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Abstract: This paper studies generalized linear mixed models (GLMMs) for

the analysis of geographic and temporal variability of disease rates. This

class of models adopts spatially correlated random effects and random tem-

poral components. Spatio-temporal models that use conditional autoregres-

sive smoothing across the spatial dimension and autoregressive smoothing

over the temporal dimension are developed. The model also accommodates

the interaction between space and time. However, the effect of seasonal fac-

tors has not been previously addressed and in some applications (e.g. health

conditions), these effects may not be negligible. We incorporate the seasonal

effects of month and possibly year as part of the proposed model and esti-

mate model parameters through generalized estimating equations. The model

provides smoothed maps of disease risk and eliminates the instability of esti-

mates in low-population areas while maintaining geographic resolution. We

illustrate our approach using a monthly data set of the number of asthma

presentations made by children to Emergency Departments (EDs) in the

province of Alberta, Canada during the period 2001-2004.
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1. INTRODUCTION

The analysis of disease rates over space and time has received considerable

attention due to growing demand for reliable disease rates. The idea behind

developments on spatial and spatio-temporal modeling of disease rates is

essentially to model variations in true rates and better separate systematic

variability from random noise, a component that usually overshadows crude

rate maps. Maps of regional morbidity and mortality rates over time are

useful tools in determining spatial and temporal patterns of disease. Disease

incidence and mortality rates may differ substantially across geographical

regions. A reliable estimate of the underlying disease risk is usually provided

by borrowing strength from neighbouring geographic sub-areas.

Poisson regression is commonly used for the analysis of disease rates,

which implicitly assumes that the rates in nearby regions are independent

and the variance of response is equal to the mean. However, these may not be

reasonable assumptions because causal factors of the disease that are unmea-

sured or unknown and thus omitted from the regression model can lead to

extra-Poisson variation. Furthermore, a certain degree of spatial correlation

may be induced in the response, depending on how smoothly the omitted

factors vary across the regions. Clayton & Kaldor (1987) extended the use of

mixed models for geographical data to account for the extra-Poisson variabil-

ity through the introduction of random effects; where the random effects are

often spatially correlated in a disease mapping context. To perform inference

based on mixed models, computationally intensive hierarchical models are

commonly used. One may use Markov chain Monte Carlo (MCMC) methods
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such as the Gibbs sampler (Besag, York & Molliè 1991; Clayton & Bernar-

dineli 1992; Waller, Carlin, Xia & Gelfand 1997; Knorr-Held 2000), but mon-

itoring the algorithm for convergence is difficult (Bernardineli & Montomoli

1992; Breslow & Clayton 1993). Breslow & Clayton (1993) proposed the use

of the penalized quasi-likelihood (PQL) method for inference in generalized

linear mixed models (GLMMs) and provided an example of the use of PQL

for estimation in mapping studies. For the analysis of spatial rates, PQL

may require more computer time than the Gibbs sampler, due to the need

for large-scale matrix computations. Liang & Zeger (1986) and Prentice &

Zhao (1991) proposed the generalized estimating equation (GEE) approach

to analyzing the longitudinal data using the generalized linear models.

Waller, Carlin, Xia & Gelfand (1997) extended the existing Bayesian hi-

erarchical spatial models to account for temporal effects and spatio-temporal

interactions. More precisely, they proposed spatio-temporal models for map-

ping rates, including temporal effects, through an autoregressive AR(1) struc-

ture. Knorr-Held (2000) proposed a unified approach for a Bayesian analysis

of incidence or mortality data in space and time which has four different types

of prior distributions for the interaction of space and time; this constitutes an

extension of a model with only main effects. The random walk RW(1) with

independent Gaussian increments was used as a temporal component in the

model proposed by Knorr-Held (2000). MacNab & Dean (2001) proposed

spatio-temporal models that use autoregressive local smoothing across the

spatial dimension and B-spline smoothing over the temporal dimension. In

some contexts, the underlying rates may change over seasons within a given

year. For example, in the infectious disease context, malaria (Mabaso, Craig,
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Vounatsou & Smith 2005) and influenza-related mortality (Greene, Ionides

& Wilson 2006) have been noted to have spatio-temporal as well as seasonal

effects. Such seasonal effects are likely to be important. Existing temporal

smoothing techniques are not applicable in this context and new model is

required to handle seasonal effects.

We consider a comprehensive model that is based on a generalized linear

mixed model (GLMM) to account for the spatio-temporal analysis of risks.

These models accommodate spatially correlated random effects as well as

temporal effects. The well-known approaches of conditional autoregressive

(CAR) and AR models are adopted for spatial and temporal random effects,

respectively. We use the space-time interaction to capture any additional

effects that are not explained by the main factors of space and time. The

seasonal effects resulting from the effects of month and possibly year are

incorporated in our model.

