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Abstract

In this thesis we investigate how corrections originating from particle-hole inter-

actions may be introduced into the Bardeen-Cooper-Schrieffer (BCS) theory of super-

conductivity using functional integral methods. �e a�ractive Fermionic contact in-

teraction is simultaneously decoupled in the Cooper and exchange channels, with the

exchange-channel decoupling field treated as a small fluctuation about its zero mean-

field value. Upon integrating out the exchange-channel fluctuation field, the system

is described by a new effective action for the Cooper-channel decoupling field, which

models the superconducting condensate. �e saddle-point condition of this effective

action generates the standard mean-field BCS equations with correction terms con-

taining particle-hole polarization bubbles. �e corrections obtained in this thesis are

similar in spirit, albeit different in form, to those originally found in 1961 by Gor’kov

and Melik-Barkhudarov (GMB). An advantage of the technique employed here, as op-

posed to the GMB approach, is the methodical manner in which fluctuations can be

incorporated into superconductors.
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“Entropy continually increases. We can, by isolating parts of the world and postulating

rather idealised conditions in our problems, arrest the increase, but we cannot turn it into

a decrease. �at would involve something much worse than a violation of an ordinary law

of Nature, namely, an improbable coincidence. �e law that entropy always increases-

the second law of thermodynamics-holds, I think, the supreme position among the laws of

Nature. If someone points out to you that your pet theory of the universe is in disagreement

with Maxwell’s equations-then so much the worse for Maxwell’s equations. If it is found

to be contradicted by observation-well, these experimentalists do bungle things sometimes.

But if your theory is found to be against the second law of thermodynamics I can give you

no hope; there is nothing for it but to collapse in deepest humiliation.”

Eddington, A.S.



iv

Acknowledgements

I would like to thank Dr. Rufus Boyack, my primary collaborator for the research
presented here. My first exposure to the theory of superconducting fluctuations was in
Dr. Boyack’s lectures on the topic, and his notes were an invaluable reference. Over the
course of this project Dr. Boyack gave countless hours of his time in the form of deep
discussion, guidance, and checking my calculations for errors. �at said, any errors
which may remain in this thesis are entirely my own.

I thank Professor Frank Marsiglio, my supervisor, for his mentorship, patience, and
insight over the course of my degree. I further thank my thesis commi�ee members:
Professors Frank Hegmann, Richard Sydora, Joseph Maciejko and the aforementioned
Frank Marsiglio for their difficult questions and valueable perspectives.

Finally, I thank my close friend Russell McLellan and my fiancée Chantal Jonsson
for their support and dedicated proofreading assistance.

�is work was supported by the Canada Graduate Scholarships-Master’s (CGS-M)
scholarship from the Natural Sciences and Engineering Research Council of Canada
(NSERC).



v

Contents

Abstract ii

Acknowledgements iv

1 Introduction 1

2 �e functional integral formalism 3

2.1 Coherent state functional integral . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 �e spatial continuum limit . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Non-interacting systems: Gaussian integration . . . . . . . . . . . . . . . . 8

2.2.1 Real Bosonic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Complex Bosonic fields . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Fermionic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Matsubara frequency summation . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Bosonic Matsubara sums . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Fermionic Matsubara sums . . . . . . . . . . . . . . . . . . . . . . . 12

3 BCS theory of superconductivity 15

3.1 BCS as a saddle-point of the functional integral . . . . . . . . . . . . . . . 15

3.1.1 BCS gap equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 BCS number equation . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Superconducting fluctuations away from the BCS saddle-point . . . . . . 23

3.3 GMB correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Exchange channel fluctuations about the BCS saddle-point 29

4.1 Decoupling in the Cooper and exchange channels . . . . . . . . . . . . . . 30

4.2 Gaussian fluctuations in the exchange channel . . . . . . . . . . . . . . . . 33

4.3 Modified saddle-point condition . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Exchange channel fluctuation propagator: small-momentum ex-

pansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Modified number equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusion 44

Bibliography 46



vi

A Grassmann numbers 48

A.1 Gaussian integration of Grassmann variables . . . . . . . . . . . . . . . . . 51

B Coherent states 52

B.1 Bosonic coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B.2 Fermionic coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

C Assorted Matsubara sums 59

C.1 Maki-�ompson style diagam . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

C.2 Density of states style diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 62

C.3 Number equation correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



vii

List of Figures

3.1 Superconducting fluctuation propagator above Tc. �e divergence of

this propagator signals the superconducting phase transition. . . . . . . 27

3.2 Critical Temperature equation with the GMB correction . . . . . . . . . . 28

4.1 Representation of interactions in the Cooper and exchange channels. . 29

4.2 Fluctuation correction to the BCS Tc equation . . . . . . . . . . . . . . . . 38

4.3 Term appearing in both theGMB correction and exchange-channel fluc-

tuation correction to the critical temperature. . . . . . . . . . . . . . . . . 39

C.1 Maki-�ompson style diagram arising in exchange channel fluctuation

corrections to the BCS gap equation. . . . . . . . . . . . . . . . . . . . . . . 59

C.2 Density of states style diagram arising in exchange channel fluctuation

corrections to the BCS gap equation. . . . . . . . . . . . . . . . . . . . . . . 62



viii

List of Symbols

T Temperature.
β Inverse temperature 1/T .
µ Chemical potential.
N Total number of particles.
v Vector with components vi.
ǫk Dispersion relation in terms of wavevector k.
G0 Free Fermionic Green’s function
G Dressed Fermionic Green’s function
τ Imaginary time.
iΩm Bosonic matsubara frequency.
iωn Fermionic matsubara frequency.
k Composite Fermionic frequency and momentum (iωn k).
q Composite Bosonic frequency and momentum (iΩm k).
∆ Superconducting order parameter.

z̄ Complex conjugate of z.
a† Hermitian adjoint of a.
|x〉 �antum state labelled by x.
〈x| �antum co-state labelled by x.

F [f ] F is a functional acting on the function f(x).
F [f ](x) �e functional F [f ] evaluated at x.
δF [f ]
δf(x) Functional derivative of F with respect to f at x.

D[f ] Measure over a space of functions labelled f .
❞ Integration measure with constants absorbed.
❞3k Wavevector integration measure (2π)−3d3k.
❞4k Fermionic Matsubara sum and wavevector integration measure T

∑

n ❞
3k.

❞4q Bosonic Matsubara sum and wavevector integration measure T
∑

m ❞
3q.

tr Trace over vector or Nambu indices
Tr Trace over position or momentum indices as well as vector or Nambu indices
det Determinant over vector or Nambu indices
Det Determinant over position or momentum indices as well as vector or Nambu indices



1

1 Introduction

A large body of work in the condensed ma�er physics literature is devoted to going

beyond the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity, which is a

mean-field description of superconductors from a first-principles microscopic point of

view published in 1957 [1]. BCS theory performs admirably in describing a class of su-

perconductors known as conventional, but there is a much larger class of unconventional

superconductors for which the applicability of BCS is suspect. �ere is a widely held

belief that the BCS theory contains certain unrealistic assumptions, ignoring physical

effects which may be relevant to the description of unconventional superconductors.

One line of inquiry going beyond the BCS description, which was first explored by

Gor’kov and Melik-Barkhudarov (GMB) in 1961 [2], holds that, due to the assumptions

implicit in BCS theory, the effects of interactions between particles and holes, i.e. va-

cancies in the Fermi sea, are ignored in favour of the more dominant particle-particle

interactions which drive the superconducting phase transition. GMB used a method

to re-introduce the particle-hole interactions into the BCS theory and found that with

their modification the critical temperature was reduced by a simple numerical factor of

(4 e)1/3 ≈ 2.22.

�is thesis began as a humble project to understand how the GMB correction was

implemented and ended as an odyssey through the bountiful, yet treacherous, sea that

is the functional integral formalism of quantum field theory. Dissatisfied with the ex-

position in the GMB paper, which is characteristically terse and relies heavily on the

authors’ keen physical insight, we set out to see if we would replicate the correction

starting from first principles using functional integral methods. We chose the func-

tional integral approach over the more common canonical approach in terms of oper-

ators on a Hilbert space because the functional integral formalism is more rigid than
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most canonical methods, giving firm mathematical guidance where physical intuition

may fail, and because it is a formalism especially well suited to studying fluctuation

phenomena [3].

In this document, we chronicle our current understanding of how weak magne-

tization fluctuations in superconducting systems lead to a modified form of the BCS

theory of superconductivity which accounts for particle-hole interaction effects. �e

modifications we derive differ from those of Gor’kov and Melik-Barkhudarov, and we

cannot yet make quantitative comparisons between the predictions of our corrections

and theirs. Instead, the central result of this thesis is a robust platform for understand-

ing fluctuation corrections to superconductors which arise from interaction channels

other than the dominant particle-particle channel.
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2 �e functional integral formalism

Any question about a many-body quantum mechanical system described by a Hamil-

tonian operator H at thermal equilibrium, or in the linear response regime, may be

answered through manipulations of the partition function

Z = Tr e−βH . (2.1)

By utilizing the coherent-state basis, the traditional approach to calculating the par-

tition function, which is based on operators acting on Hilbert space vectors, may be

recast into integrals over a relevant space of functions describing the physical system

[3]. �is reformulation leads to a different, but equivalent language for studying con-

densed ma�er systems that can have advantages over traditional formulations, espe-

cially in the context of studying controlled fluctuations about a classical configuration.

We call this formalism the coherent state functional integral and it will play a central

role in our work to go beyond the mean-field BCS theory of superconductivity.

2.1 Coherent state functional integral

In many-body physics, one must consider systems with Bosonic or Fermionic degrees

of freedom distributed throughout a la�ice. Hence, we generalize the standard no-

tion of single-body coherent states introduced in Appendix B to many-body systems.

Considering a Fock space spanned by a set of N Bosonic or Fermionic creation and

annihilation operators a†i and ai and le�ing ζ = +1 for Bosons or −1 for Fermions, a
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many-body coherent state is the product of N independent single-body coherent states

|ϕ〉 = exp
(

ζ
∑

i

ϕi a
†
i

)

|0〉 , (2.2)

where ϕi is either a complex number for a Bosonic system or an anti-commutating

Grassmann number for Fermionic systems in order to respect the commutation or anti-

commutation relations of the field operators a†i and ai, as explained in Appendix B.

