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Dedication 

“Our greatest weakness lies in giving up. The most certain way to succeed is 

always to try just one more time” – Thomas Edison 



Abstract 

Integrating cultural weed management practices with herbicides is an 

important strategy to reduce wild oat (Avena fatua L.) populations in Alberta, 

Canada. The purpose of this thesis is to expand the knowledge on wild oat seed 

banks and seedling emergence within integrated weed management systems. Field 

experiments were conducted from 2006-2007 to examine the impact of crop 

rotation, barley cultivar, barley seeding rate and herbicide rate on wild oat seed 

bank density, seed mortality, seedling emergence and seedling survivorship. 

Management systems consisting of diverse crop rotations, tall barley cultivars and 

increased barley seeding rates reduced wild oat seed bank density, seedling 

emergence and seedling survivorship, especially at low herbicide rates. Wild oat 

seed banks predicted subsequent wild oat emergence, whereas biomass and 

emergence strongly predicted seed banks. Lastly, 50% wild oat emergence was 

achieved at 537 and 509 growing degree days in 2006 and 2007, respectively, in 

Lacombe, Alberta. 
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Chapter 1. Introduction 

1.1. Background 

Herbicides have been used as an effective means in controlling weeds 

since the 1950s and are one of the most important advances in agriculture (Pike et 

al. 1991). In North America, herbicides can account for 20-30% of crop inputs 

(Derksen et al. 2002). On the Canadian Prairies, the total economic impact of 

weeds in barley, canola and wheat is approximately $1 billion annually (Leeson et 

al. 2006). Consequently, the majority of expenditures associated with managing 

weeds are for herbicide product and application (Leeson et al. 2006). In western 

Canada , fluctuating crop prices, rising input costs, occurrence of herbicide 

resistant weeds and public concern regarding the effects of herbicides on the 

environment and human health have garnered interest from scientists and growers 

to reduce herbicide use and rates (Beckie et al. 2008; Blackshaw et al. 2008; 

O'Donovan et al. 2007). The response to these concerns has led to the 

development and adoption of integrated weed management systems.  

The concept of integrated weed management (IWM) has been used since 

the 1970s by weed scientists (Walker and Buchanan 1982). Although the 

approach to IWM has evolved over the last three decades, the principal objective 

is still to develop economically, ecologically and socially sustainable cropping 

systems that combine various agronomic practices to improve crop competition, 

decrease weed emergence and reduce herbicide reliance. IWM is also a 

component of integrated crop management systems that aims to promote crop and 
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soil health. As a result, combining agronomic practices that produce healthy, 

competitive crops are essential to developing successful IWM systems.  

Integrated weed management systems employ various cultural and 

herbicide management strategies to manage weed populations. For instance, a 

variety of agronomic practices that can be combined with economic thresholds 

and judicious herbicide use, include direct seeding, crop rotations, higher seeding 

rates, early seeding dates, competitive crops and cultivars and strategic fertilizer 

placement. Combining agronomic practices has been effective in reducing the 

impact of weed competition as well as delaying the development and spread of 

herbicide resistant weeds (Beckie and Kirkland 2003; Beckie et al. 2008). IWM is 

built upon a systems approach that incorporates knowledge of weed biology and 

weed ecology. Integrating bioecological information with agronomic practices can 

provide seasonal and multi-year weed control, influencing weed growth at all 

stages of its lifecycle (Blackshaw et al. 2008). Long term changes in weed 

populations can result in reduced weed emergence, weed densities, weed-crop 

competition, weed seed production and weed seed bank densities (Blackshaw et 

al. 2008; Buhler 2002; Murphy et al. 2006). 

Weed seed banks are dynamic, with a number of biological processes 

influencing the amount of seeds being added, removed or retained in the soil seed 

bank. Although the temporal and spatial variability in size, composition and seed 

depth enhances the difficulty in studying weed seed banks (Benvenuti 2007), they 

are often good indicators of how successful past and present weed management 
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strategies have been in influencing weed populations. One of the primary reasons 

for studying weed seed banks is to develop IWM strategies that can reduce seed 

bank additions, increase seed bank losses or reduce the length of time seeds are 

retained in the seed bank (Swanton and Booth 2004). A secondary reason for 

studying weed seed banks is to understand the timing and amount of weed 

seedling emergence. The ability to predict the magnitude and timing of weed 

seedling emergence is dependent on the level of dormancy expressed among seeds 

in a seed bank (Allen et al. 2007; Batlla and Benech-Arnold 2007; Benech-Arnold 

et al. 2000; Forcella et al. 2000). Knowledge of factors that affect seedling 

emergence can improve the implementation and effectiveness of IWM practices 

(Grundy 2003).  

The development of IWM systems in western Canadian cropping systems 

have centered on the management of wild oat (Avena fatua L.). Despite a variety 

of individual herbicide and cultural management techniques available to manage 

wild oats, identifying optimal combinations of agronomic practices to maximize 

management and profitability and limit the development or spread of herbicide 

resistance remains at its infancy within western Canada. Improving 

implementation of IWM strategies requires a better understanding of wild oat 

population dynamics over the course of multi-year strategies. One aspect of 

understanding wild oat populations is to study the role of inputs and losses from 

the wild oat seed bank. Finding opportunities to manipulate weed seed banks 

through IWM strategies may also have implications on wild oat seed germination, 
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dormancy and seed mortality. Few studies have measured the cumulative effects 

of IWM strategies on wild oat seed banks and wild oat seedling emergence.  

The primary focus of this project was to evaluate the cumulative effects of 

five and six years of IWM practices, that included the use of short and tall barley 

cultivars, normal and high barley seeding rates and continuous and diverse crop 

rotations in combination with quarter, half or full herbicide rates, on wild oat seed 

bank density, seed mortality, seedling emergence and seedling survivorship. The 

following questions were addressed: 

1. What are the cumulative effects of combining agronomic practices with 

herbicides on wild oat seed bank density and seed mortality? 

2. Can wild oat seed bank density predict wild oat emergence? 

3. Can wild oat seed production, emergence and biomass estimate the wild 

oat seed bank? 

4. How many growing degree days (GDD) are required for 50% wild oat 

emergence in central Alberta? 

5. What are the cumulative effects of combining agronomic practices with 

herbicides on wild oat seedling emergence and seedling survivorship prior 

to and subsequent to herbicide application? 

The experimental hypotheses of this research were that the cumulative effects 

of five and six years of optimal IWM practices will reduce wild oat seed bank 
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densities, seedling emergence and seedling survivorship and enhance seed 

mortality. In addition, a close relationship will exist between the wild oat seedling 

emergence and seed bank density. Similarily, wild oat seed banks can be 

estimated using information on wild oat seed inputs, seasonal emergence and 

biomass. This research project will provide valuable information on wild oat seed 

bank dynamics to scientists, agronomists and farmers for implementing and 

developing integrated approaches to managing wild oats.  
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Chapter 2. Literature Review 

2.1. Integrated Weed Management 

Sustainable integrated weed management (IWM) systems are built from a 

variety of management strategies that enhance crop diversity and reduce the 

stability of weed communities.  Implementing concepts of weed biology and 

ecology into IWM provides a holistic approach to managing cropping systems. 

Developing a comprehensive IWM system uses agronomic strategies such as 

diverse crop rotations, higher seeding rates, strategically placed fertilizer, early 

weed removal and competitive crops and cultivars to manipulate weed survival, 

growth and reproduction. Many agronomic practices are effective on their own in 

reducing weed populations and enhancing crop yields but in combination they can 

have further long term management benefits (Anderson 2003). Furthermore, 

integrating agronomic practices may reduce the reliance on herbicides, especially 

if used with economic thresholds and crop scouting. 

 Current research is identifying cropping systems that integrate agronomic 

practices to manage weeds under diverse cropping systems across all agro-

ecological regions in Western Canada. Additional research is needed to develop 

systems that growers perceive as economically viable and where the risk of 

adoption is perceived as low. Despite the development of IWM systems, growers 

will still need to select agronomic practices that complement existing crop 

production systems as well as fit the economic, social and environmental 

standards of their operation. Consequently, no single IWM strategy will be 
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appropriate for all growers; therefore, the optimal combination of agronomic 

practices will depend on the agro-ecological region, farm machinery, crop choice, 

economics and grower attitudes and beliefs.The current section will outline the 

most common agronomic practices utilized in western Canada that can be adopted 

into IWM systems. 

2.1.1. Components of Integrated Weed Management in Western Canada  

2.1.1.1. Direct Seeding 

Direct seeding has increased in adoption across the Canadian Prairies 

since the early 1990s. In Alberta, direct seeding increased from 3% of the total 

area in 1991 to 48% in 2006 (Statistics Canada 2008). Direct seeding has led to an 

overall improvement in soil quality and moisture conservation by reducing soil 

erosion (Mostaghimi et al. 1992; Tessier et al. 1990), minimizing evaporative 

water losses (Cutforth and McConkey 1997; Cutforth et al. 2002; Cutforth et al. 

2006), improving water infiltration (Arshad et al. 1999; Azooz and Arshad 1996; 

Azooz and Arshad 1998), and increasing soil organic matter (Campbell et al. 

1989; Campbell et al. 1998). Furthermore, managing diversified cropping systems 

under direct seeded (minimum and zero-tillage) systems can enhance and stabilize 

net farm incomes (Zentner et al. 1992; Zentner et al. 2002a; Zentner et al. 2002b).   

Although direct seeding continues to gain popularity, some expected 

consequences can include lower spring soil temperatures that reduce or delay crop 

seedling emergence (Lafond et al. 1996), increased surface residues that 

immobilize nitrogen (Schoenau and Campbell 1996) and additional costs and 
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equipment modifications of ground openers, straw choppers and spreaders to 

manage heavy crop residues (Canola Council of Canada  2003). The adoption of 

direct seeding has also led to changes in herbicide use (Zentner et al. 2002a; 

Zentner et al. 2002b), including a high frequency of pre-seed, pre-harvest and 

post-harvest gylphosate applications. A pre-seed application that includes 

glyphosate has become a key practice in managing early emerging weeds and 

optimizing crop productivity (Johnson et al. 2002). Weed communities have 

shifted under direct seeded systems, responding with a decrease in annual weed 

densities but an increase in winter annuals, biennials and perennials (Blackshaw et 

al. 2006; Derksen et al. 2002; Thomas et al. 2004). Although glyphosate efficacy 

depends on the weed species and time of weed emergence (Johnson et al. 2002), it 

has been effective in managing various perennial weeds such as quackgrass 

[Elymus repens (L.) Gould] (Harker and Vanden Born 1997) and foxtail barley 

(Hordeum jubatum L.) (Blackshaw et al. 1999). Despite shifts in the weed 

community, lower weed densities have been reported by growers following 5 to 

10 years of direct seeding (Blackshaw et al. 2008).   

Direct seeded systems can create an opportunity to exploit weed seed 

banks. Seeds that remain on the soil surface tend to be at greater risk for mortality 

(Blackshaw et al. 2008), since seeds are exposed to environmental extremes and 

seed predation (Cromar et al. 1999; Egley 1986; Froud-Williams et al. 1984). 

Unlike conventional tillage, there is less spring soil disturbance in direct seeding 

which reduces the number of weed seeds stimulated to germinate and be depleted 

from the soil seed bank. However, seeds of common lambsquarters 
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(Chenopodium album L.), stinkweed (Thlaspi arvense L.), green foxtail [Setaria 

virdis (L.) Beauv.], wild buckwheat (Polygonum convolvulus L.) and wild oat 

(Avena fatua L.) that remain near the soil surface in direct seeded fields emerge 

earlier and more uniformly, improving the opportunity for early herbicide 

applications (Bullied et al. 2003). Overall, direct seeding has played an integral 

part in IWM and its successful adoption may be attributed to its use with other 

weed management strategies, such as using diverse crop rotations and competitive 

crops and cultivars (Derksen et al. 2002).  

2.1.1.2. Crop Rotation 

In western Canada, a diverse number of cereal, oilseed, pulse and forage 

crops and cultivars are grown as part of an integrated approach to weed 

management. The sequence of crops grown in a cropping system varies across soil 

zones. For example, the cropping sequence in the Black soil zone typically 

consists of a cereal-oilseed-cereal-pulse rotation. Canola (Brassica napus L.) and 

peas (Pisum sativum L.) are the most common oilseed and pulse crops, 

respectively, grown following a cereal crop such as wheat (Triticum aestivum L.) 

or barley (Hordeum vulgare L.).  In western Canada, the majority of canola grown 

is herbicide tolerant, either to glufosinate or glyphosate (Beckie et al. 2006). 

Furthermore, despite wheat being the most commonly grown cereal, oats (Avena 

sativa L.) and barley have displaced some wheat acres in the last 25 years.  

Conversely, in the Brown soil zone, the traditional cropping sequence has been 

summerfallow-wheat; however, current rotations are now introducing pulses such 
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as lentils (Lens culinaris. Medikus), field peas and chickpeas (Cicer arietinum L.) 

to diversify nutrient and water usage. Beyond weed management, diversifying 

crop rotations can also reduce financial risk, decrease disease incidence, improve 

soil quality and increase nutrient and moisture reserves (Zentner et al. 2002b). 

Despite higher production costs, the economic benefit of including an oilseed and 

pulse crop in rotation with cereals is a higher and stable farm net income (Zentner 

et al. 2002b). Consequently, increased crop diversity is essential to attaining 

higher productivity and economic return on the Canadian Prairies.  

Crop rotations can disrupt the life cycle and growth habit of weeds 

through variations in crop life cycles, cultivars and seeding and harvesting dates 

(Anderson 2003; Anderson 2004; Anderson 2005; Derksen et al. 2002; Liebman 

and Dyck 1993). Typically, cropping systems include a rotation of grass and 

broadleaf crops, since grass weeds may become more predominant in grass crops 

and broadleaf weeds more common among broadleaf crops. Balanced crop 

rotations also include using competitive and non-competitive crops to minimize 

weed interference; therefore, rotations should not include growing non-

competitive crops, such as flax (Linum usitatissimum L.), lentils or chickpeas in 

succession. Crop rotations that alter the time of seeding and herbicide application 

can change selection pressures on early versus late emerging weeds. Blackshaw 

(1994) reported increased suppression of downy brome (Bromus tectorum L.) 

populations when fallow or spring seeded canola was included in a winter wheat 

(Triticum aestivum L.) rotation compared to a continuous winter wheat rotation. 

Diversity in a crop rotation can also provide variation in herbicide application 
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timing and modes of action, curtailing the selection of herbicide resistant weeds 

(Anderson 2003).  

While crop rotations produce measurable changes in the abundance and 

composition of weed communities, the effects are difficult to separate from other 

management practices, such as tillage (Legere and Stevenson 2002) and herbicide 

usage. Crop rotations under reduced tillage have been reported to reduce 

fecundity of both grass and broadleaf weed species (Kegode et al. 1999). Murphy 

et al. (2006) found that using three crops in rotation [corn (Zea mays L.) - soybean 

[Glycine max (L.) Merr]-winter wheat], seed bank densities in a direct seeded 

field can be reduced as much as 80% over six years. As a result, crop rotation is 

an integral component in reducing weed populations, especially when used in 

combination with other agronomic practices. 

2.1.1.3. Competitive Crops and Cultivars 

In western Canada, spring barley is still considered the most competitive 

spring-sown crop species when compared to canola (Dew and Keys 1976), spring 

wheat and flax (Dew 1972). Although it is recognized that crops vary in their 

ability to compete with weeds, also important are the differences in competitive 

abilities among cultivars within a crop species. Differentiating the competitive 

ability of cultivars is typically based on their ability to (i) tolerate weed 

competition without compromising grain yield and (ii) suppress weed growth 

(Goldberg and Landa 1991; Jordan 1993). Several plant characteristics have been 

attributed to competitiveness, including plant height, early maturity, crop 
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establishment, tillering, structure of crop canopy, interception of 

photosynthetically active radiation (PAR), early biomass accumulation, flag leaf 

length, ground cover, and timing of spike emergence (Beckie et al. 2008b; 

Champion et al. 1998; Hucl 1998; Huel and Hucl 1996; Korres and Froud-

Williams 2002; Lemerle et al. 1996; Mason et al. 2007; O'Donovan et al. 2005b; 

Wicks et al. 1986). In western Canada, barley varieties have been shown to differ 

in their ability to compete with weeds. Semi-dwarf and hull-less varieties are less 

competitive with wild oat or tame oat than taller hulled barley varieties 

(O'Donovan et al. 2000; Watson et al. 2006) and typically suffer greater yield 

losses (O'Donovan et al. 2000). Since the hull is typically removed during harvest, 

the embryo of hull-less varieties are susceptible to mechanical injury and fungal 

attack (White et al. 1999); thus, reduced seed viability, germination and seedling 

emergence can occur, reducing a plants ability to successfully compete with 

weeds (O'Donovan et al. 2000). Hull-less barley varieties may also experience 

poor seedling emergence due to shorter coleoptiles or coleoptiles growing 

abnormally as a result of a damaged embryo (Box et al. 1999). Alternatively, 

Watson et al. (2006) suggest that comparing the competitive abilities of semi-

dwarf to tall varieties and hull-less to hulled varieties may be complicated by 

pleiotropic effects of sdw (semidwarf) and n (naked caryopsis) genes, 

respectively. 

Research is underway to measure the competitive ability of hybrid canola 

varieties. Canola hybrids have been found to be more competitive than open 

pollinated varieties (Hanson et al. 2008; Harker et al. 2003a; Zand and Beckie 
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2002). Hybrid cultivars benefit from rapid emergence and early canopy closure 

minimizing competition from weeds and maximizing yield (Harker et al. 2003a). 

Generally, growing competitive cultivars of barley, wheat, canola and field pea is 

an important IWM strategy to enhance crop competitiveness (Beckie et al. 2008b; 

Harker et al. 2008a; Hucl 1998; O'Donovan et al. 2005b; Watson et al. 2006). 

2.1.1.4. Seeding Date  

Subjecting weeds to temporal diversity by alternating planting and 

harvesting dates can also improve weed management. The benefits of early 

seeding have been recognized and are commonly used in cropping systems across 

western Canada. Early seeded crops optimize utilization of spring soil moisture 

(Angadi et al. 2004), minimize the risk of heat stress during flowering (Kirkland 

and Johnson 2000), out-compete weeds that require warmer soil temperatures for 

germination (Blackshaw et al. 2005b; Harker et al. 2005), reduce the opportunity 

for disease and insect problems during peak infection or infestation periods 

(Krupinsky et al. 2002; Olfert and Weiss 2002), enhance yields (Chen et al. 2005; 

Clayton et al. 2004; Kirkland and Johnson 2000) and encourage earlier harvest 

dates. Delayed seeding within western Canada is not favourable due to the short 

growing season. Furthermore, later seeding dates can result in yield reductions in 

wheat (Briggs and Aytenfisu 1979), barley (Juskiw and Helm 2003), canola 

(Degenhardt and Kondra 1981), flax (Thompson et al. 1988), oats (May et al. 

2004) and field peas (Ali-Khan 1977).  
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Early seeding dates promote early crop emergence, maximizing crop 

yields and economic returns. Coupling early crop emergence with early weed 

removal can maximize weed control and crop yield. Early weed control in canola 

can increase yield, minimize dockage, reduce weed biomass and promote higher 

net revenues (Clayton et al. 2002; Harker et al. 2004; Harker et al. 2008b; 

O'Donovan et al. 2006b). Early crop emergence and rapid growth following an in-

crop herbicide application can provide sufficient crop competition for later 

emerging weeds. Consequently, in glyphosate-resistant canola systems 

O'Donovan et al. (2006b) found no advantage with respects to yield, dockage or 

weed biomass, for applying two in-crop glyphosate applications in the current 

cropping season to manage late emerging weeds. Furthermore, shallow seeding 

depths can promote early crop emergence (Gan et al. 1992), which can allow a 

crop to utilize early season moisture and nutrients before weeds emerge. 

Temporal diversity can also include using fall seeded crops, such as winter 

wheat, winter rye (Secale cereale L.) or winter triticale Triticale (X Triticosecale 

Wittmack). For example, early emerging annual weeds are typically outcompeted 

by winter wheat in the spring due to the formation of a dense canopy (Anderson 

2008). As a result, winter wheat grown in a diverse rotation can minimize summer 

annual weeds from adapting and establishing (Blackshaw 1994; Schreiber 1992). 

Although the use of winter and perennial crops in rotation are important in 

managing weeds, a detailed discussion of their role is beyond the scope of this 

review. 
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2.1.1.5. Higher Crop Seeding Rates 

In addition to selecting the most competitive crop cultivar, increasing crop 

seeding rate can also improve the competitiveness of the crop. Recommended 

seeding rates have been determined in western Canada for a variety crops, but 

usually under weed-free conditions (O'Donovan et al. 2007a). Seeding rates do 

not always represent the number of seedlings emerged in the field, even when 

germination rates exceed 90%; as a result, the percent germination of a seed lot 

can overestimate the number of seedlings that emerge under field conditions 

(Harker et al. 2003a). Harker et al. (2003a) reported canola emergence of hybrid 

and open pollinated canola to be half of the seeds planted; therefore, a seeding 

rate of 100 to 200 seeds m–2 resulted in 46 to 90 open pollinated Exceed plants m–

2 and 54 to 102 hybrid InVigor 2153 plants m–2.  

Nevertheless, higher crop seeding rates of barley (O'Donovan et al. 1999b; 

O'Donovan et al. 2000; O'Donovan et al. 2001), wheat (Blackshaw et al. 2000; 

O'Donovan et al. 2006a; Xue and Stougaard 2002), peas (Johnston et al. 2002) 

and canola (Hanson et al. 2008; Harker et al. 2003a) can reduce weed biomass 

and increase crop yield. For example, wild oat biomass can be reduced by using 

higher barley seeding rates (i.e. 125 to 175 kg ha-1) to achieve crop densities 

between 200 and 250 plants m-2 (O'Donovan et al. 1999b; O'Donovan et al. 2000; 

O'Donovan et al. 2001). Increasing barley densities from 150 to 250 plants m-2 

under wild oat densities of 50 plants m-2 minimized yield loss from 20 to 14% 

(O'Donovan et al. 1999b). Combining a competitive hybrid canola cultivar with a 
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high seeding rate and early weed removal can be used to increase canola yield and 

improve weed management (Harker et al. 2003a). However, growers may be more 

reluctant to increase canola seeding rates compared to barley or wheat due to the 

high seed costs associated with herbicide resistant canola varieties (O'Donovan et 

al. 2004). Furthermore, higher seeding rates may not be a viable management 

option in all agroecosytems across the Canadian Prairies. In semiarid regions, 

higher seeding rates may compromise crop quality. Increasing malt barley seeding 

rates under rain-fed conditions (<300mm) compared to irrigated conditions 

(>300mm) provided only modest increases in yield but reduced the proportion of 

plump kernels (McKenzie et al. 2005). However, higher seeding rates have 

become a highly effective and viable option for weed suppression in organic 

production systems. Mason et al. (2007) indicated that doubling wheat seeding 

rates from 300 seeds m-2 to 600 seeds m-2 improved both wheat yield and weed 

suppression; furthermore, the benefits of a doubled wheat seeding rate were not 

cultivar specific.  