The paper is organized as follows. In Section 2, the spatio-temporal

GLMM is studied. We provide the statistical modeling of spatial and tempo-

ral factors as well as the interaction between space and time. Furthermore,

we study the seasonal factors of month and year. The estimation of model

parameters, GEE approach, is described in detail in Section 3. Section 4 illus-

trates the model using the number of asthma visits made by children to EDs

in the province of Alberta, Canada during 2001 to 2004. The performance of

the GEE approach in our application is also studied through the simulation

study. Concluding remarks are given in Section 5. The Appendix provides

some of the calculation details.
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2. SPATIAL AND TEMPORAL MODELING

2.1. Statistical models.

Let yit be the counts of disease (or otherwise) for the i-th geographic area

at time t and let nit be the corresponding population at risk, for i = 1, ..., I,

and t = 1, ..., T. Define µc
it as the conditional expectation of yit given the

random effects. We study a general Poisson model for µc
it which is given by

µc
it = exp

{

log nit + log µ + A cos(π6/t) + B sin(π6/t) + ηi + αt + θit

}

, (1)

where µ is a fixed effect representing the overall mean count over time and

area. The effects of seasons are studied by A cos(πt/6) + B sin(πt/6). The

expressions cos(πt/6) and sin(πt/6) account for the seasonal variation over

time with the coefficients A and B, respectively (Fanshawe, Diggle, Rush-

ton, Lurz, Glinianaia, Pearce, Parker, Chalton & Pless-Mulloli 2008). This

formulation allows the seasonal pattern to change over time, in contrast with

simpler models where the components must sum exactly to 0 (Datta, Lahiri,

Maiti & Lu 1999). As an alternative way to introduce the seasonal variation,

we could apply the seasonal components (s1, ..., s11) proposed by Knorr-Held

& Richardson (2003) such that the components add up to Gaussian white

noise over a moving window of length 12 months. The ηi accounts for the

spatial random effects. Moreover, αt represents unspecified features of time

t which displays temporal structure. To account for the interaction between
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space and time, motivated by our application, we provide an interaction ef-

fect θit in (1).

2.2. Spatial modeling.

The usual CAR model is used to capture the spatial random effects ηi.

A variety of CAR models may be used by taking a collection of mutually

compatible conditional distributions p(ηi|η−i), i = 1, ..., I where η−i = {ηj :

j 6= i, j ∈ ∂i} and ∂i denotes a set of neighbours for the i-th area (Besag,

York & Molliè 1991). We consider the following general model for the spatial

effects ηi,

η = (η1, ..., ηI)
′ ∼ N(0, Ση), (2)

Ση = σ2
ηP

−1,

P = ληD + (1 − λη)II ,

where σ2
η is the spatial dispersion parameter, λη measures the spatial auto-

correlation, 0 ≤ λη ≤ 1, and II is an identity matrix of dimension I. The

neighbourhood matrix D has its i-th diagonal element equal to the number of

neighbours of the corresponding area (#∂i), and the off-diagonal elements in

each row equal −1 if the corresponding areas are neighbours and zero other-

wise (Leroux, Lei & Breslow 1999; MacNab & Dean 2000, 2001). Neighbours

can be defined in various ways, depending on the context of the analysis, but

one popular definition is simply the set of areas that have common borders

and we use this definition. When the spatial correlation λη is one, we have
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ηi|η−i ∼ N(η̄, σ2
η/#∂i), where η̄ is the mean of the random effects in the

neighbourhood of the i-th area. A more general form of the spatial random

effects ηi is given by

ηi|η−i ∼ N(

∑

j∈∂i
wijηj

∑

j∈∂i
wij

,
σ2

η
∑

j∈∂i
wij

), (3)

where wij is the user-specified weights linking areas i and j (Wakefield & Mor-

ris 1999; Lawson, Biggeri, Böhning, Lesaffre, Viel & Bertollini 1999; MacNab

& Dean 2000, 2001).

2.3. Temporal modeling.

One may employ the RW(1) for the random effects αt such that αt|αt−1 ∼

N(αt−1, σ
2
α) with α1 = 0, where σ2

α is an unknown scalar to be estimated

from the data (Knorr-Held 2000; Gössl, Auer & Fahrmeir 2001). Then α =

(α1, ..., αT )′ ∼ N(0, σ2
αK−1

t ), where Kt is a known structure matrix as:

Kt =

































1 −1

−1 2 −1

. . .

−1 2 −1

−1 1

































.

Because the specification is in terms of conditional distributions, Kt is a

singular matrix. In generalized linear modeling, the typical solution would

be to reduce the problem to that of estimating a reduced set of random effects
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with full rank variance matrix; in this case one can simply delete the first row

and column of Kt (Clayton 1996). This can be equivalently handled using

the Moore-Penroze generalized inverse K−
t (Harville 1997).

Because of simplicity in the analytical work to derive the marginal mean

and variance (see Section 3) and to capture all temporally correlated random

effects, we use the AR(1) model for the random effects αt. The simple AR(1)

model for the random effects αt may be written as αt|αt−1 ∼ N(ραt−1, σ
2
α),

where σ2
α is the temporal dispersion parameter and ρ as temporal autocor-

relation with |ρ| ≤ 1 (Waller et al. 1997; Mart́ınez-Bereito, López-Quilez

& Botella-Rocamoraet 2008). The vector α = (α1, ..., αT )′ is assumed to be

multivariate Gaussian with mean zero and covariance matrix σ2
α

1−ρ2 {ρ
|j−i|}T

i,j=1.

The seasonal effects cos(πt/6) and sin(πt/6) are also used to account for the

seasonal variation from month to month.