�ese many-body coherent states have the properties

ai |ϕ〉 = ϕi |ϕ〉 , (2.3)

〈ϕ| a†i = 〈ϕ| ϕ̄i , (2.4)

〈ϕ′|ϕ〉 = exp

(

∑

i

ϕ̄′
iϕi

)

|ϕ〉 , (2.5)

and

✶ =

∫

❞
N (ϕ̄ ϕ) exp

(

−
∑

i

ϕ̄iϕi

)

|ϕ〉 〈ϕ| , (2.6)

where we have defined

❞
N (ϕ̄ ϕ) ≡

∏

i

d(ϕ̄i ϕi)

(2πi)(1+ζ)/2
.
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With these states, we are ready to construct the partition function for a Bosonic or

Fermionic field theory in terms of functional integrals . Taking a normal orderedHamil-

tonian H[a† a], 1 the partition function may be wri�en as

Z = Tr e−βH

=
∑

n

〈n| exp
(

− βH[a† a]
)

|n〉

=

∫

❞
N (ϕ̄ ϕ) exp

(

−
∑

i

ϕ̄iϕi

)

∑

n

〈n |ϕ〉 〈ϕ| exp
(

− βH[a† a]
)

|n〉

=

∫

❞
N (ϕ̄ ϕ) exp

(

−
∑

i

ϕ̄iϕi

)

ζ 〈ϕ| exp
(

− βH[a† a]
)

∑

n

|n〉 〈n|ϕ〉

=

∫

❞
N (ϕ̄ ϕ) exp

(

−
∑

i

ϕ̄iϕi

)

ζ 〈ϕ| exp
(

− βH[a† a]
)

|ϕ〉 . (2.7)

Even though we took H to be normal ordered, exp(−βH) is not normal ordered. How-

ever, we can write the exponential of the Hamiltonian as an infinite product of normal

ordered operators

lim
M→∞

exp
(

− βH[a† a]
)

= lim
M→∞

exp

(

− β

M
H[a† a]

)M

= lim
M→∞

(

1− β

M
H[a† a]

)M

. (2.8)

Defining ∆τ ≡ β/M , breaking apart the exponential of the Hamiltonian as shown, and

inserting a coherent-state resolution of unity between each factor, we find

Z = lim
∆τ→0

∫

❞
N (ϕ̄1 ϕ1) exp

(

−
∑

i

ϕ̄1
iϕ

1
i

)

× ζ 〈ϕ1|
(

1−∆τ H[a† a]

)

✶
N

(

1−∆τ H[a† a]

)

✶
N−1 . . .✶2

(

1−∆τ H[a† a]

)

|ϕ1〉

= lim
∆τ→0

M
∏

n=1

∫

❞
N (ϕ̄n ϕn−1) exp

(

−
∑

i

ϕ̄ni ϕ
n
i

)

〈ϕn|
(

1−∆τ H[a† a]

)

|ϕn−1〉 , (2.9)

1We remind the reader that an operator is normal-ordered if all creation operators appear to the le�
of annihilation operators. For a normal ordered operator A[a† a], 〈ϕ|A[a† a]|ϕ〉 = exp(ϕ̄ϕ)A[ϕ̄ ϕ].
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where we have defined ζϕ0 ≡ ϕN . We now use

lim
∆τ→0

〈ϕn|
(

1−∆τ H[a† a]
)

|ϕn−1〉 = lim
∆τ→0

exp

(

∑

i

ϕ̄ni ϕ
n
i

)

(

1−∆τ Hϕ̄n ϕn−1
)

= lim
∆τ→0

exp

(

∑

i

ϕ̄ni ϕ
n
i −∆τH[ϕ̄n ϕn−1]

)

to write

Z = lim
∆τ→0

∫

(

M
∏

n=1

❞
N
(

ϕ̄n ϕn
)

)

exp



−
∑

i,n

∆τ

(

ϕ̄ni
ϕ̄ni − ϕ̄n−1

i

∆τ
+H

[

ϕ̄n ϕn−1
]

)



 . (2.10)

With sufficient courage, we are now prepared to take the infinite limit. Just as in the

construction of elementary integral calculus where one defines

lim
∆x→0

N
∑

i=1

Fi∆x ≡
∫

F (x) dx , (2.11)

we find that our indexed sets of variables {ϕ̄} and {ϕ} become functions being integrated

over in the exponential:2

ϕ̄i(τ) ≡ lim
∆τ→0

ϕ̄ni , (2.12)

ϕi(τ) ≡ lim
∆τ→0

ϕni , (2.13)

and

∂τϕi(τ) ≡ lim
∆τ→0

ϕni − ϕn−1
i

∆τ
. (2.14)

With the above limits, we define

L[φ̄ φ](τ) ≡ lim
∆τ→0

∑

i

ϕ̄ni
ϕni − ϕn−1

i

∆τ
+H(ϕ̄n ϕn−1)

=
∑

i

ϕ̄i(τ) ∂τ ϕi(τ) +H[ϕ̄ ϕ](τ) , (2.15)

2Note that the constraint from before that ϕN+1 = ζϕ1 translates to ϕ(β) = ζϕ(0), meaning that
(Fermionic) Bosonic fields must be (anti-)periodic functions in τ with a period β.
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such that

S[φ̄ φ] ≡ lim
∆τ→0

∑

i,n

∆τ

(

ϕ̄ni
ϕni − ϕn−1

i

∆τ
+H(ϕ̄n ϕn−1)

)

=

∫ β

0

dτ L[ϕ̄ ϕ](τ) . (2.16)

We call L and S the imaginary time Lagrangian and action, respectively, because if we

were to take the analytic continuation of these quantities as τ → it, the above would

be the familiar coherent-state Lagrangian and action. Upon performing such an ana-

lytic continuation, the partition function would become the generating functional for

a real time quantum field theory. �e variable τ is o�en known as imaginary time. By

performing calculations with imaginary time and then analytically continuing to real

time, we encode thermal effects into time dependent quantities.

Finally, we are le� with the question of making sense of our infinite product of

integrals outside of the exponential of the action. �is object is best thought of as a

functional integration measure

lim
M→∞

(

M
∏

n=1

∫

❞
N (ϕ̄n ϕn)

)

≡
∫

D[ϕ̄ ϕ] . (2.17)

Restated, D[ϕ ϕ] is the measure for an integral where each point in the integration

domain is not a number, but rather a function, and this function is passed to the expo-

nential of the action functional S[ϕ̄ ϕ] in the evaluation of the partition function.

Pu�ing all these definitions together, we have arrived at the coherent-state func-

tional integral representation of the partition function, given by

Z =

∫

D[ϕ̄ ϕ] exp

(

− S[ϕ̄ ϕ]

)

. (2.18)

We call the transformation which replaced the Hamiltonian description with which we

started with that of a Lagrangian description in terms of functional integrals, a Legendre
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transformation, a�er the Legendre transformation familiar in classical mechanics,

H[a† a] → L[ϕ̄ ϕ](τ) = ϕ̄(τ) ∂τ ϕ(τ) +H[ϕ̄ ϕ](τ) . (2.19)

2.1.1 �e spatial continuum limit

�e previously introduced formalism readily generalizes from la�ice models with a

quantum mechanical degree of freedom at every point in the la�ice to field theories

with a field at every point in space. One need only to replace the sums over the lat-

tice index i with integrals over position variables x. Such continuum limits are o�en

calculationally convenient but are liable to introduce unphysical effects into the theory

which must be carefully excised in order to stay faithful to the underlying la�ice model.

2.2 Non-interacting systems: Gaussian integration

Before considering more complicated systems, let us restrict our a�ention to a special

class of condensedma�er systems: those for which the action is a quadratic form. It will

turn out that all such systems are exactly solvable via the laws of Gaussian integration.

We will explore three examples of such actions.

2.2.1 Real Bosonic fields

A real field is one for which φ̄(x) = φ(x) or, equivalently, in momentum space φ̄(k) =

φ(−k). �erefore, creating a particle travelling with momentum k is equivalent to an-

nihilating a particle with momentum −k 3.

By analogy to the Gaussian integration rule for sets of real numbers,

∫

Rn

dnx
√

(2π)n
exp

(

− 1

2
xT

·A · x

)

=

√

1

det(A)

= exp

(

− 1

2
trlog(A)

)

, (2.20)

3Because electrons in metals typically couple only to the real part of the phonon field b†+b, phonons
are o�en treated as real Bosonic fields when their coupling to electrons is dominant [3].
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we may define

∫

D[φ] exp

[

−
∫ β

0

dτ

∫

❞
3k φ(τ k) Â φ(τ − k)

]

= exp

(

−1

2
TrLog

[

Â
]

)

(2.21)

for a linear differential operator Â.

2.2.2 Complex Bosonic fields

�e law for complex Gaussian integrals holds that

∫

Cn

dn(z̄ z)

(2π)n
exp

(

− z̄† ·A · z

)

=
1

det(A)

= exp

(

− trlog(A)

)

(2.22)

and so we analogously define

∫

D[φ̄ φ] exp

[

−
∫ β

0

dτ

∫

❞
3k φ̄(τ k) Â φ(τ k)

]

= exp
(

−TrLog
[

Â
]

)

. (2.23)

2.2.3 Fermionic fields

Referring to the Appendix A.1, we see that for two vectors of n Grassmann variables η̄

and η,

∫

dn(η̄ η) exp
(

η̄T
·A · η

)

= det(A)

= exp

(

trlog(A)

)

, (2.24)

where we note the all important difference of a minus sign from the Bosonic case.

Boldly generalizing to functional integration, we have

∫

D[ψ̄ ψ] exp

[

−
∫ β

0

dτ

∫

❞
3k ψ̄(τ k) Â ψ(τ k)

]

= exp
(

TrLog
[

Â
]

)

. (2.25)



10 Chapter 2. �e functional integral formalism

2.3 Matsubara frequency summation

One may naively think that finite temperature many-body physics must be more diffi-

cult than zero temperature, but in practice, due to the formalism developed by Takeo

Matsubara [4], finite temperature field theory calculations actually tend to be easier

and more natural than their zero temperature counterparts. A�er doing calculations at

a finite temperature, it is o�en straightforward to take the zero temperature limit.

2.3.1 Bosonic Matsubara sums

Consider the action for a system of free complex Bosons,

S[φ̄ φ] =

∫ β

0

dτ

∫

❞
3q φ̄(τ q)

(

∂τ + ξq

)

φ(τ q) , (2.26)

where ξq = ǫq − µ, with ǫq as the free particle dispersion relation and µ as the chemical

potential. Recalling that the field φ must be periodic in β, i.e. φ(τ + β) = φ(τ), we may

then write φ in a Fourier series as

φ(τ q) =
1√
β

∞
∑

m=−∞

φ (iΩm q) e
−iΩmτ , (2.27)

where

φ(iΩm q) ≡
1√
β

∫ β

0

dτ φ(τ q)eiΩmτ , (2.28)

and we defined the Bosonic Matsubara frequency iΩm ≡ i 2mπ/β. We may now write

the action as

S[φ̄ φ] =

∫ β

0

dτ

∫

❞
3q φ̄(τ q)

(

∂τ + ξq

)

φ(τ q)

=
1

β

∑

m

∫

❞
3q φ̄(iΩm q)

(

−iΩm + ξq

)

φ(iΩm q)

≡ −
∫

❞
4q φ̄(q) D−1

0 (q) φ(q) , (2.29)
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where in the final line we defined

q ≡ (iΩm q) , (2.30)
∫

❞
4q ≡ 1

β

∑

m

∫

❞
3q , (2.31)

and

D0(q) =
1

iΩm − ξq
. (2.32)

We call D0 the thermal Green’s function for the Bosonic field φ since it is the inverse

of its differential operator. In moving to the Matsubara representation, we have diago-

nalized the action, and the fields may be integrated out to find

Z =

∫

D[φ̄ φ] exp

[ ∫

❞
4q φ̄(q) D−1

0 (q) φ(q)

]

= exp
[

− TrLog
(

− βD−1
0

)

]

= exp

[

− βV

∫

❞
4q log

(

− βD−1
0 (q)

)

]

. (2.33)

�e particle number density is then

n =
1

βV

(

∂ logZ
∂µ

)

T,V

= −
∫

❞
4q
∂ logD−1

0 (q)

∂µ

= −
∫

❞
4q D0(q)

∂D−1
0 (q)

∂µ

= − 1

β

∑

m

∫

❞
3q

1

iΩm − ξq
. (2.34)

We call the m summation a Matsubara sum. �e Matsubara frequency sum may be

computed analytically by noticing that each point in the Matsubara sum is a point in

the complex plane coinciding with the poles of the Bose-Einstein distribution, defined
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as

b(z) =
1

eβz − 1
, (2.35)

such that b(iΩm) is a simple pole of weight +1 for all m. Hence,

1

β

∑

m

1

iΩm − ξq
=

1

2πi

∮

C

dz
b(z)

iΩm − ξq
, (2.36)

where the integration countour C encloses all the poles of b(z) counter-clockwise. Re-

placing the integration contour C with C ′, where C ′ wraps clockwise around the pole

at ξq, 4 we find

1

β

∑

m

1

iΩm − ξq
= −b(ξq) , (2.37)

such that

n =

∫

❞
3q b(ξq) . (2.38)

2.3.2 Fermionic Matsubara sums

Matsubara frequency summation for Fermions is nearly identical to that for Bosons

with the key difference that the fields must be anti-periodic in β, i.e. ψ(τ + β) = −ψ(τ).