Enhancing crop seeding rates can also improve the efficacy of herbicides 

applied at reduced rates. O'Donovan et al. (2006a) reported wild oat herbicides to 

be more successful in reducing wild oat shoot biomass and seed in the soil seed 

bank when wheat seeding rate was increased from 75 kg ha-1 (100 plants m-2) to 

150 kg ha-1(200 plants m-2). In barley, applying tralkoxydim at 50 or 100% of the 

recommended rate in combination with higher barley seeding rates reduced wild 

oat fecundity as well as the amount of wild oat seed in the soil seed bank 

(O'Donovan et al. 2001). Combining higher seeding rates with reduced herbicide 
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rates to limit weed seed return is also an effective strategy to delay or prevent the 

selection of resistant wild oat biotypes (Beckie and Kirkland 2003; O'Donovan et 

al. 2001). In addition to weed suppression and improved herbicide performance, 

higher seeding rates can reduce dockage (Harker et al. 2003a) and branching in 

canola (Hanson et al. 2008), improve crop uniformity, shorten crop maturity and 

reduce the risk of urea-induced injury from seed placed nitrogen (O'Donovan et 

al. 2008). 

2.1.1.6. Strategic Fertilizer Placement  

Many weed species capitalize on high soil fertility, reducing the amount of 

nutrients available for crop growth. Large quantities of soil nutrients, including 

nitrogen, phosphorous, potassium, calcium and magnesium can be utilized by 

weeds (Vengris et al. 1953). On the Canadian  Prairies, weeds can respond to 

added concentrations of nitrogen and phosphorous with increased shoot and root 

growth which frequently exceeded shoot and root growth of wheat and canola 

(Blackshaw et al. 2003; Blackshaw et al. 2004a). Consequently, understanding 

weed responses to fertility can improve fertilizer management strategies. As a 

result, optimizing fertilizer application timing and placement as well as using 

slow release fertilizers has become an important practice to optimize crop yield 

and quality as well as reduce weed interference (Di Tomaso 1995; Malhi et al. 

2001; Malhi et al. 2003). 

Spring fertilizer applications in spring wheat, barley, canola and peas, 

have typically optimized crop yield and reduced weed biomass (Blackshaw et al. 
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2004b; Blackshaw et al. 2005a; Blackshaw et al. 2005b). The competitive ability 

of many weed species is also influenced by the placement of fertilizer (Blackshaw 

et al. 2002b; Blackshaw and Molnar 2009). Blackshaw et al. (2004b) quantified 

the effects of nitrogen fertilizer timing and placement on the management of wild 

oat, green foxtail, wild mustard [Brassica kaber (DC.) L.C. Wheeler var. 

pinnatifida (Stokes) L.C. Wheeler] and common lambsquarters in spring wheat. 

The density and shoot biomass of weeds were generally higher under fall applied 

nitrogen treatments. Furthermore, greater weed density and shoot biomass 

occurred when nitrogen was surface broadcasted rather than sub-surface banded 

or point injected. A simultaneous increase in spring wheat yield also occurred 

when nitrogen was sub-surface banded or point injected. After four consecutive 

years of fertilizer application, the weed seed bank was reduced by 25 to 63% with 

a point injected N compared with surface broadcasted N. O'Donovan et al. (2008) 

also compared five rates (0, 30, 60, 90 and 120 kg ha-1) of seed placed and side 

banded urea at three barley seeding rates (200, 300 and 400 seeds m-2). High rates 

(>60 kg ha-1) of seed placed N increased the risk of urea-induced seedling 

damage, causing a reduction in barley plant densities. Reduced barley densities 

not only contributed to earlier wild oat competition and fecundity but delayed 

barley maturity. However, as rates of side banded nitrogen increased, barley 

yields improved and the time to maturity and wild oat fecundity decreased. Higher 

barley seeding rates under all nitrogen placements and rates did not increase 

yields; however, they reduced wild oat fecundity and reduced the risk of urea-

induced injury in seed placed N, but not as low as side banding. Recently, 
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Blackshaw and Molnar (2009) found that mid-row banded and seed-placed 

phosphorous resulted in higher wheat yields under competitive weed pressure 

compared to surface-broadcast phosphorous applications. In addition, weed 

biomass and seed bank densities were also lower with seed-placed or sub-surface 

phosphorous applications. Overall, managing fertilizer timing and placement are 

suitable strategies for improving crop competitiveness within an integrated weed 

management strategy. 

2.1.1.7. Silage, Green Manure and Cover Crops 

Silage, green manure and cover crops are not only effective at increasing 

the diversity of a crop rotation but are effective for managing weed populations. 

Silage provides an opportunity to reduce weed populations by harvesting weeds 

prior to weed seed maturity. In western Canada, silage crops that use barley 

and/or corn can be an effective tool in managing weed populations. Harker et al. 

(2003b) reported early cut barley silage without herbicides to be as effective in 

reducing wild oat populations as using herbicides in barley grain production. In 

early harvest silage treatments at Lacombe, Alberta, wild oat plant densities 

declined from 40 plants m-2 in 1997 to less than 20 plants m-2 in 1999; 

consequently, two years of early cut barley silage can lead to significant 

depletions in the wild oat seed bank.  

Green manure and cover crops have been typically adopted in organic 

production, but are occasionally being incorporated in conventional systems. 

Cover crops can suppress weed competition, manipulate environmental conditions 
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that influence the germination and emergence of weeds, and release phytotoxins 

(Liebman and Davis 2000). In conventional cropping systems, growers are 

starting to adopt cover crops, such as winter rye, to provide ground cover 

following low residue crops, such as potatoes (Solanum tuberosum L.) or sugar 

beets (Beta vulgaris L.) (Blackshaw et al. 2008).  

Organic growers have also adopted forage legumes such as yellow 

sweetclover (Melilotus officinalis L.) and red clover (Trifolium pratense L.) as 

green manure to suppress weed competition and enhance available nitrogen in the 

soil. Blackshaw et al. (2001) determined that yellow sweetclover green manure 

can successfully replace fallow periods in dryland cropping systems. The 

allelopathic compounds found in the decomposing residues have the potential to 

suppress an assortment of perennial [dandelion (Taraxacum officinale Weber in 

Wiggers) and perennial sowthistle (Sonchus arvensis L.)] and annual [stinkweed 

(Thlaspi arvense L.), kochia (Kochia scoparia L.), flixweed [Descurainia sophia 

(L.) Webb ex Prantl], Russian thistle (Salsola tragus L.) and downy brome] 

weeds. Similar levels of weed suppression occurred whether sweetclover was 

harvested as hay or its residues were incorporated or left on the soil surface. 

Conventional cropping systems also benefit from the addition of perennial forages 

such as alfalfa (Medicago sativa L.) or perennial grasses, since they are effective 

management tools for suppressing annual weeds.  

Frequent cutting of perennial forages can also reduce the vigor and seed 

production of competitive weeds (Lafond et al. 1996). In a survey of 117 fields in 
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Manitoba, weed populations in cereal fields that were preceded with alfalfa or 

cereal grain crop were compared (Ominski et al. 1999). Cereal fields following 

alfalfa contained lower populations of wild oat, Canada thistle [Cirsium arvense 

(L.) Scop.], wild mustard and cleavers (Galium aparine L.) than in continuous 

cereal crops.  

2.1.1.8. Economic Thresholds  

An informed spray decision begins with an assessment of weed 

populations through field scouting to determine whether herbicides are necessary. 

An economic threshold, defined as the density of weeds at which the cost of the 

herbicide and application is equal to the value of the crop lost to weed 

competition, have been recommended by several researchers (Buhler et al. 1997b; 

Cousens et al. 1986; Doyle et al. 1986; Forcella et al. 1996; Gerowitt and 

Heitefuss 1990; Hamman 1979; Jones and Medd 2000; Monks et al. 1995; 

O'Donovan et al. 2005a; Wilkerson et al. 1991). Judicious application of 

herbicides can improve net returns by reducing the number of herbicide 

applications, minimizing the risk of developing herbicide resistance and reducing 

the herbicide footprint in the environment (O'Donovan 1996; O'Donovan et al. 

2005a). An economic threshold can be an important strategy for making spray 

decisions, but is difficult to implement for weed management (Cousens et al. 

1987; O'Donovan 1996).  Current decision models fail to capture the random, 

patchy spatial distribution of weeds (Wiles et al. 1993) and few models capture 

crop yield loss between various weed-crop combinations or from a mixed 
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population of weed species. Furthermore, the implications of weed seeds 

produced by escapes on future infestations and weed seed bank build-up are not 

readily incorporated into decision making frameworks.  

In western Canada, a decision making framework is available to assist 

growers with herbicide applications for wild oat.  Regression models were first 

established in the 1970s to determine the amount of crop yield loss from wild oat 

competition (Dew 1972; Dew and Keys 1976), but additional information on crop 

density and time of weed and crop emergence have been included in these models 

(Cousens et al. 1987; O'Donovan et al. 1999b).  O'Donovan et al. (2005a) 

broadened the regression model for estimating yield loss and loss revenue to 

include wild oat and volunteer cereals. In this case, the economic threshold 

concept was more highly utilized for low value crops, such as feed barley or 

wheat than in high value crops, like canola and hard red spring wheat. In high 

value crops growers are unlikely to exclude an in-crop herbicide application 

regardless of weed population. The current adoption of current economic 

thresholds may be limited by the simplicity and accuracy of these models 

(Wilkerson et al. 2002); however, economic thresholds have an important role in 

an integrated crop management system, whether as a predictive or educational 

tool to promote informative weed management decisions.  

2.1.2. Combining Agronomic Practices into an IWM System 

Although adopting one or two weed management strategies can be 

effective in reducing weed competition, greater success can be achieved in 
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systems that incorporate several management tactics. A successful integrated 

weed management approach has been developed for foxtail barley in direct seeded 

systems. Blackshaw et al. (1999) reported reductions in foxtail barley biomass and 

seed production in a multi-year approach that combined pre-seed and post-harvest 

glyphosate applications with a diverse crop rotation, higher crop seeding rates and 

banded nitrogen. Pre-seed applications of glyphosate provided early weed control 

to enhance crop competitiveness and optimize yield. An additional application of 

glyphosate during post-harvest effectively managed older cohorts of foxtail 

barley. Diversifying the rotation with a broadleaf crop like flax also allowed the 

use of selective grass herbicides, quizalofop and sethoxydim, which controlled 

foxtail barley seedlings and suppressed established adult plants. Increasing wheat 

seeding rate from 75 kg ha-1 to 115 kg ha-1 reduced foxtail barley biomass and 

seed production as much as 50%; however, increasing flax seeding rate did not 

have an impact on foxtail barley biomass and seed production.  

Integrating agronomic practices and knowledge has also improved weed 

management in canola production. Harker et al. (2003a) conducted field 

experiments in Alberta to determine the effects of combining glufosinate-tolerant 

canola cultivar (hybrid or open-pollinated), crop seeding rate (100, 150, or 200 

seeds m–2) and time of weed removal (two-, four-, or six-leaf stage of canola) on 

canola yield and weed biomass.  A 41% increase in yield occurred when 

combining a higher seeding rate and early weed removal with a hybrid canola 

variety compared to using a low seeding rate and late weed removal with an open 

pollinated cultivar. Higher seeding rates and early weed removal provided the 
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most effective management system to reduce weed biomass in both hybrid and 

open-pollinated crops. However, higher seedling emergence and seed yield were 

achieved using higher seeding rates and early weed removal with a competitive 

hybrid compared to an open pollinated cultivar. Similarly, using higher seeding 

rates with a competitive hybrid cultivar also contributed to the lowest levels of 

dockage. Overall, combining optimal agronomic practices in canola production 

can help increase farm revenue as well as provide an effective system of 

integrated weed management.    

Previous IWM research studies have focused on the effects of one or two 

agronomic factors; however, current research is now addressing the effects of 

combining several agronomic practices with herbicides under different cropping 

systems. Simultaneous four year field studies were conducted within a direct 

seeded barley-field pea–barley-field pea rotation and spring wheat–canola–spring 

wheat–canola rotation to identify the impact of integrating agronomic practices 

with herbicides for sustainable weed management (Blackshaw et al. 2005a; 

Blackshaw et al. 2005b). Combining early seeding, higher crop seeding rates, and 

spring-applied fertilizer resulted in the most competitive cropping systems. In the 

spring wheat–canola–spring wheat–canola rotation, increasing the crop seeding 

rate by 1.5 times reduced the weed seed bank 31 and 44 % at two locations 

(Lethbridge, AB and Scott, SK, respectively). Similarly, reductions in the weed 

seed bank in the 50 and 100% herbicide rate treatments of the barley-field pea–

barley-field pea rotation occurred when seeding rate was increased. Weed 

biomass was also reduced at the higher crop seeding rates in both rotations. 
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Furthermore, both rotations experienced more weed competition during the April 

seeding date than May seeding date; however, higher crop seeding rates during 

the early seeding date were more beneficial in reducing weed biomass. Similar 

crop yield and weed biomass were achieved when higher seeding rates were 

combined with a 50% or 100% herbicide dose. Similarly, spring applications of 

nitrogen versus fall applications also lowered weed biomass, and in some cases 

reduced the weed seed bank and increased crop yield. Competitive cropping 

systems that use a variety of agronomic practices can effectively increase crop 

yield, reduce weed biomass and seed banks, even when herbicide rates were 

reduced. Consequently, a competitive cropping system provides growers an 

opportunity to reduce herbicide rates or the number of herbicide applications, 

improving the economic and environmental sustainability of their operation. 

2.2. Weed Seed Banks 

The soil seed bank contains a reservoir of viable weed seeds buried in or 

on the soil surface (Cavers 1995; Simpson et al. 1989). The age structure of seeds 

in the seed bank is complex, containing a composite of cohorts of various ages 

and viability (Templeton and Levin 1979). Seed burial studies have demonstrated 

seed longevity, showing that many weed species can persist in soil for decades 

(Telewski and Zeevaart 2002; Toole and Brown 1946). Thompson and Grime 

(1979) further distinguished seed banks as either transient or persistent. Transient 

seed banks are composed of seeds that typically germinate or die within one year 

of dispersal, such as dandelion, common groundsel and kochia (Figueroa et al. 
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2007; Hacault and Van Acker 2006; Schwinghamer and Van Acker 2008), 

whereas persistent seed banks contain seeds that remain viable for more than one 

year, such as wild oat and lambsquarters (Banting 1962; Forcella et al. 1992). 

The persistence of a seed bank is influenced by soil disturbance 

(Thompson et al. 1998), seed burial (Bekker et al. 1998; Thompson et al. 1998), 

dormancy (Benech-Arnold et al. 2000) and protective seed coats (Chee-Sanford et 

al. 2006; Harrison et al. 2003; Kremer 1993; Kremer 1986; Thompson 1987). 

Physical and chemical attributes of the seed are important in maintaining 

longevity and structural integrity. For example, weed species with thick seed coats 

such as velvetleaf (Abutilon theophrasti Medicus) and lamb’s quarter are likely to 

form persistent seed banks; conversely, seeds of weed species that form transient 

seed banks such as kochia rely on chemical defenses, including ortho-

dihydroxyphenols (Davis et al. 2008). Small, compact seeds are more likely to 

persist than large, flattened or elongated seeds (Thompson et al. 1993); however, 

seed size interacts with other factors including seed burial and dormancy to 

influence persistence (Bekker et al. 1998; Thompson et al. 1998). In addition, 

seed persistence is a gradient of habitat stability. Seeds in stable habitats, 

including woodlands and pastures have decreased seed persistence whereas 

cropping systems characterized by high disturbance are prone to host seeds with 

increased seed persistence (Thompson et al. 1998). In many natural habitats, seed 

persistence is a function of seed burial depth and seed morphology, including seed 

size and shape (Ghersa and Martinez-Ghersa 2000; Thompson et al. 1998; 

Venable and Brown 1988). In cropping systems, cultural practices such as tillage 
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have confounded the relationship between seed size and disturbance, because  

large seeds buried through tillage can have increased persistence (Thompson et al. 

1998). The adoption of zero tillage may restore the link between seed size and 

burial depth, whereby large weed seeds near the soil surface become less 

persistent.  Nevertheless, selection for physiological traits consistent with seed 

bank persistence may be experienced by weed species adapted to cropping 

systems by life history, herbicide resistance, phenology and other plant traits 

(Ghersa and Martinez-Ghersa 2000; Thompson et al. 1998). 

Soil seed banks not only reflect cropping history but indicate long term 

success of agronomic practices on controlling weed growth and minimizing seed 

inputs (Roberts 1981).  In agricultural systems, seed bank densities can range 

from zero to one million seeds per square meter (Fenner 1985). However, the 

density and composition of weed species in the seed bank differs among 

agricultural systems due to differences in weed management and environmental 

conditions (Cardina et al. 2002; Clements et al. 1996; Davis et al. 2005; Murphy 

et al. 2006; Sosnoskie et al. 2006; Swanton et al. 2006). In a 6 year study 

conducted by Murphy et al. (2006) in Ontario, seed bank densities were reduced 

from 41, 000 seeds m-2 to 8,000 seeds m-2 when a diverse crop rotation of corn-

soybean-winter wheat under no-till was adopted. Furthermore, weed diversity also 

increased under this management system, shifting from predominantly annual 

weed species to winter annuals, biennials, and perennials.  
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The role of weed seed banks in the evolutionary and genetic dynamics of 

weed populations has not been carefully examined. Seed banks have been 

described as a “genetic or evolutionary memory”, outlining the genetic history of 

a plant population (Templeton and Levin 1979). Seed genotypes that accumulate 

in the soil seed bank over many growing seasons may be a source of genetic 

variation for weed populations (Levin 1990); therefore, seed banks can buffer 

against selective pressures by re-introducing seed genotypes that were successful 

in the past (Templeton and Levin 1979). Furthermore, seed populations of annual 

species that exhibit dormancy cycling may buffer genetic loss and genetic 

bottlenecks that result from severe population fluctuations (Cohen 1966; Nunney 

2002). Genetic novelty may also be introduced in a plant population through the 

occurrence of mutations that develop in aging dormant seeds (Levin 1990). 

Although some studies concur that the soil seed bank is a source of genetic 

variation to above ground plant populations (Cabin 1996; Cabin et al. 1998; 

Castillo 1994; Liu et al. 2006; Morris et al. 2002; Tonsor et al. 1993), selection 

pressures may have a greater influence in the genetic variability of a plant 

population (Brainard et al. 2007; Honnay et al. 2008; Mahy et al. 1999; Mandák et 

al. 2006; Vitalis et al. 2004). 

In arable fields experiencing environmental stochasticity, transient and 

persistent weed seed banks are an important component in the restoration of 

aboveground populations. The weed seed bank is dynamic, with a number of 

natural processes influencing the number of seeds entering, leaving or persisting 

in the seed bank (Figure 2.1.). Since each of these processes is influenced by 
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management practices, the focus of this section is to describe the natural processes 

involved in regulating the seed bank and how management practices influence 

these processes to minimize the weed seed bank. 

2.2.1. Seed Entry 

Weed seeds can enter the seed bank through a number of external sources, 

including the movement of equipment, contaminated crop seed, invertebrates and 

vertebrates, wind or manure (Buhler et al. 1997a).  Typically, the amount of seed 

entering through these sources may be minor, but can be an important source in 

establishing new weed infestations. For example, a study of 20 New York farms 

reported an average of 340 weed seeds m-2 added to the soil seed bank from 

manure, with the highest amount from the study recorded as 1900 seeds m-2 (Mt 

Pleasant and Schlather 1994). Consequently, seed banks with low seed densities 

would be largely influenced by the addition of manure containing a large 

proportion of weed seeds; however, application of manure with low weed seed 

densities may have less impact on weed populations emerging from seed banks 

that already contain a large proportion of seeds.  The introduction of new weed 

species can occur with the application of manure, especially if livestock have been 

provided feed grown outside the local area. The introduction of velvetleaf onto 

New York farms in the 1970s is believed to be a consequence of spreading 

manure from cows fed corn imported from the Midwest U.S. (Mt Pleasant and 

Schlather 1994).  
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Harvest losses can contribute to significant additions of volunteer crop and 

weed seeds in the seed bank. In canola, approximately 6% of harvested seed 

enters the seed bank, which is approximately 20 times the normal canola seeding 

rate of 4 to 5 kg ha-1 or 3,000 seeds m-2 (Gulden et al. 2003a).  Alternatively, seed 

losses in cereals are not as extreme, whereby losses from shattering and 

harvesting wheat range between 35 and 800 seeds m-2 (Clarke 1985). Weed seeds 

are also ejected from combine harvesters with chaff, which can extend the patchy 

distribution of weed populations (Shirtliffe and Entz 2005).  

Seed rain is the primary source for replenishing the weed seed bank 

(Norris 2007). Since many annual weed species are prolific seed producers, 

reducing the number of plants capable of producing viable seeds is essential to 

managing weed seed banks. In Alberta, scentless chamomile (Matricaria 

perforata Mérat) can produce between 71, 000 and 256,000 seeds plant-1 

(Blackshaw and Harker 1997), depending upon environmental conditions and 

time of emergence; as a result, scentless chamomile populations can increase 

quickly if not managed carefully. The magnitude of seed production is influenced 

by many factors including weed and crop species (Clay et al. 2005; Davis 2008; 

Holman et al. 2006; Lutman 2002), crop seeding rate (O'Donovan et al. 2007b), 

time of weed emergence (Blackshaw and Harker 1997) and soil fertility 

(O'Donovan et al. 2008; Van Delden et al. 2002). Since weed escapes can 

maintain or intensify weed populations, reducing or eliminating seed production 

can help manage weed seed banks. After reducing weed seed production for 6 

years in continuous corn, Schweizer and Zimdahl (1984) reported seed bank 
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declines up to 98%, from 1.3 billion seeds ha-1 to 21 million seeds ha-1; however 

discontinuing herbicide applications for three years resulted in replenishing the 

seed bank to 648 million seeds ha-1 or 50% of the initial population. Burnside et 

al. (1986) also reported similar results in continuous corn, whereby eliminating 

seed production reduced the seed bank by 95% over 5 years. After one year of 

discontinuing herbicide applications, seed bank densities were 90% of the initial 

population. Consequently, minimizing the addition of new weed seeds can reduce 

the weed seed reservoir, but a variety of factors contribute to the longevity of 

these seeds in the seed bank. 