2.4. Spatio-temporal interaction.

The interaction effect of space and time θit may be defined in many dif-

ferent ways. One way to define θit is

θ = (θ11, ..., θIT )′ ∼ N(0, σ2
θK

−1
θ ),

where σ2
θ measures the dispersion between space and time effects and Kθ is a

pre-specified structure matrix. Note that if all θit = 0, the model (1) reduces

to model with the main effects of space and time. Hence, θ captures only the

variation that is not explained by the main effects. Clayton (1996) suggests
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specifying Kθ as the Kronecker product of the structure matrices of those

main effects, which are assumed to interact. Alternatively, one may define θit

as θit or Si(t) depending on the nature of the data (MacNab & Dean 2001;

Silva, Dean, Niyonsenga & Vanasse 2008), where θi is a fixed parameter or

an CAR model, and Si(t) is a cubic B-spline for specific region i (Eilers &

Marx 1996). In this paper, we use θ = (θ11, ..., θIT )′ ∼ N(0, σ2
θK

−1
θ ) which

was found useful in our exploration of the data.

2.5. Full model.

The model (1) can be written as a GLMM, E(y|v) = g(offset + Xβ +

Zv), where y = (y11, ..., yIT )′; g(·) = exp(·); the offset is the known vec-

tor of the logarithm of the population counts nij; β = (log µ, A, B)
′

is the

vector of fixed parameters; X and Z are the known N × p and N × h

matrices of full rank, (N = I × T, p = 3, h = T + I + N); and v =

(α1, ...αT , η1, ..., ηI , θ11, ..., θIT )
′

is independently distributed with mean 0 and

covariance matrix Σv = diag(Σα, Ση, σ
2
θK

−1
θ ) depending on variance parame-

ters ς = (λη, σ
2
η, σ

2
α, ρ, σ2

θ)
′. The design matrix vector X = col1≤i≤I(Xi) corre-

sponds to the fixed effects and has dimension N ×p, where Xi is the same for

all areas with the t-th row of Xi as Xit = (1, cos(πt/6), sin(πt/6)), t = 1, ..., T.

The design matrix Z = col1≤i≤I(Zi) for the random effects has dimension

N × h, where Zi = (Z0, Zi1, Zi2), i = 1, ..., I. The matrix Z0 is an T × T

identity matrix, and Zi1 has dimension T × I where the corresponding i-th

column is one, elsewhere 0; Zi2 has dimension T × N where it decomposes

to I matrix with each dimension T × T where i-th matrix is an T × T iden-
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tity matrix, elsewhere 0. Note that Z0 is associated with αt; Zi1 and Zi2 are

associated with ηi and θit, respectively.

There are various methods to estimate the fixed parameters β and vari-

ance components ς such as generalized estimating equations (Liang & Zeger

1986; Prentice & Zhao 1991), penalized quasi-likelihood (Breslow & Clay-

ton 1993; Lin & Breslow 1996; Leroux, Lei & Breslow 1999; MacNab & Dean

2000, 2001), estimating functions (Yasui & Lele 1997), hierarchical likelihood

(Lee & Nelder 1996), Bayesian analysis using Markov chain Monte Carlo (Be-

sag, York & Molliè 1991; Bernardinelli & Montomoli 1992; Gilks, Richardson

& Spiegelhalter 996; Clayton & Bernardinelli 1992), and the EM algorithm

(McCulloch 1997). We use the method of GEE to estimate the model pa-

rameters. However, our set-up is different from the classical set-up that was

first proposed by Liang & Zeger (1986) and Prentice & Zhao (1991) and is

further described in the next section.

3. ESTIMATION OF PARAMETERS

3.1. Generalized estimating equations for fixed effects.

We first need to find the marginal mean and marginal variance-covariance

of y. Recall that E(y|v) = exp(offset + Xβ + Zv). Then for i = 1, ..., I; t =

1, ..., T, we have

µit(β, ς) := E(yit) = E
{

E(yit|v)
}

= exp(log nit + x
′

itβ)Mv(zit), (4)

where Mv(zit) = exp (z′itΣvzit/2) = exp
{

1
2
(σ2

θq
−1
it +σ2

α/(1−ρ2)+σ2
ηp

−1
ii )

}

; xit
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and zit are the t-th row of Xi and Zi, respectively; q−1
it is the (i, t)-th element

of K−1
θ ; p−1

ii is the i-th diagonal element of P−1.

To obtain the marginal variance of yit, we may write

var(yit) = var
{

E(yit|v)
}

+ E
{

var(yit|v)
}

= var
{

exp(log nit + x
′

itβ + z′itv)
}

+ E
{

exp(log nit + x
′

itβ + z′itv)
}

= exp
{

2(log nit + x
′

itβ)
}[

Mv(2zit) − {Mv(zit)}
2 + exp(− log nit − x

′

itβ)Mv(zit)
]

,

where Mv(2zit) = exp
{

2(σ2
θq

−1
it + σ2

α/(1− ρ2) + σ2
ηp

−1
ii )

}

. Therefore, we have

var(yit) = µit

(

exp(log nit + x
′

itβ)
[

exp
{

3

2
(σ2

θq
−1
it + σ2

α/(1 − ρ2) + σ2
ηp

−1
ii )

}

− exp
{

1

2
(σ2

θq
−1
it + σ2

α/(1 − ρ2) + σ2
ηp

−1
ii )

}]

+ 1

)