For this reason, their Fourier series representation uses the odd frequencies

ψ(τ k) =
1√
β

∑

n

ψ (iωn k) e
−iωnτ , (2.39)

where

ψ(iωn k) ≡
1√
β

∫ β

0

dτ ψ(τ k)eiωnτ , (2.40)

4�ere are of course also semicircular contributions to C ′ at infinity but these will be exponentially
small provided the summand is properly regularized [3].
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and we call iωn ≡ i (2n+ 1)π/β a Fermionic Matsubara frequency.

Studying a free action analogous to Eq. 2.26, we observe

Z =

∫

D[ψ̄ ψ] exp

[

−
∫ β

0

dτ

∫

❞
3k ψ̄(τ k)

(

∂τ + ξk

)

ψ(τ k)

]

=

∫

D[ψ̄ ψ] exp

[

− 1

β

∑

m

∫

❞
3k ψ̄(iωm k)

(

− iωm + ξk

)

ψ(iωm k)

]

=

∫

D[ψ̄ ψ] exp

[∫

❞
4k ψ̄(k)G−1

0 (k)ψ(k)

]

= exp

[

βV

∫

❞
4k log

(

− βG−1
0 (k)

)

]

, (2.41)

so that the particle number is given by

n =
1

βV

(

∂ logZ
∂µ

)

T,V

=

∫

❞
4q
∂ logG−1

0 (k)

∂µ

=

∫

❞
4k G0(k)

=
1

β

∑

n

∫

❞
3k

1

iωn − ξk
. (2.42)

We now observe that the sum over the Fermionic Matsubara frequencies coincides with

the poles of the Fermi-Dirac distribution, defined as

f(z) =
1

eβz + 1
, (2.43)

such that f(iωn) is a simple pole of weight −1 for any n. �us, we may write

1

β

∑

n

1

iωn − ξk
=

1

2πi

∮

C

dz
f(z)

iωn − ξk
, (2.44)

where C is now a clockwise oriented contour enclosing the poles of f(z). �e contour C
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may then be replaced by a new contour C ′, enclosing the simple pole at z = ξk counter-

clockwise so that

n =

∫

❞
3k f(ξk) . (2.45)
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3 BCS theory of superconductivity

John Bardeen, Leon Cooper, and John Robert Schrieffer (BCS) published a paper in 1957

on their Nobel prize winning microscopic theory of superconductivity [1]. In their

paper, BCS argue that interactions between electrons and phonons lead to an effective

interaction between electrons which is a�ractive near the Fermi surface. It was shown

that even though the effective a�raction may be incredibly weak, it can lead to bound-

states between two electrons, known as Cooper pairs, and there is a critical temperature

Tc below which the Fermi surface develops an instability towards the proliferation and

condensation of Cooper pairs. �is instability is the hallmark of the superconducting

phase transition [3, 5–9].

In this chapter, we introduce the BCS theory of superconductivity using functional

integral methods to serve as an introduction to using the coherent state functional

integral to study interacting systems. �en, in the next chapter, we will follow this

same derivation but include additional effects which we will show result in particle-

hole corrections to the BCS theory.

3.1 BCS as a saddle-point of the functional integral

�e simplest route to derive the BCS theory of superconductivity in the functional

integral formalism comes from considering a neutral gas of Fermions with an a�ractive

contact interaction. Such a system can be described by the continuum Hamiltonian

H[c† c] =

∫

d3x c†σ(x)
p̂2

2m
cσ(x)− g

∫

d3x c†↑(x)c
†
↓(x)c↓(x)c↑(x)

=

∫

❞
3k c†kσ

k2

2m
ckσ − g

∫

❞
3(k1 . . . k4) c

†
k1↑

c†k3↓
ck4↓ck2↑ δk1−k2+k3−k4

, (3.1)
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where g > 0 is the coupling for an a�ractive s-wave pairing interaction. �e physical

justification for studying such an interaction is that in electron-phonon systems, the

effective interaction potential between electrons takes the approximate form

g ω2
D

(ξk − ξk′)2 − ω2
D

, (3.2)

where ωD is the Debye fequency. Hence, for |ξk − ξk′ | < ωD, the effective potential

between electrons is a�ractive. �is is then further approximated as saying that we only

consider interactions for which the electrons separately satisfy |ξk| < ωD and |ξk′ | < ωD

[5]. We will treat the a�ractive interaction potential as a simple constant −g. When

needed, we will impose the constraint that interactions involving g be restricted to a

window of width ωD about the Fermi surface [3, 6].

We can move to a functional integral representation through the Legendre trans-

form

S[ψ̄ ψ] =

∫ β

0

dτ

[

∫

❞
3k ψ̄kσ(τ)

(

∂τ − µ
)

ψkσ(τ) +H[ψ̄ ψ](τ)

]

=

∫ β

0

dτ

[ ∫

❞
3k ψ̄σ(x)

(

∂τ +
k2

2m
− µ

)

ψσ(x)

− g

∫

❞
3(k1 . . . k4) ψ̄k1↑(τ)ψ̄k3↓(τ)ψk4↓(τ)ψk2↑(τ) δk1−k2+k3−k4

]

. (3.3)

Switching the imaginary time dependence to Matsubara frequencies and taking k =

(iωn k), the action becomes

S[ψ̄ ψ] = −
∫

❞
4k ψ̄kσ G

−1
0 (k)ψkσ − g

∫

❞
4(k k′ q) (ψ̄k↑ψ̄k′+q↓)(ψk′↓ψk+q↑) , (3.4)

where G−1
0 (k) ≡ iωn − ξk. In writing the interaction integrand as (ψ̄k↑ψ̄k′+q↓)(ψk′↓ψk+q↑)

we are expressing the interaction solely in the Cooper channel. �at is, we write the in-

teraction in a form suggestive of a coupling between two composite operators ψ̄k↑ψ̄k′+q↓

and ψk′↓ψk+q↑ instead of Fermion density or spin operators which would correspond to

the direct and exchange channels, respectively. �e partition function for this system
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as a coherent state path integral takes the form

Z =

∫

D[ψ̄ ψ] e−S[ψ̄ ψ] . (3.5)

We introduce a complex scalar auxiliary field through a resolution of unity

1 =

∫

D[∆̄ ∆] exp

[

−
∫

❞
4q

|∆(q)|2
g

]

, (3.6)

where a factor of
(

Det g
)−1

has been absorbed into the integration measure to make

sure the integral is unity. If we now shi� the auxiliary fields as

∆̄(q) → ∆̄(q)− g

∫

❞
4k ψ̄k↑ψ̄−k+q↓ , (3.7)

and

∆(q) → ∆(q)− g

∫

❞
4k ψ−k+q↓ψk↑ , (3.8)

then we obtain

1 =

∫

D[∆̄ ∆] exp

[

−
∫

❞
4q

|∆(q)|2
g

]

=

∫

D[∆̄ ∆] exp

[

−
∫

❞
4q

|∆(q)|2
g

+

∫

❞
4(k q) ∆(q)ψ̄k↑ψ̄−k+q↓ +

∫

❞
4(k q) ∆̄(q)ψ−k+q↓ψk↑

− g

∫

❞
4(k k′ q) ψ̄k↑ψ̄k′+q↓ψk′↓ψk+q↑

]

. (3.9)

�erefore, the Cooper channel contact interaction may be expressed as

exp

[

g

∫

❞
4(k k′ q) (ψ̄k↑ψ̄k′+q↓)(ψk′↓ψk+q↑)

]

=

∫

D[∆̄ ∆] exp

[

−
∫

❞
4q

|∆(q)|
g

+

∫

❞
4(k q) ∆(q)ψ̄k↑ψ̄−k+q↓

+

∫

❞
4(k q) ∆̄(q)ψ−k+q↓ψk↑

]

, (3.10)
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such that the action may be wri�en as

S[ψ̄ ψ ∆̄ ∆] = −
∫

❞
4k ψ̄kσ G

−1
0 (k)ψkσ +

∫

❞
4q

|∆(q)|2
g

+

∫

❞
4(q k)

[

∆̄(q)ψ−k+q↓ψk↑ +∆(q)ψ̄k↑ψ̄−k+q↓

]

. (3.11)

Hence, we have managed to remove the four-Fermi interaction at the cost of introduc-

ing a Bosonic field ∆ coupled to the Fermions. Such a replacement is known as the

Hubbard-Stratonovich transformation [10, 11].

Looking closer at the newly generated interactions, we notice that ∆ couples to

ψ̄ψ̄ and ∆̄ couples to ψψ, meaning that the Boson ∆ must carry charge −2e and breaks

Fermion number conservation. �is object may thus be interpreted as a bound-state of

two electrons which we call a Cooper pair [5].

�is action is a quadratic form in the fields ψ̄ and ψ, but not in a form to which our

established rules of Gaussian integration apply. However, with a change of basis we

can put the action in a more familiar form. Defining a Nambu spinor

Ψ†(k q) =

(

ψ̄k+q↑ ψ−k+q↓

)

(3.12)

and the inverse of a Nambu Green’s function

G−1(k q) =







G−1
0 (k) δq ∆(q)

∆̄(−q) −G−1
0 (−k) δq






, (3.13)

we find that the action may be succinctly wri�en as

S[Ψ̄ Ψ ∆̄ ∆] =

∫

❞
4q

|∆(q)|2
g

−
∫

❞
4(k q) Ψ†(k 0)G−1(k q)Ψ(k q) . (3.14)
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In this form, the Fermionic integral in the partition function may be computed to

be

Z =

∫

D[Ψ̄ Ψ ∆̄ ∆] e−S[Ψ̄ Ψ ∆̄ ∆]

=

∫

D[∆̄ ∆] exp

[

−
∫

❞
4q

|∆(q)|2
g

+TrLog
(

− βG−1
)

]

=

∫

D[∆̄ ∆] exp
[

− SBCS[∆̄ ∆]
]

, (3.15)

where

SBCS[∆̄ ∆] ≡
∫

❞
4q

|∆(q)|2
g

− TrLog
(

− βG−1
)

. (3.16)

Taking a moment to compare the action we started with in Eq. 3.4 to our new

effective action Eq. 3.16, li�le seems to have been gained. We traded a Fermionic action

with a quadratic term and a quartic interaction for a Bosonic action with a quadratic

term and a logarithmic term whose power series expansion would include interactions

of every order involving |∆|2 andmediated by electron Green’s functions. However, the

situation is be�er than it may seem. While ψ̄ and ψ describe the microscopic physics of

the system, we may think of ∆ as a collective mode which we can use to understand

the macroscopic physics more readily. In particular, if the expectation value of ∆(q = 0)

were to take on a large value, that would suggest a homogeneous distribution of Cooper

pairs throughout the system and indicate the onset of superconductivity.

