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ABSTRACT
The problem of optimally regulating the position and velocity
of a string of vehicles in steady-state motion on a highway, when
both vehicles and controller are subjected to additive noise and

feedback time delay, is considered.

Two simpler problems are first treated : 1. regulation of
a string of vehicles when random vehicle and transmission disturbances
are present, and 2. regulation of a string of vehicles when random
vehicle disturbances and transmission delays exist. In bath these
instances, the optimal controller is developed using the optimal
control and estimation theory available in the literature, and its
performance is evaluated by simulation on an IBM System/360 digital
Computer. Optimal stochastic regulator performance is compared
with that of the optimal deterministic controller subjected to
noise and time delay; both, in turn, are compared with the per-
formance of the optimal deterministic regulator where noise and time
delay are absent. fhe importance of having exact knowledge of the
amount of feedback delay on the design and performance of the designed

optimal regulator is also examined,

1t is shown that, by proper overall system design, not only
can vehicle power plant size and passenger discomfort be significantly
reduced, but, what is even more important, regulation as well can

be enhanced.
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CHAPTER ONE
INTRODUCTION

ABSTRACT

A brief synopsis of past work on the automatic vehicle

control problem is presented with the view to indicate some of

_the gaps which now exist in the theory. The scope of this thesis

js described.
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1.1 General

An increasing awareness that a majority of problems en-
countered in the highway transportation systems of the major cities
in North America are, to a large extent, due to inadequate vehicle
control has initiated an ever-intensifying effort on the part of
many researchers to understand the dynamic characteristics of
traffic flow and to develop more sophisticated techniques for
control than are presently available. While schemes for complete
automation of the highway system have been proposed, efforts have
also been directed toward the development of schemes in which the
role of the human driver is either made more effective or is
completely de-emphasized. To achieve the former objective some
have advocated the development of various driver aids intelligently
selected to help overcome basic human deficiencies in the driving
task [14, 36].1 Others have suggested revolutionary automatic
systems in which the need for the human driver is virtually eliminated
[15]. More practical proposals have however expounded an evolutionary
concept in which the driver aided system serves as the transitional

step from present normal systems to the ultimate fully integrated
automatic one [36].

The control schemes for the automatic control of a string of

vehicles on a roadway have ranged from decentralized control schemes

1 Numbers in square brackets refer to articles in the bibliography.
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in which each vehicle is directed by information obtained at the
vehicle itself, to strongly centralized control schemes in which
the vehicle is part of a larger information system, (i.e.) each
vehicle is located and commanded from data available at the
central traffic control [11]. Although the centralized system
provides greater flexibility and greater overall system efficiency,
it is however seriously hampered by the need for a vast
communications grid and an enormous initial capital outlay. None-
theless, increasing social demands and the needs of an economy
based on continuous expansion seem to be making the development of

such an automatic transportation system a real necessity.

1.2 The steady-state vehicle regulator in automatic control

The automatic control of a string of moving vehicles such as
that depicted in figure 1.1 requifes that complete control be

exercised over the position and velocity of the individual vehicles

in the string at all times. Examining the acceleration, velocity, and

position of each vehicle of the string (or of the string itself
when all the component vehicles are moving as a unit) in figure 1.2
[11] for an ideal excursion between some origin and destination,
shows that the transitional control actions required at the initial
and terminal times are separated from each other by a steady-state
condition of relatively long duration where the vehicle velocity is

fixed. The control law required to maintain this pre-determined



SR P HREY

e RO

3

4

FOR EQUAL SEPARATION BETWEEN VEHICLES IN THE STEADY-STATE,

Ak = A
k=1,2,...,N
Mow P> m, > Mo >
Yn#l Yn Yn-1

& »le
» >

20 (- [2an(t)+ ] 2011} [2alt) +8)

Zp+) Zn Zp-

FIGURE 1.1: Three vehicles moving in a string.

steady-state condition is thus an essential element of any automatic
system, It has, consequently, been the subject of intensive research

for the past ten years, including that reported in this thesis.

FINAL | ACCELERATION
POSITION :1- POSITION
\ VELOCITY
—~
N
N
INITIAL \ ; TIME
POSITION \
!
DECELERATION >\ !
\-..J'

FIGURE 1.2: The acceleration, velocity, and position
versus time of a given vehicle travelling
between two points.
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To derive the steady-state control various schemes have been
proposed, with the spectrum of control theory used ranging from the
c]assica1 frequency response methods to modern optimal control theory.
Fenton et al [17], Fenton and Bender [7], give a clear indication of
the use of classical theory in the design. From given steady-state
performance specifications a linear mode controller is readily
developed. A much more sophisticated and relatively recent approach
to the solution of the probiem involves the application of optimal
control theory. The vastly increased versatility in system design
that this new technique has made possible has allowed it to almost
completely overshadow the classical one. Consequently, classical

control techniques will not be considered at all in this present work.

1.3 Optimal control theory and steady-state vehicle control

The use of optimal control theory to regulate the position and
velocity of each vehicle in a long string was first proposed by
Athans and Levine [27] in 1966.2 Given that A and V0 are the desired
separation distance between adjacent vehicles in the string and the
desired string velocity respectively, they showed that through a
suitable choice of state variables and index of performance the
control problem could be reduced to the standard linear regulator

problem with quadratic cost [24, 5].

2 Appendix one gives a short summary of the procedure and should be
consulted at this point as only the implications of this scheme
are considered in this present work.
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The structure of the resultant optimal closed loop control
system is shown in figure A1-2. From knowledge of the position and
velocity of every vehicle in the string the optimal control input
needed to maintain the desired vehicle separation and string velocity

is determined.

Since the derived optimal control scheme requives every
vehicle to have complete knowledge of the state of all other vehicles
in the string continuously in time, deployment of an expensive and
complex communications system is then a necessary prelude to its
implementation [3]. This realization spawned intensive research into
possible ways of alleviating the information processing problem without
excessive degradation of system performance. What resulted from this

was the development of the following two systems :

1. a suboptimal control system, and 2. a sampled data system where

only samples of the state variables are transmitted every T seconds.

1.3.1 Suboptimal control

A paper by Athans, Levine, and Levis [4] expounds the basic
philosophy of the suboptimal design. It proposes that each string
of vehicles be considered to be constructed from a set of interlaced
vehicle substrings. Having obtained the optimal control for each
substring, the suboptimal control for the vehicle string can then be

built up by superposition.

Some proposals have sought to divide a given vehicle string into
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substrings of two or three vehicles each [37] where : a) the control
for each vehicle in the string is determined only by the motion of
the vehicle directly ahead, or b) the control for each vehicle is
determined by the motion of the vehicle directly ahead and behind,
respectively. Using a criterion proposed by R.L. Cosgriff [12],
Peppard and Gourishankar [37] have found that a given vehicle string
constructed from the three vehicle basic unit exhibits a greater
degree of asymptotic stability than one constructed from the two

vehicle one.3

Unlike the optimal design, the suboptimal one requires each
vehicle in a Tong string to only have information on the position
and velocity of all other vehicles in the substring of which it is
a part. Simulation results [4] moreover show that the suboptimal

design gives regulator performance.close to that of the optimal.

Melzer and Kuo [31, 32], using the theory of generating
functions, mathematically justify the philosophy of suboptimal design.
For a finite string of vehicles, they found that the exact controllers
for each vehicle in the string have the same structure as that for a
typical vehicle in an infinite string. In fact, the individual
vehicle in an infinite string is shown to so heavily weigh information

from the first few adjacent vehicles that information from the

3 Since the linear regulator is known to be locally stable [5] anl

systems under consideration are at least locally stable.

s



remaining vehicles can be entirely ignored without incurring any

noticeable change in performance.

1.3.2 Sampled data control

The possibility of alleviating the communication problem by
using a sampled data analogue of the continuous controller has been
studied extensively by various researchers [28, 29]. Levis [28]
discusses its desirability from both an economic and technical

viewpoint,

Athans and Levis [30] derived the sampled data controller and
studied the dependence of regulator performance upon the length of
the sampling interval. Having postulated a continuous time dynamical
system with quadratic cost, they introduce sampling by constraining
the control to remain constant over a specified length of time (the
sampling interval). Forcing changes in the control to occur only
at the sampling instants then allows them to transform the problem
to an equivalent discrete time one. The discrete minimum principle

[25] is then applied.

The sampled data system is shown to exhibit two modes of
behaviour depending upon the closed-1oop eigenvalues obtained [30].
In one mode, the behaviour of the regulator is similar to that of
the optimal continuous system, whereas performance in the other mode

is similar to that of an overdamped system.
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Levis [28] develops a computer algorithm which allows the
designer to determine the optimal control of a linear sampled data
system with quadratic cost without the least knowledge of optimal

control theory.

That the sampled data system can drastically cut communications
requirements without great Toss in regulator performance is adequately
shown by Athans and Levis [30]. Choosing a sampling interval one
and one half times the dominant time constant of the continuous open-
loop system, they show that the optimal cost is only increased by

15%.

1.4 Need for further research

In most of the work done to date the vehicle regulator problem
has almost invariably been studied under idealized conditions where
no system noise and no time delay in the feedback path exist. The
plant dynamics and all state variables are assumed to be known exactly
while all transmission and computation delays are excluded from
consideration. It is needless to point out that this ideal model
does not accurately portray the interactions between vehiclies and
surroundings in any physical system. The optimal regulator for the
ideal system could in fact be far from optimal under the non-ideal
conditions existent in the physical world. In the development of an
automatic controller for highway vehicles then, a more realistic

model must be proposed that will allow an optimal controller to be
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designed whose performance in the real worid will also be optimal,

or as close to the optimal as possible.

1.4.1 Effects of random disturbances

Random vehicle disturbances induced by external sources result
in a random deviation of the traffic queue from the equilibrium
condition [40]. The raisons - d'etre of the optimal automatic
system, namely larger system capacity and greater passenger safety,
however require that these random deviations from equilibrium be
minimized as much as possible by suitably designing the optimal controlier,
if they are to be even remotely attained. From an economic viewpoint
Rocca [40] moreover points out that an increase in velocity and
acceleration disturbances results in increased power being dissipated
by the vehicles and increésed passenger discomfort and Vehic]e wear,

respectively.4

Vehicle dynamics have generally been formulated from the
straightforward application of Newton's laws of motion where all
external vehicle disturbances such as wind and road conditions have
been ignored. No lengthy elaboration is thus required to show that
the fidelity with which the ideal model dynamics represent the physical

system is far from satisfactory.

4 Since the power level is proportional to the product of thrust and
speed, we have that

d(power level) o thrust - d(speed) +d(thrust) . speed,

where d(.) denotes the operation of taking the total derivative.
Because of the high speeds at which the automatic vehicles are expected
to operate, these considerations are thus not altogether negligibie.
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1f for the moment we consider the dynamics of the car-following
problem to be known exactly, and if furthermore we disregard all
external vehicle disturbances, ideal conditions still do not exist.
Random vehicle disturbances still occur due to the existence of
noise sources in the vehicle control system itself. The state
measurement device.5 the transmission system, and the controller are
all sources of random errors. Even though they may not be of large
magnitude, these disturbances affect each vehicle in a controlled
string. Relatively large random disturbances can also originate in
a particular vehicle of the string. The queue response to such
disturbances is determined entirely by the closed Toop characteristics

of the vehicle controller [40].

An area of research where several aspects need further invest-

igation can be described as follows :

Given a vehicle string subjected to external disturbances, and
given that random errors do occur in the measuremenf of variables and
in the transmission of information about the position and velocity
of each vehicle, then how can an optimal controller be designed and
how does this controller perform compared with that for an ideal system

(under similar simulated real world conditions)?

5 If a sampled data system were being considered quantization errors
in the measurement of velocity and headway could also be included
here,
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The digital computer control of a string of moving vehicles
when random errors occur in the information exchange between vehicles
and central computer has been studied by Anderson and Powner [1];
However, their work mainly consists of a qualitative analysis of
observed results. (The definition of some appropriate measure of
vehicle performance could thus be quite helpful here in determining
the extent to vehicle performance can be improved.) They fail to
consider vehicle response when the noise statistics are not accurately
known. Nor have they considered the case where state measurement

anid control are not coincident in time.

Rocca [40] considers the problem of regulating a string of
moving vehicles when vehicle disturbances occur as a result of
environmental factors and system anomalies. He does however approach

the problem from a classical point of view which does not yield the
| same kind of answers which can be expected from an optimal control
formulation of the problem.6 His analysis of vehicle disturbances
and their sources will nevertheless be of great help and of practical

use in the formulation of the optimal control problem.

1.4.2 Effects of feedback time delays

Another area of investigation where some problems require effort

is related to time delays in the system. Careful examination shows

6 This paper was published the year preceding the introduction in
thebliterature of optimal control theory to the solution of the
problem.
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that there exists a time delay in the feedback loop of the vehicle
requlator for two reasons : 1. there is a transmission delay in
sending and processing information on vehicle states from one
vehicle to another, and 2. there is a finite computation time re-
quired to calculate the optimal control from a given set of state
variables. Though at first glance these time delays do not appear
to be significant enough to noticeably affect regulator performance,
they could however be of significance in determining the maximum
number of vehicles which a central processing system can handle with
safety at one time. If a controller capable of reducing the effects
of time delays on vehicle performance could be designed, then the
versatility and ultimate capacity of the system could be increased,

at least in theory (other things being equal).

To thé best knowledge of the author, few papers exist which
deal with the effects of time delays on the performance of vehicle
strings. Whatever pertinent references were found have generally treated
the problem of studying vehicle behaviour when a time delay is
introduced into the feedback loop of a system designed on the
assumption that no time delay exists [37]. While this approach does
serve to give a rough estimate of the severity with which feedback
delays affect regulator performance, there is a need for more refined

techniques in the solution of the problem.

The forementioned approach does serve to further understanding

of vehicle regulator problems, however, the system designed in that
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way is not the optimal one when the time delay is present. Hence,
it fails to give a clear indication of how well the optimal regulator

can perform in the presence of feedback delays.

1.5 Scope of this thesis

The aim of the work reported in this thesis was to examine the
effects of both random disturbances and feedback time delays on the
design and performance of an optimal steady-state controlier for
vehicle strings. Digital computer simulations of the designed
regulators were done on the IBM System 360 Continuous System Modeling
Program (S/360 CSMP) followed by a comparison of the relative
performance of each. The IBM User's Manual [20] describes S/360
CSMP as a "problem oriented program designed to facilitate the

digital simulation of continuous processes on large digital machines".

~In practice some type of sampled data scheme wi1l most Tikely be

used such as that described by Athans and Levis [30]. A continuous
fornulation was however convenient here and, as noted earlier, when
the sampled data system is operating properly its performance is

similar to that of the optimal continuous system.

A brief description of the format employed in reporting this

work may now be in order.

Chapters two and three each deal with a portion of the overall
problem of securing the optimal vehicle control in the presence of
both noise and time delay. Chapter four, on the other hand, welds
together the results of the preceding two chapters and examines the

total problem as initially laid down. Chapter five makes some
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concluding remarks based on the work reported in the preceding
four chapters and gives some suggestions for future research

possibilities,

In appendix one an attempt is made to give the reader a short
and basic introduction to optimal regulator theory as applied to the
car following problem. Reference is made to Athans and Levine's
original work on the derivation of a deterministic model and its

adaption to solution using optimal control theory.

Appendix two and appendix three are provided as a short review
of theory employed in the body of the thesis; the certainty equivalence

property of optimal control, and the derivation of the steady-state

Kalman filter, respectively.