= : σitt(β, ς); i = 1, ..., I; t = 1, ..., T. (5)

Similarly, we may write cov(yit, yit′) as

cov(yit, yit′) = exp
{

log nit + log nit′ + (xit + xit′)
′

β
}[

exp
{

σ2
θ(q

−1
it + q−1

it′
) + σ2

α

1 + ρ|t−t
′

|

1 − ρ2

+2σ2
ηp

−1
ii

}

− exp
{

σ2
θ(q

−1
it + q−1

it′
)/2 + σ2

α/(1 − ρ2) + σ2
ηp

−1
ii

}]

= : σitt′(β, ς); t 6= t′ = 1, ..., T. (6)

Moreover, we need to find cov(yit, yjt) =: σijtt(β, ς) and cov(yit, yjt′) =:

σijtt′(β, ς) to construct the covariance between yi and yj (i 6= j = 1, ..., I; t 6=

t′ = 1, ..., T ). We may write cov(yit, yjt) and cov(yit, yjt′) after some simplifi-
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cation as

σijtt(β, ς) = cov(yit, yjt) = exp
{

log nit + log njt + (xit + xjt)
′

β
}

exp
{

σ2
θ(q

−1
it + q−1

jt )/2

+σ2
α/(1 − ρ2) + σ2

η(p
−1
ii + p−1

jj )/2
}[

exp{σ2
θ(q

−1
it + q−1

jt )/2 + σ2
α/(1 − ρ2)

+σ2
ηp

−1
ij } − 1

]

, (7)

and

σijtt′(β, ς) = cov(yit, yjt′) = exp
{

log nit + log njt′ + (xit + xjt′)
′

β
}

exp
{

σ2
θ(q

−1
it + q−1

jt′
)/2

+σ2
α/(1 − ρ2) + σ2

η(p
−1
ii + p−1

jj )/2
}[

exp{σ2
θ(q

−1
it + q−1

jt′
)/2 + σ2

αρ|t−t
′

|/(1 − ρ2)

+σ2
ηp

−1
ij } − 1

]

. (8)

We define V
(1)
ii (β, ς) = cov(yi) = {σikl(β, ς)}T

k,l=1 and V
(1)
ij (β, ς) = cov(yi, yj) =

{σijkl(β, ς)}T
k,l=1, (i 6= j = 1, ..., I). Hence, V1(β, ς) = cov(y) = {V

(1)
ij }I

i,j=1.

Then µ(β, ς) = (µ11, ..., µIT )′ is the mean vector of the response vector

y = (y11, ..., yIT )′ and V1(β, ς) is the N × N variance-covariance matrix of

y. Note that µ and V1 are functions of β and ς. In a classical set-up, where

µ and V1 are functions of β only, one estimates β by solving the well-known

quasi-likelihood estimating equations

∂µ′

∂β
V −1

1 (y − µ) = 0,

(Wedderburn 1974; McCullagh 1983). Moreover, Liang & Zeger (1986) intro-

duced the GEE approach where V1 is a function of β as well as ς. However,

in the present set-up, µ and V1 involve unknown parameters β and ς. In the
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longitudinal fixed model set-up, Sutradhar & Das (1999) (also Jowaheer &

Sutradhar 2002) proposed a generalized estimating approach that uses the

consistent estimates of ς involved in the µ and V1 matrix (see also Bari &

Sutradhar 2005). In our spatio-temporal model, we use the I1/2−consistent

estimates of ς, ς̂(y, β), involved in the µ and V1, and solve the estimating

equation with respect to fixed parameters β by using (4)-(8) which is given

by

D′
1(β, ς̂)V −1

1 (β, ς̂){y − µ(β, ς̂)} = 0, (9)

where D1(β, ς) = ∂µ(β, ς)/∂β = (x11µ11, ..., x1T µ1T , ..., xI1µI1, ..., xIT µIT )′.

The solution of equation (9), β̂, may be obtained using the Newton-Raphson

iterative method. Given the value β̂s at the s-th iteration, β̂s+1 may be

obtained at the (s + 1)-th iteration as

β̂s+1 = β̂s +
{

D′
1(β, ς̂)V −1

1 (β, ς̂)D1(β, ς̂)
}−1

×
[

D′
1(β, ς̂)V −1

1 (β, ς̂){y − µ(β, ς̂)}
]

. (10)

The estimator β̂ is consistent for β as the generalized estimation equation in

(9) is an unbiased estimating equation. This estimator is also highly efficient

(Liang & Zeger 1986). The reason is because β̂ is obtained by solving the

estimating equation (9), where the variance-covariance matrix V1(β, ς) is the

correct variance-covariance matrix of the responses. To show the asymptotic

distribution of β̂, we have the following Theorem.
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THEOREM 1. Under mild regularity conditions as I −→ ∞, β̂ is a consistent

estimator of β and that I1/2(β̂ − β) is asymptotically multivariate Gaussian

with mean vector 0 and covariance matrix Vβ given by

Vβ = I{D′
1(β, ς̂)V −1

1 (β, ς̂)D1(β, ς̂)}−1. (11)

The proof is based on standard approaches and is omitted for simplicity.

Note that the solution obtained from (9) requires ς to be known. In equa-

tion (9), ς̂ is treated as nuisance parameter. Similar to (9), we develop a GEE

for ς to estimate the variance components ς.