Note that while we have reframed the physics of this system in terms of a collective

mode ∆, we have not yet made an approximation. One would find that all the physics

contained in our original action 3.4 is preserved in 3.16 if only it were possible to com-

pute the functional integral exactly. However, the advantage of this redefinition is that

it has brought the physics relevant to superconductivity to the forefront.

�e fact that the small q physics of ∆ is of primary interest to us indicates that we

should be able to study this action at the mean-field level.
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3.1.1 BCS gap equation

A natural first approximation one can make to study the action in Eq. 3.16 is known

as the saddle-point approximation, and it turns out to be the path integral equivalent

of mean-field theory. �e logic behind the saddle-point approximation is that for some

partition function

Z =

∫

D[∆̄ ∆] exp
[

− SBCS [∆̄ ∆]
]

, (3.17)

if there is a region in the integration domain where the action is a saddle-point, i.e.

δ SBCS [∆̄ ∆]

δ ∆̄(q)
= 0 =

δ SBCS [∆̄ ∆]

δ∆(q)
, (3.18)

then there should be large contributions to the partition function Z since in these re-

gions, the contribution to the partition function would amount to (functional) integrals

over a constant.1

At this point we make the customary assumption of BCS theory, that ∆(q) = ∆ δ(q).

�is assumption implies we expect that if there are Cooper pairs, they are homo-

geneously distributed throughout the system with no spatial or temporal variation.

Hence, we find that the saddle-point condition for the BCS action implies

0 =

∫

❞
4q′

δ|∆(q′)|2
δ∆̄(q)

− δ

δ∆̄(q)
TrLog

(

G−1
)

=
∆ δ(0)

g
− Tr

[

G δ

δ∆̄(q)
G−1

]

=
∆ δ(0)

g
− βV

∫

❞
4(k q′) tr

[

G(k q′) δ

δ∆̄(q)
G−1(−k q′)

]

=
∆

g
−
∫

❞
4k tr

[

G(k 0)

(

0 0

1 0

)]

, (3.19)

1Note that the condition that the action be stationary is exactly the condition which generates the
equations of motion in classical mechanics [12].
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and a corresponding conjugate equation. Inverting G−1, we find

G(k) = 1

G−1
0 (k)G−1

0 (−k) + |∆|2

(

G−1
0 (−k) ∆

∆̄ G−1
0 (k)

)

≡
(

G(k) F (k)

F̄ (k) −G(−k)

)

. (3.20)

Noticing that F (k) = ∆G(k)G0(−k), we see that the saddle-point equation Eq. 3.19 reads

∆

g
=

∫

❞
4k∆G(k)G0(−k) . (3.21)

Defining Ek =
√

ξ2k + |∆|2, we perform the Matsubara summation to find

∆ = g

∫

❞
4k

−∆

(iωn)2 − E2
k

= g

∫

|ξk|<ωD

❞
3k

1

β

∑

n

−∆

(iωn)2 − E2
k

= g

∫

|ξk|<ωD

❞
3k

∮

C

dz

2πi

−f(z)
z2 − E2

k

∆

= g

∫

|ξk|<ωD

❞
3k

∮

C′

dz

2πi

−f(z)
(z − Ek)(z + Ek)

∆

= g

∫

|ξk|<ωD

❞
3k

f(−Ek)− f(Ek)

2Ek

∆ , (3.22)

where the contour C encloses the poles of the Fermi function f(z) clockwise and C ′

encloses the poles at ±Ek counter-clockwise. �e presence of g in front of the k integral

should remind us that we only integrate over energies in a window of width 2ωD of the

Fermi surface, otherwise this integral would diverge in 3 spatial dimensions due to the

continuum approximation. Realizing that 1−2f(z) = tanh( 12βz), we find the famous BCS

gap equation

∆ = g

∫

|ξk|<ωD

❞
3k

tanh
(

1
2βEk

)

2Ek

∆ . (3.23)

Studies of this equation show that at high temperatures, the only solutions are ∆ = 0

but then at a critical temperature Tc, the derivative of ∆(T ) discontiously jumps and ∆



22 Chapter 3. BCS theory of superconductivity

takes on a finite value[6, 7]. Finite ∆ will open a gap in the excitation spectrum ±Ek,

leading us to call ∆ the gap or order-parameter because its presence indicates a phase

transition.

We can look for the temperature at which the phase transition occurs by discarding

the trivial solution ∆ = 0 and ignoring terms of order |∆|2 or greater:

1 = g

∫

❞
4k G0(k)G0(−k)

= g

∫

|ξk|<ωD

❞
3k

tanh
(

1
2βξk

)

2ξk
. (3.24)

Finding a β for which the above relation holds will yield the critical temperature. We

call Eq. 3.24 the Tc equation.

3.1.2 BCS number equation

�e gap and Tc equations derived above take the chemical potential µ as a parameter,

but o�en we are not interested in systems with a given chemical potential and instead a

given particle number density. In such a case, we must use our knowledge of the grand

canonical ensemble to generate an equation which determines the chemical potential

given a number density. Taking the mean-field approximation, whereby we may take

Z ≈ exp
(

− SBCS

)

, we see

nmf =
1

βV

(

∂ log Z
∂µ

)

T,V

= − 1

βV

(

(

∂SBCS

∂µ

)

∆=∆mf

+
δSBCS

δ∆

(

∂∆

∂µ

)

∆=∆mf

)

T,V

. (3.25)



3.2. Superconducting fluctuations away from the BCS saddle-point 23

Using the fact that the second term must vanish by definition at the saddle-point, we

have2

nmf =
1

βV

∂

∂µ
TrLog

(

− βG−1
)

=

∫

❞
4k tr

(

G ∂G−1

∂µ

)

=

∫

❞
4k tr

[

G
(

1 0

0 −1

)]

= 2

∫

❞
4k G(k) . (3.26)

�e above Matsubara sum may be computed such that

nmf =

∫

❞
3k

[

1− ξk
Ek

(

1− 2f(Ek)
)

]

. (3.27)

Eq. 3.27 is o�en known as the BCS number equation.

3.2 Superconducting fluctuations away from the BCS

saddle-point

So far we have explored a mean-field description of superconducting systems, but one

advantage of the path integral formalism is that it is a very natural se�ing for the study

of fluctuations about a given mean-field configuration. To do this study, we write our

Cooper channel decoupling field as

∆(q) = ∆sp δ(q) + η(q) , (3.28)

where ∆sp is the saddle-point configuration and η is to be thought of as a perturbation

away from the mean-field. If we assume that the mean-field theory is a fairly good

description of the macroscopic physics, then we should expect that η is small and so

we will only keep terms in the action up to order |η|2. Keeping only these terms will

2From now on, we implicitly take ∆, T and V to be constant.



24 Chapter 3. BCS theory of superconductivity

allow us to perform the functional integral exactly, which will produce a new term in

the action modifying the mean-field BCS gap equation.

�e Nambu-Gorkov Green’s function is wri�en in terms of η as

G−1 = G−1
sp − Ση

= G−1
sp

(

1− GspΣη
)

, (3.29)

where

Ση(q) =

(

0 −η(q)
−η̄(−q) 0

)

, (3.30)

so the action becomes

S[η̄ η] =

∫

❞
4q

|∆sp δq + η(q)|2
g

− TrLog
[

G−1
sp

(

1− GspΣη
)]

≈ βV
|∆sp|2
g

− TrLog
[

G−1
sp

]

+
∆sp η̄(0) + η(0) ∆̄sp

g
+Tr

[

GspΣη
]

+

∫

❞
4q

|η(q)|2
g

+
1

2
Tr
[

GspΣηGmfΣη

]

= βV
|∆sp|2
g

− TrLog
[

G−1
sp

]

+

∫

❞
4q

|η(q)|2
g

+
1

2
Tr
[

GspΣηGmfΣη

]

≡ SBCS + SFluc[η̄ η] . (3.31)

In the final line we used the fact that the saddle-point condition Eq. 3.18 implies that

the terms linear in η and η̄ vanish. Resolving the quartic trace in position space and



3.2. Superconducting fluctuations away from the BCS saddle-point 25

then taking the Fourier transform, we find

Tr
[

GspΣηGspΣη
]

= tr

∫

❞
4(x y)Gsp(x y)Ση(y)Gsp(y x)Ση(x)

= tr

∫

❞
4(k q)Gsp(k)Ση(q)Gsp(k − q)Ση(−q)

= tr

∫

❞
4(k q)

(

G(k) F (k)

F̄ (k) −G(−k)

)(

0 η(q)

η̄(−q) 0

)

×
(

G(k − q) F (k − q)

F̄ (k − q) −G(−k + q)

)(

0 η(−q)
η̄(q) 0

)

= −
∫

❞
4(k q)

[

G(k)η(q)G(q − k)η̄(q) +G(−k)η̄(−q)G(k − q)η(−q)

− F (k)η̄(q)F (k − q)η̄(−q)− F̄ (k)η(q)F̄ (k − q)η(−q)
]

,

(3.32)

such that

SFluc[η̄ η] =

∫

❞
4q η̄(q)

[

1

g
−
∫

❞
4k G(k)G(q − k)

]

η(q)

+
1

2

∫

❞
4(k q)

[

η̄(q)F (k)F (k − q)η̄(−q) + η(q)F̄ (k)F̄ (k − q)η(−q)
]

= −
∫

❞
4q

[

Φ(q)|η(q)|2 − 1

2

(

Ξ(q) η̄(q) η̄(−q) + Ξ̄(q) η(q) η(−q)
)

]

, (3.33)

where we have defined

Φ(q) ≡
∫

❞
4k G(k)G(q − k)− 1

g
, (3.34)

and

Ξ(q) ≡
∫

❞
4k F (k)F (k − q) . (3.35)
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To perform the η and η̄ integrals we can perform a trick analogous to the one we used

to integrate out the Fermion fields coupled to ∆. Defining

Λ(q) =

(

η(q)

η̄(−q)

)

, (3.36)

and

L−1(q) =

(

Φ(q) −Ξ̄(q)

−Ξ(q) Φ(−q)

)

, (3.37)

the fluctuation action becomes

SFluc[H] = −
∫

❞
4q

1

2
Λ†(q)L−1(q)Λ(q) .

We note that Λ†(q) =
(

τxΛ(−q)
)T
, so the two fields are not independent degrees of free-

dom. Hence, wemust treatΛ as a real Bosonic field so that we do not over-count degrees

of freedom. Performing the functional integral over the fluctuation field, we find that

Z ≈
∫

D[Λ] exp

[

− SBCS[∆̄ ∆] +

∫

❞
4q

1

2
ΛT(−q)

(

τxL−1(q)
)

Λ(q)

]

= Det
(

− gτxL−1
)−1/2

exp
[

− SBCS[∆̄ ∆]
]

= Det
(

g2
(

|Φ|2 − |Ξ|2
)

)−1/2

exp
[

− SBCS [∆̄ ∆]
]

= exp

[

− SBCS[∆̄ ∆]− 1

2
TrLog

(

g2(|Φ|2 − |Ξ|2)
)

]

, (3.38)

where we have used that the −G(−k) = Ḡ(k), i.e. the complex conjugate of G, the to

write Φ(q)Φ(−q) = |Φ(q)|2. In the limit where ∆ → 0, we have that

1

2
TrLog

(

−gL−1
)

→ TrLog

(

1− g

∫

❞
4k G0(k)G0(q − k)

)

≡ TrLog(−gL−1) (3.39)

and we notice that the condition L−1(q = 0) = 0 is the BCS Tc equation, Eq. 3.24.