Appendix four and appendix five serve to give the reader some
understanding of the workings of the IBM System/360 CSMP program
and of a few of the problems which arose in the course of simulating

the models described in this thesis.
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CHAPTER TWO

STEADY-STATE OPTIMAL CONTROL OF A STRING OF
VEHICLES SUBJECT TO RANDOM DISTURBANCES

ABSTRACT

This chapter begins with the derivation of a stochastic model
for a vehicle string subjected to various random disturbances.
An optimal feedback system based on Kalman filtering and linear
regulator theory is developed using results available in the
literature. The various disturbances which affect vehicle per-
formance are discussed as well as their amenability to representation
by the derived stochastic model. An investigation of the random
generator used to model the physical disturbances is also carried
out to see how well the simulated random disturbances fulfill the
requirements of the theory used. A quantitative measure of re-
gulator performance is developed to permit a comparison of the per-
formance of the optimal and the non-optimal stochastic regulator
with that of the optimal noiseless regulator. The optimal system
is simulated using the IBM System/360 CSMP program. A general
discussion of observed results and their implications closes the

chapter.
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2.1 A stochastic model for a vehicle string

The state space representation of a three vehicle string in
Tongitudinal steady-state motion is given in appendix one, The

equations(A1-3a) and (A1-3b) are repeated here for convenience.
A(t) = A x(t) + B uy(t) 5 x(ty) = x) (2-1a)
¥(t) = C x(t) (2-1b)

where x(t) (the state vector) «R", gq(t) (the control vector)
eR", Y(t) (the measured output vector) eR" and ; A, B, C are
nXxn,nxm and r x n matrices, respectively. The (real) vector
space dimensions n, m, and r are related to the number of vehicles

in the controlled string, N, by
n=20-1;m=N;r=n,

In order to develop a more accurate model for the vehicle
string, three additional factors will be included : 1. transmission
errors in comunicating information to and from the controlled
vehicles, 2. controller noise, and 3. external disturbances such

as wind and road conditions.
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Controller noise y_](t) and transmission noise y_z(t) (from
the system control centre to the vehicles) can be easily introduced
into the model by assuming that the output of the controller, _u_](t),
is the sum of a deterministic signal, u(t), and the two random noise

terms. In other words,
gy (t) = u(t) +uy(t) +wy(t). (2-1c)
Random external vehicle disturbances due to wind and road

conditions can now be included by adding one further term, y_3(t).

Equation (2-1a) becomes

x(t) = A x(t) + B u(t) + Blwy(t) + my(t)] + ws(t). (2-1d)

gl ooy T gt

e ey Y T B T ST

Defining an equivalent noise term w(t) such that
w(t) = By (1) + wp()] + g(t) (2-Te)
then simplifies equation (2-1d) to

(t) = A x(t) + B ult) +u(t) 5 x(ty) = x5 (2-2a)

In a similar manner, the noise in the measurement of x(t) and
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the noise introduced in the transmission of information about the
states from the vehicles to the controllier are taken into account

by modifying equation (2-1b) as follows :

Let yq(t) be the measurement noise and let xg(t) be

the transmission noise described above. Also, let

u(t) = yp(8) + () (2-25)
Rewrite equation (2-1b) as

y(t) = C x(t) + y(t) . (2-2c)

The resultant stochastic system will then be taken to be

described by the state-output equation
k(t) = Ax(t) + Bu(t) + w(t) ; x(ty) = x; (2-3a)
y(t) = € x(t) + y(t) (2-3b)

where, for conveneince, {W(t)} and{v(t)} are henceforth referred to

as the plant and measurement noise, respectively.

The deterministic system described by the pairs (A,B) and

(A,C)is assumed completely controllable and observable (appendix
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three discusses the importance of these assumptions). The noise
processes {w(t)} , {v(t)} are assumed to be stationary independent

white Gaussian with autocovariances [23]

cov [ﬁ(t), W' (t)] =Ws(t-t) ;>0 (2-4a)
cov [v(t), v' (1)) =V §(t-t) 5 V>0 (2-4b)
and

E{w(t)} =E{v(t) =0 (2-4c)

The foregoing assumptions are required to enable a solution of the
problem with the available theory. Section 2.5 examines actual
vehicle disturbances to see how valid these assumptions are and to

see how any inconsistencies affect the model.

2.2 The deterministic regulator

Considering the optimal deterministic (no noise) regulator
derived in appendix one and presented in figure A1.2 in light of the

discussion of section 2.1, it can be seen that a more realistic
representation of the operation of that regulator under actual operating

conditions is given in figure 2.1,
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wit) v(t)

FIGURE 2.1: The deterministic reguiator
corrupted by plant and measurement
noise (N 0 S R).
The presence of the noise sources {u(t)} and {v(t)} is emphasized
there. That controller, for reasons to be considered in section
2.3, is now no longer the optimal one, however, and some other design
mist be proposed. - In subsequent discussions this regulator will

also be referred to as the NOSR (the non-optimal stochastic regulator).

2.3 A cost functional for the stochastic model

Because of the stochastic nature of the model developed in
section 2.1, it makes no practical sense here to propose an index
of performance, J(u), such as given by (Ai-4). The state variables
x(t) and the controls u(t) are both random vectors whereupon the cost
function J{(u) is a random variable. As a result, the optimal

control u*(t) for some specified sample function of each of the



PRSI S

22

random vectors yft) and v(t) may not be optimal for some other
sample function of each. A logical choice of performance index
in this stochastic case is rather the expected value of the random
variable J(u), defined by |
T
Jelu) = E m ]Tf (x' 0£+g'Ru) dt (2-5)
0

where R > 0, Q > 0, and E{}is the expectation taken over all
underlying random quantities. The term 1/T is inserted to keep the
cost JE(g) finite as the terminal time T approaches infinity [42].
In a sense (2-5) seeks to optimize the average performance of the

vehicle system (2-3).

2.4 The optimal stochastic regulator

The optimal control problem requires that, from the set of
admissable controls u(t), the optimal control u*(t) be found which

will minimize the cost (2-5_ subject to the dynamic constraints (2-3).

2.4.1 Optimal control and the separation property

Due to the presence of the control vector u(t) in (2-5),
minimization of JE(g) requires that the effects of the stochastic
disturbances on the feedback controls first be known. In appendix

two it is shown that given

y(t) = x(t) + ¥(t)
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as the measured output vector, it is generally not possible to
deduce the stochastic effects of the controls u(t) since the system
state vector x(t) is not known. In order to circumvent this
difficulty, it is also shown there that one can rather find the
conditional stochastic effects of future control actions by treating
the conditional density of the state x(t) as one would the actual
state x(t). The Gaussian assumptions of section 2.1 then allows
parametrization of the conditional density (which is of infinite
dimension) by its conditional mean and covariance, each in a finite
dimensional space [42]. If the covariance is independent of control

and observation (see appendix two), then only controls of the form
u(t) = (t, x () for some ¢ (+,) (2-6)

need be sought. The process being controlled is now the conditional

mean process x(t).

A rather obvious conclusion that can be drawn from an exam-
ination of equation (2-6) is that the estimation problem and the
control problem can be separated if the state estimator gjt) can
be designed independently of any control considerations. Under this
condition, the certainty equivalence property, discussed in appendix
two and applied in equation (2-6), is often termed the separation

property.7

e A TR AT R T R AP RSN AR R R

7 For a rigorous proof see Tse [42], Kleinman [23], or Wonham [44].
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In the case where the separation property holds, the optimal
control for the cost function (2-5) can be obtained in two steps :
1. find the conditional mean estimate gjt) of the current state,
and 2. find the optimal feedback gains, L*, treating the conditional
mean estimate as the true state of the system. Since the optimal

feedback gains are found by assuming that the conditional mean

estimate gjt) is the true state of the system, it is obvious that,
given the cost function (2-5), the optimal feedback gain matrix, L*,
of the stochastic system is identical to that of the deterministic

one of appendix one.8 Hence
ur{t) = -KTBR K(t) = -Lx x(t) (2-7)

It should be noted, however, that the separation property is
rather a coincidental result of the theory (i.e. that the estimator
i(t) can be designed independently of the control u(t)) and does
not hold in the general case of nonlinear systems where control and

estimation are interrelated.

8Note that the difference in a factor of 1/2 between equations
(2-5) and (A1-4) is of no importance since only the relative
value of the weighting matrices Q and R determine the final

answer obtained.
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2.4.2 The Kalman filter in the control loop

For the constant system described by equations (2-3), it is
shown in appendix three that, invoking the assumptions of complete
controllability and observability as well as the stationérity of
the disturbance noises, the steady-state Kalman filter (modified
to include the effects of the deterministic input u(t))can be derived.

This steady-state Kaiman filter, given by
X (1) = Ax(t) + 5.0V (y(t)=Ca(t)) + Bu(t) (2-8)

where T (the conditional covariance of the state) is the unique

solution to the algebraic Riccati equation
Ar+s A -1 CVICI 405550 (2-9)

is the best linear estimator of the state of the completely
controllable and completely observable constant system (2-3),in

terms of the output process y(-) over the time interval (-=,t).

Design of the Kalman filter rests solely in the choice of I_ (the
steady-state conditional covariance of the state); which is done
independently of any control considerations. Recalling the discussion
in subsection 2.4.1 on the separation property, jt is then evident
that in this instance the probiem of control and estimation are

separable.
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The optimal controller in the presence of driving noise and
measurement noise thus requires: 1. the Kalman filter estimate of
the system states, and 2. the optimal feedback gains (obtained
as in the deterministic case of appendix one) to operate on the
state estimate to give the optimal system control u*(t).

‘resulting optimal stochastic regulator (also to be referred to

as the OSR) is shown in figure 2.2.

wit) vit)

x(t) ‘ y(t)

- alt)
pelA-ZpClvic)p+q ToClv

-

FIGURE 2.2: The optimal stochastlc
regulator (OSR).9

Bult)

9 To permit the steady-state Kalman filter of equation (2-12) to be
drawn in the block diagram form shown in the figure, recall that
y(t) = Cx(t), _

Rearrana1nq (2- 12), after substituting for y(t), gives

X (£)=0A-5,C'VTeIx(t)hu( )+ 0V Ty (1)
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2.5 Driving and measurement noise covariance matrices

Design of the steady-state Kalman filter requires specification

of the driving noise and measurement noise covariances as
E{w(t) w'(r)} =W 8(t-1)
Eqv(t) v'(r)y =V s(t-t)s V> 0.

Actually, noise is never exactly white and, in many cases,
the assumption that the noise is white is quite inappropriate.
Frequently, however, the Gaussian noise added on to a desired signal
has a relatively flat spectrum with components that extend well
beyond those ;hat are significant in the signal itself. In these

cases the assumption that the noise is Gaussian and white is quite valid.

To judge the reasonableness of such an assumption in the
vehicle control problem under consideration here, a brief examination

of the various vehicle disturbances is in order.

Controller noise {gq(t)} is essentially due to the thermal
noise of the controller components (which is proportional to the
temperature) and the noise associated with the vehicle state measure-
ment device. Assuming that the temperature and vehicle velocity
remain relatively constant then this noise source is essentially

stationary and the white noise assumption holds fairly well [40],



R T e g R N G PR A P P A s

FrrFET T

28

[9].]0 In any modern communication system however, the signal output
of the receiver is generally well above the background noise of the
system so that {gh(t)} can be ignored for all practical purposes.
Nevertheless, occasions do arise when large electrical disturbances
(both natural and man-made) do cause a significant deterioration of
the received siynal. Since the pass-band of the optimal regulator

is rather narrow, these relatively Targe disturbances, {ye(t)} and
{v(t)} » can generally be accomodated as white noise for purposes

of this model. Moreover, it would seem that they may be approximated
as wide-sense stationary processes which, as a result of the Gaussian
assumption, imply strict sense stationarity. Of course these latter
statements on {yz(t)}and {v(t)} are not strictly justifiable. The
wind and road disturbances{yB(t)}will also be taken as stationary
white Gaussian noises even though this assumption is somewhat less

tenable than it is in the case of {ﬂe(t)} and {v(t)} .

Further, assuming for purposes of analysis that the components
of {w(t) }and{v(t) }are independent of each other, the covariance

matrices are readily written down as

10 A strict-sense stationary random process is defined as one for
which all density functions are independent of absolute time
reference (time origin) [45].
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[ 0 0 0 0]
Wv=[0 1 0 0 0
00 1 0 0 (2-10)
0 0 0 1 0
00 0 0 1

2.6 Simulation studies of a typical system

Having specified the three-vehicle stochastic model (2-3)
with the observation matrix C set equal to the identity matrix and
with the autocovariance matrices W and V as given by (2-10), the
optimal steady-state stochastic control system will now be designed
for the case where the performance index JE(g) is given by

, T
3w = Edvin 1| 10(ad(t)+and(t)) + sf2(t) + fd(t) +
gl T NI 1 2

To0

° 11

211 t (2-11)

From subsection 2.4.2, it is known that the optimal system

is specified completely (and uniquely) by the steady-state covariance

1
Note that this performance index is a direct extension of the one
iven for the three vehicle deterministic regulator of appendix one
?except for the constant factor of 1/2 in front of the integral
sign). This should thus allow easy comparison of stochastic and
deterministic regulator design.
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matrix I_ of the filter and by the optimal feedback gain matrix L*.

From the steady-state solution of equation (A3-6) with £(0)=0 (or

from equation (A3-7)), I_ is found to be

—6.406
0.151
r =|0.,007
0.008
0.001

0.151
1.239
-0.143
-0.102
-0.008

0.007
-0.143
0.406
0.143
0.007

0.008
-0.102
0.143
1.239
-0.151

0.00{T
-0.008
0.007
-0.151

0.406

(2-12)

The optimal feedback gain matrix is (from subsection 2.4,1) identical

to the one derived for the deterministic regulator of appendix one.

Hence,

uk(t) = -RB'R x(t) = - L*x(t)

where K is given by (A1-6).

(2-13)

The resultant system to be simulated is thus as shown in

figure 2.3 (which is a specia]ized version of figure 2.2) with L*

and £ given by (2-13) and (2-12), respectively.
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-

FIGURE 2-3: Block diagram of the simulated
optimal stochastic regulator (OSR).

Let us now briefly see Qhat sort of effects the inclusion of a
Kalman filter in the feedback path is expected to have. Separating

the deterministic and stochastic components of x and 2,

I>< >
n

Xt Xty T tX

and substituting into the equation

|
|
|
a
I
I
I
I
|
|

FILTER |
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X =Ax+Bu+y

then gives

(ZD + XSK) = A(ED + ESK) tButw
Now,

uH(t) = - L% x(t) = - L¥lxp(t) + xg(t)]
whence

%) -(A-BL*)z{)] * koy = Augy + BI-L*%g] + ¥ (2-14)
Since the deterministic component evolves accordjng to

= (A-BL¥) x,
then,subtracting this from (2-14) gives

XSK = (A-BL¥) Aok + (w-BL* GN) (2-15)
where

‘SN:Q(.'.)S)
js the estimation error.

For the system where no Kalman filter is present it can similarly be

shown that

hy = (A-BL¥) xgy + (w - BL¥ ¥) (2-16)
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where x is now defined as

X= Xp* Xy

Comparing equation (2-16) with equation (2-15), it is seen
that if the Kalman filter js working properly, implying that
||§N||<<|ll||, then the filter can very effectively reduce the

stochastic effects due to the measurement noise vector ¥(t).

2.6.1 Simulation of system disturbances

In evaluating the effectiveness (through simulation studies)
of the Kalman filter in improving vehicle performance, it is important
to first of all see how well the simulated system realizes the mathematical
one. The use of a digital computer to simulate the mathematical
models presented, among the usual difficulties associated with digital
integration techniques, added probliems connected with the simulation
of system disturbances. Taking into consideration the technique used
for generating a vandom number in the IBM System/360 CSMP program,
it remains to be shown that the simulated noises do fulfill the re-
quirements of the mathematical model (e.g. with respect to mean,

variance, independence, and white Gaussian assumptions).12

12 In appendix two a brief indication of the workings of the 1BM/System
360 CSMP is given. A short description of several problems encountered
in the course of simulating the various mathematical models
developed in this thesis is also provided.
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Table 2-1 gives some data concerning the mean, standard
deviation, minimum and maximum values for ten Gaussian noise sources
used in this thesis. The zero mean and unit variance required of

cach noise source is seen to be fairly well satisfied.