3.2. Generalized estimating equations for random effects.

We now find the estimating equation with respect to variance components

ς. This estimating equation can be written as

I
∑

i=1

D′
i2(β, ς)V −1

i2 (β, ς){Si(β, ς) − σi(β, ς)} = 0,

letting the independence assumption for Si(β, ς) = (si11, ..., si1T , ..., siT1, ..., siTT )′

≡ (vi1, vi2, ..., viT 2)′ among areas, with sikl(β, ς) = (yik − µik)(yil − µil), and

similarly σi(β, ς)=(σi11, σi12, ..., σi1T , σi21, ..., σi2T ,...,σiT1, ..., σiTT )′. With as-

suming the independence for Si(β, ς) among areas, we may lose some effi-

ciency. We study this issue through simulation study in Section 4.2. Moreover,

Vi2(β, ς) = cov(Si) = {σ̃ijk}
T 2

j,k=1, where σ̃ikl = cov(vik, vil), i = 1, ..., I; k, l =

1, ..., T 2. We also need to find Di2(β, ς) = ∂σi(β, ς)/∂ς. To this end, we need

14



to calculate ∂σikl/∂λη, ∂σikl/∂σ2
η , ∂σikl/∂σ2

α, ∂σikl/∂ρ, and ∂σikl/∂σ2
θ ; k, l =

1, ..., T. The derivation details of the components Vi2(β, ς) and Di2(β, ς) are

provided in the Appendix.

To estimate the variance components ς, we may obtain the GEE based

estimate of ς by solving the estimating equation

I
∑

i=1

D′
i2(β̂, ς)V −1

i2 (β̂, ς){Si(β̂, ς) − σi(β̂, ς)} = 0. (12)

Similar to equation (9), one may solve equation (12) for ς using the

Newton-Raphson iterative method. Given the value ς̂s at the s-th iteration,

ς̂s+1 may be obtained at the (s + 1)-th iteration as

ς̂s+1 = ς̂s +
{

I
∑

i=1

D′
i2(β̂, ς)V −1

i2 (β̂, ς)Di2(β̂, ς)
}−1

×
[ I
∑

i=1

D′
i2(β̂, ς)V −1

i2 (β̂, ς){Si(β̂, ς) − σi(β̂, ς)}
]

. (13)

Note that in constructing the GEE for β, we have used the true covariance

matrix V1(β, ς), while the GEE for ς in (12) uses a working fourth-order ma-

trix Vi2(β, ς). To show the asymptotic distribution of ς̂ , we have the following

Theorem.

THEOREM 2. Under mild regularity conditions as I −→ ∞, ς̂ is a consistent

estimator of ς and that I1/2(ς̂ − ς) is asymptotically multivariate Gaussian
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with mean vector 0 and covariance matrix Vς given by

Vς = I
{

I
∑

i=1

D′
i2(β̂, ς)V −1

i2 (β̂, ς)Di2(β̂, ς)
}−1{

I
∑

i=1

D′
i2(β̂, ς)V −1

i2 (β̂, ς)Fi

× V −1
i2 (β̂, ς)Di2(β̂, ς)

}{

I
∑

i=1

D′
i2(β̂, ς)V −1

i2 (β̂, ς)Di2(β̂, ς)
}−1

, (14)

where Fi = E{Si(β̂, ς) − σi(β̂, ς)}{Si(β̂, ς) − σi(β̂, ς)}
′

. The proof is based

on standard approaches and is omitted for simplicity.

Note that Fi in Theorem 2 is replaced with Vi2(β̂, ς) in our application (Sec-

tion 4) and its misspecification is addressed in Section 4.2. The estimator ς̂

is consistent, but loses its efficiency slightly because of the use of a working

covariance matrix in the estimating equation (12). The degree of loss of ef-

ficiency depends on the level of misspecification of the working fourth-order

moments matrix to be used in the place of the true fourth-order moments

matrix.

The complete algorithm for the GEE estimates of β and ς can be de-

scribed as follows:

1. Choose initial values β0 and ς0. Set m = 0.

2. (a) Calculate βm+1 from the iterative equation (10).

(b) Calculate ςm+1 from the iterative equation (13).

(c) Set m = m + 1.

3. Continue step 2 until a convergence is achieved. Declare the estimates at

convergence to be the GEE estimators β̂ and ς̂ of β and ς.
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4. APPLICATION

4.1. Data analysis.

We illustrate our model on presentations for asthma made by children

(age < 18 years) to EDs in the province of Alberta, Canada. Presentations

to the EDs and population data are provided by large, provincial databases.

During the study period, Alberta had about 3.1 million population, of which

around 0.8 million were children. We focus on the number of monthly pedi-

atric presentations made between January 1, 2001, and December 31, 2004

(T = 48 months). The province consists of nine Regional Health Authorities

that are responsible for the delivery of health care services. These nine re-

gions are further sub-divided into (I = 70) sub-Regional Health Authorities

(sRHAs) and these sRHAs are the geographic units used in our model. The

visits totaled 62,008 over the study period with mean and median monthly

visits per sRHA of 18 and 16 (range 0 to 111), respectively.

The design matrix X = col1≤i≤I(Xi) that corresponds to the fixed effects

has dimension N × p, where N = 3360 and p = 3. The design matrix Z =

col1≤i≤I(Zi) that corresponds to the random effects has dimension N × h,

where h = 3478.