�is equality makes sense if we think of L(q) as the propagator for superconducting

pair fluctuations above Tc. At the critical temperature, the propagator L(q) diverges for
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4.1 Decoupling in the Cooper and exchange channels

We again start with the action of a neutral Fermi gas with an a�ractive contact inter-

action,

SF [ψ̄ ψ] = S0[ψ̄ ψ] + SI [ψ̄ ψ]

= −
∫

❞
4k ψ̄σkG

−1
0 (k)ψσk − g

∫

❞
4(k1 k2 k3 k4) ψ̄↑k1 ψ̄↓k3ψ↓k4ψ↑k2δk1−k2+k3−k4 ,

(4.1)

but instead of writing this interaction solely in the Cooper channel as was done in

the previous chapter, we will simultaneously decompose the interaction into both the

Cooper and exchange channels,

SI [ψ̄ ψ] ≈ −
∫

q≪kF

❞
4(k k′ q)

[

g
(

ψ̄↑k ψ̄↓−k+q

)(

ψ↓−k′+q ψ↑k′
)

− g

6

(

ψ̄αk σαβ ψβk−q
)

·
(

ψ̄α′k′ σα′β′ ψβ′k′+q

)

]

. (4.2)

�e decomposition in Eq. 4.2 may initially seem inappropriate, since for unbounded

q the two terms are separately equal to the original interaction. However, because we

are interested in probing only the saddle-point physics of the Cooper channel, mod-

ulo small fluctuations, a Hubbard-Stratonovich transformation solely in the Cooper

channel makes our analysis insensitive to the physics we would see for small q in the

exchange channel term.1

In order to simultaneously analyze the effects of the Cooper and exchange contri-

butions to the interactions, we introduce two resolutions of unity into the generating

functional

1 =

∫

D[∆̄ ∆] exp

[

−
∫

❞
4q

∆̄(q)∆(q)

g

]

(4.3)

1Amore detailed discussion of decomposing interactions into multiple channels may be found in [3].
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and

1 =

∫

D[m] exp

[

−
∫

❞
4q
m(q) ·m(−q)

2g̃

]

, (4.4)

where g̃ ≡ g/3, ∆̄ and ∆ form a complex scalar field, and m is a real vector field with

three components because we wish to couple it to the Fermion spin operator.

Performing field redefinitions on ∆

∆q → ∆q − g

∫

❞
4k ψ−k+q↓ψk↑ , (4.5)

and on ∆̄

∆̄q → ∆̄q − g

∫

❞
4k ψ̄k↑ψ̄−k+q↓ , (4.6)

we find that

1 =

∫

D[∆̄ ∆] exp

[

−
∫

❞
4q

∆̄(q)∆(q)

g

]

=

∫

D[∆̄ ∆] exp

[

−
∫

❞
4q

∆̄(q)∆(q)

g
+

∫

❞
4(k q)

(

∆qψ̄k↑ψ̄−k+q↓ + ∆̄qψ−k+q↓ψk↑
)

− g

∫

❞
4(k k′ q)

(

ψ̄k↑ ψ̄−k+q↓

)(

ψ−k′+q↓ ψk′↑
)

]

, (4.7)

and hence, the Cooper channel contribution from the interaction may be expressed as

exp

[

g

∫

❞
4(k k′ q)

(

ψ̄↑k ψ̄↓−k+q

)(

ψ↓−k′+q ψ↑k′
)

]

=

∫

D[∆̄ ∆] exp

[

−
∫

❞
4q

∆̄(q)∆(q)

g
+

∫

❞
4(k q)

(

∆qψ̄k↑ψ̄−k+q↓ + ∆̄qψ−k+q↓ψk↑
)

]

.

(4.8)

Likewise, we perform shi�s onm

mq →mq − i g̃

∫

❞
4k
(

ψ̄kα σαβ ψk−qβ
)

, (4.9)
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such that

1 =

∫

D[m] exp

[

−
∫

❞
4q
m(q) ·m(−q)

2g̃

]

=

∫

D[m] exp

[

−
∫

❞
4q
m(q) ·m(−q)

2g̃
+ i

∫

❞
4(k q)mq ·

(

ψ̄kα σαβ ψk+qβ
)

+
g

6

∫

❞
4(k k′ q)

(

ψ̄αk σαβ ψβk+q
)

·
(

ψ̄α′k′ σα′β′ ψβ′k′−q

)

]

,

(4.10)

so that the exchange channel contribution from the interaction becomes

exp

[

−g̃
∫

❞
4(k k′ q)

(

ψ̄αk σαβ ψβk+q
)

·
(

ψ̄α′k′ σα′β′ ψβ′k′−q

)

]

=

∫

D[m] exp

[

−
∫

❞
4q
m(q) ·m(−q)

2g̃
+ i

∫

❞
4(k q)mq ·

(

ψ̄kα σαβ ψk+qβ
)

]

. (4.11)

Hence, these shi�s couple m to the Fermion spin operator S = ψ̄ασαβψβ , so we can

think ofm as a magnetization field.

With these shi�s, we now write the generating functional as

Z =

∫

D[ψ̄ ψ]e−SF [ψ̄ ψ]

=

∫

D[ψ̄ ψ ∆̄ ∆m]e−SF+HS [ψ̄ ψ ∆̄ ∆ m] , (4.12)

where

S[ψ̄ ψ ∆̄ ∆m] = −
∫

❞
4k ψ̄kσG

−1
0 (k)ψkσ +

∫

❞
4q

(

∆̄q∆q

g
+
mq ·m−q

2g̃

)

−
∫

❞
4(k q)

(

∆qψ̄k↑ψ̄−k+q↓ + ∆̄qψ−k+q↓ψk↑ + imq ·
(

ψ̄kα σαβψk+qβ
)

)

= −
∫

❞
4(k q)

1

2
Ψ†(k 0) G−1

k q Ψ(k q) +

∫

❞
4q

(

∆̄q∆q

g
+
mq ·m−q

2g̃

)

, (4.13)

and where

Ψ†(k 0) =

(

ψ̄k ψT−k

)

, Ψ(k q) =







ψk+q

ψ̄T−k+q






, (4.14)
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ψ̄k =

(

ψ̄k↑ ψ̄k↓

)

, ψk =







ψk↑

ψk↓






, (4.15)

and

G−1(k q) =







G−1
0 (k)δq + iσ ·m(q) ∆(q)iσy

∆̄(−q)iσTy −G−1
0 (−k)δq − iσT ·m(q)






. (4.16)

However, Ψ† and Ψ are not independent degrees of freedom because

Ψ†(k) =
(

τxΨ(k)
)T

= Ψ(k)T τx . (4.17)

�erefore, we integrate only over Ψ as a real Nambu field to avoid over-counting de-

grees of freedom:

Z =

∫

D[Ψ ∆̄ ∆m] exp

[

1

2

∫

❞
4(k q)ΨT (k)(G(k q) τx)−1Ψ(k q)

−
∫

❞
4q

(

∆̄q∆q

g
+
mq ·m−q

2g̃

)

]

=

∫

D[∆̄ ∆m] exp

[

−
∫

❞
4q

(

∆̄q∆q

g
+
mq ·m−q

2g̃

)

+
1

2
TrLog

(

− βG−1
)

]

. (4.18)

4.2 Gaussian fluctuations in the exchange channel

At this point we will make two simplifying assumptions:

• �e Cooper channel collective mode is homogeneous in both space and imagi-

nary time, i.e., ∆q = ∆ δq.

• �e exchange channel collective mode is sufficiently weak that we can expand it

to Gaussian order about zero net magnetization.

With the second assumption, we can give m a similar treatment to that given to the

superconducting fluctuations η in the previous chapter. �is will allow us to under-

stand how the presence of exchange channel fluctuations effect the superconducting
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state rather than studying Cooper channel fluctuations. Considering both channels at

the same time would be preferable, but also more technically difficult due to coupling

between them, so we leave it to future work.

Finally, it should be noted that when we studied superconducting fluctuations, the

fluctuations ηwere defined only a�er identifying a saddle point to fluctuate about, since

the fluctuation was in the same variable ∆ as the saddle-point condition. By contrast,

we are here considering fluctuations in a separate variable m, and so for the purposes

of these fluctuations, ∆ is not fixed at its saddle-point value as was the case with the su-

perconducting fluctuations. �ese magnetization fluctuations will introduce new terms

into the saddle point equation for ∆.

Before expanding the logarithm in powers ofm, we write

G−1(k q) = G−1
∆ (k) + iΣm(q)

= G−1
∆ (k)

(

1 + iG∆(k)Σm(q)
)

, (4.19)

where

G−1
∆ (k) =







G−1
0 (k) ∆iσy

∆̄iσTy −G−1
0 (−k)






,

Σm(q) =







σ ·m(q) 0

0 −σT ·m(q)






, (4.20)

and

G(k) = 1

G−1
0 (k)G−1

0 (−k) + ∆̄∆







G−1
0 (−k) ∆iσy

∆̄iσTy −G−1
0 (k)







≡







G(k) F (k) iσy

F̄ (k) iσTy −G(−k)






. (4.21)
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With these definitions, we expand the logarithm in the effective action to Gaussian

order,

TrLog
(

G−1
)

= TrLog
[

G−1
∆

(

1 + iG∆(k)Σm(q)
)]

= TrLog
(

G−1
∆

)

+ iTr
(

G∆Σm

)

+
1

2
Tr
(

G∆ΣmG∆Σm

)

+O
(

m3
)

. (4.22)

�e term linear in m will vanish by the saddle-point condition, so we focus on the

quadratic term,

Tr
(

G∆ΣmG∆Σm

)

= tr

∫

❞
4(x1 x1)G∆(x1 x2)Σm(x2)G∆(x2 x1)Σm(x1)

= tr

∫

❞
4(k q)G∆(k)Σm(q)G∆(k − q)Σm(−q)]

= tr

∫

❞
4(k q)







G(k)(σ ·m(q)) −iF (k)σy(σT ·mq)

−iF̄ (k)σy(σ ·mq) G(−k)(σT ·mq)







×







G(k − q)(σ ·m−q) −iF (k − q)σy(σ
T ·m−q)

−iF̄ (k − q)σy(σ ·m−q) G(q − k)(σT ·m−q)






.

(4.23)

Using the identities

(σ ·mq)(σ ·m−q) = (σT ·mq)(σ
T ·m−q)

=mq ·m−q✶

and

σy(σ
T ·mq)σy(σ ·m−q) = σy(σ ·mq)σy(σ

T ·m−q)

= −mq ·m−q✶ ,

we find

1

2
Tr
(

G∆ΣmG∆Σm

)

= 2

∫

❞
4(k q)

(

G(k)G(k − q) + F̄ (k)F (k − q)

)

mq ·m−q . (4.24)
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Hence, the generating functional to Gaussian order inm becomes

Z =

∫

D[∆̄ ∆m] exp

[

− βV
∆̄∆

g
−
∫

❞
4q
mq ·m−q

2g̃
+

1

2
TrLog

(

− βG−1
)

]

≈
∫

D[∆̄ ∆m] exp

[

− βV
∆̄∆

g
+

1

2
TrLog

(

− βG−1
∆

)

+
1

2

∫

❞q mq ·D−1(q)m−q

]

=

∫

D[∆̄ ∆] exp

[

− βV
∆̄∆

g
+

1

2
TrLog

(

− βG−1
∆

)

− 3

2
TrLog

(

− g̃D−1
)

]

=

∫

D[∆̄ ∆] exp

(

− SEff [∆̄ ∆]

)

, (4.25)

where

D−1(q) = 2

∫

❞k

(

G(k)G(k − q) + F̄ (k)F (k − q)

)

− 1

g̃
(4.26)

is the effective propagator for magnetization fluctuations.