To ascertain if the noise sequences are independent, a
correlation analysis is carried out for every possible combination of
the ten random sequences (taken two at a time).]3 Define the

correlation coefficient of two random variables x and y as
o = e <1 o (247)

where ny is the covariance between x and ¥, and 0yi%y are the
standard deviations of x and y respectively. The two random variables

are said to be uncorrelated if the correlation coefficient is zero.

Table 2-2 gives the correlation coefficients for each pair of

noise sequences described in table 2-1.14 It can be seen that {in

13 Since the noise generator, GAUSS(+s+,+), produces a sequence of
numbers having a Gaussian distribution two random variables which
are mutually uncorrelated are also independent [61.

14 Results were obtained using the "Simple Correlation and Plotting
Package" (CS022) available at the University of Alberta Computing
Center,
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TABLE 2-1

. *
Ten simulation noise sources

SOURCE MEAN STD. DEV. MIN. VALUE MAX, VALUE
1 -0.0124 0.9980 -3.2333 3.1473
2 -0.0146 0.9712 -3.21M 2.8653
3 0.0374  0.9936 -2.6227 3.6630
4 -0.0099 0.9925 -4,1666 3.4578
5 0.0018  1.0135 -2.8523 2.8727
6 -0.0545 1.0156 -3.1221 3.0076
7 .0.0675  0.9487 -3.0099 2.4462
8 0.0466 0.9398 -2.6288 3.0008
9 -0.0391 0.9960 -3.0470 3.0141
10 .0.0588  0.9971 -3.7377 2.8905

S

*
These estimates areé pased on a finite data record consisting of
601 points for each of the ten noise sequences.
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magnitude) the largest correlation, 0.093, occurs between random
generators 1 and 2. Thus, although some correlation between souces
does exist the degree of correlation is not significant and can be

dismissed.

For each noise source present in the modeled system, the CSMP
program calls subroutine GAUSS once at each jteration cycle, where-
upon a single random number is generated for each integration
interval. Given the integration interval, the noise cutoff frequency

is then specified automatically as

I -
fc- K0S (2-18)

where AT is the integration interval specified for the CSMP integration
r'outine.]5 Taking the integration interval to be 0.01 second (see
appendix four), the cutoff frequency of the noises js then given by

(2-18) as 50 Hertz.

Sectioning a single data record into twenty non-overlapping
sections of 1024 data points each, and using a method described by

P.D. Welch [43], an estimate of the power spectra of the random

15

Note that the use of a digital computer for noise simulation has
eliminated the aliasing problems encountered in digitizing continuous
data. It must be borne in mind however, that given the fixed
integration interval AT, no frequency component at a higher frequency
than fc can be modeled adequately.
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number generator GAUSS is ob’cained.]6 The resulting power spectral
estimate, normalized to its maximum value, is shown in figure 2.4.
The interval from -15.54 decibels to 3.33 decibels includes the true
spectrum with at least 90% certainty. Evidently, the random

number generator does not, by any means, approximate the ideal white
noise source. Spurious peaks (ranging from a maximum of 0 decibels
to a minimum of -12.75 decibels) occur throughout the frequency
spectlr‘um.]7 The peaks do seem to occur rather uniformly throhghout
the spectrum however. Moreover, a variation of approximately -13

decibels between the maximum and minimum values cannot certainly

destroy its usefulness as a white noise source.

In conclusion then, it seems that the random number generator
GAUSS is a sufficiently good representation of the noise source post-

ulated by the mathematical model,

2.6.2 Evaluating the performance of the optima] stochastic

regutator
It is useful to evaluate the performance of the optimal stochastic

regulator. An examination of equation (2-5) shows that the objective

]GQuoting P.D. Welch, "The method involves sectioning the record and
averaging modified periodograms of the sections!.
The Fortran program used here is given in appendix five.

]7Note that these spurious peaks could have been somewhat further
smoothed out by averaging over a larger number of modified periodograms
than the twenty used here.
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of the optimal regulator is to reduce the effects of the random
disturbances w(t) and v(t) on vehicle performance. In the limit
one could envisage a "perfect” regulator capable of completely
filtering out system disturbances and thus give vehicle performance
similar to that of the deterministic system of appendix one.

Though obviously this "perfect" regulator is not realizable, one

can still define an index of performance which gives some indication

of how closely this ideal is approached.

The mean-square deviation (MSD) between the state variables of
the stochastic regulator, which includes both the optimal (OSR) and
the non-optimal (NOSR) regulators of figure 2.2 and figure 2.1 re-
spectively, and the state variab]es of the deterministic regulator
(figure A1.2) can thus be used as a gauge of stochastic regulator
performance. Hence, define the estimate of the mean-square deviation
(MSD) of the system variable z to be

N -1

p
MSD=-:T ) [z(k) - zD(k)]z (2-19)
P k=0

where zD(k), 2(k) are the deterministic model response and the
stochastic model response at time kaT, respectively, and Np is the

number of sample points used in the estimate. Since

z(t) = zD(t) + zS(t)
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where {zs(t)} is the zero mean process which is the resultant
stochastic effect of system disturbances on the variable z(t),

the MSD of equation (2-19) then becomes
NP

0 = - ] [zs(t)Jz  (2-20)
k=0

For large Np, performance measure (2-19) thus indicates the variance

of the disturbance term affecting z.

Note that definition (2-19) permits computation of the MSD
of the disturbance in the state variable x without regard for the
deterministic response of the system. This is quite useful in that
it can thus be calculated while concurrently observing the deter-

ministic and stochastic response of the system

In all simulation runs to follow, the estimate of the mean-
square deviation was computed using 501 samples of the variable z2(t)

from time t=0 to time tf=k A T where k=500.

2.6.3 Simulation results

In this subsection the OSR (optimal stochastic regulator) of
figure 2,2 will be simulated for the two cases where the filter does
and does not have exact knowledge of system disturbances. Its per-
formance will then (for equivalent operating conditions) be compared

with the NOSR (non-optimal stochastic regulator) of figure 2.1.
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In a1l simulations the vehicle queue initial conditions are

18

such that 6y1=6y2=6y3=0. 5w1=-4.2, and 5w2=2.1. The corresponding

filter states (Q], ;3’ 25, and §2, §4, respectively) are given identical

conditions at time f=0.]9

Whenever a simulation run incorporates the Kalman filter, the
filter invariably assumes that the noise autocovariance matrices W

and V are both identically equal to the identity matrix.

a. NON-OPTIMAL STOCHASTIC REGULATOR (NOSR) SYSTEM - Table 2-3

gives the mean-square deviations of various system variables for
several values of noise variance. The observed response of the
position and velocity errors are shown in figure 2-5 and figure 2-6,
respectively, while the controller input signal (here called "measured
state") for state variable sw], and the control signal for the

second vehicle, 6F2, are shown in figures 2-7 and 2-8, respectively

(plant and measurement noise both have a variance of one).20

]8Note that these are the same initial conditions used to obtain the
deterministic regulator response shown in appendix one. The non-zero
initial conditions allow concurrent observation of the deterministic
and stochastic components of the vehicle queue response, and also
allow easy comparison with the deterministic model response.

]gThe filter initial conditions are set identically equal to the plant's
in order to avoid the tracking error that would otherwise result at
the starting time.

20The superimposed smooth response, on these and subsequent graphs, is
that of the deterministic noiseless system of appendix one. It is
provided for purposes of comparison. '
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The indicated results clearly point out the serious consequences
for vehicle performance that system disturbances can have. What
is even more striking however, is their effect on the required
corrective forces needed to maintain the steady-state condition.
From table 2-3, for example, it is seen that (for a noise variance
of one) in order to maintain the mean-square velocity deviation of
the first vehicle at 0.0085 the corrective force, GF], mean square

deviation required is 9.5185.

b. OPTIMAL STOCHASTIC REGULATOR (OSR) SYSTEM - Table 2-4 gives the

mean-square deviations of various system variables for several values
of noise variance. In all cases, the designed Kalman filter assumes

(for both measurement and plant noise) a variance of one.

Figure 2-9 to figure 2-13 gives the graphical responses of
several variables when the filter has exact knowledge of the system
noise (i.e. the actual noise variance is one). Figure 2-14 to figure
2-18 show the graphical responses of those same variables when
the filter has an inaccurate description of system noise (1;.e. actual

noise variance is 9.0 but the filter assumes it to be 1.0).

The remarkably improved response that the Kalman filter makes
possible is quite obvious. As a comparison with part a (no Kaiman
filter), to maintain the mean-square velocity deviations of the first
vehicle to 0.0024 requires a corrective force mean-square deviation,

§Fys of 0.0070 (for a system noise variance of one).
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Mean-square deviations for the NOSR system*

| MEAN-SQUARE DEVIATIONS

Q
=N

X L

=

0.0085 1.0743
1.0 0.0082 0.9809 9.5184

) 0.0067 1.0793 11,5912
0.0038 1.0994 9.8712
0.0033 0.9709

0.0304 4.2977
4.0 0.0331 3.9240 38.0742
0.0268 4,3174 46.3664
0.0155 4,3978 39,4850
0.0132 3.8839

0.0766 9.6697
9.0 0.0744 8.8290 85.6689
) 0.0604 9,7140 04,3263
0.0350 9.8950 88.8431
0.0297 | 8.,7389

0.1361  (17.1902
16.0 0.1324  115.6956 152. 2956
' 0.1074 (17,2690 185.4603
0.0622 (17,5908 157.9402
0.0529 (15,5353

The values are‘giveh in the following order (subsequent tables
included)

x=state variables = [5y]6w16y26w26y3]'

y=measured states = [y1y2y3y4y5]'

u=corrective forces=[6F] ¢F, 6F3]'
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TABLE 2-4

Mean-square deviations for the QSR system

MEAN-SQUARE DEVIATIONS

X v X xt

=

0.0024 0.9903 0.0005 0.0016
0.0037 0.9505 0.0017 0.0070 0.0024
1.0 0.0011 1.0215 0.0005 0.0080 0.0022
: 0.0013 1.0526 0.0010 0.0037 0.0022
0.0014 0.9673 0.0003 0.0014

0.0095 3.9615 0.0020 0.0067
0.0151 3.8022 0.0069 0.0281 0.0099
4.0 0.0047 4.0862 0.0020 0.0323 0.0091
0.0052 4.2105 0.0043 0.0151 0.0091
0.0056 3.8693 0.0013 0.0059

0.0215 8.9134 0.0044 0.0151
0.0341 8.5551 0.0156 0.0633 0.0222
0.0107 9.1938 0.0045 0.0727 0.0206

9.0 toio117  |9.4736  |o0.0007  {0.0340 | 0.0204
0.0127  |8.7061 | 0.0030 0.0133
0.0383  [5.8455 | 0.0079 0.0269

16.0 0.0607 15.2083 0.0278 0.1126 0.0396
’ 0.0190 16.3441 0.0081 0.1293 0.0367
0.0208 16,8417 0.0173 0.0604 0.0364
0.0226 15,4769 0.0054 0.0236

T These are given for [Syldwldyzswzsys]'. The values are obtained
using equation (2-35) and replacing the deterministic model response,
ZD(k), with the actual state response, Z(k). It thus gives the

MSD between the estimated and the actual system states.
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C. SYSTEM WITH DISTURBANCES HAVING A UNIFORM:DISTRIBUTION- The equations

for the conditional mean estimate hinge on the linear-Gaussian
assumptions. If the Gaussian assumption is relaxed, then (2-8, 2-9)

do not give the conditional mean estimate [42].

Table 2-5 and table 2-6 give the mean-square deviations for
the NOSR and the OSR, respectively, in the presence ot system
disturbances having a Normal distribution. Unlike the previous
regulators subjected to Gaussian random disturbances, it is now
noted that the ability of the OSR to regulate the position of the
controlled vehicles is actually less than that of the NOSR. This
is a direct result of the inability of the Kalman filter in the OSR
system to accurately estimate the actual vehicle states. Since cost
function (2-11) forces the regulators to take corrective action in
the presence of positional errors only, the poorer position

regulation achieved with the OSR system is readily explainable.
2.7 Conclusions

As a sequel to the qualitative work reported by Anderson and
Powner [1], a comparison of table 2-3 with table 2-4 clearly
indicates the immense improvement in vehicle response obtainable with
the OSR; over that obtainable with the NOSR. Figure 2.19 graphically
compares (for noise variances of from 1 to 16) the mean-square
deviation of the velocity variable, 8yqs and of the corrective force,

GF], of the first vehicle, when the NOSR and the OSR are
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TABLE 2-5

Mean-square deviations for the NOSR system : disturbances have a

Normal distribution,

1<
=<
1=

0.0010 0.3587 3.0334
0.0003 0.3277 3.6812
0.0015 | 0.3119 3.4407
0.0010 0.3567 3.4407
0.0019 0.3276

TABLE 2-6

Mean-square deviations for the OSR system : disturbances have a

Normal distribution.

[><
=<
1> >
=
|> >

0.0004 0.3363  {0.0002 0.0007
0.0032 0.3062 0.0004 0.0018 0.0020
0.0007 0.3338 0.0004 0.0035 0.0002
0.0011 0.3410 0.0018 0.0045 0.0005
0.0018 0.3314 0.0008 0.0004

¥ Comments in the footnote of Table 2-4 apply
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emp]oyed.Z] It is seen that, as the noise variance increases,
the OSR system gives a better response than the NOSR system even
though, except for the case of unity noise variance, the filter
in the OSR system does not have exact knowledge of system dist-

urbances.

By far the most obvious effect of the filter is its
phenomenal reduction in the magnitude of the required corrective
forces to maintain a relatively stable steady-state queue condition.
Figure 2-19b compares the mean-square deviation of the corrective
force aF] applied to the first vehicle of the queue when the filter
is and is not included in the system. The attendant benefits that
this has for passenger comfort and system operating costs have

been discussed in chapter one and will not be considered further here.

Given the vehicle queue with both plant and measuremenf
disturbances (having a Gaussian distribution) the optimal stochastic
regulator system thus consistently permits better vehicle re-
gulation even though the filter in the OSR may not have exact know-

Tedge of system disturbances.

21 It should be apparent from the previous discussion that when the
OSR is used, the filter estimate is optimal only for the case
where the actual noise variance is 1. Had the filter been re-
designed each time the noise variance changed, the MSD of the
system states with the Kalman filter would have shown a rather
horizontal relation.
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CHAPTER THREE

THE VEHICLE SYSTEM WITH .
PLANT NOISE AND FEEDBACK TIME DELAY

ABSTRACT

An optimal closed loop control scheme incorporating a least
mean-squared predictor is first developed for a three-vehicle
system with plant noise and feedback time delay. Optimal re-
ulators are designed for two different performance criteria.
These resulting optimal closed Toop systems are then simulated with
different amounts of time delay in the feedback loop. The effects
of an incorrectly assumed feedback delay on performance is also

examined.
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3.1 The least-mean squared predictor and feedback control

Consider the stochastic steady-state vehicle queue model
described in sub section 2.1 and suppose that now (as discussed
in chapter one) there is a time delay between the acquisition
of the state measurement x(t) and the generation of the required
control action u(t). The state-output equations of the vehicle

queue can thus be taken as
X(£) = A x(t) + B u(t) + w(t) (3-1a)
¥(t) = x{t-) (3-1b)

where © is the time delay. Equation (3-1b) assumes a completely
undistorted controller input signal y(t) of the delayed state x(t).
The admissable control input which minimizes the quadratic cost
function JE(E) of equation (2-5) subject to dynamic constraints (3-1),

u*(t), is now desired.

