
University of Alberta

A Dynamic Verification Platform for BPEL Environments

by

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfi llment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Edmonton, Alberta
Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-33296-2
Our file Notre reference
ISBN: 978-0-494-33296-2

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The Business Process Execution Language for Web Services (BPEL4WS or simply

BPEL) is an xml based language, which is used to design business processes based on the

interactions between Web services. Most previous work for BPEL testing is model

checking related, and it focuses on the static behavior of BPEL. In this thesis, we present

a runtime monitoring system for BPEL, which is composed of the trace specification

language, the instrumentation system and the trace verification system. It targets the

dynamic behavior of BPEL.

The discussion of the runtime monitoring system includes the following topics:

• The design methodology for the trace specification language.

• The implementation of the instrumentation system and the trace verification

system.

• The generic representation of workflow patterns and fault models within

workflow patterns.

• Two experiments designed to prove the coverage of the runtime monitoring

system to workflow fault models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to especially thank my supervisor Dr. J. Miller for his tremendous

contributions to my thesis, for his constant guidance, support and encouragement. I am

grateful for his many useful comments on this work and for the many things that I have

learned from him. I would also like to thank the schoolmates in the Department of

Electrical and Computer Engineering, University of Alberta. When talking to them, I

always obtained the good ideas and help.

I am also very thankful to my parents and my wife. Every time in my life, they are always

the source of my power and courage. I would further like to thank all my friends in

China, Canada and all around the world. Their friendship gives me so much happiness

and I am deeply missing them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 WEB SERVICE AND BPEL4WS.. 1

1.1 W e b S e r v ic e .. 1

1.2 B P E L 4 W S ... 2

1.3 C h a l l e n g e s o n B P E L 4 W S Te s t in g .. 8

1 .4 Re l a t e d R e s e a r c h o n B P E L 4 W S T e s t in g ...12

1.5 O v e r v ie w a n d C o n t r ib u t io n ...19

1.5.1 Overview.. 19

1.5.2 Contribution.. 20

2 RUNTIME SOFTWARE MONITORING SYSTEM..23

2.1 O v e r v i e w ...23

2 .2 R u n t im e m o n it o r in g of a B P E L 4 W S p r o c e s s ...25

2.2.1 Property o f deadlock free ...25

2.2.2 Other security properties.. 26

2.2.3 Properties mostly studied in this research... 30

3 TEST BPEL4WS...31

3.1 O v e r v ie w ... 31

3 .2 S p e c if ic a t io n l a n g u a g e ..33

3.2.1 Introduction to CSP...33

3.2.2 Design ofCSPBPEL...39

3.2.3 BNF o f CSPb p e l .. 48

3.3 In s t r u m e n t a t io n s y s t e m ... 50

3 .4 T r a c e v e r if ic a t io n s y s t e m ...50

4 THE EFFICIENCY OF OUR RUNTIME MONITORING SYSTEM ...51

4.1 S e q u e n c e ... 51

4 .2 P a r a l l e l S p l i t ...55

4 .3 S y n c h r o n iz a t io n ..56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 .4 E x c l u s iv e C h o ic e ...59

4 .5 S im ple M e r g e .. 62

4 .6 M u l t i-C h o ic e 65

4 .7 Sy n c h r o n iz in g M e r g e ... 66

4 .8 Im pl ic it T e r m in a t io n 68

4 .9 D e f e r r e d C h o i c e .. 69

4 .1 0 C a n c e l A c t iv it y ... 70

4 .1 1 C a n c e l C a s e ... 71

5 FAULTS AND MUTATION PROCESSES FOR BPEL4WS PROCESSES.... 72

5.1 In t r o d u c t io n ...72

5 .2 S e q u e n c e .. 77

5.2.1 Requirement o f mutation process... 77

5.2.2 Implementation o f mutation process..79

5.2.3 BPEL4WS examples..85

5.3 P a r a l l e l S p l it .. 90

5.3.1 Requirement o f mutation process... 90

5.3.2 Implementation o f mutation process..92

5.3.3 BPEL4WS examples.. 94

5 .4 S y n c h r o n iz a t io n t...95

5.4.1 Requirement o f mutation process... 95

5.4.2 Implementation o f mutation process..99

5.4.3 BPEL4 WS examples...105

5 .5 E x c l u s iv e C h o i c e ... 110

5 .5 .1 Requirement o f mutation process... 110

5.5.2 Implementation o f mutation process..112

5.5.3 BPEL4WS examples.. 115

5 .6 S im ple M e r g e ... 118

5 .6.1 Requirement o f mutation process..118

5.6.2 Implementation o f mutation process.. 119

5.6.3 BPEL4WS examples...122

5.7 M u l t i- C h o ic e .. 125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 .7.1 Requirement o f mutation process... 125

5.7.2 Implementation o f mutation process...127

5.7.3 BPEL4WS examples...129

5 .8 S y n c h r o n iz in g M e r g e .. 132

5.8.1 Requirement o f mutation process.. 132

5.8.2 Implementation o f mutation process.. 133

5.8.3 BPEL4 WS examples...135

5 .9 D e f e r r e d C h o i c e ... 136

5 .9.1 Requirement o f mutation process... 136

5.9.2 Implementation o f mutation process.. 137

5.9.3 BPEL4WS examples...138

5 .1 0 C a n c e l A c t iv it y ... 139

5.10.1 Requirement o f mutation process..139

5.10.2 Implementation o f mutation process.. 140

5.10.3 BPEL4WS examples...141

5.11 C o n c l u s io n .. 142

6 EMPIRICAL INVESTIGATION AND RESULTS..143

6.1 O v e r v ie w ..143

6 .2 E x p e r im e n t 1 ... 145

6.2.1 Introduction.. 145

6.2.2 Mutants and Test Cases.. 146

6.2.3 Test Execution Results and Analysis.. 148

6.3 E x p e r im e n t 2 ..151

6.3.1 Introduction.. 151

6.3.2 Mutants and Test Cases...152

6.3.3 Test Execution Results and Analysis.. 153

7 CONCLUSION AND FUTURE WORKS... 154

BIBLIOGRAPHY...157

APPENDIX A ..163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B .. 167

APPENDIX C .. 170

APPENDIX D .. 178

APPENDIX E .. 189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 6.1 The Detailed Results of Experiment 1 149

Table 6.2 The Summary of Experiment 1 149

Table 6.3 The Detailed Results of Experiment 2 154

Table 6.4 The Summary of Experiment 2 154

Table E .l Mutants of Experiment 1 192

Table E.2 Muntants of Experiment 2 195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1.1 Test Framework of BPEL4WS 17

Figure 2.1 Process of employee travel arrangement 30
*

Figure 3.1 Structure of runtime monitoring system 33

Figure 4.1 How to catch fault modell in Sequence workflow pattern 53

Figure D .l Parse tree for string id+id*id 179

Figure D.2 Parse tree for two sequential activities 180

Figure D.3 Parse tree for two parallel activities 181

Figure D.4 Parse tree for activities with complex relationship 183

Figure D.5 Process to find the first expected activity 184

Figure D.6 Process to find the next expected activity 185

Figure D.7 How to use stack structure to find next expected activity 186

Figure D.8 How to verify the actual trace 187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Web Service and BPEL4WS

1.1 Web Service

Browser-based, Web-accessible software applications have been playing a more and

more important role in people’s daily life. Using these applications, people can find

almost all the information they want, and they can look for and buy almost anything

online, from a book to a car. However, Web technology’s success in business-to-

consumer applications has not transferred to business-to-business applications. There

remain several challenges regarding this application-to-application interaction. For

example, applications are implemented in incompatible platforms and restrictions exist in

access across organizational boundaries. Nowadays Web services have emerged to

address these challenges. They provide a systematic and extensible framework for

application-to-application interaction [GUN02], Web services are Web applications that

are published on to the web so that other Web applications can find and use them[JAI01].

They take the Web to its next stage of evolution, in which software components can find

other suitable software components and bind with them to implement complete business

transactions.

A typical Web Services framework consists of three components. They are service

provider, service broker and service requester [JAI01]. Service providers create services

and publish them to the outside world by registering them in the service broker. Service

brokers act as a lookup service between the service provider and the service requester.

Service requesters search in the service broker to find the location of desired services and

then bind their application to the service provider to utilize these services.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Web services are essentially formed upon three major technologies: Simple Object

Access Protocol [BOXOO] (SOAP); Web Services Description Language [CHR01]

(WSDL); Universal Description, Discovery and Integration (UDDI). SOAP provides a

mechanism to communicate between Web services and client applications. It is an XML-

based protocol and works on the existing transport protocols, such as HTTP, FTP and

SMTP. WSDL is an XML language to describe the interfaces of Web services. Client

applications rely on WSDL to bind themselves with the required Web services. UDDI

specifies a mechanism to register and locate Web services. It represents the service

broker in the Web services framework.

1.2 BPEL4WS

In many situations, one single web service is not sufficient to provide an effective

service. For example, a travel agent provides the service of booking air tickets. Actually,

the travel agent doesn’t have its own information about the air ticket. It has to get that

information from airline companies. So it has to combine its web service with web

services from the airline companies. From this example, we find that there is strong

requirement to build composite multiple web services as a single business process to

provide more powerful services. To accomplish that goal, BEA, IBM, Microsoft and

some other major software vendors introduced the Business Process Execution Language

for Web Services (BPEL4WS) in July 2002. The most recent public release of its

specification can be found in [IBM03].

BPEL4WS is a XML based language.lt defines a model and grammar for describing the

behaviour of a business process based on interactions between Web services [IBM03].

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BPEL4WS includes several types of basic activities: invoking Web service operations,

receiving and replying to requests, and assigning data to messages. These basic activities

can be combined into structured activities using sequencing, paralleling, switch

constructs, while loops and selective communication. Following paragraphs will discuss

these basic and structured activities in more detail.

We present an example of BPEL4WS process for handling a purchase order [IBM03]. It

starts with some definitions:

<process name="purchaseOrderProcess"
targetNamespace="http://acme.com/ws-bp/purchase"
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:lns="http://manufacturing.org/wsdl/purchase">
<partnerLinks>

<partnerLink name="purchasing"
partnerLinkType="lns:purchasingLT"
myRole="purchaseService"/>

<partnerLink name="invoicing"
partnerLinkType="lns:invoicingLT"
myRole="invoiceRequester"
partnerRole="invoiceService"/>

<partnerLink name="shipping"
partnerLinkType="lns:shippingLT"
myRole="shippingRequester"
partnerRole="shippingService"/>

<partnerLink name="scheduling"
partnerLinkType="lns:schedulingLT"
partnerRole="schedulingService"/>

</partnerLinks>
<variables>

<variable name="PO" messageType="lns:POMessage"/>
<variable name="Invoice"

messageType="lns:InvMessage"/>
<variable name="POFault"

messageType="lns:orderFaultType"/>

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://acme.com/ws-bp/purchase
http://schemas.xmlsoap.org/ws/2003/03/business-process/
http://manufacturing.org/wsdl/purchase

Cvariable name="shippingRequest"
messageType="lns:shippingRequestMessage"/>

<variable name="shippingInfo"
messageType="lns:shippingInfoMessage"/>

<variable name="shippingschedule"
messageType="lns:scheduleMessage"/>

</variables>

A BPEL4WS specification normally contains Partner Link and Variable definitions.

A partner link type characterizes each partner link and characterizes the conversational

relationship between two partners by defining their “roles” in the conversation. Further,

it specifies the portType provided by each partner for receiving messages within the

context of the conversation [IBM03]. Variables provide the means for holding data that is

exchanged between partners or data that is required for holding state related to the

process. The type of each variable may be a WSDL message type, an XML Schema

simple type or an XML Schema element [IBM03].

The most “meaningful” part of a BPEL4WS specification is the description of the process

control logic. In this example, the following takes place. First, the purchase order is

received. Then three tasks are launched concurrently: Initiating Price Calculation,

Deciding on Shipper, and Initiating Production Scheduling. At last, when the three

concurrent tasks are completed, the invoice processing is performed and the invoice is

sent back to the customer.

< f l o w >

<links>
<link name="ship-to-invoice"/>
clink name="ship-to-scheduling"/>

</links>
<sequence>

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<assign>
<copy>

<from variable="PO" part="customerInfo"/>
<to variable="shippingRequest" part="customerInfo"/>

</copy>
</assign>
<invoke partnerLink="shipping" portType="lns:shippingPT"

operation="requestShipping" InputVariable="shippingRequest"
outputVariable="shippingInfo">
<source linkName="ship-to-invoice"/>

</invoke>
kreceive partnerLink="shipping"
portType="lns:shippingCallbackPT"
operation="sendSchedule" variable="shippingschedule">

ksource linkName="ship-to-scheduling"/>
</receive>

</sequence>
<sequence>

kinvoke partnerLink="invoicing" portType="lns:computePricePT"
operation="initiatePriceCalculation" inputVariable="PO">

k/invoke>
kinvoke partnerLink="invoicing" portType="lns:computePricePT"
operation="sendShippingPrice" inputVariable="shippingInfo">

ktarget linkName="ship-to-invoice"/>
k/invoke>
kreceive partnerLink="invoicing"
portType="lns:invoiceCallbackPT"
operation="sendlnvoice" variable="Invoice"/>

< / sequence>
ksequence>

kinvoke partnerLink="scheduling" portType="lns:schedulingPT"
operation="requestProductionScheduling" inputVariable="PO">
k/invoke>
kinvoke partnerLink="scheduling" portType="lns:schedulingPT"
operation="sendShippingSchedule"

inputVariable="shippingschedule">
ktarget linkName="ship-to-scheduling"/>

k/invoke>

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</sequence>
</flow>

In BPEL4WS, an activity is the kernel, or core, element. The other elements can be

considered as dependent upon the activity elements; they principally implement setting

up an environment for the execution of the activities. As described earlier, BPEL4WS

includes basic and structured activities. Basic activities include <receive>, <replay>,

<invoke>, <assign>, <terminate>, <throw>, <wait> and <empty> [IBM03].

In these basic activities, there are three activities a business process can use for

interacting with the outside world: <invoke>, <reply>, and <receive>.

The <receive> activity allows the business process to do a blocking wait for a specific

incoming message. In this example, task Receiving Purchase Order is a <receive>

activity, and this activity waits specifically for the incoming purchase order message. The

<reply> activity allows the business process to send a message back to the partner from

which it has already received a message through a <receive> activity. In this example,

task Sending Invoice is a <reply> activity. The <invoke> activity enables the business

process to make invocations to operations provided by partners. In this example, there are

several <invoke> activities. These <invoke> activities are used to invoke operations

provided by the external Web services, such as invoiceService, shippingSerivce and

schedulingService.

The <assign> activity is used to copy data between variables. In this example, the value is

copied from the “customlnfo” part of variable PO to the “customlnfo” part of variable

shippingRequest through an <assign> activity. The <throw> activity is used to signal a

certain kind of fault in the business process. Normally, there will also be a fault handler

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

element in the process to catch the thrown fault and use a <reply> activity to send partner

information about the fault. The <terminate> activity is used to immediately abandon all

the execution within the business process. The <wait> activity allows the business

process to wait for a specific time period or until a certain deadline is reached. The

<empty> activity does nothing. This activity is useful when we want to synchronize

concurrent activities. In this example, <terminate>, <throw>, <wait> and

<empty>activities are not applied.

As to the structured activities, they include <sequence>, <flow>, <switch>, <while>,

<pick> and <scope> [IBM03]. These structured activities prescribe the order in which a

collection of activities will take place. The <sequence> activity specifies a collection of

activities to be performed sequentially in a lexical order. In this example, the three groups

of activities, receiving, processing and responding, are contained inside a <sequence>

activity, so they will be executed one after another. The <flow> activity provides the

ability for activities to run in parallel. It also provides links for the synchronization of

parallel activities. Every link has exactly one activity as its source and one activity as its

target. If two activities are linked together then the target of the link can be executed only

after the source activity has completed. The source activity may also have a transition

condition through the trainsitionCondition attribute of its source element. The transition

condition is a Boolean expression and it is evaluated when the source activity is

completed. The status of the outgoing link of the source activity is determined by the

evaluation result of the transition condition. In this example, there is a link between a

requestShipping activity and a sendShippingPrice activity. The former activity is the

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

source of the link, and the later activity is the target of the link. There is no transition

condition specified in the source activity, so it is deemed to be present with a default

value of “true”. Once a requestShipping activity is completed, the status of its outgoing

link becomes true and it enables the sendShippingPrice activity to start.

The <switch> activity allows one branch of activity to be selected from a set of activities.

This feature is much like the switch construct that occurs in many traditional

programming languages. The <while> activity allows one activity to repeat until the

specified Boolean condition no longer evaluates to true. The <pick> activity allows the

business process to be blocked and wait for suitable events. An event could be a piece of

message or a time-out alarm. Each event has an associated activity. When an event

occurs, the associated activity will be performed. The <scope> activity allows the

definition of a group of activities with their own associated variables and fault handlers.

1.3 Challenges on BPEL4WS Testing

With the popularity of Web services, organizations are increasingly using BPEL4WS for

modelling business process within Web service architectures. On the other hand,

BPEL4WS applications have been found to have extremely high quality requirements.

They should exhibit “very high” quantities of reliability, flexibility, and security but also

the “high” quantities of availability, maintainability and scalability. In order to achieve

such demanding requirements, BPEL4WS applications need comprehensive testing.

However, for testers, testing BPEL4WS can be a huge challenge because a number of its

special characteristics cause most traditional testing strategies, testing evaluation

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

standards and practical testing application techniques not to be suitable for BPEL4WS

testing. Below we summarize some major reasons for this problem.

Challenges inherited from the testing of Web service

BPEL4WS processes are packaged as Web services, so all the characteristics of Web

services are inherited by the BPEL4WS processes. Testing Web services is very difficult

because of their characteristics. Firstly, Web services are distributed applications with

numerous runtime behaviours. For distributed systems, many issues need to be verified,

such as interoperability, timing, fault tolerance, availability, reconfiguration, reliability,

security and performance [OFF02]. These issues make the testing of distributed

applications highly complex.

Secondly, there are no user interfaces for Web services, and they are only accessible to

software application through SOAP messages. So it is very difficult to observe the test

result. It means that it is impossible for a tester to execute and test Web services in the

same manner as traditional stand-alone software applications.

Thirdly, for a Web service user, normally only the WSDL specifications are available,

hence only black-box testing is feasible because the design and implementation details of

Web services are not available. Unfortunately, currently WSDL doesn’t contain sufficient

information for an application engineer to test Web services. For a standard WSDL

specification, we can only derive information with regard to inputs, outputs, the types of

inputs and outputs, the order of the inputs and outputs, and how the Web service should

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be invoked. Information such as input/output dependency between Web services, and the

invocation sequence cannot be obtained from the WSDL file [TSA02],

Finally, Web services are based on multiple standard protocols such as UDDI, WSDL,

and SOAP. These protocols are used to publish, find and bind Web services. Therefore,

in the lifecycle of a Web service, the error may occur in the Web service itself or in those

supporting facilities.

Extremely large state space

There are two major factors that cause the huge state space of BPEL4WS processes.

Firstly, BPEL4WS supports concurrent tasks through structured activity <flow>. These

concurrent tasks can be combined into a large number of different sequences

contributing to the large state space of the BPEL4WS process. Secondly, a BPEL4WS

process can invoke an operation provided by other Web services. That invocation can be

a synchronous request/response or an asynchronous one-way operation. If the invocation

is an asynchronous operation, then it means that the response can return to the caller at

anytime. The various returning times can place the BPEL4WS process into different

states. Any increase in the number of asynchronous operations, will dramatically

increase the size of the state space. For example, in [NAK02] there is a small size ticket

order process. That process only involves three Web services, Traveller, Agent and

Airline, and the transactions in each Web service are quite simple. However, the overall

BPEL4WS process has 280 thousands states and approximately 470 thousands of

transactions.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Multiple process instances

BEPL4WS supports a mechanism called “correlation” [IBM03]. This mechanism is

BPEL4WS- unique and provides an application level mechanism to match the message

and conversation with BPEL4WS process instances for which they are intended. For a

BPEL4WS process, which involves various external Web services, implementing this

mechanism is not trivial work. Consequently, in order to test the correctness of this

mechanism, we not only need to simulate two or more clients and external Web services,

but also we need to test the combination of messages from those clients and Web

services.

No quality guarantee of external Web services

A BPEL4WS process can involve many external Web services. These Web services are

implemented by different organizations or individuals, and they have different reliability

characteristics. Therefore, in conversations between BPEL4WS processes and external

Web services, various exceptions can happen, such as communication errors, missing

messages, and baleful attacks. Implementing a comprehensive error handling mechanism

for those exceptions is a challenge. Consequently, a thorough testing of that mechanism

will be difficult to achieve.

Long running BPEL4WS processes

Many BPEL4WS processes are long running. During the long period of running,

BPEL4WS processes and their context can heavily change. For instance, BPEL4WS

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

processes can bind to different services according to the context in which they are

executed. The internal content of services may be modified by their providers.

Furthermore, there may be new versions of selected services and new services provided

by other entities. These changes might affect the correctness and quality level of

BPEL4WS processes. However, traditional testing activities applied before the

deployment of BPEL4WS processes can not foresee these changes.

1.4 Related Research on BPEL4WS Testing

Because BPEL4WS is a newly drafted standard, there has been limited research

conducted for testing of BPEL4WS programs. Fortunately, research on testing workflow

and business process has been conducted for several decades. BPEL4WS is a specific

workflow language, which is to model business processes. So many other methods used

to test workflow and business process can be inherited to test BPEL4WS.

UML activity diagrams are often used to model business processes. In [DUM01], they

investigate the expressiveness and adequacy of the activity diagrams notation for

workflow specification. Using a set of control-flow workflow patterns as their evaluation

criteria, they demonstrated that activity diagrams support the majority of workflow

patterns. Although UML is a widely used modelling language and UML activity

diagrams have the ability to model business processes, they have a major drawback that

they don’t provide formal semantics necessary to perform analysis and verification.

Another approach is to model business processes using Petri nets. Van der Aalst

[AALOO] used Workflow Petri nets (WF-Nets) to model business process definitions. In

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

his WF-Nets, activities are modeled as transitions, and dependencies are modeled by

places with arcs. He developed a Petri-net-based workflow analyzer called Woflan.

Woflan can partially verify the correctness of business processes definition by analyzing

their soundness property. The soundness property includes three aspects. They are (1) It

is possible to always terminate; (2) When a business process is terminated, there is no

tokens left; (3) There is no dead activities. Soundness implies the absence of live-locks

and deadlocks. However, soundness is only the minimal property that any workflow

definition should satisfy. Application specific progress properties cannot be verified

through WF-Nets. Another major deficiency is that there are three kinds of workflow

patterns that WF-Nets have many limitations when representing. These three workflow

patterns are (1) patterns involving multiple instances, (2) advanced synchronization

patterns, and (3) cancellation patterns [AAL02].

Besides research conducted on the verification of general business processes, there are

also researches specifically focused on verifying BPEL4WS. Foster et al [FOS03]

proposed a formal approach to model and verify BPEL4WS using Finite State Processes

(FSP). This approach has three major steps. In stepl, they model the business process in

the form of Message Sequence Charts (MSCs) with message sequence chart extensions of

the LTS A tool. Then they use the LTSA tool to verify the behaviour of MSCs and

translate the MSCs to FSPs. In step2, they implement the business process in BPEL4WS,

and then translate the BPEL4WS implementation into FSP. In Step3, they check the

business process by checking the trace equivalence of MSC FSP and BPEL4WS FSP.

The major benefit of this method is its ability to verify the business process at the design

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stage, allowing many problems to be found before the implementation. Another benefit is

that it can guarantee the consistency between the design and implementation. However,

there are also some serious limitations in this approach. Firstly, the ability to verify the

MSCs is fairly basic. It only checks the reach-ability of the business process. Secondly, in

order to check the trace equivalence of the MSC FSP and the BPEL4WS FSP, the

activities specified in the BPEL4WS FSP must be manually re-labelled to match those

specified in the MSC FSP. Furthermore, actions supported in BPEL4WS, but not

supported in MSC, such as activities of assignments, switch conditions and initiators,

must be manually hidden. It is obvious that these two manual tasks can very likely

introduce faults.

Another notable work is verifying BPEL4WS, is using model checker SPIN. Nakajima

[NAK02] is the first researcher that proposed to use the SPIN model checker to verify

Web service flows. In his approach, processes are directly translated from WSFL (Web

Service Flow Language), which is one of the BPEL4WS’s predecessors, to the

verification language Promela (a Process Meta Language). The Promela specification is

then translated by SPIN to Buchi automaton to check the safety property of the business

process. Further, SPIN allows the expression of application specific progress properties

in terms of LTL (Linear Temporal Logic). The LTL formula is also translated into Buchi

automaton by SPIN, and it is checked against the target system automaton. Xiang Fu

[FUX04] introduces an advanced method to verify business processes with SPIN. In his

method, BPEL4WS specification is firstly translated into an intermediate representation

Guarded Automata. Then these automata are translated into Promela. Because the guards

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the guarded automata are expressed as XPath expressions, it enables his approach to

verify properties about XML data manipulation, while other model check approaches

don’t have this capability. Furthermore, it proposes the concept of synchronizability to

tackle one inherent limitation of SPIN, which is we can only achieve partial verification

by fixing the size of communication channels in Promela.

Comparing to model checking using WF-Nets, model checking using SPIN has a major

advantage. SPIN enables us to verify the application specific progress properties, while

WF-Nets can only be used to verify safety properties. Although model checking using

SPIN can verify broader properties of business process, it still has a major shortage. It

requires that the service links (channels) between Web services are predefined and

established before the interaction starts. Therefore, some advanced features in

BPEL4WS, for example, dynamically determining the target Web service, cannot be

supported in current model.

Clearly, all of the approaches discussed above are model checking related. Because

model checking is a very formal method, they all share one characteristic that they are not

easy to understand and use by the average practitioner. Moreover, the large size of the

explicit representation of the state space of most systems severely limits the size of

systems that can be model checked. This is a problem referred to as the state space

explosion problem. Although state reduction techniques have been proposed to reduce the

state space explosion, fully describing and verifying a system is still extremely difficult.

In addition, model checking conducts static checks of a business process, which may not

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fully considered the value and timing characteristics of the process. It is generally agreed

that the massive number of runtime interactions that connect various components is what

makes web application reliability a challenging task. Similarly, for business processes

composed of various Web services, the runtime interactions between those Web services

are critical to the reliability of the business process. Hence we cannot ignore those

significant factors and it is clearly of valuable to investigate verifying these business

processes from the perspective of run time monitoring.

Recently, two approaches other than model checking, [MAY06] and [LIZ05], have been

proposed to test BPEL4WS processes. [LIZ05] proposed a test framework to do unit

testing on BPEL4WS processes. In that framework, there are a group of BPEL4WS test

processes, which are BPEL4WS processes and are created solely for testing purpose. For

each partner of the BPEL4WS process under test, one BPEL4WS test process is created

to simulate behavior of this partner. Further, a central BPEL4WS test process is created

to coordinate the other testing processes. Every BPEL4WS test process is aware of the

correct data exchange between itself and the process under test, so that it can catch any

failure on the interface between itself and the processes under test. However [LIZ05]

doesn’t describe how to define test cases and how test cases are implemented in

BPEL4WS test processes. That missed information is critical to a BPEL4WS unit testing

framework, so that it casts doubt on feasibility of this approach.

The major idea in [MAY06] is that based on the interface of a BPEL4WS process, a

mock web service is created for each partner of the BPE14WS process and mock Web

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

services are enabled to receive data from the BPEL4WS process and to feed data back.

The test framework, which is used to implement that idea, consists of four layers. The

structure of the test framework is outlined in figure 1.1

Test Results
result types result acquisition

Test Execution
execution type . execution support

Test Organisation
organization form technical realization

Test Specification
specification language and expressiveness

Figure 1.1 Test Framework of BPEL4WS

The Test Specification layer specifies what data should be received and be sent out from

the perspective of mock Web services. The test organisation layer manages the test

specifications and the deployment of BPEL4WS processes. The Test execution layer

manages the execution of BPEL4WS process and partners. The Test Result layer deals

with the test result and statistics.

[MAY06] is an efficient approach for unit testing of a BPEL4WS process since it can test

all the interfaces of a BPEL4WS process. Additionally, it presents a complete structure

for managing test cases, the deployment of BPEL4WS process and the lifecycle of

partners. Those features are very useful in the real implementation. However, there are a

couple of significant limitations in this approach. Firstly, the approach focuses on the

interface of a BPEL4WS process and its internal content is ignored. Therefore, errors

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which don’t lead to failures on interface cannot be detected. In addition, a test case is

specified from the perspective of the partner. Partner’s conditional sending data can be

described by logical expressions, but its conditional receiving data can not be described

in this approach. The reason for this limitation is that the corresponding conditional

sending data from the BPEL4WS process is performed in the process itself and there is

no communication channel in this approach to allow the BPEL4WS process to pass the

condition expression to its partners. Besides those limitations, [MAY06] doesn’t provide

information regarding how test cases are performed in partners. For instance, there is no

illustration about how the time, when the partner sends out the data, is determined,

although it is a very critical issue in implementing the test framework. Finally, there are

so many features designed in the test framework, it makes the implementation of the test

framework a challenging task. In addition, the test framework described in [MAY06] has

not been implemented yet. All these factors make the approach far from convincing.

The methodology proposed in this thesis is developing a run time monitoring system for

BPEL4WS processes. It can be viewed as an alternative of the early research; it intends to

be simple and easy to apply in practice. It targets the dynamic behavior of a BPEL4WS

program at runtime. A couple of sample applications demonstrate its effectiveness in

finding bugs and its reasonable cost of application. In the following sections, we will

discuss the details of our approach. Right before the end of our research, an approach for

runtime monitoring of BPEL4WS processes is proposed in [BAR05], The approach in it

has some similarity with ours. For example, both do runtime monitoring of BPEL4WS

processes. Both define a language to describe the monitoring rule and both instrument

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

code into initial BPEL4WS program according to monitoring rules. On the other hand,

our approach is different from [BAR05] in some aspects. Firstly, it builds an external

Web service as a monitoring manager. The extensive communication between the

monitoring manager and the running BPEL4WS process heavily affects the performance

of the running BPEL4WS process. In our approach, the trace verification system,

corresponds to the monitoring manager in [BAR05], is embedded within BPEL4WS

engine. Therefore, its effect on performance is much smaller. Secondly, it focuses on pre-

and post-Conditions of external web services, while our approach focuses on running

trace of BPEL4WS processes. Comparatively speaking, pre- and post-Conditions are

easier to monitor. Our approach doesn’t monitor those since we think trace behavior is

more challenging and more important for a runtime monitoring system. With our

approach, it is easy to add features to monitor pre- and post- conditions. Alternatively, the

two systems could be combined to provide more defect coverage.

