (https://www.genecards.org). 

Minor allele frequencies and genetic variance 
 

Minor allele frequency was calculated using PLINK software (Purcell, 2007). SNP 

variances were computed based on the estimated allele substitution effects and allele 

frequencies as:  

    𝝈𝑺𝑵𝑷
𝟐 = 𝟐𝒑𝒒(𝜶)𝟐   (7) 

 where 𝒑 is the minor allele frequency and 𝒒 is the major allele frequency SNP, and 𝜶 is the 

allele substitution SNP (SNP effect). Furthermore, the proportion of total phenotypic variance 

explained by additive genetic variance was computed as: 

              𝝈𝒈
𝟐= (𝝈𝑺𝑵𝑷

𝟐 /𝝈𝑷
𝟐 ) ×  𝟏𝟎𝟎  (8) 

 where 𝝈𝑷
𝟐  is the phenotypic variance, as calculated in ASReml. 

5.3 Results and discussion 
 

Phenotypic descriptive statistics 
 
The mean UIMF, was 2.88% with a standard deviation of 0.75, maximum of 4.90%, 

and minimum of 0.7% and a coefficient of variation (CV) of 25.84%. Mean NIRIMF 2.07% 

with a standard deviation of 0.42, maximum of 3.84%, minimum of 0.87% and CV of 20.3%.  

Principle component analysis 
 

Figure S5.3 in Supplementary information 5.0 shows the first two principle components 

plotted with no outliers or stratification observed, as well as a scree plot showing eigenvalues 

up to ten. In order to determine the number of PCAs to retain, the scree plots were investigated. 

From this, one PCA was chosen to include in each GWAS, as it captured the most variation 
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and the inclusion of additional eigenvectors would not significantly increase variation 

captured. 

Variance component estimation 
 

The genetic variance of UIMF and NIRIMF in this purebred population, as calculated 

by ASReml at p < 0.05, were 0.25 (± 0.06) and 0.07 (±0.02), with residual variance of 0.32 (± 

0.05) and 0.07 (±0.02) and estimated heritability of 0.44 ±0.09 and 0.49 ± 0.11, respectively. 

The heritability of IMF from various collection methods, including ultrasound, proximate 

analysis and NIR has been widely discussed in the literature. UIMF in the purebred Duroc has 

previously been found to be a moderately heritable trait, reported at 0.48 (Jung et al, 2015). 

NIRIMF heritability in the purebred Duroc has been previously reported to range from 0.50 to 

0.62 ± 0.06 (Gjerlaug-Enger et al, 2010). 

GWAS 1 (for UIMF) 
 

In GWAS 1, which used UIMF phenotypes, five significant SNPs located on SCC1 

were elucidated from this investigation (Table 5.1). The Manhattan plot and quantile-quantile 

(Q-Q) plots showing the results from GWAS 1 are below in Figure 5.1 and 5.2, respectively. 
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Figure 5.1 Manhattan plot showing results of a single-SNP association 
analysis of IMF content measured by ultrasound (UIMF) n a Purebred Duroc 

population. 

 

Figure 5.1. Manhattan plot associated with GWAS 1. 5 SNPs surpassed the threshold of significance of 5% 
denoted by the horizontal dotted line. The Manhattan plot shows the chromosome on the x-axis and the -log10 p-

values on the y-axis. FDR was used to control for multiple testing. 
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Figure 5.2 Quantile-quantile plot showing the results of a single-SNP 
association analysis of IMF content measured by ultrasound (UIMF) in a 

Purebred Duroc population. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Quantile-quantile (Q-Q) plot associated with GWAS 1 (UIMF). The Q-Q plot shows the expected null 
distribution of -log10 (p-values) (dashed line) compared to the actual distribution (black line and dots). Genomic 

inflation factor (𝝀) is shown on the Q-Q -plot, 𝝀 =  𝟎. 𝟕𝟒𝟏. 
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 In order to investigate the relationship between the significant SNPs and those surrounding 

them, the pairwise LD between the significant SNPs and all SNPs within a 1 Mbp window 

(Table S5.1) was plotted and shown below in Figure 5.3.
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Figure 5.3 Linkage disequilibrium (LD) map structure of the 5 significant SNPs found on SSC1 from a single -
SNP association analysis in purebred Durocs for UIMF and all surrounding SNPs in a 1 Mbp window. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 Linkage disequilibrium (LD) map structure of the 5 significant SNPs found on SSC1 from a single-SNP association analysis in purebred Durocs for UIMF 
content and all surrounding SNPs in a 1 Mbp window. Haploview plot shows pairwise LD (r2) for 36 SNPs depicted by block colour. White blocks indicate r2 = low LD 

grey indicates r2 = moderate LD and black indicates r2 = high LD. The numbers inside the blocks are the LD measurements (r2) on a scale of 0 to 100%. The five 
significant SNPs in this plot are underlined in yellow. They are numbers 10 (MARC0075909), 12 (ALGA0006602), 14 (H3GA0003104), 26 (ASGA0004988), and 33 

(12784636). The other 31 SNPS are those within a 1 Mbp window surrounding the significant SNPS, 0.5 Mbp each side. 
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Table 5.0 Summary of pairwise LD for the 5 significant SNPs found on SSC1 from 

a single-SNP association analysis in purebred Durocs for UIMF and all surrounding 
SNPs in a 1 Mbp window. 

 
Significant SNPs Adjacent SNP LD 

Block 2 
10; MARC0075909 8, H3GA0003096 r2 = 0.474 

9, ASGA0004978 r2 = 0.352 
11, ASGA0004980 r2 = 0.958 
12, ALGA0006602 r2 = 0.958 

12; ALGA0006602 10, MARC0075909 r2 = 0.958 
11, ASGA0004980 r2 = 1.0 
13, H3GA0003111 r2 = 0.337 
14, H3GA0003104 r2 = 0.337 

14; H3GA0003104 12; ALGA0006602 r2 = 0.337 
13, H3GA0003111 r2 = 1.0 
15, ALGA0006599 r2 = 1.0 

16, WU_10.2_1_177201808 r2 = 1.0 
Block 3 

26; ASGA0004988 24, ASGA0004992 r2 = 0.405 
25, ASGA0004994 r2 = 0.405 
27, ALGA0006621 r2 = 1.0 
28, INRA0004954 r2 = 0.405 

Block 4 
33; 12784636 31, INRA0004955 r2 = 1.0 

32, WU_10.2_1_178486722 r2 = 1.0 
34, INRA0004964 r2 = 0.083 
35, ALGA0006632 r2 = 0.075 

Significant SNPs identified by the single-SNP association analysis for UIMF are bolded 

GWAS’ exploits the LD between SNPs and ungenotyped causal mutations, therefore, 

we rely on LD information to determine if a SNP is truly explaining a large part of the trait 

variation. With this, it is understood that SNPs which are in high LD are truly informative 

SNPs affecting the trait/phenotype, such as those identified in this study. Informative SNPs 

may aide in improving the accuracy of genomic prediction, if they are fit into genomic 

selection models. By investigating the entire 1 Mbp regions surrounding the identified 

significant SNPs, we are able to narrow down a subregion which could be further investigated 

for a detailed analysis (LD mapping). Any causal mutations or causal loci are most likely 

where the pairwise LD for adjacent marker peaks (Dorak, 2016). Though this investigation is 
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beyond the scope of this study, the initial investigation done by plotting the LD of these SNPs 

(Figure 5.3) has identified three areas of interest. There are a number of additional regions 

which see strong LD, but this study will focus on those containing the significant SNPs 

identified by the GWAS. Table 5.0 contains the summary of pairwise LD analysis for the 5 

significant SNPs identified in these three areas (block 2, block 3, block 4).  

Block 2 (Figure 5.3) contains three of the five significant SNPs identified by single-

SNP analysis (MARC0075909, ALGA0006602 and H3GA0003104). SNPs MARC0075909 

and ALGA0006602 are in perfect LD with one another (r2 =1) and are in high LD with their 

adjacent SNPs ( 0 < r2 < 1). Perfect LD (r2 =1) occurs if two SNPs have the same allele 

frequencies and have not been separated by recombination. SNP H3GA0003104 is in perfect 

LD with its two adjacent SNPs and is in high LD with the two aforementioned significant 

SNPs. Block 2, all 15 SNPs, has no linkage equilibrium12 (LE) seen; based on the high level of 

LD with surrounding SNPs, it is possible that a causal mutation associated with higher UIMF 

is present in this subregion as the closer a SNP is to a causal variant, the stronger the LD will 

be between them. Additionally, block 3 (Figure 5.3) which contains significant SNP 

ASGA0004988 and nine adjacent SNPs may also be a subregion of interest based on the strong 

LD noted, many in perfect LD or in strong LD ( >0.90) with one another. Finally, block 4, 

containing 3 SNPs, one of which is 12784636, are in perfect LD with one another. All three of 

these regions warrant further investigation for a causal variant though LD mapping; this is 

done by screening this area for additional polymorphisms and sequencing to identify a causal 

SNP (Dorak, 2016). The pairwise SNPs which have longer distances between them generally 

 
12 Two or more alleles are said to be in linkage equilibrium when they occur randomly in a population; r2 = 0 , 
the alleles are in LE (Slatkin, 2008).  
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are closer to LE (r2=0) than those which are closer together – this is shown to be generally 

accurate in this study. All SNPs were quite physically close (Table 5.1, Table 5.2) and by 

investigating in a 1 Mbp window around significant SNPs, many SNPs in chronological order 

upstream and downstream were included. In fact, four of the five SNPS with the lowest p-

values from GWAS 2 were included in this LD investigation as two were identified as 

significant in GWAS 1, (12784636 and MARC0075909) and two were within the 1Mbp 

window of the significant SNPS (WU_10.2_1_178188861 and ALGA0006623) (Table S5.1, 

Supplementary information 5.0). The final SNP with the lowest p-value from GWAS 2 

(MARC0013872) was approximately 0.5 Mbp upstream from the window of SNP 12784636 

(1.602 – 1.612) and was subsequently not included in the LD investigation. .  

Table 5.1 Identified significant SNPs from single-marker association analyses 
performed in RRBLUP package for UIMF content in a purebred Duroc pig 

population. 
 

Name 

Position 
(SSC 

(chromosome), 
Genomic 

position in bp) 

Investigation 
window 

-Log10 
p- value 

Minor allele 
frequency 

(MAF) 

Genetic 
Variance 

explained (% 
of phenotypic 

variance) 
MARC0075909 SSC1, 159238083 1.587 - 1.597 5.877 0.097 0.91 

12784636 SSC1, 160773437 1.602 –1.612 5.591 0.210 1.55 

ALGA0006602 SSC1, 159538854 1.590 -1.600 5.477 0.363 2.15 

H3GA0003104 SSC1, 159619891 1.591 –1.601 5.477 0.1762 1.36 

ASGA0004988 SSC1, 159881634 1.593 –1.603 5.477 0.147 1.16 

 

The SNPs are all physically quite close together, and as such, the 1 Mbp investigation 

windows of all SNPs overlapped slightly. The windows of SNPs MARC0075909, 

ALGA0006602, H3GA0003104 and ASGA0004988 overlapped quite notably (Table 5.1), as 

they are physically the closest. For investigation of the regions around the SNPs, the 
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exploration windows were not changed due to the SNPs as LD (r2) has been previously found 

to be 0.23-0.26 for distances up to 0.5 Mbp in Duroc populations (Badke et al, 2012; Veroneze 

et al, 2014). For discussion purposes, any identified genes in the 1 Mbp window of a SNP will 

be discussed once, regardless of the number of windows a SNP was identified in. In general, 

our findings in this subset of SNPs in this region appear to have stronger LD than this at larger 

distances. It is unlikely that this is due to the small population, as r2 does not inflate due to 

small sample size (Dorak, 2016). The strong LD noted in this region may indicate that not very 

much time has elapsed since a potential causative mutation has arisen (Slatkin, 2008). In order 

to confidently identify a new mutation, this entire region should be sequenced in animals with 

the apparent mutation and subsequently compared to the genome assembly for this region; 

other statistical methods for fine mapping also exist (Hormozdiari, 2014). This warrants further 

study.  