Figure 1 presents the crude provincial asthma visits rate over period,

which clearly shows the need of seasonal adjustment. We fit the model (1)

to the data set of asthma visits (Table 1). Based on our findings on the

structure of the main effects, we consider exchangeability of the components
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TABLE 1: Parameter estimates (Est.) and standard errors (SE), spatio-
temporal mixed model, monthly pediatric asthma visits to EDs, 2001-2004.

Coefficients of the fixed effects Variance components

Parameter Est. SE Parameter Est. SE
Overall mean µ 0.0004 0.0001 λη 0.10 0.06

σ2
η 3.06 0.52

Seasonal components A -0.13 0.05 σ2
α 0.11 0.04

B -0.09 0.04 ρ 0.15 0.10
σ2

θ 0.05 0.01

of θ by taking Kθ = I, the identity matrix (Knorr-Held 2000). Some model

parameters are clearly significant (5% level) based on the asymptotic results

given in Theorems 1 and 2 (equations (11) and (14)).

Formal tests for overdispersion may be used to indicate its presence in the

model (1) (Dean & Lawless 1989; Dean 1992; Sinha 2009). We applied the

parametric bootstrap approach proposed by Sinha (2009) to evaluate the sig-

nificance of variance components and observed that there are overdispersion

in both spatial and temporal effects.

To investigate diagnostic analysis, we calculate the deviance residual (Mc-

Cullagh & Nelder 1989) as

drit = sgn(yit − µ̂c
it)

{

2
(

yit log(
yit

µ̂c
it

) − yit + µ̂c
it

)

}1/2

,

where

sgn(a) =































1 a > 0

0 a = 0

−1 a < 0

.

Note that we obtain the random terms based on 1, 000 Monte Carlo where
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FIGURE 1: Crude provincial asthma visits rate over the period January 2001
to December 2004.

needed, for example µ̂c
it. Figure 2 gives the residuals versus log-predicteds

diagnostic plot. It is clear from Figure 2 that there is no serious lack of fit in

our model.

For a close examination of the temporal change of the estimated spatial

risk profile, we define the adjusted relative risk by exp(ηi + θit), which is

automatically calibrated on a common base for the temporal effects (Knorr-

Held 2000). The overall peak months are April, May, and September. We

provide the estimated regional asthma visits ratio for April 2001-2004 where

the months May and September had similar patterns. The estimated spatial

effects based on the fitted model are presented in Figure 3. These maps

suggest that sRHAs with relatively high numbers of asthma visits ratio are

clustered in the south-central part of the province. Generally, the spatial
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FIGURE 2: The deviance residuals versus log-predicteds diagnostic plot of
pediatric asthma visits rate over the period January 2001 to December 2004.

pattern is relatively stable over time (Figure 4). Note that the regions with

the highest ratios are generally in the rural regions. Individuals in these

regions may not have as much access to alternative sources of health care in

the non-ED setting or may have more severe disease.

We also provide the regional number of asthma visits ratio estimates ob-

tained from fitting the spatio-temporal mixed model given by exp(ηi+αt+θit).

Figure 5 plots the fitted asthma visits ratio for example for regions R312 and

R617. The crude ratio estimates are yit/(nitct), where ct =
∑I

i=1 yit/
∑I

i=1 nit,

and are also plotted in Figure 5. As shown, there are seasonal patterns over

time in these regions. In general, a specific pattern in estimated log ratio

over time for a region would suggest that the underlying asthma visits rate

in that region has also the same pattern relative to the provincial average.
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FIGURE 3: Adjusted relative risk for pediatric asthma visits to EDs in Al-
berta in April 2001-2004. Major urban centres are provided as inserts.
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FIGURE 4: Adjusted relative risk for regions R312 and R617 from January
2001 to December 2004.
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FIGURE 5: Fitted pediatric asthma visits ratio to EDs for selected regions,
R312 and R617, January 2001 - December 2004. The solid line represents
fitted ratios; the dashed line, crude ratios.

22



4.2. Simulation study on the performance of GEE estimates.

We conducted a simulation study to evaluate the performance of GEE

estimates using the scenario similar to our asthma data. More specifically,

data are generated from the model (1) with the parameters close to those

obtained in the analysis of the asthma data; µ, A, B, and σ2
η, λη, σ

2
α, ρ, σ2

θ are

listed in Table 2. The neighborhood structure and the population sizes are

exactly as for the asthma data. Estimates were obtained using GEE analyses

of 500 data sets generated from the mixed Poisson model (1).

TABLE 2: Mean values of biases and standard errors, and simulated stan-

dard errors of GEE estimates based on 500 simulated data sets.

Parameter Bias Standard error (X100)

Simulated GEE

µ = 0.0005 -0.0061 0.015 0.013

A = −0.15 0.0032 5.6 5.3

B = −0.10 -0.0051 4.4 4.2

σ2
η = 3.10 0.0012 307.5 306.4

λη = 0.10 -0.0143 11.4 9.8

σ2
α = 0.10 -0.0003 11.8 11.4

ρ = 0.15 0.0105 16.4 15.3

σ2
θ = 0.05 -0.0001 5.4 4.8

Table 2 presents the bias values of the fixed parameters and variance

component parameters, as well as the standard deviation of the estimated

parameters and mean values of the estimated standard errors. The estimates

are fairly unbiased, and it seems that their standard errors are estimated
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reasonably well. Overall, it seems that GEE provides good point estimates

and standard errors for this data analysis. The use of the working covariance

matrix to estimate the variance components is reasonable and provides a

relatively small loss of information.