1.5 Overview and Contribution

1.5.1 Overview
In the following chapters, chapter 2 will introduce the general structure of a runtime

monitoring system and what properties can be monitored by a runtime monitoring

system. Then it will analyze what properties are critical to BPEL4WS systems and

specify the properties of BPEL4WS systems that will be monitored in the proposed

runtime monitoring system. Chapter 3 will describe the three subsystems which compose

the proposed runtime monitoring system in details. The three subsystems are the Trace

Verification Language, the Instrumentation system and the Trace Verification system.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4 will analyze the eleven workflow patterns that directly supported in BPEL4WS

systems and then propose the fault models for each workflow pattern. For each fault

model, chapter 4 will also describe the mechanism of how the fault model is detected by

the proposed runtime monitoring system. Chapter 5 will analyze the mutation process for

each fault model from two perspectives. One is the perspective of trace specification and

the other one is the perspective of implementation in BPEL4WS BNF. Chapter 6 there

will be two experiments to evaluate the effectiveness of the proposed approach. Chapter 7

will give the conclusion of the research and point out the possible future research. In the

appendix, there will be the BNF of the Trace Specification Language and the

implementation details of the Instrumentation System and the Trace Verification System.

1.5.2 Contribution
This thesis presents a runtime monitoring system for dynamically monitoring the

chronological behavior of BPEL4WS systems. The value of runtime monitoring system

mainly comes from the long- running characteristic of BPEL4WS systems. Because of

this characteristic, it is very valuable for the runtime monitoring system to quickly catch

the problem when the problem happens during the execution of BPEL4WS systems. The

earlier the problem is caught, the earlier the actions can be taken to minimize the lost.

The first subsystem of the proposed runtime monitoring system is the Trace Specification

Language. This language is used to specify the chronological behavior of BEPL4WS

systems. It inherits the basic concepts and grammar from the CSP [HOA04]. However, in

order to make this language easy to use, the formal semantics from the CSP is hided. As a

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

result, this language is easy to apply in practice even for the business analyst who doesn’t

have extensive background on programming. On the other hand, there is no previous

work on defining a language to specify the chronological behavior of BPEL4WS

systems, so this research is the first work conducted in this area.

The second subsystem of the proposed runtime monitoring system is the Instrumentation

System. This subsystem is used to automatically insert monitoring code into the original

BPEL4WS processes. Implemented based on the most widely used parser generator

JavaCC [JCC01], the instrumentation system demonstrated an efficient pattern which can

be used to insert monitoring code based on specification automatically. Further, the

design of monitoring code is creative. It doesn’t have serious bad affect on the execution

of original BPEL4WS processes since the dependencies in original BPEL4WS processes

are not modified. Further, the monitoring code is designed to precisely collect the

chronological information of BPEL4WS activities.

The third subsystem of the proposed runtime monitoring system is the Trace Verification

System. This subsystem is implemented as a custom function of the BPEL4WS engine.

Comparing to the other type of Trace Verification System implemented as an external

Web service, this Trace Verification System takes much less time to exchange

information between itself and the monitoring code. Therefore, the side effect of this

Trace Verification System is much smaller. In addition, the algorithm, which is used in

the Trace Verification System to determine the expected activity event based on the trace

specification, is implemented based on the parse tree generator JJTree [JJT01]. This

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm is not complex but it is efficient and effective, so it provides a good example

on applying JJTree to verify dynamic behavior against the static specification.

In order to prove the efficiency of the proposed runtime monitoring system, this thesis

systematically analyzed the possible fault models within BPEL4WS systems. Since there

is no previous work on this topic, we creatively analyzed the fault models from the

perspective of workflow patterns. Petia Wohed [WOH02] stated in his work that

workflow patterns precisely represent the control dependencies in the workflow

modelling. In addition, Petia Wohed investigated whether a workflow pattern is

supported in BPEL4WS and how the workflow pattern is implemented in BPEL4WS.

Based on Petia Wohed’s work, this thesis proposed a few fault models for each workflow

pattern supported in BPEL4WS. Since there is no practical BPEL4WS system used in the

industry field, we couldn’t get any practical experience on the fault models within

BPEL4WS systems. Further, without practical BPEL4WS systems, we cannot evaluate

our proposed fault models against them. Although the fault models proposed in the thesis

might be incomplete or inaccurate, its contribution lies in that it is the first attempt in this

field, and it can be used as the initial empirical data.

After we analyzed the fault models for each workflow pattern, we defined mutation

process for each fault model in a generic format. A mutation processes describes how a

fault model is generated, and it is analyzed from two perspectives. One is the perspective

of trace specification, and the other one is the perspective of implementation in

BPEL4WS BNF. The generic format of the mutation processes can prove the feasibility

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the fault models. In addition, the mutation processes can be used to help the

automatically generating the mutants of BPEL4WS processes. Before defining the

mutation processes, we discussed the size of fault. A mutant is achieved by injecting a

small fault into the original BPEL4WS process. However no previous work provides

precise definition on the size of fault, therefore there was no specification on how small a

fault should be. In this research we proposed a definition for the size of fault within the

filed of BPEL4WS for the first time. This definition can be used as an initial reference to

the definitions in other fields.

2 Runtime software monitoring system

2.1 O verv iew

A software runtime monitoring system is a software system that observes the behaviour

of other software systems and determines if it is consistent with a given specification.

Monitoring is concerned with actual transitions between states, not possible transitions,

so it takes an executing software system and a specification of the software properties and

checks that the execution meets the properties.

Generally, there are two types of properties: safety and temporal. Safety properties

include, for example, invariants, properties that define a sequence of events, properties

that check values of variables, and properties that deal with resource allocation. The other

temporal category includes properties such as progress and bounded liveness as well as

timing properties [DEL04]. There is no distinct border between these two categories. For

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

example, property "Event A occurs within 10 seconds" can be classified as a safety

property, whilst it also can be classified as a timing property. Generally, a property often

has the form p->a, where p is some condition on X that identifies the states in which a

must hold. This means that in any state where p is true inX, then a must also be true. If a

evaluates to false, then the current execution has reached a disallowed state [DEL04],

A runtime monitoring system is composed of three parts: a specification language, a

monitor and an event-handier. A specification language is a language used to specify

requirements of the problem domain and other properties associated with behaviour of

the system. The specification language may be any form of algebra, automata, logic or

even a high-level language. The high level language can be a functional, object-oriented,

or imperative language. Algebra, automata and logic are formal languages, so they have

advantages of being easy to verify. On the other hand, it is easy to construct a high-level

language to define properties, but it cannot be verified easily. Normally, we need a

mapping or translation mechanism to map the high-level property specifications into the

low-level system activities.

A monitor consists of two parts: an observer and an analyzer. The observer is a set of

program fragments that are inserted into the target program to instrument the system. It

keeps track of changes of monitored objects. When the observer finds the relevant state

information according to the specification of properties, it passes that information to the

analyzer. The recognized state information is often supplied with a timestamp that can be

used in checking timing properties. When implementing an observer, this first step is to

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

determine the monitoring points. Monitoring points are points in the target program

where the execution of monitoring code will be initiated. After determining the

monitoring points, we utilize pre-existed tools or develop our own tools to insert

monitoring code automatically. Normally, the instrumentation is performed statically.

This means that it is performed before executing the target program. In special cases, this

process can be conducted dynamically. For example, a monitoring system uses pre and

post conditions to specify properties upon entry and exit of a module [DEL04], The

analyzer checks the correctness of the state by comparing the actual state with the

expected state of the system.

Monitors observe the behaviour of target programs. When a violation against the

specified property is found, a monitor can take appropriate action. The event handler

refers to how the monitor reacts. The response action can modify the state space of the

executing application, report application behaviour or initiate another process of

application.

2.2 Run time monitoring of a BPEL4WS process

As stated in section 2.1, a run time monitoring system can check various safety and

temporal properties. Hence, before we design our specification language, we should

investigate what properties we are going to specify with that language.

2.2.1 Property of deadlock free
Firstly, we analyze what security properties should be considered. Obviously, the basic

security property of a BPEL4WS process is deadlock free. The reason is that if a

deadlock happens in a BPEL4WS process, then the process cannot proceed so that it

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cannot perform any other properties. Currently, various model-checking methods used to

verify BPEL4WS processes are mainly used to check the property of deadlock free of

BPEL4WS processes. That trend also indicates that deadlock free is the first property a

BPEL4WS system should possess. Although all the BPEL4WS processes require this

property, we don’t need to specify it through the specification language explicitly. The

reason for this decision is that deadlock free is a generic property for all the processes

rather than a property for a specific process and it is not valuable to repeatedly specify

this property for every process. We treat it as an implicit property within a specification.

It means every specification of properties specifies a deadlock free property, although it

is not declared explicitly. If the running of a BPEL4WS process satisfies the property

specification, then it has the property of deadlock free. We achieve this implicit property

through another security property, sequence of events.

2.2.2 Other security properties
Besides the deadlock free property, according to [DEL04] we need to consider other

security properties such as invariants, properties that define a sequence of events,

properties that check values of variables and properties that deal with source allocation.

2.2.2.1 Properties that check values of variables

The property of invariant is a condition that does not change or should not change if the

system works correctly. In general object oriented programming there are two types of

invariants, class invariants and loop invariants. A class invariant is an invariant used to

constrain objects of a class. Methods of the class should preserve the invariant. The class

invariant constrains the state stored in the object [INV01]. In BPEL4WS, although there

is no concept of class, but we can easily map this concept to process invariant.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Correspondingly, process invariants are used to constrain states in an instance of business

process. In general object oriented programming, a loop invariant is an invariant used to

prove properties of loops. In BPEL4WS, there is also loop structure, so that loop

invariant can be used directly to specify the property of loops in BPEL4WS. When we

take a close look at both invariants, we find that they both are Boolean expressions built

from the values of the variables. In [DEL04], it mentioned the property that checks the

value of variables. Since the property of invariants actually is also a specification about

the value of variables, therefore we decide to combine these two properties into one

property. We still call it property that checks the value of variables.

2 .2.22 Properties defining a sequence of events

When we talk about the properties that define a sequence of events in the field of

BPEL4WS, we mean the properties that define a sequence of activity events. We use

activity events to represent all the events in BPEL4WS, since activity is the kernel, or

core element in BPEL4WS. The importance of activity in BPEL4WS was discussed in

section 1.2. We think that the sequence of activity events is a critical security property of

BPEL4WS processes. In this section, we will explain why it is so important. Firstly, the

importance of the sequence of events in Java application was emphasized in [BRU02]

and [MUO02]. Secondly, we can analyze the importance form the purpose of BPEL4WS.

BPEL4WS emerged as a standard of Web service orchestration [PEL03] [THA03]. Web

service orchestration is about providing an open, standard-based approach for connecting

Web services together to create high-level business processes. Being a standard of Web

service orchestration, BPEL4WS aims to describe how web services can interact with

each other at the message level, including the business logic and execution order of the

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interactions [PEL03]. From this description, we can see that BPEL4WS mainly defines

two things. One is business logic, which can be various business activities, such as

sending a purchasing order or receiving a receipt. The other one is the execution order of

the interactions. In the field of BPEL4WS, the interactions between Web services are

implemented as activities. Therefore, the execution order of the interactions is the

execution order of the activities. When we analyze the relationship between basic and

structured activities provided by BPEL4WS, it is easy to find out that most structured

activities are used to regulate the execution order of basic activities. For example,

<sequence> activity is to ensure the activities included in it execute in a sequence order;

<flow> activity is to put the execution of its sub activities into a parallel order.

Obviously, that relationship proves the description of BPEL4WS in [PEL03], which says

that one of the two major goals of BPEL4WS is to describe the execution order of the

interactions. From the previous statements, we can conclude that the execution order of

the activities is critical in BPEL4WS. From the perspective of run time monitoring, the

execution of an activity can be characterized by the start and end event of the activity.

Therefore the concept of execution order of the activities can be translated into order of

activity events, and the order or sequence of the activity events is critical to the run time

monitoring of BPEL4WS.

A real business process example can further prove the importance of the sequence of

activities in a business process. The example is an oversimplified business process for

employee travel arrangements: The client invokes the business process, specifying the

name of the employee, the destination, the departure date, and the return date. The BPEL

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

business process first checks the employee travel status, assuming that a Web service

exists through which such checks can be made. Then the BPEL process will check the

price for the flight ticket with two airlines: American Airlines and Delta Airlines. Again

assume that both airline companies provide a Web service through which such checks

can be made. Finally, the BPEL process will select the lower price and return the travel

plan to the client [ORAOl], The business processes itself and the interactions between the

business process and the external environment are depicted in figure 2.1. In the figure

2.1, the middle part describes the business process itself, and the left part describes the

interactions between the client and the business process, and the right part describes the

interactions between the business process and the external Web services. If we focus on

the business process itself, we can find that it is composed of several ovals, each of which

represents an activity in the business process. Those ovals are connected by the arrowed

lines. The direction of the arrows defines the sequence of the activities. For example, the

arrow between the activity “Retrieve employee travel status” and activity “Get plane

ticket offer from American airline” points to the latter activity from the former activity.

In this case, the direction of arrow indicates that the latter activity cannot execute until

the former activity is completed. From an overall view, it is these arrowed lines that

connect activities to achieve the business process. If the order that is indicated by the

arrowed lines is modified or broken, then the business process cannot perform correctly.

Even the result might be a disaster. In this sample process, for instance, if the relationship

between activity “Get plane ticket offer from Delta Airlines” and activity “Get plane

ticket offer form American Airline” changes from parallel to sequence, which is that the

output line of activity “Get plane ticket offer from American Airlines” becomes the input

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

line of activity “Get plane ticket offer from Delta Airlines” and its original input line is

deleted, then the business process will become fragile. It can only perform correctly when

both activities work well. If any activity doesn’t work, then the whole business process

will get into a deadlock state. However, if those two activities are in parallel order, one

activity failing won’t block the whole process.

Client I: Rvquvn •
& invote f

fartT.;*

\ {3»! plarsft t\zk&i. -ofle-i?
K fwn AsrliriiH

Employe*
Travel

S ta tu s W ab

I
I A p n w ta .* (l a * O e ltt .jx w e I

** ' o v

American
AMInea

p̂ortType “* '

^.SslJsL. Service

5.2: CaM

Sv1:lnwte Delta
- Airline

f Web
\ j Service

BPEL Process for Business Travels :

Figure 2.1 Process of employee travel arrangement

2.2.3 Properties mostly studied in this research
Based on the previous analysis of the properties that should be checked in the run time

monitoring system of BPEL4WS, we conclude that our runtime monitoring system of

BPEL4WS should provide facilities to explicitly define the property that check the value

of variables and property that defines a sequence of events. When take a close look at

these two properties, we find that in many cases the sequence of events is determined by

the value of variables, therefore when we verify the sequence of events, we have to take

into account the value of variables. For example, the transitionCondtion attribute in a

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

source element of link is a Boolean expression composed of variables. The value of the

transitionCondition attribute is determined by the values of those variables and it

determines whether the target element of the link can be executed. Furthermore, the

condition attribute in a <while> activity, which is also a Boolean expression composed of

variables, determines whether the <while> activity can repeat itself. Considering the

importance of sequence of events to BPELWS as well as the relationship between these

two properties, for the sake of simplicity, in this research we only focus on how to verify

the sequence of events and the variables related to the sequence of events.

3 Test BPEL4WS

3.1 Overview

Our run time monitoring system has three major components. The first component is the

Trace Specification Language. This language is designed to be easy to use. Although, it

takes its fundamental model from a CSP[HOA04]]-based representation of the

BPEL4WS language, the framework is designed to hide the formal semantics, allowing

“ordinary users” without a CSP background to easily use it. This language can be used to

specify the dynamic behavior of a BPEL4WS program, where dynamic behavior is

explained as the trace of a BPEL4WS program. We define the BPEL4WS trace

specification after requirement analysis of the system and before writing the BPEL4WS

program. It is not valuable to specify the BPEL4WS trace based on the BPEL4WS

program, because in that way the testing facility mimics the BPEL system under test.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The second component is the Instrumentation System. This component uses the

BPEL4WS trace specification to insert monitoring code into a BPEL4WS program. The

monitoring code satisfies the grammatical requirements of the BPEL4WS language, and

it collects variables and chronological information of activities and sends them to the

final component of our testing framework.

The third component is the Trace Verification System. It parses the BPEL4WS trace

specification and finds out the chronological order between activities. Then it derives the

actual executing order of activities from the chronological information of the activities,

which is passed by the instrumented monitoring code. Then it compares the actual order

of the activities with their expected order. From the comparison of these results, we can

achieve the verification of a BPEL4WS system with regard to its chronological

properties.

The overall structure of our run time monitoring system is depicted in figure3.1.

m i 4 \ \ s
engineof uhsfcpfoperujLS

/ t * atflt, eilne Aid |k
| £ hrpaotapwl III

uifoiiaaTui WJn&Tum&mauon

TfaflrYgrfflrrmj’
SvsUm

Moiufittind
reyfcU

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Legend

O Input/output --------- Process ». Dependency

Figure 3.1 Structure of runtime monitoring system

3.2 Specification language

The design of our specification language was inspired by CSP, Communicating

Sequential Processes, which is well known process algebra [HOA04], CSP provides a set

of constructs, which can model systems that stretch beyond what is construct-able using

the BPEL4WS language. Hence, we have performed some minor modifications to make

CSP more precisely fit the descriptive needs of a BPEL4WS program. Since we use our

CSP dialect in the context of BPEL4WS, we call it CSP bpel- In the following sections,

firstly we will introduce the basic concepts of CSP, and then we will describe how we

tailor the CSP to fully align it with theBPEL4WS language.

3.2.1 Introduction to CSP
CSP was one of the first process algebras, which was developed by C. A. R. Hoare at

University of Oxford in thel980s. CSP allows the description of systems in terms of

component processes that operate independently, and interact with each other through

events. There are two primitive concepts in CSP, event and process. Events represent

communications or interactions. They may be atomic, or they can have associated data.

For example, on and off are atomic events, while out!5, in?x respectively represent events

that output the value 5 and input a value represented by x. The syntax of the event can be

described by the following grammar:

event = a | m?x | n!y |V '

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Where ‘a’ is the atomic event, m and n are the input and output channels respectively,

and x and y are values. ‘V’ denotes the successful event [GAN02]

A process describes a behavior of pattern for an object. A process engages events. The

collection of events in which a process P has the potential to engage in is called its

alphabet, denoted by aP.

3.2.1.1 STOP

STOP is the simplest process, which doesn’t engage in any events. It is used to describe

the behavior of a broken object. A broken object is an object that is equipped with the

capabilities to engage in the events of its alphabet, but never exercises those capabilities.

Objects with different alphabets are distinguished, even if they never do anything.

3.2.1.2 SKIP

SKIP is defined as a process that does nothing but terminates successfully. SKIP is a very

useful process in CSP. It is often put after an event to construct a syntactically correct

process. This usage will be explained in the section 3.2.1.3.

3.2.1.3 Prefix

CSP processes are built up from events and other processes using a number of operators.

The first one is prefix, denoted as—>. The prefix operator combines an event and a

process into a new process. It stipulates that in the new process, the event and the original

process should occur in sequence. Let x be an event and let P be a process. Then x-»P

describes an object which first engages in the event x and then behaves exactly as

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

described by P. The prefix operator always takes a process on the right and a single event

on the left. If P and Q are two processes, then it is syntactically invalid to write P—>Q.

Similarly, if x and y are two events, it is syntactically invalid to write x-»y. In order to

describe a process that includes two events x and y occurring in sequence, we can make

use of the basic process SKIP to construct a syntactically correct process like:

x—Ky->SKIP).

3.2.1.4 Recursion

There is no recursion operator in the CSP, but recursion is a very important definition in

CSP. With a sole prefix definition, we would be able to define processes that engage in a

finite sequence of events. However, the sole prefix definition is not able to describe a

repeatable or an infinite process. Fortunately, the recursion definition provides this

ability, so processes that run forever can be described with the help of a recursive

definition. For example, considering the simplest possible everlasting object, a clock

which never does anything but tick, can be described by the following process:

CLOCK= tick—»CLOCK

The meaning of this process is substituting every occurrence of CLOCK on the right hand

side by its definition.

CLOCK= tick—>CLOCK
=tick-K tick—»CLOCK)
= tick—> (tick—K tick—»CLOCK))

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.1.5 Choice

It is necessary for a process to behave conditionally. Such as, under some situations, it

behaves in one way, while in other situations it behaves differently.

CSP provides two operators to handle conditional behaviors. One is external or

deterministic choice, the other one is internal or nondeterministic choice.

Deterministic choice

Deterministic choice allows the future progress of a process to be defined as a choice

among a range of component processes, and allows the environment to determine the

choice by communicating an initial event for one of the processes [CSP01]. For example,

(a—»P) D(b—»Q) is the process that will first communicate the initial events a and b, and

then behaves as either process P or Q depending on which initial event the environment

chooses to communicate. There are two special cases that need to be stated. If event a and

event b are identical, then the choice between processes P and Q is nondeterministic.

Additionally, if the event a and event b were communicated simultaneously, the choice

would be resolved nondeterministically.

Nondeterministic choice >

Nondeterministic choice allows the future progress of a process to be defined as a choice

among a range of component processes, but the environment does not have any ability to

influence the selection between alternatives [CSP01]. For example, the process (a—»P) fl

(b->Q) can behave like either a—>P or b—>Q.

3.2.1.6 Sequencing

Sometimes, we would like to define a process where after the component process P

finishes, component process Q executes. With the sequencing operator, this process can

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be easliy accomplished as P; Q, where is the denotation for the sequencing operator.

The sequencing operator is similar to the prefix operator. Both place a list of elements

into a sequence. The distinct difference is that the sequencing operator combines two

processes, while the prefix operator connects an event and a process.

3.2.1.7 Concurrency

The concurrency operator || is used to specify that processes are running in parallel.

When two processes are brought together to evolve concurrently, the usual intention is

that they will interact with each other. Those interactions are performed through events

that they engage in. There is a basic rule regarding the interaction between parallel

processes. The rule is that parallel processes can only interact by synchronously engaging

in the events that exist in the interaction of the alphabets of the processes. According to

the rule, if an event e is in the alphabet of two parallel processes PI and P2, then PI can

only engage in the event e if P2 can also do so. The following example can appropriately

explain how the concurrency operator works.

P= (a->P) n (b->P)
Q=b -»Q
R=P||Q

The Process R is the parallel combination of processes P and Q. Suppose we perform the

combination by executing the interaction between P and Q. As the result, we can describe

process R as a simple process without a concurrency operator.

In this example, when P internally chooses to do a, since Q can only apply b, this will

lead to a deadlock situation. When P chooses b, R= (b—»P) || (b—»Q) =b —>(P||Q). Thus

R= (b -»R) n STOP

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.1.8 Interleaving

As stated previously, the concurrency operator requires processes to simultaneously

engage with the events in their common alphabets. However, sometimes, we might want

to make sure that parallel processes don’t interact at all. CSP provides an interleaving

operator ||| to achieve this. The interleaving operator represents completely independent

concurrent processes. The process P|||Q behaves as both P and Q simultaneously. The

events from both processes are arbitrarily interleaved in time

3.2.1.9 Hiding

In some cases, we may want to conceal some events of a process from other processes.

After the events are hidden, they are not observable or controllable to the other processes.

The reason of hiding might be a privacy or security concerns. CSP has a hiding operator

to achieve this feature. The notation of this operator is \. For example,

The behavior of a smoker is described by the process

Smoker = (light—»smoke—»stubout—»Smoker)

□(nofuel—»refill—»light—»smoke—»stubout-»Smoker)

Suppose that smoker is intelligent and he wants to hide the business of refilling the

lighter, then using hiding operator to hide that refilling event. So the new behavior of the

smoker becomes

Smoker\refill = (light-»smoke-»stubout-»Smoker)

□(nofuel—Hight—»smoke—»stubout—»Smoker)

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.2 Design o f CSPbpel

3.2.2.1 Process

In CSP, a process is the behavior of an object. In C S P bpel, we define the trace of a

BPEL4WS program as a process. This process describes the behavior of a BPEL4WS

program from the perspective of a running trace. In this dissertation, we introduce a term

‘Trace specification’. In the context of run time monitoring system, it is the trace

requirements of the whole monitored BPEL4WS program. In the context of C S P bpel, it is

a process, and it specifies the expected trace behavior of the BPEL4WS program. A

simple trace specification looks like receiveOrder-»processOrder-»sendReceipt—»STOP.

In the context of C S P bpel, the term ‘process’ has a special meaning and must not be

mixed with the business processes in the context of BPEL4WS.

3.2.2.2 Events

The core element in the BPEL4WS program is the activity, including basic and structured

variations. The behavior of the BPEL4WS program is mainly the composition behavior

of those activities. Therefore, when we consider the events within a BPEL4WS program,

what we are interested in are the events of the activities. Since our C S P bpel language is

mainly used to specify the trace of a BPEL4WS program, we focus on when activities

start and end. The internal details of any activity are not our concern. In C S P bpel, an

event has the following formula

Event:: =IdentA.b| IdentA.e |IdentA

IdentAis the identifier of the activity. In the formula of event, ‘b’ represents the beginning

of the activity, and ‘e’ represents the end of the activity. IdentAis the abbreviation of

• i

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IdentA.b-»IdentA.e .In order to map the trace specification to a BPEL4WS program, we

require that the identifier of activity (IdentA) in the C S P bpel to be the same as the activity

name in BPEL4WS program. With this mapping, we are able to translate the trace

specification to the chronological requirement of activities in BPEL4WS programs. For

example, if there is a trace specification

ReceiveOrder—»ProcessOrder-»SendRecipt-»STOP, then in its corresponding

BPEL4WS program, the name of the activity, which corresponds to event ReceiveOrder,

has to be ReceiveOrder. The following BPEL4WS code snippet shows how to specify the

name of a <receive> activity to “ReceiveOrder”.

<receive createlnstance="yes" name="ReceiveOrder" operation-'approve"
partnerLink-'customer" portType="apns:order ApprovalPT"
variable=:"request"/>

In a BPEL trace specification, we can use the same event in more than one place.

Although it looks like that more than one occurrence of the event is specified, actually

those events are the same event and only one occurrence of the event is expected. This

approach is very useful to specify traces for complex processes. In section 5.3.1, there is

a sample trace specification showing that an event of activity is specified twice. If we

want to specify multiple occurrences of an activity, we can use the WHILE loop which

will be illustrated in section 3.2.2.7.2.

3.2.2.3 Alphabet

As we mentioned before, in CSP the collection of events in which a process P has the

potential to engage in is called its alphabet. For a trace specification, its alphabet is the

collection of activities specified in the specification. The concept of alphabet is not

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

important in C S P bpel, since we mostly focus on is the sequence of events rather than the

interaction of component processes. Since we are not interested in the interaction of

component processes, there would be very little value to consider how the interactions

affect the alphabet of processes. Hence, we just need to know the alphabet of the overall

process is the collection of defined activities. In the implementation of our C S P bpel, we

don’t explicitly specify the alphabet, because it is indicated implicitly by the trace

specification itself.

3.2.2 4 SKIP and STOP

In C S P bpel, we inherit basic processes SKIP and STOP from CSP

3.2.2.5 Sequence

In CSP, there are two sequence related operators. One is the prefix operator, and the other

one is sequencing operator. The former one is used to combine an event and a process,

and the later one is used to combine two processes. In C S P bpel, we combine these two

operators into one operator. We still call it the sequencing operator, and it is denoted as—>.

We choose -» as the denotation of the operator because generally in a specification

language, the sequence relationship is denoted as—». Such as, Jass [FISOO] and BPE-

Calculus [KOS03] .There are two reasons why we combine those two operators. Firstly

they both represent sequence relationships. This is the precondition for the combination.

If two operators have quite different meanings, it makes no sense to combine them.

Secondly, the difference between the meanings of those two original operators is trivial

from the perspective of trace monitoring. Our C S P bpel aims to specify the trace behavior

of a BPEL4WS program. Considering two processes A and B,

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A = a —»P

B = (a—»SKIP); P

Obviously, events in the processes A and B will execute in the same trace, since the basic

process SKIP doesn’t do anything but terminate successfully. That is, for a trace monitor,

processes A and B behave the same.

Consequently, in C S P bpel the sequencing operator -» is used to specify a process that

runs immediately after the completion of an event, allowing it can specify a process

doesn’t executes until the other process finish. Syntactically, a-»P and A—»P are both

correct. For example, we want to use C S P bpel to specify the trace of a simple BPEL4WS

program, which only has two basic activities ReceiveRequest and ProcessRequest, which

are engaged in a <sequence> activity. If Activity ReceiveRequest is put before activity

ProcessRequest, the trace specification will be ReceiveRquest—» Process R equests SKIP.

In contrast, if the Activity ReceiveRequest is put after activity ProcessRequest, the trace

specification will be ProcessRequest-^ ReceiveRquest —»SKIP.

3.2.2.6 Concurrency

Standard CSP provides two concurrency related operators, the concurrency operator || and

the interleaving operator |||. They both connect two parallel processes. Operator ||

concentrates on the interaction between the processes, and requires that processes engage

in the same event simultaneously. On the other hand, the operator ||| specifies two

processes running in parallel without interaction.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In C S P bpel, we eliminate the concurrency operator from CSP, since in C S P bpel, when we

monitor the running trace of two parallel processes, only the information telling us that

they are really running in parallel is interesting to us. The interaction between the

processes cannot expose whether they are running in parallel or not. The concurrency

operator focuses on the interaction, so it is not inherited in C S P bpel.