2.2.2. Dormancy, Germination and Emergence 

Dormancy, germination and emergence are important processes that 

regulate seed banks. Weed seed populations benefit from dormancy as a condition 

that permits sporadic germination and persistent seed banks (Bewley 1997). The 

annual additions and losses of weed seeds from the soil seed bank in addition to 

variable levels of dormancy among a seed population contribute to the complexity 

and difficulty in predicting germination and emergence (Allen et al. 2007; Batlla 

and Benech-Arnold 2007; Benech-Arnold et al. 2000; Forcella et al. 2000).  Seed 

dormancy has been defined as a characteristic or an internal condition of a seed, 

whereby the degree of dormancy establishes a range of hydric, thermal and 

gaseous conditions for germination (Benech-Arnold et al. 2000; Vleeshouwers et 

al. 1995). Despite numerous classification systems for seed dormancy (Baskin and 

Baskin 2004; Harper 1977; Vegis 1964), for the purpose of this review, the 
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classification of primary and secondary dormancy defined by Karssen (Karssen 

1980/1981b; Karssen 1982) will be used. Several researchers have addressed 

environmental, physiological, molecular and genetic factors that induce and 

alleviate primary and secondary dormancy (Allen et al. 2007; Baskin and Baskin 

1998; Baskin and Baskin 2004; Bentsink et al. 2007; Bewley 1997; Finch-Savage 

and Leubner-Metzger 2006; Finkelstein et al. 2008; Foley 2001; Hilhorst and 

Toorop 1997; Hilhorst 2007; Koornneef et al. 2002; Li and Foley 1997). Although 

research is accumulating on mechanisms of dormancy, there is a deficiency in the 

amount of knowledge pertaining to dormancy cycling in weed seed banks and an 

inability to accurately predict weed seed germination and emergence under field 

conditions (Batlla et al. 2004; Benech-Arnold et al. 2000).  

Weed seeds dispersed from the mother plant can have innate dormancy 

referred to as primary dormancy (Karssen 1980/1981a; Karssen 1982). Dormancy 

may be found in the embryo or the maternal tissues surrounding the embryo, such 

as the endosperm or perisperm (Baskin and Baskin 2004). Unlike annual weeds, 

annual crops have been selected for non-dormancy or reduced dormancy to 

promote synchronous germination. Many cereal crop species do not exhibit an 

innate dormancy in the embryo but have a short period of dormancy imposed by 

structures surrounding the embryo, including the endosperm, pericarp and 

glumellae which prevent pre-harvest sprouting (Benech-Arnold et al. 1999; 

Benech-Arnold 2004).  
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A period of after-ripening or stratification (a.k.a cold after-ripening or 

moist chilling) is typically needed to release primary dormancy. During after-

ripening, seeds undergo dormancy release when exposed to dry, stable 

environmental conditions; however, the rate of after-ripening is largely dependent 

on temperature (Allen et al. 2007). Generally, winter annual weeds, including 

sheperd’s purse [Capsella bursa-pastoris (L.) Medik], chickweed [Stellaria media 

(L.) Vill.], flixweed and downy brome require a period of after-ripening to release 

primary dormancy (Allen et al. 1995; Baskin and Baskin 1986; Li et al. 2005); 

however, some annual grass species also require a period of after-ripening, 

including wild oat (Foley 1994) and barley (Favier 1995). The extended periods 

of hot, dry summer temperatures followed by fall precipitation can release 

primary dormancy and permit germination in either late fall or early spring. 

Alternatively, during stratification, seeds are exposed to moist conditions under 

low temperatures with adequate oxygen. For many summer annual weed species 

in temperate regions, stratification is an integral process that alleviates primary 

dormancy (Probert 2000); consequently, periods of low temperatures during 

winter release primary dormancy to allow for spring germination.  The 

stratification period can vary in the length of time (Baskin et al. 1992; Bello et al. 

1998) and among weed species, populations and individual seeds (Andersson and 

Milberg 1998; Milberg and Andersson 1998). Stratification can also increase the 

sensitivity to other dormancy breaking stimulants, such as nitrate and light 

(Hilhorst et al. 1986). The release of primary dormancy can be further 
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complicated in seed populations that require both after-ripening and stratification 

(Watanabe et al. 2002).  

Secondary dormancy can be induced in non-dormant seeds when 

environmental conditions are not conducive for germination or re-induced in 

seeds that have previously achieved a low level of dormancy (Karssen 

1980/1981a; Karssen 1982).  The release of primary dormancy followed by the 

induction and re-induction of secondary dormancy creates an opportunity for 

dormancy cycling (Baskin and Baskin 1985; Karssen 1980/1981b). Consequently, 

a single generation of seeds may experience dormancy cycling for several years 

before germination and emergence occur (Forcella et al. 2000). Generally, 

dormancy is alleviated in the season prior to the period of favourable 

environmental conditions, whereby germination is stimulated during conditions 

that favour weed seedling growth and survival. For example, various summer 

annual weed species enter the fall seed bank exhibiting a high level of primary 

dormancy; although dormancy relief can occur during the winter followed by 

spring germination and emergence, some seeds can enter a state of secondary 

dormancy during summer (Figure 2.2.) (Batlla and Benech-Arnold 2007; Benech-

Arnold et al. 2000). Winter annual weed species show the opposite trend. In 

temperate regions not limited by moisture, the dormancy cycle of many weed 

species is primarily regulated by temperature (Batlla et al. 2004); however, 

evidence suggests base water potential may influence the effect of temperature on 

dormancy alleviation and induction (Batlla et al. 2004; Batlla and Benech-Arnold 

2007; Bauer et al. 1998). Low temperatures in winter release secondary dormancy 
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in summer annuals and induce dormancy in winter annuals; conversely, high 

temperatures during summer release dormancy in winter annuals and induce 

dormancy in summer annuals (Batlla et al. 2004). In general, dormancy cycling is 

an important characteristic of weed species that promotes the survival and success 

of seedlings in harsh and unpredictable environments. 

Primary and secondary dormancy may be physiologically and 

mechanistically different in weed species (Cadman et al. 2006; Vleeshouwers et 

al. 1995) but similar environmental stimuli are responsible for modulating these 

processes (Adkins and Simpson 1988; Karssen 1982). Furthermore, the role of 

environmental conditions such as fluctuating temperatures, light quality and 

nitrate, which alleviate and induce dormancy, may not differ from conditions that 

stimulate germination. As a result, the transition between dormancy and 

germination has added to the difficulty in studying dormancy (Hilhorst 2007).  

For many weed seeds in the soil seed bank the degree of dormancy varies 

over a continuum. A range of environmental conditions that terminate dormancy 

(primary and secondary) and stimulate germination are influenced by the degree 

of dormancy (Benech-Arnold et al. 2000) (Figure 2.3.). At low dormancy levels 

seeds are sensitive to environmental factors that terminate dormancy and initiate 

germination (Benech-Arnold et al. 2000). Alternatively, seed populations 

exhibiting a high level of dormancy are less sensitive to environmental changes. 

As seed populations begin to exhibit low levels of seed dormancy the range of 

environmental conditions that permit germination broadens, whereas at high 
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levels of dormancy the range of environmental conditions narrows until 

germination cannot occur (Batlla et al. 2004; Batlla and Benech-Arnold 2007).  

For example, in summer annual weeds, such as prostrate knotweed (Polygonum 

aviculare L.) (Figure 2.3.), seeds experiencing low levels of dormancy would be 

sensitive to a wide range of temperatures and water potentials thereby releasing 

dormancy and permitting germination; alternatively, a seed population 

experiencing a high level of dormancy would be less sensitive to factors that 

terminate dormancy, and only a narrow range of temperatures and water 

potentials could permit germination (Batlla and Benech-Arnold 2003; Batlla and 

Benech-Arnold 2004).  

The degree of dormancy in weed seeds is also influenced by the 

physiological and physical status of the seed (Allen et al. 2007). For example, the 

genetic composition, age, maternal environment and position on mother plant 

during development are physiological factors that influence dormancy level 

(Andersson and Milberg 1998; Li and Foley 1997; Matilla et al. 2005).  Physical 

factors of the seed, such as the permeability and strength of the seed coat, can 

influence the environmental stimuli regulating dormancy and germination (Allen 

et al. 2007; Matilla et al. 2005).  

As environmental conditions permit the termination of dormancy and 

promotion of germination, seedling emergence (recruitment) can occur. Weed 

seedling emergence has three processes: seed germination, root elongation and 

shoot elongation. Each process is driven by different environmental stimuli 
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(Roman et al. 1999; Roman et al. 2000). Seed germination is one of the most well 

studied phenomena in plant development (Baskin and Baskin 1998; Egley 1986; 

Finch-Savage and Leubner-Metzger 2006; Hilhorst and Toorop 1997; Koornneef 

et al. 2002; Nonogaki et al. 2007; Riemens et al. 2004). Germination sensu stricto 

begins with the uptake of water (imbibition) by a dry seed and terminates once the 

embryo, typically the radicle, emerges through surrounding tissues (Nonogaki et 

al. 2007). The primary factors required for germination include temperature, water 

and oxygen; however, seeds may be stimulated by other factors including nitrate, 

light quality and ethylene (Egley 1986). Root (radicle) and shoot elongation are 

primarily regulated by temperature (Roman et al. 1999).  

Several factors influence seedling emergence including weed species 

(Blackshaw et al. 2002a; Blackshaw 2003; Bouwmeester and Karssen 1993; Boyd 

and Van Acker 2003; De Corby et al. 2007; Lawson et al. 2006), seed size 

(Buhler 1995; Chauhan et al. 2006c), seed age (Martinkova et al. 2006; Roberts 

1964), soil granulometric composition (Benvenuti 2003), environmental 

conditions (Boyd and Acker 2004a; Boyd and Van Acker 2004b; Bradford 2002; 

Grundy and Mead 2000; Page et al. 2006) and tillage regime (Benvenuti 2003; 

Bullied et al. 2003; Chauhan et al. 2006a; Chauhan et al. 2006b; Norsworthy and 

Oliveira 2007; Van Acker et al. 2004).  

Tillage regimes play an important role in modulating the level of weed 

germination and seedling emergence. Timing and tillage regime influence the 

distribution of seeds in the soil profile as well as the microenvironment near the 



40 

 

seed (Spandl et al. 1998; Yenish et al. 1996); however, tillage can also indirectly 

influence dormancy levels through fluctuations in soil temperature and moisture 

or modifying nitrate concentrations (Benech-Arnold et al. 2000). In no-till soils, 

seed is distributed within the top 5 cm of soil (Clements et al. 1996). As a result, 

weed seeds on or near the soil surface are exposed to frequent or early spring 

temperature fluctuations, which can create conditions for dormancy release and 

stimulation of germination (Forcella et al. 2000).  

Dehydration/hydration cycles can also act as a dormancy breaking 

mechanism (Batlla and Benech-Arnold 2006; Kagaya et al. 2005); however, 

fluctuations in moisture content can also decrease seed viability (Śliwi ńska and 

Jendrzejczak 2002) and induce secondary dormancy (Downs and Cavers 2000). 

Large seeds near the soil surface are at risk of becoming dehydrated than smaller 

seeds or more deeply buried large seeds buried (Buhler 1995).  

Tillage influences the distribution and size of soil aggregates as well as the 

variety and number of heterogenous seed-soil microsites (Pareja and Staniforth 

1985); therefore, variability in the seed-soil microsites can affect seed dormancy 

and germination. In addition, seeds buried deeply by tillage may not have enough 

energy reserve for the hypocotyl to elongate and sufficiently emerge, resulting in 

pre-seedling mortality (fatal germination). Compact soils or soils that form a thin 

crust can impede emergence, resulting in pre-seedling mortality; however, some 

weed species have evolved structures that improve emergence in various soil 

conditions. For example, Amaranthus retroflexus (L.) emerges with reflexed 
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cotyledons, the base of the cotyledons form a point at the tip of the hypocotyl 

(Forcella et al. 2000). Conversely, deeply buried seeds may induce secondary 

dormancy to minimize fatal germination. For example, some genotypes of 

volunteer canola buried deep (10 cm) can enter secondary dormancy (Gulden et 

al. 2004), resulting in a persistent seed bank (Gulden et al. 2003b).  

In addition to tillage regime, other crop production practices can influence 

seed emergence. Addition of nitrogen fertilizers alters the concentration of nitrate 

in the soil, which can release dormancy and stimulate germination (Benech-

Arnold et al. 2000; Dyer 1995). Incorporating crop residues with high C:N ratio 

can immobolize nitrogen, which can minimize nitrate needed to stimulate weed 

emergence (Benech-Arnold et al. 2000; Dyer 1995). Higher crop residues may 

also lower soil temperature and amount of light penetrating to the soil surface 

(Page et al. 2006). Understanding factors that alter dormancy status and seedling 

emergence can improve the timing of weed management strategies (Grundy 

2003). 

2.2.3. Seed Losses 

A large proportion of seeds are removed from the soil seed bank through 

germination; however, seed banks can also be depleted through exposure to 

environmental stresses, seed aging, predation and microbial decay (Gallandt et al. 

2004). In seeds, the endosperm provides a nutritional source of starches, oils and 

protein for seed predators and soil microorganisms. Various vertebrates and 

invertebrates have been identified in postdispersal predation, such as birds, insects 
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and rodents. Typically, invertebrates consume more weed seeds than vertebrates 

in agricultural communities (Cromar et al. 1999; Gallandt et al. 2005). Damage to 

seeds by seed predators can also create an opportunity for fungal and bacterial 

infections thus reducing seed viability. Seed borne and soil borne fungi can have 

an additive effect, increasing seed losses from the soil seed bank (Kiewnick 1964 

in Wagner and Mitschunas 2008). Soil fungi may access carbohydrates and amino 

acids from the seed to promote spore germination and hyphal growth. In some 

cases, soil bacteria and fungi can release toxins that damage seeds and/or inhibit 

weed seed germination (Harman 1983). For example, bacterial isolates extracted 

from the rhizosphere of winter wheat and downy brome suppressed downy brome 

root growth (Kennedy et al. 1991). Furthermore, seed mortality from microbial 

decay may be enhanced in soils enriched with inorganic nitrogen (Davis 2007). 

Some seeds have chemical protection mechanisms such as secondary metabolites 

(for example, phenols and alkaloids) and/or physical protection mechanisms such 

as hard, thick seed coats to maintain seed viability and structural integrity (Davis 

2008; Kremer 1986; Mohamed-Yasseen et al. 1994).  

Despite protection mechanisms to defend against seed predation and 

microbial attack, the maximum longevity of a seed is determined by its aging rate 

(Davis et al. 2008). The aging rate of seeds varies among weed species and soil 

conditions (Burnside et al. 1996; Conn and Deck 1995; Conn and Farris 1987; 

Conn et al. 2006; Egley and Chandler 1978; Telewski and Zeevaart 2002; Toole 

and Brown 1946). Seed aging is a gradual process that leads to loss of seed vigour 

and viability (McDonald 1999; Priestley 1986). In many cases it is difficult to 
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separate loss of viability due to seed aging or microbial degradation. The loss of 

turgor and increased leakage of solutes from decaying seeds can increase seed 

vulnerability to fungal and bacterial infections (Kremer 1993). Environmental 

stresses such as freeze/thaw and dessication/rehydration cycles can also reduce 

seed vigor (Gallagher and Fuerst 2006). Seed reductions from the soil seed bank 

of direct seeded systems are linked to increased exposure to inhospitable 

environmental conditions (Murphy et al. 2006), such as extreme temperatures or 

moisture levels. Exposure of seeds to extreme wet conditions can weaken seed 

coats of hard seeds, increasing the vulnerability to fungal decay (Mickelson and 

Grey 2006; Schutte et al. 2008). Despite the complex interaction of seed mortality 

factors, each process plays an integral component in regulating weed seed losses 

from the soil seed bank.  

Management practices may have an important role in enhancing seed 

mortality. Seeds on the soil surface, in the soil litter layer or mixed with other 

substrates, such as manure, can be at risk for predation compared to seeds buried 

deep in the soil profile. However, predation will vary among weed species, 

whereby small weed seeds that penetrate cracks in the soil or are washed away 

with rain endure less intense predation than large seeds remaining on the soil 

surface (Thompson 1987). Nevertheless, there is conflicting evidence regarding 

the impact of tillage regime on seed predation.  Cardina et al. (1996) reported 

equal rates of velvet leaf seed predation in continuous no-tillage and mouldboard 

plow corn fields. Conversely, Menalled et al. (2007) reported two to three time 

higher activity-densities in no-till than in conventional or organic cropping 
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systems among seed predating carabid species. Alternatively, predation rates can 

vary across tillage treatments. Seed predation of lamb’s quarter and barnyard 

grass [Echinochloa crus-galli (L.) P. Beauv.] in a corn-soybean rotation averaged 

32% in both no till and moldboard plow treatments and 24 % in chisel-plowed 

plots (Cromar et al. 1999). In addition, crop rotations create an opportunity to 

diversify cropping systems, while supporting a variety of predator species. 

Abundant seed predator diversity and seed predation has been reported in 

cropping systems that utilize cover crops or living mulches. Daily seed removal of 

giant foxtail (Setaria faberi Herrm) in wheat intercropped with red clover was 

greater than removal in a sole wheat crop (Davis and Liebman 2003). Similar 

results from Prasifka et al. (2006) show higher levels of predation and predator 

abundance when combining alfalfa and kura clover (Trifolium ambiguum M. 

Bieb.) mulches in corn and soybean than growing mulches alone.  

Although management practices are influential on the level of predation 

(Cromar et al. 1999; Davis and Liebman 2003; Gallandt et al. 2005; Mauchline et 

al. 2005; Menalled et al. 2000; O'Rourke et al. 2006; Westerman et al. 2003a; 

Westerman et al. 2003b), there are various interacting factors that are also 

important, including feeding preferences (White et al. 2007), food availability 

(Cromar et al. 1999), seed aggregation (Marino et al. 2005), environmental factors 

(Zhang et al. 1997), plant phenology and physiology (Harrison et al. 2003; Hulme 

1998), mobility of invertebrates (Cromar et al. 1999) and type of predator 

(vertebrate or invertebrate) (Cromar et al. 1999; Holmes and Froud-Williams 

2005; Marino et al. 1997). Consequently, seed predation is composed of complex 
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weed-predator interactions that can have a significant impact on the ecological 

processes within the weed seed bank (Menalled et al. 2006). 

In contrast to the significant role of seed predation, only a small proportion 

of seeds in the soil seed bank are degraded by fungi or bacteria (Kremer 1993). 

The susceptibility to fungal or bacterial infection varies among seeds and 

microorganisms. Consequently, the variability in microbial-mediated decay can 

be attributed to a variety of interacting abiotic and biotic factors as well as the 

inherent characteristics of both seed and microbial populations (Chee-Sanford et 

al. 2006).  Pitty et al. (1987) compared fungal colonization of green foxtail and 

giant foxtail seeds from three soil depths under plowed and reduced tillage 

regimes. Under reduced tillage greater fungal caryopsis colonization occurred in 

the top soil layers (0-7.5cm) whereas plowed treatments had greater colonization 

in the deep soil layers (7.5cm to 15cm). Greater fungal colonization was attributed 

to the placement of crop residues, whereby reduced tillage kept residues within 

the top soil layers and plowed treatments buried residues at deeper soil depths.  

Alternatively, Gallandt et al. (2004) reported similar proportions of dead and 

decayed wild oat seeds between zero-tillage and conservation tillage treatments, 

which suggests the environment may have had a greater impact on seed mortality 

than the tillage system. However, knowledge pertaining to seed mortality from 

environmental stresses such as freeze/thaw and dessication/rehydration cycles is 

limited (Gallagher and Fuerst 2006).   
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The proportion of seed mortality due to environmental stresses, seed 

aging, predation and microbial decay remain difficult to study and have been 

rarely categorized (Gallandt et al. 2004). Seed burial studies have been conducted 

to determine the longevity of seeds in the soil seed bank under various soil 

conditions (Burnside et al. 1996; Conn and Deck 1995; Conn and Farris 1987; 

Conn et al. 2006; Egley and Chandler 1978; Telewski and Zeevaart 2002; Toole 

and Brown 1946). Despite the practical nature of seed burial studies, they may 

overestimate seed bank depletion (Van Mourik et al. 2005) and seed longevity 

(Masin et al. 2006). The study of natural seed banks is difficult due to variability 

across time and space of various factors including seed size, species composition 

and seed depth (Benvenuti 2007). Nevertheless, research is needed to understand 

the role of seed mortality factors as well as mechanisms to enhance seed losses in 

western Canadian cropping systems. 

2.3. Characteristics of Wild Oat Seed Banks in Western Canada  

In western Canada, wild oat is an abundant annual grass weed found in 

agricultural fields.  Recent weed surveys in Alberta (Leeson et al. 2002), 

Saskatchewan (Leeson et al. 2003) and Manitoba (Leeson 2002) indicate wild oat 

is present in 46 %, 51 % and 57 % of surveyed fields, respectively. Wild oat can 

cause economic losses from increased herbicide costs, yield and quality losses, 

dockage and reduced fertilizer utilization. Herbicide costs for managing wild oat 

in spring wheat, barley and canola in Western Canada exceed $500 million dollars 
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annually (Leeson et al. 2006). In addition, an estimated $50 million dollars of lost 

yield occurs annually from residual wild oat populations (Leeson et al. 2006).  

Wild oats can significantly reduce yields of barley (Morishita and Thill 

1988; O'Donovan et al. 1985; O'Donovan et al. 1999b; O'Donovan et al. 2008; 

Scursoni and Satorre 2005), canola (Daugovish et al. 2002; Dew and Keys 1976; 

Zand and Beckie 2002), field peas (Harker et al. 2001), flax (Bell and Nalewaja 

1968; Bowden and Friesen 1967), oats (Willenborg et al. 2005a; Willenborg et al. 