GWAS 2 (for NIRIMF) 
 

In GWAS 2, which used NIRIMF phenotypes, no significant SNPs were identified. For 

the sake of investigation, the top 5 SNPs from the Manhattan plot with the lowest p-values 

were investigated in order to compare to the results from GWAS 1, these are presented in 

Table 5.2. The Manhattan plot and quantile-quantile plot (Q-Q) showing the results of this 

study are presented in Figure S5.4 and Figure S5.5 in Supplementary information 5.0 
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Table 5.2 SNPs with lowest p-values from single-marker association analyses 
performed in RRBLUP package for NIRIMF content in a purebred Duroc pig 

population. 
 

Name Position 
(SCC 

(chromosome)
, Genomic 

position in bp) 

Investigation 
window 

-Log10 
 p- value 

*12784636 SSC1, 
160773437 

1.602 – 1.612 5.318 

ALGA0006623** SSC1, 
160347188 

1.598 - 1.608 5.226 

WU_10.2_1_1781
88861** 

SSC1,  
160447734 

1.599 – 1.609 5.226 

*MARC0075909 SSC1,  
159238083 

1.587- 1.597 5.169 

MARC0013872 SSC1, 
161824864 

1.613 – 1.623 5.001 

 
*: Indicates a SNP which was identified as statistically significant in GWAS 1 with UIMF phenotypes. 

**: Indicates a SNP which was included in the LD investigation for GWAS 1 based on its physical location. 
 
  The p-values seen for the (non-significant SNPs) in Table 5.2 are very close to those 

shown Table 5.1 (significant SNPs), showing similar results between the two phenotypes. The 

method of collection for NIRIMF and UIMF are quite different (section 5.2, Material and 

methods, phenotypes), however, it believed that all measurements of traits have some inherent 

errors and that this minor imprecision will not significantly affect the results of a GWAS. 

 The genetic and phenotypic correlations for NIRIMF x UIMF, investigated in Chapter 

4, were 0.775 (±0.085) and 0.504 (±0.026) Chapter 4, section 4.3 Results and discussion); 

based on these estimates it is believed that NIRIMF and UIMF would be suitable substitutes 

for one another. Additionally, the correlation coefficient obtained for NIRIMF x UIMF was 

0.504 (Chapter 4, section 4.3 Results and discussion), which is a moderate positive linear 

correlation; this indicates that these two variables are directly related, and have a moderate 

association to one another (Mukaka, 2012). Although the results were similar, they were not 

identical; it is possible that the quality of the NIRIMF phenotypes was marginally lower than 
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the UIMF based on the observed results as high-quality phenotypes are important to ensure 

accuracy of a GWAS (Barendse, 2011). The algorithm used to predict UIMF from the live 

animals may have been more accurate than the one used to predict NIRIMF from the ground 

samples; it is possible there was less measurement error associated with the UIMF phenotypes 

as compared to the NIRIMF phenotypes based on the results of the GWAS.  

QTL investigation 
 

Table S5.2 in Supplementary information 5.0 contains the exhaustive list of identified 

genes in all investigation windows for GWAS 1. Genes were identified through investigation 

of a 1Mbp window around each SNP (Tables 5.1 and 5.2) and subsequently searching on the 

Pig QTL database, the National Center for Biotechnology Information Database (NCBI) and 

the Ensembl genome browser. Table S5.3 in the Supplementary information 5.0 contains 

identified genes as from the five SNPs from GWAS 2 with the lowest p-values. Genes 

identified in the regions from GWAS 2 will not be referred to as candidate genes, as the SNPs 

were not found to be statistically significant, however, based on the results of the LD 

investigation and their physical proximity, their investigation may offer some insight into the 

architecture of the trait.  

Eight unique candidate genes were identified in the SNP windows from GWAS 1; five 

of them have been identified in previous studies with relationships to fatness and feeding 

behaviour in pigs. Of the most interest, two genes, RNF152 and PMAIP1, have been previously 

identified as correlated with increased IMF (Rothschild et al, 2014; Silva et al, 2019). RNF152 

was identified in the investigation windows of SNP MARC0075909 (1.587-1.597 Mbp), 

ALGA0006602 (1.590-1.600 Mbp), H3GA0003104 (1.591-1.601 Mbp) and ASGA0004988 

(1.593-1.603 Mbp), and PMAIP1 was only noted in the window of SNP 12784636. A study by 

Rothschild et al. (2014), which utilised purebred Durocs, identified a region on SSC1 which 
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contained RNF152 and PMAIP1, among other genes not identified in this study. This region 

also contains the gene MC4R, located at 36 428 488 bp downstream of SNP MARC0075909’s 

window; MC4R was identified in the SNP windows of ALGA0006623 (1.598-1.608 Mbp) and 

WU_10.2_1_178188861 (1.587-1.597 Mbp) from GWAS 2. Interestingly, both of these SNPs 

were included in the LD investigation as SNP 29 and 30; both were found to be in high LD 

(99%) with SNP MARC0075909. MC4R has been identified as associated with increased IMF 

in Duroc pigs; it plays a large role in the regulation of food intake, energy balance and body 

weight in mammals (Wang et al, 2013; Rothschild et al, 2014; Silva et al, 2019). Based on the 

polygenic nature of IMF, it is understood that no single gene explains a major amount of the 

phenotypic variance seen, and therefore the variance is attributed to the interaction of many 

genes. It is thought that this entire region on SSC1 is associated with increased IMF content, 

including this study’s identified genes of RNF152 and PMAIP1. This is supported by the 

strong LD noted in the region surrounding SNP MARC0075909 (Figure 5.3). RNF152 and 

PMAIP1 were again identified by Silva et al. (2019) which investigated feed-efficiency related 

traits in crossbred pigs. It is promising that these candidate genes have been identified in the 

current purebred study as well as in a crossbred GWAS by Silva et al. (2019). This could 

indicate that the genetic efforts to improve IMF in the purebred breeding stock through fixing 

of relevant alleles may be being translated to the commercial progeny. Additionally, the 

identification of SNPs with a relationship to higher IMF in crossbreds can be helpful for 

further improving accuracy of GS in the purebred animals. This is more thoroughly discussed 

in Chapter 6, however, briefly, it has been shown that using crossbred information (genomic 

information most favourably) in combination with purebred information will improve the 

accuracy of selection (Wei and Van der Steen, 1991; Xiang et al, 2017; Sewell et al, 2018, 

Sevillano et al, 2019).  
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Average daily gain (ADG) and average feed intake (AFI) were the two traits noted to 

be associated with RNF152 and PMAIP1. As discussed in Chapter 3.0, the dietary 

manipulation of IMF has been explored, as diet can play a significant role in the development 

of fat depots, including IMF (Hocquette et al, 2010). Increased ADG coupled with increased 

caloric consumption due to higher AFI may lead to IMF being deposited at earlier in the 

growth and finishing phase and result in increased amounts of this fat depot at slaughter. IMF 

is a late maturing fat depot, and therefore if other, earlier maturing fat depots have been 

deposited due to caloric excess from ADG and AFI, it may provide the opportunity for IMF to 

begin maturation earlier. TNFRSA11a and PIGN, which are in the same region on SSC1, only 

0.130 Mbp from one another, have been identified in feeding behaviour studies, particularly 

with increased daily feed intake and daily feeder occupation time (Reyer et al, 2017). Increased 

daily intake and longer occupation of the feeder discussed by Reyer et al. (2017) coincide 

nicely with the feed-efficiency traits discussed by Silva et al. (2019) of ADG and AFI. 

Additionally, in a previous GWAS conducted by Kogelman et al. (2017) using a purpose bred 

F2 pig population (Duroc × Göttingen Minipig and Yorkshire × Göttingen Minipig) 

investigated the genetic underpinnings of obesity and lean mass percentage. This study 

identified a number of significant SNPs which mapped to the vicinity of CDH20 (SSC1, 1.59-

1.60 Mbp). A separate GWAS by Reyer et al. (2017), which also investigated obesity-related 

genes in pigs (Pietrain), found that their most significant SNP, ASGA0004992 (SSC1, 1.602 

Mbp), mapped to a region near CDH20 and the previously discussed MC4R (SSC1, 1.60 - 1.60 

Mbp). This SNP, though not identified as significant in the current study, was included in the 

LD investigation (SNP 24, Table S5.1) and was found to be in moderate LD with identified 

significant SNP ASGA0004988 (dark grey, 0 < r2 < 1, r2= 0.405) (Table 5.0, Figure 5.3). 

Additionally, CHD20 was identified in in the SNP windows of ALGA0006623 (1.598 - 1.608 



 156 

Mbp) and WU_10.2_1_178188861 (1.587-1.597 Mbp) from GWAS 2. The region containing 

gene CDH20 and significant SNP ASGA0004988 overlaps with the region identified for lean 

mass percentage in pigs from Kogelman et al. (2017), and although our study did not identify 

MC4R from a significant SNP investigation window, these are still encouraging results. 

Obesity in pigs, however, is slightly more difficult to investigate as in commercial hog barns, 

ad libitum feeding and subsequent consumption to the point of obesity is not realistic, as feed 

comprises approximately 70% of costs associated with growing pigs; this makes any fat 

deposition expensive (Martinsen et al, 2015). It is possible that animals with causative 

mutations in the same region which CDH20 is mapped to may be more likely to consume more 

than their allotted share of feed, making them calorically able to deposit an excess of fat. 

Increased subcutaneous fat, also known as increased backfat thickness, often associated with 

obesity, is positively correlated to increased IMF (r = 0.33-0.49) in pigs (Bahelka et al, 2007; 

Jacyno et al, 2015). Additionally, Schwab et al (2009) showed that the long-term selection for 

IMF in Duroc pigs resulted in increased backfat thickness. Finally, though TNFRSA11a, PIGN 

and CDH2O have not been specifically identified as associated with increased IMF in the 

literature, they are in close physical proximity to RNF152 and PMAIP1 and have been linked 

to feeding behaviours. These connections have not been studied or confirmed but do warrant 

further investigation. 

The three remaining genes identified in the 1 Mbp windows of the significant SNPs 

from GWAS 1, RELCH, GAD1 and ZCCHC2, have not been found in the literature with 

relationships to fatness or related traits in pigs. The investigation window of SNP 

MARC0013872 (1.613 - 1.623 Mbp) from GWAS 2 contained nine genes (Table S5.3, 

Supplementary information 5.0), one of which (LMAN1) had been previously identified with a 
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connection to fatness and feeding behaviour in pigs. LMAN1 was identified to have association 

daily feed intake and daily feeder occupation time in a study by Reyer et al. (2017).  

With further investigation, the identified region on SSC1 would contribute to the 

overall objective of this study through increased understanding of the genetic architecture of 

IMF. The incorporation of this biological information into GS programs will aide in the 

independent manipulation of IMF from BFD. 

Genetic variance 
 

The proportion of total phenotypic variance explained by SNP variance of the 3 

investigated SNPs was 7.13% (Table 5.1). This is comparable to other studies which have 

identified significant SNPs for fat deposition and fat-related traits in pigs. Reyer et al. (2017) 

identified a number of SNPs in their GWAS investigating obesity-related genes in pigs using 

Maxgro terminal boars (primarily Pietrain) which are within the 1 Mbp windows of a number 

of significant SNPs identified in this study. In fact, these were included in the LD 

investigation. From the GWAS performed by Reyer et al. (2017) SNPs ASGA0004992 (SSC1, 

located at 1.602 Mbp), INRA0004895 (SSC1, located at 1.588 Mbp), ALGA0006623 (SSC 1, 

located at 1.603 Mbp), ALGA0006621 (SSC1, located at 1.603 Mbp), INRA0004955 (SSC 1, 

located at 1.605 Mbp) were identified as significant and explained 0.89%, 3.64%, 2.55%, 

1.44% and 0.86%, respectively, of the genetic variance. 

Limitations  
 

Although we were able to identify 5 significant SNPs and a number of potentially 

meaningful genes from these GWAS and subsequent investigation, some limitations exist, and 

improvements which should be implemented for future studies. Primarily, the sample size of 

891 animals is low for a genetic study. A larger sample size can aide with the detection of 

SNPs with small effects and they may be more likely to exceed the stringent threshold and the 
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statistical power associated with increasing the sample size is significant (Visscher et al, 2012). 