On the other hand, we have to point out that the interaction between the processes might

affect the internal running trace of one process. For example, processes X and Y are

running in parallel,

X - (a—>P)D(b—>Q)

Y=c-»d—»STOP

It might be the case that event c or d in the process Y determines either event a or b is

engaged in the process X. Hence, process Y affects the internal running trace of process

X. Although the interaction is able to affect the internal trace of a process, for those two

parallel processes, their external trace behavior is not affected at all.

In C S P bpel, we inherit the interleaving operator ||| from CSP. This operator provides the

ability to specify that two processes run concurrently, while their interactions are not

considered. However, we only inherit the meaning of interleaving operator. We change

its name from interleaving operator to concurrency operator and we also change its

notation from ||| to ||, because in specification languages, it is more common to use term

concurrency and notation ||. Consequently, in C S P bpel the concurrency operator || is used

to specify that a process runs concurrently with another process. In BPEL4WS, only the

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

structured activity <flow> enables two activities included by it to run in parallel. To

describe the trace of two activities in a <flow> activity, we can easily use the trace

specification (activityA—»SKIP) || (activityB—»SKIP)

3.2.2.7 Condition

In CSP, the deterministic choice and nondeterministic operators offer the ability to

specify the conditional behavior of a process. We have to have an operator to represent

conditional behavior in C S P bpel, since in BPEL4WS conditional behavior is very

common. For example, activity <switch>, <pick> and Element < transitionCondition>

are used to define conditional behavior. When we analyze the conditional behavior, we

find that in CSP, the choice between the component processes is resolved by external or

internal events. While in BPEL4WS, the choice is resolved by the value of variables.

Therefore, in order to specify a conditional behavior in C S P bpel, we introduce the

mechanism of variables in C S P bpel- The token to represent a variable is

BPEL VARIABLE. Since in BPEL4WS, a variable is composed of one or more parts, so

that the variable token in C S P bpel has a format of Identvariabie-Identpart. The token is

composed of two parts, which are separated by a period. The part before the period maps

to the variable name, and the part after the period maps to the part name of that variable.

In C S P bpel, basic mathematical calculations and logical expression evaluation (such as

‘add’, ’minus’, ’time’, ’divide’, ’equal’, ’not equal’, ’bigger than’, ’smaller than’, ’and’,

’or’) are supported, therefore variables with these mathematical facilities can be used to

define simple or complex conditions. For example, a simple condition could be

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

request.amonout >1000

A complex condition could be

order 1 .amount+order2.amount+order3 .amount<=balance

It is not necessary to declare variables before we use them, however, only those variables

that are already declared in the BPEL4WS program or will be declared can be used. This

means that if we have implemented the BPEL4WS program before defining the trace

specification, then the identifier of variables in CSP bpel should follow the name in the

BPEL4WS program. On the contrast, if a trace specification is defined before

implementing the BPEL4WS program, then the identifier of variables in it should follow

that in the trace specification. The reason for this rule is that we have to map them so that

the C S P bpel condition can be translated to the condition that can be understood by the

BPEL4WS. With the facility of conditions, we are able to describe the behavior of a

conditional process. In C S P bpel, we support two types of conditional processes: branch

and loop.

3.2.2.7.1 Branch
In order to describe a branch process, we introduce the keywords IF ELSE. The meaning

of these keywords is the same as that in many programming languages. These two

keywords and conditions, together with the component processes, are able to define a

complete condition process. The syntax of the basic branch process is

IF (condition) {ProcessA} ELSE {ProcessB}

This basic branch process describes that if the condition is satisfied, the component

process ProcessA executes, and if the condition is not satisfied, then component process

ProcessB executes. Variations on the basic branch process are also allowed. For example,

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IF (condition) {ProcessA} is syntactically correct in C S P bpel. It specifies that if the

condition is satisfied, then the component process ProcessA executes, and if the condition

is not satisfied, no action will be conducted.

A condition process, as a whole, can be combined with an event or other processes

through sequence and concurrency operators. For example,

ReceiveRquest—»IF (request.amount>1000) {LoanAssess-»SKIP} ELSE

{LoanApprove—>SKIP)

is a valid trace specification. It specifies that firstly activity ReceiveRequest take places,

and then a conditional process is performed. In the condition process, the value of the

variable request.amonout determines the value of the condition. If the value is greater

than 1000, then activity LoanAsses will run otherwise activity LoanApprove will run.

We have another example to illustrate how condition processes efficiently describes the

conditional behavior in a BPEL4WS program. The link construct is very important in

BPEL4WS, and it is used to express synchronization dependencies. The source element

of a link construct has an attribute, transitionCondition. A sample transitionCondition is

transitionConditon=”bpws:getVarialbeData(‘requesty amount’)<10000”.

This attribute is a Boolean expression. The value of the Boolean expression determines

whether the target element of the link construct can be executed or not. Hence, the trace

behavior of the link construct can de described as

sourceEvent—>IF(transitionCondition) {targetEvent-»SKIP}

7) 2 2 .1.2 Loop

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In C S P bpel, a loop process aims to describe the repeatable behavior of a component

process under a certain condition. We introduce the keyword WHILE to help define a

loop process. The syntax of a loop process is

WHILE (conditionExpression) {component process}

The conditionExpression part, a Boolean expression, specifies a precondition for the

execution of a component Process. The conditionExpression has the same format as the

condition in the branch process. Before the component process starts running, the

conditionExpression is validated. If the conditionExpression is validated to be true, then

the component Process will execute. After completing the execution of the component

process, the conditionExpression is validated again. If the conditionExpression is still

validated to be true, then the component process executes again, so on and so forth.

Whenever, the conditionExpression is checked to be false, the component process will

stop performing.

A loop process is different from a branch process. In a branch process, the maximum

running times of a component process is once, and the condition is validated only once.

While in a loop process, the component process is able to execute many times, as long as

the condition is satisfied, and the condition can also be validated more than once.

In CSP, a recursion definition can be used to define a repeatable or infinite process.

However, the recursion definition can only apply to an overall process, and it cannot

describe the behavior of a component process. Let’s take a look at a recursion definition

in CSP,

4 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CLOCK= tick-»CLOCK

It is easy to find out that the identifier of the overall process CLOCK exists in the right-

hand side of the process equation. It means that process CLOCK is repeating itself.

Furthermore, we can find that there is no condition in this definition. Since in a

BPEL4WS program, there is no facility for the whole process to repeat itself, a recursion

definition is not applicable in C S P bpel.

In a BPEL4WS program, only activity <while> supports repeatable performance of a

specified activity. The trace behavior of a <while> activity can be easily described by a

loop process. For example, a <while> activity in a BPEL4WS program is

<while condition =" bpws:getVarialbeData(‘exp,’request’) = 'yes'">
<sequence>

<receive partner-' caller"
name - 'receive 1"
operation - 'echo"
variable = "request" />
<reply partner=" caller"
name-'reply 1”
operation=" echo"
variable-'request" />

</sequence>
</while>

Its trace behavior can de described as a C S P bpel trace specification

WHILE (exp.request=’yes’) {receive 1 —»reply 1 -^SKIP}

Similarly as branch process, a loop process can also be combined with other processes

with an event or other processes through sequence and concurrency operators.

3.2.3 BNF o f CSPbpel
The BNF [BNF01] of C S P bpel is designed upon the standardized EBNF notation rather

than upon a formal BNF. Therefore it has many human readable and non-formal syntax

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rules and extensions. For example, in the BNF of C S P b p e l, terminals are not strictly

enclosed within quotation marks o r A terminating character usually a

semicolon is not used to mark the end of a rule. In addition, regular expression wild-cards

such as * and + are used to represent the repetition of items.

The BNF of C S P b p e l provides adequate tokens to represent all trace related operators,

which define the trace relationships between events and processes, and between

processes. For example, token represents Sequence Operator, token “||” represents

Parallel Operator [JAS01], With these tokens, we can specify highly complex running

trace of BPEL4WS systems. Besides the trace relationship, another primary element in

trace specification is event. In the BNF of C S P b p el, we use a nonterminal token

<BPELEVENT> to represent an event in BPEL4WS system. The definition of token

<BPELEVNET> is <IDENTIFIER>|<IDENTIFER>”.b,,|<IDENTIFIER>”.e”.

Nonterminal <IDENTIFER> defines the composition of an identifier, which is the same

as the identifier in other programming language. In C S P b p el, the value of

<IDENTIFIER> is the name of a BPEL4WS activity. <IDENTIFIER> means that the

event of activity ending following the event of activity beginning, while

<IDENTIFIER>.b means the event of activity beginning and <IDENTIFIER>.e means

the event of activity ending.

Variables in BPEL4WS program can be represented by nonterminal <BPELVAR>. The

definition of < BPELVAR> is <IDENTIFIER>.<IDENTIFIER>. The former

<IDENTIFIER> corresponds to the variable name of a variable in BPEL4WS program,

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

while the latter <IDENTIFIER> corresponds to the part name of a variable in BPEL4WS

program.

Like the BNF of other programming language, the BNF of CSP b p e l provides basic

features of a programming language. It can skip blank space, and it allows one line and

multiple lines of comments. It supports basic mathematical calculations (such as

“/”) and logical expression evaluation (such as AND, OR, “>”, “>=”, “<”,

“o ”) Furthermore, it supports basic flow control operations (such as If Else, While). The

flow control operations are key elements that enable us to define complex running trace.

The complete specification of the BNF of C S P b p e l is listed in appendix A. More details

regarding the implementation of C S P b p e l can be found in appendix B

3.3 Instrumentation system

The instrumentation system is used to insert monitoring code into a BPEL4WS program.

In order to add monitoring code, first we need to design the monitoring code to be added.

In our research, the principle feature of monitoring code is to collect variable information

and chronological information of activities, and send that information to the trace

verification system. So we would have two major types of monitoring code. One is to

collect variable information, and the other one is to collect chronological information. All

the details regarding what is monitoring code and how the monitoring code is inserted is

described in appendix C.

3.4 Trace verification system

The trace verification system is used to verify if the actual execution order of activities

satisfies the expected behaviour specified via the trace specification. The function of this

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system is implemented through a two step approach. The first step is parsing the trace

specification and creating a parse tree to represent the expected order of activities. The

second step is to determine what activity event should happen at which time based upon

the parse tree and the variable values received from the running BPEL4WS process.

Subsequently, we compare the actual activity event with the expected activity event. In

appendix D, we illustrate how the trace verification system is implemented in details.

4 The efficiency o f our runtime monitoring system

For our runtime monitoring systern we want to use a mechanism to evaluate its efficiency.

Wohed [WOH02] has analyzes the workflow patterns supported in BPEL4WS programs.

These patterns capture typical control flow dependencies encountered in workflow

modeling. That means workflow patterns cover the behavior patterns of BPEL4WS

programs. Therefore, if we can prove that C S P b p e l can describe the trace behavior of

each workflow pattern and the trace verification system can catch the failure in the

workflow patterns, then we prove that our runtime monitoring system is effective at

monitoring BPEL4WS programs. In the following sections, we will discuss how our

runtime monitoring system works for each workflow pattern.

4.1 Sequence

The Sequence pattern describes that an activity in a workflow process is enabled after the

completion of another activity in the same process [WOH02]. There are two possible

programming solutions for this pattern. One is using a structured activity <sequence>

(see Listing4.1), the other one is using a link construct (see Listing 4.2).

Listing 4.1 Listing 4.2
<sequence> <flow>

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

activityA
activityB

<links>
clink name=”L”/>

</links>
activityA

</sequence>

<source linkName=”L”/> ...
activityB

<target linkName=”L”/> ...
</flow>

With C S P b p e l, The trace specification of this workflow pattern can be defined as

activityA—»activityB—»SKIP

This workflow pattern has three major fault models.

• Fault model 1: (activity A-»SKIP)||(activityB-»SKIP)

This failure mode means that two activities that are supposed to execute in sequence,

actually execute in parallel. As to listing4.1, this type of failure may be caused by

incorrectly using a <flow> activity instead of <sequence> activity to wrap activityA and

activityB. As to listing 4.2, this type of failure may be caused by mistakenly specifying a

different link for either activityA or activityB. If activityA and activityB are not the

source and target of the same link respectively, then they will have a concurrent

relationship rather than a sequential relationship. When two activities that is supposed to

execute in sequence and actually execute in parallel, our trace verification system can

easily catch this fault. The process to catch this failure is shown in figure 4.1.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The trace verification system
can work out from the trace

specification that the first
expected event is activityA

starting

activytA or An event of activityB starting is
activytB >■ activityB • received. This event doesn 't

execu tes first m atch the expected event.

activityA
V

An event of activityA starting is
received. This event match the

expected activity. The next
expected event is activityA ending

An exception is reported
against this error

An event of activityB starting is
received. This event doesn 't
m atch the expected activity

An exception is reported
against this error

Figure 4.1 How to catch fault modell in Sequence workflow pattern

• Fault model 2: activityA->STOP or activityA-»activityB->STOP or STOP

This fault model is for two activities that are supposed to execute in sequence, however at

most one activity executes. This type of failure may be caused by the failure of an

activity or a<terminate> activity. The failure of an activity means that an activity doesn’t

terminate successfully. For example, if an activity is invoking an external Web service,

then its failure could be “no response” from a Web service or it returning an exception.

When an activity fails, the normal execution of the process is stopped and the exception

handling is performed. A <terminate> activity explicitly terminates the instance of a

BPEL4WS process.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When the sequence workflow pattern performs in this fault model, its actual trace of

activities is different from that in fault model 1. If an activity fails or a <terminate>

activity performs before the execution of any activity, the end event of activityA or

activityB won’t happen. When the trace verification system expects for the end event of

activityA or activityB and the expected event is not received, and then a time out error

will happen. Therefore the fault is caught.

This type of fault model may happen in other workflow patterns. Since the reason of this

fault model and the mechanism to catch the failure in the trace verification system is

identical for all the workflow patterns, we won’t analyze this type of fault model for other

workflow patterns.

• Fault model 3: activityB-»activityA-»SKIP

This fault model means that activityB supposes to execute after the completion of

activityA, however activityB executes ahead of activityA. As in Listl, this fault model is

caused by misplacing activityA after activityB within a <sequence> activity. With respect

to List2, attaching the source element of a link construct to activityA and target element

to activityB causes this kind of fault. When a BPEL4WS process runs in this fault mode,

the start and end events of activityB arrive at the trace verification system before the start

and end events of activityA. However, what the trace verification system expects is the

start and end events of activityA to happen first. Therefore, the actual order of events

doesn’t match the expected one and the fault is caught.

• Fault model 4: Deadlock

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A deadlock between activityA and activityB means that each activity waits for the other,

henece neither completes. In a sequence workflow pattern, if a link construct is

incorrectly used, a dead lock can happen. For example, in Listing 4.1, if a link construct

is implemented incorrectly with the following code, a deadlock will happen.

<sequence>
activityA

<target linkName =”BtoA”> ...
activityB

<source linkName =”BtoA”> ...
</sequence>

When the sequence workflow pattern performs in this fault model, since neither activityA

nor activityB can complete, the end event of activityA or activityB won’t happen. When

the trace verification system expects for the end event of activityA or activityB and the

expected event is not received, a time out error will happen. Therefore the fault is caught.

4.2 Parallel Split

The Parallel Split pattern describes a point in the process where a single thread of control

splits into multiple threads of control that can be executed in parallel, thus allowing

activities to be executed simultaneously or in any order [WOH02]. The parallel split can

be implemented by wrapping the activities in a <flow> activity.

Suppose, two activities, activityA and activityB, are working in a parallel split pattern.

Their trace behavior can be specified as

(activityA—»SKIP)11 (activityB->SKIP)

This workflow pattern has two major fault models.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Fault modell: activity A->activityB-»SKIP or activity B->activityA->SK IP

This fault model means that two activities suppose to execute in parallel, however they

execute in sequence. Normally this type of fault is caused by misusing a <sequence>

activity instead of a <flow> activity to wrap activityA and activityB. The expected trace

behavior of two parallel activities is that one activity should start before the end of the

other activity. If two activities actually execute in a sequence, then one activity can only

start after the end of the other activity. Therefore, when the trace verification system

receives the end event of the first running activity, it will find that the other activity has

not yet started, and then the fault is caught.

• Fault model 2: activityA-^STOP or activityB^STOP or STOP

This fault model is the same as fault mode 2 for sequence workflow pattern. So we don’t

repeat the discussion here. Analogously, we won’t discuss this type of fault model during

analyzing other workflow patterns.

4.3 Synchronization

The Synchronization pattern describes a point in the process where multiple parallel

branches converge into one single thread of control thus synchronizing multiple threads

[WOH02]. Synchronization can be realized through different solutions. Listings 4.3 and

4.4 are two different solutions to implement this concept. Listing 4.3 applies activities

<flow> and <sequence>, while Listing 4.4 uses the activity <flow> and a link construct.

Listing 4.3 Listing 4.4
<sequence> <flow name=”F”>

<flow> <links>
activityA 1
activity A2

clink nam e-’L I”>
clink name=”L2”/>

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</flow>
activityB

</sequence>

</links>
activityA 1

<source linkName=”L 1 ”/>...
activity A2

<source linkName=”L2”/>...
activityB

joinCondition =”L1 AND L2”
<target linkName=”LrV>
<target linkName=”L2”/>

With C S P b p e l, The trace behavior of this workflow pattern can be defined as

(activityAl-»SKIP)|| (activity A2-»SKIP) -^activityB

This workflow pattern has two major fault models.

• Fault modell: activityAl-»activityA2-»activityB-»SKIP or

activity A2—»activity A Inactivity B-»SKIP

This fault model is similar as failure model in the Parallel Split workflow pattern. It also

means that two activities supposed to execute in parallel execute in sequence. As to

listing 4.3, forgetting wrapping activityAl and activityA2 with a <flow> activity may

cause this fault. As to listing 4.4, the possibility for this fault to happen is quite low since

all three activities are tied with link constructs. If there is no <flow> activity, just like the

cause of failure for listing 4.3, the implementation won’t pass the syntax checking of the

BPEL4WS engine. The process to catch this type of fault model is the same as that for

failure model in Parallel Split workflow pattern, so we don’t repeat the details here.

• Fault model 2: (activityAl—»SKIP) || (activityA2-»SKIP) || (activityBnSKIP)

This fault model is that all three activities execute in parallel. As to listing 4.3, this failure

may be caused by putting all the activities in the <flow> activity. The process to catch

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this kind of failure is the same as the process to catch fault model 1 of the Sequence

workflow pattern since, for both of them, what is expected is a sequential trace while the

actual trace is parallel.

• Fault model 3: (activityA1-»SKIP) || (activityA2-»SKIP)

—»IF(C 1) {activityB-»SKIP}

In this fault model, after a BPEL4WS process reach the synchronization point, an extra

condition is applied to the execution of activityB. ActivityB is supposed to execute

without precondition. An extra transition condition applied to the source element of

acitivytAl or activityA2 causes this type of fault. When a BPEL4WS process runs in this

fault model, after the process reaches the synchronization point, if condition Cl is not

satisfied, activityB won’t start. Therefore, the trace verification system won’t receive the

event of activityB, which is expected. When an expected event is not received, the fault is

caught.

• Fault model 4: (activityA1-*SKIP) || (activityA2->SKIP) ->IF(C1| C2)

{activity B~>SKIP}

In this fault model, after a BPEL4WS process reach the synchronization point, there are

two extra conditions applied to the execution of activityB. Those two conditions have an

‘OR’ relationship. The reason causing this fault model is that an extra transition condition

is applied to each activity and the relationship between the conditions is set to ‘OR’.

When a BPEL4WS process runs in this fault model, the mechanism for the trace

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

verification system to catch this fault model is the same as that in fault model3, so we

don’t repeat here.

• Fault model 5: (activityA1->SKIP) || (activityA2-»SKIP) ->1F(C1& C2)

{activityB-»SKIP}

This fault model is highly similar with fault model 4. The only difference is that in this

fault model the relationship between conditions is “AND’ rather than ‘OR’ in fault

model4. Since the reason causing this fault and the mechanism for the trace verification

system to catch this fault are almost the same as those for fault model 4, we don’t repeat

them here.

4.4 Exclusive Choice

The Exclusive Choice pattern describes a point in the workflow process where, based on

a decision or workflow control data, one of several branches is chosen [WOH02]. A

solution for exclusive choice is using two link constructs. The source elements of those

two link constructs are associated to the decision activity. The value of transition

condition in each source element determines which branch activity is chosen. In this

pattern, the value of the transition condition in each source element is exclusive to each

other, therefore it ensures that at any time only one transition condition can be true and

then only one branch is selected. If more than one transition condition can be true, then

the solution becomes the workflow pattern Multi-Choice, which we will introduce later.

Listing 4.5 is an example to implement the workflow pattern exclusive choice.

Listing 4.5
<flow>

<links>
<link name="Ll "/>
clink name="L2"/>

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</links>
activityA 1

<source linkName="Ll" transitionCondition-
<source linkName="L2" transitionCondition="C2”/>...

activity A2
<target HnkName-'Ll 7 > ...

activity A3
<target linkName="L27>...

</flow>

In order to implement exclusive choice, the transition condition Cl and C2 must be exclusive. It
means Cl and C2 is not allowed to be true at the same time. For example, Cl =
"bpws:getVariableData('request', 'amount')>=10000", and C 2 - ’bpws:getVariableData('request',
'amount')< 10000"

With C SPbpel, the trace behavior of the this workflow pattern can be specified as

ActivityAl—>• IF (Cl) {activity A2-^SKIP) ELSE {activityA3->SKIP}

If two transition conditions are not exactly complementary, when we specify the trace

behavior, we cannot use IF ELSE. For that sample exclusive choice, if Cl and C2 are not

complementary, then the trace behavior has to be defined as

activityAl—»((IF (C1){activityA2^SKIP}) || (IF(C2) {activityA3->SKIP}))

This workflow pattern has two major fault models.

• Fault model 1: activity A l-> IF (Cl) {activityA3-»SKIP} ELSE

{activity A2-»SKIP}

In this fault mode, activity A3 executes when condition Cl is true, while it is expected to

run when condition Cl is false. Analogously, activityA2 executes when condition Cl is

false, while it is expected to run when condition Cl is true. This fault model may be

caused by incorrectly reversing the link names or transition conditions between two

source elements of activityA 1.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When a business process runs in this fault model, the actual trace of activities will differ

from the expected trace. With the trace verification system, this failure will be detected.

We use a small example to depict how the failure is caught. The example is a simple loan

approval process. On receiving the loan request, the requested amount is compared to an

amount (1000). If the requested amount is lower, then an Assessor service is called,

otherwise the Approver service is used. The trace specification of the process is:

ReceiveRequest—» IF (request.amount>=l 000) (invokeApprover—»SKIP} ELSE

{invoke Assessor—»SKIP }

If the process runs in fault model 1, the events of activity ReceiveRequest can pass the

verification. Suppose the actual request.amount is 2000. When the value 2000 is passed

to the trace verification system, it can work out that the next activity is invokeApprover

using the algorithm described in figure D.7. Due to the fault of implementation, activity

invokeAssessor rather than activity invokeApprover executes. Hence, the expected

activity event doesn’t match the actual activity event and the fault is caught.

• Fault model 2: activityAl-»(activityA2-»SKIP) || (activityA3—»SKIP)

In this fault model, the conditions used to determine the selection of branch activities are

missed. After activity 1 executes, the other two activities execute in parallel. Regarding

Listing 4.5, the reason of this fault model is that the transition conditions in both source

elements are removed. When a process executes in this fault model, all three activities

executes while the trace specification only expects two activities since within an

exclusive choice only one branch can be selected. Therefore the fault can be caught by

the trace verification system.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There is a limitation in our system. If the variable value is not assigned to the condition

expression by mistake, then the failure cannot be caught by our system. For instance, the

condition expression is request.amount >1000. If the initial value of request.mount is 0,

and the running process receive a value 2000 from request. That received value supposes

to be passed to variable request.amount. However the received value is not passed to the

variable by a mistake in implementation. Then the condition expression will be calculated

based upon the value 0, and the value 0 will be passed to the trace verification system.

Therefore, the failure of not passing variable values correctly is not caught. To tackle this

limitation, a mechanism to verify the value of a variable at any point of the process is

needed. In our future research, this issue will be addressed.

4.5 Simple Merge

The Simple Merge pattern describes a point in the workflow process where two or more

alternative branches come together without synchronization [WOH02]. It is assumed that

none of the alternative branches is ever executed in parallel. Simple Merge can only be

achieved through a <switch> activity. Listing 4.6 is an example to implement simple

merge.

Listing 4.6
<switch>

<case condition =”C r ’>
activityA 1

</case>
<case condition =”C2”>

activity A2
</case>

</switch>
activityC

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Simple Merge pattern is quite similar as Exclusive Choice pattern. For Listing 4.6, if

condition Cl and C2 are exclusive, then the implementation is an exclusive choice. The

major difference between these two patterns is that in simple merge, multiple conditions

can be true at the same time. However, although more than one condition can be true

simultaneously, the <switch> activity determines that the first activity, for which the

specified condition evaluates to true, can be triggered.

With C S P b p el, The trace behavior of the sample simple merge can be specified as

IF (Cl) {activityAl ->SKIP} ELSE {IF (C2) {activityA2->SKIP}}

Simple merge pattern has two major fault models.

• Fault model 1: IF (Cl) {activity A2->SK1P} ELSE {IF (C2)

{activityAl-»SKIP}}

In this fault mode, activityA2 executes as long as conditions Cl is true, while it is

activityAl that supposes to run when condition Cl is true. Reversing activities A1 and

A2 causes this fault model. When a process executes in this fault model, the trace

verification system can easily catch the failure. If both condition C2 and Cl are true, then

activityA2 executes. Since the trace verification system expects acitivtyAl to execute

when both C2 and Cl are true, therefore the fault is caught. If only C2 is true, activityAl

executes while the expected execution is actiivtyA2. Analogously, If only Cl is true,

activityA2 executes while the expected execution is actiivtyAl. In both cases, the fault is

caught. If neither Cl nor C2 is true, no activity will execute and no activity is expected.

In this case, the fault is not caught.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Fault model 2: IF (Cl*) {activityAl-»SKIP} ELSE (IF (C2*)

{activity A2-»SKIP}}

Fault model2 is caused when the conditions for the activities, A1 and A2, are modified

incorrectly. Under some circumstances when a process executes in fault model2, the

failure doesn’t change the execution trace of activities, so that our monitoring system

cannot catch the failure. Under other circumstances, the failure can lead to the departure

of execution trace of activities, so that the failure can be caught. For instance, in the

following implementation of the Simple Merge workflow pattern

<switch>
<case condition= "bpws:getVariableProperty(stockResult,level) > 100">

activityAl
</case>
<case condition="bpws:getVariableProperty(stockResult,level) >=0">

activity A2”
</case>

</switch>

its trace specification is : IF (stockResult.level >100) {activityAl ̂ -SKIP} ELSE {IF

(stockResult.level>0) {activityA2—»SKIP}}. Suppose this implementation is in fault

model 2. For instance, the first condition is incorrectly written as " bpws:

getVariableProperty (stockResult, level) > 200. Then when stockResult.level is 201, the

first condition expression returns true, and activityAl executes. This trace of activities

matches what the trace verification system expects and no fault is reported. It means this

fault cannot be caught by the trace verification system when stockResult.level is 201.

Contrarily, if stcokResult.level is 199, then the first condition expression returns false and

the second condition expression returns true. Therefore the activityA2 executes. For the

trace verification system, since value “199” is bigger than 100 hence it still expects

activityAl to execute. Therefore, the fault is caught.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 Multi-Choice

The Multi-Choice pattern describes a point in the workflow process, where, based on a

decision or control data, a number of branches are chosen and executed as parallel

threads [WOH02]. In BPEL4WS, we can only use link construct to implement multi­

choice. The solution of multi-choice pattern is identical to the solution of exclusive

choice pattern we mentioned in section 4.4 that if more than one transition condition in

the source elements can be true at the same time, then the workflow pattern will

transform from exclusive choice to multi-choice.

As to the example implementation of exclusive choice pattern in section 4.4, if the

transition conditions are not exclusive, then the implementation can be considered as an

example of multi-choice pattern.

With C S P b p e l, The trace behavior of multi-choice pattern can be specified as

activityAl->(IF (Cl){activityA2->SKIP}|| IF (C2){activityA3->SKIP})

Deferred Choice pattern has three major fault models.
• Fault model 1: activityAl—» (IF (C2) {activityA2-»SKIP}|| IF

(Cl) {activity A3-»SKIP})

This fault model is quite similar with fault model 1 for Exclusive Choice pattern.

They both are about switching the conditions between two activities. Therefore,

we don’t repeat the discussion for this fault model.

• Fault model 2: activityAl-» (IF (Cl){activityA2-»SKIP}|| IF

(C3) {activity A3—»SKIP})

In this fault model, the condition applied to activity A3 is modified so that

conditions Cl and C3 cannot be true at the same time. As conditions cannot be

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

true at the same time, activity A2 and activity A3 cannot execute at the same time.

Suppose a BPEL4WS process runs in this fault model. If conditions Cl and C2

become true at a certain point, while condition C3 is not true at that point, then the

trace verification system will expect the execution of activity A2 and activity A3

and it won’t receive the event of activiytA3. Therefore, the fault is caught.

• Fault model 3: activityAl-> ((activityA2-»SKIP)|| (activityA3-»SKIP))

This fault model is quite similar with fault model 2 for Exclusive Choice pattern.

They both are about missing the conditions for conditional activities. Therefore,

we don’t repeat the discussion for this fault model.

4.7 Synchronizing Merge

The Synchronizing merge pattern describes a point in the process where multiple paths

converge into one single thread [WOH02]. Some of these paths are being executed and

some are not. If only one path is active, the activity after the merge is triggered as soon as

this path completes. If more than one path is active, synchronization of all active paths

needs to take place before the next activity is triggered [WOH02]. The solution of

synchronization merge is based on the solution of multi choice. List 7 is an example of

synchronization merge.