2005b) and spring wheat (Carlson and Hill 1985; Kirkland and Hunter 1991; 

Kirkland 1993; O'Donovan et al. 2006a). Wild oat densities of 20 plants per m2 

will reduce barley, flax, spring wheat and canola yields 10%, 27%, 15% and 14% 

respectively (Dew 1972; Dew and Keys 1976). In addition to reduced yields, 

contamination by wild oats seeds can decrease crop quality by increasing dockage 

and reducing grain grade (Canadian Grain Commission 2009). Willenborg et al. 

(2005b) reported reductions in thousand kernel weight and kernel plumpness of 

tame oats as wild oat plant densities increased from 0 to 320 plants m-2. 

Management of wild oat is complicated by herbicide resistant genotypes, 

specifically group 1 (acetyl- CoA-carboxylase (ACCase) inhibitor), Group 2 

(acetolactate synthase (ALS) inhibitor) or both Group 1 and 2 herbicide-resistant 

genotypes (Beckie et al. 2008a). A survey of wild oat seed collected from 565 

fields across the Canadian Prairies found 83 and 46 fields with group 1 and group 

2 herbicide resistance, respectively (Beckie et al. 2008a). In addition, 1067 wild 

oat seed samples collected from growers across western Canada between 1996 
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and 2006 confirmed Group 1 herbicide resistance in 725 samples, Group 2 

resistance in 34 samples and resistance to both Group 1 and 2 herbicides in 55 

samples (Beckie et al. 2008a). In a field, the distribution of herbicide resistant 

biotypes is typically non-uniform, occurring in small, stable patches (<0.4ha) 

(Beckie et al. 2005). Mixtures of resistant and susceptible plants are commonly 

found in herbicide resistance patches whose proportion is a function of selection 

pressure, seed production, seed rain, seed bank longevity, seed germination and 

seedling emergence (Beckie et al. 2002; Beckie et al. 2005; O'Donovan et al. 

1999a).  

Seed production and seed rain create an opportunity to replenish seed 

banks and sustain annual infestations. Wild oat seed production has been shown to 

vary by crop species and density as well as wild oat plant density. Sharma and 

Vanden Born (1978) reported wild oat seed production under no crop competition 

to average between 100 to 150 seeds per plant but some individual plants can 

produce 500 seeds per plant. Increased seeding rates and competitive crop 

cultivars can enhance crop competition to reduce wild oat densities and seed 

production. O'Donovan et al. (1999b) reported that increasing barley densities 

from 150 to 250 plants m-2 under wild oat densities of 100 plants m-2 reduced wild 

oat seed inputs from 1030 to 630 seeds m-2, respectively. Management practices 

such as the amount of seed placed nitrogen or application of in-crop herbicide can 

have significant impact on wild oat seed production and seed bank densities. A 

six-fold increase in wild oat seed production occurred in barley between the 

lowest (0 kg N ha-1) and highest (120 kg N ha-1) seed placed nitrogen rates 
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(O'Donovan et al. 2008). Higher wild oat fecundity at the higher N rates was 

attributed to a reduction in barley stand. As a result, increasing barley seeding rate 

from 200 to 300 to 400 seeds m-2 increased barley plant density by 24 and 35%, 

respectively, as well as reduced wild oat fecundity by 23 and 44%, respectively 

(O'Donovan et al. 2008). Furthermore, increasing wheat seeding rate from 75 kg 

ha-1 to 150 kg ha -1 while increasing the imazamethabenz rate from quarter to full 

rates reduced the amount of wild oat seeds returned to the seed bank (O'Donovan 

et al. 2006a). At full herbicide rates, the increase in wheat seeding rate decreased 

wild oat seed bank densities from 253 to 106 seeds m-2 (O'Donovan et al. 2006a).  

Integrating weed management practices, such as higher seeding rates and strategic 

fertilizer placement, are instrumental in reducing wild oat seed production and 

subsequent seeds present in the soil seed bank (Blackshaw et al. 2008).  

Wild oat seed additions typically occur prior to crop maturity. The 

proportion of wild oat seeds remaining on the panicle largely depends on the 

harvest date (Shirtliffe et al. 2000) as well as environmental conditions prior to 

harvest, such as temperature and moisture (Barroso et al. 2006). In Western 

Canada, Shirtliffe et al. (2000) determined 80% of wild oat seed shatters prior to 

spring wheat harvested at 20% moisture. Seed that does not shatter prior to or 

during harvest may either be retained with the crop as a contaminant, or be 

separated from the harvested product and returned to the field. Chaff collection at 

harvest can be an effective method in reducing the amount of wild oat seed 

dispersed (Shirtliffe and Entz 2005) but may not be practical for large areas. 
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Although early wild oat seed shatter minimizes dispersal of seeds during harvest 

(Shirtliffe et al. 2000), it maximizes the opportunity to replenish the seed bank. 

Wild oat seed dormancy research has been characterized through various 

environmental (Armstrong and Adkins 1998; Hilton 1985; Hilton and Bitterli 

1983; Hsiao and Simpson 1971; Peters 1982; Sawhney and Naylor 1980; 

Sawhney and Naylor 1982; Sharma et al. 1976; Simpson 1990), physiological 

(Adkins and Ross 1981; Adkins et al. 1984a; Adkins et al. 1984b; Adkins et al. 

1984c; Adkins et al. 1984d; Adkins et al. 1985; Adkins and Simpson 1988; 

Adkins et al. 1988; Cairns and Devilliers 1986; Cranston et al. 1996; Foley 1987; 

Foley 1992; Hilton 1984; Hou and Simpson 1993; Hou et al. 1997; Metzger 1983; 

Upadhyaya et al. 1982; Upadhyaya et al. 1983), molecular (Dyer 1993; Johnson 

and Dyer 2000; Li and Foley 1994; Li and Foley 1995; Li and Foley 1996) and 

genetic (Adkins et al. 1986; Armstrong and Adkins 1998; Fennimore and Foley 

1998; Fennimore et al. 1998; Fennimore et al. 1999; Jana and Naylor 1980; 

Sawhney and Naylor 1979) studies. Despite extensive research, the physiological 

basis for dormancy in wild oat remains unknown.  The factors that affect the 

induction and release of dormancy states still remain inconclusive, and sometimes 

contradictory. In many cases, dormancy experiments have been conducted under 

non-uniform conditions, whereby seeds are acquired from different biotypes, 

maternal environments or seed handling and storage conditions; therefore, while 

individual experiments are useful to understanding dormancy mechanisms, 

extrapolating from these experiments is difficult. 
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A complex set of seed-environment interactions govern seed dormancy in 

wild oat. In general, wild oat seeds exhibit primary and secondary dormancy, with 

a period of after-ripening (warm, dry conditions) to alleviate primary dormancy 

(Myers et al. 1997). The degree of dormancy found among wild oat seed 

populations is influenced by a range of environmental and genetic interactions. 

For instance, natural wild oat seed populations can express a range of dormancy 

phenotypes ranging from nondormant to highly dormant (Adkins et al. 1986). The 

nature of the genes that regulate dormancy still remains rather unclear; however, 

at least three loci are involved in regulating the expression of a dormant 

phenotype (Fennimore et al. 1999). In addition, various environmental conditions 

such as ambient air temperature (Sawhney and Naylor 1980), soil moisture 

(Sawhney and Naylor 1982) and photoperiod (Armstrong and Adkins 1998) will 

influence the degree of dormancy while a seed is developing, as well as its ability 

to be released from a dormant state. Chemical promoters such as potassium nitrate 

(Hilton 1984), ethylene (Adkins and Ross 1981; Cranston et al. 1996), gibberellic 

acid (Metzger 1983) and sodium azide (Upadhyaya et al. 1982) have been used to 

identify the physiological mechanism(s) involved in alleviating primary and 

secondary dormancy in wild oat seeds. Furthermore, piercing at the midpoint on 

the dorsal side of a wild oat caryopsis (Foley 1987) or scarification via a 

mechanical incision near the scutellum, or chemical scarification such as using an 

alkaline substance (KOH) (Hou et al. 1997) have also been identified in breaking 

primary dormancy.  
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Although the mechanisms behind dormancy are unclear, secondary 

dormancy plays an integral part in modulating wild oat seedling emergence and 

seed bank persistence. In addition to dormancy, genetic variations within a 

population, seed age, weed management strategies and environmental cues such 

as light, soil temperature and soil moisture will also influence seed germination 

and seedling emergence. Under field conditions, wild oat seedlings will emerge 

over a wide range of soil moisture and soil temperatures; however, the optimal 

conditions for emergence may vary due to genetic variation among distinct 

populations (Sharma and Vanden Born 1978).  Friesen and Shebeski (1961) 

reported optimal air temperatures for emergence to occur between 15°C and 21°C; 

whereas Sharma et al. (1976) found maximum emergence to occur at air 

temperatures between 10°C and 21°C, whereby temperatures greater than 27°C 

noticeably reduced emergence. Similarly, Banting (1974) showed successful 

emergence to occur between 10°C and 27°C, with 83% germination occurring in 5 

days at 10°C.   

Although emergence increases with increasing temperatures, wild oat can 

germinate under low soil moisture conditions, whereby germination is not 

curtailed until water potential approaches -1200 kPA (Fernandez-Quinantilla et al. 

1990). Maximum seedling emergence occurs when soil moisture is between 50 to 

75% field capacity (Sharma et al. 1976). Similarly, Page et al. (2007) reported 

greater wild oat emergence across landscapes that acquired greater solar radiation, 

when soil moisture remained at field capacity. However, as soil moisture 

increases, linear increases in summer seed mortality and annual declines in seed 
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bank numbers can occur (Mickelson and Grey 2006). Light quality and water 

status can also regulate wild oat seed germination. Hsiao and Simpson (1971) 

found that a combination of low water potential with white, red, blue or far red 

light can inhibit wild oat germination compared to seeds kept in darkness; 

however, wild oat seeds under a high water potential can germinate under white 

light conditions compared toseeds in dark, red, blue or far red light conditions. 

Combining information on soil temperature and soil moisture with secondary 

dormancy research can aid in predicting peak times of wild oat emergence, 

thereby improving the timing of in-crop herbicide applications (Martinson et al. 

2007). 

Cohorts of wild oat seed that enter the soil seed bank can persist for 4 to 6 

years (Banting 1962; Banting 1966). However, conditions in the seed bank can 

influence the viability and longevity of seeds, including soil moisture and 

temperature, oxygen concentration and predation. Conn et al. (2006) reported wild 

oat seed viability rapidly declined by 80% in 3.7 years, with the greatest declines 

in seed viability occurring at a shallow depth (2 cm). Furthermore, wild oat seeds 

maintain higher rates of seed viability buried at deeper soil depths (> 12 cm) than 

at shallow soil depths (0-10 cm) (Miller and Nalewaja 1990). Under various 

tillage systems, the depth of burial has long term implications for wild oat 

populations.  

Seeds buried through tillage can remain viable longer than seeds found 

near or on the soil surface (Banting 1966; Thurston 1961). In zero tillage, the 
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persistence and viability of wild oat seeds may be lower since seeds on the surface 

can succumb to physiological decay, exhaustion, predation and fatal germination 

(Buhler et al. 1997a; Miller and Nalewaja 1990). Alternatively, Gallandt et al. 

(2004) found no difference between the level of microbial decay on wild oat 

between conservation tillage and no-tillage systems, suggesting similar levels of 

activity by microorganisms in each tillage regime. Mickelson and Grey (2006) 

reported a rapid decline of wild oat seeds under moist soils, whereby an increase 

in soil water content from 6 to 24%, increased wild oat seed mortality from 38 to 

88% in 2001 and 53 to 79% in 2002. Consequently, increased soil moisture can 

favour the activity of soil microorganisms resulting in increased seed mortality. 

The study of seed predation on wild oat populations is very limited. No current 

research has identified the impact or the type of seed predators involved in 

reducing wild oat seed banks in western Canadian cropping systems. 

Consequently, further research is needed to address the management factors that 

promote wild oat seed losses through increased seed decay, microbial or fungal 

decay or predation.  



55 

 

SEED RAIN

SEED BANK

SEED CARRYOVER

Predation

Degradation

Fatal Germination

Predation

Degradation

Predation

Degradation

Fatal Germination

Germination/Emergence

Mortality

Fecundity

Cohort carryover

 

Figure 2.1. Weed seed cycle [Adapted from (Buhler et al. 1997a)]. 
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Figure 2.2. Dormancy cycling of an annual weed in the soil seed bank [Adapted 
from Batlla and Benech-Arnold (2007)]. 
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Figure 2.3. Flow chart depicting changes in dormancy level and termination of 
dormancy for a summer annual weed seed bank [Adapted from Benech-Arnold et 
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Chapter 3. The Effects of Crop Rotation, Barley Cultivar, Barley Seeding 

Rate and Herbicide Rate on Wild Oat (Avena fatua L.) Seed Bank Density 

and Seed Mortality 

3.1. Introduction 

An interest in integrated weed management (IWM) from western 

Canadian producers continues to grow with increasing costs of fertilizers, 

herbicides and seed. Concerns about herbicide-resistant weeds, the residual effects 

of herbicides on crops and the environment as well as concerns of pesticides on 

human health are some reasons explaining a demand for alternative cropping 

practices (Beckie et al. 2008c; Blackshaw et al. 2008; O'Donovan et al. 2007a). 

To address the complex nature of economic, environmental and social concerns 

within weed management, an integrated systems approach is required (Swanton 

and Murphy 1996; Swanton et al. 2008). The primary goal of IWM research is to 

determine the best combination of agronomic practices that enhance crop 

competitiveness and reduce herbicide use while providing long-term weed 

control, within an economical, environmental and sociological sustainable system.  

Achieving this goal requires integrating agronomy, weed biology and 

weed ecology research. Integrated approaches to weed management have included 

the use of direct seeding (Murphy et al. 2006), increased seeding rates (Harker et 

al. 2003; O'Donovan et al. 2001; O'Donovan et al. 2004; O'Donovan et al. 2008), 

competitive crop cultivars (Harker et al. 2003; Harker et al. 2008; O'Donovan et 

al. 2005; Watson et al. 2006) and diverse crop rotations (Blackshaw et al. 2005a; 
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Blackshaw et al. 2005b). Integrating agronomic practices with early weed 

removal (Harker et al. 2001; Harker et al. 2003; Harker et al. 2004; Martin et al. 

2001) and judicious rates of herbicides (O'Donovan et al. 2001; O'Donovan et al. 

2006) can be used to increase seedling mortality, reduce weed densities and 

minimize seed production (Blackshaw et al. 2008; Norris 2007; Swanton and 

Booth 2004), thus reducing the capacity for the seed bank to buffer weed 

communities (Buhler et al. 2000). 

Seed banks are composed of cohorts of viable seeds found in or on the soil 

surface (Cavers 1995; Simpson et al. 1989) that act as a source of important 

genetic variation (Levin 1990). Changes in species composition and density are a 

product of both weed management (Cardina et al. 2002; Clements et al. 1996; 

Murphy et al. 2006; Sosnoskie et al. 2006; Swanton et al. 2006) and 

environmental conditions (Davis et al. 2005). Weed seeds are added to the seed 

bank predominantly during crop growth through seed rain but may enter with 

machinery, contaminated crop seeds, animals, wind, water, and manure (Buhler et 

al. 1997). Many weed species are prolific seed producers, with the ability to 

produce hundreds to millions of seeds, depending on species and density of crop 

and weed as well as, management practices (Norris 2007). As a result, under 

conditions of favourable weed growth or unsatisfactory management, weed 

escapes replenish seed banks, maintaining or augmenting populations over time 

(Belles et al. 2000; Gallandt 2006; Martinson et al. 2007; Schweizer and Zimdahl 

1984). Reducing or eliminating seed production can reduce the number of seeds 

entering the seed bank. Burnside et al. (1986) reported seed bank declines up to 
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95% over 5 years when seed production was eliminated; however, discontinuing 

management practices for one year replenished seed banks to 90% of original 

populations. Although reducing fecundity is effective in depleting the seed bank 

over time, some weed species produce seeds that persist in the soil for many 

years.   

Upon entering the seed bank, seeds can remain on the soil surface or 

become buried in the soil profile. Seeds within the seed bank can germinate if 

environmental conditions are favourable; however, dormant seeds do not 

germinate but persist. Persistent seed banks contain seeds that can remain viable 

and germinate over two or more years (Burnside et al. 1996; Conn and Farris 

1987; Conn and Deck 1995; Conn et al. 2006; Lutman et al. 2002). Seed longevity 

studies indicate that many weed species can persist in the soil for decades 

(Telewski and Zeevaart 2002; Toole and Brown 1946). Seed bank persistence is a 

function of soil disturbance (Thompson et al. 1998), seed burial (Bekker et al. 

1998; Thompson et al. 1998), primary and secondary dormancy (Benech-Arnold 

et al. 2000), post-dispersal seed predation (Cromar et al. 1999; Harrison et al. 

2003; Menalled et al. 2007) and resistance to soil microorganisms (Chee-Sanford 

et al. 2006; Kremer 1986; Kremer 1993). For many annual weed species, 

persistence is influenced largely by the degree of dormancy and dormancy cycling 

(Benech-Arnold et al. 2000). Relief from primary dormancy and the induction of 

secondary dormancy followed by subsequent cycles of secondary dormancy 

permit a proportion of weed seedlings to emerge in a given year (Baskin and 

Baskin 1998). Changes in soil temperature and soil moisture influence the 
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dormancy status of weed seeds (Batlla et al. 2004; Batlla and Benech-Arnold 

2007). Termination of dormancy, through exposure to specific environmental 

conditions such as fluctuating temperatures, light, carbon dioxide, nitrate, oxygen 

and ethylene may occur once a low level of dormancy is achieved (Benech-

Arnold et al. 2000). The termination of dormancy followed by favourable 

environmental conditions will permit germination and seedling emergence. As a 

result, the interaction of dormancy levels in the weed seed bank and 

environmental variables influencing germination make it difficult to predict 

seedling density (Batlla and Benech-Arnold 2007; Benech-Arnold et al. 2000; 

Forcella et al. 2000).  

Predicting seedling emergence from the soil seed bank can improve 

implementation of weed control measures (Buhler et al. 1997); however, the 

relationship between seedling recruitment and soil seed bank can exhibit a large 

degree of variability across weed species. Zhang et al. (1998) found the 

relationship between soil seed bank and seedling recruitment for giant foxtail, 

[Setaria faberi Herrm.], green foxtail [Setaria virdis (L.) Beauv.] and yellow 

foxtail [Setaria (Poir.) Roem & Schult] to be highly correlated (R2 = 0.80 to 0.88), 

but for common lambsquarters (Chenopodium album L.) the correlations were 

more variable (R2 = 0.25 to 0.44). Incorporating additional weed growth 

parameters such as seed rain with seed bank density may be used to improve 

estimations of weed seedling recruitment (Webster et al. 2003). Understanding 

factors that influence seed bank persistence and regulate weed emergence will 

improve implementation of IWM strategies.  
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Seeds can be removed from the soil seed bank through physiological and 

microbial decay, exhaustion, physical movement and predation (Buhler et al. 

1997). Weed seeds on or near the soil surface are more prone to seed predation 

and decay than buried seeds. Significant removal of seeds from the soil surface 

has been reported through post dispersal seed predation (Cromar et al. 1999; 

Davis and Liebman 2003; Gallandt et al. 2005; Jacob et al. 2006; Mauchline et al. 

2005; Menalled et al. 2000; Menalled et al. 2007; O'Rourke et al. 2006; 

Westerman et al. 2003a; Westerman et al. 2003b), but this mechanism has not yet 

been characterized for western Canada. Several factors influence the amount of 

seed predation in arable habitats, including the type of predator (vertebrate or 

invertebrate) (Cromar et al. 1999; Holmes and Froud-Williams 2005; Marino et 

al. 1997),  feeding preferences (White et al. 2007), seed aggregation (Marino et al. 

2005), environmental factors (Zhang et al. 1997), plant phenology and physiology 

(Harrison et al. 2003; Hulme 1998), and management practices (Cromar et al. 

1999; Davis and Liebman 2003; Gallandt et al. 2005; Mauchline et al. 2005; 

Menalled et al. 2000; O'Rourke et al. 2006; Westerman et al. 2003a; Westerman 

et al. 2003b). Nevertheless, very few studies have identified the implications or 

magnitude of weed seed losses within western Canadian cropping systems.  

Artificial seed banks have been frequently used to study seed bank 

dynamics, including germination (Bello et al. 1998; Burnside et al. 1996; 

Gallagher and Cardina 1998), decay (Mitschunas et al. 2006; Van Mourik et al. 

2005), predation (Harrison et al. 2003; Menalled et al. 2000; Westerman et al. 

2003a) and seedling emergence (Benvenuti et al. 2001). Seed bag burial is a 
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practical method to study the longevity and dormancy of a cohort of seeds in the 

seed bank (Egley and Chandler 1978; Lewis 1973); however, this method can 

potentially overestimate seed bank depletion (Van Mourik et al. 2005) and seed 

longevity (Masin et al. 2006). For instance, soil disturbances that occur during the 

placement of seed bags can alter soil bulk density and soil temperature resulting in 

different levels of seed bank depletion and seedling emergence than in a natural 

seed bank (Leon and Owen 2004). Natural seed banks are more difficult to study 

since the size, composition and seed depth are highly variable in space and time 

(Benvenuti 2007). Nevertheless, natural seed banks have the potential to reflect 

seed bank depletions and seed longevity more accurately since they encompass a 

range of natural and agronomic selection pressures. 

Wild oat (Avena fatua L.) is a competitive annual grass weed found 

throughout western Canada. In Alberta, wild oat is the second most abundant 

weed among cultivated field crops, present in 46 % of fields (Leeson et al. 2002). 

Wild oat is an economically important weed responsible for lost farm revenue, 

due to the use of costly herbicides and reductions in crop yield and quality. 