It was shown that to obtain 80% statistical power when investigating human disease, which is 

the recommended level to avoid false negative associations that 248 cases were required to test 

a single SNP (Hong and Park, 2012). Of course, the model assumptions when studying a 

quantitative trait such as IMF are different, but the understanding that increasing sample size 

helps to increase power is consistent (Hong and Park, 2012). Additionally, we utilised a 50K 

panel for genotyping followed by imputation in order to obtain a higher density marker map. It 

is possible that with this lower sample size and the high number of markers that the ‘big n little 

p’ problem (n << p) affected the analysis. This disproportionate increase in the number of 

variants in the GWAS compared to the smaller number of phenotypes may have deteriorated 

the statistical power (Chang et al, 2018); the causal mutations are estimated with error, and the 

larger effect of causal mutations may be then distributed over many SNPs (Heidaritabar, 2016, 

PhD thesis). However, proper variant filtration may help with removing the false positive or 

uninformative SNPs. Finally, it is generally thought that small differences in the measurement 

of a trait will not significantly affect the results of a GWAS as differences between samples or 

between methodologies will not affect the location of significant associations (Barendse, 

2011). However, in a 2011 study by Barendse, it was found that measuring subcutaneous fat on 

cattle carcasses with two methods did alter the outcome of the GWAS performed; there was an 

overlap in the significant SNPs and the chromosomes with the largest number of significant 

SNPs were not the same. In the present study, the identification of two SNPs in both GWAS 1 

and 2 (12784636 and MARC0075909, significant in GWAS 1, non-significant in GWAS 2), it 

is evident that the method of phenotype collection impacted the results of the study. This 

shows that a GWAS may be sensitive to differences when mapping quantitative traits and as 

such, increased effort should be taken to improve the precision of trait measurement (Barendse, 
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2011). For future studies, additional measures can be taken to ensure the accuracy of the 

GWAS. This includes examination of phenotype collection methodology for repeatability prior 

to the GWAS by independent collectors (ideal repeatability is r ≥ 0.95) and that animals to 

used (n) in the GWAS only be genotyped and included if their phenotype is accurately 

measured (Barendse, 2011). 

5.4 Conclusions  

 
In this study, two genome-wide single-SNP association analyses were performed in 

order to elucidate SNPs associated with IMF content in a purebred Duroc population. The 

results of the first GWAS with UIMF phenotypes identified 5 significant SNPs in a region with 

multiple candidate genes. A number of genes in this region have been previously found to be 

associated with increased IMF. The candidate genes of RNF152, PMAIP1, TNFRSA11a, PIGN, 

and CDH2O, all found within 0.5 Mbp of the 5 significant SNPs on SSC1, have previously 

been associated with IMF, fatness, and feed-efficiency related traits in pigs. GWAS 2, with 

NIRIMF phenotypes, did not reveal any significant SNPs, however, five SNPs with the lowest 

p-values were investigated. These revealed two SNPs common to both GWAS 1 and 2 and, 

additionally, the genes MC4R and CHD20, previously identified as being associated with 

increased IMF, were within 1 Mbp windows of two other SNPs (0.5 Mbp downstream and 

upstream). These results, consistent with the current literature, help to build upon this body of 

evidence and can be used within breeding programs in order to improve IMF in the purebred 

animal, and subsequently the performance of the crossbred; we are able to accept the 

hypothesis based on the identification of five statistically significant SNPs which explain 

7.13% of the total phenotypic variance seen in IMF. Interestingly, the method of phenotype 

collection used gave similar, but still different results, which is an important factor to consider 
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in futures studies. In order to better understand the genetic underpinnings of IMF and its 

expression and to improve selection accuracy the study of crossbreds in addition to the 

purebreds is important. In the next Chapter we will focus on commercial crossbred animals 

with UIMF phenotypes, as these were shown to have less measurement error. 

 

Supplementary information 5.0 
 

Figure S5.1 

 

 

Figure S5.1. Distribution of ultrasound IMF phenotypes which have been corrected using ASReml. Residuals (corrected 
phenotypes) follow an approximately normal distribution. 
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Figure S5.2 

 

 
 
Figure S5.2. Distribution of NIRIMF phenotypes which have been corrected using ASReml. Residuals (corrected phenotypes) 

follow an approximately normal distribution. 
 

 

Figure S5.3 
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Figure S5.3. The top figure shows the principle component analysis (PCA) of SNP genotypes in a purebred Duroc pig 
population. Principle components 1 and 2 were plotted against one another to visualize potential subpopulations (population 

stratification); none were noted. The scree plot (lower) shows the eigenvalues and the amount for variation each one accounts 
for. To determine the number of principle components which should be retained in a study, we choose the number of 

eigenvectors which captures the most amount of variance. From this, 1 PCA was chosen to include in the study, as it captured 
the most variation and additional eigenvalues would not significantly add to variation captured.
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Table S5.1 Genomic positions of significant SNPs identified from a single-SNP 
association analysis for UIMF content in purebred Durocs and surrounding SNPs 

within a 1 Mbp window used for linkage disequilibrium (LD) analysis. 
 

SNP 
number in 
Haploview 

LD plot 

SNP Name1 SSC 
Genomic 
position 
(Mbp) 

1 ALGA0006564 1 1.584 

2 ALGA0006572 1 1.586 

3 ASGA0004970 1 1.586 

4 ASGA0004971 1 1.586 

5 MARC0034873 1 1.587 

6 INRA0004895 1 1.588 

7 INRA0004898 1 1.588 

8 H3GA0003096 1 1.588 

9 ASGA0004978 1 1.589 

10 MARC0075909 1 1.592 

11 ASGA0004980 1 1.595 

12 ALGA0006602 1 1.595 

13 H3GA0003111 1 1.596 

14 H3GA0003104 1 1.596 

15 ALGA0006599 1 1.597 

16 WU_10.2_1_177201808 1 1.597 

17 ASGA0101718 1 1.598 

18 DIAS0000206 1 1.598 

19 H3GA0003114 1 1.599 

20 ASGA0106369 1 1.599 

21 ASGA0004988 1 1.599 

22 ASGA0004989 1 1.600 

23 WU_10.2_1_177662261 1 1.600 

24 ASGA0004992 1 1.602 

25 ASGA0004994 1 1.602 

26 ASGA0004998 1 1.603 

27 ALGA0006621 1 1.603 

28 INRA0004954 1 1.603 

29 ALGA0006623 1 1.603 

30 WU_10.2_1_178188861 1 1.604 

31 INRA0004955 1 1.605 

32 WU_10.2_1_178486722 1 1.607 
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33 12784636 1 1.608 

34 INRA0004964 1 1.609 

35 ALGA0006632 1 1.611 

36 MARC0056620 1 1.612 
 

1Significant SNPs from single-SNP association analysis (GWAS 1) are presented in bold text (SNP#s 10, 12, 14, 26, 33) 
 
 

Figure S5.4 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S5.4. Manhattan plot associated with GWAS 2. No SNPs surpassed the threshold of significance of 5%. The Manhattan 

plot shows the chromosome on the x-axis and the -log10 p-values on the y-axis.  
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Figure S5.5 

 
 

 
 

 
Figure S5.5 Quantile -quantile (Q-Q) plot associated with GWAS 2. The Q-Q plot shows the expected null distribution of -

log10 (p-values) (dashed line) compared to the actual distribution (black line, dots). Genomic inflation factor (𝜆) is shown on 
the Q-Q -plot, 𝜆 =  0.73. 
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Table S5.2 Genes identified in a 1 Mbp investigation window surrounding 
significant SNPs elucidated from a single-SNP association analysis for UIMF 

content in a purebred Duroc pig population. 
 
 

1SNP 
Position 

(chromosom
e, genomic 
position in 

bp) 

SNP ID RefSNP 
ID2 Gene3 Gene function Reference4 Gene 

position 

Gene 
Distance 

from 
identified 

SNP 

SSC1: 
159238083 MARC0075909 

rs80820997 

 
ZCCHC2 

Protein coding gene, 
annotations related 
include nucleic acid 

binding and 
phosphatidylinositol 
binding. Associated 
with increased boar 
taint in Yorkshire 
boars (p <0.05) 

Leung et al, 
2010. 

1.589-
1.590 

starts 
275572 bp 

downstream 

 

TNFRSF11a*** 

Protein coding gene, 
protein encoded is a 

member of TNF-
receptor 

superfamily.  
Involved of during 
the activation of 
NFKB during the 

initiation of uterine 
receptivity during 
the estrous cycle 

and early pregnancy 
in pigs. Has been 

found to be 
associated with feed 

efficiency and 
feeding behaviours, 
namely daily feed 
intake and daily 

feeder occupation 
time. 

Ross et al 
2010., 

Reyer et al, 
2017 

1.591-
1.591 

 

Starts 
110045 

bp 
downstream 

RELCH** 

RELCH promotes 
non-vesicular 

cholesterol transport 
from recycling 

endosomes to the 
trans-Golgi network 
through membrane 

tethering. 

Sobajima et 
al, 2018. 

1.592-
1.593 

Starts 30467 
bp 

downstream 
 
 

PIGN*** 

This gene encodes a 
protein that is 
involved in 

glycosylphosphatid
ylinositol (GPI)-

anchor biosynthesis; 
the GPI-anchor is a 

Alessandri 
et al 2018; 
Reyer et al, 

2017 

1.593-
1.594 

Starts 79651 
bp upstream 
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glycolipid found on 
blood cells and 

anchors proteins to 
the cell surface. Has 

been found to be 
associated with feed 

efficiency and 
feeding behaviours, 
namely daily feed 
intake and daily 

feeder occupation 
time. 

RNF152*** 

Regulates mTORC1 
signaling and plays 
a role in the cellular 
response to amino 
acid availability. 

This gene has been 
previously 

identified to be 
correlated with 

increased 
intramuscular fat in 

pigs. 

Silva et al, 
2019; 

Rothschild 
et al, 2014. 

1.595-
1.596 

Starts 
292540 bp 
upstream 

SSC1, 
160773437 12784636 

Not 
identified in 

Ensembl 
BIOMART. 

Window 
was viewed 

based on 
position. 

 

GAD1- like 

Protein coding gene 
which produced an 

uncharacterised 
transcript. Not 
identified in 

literature. GAD1 in 
pigs is found on 

SSC15. In humans, 
GAD1 encodes one 
of several forms of 

glutamic acid 
decarboxylase, 

identified as a major 
autoantigen in 

insulin-dependent 
diabetes. 

NCIB 
Database, 

GAD1, 
Homo 

sapiens, 
2020. 

 
1.606-
1.607 

 

Starts 
144217 

bp 
downstream 

 

PMAIP1 *** 
( Synonym: 

TN3) 
 

Promotes activation 
of caspases and 

apoptosis. Promotes 
mitochondrial 

membrane changes 
and efflux of 
apoptogenic 

proteins from the 
mitochondria. 
Competes with 

BAK1 for binding 
to MCL1 and can 
displace BAK1 

from its binding site 
on MCL1, by 

similarity. This gene 
has been previously 

identified to be 
correlated with 

increased 
intramuscular fat in 

pigs. 

Silva et al, 
2019 ; 

Rothschild 
et al, 2014 

 
1.611-
1.611 

Starts 
409431 

bp upstream 
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SSC1: 
159538854 ALGA0006602 

rs80854621 

 
TNFRSF11a*** 

Protein coding gene, 
protein encoded is a 

member of TNF-
receptor 

superfamily.  
Involved of during 
the activation of 
NFKB during the 

initiation of uterine 
receptivity during 
the estrous cycle 

and early pregnancy 
in pigs. Has been 

found to be 
associated with feed 

efficiency and 
feeding behaviours, 
namely daily feed 
intake and daily 

feeder occupation 
time. 

Ross et al 
2010., 

Reyer et al, 
2017 

1.591-
1.591 

 

Starts 
410816 

bp 
downstream 
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RELCH** 

RELCH promotes 
non-vesicular 

cholesterol transport 
from recycling 

endosomes to the 
trans-Golgi network 
through membrane 

tethering. 

Sobajima et 
al, 2018 

 
1.592-
1.593 

Starts 
331238 

bp 
downstream 

PIGN*** 
 
 

This gene encodes a 
protein that is 
involved in 

glycosylphosphatid
ylinositol (GPI)-

anchor biosynthesis; 
the GPI-anchor is a 
glycolipid found on 

blood cells and 
anchors proteins to 
the cell surface. Has 

been found to be 
associated with feed 

efficiency and 
feeding behaviours, 
namely daily feed 
intake and daily 

feeder occupation 
time. 