Listing 4.7
1 <flow>
2 <links>
3 d ink name=”L i”/>
4 d in k name=”L2”/>
5 d ink name=”L 1 s”/>
6 d ink name=”L2s”/>
7 </links>
8 <empty>
9 <source linkName=”L 1 ” transitionCondition =”C 1 ”/>

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 <source linkName=”L2” transitionCondition=”C2”/>
11 </empty>
12 activityAl
13 <target linkName=”L 1 ”/>
14 <source linkName=”L 1 s’’/>
15 activity A2
16 <target linkName=”L2”/>
17 <source linkName=”L2s”/>
18 activityC
19 joinCondition =”LIs OR L2s”
20 <target linkName=”L ls’7>
21 <target linkName=”L2s”/>
22 </flow>

In this solution, linel to line 17 excluding the declaration of links L is and L2s composes a

multi-choice pattern. ActivitiesAl and A2 are branches, which are controlled by the

conditions Cl and C2 respectively. If Cl is evaluated to be true, then activityAl can

execute, similarly if C2 is evaluated to be true, then activityA2 can start. Besides the

multi-choice pattern, links L is and L2s synchronize activityAl with activityA2 before

the execution of activityC. The relationship between the activityAl and activityA2 is not

a strict synchronization, and it is different from the standard synchronization stated in

section 3.3. It is activityC’s element “joinCondition = “L is OR L2s” ” that causes this

difference. It ensures that if both activitiesAl andA2 are active, then they should really

synchronize before the execution of activityC. It also ensures that if only one activity, A1

orA2, is active, then activityC can execute after the completion of the active activity. If

there is no this element or its “OR” is replaced by “AND”, then the solution becomes a

standard synchronization pattern.

Using C S P b p el, The trace behavior of the example can be specified as

(IF (Cl) {activity A 1 —»SKIP} || IF (C2) {activity A2->SKIP})->IF (Cl | C2)

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{activityC-»SKIP} ELSE {SKIP}

Synchronization Merge pattern has one major fault models.

• Fault model 1: (IF (Cl) {activityAl-»SKIP}|| IF

(C2){activity A2-»SKIP})-»IF(C1 &C2) activityC-»SKIP}ELSE{SKIP}

In this fault model, for activityC, the relationship between its conditions Cl and

C2 changes from OR to AND, so that activityC doesn’t execute until both

condition Cl and condition C2 are satisfied.. In line 19 of listing 4.7, changing

operator ‘OR’ to ‘AND’ causes this kind of fault. When a BPEL4WS process runs

in this fault model, if condition Cl is true and condition C2 is false, activityC

won’t execute. The trace verification system will expect the execution of

activityC as long as condition Cl is satisfied, therefore the fault is caught.

4.8 Implicit Termination

The Implicit termination pattern means that a given sub process is terminated and the

termination doesn’t require an explicit termination activity [WOH02]. An example

explicit termination activity is a <terminate> activity. This pattern cannot be

implemented by user programming, since it is an inherent characteristic of BPEL4WS

program and it is implemented by the BPEL4WS engine. In BPEL4WS, the Flow

construct is the only activity that can perform this workflow pattern.

Implicit termination pattern doesn’t have observable trace behavior, since it only means

the termination of a sub process and the termination of a sub process is indicated by its

trace specification. Therefore, we don’t need to specify its trace behavior with C S P b p e l

and analyze its associated fault models.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.9 Deferred Choice

The Deferred Choice pattern describes a point in a process where one among several

alternative branches is chosen based on information which is not necessarily available

when this point is reached [WOH02]. It is different from Exclusive Choice pattern, in that

the choice is not made immediately when the point is reached. The Deferred Choice

pattern can only be implemented through a pick construct. An example implementation

of the Deferred Choice pattern is listing 4.8

<pick>
<onMessage name="messagel" partnerLink-'buyer" portType-'orderEntry"

operation="inputLineItem"variable="lineItem">
activityA

</onMessage>
<onMessagename-'message2" partnerLink-'buyer" portType-'orderEntry"

operation-'orderComplete" variable="completionDetail">
activityB

</onMessage>
<onAlarm for-"P3DT10H'">

activityC
</onAlarm>

</pick>
Listing 4.8

With C SPbpel, the trace behavior of the example can be specified as

WHILE(BPEL_WAIT_Name 1 <P3DT1 OH) {IF(BEPL_Message=buyer_orderEntry

_inputLineItem_lineItem){activityA-» SKIP } ELSE { IF(BEPL_Message =

buyer_orderEntry_orderComplete_completionDetail){acitivytB—>SKIP }}—»IF(BEPL_W

AIT Name 1 >=P3DT 1 OH) {activityC—» SKIP }

Deferred Choice pattern has one major fault models.
• Fault model 1:

WHILE(true){IF(BEPL_Message=buyer_orderEntry_inputLmeItem_lineIte

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m){activityA-> SKIP }ELSE { IF(BEPL_Message=

buyer_orderEntry_orderComplete_completionDetail){acitivytB-» SKIP }}

In this fault model, there is no alarm defined. Therefore, when a BPEL4WS process

runs in this fault model, if there is no expected message received, the BPELWS process

will keep waiting for the message no matter how long it will wait. On the other side, the

trace verification system thinks that there is an alarm defined and expects to receive the

events of alarm hander after the waiting period of alarm is over, therefore the fault is

caught.

4.10 Cancel Activity

The Cancel Activity pattern describes the abnormal termination of a running instance of

an activity [WOH02]. It can be implemented with fault and compensation handlers. An

example implementation of this workflow pattern is listing 4.9

<scope>
<faultHandlers>

<catch faultName-'Faultl" faultYariable="Varl">
activityA

</catch>
</ faultHandler s>
activityB

</scope>
Listing 4.9

For listing 4.9, when a fault happens during the execution of activityB, if its name is

“Faultl” and its variable is “V arl”, then the execution of activityB is terminated and the

fault handler activityA is performed. Otherwise, after the termination of activityB, the

fault is thrown out.Using C SPbpel, the trace behavior of the example can be specified as

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

activityB .b—»IF (BPELF ault==true {IF ((BPELF aultName==F ault 1)&(BPEL_F a

ultV ar==Var 1)) {activityA} —»STOP} ELSE {activityB .e-»SKIP}

This Workflow pattern has one major fault models.

• Fault modell:

activity B.b—»IF (BPEL_F ault==true {IF ((BPEL_F aultName==Fault2)& (BPE

L_FaultVar==Var2)){activityA}->STOP}ELSE{activityB.e->SKIP}

In this fault model, the fault type or the data variable associated with the fault is not

correct. When a BPEL4WS process runs in this fault model, if a fault, whose name is

“faultl” and data variable is “Varl”, happens during the execution of activityB , the

fault won’t be caught because of the mismatch of fault name and data variable.

Therefore the fault handler activityA won’t be triggered. According to the trace

specification, the trace verification system expects the event of activityA. Because of

the fault, the event of activityA won’t happen, so that the trace verification system

cannot receive the expected event, and then the fault is caught.

4.11 Cancel Case

The Cancel Case pattern means the termination of an entire BPEL4WS process instance

[WOH02]. This pattern can be solved with the <terminate> activity. The trace behavior

of this workflow pattern can be specified as “STOP”.

This Workflow pattern has one major fault model.

• Fault model 1:

STOP

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this fault model, a termination happens while it is not expected. When a

termination happens, the instance of BPEL4WS process stops running. As a result,

the trace verification system cannot receive any event from that BPEL4WS instance

while it still waits for the events. After waiting for a period of time the trace

verification system throws out a timeout error, therefore it means the fault is caught.

In section 4.1, when we explored fault models for the workflow pattern Sequence, its

fault model 2 was defined as a type of fault, where an unexpected termination

happens because of an extra <terminate> activity or the failure of monitored

activities. Since the fault model 2 in the workflow pattern Sequence and this fault

model in workflow pattern Cancel Case both are about unexpected termination of a

process instance, we consider them identical and we won’t analyze them separately

when we discuss the implementation for every fault model

5 Faults and Mutation processes for BPEL4WS processes

5.1 Introduction

In section 4, we proposed one or more fault models for each workflow pattern. Each fault

model was proposed based on a specific instance of a workflow pattern. In other words,

the definitions of the fault models there were not generic. In this chapter, we will discuss

the generic definitions of these models. Further, we will explore how we can generate

fault models by mutating BPEL4WS processes. These fault models are then utilized to

evaluate our system by generating mutants which we attempt to discover.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mutation testing is a fault-based testing technique originally proposed in 1978 [LIP78].

In mutation testing, small faults are inserted into the original program to create faulty

versions of the original program. The small faults are created by applying mutation

operators, which describe syntactic changes to be made to the program. If a test set can

produce different results compared with the original program for a mutant, the mutant is

killed. The test sets are adequate if they can kill all the mutants. Although mutation

testing has a rich history, most mutation operators have been developed for procedural

programs [MAY02]. Further, there is no precise definition regarding how small, or the

size, a fault should possess.

When we apply the methodology of mutation testing to BPEL4WS processes, we define a

BPEL4WS process with an injected fault as a mutant, and we use terminology “mutation

process” to represent the process of how a fault is generated. In mutation testing, a fault

injected into the original program should be small. Since in other researches there is no

precise definition of how small the fault should be, we tried to define the size of a fault in

our research. In order to define this, we applied the concept of Levenshtein distance

[LEV01]. The Levenshtein distance is used to measure the difference between two strings

by the minimum number of operations needed to transform one string into the other,

where an operation is an insertion, deletion, or substitution on a single character. For

BEPL4WS processes, we defined that an operation is an insertion, deletion, or

substitution on a single token within a trace specification. The reason for us to apply an

operation to a single token rather than a single character is that in most cases an operation

to a single character in a BPEL4WS process cannot cause a fault within an execution

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

trace. Based upon the definition of operation, the size of fault for BPEL4WS process is

measured by the minimum number of operations needed to transform it to a fault. When

we design faults for BPEL4WS processes, we try to design faults with minimum size.

The following two examples illustrate the concept of fault size.

• Example A:

The trace specification of the workflow pattern Sequence is

<E YENTIDENT1 ><TRACE_PREFIX_OPERAT OR><E VENT_IDENT2><TR

ACE_PREFIX_OPERATOR><TRACE_SKIP_OPERATOR>. If we replace the

token <TRACE_PREFIX_OPERATOR> with token

<TRACE_TERMINATION_OPERATOR>, then we get the fault “Unexpected

Termination”. The size of the fault is 1, since the fault is implemented by only

one substitution operation.

• Example B

We still use the trace specification of the workflow pattern Sequence. If we

replace the token <TRACE_PREFIX_OPERATOR> with the token

<TRACE_PARALLEL_OPERATOR>, then we get the fault “Sequence to

Parallel”. The size of the fault is 1, since the fault is implemented by only one

substitution operation. There is one thing we want to clarify for this case. Since

the token <TRACE_PARALLEL_OPERATOR> syntactically can only be used

to connect two processes, we have to attach tokens

“<TRACE_PREFEX_OPERATOR><TRACE_SKIP_OPERATOR>” after token

“<EVENT_IDENT 1 >” AND “<EVENT_IDENT2>” to make the trace

specification correct in the syntax.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After we define the faults with minimum size, we will analyze the mutation process from

two perspectives. Firstly, we analyze it from the perspective of C S P b p el- C S P b p e l is an

abstract representation of BPEL4WS processes. It focuses on the trace behavior of

BPEL4WS process and doesn’t deal with the details of BPEL4WS implementation.

Therefore, representations in format of C S P b p e l give us a high level overview of the

mutation processes of BPEL4WS or a specification of the process. We don’t use actual

trace specifications to represent a workflow pattern, since they would not be actual

generic. In order to generically describe the specification of the mutation processes, we

describe each specification pattern by providing a BNF description of the C S P b p e l

construct required to represent a workflow pattern.

In order to demonstrate the implementation of mutation process defined upon C S P b p e l

and provide more detailed direction for the generation of mutants in actual-world testing,

we also illustrate the mutation processes from the perspective of BPEL4WS itself.

Again, actual BPEL4WS programs are not appropriate to describe the mutation

processes, since there are two many variations of BPEL4WS programs for each work

pattern. To tackle this issue, we again use BNF representations of BPEL4WS programs to

describe the mutation process. The BNF representations precisely represent actual

programs and they are sufficiently generic so that each BNF representation is able to

represent various implementations of a workflow pattern. We build our BNF for

BPEL4WS based on the BNF defined in [ZIJ06]. We inherit most definitions from this

source. However, the form of the definitions is not ideal for our purpose, and hence a set

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of revised definitions specifically aimed at describing BPEL4WS activities is presented

in Appendix C.

Before we illustrate the mutation processes, we defined some operators that will be used

to represent mutation processes. These operators can be used for both BNF of C S P b p e l

and BPEL4WS.

Definition: Operator Replace (denoted as ‘-£’) is used to represent replacing the

token(s) on the left of operator with the token(s) on the right. For example,

<al>-£<a2> means replacing token <al> with token a2. Analogously, <bl><b2>-£

<b3> means replacing two adjoining tokens <bl> <b2> with one token <b3>.

Definition: Operator Switch (denoted as is used to represent replacing two

tokens with each other. For example, <al>^<a2> means replacing token <al> with

token a2 and replacing token <a2> with token <al>

Definition: Operator Followed By (denoted as ‘ ► ’) is used to represent that one

token is followed by another token. For example, <a>^ means that token <a>

and token are conjoint and token <a> is followed by token

Definition: Operator Not (denoted as ‘!’) is used to represent the opposite action of

an operator. Therefore, it always used in a combination with another operator. For

example, ‘! ► ’ means a token is not followed by the other token.

Definition: Operator Included By (denoted as ‘$’) is used to represent that two

tokens are included by another set of tokens. The usage format of this operator is

(<a>,) X <c>.

Definition: Symbol P is used to represent a workflow pattern, defined in the format

of BNF of C SP b pel.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Besides the mutation processes from two perspectives, we will also discuss how the

mutation patterns are actualized in BPEL4WS.

5.2 Sequence

5.2.1 Requirement of mutation process
For the sequence workflow pattern, of the BNF representation of the C S P b p e l is:

<E YENTIDENT1 ><TRACE_PREFIX_OPERAT OR><EVENT_IDENT2><TRACE_P

REFIX_OPERATOR><TRACE_SKIP_OPERATOR>

As we mentioned in section 4.1, there are four major fault models for the sequence

workflow pattern. Those fault models respectively are

1) Sequential to Parallel (FM1)

(<E VENTIDENT1 ><TRACE_PREFIX_OPERAT OR><TRACE_SKIP_OPE

RATOR>)><TRACE_PARALLEL_OPERATOR>

(<EVENT_IDENT2><TRACEPREFIXOPERATOR»<TRACE_SKIPOP

ERATOR>)

2) Unexpected Termination (FM2)

<EVENT_IDENTl><TRACE_PREFIX_OPERATOR><TRACE_TERMINAT

ION_OPERATOR> OR

<EVENT_IDENT 1 ><TRACE_PREFIX_OPERATOR><EVENT_IDENT2><T

RACE PREFIX OPERATORxTRACE TERMINATION OPERATOR>

OR

<TRACE_TERMINATION_OPERATOR>

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3) Switch Two Activity Events (FM3)

<EVENT_IDENT2><TRACE_PREFIX_OPERATOR><EVENT_IDENT 1 ><T

RACE_PREFIX_OPERATOR><TRACE_SKIP_OPERATOR>

4) Deadlock (FM4)

<TRACE_DEADLOCK_OPERAT OR>

5.2.1.1 Sequential to Parallel

We can find that the essence of the fault model Sequential to Parallel is that the

relationship between two activity events is changed from sequential to parallel.

Consequently, we name the mutation process for that fault model as Sequence to Parallel.

This mutation process has two steps:

1) IF <EVENT_IDENT>! ►< TRACEJPREFIX_OPERATOR> THEN

<e v e n t _id e n t >-£<e v e n t _id e n t >
TRACEPREFIXOPERAT OR><TRACE_SKIP_OPERAT OR>

ELSE <EVENT_IDENT> <TRACE_PREFIX_OPERATOR>

<TRACE_SKIP_OPERATOR>=£ (<EVENT_IDENT>
TRACE_PREFIX_OPERATOR><TRACE_SKIP_OPERATOR>)

2) IF <TRACE_PREFIX_OPERATOR> ! ►<TRACE_SKIP_OPERATOR>

THEN <TRACE_PREFlX_OPERATOR>=t
<TRACE_PARALLEL_OPERATOR>

5.2.1.2 Unexpected Termination

As to the fault model Unexpected Termination, its major characteristic is that termination

happens unexpectedly. For this characteristic, we call the mutation process for that fault

model simply “Unexpected Termination”. Due to different behavior of this fault model,

there are three possibilities for this mutation process. They are

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1) <EVENT_IDENTl>=̂ <TRACE_TERMINATION_OPERATOR>

2) <EVENT_IDENT2>=£<TRACE_TERMINATI0N_0PERAT0R>

3) <TRACE_SKIP_OPERATOR>-£<TRACE_TERMINATION_OPERATOR>

5.2.1.3 Switch Two Activity Events

The fault model Switch Two Activity Events essence is that the order of two activity

events is switched. Therefore, the mutation process for that fault model is called Switch

Two Activity Events. This mutation process has one step:

1) <E VENTIDENT1 > ^<E VENT_IDENT2>

5.2.1.4 Deadlock

The fault model Deadlock essence is that there is a deadlock between the two activity

events. The mutation process for that fault model is named Deadlock based on this

essence. This mutation process has only one step:

1) <EVENT_IDENT 1 >-£<TRACE_DEADLOACK OPERATOR>

5.2.2 Implementation of mutation process
For the Sequence workflow pattern, there are two types of implementation. One is using

the <sequence> activity, and the other one is using the link construct. For each type of

implementation, we are going to illustrate the mutation process for each fault model.

5.2.2.1 Implementation using <sequence> activity

For the implementation of the Sequence workflow pattern, which uses <sequence>

activity, its BNF is

<sequence standard-attributes>

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

standard-elements
activitya activityb activity*

</sequence>

5.2.2.1.1 Sequential to Parallel
The implementation of the fault model Sequential to Parallel is:

<flow standard-attributes>
standard-elements
activitya activityb activity*

</flow>
The mutation process for this fault model is:

sequence -£flow

5.2.2.1.2 Unexpected T ermination
For this type of fault model, there are three variations of implementation. The difference

between these three variations is the place where the termination happens. For each

variation of the fault model, we describe its implementation and its corresponding

mutation process respectively.

• Implementation A:
<sequence standard-attributes>

standard-elements
activitya
<terminate/>
activity*

</sequence>

The mutation process is:

activityb̂ <terminate>

• Implementation B:
<sequence standard-attributes>

standard-elements
<terminate/>
Activityb
activity*

</sequence>

The mutation process is:

Activitya~̂ <terminate/>

• Implementation C:

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<sequence standard-attributes>
standard-elements
activitya
activityb
<terminate/>
activity*

</sequence>

The mutation process is:

activityb*̂ activityb <terminate/>

5.2.2.1.3 Switch Two Activity Events

The implementation of the fault model Switch Two Activity Events, written in BNF,

<sequence standard-attributes>
standard-elements
activityb
activitya
activity*

</sequence>

The mutation process for this fault model is

activityb activitya

5.2.2.1.4 Deadlock

The implementation of the fault model Deadlock is:

<flow>
<links>

<link name ="namel"/>
</links>
<sequence standard-attributes>

standard-elements
activity-start-elementa
<target linkName="ncnamel"/>*
<target linkName="namel"/> <source linkName="ncnamel"
transitionCondition="bool-expr"? />*
activity-end-elementa
activity-start-elementb
<source linkName="namel"/> <target linkName="ncname2"/>*
<source linkName="ncname2"
transitionCondition="bool-expr"?/>*
activity-end-elementh

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

activity*
</sequence>
</flow>

This implementation is feasible only when activitya and activityb are included in a <flow>

activity, since if those activities are not included in a <flow> activity, the source or target

elements cannot be used within them. The mutation process for this fault model is:

IF (activity,,, activity*,! |<flow> THEN

<links>~^<links> clink name ="namel"/>

activity-start-elementa -► activity-start-elerflenta
<target linkName="namel"/>

activity-start-elementb activity-start-elementb
<source linkName="namel"/>

5.2.22 Implementation using link construct

For the implementation of the Sequence workflow pattern, which uses a link construct, its

BNF is

<flow standard-attributes>
standard-elements

<links>
<link name="namel"/>
link*

</links>
activity-start-elementa
<target linkName="ncnamel"/>*
<source linkName="namel"/> <source linkName="ncnamel"
transitionCondition="bool-expr"? />*

activity-end-elementa
activity-start-elementb
<target linkName="namel"/> <target linkName="ncname2"/>*
<source linkName="ncname2"
transitionCondition="bool-expr"?/>*

activity-end-elementb
activity*

</flow>

5.2.2.2.1 Sequential to Parallel
The implementation of this fault model is:

<flow standard-attributes>
standard-elements

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<links>
<link name="namel"/>
link*

</links>
activity-start-elementa
<target linkName="ncnamel"/>*
<source linkName="ncnamel"
transitionCondition="bool-expr"? />*
activity-end-elementa
activity-start-elementh
<target linkName="ncname2"/>*
<source linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementh
activity*

</flow>

The mutation process for this fault model is

<source linkName=”name 1 ”/> t <f>

<target linkName=”namerV> O

5.2.2.2.2 Unexpected Termination
When the Sequence workflow pattern is implemented through a link construct, the time

when the <terminate> activity executes is undeterminable. On the other side, we can

ensure that the <terminate> activity will definitely execute. Therefore, the

implementation of this fault model doesn’t have the three variations described in section

5.1.2.1.2. Instead, it only has one variation, and where we put the <terminate> activity

doesn’t matter. The implementation of this fault model is

<flow standard-attributes>
standard-elements
<links>

clink name="namel"/>
link*

</links>
activity-start-elementa
ctarget linkName="ncnamel"/>*
Csource linkName="namel"/> Csource linkName="ncnamel"
transitionCondition="bool-expr"? />*

activity-end-elementa
activity-start-elementh
ctarget linkName="namel"/> ctarget linkName="ncname2"/>*
csource linkName="ncname2"
transitionCondition="bool-expr"?/>*

activity-end-elementh
cterminate/>
activity*

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</flow>
The mutation process for this fault model is

activity-end-elementh-> activity-end-elementb <terminate/>

5.22.2.3 Switch Two Activity Events
The implementation of the fault model Switch Two Activity Events is:

<flow standard-attributes>
standard-elements
<links>

<link name="namel"/>
link*

</links>
activity-start-elementa
<target linkName="ncnamel"/>*
<target linkName="namel"/> <source linkName="ncnamel"
transitionCondition="bool-expr"? />*
activity-end-elementa
activity-start-elementb
<source linkName="namel"/> <target linkName="ncname2"/
<source linkName="ncname2"
transitionCondition="bool-expr"?/>*

activity-end-elementh
activity*

</flow>

The mutation process for this fault model is

ctarget linkName="namel"/> Resource linkName="namel"/>

5.2.2.2.4 Deadlock
The implementation of fault model Deadlock is:

cflow standard-attributes>
standard-elements
<links>

clink name="namel"/>
clink name="name2"/>
link*

c/links>
activity-start-elementa
ctarget linkName="ncnamel"/>*
Csource linkName="namel"/>
ctarget linkName="name2"/>
Csource linkName="ncnamel"
transitionCondition="bool-expr"? />*

activity-end-elementa
activity-start-elementh
ctarget linkName="namel"/>
csource linkName="name2"/>

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ctarget linkName="ncname2"/>*
csource linkName="ncname2"
transitionCondition="bool-expr"?/>*

activity-end-elementb
activity*

c/flow>

The mutation process for this fault model has three steps

1) Csource linkName="namel"/> Csource linkName="namel"/>
Ctarget linkName="name2"/>

2) ctarget linkName="namel"/> Retarget linkName="namel"/>
Csource linkName="name2"/>

3) <link name="namel"/> ^<link name="namel"/>
clink name="name2"/>

5.2.3 BPEL4WS examples
For each fault model of a workflow pattern, when it is applied to an actual BPEL4WS

program, there might be more than one mutant (BPEL4WS program with fault injected)

being generated. The number of the mutants is determined by the implementation

variation of the workflow pattern. It means that if there is more than one type of

implementation for a workflow pattern, then there will be more than one mutant for a

fault model. The reason is that each type of implementation has its unique mutation

process for a fault model. Meanwhile, each mutation process can be used to derive a

mutant. As we mentioned in section 5.1.2, there are two types of implementations for the

Sequence workflow pattern. Therefore, in this section, for each fault model, we present

two mutants based on the two mutation processes for that fault model.

Initially, we considered using actual BPEL4WS programs to represent the mutants.

However, when we analyzed the original BPEL4WS programs and their mutants, we

found that there were many identical codes among them, such as attributes of an activity.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These identical codes take much space, however they are not valuable for the

representation of fault models. For the sake of simplicity, we use a symbol to represent a

snippet of BPEL4WS code, which is identical in both the original BPEL4WS program

and its mutants. The format of symbol is an underlined BPEL4WS activity tag, and that

activity tag may have a subscript. An example of symbol is <receivenam,>. For instance,

in the following equations, the symbol on the left is used to represent the BPEL4WS code

on the right side. We will use these two symbols in the description of examples.

• <receive> = <receive name="receive 1" operation="approve"
partnerLink= "customer " portType="apns.loanApprovalPT”
variable= "request/”>

• <invoke>= <invoke inputVariable="request" name="invokeapprover"
operation="approve " outputVariable=”approvalInfo ” partnerLink= "approver"
portType= "apns.loanApprovalPT/>

5.2.3.1 Sequential to Parallel

When the sequence work flow pattern is implemented using the <sequence> activity, if

the original BPEL4WS program possesses the same structure as the program in listing

5.1(a), according to the mutation process (defined in section 5.1.2.1.1), the mutant will be

listing 5.1(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<sequence> <flow>
<receive> <receive>
</receive> </receive>
<invoke> <invoke>
</invoke> </invoke>

</sequence> </flow>

Listing 5.1

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When sequence workflow pattern is implemented through a link construct, if the original

BPEL4WS program possesses the same structure as the program in listing 5.2(a),

according to the mutation process (defined in section 5.1.2.2.1), the mutant will be listing

5.2(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<flow> cflow>
<links> clinks>

clink name="R-to-A'7> clink name="R-to-A">
</links> c/links>
<receive> creceive>

<source linkName="R-to-A"/> c/receive>
c/receive> cinvoke>
cinvoke> c/invoke>

ctarget linkName="R-to-A"/> c/flow>
c/invoke>

c/flow>
Listing 5.2

5.2.3.2 Unexpected Termination

When the sequence work flow pattern is implemented through the <sequence> activity,

the implementation of this mutation process is inserting a <terminate> activity into the

<sequence> activity. There are three variations of this mutation process. Corresponding

to those three variations, we inject a <terminate> activity into different locations in the

<sequence> activity. If the original BPEL4WS program possesses the same structure as

the program in listing 5.3(a), according to the mutation process (defined in section

5.1.2.1.2), the mutant will be listing 5.3(b), 5.3(c) and 5.3(d).

Original BPEL4WS program(a) Mutant 1 (b) Mutant2 (c) Mutant3 (d)

<sequence> <sequence> <sequence> <sequence>
creceive> <terminate/> creceive> <receive>
c/receive> creceive> c/receive> </receive>
cinvoke> c/receive> c terminated <invoke>

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</invoke> <invoke> <invoke> </invoke>
</sequence> </invoke> </invoke> <terminate/>

</sequence> </sequence> </sequence>

Listing 5.3

When the sequence workflow pattern is implemented through a <flow> activity, if the

original BPEL4WS program possesses the same structure as the program in listing 5.4(a),

according to the mutation process (defined in section 5.1.2.2.2), the mutant will be listing

5.4(b).

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<flow> <flow>
<links> <links>

<link name-'R-to-A'7> clink nam e-’R-to-A'7>
</links> </links>
<receive> <receive>

<source linkName="R-to-A"/> csource linkName="R-to-A'7>
</receive> c/receive>
<invoke> cinvoke>

<target linkName-'R-to-A'7> ctarget linkName="R-to-A'7>
</invoke> c/invoke>

</flow> cterminate/>
c/flow>

Listing 5.4

5.2.3.3 Switch Two Activity Events

When sequence work flow pattern is implemented through activity <sequence>, if the

original BPEL4WS program is like listing 5.5(a), the mutant of mutation process (defined

in section 5.1.2.1.3) will be listing 5.5(b). The fault injected in this mutant is that the

order of activtyA and activityB in a <sequence> activity is switched.

Original BPEL4WS program Mutant BPEL4WS program

csequence> csequence>

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<receive> <invoke>
</receive> </invoke>
<invoke> <receive>
</invoke> </receive>

</sequence> </sequence>

Listing 5.5

When sequence workflow pattern is implemented through link construct, if the original

BPEL4WS program is like listing 5.6(a), the mutant of mutation process (defined in

section 5.1.2.2.3) will be listing 5.6(b). The fault injected in this mutant is that the link

attribute of activtyA and activityB in a <flow> activity is switched.

Original BPEL4WS program (a) Mutant BPEL4WS program

<flow> <flow>
<links> <links>

<linh name=” R-to-A "> <link name=" R-to-A ">
</links> </links>
<receive> <receive>
<source linkName=" R-to-A "/> <target linkName=" R-to-A "/>
</receive> </receive>

<invoke> <invoke>
< tar get linkName=" R-to-A "/> <source linkName=" R-to-A "/>

</invoke> </invoke>
</flow> </flow>

Listing 5.6

5.2.3.4 Deadlock

When sequence work flow pattern is implemented through activity <sequence>,, if the

original BPEL4WS program is like listing 5.7(a), the mutant of mutation process (defined

in section 5.1.2.1.4) will be listing 5.8(b).

Original BPEL4WS program Mutant BPEL4WS program

<flow> <flow>
<sequence> <links>

<receive> <link name="R-to-A">
</receive> </links>
<invoke> <sequence>
</invoke> <receive>

</sequence> <target linkName-'R-to-A"/>

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</flow> </receive>
<invoke>
<source linkName-'R-to-A"/>
</invoke>
</sequence>

</flow>

Listing 5.7

When sequence workflow pattern is implemented through link construct, if the original

BPEL4WS program is like listing 5.8(a), the mutant of mutation process (defined in

section 5.1.2.2.4) will be listing 5.8(b).