4.3 Modified saddle-point condition

We expect dominant contributions to the generating functional when

0 =
δ

δ∆̄
SFluc[∆̄ ∆]

=
∆

g
−
∫

❞
4k∆G(k)G0(q − k) +

3

2

∫

❞
4q D(q)

δD−1(−q)
δ∆̄

, (4.27)

where

δD−1(q)

δ∆̄
= 2

∫

❞
4k

δ

δ∆̄

(

G(k)G(k − q)− F (k)F̄ (k − q)

)

. (4.28)
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In order to calculate this functional derivative, we note that

δG(k)

δ∆̄
= G−1

0 (−k) δ
δ∆̄

(

G−1
0 (k)G−1

0 (−k) + ∆̄∆

)−1

= − G−1
0 (−k)∆

(

G−1
0 (k)G−1

0 (−k) + ∆̄∆
)2

= −∆G(k)G0(−k)G(k) , (4.29)

and so

δG(k)G(k − q)

δ∆̄
= −∆

(

G(k)G0(−k)G(k)G(k − q) +G(k)G(k − q)G0(q − k)G(k − q)
)

. (4.30)

Likewise,

δ

δ∆̄
F̄ (k)F (k − q) =

δ

δ∆̄

(

∆̄∆G(k)G0(−k)G(k − q)G0(q − k)

)

= ∆

[

G(k)G0(−k)G(k − q)G0(q − k)

−∆∆̄
(

G3(k)G2
0(−k)G(k − q)G0(q − k) +G(k)G0(−k)G3(k − q)G2

0(q − k)
)

]

.

(4.31)

We may now write the modified saddle-point equation as

1

g
=

∫

❞
4k G(k)G0(−k)− 3

∫

❞
4(k q) D(q)

[

2G2(k)G0(−k)G(k − q)

+G(k)G0(−k)G(k − q)G0(q − k)

− 2∆∆̄G3(k)G2
0(−k)G(k − q)G0(q − k)

]

,

(4.32)

which gives way to the modified Tc equation

1

g
=

∫

❞
4k G0(k)G0(−k)− 3

∫

❞
4(k q) D0(q)

[

G0(k)G0(−k)G0(k − q)G0(q − k)

+ 2G0(k)G0(−k)G0(k)G0(k − q)

]

, (4.33)
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We emphasize that our Tc equation, Eq. 4.33, is not the same as the GMB Tc equation

Eq. 3.40, however both corrected Tc equations contain the term

∫

❞
4(k k′ q)G0(k)G0(−k)G0(k

′ + q)G0(k
′)G0(k − q)G0(q − k) (4.37)

in their diagrammatic expansions.

Figure 4.3: Term appearing in both the GMB correction and exchange-

channel fluctuation correction to the critical temperature.

4.3.1 Exchange channelfluctuationpropagator: small-momentum

expansion

In practice, computing the Matsubara sums of the fluctuation terms Eq. 4.33 would

prove difficult due to the presence of a D0(q) which contains the inverse of a constant

added to a polarization bubble,

Π0(q) = 2

∫

❞
4k G0(k)G0(k − q)

=

∫

❞
3k

f(ξk)− f(ξk−q)

iΩm + ξk − ξk−q

. (4.38)

In the regime where k ≈ kF and q < ωD ≪ kF we may write

ξk − ξk−q =
k · q

m
+O(q2) (4.39)

and likewise

f(ξk)− f(ξk−q) =
[

∂ξkf(ξk)
]k · q

m
+O(q2)

≈ −δ(ξk)
k · q

m
+O(q2) , (4.40)
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where the final approximation holds for T ≪ TF ∼ 10000K which is nearly exact for

any superconducting system. Hence,

Π0(q, iΩm) = −2

∫

❞
3k δ(ǫk − µ)

1
mq · k

iΩm + 1
mq · k

= − 2

(2π)3

∫

k2dk dΩ δ(ǫk − µ)
1
mq · k

iΩm + 1
mq · k

= − ν(µ)
∫

dΩ

∫

dΩ
vF n · q

iΩm + vF n · q
, (4.41)

where n is a unit vector integrated over the solid angle, vF is the Fermi velocity and ν

is the density of states function. �us,

Π0(q, iΩm) = −ν(µ)
2

∫ 1

−1

dx
vF |q|x

iΩm + vF |q|x

= −ν(µ)
[

1− iΩm
2vF |q| ln

(

iΩm + vF |q|
iΩm − vF |q|

)]

(4.42)

such that

D0(q, iΩm) = − g̃

1 + g̃ν(µ)
3

(

qvF
iΩm

)2

+O(q4)

= − g̃ (iΩm)2

(iΩm)2 − (ce|q|)2
+O(q4)

= − g̃
2

(

2 +
ceq

iΩm − ce|q|
− ceq

iΩm + ce|q|

)

+O(q4) , (4.43)

where

ce =

√

g̃ν(µ)

3
vF . (4.44)

Hence, this particle-hole fluctuation propagator behaves like a constant added to a

phonon propagator whose speed of sound is given by ce. �is constant term should

be concerning if we were interested in high momenta, but for momenta q appreciably

greater than ωD we know that gwould cease to be a constant interaction andwould take

on the form of the real phonon propagator and would have the correct high frequency

and momentum behaviour.
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Using this form of the normal-state fluctuation propagator, the Matsubara sums in

the fluctuation terms of Eq. 4.33 may be computed using the methods in Appendix C.1

and C.2 in order to find

I(k q) =
g̃

4ξkξk−q

[

(

f(ξk)− f(ξk−q)
)coth

(

1
2βceq

)

ceqx− coth
(

1
2βx

)

x2

x2 − (ceq)2

−
(

f(ξk) + f(ξk−q)− 1
)coth

(

1
2βceq

)

ceqy − coth
(

1
2βy

)

y2

y2 − (ceq)2

]

, (4.45)

and

J(k q) = T 2
∑

mn

D0(q, iΩm)G2
0(k, iωn)G0(−k,−iωm)G0(k− q, iωn − iΩm)

=
f(ξk)

(2ξk)2
J1 +

(

f(ξk)

(2ξk)2
− f ′(ξk)

2ξk

)

J2 +
(1− f(ξk))

2ξk
J3 − f(ξk−q)J4 , (4.46)

where x = ξk − ξk−q, y = ξk + ξk−q, and

2J1
g̃

=
2ceq

(

x2 + (ceq)
2
)

b(ceq)− 4(ceq)
2x b(x) + ceq(x− ceq)

2 + 2x2
(

x2 − (ceq)
2
)

b′(x)
(

x2 − (ceq)2
)2 (4.47)

2J2
g̃

=
ceq
(

x+ 2xb(cq)− ceq
)

− 2x2b(x)

x2 − (ceq)2
(4.48)

2J3
g̃

=
ceq
(

y + 2yb(cq) + ceq
)

− 2y2
(

1 + b(y)
)

y2 − (ceq)2
(4.49)

2J4
g̃

=
ceq b(ceq)

(x− ceq)2(y + ceq)
+

ceq
(

1 + b(ceq)
)

(x+ ceq)2(y − ceq)
− 2y2

(

1 + b(y)
)

(

y2 − (ceq)2
)

(2ξk)2

−
2x
(

(

x3 + (ceq)
2(x+ 2y)

)

b(x)− x
(

x2 − (ceq)
2
)

(2ξk) b
′(x)

)

)

(x− ceq)2(x+ ceq)2(2ξk)2
, (4.50)

such that the Tc equation becomes

1 =

∫ ωD

−ωD

dξ ν(ξ + µ)



g
tanh

(

βξ
2

)

ξ
−
∫

|q|<ωD

d3q

(2π)3

(

I(ξ q) + 2J(ξ q)
)



 . (4.51)
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4.4 Modified number equation

Accounting for particle-hole fluctuation corrections, the mean-field number equation

becomes

nmf =
1

βV

(

∂SEff

∂µ

)

T,V

=
1

βV

(

(

∂SEff

∂µ

)

∆=∆sp

+
δSEff

δ∆

(

∂∆

∂µ

)

∆=∆mf

)

T,V

=
1

βV

(

∂SEff

∂µ

)

∆,T,V

=
1

βV

∂

∂µ

(

SBCS +
3

2
TrLog

(

g̃D−1
)

)

∆,T,V

= 2

∫

❞k G(k) +
3

2

∫

❞qD(q)

(

∂D−1(−q)
∂µ

)

∆,T,V

. (4.52)

Since we know that 2

∂D−1(q)

∂µ
= 2

∫

❞(k q)
∂

∂µ

(

G(k)G(k − q)− F (k)F̄ (k − q)

)

, (4.53)

we first calculate

∂G(k)

∂µ
= −G(k)

(

∂G−1(k)

∂µ

)

G(k)

= −G(k)
(

1 + |∆|2 ∂G0(−k)
∂µ

)

G(k)

= −G(k)
(

1− |∆|2G0(−k)G0(−k)
)

G(k) , (4.54)

and

∂F (k)

∂µ
= ∆

∂ G(k)G0(−k)
∂µ

= −∆G(k)G0(−k)G0(−k)−∆G(k)
(

1− |∆|2G0(−k)G0(−k)
)

G(k)G0(−k)

= −F (k)G0(−k)−∆G(k)
(

1− |∆|2G0(−k)G0(−k)
)

F (k) (4.55)

2From now on, we will let the fact that the ∆, T and V are held constant be implicit.
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such that

nmf = 2

∫

❞k G(k)− 3

∫

❞
4(k q)D(q)

[

G(k)
(

1− |∆|G0(k)G0(−k)
)

G(k)G(k − q)−G0(−k)F̄ (k)F (k − q)

−G(k)
(

1− |∆|2G0(k)G0(−k)
)

F̄ (k)F (k − q)

]

= 2

∫

❞k G(k)− 3

∫

❞
4(k q)D(q)

(

G(k)G(k − q)− F (k)F̄ (k − q)

)

G(k)
(

1− |∆|2G0(k)G0(−k)
)

+ 3

∫

❞
4(k q)D(q)F (k)F̄ (k − q)G0(−k) . (4.56)

Near Tc , where we neglect terms of order |∆|2 or higher, the equation becomes

nmf = 2

∫

❞
4k G0(k)− 3

∫

❞
4(k q)D0(q)G0(k)G0(k − q)G0(k) . (4.57)

We show in Appendix C.3 how to compute the Matsubara sums in the fluctuation cor-

rection so that the number equation near Tc becomes

nmf = 2

∫

❞
3k f(ξk)− 3

∫

❞
3(k q)

(

f ′(ξk)K1(k q) +
(

f(ξk)− f(ξk−q)
)

K2(k q)

)

, (4.58)

where

K1(k q) =
g̃

2

[

2x2b(x) + (ceq)
2 − xceq

(

1− 2b(ceq)
)

x2 − (ceq)2

]

, (4.59)

K2(k q) =
g̃

2

[

2x], b′(x)

x2 − (ceq)2
+
ceq
(

(x− ceq)
2 + 2

(

x2 + (ceq)
2
)

b(ceq)− 4ceq b(x)
)

(x2 − (ceq)2)
2

]

, (4.60)

and x = ξk − ξk−q.
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5 Conclusion

In this thesis we have provided a functional-integral based approach to incorporating

particle-hole interactions into a model of superconductivity. �e first step requires de-

coupling the Fermionic contact interaction into the Cooper and exchange channels,

using Hubbard-Stratonovich transformations to represent the Cooper channel as a su-

perconducting interaction and the exchange channel as an effectivemagnetization field.