It is a well known result that the form of the prediction
process is expressed as the conditional expectation of x(t),

[29, 24, 31]

K(t) = Ex(t)/y(o)s 0 <t} . (3-2)
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Since the estimate is to be obtained in terms of the received

signal (output) {y(c),o<t} the state x(t) should be expressed
as a function of y(t). We therefore write
y(t) = x(t=1) = A x(t-1) + B u(t-1) + w(t-1)

= A y(t) + B u (t-1) + w(t-1). (3-3)

If we let
2(t) = yp(t) + yo(t) (3-4)

where -YD(t)' y_s(t) are the deterministic and the stochastic parts

of the system output respectively, then equation (3-3) becomes
(rp(t) * ¥g(t)) = Algp(t) + y(t)) + B u(to)
tult-d) (3-5)
1s(t) is a purely random, zero mean, white noise term because of the

assumptions on w(t). From the linearity of the system, the state

variables can then be separated to obtain

Yylt) = A ypt) + B u (t-0) (3-6)
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Y(t) = Ayg(t) + wlt-a) . (3-7)
Now, from (3-4) and (3-1b) we have
y(t+e) = ypltee) + yltee) = x(t) . (3-8)

The conditional expectation of x(t) given by (3-2) can be re-written

in view of (3-8) as follows
X(t) = E (x(t)/yle) sost)
= E{yp(trr) + yoltre)/y(o),oct}
= yplthe) + EQyg(tr)/y(o)sostt . (3-9)

The least mean-squared predictor, gjt), now requires specification

of the second term in (3-9).

The solution of the differential equation
gt = A yglte) + wit) (3-10)

is given by
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A(t+r-t0)
Yolttr)= 2 Yelt)
S t4e ‘S 0
+ f (Mttr-o) ‘w(o-1) do
to
A(t+1-to) A(t+1-0)
=g Ylt)) + [ ¢ w(o-1)do
tHr
tO
+ 2A(t+T'°)ﬂ(o-t)du (3-11)
t
or
tt
Y(tre) = gy(twe) + f My
t
where
t
R A(t+r-t0) A(t+t~0)
xs(t+r)=2 xs(to) + [} !Ko-t)do .
t
0

is(tﬁ) is the estimate of y_s(th) based on the observation of white

noise up to time t.
t

. Ar A(t-t ) A(t-o)
yltr) =0 0 Oyt )40 wlo-t)do)d (3-12)

0
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From
» _ At
It = oMy(e)
given {y(c), o < t}, &5(t+r) is determined.

Thus

E{xs(t‘l'r)/x(o), o<t)= E{ls(t+'f)/ls(°)’ o < t}

P y(t). 72 (3-13)
The least mean-squared predictor is then givén by
X(t) = yylte) + oM ye(t) (3-14)
From chapter two, the optimal feedback control is

(1) = 4(t, X(t)) (2-6)

22
Kleinman [23] obtains a similar result.
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which, for reasons previously discussed, becomes
aH(t) = -RB' R A(t) = - L¥ x(t) (3-15)

Figure 3.1 shows the optimal stochastic feedback system.
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I T )
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FIGURE 3.1: Optimal stochastic feedback
system incorporating a.least
mean-squared predictor.
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3.2 Simulation studies

In this section the performance of the optimal system derived
in the previous section will be examined for several values of time
delay. Two performance criteria (cost functionals) will be used.23

g
RF Y- tin %j[m(swf(t) + ou3(t))

L 4]
+ sff(t) +ofo(t) + cfg(t)]dt

and,
| T
- ] 1 2 2
2. Jgplu) = E }12 Ti/ [10(su5(t) + su(t)
0

+ (a3 (1) + ay5(t) + y5(1))

+ sflz(t) + sfg(t) + sfg(t)]dt

As was done in chapter two, the basic approach here will be to
simulate the optimal system with time delay for the same initial
conditions as those used for the deterministic regulator of appendix
one. The performance of the optimal stochastic system and of the

optimal deterministic system corrupted by driving noise and time

23 Subscripts 1 and 2 are now introduced to differentiate the two
cost functionals.
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delay are compared with each other and with the ideal deteministic
regulator. This is done by examining the graphical display of the
response of each system and the computed mean-square deviation of

the actual response from the ideal response.

3.2.1 The simulated system

As seen from figure 3.1, design of the least mean-squared
predictor essentially consists of a calculation of the matrix
exponential, exp(At), where t is the feedback time delay. Since
the two systems ‘to be simulated differ only in their index of per-
formance the value of exp (At) will be the same for both and will

thus be calculated now.

CALCULATION OF EXP(Ar)

The series solution for the exponential of the matrix At, given by

i
M 14 (k) +%—1(%\-}- +
At

An-l Tn-1
A A ) 1 B

is amenable to computation using a digital computer. A conveneint
recursive scheme is provided by noting that each term in parentheses
is equal to the entire preceding term; the computation being carried

out to only enough terms so that additional terms are negligible
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in comparison with the partial sum to that point [356]. Table 3-1

gives computation results for several values of time delay r.

SYSTEM WITH COST FUNCTIONAL JE1QQ

Cost functioha] JE] is identical to that used in chapter two

and hence the optimal feedback gain matrix L*, given by

L*= R g §

is identical to that used previously (k is given by equation

(A1-10) of appendix one).

SYSTEM WITH COST FUNCTIONAL JEZ(!)

To place the cost functional in the required form of equation

(2-5) requires that the matrices Q and R be specified as

—; 0 0 0 0_ 1 0 0
&= (0 1 0 O Of andRe= o 1 o0 s
0 0 4 0 O 0 0 1
0 0 0 1 0
60 0 0 0 {_

respectively. Solving for the real symmetric positive definite

matrix
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TABLE 3-1
Exp(Ar) for several values of time delay t
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K = lim K(z)

T

from equation (A1-7), with Q and R as above, gives

2,004
2,494
-0.586

=>
]

0.668

-0.272

2.494
8.967
-1.826
1.675
-0.668

-0.586
-1.826
2.408
1.826
-0.586

0.669
1.675
1.826
8.967
-2.494

The optimal feedback gains are then

3.2.2 Simulation results

SYSTEM WITH COST FUNCTIONAL JE](E)

-0.272 |
'0 . 668
-0.586
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Table 3-2 and table 3-3 give the mean-square deviation of the

system variables (versus time delay) for the two cases where :

1.

the Teast mean-squared predictor is excluded from the feedback path

and,2. the least mean-squared predictor is included, respectively. A

graphical representation of sample results is given in figure 3.2.

Figures 3.3 to 3.6, and figures 3.7 to 3.8 graphically record

the response of the system of figure 3.1 for delay times of 0.1 second
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and 0.42 second, respectively, when the predictor is not present
(i.e. this is equivalently the behaviour of the optimal deterministic
regulator corrupted by driving noise and feedback time delay).
Similarly, results for the case where the predictor is included

are given in figures 3.9 to 3.12. For delays of less than about

0.1 second the system re§ponse is seen to be fairly acceptable without
a predictor. However, for larger delay times the system becomes
quite oscillatory; approaching a limit cycle (for the positional
error variables) at about 0.42 second. Figure 3.9 to figure 3.12
clearly depict the usefulness of adding a predictor to those systems
with relatively large time delay. It is there shown that a
satisfactory response is obtainable at a time delay (0.45 second in

this case) which would otherwise result in an unstable system.

SYSTEM WITH COST FUNCTIONAL JEZ(g)

Table 3-4 and 3-5 give the mean-square deviation of the system
variables (versus time delay) for the two cases where: 1. the least
mean-squared predictor is excluded from the feedback path, and 2. the
least mean-squared predictor is included, respectively. A graphical

representation of sample results is given in figure 3.13.

Here too, the response of the system for time delays of less
than about 0.1 second is fairly acceptable without a predictor.,
However, figure 3.14 and figure 3.15 now show that (unlike the system

with cost JEI) the response at a time delay of 0.42 second is unstable,



*
Mean-square deviations without predictor : cost ‘]El

TABLE 3-2

MEAN-SQUARE DEVIATIONS
T
(SECS. ) X ¥ u
0.0294 0.0855
0.0127 0.3978 1.9438
0.1 0.0421 0.1227 3.2382
) 0.0040 0.1040 0.1785
0.0035 0.0078
0.1491 0.3484
0.0679 0.8942 4.6635
0.2 0.2515 0.5428 8.2186
0.0302 0.2491 0.5921
0.0257 0.0417
0.5067 0.9017 9.4438
0.3 0.2876 1.6040 18.8290
: 1.0426 1.6234 2.0157
0.1713 0.5284
0.1470 0.1819
1.9480 2,5325
1.5930 3.2909 24.4114
0.4 5,3503 6.1294 64.4490
) 1.3025 1.6685 11,3170
1.0489 1.0776
2.6242 3.2350
2.3255 3.9456 30.8118
0.42 7.5537 8.3344 85.9792
1.9897 2.,1903 16.0981
1.5450 1.5615
9.2087 7.3013
0.50 8.1656 9.8276 75.3953
’ 30.3350  R0.3079 32,9885
7.4212 7.2480 47.4542
6.8476 3.9877

78

* The MSD for the time delay problem is cal culated by comparing

the deterministic an
jteration cycles.

d stochastic model results at the corresponding

)



79

TABLE 3-3
Mean-square deviations with predictor : cost JE]
MEAN-SQUARE DEVIATIONS
T
N .t
(SECS. X L X u X
0.0006 0.0263 0.0004 0.0002
0.0016 0.3770 0.0013 0.0057 0.0002
0.1 0.0005 0.0361 0.0003 0.0064 0.0002
0.0007 0.0979 0.0006 0.0029 0.0002
0.0008 0.0029 0.0006 ‘ 0.0003
0.0007 0.0888 0.0004 0.0004
0.2 0.0018 0.7760 0.0001 0.0055 0.0005
) 0.0005 0.1241 0.0003 0.0065 0.0003
0.0008 0.2025 0.0007 0.0029 0.0005
0.0008 0.1756 0.0003 0.0006
0.3 0.0020 1.1753 0.0012 0.0053 0.0008
0.0005 0.2451 0.0003 0.0065 0.0004
0.0010 0.3066 0.0008 0.0031 0.0006
0.0008 0.0116 0.0004 0.0006
0.0010 0.2762 0.0003 0.0007
0.4 0.0022 1.5581 0.0010 0.0048 0.0011
' 0.0005 0.3829 0.0003 0.0058 0.0004
0.0011 0.4046 0.0008 0.0032 0.0007
0.0007 0.0167 0.0004 0.0007
0.0012 0.3831 0.0003 0.0008
0.50 0.0024 1.9132 0.0010 0.0046 0.0014
' 0.0006 0.5258 0.0003 0.0056 0.0004
0.0013 0.4930 0.0009 0.0033 0.0007
0.0007 0.0219 0.0003 0.0007

Y Comments in the footnote of table 2-4 apply.
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TABLE 3-4
Mean-square deviations without predictor : cost JE2
MEAN-SQUARE DEVIATIONS
T
(SECS.) X ¥ u
0.0032 0.0678
0.0086 0.3869 1.9396
0.1 0.0335 0.1000 3.1897
0.0025 0.1008 0.1715
0.0026 0.0060
0.1222 0.2762
0.2 0.0446 0.8404 4,6345
0.2020 0.4335 7.9990
0.0184 0.2289 0.5263
0.0173 0.0290
0.4359 0.7326
0.3 0.1988 1.4405 9,5530
) 0.8637 1.3112 18.4956
0.1085 0.4428 1.7526
0.1016 0.1248
2.1055 2.3719
0.4 1.3087 2.9932 28.4629
) 5.6404 5.6229 72.0096
0.9671 1.4137 11.1904
2.5208 2.7210
1.6258 3.3286 33.0200
0.4 6.9226 6.5994 86.0017
’ 1.2267 1.6668 13.8811
1.2113 1.0186
10.6833 9.4514
10.2259 8.7065 [111.0299
0.5 31.6997 26,7356  B33.9804
8.7400 5.8070 63.5443
5.9952 4.8698 63.5443
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TABLE 3-5

Mean-square deviations with predictor: cost JE2

92

] MEAN-SQUARE DEVIATIONS
(SECS.)

X ¥ X u x !

0.0005 | 0.0217 | 0.0003 | 0.0063 | 0.0002

00016 | 0.3732 | oloota | 0.00s8 | 0.0002

0.1 || o.ooos | o'3100 |o0.0003 | o0.0035 | 00002

0.0007 | 0.0970 | 0.0006 0.0002

0.0006 | 0.0023 | 0.0004 0.0003

0.0007 | 0.0888 | 0.0004 0.0004

0.0018 | 0.7760 | 0.0013 | 0.0055 | 0.0005

0.2 || o.0005 | 01241 | o0.0003 | 0.0065 | 0.0003

00008 | 0.2025 |0.0007 | 0.0028 | 0.0005

0.0008 | 0.0067 | 0.0005 0.0005

0.0007 | 0.1412 | 0.0002 | 0.0006

00020 | 1.1458 | o0.0012 | 0.0056 | 0.0008

0.3 || o'o00s | o0'2032 |o.0002 | 0.0059 | 0.0008

0’0010 | 0.2997 |ol0008 | 0,003 | 0.0007

0'0006 | 0.009 | 0.0003 0.0006

0.000 | 0.2762 | 0.0003 0.0007

00022 | 1.5581 | o0.0010 | o0.0088 | 0.0010

oo || 00005 | o33 |olooos |o.ooss | 0.000s

: o001 | o046 |o.o008 | 0.002 | 0.0007

0.0008 | 0.0167 | 0.000 0.0007

0.000 | 0.3015 | 0.0002 0.0008

00024 | 1.8493 |o0.0009 | 0.0045 | 0.0014

o5 || 0006 | 04273 |oloocz | 00051 | 00004

00013 | 0.4795 |0.0009 |0.0036 | 0.0007

T Comments in the footnote of table 2-4 apply.
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Several phenomena that are noted from a comparison of table
3-5 with table 3-3, and of figure 3.14 with figure 3.7 are now

mentioned; together with a simple theoretical explanation of each.

The difference in deterministic response - The determiniétic

response of the regulator is, from equation (3-6),
¥p(t) = A ypft) + B u (t1)

Since the feedback gain matrix, L*, that relates the control
variables to the measured variables depends upon the specified cost
function, the deterministic response, xb(t), changes with the index

of performance.

The mean-square deviations of the predicted state - It can

easily be shown that, for either regulator,
t

~

(58 - () =+ ¢ 2[4 yg(o) + wlo-c)Jeo (5-16)

J

The mean-square deviation of each of the predicted states should
thus be comparable for both regulators. Table 3-5 and table 3-3

bear evidence to this.

The mean-square deviations between the actual and the predicted

state - Here, it can also be shown that, for either regulator,
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t

(k(t) - x(t)) = - %, () + f Pl (o) + wlo-0)] do (3-17)

The mean-square deviation between each of the actual states and
the corresponding predicted states should then also be comparable
for both systems.' Table 3-5 and table 3-3 show that this is the

case.24

Comparing equation (3-17) with equation (3-16) it is also
evident that, for either regulator, the predicted states should
" approximate the deterministic regulator states rather more closely
than the actual states of the system since

t
[Q—y - (i-éo)] = - (xxp) = - xg(t) = [ [Axg(c) + ¥(o)] do

Comparing column six with colum four of table 3-5 (or table 3-3)

again shows this to be true.

24

The exact agreement in MSD noted here in table 3-5 and table 3-3
(unlike that for the MSD of the predicted states) is most likely
due to the way the IBM/System 360 generates the random noise
sequence. If the noise sequence generated differs from one
simulation run to the next, but if w(t) has some fixed relation
to w(t-), it is possible that, whereas the value of equation
(3-T6) may vary at each simulation vun, that of equation (3-17)
can remain fixed.
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3.3 Predictor performance when the time de1éy is not exactly known

Let ¢(t,t0) be the state transition matrix of the linear

homogeneous vector matrix differential equation
x(t) =A x(t)

where A is the constant matrix of the plant. Then, from equation

(3-1)

t-t
a

y(8) = x(tr)otery tg) X(t;) +] elt-rio) B ulo)do

{

t-1
+ [(b(t-T,c) w(o)do; t-1 2 ¥, (3-18)
1

0

Let the assumed system delay be T such that
Ypp(t) = gp(t-tp) (3-19)

where ZDP(t) and 1Dp(t) are the state and output vectors of the

deterministic portion of the filter model, respectively. Then,

soplt) = agpltrip) = olt-spate) gplty)
t'TP
+ ’/r ¢(t—1P,o) B u(o)do; t-tp 2t (3-20)

Yo

)
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where EDP(to) are the initial states of the filter plant model.