Alessandri 
et al 2018; 
Reyer et al, 

2017 

1.593-
1.594 

Starts 
221120 

bp 
downstream 

RNF152*** 
 
 

Regulates mTORC1 
signaling and plays 
a role in the cellular 
response to amino 
acid availability. 

This gene has been 
previously 

identified to be 
correlated with 

increased 
intramuscular fat in 

pigs. 

Silva et al, 
2019; 

Rothschild 
et al, 2014. 

1.595-
1.596 

Starts 8231 
bp 

downstream 
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CDH20*** 

Protein coding gene.  
encoded membrane 
protein is a calcium 
dependent cell-cell 

adhesion 
glycoprotein 

comprised of five 
extracellular 

cadherin repeats 
cadherins are 

considered prime 
candidates for 

tumor suppressor 
genes. Has been 

shown to in a 
genomic region 

with associations to 
variation in growth 
rates and lean mass 
percentage of pig. 
SNPs identified as 

highly significant in 
previous GWAS for 

obesity in pigs 
mapped to the 

vicinity of CDH20. 

Reyer et al, 
2017, 

Kogelman 
et al, 2014. 

 

1.598-
1.600 

Starts 
278703 

bp upstream 

SSC1: 
159619891 H3GA0003104 

rs80861000 

 

TNFRSF11A*** 
 
. 

Protein coding gene, 
protein encoded is a 

member of TNF-
receptor 

superfamily.  
Involved of during 
the activation of 
NFKB during the 

initiation of uterine 
receptivity during 
the estrous cycle 

and early pregnancy 
in pigs. Has been 

found to be 
associated with feed 

efficiency and 
feeding behaviours, 
namely daily feed 
intake and daily 

feeder occupation 
time. 

Ross et al 
2010, Reyer 
et al, 2017. 

1.591-
1.591 

Starts 
491853 

bp 
downstream 
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RELCH** 
 

RELCH promotes 
non-vesicular 

cholesterol transport 
from recycling 

endosomes to the 
trans-Golgi network 
through membrane 

tethering. 

Sobajima et 
al, 2018 

159,207,6
16-

159,317,6
41 

Starts 
412275 

bp 
downstream 

PIGN*** 
 
 

This gene encodes a 
protein that is 
involved in 

glycosylphosphatid
ylinositol (GPI)-

anchor biosynthesis; 
the GPI-anchor is a 
glycolipid found on 

blood cells and 
anchors proteins to 
the cell surface. Has 

been found to be 
associated with feed 

efficiency and 
feeding behaviours, 
namely daily feed 
intake and daily 

feeder occupation 
time. 

Alessandri 
et al 2018; 
Reyer et al, 

2017 

159,317,7
34-

159,417,3
33 

Starts 
302157 

bp 
downstream 

RNF152*** 
 
 

Regulates mTORC1 
signaling and plays 
a role in the cellular 
response to amino 
acid availability. 

This gene has been 
previously 

identified to be 
correlated with 

increased 
intramuscular fat in 

pigs. 

Silva et al, 
2019; 

Rothschild 
et al, 2014. 

159,530,6
23-

159,601,9
81 

Starts 89268 
bp 

downstream 
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CDH20*** 

Protein coding gene.  
encoded membrane 
protein is a calcium 
dependent cell-cell 

adhesion 
glycoprotein 

comprised of five 
extracellular 

cadherin repeats 
cadherins are 

considered prime 
candidates for 

tumor suppressor 
genes. Has been 

shown to in a 
genomic region 

with associations to 
variation in growth 
rates and lean mass 
percentage of pig. 
SNPs identified as 

highly significant in 
previous GWAS for 

obesity in pigs 
mapped to the 

vicinity of CDH20. 

Reyer et al, 
2017; 

Kogelman 
et al, 2014. 

 

159,817,5
57-

160,024,9
88 

Starts 
197666 

bp upstream 

SSC1: 
159881634 ASGA0004988 

rs80900421 

 
RNF152*** 

 

Regulates mTORC1 
signaling and plays 
a role in the cellular 
response to amino 
acid availability. 

This gene has been 
previously 

identified to be 
correlated with 

increased 
intramuscular fat in 

pigs. 

Silva et al, 
2019; 

Rothschild 
et al, 2014. 

159,530,6
23-

159,601,9
81 

Starts 
351011 

bp 
downstream 
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 CDH20*** 
 
 

Protein coding gene.  
encoded membrane 
protein is a calcium 
dependent cell-cell 

adhesion 
glycoprotein 

comprised of five 
extracellular 

cadherin repeats 
cadherins are 

considered prime 
candidates for 

tumor suppressor 
genes. Has been 

shown to in a 
genomic region 

with associations to 
variation in growth 
rates and lean mass 
percentage of pig. 
SNPs identified as 

highly significant in 
previous GWAS for 

obesity in pigs 
mapped to the 

vicinity of CDH20. 

Reyer et al, 
2017; 

Kogelman 
et al, 2014. 

 

159,817,5
57-

160,024,9
88 

Starts 64077 
bp 

downstream 

1 Note: Chromosomal positions are according to the pig genome assembly Sscrofa11.1. obtained vis Ensembl 
(https://uswest.ensembl.org/index.html). 

2 The RefSNP is the rs name of the SNPs.  
3 Any gene that is identified in more than 1 window is denoted with **. 

 Candidate genes with a previously identified association to intramuscular fat or feeding behaviour are denoted by 
***. 

4 Information on function gathered from identified sources in addition to GeneCards.          
(https://www.genecards.org) and NCIB database (https://www.ncbi.nlm.nih.gov).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://uswest.ensembl.org/index.html
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Table S5.3 Genes identified in a 1 Mbp investigation window surrounding top five 
SNPs with lowest p-values from single-SNP association analysis for NIRIMF 

content in a purebred Duroc pig population. 
 

1SNP 
Position 

(chromoso
me, 

genomic 
position in 

bp) 

SNP ID RefSNP 
ID2 Gene3 Gene function Reference4 Gene 

position 

Gene 
Distance 

from 
identified 

SNP 

SSC1: 
160347188 ALGA0006623 rs80877507 

 

MC4R** 

Expressed primarily in 
the nervous system, 

plays a large role in the 
regulation of food 

intake, energy balance 
and body weight in 

mammals. 

Rothschild 
et al, 2014, 
Silva et al, 

2019; Wang 
et al, 2013 

1.607-
1.607 

Starts 
424825 bp 
upstream 

 

GAD1- 
like** 

Protein coding gene 
which produced an 

uncharacterised 
transcript. Not 

identified in literature. 
GAD1 in pigs is found 
on SSC15. In humans, 
GAD1 encodes one of 

several forms of 
glutamic acid 

decarboxylase, 
identified as a major 

autoantigen in insulin-
dependent diabetes. 

 

NCIB 
Database, 
GAD1, 
Homo 

sapiens, 
2020. 

 
1.606-
1.6078  

 
 

Starts 
282032 bp 
upstream 

CHD20 ** 

Protein coding gene.  
encoded membrane 
protein is a calcium 
dependent cell-cell 

adhesion glycoprotein 
comprised of five 

extracellular cadherin 
repeats cadherins are 

considered prime 
candidates for tumor 

suppressor genes. Has 
been shown to in a 

genomic region with 
associations to variation 
in growth rates and lean 
mass percentage of pig. 

SNPs identified as 
highly significant in 
previous GWAS for 

obesity in pigs mapped 
to the vicinity of 

CDH20. 

Reyer et al, 
2017; 

Kogelman 
et al, 2014. 

 

1.598-
1.600 

Ends  
322200 bp 
downstrea

m 
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SSC1: 
160447734 

WU_10.2_1_17
8188861 

rs34161978
7 ***MC4R*

* 

Expressed primarily in 
the nervous system, 

plays a large role in the 
regulation of food 

intake, energy balance 
and body weight in 

mammals. 

Rothschild 
et al, 2014, 
Silva et al, 

2019; Wang 
et al, 2013 

1.607-
1.607 

Starts 
324279 bp 
upstream 

   GAD1- 
like** 

Protein coding gene 
which produced an 

uncharacterised 
transcript. Not 

identified in literature. 
GAD1 in pigs is found 
on SSC15. In humans, 
GAD1 encodes one of 

several forms of 
glutamic acid 

decarboxylase, 
identified as a major 

autoantigen in insulin-
dependent diabetes. 

NCIB 
Database, 

GAD1, 
Homo 

sapiens, 
2020. 

 
1.606-
1.607 

 
 

Starts 
181486 bp 
upstream 

 ***CHD20 
** 

Protein coding gene.  
encoded membrane 
protein is a calcium 
dependent cell-cell 

adhesion glycoprotein 
comprised of five 

extracellular cadherin 
repeats cadherins are 

considered prime 
candidates for tumor 

suppressor genes. Has 
been shown to in a 

genomic region with 
associations to variation 
in growth rates and lean 
mass percentage of pig. 

SNPs identified as 
highly significant in 
previous GWAS for 

obesity in pigs mapped 
to the vicinity of 

CDH20. 

Reyer et al, 
2017; 

Kogelman 
et al, 2014. 

 

1.598-
1600 

Ends 
422746 bp 
downstrea

m 

SSC1; 
161824864 MARC0013872 rs81284646 ALPK2 

ALPK2 (is a Protein 
Coding gene. Involved 
with ATP binding and 
protein kinase activity. 

This gene has been 
found to be 

downregulated in 
longissimus dorsi 
muscle tissue in a 
traditional Chinese 
breed, Wannanhua 

pigs, as compared to 
leaner, more heavily 

Li et al, 
2015. 

1.621-
1.623 

Starts 
319607 bp 
upstream 
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selected, Yorkshire 
pigs. 

 

MALT1 
paracaspase 

This gene encodes a 
caspase-like protease 

that plays a role in 
BCL10-induced 
activation of NF-
kappaB. Has been 
postulated to be 

associated with survival 
traits such as resistance 

to disease 

Joaquim et 
al, 2019. 

1.620-
1.621 

Starts 
252087 bp 
upstream 

ZNF532 Involved with nucleic 
acid binding 

NCBI 
database, 
ZNF532, 

2020. 

1.618-
1.619 

Starts 
52710 bp 
upstream 

SEC11C 

A homolog of sec11 . 
SEC11 is the only 
essential factor for 

signal peptide 
processing, plays an 

important role in protein 
processing, localization, 
and secretion. The lack 

of SEC11 will cause 
serious growth 

defects .Identified in a 
GWAS for growth traits 

in pigs (Duroc, 
Yorkshire, Landrace, 

and Pietrain) 

Böhni et al, 
1988; Tang 
et al, 2019. 

1.617-
1.617 

Ends 55338 
bp 

downstrea
m 

GRP 

Encodes a number of 
peptides which regulate 
numerous functions of 
the gastrointestinal and 
central nervous systems, 

including release of 
gastrointestinal 

hormones, smooth 
muscle cell contraction, 

and epithelial cell 
proliferation. 

 

NCBI 
database, 

GRP, 2020. 

1.617-
1.617 

Ends 
103082 bp 
downstrea

m 
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1 Note: Chromosomal positions are according to the pig genome assembly Sscrofa11.1. obtained vis Esembl 
(https://uswest.ensembl.org/index.html)  
2 The RefSNP ID is the rs name of SNP from Ensembl genome browser 
3 Any gene that is identified in more than 1 window is denoted with **. 
 Genes with a previously identified association to intramuscular fat, feeding behaviour or growth are denoted by ***. 
4 Information on function gathered from identified sources in addition to GeneCards. (https://www.genecards.org) and NCIB 
database (https://www.ncbi.nlm.nih.gov).  
 
 
 
 
 

RAX 

Encodes a homeobox- 
containing transcription 

factor for eye 
development. Rax is 
expressed early in the 
eye primordia and is 

required for retinal cell 
fate determination. 

 

NCBI 
database, 

RAX, 2020. 

1.616-
1.616 

Ends 
141804 bp 
downstrea

m 

CPLX4 

Part of the complexin 
family l encodes a 

protein which may be 
involved in synaptic 
vesicle exocytosis. 

 

Genecards, 
CPLX4, 

2020. 