Management of wild oat in Alberta is complicated by the existence of biotypes 

resistant to Group 1 (acetyl- CoA-carboxylase (ACCase) inhibitor), Group 2 

(acetolactate synthase (ALS) inhibitor) and Group 1 and 2 herbicides (Beckie et 

al. 2008b). Currently, delaying herbicide resistance in wild oat populations can be 

accomplished using reduced herbicide rates in conjunction with increasing crop 

competitiveness (Beckie and Kirkland 2003).  
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Integrating several agronomic practices which increase crop 

competitiveness and reduce wild oat density can reduce the contribution of seed to 

the seedbank. O'Donovan et al. (2006) found a decrease in the number of wild oat 

seeds returned to the seedbank when wheat seeding rate was increased in 

conjunction with full rates of herbicide. Similarly, Blackshaw et al. (2005a) found 

in wheat (Triticum aestivum L.)-canola (Brassica napus L.) rotations under zero 

tillage that a combination of increased seeding rates and spring application of 

mid-row banded nitrogen reduced the number of weed seeds in the seedbank up to 

49%.  Although wild oat is not a prolific seed producer, fecundity under no crop 

competition can average between 100 to 150 seeds plant-1 (Sharma and Vanden 

Born 1978). Seed shatter in wild oat typically occurs prior to crop maturity; 

whereby, 80% of wild oat seeds are shed prior to spring wheat harvested at 20% 

moisture (Shirtliffe et al. 2000). While seed shatter prior to crop maturity 

minimizes the dispersal of wild oat during harvest (Shirtliffe et al. 2000), the 

seeds are a significant contribution to the seed bank.   

Wild oat has a persistent seed bank, whereby seeds typically remain viable 

for 4 to 6 years (Banting 1962; Banting 1966). In a seed cage burial study, 

Banting (1966) measured wild oat seed viability at 0-25cm depths within a heavy 

clay soil from Regina, Saskatchewan. A rapid reduction in wild oat seed viability 

occurred within the first two years, with only 8% of seeds remaining viable; 

however, remaining viable seeds persisted up to 6 years and 8 months. In 

addition, the greatest loss of seed viability occurred near the soil surface (0-5cm) 

than at depths greater than 5 cm. The persistence of wild oat seeds is largely 
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attributed to primary and secondary dormancy. Primary dormancy in wild oat is 

typically overcome by a period of after-ripening under warm, dry conditions 

(Myers et al. 1997); however, after an extended period of after-ripening, seeds can 

enter and re-enter secondary dormancy, which can occur over many successive 

seasons (Hou et al. 1997). The cycles of secondary dormancy ensures an 

intermittent emergence of seedlings, allowing a proportion of seedlings to survive 

and produce seed within a year. Consequently, encouraging growers to integrate 

cropping practices that incorporate the use of reduced herbicide rates may be 

hindered without an increased understanding of how wild oat seed inputs and 

removals influence the persistence and long term dynamics of seed banks 

(Maxwell et al. 2007). 

 A better understanding of the cumulative effects of integrating agronomic 

practices on seed bank dynamics is essential to managing wild oat populations. 

Furthermore, determining the extent of future wild oat problems using wild oat 

seedling emergence, biomass and seed production information may ensure timely 

and effective weed management strategies are implemented.  The objectives of 

this experiment are to: (1) identify the cumulative impact of the interactions 

between continuous and more diverse barley (Hordeum vulgare L.) rotations with 

low and high seeding rates and short and tall barley cultivars under quarter, half 

and full herbicide rates on wild oat seed bank dynamics (2) determine the 

relationship between wild oat seed banks and seedling emergence (3) determine if 

wild oat seed banks can be predicted from wild oat seedling emergence, biomass 

and seed production. 
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3.2. Materials and Methods 

3.2.1. Site Description  

Field experiments were conducted in 2006 and 2007 in conjunction with a 

seven year Agriculture and Agri-Food Canada (AAFC) integrated cropping 

systems project (Harker et al. 2009), established at Beaverlodge (55°13' N, 

119°24' W), Fort Vermilion (58°24́  N, 116°0΄ W) and Lacombe (52°27' N, 

113°45' W), Alberta. Mean air temperature and precipitation data for 

Beaverlodge, Fort Vermilion and Lacombe were recorded between 2005 and 2007 

(Appendix 1, Figure A1.1.). The clay loam soil (29% sand, 42% silt and 29% 

clay) at Beaverlodge, AB was a Dark Gray Luvisol (Typic Cryoboroll) with pH 

5.9 and 6.6 % organic matter. The Dark Gray Luvisol soil (Typic Cryoboroll) at 

Fort Vermilion, AB was a sandy loam soil (50% sand, 43% silt and 7% clay) with 

pH 6.8 and 3.3% organic matter. The loam soil (51% sand, 30% silt and 19% 

clay) at Lacombe, AB was an Orthic Black Chernozem (Typic Haplustoll) with a 

pH of 6.6 and 7.8% organic matter.  

3.2.2. Cropping System  

The initial experiment designed by Harker et al. (2009) quantified the 

impact of crop rotation, barley cultivar, barley seeding rate, and post emergent 

wild oat herbicide rate and their interactions on barley yield, wild oat management 

and environmental and economic sustainability.  

To test for interactions, treatments were imposed in a factorial 

arrangement and randomized in a complete block design with four replicates in 
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each of three locations. Vivar (Short) and AC Lacombe (Tall) barley varieties 

were compared within a continuous barley rotation (Cont) and a more diverse 

rotation (Rot) of barley-canola-barley-pea (Pisum sativum L.). A full description 

of the experimental sites and plot maintenance from 2001 to 2005 is summarized 

in Harker et al. (2009); 2006 to 2007 site information and plot maintenance is 

documented in Tables 3.1, 3.2 and 3.3 .   

Plots were direct seeded at all locations in May (Table 3.2.) with a 

ConservaPak1 air seeder with 1 cm wide knife openers and 23 cm row spacing. 

Plot size was 3 by 15 m. A single application of N, P2O5, K2O and S fertilizers 

were side banded at seeding according to soil test recommendations. Barley was 

seeded at either 200 seeds m-2 (1x) or 400 seeds m-2 (2x) at a 3 cm depth, canola 

(InVigor 5020) was seeded 150 seeds m-2 at a depth of 1 cm. Thousand kernel 

weights were used to adjust seeding rates to achieve target plant populations. To 

delineate management systems and to maintain consistency in discussion, the 

short cultivar, 1x barley seeding rate and continuous barley rotation will be 

referred to as the “low management” system (i.e. Short-1x-Cont) whereas the tall 

cultivar, 2x barley seeding rate and diversified barley rotation will be referred to 

as the “high management” system (i.e. Tall-2x-Rot).  

                                                           

1
 Conserva Pak Air Seeder, Model CP 129A. Conserva Pak Seeding Systems / 

Division of Vale Farms Ltd., PO Box 1420, Indian Head, SK, Canada S0G 2K0. 
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In 2006 and 2007, experimental areas received a glyphosate2 pre-seed 

application (450 to 900 g ae ha-1) to remove weeds. At the three-leaf stage in 

canola and the three- to four-leaf stage in barley, post-emergent wild oat 

herbicides were applied at 25%, 50% and 100% of the recommended rates in 

combination with full recommended rates of broadleaf herbicides (Table 3.3.). 

Within the continuous barley and barley rotational plots, barley variety, seeding 

rate and herbicide rate were repeated in the same plots across all years. Similarly, 

in the barley rotational plots seeded to peas or canola, a 25, 50 and 100% wild oat 

herbicide rate was repeatedly applied to the same plot throughout the crop 

rotation. 

3.2.3. Data Collection 

3.2.3.1. Seed Bank Sampling 

Wild oat seed banks at all three locations were sampled prior to seeding 

and after harvesting (Table 3.2.). An extended W pattern was used to take ten soil 

cores from each plot, keeping within two rows from each edge and one meter 

from the front and back of the plot. Prior to sampling soil, chaff on the soil 

surface was removed within a 10.8 cm diameter circular ring. A soil core was 

immediately collected to a 5 cm depth below the sampled area and bulked with 

collected chaff. The ten samples were bulked into one sample per plot. Soil 

                                                           

2
 Roundup, Roundup Transorb, or Roundup WeatherMax. Monsanto Canada Inc. 

67 Scurfield Blvd. Winnipeg, MB, Canada R3Y 1G4. 
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samples were air-dried (~25°C) immediately for five to seven days to prevent 

germination. Germinated seed found in samples were counted and removed. 

Germinated seeds included both newly germinated as well as those exposed to 

fatal germination in the field. Dry weights were taken prior to returning sample to 

a dry plastic bag for storage (data not shown).  To retrieve seeds, soil samples 

were first placed through an 8mm sieve to remove large pieces of straw and rocks 

and then through a 1mm sieve to remove fine soil particles. In the remaining 

sample, wild oat seeds were separated from soil by hand and stored separately in 

paper coin envelopes in a 5°C dark cool room. 

3.2.3.2. Emergence, Biomass and Seed Production 

The 2006 and 2007 wild oat emergence, biomass and seed production data 

from Beaverlodge, Fort Vermilion and Lacombe, AB. were retained from AAFC. 

Data were collected as outlined in Harker et al. (2009). Wild oat emergence, 

biomass and seed production data were counted from two permanent 0.91 m-2 

quadrats in each plot. Wild oat emergence was recorded prior to post-emergent 

herbicide applications. Aboveground wild oat biomass was recorded prior to crop 

maturity or prior to wild oat shattering. The wild oat biomass was dried at low 

temperatures (30°C) and seeds threshed and counted. Wild oat seeds were 

returned to the original quadrat in each plot. 

3.2.3.2. Seed Mortality Assessment 

Wild oat seeds retrieved from each soil sample were counted prior to 

germination testing. Each sample was equally divided into three subsamples, 
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whereby each subsample was limited to no more than 100 seeds and was planted 

at three different time intervals. Germination testing on seeds retrieved in the 

spring and fall of 2006 and 2007 began in the spring of 2007 and 2008, 

respectively, and commenced for four months. Each subsample was placed into a 

24 cm by 16 cm by 4 cm germination box containing a 23 cm by 15 cm Hoffman 

#601 blotting paper.  Blotting papers were moistened with 14 ml of distilled 

water. Germination boxes were kept in a growth chamber for ten days with a 

20:4h light:dark photoperiod and light:dark temperatures of 21:18°C. Germinated 

seeds with a healthy protruding radicle were counted and removed. Non-

germinated seeds that were soft and/or discolored were considered non-viable. 

Firm and intact seeds that remained non-germinated were tested for viability. 

These seeds were bisected longitudinally and placed embryo side down into a 10 

cm diameter plastic petri dish containing a No. 1 Whatman filter paper moistened 

with a 0.15% solution of 2,3,5-triphenyltetrazolium chloride (TTC). Petri dishes 

were incubated in the dark at room temperature for two hours.  Categorization of 

viable or non-viable seeds was based on the integrity of the embryo and tissue 

surrounding the embryo and staining pattern (Grabe 1970).  

Seed mortality is defined as the total number of non-viable seeds (i.e. 

seeds that did not geminate and non-viable seeds from tetrazolium test). Wild oat 

seed mortality percentage (SMP) was calculated: 

SMP = ((∑NV)/ (∑NT)) · 100                                                                   [1]  

where, NV is the total number of non-viable seeds from each subsample and NT is 

the total number of seeds used in each subsample. The proportion of seed 
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mortality was a direct inverse of seed viability (ie. total number of viable and 

germinated seeds). 

3.2.4. Statistical Analyses 

Residuals were tested for normality and heterogeneity using PROC 

GLIMMIX (Littell et al. 2006). Data from the wild oat seed bank densities, 

emergence, seed production and biomass indicated a right skewed distribution and 

variance heterogeneity; therefore, to account for nonnormality, a logarithmic 

transformation (log10 (x+1)) was performed. Wild oat seed mortality percentages 

(SMP) did not require a transformation as data was normally distributed.  

Wild oat seed bank densities and SMP were analyzed using PROC 

MIXED of SAS (Littell et al. 2006) whereby location and replicate were treated 

as random effects. Crop rotation, seeding rate, barley variety and herbicide rate 

were considered fixed effects. The significance of main effects and their 

interactions were determined for each variable (not shown). Contrasts were used 

to compare agronomic treatments (crop rotation, barley cultivar and barley 

seeding rate) within herbicide rates, as well as to compare low and high 

management systems among herbicide rates. Using Bonferroni adjustments, 

contrasts of fixed effects were considered significant at P <0.004.  

A simple regression using PROC REG in SAS (Freund and Littell 2000) 

was used to identify the relationship between log-transformed wild oat emergence 

and log-transformed wild oat seed bank density across all locations. More 

specifically, the relationship between fall 2006 seed banks and 2007 wild oat 
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emergence and the relationship between spring 2007 seed banks with 2007 wild 

oat emergence were examined . The relationship was described using a simple 

linear model: 

y = a + bx                [1] 

where, y is the dependent variable (log-transformed wild oat emergence),  a is the 

intercept, b is the regression coefficient or slope and x is the independent variable 

(log-transformed wild oat seed bank densities). 

Multiple linear regressions (PROC REG) were used to identify the value 

of using wild oat emergence, seed production and/or biomass data in predicting 

spring and fall wild oat seed banks, including all locations and by location. A 

multiplicative regression model, 

y= (eβ0)(x1
β1)(x2

β2)(x3
β3)(eε)                        [2] 

where, eβ0 is the intercept, β1, β2, β3 are the coefficients (elasticities) of x1, x2, x3 

which correspond to the biomass, emergence and seed production variables, 

respectively, and eε is the error component was converted to a linear model. The 

logarithms of both the independent and dependent variables were taken (Freund 

and Littell 2000) to develop the following linear model:  

 log(y)= β0+β1(log(x1))+ β2(log(x2))+ β3(log(x3))+(ε)                    [3] 

The inclusion of three independent variables (emergence, seed production 

and biomass) resulted in multicollinearity, i.e. a high degree of variable 

correlation among the independent variables. To reduce multicollinearity and 

improve the predictive power of the model, a stepwise selection procedure in SAS 
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(Freund and Littell 2000) was used for each regression,whereby variables 

included into the model were significant at 0.05.  

3.3. Results and Discussion 

3.3.1. Wild Oat Seed Bank Density 

Wild oat seed bank densities for 2006 and 2007 were a culmination of 

both viable and non-viable seeds. Crop rotation, seeding rate, barley variety and 

herbicide rate had an effect on wild oat seed bank density (P<0.05) in the spring 

and fall of 2006 and 2007, but interaction effects were not significant (data not 

shown).  

3.3.1.1. Spring 2006  

The seed bank sampled in the spring of 2006 reflects the cumulative 

impact of treatments imposed over five years as well as the additions and losses 

from the seed bank from the 2005 cropping season. Significantly fewer wild oat 

seed accumulated in the seed bank when high cultural management (Tall-2x-Rot) 

techniques were employed compared to low management (Short-1x-Cont) 

techniques (Figure 3.1.). Harker et al. (2009) also reported a similar trend 

reflected among wild oat emergence, biomass and seed production during the 

2005 growing season. 

Within the quarter herbicide treatments, crop rotation (P<0.0001) and a 

higher barley seeding rate (P= 0.0025) had a significant impact on the wild oat 

seed bank. In the continuous rotation, only the Tall-2X treatment was significantly 
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effective compared to the Short-1X in minimizing the wild oat seed bank. In the 

rotation treatments (Rot), all treatments were effective in reducing the amount of 

wild oat seed when compared with the low management treatment. Wild oat seed 

bank density from the high management system within the quarter herbicide rate 

was not significantly different from using a half or full rate of herbicide under low 

management. Thus, a high management system was as effective as using higher 

rates of herbicides.  

Within the half rate herbicide treatments, high management strategies 

reduced wild oat seed banks compared to low management strategies. Treatments 

that combined a 2X vs. 1X seeding rate (P<0.0001), a Tall vs. Short barley 

cultivar (P=0.0012) and a diverse crop rotation over a continuous barley rotation 

(P<0.0001) resulted in fewer wild oat seed in the seed bank. Under the continuous 

rotation, each treatment with the exception of the Tall-1X treatment resulted in 

less wild oat seed when compared to the Short-1X treatment. Similarly, the Short-

1X-Rot was the only treatment among the Rot treatments that did not differ from 

the Short-1X-Cont treatment.  

Within the full herbicide rate, all treatments except the Short-2X-Cont 

reduced the wild oat seed bank compared to the Short-1X-Cont treatment. 

Contrasts indicate that Tall vs. Short (P=0.0022) was the most effective wild oat 

management strategy. 
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3.3.1.2. Fall 2006  

The fall 2006 seed bank reflects wild oat seed inputs and losses from the 

2006 cropping season in addition to reserves from previous cropping seasons.  

More wild oat seed was retrieved from the fall seed bank than the spring, 

reflecting additional seed bank inputs during the 2006 cropping season. Large 

inputs of weed seeds to the soil seed bank typically occur from weed seed rain 

(Norris 2007). Many factors influence the amount of weed seed production 

including weed and crop species (Clay et al. 2005; Davis 2008; Holman et al. 

2006; Lutman 2002), crop seeding rate (O'Donovan et al. 2007b), weed 

emergence periodicity (Blackshaw and Harker 1997) and soil fertility (O'Donovan 

et al. 2008; Van Delden et al. 2002). Despite additional seed inputs, the impact of 

treatments continued to be reflected from the spring to fall seed bank (Figure 

3.1.). In addition, wild oat seed banks under high management systems across all 

three herbicide rates continued to have significantly fewer seeds than low 

management treatments. 

In the quarter herbicide rate, contrasts indicate that a higher barley seeding 

rate (P=0.0006) resulted in fewer wild oat seed in the seed bank. Consequently, 

the Tall-2X-Rot (526 seeds m-2) and Short-2X-Rot (805 seeds m-2) were the only 

treatments that had significantly less wild oat seed compared to the low 

management system (Short-1X-Cont) (2867 seeds m-2).  

Combining crop rotation (P<0.0001) and a higher barley seeding rate 

(P=0.0014) continued to yield fewer wild oat seeds in the fall seed bank under the 
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half herbicide rates. All treatments except the 1X-Short-Cont and 1X-Tall-Cont 

reduced the amount of seed in the wild oat seed bank.  

Lastly, under the full herbicide rate, crop rotation was the most optimal 

cultural technique to have an effect on the wild oat seed bank (P=0.0004).  The 

high management system at the half herbicide rate did result in fewer seeds than 

the low management at the full herbicide rate, but not significantly (P=0.0711). 

However, the quarter herbicide rate with high management system resulted in 

significantly more wild oat seed than the full rate of herbicide with a low 

management system (P<0.0001). In this instance, management changes could not 

fully replace the effectiveness of herbicides. 

3.3.1.3. Spring 2007 

The cumulative impact of six years of treatments and the biological 

processes influencing seed bank additions and losses are reflected in the spring 

2007 seed bank. Similar to the spring  and fall 2006 wild oat seed banks,  high 

management systems (Tall-2X-Rot) effectively reduced the amount of seeds in 

the spring 2007 seed bank compared to low management systems (Short-1X-

Cont) across all herbicide rates (Figure 3.2.).  

Within the quarter herbicide rate treatments, contrasts indicated seeding 

rate had the most significant impact on wild oat seed bank density (P=0.0002). 

The Tall-2X treatment in both Cont and Rot treatments had significantly fewer 

wild oat seeds in the seed bank than the Short-1X-Cont. Using the high 

management system with only a quarter herbicide rate, wild oat seed bank density 
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did not significantly differ from using a half rate of herbicide with a low 

management system (P=0.6510); however a significantly higher wild oat seed 

bank resulted from the high management system at the quarter herbicide rate 

compared to a full rate of herbicide with a low management system (P<0.0001). 

Increased seeding rate (P<0.0001) and crop rotation (P<0.0001) both 

significantly reduced the wild oat seed bank density at the half herbicide rate. 

Only the Short-2X-Cont and Tall-1X-Cont were not significantly different from 

the low management system (Short-1X-Cont).  

At the full herbicide rate, diverse crop rotation, higher seeding rates or 

competitive barley cultivars did not significantly reduce wild oat seed bank 

densities. In general, treatments within the Rot had significantly less wild oat seed 

compared to the Short-1X-Cont; whereas no differences were identified between 

the Short-1X-Cont and treatments within the Cont treatments. 

In general, fewer seeds were retrieved from the spring 2007 seed bank 

compared to the fall 2006 seed bank. The amount of seed lost between spring and 

fall ranged from 0 to 65% whereby greater seed losses occurred under treatments 

that had larger wild oat seed banks. The decline in the wild oat seed bank between 

fall 2006 and spring 2007 may be a function of post seed dispersal predation 

(Cromar et al. 1999), microbial and fungal decay (Gallandt et al. 2004; Mickelson 

and Grey 2006) and/or degradation from extreme environmental conditions 

(Murphy et al. 2006). Nevertheless, the magnitude of seed loss between fall and 

spring wild oat seed banks requires additional attention. Identifying and 
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augmenting losses in the wild oat seed bank may not only improve the impact of 

IWM strategies but reduce the persistence of wild oat in western Canada. 

Conversely, in some low density wild oat seed banks, more seeds were retrieved 

in the spring 2007 than fall 2006 seed banks; for example, in the Half-Tall-1X-

Cont, 55 more seeds m-2 were found in the spring 2007 than fall 2006. Despite 

randomly sampling plots each spring and fall, variability in the number of seeds 

sampled may be attributed to various levels of seed aggregation influenced by 

differences in plant morphology, seed dispersal and agricultural practices 

(Chauvel et al. 1989).  

3.3.1.4. Fall 2007  

The fall 2007 seed bank is a culmination of seed additions and losses over 

seven years. Similar to 2006, higher accumulations of wild oat seeds were 

observed in the seed bank compared to spring 2007 seed bank assessments, 

reflecting seasonal seed rain. Nevertheless, high management systems continued 

to exhibit smaller wild oat seed banks than low management systems (Figure 

3.2.).  

At the quarter herbicide, higher barley seeding rates had a substantial 

impact on reducing wild oat seed bank densities (P=0.0008). The Tall-2X-Rot 

(1123 seeds m-2) had significantly fewer wild oat seeds in the seed bank than the 

Short-1X-Cont (4323 seeds m-2). Similar to the spring 2007 seed bank, using good 

agronomic practices with only a quarter herbicide rate did not significantly differ 

from using a half rate of herbicide with a low management system (P=0.5040); 
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however, using a full rate of herbicide within a low management system still 

resulted in fewer wild oat seeds in the seed bank than using a quarter herbicide 

rate under high management (P<0.0001). 

At the half herbicide rate, higher seeding rate (P<0.0001) and crop rotation 

(P<0.0001) were key management strategies in minimizing the wild oat seed 

bank. Only the Tall-1X-Cont did not differ significantly from the low 

management system (Short-1X-Cont).  In addition, fewer wild oat seed were 

retrieved under the high management system at half herbicide rate (Tall-2X-Rot) 

compared to the low management system (Short-1X-Cont) at the full herbicide 

rate, but the difference was not significant (P=0.0703).  