Original BPEL4WS program Mutant BPEL4WS program

<fl ow>
<links>

<link name=" R-to-A ">
</links>
<receive>
<source linkName=" R-to-A "/>
</receive>

<invoke>
<target linkName=" R-to-A "/>

</invoke>
< /flo w »

<flow>
<links>
<link name=" R-to-A ">
<link name=” A-to-R ">

</links>
<receive>
<source linkName=" R-to-A "/>
< tar get linkName=" A-to-R "/>
</receive>

<invoke>
<target UnkName=" R-to-A "/>

<source linkName=" A-to-R "/>
</invoke>
</flow>

Listing 5.8

5.3 Parallel Split

5.3.1 Requirement of mutation process
For the Parallel workflow pattern, its representation in the BNF of CSPbpel is:

(<EVENT_IDENT 1 ><TRACE_PREFIX_OPERATOR><TRACE_SKIP_OPERATOR>

)<TRACE_PARALLEL_OPERATOR>(<EVENT_IDENT2><TRACE_PREFIX_OPER

AT O RxTRACESK IPO PERAT OR>)

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As we mentioned in section 4.2, there are two major fault models for Parallel Split

workflow pattern. Those fault models respectively are

1) Parallel to Sequential (FM5)

<EVENT_IDENT 1 ><TRACE_PREFIX_OPERATOR><EVENT_IDENT2><TRA

CE_PREFIX_OPERATOR><TRACE_SKIP_OPERATOR >or

<EVENT_IDENT2><TRACE_PREFIX_OPERATOR><EVENT_IDENTl><TRA

CE_PREFIX_OPERATOR»<TRACE_SKIP_OPERATOR>

2) Unexpected Termination (FM2)

< TRACETERMIN ATIONOPERAT OR>

5.3.1.1 Parallel to Sequential

The mutation process for this fault model has three steps:

1) P ^ P ><TRACE_PREFIX_OPERATOR><TRACE_SKIP_OPERATOR >
2) (<EVENT_IDENT>

<TRACE_PREFIX_OPERATOR><TRACE_SKIP_OPERATOR)^
<EYENT_IDENT>

3) <TRACE_PARALLEL_OPERATOR>3<TRACE_PREFIX_OPERATOR>

5.3.1.2 Unexpected T ermination

Fault model Unexpected Termination of workflow pattern Parallel Split is little different

from that of workflow pattern Sequence. As we described in section 5.1.2.1.2, in the

workflow pattern Sequence, this fault model has three types of variations. Each variation

differs at the time when a termination happens. In the workflow pattern Parallel Split, this

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fault model has only one type of behavior, because when a termination is going to

happen, we can not tell when it will happen. The mutation process for this fault model is:

(<E VENTIDENT1 ><TRACE_PREFIX_OPERATOR><TRACE_SKIP_OPERAT O
R>)<TRACE_PARALLEL_OPERATOR>(<EVENT_IDENT2><TRACE_PREFIX_

OPERATOR><TRACE_SKIP_OPERATOR>)=£
< TRACETERMIN ATIONOPERAT OR>

It is easy to find out that we can apply the fault model Unexpected Termination to every

workflow pattern, since we can all inject a <terminate> activity. Since, both the

deterministic and non-deterministic versions of this model have already been described

and discussed, for further analyzed workflow patterns , their fault model Unexpected

Termination will not be examined.

5.3.2 Implementation of mutation process
For the workflow pattern Parallel Split, there is only one type of implementation. That is

using the <flow> activity. The BNF of the implementation of this workflow pattern is:
<flow standard-attributes>

standard-elements
links?
activitya
activityb
activity*

</flow>

5.3.2.1 Parallel to Sequential

There are two kinds of implementation for this fault model. The first kind, in BNF, is:

<sequence standard-attributes>
standard-elements
activitya
activityb
activity*

</sequence>

The mutation process, which contributes to this implementation, is:

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

flow -^sequence

The second kind of implementation is:
<flow standard-attributes>

standard-elements
<links>

<link name="namel"/>
link*

</links>
activity-start-elementa

<target linkName="ncnamel"/>*
<source linkName="namel"/> <source linkName="ncnamel"
transitionCondition="bool-expr"? />*

activity-end-elementa
activity-start-elementh

<target linkName="namel"/> <target linkName="ncname2"/>*
<source linkName="ncname2"

transitionCondition="bool-expr"?/>*
activity-end-elementb
activity*

</flow>

The mutation process, which contributes to this implementation, includes three steps:

1) IF (<links>,</links>)|<flow>, THEN <links>-^<links><link nam e-’nameT7>

ELSE <flow>-t <flow><links><link name=”nam er’/></links>

2) activity-s tart-elementâ activity-start-elements
<source linkName="namel"/>

3) activity-start-elementb^ activity-start-elementb
<target linkName="namel"/>

5.3.2.2 Unexpected Termination

The implementation of this fault model is

<flow standard-attributes>
standard-elements
links?
activitya
activityt,
activity*
<termination/>

</flow>

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The mutation process, which contributes to this implementation, is:

</flo w>-^<termination/></ flo w>

5.3.3 BPEL4WS examples
For the sake of simplicity, we inherit the two symbols <invoke> and <receive> defined in

section 5.1.3 to describe the examples in this section.

5.3.3.1 Parallel to Sequential

We already know that for the workflow pattern Parallel Split, there are two kinds of

implementation for its fault model Parallel to Sequential. Therefore we present a example

for each kind of implementation.

For the first kind (using <sequence> activity), if the original BPEL4WS program is of

the structure given in listing 5.9(a), then the mutant of mutation process (defined in

section 5.2.2.1) will possess the structure described in listing 5.9(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<flow> <sequence>
<receive> <receive>
</receive> </receive>
<invoke> <invoke>
</invoke> </invoke>

</flow> </sequence>

Listing 5.9

When we implement the fault model with a link construct, if the original BPEL4WS

program is of the structure given in listing 5.10(a), then the mutant of mutation process

(defined in section 5.2.2.1) will possess the structure described in listing 5.10(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<flow> <flow>

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<receive> <links>
</receive> clink name=”R-To-A>
<invoke> </links>
</invoke> <receive>

</flow> <source linkName=”R-To-A’7>
</receive>
<invoke>
cTarget linkName=”R-To-A”/>

</invoke>
</sequence>

Listing 5.10

5.3.3.2 Unexpected Termination

If the original BPEL4WS program is of the structure given in listing 5.11(a), the mutant

of mutation process (defined in section 5.2.2.2) will possess the structure described in

listing 5.11(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<fl ow> <flow>
<receive> <receive>
</receive> </receive>
<invoke> <invoke>
</invoke> </invoke>

</flow> <terminate/>
</sequence>

Listing 5.11

5.4 Synchronization

5.4.1 Requirement of mutation process
For the Parallel workflow pattern, its representation in BNF of C S P b p e l is:

(<EVENT_IDENT 1 ><TRACE_PREFIX_OPERATOR><TRACE_SKIP_OPERAT OR>

)<TRACE_PARALLEL_OPERATOR>(<EVENT_IDENT2><TRACEPREFIX_OPER

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ATOR><TRACE_SKIP_OPERATOR>)<TRACE_PREFIX_OPERATOR><EVENT_ID

ENT3><TRACE_PREFIX_OPERATOR><TRACE_SKIP_OPERATOR>

As mentioned in section 4.3, there are five major fault models for the Synchronization

workflow pattern. Those fault models respectively are

• Synchronization to Sequence (FM6)

<EVENT_IDENTl><TRACE_PREFIX_OPERATOR><EVENT_IDENT2><TR

ACE_PREFIX_OPERATOR><EVENT_IDENT3>

<TRACE_PREFIX_OPERATORxTRACE SKIP OPERATOR >

• Synchronization to Parallel (FM7)

(<EVENT_IDENT 1 ><TRACE_PREFIX_OPERATOR><TRACE_SKIP_OPER

ATOR>)<TRACE_PARALLEL_OPERATOR>(<EVENT_IDENT2><TRACE_

PREFIX_OPERATOR><TRACE_SKIP_OPERATOR>)

<TRACE_ PARALLEL_OPERATOR> (<EVENT_IDENT3>

<TRACE_PREFIX_OPERATOR><TRACE_SKIP_OPERATOR>)

• Extra Single Condition (FM8)

(<EVENT JD E N T 1 ><TRACE_PREFIX_OPERATOR><TRACE_SKIP_OPER

ATOR>)<TRACE_PARALLEL_OPERATOR>(<EVENT_IDENT2><TRACE_

PREFIX_OPERATOR><TRACE_SKIP_OPERATOR>)<TRACE_PREFIX_OP

ER A TO Rx TRACE_IF_OPERATOR>(<Expression>)

{<EVENT_IDENT3><TRACE_PREFIX_OPERATOR><TRACE_SKIP_OPER

ATOR>}

• Extra AND Conditions (FM9)

(<E VENTIDENT1 ><TRACE_PREFIX_OPERAT O R xT R A C E SK IPO PE R

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AT0R>)<TRACE_PARALLEL_0PERAT0R>(<EVENT_IDENT2><TRACE_

PREFIX_OPERATOR><TRACE_SKIP_OPERATOR>)<TRACE_PREFIX_OP

ER A TO Rx TRACE_IF_OPERATOR>((<Expressioni>)

< AND>(<Expression2>)) {<EVENT_IDENT3><TRACE_PREFIX_OPERAT OR

xT R A C E SK IPO PE R A T OR> }

• Extra OR Conditions (FM10)

(<EVENT_IDENT 1 ><TRACE_PREFIX_OPERATOR><TRACE_SKIP_OPER

ATOR>)<TRACE_PARALLEL_OPERATOR>(<EVENT_IDENT2><TRACE_

PREFIX_OPERATORxTRACE_SKIP_OPERATOR>)<TRACE_PREFIX_OP

ERATO Rx TRACE_IF_OPERATOR>((<Expressiom>)

<OR>(<Expression2>)) { <EVENT_IDENT3xTRACE_PREFIX_OPERATORx

TRACESKIPOPERAT OR>}

5.4.1.1 Synchronization to Sequence

The essence of the fault model Synchronization to Sequence is that the relationship

between two activity events is changed from parallel to sequential so that the

synchronization relationship among three activities becomes sequence. Therefore, the

essence of this fault model is the same as the essence of fault model Parallel to

Sequential. That Fault model has been previously explored in the workflow pattern

Parallel Split. We have described the mutation process for that fault model in section

5.2.1.1. Therefore we don’t repeat the discussion here.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.1.2 Synchronization to Parallel

The essence of the fault model Synchronization to Parallel is that the relationship

between two activity events is changed from sequential to parallel so that the

synchronization relationship among three activities becomes parallel. Therefore, the

essence of this fault model is the same as that of the Fault model Sequential to Parallel,

which was discussed in the workflow pattern Sequence. Since we have described the

mutation process for that fault model in section 5.1.1.1, we don’t repeat it here.

5.4.1.3 Extra Single Condition

The essence of this fault model is that an extra condition is injected right after the

synchronization point. If the condition is not satisfied, then the activity right after the

condition won’t be executed. Initially, that activity is expected to perform after the

process reaches the synchronization point. The mutation process for this fault model is

<EVENTJDENT3>3< TRACE_IF_OPERATOR> (<Expression>)
{<EVENT_IDENT3><TRACE_PREFIX_OPERAT OR>
<TRACE_SKIP_OPERATOR>}

5.4.1.4 Extra AND Conditions

The essence of the fault models Extra AND Conditions is that two extra conditions are

injected right after the synchronization point. Those two conditions have an AND

relationship. If any of the conditions are not true, then the activity right after the

conditions won’t be executed. Initially, that activity is expected to execute after the

process reaches the synchronization point. The mutation process for this fault model is

<EVENT IDENT3>-£< TRACE IF OPERATOR> ((<Expressiom>) <AND>
(<Expression2>)){<EVENT_IDENT3>
<TRACE_PREFIXOPERATOR>

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<TRACE_SKIP_OPERAT 0R>}

5.4.1.5 Extra OR Conditions

The essence of the fault model Extra OR Conditions is that two extra conditions are

injected right after the synchronization point. Those two conditions have an OR

relationship. If both conditions are not true, then the activity right after the conditions

won’t be executed. Initially, that activity is expected to execute after the process reaches

the synchronization point. The mutation process for this fault model is

<EVENT_IDENT3>3< TRACE_IF_OPERATOR> ((<Expressiom>) <OR>
(expression2)) {<EVENT_IDENT3>

<TRACE_PREFIX_OPERATOR>
<TRACE_SKIP_OPERATOR>}

5.4.2 Implementation of mutation process
For the Synchronization workflow pattern, there are two types of implementation. One is

using the <sequence> activity (refer to listing 4.3), and the other one is using the link

construct (refer to listing 4.4). For each type of implementation, we are going to illustrate

the mutation process for each fault model.

5.4.2.1 Implementation using the <sequence> activity

For the implementation of the workflow pattern Synchronization, which uses the

<sequence> activity, its BNF is

<sequence standard-attributes>
standard-elements
<flow standard-attributes>

standard-elements
activitya
activityb

</flow>
activityc

</sequence>

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.2.1.1 Synchronization to Sequence

An implementation of the fault model Synchronization to Sequence is:

<sequence standard-attributes>
standard-elements
<sequence standard-attributes>

standard-elements
activity ̂
activityb

</sequence>
activityc

</sequence>

The mutation process for this fault model is: flow -^sequence

5.4.2.1.2 Synchronization to Parallel

An implementation of the fault model Synchronization to Parallel, is:

<flow standard-attributes>
standard-elements
<flow standard-attributes>

standard-elements
activitya
activityb

</flow>
activityc

</flow>

The mutation process for this fault model is: sequence -£flow

5.4.2.1.3 Extra Single Condition

The fault model Extra Single Condition cannot be applied in the implementation using

the <sequence> activity, since in a <sequence> activity, the link construct is not allowed.

If we cannot use a link construct, then we are not allowed to inject transition conditions

into the source or target element of an activity. Analogously, the other two types of fault

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model, Extra AND Conditions and Extra OR Conditions cannot be applied to this type of

implementation.

5.4.2.2 Implementation using the <link> construct

When we implement the workflow pattern Synchronization using the <link> activity, the

BNF of the implementation is

<flow standard-attributes>
standard-elements
<links>

<link name="namel"/>
clink name="name2"/>
link*

</links>
activity-start-elementa
ctarget linkName="ncnamel"/>*
Csource linkName="namel"/> Csource linkName="ncnamel"
transitionCondition="bool-expr"? />*
activity-end-elementa
activity-start-elementh
Csource linkName="name2"/> ctarget linkName="ncname2"/>*
Csource linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementh
activity-start-elementc
joinCondition = "namel AND name2"
ctarget linkName="namel"/> ctarget linkName="name2"/>
Ctarget linkName="ncname2"/>*
csource linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementc

c/flow>

5.4.2.2.1 Synchronization to Sequence

An implementation of the fault model Synchronization to Sequence is:

cflow standard-attributes>
standard-elements
clinks>

Clink name="namel"/>
clink name="name2"/>
link*

c/links>
activity-start-elementa
ctarget linkName="ncnamel"/>*
csource linkName="namel"/> csource linkName="ncnamel"

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transitionCondition="bool-expr"? />*
activity-end-elementa
activity-start-elementb
<target linkName="namel"/>
<source linkName="name2"/>
<target linkName="ncname2"/>*
<source linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementh
activity-start-elementc
<target linkName="name2"/>
<target linkName="ncname2"/>*
<source linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementr

</flow>

The mutation process for this fault model has three steps:

1) <target linkName-’namel ”/> t O

2) <source linkName=“name2”/> <target linkName=”namerV> <source
linkName=”name2”/>

3) joinCondition = “namel AND name2” $

5A2.2.2 Synchronization to Parallel

An implementation of the fault model Synchronization to Parallel is:

<flow standard-attributes>
standard-elements
<links>

<link name="namel"/>
<link name="name2"/>
link*

</links>
activity-start-elementa
ctarget linkName="ncnamel"/>*
Csource linkName="namel"/> csource linkName="ncnamel"
transitionCondition="bool-expr"? />*
activity-end-elementa
activity-start-elementh
Csource linkName="name2"/> ctarget linkName="ncname2"/>*
csource linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementb
activity-start-elementc
joinCondition = "namel AND name2"
ctarget linkName="namel"/> ctarget linkName="name2"/>
ctarget linkName="ncname2"/>*

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<source linkName="ncname2" transitionCondition="bool-expr"?/>*
activitv-end-elementn

</flow>

The mutation process for this fault model has five steps:

1) <source linkName=”namel”/> t O

2) <source linkName-’name2”/> t o

3) <target linkName=”namerV> t o

4) <target linkName=”nameTV> t o

5) joinCondition = “namel AND name2

5.4.2.2.3 Extra Single Condition

An implementation of the fault model Extra Single Condition, is:

<flow standard-attributes>
standard-elements
<links>

clink name="namel"/>
clink name="name2"/>
link*

c/links>
activity-start-elementa
ctarget linkName="ncnamel"/>*
csource linkName="namel" transitionCondition ="bool-exprl"/>
csource linkName="ncnamel"
transitionCondition="bool-expr"? />*
activity-end-elementa
activity-start-elementh
Csource linkName="name2"/> Ctarget linkName="ncname2"/>*
Csource linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementb
activity-start-elementc
joinCondition = "namel AND name2"
ctarget linkName="namel"/> ctarget linkName="name2"/>
ctarget linkName="ncname2"/>*
Csource linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementc

c/flow>

The mutation process for this fault model is:

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<source linkName=”name 1 ”/> -£<source linkName=”nam er’
transitionCondition - ’bool-expr 1 ”/>

5 .4 .2 .2 .4 Extra AND Conditions
An implementation of the fault model Extra AND Conditions is:

<flow standard-attributes>
standard-elements
<links>

<link name="namel"/>
<link name="name2"/>
link*

</links>
actlvity-start-elementa
<target linkName="ncnamel"/>*
<source linkName="namel" transitionCondition ="bool-exprl"/>
<source linkName="ncnamel"
transitionCondition="bool-expr"? />*
activity-end-elementa
activity-start-elementh
<source linkName="name2" transitionCondition ="bool- expr2"/>
<target linkName="ncname2"/>*
<source linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementh
activity-start-elementc
joinCondition = "namel AND name2"
<target linkName="namel"/> <target linkName="name2"/>
ctarget linkName="ncname2"/>*
Csource linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementc

< /flow>

The mutation process for this fault model has two steps:

1) <source linkName=”namerV> -£<source linkName=”namel”
transitionCondition =”bool-expr 1 ”/>

2) <source linkName=”name2”/> -^<source linkName=”name2”
transitionCondition =”bool-expr2”/>

5.4.2.2.5 Extra OR Condition

An implementation of the fault model Extra OR Conditions is:

cflow standard-attributes>
standard-elements
clinks>

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<link name="namel"/>
<link name="name2"/>
link*

</links>
activity-start-elementa
<target linkName="ncnamel"/>*
<source linkName="namel" transitionCondition ="bool-exprl"/>
<source linkName="ncnamel"
transitionCondition="bool-expr"? />*
activity-end-elementa
activity-start-elementb
<source linkName="name2" transitionCondition ="bool-expr2"/>
<target linkName="ncname2"/>*
<source linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementb
activity-start-elementr,
joinCondition = "namel OR name2"
<target linkName="namel"/> <target linkName="name2"/>
<target linkName="ncname2"/>*
<source linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementc

</flow>

The mutation process for this fault model has three steps:

1) <source UnkName=”namer7> -t<source linkName=”namel”
transitionCondition =”bool-expr 1’7>

2) <source linkName=”namer7> -£<source linkName=”name2”
transitionCondition =”bool-expr2’7>

3) “namel AND name2” -^“namel OR name2”

5.4.3 BPEL4WS examples

Again for the sake of simplicity, we defined three symbols, each of which represents a

snippet of BPEL4WS. Then we use these symbols to illustrate the examples in this

section. In the following equations, the symbol on the left is used to represent the

BPEL4WS code on the right side.

< in y p k e DecideOnShipper> =<invoke partnerLink-'shipping"
name - 'DecideOnShipper" portType="ship:shipping"

operation-'requestShipping" inputVariable-'shippingRequest"
outputV ariable-' shippinglnfo ">

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

< in v o k e in itia te P ric e C a ic u ia tio n > = < i n v o k e p a r t n e r L i n k = " i n v o i c i n g "

name = "InitiatePriceCalculation" portType="inv:invoice"
operation-'initiatePriceCalculation" inputVariable="PO"

outputV ariable="Result">

<inypkecompietePriceCaicuiation> =<invoke partnerLink-’invoicing"
name = "CompletePriceCalculation" portType="inv:invoice"
operation="sendShippingPrice" inputVariable-'shippinglnfo"
outputVariable-'Result">

5.4.3.1 Synchronization to Sequence

When the workflow pattern Synchronization is implemented using the <sequence>

activity, if the original BPEL4WS program corresponds to listing 5.12(a), the mutant of

mutation process (defined in section 5.3.2.1.1) has the structure shown in listing 5.12(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<sequence>
<flow>

<4nVOker)ecirleOnShipper>
< / in v o k e >

<inVOke[nitifltePrir.eC:alniil!itinn'>
< / in v o k e >

</flow>
<inVOkeCornpletePrice.Cal™latinn>
< / in v o k e >

</sequence>

<sequence>
<sequence>

<inVOkenec-,ideOnShipper>
< / in v o k e >

< in v Okein iti atePri ceOal culation^
< / in v o k e >

</sequence>
^inVOkecompletePriceCalcnlation^
</sequence>

</flow>

Listing 5.12

When the workflow pattern Synchronization is implemented through link construct, if the

original BPEL4WS program corresponds to listing 5.13(a), the mutant of mutation

process (defined in section 5.3.2.2.1) has the structure shown in listing 5.13(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<flow> <flow>
<links> <links>

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<link name=“ship-to-invoice,7> <link name=“ship-to-invoice”/>
<link name=“calclulate-price’7> <link name=“calculate-price’7>
</links> </links>
<'inVOker)eddeOnShipper̂ > <inVOker>eci (leOn Shipper'5'

<source linkName=“ ship-to-invoice’7> <source linkName=“ ship-to-invoice”/>
</invoke> </invoke>
<inv okeiniti atePri npOalr.i 11 atinn> <^inVOkeTnitiatePrir.e.r'.alr.iilatif\n':>

<source linkName=“ calclulate-price’7> <target linkName=“ship-to-invoice’7>
</invoke> <source linkName==“calculate-price’7>
<inv okernmpl etePri ceOal r.i ilatinrA </invoke>
joinCondition = “namel AND name2” </flow>
<target linkName=“ ship-to-invoice”/> <inV O k eC om pleteP riceC al['iilation->

<target linkName=“ calclulate-price’7> <target linkName=”calculate-price’7>
</invoke> </invoke>
</flow> </flow>

Listing 5.13

5.4.3.2 Synchronization to Parallel

When the workflow pattern Synchronization is implemented using the <sequence>

activity, if the original BPEL4WS program corresponds to listing 5.14(a), the mutant of

mutation process (defined in section 5.3.2.1.2) has the structure of listing 5.14(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<sequence>
<flow>

< in V 0 k e n e d d e O n S h ip p e r >

</invoke>
^ in V O k ein itia teP r in eC a ln iila tio n ^

</invoke>
</flow>
^ in V O k eC o m p leteP rireC a lr iila tio n ^

</invoke>
</sequence>

<flow>
<flow>

^ in V O k e n e c ir le O n S h ip p e r^

</invoke>
< in V 0 k e in iiia le P r ic e f'a lc iila t io n '>

</invoke>
</flow>
^ in V O k eC n m p le tn P r ice f'a lc iila lio iA

</invoke>
</flow>

Listing 5.14

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When the workflow pattern Synchronization is implemented through the link construct, if

the original BPEL4WS program corresponds to listing 5.15(a), the mutant of mutation

process (defined in section 5.3.2.2.2) has the structure of listing 5.15(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<flow> <flow>
<links> <links>
<link name=“ship-to-invoice”/> <link name=“ship-to-invoice’7>
<link name=“calclulate-price,,/> <link name=“calclulate-price,7>
</links> </links>
<invokenp('irlp0n<\hipppr> <'in V O ker)efiii1eO nSH ipper>

<source linkName=“ ship-to-invoice’7> </invoke>
</invoke> < i n V O k e [nitiatePricef'alciilarinn^’

< in V 0 k ein itia teP rip p ra lr ,n la tin n '> </invoke>
<source linkName=“ calclulate-price”/> </flow>
</invoke> ^ m V O k eC om p leteP riceC .a lc iila tin n ^

<inVOkeCotnplefePri(',f!Cal(',iilatinn-> </invoke>
joinCondition = “namel AND name2” </flow>
<target linkName=“ ship-to-invoice’7>
<target linkName=“ calclulate-price’7>
</invoke>
</flow>

Listing 5.15

5.4.3.3 Extra Single Condition

When the workflow pattern Synchronization is implemented through the link construct, if

the original BPEL4WS program corresponds to listing 5.16(a), the mutant of mutation

process (defined in section 5.3.2.2.3) has the structure of listing 5.16(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<flow>
<links>
<link name=“ship-to-invoice’7>
<link name=“calclulate-price'7>
</links>
<̂ inV0ker)enifieOnShipper>

<source linkName=“ ship-to-invoice”/>
</invoke>
^inVOkeTnitiatePrippCalcnlatinn^”

<flow>
<links>
<link name=“ship-to-invoice’7>
<link name=“calclulate-price,7>
</links>
<^inVOkenecideOnShipper>
<source linkName=“ ship-to-invoice’7>
</invoke>
^nVOkeinitiatePriceCalontation^

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<source linkName=“ calclulate-price”/>
</invoke>
<inVokecomplctePriceCalculation^>
joinCondition = “namel AND name2”
<target linkName=“ ship-to-invoice”/>
<target linkName=“ calclulate-price’7>
</invoke>
</flow>

<source linkName=“ calclulate-price”
transitionCondition="bpws:getVariableData(
Result, 'amount')<10"/>
</invoke>
■^inVOkecompletePriceCalculation^

joinCondition = “namel AND name2”
<target linkName-‘ ship-to-invoice”/>
<target linkName=“ calclulate-price”/>
</invoke>
</flow>

Listing 5.16

5.4.3.4 Extra AND Conditions

When the workflow pattern Synchronization is implemented through the link construct, if

the original BPEL4WS program corresponds to listing 5.17(a), the mutant of mutation

process (defined in section 5.3.2.2.4) has the structure of listing 5.17(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<flow>
<links>
<link name=“ship-to-invoice”/>
<link name=“calclulate-price”/>
</links>
< 'in V O ker> eriH eO nSh ipper>

<source linkName=“ ship-to-invoice’7>
</invoke>
<inv okein iti atePri ceCal r.nl ati n n ^

<source llnkName-“ calclulate-price’7>
</invoke>
< in V O k eC n m p leteP r ice ('a lcn la tion '>

joinCondition = “namel AND name2”
<target linkName=“ ship-to-invoice”/>
<target linkName=“ calclulate-price’7>
</invoke>
</flow>

<flow>
<links>
<link name=“ship-to-invoice’7>
<link name=“calclulate-price’7>
</links>
< i n V o k e n e c i deOnSh ipper5-

<source linkName=“ ship-to-invoice”
transitionCondition="bpws:getVariableData(
‘ Shippinglnfo ’, “schedule”)! =NulP7>
</invoke>
^ in V O k ein jtia teP r iceC a lc iila tio n ^

<source linkName=“ calclulate-price”
transitionCondition="bpws:getVariableData(
Result, 'amounf)<10'7>
< / i n V O k e > < 'in V o k ecn m p le teP r iceC a lcn la tio n '>

joinCondition = “namel AND name2”
<target linkName=“ ship-to-invoice’7>
<target linkName=“ calclulate-price”/>
</invoke>
</flow>

Listing 5.17

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.3.5 Extra OR Condition

When the workflow pattern Synchronization is implemented through the link construct, if

the original BPEL4WS program corresponds to listing 5.18(a), the mutant of mutation

process (defined in section 5.3.2.2.5) has the structure of listing 5.18(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<flow>
<links>
<link name=“ship-to-invoice”/>
<link name=“calclulate-price”/>
</links>
^inV O keO ecideO nS hipper^

<source linkName=“ ship-to-invoice”/>
</invoke>
M nV O keTnitiatePrireralm ilatinn^

<source linkName=“ calclulate-price”/>
</invoke>
<inVOkeCrimp1etpPrineralr,iilatinn>

joinCondition = “namel AND name2”
<target linkName=“ ship-to-invoice”/>
<target linkName=“ calclulate-price”/>
</invoke>
</flow>

<flow>
<links>
Mink name=“ship-to-invoice”/>
Mink name=“calclulate-price”/>
</links>
M nV OkenecrrieOnShipper>

<source linkName=“ ship-to-invoice”
transitionCondition=“bpws: getVariableData(
‘Shippinglnfo’, ‘schedule’)!=Null”/>
</invoke>
<m V O kernitiatePrim ralniilatinn'>

<source linkName=“ calclulate-price”
transitionCondition="bpws:getVariableData(
‘Result’, ‘amount’)<10”/>
</inVoke> MnVOkeCnrnpletePriceC.alr,nlatir>n->

joinCondition = “namel OR name2”
Marget linkName=“ ship-to-invoice”/>
Marget linkName=“ calclulate-price”/>
</invoke>
</flow>

Listing 5.18

5.5 Exclusive Choice

5.5.1 Requirement of mutation process
For the workflow pattern Exclusive Choice, its representation in the BNF of C S P bpel is:

<EVENT_IDENT 1 ><TRACE_PREFIX_OPERAT OR><TRACE_IF_OPERAT OR>(

<Expression>){<EVENT_IDENT2><TRACE_PREFIX_OPERATOR><TRACE_SKIP

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0PERAT0R>}<TRACE_ELSE_0PERAT0R>{<EVENT_IDENT3><TRACE_PREFI

XOPERAT O RxTRACESK IPO PERAT OR>}

As we mentioned in section 4.3, there are two major fault models for the workflow

pattern Exclusive Choice. Those fault models respectively are

• Switch Condition (FM11)

<EVENT_IDENTl><TRACE_PREFIX_OPERATOR><TRACE_IF_OPERATO

R>(<Expression>) { <E VENTIDENT3 ><TRACE_PREFIX_OPERAT O R xT R

ACESKIPOPERAT OR> } <TRACE_ELSE_OPERAT OR> { <E VENTIDENT2

xTRACEPREFIXO PERAT ORxTRACESK IPO PERAT OR> }

• Exclusive Choice to Parallel (FM12)

<EVENT_IDENT 1 ><TRACE_PREFIX_OPERATOR>(<EVENT_IDENT2><T

RACE_PREFIX_OPERATORxTRACE_SKIP_OPERATOR>)

<TRACE_PARALLEL_OPERATOR>(<EVENT_IDENT3><TRACE_PREFIX_

OPERAT ORxTRACESK IPO PERAT OR>)

5.5.1.1 Switch Condition

The essence of the fault model Switch Condition is that two exclusive conditions, each of

which determines the execution of a subsequent activity, are switched. Therefore, each

subsequent activity executes in an invalid condition.