1.616-
1.616 

Ends 
149134 bp 
downstrea

m 

***LMAN1 

Protein encoded by this 
gene is a Mannose-

specific lectin. Which 
may recognize sugar 

residues of 
glycoproteins, 
glycolipids, or 

glycosylphosphatidyl 
inositol anchors. May 

be involved in the 
sorting or recycling of 

proteins, lipids, or 
both. Has been found to 
be associated with feed 
efficiency and feeding 

behaviours, namely 
daily feed intake and 

daily feeder occupation 
time. 

Reyer et al, 
2017 

1.616-
1.616 

Ends 
193214 bp 
downstrea

m 

CCBE1 

Encodes a protein that 
is found in the lattice of 

extracellular proteins 
and 

contributes to lymphatic 
vascular development. 
Identified in a GWAS 
for Body Composition 

and Structural 
Soundness in 

commercial crossbred 
pigs as a gene of 

interest. 

Bos et al, 
2011; Fan et 

al, 2011. 

1.613-
1.615 

Ends 
268327 bp 
downstrea

m 

https://uswest.ensembl.org/index.html
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Chapter 6.0 A Genome-wide association study (GWAS) for intramuscular 
fat (IMF) in commercial crossbred pigs 

6.1 Introduction 
 

 The pyramidal system used by the Canadian hog industry performs selection and 

testing for desirable traits primarily in the nucleus herds (top of the pyramid); any genetic 

improvement achieved at the commercial level is directly dependent upon on the rate of the 

genetic improvement achieved in the nucleus herd (Bichard, 1971; See, 1995). Despite this, the 

study and investigation of crossbred animals to identify SNPs and QTLs with relationships to 

relevant traits is routinely done; why? It has been shown that using genomic information from 

crossbred animals in combination with purebred information will improve the accuracy of 

selection (Wei and Van der Steen, 1991; Xiang et al, 2017; Sewell et al, 2018, Sevillano et al, 

2019). Since crossbred genomes are a mixture of their parental breeds, the breed origin from 

which a SNP-allele was inherited is thought to influence their effect (Sevillano et al, 2019). 

These different allele effects arise for multiple reasons: 1) a QTL may be in LD with different 

SNPs, depending on which parental breed the QTL was inherited from (Lopes, 2016), and as 

such, 2) different quantitative trait nucleotide (QTN) may be underlying a QTL in the different 

parental breeds, (Wientjes et al, 2015), and finally 3) the parental breeds may experience 

different epistatic interactions (Mackay, 2014). Some of these relate primarily to the initial 

identification of a QTL (1,3), however the outcome is impacted by which QTN underlies a 

QTL. 

 The heavy focus on carcass leanness for increased lean yield in the last four decades 

has placed primary emphasis on the reduction of backfat thickness (Dunshea and D’Souza, 

2003), which has resulted in overall carcass fatness reduction, including intramuscular fat 

(IMF) due to their positive genetic correlation (Huff-Lonergan et al, 2002; Hernández-Sánchez 
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et al, 2013). IMF is a key meat quality factor which affects consumer eating experience, 

therefore its improvement in the commercial crossbred animals is of particular importance as 

they are the final product. IMF is significantly correlated with tenderness, the trait widely 

considered the most important for eating enjoyment (Wood et al, 1999; Teye et al, 2005; 

Cannata et al, 2010; Lim et al, 2016; Won et al, 2018). Additionally, genetics play a 

significant role in the development, ultimate quantity and composition of IMF; IMF has a 

reported heritability between 0.26 (± 0.06) - 0.50, depending upon the technique utilised for 

assessment (Rosenvold and Andersen, 2003; Miar et al, 2014; Jung et al, 2015) which 

indicates that a significant proportion of IMF expression is related to an animal’s genotype.  

Improved understanding of the genetic architecture of complex traits through the 

identification of markers in crossbred animals with high IMF can be done through genome-

wide association studies (GWAS) and subsequent fine mapping. GWAS are a commonly used 

technique to identify QTL which are significantly associated with a trait of interest, providing 

insights to the genetic architecture behind a trait (Korte and Farlow, 2013). Identified markers 

can be incorporated into GS programs in order to improve the accuracy of GEBV predictions, 

increase the rate of genetic improvement and can better estimate the overall genetic effects, 

additive and non-additive, of a trait such as IMF which may be difficult or expensive to 

measure. Additionally, the generation of this new information can be used to create novel 

genomic tools for the improvement of Canadian selection programs and breeding. Any 

identified SNPs in this study will be compared to the those from the literature, investigated in 

the Pig QTL database (Hu et al, 2005) as well as the results from the purebred GWAS 

conducted in Chapter 5.0. Therefore, the goal of this study was to identify SNPs and potential 

candidate genes which contribute to IMF content in commercial crossbred pigs (Duroc sire × 

F1 (Large White × Landrace) dam). We hypothesised that through the GWAS we will identify 
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a SNP which has a large effect size that explains a sizable amount of the phenotypic variance 

seen in IMF; in the event there are no single SNPs with large effect size we expect to identify 

SNPs with a smaller effect size which still pass the threshold of significance. We have no null 

hypothesis for the GWAS’. 

6.2 Materials and methods 
 

Ethics statement 
 

This project was approved by the University of Alberta Animal Care and Use 

Committee. The animals used in this study were raised in a commercial herd following the 

Canadian Quality Assurance Program and the Canadian Council on Animal Care (CCAC) 

guidelines (Canadian Council on Animal Care, 1993.  

Animals  
 

A subsample of 808 animals from a total of 1098 commercial crossbred pigs 

originating from a Canadian breeding company (Hypor Inc. Regina, SK, Canada) were used 

for this study; animals used were those with both phenotype and genotype data available. The 

pigs were a three-way cross between a Duroc sire and an F1 dam (Landrace × Large White). 

The majority of commercial pigs for slaughter in Canada are a result of this terminal cross 

(Miar et al, 2014). Feeding, raising, and slaughter protocol have been described in previous 

studies (Miar et al, 2014; Zhang et al, 2015; Yang et al, 2017). 

Phenotypes 
 

IMF was assessed via ultrasound on each pig using the BioQ station (Biotronics Inc, 

Iowa USA). The proprietary algorithm used in the built-in software of the BioQ station 

provides an estimation of the IMF content in the muscle and is described as ultrasound IMF 

(UIMF). Scans were done between the 3rd and 4th last rib, approximately 6 inches off of the 
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midline at the apex of the loin. Animals were scanned two days prior to slaughter. Phenotypes 

were corrected using the animal model in ASReml (Gilmour, 2015) to obtain residuals 

(adjusted phenotypes), which were further plotted to evaluate the distribution: 

𝒚∗ = 𝒚 −  𝒙1𝒃  (1) 

where 𝒚∗ are the residuals (phenotypes adjusted for fixed effects), 𝒚 are the uncorrected 

phenotypes, b is the vector is fixed effects, sex and date of slaughter, and 𝒙𝟏 is the design 

matrix associated with b (Yang et al, 2017). The residuals (adjusted phenotypes) are presented 

in Figure S6.1 in the Supplementary information 6.0.The mean, standard deviation, minimum, 

maximum and coefficient of variation (CV) for the phenotypes were calculated using 

Microsoft Excel. CV was calculated with the following formula: 

         𝐶𝑉 =  
𝑆𝐷 

𝜇
 𝑋 100%  (2) 

Where SD is standard deviation and 𝜇 is mean of the phenotypes. 

Genotypes 
 

DNA extraction and genotyping details were previously described by Zhang et al. 

(2015). Briefly, genomic DNA was isolated from tissue using the Thermo Fisher Scientific Ltd 

(Ottawa, ON, Canada) DNA extraction instruction manual and genotyping was done by Delta 

Genomics using an Illumina PorcineSNP60 V2 beadchip (Illumina, Inc., San Diego, CA, 

USA). SNPs with the following features were excluded during quality control procedures; 

minor allele frequency (MAF) < 0.01, genotype call rate < 0.95, and departure of heterozygous 

from Hardy-Weinberg > 0.15 (i.e. if the difference between observed and expected frequency 

of heterozygotes was > 0.15). Any unmapped SNPs were also excluded, as were those on the 

sex chromosomes; non-autosomal SNPs were removed as the recombination landscape of the 

sex chromosomes is known to be different than on autosomes, which can cause distortion in 
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the subsequent analysis (Bosse et al, 2012; Zhang et al, 2018). Imputation of any missing 

genotype was done with FImpute version 2.2 (Sargolzaei et al, 2014). Finally, 40,438 SNPs 

and 808 animals remained from the original of 61,565 SNPs and 1,098 animals on 18 

autosome chromosomes for GWAS analysis.  

Genome-wide association study (GWAS) 
 

Using ASReml software (Gilmour et al, 2015), a single-SNP association analysis 

utilising a genomic relationship matrix was performed. The following generalised linear mixed 

model was used: 

𝒚∗ =  𝟏𝜇 + 𝚭𝒈 + 𝒗𝜶 + 𝒆  (3) 

where 𝒚∗ denotes the vector of corrected phenotypes; 1 is simply a vector of 1’s, and 𝜇 is the 

population mean. In this study, significant fixed effects were slaughter date and sex (p < 0.001) 

(phenotype corrections for fixed effects were described previously). Z is a design matrix; 

associating random animal genetic effects to the observations and 𝒈 is the vector of genetic 

values of all animals (random animal effects). The animal effects are assumed to have a normal 

distribution, where; 𝐠 ~ N(0, 𝐆σ  𝐠
2 ) and where σ  𝐠

2  is the additive genetic variance. SNP 

genotypes are presented in vector 𝒗 as 0, 1, or 2, fitted as a fixed effect, and 𝜶 is the additive 

SNP effect. Finally, 𝒆 is a vector of random residual effects. These effects are also assumed to 

be normally distributed where; 𝐞 ~ N(0, 𝐈σ  e
2 ) and σ  e

2  is the residual variance. 𝑮 is the realized 

genomic relationship matrix and 𝐈 is the identity matrix. The G-matrix was created using 

GCTA software (Yang et al, 2011). The G-Matrix utilizes elements of the realized section of 

the genome which two individuals share (Mendelian sampling term) (Lee et al, 2015). The 

formula of the G-Matrix is described as follows: 
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𝑮 =
1

𝑁
∑ (𝑋𝐴 − 2𝑝𝑗)(𝑋𝐴 − 2𝑝𝑗) 2𝑝𝑗⁄ (1 − 𝑝𝑗)  (4) 

In this model, where 𝑁 is the number of SNPs, 𝑋𝐴 is coded as 0, 1, or 2 for genotypes AA, AB, 

and BB, respectively; 𝑝𝑗 is the observed allele frequency at the jth SNP in the population (Yang 

et al, 2011). A Manhattan plot was created using the -log10 p-values of the SNPs. These were 

plotted with regard to their genomic position. A quantile-quantile (Q-Q) plot was also created 

to visualise the distribution of the -log10 p-values to the expected null distribution. The 

genomic inflation factor, or lambda (𝜆), was calculated by dividing the median of observed 

𝜒   
2 test statistics by the expected median of the corresponding 𝜒   

2 with 1 degree of freedom. 

Both the Q-Q and Manhattan plots were constructed using the qqman package in R (Turner, 

2018). 

Multiple testing was controlled for through the use of false discovery rate (FDR). FDR 

was calculated model (5) as described in Chapter 5.0. Additionally, the first two principle 

components were plotted against one another to visualise any population stratification, all 

animals originated from the same farm and breeding population. 

 Significant SNPs identified in the GWAS are expected to be in high LD with SNPs that 

are located physically nearby. In the Canadian commercial pig population (Duroc X (Landrace 

X Large White), LD (r2) has been found to be 0.15 for distances up to 0.5 Mbp (Badke et al, 

2012; Grossi et al, 2017). With this in mind, a QTL can be defined as 1 Mbp window around 

any significant identified SNP: 0.5 Mbp upstream and 0.5 Mbp downstream. This was used to 

investigate any significant SNP identified by the GWAS. Any associations detected are 

assumed to be as a result of the significant SNP or a nearby SNP which is correlated – any loci 

which are further than 0.5 Mbp in this crossbred population have a low chance of being in LD 
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with a significant SNP and are unlikely to be connected to the studied trait. In general, as the 

distance increases between SNPs, the linkage also decreases.  