 Under full herbicide rates, higher seeding rates resulted in the lowest wild 

oat seed bank densities (P=0.0042). Under the continuous and diverse rotations, 

Tall-2X and Short-2X treatments had smaller wild oat seed banks than the Short-

1X-Cont treatment.  

Combining a competitive barley cultivar with increased barley seeding 

rate and diverse crop rotation were consistent with Harker et al. (2009) study, 

which reported reductions in wild oat seed production, biomass and emergence 

under high management systems. Furthermore, the benefits of using competitive 

cultivars, higher crop seeding rates and crop rotation to effectively manage weeds 

have been previously reported in western Canada and are consistent with the 

findings in this study. Growing competitive barley, wheat, canola or field pea 

cultivars has been an important agronomic strategy to enhance crop 
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competitiveness (Beckie et al. 2008a; Harker et al. 2008; Hucl 1998; O'Donovan 

et al. 2005; Watson et al. 2006).  

Among barley varieties, taller hulled barley varieties are more competitive 

with wild oat or tame oat (Avena sativa L.) than semi-dwarf and hull-less varieties 

(O'Donovan et al. 2000; Watson et al. 2006) and subsequently experience less 

yield loss (O'Donovan et al. 2000). Increased barley (O'Donovan et al. 1999; 

O'Donovan et al. 2000; O'Donovan et al. 2001), wheat (Blackshaw et al. 2000; 

O'Donovan et al. 2006; Xue and Stougaard 2002), field pea (Johnston et al. 2002) 

and canola (Hanson et al. 2008; Harker et al. 2003) seeding rates have also been 

used to successfully increase crop yield and decrease weed biomass.  Increasing 

barley seeding rates from 200 to 250 plants m-2 can effectively reduce wild oat 

biomass and seed production and increase barley grain yield (O'Donovan et al. 

1999; O'Donovan et al. 2000; O'Donovan et al. 2001). Crop rotation has been 

instrumental in managing weed populations by providing interference with the life 

cycle and growth habit of weeds (Anderson 2005). For example, wild oat 

densities were up to 22 times greater in continuous cereal fields than in a cereal 

crop preceded by an alfalfa (Medicago sativa L.) or alfalfa/hay crop (Ominski et 

al. 1999).  

The impact of integrating agronomic practices with herbicide use on the 

long term effects of weed seed banks has not been widely studied in western 

Canada; however, results from this study are consistent with short-term seed bank 

studies carried out under cropping systems combining agronomic practices. 
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Blackshaw et al. (2005a) reported reductions in weed seed banks when spring 

wheat and canola seeding rates were increased from 100% to 150% of 

recommended rates and combined with spring fertilizer applications rather than 

fall fertilizer applications. Similarly, under reduced herbicide rates, O'Donovan et 

al. (2004) found lower densities of wild oat seeds in the seed bank when canola 

and barley seeding rates were increased; however, the impact of higher seeding 

rates became less evident as herbicide rates were increased to three quarter and 

full rates. Overall, maintaining low seed bank densities and subsequent seed 

additions through combined optimal agronomic practices and herbicide use are 

necessary to minimize future weed problems. 

3.3.2. Wild Oat Seed Mortality 

Seed mortality was examined to identify whether treatments had a direct 

or indirect impact on the number of non-viable seeds found within the seed bank. 

The seed mortality percent (SMP) reflects the number of seeds that did not 

germinate or were not viable from the tetrazolium testing. No main effects or 

interactions were found to significantly affect seed mortality (data not shown). In 

the spring and fall of 2006 and 2007, no significant differences among crop 

rotation, barely cultivar and barley seeding rate within quarter, half and full 

herbicide rates were identified (Figure 3.3. and Figure 3.4.). 

Varying levels of seed viability and mortality are reflected in the seed 

bank as a result of a culmination of seed cohorts from previous cropping seasons. 

Seed mortality remained remarkably stable, even when crop rotation, barley 
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variety and barley seeding rate were varied within each herbicide rate (Figure 3.3. 

and Figure 3.4.).  The average rate of mortality across all treatments in spring and 

fall 2006 was 83 and 84%, respectively, and 56 and 76%, respectively, in the 

spring and fall 2007.  Forcella (1992) reported >80% of the seed bank to consist 

of dead seeds, whereby a larger proportion of dead weeds seeds were found in the 

spring than in the fall. Implementing this trial under conservation tillage may have 

had a larger influence on seed mortality than the specific treatments. Long term 

agricultural management practices such as conservation tillage can influence soil 

microbial communities and have a significant impact on weed seed decay (Davis 

et al. 2006). In addition, seeds on the soil surface are exposed to extreme 

fluctuations in environmental conditions, physiological decay, exhaustion and 

predation (Buhler et al. 1997; Miller and Nalewaja 1990; Sagar and Mortimer 

1976).  For example, increased exposure to extreme environmental conditions, 

such as extreme temperatures or moisture enhanced seed reductions from the soil 

seed bank in zero tillage systems (Murphy et al. 2006). Exposing seeds to extreme 

wet conditions can weaken hard seed coats and create an opportunity for 

microbial infection to augment seed decay (Mickelson and Grey 2006; Schutte et 

al. 2008). 

During the spring of 2007, percent seed mortality was lower at all three 

locations than in other seasons or years. Seeds that tested negative with the 

tetrazolium test may have been underestimated during the spring of 2007.  In 

addition, several biological processes can influence seed mortality, including seed 

predation, extreme environmental conditions, seed aging, microbial decay and 
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fatal germination; therefore, variability in samples collected and used for 

germination testing may have reflected a different set of biological interactions.  

3.3.3. Relationship between Wild Oat Seed Bank Density and Seedling 

Emergence 

Using seed bank data to predict weed emergence can be an important tool 

for growers in predicting future weed problems and developing appropriate weed 

management strategies (Buhler et al. 1997). However, research studies that have 

investigated the relationship between weed seed banks and weed seedling 

emergence have been variable, ranging from highly to poorly correlated (Webster 

et al. 2003). In this study, a linear relationship between the fall 2006 logarithmic 

wild oat seed bank density and 2007 logarithmic wild oat emergence (R2=0.76; 

Figure 3.5.) as well as between the spring 2007 logarithmic wild oat seed bank 

density and 2007 logarithmic wild oat emergence (R2=0.78; Figure 3.6.) were 

established. As a result, estimates from the spring or fall seedbank show astrong 

relationship with wild oat emergence. 

Furthermore, larger wild oat seed banks had proportionally fewer emerged 

seedlings than smaller wild oat seed banks. Similarly, Boyd and Van Acker 

(2004) reported fewer wild oat seeds proportionally emerging with increasing 

seeding density. As the density of seeds increase, more seeds are likely to exist 

within microsites unsuitable for germination or more suitable to promote re-entry 

of secondary dormancy (Boyd and Van Acker 2004). Furthermore, within larger 

seed banks, cohorts of seed may exist from multiple generations, whereby a range 
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of dormancy states are expressed within each generation resulting in more 

variable emergence (Batlla and Benech-Arnold 2007). 

3.3.4. Relationship between Wild Oat Seed Bank Density, Biomass, 

Emergence and Seed Production 

Across all three locations, wild oat biomass and emergence were the most 

significant predictors of the fall and spring wild oat seed bank  (Table 3.4.). 

Similarly, after separation of spring and fall seed banks by location, 9 out of 12 

occurrences indicated emergence as the most consistent predictor of the wild oat 

seed bank density (Table 3.5.). However, wild oat biomass and seed production 

were also important variables in 7 and 6 locations, respectively. Emergence was 

not a significant predictor of the spring 2006 Beaverlodge, fall 2007 Fort 

Vermilion and fall 2007 Lacombe seed banks, but biomass or seed production 

were. These results were surprising as it was our hypothesis that wild oat seed 

production would also be a consistent predictor of seed bank density. One reason 

for this discrepancy may be some shattering loss of wild oat seed prior to seed 

production assessments, which may have underestimated the predictive value of 

this variable.  Furthermore, the wild oat seed bank reflects multiple seed cohorts, 

whereby the total number of seeds in the seed bank reflects multiple years of seed 

additions and losses. Consequently, the complexity and variability among weed 

seed banks across geographic areas highlights the difficulty in developing 

comprehensive weed management programs for wild oat. 
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3.3.5. Management Implications  

Integrating optimal agronomic practices such as competitive cultivars, 

higher barley seeding rates and diverse crop rotations effectively minimized wild 

oat seed bank densities. Occasionally, combining optimal agronomic practices 

under half herbicide rates did result in equivalent or smaller wild oat seed banks 

than full herbicide rates under low management. However, a higher wild oat seed 

bank density typically occurred under high management systems with quarter 

herbicide rate compared to low management at full herbicide rate. Consequently, 

herbicides will continue to be an important component in IWM systems for 

managing wild oat populations. However, growers that repeatedly implement a 

combination of optimal agronomic practices may have the opportunity to reduce 

herbicide rates or the number of herbicide applications over time. 

Optimizing management practices under reduced herbicide rates can 

improve crop health and productivity, herbicide resistance management and farm 

profitability (Harker et al. 2009).  Harker et al. (2009) demonstrated that adopting 

high management strategies was also beneficial in preserving barley yields.  After 

5 years of IWM, barley yields within high management systems at reduced 

herbicide rates were higher than yields within the low management system using 

higher herbicide rate. In addition, reducing herbicide rates can decrease the 

selection pressure for herbicide resistance of target-site herbicides (Beckie and 

Kirkland 2003). Combining high management practices with reductions in 

herbicide rates can be instrumental in reducing the number of resistant seeds in 
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the seed bank without increasing the overall seed bank and reducing the 

recruitment of herbicide resistant seedlings (Beckie and Kirkland 2003).   

Several biological processes are involved in regulating and regenerating 

seed banks (Buhler et al. 1997). Adopting integrated weed management practices 

to prevent or minimize seed return is essential to managing wild oat seed banks. 

Implementing high management practices can provide an opportunity to minimize 

seed return and maintain a small wild oat seed bank. Similarly, additional 

knowledge is needed to understand the mechanisms by which seeds are lost from 

the wild oat seed bank. Direct seeding can play an important role in minimizing 

the amount of seed in the seed bank. Murphy et al. (2006) found an increase 

incidence of herbivory and pathogenic infection on weeds in zero tillage cropping 

systems. The ability to enhance weed seed losses from cropping systems can have 

important long term weed management implications. 

The relationship between emergence and seed bank indicate that spring 

and fall seed banks can generally be used as a good indicator of wild oat 

emergence.  Developing better weed emergence models for growers and 

agricultural professionals to complement current IWM strategies will require 

additional information wild oat seed production, emergence, biomass and seed 

banks from across geographic regions in western Canada.
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Table 3.1. Summay of treatments at Beaverlodge, Fort Vermilion and Lacombe, 
Alberta between 2001-2007. 

Year/ Cropb,c,d  

Rotationa
 2001 2002 2003 2004 2005 2006 2007 

Barley 
Seeding 

Ratee 

Herbicide 
Rates 

Cont SB SB SB SB SB SB SB Normal Quarter 
Cont SB SB SB SB SB SB SB Normal Half 
Cont SB SB SB SB SB SB SB Normal Full 
Cont SB SB SB SB SB SB SB Double Quarter 
Cont SB SB SB SB SB SB SB Double Half 
Cont SB SB SB SB SB SB SB Double Full 
Cont TB TB TB TB TB TB TB Normal Quarter 
Cont TB TB TB TB TB TB TB Normal Half 
Cont TB TB TB TB TB TB TB Normal Full 
Cont TB TB TB TB TB TB TB Double Quarter 
Cont TB TB TB TB TB TB TB Double Half 
Cont TB TB TB TB TB TB TB Double Full 
Rot SB Canola SB Peas SB Canola SB Normal Quarter 
Rot SB Canola SB Peas SB Canola SB Normal Half 
Rot SB Canola SB Peas SB Canola SB Normal Full 
Rot SB Canola SB Peas SB Canola SB Double Quarter 
Rot SB Canola SB Peas SB Canola SB Double Half 
Rot SB Canola SB Peas SB Canola SB Double Full 
Rot TB Canola TB Peas TB Canola TB Normal Quarter 
Rot TB Canola TB Peas TB Canola TB Normal Half 
Rot TB Canola TB Peas TB Canola TB Normal Full 
Rot TB Canola TB Peas TB Canola TB Double Quarter 
Rot TB Canola TB Peas TB Canola TB Double Half 
Rot TB Canola TB Peas TB Canola TB Double Full 

aRotation: Cont- Continuous Rotation; Rot-Diverse Rotation 
bCrop: Barley Variety: SB- Short Barley; TB- Tall Barley 
cCanola Seeding Rate: Normal: 150 seeds m-2 
dPea Seeding Rate: Normal: 150 seeds m-2 

eBarley Seeding Rate: Normal: 200 seeds m-2; Double: 400 seeds m-2 
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Table 3.2.  Field operations and dates from 2006-2007 at Beaverlodge, Fort Vermilion and Lacombe, Alberta. 
 Field Operation Year Beaverlodge Fort Vermillion Lacombe 

 2006    
Spring seed bank collection  May 5,6 May-09 May 2-3 
Seeding (barley, canola)  May-16 May-12 May-04 
Barley harvest  Aug. 29, 30 Sept. 7, 8 Aug.16, 18 
Canola harvest  Aug. 29, 30 Sept. 18, 19 n/ab 
Fall seed bank collection  Sept. 28 Sept. 29 Oct. 4 

 2007    
Spring seed bank collection  May-14 May-15 May-01 
Seeding (barley)  May-17 May-18 May-11 
Barley harvest  Sept. 25, Oct. 15 a Sept. 13 Sept. 17 
Fall seed bank collection  Oct. 16 Sept. 24 Sept. 20 
a AC Lacombe barley harvested before Vivar harvested Oct. 15. 
b No harvest as canola swaths were displaced by wind 
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Table 3.3. Herbicide applications and dates from 2006-2007 at Beaverlodge, Fort Vermilion and Lacombe, Alberta.a 

Crop Year Herbicide  Herbicide Rate Beaverlodge Fort Vermilion  Lacombe 

       (g ai ha-1)     

Barley 2006 Fenoxaprop-p-ethylb  23, 46 or 93 June 13 June 13 May 31 

  
Quinclorac/Thifensulfuron/ 
Tribenuronc 

50/15/15   
 

       

Canola 2006 Glufosinated  125, 250 or 500 June 13 June 12 June 1 

  Clethodime  17, 34 or 67   

       
Barley 2007 Imazamethabenzf  125, 250 or 500 June 14/15 June 11 June 5 

    Florasulam/MCPA esterg 5/240       
aWhen specified on product labels, herbicides were applied with recommended adjuvants. 
bPuma Super 120: Bayer Crop Science Inc. #100, 3131 – 114 Ave. S.E., Calgary, AB, Canada T2Z 3X2. 
cTriton C: DuPont Canada Inc. 4444 72 Ave. S.E. Calgary, AB T2C 2C1. 
dLiberty: Bayer Crop Science Inc. #100, 3131 – 114 Ave. S.E., Calgary, AB, Canada T2Z 3X2. 
eSelect: Arysta LifeScience Canada Inc. 998, 105 – 150 Crowfoot Cres. N.W., Calgary, AB, Canada T3G 3T2. 
fAssert 300: Nufarm Agriculture Inc. 5507 – 1st Street S.E. Calgary, AB T2H 1H9.  
gFrontline: Dow AgroSciences Canada. #2100, 450 – 1st St. S.W. Calgary, AB T2P 5H1. 
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Table 3.4. The relationship between 2005, 2006 and 2007 log-transformed wild oat biomass and emergence with 2006 
and 2007 spring and fall log-transformed wild oat seed bank densities across Beaverlodge, Fort Vermilion and 
Lacombe, Alberta. 

    Estimatea,b   
Biomass, Emergence and  

Seed Production 
Seed bank Intercept Biomass Emergence R2 

2005 Spring 2006 0.81 (<0.0001) 0.76 (<0.0001) 0.27 (<0.0001) 0.78 
2006 Fall 2006 2.46 (<0.0001) 0.27 (<0.0001) 0.75 (<0.0001) 0.79 
2006 Spring 2007 2.11 (<0.0001) 0.35 (<0.0001) 0.61 (<0.0001) 0.76 
2007 Fall 2007 1.72 (<0.0001) 0.55 (<0.0001) 0.44 (<0.0001) 0.83 

aUsing stepwise multiple regressions, biomass and emergence were the remaining variables in each model significant at 
0.05.   
bp-values are listed beside each estimate value. 
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Table 3.5. The relationship between 2005, 2006 and 2007 log-transformed wild oat biomass, emergence and seed 
production with 2006 and 2007 spring and fall log-transformed wild oat seed bank densities at Beaverlodge, Fort 
Vermilion and Lacombe, Alberta. 
        Estimatea  

Biomass, 
Emergence 
and Seed 

Production 

Seed bank Location Intercept Biomass Emergence Seed  
Production 

R2 

2005 Spring 2006 Beaverlodge 0.63 (0.0204) 0.90 (<0.0001)   0.82 
  Fort Vermilion -0.39 (0.1316)  0.97 (<0.0001) 0.29 (0.0011) 0.61 
  Lacombe 1.90 (<0.0001)  0.63 (<0.0001) 0.35 (<0.0001) 0.69 
        

2006 Fall 2006 Beaverlodge 2.59 (<0.0001) 0.28 (<0.0001) 0.77 (<0.0001)  0.83 
  Fort Vermilion 0.10 (0.8286)  0.64 (0.0070) 0.78 (<0.0001) 0.68 
  Lacombe 2.32 (<0.0001) 0.52 (<0.0001) 0.30 (0.0177)  0.80 
        

2006 Spring 2007 Beaverlodge 1.90 (<0.0001) 0.35 (<0.0001) 0.67 (<0.0001)  0.76 
  Fort Vermilion -0.26 (0.5541)  0.74 (<0.0001) 0.71 (<0.0001) 0.68 
  Lacombe 2.36 (<0.0001) 0.40 (<0.0001) 0.44 (0.0009)  0.76 
        

2007 Fall 2007 Beaverlodge 2.46 (<0.0001) 0.20 (0.0030) 0.55 (<0.0001) 0.13 (0.0333) 0.85 
  Fort Vermilion 1.73 (<0.0001) 0.85 (<0.0001)   0.72 

    Lacombe 4.10 (<0.0001)     0.50 (>0.0001) 0.78 
aUsing stepwise multiples regressions, independent variables for each location were left in the model significant at 0.05. 
bp-values are listed beside each estimate value.  
c2006 biomass data for Fort Vermilion is not included in the model.  
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Figure 3.1. Mean wild oat seed bank density for the spring and fall of 2006 from Beaverlodge, Fort Vermilion and 
Lacombe, Alberta. Data are back-transformed means of log-transformed data. Pre-planned contrasts are listed beside 
each graph and are considered significant at P <0.004.  The statistical significance of the difference between a given 
log-mean and the Short-1x-Cont treatment within each quarter, half and full herbicide rate are denoted ‘*’ P < 0.05, 
‘**’ P < 0.01. 
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Figure 3.2. Mean wild oat seed bank density for the spring and fall of 2007 from Beaverlodge, Fort Vermilion and 
Lacombe, Alberta. Data are back-transformed means of log-transformed data. Pre-planned contrasts are listed beside 
each graph and are considered significant at P <0.004.  The statistical significance of the difference between a given 
log-mean and the Short-1x-Cont treatment within each quarter, half and full herbicide rate are denoted ‘*’ P < 0.05, 
‘**’ P < 0.01. 
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Figure 3.3. Percent wild oat seed bank seed mortality for the spring and fall of 2006 from Beaverlodge, Fort Vermilion 
and Lacombe, Alberta. Data are reported as LSmeans. Pre-planned contrasts are listed beside each graph and are 
considered significant at P <0.004.  The statistical significance of the difference between a given mean and the Short-
1x-Cont treatment within each quarter, half and full herbicide rate are denoted ‘*’ P < 0.05, ‘**’ P < 0.01.  
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Figure 3.4. Percent wild oat seed bank seed mortality for the spring and fall of 2007 from Beaverlodge, Fort Vermilion 
and Lacombe, Alberta. Data are reported as LSmeans. Pre-planned contrasts are listed beside each graph and are 
considered significant at P <0.004.  The statistical significance of the difference between a given mean and the Short-
1x-Cont treatment within each quarter, half and full herbicide rate are denoted ‘*’ P < 0.05, ‘**’ P < 0.01. 
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Figure 3.5. Linear relationship between 2006 fall wild oat seed bank and 2007 
wild oat emergence from Beaverlodge, Fort Vermilion and Lacombe, Alberta. 
Symbol (●) represent log-transformed values and the line represents a fitted linear 
regression.  
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Figure 3.6. Linear relationship between 2007 spring wild oat seed bank and 2007 
wild oat emergence from Beaverlodge, Fort Vermilion and Lacombe, Alberta. 
Symbol (●) represent log-transformed values and the line represents a fitted linear 
regression. 
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Chapter 4. Seasonal emergence and survival patterns of wild oat (Avena 

fatua L.) under integrated weed management systems in central Alberta 

4.1. Introduction 

Wild oat (Avena fatua L.) is an economically significant grass weed across 

the Canadian Prairies. The cost of managing wild oat in spring wheat (Triticum 

aestivum L.), barley (Hordeum vulgare L.) and canola (Brassica napus L.) crops 

in western Canada can exceed $500 million dollars annually (Leeson et al. 2006). 

Herbicides have been effectively used to eliminate or minimize losses in crop 

yield and quality from wild oat (O'Donovan et al. 2003; Wille et al. 1998). 

However, for many growers an overreliance on herbicides has resulted in repeated 

applications of herbicides with the same mode of action and the selection of 

herbicide resistant weed biotypes (Beckie 2007).  

Resistance to common graminicides include both group 1 (acetyl- CoA-

carboxylase (ACCase) inhibitor) and Group 2 (acetolactate synthase (ALS) 

inhibitor) modes of action. In a field survey of herbicide resistant weeds in 

Alberta, 11% and 13% of fields contained ACCase inhibitor and ALS herbicide 

resistant wild oat (Beckie 2004). Coupling cultural weed management practices 

with less frequent selective herbicide use provides an opportunity to minimize the 

evolution and spread of herbicide resistant weeds (Beckie 2007).  Consequently, 

mitigating the evolution of herbicide resistance in wild oat populations will 

require integrating various cultural weed management practices with alternative 



 

136 

 

herbicide use to ensure cropping systems remain economically and 

environmentally sustainable. 