Since KDP(to) and L(to) are set such that

xpplt) = x(t,)
then it can be shown that, if T xs(t) (shown.in figure 3.1) is
given by
r t-1

¥g(t) = y(t) - ypp(t) #(t-150) W(o)dojt-t > t, (3-21)

{o
¥(t) is the result of a Tinear operation on the Gaussian white
noise vector w(t) and hence, xs(t) is also a purely Gaussian white
noise vector and equation (3-13) is valid [13. 23], If, however,

the system delay, t, is not exactly known but is assumed to be
g = r.+ Tg

where v, is the difference between the assumed and actual delay,

then it can be easily shown that
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15(8) = y(t) - ygplt) = x(te0) = xgplterp)

= [o(t-tyty) =o((t=) = 1.st0)] x(ty)

t-t (t--r)-rE
+ {ﬁ(t-x,o)Bg(o)du-I¢((t-r)-re,c)B u (z) dg }
t, £,
tet
- [ o(t-r,o)W (o) do 5 totpatys if 720
t (3-22)

t-rato, if 'r€<0

Unlike the previous case where Tp Was equal to r,‘xs(t) now contains
a deterministic component due to : (1) the difference in propagation
of initial conditions (first term on right hand side of (3-22)), and
(i) the difference in apblied control action (second term on the

right hand side of (3-22)), in addition to the Gaussian white noise
of (3-21). Hence, the statement of equation (3-13)is here entirely

inappropriate and
Elyg(t+e)/gg(o)s o < £ 7 447 yg(t)

From an examination of equation (3-22) and figure 3.1 several

comments can be made about the possible behaviour of the system when
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the filter has an inaccurate estimate of the system time delay.

1. Fort<m tp (whichever is smaller) only the deter-
ministic portion of the vehicle response is controlled. Random

disturbances are completely unaffected by the control effort.

2. The system with a predictor having incorrect information
on the system time delay does not perform in the same fashion as
that without a predictor and with a time delay equal to the
difference between the assumed and actual-delay. This is easily

seen by noting that in the latter case

u*(t)

- L% y(t) = - L¥x (t-re)

- 10 [ ayfte) + gg(8)] (3-23)

where xs(t) is here the stochastic component of y(t). In the former

case
wH(t) = - L% K(t) = - L¥ [xp(t) + #¥yg(0)] (3-24)

where 1S(t) is now given by equation (3-22).

3. For t > 1y7p (whichever is larger) filter behaviour vastly
deteriorates and, unless ITel is small, system performance may be

better without it.

Figures 3.16 to 3.19 prove the correctness of the forementioned

notes.
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3.4 Conclusions

Whereas regulator response may be quite acceptable for short
time delays (about 0.1 second or less) without a predictor, it
rapidly deteriorates as the delay is increased and soon becomes
unstable. The exact point of instability is dependent on the
type of system employed. It has been shown in this chapter that
the inclusion of a least mean-squared predictor ensures acceptable
vehicle performance even in the presence of relatively large

feedback delays.

Inexact knowledge of system delay time is,however, seen to
be quite detrimental to overall system performance. Nevertheless,
considering that the delay time can be estimated quite accurately,
this latter effect need not be of serious concern to the system

designer.
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CHAPTER FOUR

OPTIMAL STEADY-STATE CONTROL OF VEHICLES
IN THE PRESENCE OF MEASUREMENT NOISE
DRIVING NOISE AND FEEDBACK TIME DELAY

ABSTRACT

For the system having both plant and measurement noise as
well as feedback time delay, it is shown that the optimal control is
generated by the cascade combination of a Kalman filter and a least
mean-squared predictor. The results of simulating the optimally
controlled vehicle system with plant and measurement noise of unit
variance together with a feedback time delay of 0.3 second are given.
The observed response of the optimal system when the filter and
predictor have no knowledge of the initial vehicle states is also

presented.
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4.1 The optimal system

In chapter three it was shown that (see equations (3-14) and
(3-15)) the optimal control when the system has plant disturbances
and feedback time delay is given by

WHE) = -L¥ 1 (1) = Ly (b (1)) (4-1)

“p
where tor
Y(t) = | o(t-ty0) wlo) do 5 t-r 2t .
0

To distinguish the least mean-squared predictor estimate of x(t) of
chapter three from the Kalman filter estimate of x(t) of chapter two,
the notation ip is now used in referring to the former. The latter
will subsequently be referred to as Xy 1f a measurement disturbance

term is now appended to equation (3-7b) such that
y(t) = x{t-1) + y(t~1) (4-2)

then xs(t) becomes
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t-1
xs(t) = [ o(t-1,0) ﬂ(o)_do +v(t=); t-1 > t0

t

= gglten) + ¥ (b1) : (4-3)

Reduction of the stochastic effects of the control effort u(t)
in equation (4-1) thus requires that xs(t), the stochastic dis-
turbance term, be made as small as possible. In chapter two it

was shown that, with no time delay,
Xy (t) = x(t) + 8(t)
where iK(t) is the Kalman filter estimate of the state x(t), and

QN(t) is the estimation error. It must be noted that ||§N(t)||<<|lyjt)||
if the filter works properly. If the input to the predictor is taken

as
Y() = Relt-0) = w(twe) + gy (t), (4-4)
then we have

Yys(t) = Kg(ter) + gy (ter) (#)



110

and ||xKS(t)||<<||xS(t)|| (Compare equation (4-5) with equation
(4-3).

Thus, it can be intuitively concluded that, for the case
where the system is subject to both plant and measurement noise as
well as feedback time delay, the optimal regulator should include
both the Kalman filter and the Teast mean-squared predictor (LMSP).
A rigorous proof of this conclusion has been provided by Kleinman
[23]. A schematic representation of this optimal stochastic re-

gulator with estimator and predictor (OSREP) is shown in figure 4.1.

4,2 Simulation results

Two cases are treated here.

Case 1: Plant, filter, and predictor have identical initial states -

A comparison of the performance of the deterministic optimal system
of figure 2.1 with feedback time delay (here called the NOSRD), with
that of the optimal system of figure 4.1 can be made by comparing
tables 4-1 and 4-2. The mean-square deviation (MSD) recorded in
these tables are as defined in chapter two. Figures 4.2, 4.3, and
4.4 give the response of the noisy system with time delay when

neither predictor nor filter is present.25

25 The simulated vehicle queue dynamics assume unity noise variance

for both measurement and plant noise while the feedback delay is
taken to be 0.3 second.

Except for small random perturbations, when both the predictor
and filter are included the response of the system is essentially
that of the deterministic model of appendix one and hence is not
repeated here,
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TABLE 4-1

Mean-square deviations with the NOSRD:

oﬁ=1, 1=0.3 second

X L Y
0.0797 1.0707
0.0535 0.9045 8.7118
0.0717 1.0999 [17.0984
0.0242 0.9925 8.8251
0.0108 0.8960

TABLE 4-2

Mean-square deviations with the OSREP:

oﬁ=], 7=0.3 second

112

X L X %p £ %'
0.0017 | 0.8436 | 0.0007 | 0.0009 0.0014
0.0110 | 0.8022 | 0.0026 | 0.0021 0.01M1 0.0151
0.0055 | 0.9511 | 0.0014 | 0.0009 | 0.0158 | 0.0042
0.0032 | 0.9265 | 0.0041 | 0.0003 | 0.0175 | 0.0036
0.0010 | 0.8642 | 0.0017 | 0.0010 0.0018

T Comments in the footnote of table 2-4 apply.
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Case 2: Plant has different initial conditions from those of the

mwnmrmd%ﬂmmr-me44toﬁwm4%gﬂememwmw

of the optimg] system when the filter and predictor do not have
exact knowledge of the initial plant stétes.26 After some time
has elapsed, it is seen that the filter locks on to the plant
states, and the optimal system performs in the usual fashion from

then on.

That the optimal system with the Kalman filter and least mean-
squared predictor gives better regulator performance than the
deterministic regulator of appendix one (in the presence of stochastic
disturbances and feedback time delay) is certainly beyond dispute.
Compared with the performance of the optimal deterministic re-
gulator of appendix one in the presence of plant noise, measurement
noise, and feedback time delay, it is moreover obvious that the
obtimal system of figure 4.1 gives not only better regulation, but
what is also important, better regulation is achieved with vastly

reduced demands on the vehicle power source.

26 bant initial states = x = [0-8.2 02,1 01" 5 filter initial
states = predictor initial states = null vector.
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CHAPTER FIVE

SUMMARY AND CONCLUSIONS

ABSTRACT

Several concluding remarks based on the work reported in
the preceding four chapters are presented. Some suggestions for

future research possibilities are advanced.
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5,1 Conclusions

The work reported in the preceding four chapters of this
thesis can be summarized as follows. It has been shown that an
optimal stochastic controller can be designed for controlling a__
string of vehicles when random vehicle disturbances, state measure-
ment noise, and feedback time delay are present. This controller,
when implemented in the real world, will perform in a manner
superior to that of the previously considered optimal deter-
ministic regulator, which is optimal only when noise and time

delay are absent.

The severity with which plant noise, measurement noise, and
time delay will affect vehicle performance in the optimal automatic
system will, in large measure, ultimately depend upon the physical
characteristics of the system employed. To name just a few : the
communication network, system operating speed, vehicle power plant
size, number of vehicles controlled, vehicle mass, will all be
deciding factors in determining the control strategy. It is to
be expected then that present studies can only concern themselves
with general aspects of vehicle regulation with the hope of
developing the means to obtain the best possible performance

commensurate with economic and technical realities.

Past work has shown that good regulatory systems can be

designed by appropriate use of optimal control theory by assuming
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that the physical components of the automatic system are capable
of meeting the requirements of the controiler. Since the power
plant size will in general determine the accelerating capability

of any given vehicle, many control Taws will most certainly be

“limited by the need for a prohibitively large power source (with

its obvious attendant impact on operating costs and passenger
comfort). Because of its resultant effects on vehicle response,
regulator power requirements cannot, moreover, be reduced by simply
increasing the penalty associated with the expenditure of input
control energy. An increase in the relative importance of expended

energy would certainly reduce power plant size, but this may also

have the attendant undesirable feature of forcing the system to
fail in meeting its performance specifications. MWhat has been
shown in this thesis, however, is that by proper overall system
design, not only can power plant sfze and passenger discomfort be
significantly reduced, but, what is even more important, regulation

as well can be enhanced, .

It has also been shown that the susceptibility of the control
system to the corrupting influence of feedback time delay will
hinge heavily upon the feedback control strategy that is used.
Given that it is economically desirable to increase the number of
vehicles which a single control center can handle (resulting in

increased computation time for the required vehicle controls) it
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is evident that a scheme for reducing the undesirable effects of
the delay is certainly attractive. Moreover, since it is not
certain how severe the effects of feedback time delay will be on
final system performance, nor how'large the actual delay will be,
the inclusion of a predictor in the designed system may be more

necessary than previously thought.

5.2 Suggestions for future research

A major concern in the area of optimal regulator design is
attributable to an inability to specify, systematically, the per-
formance criteria, by choice of the weighting matrices Q and R,
and the noise covariance matrices W(t) and V(t) which will result
in a desirable system response. Further research is required here

to make the optimal design approach more attractive and Tess expensive,

The plant noise considered in this thesis has served as a
model for actuator noise and model uncertainties. Since modeling
errors are certainly not white, it would be useful to study the
effects of the introduction of colored noise into the design and

performance of an optimal controller for a string of vehicles.

Design of an optimal controller for use under emergency conditions

is, undoubtedly, of grave concern.

The effects of model nonlinearities on system performance and

design are also worth considering.
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APPENDIX ONE

THE DETERMINISTIC STEADY-STATE
VEHICLE REGULATOR

Most of the research done on the position and velocity regulator
has followed quite closely the original format proposed by Athans and
Levine [27].

Modeling each vehicle in a string as a second-order dynamical
system with non-linear damping, the equations of motion are written

in the general form [30]A1

& 7,(8) = (0 | (A1)
me S5 0 = g Iy (0] + (1) 5 k120N (A1-1b)

where Zk(t) and yk(t) are the position and velocity of the kth vehicle,
respectively, and fk(t) is the force applied to the kth vehicle at
time t. The mass of the kth vehicle is given by M while N is the total

number of vehicles in the string.A2

Al Motion is assumed to proceed along a flat straight guideway.

A2 Figure A1-1 depicts a three vehicle string.
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To write the equations of motion (A1-1) in terms of error
state variables one then defines: 1. the deviations from a desired
separation distance between adjacent vehicles By @s the position
state variable, and 2. the velocity deviations from the prescribed
mean string velocity Vo as the velocity state variable. Defining |
the state variables in this way forces the equations of motion of
adjacent vehicles to become coupled and also allows 1inearizatibn

of the non-linear damping term about the mean string velocity Vo'

The result is a set of linearized differential equations for
the position and velocity error variables, swk(t) and syk(t), re-

spectively, given by

& (1) = 6y, (t) - @ (t) (A1-22)
g—t by, (t) = %E ay, (1) + ;n-': of, (t) (A1-2b)
where
gLy (1))
%~ ayk(ti
‘yk(t) = vO

is the first order term in the Taylor series expansion of the non-

1inear drag term, gk[yk(t)]. about the mean string velocity V.

Interlacing the velocity deviations with the position deviations,
the linearized state-output equations for an N-vehicle string can

be written in the form
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e (0 = Ax(t) + B ult) 5 xlty) = x (A1-32)
y(t) = C x(t) (A1-3b)

where x(t) is the (2N-1) - dimensional state vector, u(t) is the
N-dimensional control vector, y(t) is the r-dimensional observation
vector, and A, B, C are (2N-1) x (2M-1), (2N-1) x N, and rx(2N-1)

matrices,respective]y.A3

Specification of a quadratic cost functional of the type

[

l'[i'(t)QL(t) +u'(t)Ru(t)] dt (A1-4)

0

Jd=

N

where R and Q are positive definite matrices then reduces the problem
to the standard linear regulator problem of optimal control theory
5, 241 M

The control which minimizes J for any set of initial conditions

A3
deviations of every vehicle are measured. Hence, the dimension of

the measurement vector, r, is the same as that of x(t), and the matrix

C is the (2N-1)x(2N-1) identity matrix.
4 A quadratic cost is specified for three main reasons:1. computational

convenience, 2. equal penalization of positive and negative deviations

in the state variables, and 3. penalization of large deviations
relatively more severely than small ones.

Since the quadratic cost does not provide for an infinite penalty
when the vehicles touch,however, it is only valid under normal
operating conditions[4].