Subsequently, since no QTL were identified from the single-SNP association analysis 

(GWAS), least absolute shrinkage and selection operator (LASSO) and adaptive LASSO 

(ADALASSO) were conducted on the residual values (corrected phenotypes) using the glmnet 

package (Friedman et al, 2010) and the parcor package (Kraemer and Schaefer, 2014) in R-

studio (R-Studio Team, 2015). Two rounds were performed for both operators at 10 iterations 

followed by 20 iterations of the model. A multiple linear model was used for the association 

analysis. The general linear mixed model, as below, was then fitted using a general LASSO.  

𝒚∗ = 𝑿𝟐𝑐 + 𝒁𝑠 + 𝜀  (5) 

Where 𝒚∗is the adjusted phenotype described above, c is the source of the animals (Hypor 

Inc.), s is the vector of SNP effects . 𝑿𝟐 is the design matrix associated with c, Z is the design 

matrix associated with s and finally, 𝜀 is the random residual in the model (Yang et al, 2017). 

The LASSO estimators are described in great details in Wu et al. (2009) and Zou et al. (2012). 

QTL detection 
  

Any identified SNPs from the single marker GWAS or LASSO analyses were 

investigated using BIOMART in Ensembl Genome Browser with a 1 Mbp window and 

subsequent identified genes within this region were searched in the Ensembl Genome Browser 

(https://www.ensembl.org), the National Center for Biotechnology Information Database 

(NCBI) (https://www.ncbi.nlm.nih.gov), and in the pigQTL database (Hu et al, 2005). To 

obtain additional functional information, the candidate genes were also searched in the Human 

Gene Database (https://www.genecards.org), as the translation to livestock is relatively well 

established. Regions identified in this study which overlap with previously identified genomic 



 195 

regions with IMF associations can be helpful in the provision of evidence for any noteworthy 

observations.  

Genetic variance 
 

Minor allele frequency was calculated using PLINK software (Purcell, 2007). The SNP 

variances were computed based on the estimated allele substitution effects and allele 

frequencies , using models (7) and (8) as described in Chapter 5.0.  

6.3 Results and discussion 
 

Phenotypic descriptive statistics 
 

The average UIMF for those animals included in the study was 2.88% with a standard 

deviation of 0.917, maximum of 6.6%, minimum of 0.7% and CV of 31.79%.  

Principle component analysis 
 

Figure S6.2 in Supplementary information 6.0 shows the first two principle components 

plotted with no outliers or stratification observed. From this, no PCA were chosen to include in 

the GWAS.  

Variance component estimation 
 

The genetic variance of UIMF in this crossbred population, as calculated by ASReml at 

p < 0.05, was 0.18 ± 0.06 with residual variance of 0.55 and estimated heritability of 0.24 

± 0.07. UIMF has previously been reported to be a moderately heritable trait, ranging from 

0.26 ±0.06 to 0.48 (Miar et al, 2014; Jung et al, 2015).  

GWAS and LASSO 
 

No significant SNPS were identified by single-SNP GWAS; all tested SNPs failed to 

reach the threshold of significance (FDR 5% or 10%). The Manhattan plot and quantile-

quantile (Q-Q) plots showing the GWAS results are provided in Figure S6.3, Supplementary 
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information 6.0. However, in order to further explore the data, an alternative Bayesian method 

(LASSO) was employed, which resulted in the identification of three SNPs with measurable 

effect size (non-zero effect). These SNPs are presented in Table 6.1 below. 

Table 6.1 Identified non-zero SNPs from LASSO for UIMF content in a commercial 
crossbred pig population. 

 

SNP Name Position 1 Investigation 
window (Mbp) 

SNP effect or 
allele 

substitution 
effect 

Minor allele 
frequency 

(MAF) 

Genetic 
variance 

explained (% 
of phenotypic 

variance) 

DRGA0003711 SSC2 
 146949742 

1.46-1.47 
 

-0.134 
 0.294 0.563 

 

ALGA0032074 SSC5 
 58601394 0.58 - 0.59 

-0.349 
 0.0396 0.128 

 

MARC0057051 SSC7 
 101752523 1.01-1.02 

0.009 
 0.287 0.002 

 

1 Position is presented in Chromosome (SSC) followed by genomic position in bp. 

The LASSO is useful as it utilises a double exponential, non-normal distribution for the 

SNP effects (Tibshirani, 1996). This is done by putting a constraint on the model parameters 

which causes the regression coefficients for some variables to be shrunk towards zero; any 

variable with a regression coefficient that is zero after this shrinkage process is not included in 

the final model and variables with non-zero regression coefficients are those which are most 

strongly associated with the trait (Tibshirani, 1996). In this way, we are able to identify those 

SNPs which may not have met a stringent threshold of significance for single-SNP GWAS, but 

still explain a proportion of the variance seen. The single-SNP GWAS detects the association 

of hundreds of thousands of genetic variants and a trait through a regression analysis in order 

to find association between a single variant and the phenotype. So, many statistical tests are 

done, and a very stringent threshold is needed to identify an SNP as significant. Therefore, 

only the SNPs that explain a relatively large amount of variation (SNPs with large effects) will 
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exceed the threshold, and SNPs with small effects which explain only a small proportion of 

genetic variance often do not reach stringent significance thresholds. This is particularly noted 

when the sample size is relatively small, as it is in this study; the power to detect QTL 

decreases with a decreasing sample size. While LASSO, alternatively, allows us to jointly 

model the relationship between all genetic variants and the phenotype (Arbet et al, 2017). 

These three SNPs explain 0.693% of the total phenotypic variance; the calculated genetic 

variance explained by each SNP is quite small, as are their minor allele frequencies (MAF). 

GWAS’ are inherently designed to detect frequent genetic variants with MAF > 5% and have 

often failed in the detection of rare variants (MAF <1%); therefore, the contribution of SNPs 

with low MAF to genetic variation are unlikely to be detected (Visscher et al, 2017). This is 

true in the present study, as these SNPs were undetected by the GWAS, only the LASSO was 

able to identify them. Additionally, low MAF may indicate that the alleles with low MAF may 

be un-fixed. It is possible then that the SNP with low MAF, identified by the LASSO, resulted 

from random favourable allele combinations. The average IMF of these crossbred animals is 

over 1% above the national average of 1.5% (Meadus et al, 2018), which indicates there are 

favourable allele combinations occurring. The small effect sizes (Table 6.1) of the identified 

non-zero SNPs by LASSO and the lack of results from the single-SNP GWAS may indicate 

that that some of these favourable allele combinations were achieved by chance as a result of 

the crossbred nature rather than fixing of favourable alleles in the purebreds for IBD 

inheritance. The breed of origin for these alleles could be determined in order to further 

investigate this (Sevillano et al, 2018). The low heritability calculated (0.241 ± 0.071) is 

consistent with the low genetic variance explained by each SNP, as h2 is the variance in the 

trait which is explained by genetics. The identified non-zero SNPs were not found in the 

coding sequence of any genes, and therefore surrounding regions were investigated. The genes 
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found within the 1 Mbp window of the identified SNPs were investigated and are shown in 

Table S6.1 in Supplementary information 6.0. 

 QTL investigation 
 

Of the genes identified, ATF7IP, from the investigation window of SNP 

ALGA0032074 (0.58 to 0.59 Mbp), has been previously identified in the literature with a 

connection to IMF. In a study by Pena et al. (2013) the differential gene expression of F2 

backcrossed [Iberian (25%) x Landrace (75%)] pigs were investigated as these breeds exhibit 

both high and low levels of IMF. They analysed the total IMF content of the longissimus 

thoracis muscle and selected animals which exhibited high and low IMF extreme phenotypes. 

In total, 219 differentially expressed probes were identified and further assigned to 283 unique 

genes based on their expression level in either group. Gene ATF7IP was one of just seven 

genes to be commonly expressed between both groups. Due to the minimal overlap seen in the 

transcriptome for the two groups we can infer that common genes may perform essential 

functions and additionally may interact differently with the other genes given an animal’s 

unique genotype. ATF7IP is a multifunctional nuclear protein that associates with 

heterochromatin. It can act as a transcriptional coactivator or corepressor depending upon its 

binding partners (Liu et al, 2009). It is assumed that the effects of this gene are additive, so 

when present with the transcriptome of a higher IMF animal, it is possible it contributes to a 

greater deposition of IMF. 

In the 1 Mbp window for SNP MARC0057051 (1.01 to 1.02 Mbp), the gene 

NEUREXIN 3 was identified. Though this gene has no noted connection in the literature to 

IMF in pigs, it has been associated with waist circumference, obesity and energy balance in 

humans (Heard-Costa et al, 2009). In commercial hog barns, consumption to the point of 

obesity is not realistic as feed comprises approximately 70% of costs associated with growing 
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pigs, making such fat deposition expensive (Martinsen et al, 2015). However, the underlying 

motivations of reward and addictive behaviour may increase aggression associated with group 

feeding, which is common practice in hog barns. Animals with the identified mutation in this 

gene may be more likely to consume more than their allotted feed portion, making them more 

likely to deposit an increased proportion of fat (Heard-Costa et al, 2009). This connection has 

not been studied or confirmed but does warrant further investigation in relation to IMF. 

Additionally, this gene was investigated on the Pig QTL database; a connection with carcass 

length was been identified by Sato et al. (2016). Carcass length and UIMF have been 

previously found to have a low positive genetic correlation of 0.15 ± 0.23 and phenotypic 

correlation of 0.04 ± 0.05 (Miar et al, 2014). In the same study, the genetic and phenotypic 

correlations between carcass length and ultrasound fat depth, a trait with known high genetic 

correlation to IMF (Solanes et al, 2009; Hernández-Sánchez et al, 2013), were found to be 

0.05± 0.14 and 0.09 ± 0.04, respectively. All reported correlations were non-significant, save 

for the phenotypic correlation for carcass length and fat depth, and as such cannot be fully 

trusted. However, they are of interest particularly for selection indices as the understanding of 

all correlated traits to those under selection are important to ensure that breeding goals are met 

to optimise profitability and desirability of the final carcass. 

Finally, from the investigation window of SNP DRGA0003711 (1.46 - 1.47 Mbp) gene 

SH3RF2 was investigated. This gene has not been identified in the literature to have an 

association to porcine IMF content, but its described function and identification in other 

species warrants further investigation for a connection in pigs. SH3RF2 affects growth via 

regulation of appetite; IMF can be significantly affected by nutrition (Hocquette et al, 2010; 

Turner et al, 2014). Additionally, this gene was recently identified in a study by Jerez-Timaure 

et al. (2019) where they investigated differential gene expression in the longissimus thoracis 
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muscle of beef animals with either normal or high PHU; 53 differentially expressed transcripts 

were identified and then evaluated for up or down regulation in the groups. SH3RF2 was 

identified as having a significant, negative fold change in expression (downregulation) in the 

high PHU group. This may indicate that in samples of meat with normal pH, the expression of 

this gene is normalised, being neither up - or down regulated and low pH may have an 

upregulation of this gene. High pH is undesirable for meat quality; in pork, high pH is 

associated with dark firm and dry (DFD) meat and low pH is associated with pale, soft and 

exudative (PSE) meat. Both of these extremes are detrimental to pork quality and often result 

in rejection of the carcass (Rosenvold and Andersen, 2003). The influence of ultimate pH and 

IMF content on pork tenderness was discussed by Van Laack et al. (2001). Both IMF and pH 

have a profound impact on tenderness of the final pork, which as discussed, is widely 

considered the most important trait associated with positive eating quality, though their impact 

is achieved through different mechanisms. Interaction between PHU and IMF and any resulting 

effect on meat is unclear. pH of meat is significantly affected by pre-slaughter environment 

(stress) and post-mortem handling (temperature/climate control) (Van de Perre et al, 2010; Kim 

et al, 2016). IMF, however, is not affected by post-slaughter handling, but environment does 

impact deposition; both pH and IMF are polygenic, and therefore some interaction within the 

many genes which contribute to both IMF and pH may be present, though such an interaction 

has not been identified yet. Investigation of this potential interaction warrants further inquiry.  

  Genetic variance  
 

The proportion of total phenotypic variance explained by SNP variance of the 3 

investigated SNPs was 0.69% (Table 6.1). This is less than the significant SNPs investigated in 

Chapter 5 (7.13%), however, because the SNPs in the present study were not identified as 

significant by GWAS, their lower proportion of genetic and phenotypic variance explained is 



 201 

not unexpected. The values calculated in this study are consistent with previous literature 

findings; in a study by Jiang et al. (2018) which investigated growth and fatness traits in 

Yorkshire pigs identified two groups of SNPs (6 and 5) which explained 2.09% and 0.52% of 

additive genetic variance of the backfat thickness and days to 100 kg (growth rate). 