5. DISCUSSION

We have presented and illustrated a method for spatio-temporal analysis

that pays specific attention to the mapping of area level disease rates over

time. We have modeled the random spatial and temporal effects as well as

the interaction between these two factors. Seasonal effects may be present

and important to capture in some applications and our model incorporates

those effects in a spatio-temporal model. The modeling approach is flexible

and applicable to other contexts where spatio-temporal and seasonal effects

exist.

For simplicity, we only considered the structure where all regions had the

same seasonal effects. One can account for the effects of region i and time t,

such that Ait cos(πt/6) + Bit sin(πt/6) in model (1), where for example Ait

and Bit are AR(1). Note that we also used At cos(πt/6)+Bt sin(πt/6) where

At and Bt were RW(1) and observed that there is no significant preference

in using At and Bt rather than A and B. We did not include any covariate

terms in the model. However, one can easily extend the model to include

covariates and such inclusion may be required for some applications.

We used generalized estimating equations in this paper, although other es-

timation techniques could be used. Recently, Lele, Dennis & Lutscher (2007)
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proposed a method to compute the maximum likelihood estimation for hier-

archical models using Bayesian MCMC methods. We have planned to study

this approach in for our data.

Alternative analysis we have planned include a fully Bayesian approach

using MCMC. More specifically, we will use highly vague, but proper, priors

for all interested parameters to learn more from data. We will also investigate

more complex models rather than (1), for example, Ait and Bit, instead of A

and B, where Ait and Bit have AR(1) or RW(1), and study the sensitivity of

such type of analysis to prior assumptions in the Poisson context.

APPENDIX

Derivation of the components of Vi2(β, ς). To calculate the components of

Vi2(β, ς), we use the independence assumption for repeated yij within an

area as a working covariance matrix (Sutradhar & Farrell 2004; Bari &

Sutradhar 2005). We may lose some efficiency by assuming the indepen-

dence for repeated yij. We address this issue through simulation study in

Section 4.2. Hence, we have σ̃i11 = cov(vi1, vi1) = E(yi1 − µi1)
4 =: σ∗

i11,σ̃i12 =

cov(vi1, vi2) = E(yi1 − µi1)
3(yi2 − µi2) = 0, ..., σ̃i1T = cov(vi1, viT ) = 0, and

similarly σ̃i1(T+2) = cov(vi1, vi(T+2)) = E(yi1 − µi1)
2(yi2 − µi2)

2 = σi11σi22,

σ̃i1(2T+3) = cov(vi1, vi(2T+3)) = E(yi1 − µi1)
2(yi3 − µi3)

2 = σi11σi33,... , σ̃i1T 2 =

cov(vi1, viT 2) = E(yi1 − µi1)
2(yiT − µiT )2 = σi11σiTT , elsewhere 0. In a simi-

lar way, we can calculate other rows of Vi2(β, ς). Then, we need to calculate

σ∗
ikk, k = 1, ..., T where σ∗

i22 = σ̃i(T+2)(T+2), σ
∗
i33 = σ̃i(2T+3)(2T+3) and so on.

More precisely, to calculate σ∗
ikk = E(yik − µik)

4, we need to find the fourth
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moment y4
ik. We know that yik|v ∼ Poisson(µ̃ik), where µ̃ik = exp(log nik +

x′
ikβ +z′ikv). Then, we have E(yik|v) = µ̃ik and var(yik|v) = µ̃ik. On the other

hand, we may write E(yik − µik)
4 = E(y4

ik)− 4µikE(y3
ik) + 6µ2

ikE(y2
ik)− 3µ4

ik,

where

E(y4
ik) = EE(y4

ik|v) = E(µ̃ik) + 7E(µ̃2
ik) + 6E(µ̃3

ik) + E(µ̃4
ik). (15)

Recall that E(µ̃ik) = µik = exp
{

log nik + x
′

ikβ + 1
2

(

σ2
θq

−1
ik + σ2

α/(1 − ρ2) +

σ2
ηp

−1
ii

)}

. Similarly,

E(µ̃2
ik) = exp

{

2
(

log nik + x
′

ikβ + σ2
θq

−1
ik + σ2

α/(1 − ρ2) + σ2
ηp

−1
ii

)}

,

E(µ̃3
ik) = exp

[

3
{

log nik + x
′

ikβ +
3

2
(σ2

θq
−1
ik + σ2

α/(1 − ρ2) + σ2
ηp

−1
ii )

}]

,

and

E(µ̃4
ik) = exp

[

4
{

log nik + x
′

ikβ + 2(σ2
θq

−1
ik + σ2

α/(1 − ρ2) + σ2
ηp

−1
ii )

}]

.