Note that in the vehicle regulator problem, the velocity and position



on the state vector x(t) is given by 134
uk(t) = - RTB'K x(t) = - L* x(t) (A1-5)

K is the real symmetric positive definite constant matrix which can

be found either by solving : 1. the non-linear algebraic equation

KA-AK+KBRTBK-Q-=0, (A1-6)

or 2, the matrix differential equation
S K(x) = K(x)A + A'K(x) - K(x)BRTB'K() + Q (A1-7)

with the initial condition K(0) = 0, and then setting

K = Tim K(T)A5

>0
Consider now the case of three vehicles where there are two
position deviations and three velocity deviations. Assuming that

m]=m2=m3=1 and a]=a2=a3=], the state equations can be written asA6

A5 The assumptions of controllability and no,terminal cost imply that

the Timit K(t) exists, is unique, and is K: that is [5]
Tim K(z) = K

AT-W
where K is the positive definite matrix which is the solution of(A1-6)

A6 Note that choosing m]=m2=m3=1 in no way restricts the validity of

the observed results., If m]#m2¥m3#1, then some other choice for

the relative values of the weighting matrices Q and R of equation
(A1-4) can be found such that the response is identical to that
whent a1l the vehicle masses are equal to 1.
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(0] [-1 0 0 0 o] fyy@)] I 0 o]
5w](t) 1.0 -1 0 of {aw(t)] [0 0 0} Gf](t)
&l ={o o1 0 0 () +|o 1 o] fef,(t)
iy t) 000 1 0 -1 famd)] [0 0 o] lefy(t)
_{syg(t).J _0 0 0 0 -I_J iy3(t—)_‘ i’ 0 L
(A1-8)

Choosing the cost function
1=} j [10(f (t)san3(t)) + of3(e)sFa(t)oF2(t)]de  (1-9)
0

then allows calculation of K

[ 1.263 2494 -0.819  0.668  -0.44)
2.494 7430 -1.82%6 1123 -0.668
= |-0.819 -1.826  1.638 1.8%  -0.819 (A1-10)
0.668 1.123  1.826 7.43%  -2.49
0444 -0.668  -0.819 249  1.263

The optimal feedback controls are, from equation (A1-5),

8t (t)=-[1 .2636y1 (t)+2.4946w] (t)-O.8196y2(t)+0.6696w2(t)-0.4446y3(t)]
sfz(t)=-[-0.8196y1(t)=1.8266w1(t)+1.6386y2(t)+2.8265w2(t)-0.8196y3(t)]
6f3(t)=-[-0.4446y.| (1:)-0.668&4-I (t)-0.8198y2(t)-2.49-"+6w2(t)+1 .2635y3(t)]

In figure Al.2, thé resultant optimal system is shown in block diagram

form,
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The deterministic steady-state vehicle regulator is thus
founded on the following five basic assumptions : 1. vehicle motion
is along a straight flat guideway, 2. the Tinearized model for the
vehicle dynamics is valid, 3. no system disturbances exist, 4. no
time delays are present anywhere in the system, and 5. normal vehicle

operating conditions prevail.

A computer simulation of the three vehicle regulator was
carried out on the IBM System/360 using cSMP. For the initial
state vector [0 - 4.2 0 2.1 0]', the observed response of the system

is shown in figures A1-3, A1-4, and A1-5, for the position, velocity,

and force deviations, respectively.

x(t)

Ax+By

9.
n

u*(t)

meEMJ:Wﬂm1&mmmhﬁcmwhwrwﬁm.
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APPENDIX TWO

THE CERTAINTY EQUIVALENCE PROPERTY
OF OPTIMAL CONTROL

This discussion of the certainty equivalence property of optimal
control is a slightly more detailéd version of that given by Tse [42].
A starting point for the djscussion can be easily provided by noting
that minimization of the cost function

T
Jew) = E{lind (0r+u' Rw) (A2-1)
T+e

requires prior knowledge of the possible stochastic effects of a
given control law. Knowing the stochastic effects of the control
u(t), the optimal control which minimizes (A2-1) can then be chosen
from the set of admissable controls. To be admissable, the controls
u(t) must satisfy two important properties [42] : 1. it must be
nonanticipative, and 2. it must satisfy the Lipschitz condition to

guarantee the existence of x(t) and_y(t) of the model
(t) = Ax(t) + B u(t) + w(t) 5 x(D) = X, (A2-2a)

y(t) = C x(t) + y(t) (A2-2b)
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derived in section 2,1. The derivation of the certainty equivalence

property now follows.,

If, for the moment, the control vector is considered to be

known and deterministic it is always possible to define
x(t) = xy(t) + x,(t)

where 54(t) and gz(t) satisfy
&(8) = Axg(t) +(t) 5 x(t) = x(t) (2-3)
%) = A xp(t) + B ult) 5 (t) = 0 (h2-4)

The state zz(t) is then completely known if u(t) is known and is

given by

Zz(t) = ¢ (ty1) Bu (1) dr. (A2-5)

t

Its contribution to the observation y(t) can thus always be sub-

tracted and one can define

Y(t) = y(t) - x,(t) = x(t) + y(t) (A2-6)
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where 11(t) now embodies the stochastic effects. Knowing 5(t0)
then, the stochastic effects of u(t) are also known. N 1f u(t)
is not known a priori the unknown contribution of u(t) cannot

be subtracted from the observation and the stochastic effects of
u(t) are not evident. If the control u(t) is admissable however,
one can calculate {u(t), t e[to,t]} when {y(1)s © eltytl} s
observed and then compute _)gz(t) in (A2-5). Hence, given g(_(to)
and monitoring {y(t), t e[to,t]} the stochastic effects of the

control action {u(t), t g[tot]} can be found.

In the more general case, the solution of (A2-2) is
T
x(1) = o(r,t) x(t) +[¢(1,6) B u(é) ds
T t
+[¢(1,0) wo) dost 2t (A2-7)
t

Here too it can be shown that the stochastic effects of the control
action {u(s)so elty7]} can be deduced if x(t) is given. However,

in the general case where

y(t) = x(t) + v(t)

Al

Recall that u(t) is of the form

ult) = oly(t)] = ol (t) + xo(t)].

Since x,(t) is known from (A2-5) then the stochastic component
of y_(t721's also known.
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is the observed vector, it is generally not possible to find what
x(t) is. To circumvent this difficu]ty‘one can rather find the
conditional stochastic effects of future control actions by treating
the conditional density, p(x(t)/{y(¢)s 4 < t}), as one would the
actual state x(t). The conditional density represents the
sufficient statistic for describing the future stochastic effects.
Therefore, it seems that a realizable control can be provided

using {42]
u(t) = o(typ(x(t)/Hy(o)so < t)) for some ¢ (-,-) (R2-8)

Because the conditional density-is in the function space
which is of infinite dimension, in its present form control law
(A2-8) is not of much practical use. Making use of the Gaussian
assumptions of section 2.1 concerning the model {A2-2) now allow
parametrization of the conditional density by its conditional mean
and covariance; each in a finite dimensional space. The conditional

mean and covariance of the state are defined by, respectively,
x(t) 8 ELx(t)/ylo)s o < t] (R2-9)
£(t) g EL(x(t) - x(t))(x(t) - X(t)"/y(o)s o <tl (R2-10)

If the covariance is independent of control and observation

mmoMymewMHMMlmm,ﬂﬂ,Brmﬁmdwpwmﬂﬁmtm
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A2

conditional density. In this case only controls of the form

u(t) = o(ts x(t)) (A2-11)

need be sought. The process being controlled is now the conditional
mean process i(t). Thus, to obtain the optimal control Taw in this
stochastic case, one can solve an equivalént control problem where
the conditional mean i_(t) is treated as the actual state of the
system. This is often termed the certainty equivalence property of

optimal control.

A2 .

| Obviously, if {y(c), o <t} is given, x(t) and £(t) can be calculated
1 using equations (A2-9, A2-10) whereupon the conditional density

‘ is parametrized. If £(t) is not dependent on the observed vector
{y(o), o < t} then we can calculate 3(t) independently of

{y(o), o < t} and only further seek x(t).
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APPENDIX THREE

THE STEADY-STATE
KALMAN FILTER

In appendix two it is found that, as a result of the Gaussian
assumptions, the conditional density can be parametrized by the
conditional mean i(t) and covariance (t). It is a relatively
simple matter to show that the conditional mean defined by

x = EQY = ) = [ x fyy (W/Y) dx (A3-1)

-0

is the best estimate of x(t); in the sense that 5 is the n-vector

that minimizes over all n-vectors, z, the conditional expectation
() [t-z] | /¥=yd = ECDx-2] [8-2)/¥eyd (A3-2)

of the norm-squared estimation error given that Y has value y.
The proof of this is rather straightforward and is done in a
countless number of texts [41, 42, 45]. Expand (2-19) and

obtain
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(| x| 1P/ayd = ECCX-22'K + 2'2/¥=y)

EXN/f=y) - 22 EQYY=p) + 2'2

(|11 2rvey + EC] |z-EDpp 1)

- lEwepll

The only term to involve y in the previous expression is the second,

and thus minimization requires that
2= x = EN/Y=p)
The corresponding minimum of (2-19) is then

A 2 N
e el |27 = ] 2re - LRI
The conditional mean 5 will thus in general depend on the observed
n-vector y.
For the stochastic model described by (2-3) assume that the
initial state )_(_(to) is Gaussian with mean and covariance given by
Ex(t))} = Zo, covix(ty)s x(ty)} = 1, where the noise processes

{w(t)}, {y(t)} are white Gaussian, with properties

Ew(t)) = EQu(t)} = 0

——d
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and
’E{yﬁt) w' (1)} = W(t) s(t-1)
Efv(t) v'(1)} = V(t) s(t-), V(t)>0
and such that x,, {w(t)},{v(t)} are independent. It is then a
well known result that, if u(t) is admissable, the corresponding

conditional distribution of the state is Gaussian with conditional

mean iﬂt) and conditional covariance 1(t) given by [ 39,42] Al
CR(D) = AR+ 5(8) CV(L) (g(t) - C x(8))
+Bu(t) 5 Kt ) = X, (A3-3)
2(8) = A E(t) + £(t) A"+ W(E) - 5(t) ¢V Cat)
z(to) =1, (A3-4)
To obtain an estimator that is relatively easy to implement,
it is highly desirable that the time varying nature of the filter

defined by (A3-3, A3-4) be removed. The several assumptions made

in connection with the stochastic model (2-3) of section 2.1 now

A]These equations are the Kalman filter equations [22, 30]
modified to include the effects of the deterministic input

u(t).
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allow us to accomplish this. Specifying the driving and observation
noises as stationary removes the time varying nature of the auto-

covariance matrices W(t) and V(t), whereupon (A3-3, A3-4) become

X() = A 2(£) + 2(8) ¢ VT {y(t) - C x(t))

+ B u(t) 5 x(t) = X (A3-5)
S(8) = A Z(t) + 5(6) A+ - 5(t) ¢ VT Ca(t)
s(t) = 1, (A3-6)

Further, since the constant system (2-3) is completely controllable

and observable, for all

520, [22, 39, 42)

lim o x(tstgr) = I,
tyre

where I_ is the unique solution to the algebraic Riccati equation

1

Ag_ +I A -z CVC o+ W=0

t >0 (A3-7)

©
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i(t) is thus given by the steady-state Kalman filter (modified to
include the effects of the deterministic input u(t))

() = Ax(t) +5_ ¢ VT (y(t) - Cx(t) +Bu(t)  (A-8)
The steady-state Kaiman fiiter (A3-8) is the best linear estimator
of the state of the completely controllable and completely observable
constant system (2-3) in terms of the output process y(:) over the

time interval (-=,t) .A3

A1 emphasize the dependence of I(t), satisfying equation (2-23)
on the initial time (to) and the initial conditions (zo) Tet

2t tgazg) o 5(t)

For the case where the observed random vector Y and the random
state vector X are jointly Gaussian, the conditional expectation,
E{X/Y=y}, is Tinear in Y and the unconstrained least squares
estimator then coincides with the linear least squares estimator

A3



150

APPENDIX FOUR

CHOOSING THE INTEGRATION ROUTINE
AND THE INTEGRATION INTERVAL

Several difficulties were encountered in simulating the

system described by the state-output equations
x(t) = A x(t) + B u(t) + u(t)
y(t) = x(t-1) + y(t-1)

Among the more serious of these : 1. that a variable step in-
tegration routine could not be used, and 2. that the size of the
fixed step integration interval was severely limited, were largely
a result of the nature of the model and the simulation procedure

employed by the CSMP program.

System 360/CSMP generates a random number at each iteration
cycle. Quoting the CSMP manual [20], "Structure statements
(these specify model dynamics and associated computations) are
transiated and placed into a FORTRAN subroutine called UPDATE which

is executed at each iteration cyc1e.A1 Then, as the integration

A]The UPDATE subroutine also contains the CALL statements for the
subroutine which generates the random numbers (GAUSS(«s+»*)).
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interval is reduced, the UPDATE subroutine is executed more
frequently and hence, per unit of machine time, more random fumbers

are generated.

The noise cutoff frequency fc is given by

fo* 7T (A2-1)
where AT is the integration interval. It thus follows that whenever
the integration step size changes so does the noise cutoff frequency.
As a result, variable step integration routines could not be used
as they would cause the noise cutoff frequency to be correlated with
the shape of the solution of the simulated differential equations.
For the fixed-step integration routines, the integration interval
could not be made too smail or the noise cutoff frequency would be
so high that the regulator (with a relatively narrow bandwidth)
would effectively filter it out. On the other hand, if the fixed
integration interval were made too large, the resulting integration
errors could give an inaccurate solution or could swamp out effects
which one may have hoped to observe. Some tradeoff was thus
necessary between a desirable noise cutoff frequency and allowable

integration errors.

Several preliminary studies indicated that an integration step
size of 0.01 second, fc=50 Hertz, for the fourth-order Runge-Kutta

integration routine was a reasonable choice.
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APPENDIX FIVE

SAMPLE COMPUTER PROGRAMS USED
IN THIS WORK

Some representative computer programs used in the course -
of this work are presented here for the reader's information.
The heading of each program gives a brief description of its

function,




FORTRAN 1V G COMPILER (20.1) MATN 09-30-72
C
¢ CALCULAYION OF POWER SPECTRA RHY
C AVFRAGING OVER 20 DATA RECORDS IN *Z°
C

000!

0002
noox
0004
0005

0006
0007
0008
0009

0010
0011
0012
0013
0014
001S
0016

0017
Q018
0019

0020
0021
0022
0023

0024
0025

0026
0027
002A8
002¢
LLRT
n0s
oy

[l

[nl

DIMENSION 2(20480)¢X(1024),Y{1024},
1AMAGN{20¢512) s AMAGF (512}
READ (8410 U
READ (8.1) 2
1 FORMAT {Fi0.4}
L=0

GENERATION OF ZERD VALUES FOR Y-ARRAY {

3 CONTINUE
00 2 1=1,1024
Y{1)=0.0

2 CONTINUE

153

15:24.49

IMAGs PART)

PAGE

GENERATION OF VALUES FOR X-ARRAY (REAL PART (F COMPLEX Nie)

N=(L#1024)+)
M=({Le¢1)%1028
J=L*1024
D0 4 TaNsM
K=1=J
X{k)=z(1)

4 CONVINUE

USE FAST FOURIER TRANSFORM ON THE TIME
L0DG2N=10

IFSET=1
CALL PS30LA{LOG2NsXyYsIFSET)

SERIES

MAGNI TUDE SQUARED OF THE FIRST HALF OF THE TRANSFORMED DATA

L=t ¢l

00 7 I=1,512

AMAGNIL o TISCUXTT ) 082) 4 (Y (1 )442))
7 CONTINUE

10 PERFORM PREVIOUS CALCULATIONS FOR 20

K=(20~L)
IF (K«NEsO) GO TO 3

T AVERAGE OUT VALUES OHTATHMED Fu TH

N0 9 K=1,512
ASUM=040
on 10 1=1,20
ASUM=ASUMSANAGN( T oK)
10 CONTINUE
AMAGE (K)=ASUM
9 CONTINUE

PATA RECORDS

&0 DATA RECORNS
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FORTRAN TV G COMPILER (20.1) MAIN 05-30-72 15:24,.49 PAGE
7033 N0 50 [=1,512
N0 34 AMAGF (1 )=AMAGF{[)/20.
0035 S0 CONTINVE
[&
< PICK DUT MAXIMUM VALUE OF THE MAGNITUDE SQUARED
4
0036 AMAGMX=0 40
0037 00 11 1=1.512
0034 IF (AMAGF(1).LY.AMAGMX) GO TO 12
0039 AMAGMX=AMAGF (1)
0040 12 CONTINUE
004} 11 CONTINUVE
0042 YRITE (6¢13) AMAGMX
0043 13 FORMAT (%=f ¢ MAXIKUM VALUE OF THE MAGNITUDE SQUARED s
12X4E2047)
C
C YO SCALE TO MAXIMUM VALUE AND CONVERY T0 DECIBAELS
4 .
0044 00 23 I=1,512
0045 AMAGF {1 )=AMAGF (1 )/AMAGMX
0046 23 CONTINUE
0047 D0 24 [=t,512
00a8 AMAGF{1)=20.# ({ALOGLAMAGF(1}))/243026)
0049 24 CONTINUE
C
C PRINT OUT SPECTRUM AND PUNCH OUT DATA CARDS
C FOR PLOTTING ROUTINE
C
0050 WRITE (6.25)
00S1 25 FORMAT (%-',9SPECTRAL DENSITY IN DECIBELS®)
0052 00 26 I=1,512
0083 WRITE (642701 I,AMAGF(1)
0054 27 FORMAT (1Xs13¢10X9E2047)
0055 26 CONTINUE
0056 . WRITE (74199) AMAGF
0057 199 FORMAT (BF10.4)
0058 sTOP
0059 END
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*  DLANT CYNAMICS (XDOT=AX4DU4H)

]
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s eCONTINDONYS SYSTEN MODHLING PROGHAM e

€M EROBLEN INPUT STATEMENTSWe

SYSTEN WEITH NO PLANT NOISE AND §U MEASUREMBNT WOINF

NO_KALMAY FILTER IN }EECHACK

LADEL STATE EQUATICNS

LABEL MEASUKED STATES

LAEEL CCRRECTIVE FORCES

INITIAL

THCCH IL1=0.0,1C2=—H.J,[CJ=0.0,ICH=+?.1,1(5“0.0

DYNANIC

cCCcOoOMDOoOOoDCO

Wit = U & W N
o onnon "nowononu
coocoodmos ol
R IR

!