Limitations  
 

In order to improve upon our results in the commercial pig, there are a number of 

limitations that must be addressed in future studies. Firstly, I would suggest increasing the 

sample size. Our sample size of 808 is small in terms of genetic studies and as such any signal 

may have been too weak to detect. This is supported by the LASSO results, MAF, and 

calculated genetic variance explained by each SNP (Table 6.1). With low MAF and low effect 

size, the likelihood of repetition of these results is low, particularly with small sample sizes; 

increasing the sample size would help to increase the power of GWAS and thus to detect 

association regions. A larger sample size can aide with the detection of SNPs with small effects 

and they may be more likely to exceed the stringent threshold and the statistical power 

associated with increasing the sample size is significant (Visscher et al, 2012). Secondly, I 

suggest using a higher density panel or even using the whole-genome sequence (WGS). WGS 

may help identify a causal variant responsible for trait variation, and therefore, with WGS, the 

power of detecting the causative variant increases, as QTL detection does not depend on LD 

between the causal mutations and other SNPs. It is important, however, to be cautious of the 

detriments that using significantly increased density can cause. This is discussed in Chapter 

5.0, section 5.3, Results and discussion. Briefly, it is possible that the ‘big n little p’ problem (n 

<< p) contributed to the results; that the causal mutations were estimated with error, and the 

larger effect of causal mutations was distributed over many SNPs (Heidaritabar, 2016, PhD 

thesis).  
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6.4 Conclusions  
 

A single-SNP association analysis utilising a genomic relationship matrix was 

performed with the UIMF phenotypes form a commercial crossbred pig population, followed 

by a LASSO. Due to the stringent threshold needed to identify an SNP as significant, the 

GWAS was unable to detect any significant SNPs. The LASSO, however, was able to identify 

three non-zero SNPs. This is because of the SNP distribution and constraints put on the model, 

which allows us to shrink the coefficients for some variables towards zero, and subsequently 

not include any zero coefficients in the final model; non-zero regression coefficients are those 

which are most strongly associated with the trait. Even though these SNPs did not meet the 

threshold of significance for the GWAS, they still explain a proportion of the variance seen. 

We are unable to accept our hypothesis as the GWAS was unable to identify any SNPs with 

measurable effect size, only after the application of the LASSO were three SNPs with 

measurable effect identified.  

The polygenic nature and subsequent complex genetic architecture of IMF has been 

shown through many studies, including ours, to be complex and controlled by many genes. The 

SNPs identified in this study explain only a small portion of the total variance seen. Because 

we obtained different results in the crossbreds as compared to the purebreds (Chapter 5), even 

when using the same phenotype collection method (UIMF), there may be underlying reasons 

(LD with QTL based on inheritance from different parental breeds, different causative 

mutations underlying in different parental breeds, epistatic interactions) which warrant 

investigation. It is understood that the interaction of the 3 breeds the commercial Canadian 

crossbred pig adds a layer of complexity because IMF is expressed differently in each breed. 
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As such, the SNPs identified in this study should be further investigated in both purebred 

animals and additional crossbred studies.  

 

 

Supplementary information 6.0 
 

Figure S6.1 

 

Figure S6.1. Distribution of ultrasound IMF phenotypes which have been corrected using ASReml (Residuals). Residuals are 
randomly dispersed around the horizontal axis, indicating that the use of a linear model is appropriate. Graph shows the 

approximate value of the residual on the Y-axis and the X-axis shows the number of animals (n=808).   
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Figure S6.2 

 
 
 
 

 
 
 
 
 

 
 
 
Figure S6.2. Principle Component Analysis (PCA) in our commercial crossbred pig population. principle components 1 and 2 
were plotted against one another to visualize potential subpopulations; none were noted. Two main clusters (left, middle) with 

a third, less dense cluster (right) can be seen, which indicate the crossbred nature of the population (Duroc X (Landrace X 
Large white). 
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Figure S6.3 

 
Figure S6.3. The quantile-quantile (Q-Q) (left) and Manhattan plot (right) from a GWAS for UIMF on a commercial crossbred 
pig population. The Q-Q plot shows the expected null distribution of -log10 (p-values) (solid blue line) compared to the actual 
distribution (dotted black line). The Manhattan plot shows the chromosome of the SNP marker along the x-axis and the -log10 
p-values, representing the significance of the association along the y-axis. FDR was used to control for multiple testing, with p-

values of 0.05 (-log10 = 5.91), and 0.10 (-log10 = 5.61).The genomic inflation factor () is displayed on the Q-Q plot (0.76). 
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Table S6.1 Genes found within a 1 Mbp window of SNPs identified by LASSO in a 
commercial crossbred pig population 

 

1SNP 
Position 

SNP ID RefSNP ID2 Candidate Gene  Gene function Reference Gene 
position  

Candidate 
gene 

Distance 
from 

identified 
SNP 

SSC2: 
146949742 

 
DRGA0003711 

rs81294208 

 
PRELID2 

Involved in 
mouse 

embryogenesis 
during mid‐late 

gestation 

Gao et 
al, 2009 

1.471-
1.471 

Starts 
upstream 

159844 bp 
 

 

GRXCR2 

Glutaredoxin 
and cysteine 
rich domain 
containing 2. 

Associated with 
hereditary 

hearing 

Carpena 
and Lee, 

2018 

1.472-
1.472 

Starts 
upstream 

272801 bp 

SH3RF2 
Affects growth 

via regulation of 
appetite 

Andersso
n, 2012 

1.472-
1.474 

Starts 
upstream 

342435 bp 

SSC5: 
58601394 ALGA0032074 

rs80787531 

 
GRIN2B 

Detection of 
mechanical 

stimulus 
involved in 

sensory 
perception of 

pain and 
behavioral 

defense 
response. 

Huashui 
et al.,  
2014 

0.584-
0.589 

Starts 
downstrea

m 
121203 bp 

 ATF7IP 

ATF7IP is a 
multifunctional 
nuclear protein 
that associates 

with 
heterochromatin
. It can act as a 
transcriptional 
coactivator or 
corepressor 

depending upon 
its binding 

partners 

Liu et al, 
2009 

 

0.580-
0.582 

Starts 
downstrea

m 
578661 bp 

SSC7: 
101752523 MARC0057051 

rs80925093 

 
NEUREXIN 3 

Has been 
associated with 
human obesity 

and energy 
balance 

Heard-
Costa et 
al, 2009 

1.016-
1.019 

Starts 
Upstream 
147954 bp 
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1 Note: Chromosomal positions are according to the pig genome assembly Sscrofa11.1. obtained vis Ensembl 

(https://uswest.ensembl.org/index.html)  
2 The RefSNP ID of the SNP identified by adaptive LASSO.  
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Chapter 7.0 General discussion and conclusion 

7.1 Summary and general discussion 
 

Excellent pork meat quality is increasingly desired by consumers, both domestically 

and abroad, and the increased understanding of the underlying genetics which affect pork 

quality can help to satisfy this demand. Subsequently, the hog industry as a whole has begun 

shifting breeding focus for commercial animals from primarily lean yield and growth rate 

towards the improvement of meat and carcass quality and traits (Papanagiotou et al, 2012). 

Further, the use of genetic technologies has become increasingly common in order to meet 

these demands (Dransfield et al, 2005). The use of GS provides an opportunity to select for 

pigs with superior meat quality. GS typically follows a two-step procedure in which 1) the 

animals in a reference population are genotyped and phenotyped, these are referred to as the 

training population. The effects of each SNP genotype are then estimated and subsequently all 

the QTL effects are summed in order 2) to obtain a GEBV for potential breeding animals 

(selection candidates) (Goddard and Hayes, 2007). Prediction methods can be used for 

estimation of GEBV to predict the genotypic value of selection candidates (validation 

population) which are not necessarily phenotyped but are genotyped.  

Fat plays a unique role in the acceptance and desirability of pork, particularly 

intramuscular fat (IMF) or visual marbling, and backfat thickness or depth (BFD), as these 

traits are positively genetically correlated. Backfat thickness is also integral to the valuation of 

an entire carcass, based on lean yield, and goes on for further processing in value added 

products, making it an economically relevant trait. The reduction of backfat thickness during 

the pursuit of lean yield and efficient lean growth lead to the reduction of IMF due to their 

positive genetic correlation (Solanes et al, 2009; Hernández-Sánchez et al, 2013) which 
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resulted in a dry, flavourless product and decreased consumer satisfaction with pork. 

Therefore, the focus of this thesis is on IMF and backfat quality in two pig populations with the 

goal of identifying genetic correlations and heritabilities of these two traits as well the 

identification of SNPs and potential candidate genes which contribute to the variance seen in 

IMF in a purebred Duroc and commercial crossbred pig population. The ultimate goal for these 

findings, though out of the scope of this thesis, is for incorporation into breeding programs to 

improve the accuracies of GEBVs, and the development of novel genomic tools for the 

improvement of Canadian selection programs and breeding through the ability to 

independently manipulate IMF from backfat. Many methods for GS exist, but most common is 

genomic best linear unbiased prediction (GBLUP), or single-step GBBLUP (ssGBLUP). Most 

methods differ based on their underlying assumptions; the GBLUP methods assume that each 

SNP contributes a small, equal effect on a complex trait. Though this assumption is beneficial 

to the practical implementation of GS, as the identification of a specific gene or causative 

mutation is not necessary, it does not incorporate any genetic or biological information known 

for the trait. Some alternative methods which do consider biological information have been 

developed (MacLeod et al, 2016). However, these are limited by a lack of understanding of the 

genetic architecture of many traits. As such, there has been an increase research focusing on 

these underlying genetic factors which affect relevant traits; this is made possible by the 

widespread availability of many SNPs across the genome of many species which allow high-

density SNP genotyping. One such method of study are GWAS’, and these have been a 

primary tool used to determine underlying complex traits. GWAS’ use single SNPs spread 

across the entire genomes to detect regions of the genome associated with traits of interest, or 

QTL. Numerous GWAS’ have been performed in pigs for meat and carcass quality traits and 

many and subsequently many QTL effects have been identified (Hu et al, 2005). These GWAS 
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results can help to progress the understanding of meat quality traits, particularly from this 

thesis, fat IMF deposition. Overall, this will be important for the future implementation of GS 

methods for improving IMF in pigs independently from genetically correlated traits, like BFD.  

 The objective of the first study in Chapter 3 was to generate phenotypes using NIR 

spectroscopy for IMF content of the loin as well as for backfat quality for a purebred Duroc 

population with the goal to build on the body of literature validating this as a rapid method for 

reliable phenotype generation and to utilise these phenotypes in further genetic studies. The 

results of this study showed two significant limitations to the accuracy of the generated 

phenotypes, 1) that the impact moisture loss from freezing and thawing of samples 

significantly affects the final composition and subsequent spectra and 2) the use of 

calibrations/standards which have been developed from populations which differ from the 

sample population will reduce accuracy of the prediction algorithm (fresh samples, varying 

breeds). The relationship between the backfat quality phenotypes from NIR as compared to gas 

chromatography, represented by calculated iodine value (IV), was poor (𝑅𝑎𝑑𝑗
2  = 0.4, RMSEP = 

2.81, p-value <0.0001); the phenotypes were not appropriately accurate enough for use in 

further studies. The IMF phenotypes, however, were more promising, based on the 𝑅𝑎𝑑𝑗
2   (0.78) 

value, low RMSEP value (0.183) and low p-values ( <0.0001), all which indicated a high 

degree of correlation between the NIR generated phenotypes and the reference method of 

proximate analysis. After the application of the additional correction factor (-1.26) , these 

phenotypes were appropriately accurate, based on comparison to the phenotypes obtained via 

the reference method of proximate analysis, for further use.  