It was assumed that the system exhibits no net magnetization at the mean-field level,

and small fluctuations in the magnetization field were studied at the Gaussian order.

It was found that these fluctuations give rise to a particle-hole fluctuation propaga-

tor which introduces new terms into the BCS gap, Tc, and number equations. In the

regime where the order parameter is small enough to be linearized, we have calculated

the Matsubara sums in the new terms but we have le� the momentum integrals to fu-

ture work, and hence, do not yet know what quantitative effects this correction will

have on the critical temperature, though we expect that the effects of fluctuations near

Tc will be manifest in many observables [17].

�e GMB correction and our exchange channel fluctuation correction are not the

same, though it is possible that numerical studies will reveal that in certain regions of

the parameter space they give similar predictions.

While it is too early to say whether our modification of the BCS theory of supercon-

ductivity should be regarded as more or less correct than that of Gor’kov and Melik-

Barkhudarov, we can say that first, we are comforted by the fact that our corrections do

not require us to recognize which diagrams were excluded from the BCS gap equation

and to correctly reinsert them. Second, the diagrammatic form of our corrections show

that the particle-hole effects enter as a new effective interaction vertex which transfers

momentum between the Fermion lines in the Maki-�ompson style diagram and as a
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self energy dressing of the Fermion Green’s function in the DoS style diagram. �ese

corrections are consistent with the form of diagrams that appear in the fluctuation lit-

erature, unlike the GMB correction.

Finally, we believe it is conceptually, pedagogically and practically advantageous

that our corrections are implemented as fluctuation corrections to the BCS action be-

cause once implemented in that way, all calculations involving the corrected BCS action

will naturally include particle-hole fluctuation effects without requiring any further

guesswork or claims about how to properly re-insert neglected diagrams.

Future work

Looking towards the future, there is much le� for us to explore using the formalism

developed in this thesis. �e obvious next step is to pursue a numerical strategy for

calculating the momentum integral in the modificed Tc equation, Eq. 4.51. We are in-

terested in applying this formalism to a one dimensional la�ice system to see if our

corrections improve the agreement to known exact solutions relative to BCS [18]. Fur-

thermore, we are interested in studying the effects of our exchange channel fluctuations

simultaneously with the Cooper channel fluctuations seen in section 3.2 to see the rel-

ative importance of these fluctuation channels on transport quantities.
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A Grassmann numbers

�e construction of Grassmann numbers can be thought of as similar to that of complex

numbers. Consider an algebraic context where one decides it would be desirable to

express the roots of the polynomial x2+1. One could suppose the existence of a number

i such that i2 = −1 and so be led to discover the incredibly rich complex plane.

Similarly, we posit the existence of numbers η and θ such that η θ = −θ η and hence,

η2 = θ2 = 0. We say η and θ ∈ ● where ● is known as the Exterior algebra. For some

function f with a well defined Taylor expansion

f(x) = f(0) + f(1) x+
1

2
f(2) x

2 + . . . , (A.1)

we have

f(η) = f(0) + f(1) η . (A.2)

Similarly, a Taylor expandable function g of two variables would take the following

form with Grassmann valued inputs:

g(η θ) = g(0,0) + g(1,0) η + g(0,1) θ + g(1,1) ηθ

= g(0,0) + g(1,0) η + g(0,1) θ − g(1,1) θη , (A.3)

so that we may formally define a Grassmann derivative operator ∂/∂η where

∂

∂η
g(η θ) ≡ g(1,0) + g(1,1) θ (A.4)
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and

∂

∂θ
g(η θ) ≡ g(1,0) − g(1,1) η . (A.5)

For consistency with the anti-commutation of Grassmann numbers, the Grassmann

derivative operator must also anti-commute with Grassmann numbers such that

∂

∂θ
ηθ = −η ∂

∂θ
θ

= −θ . (A.6)

We define a Grassmann integral operator
∫

dη in analogy with the definite integral over

all real numbers
∫

R
dx. �e integral operator

∫

R
dx has the property

∫

R

dx f(x+ c) = f(x) (A.7)

for any c ∈ R. Similarly, we desire the property

∫

dη f(η + c) =

∫

dη f(η) (A.8)

for any non-Grassmann valued c. Taylor expanding both sides, we find

∫

dη
(

f(0) + c
)

+

∫

dη f(1) η =

∫

dη f(0) +

∫

dη f(1)η (A.9)

or

∫

dη c = 0 . (A.10)

We next notice that because of the anti-commutation of Grassmann numbers, if we

wish for the Grassmann integral operator
∫

dη to act trivially on a Grassmann number
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θ 6= η, we see that

∫

dη θη = −
∫

dη ηθ = −
(∫

dη η

)

θ , (A.11)

and so
∫

dη must anti-commute with θ.

Since all Grassmann valued functions are of the form f(η) = f(0) + f(1) η, we now

need only define

∫

dη η (A.12)

beforewe have fully specified the properties of Grassmann valued integration. Noticing

that since
∫

dη anti-commutes with θ for η 6= θ, we think of
∫

dη as a Grassmann valued

quantity. �e product of two Grassmann valued quantities may be thought of as non-

Grassmann valued since

(ηθ)χ = χ(ηθ) . (A.13)

for any χ if η and θ ∈ ●. Hence, we should have that
∫

dη η evaluates to a non-

Grassmann valued quantity. We may freely choose it to be normalized to unity such

that

∫

dη η ≡ 1 . (A.14)

Given the way we defined Grassmann numbers, it may rightly feel uncomfortable

to write ∂/∂η or
∫

dη since one would not write the analogous ∂/∂i and
∫

di. In this

light, it is best to think of Grassmann derivatives and integrals as linear operators with

properties loosely analogous to that of standard derivatives and integrals.
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A.1 Gaussian integration of Grassmann variables

Here, we construct the equivalent of Gaussian integration of Grassmann numbers.

First, notice that for two vectors of n Grassmann numbers η̄ and η,

∫

dn(η̄ η) exp
(

η̄Tη
)

≡
∫

dη̄1dη1 . . . dη̄ndηn exp

(

n
∑

i=1

η̄iηi

)

=

∫

dη̄1dη1 . . . dη̄ndηn

n
∏

i=1

(

1− η̄iηi

)

. (A.15)

We now notice that since we integrate every η̄i and ηi, any term in the integrand which

does not contain a power of η̄i or ηi for all i ∈ (1 . . . n) will vanish. Hence,

∫

dn(η̄ η) exp
(

η̄Tη
)

= (−1)n
∫

dη̄1dη1 . . . dη̄ndηn

(

η̄1η1 . . . η̄n−1ηn−1 η̄nηn

)

= (−1)n(−1)

∫

dη̄1dη1 . . . dη̄n−1dηn−1

(

η̄1η1 . . . η̄n−1ηn−1

)

= (−1)n(−1)(−1)

∫

dη̄1dη1 . . . dη̄n−2dηn−2

(

η̄1η1 . . . η̄n−2ηn−2

)

= . . .

= (−1)n(−1)n

= 1 . (A.16)

Now consider the change of basis η =Mψ and η̄ = Nψ̄ for some matricesM and Nc.

In order to have
∫

dnψ ψ1 . . . ψn =
∫

dnη η1 . . . ηn, we must have dnη = (detM)−1dnψ and

so

(detMN)−1

∫

dn(ψ̄ ψ) exp
(

ψ̄
T
NTMψ

)

= 1 .

DefiningA ≡NTM , we arrive at the general Gaussian integral identity for Grassmann

numbers:

∫

dn(ψ̄ ψ) exp
(

ψ̄
T
Aψ

)

= detA .



52

B Coherent states

B.1 Bosonic coherent states

Consider a Bosonic system whose Hilbert space may be constructed from a vacuum

state, |0〉, and a set of creation and annihilation operators b† and b. A Bosonic coherent

state |φ〉 is defined as the right eigenstate of the annihilation operator 1

b |φ〉 ≡ φ |φ〉 , (B.1)

where φ ∈ C. Such a state can be constructed from an exponential 2

|φ〉 ≡
∞
∑

n=0

φn√
n!

|n〉

=

∞
∑

n=0

(

φ b†
)n

n!
|0〉

= eφ b
† |0〉 ,

1We specify that the coherent state is the right eigenstate of b because the operator b is not Hermitian.
2Note that coherent states cannot have a definite particle number since they are a superposition of

all occupation numbers by construction.
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where |n〉 is the nth eigenstate of the number operator b†b . With this definition

b |φ〉 = b
∞
∑

n=0

φn
(

b†
)n

n!
|0〉

=
∞
∑

n=0

φn

n!

(

(

b†
)n
b+

[

b,
(

b†
)n
]

)

|0〉

=

∞
∑

n=0

φn

n!

[

b,
(

b†
)n
]

|0〉

=

∞
∑

n=0

φn

n!
n
(

b†
)n−1 |0〉

= φ eφ b
† |0〉 , (B.2)

and hence

b |φ〉 ≡ φ |φ〉 .

Similarly, a Bosonic coherent co-state is simply the adjoint of the coherent state

〈φ| = 〈0| eφ̄ b

such that 3

〈φ| b† = 〈φ| φ̄ . (B.3)

3We define φ̄ as the complex conjugate of φ.



54 Appendix B. Coherent states

Similarly, the action of the creation (annihilation) operator on Bosonic coherent (co)states

is that of the partial derivative operator

b† |φ〉 =
∞
∑

n=0

φn
(

b†
)n+1

n!
|0〉

=

∞
∑

n=1

nφn−1
(

b†
)n

n!
|0〉

= ∂φ |φ〉 . (B.4)

�e inner product between two Bosonic coherent states is given by

〈φ|φ′〉 = 〈0|eφ̄beφ′b† |0〉

= 〈0|eφ′ b†eφ̄b eφ̄ φ
′ [b†, b]|0〉

= eφ̄ φ
′ 〈0|eφ′b†eφ̄b|0〉

= eφ̄ φ
′

. (B.5)

�e property 〈φ|φ′〉 = eφ̄ φ
′

implies that the set of Bosonic coherent states form an over-

complete basis in the physical Hilbert space, since a coherent state |φ〉 has finite overlap

with any other coherent state |φ′〉 for non infinite φ, φ′ ∈ C.

Due to the properties that creation and annihilation operators have when acting on

coherent states, any normal-ordered operator constructed from the creation and anni-

hilation operators A[b† b] = :A[b† b]: has the property

〈φ′|A[b† b]|φ〉 = A(φ̄′ φ) eφ̄
′φ , (B.6)

where A(φ̄′ φ) is the regular expression for the normal ordered operator A with all in-

stances of b† replaced by the complex number φ̄′ and all instances of b replaced by φ.
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�e projection of an arbitrary state |Ψ〉 onto a Bosonic coherent state |φ〉 is given by

〈φ|Ψ〉 = 〈φ|
∑

n

Ψn√
n!
|n〉

=
∑

n

Ψn
n!