- =i R G

(5 B

KT=CTY 14DF 1 ed
DY1=INTGRL(IC1, X1
12:=I11=LY2+W2
DE1=INIGRL(IC2,%2)
%3=-DY2¢DF2443
DY2=INIGRLAIC3,X3) ..

CXUELY2-TDYIeNY

D¥2=INTGRL{ICY XU}
X5=-LY34LF34H5
DY3=1NTGRL{ICS X5

CUTFUT ECUATIONS. (¥=CX#V)

Y1=TY1+V1
Y2=C014V2
¥3=012+V3
YU=EW24Vi
¥5=rY3N5

* FLEDEACK FPOH CONTLCLLFR

_METHO EKSFX

DFI=-(1,2630!142.u9utvg—n.ﬂ1n'v100.6uatvu-n.quutyq)
DF2=-(-0.819'Y1-1.826'Y201.hJB*YJ#1.HZb’Yu-J.ﬂ19*Y5)
DE 3= (~0.UU4#Y1=0, 6ABHE 2= 0L AT 32, H9UETH 1, 2634Y5)

TERINAL

TINES DELT=0.010.0UIDBL=0.0I,FINTIP=5.0
PRTELT [Y1,DW1,CY2,DH2,DY3



PREVAK 1Y1,E41,0Y,,EW2,DY 4, B 1,02, BFY
ENT
A

QUTPUT YARTANLYE SECURNCE

M Ve h v U Vi 11 V. ¥ ¥
1 (LLR bR Lyt LR rd [LER Wi k2 ¥3
DY, Yy A\ 142 WY DED V9 1y

QUTru L. TRPUTS FAPAML  IMTEGS 4 MEM BLXs  FURIMAN  DATA OD4

32 () loeny B ey G4 = L 100Y 20 Inny)

EnJCB

182524 ¢4 3o€03 RC:C

¥

156
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$£2 ¢CONTINUOUS SYSTEM MODEL ING IMIKIRAME 2 &%
CSOPRUNLEM INPUT STATEMENTS#%%

. SYSTEM WITH HOTH PLANT NOISE AND MEASURLMENT NOT--
. NI) KALMAN FILTER IN FEEDBACK
» NOLSE. STATISTICS: w={.v=t

LABEL STATE EQUATIUNS
LAREL. MEASURED STATES
LABEL CORRECTEVE FURCES

INITIAL
INCON 1C1204005C23~842+1C3=060+1Ca=424141C52040
DYNAMIC

W1=GAUSS{14+0+00e1a}
W2=GAUSS( 34040001}
W33GAUSS (5404004 10)
WAGAUSS(740400¢1.)
W52GAUSS (9404004 1)
VE=GAUSS(13404004t4)
V23GAUSS(13¢04C00le)
VIZGAUSSL 18540400014}
V43aGAUSS(17+040041)
V52GAUSS(1940400¢14)

& PLANT DYNAMICS (XDUT=AX4BU W)

K12=DY 140F 14W1
DY 1= INVGRL (1C1 4 X1}
X22DY1-DY2+¥2
DW 1= INTGRL{ 1C24X2)
X32-DY 2¢DF 24¥3
DY 2= INTGRL (1C3+X3)
XAZDY2-0YI4WA
DW2= INTGRL (1C4+XA)
X53-0Y J40F 34+¥5
Y 3= INTGRL ( 1C50 X5)

* OUTPUT EQUATIONS {Y=CX+V)

Y130Y14V1
Y2=pW1+V2
¥3=0Y2+4V3
YAZDW24V4
YS20Y34V5S

¢ FLEDYACK FROM CONTROLLER
DF 12=( 14 2638Y1424945Y2-0.819¢Y 340, 66HEY4-0, 4448 Y5)
OF2=-(=0+B8198Y1=1.8263Y24¢16308Y34 1, 826 Y40, H198Y5)
DF 33=(=00884%Y 1 ~0,660%Y2-0+019%Y3-2.894¢Va41, 2603¢YE)
TERMINAL

TIMER DELT=0401+0UTDEL=0401+FINTIM=5.0
METHOD RKSFX



OUTAUT VARIABLE SEGUENCE

VA va v3 v3

... ML VS hd-]
f vi OF1 X1
pv2 e X4

auTPUTS INPUTS
32(300)  70(1400)

ovi w2 X2 T owy
ov2 s OF3  xs

PARANS INTEGS + MEM BLKS
6(400) S+ 0= s(300)

ENDJOB

13:31 19 3,439 RC=0

LKA P (T YR 11 1

(' I " PREPAR DY L 4DW1+0Y2,0%2, D3 1 DF i sOF20F3
£ND
sToe

.2y vl
w OF2 X3
ov3

FORTRAN DATA cps
29(600) 8
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KALNAN FILTER
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#*&$CONTINUOUS SYSTEM MODELING PROGRAMESS
#04PROBLEM INPUT STATEMENTS##s

SYSTEM WITH BOTH PLANT AND MEASUREMENT NOISE
KALMAN FILTER. IN FEEDBACK. . ... -
NOTSE STATISTICS ARE KNOWN EXACTLY
FILTER ASSUMES A NOISE VARIANCE OF 1.0
ACTUAL NDISE VARIANCE 1S 1.0

LABEL  STATE EQUATIONS
-LABEL___MEASURED STATES. ... ..
LABEL  ESTIMATED STATES

LABEL  CORRECTIVE FORCES

INTTIAL

INCON. lﬂl’M;ILE-h.Z-J.Cl'-ﬂ;O.._IC_‘r.Z-I 1€520.0.... ..
TNCON  1CE1%0404 ICE2m=442+ ICE350,04 [CE4=2, 14 [CES=040

DYNAMIC

W12GAUSS(140.,0041,)
. M2mGAUSSERe 04000 ).
W3nGAUSS (54040041, )
Wa=GAUSSUT4040041,)
W52GAUSS (940,001, )
V1=GAUSS(1140,0041,)
V2uGAUSS11340,0041,)

Va4nGAUSS(1740400414)
VE=GAUSS(19+0400,14)

STATE EQUATIONS (XDOTzAX+BU+H)

.. Xl==DY14DE1 441

DY1=INTGRL(ICL,X1)
X2=DY1-DY24N2
DW1=INTGRL{1C2,X2)
X3s=DY24DF2443
NY2=INTGRL(1C34X3)

- o e-A4=0Y2 =0Y I4h4 :

DH2=INTGRL(1C4,X4)
X5=«DY34DFI+K5
DY3=INTGRL(1C5,X5)

NUTPUT EQUATIONS (Y=CX+V)
Y1sDYi+vl
Y2aDWl+V2
Y3=0Y24V3
Y4=DN2+V4
Y520Y3+V5

18 SUHBARISUHBAR‘CTRANSPUSE‘VINVERSE*Y

SUNBR1=0s4064Y140,1514Y240,0074Y340, 0084Y4+0,001%Y5
SUMBR2704151#Y141,239%Y2-0, 1434Y3~0,102%Y4-0, 0084 Y5
__SUHERB'O.QOT‘JI-Qn143‘YZ*Q;&DQ_XB*inﬁ3*¥4’O.QQl_!i.m--.".
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£

<UMHRbrﬂ.Onﬂ‘VI—F.lU)'V?OC.lhBOV?‘l.PiquA—O.l5l‘Yh
SUHRR5=0.”01‘Vl-ﬂ.ﬂﬂﬂ“V?'".OO?‘Vl-O.l“l'vubﬂ.“Ob'Vﬁ

{.PGHOOT=(A-SUMﬁAR*(TPANSPUSF‘V]NVF“SE“CI‘RUHOQI

X6=-l-406‘ROHl-0.]5l‘RUH2~0.00?*FUh3-0-UOR‘ROHQ-C.UUI*RON“’Ql
POWE=TNTGRLLICE Y Xb)
X7=ﬂ.8ﬁ9*R0Hl-!.2?9'“““2-0.8%7'Rﬂ“300.lﬂi‘PﬂHQGO.HW“V"ﬂH5007
ROW?= INTGRL{TCE24XT)
XP=-0-007‘90H1'F.IQI*RUHZ-I.Q(D*RUHB—O.lhﬁﬁﬁﬂwﬁul.U“I*QHH*OQ4
PNW3=INTGRL (1CF2,X8)
XQ=-0.0GB‘RDH10L.lOZ'RUH?*O.ESI‘RDHB'l-239*RUH4—0.8&“*90H50Q4
ROW4=INTGRULTCF4 X9 )
XIOS-O.OO]'F0H10°.008‘R0H2-0.007‘RUH‘+0.l5l‘RUHk-l.%0h*RUHRGQV
RUWS=INTGRLETCFS +X10)

1.G1=GAMMA=OUTPUT OF FILTER

G1zROM1
6G2=ROW?
3=ROW3
G4=ROW4
65=ROWS

L.H'U(T'=~H*LS1Aﬂ*GT (WHERE UL=NF1,U3=NF2,U5=DF 3}

ﬂFl=-(l.263‘61*2.‘94’62-0.819*63*0.bb8*64—0.444*65)
nF2=-(-0.819‘61-1.626‘6?01.638‘6341.%26*66-0.%19*651
DF3=-(-0.4#4‘01-0.668'0?-0.810‘03-?.«94*64*1.263*651

L OI=SUMBAR+BRULT)

01=SUMBR1+DF1
02=SUMRR2
03=SUMBR3+0F2
04=SUMBR4
05=SUNRRS4DF3

TERMINAL

TIMER DELT=0401,0UTDEL=0a01¢FINTIM=5.0

METHOD RKSFX .

PRTPLT  DY1,NW1,0Y2,0W2,0Y3

PREPAR nYl'DquDV?-DHZ'DY3'VlpVZoV3vV4-Yﬁ'Gl'ﬂ7-GE|Gﬁ.Gq|---

DF1.NF2,0F3

END

SToP
NTIAT VARIARLE SEQUENCE
Wi GS G& 63 G2 Gl DFl X1 vl We
x? nNul w3 OF? X3 ny2 W4 X4 nwe WS
nFR X5 ny3 V5 Y5 V4 Y4 vi Y3 V2
v? Vi vl SUMBR1 01 X6 ROWL SUmitke 02 X7
ROWY StiMpey Q2 x8 RUW3  SUMBR4 Q4 x¢ RO44 SUIKRS
Q8 Y RNWS
(SRS INPLTS  PARAMS  INTEGS + MEM BLKS FCRTRAN  DATA CLS

nrasaY YaR(1eAN) 1304000 10+ 0= 100300) 54(4C0) 14
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#4#0CONTINUOUS SYSTEM NODEL ING PROGRAMS#¢¢
s2epROBLEN INPUT STATEMENTSS##

SYSTEM WITH PLANT NOISE ONLY :
MEASUREMENT, OF. SYSTEM STATES EXACY; BUT WITH VIME DELAY.
NO PREDICTOR IN FEEDBACK
DELAY TIME2P=z0.1 SECOND

*® oo

LABEL STATE EQUATIONS
LABEL MEASURED STATES
: LABEL CORRECTIVE FPRCES

INITIAL

INCON lCI=0nOolC2=-‘-ZolC3=OoO-lCQ:GZ.l.lC5=Oc0

. OYNAMIC
W12GAUSS(140400,1,)
W22GAUSS(340400414)
'3=G‘U35(5-0q00olo)
WARGAUSS(740400,14)
¥33GAUSS(990000010)

¢ PLANT DYNAMICS (XDOT=AX+8U¢W)

X1=~DY140F] ¢u1
OVIZINTGRLLICI,X1)
X2aDYi-Ov2ew2
OW1=INTGRLLIC2,X2)
X32-DY240F2+43
DY2= INTGRLE1C3,X3)
X4z0Y2-DY34Wa
DV2= INTGRL(1CA 0 %4 )

... XS3=OVIeOF3ews

DY3=INTGRL (1CS X5 )

¢ OUTPUT EQUATIONS (Y=CX(T-P))

Y12DELAY(9:04140Y1)
-—Y2EDELAY(9,0.1,001)
Y32DELAY(9,041,0Y2)
YA=DELAY(94041,0¥2)
YS=DELAY{94041,DY3)

* FEEDBACK FROM CCNTROLLER

T "GFE"-'('i'."z'e'il“thiz.wnvz-o.a|9tvsoo.easm;d.'uitv?;'i' ’
OF2%-(=008194Y1~14826#Y2¢1.6384Y3+1.8264Y4-0819¢Y5)
DF3z-(~000448Y1-0.6684Y2-0.8198Y3-2.4944Y4+] +2634Y5)

TERMINAL

TINER DELT0401 4 0UTOEL=040T ;F INFINSST)
METHOD RKSFX

PREPAR OY14DW140Y2 4DN2+0Y34Y14Y24Y3, V44 Y5 4DF1 40F2,OF 3
END

stop

R T oI O



P

OUTPUT VARIABLE SEQUENCE

L1} ¥5 Y4 Y3 Y2 A4 OF1 x1 oyt w2
X2 oW1 w3 0F2 %3 oy2 L L X4 owe ws
DF3 x5 ov3
...OUTPUTS . INPUIS  PARAMS .. INTEGS .&# MEM BLKS FORTRAN DATA.CRS.
27(500) 65(1400) 8(400) 84 5= 10(300) 24(600) 8
ENDJOB

12:11.06 34425 RC=0

(o
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. 0030

FAMTRAN IV G CONMPILER (2040)

(s Na X Nal

o

n

02

a0 a3

e 08

005

0C 06

oc Q7

ac 08

00 09

0o 1o

0011

0012
c
[+
C

00143

0014

0015

00 {6

0017

0018
C
C
c

2019,

0020

go21

0022

0023

0024

0025

0026

0027

0028

0029

0031

0032
c
4
c

..0033

T -

0034

0038
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MAIN 05 26-72 13:36446

TU CALCULATE EXP(AT} WHERE

A

IS A MATRIX AND *T' [S A CONSTANT

DIMENSTON AUS15)¢G(5+¢5) 1R(Ss5) +51{5H) 1520945)

153¢5+5)4AD0L (545}

READ IN VALUES FOR 'A¢,'I%; CHECK FOR CIRRECTNESS

105

100

101

106
to8

READ (50105} ((ALTed)ed=145)e1=145)
READ (5+105) ({G{1sJ)ed=145)e12145)
FORMAT (5F1045)

WRITE (64100}

FORMAT (*=1,¢A([sJ) [S*)

WRITE (60106) ((A{L14J)¢J2145)e12145)
WRITE (64101}

FORNAT (9=, [(1,J) IS')

WRITE (64108} ((Gll1sJ) 4J=145)01=145)
FORNAT (10X¢SF1043)

FORMAT {10X¢5F10¢3)

SET ORDER OF EXPANSION} SET DELAY TIME

300

N=16

T=0e40

DO 20 K=1,4

T=T+#0.01

WRITE (64300) T

FORMAT {1Xe*T 1S*e1XoFée2)

CALCULATE SUCCESSIVE TERMS OF THE EXPANSION

CALL S!E!!‘170R0505'0)

"CALL MCPY{R¢51¢5¢5+0)

CALL MCPY{S1+52¢503¢0)

CALL GMADD{GeS1+Re5¢5)

CALL MCPY(RsADD11+545.0)
DO 19 L=2eN

" CALL, SMPY(Sisle/LeReSe5s0)

200

201

CALL MCPY(R¢S3¢5¢540)
CALL MPRD{ $3952¢R+5+5404045)
CALL MCPY{R;5245¢5+0)

WRITE (6,200) L

FORMAT._{0=14 15X, *TERH *412)

WRITE (692010 ((S2(14J)9J=145)41%1:5)
FORMAT (224 5F1045)

ADD EACH SUCCESSIVE TERM TO PARTIAL SUM

CALL GMADD(ADD1¢524R+5+5)
CALL MCPY(ReADD1#5¢5+0)

WRITE (6,152)

PAGE



\

TR

FIRTRAN IV G COMPILER (2041) MAIN 05~26-12
0036 152 FORMAT (*-0,18X,*EXP(AT) [S!)