The mutation process for this fault model is:

<EVENT IDENT2>^<EVENT IDENT3>

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.1.2 Exclusive Choice to Parallel

The essence of the fault model Exclusive Choice to Parallel is that the exclusive

conditions that determines the execution of subsequent activities are missed, therefore the

subsequent activities can execute in parallel. Initially, only one subsequent activity is

expected to execute.

The mutation process for this fault model has two steps:

1) <TRACE_IF_OPERATOR>(<Expression>) (D

2) <TRACE_ELSE_OPERATOR>3<TRACE_PARALLEL_OPERATOR>

5.5.2 Implementation of mutation process

For the Sequence workflow pattern, there are two types of implementation. One is using

the link construct, and the other one is using the <switch> activity. For each type of

implementation, we are going to illustrate the mutation process for each fault model.

5.5.2.1 Implementation using the link construct

The BNF of the implementation of this workflow pattern is:
<flow standard-attributes >

standard-elements
<links>

<link name="namel"/>
clink name="name2"/>
<link>*

</links>
activity-start-elementa
ctarget linkName="ncnamel"/>*
Csource linkName="namel" transitionCondition="bool-expr1"/>
Csource linkName="name2" transitionCondition="bool-expr2" />

Csource linkName="ncnamel" transitionCondition="bool-expr"? />*
activity-end-elementa
activity-start-elementb
ctarget linkName="namel"/> ctarget linkName="ncname2"/>*

Csource linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementh

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

activity-start-elements
<target linkName="name2"/> <target linkName="ncname2"/>*

<source linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementc
activity*

</flow>

5.5.2.1.1 Switch Condition

The implementation of the fault model Switch Conditions is:

<flow standard-attributes >
standard-elements
<links>

<link name="namel"/>
-clink name="name2"/>
clink>*

</links>
activity-start-elementa
<target linkName="ncnamel"/>*
Csource linkName="namel" transitionCondition="bool-expri"/>
Csource linkName="name2" transitionCondition="bool-expr2" />

Csource linkName="ncnamel" transitionCondition="bool-expr"? '/>*
activity-end-elementa
activity-start-elementh
-ctarget linkName="namel"/> <target linkName="ncname2"/>*

csource linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementh
activity-start-elementc
ctarget linkName="name2"/> Ctarget linkName="ncname2"/>*

Csource linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementc
activity*

c/flow>

The mutation process for this fault model is: Namel ̂ name2

5.5.2.1.2 Exclusive Choice to Parallel
The implementation of the fault model Exclusive Choice to Parallel is:

cflow standard-attributes >
standard-elements
Clinks>

clink name="namel"/>
clink name="name2"/>
clink>*

c/links>
activity-start-elementa

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<target linkName="ncnamel"/>*
<source linkName="namel""/>
<source linkName="name2"" />

<source linkName="ncnamel" transitionCondition="bool-expr"?/>*
activity-end-elementa
activity-start-elementb
ctarget linkName="namel"/> ctarget linkName="ncname2"/>*

Csource linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementh
activity-start-elementn
ctarget linkName="name2"/> ctarget linkName="ncname2"/>*

Csource linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementc
activity*

< / flow>

The mutation process for this fault model has two steps:

1) transitionCondition-’bool-exprl” <f>

2) transitionCondition=”bool-expr2” <D

5.5.2.2 Implementation using the <switch> activity

The BNF of the implementation of this workflow pattern is:
Csequence>

activitya
cswitch standard-attributes >

standard-elements
Cease condition="bool-expr1" />

activityb
Cease condition="bool-expr2" />

activityc
(Cease condition="bool-expr" /> Activity)*

c/switch>
c/sequence>

5.5.2.2.1 Switch Condition

The implementation of the fault model Switch Condition is:

csequence>
activitya
Cswitch standard-attributes >

standard-elements
Cease condition="bool-expr!" />

activityc
cease condition="bool-expr2" />

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

activityb
(<case condition="bool-expr" /> activity)*

</switch>
</sequence>

The mutation process for this fault model is: activityb^acticityc

5.5.2.2.2 Exclusive Choice to Parallel

When the workflow pattern Exclusive Choice is implemented using the <switch>

activity, the fault model Exclusive Choice to Parallel cannot be applied to it.

5.5.3 BPEL4WS examples

Again for the sake of simplicity, we defined three symbols, each of which represents a

snippet of BPEL4WS. Then we use these symbols to illustrate the examples in this

section. In the following equations, the symbol on the left is used to represent the

BPEL4WS code on the right side.

< r e c e iy e receiveReUest> <receive createlnstance="yes" name="receiveRequest"
operation="approve" partnerLink="customer"
portType="apns:loanApprovalPT" variable="request">

< i n y q k e i novokeApprover> = <invoke inputVariable="request"
name="invokeapprover" operation="approve"
outputVariable="approvalInfo"
partnerLink="approver" portType="apns:loanApprovalPT">

< i n y p k e i nVokeA ssessor> = <invoke inputVariable="request"
name="invokeAssessor" operation="check"
outputVariable="riskAssessment" partnerLink="assessor"
portType="asns:riskAssessmentPT">

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.3.1 Switch Condition

When the workflow pattern Exclusive is implemented through the link construct, if the

original BPEL4WS program corresponds to listing 5.19(a), the mutant of mutation

process (defined in section 5.4.1.1) has the structure of listing 5.19(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<flow>
<links>
<link name="receive-to-approval"/>
<link name="receive-to-assess"/>
</links>
^ r e C e iv e r e c f i iv e R e n e s t^

<source linkName="receive-to-approval"
transitionCondition-'bpws:getVariableData('
request', 'amount')>=10000"/>
<source linkName-'receive-to-assess"
transitionCondition="bpws:getVariableData('
request', 'amount')<10000"/>
</receive>
învokejnovoke Approver'*

<target linkName=“receive-to-approval”/>
</invoke>

< in V O k e in v o k e A « e « o r >

<target linkName=“receive-to-assess”/>
</invoke>
</flow>

<flow>
<links>
<link name="receive-to-approval"/>
<link name="receive-to-assess"/>
</links>
^ r e C e iv er e o e iv eR e n e st^ *

<source linkName="receive-to-approval"
transitionCondition="bpws:getVariableData
('request', 'amount')>=l 0000"/>
<source linkName="receive-to-assess"
transitionCondition="bpws:getVariableData
('request', 'amount')< 10000"/>
</receive>
<invoke, nnvnke A pprnver^

<target linkName=“receive-to-assess”/>
</invoke>
' ' ' in V O k e jn v o k e Assessor^*

<target linkName=“receive-to-approval”/>
</invoke>
</flow>

Listing 5.19

When the workflow pattern Exclusive is implemented through the <switch> activity, if

the original BPEL4WS program corresponds to listing 5.20(a), the mutant of mutation

process (defined in section 5.4.2.1) has the structure of listing 5.20(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<sequence>
<reCeivereceivcR enest^

<switch>
<case condition="bpws :getVariableData
('request', 'amount')>=l 0000"/>

<sequence>
<receiv ereceiveR enesK*

<switch>
<case condition="bpws :getVariableData
('request', 'amount')>=l 0000"/>

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

înVOkejnnvokpApprnvpr̂
</case> </case>
<case condition="bpws:getVariableData <case condition="bpws:getVariableData

('request', 'amount')< 10000"/> ('request', 'amount')< 10000'7>
<inVOkejnvnkeAssessnr'> <inv Okeinnvnk p A pprnvpr-̂

</case> </case>
</sequence> </sequence>

5.5.3.2 Exclusive Choice to Parallel

When workflow pattern Exclusive is implemented through the link construct, if the

original BPEL4WS program corresponds to listing 5.21(a), the mutant of mutation

process (defined in section 5.4.1.2) has the structure of listing 5.21(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<flow>
<links>
<link name="receive-to-approval"/>
<link name="receive-to-assess"/>
</links>
<receiv CreceivpR ene,st'>

<source linkName="receive-to-approval"
transitionCondition="bpws:getVariableData('
request', 'amounf)>=10000"/>
<source linkName-'receive-to-assess"
transitionCondition="bpws:getVariableData('
request', 'amount')<10000"/>
</receive>
< in V O k e in n v o k e A p p ro v e r >

<target linkN ame=“receive-to-approval”/>
</invoke>
<inv Okein voke A ssessnp "

<target linkName=“receive-to-assess”/>
</invoke>
</flow>

<flow>
<links>
d ink name="receive-to-approval"/>
<link name="receive-to-assess"/>
</links>
CreCeivereoeivpRpiiest̂
<source linkName="receive-to-approval" />
<source linkName="receive-to-assess" />
</receive>
C in V O k C in o v o k e A pprover^

<target linkName=“receive-to-assess”/>
</invoke>

C in V O k e in v n k e A ssp ‘ssfiP>

<target linkName=“receive-to-approvar7>
</invoke>
</flow>

Listing 5.21

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 Simple Merge

5.6.1 Requirement of mutation process

For the workflow pattern Simple Merge, its representation in BNF of C S P bpel is:

<TRACE_IF_OPERAT OR>(<Expression 1 >) { <E VENTIDENT1 ><TRACE_PREFIX_

OPERATOR><TRACE_SKIP_OPERATOR>}<TRACE_ELSE_OPERATOR>{<TRAC

E_IF_OPERATOR>(<Expression2>){<EVENT_IDENT2><TRACE_PREFIX_OPERA

TOR><TRACE_SKIP_OPERATOR>}}

As we mentioned in section 4.5, there are two major fault models for the workflow

pattern Simple Merge. Those fault models respectively are

• Switch Condition (FM11)

<TRACE_IF_OPERAT OR>(<Expression2>) { <EVENT_IDENT 1 ><TRACE_PR

EFIX_OPERATOR><TRACE_SKIP_OPERATOR>}<TRACE_ELSE_OPERA

TOR>{<TRACE_IF_OPERATOR>(<Expressionl>){<EVENT_IDENT2><TRA

CE_PREFIX_OPERATOR><TRACE_SKIP_OPERATOR>}}

• Simple Merge to Multi-Choice (FM13)

(<TRACE_IF_OPERAT OR>(<Expression 1 >) { <EVENT_IDENT 1 ><TRACE_P

REFIX_OPERATOR><TRACE_SKIP_OPERATOR>})<TRACE_PARALLEL_

OPERATOR>(<TRACE_IF_OPERATOR>(<Expression3>){<EVENT_IDENT2

><TRACE_PREFIX_OPERATOR><TRACE_SKIP_OPERATOR>})

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6.1.1 Switch Condition

The essence of the fault model Switch Condition is that two conditions, each of which

determines the execution of a subsequent activity, are switched. Therefore, each

subsequent activity executes in an inappropriate condition.

The mutation process for this fault model is: <expression 1 >^<expression2>

5.6.1.2 Simple Merge to Multi-Choice

The Fault model Simple Merge to Multi-Choice can be implemented only when the

workflow pattern Simple Merge is implemented through a link construct. In this

implementation, the two transition conditions are exclusive. The essence of this fault

model is that a transition condition is modified so that those two exclusive conditions

become inclusive Therefore, it is possible that all the subsequent activities can execute in

parallel. Initially, at most one subsequent activity is expected to execute.

The mutation process for this fault model has two steps:

1) <TRACE_ELSE_OPERATOR> £ <TRACE_P ARALLEOPERATOR>

2) <expression2> <expression3>

5.6.2 Implementation of mutation process

For the workflow pattern Simple Merge, there are two types of implementation. One is

using the link construct, and the other one is using the <switch> activity. For each type of

implementation, we will illustrate the mutation process for each fault model.

5.6.2.1 Implementation using link construct

The BNF of the implementation of this workflow pattern is:
<flow standard-attributes >

standard-elements

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<links>
<link name="namel"/>
<link name="name2"/>
<link>*

</links>
<empty>
<source linkName="namel" transitionCondition="bool-exprl"/>
<source linkName="name2" transitionCondition="bool-expr2"/>

</empty>
activity-start-elementa
<target linkName="ncnamel"/>*
<target linkName="namel" />

<source linkName="ncnamel" transitionCondition="bool-expr"?/>*
activity-end-elementa
activity-start-elementh
<target linkName="name2"/> <target linkName="ncname2"/>*

<source linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementb
activity*

</flow>

5.6.2.1.1 Switch Condition

The implementation of the fault model Switch Condition is:

<flow standard-attributes >
standard-elements
<links>

<link name="namel"/>
<link name="name2"/>
<link>*

</links>
<empty>
<source linkName="namel" transitionCondition="bool-expr2"/>
<source linkName="name2" transitionCondition="bool-exprl"/>
</empty>
activity-start-elementa
Ctarget linkName="ncnamel"/>*
<target linkName="namel" />

<source linkName="ncnamel" transitionCondition="bool-expr"?/>*
activity-end-elementa
activity-start-elementh
<target linkName="name2"/> <target linkName="ncname2"/>*

<source linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementb
activity*

</flow>

The mutation process for this fault model is: bool-expr2^bool-exprl

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6.2.1.2 Simple Merge to Multi-Choice

The implementation of the fault model Switch Condition is:

<flow standard-attributes >
standard-elements
<links>

<link name="namel"/> '
clink name="name2"/>
<link>*

</links>
<empty>
csource linkName="namel" transitionCondition="bool-exprl"/>
Csource linkName="name2" transitionCondition="bool-expr3"/>
</empty>
activity-start-elementa
Ctarget linkName="ncnamel"/>*
Ctarget linkName="namel" />

csource linkName="ncnamel" transitionCondition="bool-expr"?/>*
activity-end-elementa
activity-start-elementh
ctarget linkName="name2"/> ctarget linkName="ncname2"/>*

Csource linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementb
activity*

c/flow>

The mutation process for this fault model is: bool-expr2 bool-expr3

5.6.2.2 Implementation using the <switch> activity

The BNF of the implementation of this workflow pattern is:

Cswitch standard-attributes >
standard-elements
Cease condition="bool-expr1" />

activitya
cease condition="bool-expr2" />

activityh
(Cease condition="bool-expr" /> activity)*

< / switch>

5.6.2.2.1 Switch Condition

The implementation of the fault model Switch Condition is:

Cswitch standard-attributes >
standard-elements

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<case condition="bool-expr2" />
activitVa

<case condition="bool-exprl" />
activitvb

(<case condition="bool-expr" /> activity)*
</switch>

The mutation process for this fault model is: bool-expr2^bool-expr 1

5.6.2.2.2 Simple Merge to exclusive Choice
When the workflow pattern Simple Merge is implemented using the <switch> activity,

the fault model Exclusive Choice to Parallel cannot be applied to it.

5.6.3 BPEL4WS examples
Again for the sake of simplicity, we defined two symbols, each of which represents a

snippet of BPEL4WS code. Then we use these symbols to illustrate the examples in this

section. In the following equations, the symbol on the left is used to represent the

BPEL4WS code on the right side.

< m y p k e chargeCreditCard'> = <invoke partnerLink="creditCardSerivce"
name ="chargeCreditCard"
portType="credit:creditCardService"
operation="chargeCreditCard"
inputVariable="totalCharge">

< in y o k e p ay\yithCredit-> = Cinvoke partnerLink="creditSerivce"
name ="payWithCredit"
portType="credit:creditService"
operation="payWithCredit"
inputVariable="totalCharge">

5.6.3.1 Switch Condition

When the workflow pattern Simple Merge is implemented through the link construct, if

the original BPEL4WS program corresponds to listing 5.22(a), the mutant of mutation

process (defined in section 5.5.1.1) has the structure presented in listing 5.22(b)

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<flow standard-attributes > <flow standard-attributes >
standard-elements standard-elements

<links>
<link name="creditCard"/>
<link name="credit"/>

<link>*
</links>
<empty>
<source linkName="creditCard"

transitionCondition="bpws:getVariableD
ata(1totalCharge1,'number')<=
bpws:getVariableData('balance','number
') "/>
<source linkName="credit"

transitionCondition="bpws:getVariableD
ata ('totalCharge', 'number')< =
bpws:getVariableData('credit','number'
) AND bpws:getVariableData
('totalCharge','number')> bpws:
getVariableData('balance','number')"/>

</empty>
<inVOkec,hargeCrerlitrard>

-Ctarget linkName="creditCard" />
</invoke>
<inVOkepavW,thf’re,lit>

-ctarget linkName="credit"/>
</invoke>

</flow>

<links>
<link name="creditCard"/>
<link name="credit"/>

<link>*
</links>
<empty>
Csource linkName="creditCard"

transitionCondition="="bpws:getVariabl
eData('totalCharge', 1 number')< =
bpws:getVariableData('credit','number'
) AND bpws:getVariableData
('totalCharge1, 'number 1)> bpws:
getVariableData('balance', 'number 1)"/>

Csource linkName="credit"
transitionCondition="bpws:getVariableD
ata('totalCharge','number')<=
bpws:getVariableData('balance','number
') " / >
</empty>

<inVOkechar£eCmditCarfl'>
<target linkName="creditCard" />

</invoke>
<inV0kepavWithCredit'>

<target linkName="credit"/>
</invoke>

</flow>

Listing 5.22

When the workflow pattern Simple Merge is implemented through the <switch> activity,

if the original BPEL4WS program corresponds to listing 5.23(a), the mutant of mutation

process (defined in section 5.5.2.1) has the structure presented in listing 5.23(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<switch name="compareShippingPrice>
standard-elements

<switch name="compareShippingPrice>
standard-elements

Cease
condition="bpws:getVariableData(1 total
Charge’, 1 number 1) <= bpws:
getVariableData(’balance','number')>

<inV ok6charge,CreditC!ard->

</invoke>
</case>
cease

cease
condition="bpws:getVariableData('total
C h a r g e n u m b e r ') <= bpws:
getVariableData('credit','number')>

<inVOkec,hargef'reditf'ard->
</invoke>

</case>
Cease

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

condition="bpws:getVariableData('total condition="bpws:getVariableData('total
C h a r g e n u m b e r ') <= bpws: C h a r g e n u m b e r ') <= bpws:
getVariableData('credit1, 1 number')> getVariableData('balance','number')>

<inVOkepavWithrrerlit-> <invokepaywithCredit>
</invoke> </invoke>

</case> </case>
</switch> </switch>

Listing 5.23

5.6.3.2 Simple Merge to Multi-Choice

When the workflow pattern Simple Merge is implemented through the link construct, if

the original BPEL4WS program corresponds to listing 5.24(a), the mutant of mutation

process (defined in section 5.5.1.2) has the structure presented in listing 5.24(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<flow standard-attributes > <flow standard-attributes >
standard-elements standard-elements

<links>
<link name="creditCard"/>
<link name="credit"/>

<link>*
</links>
<empty>
<source linkName="creditCard"

transitionCondition="bpws:getVariabl
eData('totalCharge','number')<=
bpws:getVariableData('balance','numb
er ') " / >

<source linkName="credit"
transitionCondition="bpws:getVariabl
eData('totalCharge' , 'number')< =
bpws:getVariableData('credit','numbe
r') AND bpws:getVariableData
('totalCharge','number')> bpws:
getVariableData('balance','number')"
/>

</empty>
<inV OkCcharpeCreditCard->
<target linkName="creditCard" />
</invoke>
<invokepavwithCreriit>

<target linkName="credit"7>
</invoke>

</flow>

<links>
Clink name="creditCard"/>
clink name="credit"/>

clink>*
c/links>
Cempty>
Csource linkName="creditCard"

transitionCondition="bpws:getVariab
leData('totalCharge','number')<=
bpws:getVariableData('balance','num
ber ’) " / >

csource linkName="credit"
transitionCondition="bpws:getVariab
leData('totalCharge','number')<=
bpws:getVariableData('credit','numb
er ') " / >

c/empty>
Ĉ inV OkCchareeOreditCard̂
ctarget linkName="creditCard" />

< / invoke>
<inVOkepavWithCredit->

ctarget linkName="credit"/>
c/invoke>

< / flow>

Listing 5.24

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.7 Multi- Choice

5.7.1 Requirement of mutation process

For the workflow pattern Multi- Choice, its representation in BNF of C S P bpel is:

(<TRACE_IF_OPERAT OR>(<Expression 1 >) {<E VENTIDENT1 ><TRACE_PREFIX_

OPERATOR><TRACE_SKIPOPERATOR>})<TRACEPARALLEOPERATOR>(<

TRACE_IF_OPERATOR>(<Expression2>){<EVENT_IDENT2><TRACE_PREFIX_0

PERAT O RxTRACESK IPO PERAT OR>})

As we mentioned in section 4.6, there are three major fault models for workflow pattern

Multi-Choice. Those fault models respectively are

• Switch Condition (FM11)

(<TRACE_IF_OPERATOR>(<Expression2>){<EVENTJDENTl><TRACE_P

REFIX_OPERATOR><TRACE_SKIP_OPERATOR>})<TRACE_PARALLE_0

PERATOR>(<TRACE_IF_OPERATOR>(<Expressionl>){<EVENT_IDENT2>

<TRACE_PREFIX_OPERAT O RxTRACESK IPO PERAT OR>})

• Multi-Choice to Simple Merge (FM14)

<TRACE_IF_OPERATOR>(<Expressionl >) (<EVENTJDENT 1><TRACE_PR

EFIXOPERAT OR><TRACE_SKIP_OPERATOR> } <TRACE_EL SEOPERA

TOR> {<TRACE_IF_OPERATOR>(<Expression3>) {<EVENT_IDENT2><TRA

CE_PREFIX_OPERATOR><TRACE_SKIP_OPERATOR>}}

• Multi-Choice to Parallel (FM15)

(<EVENT_I DENT 1 ><TRACE_PREFIX_OPERATOR><TRACESKIP_OPER

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AT0R>)<TRACE_PARALLEL_0PERAT0R>(<EVENT_IDENT2><TRACE_

PREFIX_OPERATOR><TRACE_SKIP_OPERATOR>)

5.7.1.1 Switch Condition

The essence of the fault model Switch Condition is that two conditions, each of which

determines the execution of a subsequent activity, are switched. Therefore, each

subsequent activity executes in an invalid condition.

The mutation process for this fault model is: <Expressionl> ^ <Expression2>

5.7.1.2 Multi-Choice to Simple Merge

The essence of the fault model Multi-Choice to Simple Merge is that one transition

condition is modified so that those two inclusive conditions become exclusive.

Therefore, those two conditions can never be true at the same time, and at most one

subsequent activity can execute at a time. Initially, it is possible that multiple subsequent

activities execute in parallel.

The mutation process for this fault model is:

1) <TRACE_PARALLE_OPERATOR> <TRACE_ELSE_OPERATOR>

2) <Expression2>-^<Expression3>

5.7.1.3 Multi-Choice to Parallel

The essence of the fault model Multi-Choice to Parallel is that the transition conditions

are missed so that the subsequent activities execute without preconditions.

The mutation process for this fault model is:

<TRACE_IF_OPERATOR> (Expression) <D

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.7.2 Implementation of mutation process
For the workflow pattern Multi-Choice, there is only one type of implementation. That is

using the link construct. The BNF of the implementation of this workflow pattern is:

<flow standard-attributes >
standard-elements
<links>

clink name="namel"/>
clink name="name2"/>
Clink>*

c/links>
Cempty>
Csource linkName="namel" transitionCondition="bool-exprl"/>
Csource linkName="name2" transitionCondition="bool-expr2"/>
c/empty>
activity-start-elementa
ctarget linkName="ncnamel"/>*
ctarget linkName="namel" />

Csource linkName="ncnamel" transitionCondition="bool-expr"?/>*
activity-end-elementa
activity-start-elementb
ctarget linkName="name2"/> Ctarget linkName="ncname2"/>*

Csource linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementb
activity*

c/flow>

5.7.2.1 Switch Condition

The implementation of the fault model Switch Condition is:

cflow standard-attributes >
standard-elements
clinks>

Clink name="namel"/>
clink name="name2”/>
clink>*

c/links>
cempty>
csource linkName="namel" transitionCondition="bool-expr2"/>
Csource linkName="name2" transitionCondition="bool-exprl"/>
c/empty>
•activity-start-elementa
ctarget linkName="ncnamel"/>*
ctarget linkName="namel" />

Csource linkName="ncnamel" transitionCondition="bool-expr"?/>*
activity-end-elementa
activity-start-elementb
ctarget linkName="name2"/> Ctarget linkName="ncname2"/>*

Csource linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementb

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

activity*
</flow>

The mutation process for this fault model is: bool-expr2^bool-expr 1

5.7.2.2 Multi-Choice to Simple Merge

The implementation of the fault model Multi-Choice to Simple Merge is:

<flow standard-attributes >
standard-elements
<links>

•clink name="namel"/>
<link name="name2"/>
<link>*

</links>
<empty>
Csource linkName="namel" transitionCondition="bool-exprl"/>
Csource linkName="name2" transitionCondition="bool-expr3"/>
</empty>
activity-start-elementa
<target linkName="ncnamel"/>*
<target linkName="namel" />

Csource linkName="ncnamel"transitionCondition="bool-expr"? />*
activity-end-elementa
activity-start-elementb
<target linkName="name2"/> <target linkName="ncname2"/>*

<source linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementb
activity*

</flow>

The mutation process for this fault model is: bool-expr2-»bool-expr3

5.7.2.3 Multi-Choice to Parallel

The implementation of the fault model Multi-Choice to Parallel, is:

<flow standard-attributes >
standard-elements
<links>

<link name="namel"/>
<link name="name2"/>
<link>*

</links>
<empty>
Csource linkName="namel"/>
Csource linkName="name2"/>
</empty>

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

activity-start-elementa
<target linkName="ncnamel"/>*
<target linkName="namel" />

<source linkName="ncnamel" transitionCondition="bool-expr"?/>*
activity-end-elementa
activity-start-elementh
<target linkName="name2"/> <target linkName="ncname2"/>*

<source linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementb
activity*

</flow>

The mutation process for this fault model is

1) transitionCondition-’bool-exprl”

2) transitionCondition=”bool-expr2” <X>

5.7.3 BPEL4WS examples

Again for the sake of simplicity, we defined two symbols, each of which represents a

snippet of BPEL4WS code. Then we use these symbols to illustrate the examples in this

section. In the following equations, the symbol on the left is used to represent the

BPEL4WS code on the right side.