〈φ|
(

b†
)n|0〉

=
∑

n

Ψn
n!

〈φ|
(

b†
)n|0〉

=
∑

n

Ψn
n!

〈φ|
(

φ̄
)n|0〉

=
∑

n

Ψnφ̄
n

n!
. (B.7)

If we interpret Ψn as the nth derivative of a function Ψ with respect to φ̄, we are led to

interpret 〈φ|Ψ〉 as the Taylor expansion of an anti-analytic function Ψ(φ̄) such that

〈φ|Ψ〉 = Ψ(φ̄) . (B.8)

Likewise, we have 〈Ψ|φ〉 = Ψ̄(φ), i.e. the conjugate of an anti-analytic function.

To perform calculations with Bosonic coherent states we will need the resolution

of unity in the coherent state basis, the form of which we will verify is given by

✶ =

∫

d(φ̄ φ)

2πi
e−φ̄φ |φ〉 〈φ| . (B.9)
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In order to prove the above equality, we show that the right hand side is equivalent to

the Fock space identity element4

∫

d(φ̄ φ)

2πi
e−φ̄φ |φ〉 〈φ| =

∑

nm

∫

d(φ̄ φ)

2πi
e−φ̄φ

φ̄nφm√
n!m!

|m〉 〈n|

=
∑

nm

1√
n!m!

∫ ∞

0

rdr

∫ 2π

0

dθ

π

(

reiθ
)n (

re−iθ
)m

e−r
2 |m〉 〈n|

=
∑

nm

1√
n!m!

∫ ∞

0

2r dr rn+me−r
2

∫ 2π

0

dθ

2π
ei(n−m)θ |m〉 〈n|

= δnm
∑

n

1

n!

∫ ∞

0

dr2
(

r2
)n
e−r

2 |n〉 〈n|

= δnm
∑

n

|n〉 〈n| . (B.10)

B.2 Fermionic coherent states

We now generalize the concept of coherent states to Fermionic systems. Consider an

eigenstate |ψ〉 of the Fermionic annihilation operator c, then the anti-commutation re-

lations would force these states to have the property

c c |ψ〉 = 0 = ψ2 |ψ〉 ,

where ψ is the eigenvalue of the operator c. Hence,

ψψ = 0 . (B.11)

Complex numbers do not have this property. Rather, we will need to use a type of

number first considered by Hermann Grassmann known eponymously as Grassmann

numbers [3]. We introduce the properties of Grassmann numbers and define a simple

calculus on them in Appendix A. Defining ψ to be Grassmann valued, we may write

4We define the measure d(φ̄ φ) ≡ dφ̄ ∧ dφ which may be shown to equal 2i dRe(φ) dIm(φ)
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the Fermionic coherent state as

|ψ〉 = exp
[

−ψ c†
]

|0〉 =
(

1− ψ c†
)

|0〉 , (B.12)

where we used the fact that ψ2 = 0. Demanding that c ψ = −ψ c and c† ψ = −ψ c† then

we find

c |ψ〉 = c
(

1− ψ c†
)

|0〉

= −ψ c c† |0〉

= ψ |0〉

=
(

1− ψ c†
)

|0〉

= ψ |ψ〉 . (B.13)

Defining ψ̄ to be an independent Grassmann number for ψ, we can compute

〈ψ| c† = 〈0|
(

1− c ψ̄
)

c†

= 〈0| ψ̄

= 〈0|
(

1− c ψ̄
)

ψ̄

= 〈ψ| ψ̄ . (B.14)

�e inner product between Fermionic coherent states is then the same as for Bosons:

〈η|ψ〉 = 〈0|
(

1− c η̄
)(

1− ψ c†
)

|0〉

= 〈0|
(

1− c η̄
)(

1− ψ c†
)

|0〉

= 1 + η̄ ψ

= eη̄ψ . (B.15)
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�e Fermionic coherent-state resolution of unity is given by

✶ =

∫

d(ψ̄ ψ) e−ψ̄ψ |ψ〉 〈ψ|

=

∫

d(ψ̄ ψ)
(

1− ψ̄ψ
)

[

|0〉 〈0| − ψ |1〉 〈0| − ψ̄ |0〉 〈1|+ |1〉 〈1|
]

=

∫

dψ̄
[

ψ̄ |0〉 〈0| − |1〉 〈0|+ ψ̄ |1〉 〈1|
]

= |0〉 〈0|+ |1〉 〈1| , (B.16)

and we note that the integration measure is not divided by a factor of 2πi as was the

case with Bosonic coherent-states.
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which are of weight −1. With appropriate regularization of semicircular contributions

at infinity, the integration contour may be reversed so that we now integrate around

the contour C which is a set of closed, counterclockwise contours around the poles at

ξk, −ξk, iΩm + ξk−q and iΩm − ξk−q. Hence,

Ĩ(iΩm) =
f(ξk)

(2ξk)(ξk − ξk−q − iΩm)(ξk + ξk−q − iΩm)

+
f(−ξk)

(−2ξk)(−ξk − ξk−q − iΩm)(−ξk + ξk−q − iΩm)

+
f(iΩm + ξk−q)

(iΩm + ξk−q − ξk)(iΩm + ξk−q + ξk)(2ξk−q)

+
f(iΩm − ξk−q)

(iΩm − ξk−q − ξk+)(iΩm − ξk−q + ξk)(−2ξk−q)
, (C.3)

which, a�er some manipulations, may be cast in the form

Ĩ(iΩm) =
1

4ξkξk−q

(

f(ξk)− f(ξk−q)

ξk − ξk−q − iΩm
− f(ξk) + f(ξk−q − 1)

ξk + ξk−q − iΩm

)

+
1

4ξkξk−q

(

f(ξk)− f(ξk−q)

ξk − ξk−q + iΩm
− f(ξk) + f(ξk−q − 1)

ξk + ξk−q + iΩm

)

. (C.4)

Next, in order to calculate the full sum I1, we consider the sums

I1 = T
∑

m

D0(q, iΩm)

(

1

iΩm + x
− 1

iΩm − x

)

,

and

I2 = T
∑

m

D0(q, iΩm)

(

1

iΩm + y
− 1

iΩm − y

)

, (C.5)

where we have defied x = ξk − ξk−q and y = ξk + ξk−q such that

I =

(

f(ξk)− f(ξk−q)
)

I1 −
(

f(ξk) + f(ξk−q)− 1
)

I2

4ξkξk−q

. (C.6)
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We will work in the regime where

D0(q, iΩm) ≈ − g̃
2

(

iΩm
iΩm − ceq

+
iΩm

iΩm + ceq

)

, (C.7)

i.e. |q| ≪ kF and T ≪ TF . Hence,

2I1
g̃

= −T
∑

m

(

iΩm
iΩm − ceq

+
iΩm

iΩm + ceq

)(

1

iΩm + x
− 1

iΩm − x

)

=
1

2πi

∮

C′
1

dz b(z)

(

z

z − ceq
+

z

z + ceq

)(

1

z + x
− 1

z − x

)

, (C.8)

where C ′
1 is the contour enclosing the poles of the Bose function b(z) counter-clockwise.

Since the poles of b(z) haveweight−1, the contour C ′
1 can be replaced by the contour C11

which is clockwise oriented and encloses the first order poles at ceq, −ceq and ξk − ξk−q.

Hence, by the residue theorem we have

2I1
g̃

= b(ceq)ceq

(

1

ceq + x
− 1

ceq − x

)

+
(

1 + b(ceq)
)

ceq

(

1

−ceq + x
− 1

−ceq − x

)

−
(

1 + b(x)
)

x

(

1

x+ ceq
+

1

x− ceq

)

− b(x)x

(

1

x− ceq
+

1

x+ ceq

)

=

[

ceq
(

1 + 2b(ceq)
)

− x
(

1 + 2b(x)
)

]

2x

x2 − (ceq)2

= 2
coth

(

1
2βceq

)

ceqx− coth
(

1
2βx

)

x2

x2 − (ceq)2
. (C.9)

Similarly,

2I2
g̃

= 2
coth

(

1
2βceq

)

ceqy − coth
(

1
2βy

)

y2

y2 − (ceq)2
, (C.10)

which allows us to write

I =
g̃

4ξkξk−q

[

(

f(ξk)− f(ξk−q)
)coth

(

1
2βceq

)

ceqx− coth
(

1
2βx

)

x2

x2 − (ceq)2

−
(

f(ξk) + f(ξk−q)− 1
)coth

(

1
2βceq

)

ceqy − coth
(

1
2βy

)

y2

y2 − (ceq)2

]

. (C.11)
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Again, using

D0(q, iΩm) = − g̃
2

(

iΩm
iΩm − cqq

+
iΩm

iΩm + cqq

)

(C.19)

we determine

2J1
g̃

=
2ceq

(

x2 + (ceq)
2
)

b(ceq)− 4(ceq)
2x b(x) + ceq(x− ceq)

2 + 2x2
(

x2 − (ceq)
2
)

b′(x)
(

x2 − (ceq)2
)2 (C.20)

2J2
g̃

=
ceq
(

x+ 2xb(cq)− ceq
)

− 2x2b(x)

x2 − (ceq)2
(C.21)

2J3
g̃

=
ceq
(

y + 2yb(cq) + ceq
)

− 2y2
(

1 + b(y)
)

y2 − (ceq)2
(C.22)

2J4
g̃

=
ceq b(ceq)

(x− ceq)2(y + ceq)
+

ceq
(

1 + b(ceq)
)

(x+ ceq)2(y − ceq)
− 2y2

(

1 + b(y)
)

(

y2 − (ceq)2
)

(2ξk)2

−
2x
(

(

x3 + (ceq)
2(x+ 2y)

)

b(x)− x
(

x2 − (ceq)
2
)

(2ξk) b
′(x)

)

)

(x− ceq)2(x+ ceq)2(2ξk)2
. (C.23)

C.3 Number equation correction

We wish to evaulate the Matsurbara sum

K = T 2
∑

n

D0(q iΩm)G2
0(k iωn)G0(k− q iωn − iΩm) , (C.24)

so we first calculate

K̃(iΩm) = I
∑

n

G2
0(k iωn)G0(k− q iωn − iΩm)

=
1

2πi

∮

C

dz
f(z)

(z − ξk)(z − iΩm − ξk−q)

=
f ′(ξk)

iΩm − x
− f(ξk)− ξk−q

(iΩm − x)2
, (C.25)
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where C is counter-clockwise oriented around the poles at ξk and iΩm + ξk. We now

have

K = T
∑

m

dz D0(q iΩm)

(

f ′(ξk)

iΩm − x
− f(ξk)− f(ξk−q)

(iΩm − x)2

)

= f ′(ξk)K1 +
(

f(ξk)− f(ξk−q)
)

K2 , (C.26)

where

2K1

g̃
= T

∑

m

D0(q iΩm)
1

iΩm − x

=
2x2b(x) + (ceq)

2 − xceq
(

1− 2b(ceq)
)

x2 − (ceq)2
, (C.27)

and

2K2

g̃
= −T

∑

m

D0(q iΩm)
1

(iΩm − x)2

=
2x b′(x)

x2 − (ceq)2
+
ceq
(

(x− ceq)
2 + 2

(

x2 + (ceq)
2
)

b(ceq)− 4ceq b(x)
)

(x2 − (ceq)2)
2 . (C.28)