0037 WRITE (6+203) ((ADDL(L¢d)eJ=115) e1=145)
0034 203 FORMAT (22X¢$F1045)

0039 . . .19 (CONT INUE

0040 20 CONTINUE

0041 END

SEEETLE ML

164

13136446
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«4$8CUNTINUDUS SYSTEM MODELING PRUGRAMSSES
S44PROBLEM INPUT STATEMENTSA®#

SYSTFM WITH PLANT NOESU ONLY

NT_OF SYSTEM 5TATFS EXALT S BUT WEVH TIML DELAY
ONLY IN FFEDBACK

DLLAY 'IHE‘P 0e1 SFCe

- * v

LABFL STATE EQUATIUNS
LAREL MEASURED STATES
LABEL_PREDICTED STATES
LABEL CURRECTIVE FONCES

INITIAL

INCON [Cl= 2040, 1C25-84241C32040,1C8=241 01052 0.0

0 1CD2= 2, 1C03= 0.041CHAZ 2214 [CN6Z0.0

PA EX11=0,9049, EX12 0.0|FX13'0‘0-le4 0.0.LXIS'O.D'...

Ex21= O-OQSZ.EXZZ-l.0.!X?1'~0-0958'FX20 2004 X200 e00 000
EX31=0e0,EX3220404F X33=0.9048 ,FX34= 0e0¢f X3550a0s00e

EX41=0e04EXA2= 0.0EX83=0.0952EX84= TalDgbX492=040020 000

EX51=0404EX52=040 ¢EX53=040,EX58=00 [RURSLEL DY

“DYNAMIC

W1=GAUSS(1+0400414)
W2=GAUSS(3+040041 )
W3=GAUSS5(5¢000041 4!

* STATE EQUATIONS (XDOT=AX+BUI+W)

X1==DY1+DF1 44l

DWI=INTGRL (1C24X2)
X3=-0Y2+DF2+¥W3
NY2= INTGRL(TC34X3)
X4=0Y2-DY3+Wa

NTGRL(IC4 4Xa)
DY 3+DF 34W5
DY3=INTGRL.(1CH4X5)

. QUTPUT EQUATIONS (Y=Cx{i-P))

_YEZDFLAY(9,0,1:0Y1)
V2SDELAY(84041,0W1)
Y3=DELAY(940414DY2)
Y8=DELAY (9404 1,DW2)

Y5=DFLAY(9s0e140Y3)

& LEAST MEAN-SQUARED PRENICTOR
* 1 JDETEBMINISTIC PARY Nk PLANT MIDEL

X11=~Z14DF 1
Z1=INTGRL(ICD 14 X1 1)
X12=21-23
_z{leTGnylCDE-XIZ)



w
EXR3
Y2
x2

\_OF3

TR

i

03
Y2
owl

xs

" QUTPUT VARTABLE SEQUENCE
s1s

]
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X13=-Z34DF2
23=INTGRLLTCD 34 X1 3)
X18=73~25
ZAzINTGRLL1CDA X1 8)
X162-2540F 3

757 INTGRL(1CD5 ¢ X15)

2.0LLAY OF DETERMINISTIC MODLL STATES

YUI=DELAY(9,0e1421)
YU2:=DELAY{9,041422)
YU ELAY{940e1+23)
Yy ELAY (94041424}
YUS=DELAY (94001 425)

3R(TI=Y(T)=YULY)
siy=yi-vur .
$13=Y3-YUJ
Ssla=Ya-Yua
S15=Y¥5-YUS

4.EXR=

ADIIR(T)

EXHI=EXIl‘Sll*EXIZ‘S!?OFXlJ‘SlJtEXlé‘Sl“*EKlSCSIb
ElRZ=EX2|tSlI#EXZZ‘SI?+EX23‘S!JOEXZA‘SI&GEXZSUSIS
EKHS:EXBI'SI!#ﬁXJZOSlZOEKJStSIJOEXJQ‘Slé+EXJ5‘Slh
EKR‘=EX‘I‘SIIGEXQZ‘SIB#EXAJ‘S]SOFXAQOSIA+EXA5¢SIS
_EXRSZEXS1#S114EXS2AS] 24EXSINS1 3N 43EX53515

SeXHATIT)ZEXR4Z

D1=EXR1+Z1
D2=EXR2+22

DS=EXRS+Z5
USTAR({T )=-LSTARSXHAT(T)

DF 12-(14 263401 424494%02=048194D 3404 66R N4~ 0 444305)

OF25-(-0.A19#D1~1,826#D2+1 46 4B#D3+1,826¥08~0,8194D%)
DF3==(-00 444801 -0+6684D2-0¢819%D3-244944D4 +142¢ 3405)

TERMINAL

_TINER DELT=04010,0UTDEL=(
METHOD RKSFX

$01,FINTIM=5.0

PREPAR DVI.Dll'DY2|UHZODV3'VI-YZvVJoVO.YS-Ol;DZ.DJuDh'Dbno-.

OF1,DF2,DF3
END
sToP

Sta S13 s12 sIt EXRS DS EXR3 De
EXR2 n2 Yus ¢ Yus YA Yul ¥3
yut Y1 EXR) 433 OF1 X1 214 w2
w3 DF2 X3 oy2 e x& ow2 w5

ovsS__xu__ 2y w2 z2 X13

i X



74 x5 45
auTPUTS THPYTS  PARAMS  INTEGS ¢ MEM ALKS FORTRAN
5705000 1A0{1a00) 38(400) 10¢ 10= 20{300) saoe0)

ENPIOR

1020R1AH Ke1T QC=N

DATA CDS
16

167
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EHEACONTINUIUSL SYSTEM MODEL TN PRIQITAME VRS
SOEPRUNLE N THPUT STATEMLNTS 644

A GYSTEM WITHM OLANT NOLSE (MEASUREMENT NOTSE (AND FEEOIPACK TIME i LAY
» PSITION NEVIATIONS ALCNE INCHR A CHIST
. TiME DELAY=N, 8 SEC.3 NUTHE VARLANCE =1, 0°

LANMEL  STATE VOUATIONS
LAREL  MUASURED STATES
LAREL  FSTIMATED STATHS
LABEL  PREDICTED 3TATES
LAREL CITRRECTIVE FONZES

INITIAL

INCON [C1=040,1C2=06041C32040,71C4=0e0,1¢ "N,

INCON TCF1 ECE2504041CE3I=0 0 JCEA=0D4TCLLE040

TRCON TTDTE0. 0% TCO2=000, TEDIZ0 200 XCDAZ040, 1EDA=06 N

PARQAMETER FX11=0a740R:FEX1220e0oEX1 300001 X1820004EX1H7 a0y sus
LX21204259246X22=100000,FX23==042592vEXi8:0000EX 520004000
EXINZ0a04EX3220609EX33:007408,EX34=040¢f X15709Oprne
EX81=04041EX42=040¢EXA3=042592 1EXA421,00004] Xa5=-0,2592 444,
UX51=0404FX52=0404EX23=0404EX542000sLX5H20,700R

DYNAMIC

WIZGAUST(140.04140)
W2=GAUSS(3,0.04140)
W3IZGAUSSL540404140) .
WEEGAUSMT, 000,10y - T T T C ’ oo
WS2GAUS (940004 140)
VI=GAUSS(11+0404140)
V22GAUSST1340.0,140)
V3=6AUSS(15,040,140)
V4=GAUST(174040,140)
. CEETRDSSITRL i) e

] STATE CQUATIONS (XDOT=AX+HU+W)

X1==DY 14DF § 4W1
OY1=INTGRLCICL oX1)
T T TReSOYI=ovEEwWe T
DMI=INTGRL(1C2,X2)
X3==DY240F24u3
DY2=INTGRL{1C34X3)
X4=DY2-0Y34w4
DW2=INTGFLT1CA 4X4)
B TR g M L e e
3=INTGRLEICSX5)

¢ CORRUPTION OF PLANT STATES 'Y NOTSE

YZ1=0Yi4vV1

T e b S . . e e e
YZ3=0Y24V3 ’

Y24=DW24V4

YZ530Y34VS

DELAY OF CORRUPYED PLANT STATES




L

7

T TR T

YI=DHLAY (/9000 teVLL)
Y2ENLAY(e0e 1,Y27)
YV UELAYL2 400 44Y7 %)
YA NELAY( Q0. 40V 78)
Ya=DLLAY (29404 3,Y25)

T8 KALNMAN FU TR
L lnﬁU"HAﬂrUU“HAH‘CVRANSVH&P.VINVF“HE‘Y
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RUHWPIrﬂ.onﬁtvl00.!5"V)00.007'V]00-OhHlVO(O.OUI*Y%
h”ﬂﬂua-o.lﬁliYIOl-ZJWCYR-O.IASQVJ—O-IOZOYG-O.OOR‘YH
HU“"NJ:O-“O7‘YI~O-|A3'&800.400'V300-l&J‘YQ&O.ﬂﬂ?lYﬁ

SUMIEG 2 00 00RKY 1-0o 10247280, 18 IXYIHT 42 308Ya- 0151475
SUMHRG =0, 00181 ~0,0088Y240.0076Y3=0,1514Y4+0,4064Y5

* 2 RRU(T=P)=-BSLSTARYEXR(~5P)
DFSD=DELAY( 29404 3¢0F 1)
“HRZOEDELAYUZ9 S VIDF2)
DF ID=DELAY (27400 3,0F3)

* 3.0 1=SUMBARSBFU(T-P)

=5UMART#0F 1D

0.3=5UMBRI+DF20
04=SUMBRA
05=SUMBRL +0F 10

] 4 ,RONDAT = ( A~ SUMBAR¥C TRANSPOSE $VINVERSE

L) #ROWEOT

X6=—I-AOSORGWI-O-15I‘ROH?-O-007‘NUWJ-0oOOH'RUH4-0000l‘RUN5#Q|

ROWI=INTOGRLUICEL 4 X6)

K7=00840’R0Hl—l.230‘P0W2—0.857tﬂﬂl300nlOZtQUhAOO.OOﬂ‘H0V5+02

ROW2=INTGRL(ICE? ¢X7)

X6=-0.007‘W0Wl00-IQJOQUU?-I.QOO‘FDW!-O-IGSGRUh0-0.007'ﬂ0VSOGJ

U TROWISINTGRUT ITES VXY

XQ=-0.000‘HUVIOO.|020R0W200-857‘ﬂﬂwl-l.ZSUtVUWA-OnBQO‘RUVSOOO

ROWA=INTGRL{ICEA+X9)

XlO:—0.00l‘ROiI00-008‘9BH2—0.001*ROU3+0nlSl'RU'“-I-QOblR0'5005

RONS=INTGRL{ ICI154X10)

o g B ETSGRMMAS OUTAUY OF ETLTER T T T T

Gt=ROW1
G2=ROW2
G3=RUW3
GA=ROW4
o g SR e

& LEAST MEAN-SQUARED PREDICTOR
L 1.DETERMINISTIC PART OF PLANT MUDEL

X11==Z1+0F1

s P TEINTGRLTTCO TR 7 77
X12=21-23
Z2=INTGRL {1CD24X12)
X13=«234DF2
23=INTGRL ( 1CD34X13)
X14223-25
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ZA=TNTGRL ( 1CDaX14)
X15==264DF3
25=INTGHL {ICDS,X15)

2.NELAY OF DETEWMINISTIC MODFL STATES

YUISNELAY{29,0030421)
YUP=OFLAY (2940430422}
YUI=NELAY(2040410420)
YUS=DFLAY(29,0.30,:48)
YUSSOELAY (29,04 30425)

1 R(TI=61 L =YULLT)

S11=61-YUl
$12=6G2-YU2
$13=G3-YU3
SIa=Ga-vus
$18=65-YUS

Aok XR=EXP(AP)R(T)

EXRIZEXIUSST 14E X128 ST 24E X) IFST 447 X1 44614 45X1 00T
EXR2=EXZ 1S T 14EX228S I P4EX2 206G 3+ X2 0851847 R29K ST
'"EXV3=EY31¢SYIOEXSE‘S!1‘5!33*5[40FX36#S!6}EX35#Slw
EXRAZEXA XS 4ENA2HSI24EXAISS] Sec X4 AES] 44 XQ5€ 515
EXPSSEXSI4STLHEXS2RST24EXGIRST 341 X545 1441 XD5% 51

SeXHAT(T)=EXR+Z

.. ...D.TA nq‘.‘Z‘.. I.. e —— s tnms e

[}
DJI=EXR34713
D3=FXRA+24
NS=EXRD+ZS

USTAAT T Y 2L STARRXHAT(YY "

DFL==(1426340142.494%D2-0¢ B194D240 e HHI D 4-00 464%DY)
DF2=~(~0eB194D1 ~1 ¢826¥D2+]1 463D +1 442 04DA-0A19%NA)
DF3==(=0e484¥D1=0,6E88N2~0s RIUFD I=2 494D+ 142 €3¥05)

" TEAMINAL

TIMER DELT=04010s0UTOEL=04014FINTIM=54D
METHUD RKSFX

PREPAR LV1sDW1eDY2,EW2eDYSaY1a¥2e Y3 a¥a Y5061 006206840G005 0000

D1+4N2403408,NReCF14LF2.DF3

- END
sToP

QUTPUT VARIAHLE SENUENCE

L1} S SIS (13 sia 63 s13 52 5k 1

sn EXRS 05 Exka Da £Exwd D3 L XK 2 ne Yuns

YU04 " YUl ‘YUTTT YUY T EXRI nr DFL X1 o EES

X2 owl w3 nF2 X3 ove w4 x4 w2 v

DFJ3 XS ov1 DFIN V8 \743) &) Ve Y4 va

v3 Yz3 Y3 v? Yze Y2 vi vt Y1 SUMHvL
X6 ROW) SUMHR2 02 X7 ROW2  DF2)  SUMHRS 93 '

Rw3

SUMIRA 04 X9 Lol L DF3D SUMERSG aH X109



m

[ Pows  xit N iz L2 X1y 23 x4 " x5
™

nuTEyTY INPUTS PARAMG  INTEGS ¢ NEM ALKS  FORTRAN  OATA €05
(R000) 251014000 430490) 15+ 1I= 2ALI00) 924h0 ) "

( FND 408

L0250,35 1,43 RC=0

7