<invoke sendInvoiceViaMaii> <invoke
partnerLink="mail"
name ="sendInvoiceViaMail"
portType="mail:sendMail"
operation="sendInvoiceViaMail"
inputVariable="Invoice">

<inVoke sendlNvoiceViaEmaiP* — <invoke
partnerLink="mail"
name ="sendINvoiceViaEmail"
portType="mail:sendMail"
operation="sendInvoiceViaEMail"
inputVariable="Invoice">

5.7.3.1 Switch Condition

If the original BPEL4WS program corresponds to listing 5.25(a), the mutant of mutation

process (defined in section 5.6.1.1) has the structure presented in listing 5.25(b)

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<flow standard-attributes > c flow standard-attributes >
standard-elements standard-elements

<links>
clink name="Paper-invoice"/>
clink name="Eamil-invoice"/>
clink>*

c/links>
cempty>
csource linkName="Paper-invoice"

transitionCondi.tion="
bpws:getVariableData (' PO' , ' needPaperIn
voice') = ’Yes'" />

Csource linkName=" Eamil-invoice"
transitionCondition="
bpws:getVariableData('PO', ' needElectro
niclnvoice') = 'Yes'"/>

c/empty>
<inVOke senrllnvnk-eV iaM ail >

ctarget linkName=" Paper-invoice" / >

c/invoke>
<inVOkepav qm H lN vnireV iaFm ail >

Ctarget linkName=" Eamil-invoice"/>
c/invoke>

C/flow>

clinks>
clink name="Paper-invoice"/>
clink name="Eamil-invoice"/>
clink>*

c/links>
Cempty>
csource linkName="Paper-invoice"

transitionCondition=" bpws:
getVariableData (' PO', ' needElectronicIn
voice') = ’Yes'" / >

Csource linkName=" Eamil-invoice"
transitionCondition=" bpws:
getVariableData (' PO ' , ' needPaperlnvoice
') = 1 Yes ' " / >

c/empty>
<inVOke sen<1Tnvnir,eViaMail

Ctarget linkName=" Paper-invoice" / >

c/invoke>
<inVOkepav senrlTNvnitieViaFrnail ^

ctarget linkName=" Eamil-invoice"/>
c/invoke>

< / flow>

Listing 5.25

5.7.3.2 Multi-Choice to Simple Merge

If the original BPEL4WS program corresponds to listing 5.26(a), the mutant of mutation

process (defined in section 5.6.1.2) has the structure presented in listing 5.26(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

cflow standard-attributes > cflow standard-attributes >
standard-elements standard-elements

Clinks>
clink name="Paper-invoice"/>
Clink name="Eamil-invoice"/>
clink>*

c/links>
Cempty>
Csource linkName="Paper-invoice"

transitionCondition="
bpws:getVariableData('PO','needPaperln
voice') = 'Yes'" />

Csource linkName=" Eamil-invoice"

clinks>
clink name="Paper-invoice"/>
clink name="Eamil-invoice"/>
clink>*

c/links>
cempty>
Csource linkName="Paper-invoice"

transitionCondition="
bpws:getVariableData('PO','needPaperln
voice') = ’Yes'" />

Csource linkName=" Eamil-invoice"

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transitionCondition=" transitionCondition="
bpws:getVariableData{'PO', ' needElectro bpws:getVariableData('PO','needElectro
niclnvoice') = 'Yes'"/> niclnvoice') = ’yes'" AND

</empty> bpws:getVariableData('PO','needPaperln
<inVO ke sen d T n v n iceV iaM ail > voice') = 'no'" />

Ctarget linkName=" Paper-invoice" /> c/empty>
</invoke> <inVO ke sen d T n v n iceV iaM ail >
<inVO kepav s e n d lN v n ie e V ia l 'm a il > Ctarget linkName=" Paper-invoice" />
Ctarget linkName=" Eamil-invoice"/> < / invoke>

< / invoke> <inVO kepay sen d T N v n ic eV iaF m a il

c/flow> Ctarget linkName=" Eamil-invoice"/>
< / invoke>

c/flow>

Listing 5.26

5.7.3.3 Multi-Choice to Parallel

If the original BPEL4WS program corresponds to listing 5.27(a), the mutant of mutation

process (defined in section 5.6.1.3) has the structure presented in listing 5.27(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

cflow standard-attributes > cflow standard-attributes >
standard-elements standard-elements

clinks>
Clink name="Paper-invoice"/>
clink name="Eamil-invoice"/>
clink>*

c/links>
cempty>
csource linkName="Paper-invoice"

transitionCondition="
bpws:getVariableData('PO','needPaperln
voice') = ’Yes'" />

Csource linkName=" Eamil-invoice"
transitionCondition="
bpws:getVariableData('PO', ' needElectro
niclnvoice') = 'Yes'"/>

c/empty>
< in V O k e sen d T n v n iceV iaM ail

ctarget linkName=" Paper-invoice" />
c/invoke>
<inVOkepav se n d IN v o ic e V ia F rnail >
ctarget linkName=" Eamil-invoice"/>

c/invoke>
< / flow>

Clinks>
Clink name="Paper-invoice"/>
Clink name="Eamil-invoice"/>
clink>*

c/links>
cempty>
Csource linkName="Paper-invoice"/>
Csource linkName="Eamil-invoice"/>
c/empty>
<inVOke se n d ln v n ie e V ia M a il ^

ctarget linkName=" Paper-invoice" />
< / invoke>

<inVOkepav sen d T N v o iceV iaF .m ail ^
ctarget linkName=" Eamil-invoice"/>
c/invoke>

c/flow>

Listing 5.27

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.8 Synchronizing Merge

5.8.1 Requirement of mutation process

For the workflow pattern Synchronizing Merge, its representation in BNF of C S P bpel is:

(<TRACE_IF_OPERAT OR>(<Expression 1 >) {<EVENT_IDENT 1 ><TRACE_PREFIX_

OPERATOR><TRACE_SKIP_OPERATOR>}<TRACE_PARALLE_OPERATOR>(<T

RACE_IF_OPERATOR>(<Expression2>) {<EVENT_IDENT2><TRACE_PREFIX_OP

ERATORxTRACE SKIP OPERATOR> }) <TRACE_PREFIX_OPERATOR>

<TRACE_IF_OPERATOR>((<Expressionl>) <OR> <Expression2>))

{<EVENT_IDENT3><TRACE_PREFIX_OPERAT OR>

<TRACE_SKIP_OPERATOR>} <TRACE_ELSE_OPERATOR>

{<TRACE_S KIPOPERAT OR>}

As we discussed in section 4.7, there is one major fault model for the workflow pattern

Synchronizing Merge. Those fault models respectively is

• Synchronizing Merge to Synchronization with AND conditions (FM16)

(<TRACE_IF_OPERATOR>(<Expression 1 >) {<EVENT_IDENT 1 ><TRACE_P

REFIX_OPERATOR><TRACE_SKIP_OPERATOR>}<TRACE_PARALLE_0

PERATOR>(<TRACE_IF_OPERATOR>(<Expression2>){<EVENT_IDENT2>

<TRACE_PREFIX_OPERATOR><TRACE_SKIP_OPERATOR>})

<TRACE_PREFIX_OPERATOR><TRACE_IF_OPERATOR>(<

Expressionl>)<AND> (<Expression2>)) (<EVENT_IDENT3>

<TRACE_PREFIX_OPERATOR> <TRACE_SKIP_OPERATOR>}

<TRACE_EL SEOPERAT OR> { <TRACE_SKIP_OPERAT OR> }

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.8.1.1 Synchronizing Merge to Synchronization with AND conditions

For the fault model Synchronizing Merge to Synchronization with AND Conditions, its

essence is that for the activity after the merge point, the relationship between its

preconditions changes from OR to AND. Therefore the activity after the merge point can

only execute when all the activities before the merge point are finished.

The mutation process for this fault model is: <OR> t <AND>

5.8.2 Implementation of mutation process

For the workflow pattern Synchronization Merge, there is only one type of

implementation. That is using the link construct. The BNF of the implementation of this

workflow pattern is:

<flow standard-attributes >
standard-elements
<links>

<link name="namel"/>
clink name="name2"/>
Clink name="name3"/>
clink name="name4"/>
clink>*

C/links>
cempty>
Csource linkName="namel" transitionCondition="bool-exprl"/>
Csource linkName="name2" transitionCondition="bool-expr2"/>
c/empty>
activity-start-elementa
ctarget linkName="ncnamel"/>*
ctarget linkName="namel" />
csource linkName="name3"/>

Csource linkName="ncnamel" transitionCondition="bool-expr"?/>*
activity-end-elementa
activity-start-elementh
Ctarget linkName="name2"/>
Csource linkName="name4"/>
ctarget linkName="ncname2"/>*

Csource linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementb
activity-start-elementc
joinCondition= "name3 OR name4"
ctarget linkName="name3"/>

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<target linkName="name4"/>
<target linkName="ncname3"/>*

<source linkName="ncname3" transitionCondition="bool-expr"?/>*
activity-end-elementc
activity*

</flow>

5.8.2.1 Synchronizing Merge to Synchronization with AND conditions

The implementation of the fault model Synchronizing Merge to Synchronization with

AND conditions is:

<flow standard-attributes >
standard-elements
<links>

clink name="namel"/>
clink name="name2"/>
clink name="name3"/>
Clink name="name4"/>
clink>*

c/links>
Cempty>
Csource linkName="namel" transitionCondition="bool-exprl"/>
Csource linkName="name2" transitionCondition="bool-expr2"/>
c/empty>
activity-start-elementa
ctarget linkName="ncnamel"/>*
ctarget linkName="namel" />
csource linkName="name3"/>

Csource linkName="ncnamel" transitionCondition="bool-expr"?/>*
activity-end-elementa
activity-start-elementh
ctarget linkName="name2"/>
Csource linkName="name4"/>
ctarget linkName="ncname2"/>*

Csource linkName="ncname2" transitionCondition="bool-expr"?/>*
activity-end-elementb
activity-start-elementn
joinCondition= "name3 AND name4"
ctarget linkName="name3"/>
Ctarget linkName="name4"/>
Ctarget linkName="ncname3"/>*

Csource linkName="ncname3" transitionCondition="bool-expr"?/>*
activity-end-elementc
activity*

< / flow>

The mutation process for this fault model is: OR AND

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.8.3 BPEL4WS examples

Again for the sake of simplicity, we use the two symbols defined in section 5.6.3 and

define one more symbol in this section. Subsequently, we will use these tokens to

illustrate the examples in this section. In the following equation, the symbol on the left is

used to represent the BPEL4WS code on the right side.

<reply> = creply partnerLink="purchasing"
name="InvoiceProcessing"
portType="lns:purchaseOrderPT"
operation="sendPurchaseOrder"
variable="Invoice">

5.8.3.1 Synchronizing Merge to Synchronization with AND conditions

If the original BPEL4WS program corresponds to listing 5.28(a), the mutant of mutation

process (defined in section 5.7.1.1) has the structure presented in listing 5.28(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<flow standard-attributes > Cflow standard-attributes >
standard-elements standard-elements

<links>
Clink name="Paper-invoice"/>
clink name="Eamil-invoice"/>

clink name="sendpaper-invoice"/>
clink name="sendEmail-invoice"/>

Clink>*
c/links>
cempty>
Csource linkName="Paper-invoice"

transitionCondition="
bpws:getVariableData('PO',' needPaperln
voice') = ’Yes'" />

Csource linkName=" Eamil-invoice"
transitionCondition="
bpws:getVariableData('PO','needElectro
niclnvoice') = 'Yes'"/>

c/empty>
<inVOke sen d T n v n iceV iaM ail >

ctarget linkName="Paper-invoice" />
Csource linkName="sendPaper-invoice"/>

c/invoke>
<inVOkepav sen d IN vn iceV iaT -m ail ->
Ctarget linkName="Eamil-invoice"/>

Csource linkName="sendEmail-invoice"/>
c/invoke>

clinks>
clink name="Paper-invoice"/>
clink name="Eamil-invoice"/>

clink name="sendpaper-invoice"/>
clink name="sendEmail-invoice"/>
clink>*

c/links>
Cempty>
csource linkName="Paper-invoice"

transitionCondition="
bpws:getVariableData(1PO','needPaperln
voice') = ’Yes'" />

Csource linkName=" Eamil-invoice"
transitionCondition="
bpws:getVariableData('PO','needElectro
niclnvoice') = 'Yes'"/>

</empty>
<inVOke sen d T n v n iceV iaM ail ^

ctarget linkName=" Paper-invoice" />
Csource linkName="sendPaper-invoice"/>

c/invoke>
<inVOkepav sen d T N v o iceV iaF .m ail '>
Ctarget linkName=" Eamil-invoice"/>

Csource linkName="sendEmail-invoice"/>
</invoke>

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<reply>
joinCondition="sendPaper-invoice OR

sendEmail-invoice"
<target 1inkName="sendPaper-invoice">
ctarget linkName="sendEmail-invoice">
</reply>

</flow>

< r e P 1Y>
j oinCondition="sendPaper-invoice

AND sendEmail-invoice"
ctarget 1inkName="sendPaper-invoice">
ctarget linkName="sendEmail-invoice">
c/reply>

C/flow>

Listing 5.28

5.9 Deferred Choice

5.9.1 Requirement of mutation process

For the workflow pattern Deferred Choice, its representation in BNF of C S P bpel is:

<TRACE_WHILE_OPERATOR>(<BPEL_WATI_NAME><LT><BPEL_WAIT_TIME

>){<TRACE_IF_OPERATOR>(<BPEL_MESSAGE_NAME><EQ><BEPL_MESSAG

E>) {<E VENTIDENT1 ><TRACE_PREFIX_OPERATOR><TRACE_SKIP_OPERAT

OR>} <TRACE_EL SEOPERAT OR> {<TRACE_IF_OPERAT OR>(<BPEL_MES S AG

E_NAME><EQ><BEPL_MESSAGE>){<EVENT_IDENT2><TRACE_PREFIX_OPER

A TO RxTRA CESK IPO PERA T OR>}} <TRACEPREFIX_OPERATOR><TRACE_I

F_OPERATOR>(<BPEL_WATI_NAME><GE><BPEL_WAIT_TIME>){<EVENT_ID

ENT2><TRACE_PREFIX_OPERAT O RxTRA CESK IPO PER A T OR>}

As we discussed in section 4.9, there is one major fault model for the workflow pattern

Deferred Choice. Those fault models respectively is

• Missing Alarm (FM17)

<TRACE_WHILE_OPERATOR>(<BPEL_WATI_NAME><LT><BPEL_WAIT_TI

ME>){<TRACE_IF_OPERATOR>(<BPEL_MESSAGE_NAME><EQ><BEPL_ME

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S S AGE>) {<E VENTIDENT1 ><TRACE_PREFIX_OPERAT OR><TRACE_SKIP_

OPERATOR>} <TRACE_ELSE_OPERATOR> {<TRACE_IF_OPERATOR>(<BPE

L_MESSAGE_NAME><EQ><BEPL_MESSAGE>){<EVENT_IDENT2><TRACE

_PREFIX_OPERATOR><TRACE_SKIP_OPERATOR>}}<TRACE_PREFIX_OPE

RATOR><TRACE_IF_OPERATOR>(<BPEL_WATI_NAME><GE><BPEL_WAI

TTIM E>) {<EVENTJDENT2><TRACEPREFIX_0PERAT0R><TRACESKIP_

OPERATOR>}

5.9.1.1 Missing Alarm

For the fault model Missing Alarm, its essence is that while the running BPEL4WS

process is waiting for the incoming message, there is no deadline set up. Therefore, if the

expected message doesn’t come, the running process will wait forever.

The mutation process for this fault model is:

1) <BPEL_WATI_NAME><LT><BPEL_WAIT_TIME>-£ <TRUE>

2) <TRACE_PREFIX_OPERATOR><TRACE_IF_OPERATOR>(<BPEL_WATI_

NAME><GE><BPEL_WAIT_TIME>) {<EVENT_IDENT2><TRACE_PREFIX

OPERATORxTRACE SKIP OPERATOR>} 3 <D

5.9.2 Implementation o f mutation process
For the workflow pattern Deferred Choice Merge, there is only one type of

implementation. That is using the pick construct. The BNF of the implementation of this

workflow pattern is:

<pick>

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<onMessagename="messagel" partnerLink-'ncname 1" portType-'qnamel"
operation="ncnamel "variable="ncnamel ">

activity^
</onMessage>
<onMessage name="message2" partnerLink="ncname2" portType="qname2"

operation="ncname2" variable="ncname2">
activity^

</onMessage>
onMessage*
onAlarm

</pick>

5.9.2.1 Missing Alarm

The implementation of the fault model Missing Alarm is:

<pick>
<onMessage name="messagel" partnerLink="ncnamel" portType="qnamel"

operation="ncnamel "variable="ncnamer'>
activity^

</onMessage>
<onMessage name="message2" partnerLink="ncname2" portType="qname2"

operation="ncname2" variable="ncname2">
activitvh

</onMessage>
onMessage*

</pick>

The mutation process for this fault model is: onAlarm O

5.9.3 BPEL4WS examples

Again for the sake of simplicity, we define three symbols in this section. Subsequently,

we will use these tokens to illustrate the examples in this section. In the following

equations, the symbol on the left is used to represent the BPEL4WS code on the right.

< i n y p k e additem> = cinvoke partnerLink="purchasing"
portType="lns:purchaseOrderPT"
operation="addItem"
variable="item">

<invokecomPieteOrder> =__<invoke partnerLink="purchasing"
portType="lns:purchaseOrderPT"
operation="completeOrder"

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variable="invoice">

< replytime out > =_<reply partnerLink="purchasing"
portType="Ins:purchaseOrderPT"
operation="sendPurchaseOrder"
variable="timeOutMessage">

5.9.3.1 Synchronizing Merge to Synchronization with AND conditions

If the original BPEL4WS program corresponds to listing 5.29(a), the mutant of mutation

process (defined in section 5.8.1.1) has th'e structure presented in listing 5.29(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<pick>
<onMessage partnerLink="buyer"
portType="orderEntry"
operation="inputLineItem"
variable="lineltem">
<invokeartrtTtem>
</onMessage>
<onMessage partnerLink="buyer"
portType="orderEntry"
operation="orderComplete"
variable="completionDetail">

</onMessage>
<replytimeout>
<onAlarm for="'P3DT10H'">
</onAlarm>
</pick>

<pick>
<onMessage partnerLink="buyer"
portType="orderEntry"
operation="inputLineItern"
variable="lineltem">
<inv OkCaHil lli'mh
</onMessage>
<onMessage partnerLink="buyer"
portType="orderEntry"
operation="orderComplete"
variable="completionDetail">
^ inVO kecomDief eOrder>

</onMessage>
</pick>

Listing 5.29

5.10 Cancel Activity

5.10.1 Requirement of mutation process
For the workflow pattern Cancel Activity, its representation in BNF of C S P bpel is:

<EVENT_IDENTl.b><TRACE_PREFIX_OPERATOR><TRACE_IF_OPERATOR>(<

B PE LF AULT><EQ><TRUE>) {<TRACE_IF_OPERAT O R x B P E L F A U LTN AME

><EQ><F AULT 1 >< AND>(<BPEL_F A U LTV AR><EQ><V AR1 >)) {<E VENT -

IDNET2>}<TRACE_PREFIX_OPERATORxTRACE_STOP_OPERATOR> }

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<TRACE_ELSE_OPERATOR> {EVENT-IDENT1 .e>

<TRACE_PREFIX_OPERATOR><TRACEN_SKIP_OPERATOR>}

As we discussed in section 4.10, there is one major fault model for the workflow pattern

Cancel Activity. Those fault models respectively is

• Incorrect Fault Matching (FM18)

<EVENT_IDENTl.b><TRACE_PREFIX_OPERATOR><TRACE_IF_OPERATOR>(<

B PE LF AULT><EQ><TRUE>) { <TRACE_IF_OPERAT OR><BPEL_F A U LTN AME

><EQ><FAULT2><AND>(<BPEL_FAULT_VAR><EQ><VAR2>)){<EVENT-

IDNET2>} <TRACE_PREFIX_OPERATOR><TRACE_STOP_OPERATOR> }

<TRACE_EL SEOPERAT OR> { EVENT-IDENT 1. e>

<TRACE_PREFIX_OPERAT ORxTRACEN SKIP OPERAT OR> }

5.10.1.1 Incorrect F ault Matching

For the fault model Incorrect Fault Matching, its essence is that the fault type or data

variable, which is used to determine what fault should be fault, is modified incorrectly.

Therefore, if the expected fault is thrown, it won’t be caught. The mutation process for

this fault model is:

1) <FAULT1>=£<FAULT2>

2) <VAR1>3<VAR2>

5.10.2 Implementation of mutation process
For the workflow pattern Cancel Activity, there is only one type of implementation. That

is using the fault handler construct. Its BNF of the implementation is:

<scope>

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<faultHandlers>
<catch faultName="qnamel" faultVariable="ncnamel">

activity^
</catch>

</ faultHandlers>
activitvh

</scope>

5.10.2.1 Incorrect Fault Matching

The implementation of the fault model Incorrect Fault Matching is:

<scope>
<faultHandlers>

<catch faultName="qname2" faultVariable="ncname2">
activity,,

</catch>
</ faultHandlers>
activitvh

</scope>
The mutation process for this fault model is :

1) qnamel qname2

2) ncnamel ncname2

5.10.3 BPEL4WS examples

5.10.3.1 Incorrect Fault Matching

If the original BPEL4WS program corresponds to listing 5.30(a), the mutant of mutation

process (defined in section 5.9.1.1) has the structure presented in listing 5.30(b)

Original BPEL4WS program (a) Mutant BPEL4WS program (b)

<scope>
<faultHandlers>
<catch
faultName="lns:cannotCompleteOrder"
faultVariable="POFault">
Creply partnerLink="purchasing"
portType="Ins:purchaseOrderPT"
operation="sendPurchaseOrder"
variable="POFault"

<scope>
<faultHandlers>
<catch
faultName="lns:invalidOrder"
faultVariable="orderFault">
<reply partnerLink="purchasing"
portType="lns:purchaseOrderPT"
operation="sendPurchaseOrder"
variable="POFault"

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

faultName="cannotCompleteOrder"/>
</catch>

</faultHandlers>
<invoke partnerLink="Seller"
portType="SP:Purchasing"
operation="SyncPurchase"
inputVariable="sendPO"
outputVariable="getResponse">

</invoke>
</scope>______________________________

faultName="cannotCompleteOrder"/>
</catch>

</faultHandlers>
<invoke partnerLink="Seller"
portType="SP:Purchasing"
operation="SyncPurchase"
inputVariable="sendPO"
outputVariable="getResponse">

</invoke>
</scope>______________________________

Listing 5.30

5.11 Conclusion

In this chapter, for each workflow pattern supported by the BPEL4WS, except workflow

patterns Implicit Termination and Cancel Case, we discussed the requirement and

implementation of its every fault model. We didn’t discuss the workflow pattern Implicit

Termination since it doesn’t have observable trace behavior as we analyzed in section

4.8. We didn’t discuss the workflow pattern Cancel Case since its only fault model is

identical to the fault model 2 in workflow pattern Sequence, which we already mentioned

in section 4.11.

The requirement of a fault model was described in BNF of C S P bpel- The BNF

representation of a fault model means that the fault model is generic rather than just

applicable to a specific example. The implementation of a fault model was described in

BNF of BPEL4WS. The BNF representation of an implementation ensures that it is

generic and applies to a type of BPEL4WS program rather than a specific one. Since a

workflow pattern may have different types of implementation, when we explored the

implementation of a fault model, we explored it responding to a specific type of

workflow pattern implementation. Besides discussing the fault model itself, we also

explored the mutation process of a fault model, which is used to generate mutant from

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

original BPEL4WS program. Further, we provided an example BPEL4WS program for

each fault model.

From the discussion above, we can conclude that the definition of fault model is

complete, generic and realistic. It can serve as criteria to evaluate the effectiveness and

efficiency of our BPEL4WS run time monitoring system. Furthermore, in actual work,

the mutation processes can greatly help us to generate mutants from original BPEL4WS

program.

6 Empirical Investigation and Results

6.1 Overview

The investigation of the effectiveness of a testing strategy lacks formal analytical

methods. In general, experimental evaluation is required. In this thesis, we designed two

experiments to test the fault-detection capability of the proposed BPEL4WS run time

monitoring system. For experiment, we initially tried to locate a long running and large

sized BPEL4WS process, which is being used by an organization. Long running is a

major characteristic of a BPEL4WS process, and comparing to a small sized BPEL4WS

process, a large sized BPEL4WS process can be injected with more faults. Hence, testing

a long running and large sized BPEL4WS process can more efficiently examine the

testing capability of our proposed system. However, after we conducted a thorough

searching through the available resources, we couldn’t locate such a BPEL4WS process.

The reason might be that BPEL4WS is a fairly new technology and it is still not widely

applied in industry. Since we can not directly utilize an existed BPEL4WS process, we

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decided to build our own experimental processes. When we built our own process, we

tried to make it sufficiently large so that it could contain several workflow patterns. Since

all the fault models we analyzed are based on the workflow patterns, more workflow

patterns imply more faults can be injected into the BPEL4WS processes. Consequently,

we implemented two experimental BPEL4WS processes, and a large number of faults

were systematically seeded into the BPEL4WS processes. The BPEL4WS processes were

executed upon our BPEL4WS runtime monitoring system to see how many faults can be

detected.

The steps to conduct the experiment are:

• Define the trace specification o f the experimental process
The first step is to define the expected trace behavior of the experimental process.

The expected trace behavior is defined as a trace specification. The trace

specification is used to control the instrumentation of the monitoring code.

Furthermore, it is translated into a serial of activity events and then those activity

events are compared with the actual activity events in execution to determine if

there is an error in the execution.

• Create the mutants fo r the experiment process
The concept of mutant here is the same as in mutant testing, in which each

process where a fault is seeded is referred to as a mutant. In general, in order to

avoid interaction effects between faults, each time only one fault is seeded into

the process. A mutant is killed when a test case cause it to fail [OFF95]. A mutant

is killed means that the test strategy is effective to catch the fault in the mutant.

The more mutants are killed, the higher effectiveness our test strategy has.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, in this experiment, the quantity and quality of mutants significantly

affect the effectiveness of the evaluation. In order to get the best evaluation result,

a large amount of systematic mutants are required to be seeded into the process

under test

• Instrument monitoring code into the mutants
The trace specification is written in a text file. That file is an input for the

instrument system. With the trace specification and mutant processes, the

instrument system of our test framework instruments monitoring code into each

mutant process. After being instrumented with monitoring code, the filename of

the mutant process is not changed.

• Deploy and execute mutants

After the monitoring code is instrumented into a mutant process, the mutant

process is deployed into a BPEL4WS engine manually or by some deployment

toolkit. Then we build a client program to invoke the execution of the mutant

process

• Analyze and evaluate the result o f execution
During the execution of all the mutant process, the test results are written into log

files by the trace verification system of our test framework. The test results are

then analyzed to evaluate the effectiveness of the proposed BPEL4WS runtime

monitoring system

6.2 Experiment 1

6.2.1 Introduction
The first experimental BPEL4WS process is a Purchase-order processing application.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

On receiving the purchase order from a customer, the process initiates three tasks

concurrently: calculating the final price for the order, selecting a shipper, and scheduling

the production and shipment for the order. While some of the processing can proceed

concurrently, there are control and data dependencies between the three tasks. In

particular, the shipping price is required to finalize the price calculation, and the shipping

date is required for the complete fulfillment schedule. When the three tasks are

completed, invoice processing can proceed and the invoice is sent to the customer.

The trace specification of this experimental process is

receivePurchaseOrder-* (((quoteShipperl—>SKIP)||(quoteShipper2—>SKIP))

-»IF(shipperInfol.price<=shipperInfo2.price){useShipperl}ELSE{useShipeer2}—»((che

ckBalance-*SKIP)||(checkCredit->SKIP))

—>IF(totalChange.number<totalCredit.number) {pay WithCredit }ELSE

{IF(totalCharge.number<totalBalance.number){payWithBalance }ELSE {errorPay }} —»

ArrangeLogistics -» SKIP)||

(InitiatePirceCalculation—»CompletePriceCalculation—»SKIP)

| |(InitiateProducationScheduling —»CompleleteProductionScheduling —»SKIP))

—KIF(po.needPaperInvoce==”yes”){sendPaperInvoice-»SKIP})||(IF(po.needElectronicI

nvoice==”yes”) {sendElectronicInvoice-» SKIP})-»replyPurchaseOrder—> STOP

6.2.2 Mutants and Test Cases

After defining the trace specification of the experimental process, we designed mutants

for it. As we discussed previously, currently there is little work on mutant operators

specifically to BPEL4WS process, hence we use the mutation processes defined in

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

chapter 5 to generate mutants. This experimental BPEL4WS process doesn’t implement

all the workflow patterns, so we can only apply to it those mutation processes, which

belong to the workflow patterns it implemented. The workflow patterns implemented in

this experimental process are Sequence, Parallel Split, Synchronization, Simple Merge

and Multi-Choice and Synchronizing Merge. According to the fault models explored in

chapter 5, we can apply fault models FM 1, FM2, FM3, FM4, FM5, FM6, FM8, FM9,

FM10, FM11, FM14, FM15 and FM16. Fault models FM7, FM12 and FM13 belong to

other workflow patterns implemented in this experimental process, however those

workflow patterns have more than one type of implementation and the implementations

of those workflow patterns in the experimental process are not suitable to FM7, FM12

and FM13. Therefore, FM7, FM12 and FM13 can not be applied.

For each fault model that can be applied to this experimental process, we generate one

mutant according to the mutation process defined in chapter5. Therefore, in total we

generated 13 mutants. In addition, we generated 5 more mutants using some frequently

used mutant operators in a general programming language. Those mutant operators

respectively are “Mathematics operators exchanged”

“Variable by variable replacement”, “Increment/decrement variables/constants” and

“Output missing” [SOUOO]. The details of all the mutants are in Table E.l in appendix E.

Our run time monitoring system doesn’t specifically target at those errors. We introduced

those mutants mainly in order to validate the ability of our system to catch some common

errors in a general programming language.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The test cases were designed to cover all the branches in the experimental process. We

tried to design as few as possible test cases to cover all the branches to minimize the

execution of the test cases. Finally we generated four test cases for this experimental

process. These test cases differed in the message exchanged between the process and

external Web services, and those different messages made the process execute in

different branches.

6.2.3 Test Execution Results and Analysis

After generating mutants and defining test cases, we executed the test cases against the

mutant injected BPEL4WS process. As we stated previously, a mutant is killed when at

least one of the test cases causes it to fail. On the other side, a mutant is “alive” when

none of the test cases causes it to fail. The results of the experiment are shown in Table

6.1. In Table 6.1, the columns TCI to TC4 represent the test cases. Each row represents

one mutant. The sign means that the test case is evaluated to “fail” and the mutant is

killed, and the sign means that the test case is evaluated to “succeed” and the mutant

is “alive”. Table 6.2 summarizes the data shown in Table 6.1.

TCI TC2 TC3 TC4

Mutant 1 * * * *

Mutant2 * * * *

Mutant3 * * * *

Mutant4 * * * *

Mutant5 * * * *

Mutant6 * * * *

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mutant7 - * - *

Mutant8 * * - *

Mutant9 - * - "

Mutant 10 * - - *

Mutant 11 - * - "

Mutant 12 * - * *

Mutant 13 * - * *

Mutant 14 - - - -

Mutant 15 - “ - -

Mutant 16 - - “ "

Mutant 17 “ - - -

Mutant 18 - * *
-

Table 6. The Detailed Results of Experiment 1

Fault Type Total

Mutants

Live

Mutants

Killed

Mutants

Equivalent

Mutants

Killed/Total

Fault models of

Workflow patterns

13 0 13 0 100%

Common

programming fault

5 4 1 0 20%

Table 6.2 The Summary of Experiment 1

Upon analyzing the data from the Table 6.1 and Table 6.2, the following behavior was

discovered. Firstly, there were six workflow patterns implemented in this experimental

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process, and 100% of mutants responding to the fault modes of these workflow patterns

were killed. This partially proves that our run time monitoring system provides sufficient

coverage to investigate the specified defect types. When we looked at the details about

how every mutant was killed by the test cases, we found that some mutants were killed

by any test case, such as the mutant for the fault model Sequence to Parallel, and some

mutants were only killed by just one test case, such as the mutant for the fault model

Multi-Choice to Simple Merge. As we stated previously, different test cases differed in

the messages exchanged between the process and external Web services. BPEL4WS

processes have a characteristic of long running. During the running period, the messages

exchanged between the process and external Web services changes as time goes on. This

message changing has the same effect as different test cases, therefore if there is a fault of

workflow pattern existing in the BPEL4WS process, it can be caught by our run time

monitoring system.

Secondly, only 20% of mutants responding to common programming faults were killed.