By combining the above results with (15), we obtain E(y4
ik). Moreover, we

may write E(y3
ik) = EE(y3

ik|v) = E(µ̃ik) + 3E(µ̃2
ik) + E(µ̃3

ik). Hence, E(y3
ik)

is now known. In addition, we have E(y2
ik) = EE(y2

ik|v) = E(µ̃ik) + E(µ̃2
ik),

which is also known by above results. By combining the above results, we

obtain E(yik − µik)
4 after some simplification as

σ∗
ikk = E(yik − µik)

4 = µik − 4µ2
ik + 6µ3

ik − 3µ4
ik

+(7 − 12µik + 6µ2
ik) exp

{

2
(

log nik + x
′

ikβ + σ2
θq

−1
ik + σ2

α/(1 − ρ2) + σ2
ηp

−1
ii

)}
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+(6 − 4µik) exp
[

3
{

log nik + x
′

ikβ +
3

2
(σ2

θq
−1
ik + σ2

α/(1 − ρ2) + σ2
ηp

−1
ii )

}]

+ exp
[

4
{

log nik + x
′

ikβ + 2(σ2
θq

−1
ik + σ2

α/(1 − ρ2) + σ2
ηp

−1
ii )

}]

.

We use all of the results above to provide Vi2(β, ς).

Derivation of the components of Di2(β, ς). To find Di2(β, ς), we need to cal-

culate ∂σikl/∂λη, ∂σikl/∂σ2
η , ∂σikl/∂σ2

α, ∂σikl/∂ρ, and ∂σikl/∂σ2
θ ; k, l = 1, ..., T.

We have the following terms after some simplification

∂σikk/∂λη = µikσ
2
ηhii

[

2µ3
ik exp{−2(log nik + x

′

ikβ)} − µik + 1/2
]

; k = 1, ..., T,

∂σikl/∂λη = −σ2
ηhii exp

{

log nik +log nil +(xik +xil)
′

β
}

[

−2 exp
{

σ2
α

1 + ρ|k−l|

1 − ρ2

+σ2
θ(q

−1
ik +q−1

il )+2σ2
ηp

−1
ii

}

+exp
{

σ2
θ(q

−1
ik +q−1

il )/2+σ2
α/(1−ρ2)+σ2

ηp
−1
ii

}

]

; k 6= l = 1, ..., T,

where hii is the i-th diagonal element of P−1[I−D]P−1. In addition, we have

∂σikk/∂σ2
η = µikp

−1
ii

[

2µ3
ik exp{−2(log nik + x

′

ikβ)} − µik + 1/2
]

; k = 1, ..., T,

∂σikl/∂σ2
η = exp

{

log nik+log nil+(xik+xil)
′

β
}

p−1
ii

[

2 exp
{

σ2
α

1 + ρ|k−l|

1 − ρ2
+σ2

θ(q
−1
ik +q−1

il )

+2σ2
ηp

−1
ii

}

− exp
{

σ2
θ(q

−1
ik + q−1

il )/2 + σ2
α/(1 − ρ2) + σ2

ηp
−1
ii

}

]

; k 6= l = 1, ..., T.

In addition,

∂σikk/∂σ2
α =

µik

1 − ρ2

{

µik

[

2µ2
ik exp{−2(log nik+x

′

ikβ)}−1
]

+1/2

}

; k = 1, ..., T,
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∂σikl/∂σ2
α = exp

{

log nik+log nil+(xik+xil)
′

β
}

(1−ρ2)−1

[

(1+ρ|k−l|) exp
{

σ2
α

1 + ρ|k−l|

1 − ρ2

+σ2
θ(q

−1
ik +q−1

il )+2σ2
ηp

−1
ii

}

−exp
{

σ2
θ(q

−1
ik +q−1

il )/2+σ2
α/(1−ρ2)+σ2

ηp
−1
ii

}

]

; k 6= l = 1, ..., T.

Moreover,

∂σikk/∂ρ =
2ρσ2

α

(1 − ρ2)2
µik

[

2µ3
ik exp{−2(log nik+x

′

ikβ)}−µik+1/2
]

; k = 1, ..., T,

and for k 6= l = 1, ..., T,

∂σikl/∂ρ =
2ρσ2

α

(1 − ρ2)2
exp

{

log nik+log nil+(xik+xil)
′

β
}

[

{

1+ρ|k−l|+|k−l|(1−ρ2)ρ|k−l|−2/2
}

× exp
{

σ2
α

1 + ρ|k−l|

1 − ρ2
+σ2

θ(q
−1
ik +q−1

il )+2σ2
ηp

−1
ii

}

−exp
{

σ2
θ(q

−1
ik +q−1

il )/2+σ2
α/(1−ρ2)+σ2

ηp
−1
ii

}

]

.

Furthermore,

∂σikk/∂σ2
θ = q−1

ik µik

[

2µ3
ik exp{−2(log nik + x

′

ikβ)} − µik + 1/2
]

; k = 1, ..., T,

∂σikl/∂σ2
θ = (q−1

ik +q−1
il ) exp

{

log nik+log nil+(xik+xil)
′

β
}

[

exp
{

σ2
α

1 + ρ|k−l|

1 − ρ2
+σ2

θ(q
−1
ik

+q−1
il )+2σ2

ηp
−1
ii

}

−
1

2
exp

{

σ2
θ(q

−1
ik +q−1

il )/2+σ2
α/(1−ρ2)+σ2

ηp
−1
ii

}

]

; k 6= l = 1, ..., T.

We obtain Di2(β, ς) by combining the above results.
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