Robust weed management strategies can be achieved by integrating 

numerous cultural management practices to promote crop competition and 

minimize weed establishment. IWM strategies within canola cropping systems 

that combine a competitive canola cultivar with increased seeding rate and early 

weed removal can improve canola yields and reduce weed biomass (Harker et al. 

2003). Similarly, within a direct seeded spring wheat–canola rotation, a 

combination of early seeding, increased crop seeding rates, and spring-banded 

fertilizer reduced weed biomass and weed seed banks while maintaining high crop 

yields (Blackshaw et al. 2005). Integrating agronomic practices with chemical 

control measures have been successful in reducing wild oat biomass, seed 

production and seed bank densities (Blackshaw et al. 2008; Harker et al. 2009; 

O'Donovan et al. 2008). O'Donovan et al. (2006) reported less wild oat biomass 

and seed in the soil seed bank when wild oat herbicides were applied to wheat 

seeded at 150 kg ha-1 than at 75 kg ha-1. 

The time of weed emergence relative to crop emergence is also important 

for considering potential crop yield loss (O'Donovan et al. 1985). Generally, when 

weeds emerge with or prior to the crop, greater crop yield loss can occur (Bosnic 

and Swanton 1997; O'Donovan et al. 1985; Willenborg et al. 2005b); therefore, 

early seeding (Chen et al. 2005; Clayton et al. 2004; Kirkland and Johnson 2000) 

and pre-emergent weed control (Johnson et al. 2002) can maximize weed control 

and grain yield. O'Donovan et al. (1985) reported a 3% reduction in crop yield for 
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each day that wild oat emerged prior to wheat or barley. Late emerging weed 

seedlings typically have a minimal impact on crop yield (Bosnic and Swanton 

1997; Swanton et al. 2008). While yield responses to early weed removal has been 

consistently reported (Harker et al. 2001; Harker et al. 2008; Martin et al. 2001; 

O'Donovan et al. 1985; Willenborg et al. 2005a), the implication for weed 

populations are less clear. In western Canada, there are no reports of the success 

of weed cohorts that follow a herbicide application and their role in replenishing 

the seed bank. 

Timing control measures to optimize weed control and maximize yield 

requires knowledge of the time and extent weeds emerge from the soil seed bank. 

Dormancy, germination and emergence are three important biological processes 

that regulate wild oat soil seed banks. Wild oat seed germination and emergence 

are largely influenced by the induction and release of primary and secondary 

dormancy. The level of dormancy within a wild oat seed population is influenced 

by a range of environmental and genetic interactions. For example, a broad range 

of dormancy phenotypes ranging from nondormant to extremely dormant can be 

expressed within a genetically distinct wild oat seed population (Adkins et al. 

1986). Furthermore, an extensive range of environmental conditions influence the 

level and ability of a wild oat seed to be released and induced from a dormant 

state including ambient air temperature (Sawhney and Naylor 1980), soil moisture 

(Sawhney and Naylor 1982) and photoperiod (Armstrong and Adkins 1998). A 

period of after-ripening under warm, dry conditions is necessary for wild oat 

seeds to overcome primary dormancy (Myers et al. 1997). Wild oat seeds that 
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experience a prolonged period of after-ripening may enter and re-enter secondary 

dormancy (Hou et al. 1997). Secondary dormancy cycling can permit wild oat 

seedlings to emerge intermittently, allowing some seedlings to escape early in-

crop control efforts. Efforts to develop predictive emergence models for wild oat 

within western Canada will require additional information on factors that regulate 

wild oat seedling emergence across geographies and within diverse cropping 

systems. 

Empirical emergence models have been developed using thermal time or 

GDD, using mean accumulated daily air or soil temperatures (De Corby et al. 

2007; Dexter et al. 2010; Lawson et al. 2006). HTT (hydrothermal time) models 

have been successful in predicting and modeling weed emergence since they 

incorporate soil water potential and soil temperature (Forcella et al. 2000; 

Martinson et al. 2007). Wild oat seedling emergence has been correlated with soil 

GDD and HTT (Bullied et al. 2003; Martinson et al. 2007).  HTT models can 

provide a more accurate prediction of emergence especially when soil moisture 

conditions are limiting (Martinson et al. 2007). 

The objective of this study was to determine the emergence period of wild 

oat as a function of growing degree days in central Alberta and to establish the 

impact IWM practices have on wild oat seedling emergence and survivorship. 

Additional information on the emergence period of wild oat and the capability of 

wild oat seedlings to contribute to the wild oat seed bank can improve our 

understanding on the efficacy of weed control measures implemented in IWM 

systems.   
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4.2. Materials and Methods 

4.2.1. Site Description  

Four seven-year cropping systems trials were established at Agriculture 

and Agri-Food Canada (AAFC) locations across western Canada (Beaverlodge, 

AB, Brandon, MB, Fort Vermilion, AB and Lacombe, AB) (Harker et al. 2009). 

The initial study quantified the effects of combining crop rotation, barley cultivar 

and barley seeding rate under reduced and full post emergent wild oat herbicide 

rates on barley grain yield and biomass as well as wild oat density, biomass and 

seed production.  

For ease of discussion and consistency, “low management” (i.e. Short-1X-

Cont)  will be used to describe the short cultivar, 1X barley seeding rate and 

continuous barley rotation and “high management” (i.e. Tall-2X-Rot) will define 

the tall cultivar, 2X barley seeding rate and diversified barley rotation treatment. 

In conjunction with the initial study, data were collected at Lacombe, Alberta 

(52°27' N, 113°45' W) in 2006 and 2007 to characterize wild oat seedling 

emergence and their contribution to the wild oat seed bank within integrated weed 

management systems. The soil at Lacombe is an Orthic Black Chernozem (Typic 

Haplustoll) with a loam soil texture (51% sand, 30% silt and 19% clay) pH of 6.6 

and 7.8% organic matter.  
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Plots were direct seeded with a ConservaPak1 air seeder with 1 cm wide 

knife openers and 23 cm row spacing (Table 4.1.). Plot size was 3 by 15 m. 

Nitrogen, phosphorous, potassium and sulfur fertilizers were side banded at 

seeding using soil test recommendations. Short (Vivar) and tall (AC Lacombe) 

barley varieties were seeded at a 3 cm depth under a normal seeding rate of 200 

seeds m-2 or a doubled rate of 400 seeds m-2. Canola (Invigor 5020) was planted at 

a recommended rate of 150 seeds m-2 at a depth of 1 cm. Seeding rates were 

calculated using thousand kernel weights. 

An application of glyphosate2 (450 to 900 g ae ha-1) was applied in the 

spring of 2006 and 2007 to control early emerging annual weeds and winter 

annuals. In 2006, plots with barley received either a quarter, half or full 

application of fenoxaprop-p-ethyl3 (23, 46 or 93 g ai ha-1) tank mixed with 

quinclorac/thifensulfuron/tribenuron4 (50 /15/15 g ai ha-1) at the three- to four-leaf 

stage (Table 4.1.). Similarly, glufosinate-tolerant canola received either a quarter, 

                                                           

1 Direct-seeding equipment, Conserva Pak Air Seeder, Model CP 129A, Conserva 
Pak Seeding Systems/Division of Vale Farms Ltd., P.O. Box 1420, Indian Head, 
SK S0G 2K0, Canada. 

2 Glyphosate, Roundup, Roundup Transorb, or Roundup WeatherMax, Monsanto 
Canada Inc., 67 Scurfield Blvd., Winnipeg, MB R3Y 1G4, Canada. 

3 Fenoxaprop-p-ethyl, Puma Super 120, Bayer Crop Science Inc., 100, 3131-
114Ave. S.E., Calgary, AB T2Z 3X2, Canada. 

4 Quinclorac/thifensulfuron/tribenuron, DuPont Canada Inc. 4444 72 Ave. S.E., 
Calgary, AB T2C 2C1, Canada. 
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half or full application of glufosinate5 (125, 250 or 500 g ai ha-1) and a tank mix 

of clethodim6 (17, 34 or 67 g ai ha-1 plus adjuvant7 at 0.5% v/v) at the three-leaf 

stage (Table 4.1.).   In 2007, barley received an application of imazamethabenz8 

(125, 250 or 500 g ai ha-1) tank mixed with florasulam/MCPA9 ester (5/240 g ai 

ha-1) (Table 4.1.). Herbicides were applied at 275 kPa in 93.5 L ha-1 of water.  

4.2.2. Wild oat seedling emergence 

Wild oat seedling emergence was measured weekly in Lacombe in 2006 

and 2007 from May until July in three permanent 0.25m-2 quadrats, randomly 

placed in each plot following seeding. Newly emerged wild oat seedlings were 

counted and denoted with an avian leg band. Each week a different color/pattern 

of avian leg band was used to characterize the emergence periods. Emergence 

counts ceased in the beginning of July to preserve the integrity of the plots. Wild 

oat emergence counts were divided into two time periods: (1) emergence up to 

                                                           

5 Glufosinate, Liberty, Bayer Crop Science Inc., 100, 3131-114Ave. S.E., 
Calgary, AB T2Z 3X2, Canada. 

6 Clethodim, Select, Arysta LifeScience Canada Inc., 998, 105-150 Crowfoot 
Cres. N.W., Calgary, AB T3G 3T2, Canada. 

7 Adjuvant, Amigo, Bayer Crop Science Inc., 100, 3131-114 Ave. S.E., Calgary, 
AB T2Z 3X2, Canada. 

8 Imazamox/imazethapyr, Odyssey, BASF Canada Inc., 345 Carlingview Dr., 
Toronto, ON M9W 6N9, Canada. 

9 Florasulam/MCPA, Frontline, Dow AgroSciences Canada, 2100, 450 1st St. 
S.W., Calgary, AB T2P 5H1, Canada. 
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and including the day of post-emergent herbicide application and (2) emergence 

following post-emergent herbicide application.  

Avian leg bands were removed from seedlings that effectively succumbed 

to the post-emergent herbicide application or failed to produce seed prior to 

harvest. Consequently, the remaining seedlings were deemed successful survivors 

in their ability to contribute seeds into the seed bank. Similar to emergence 

counts, seedling success was segmented into two time periods: (1) seedlings that 

survived from prior to and including the day of post-emergent herbicide 

application and (2) seedlings that survived post herbicide application (i.e. 

seedlings not exposed to the herbicide application). 

Precipitation (rainfall) and daily air temperature data for 2006 and 2007 

were collected from Environment Canada using the Lacombe, AB weather 

station. Air temperature data collected from the Environment Canada weather 

station was used to calculate daily growing degree days (GDD) for 2006 and 

2007.  Daily GDD measurements were calculated from January 1 of each year 

until emergence counts ceased. Cumulative GDD were calculated for each year 

using the following equation: 

GDD=∑[(Tmax+Tmin)/2- Tbase]                          [1] 

where, Tmax is the daily maximum air temperature, Tmin is the daily minimum air 

temperature and Tbase is the base temperature (0°C) for wild oat growth and 

development (Shirtliffe et al. 2000; Willenborg et al. 2005b). Daily GDD values 

that were negative were changed to 0.  
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4.2.3. Statistical Analyses 

4.2.3.1. Emergence Timing 

The density of wild oat seedlings was expressed as a cumulative 

percentage of total wild oat emergence during weekly observations.  GDD were 

summed over each emergence period in 2006 and 2007 to obtain an accumulated 

weekly GDD total.  The emergence response to GDD was fitted to a log-logistic 

curve using NLIN in SAS. The model fitted was: 

                                                     [2]  

 

where, y is cumulative percent emergence of wild oat, x is the cumulative GDD, C 

represents the lower asymptote,  D – C represents the upper asymptote (maximum 

emergence), E50  is the x value (GDD) at the midpoint or inflection point of the 

curve and b is the slope (Burke et al. 2005; Seefeldt et al. 1995). The lower 

asymptote of the curve was constrained at zero, as no emergence occurred at 0 

GDD. To test if the 2006 and 2007 curves were parallel, curves were analyzed 

systematically for common C and D, common E50 and common b using the lack-

of-fit F-test at the 0.05 level of significance (Seefeldt et al. 1995). A coefficient of 

determination (R2) was calculated using the residual sum of squares value as 

described in Kvalseth (1985).  The log-logistic model in Equation [2] is similar to 

the emergence model used to characterize volunteer canola (Lawson et al. 2006), 

volunteer wheat (De Corby et al. 2007) and volunteer flax ( Dexter et al. 2010;  

D - C 
y = C + 

1+ exp[b(log(x) - log (E50))] 
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emergence periodicity; therefore, a similar log-logistic model was chosen for its 

simplicity, accuracy in fitting data and biological application to weed growth.  

4.2.3.2. Seedling Emergence and Survivorship  

A test for normality and heterogeneity on the residuals was performed 

using PROC GLIMMIX (Littell et al. 2006). Data for wild oat emergence and 

seedling survivorship from both prior to and post herbicide application had a right 

skewed distribution and heterogeneous variances; therefore, logarithmic 

transformations (log10 (x+1)) were performed. Data were analyzed using PROC 

MIXED of SAS (Littell et al. 2006) whereby year and replicate were treated as 

random effects. The significance of main effects (crop rotation, seeding rate, 

barley variety and herbicide rate) and their interactions were determined for each 

variable (data not shown). Discussion will focus on the pre-planned contrasts 

conducted on specific treatment differences and related to comparisons referred to 

in Harker et al. (2009), whereby contrasts of fixed effects were corrected using 

Bonferroni adjustments and considered significant at P<0.004.  

4.3. Results and Discussion 

4.3.1. Emergence Timing 

4.3.1.1. Weather Data 

Weather conditions in Lacombe during the 2006 growing season were 

more consistent with the 30 year long term average compared to 2007 (Table 

4.2.). Mean monthly temperatures during the 2006 and 2007 growing seasons 
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were consistent with mean temperatures from 1971 to 2000. In the spring of 2007, 

soils were saturated as a result of significant amounts of rainfall during May and 

June.  

4.3.1.2. Time of Emergence 

Using a base temperature of 0°C, GDD provided a simple and effective 

measurement of thermal time for wild oat emergence during the 2006 and 2007 

growing season (Figure 4.1.). The emergence periodicity of wild oat was similar 

between 2006 and 2007 (P=0.9938) despite higher accumulations of precipitation 

in 2007. Early season moisture in 2007 may have provided slightly more 

favorable conditions early in May and June to release secondary dormancy and 

permit germination slightly earlier than in 2006. Wild oat seeds respond favorably 

to additional moisture, whereby maximum seedling emergence is reached when 

soil moistures range between 50 to 75% field capacity (Sharma et al. 1976).  

The wild oat population reached 50% emergence at 537 and 509 GDD in 

2006 and 2007, respectively, and 90% emergence at 785 and 749 GDD in 2006 

and 2007, respectively (Table 4.3.). Extended periods of emergence may be a 

function of secondary dormancy release (Benech-Arnold et al. 2000) and/or 

favorable conditions for germination among seed microsites (Boyd and Van 

Acker 2004). Bullied et al. (2003) observed 50%  wild oat emergence at 511 and 

417 GDD (Tbase 0°C) in conventional and conservation tillage fields in Manitoba, 

respectively; however, soil moisture was limiting during this study. Martinson et 

al. (2007) reported 50% wild oat emergence in Fargo, ND and Crookston, MN at 
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245 GDD, but since a base temperature of 1°C was used in the GDD calculations, 

data from this emergence model cannot be directly compared. Wild oat emergence 

is more prolonged than weeds like volunteer canola and volunteer wheat, which 

rapidly emerge in the growing season prior to seeding annual crops. Lawson et al. 

(2006) reported 50% volunteer canola emergence at <132 GDD (Tbase = 5°C). 

Similarly, the E50 for volunteer spring wheat was calculated at <235 GDD (Tbase 

=0°C) (De Corby et al. 2007).  

Both GDD (Bullied et al. 2003; Martinson et al. 2007) and HTT 

(Martinson et al. 2007) models have been used to characterize wild oat 

emergence; however, HTT models that use both soil temperature and soil 

moisture tend to be more accurate in successfully predicting wild oat emergence 

over GDD models (Martinson et al. 2007). Developing a HTT emergence model 

of wild oat in western Canada would be beneficial for growers and agricultural 

professionals to predict wild oat emergence and assist with implementing weed 

management practices. 

4.3.2. Wild Oat Emergence  

Main effects were significant in 2006 and 2007, but interactions were not 

significant (data not shown). Wild oat emergence from 2006 and 2007 reflects 

five and six years, respectively, of cumulative IWM techniques at Lacombe, 

Alberta. Emergence was divided based on the number of seedlings that emerged 

prior to and following post-emergent herbicide application.  The post-emergent 

herbicide applications in barley and canola during 2006 occurred at 557 GDD and 
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573 GDD, respectively, corresponding to 53% and 55% cumulative wild oat 

emergence (Figure 4.1.). In 2007, post-emergent herbicide applications occurred 

at 566 GDD in barley at 57% cumulative wild oat emergence. 

4.3.2.1. Wild Oat Emergence Prior to Post-Emergent Herbicide  

4.3.2.1.1. Lacombe 2006 and 2007 

High management strategies significantly reduced the amount of wild oat 

seedlings prior to herbicide application in 2006 and 2007 (Figure 4.2.). The 

impact of tall barley cultivars (P<0.0020) and crop rotation (P<0.0002) were 

highly effective at the quarter herbicide rate. Using optimal agronomic practices 

with quarter herbicide rates in 2006 and 2007, respectively, reduced wild oat 

emergence from 800 and 819 plants m-2 in the Short-1X-Cont treatment to 31 and 

77 plants m-2 in the Tall-2X-Rot treatment.  In 2006, with the exception of the 

Short-2X-Cont treatment, all remaining Cont and Rot treatments were 

significantly more competitive than the Short-1X-Cont treatment.  Using high 

management strategies under the quarter herbicide rate also resulted in less wild 

oat emerging than using low management strategies with a half herbicide rate 

(P<0.0007). No statistically significant differences were detected between the low 

management strategy (Short-1x-Cont) at the full herbicide rate and high 

management strategy (Tall-2x-Rot) at the quarter herbicide rate (P<0.4889).  

At half and full herbicide rates, crop rotation was the most significant 

agronomic practice (P<0.0001); whereby, all treatments in the Rot treatments 

were significant from the Short-1X-Cont treatment. In 2007, all treatments within 
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the full herbicide rate had significantly fewer wild oats emerging than from the 

Short-1x-Cont. No significant difference was detected in 2006 between the Tall-

2x-Rot treatment at the half herbicide rate and the Short-1x-Cont treatment at the 

full rate (P=0.8304), but in 2007, significantly less wild oat emergence occurred 

using high management strategies with half herbicide rate compared to low 

management strategies at full herbicide rate (P<0.0001).  

4.3.2.2. Wild Oat Emergence Following Post-Emergent Herbicide  

The magnitude of wild oats emerging subsequent to post-emergent 

herbicide application was noticeably less than the number of wild oats that 

emerged prior to herbicide application, as represented by the emergence model 

(Figure 4.1.). The success of high management strategies was reflected in the 

emergence of wild oat following the application of post-emergent herbicides 

across all three rate structures.   

4.3.2.2.1. Lacombe 2006 and 2007 

Across herbicide rates in 2006 and 2007, combining all three optimal 

agronomic practices (i.e. tall barley cultivar, higher barley seeding rate and 

diverse crop rotation) were influential in reducing the amount of late emerging 

wild oat seedlings (Figure 4.3.).  At the quarter herbicide rate, using a diverse 

crop rotation (P<0.0001) had the greatest impact on reducing wild oat seedling 

emergence. In 2007, using a tall barley cultivar (P=0.0001) also resulted in 

significantly fewer wild oat seedlings. Implementing high management strategies 

at the quarter herbicide rate in 2006 and 2007 reduced seedling emergence from 
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239 and 341 plants m-2 at the Short-1X-Cont treatment to 33 and 41 plants m-2 at 

the Tall-2X-Rot treatment, respectively. In 2006 there was no significant 

difference between the amount of wild oat seedlings in the high management 

system at the quarter herbicide rate and low management system at the half 

herbicide rate (P=0.0087). In 2007, significantly fewer wild oat seedlings emerged 

in the high management treatment at a quarter herbicide rate (41 plants m-2) than 

in the low management system at half herbicide rate (230 plants m-2; P<0.0001).  

At the half herbicide rate, crop rotation was the main factor reducing wild 

oat emergence (P<0.0001). All treatments within Rot had significantly fewer wild 

oat seedlings than the Shot-1X-Cont treatment, whereas in the Cont treatment 

only Tall-1X-Cont had significantly fewer. In 2006, no significant difference in 

the amount of emergence occurred between the high management treatment in the 

half herbicide rate versus the low management treatment at full herbicide rate 

(P=0.6821). In 2007, using high management with a half herbicide rate (10 plants 

m-2) resulted in significantly less wild oat seedlings than a full rate of herbicide 

with low management (53 plants m-2; P<0.0001). 

Diverse crop rotation (P<0.0010) resulted in less wild oat emergence at the 

full herbicide rate in 2006 and 2007. In 2007, barley cultivar (P<0.0001) also had 

a significant impact on reducing wild oat seedling emergence. In general, Rot 

treatments under the full herbicide rate significantly reduced wild oat seedling 

emergence compared to the Shot-1X-Cont treatment. 

The impact of using optimal agronomic practices to enhance crop 

competitiveness with wild oat is consistent with earlier research (Harker et al. 
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2003; O'Donovan et al. 2000; O'Donovan et al. 2004; Zand and Beckie 2002). 

Adopting higher barley seeding rates and using tall barley cultivars can reduce 

wild oat competition and enhanced crop competitiveness; for example, barley 

yield loss can be reduced from 20 to 14% by enhancing barley plant stands from 

150 to 250 plants m-2 in the presence of 50 wild oat plants m-2 (O'Donovan et al. 

1999). Furthermore, the incorporation of a vigorous hybrid canola in the rotation 

can minimize wild oat competition (Zand and Beckie 2002) and provide diversity 

in post-emergent herbicide application timing and modes of action (Anderson 

2003). Combining these agronomic practices provides a system that enhances 

crop health and crop competition with weeds and delays the selection for 

herbicide resistance (Harker et al. 2009). 