The objectives of the second study in Chapter 4 were to 1) estimate the heritabilities for 

IMF and backfat thickness measured by various methods (NIR, ultrasound, subjective and 



 217 

traditional) and 2) phenotypic and genotypic correlations among these traits in both a purebred 

Duroc and commercial crossbred population. All estimated heritabilities were consistent with 

the current literature for purebred Duroc BFD (0.44 ±  0.11; Newcom et al, 2005), 

commercial crossbred BFD (0.45 ± 0.07; Miar et al, 2014), purebred Duroc NIRIMF (0.50 - 

0.62 ± 0.06; Gjerlaug-Enger et al, 2010), purebred Duroc UIMF (0.48 ; Jung et al, 2015), 

commercial crossbred UIMF (0.26 ± 0.06; Miar et al, 2014) and as well as commercial 

crossbred subjective carcass marbling score (0.23 ± 0.05; Miar et al, 2014) are all very close to 

the estimates from this study. From our study, estimates for purebred UBFD, BFD, NIRIMF, 

UIMF and SUBIMF were 0.48 (± 0.09), 0.44 (± 0.09), 0.491 (± 0.11), 0.44 (± 0.09) and 0.23 

(± 0.07) and crossbred estimates for UBFD, BFD, UIMF and SUBIMF were 0.54 (±0.09), 

0.43 (±0.08), 0.24 (± 0.07) and 0.25 (± 0.07). Additionally, the results of the variance 

component estimations showed a high positive genetic correlation between IMF and backfat 

thickness (𝜇 = 0.40 ± 0.145), regardless of measurement method or population, which is 

consistent with the current literature. This indicates that selection for one of these two traits, 

without any additional investigation (increased understanding of genetic architecture), would 

result in the increase of the other; they are good indicator traits for one another. There has been 

a proposed strategy to utilise crossbred animals are used as the training population in order to 

predict the best purebred animals to breed for optimal crossbred performance (Dekkers et al, 

2007; Hidalgo et al, 2016). A high rg is necessary between crossbred and purebred animals for 

the desired trait is necessary in order for this strategy to have high accuracy. Based on the 

results of this the present study, I think this proposed strategy of GS may be feasible for the 

improvement of IMF in commercial crossbred pigs. The genetic correlations between the same 

traits measured by different methods was high for NIRIMF – UIMF (0.78 (± 0.085)) in the 
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purebred Durocs, indicating that these two phenotypes would be appropriate replacements for 

one another. Additionally, BFD and UBFD were estimated to have high genetic and 

phenotypic correlations in both the purebreds (0.95 (±0.03) and 0.81 (±0.01)) and crossbreds 

0.99 (±0.02), 0.74 (±0.02), indicating that these two methods of phenotype collection would 

be appropriate replacements for one another. Although none of the correlations were 

significantly different from zero, resulting in the failure to reject the null hypothesis, based on 

the assessment of previous literature these values can be interpreted cautiously but 

optimistically. In future studies, to address the primary limitation of this study, increased 

generational data should be included. Large datasets which span multiple generations can help 

decrease error, help obtain an accurate relationship value between the animals in the  data file 

and increase the accuracy of the predicted variance components. The ability to confidently 

choose between methods of phenotyping is beneficial, particularly for genetic studies, as 

phenotyping often represents a large cost of a study due to the large number of animals 

generally required. A certain methodology may be more practical or feasible for phenotype 

collection in different environments with different populations (ultrasound is low cost and can 

be done on live animals, whereas NIR or physical measurement must be conducted on 

carcasses / samples), and when collected properly, the understanding is that both will provide 

similar results in any further studies, such as GWAS.   

 The objectives of Chapters 5 and 6 were to, investigate IMF in a purebred Duroc 

population and a commercial crossbred population, respectively, using GWAS. GWAS’ are a 

commonly used technique to identify SNPs which are significantly associated with a trait of 

interest, which can provide insights to the genetic architecture behind a trait (Korte and Farlow, 

2013). In the purebreds, five SNPs were identified as significant using UIMF phenotypes 

(GWAS 1) and no SNPs were identified as significant from the NIRIMF phenotypes (GWAS 
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2), however the p-values were very close to those identified as significant. Since a GWAS 

exploits the LD between SNPs and ungenotyped causal mutations, we rely on LD information 

to determine if a SNP is truly explaining a large part of the trait variation (truly informative 

SNP). The LD was investigated in a 1 Mbp window around all SNPs identified as significant, 

and strong (> 90%) r2 was found in the pairwise significant SNPs, as well as between many 

surrounding SNPs. By investigating the entire 1 Mbp regions surrounding the identified 

significant SNPs, we were able to narrow down to a number of subregions which could be 

further investigated for a detailed analysis (LD mapping). This is important, as any causal 

mutations or causal loci are most likely where the pairwise LD for adjacent markers peaks 

(Dorak, 2016); the regions of high LD surrounding the significant SNPS identified by GWAS 

warrant further investigation. In addition to the LD investigation, a 1Mbp window surrounding 

each significant SNP from GWAS 1, and the 5 SNPs with the lowest p-values from GWAS 2 

were investigated for candidate genes. All SNPs were within close proximity on SSC 1. A 

number of interesting genes were identified, including RNF152, PMAIP1, CDH20, and MC4R; 

all of these genes have been previously identified with fatness (IMF) and related traits, 

including average daily gain and daily feed intake. Additionally, the significant SNPs from 

GWAS 1 were found to explain 7.13% of the total phenotypic variance. From chapter 6, the 

GWAS performed using UIMF phenotypes in a commercial crossbred population (GWAS 3) 

yielded no significant SNPs, however after a LASSO was performed which resulted in the 

identification of three SNPs with measurable effect size (non-zero effect). A 1 Mbp window 

around these SNPs were investigated for candidate genes, which revealed a number of 

interesting findings. Genes ATF7IP, NEUREXIN 3 and SH3RF2 were identified in these 

windows; only ATF7IP has previous connections to IMF in the literature, however the 

described functions of NEUREXIN 3 and SH3RF2 warrant further investigation for potential 
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connections to IMF content. Finally, the proportion of total phenotypic variance explained by 

SNP variance of the 3 investigated SNPs was 0.69%.  

 Upon comparison of the crossbred and purebred GWAS results, significantly different 

outcomes are seen. The comparison of results from the GWAS between populations will aide 

in the investigation of candidate genes in the purebred animal for improved crossbred 

performance. The primary differences are, in GWAS 1, five significant SNPs on SSC 1 are 

identified which explain 7.13% of the total phenotypic variance and GWAS 3 no significant 

were SNPs are identified, but 3 non-zero SNPs from SSC 2, 5 and 7 are identified through 

LASSO which explain 0.69% of the total phenotypic variance. There are a number of reasons 

that different results were seen from these differing populations. Inconsistency in results 

between studies are often in part due to the breed/population investigated, sample size, and 

methods of analysis (Marees et al, 2018). The power of a GWAS increases with increasing 

sample size and testing a higher number of markers also requires increased sample size in order 

to obtain enough instances to be detected. In order to overcome this limitation in future studies 

the study-design must account for number of markers being tested and increase the sample size 

coincidingly. Other factors which can affect the outcome of the GWAS are 1) allele frequency 

of SNPs, 2) the effect size of a SNP, 3) differences in SNP effects in different populations, and 

4) selection pressure.  

Allele frequency is integral to GWAS: the strength of statistical associations between 

alleles at different loci depends upon their allele frequencies (Visscher et al, 2012). If a SNP 

has very low allele frequency (rare variant) it is unlikely to be detected by GWAS, particularly 

because SNP chips used for genotyping are comprised primarily of common SNPs with MAF 

typically > 0.05 (Visscher et al, 2012), as rare variants (MAF < 0.01) will have low LD. 

Genetic drift and selection can also change allele frequencies, which subsequently change the 
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genetic architecture of traits; this is because the average effects at the loci which underlie the 

trait and the contribution of these loci to the genetic variance are altered (Wientjes et al, 2019). 

Populations which are under selection pressure will see changes in the genetic architecture of 

traits, particularly at loci that are important for the selection indices (Wientjes et al, 2019). 

Additionally, the effect size of a SNP is important; SNPs with large effects are found at lower 

allele frequencies than alleles with small effects, this is because negative selection acts more 

strongly to reduce the allele frequency of large‐effect SNPs as compared to those with small‐

effects (Josephs et al, 2017). Different populations also result in different SNP effects, as 

different QTN may underly a certain QTL in different breeds, (Wientjes et al, 2015), and 

different epistatic or dominance interactions may be at play in different breeds as well 

(Mackay, 2014). Additional methods of GWAS should be conducted with both the purebred 

and crossbred populations in order to explore any non-additive genetic control of IMF; this 

would be beneficial to aide in the understanding of how IMF deposition and content differs in 

these populations would be useful for the application of GS programs. I believe that through 

use of alternative statistical models, such as those which employ non-infinitesimal SNP 

distribution models, and those which incorporate biological information (BayesRC) would be 

beneficial to capturing novel information in regard to the genetic architecture of IMF.  

 The ultimate goal of these results is for their incorporation into a breeding program in 

order to aide in the selection of superior animals (improved accuracy of GEBVs); the 

independent selection of IMF from positively genetically correlated traits (primarily backfat 

thickness). This incorporation and practical application of GS in pig breeding can be done by 

weighting markers in the GEBV based on their effect on the trait of interest (Knol et al, 2016). 

Additionally, the development of novel genomic tools, such as new custom SNP panels, can be 

used to identify animals with the desired genotype in early life.  
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7.2 General conclusions and implications 
 

Increased understanding of IMF and backfat, how they are genetically related, 

heritabilities and the genetic architecture of IMF will help in the pursuit of superior meat 

quality; particularly, the ability to independently manipulate IMF from backfat in order to 

increase this fat depot separate from increasing overall carcass fatness. We were able to accept  

our hypothesis’ for the first (phenotypic generation) and third (purebred GWAS) studies. The 

null hypothesis failed to be rejected for the second study (variance component) due to type II 

error and finally the hypothesis was not accepted for study four (commercial GWAS). 

  Estimates of variance components for IMF and backfat, generated in chapter 4, in the 

purebred and crossbred pigs will help provide insight to the traits, their relationships and also 

serve as a reference to aide in the development of genetic improvement programs. The 

correlations calculated between the same trait measured by different methods (NIRIMF – 

UIMF; UBFD-BFT) will also provide excellent opportunity for future research programs; the 

ability to choose the most suitable phenotypic measurement for the situation while maintaining 

similar accuracy of final results (GWAS 1 and 2). In addition, the moderate to high 

heritabilities of IMF and backfat (all methods of measure) show that these traits can be 

improved through genomic selection; their high genetic correlation also indicates that increased 

understanding of the genetic architecture of IMF is necessary in order to be independently 

manipulated. The single-SNP GWAS and LASSO (crossbreds) performed aimed to investigate 

this; a number of candidate genes were identified in both the purebreds and crossbreds which 

can be investigated further through subsequent biological pathway analysis. In the purebreds, a 

number of subregions of high LD were identified, and it is understood any causal mutations or 

causal loci are most likely where the pairwise LD for adjacent markers peaks (Dorak, 2016). 
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The commercial crossbred GWAS and LASSO results indicated that there may be non-additive 

effects at play, which must be validated by future research.  

Given that genetic improvement is generally done from the ‘top’ (nucleus herd) down, 

to be realised in the commercial animals; any genetic progress gained in the purebreds is 

moved into the commercial animals through crossbreeding; the continued study of both 

purebreds and crossbreds is important, as the expression of IMF differs between breeds. There 

is high genetic correlation (0.99) (Tusell et al, 2016) between crossbred and purebred pigs for 

meat quality traits which indicates that this genetic improvement in the purebreds will indeed 

be realised in the crossbreds. The incorporation of crossbred information with purebred 

information into GS programs helps to increase the accuracy of GEBVs and increase the rate of 

genetic improvement.  

7.3 Future recommendations 
 

1) For the generation of NIR phenotypes, calibrations and standards should be created 

from populations which match the study population (breed, sample collection method 

and storage). This would ensure greater accuracy of the algorithm, thereby increasing 

the accuracy of predicted phenotypes. 

2) Biological pathway analysis for the candidate genes identified, as well as LD mapping 

for the subregions identified in GWAS 1 would provide an interesting research 

opportunity. This would also help increase the understanding of the biological basis of 

IMF and aide in its independent manipulation.  

3) Additive genetic models were used; favourable breed combinations/ breed 

complementarity is a large factor in the swine industry which contributes to not only 

the overall profitability of commercial swine operations but is imperative to realising 
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genetic improvement. Extending the models to include dominance effects would be 

interesting.  
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