 

4.3.3. Wild Oat Seedling Survivorship 

Main effects were significant, but interactions were not significant in 2006 

and 2007 (data not shown).  The number of wild oat seedling survivors reflects 

the number of plants that contributed to the wild oat seed bank. Survivors from 

prior to the herbicide application were generally seedlings that escaped or 

survived the herbicide application. Survivors from post herbicide application 

would have not received the herbicide application; therefore, their reproductive 

success is based on their ability to compete for resources (i.e. light, water, 

nutrients) late in the growing season and the competitiveness of the crop as a 

result of the treatments. 
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In general, the proportion of survivorship was high across all herbicide 

rates, averaging between 56% and 80% in 2006 and 2007, respectively. The 

efficacy of herbicide rates may have been compromised by adverse weather 

conditions immediately prior or following application. The extent of wild oat 

seedlings surviving herbicide application in 2007 appeared greater than in 2006, 

ranging from 54% to 93% survivorship across all herbicide rates. The excessive 

precipitation during May and June of 2007 (Table 4.2.) may have resulted in less 

than ideal conditions for implementing post-emergent herbicide applications or 

reduced late season crop competition.  

4.3.3.1. Wild oat Seedling Survivorship Prior to Post-emergent Herbicide  

4.3.3.1.1. Lacombe 2006 and 2007 

High management strategies were effective across all herbicide rates in 

reducing the number of successful wild oat seedlings that emerged prior to the 

application of a post-emergent herbicide (Figure 4.4.).  In 2006 and 2007, crop 

rotation consistently reduced the number of wild oat seedling survivors 

(P<0.0018). In 2007, barley cultivar was also (P=0.0074) a significant wild oat 

management strategy. Using Tall-2X-Rot over Short-1X-Cont management 

reduced the number of wild oat seedling survivors from 590 and 680 plants m-2 to 

13 and 72 plants m-2 in 2006 and 2007, respectively. Applying high management 

strategies with quarter herbicide rates was more effective in reducing the number 

of wild oat seedling survivors than low management strategies used with half 

herbicide rates (P<0.0040). In both years, wild oat seedling survivorship was not 
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significantly different between high management at quarter herbicide rate and low 

management at full herbicide rates. 

At the half and full herbicide rates, crop rotation was the only agronomic 

practice that resulted in fewer wild oat seedling survivors (P<0.0001). All Rot 

treatments had significantly fewer wild oat seedling survivors compared to the 

Short-1X-Cont treatment.  Within the full herbicide rate treatments, all treatments 

but the Short-2X-Cont had reduced the number of wild oat seedling survivors 

compared to Short-1X-Cont. In 2006 and 2007, the number of seedlings surviving 

under the full herbicide rate between low and high management systems was 

reduced from 19 and 69 plants m-2 to 1 and 5 plants m-2, respectively. In 2007, 

high management systems incorporated with half herbicide rates (9 plants m-2) led 

to significantly fewer wild oats survivors than low management at full herbicide 

rate (69 plants m-2; P=0.0004). In 2006, no significant difference in the number of 

wild oat seedling survivors occured between the high management system at half 

herbicide rate and low management at full herbicide rate (P=0.3844). 

4.3.3.2. Wild Oat Seedling Survivorship Following Post-Emergent Herbicide  

4.3.3.2.1. Lacombe 2006 and 2007 

High management treatments remained effective in reducing the number 

of wild oat seedling survivors that emerged following a post-emergent herbicide 

in 2006 and 2007 (Figure 4.5.). Crop rotation (P=0.0009) was the most effective 

management strategy under the quarter herbicide rate in 2006. Similarly, in 2007, 

crop rotation (P<0.0001) and barley cultivar (P=0.0008) significantly reduced the 
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number of wild oat seedling survivors under the quarter herbicide rate. In 2006 

and 2007, the Tall-2X-Rot treatment had significantly fewer wild oat seedling 

survivors compared to the Short-1X-Cont treatment, from 100 and 202 plants m-2 

to 21 and 24 plants m-2, respectively.  In 2006, there was no significant difference 

in the number of wild oat seedling survivors within the high management system 

at quarter herbicide rate than the low management system at half herbicide rate 

(P=0.0126) or full herbicide rate (P=0.7743). Similarly, in 2007, a high 

management system at quarter herbicide rate did not significantly reduce the 

amount of wild oat seedling survivors compared to a low management system at 

full herbicide rate (P=0.6055). But in 2007, there were significantly fewer wild 

oat seedling survivors in the high management system at quarter herbicide rate 

than low management system at half herbicide rate (P<0.0001).  

At the half herbicide rate, crop rotation was the most influential agronomic 

practice reducing wild oat survivors (P<0.0001). All treatments under the Rot 

treatment had significantly fewer wild oat survivors than the Short-1X-Cont 

treatment. No significant difference in the number of wild oat seedling survivors 

was found between the Tall-2X-Rot treatment at half herbicide rate and the Short-

1X-Cont treatment at full herbicide rate in 2006 and 2007. 

Under the full herbicide rate, diverse crop rotation (P<0.0001) and tall 

barley cultivar (P<0.0001) were the optimum management strategies reducing 

wild oat seedling survivors in 2007.  In 2006, no significant differences were 

found among rotation, barley cultivar or barley seeding rate at the full herbicide 

rate. All rotation treatments under full herbicide rates in 2006 and 2007 were 
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significantly different from the Short-1X-Cont treatment. The number of 

survivors in 2006 and 2007 at the full herbicide rate under low management 

versus high management was reduced from 18 and 30 plants m-2 to 5 and 3 plants 

m-2.  

4.3.4. Management Implications 

Emergence models were developed to improve the implementation of 

agronomic practices and chemical control measures. The timing of post-emergent 

herbicides is typically bound by crop staging or weed staging for maximum weed 

control and minimum crop tolerance issues. In this study, post-emergent herbicide 

applications in 2006 and 2007 occurred prior to 60% wild oat emergence. 

Although many farmers typically delay post-emergent graminicide applications to 

reduce wild oat escapes, the delay prolongs wild oat competition.   

Early weed removal has been shown to consistently enhance crop yield 

through reductions of competitive early weeds (O'Donovan et al. 1985; Stougaard 

et al. 1997) or by reducing direct competition prior to weeds initiating shade 

avoidance in the crop (Liu et al. 2009). In general, late emerging weeds have been 

found to have little to no impact on crop yield (O'Donovan et al. 1985; Stougaard 

et al. 1997) but these studies did not address the seedling survivorship or fitness 

associated with delayed emergence. In general, herbicide-injured and late-

emerging weeds have reduced fitness compared to early emerging and healthy 

weeds (Clay et al. 2005; Hartzler et al. 2004). Despite reports that late emerging 
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weed seedlings are not a significant contributor to seed return (Bosnic and 

Swanton 1997; Swanton et al. 2008), results within this study indicate otherwise. 

Between 40 and 50% of the wild oat continued to emerge following 

herbicide application and many of these weed seedlings set seed. The importance 

of late emerging wild oat seedlings is largely unknown, with the exception of 

some research from Europe demonstrating increased seedling mortality among 

later emerging Avena spp. (Chancellor & Peters 1972; Fernandez-Quitanilla et al. 

1986). Under high management conditions, later emerging wild oat are relatively 

few and would be influenced by a competitive crop. Although low in numbers, 

they may be very important in the survival of wild oat populations in the seed 

bank. Under low management, late emerging wild oats are at high plant densities 

and would compete intra-specifically and inter-specifically. For example, under 

full herbicide rates and low management, 18-30 wild oat plants m-2 set seed. As 

such, this cohort is likely to contribute significantly to the cumulative increase in 

seed banks, wild oat biomass and seed production reported previously (Harker et 

al. 2009). In addition, later emerging wild oats are not being selected by 

herbicides, which may be a factor in delaying selection for herbicide resistance.  

Adopting integrated weed management practices that are less reliant on 

herbicides can create opportunities to optimize crop health and delay or manage 

herbicide resistant weed populations. In this study, high management systems at 

low herbicide rates led to less wild oat emergence and seedling survivorship than 

low management systems at high herbicide rates. Combining optimal cultural 

practices, such as crop rotation, with low herbicide rates can reduce the rate of 
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development of target- site weed resistance (Beckie and Kirkland 2003). Crop 

rotation significantly reduced wild oat emergence and seedling survivorship 

across herbicides; subsequently, incoporating competitive crops in a management 

system can enhance weed competition and facilitate herbicide rotation. Although 

herbicides are an effective weed control tool, diversifying cropping systems and 

practices can reduce herbicide use and therefore the selection of herbicide 

resistance. 
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Table 4.1. Field operations and dates at Lacombe, Alberta from 2006-2007. 

 Field Operations   2006 2007 
Pre-seed herbicide application  May 05 May 08 
Seeding (barley, canola)  May 04 May 11 
Barley post-emergent herbicide application  May 31 June 05 
Canola post-emergent herbicide application  June 01 n/a 
Final seedling mortality counts  Aug. 10 Aug. 30 
Barley harvest  Aug.16, 18* Sept. 17 
Canola harvest  ** n/a 
* AC Lacombe barley harvested before Vivar harvested Oct. 15, 2006. 
** No harvest as canola swaths were damaged by wind. 
 
 
 
Table 4.2. Monthly mean air temperature and precipitation for Lacombe, Alberta, 
in the 2006 and 2007 growing season and the 30-year norma. 

  Apr May Jun Jul Aug Sep Oct 
Temperature (°C)        

2006 6.7 11.3 15.3 17.6 14.7 11.1 2.4 
2007 2.4 9.8 14.9 19.1 13.2 9.4 5.5 

Thirty-year norm 4.3 10.1 13.9 15.4 14.7 9.8 4.5 
        

Precipitation (mm)        
2006 7.5 55.1 66.4 89 74.4 50.6 38.6 
2007 51.5 117.9 174 48.8 69.2 46 12.2 

Thirty-year norm 21 55.6 75.7 89.4 70.8 47.3 16.6 
aThirty year norm is based on year between 1971 to 2000 from the Lacombe CDA2 weather 
station, Lacombe, Alberta. 
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Table 4.3. Parameter estimates (standard errors in parentheses) for emergence 
periodicity response of wild oat (Tbase=0°C) in Lacombe, Alberta in 2006 and 
2007. Cumulative percent emergence of wild oat was expressed as a function of 
accumulated growing degree days (GDD). A non-linear log-logistic model was 
fitted to the data (see Materials and Methods for a full description). 

 Parameter estimates   Emergence    

Year Ca Db bc  E50
d E90

e   R2 

     GDDf    
2006 0  100.9 (0.68) -5.8 (0.14)  537 (2.44) 785 (9.31)   0.99 
2007 0  101.3 (1.82) -5.7 (0.42)  509 (6.37)   749 (28.62)    
aLower limit (asymptote) of the response curve.  
bUpper limit (asymptote) of the responsive curve.  
cSlope.  
dGrowing degree days at 50% wild oat emergence. 
eGrowing degree days at 90% wild oat emergence. 
fGrowing degree days. 
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Figure 4.1. Cumulative wild oat emergence at Lacombe, Alberta in 2006 (●) and 
2007 (○) as related to cumulative GDD Tbase 0 °C. Lines represent a fitted log-
logistic curve. (See Table 4.3. for parameter estimates). Dashed lines represents 
timing of post-emergent herbicides. In 2006, post-emergent herbicide were 
applied to barley and canola at 557 GDD and 573 GDD, respectively, 
corresponding to 53% and 55% cumulative wild oat emergence. Post-emergent 
herbicide application in barley during 2007 occurred at 566 GDD, corresponding 
to 57% cumulative wild oat emergence. 
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Full - Cont. vs Rot. <0.0001
¼-Rot-Tall-2x vs ½-Cont-Short-1x 0.0007
¼-Rot-Tall-2x vs Full-Cont-Short-1x 0.4668
½-Rot-Tall-2x vs Full-Cont-Short-1x <0.0001
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Contrast P value
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¼-Rot-Tall-2x vs Full-Cont-Short-1x 0.4889
½-Rot-Tall-2x vs Full-Cont-Short-1x 0.8304
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Figure 4.2. Mean wild oat plant density prior to post-emergent herbicide application in 2006 and 2007 at Lacombe, Alberta. Data are 
back-transformed means of log-transformed data. Pre-planned contrasts are listed beside each graph and are considered significant at P 
<0.004.  The statistical significance of the difference between a given log-mean and the Short-1x-Cont treatment within each quarter, 
half and full herbicide rate are denoted ‘*’ P < 0.05, ‘**’ P < 0.01. 
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Figure 4.3. Mean wild oat plant density following post-emergent herbicide application in 2006 and 2007 at Lacombe, Alberta.  Data 
are back-transformed means of log-transformed data. Pre-planned contrasts are listed beside each graph and are considered significant 
at P <0.004.  The statistical significance of the difference between a given log-mean and the Short-1x-Cont treatment within each 
quarter, half and full herbicide rate are denoted ‘*’ P < 0.05, ‘**’ P < 0.01. 
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Figure 4.4. Mean wild oat seedling survivorship prior to post-emergent herbicide application in 2006 and 2007 at Lacombe, Alberta. 
Data are back-transformed means of log-transformed data. Pre-planned contrasts are listed beside each graph and are considered 
significant at P <0.004.  The statistical significance of the difference between a given log-mean and the Short-1x-Cont treatment 
within each quarter, half and full herbicide rate are denoted ‘*’ P < 0.05, ‘**’ P < 0.01. 
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Figure 4.5. Mean wild oat seedling survivorship following post-emergent herbicide application in 2006 and 2007 at Lacombe, 
Alberta. Data are back-transformed means of log-transformed data. Pre-planned contrasts are listed beside each graph and are 
considered significant at P <0.004.  The statistical significance of the difference between a given log-mean and the Short-1x-Cont 
treatment within each quarter, half and full herbicide rate are denoted ‘*’ P < 0.05, ‘**’ P < 0.01. 
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Chapter 5. Conclusions 

5.1. Summary of Results 

Development of integrated weed management (IWM) strategies with herbicide 

applications has an important role in managing weed populations in an economically, 

ecologically and socially sustainable manner.  Incorporating knowledge of weed biology and 

weed ecology with agronomic practices may have long term benefits in reducing weed 

emergence, weed densities, weed-crop competition, weed seed inputs and weed seed bank 

densities (Blackshaw et al. 2008; Buhler 2002; Murphy et al. 2006). Despite being one of the 

most well-researched weeds in western Canada, additional information on the biology and 

ecology of wild oat (Avena fatua L.) is still required to optimize management efforts. As new 

technologies and cropping practices are introduced into western Canada, the impact that they 

have on wild oat populations requires further evaluation. The research presented in this thesis has 

provided additional information regarding the ecology and agronomy of wild oat and will 

contribute to improvements and new developments in integrated weed management systems for 

wild oat. 

Several agronomic practices have been integral in the reduction of weed populations and 

enhancement of grain yield; as a result, combining practices provides synergy to enhance the 

long term management benefits (Anderson 2003). Studying the wild oat seed bank provided an 

excellent indicator of the success of cumulative effects integrated weed management strategies 

have on wild oat populations (reviewed in Chapter 3). Results from this research indicate: 

• The use of diverse crop rotation (Barley-Canola (Brassica napus L.)-Barley-Peas (Pisum 

sativum L.) vs Continuous Barley), competitive barley cultivars (Tall vs Short)  and 
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higher barley (Hordeum vulgare L.) seeding rates (2X vs 1X) in combination with 

herbicides provided an effective strategy to reduce the wild oat seed bank, especially 

under quarter herbicide rates (Figure 3.1. and Figure 3.2.).  

• The cumulative effects of using high management strategies (diverse crop rotation, tall 

barley cultivar and double barley seeding rate) was reflected in the wild oat seed bank 

after six and seven years of treatments.  

• The rank of each practice on its influence to reduce seed bank densities: herbicides > crop 

rotation  >  barley cultivar  > barley seeding. 

• In some cases, using high management strategies with lower herbicide rates resulted in 

smaller wild oat seed banks than low management strategies with full herbicide rates.  

The implementation of IWM strategies in western Canada varies greatly by farm and agro-

ecological region. Growers may find economic limitations to adopting a combination of cultural 

weed practices, with decreased profits associated with growing a diversity of crops and increased 

costs associated with using increased seeding rates and competitive crop cultivars, despite off-

setting costs resulting from reduced herbicide rates. IWM systems that include wider crop 

diversity, such as a winter cereal or perennial forage, may confer additional reductions in wild 

oat populations and yield benefits compared to annual cropping systems. In addition, adopting 

integrated weed management systems that diversify cropping systems with competitive crops 

create an opportunity to diversify herbicide rotations as well as potentially reduce the use of 

herbicides, thereby reducing the selection of herbicide resistance. 
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Despite the majority of seeds removed from the seed bank through germination, additional 

losses can occur from predation, microbial decay, aging or exposure to abiotic stresses such as 

extremes in temperature or freeze/thaw cycles (Gallandt et al. 2004).  Determining the role 

agronomic practices have on enhancing wild oat seed mortality was determined in spring and fall 

seed banks (reviewed in Chapter 3). Results from this research indicate: 

• Combining optimal agronomic practices (diverse crop rotation, tall barley cultivar and 

double barley seeding rate) did not significantly change seed mortality compared to less 

optimal agronomic practices (continuous barley rotation, short barley cultivar and normal 

barley seeding rate) (Figure 3.3. and Figure 3.4.).  

• The rate of seed mortality averaged across all treatments in spring and fall 2006 was 83 

and 84%, respectively, and 56 and 76%, respectively, in the spring and fall 2007. 

• The amount of seed lost between fall 2006 and spring 2007 seed bank ranged from 0 to 

65%, with greater seed losses occuring under treatments with larger wild oat seed banks.  

In western Canada the factors that influence the proportion of weed seeds lost from the seed 

bank and the factors that increase seed mortality are not well understood. The role of seed 

predation by vertebrates and invertebrates requires further research. There are no studies that 

have identified species or feeding preferences of seed predators or the cropping practices that 

may favour predation on the Canadian Prairies. 

Knowledge of factors that affect seed banks and seedling emergence can improve the 

development and implementation of IWM practices (Grundy 2003). Using wild oat seed banks to 

predict wild oat emergence can provide necessary tools for growers to estimate the magnitude of 

a wild oat population. In this research: 
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• A strong relationship occurred between the fall 2006 wild oat seed bank and spring 2007 

wild oat emergence (R2=0.76; Figure 3.5.) as well as between the spring 2007 wild oat 

seed bank and spring 2007 wild oat emergence (R2=0.78; Figure 3.6.). 

• Biomass and emergence are the best predictors of subsequent wild oat seed banks (Table 

3.4.) 

• Wild oat emergence best predicted wild oat seed banks compared to seed production and 

biomass across Beaverlodge, Fort Vermilion and Lacombe, Alberta (Table 3.5.). 

The geographic diversity in wild oat populations indicates that additional information on seed 

banks, seed production, emergence and biomass is required to fully evaluate these relationships. 

Further examination will be needed to examine how seed production, seed bank densities and 

biomass predict seedling recruitment or to improve how seedling recruitment is characterized. 

A fundamental principle behind IWM is the precise timing and application of cultural, 

mechanical, chemical or biological control measures to ensure timely weed control measures that 

promote crop competition and yield (Norris et al. 2003). Consequently, developing weed 

emergence models can improve the implementation of these control measures. The emergence 

potential and timing was characterized for wild oat in Lacombe, Alberta within IWM systems 

using thermal time (GDD) with a base temperature of 0°C (reviewed in Chapter 4). This research 

found: 

• The wild oat population in Lacombe reached 50% emergence at 537 and 509 GDD in 

2006 and 2007, respectively (Table 4.3. and Figure 4.1.).  

• Between 40 and 50% of wild oat seedlings emerged following herbicide application, 

contributing seed to the wild oat seed bank. 
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Unlike wild oat,  volunteer crops such as volunteer wheat (De Corby et al. 2007) and 

volunteer canola (Lawson et al. 2006) are early emerging weed species that can be easily 

managed with pre- or post-seed herbicide applications. Incorporating information on soil 

moisture and soil temperature would help increase the accuracy in predicting wild oat emergence 

(Martinson et al. 2007). A comprehensive hydrothermal time (HTT) emergence model using a 

consistent base temperature for wild oat has not been developed in western Canada. Delineation 

of genotypic variance in wild oat populations would also be required to ensure the model can be 

generally applied. Developing a model practical for growers and agricultural professionals to 

predict wild oat emergence for weed management practices would be an integral component to 

accompany field scouting and integrated weed management practices. 

Similar to the seed bank study, wild oat seedling emergence was evaluated over the 

growing season in Lacombe, Alberta to identify the impact optimal cultural practices have on 

early and late emerging wild oats and the implications those practices have on seedling 

survivorship (reviewed in Chapter 4).  

• Ranking each practice on its influence to reduce seedling seedling emergence and 

survivorship: herbicides > crop rotation  >  barley cultivar  > barley seeding rate; 

although, crop rotation was the most consistent agronomic practice to have a significant 

effect across all herbicide rates. 

• Combining optimal agronomic practices (diverse crop rotation, tall barley cultivar and 

double barley seeding rate), especially under quarter herbicide rates, reduced the amount 

of wild oat seedling emergence and seedling survivorship, both prior to and after the 

post-emergent herbicide (Figure 4.2, Figure 4.3., Figure 4.4. and Figure 4.5.). 



 

172 

 

• Using high management strategies with lower herbicide rates frequently resulted in less 

seedling emergence and survivorship than low management strategies at full herbicide 

rates.  

• Later emerging wild oats found within high management systems are low in densities, but 

may play an important role in maintaining wild oat populations through additions to the 

seed bank. 

• Later emerging wild oats found within low management systems are high in densities and 

contribute to the cumulative increases in wild oat populations. 

The premise that late emerging weeds are not a substantial source of seed returns needs to be 

further studied. Unselected cohorts are likely to be diluted and slow the selection for herbicide 

resistance. Further examination of the fecundity and viability differences between cohorts in a 

wild oat population will improve our understanding of the evolution and spread of herbicide 

resistance. 

Demonstrations of the cumulative effects of IWM practices are critical to their adoption. A 

growing group of progressive growers in western Canada are combining various agronomic 

practices to improve yield potential and profitability, and are seeing the additional benefits of 

enhanced weed management. In spite of the complex biology behind wild oat, knowledge on the 

relationships between wild oat populations and weed management practices will be a function of 

collaboration between the research community, agronomists and local farmers. 
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Appendix 1. 

 

Figure A.1.1. Mean monthly air temperature (A, C, E) and precipitation (B, D, F) from 2005 to 
2007 at Beaverlodge, Fort Vermilion and Lacombe, Alberta, respectively. 