It indicated that our approach doesn’t provide coverage to catch the common

programming faults. As we stated before, our system doesn’t target at this type of fault,

hence this result was expected. The reason of the low coverage of this type of fault is

that our system does not provide facilities to monitor the pre and post conditions for each

activity. Many of common programming faults are value related, for example

“Mathematics operator exchanged”, “Variable by variable exchanged” and

“Increment/decrement variables/constants”. If the fault is not able to cause failure of

trace, then our approach couldn’t catch that fault. Therefore, in order for our system to

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

improve its coverage of common programming faults, we should introduce mechanisms

to monitor the variable values in the pre and post conditions of activities.

6.3 Experiment 2

6.3.1 Introduction
Experiment 1 doesn’t implement all the workflow patterns supported by BPEL4WS.

Further, for the workflow patterns, which have more than one type of implementation,

experiment 1 doesn’t have all types of implementation for them. In order to fully explore

the ability of our system to cover faults within workflow patterns, we designed

experiment 2. Experiment 2 implemented some workflow patterns which were not

implemented experiment 1. Further, experiment 2 has different types of implementation

for some workflow patterns which were found in experiment 1.

Experiment 2 is an auto insurance claim processing application. On receiving the auto

insurance claim for an accident from a client, the process calculates the total expense of

the accident, including the auto repairing expense and the victim’s medical expense.

Depending on the total expense and the police report on the accident, the process invokes

the appropriate external Web service to calculate the new insurance rate. After that the

payment is made through direct deposit or a mailing check. Finally a report is sent back

to the client.

The trace specification of experiment 2 is:

ReceivelnsuranceClaim—>

retrieveAccountlnfo—»((hospitalExpense-»SKIP)||(repairExpense—»SKIP)) —>

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

getPoliceReport-> readPoliceReport-» ((IF(claim.totalExpense>1000){

newInsuranceRatel—»SKIP })|| (IF((claim.totalExpense<-1000)&

(claim.totalExpense>200)) {newInsuranceRate2S KIP }))-> ((

IF(claim.directDeposite==’yes’) {directDeposit—»SKIP })||(IF(claim.directDeposite

!=’yes’){mailCheck-*SKIP }))->STOP

6.3.2 Mutants and Test Cases

After defined the trace specification of the experimental process, we designed mutants for

it. We used the same approach discussed in experiment 1 to generate mutants for

experiment 2. The workflow patterns implemented in experiment 2 are Sequence,

Synchronization, Simple Merge, Exclusive Choice, Deferred Choice and Cancel Activity.

According to the fault models explored in chapter 5, we can apply fault models FM 1,

FM2, FM4, FM6, FM7, FM11, FM12, FM13, FM17 and FM18. Although we

implemented the workflow pattern Sequence in experiment 2 and the fault model Switch

Two Activity Events (FM3) responds to it, we couldn’t apply this fault model since it

causes a syntactic error. Analogously, we implemented the workflow pattern

Synchronization and the fault models FM8, FM9 and FM10, which respond to this

workflow pattern. While it looks like we can apply those fault models to experiment 2,

fault models FM8, FM9 and FM10 only apply to the implementation which uses the link

construct. In experiment 2, the implementation of the workflow pattern Synchronization

uses activities <sequence> and <flow> rather than the link construct, so fault models

FM8, FM9 and FM10 couldn’t be applied to experiment 2. Therefore, in total we

generated 10 mutants upon fault models of workflow patterns. In addition, we generated

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 more mutants using some frequently used mutant operators in a general programming

language. The details of all the mutants are shown in Table E.3 in appendix E. Using the

same approach as in experiment 1 we generated four test cases in experiment 2.

6.3.3 Test Execution Results and Analysis

As before, the results of this experiment are shown in Table 6.3. Table 6.4 summarizes

the data shown in Table 6.3.

TC5 TC6 TC7 TC8

Mutant 19 * * * *

Mutant20 * * * *

Mutant21 * * * *

Mutant22 * * * *

Mutant23 * * * *

Mutant24 * * * *

Mutant25 * * * *

Mutant26 “ * * -

Mutant27 * * - -

Mutant28 * * - -

Mutant29 - - -

Mutant30 - - - -

Mutant31 “ -
* *

Mutant32 * * - -

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mutant33 - - - -

Table 6.3 The Detailed Results of Experiment 2

Fault Type Total

Mutants

Live

Mutants

Killed

Mutants

Equivalent

Mutants

Killed/Total

Fault models of

Workflow patterns

10 0 10 0 100%

Common

programming fault

5 3 2 0 40%

Table 6 / The Summary of Experiment 2

Upon analyzing the data from the Table 6.3 and Table 6.4, we found that 100% of

mutants responding to the workflow pattern faults were killed. So far, we have validated

our run time monitoring system against all 18 fault models of workflow pattern, and all

18 fault models were caught. This result empirically demonstrates that our system

provides coverage across all of our defined fault models. With respect to the common

programming faults, again the system performed poorly in line with expectations. In

experiment2 only a small percentage (40%) of the mutants were killed.

7 Conclusion and future works

This thesis presents a systematic and effective approach to monitor the chronological

behaviour of BPEL4WS processes. Additionally, we analyze the trace behaviour of

eleven major workflow patterns supported by BPEL4WS, and the possible fault models

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

associated with these behaviours. In order to verify the usefulness and effectiveness of

our approach, two experimental BPEL4WS applications were designed, and faults,

generated based on the fault models of workflow patterns, were injected into those

experimental applications. Further, some not chronological oriented faults, not generated

based on the fault models, were also injected into those experimental applications. As a

result, in two experiments 100% of all 23 chronological oriented faults were caught,

while only about 30% of all 10 not chronological oriented faults were caught.

From the empirical investigation, we find that our proposed methodology has several

distinct advantages, specifically:

1. Our system is able to monitor the execution trace of BPEL4WS and catch the majority

of faults. This feature has not been implemented in other research work on this topic.

2. Our system is embedded with a BPEL4WS engine, so that it doesn’t affect the

performance of BPEL4WS processes under test.

3. Monitoring code based on the expected trace behaviour can be automatically

instrumented into the BPEL4WS processes under test.

Additionally, we systematically analyze the trace behaviour of eleven major workflow

patterns supported by BPEL4WS and we also analyze the possible fault models of those

workflow patterns. This analysis is again a unique contribution and provides a basic for

fault injection testing of BPEL4WS processes from the perspective of chronological

behaviour.

Several areas of possible future research are presented below:

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Monitoring the correlation among multi instances of a BPEL4WS process is not

explored in this thesis. Correlation is an important feature in BPEL4WS and it is critical

to implement stateful business process, therefore exploring how to monitor its behaviour

is a good candidate for our future research.

2 . In our proposed approach, the implementation of language C S P bpel is still primitive.

Currently it is not very easy to define the expected trace behaviour of a complex

BPEL4WS process. Designing a more powerful C S P bpel language is included in our

future research. We even hope our approach can provide a facility for automatic creation

of the trace specification from the design specification of BPEL4WS.

3. Our proposed approach focuses on monitoring the execution trace of BPEL4WS

process. However, it has limitations in exposing those faults that are not chronological

oriented. Hence our future research includes exploring how to enhance that ability in our

approach.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[AALOO] Wil M. P. van der Aalst. Workflow verification: Finding Control-flow

Errors Using Petri-net-based Techniques. Business Process Management:

Models, Techniques, and Empirical Studies, Lecture Notes in Computer

Science, Springer-Verlag, volume 1806, pp. 161-183, 2000

[AAL02] Wil M. P. van der Aalst, Arthur H.M. ter Hofstede. Workflow Patterns:

On the Expressive Power of (Petri-net-based) Workflow Languages,

Proceedings of the Fourth International Workshop on Practical Use of

Coloured Petri Nets and the CPN Tools, volume 560, pp. 1-20, 2002

[ACT01] ActiveBPEL Engine. Online at:

http://www.active-endpoints.com/open-source-documentation.htm;

accessed on March 30, 2007

[BAR05] Luciano Baresi, Sam Guinea. Towards Dynamic Monitoring of WS-BPEL

Processes, Proceedings of the Third International Conference of Service-

oriented Computing, pp. 269-282, 2005

[BNF01] Introduction to BNF, online at:

http://en.wikipedia.org/wiki/Backus-Naur_form; accessed on March 30,

2007

[BOXOO] Don Box, David Ehnebuske. Simple Object Access Protocol (SOAP) 1.1,

online at: http://www.w3.org/TR/2000/NOTE-SOAP-20000508/;

accessed on March 30, 2007

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.active-endpoints.com/open-source-documentation.htm
http://en.wikipedia.org/wiki/Backus-Naur_form
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[BPW01]

[BRU02]

[CHROl]

[CSPOl]

[DEL04]

[DUMOl]

[FISOO]

[FOS03]

Introduction to bpws4j, online at:

http://www.alphaworks.ibm.com/tech/bpws4j/download; accessed on

March 30, 2007

Mark Brorkens. Jassda Trace Assertions, Runtime Checking the Dynamic

of Java Programs, International Conference on Testing of Communicating

Systems, pp. 39-48, March 2002

Erik Christensen, Francisco Curbera. Web Services Description Language

(WSDL) 1.1, online at http://www.w3.org/TR/wsdl; accessed on March

30,2007

Introduction to CSP, online at:

http://en.wikipedia.org/wiki/Communicating_sequential_processes;

accessed on March 30, 2007

Nelly Delgado. A Taxonomy and Catalog of Runtime Software-Fault

Monitoring Tools, IEEE Transactions on Software Enigneering, Volumne

30, Issue 12, pp. 859-872, December 2004

Marlon Dumas and Arthur H.M. ter Hofstede. UML Activity Diagrams as

a Workflow Specification Language, Proceedings of the 4th International

Conference on the Unified Modeling Language, pp. 76-90, 2001

Clemens Fischer. Combination and Implementation of Processes and Data:

From CSP-OZ toJava. PhD thesis, University of Oldenburg, 2000

Howard Foster, Sebastian Uchitel. Model-based Verification of Web

Service Compositions. Proceedings of the Eighteenth IEEE International

Conference on Automated Software Engineering, pp. 152-163, 2003

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.alphaworks.ibm.com/tech/bpws4j/download
http://www.w3.org/TR/wsdl
http://en.wikipedia.org/wiki/Communicating_sequential_processes

[FUX04]

[GAN02]

[GUN02]

[HOA04]

[IBM03]

[INV01]

[JAIOl]

[JASOl]

[JCCOl]

[JJTOl]

[KOS03]

Xiang Fu, Tevfik Bultan. Analysis of Interacting BPEL Web Services,

thirteenth International World Wide Web Conference (WWW), pp. 621-

630, May 2004

Sivakumar Ganesan, CSP: An Introduction. Seminar of Design and

Validation of Computer Protocols, University of Technology Dresden,

March 2002.

Hartwig Gunzer. Introduction to Web Services, Borland, March 2002

Charles Antony Richard Hoare. Communicating Sequential Processes,

Prentice Hall, 1985.

IBM Corporation. “Business Process Execution Language for Web

Services (BPEL4WS),” Version 1.1, May 2003

Class invariant, online at: http://en.wikipedia.org/wiki/ Class invariant;

accessed on March 30, 2007

Roy Jaideep, Ramanujan Anupama. Understanding Web Services, IEEE

IT Proessional, Volume 3, Issue 6, pp. 69-73, November/December 2001

JASS, online at: http://csd.informatik.uni-

oldenburg.de/~jass/doc/grammar.html; accessed on March 30, 2007

JavaCC, online at: https://javacc.dev.java.net/doc/javaccgrm.html;

accessed on March 30, 2007

JJTree, online at: https://javacc.dev.java.net/doc/JJDoc.html; accessed on

March 30, 2007

Mariya Koshkina. Verification of Business Processes for Web Services.

M.Sc. thesis, York University, 2003

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://en.wikipedia.org/wiki/
http://csd.informatik.uni-
https://javacc.dev.java.net/doc/javaccgrm.html
https://javacc.dev.java.net/doc/JJDoc.html

[LEV01]

[LIP78]

[LIZ05]

[LLPOl]

[MAY02]

[MAY06]

[MUO02]

[NAK02]

Levenshtein distance, online at:

http://en.wikipedia.org/wiki/Levenshtein_distance; accessed on March 30,

2007

Richard J. Lipton, Richard A. DeMillo. Hints on Test Data Selection: Help

for the Practicing Programmer. IEEE Computer, Volume 11, Issue 4, pp.

3 4 -4 1 , April 1978.

Zhongjie LI, Wei Sun. BPEL4WS Unit Testing: Framework and

Implementation, Proceedings of the IEEE International Conference on

Web Services, pp. 103 - 110, 2005

LL parser, online at: http://en.wikipedia.org/wiki/LL_parser; accessed on

March 30, 2007

Yu-Seung Ma, Yong-Rae Kwon. Inter-Class Mutation Operators for Java,

Thirteenth International Symposium on Software Reliability Engineering,

pp. 352-363, 2002

Philip Mayer, Daniel Liibke. Towards a BPEL Unit Testing Framework,

Proceedings of the 2006 workshop on Testing, Analysis, and Verification

of Web Services and Applications, pp. 33 - 42, July 2006

Michael Moller. Specifying and Checking Java Using CSP, Workshop on

Formal Techniques for Java-like Programs - FTfJP’2002

ShinNakajima. Model-Checking Verification for Reliable Web Services,

OOPSLA 2002 Workshop on Object-Oriented Web Services, pp. 1 -5,

November 2002

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/LL_parser

[OFF02]

[OFF95]

[ORAOl]

[PEL03]

[SOUOO]

[THA03]

[TSA02]

[WOH02]

Jeff Offutt. Quality Attributes of Web Software Applications, IEEE

Software, Volume 19, Issue 2, pp. 25 - 32, March/April 2002

Jeff Offutt. A Practical System for Mutation Testing: Help for the

Common Programmer.Twelfth International Conference on Testing

Computer Software, pp. 99-109, June 1995.

A Hands-on Introduction to BPEL, online at:

http://www.oracle.com/technology/pub/articles/matjaz_bpel 1 .html;

accessed on March 30, 2007

Chris Peltz. Web Services Orchestration, a Review of Emerging

Technologies, Tools, and Standards, Hewlett Packard Company, January

2003

Simone do Rocio Senger de Souza. Mutation Testing Applied to Estelle

Specifications, pp. 8011 - 8020, Proceedings of the 33rd Hawaii

International Conference on System Sciences-Volume 8, 2000

Do van Than. Web Service Orchestration, online at:

http://www.eurescom.de/message/messageJun2003/Web_Service_Orchest

ration.asp; accessed on March 30, 2007

Wei-Tek Tsai, Ray Paul. Extending WSDL to Facilitate Web Services

Testing, Proceedings of the Seventh IEEE International Symposium on

High Assurance Systems Engineering, pp. 171- 172, 2002

Petia Wohed, Wil M. P.van der Aalst. Pattern Based Analysis of

BPEL4WS, Technical Report FIT-TR-2002-04, Queensland University of

Technology, April 2002.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.oracle.com/technology/pub/articles/matjaz_bpel
http://www.eurescom.de/message/messageJun2003/Web_Service_Orchest

[ZIJ06] Geert Zijlmans. A High-Level Petri Nets Based Modeling Language for

Generation of BPEL4WS Processes, M.Sc. thesis, Eindhoven University

of Technology, April 2006

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

This appendix gives the BNF of C S P b p e l

<DEFAULT>
TOKEN:
{

< TRACEPARALLELOPERATOR: "||" >
| < TRACE CHOICE OPERATOR:"[]" >
| < TRACE DEADLOCK OPERATOR: "STOP" >
| < TRACE PREFIX OPERATOR: >
| < TRACE_TERMINATION_OPERATOR: "TERM" >
| < TRACE CALL OPERATOR:"CALL" >
j < TRACE IF OPERATOR: "IF">
| < TRACE ELSE OPERATOR: "ELSE">
| < TRACE WHILE OPERATOR: "WHILE">
I < BPELTRACE: "TRACE" >

/* SEPARATORS */

<DEFAULT>
TOKEN :
{
< LPAREN: "(" >

| < RPAREN: ")" >
| < LBRACE: "{">
| < RBRACE: "}">
| < LBRACKET: "[" >
| < RBRACKET:"]" >
| < COMMA: "," >
j < D OT:"." >
}

/* OPERATORS */

<DEFAULT>
TOKEN :
{
< ASSIGN: "=" >

| < GT: ">" >
I < LT: "<" >

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

< BANG: "!">
< H O O K :"?" >
< COLON: >
< PLUS: "+" >
< TILDE: >
< EQ: " = " >
< LE: "<=" >
< GE: ">=" >
<N E: "!=" >
< M I N U S : >
< STAR: "*" >
< SLASH: 7" >
< SC OR: T ' >
< SC AND: "&" >
< XOR: "A" >
< REM: "%" >
< AT:" ">

TOKEN:
{
<INT:"int">

| C H A R : "char">
| <DOUBLE:"double">
| <BOOLEAN: "boolean">
| <NULL: "null">

/ I * /

/* LITERALS */

TOKEN :
{
< INTEGERLITERAL:

["1"."9"] (["0"-"9"])* ([T ,"L "])?/ / DECIMAL LITERAL
| "0" ["x","X"] (["0"-"9","a"-"f,,"A"-"F"])+ ([T,"L"])? //HEX LITERAL

| < STRING LITERAL:
nyiM

((~["\"","\\","\n","\r"])
| ("\\" ["n","t","b","r","f","W", ,"V’"])

)*
nyiit ^

|<DURATION: "DU_”<STRING_LITERAL> >
|<DEADLINE: “DE_”<STRING_LITERAL> >
}

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TOKEN :
{

< IDENTIFIER: (["a"-"z"] | ["A"-"Z"]) (["a"-"z"] | [MA"-"ZM] | ["0"-"9"])* >
<EVENT_IDENT: <IDENTIFIER>". "<IDENTIFIER»
<TRACE DEADLOACK OPERATOR: "BPEL_Dead">
<BPEL_WAIT_NAME> : “BPEL_Wait_Name”>
<BPEL WAITING TIME> : <DURATION>| <DEADLINE>

“BPEL_Message_Name”>
“BPEL_Fault_Name”>
<IDENTIFIER> >
“B PE LF a lu tV ar”>

}

<BPEL_MES S A G E N AME:
<BPEL_FAULT_NAME :
<BPEL_VAR :
<BPEL FAULT VAR> :

TraceAssertion
AssertionLabel

(AssertionLabel)? TraceAssertionDeclaration
"[" <IDENTIFIER> ”]”

TraceAssertionDeclaration ::= <BPELTRACE> <LPAREN> (TraceConstant)*
(ProcessDeclaration)* <RPAREN>

TraceConstant ::= FieldDeclaration
FieldDeclaration - (Type) VariableDeclarator (VariableDeclarator)*
Type ::= (PrimitiveType) ("[""]")*
PrimitiveType ::= <INT>| <CHAR> | <BOOLEAN> | <DOUBLE>
VariableDeclarator VariableDeclaratorld ("=" Variablelnitializer)?
VariableDeclaratorld ::= <IDENTIFIER> ("[""]")*
Variablelnitializer ::= (Arraylnitializer | Expression)
Arraylnitializer ::= (Variablelnitializer (Variablelnitializer)*)? ()
M | M

Expression ::= ConditionalExpression (AssignmentOperator Expression)?
AssignmentOperator ::= ("=" | "+=" |)
ConditionalExpression ::= ConditionalAndExpression ("||"
Conditional AndExpression)*

ConditionalAndExpression ::= EqualityExpression ("&&" EqualityExpression)*
EqualityExpression ::= InstanceOfExpression ((" = =" | "!=")
InstanceOfExpression)*
InstanceOfExpression ::= AdditiveExpression (("<" | ">" | "<=" | ">=")
AdditiveExpression)*

AdditiveExpression ::= MultiplicativeExpression (("+" |)
MultiplicativeExpression)*

MultiplicativeExpression ::= UnaryExpression ((| "/" | "%")
UnaryExpression)*

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UnaryExpression ::= (PrelncrementExpression | PreDecrementExpression |
PrimaryExpression)
PrelncrementExpression ::= "++" PrimaryExpression
PreDecrementExpression ::= " PrimaryExpression

PrimaryExpression :: = (Literal | <IDENTIFIER> | "(" Expression ")")

Literal ::= <INTEGER LITERAL> I <STRING LITERAL> I <BOOLEAN> I <NULL>

ProcessDeclaration ::= ((ProcessDeclarator <LBRACE> (FieldDeclaration)*
ProcessExpression <RBRACE>) | (FieldDeclaration)* ProcessExpression)

ProcessDeclarator ::= <IDENTIFIER> FormalParameters
FormalParameters ::= "(" (FormalParameter(FormalParameter)*)? ")"
FormalParameter ::= Type(VariableDeclaratorld)
ProcessExpression ::= ProcessParallelExpression
ProcessParallelExpression ::= ProcessPrefixExpression (
<TRACE_PARALLEL_OPERATOR> ProcessPrefixExpression)*

ProcessPrefixExpression ::= (ProcessPrimaryExpression) (
<TRACE_PREFIX_OPERATOR> (ProcessPrimaryExpression))*

ProcessPrimaryExpression ::= (<EVENT_IDENT> (BasicProcess |
ProcessIfElseExpression | ProcessWhileExpression | (<LPAREN> ProcessExpression
<RPAREN>))

BasicProcess ::= (<TRACE DEADLOCK_OPERATOR> |
<TRACE_TERMIN ATIONOPERAT OR>)

ProcessIfElseExpression ::= <TRACE_IF_OPERATOR> <LPAREN>
Expression <RPAREN> <LBRACE> ProcessExpression <RBRACE>
<TRACE_ELSE_OPERATOR> <LBRACE> ProcessExpression <RBRACE>

ProcessWhileExpression ::= <TRACE_WHILE_OPERATOR> <LPAREN>
Expression <RPAREN> <LBRACE> ProcessExpression <RBRACE>

Arguments ::= "(" (ArgumentList)? ")"
ArgumentList ::= Expression (Expression)

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix b

This appendix describes how we use JavaCC as a compiler-compiler for
C S P bpel

After defining the BNF of CSP bpel , we need to build a compiler to check the syntax of

the trace specification. It is not easy to build a complier from scratch, so we take

advantage of the existed compiler-building tools to make it easy to build a compiler. An

automatic compiler-building tool is called a compiler-compiler. With a compiler-

compiler, we just need to create a grammar file, where we define the grammar

specification of the trace specification language. Then the compiler-compiler can

generate a compiler from the grammar file automatically. There are many compiler-

compiler tools existing. Since the activeBPEL engine is built upon Java, so we choose a

Java compiler-compiler to make things consistent. Currently there are several Java

compiler-compiler tools available. After comparing these tools, we choose JavaCC

[JCC01] as our java compiler-compiler. It is the most popular one those tools. It has the

basic feature to generate a parser. In addition to that, it provides other standard

capabilities related to parser generation such as tree building (via a tool called JJTree

included with JavaCC), actions, debugging, etc [JJT01]. Furthermore, it allows us to

embed actions in the grammar so that we can insert code to implement adding our

monitoring code while parsing. Finally, it is a free tool and has been used by a large user

group.

B .l Introduction to JavaCC

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JavaCC works with a grammar file, which is called a .jj file. The grammar of language is

defined in the .jj file and then JavaCC converts that .jj file to a Java program, which is

able to recognize matches to that grammar. The structure of grammar file is:

j avacc input: := j avacc options
"PARSERBEGIN" "(" <IDENTIFIER> ")"
j ava_compilation_unit
"PARSER END" "(" <IDENTIFIER> ")"
(production)*
<EOF>

The grammar file starts with a list of options (which are optional). This is then followed by a

Java compilation unit enclosed between "PARSER BEGIN (name)" and "PARSER END

(name)" strings. After this is a list of grammar productions. We won’t describe the options

part here. Details regarding that can be found in [JCC01]. The javacom pilationunit could

be any arbitrary Java compilation unit so long as it contains a class declaration whose

name is the same as the name of the generated parser, which is the <IDENTIFIER> right

after the “PARSER BEGIN”. In our instrumentation system, many features are

implemented in this part, such as reading in the original BPEL4WS file into a DOM

object, adding monitoring code for verifying variables and chronological information into

the DOM object, and writing that DOM object back to the BPEL4WS file.

In JavaCC each rule of grammar is called a production. All the rules of grammar are

defined in the production part. Production part has a structure like this,

production:: = javacode_production
| regular_expr_production
| bnf_production
| token_manager_decls

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Among these four production types, we just describe the BNF production here since it is most

related to our work. The BNF production is the standard production used in specifying

JavaCC grammars. Each BNF production has a left side which is a non-terminal

specification. The BNF production then defines this non-terminal in terms of BNF

expansions on the right side. The non-terminal is written exactly like a declared Java method.

BNF expansions are composed of three layers. The first layer is expansion choices.

Expansion choices are written as a list of one or more expansions separated by "|"s. It’s

representation is

expansion_choices ::= expansion ("|" expansion)*

The second layer is expansion. An expansion is written as a sequence of expansion units,

and its representation is

expansion ::= (expansionunit)*

The third layer is expansion unit. Its representation is:

expansionunit ::= local lookahead
| java_block
| "(" expansion_choices ")" ["+" | | "?"]
| "[" expansion_choices "]"
I [java assignment lhs "="] regular expression
I [java_assignment_lhs "="] java identifier"(" java_expression_list")”

An expansion unit has different representations. It can be a regular expression; but it can also

be a java block. A java block is a set of Java declarations and code enclosed within braces

(the Java block). This block is executed whenever the parsing process crosses this point

successfully. It is the java block in an expansion unit where we embed actions to implement

adding monitoring code. In a sample production:

(1) void activity():
(2) {Token actName;}
(3) {actName=<EVENT_IDENT>
(4) {String activityName = actName.image;

169

with permission of the copyright owner. Further reproduction prohibited without permission.

(5) System.out.println(“ This is the activity name”+ activityName);
(6) }}

Lines 4 and 5 are the expansion unit. They are used to retrieve the token name and print it

out.

B.2. How to define a grammar in JavaCC

The grammar of our trace specification is defined in BNF notation, whilst JavaCC

supports bnfjproduction. Comparing BNF and bnf_production, we can easily find that

bnf_production is very similar to BNF. They both have a non-terminal specification on

left side and regular expression on right side. The main difference between the

bnf_production and standard BNF is that you can embed actions in the bnf_production.

With the extensive similarity between bnf_production and BNF, it’s fairly easy to

translate from BNF to bnf_production. The major work what we need to do for the

translation is writing each non-terminal as a declared Java method

For example, a BNF specification

ProcessParallelExpression: := ProcessPrefixExpression (
<TRACE_PARALLEL_OPERATOR> ProcessPrefixExpression)*

Can be translated into bnf_production:

void ProcessParallelExpression():
{}
{(ProcessChoiceExpression() (<TRACE_PARALLEL_OPERATOR>
ProcessChoiceExpression())*)}

Appendix C

This appendix describes the implementation of instrumentation system

C .l Choose BPEL4WS engine

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A BPEL4WS program has to run upon a BPEL4WS engine, so that we need to choose a

BPEL4WS engine to support the running of test BPEL4WS programs. BPEL4WS

engines can be categorized to free and commercial. Since we only use it for research

purpose, we decide to choose a free engine. Currently, there are two popular free

BPEL4WS engines, active-BPEL [ACT01] and bpws4j [BPW01]. Actvie-BPEL is

provided by Active Endpoints, Inc. BPWS4J is provided by IBM.

After comparing these two engines from several aspects, we decide to choose active-

BPEL in our research. The reasons why we choose active-BPEL are

• It is free
• It is open source
• It has regularly updated releases
• It has a big user group
• It is easy to extend with custom features

C.2 How monitoring code passes information to the trace verification
system

Before we describe how to design the monitoring code to monitor the variable values and

chronological information separately, we illustrate how that information is passed to trace

verification system.

Original approach

In the standard BPEL4WS language, the only way to send the internal state information

of a running BPEL4WS program out is to invoke an external web service and pass the

internal state information as input parameters to that web service.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

At first, our approach was to send information to a monitoring web service. The

monitoring code in BPEL4WS program invokes that monitoring Web service, and sends

variable information and chronological information as input parameters to the operations

in the monitoring Web service. After we implemented this approach, we found this

approach has an obvious disadvantage. It is slow. Invoking the monitoring Web service

once may not take much time. However, the total amount of time spent on invoking the

monitoring Web service for all the monitored activity events and variables is much

bigger, and it heavily affects the performance of the BPEL4WS program.

New approach

After we realized that building a monitoring web service is not the best way to collect test

information, we turned to the activeBPEL engine itself. We hoped it could provide some

mechanisms to transmit internal state information. After analyzing the activeBPEL

engine thoroughly, we found that it providse a mechanism to add custom functionality to

the engine. Adding custom functions to activeBPEL engine implies creating some custom

functions with Java, and changing the configuration file of the engine to inform it of the

existence of these custom functionalities. Then the activeBPEL engine can treat these

additional custom functions as a library of methods, and the monitoring code can call

those custom functions from within the BPEL4WS program. Therefore, with this

mechanism, we can implement the trace verification system as a custom function, and

then the monitoring code in the BPEL4WS program passes variable and chronological

information as input parameters to that custom function.

Procedure to add a custom function

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The procedure to add a custom function has the following two steps.

• Write Java code to implement the specific feature. The Java code should follow a

specific format required by the activeBPEL. The details of the format can be

found in the sample code of how to write custom function. The sample code can

be downloaded from [ACT01]

• Edit activeBPEL’s configuration file aeEngineConfig.xml to add information

about the custom functions. The default element defining the custom function in

the configuration file is “<entry name="FunctionContexts"/>”, We can change it

to

<entry name="FunctionContexts">
<entry name-'Custom XML String Functions'^
<entry name-'Prefix" value="xmlstring"/>
<entry name="Class" vahie-'custom function_class'7>

</entry>
</entry>

The name “Custom XML string Functions” doesn’t have any special meaning. It

just indicates that it’s the main feature of the custom function. A call to the custom

function is composed of two parts. The first part is the prefix, and the second part is

the class name of custom function.

How to call custom function in BPEL4WS program

We have to call a custom function within a <Copy> element of an <Assign> activity. A

snippet of sample BPEL4WS code to call a custom function is

<assign name="Test_ElementToXMLString_CustomFunction">
<copy> <from expression="xmlstring:elementToXMLString(

bpws:getVariableData('brandYearTypeMessage', 'brandYearType'))" />
<to variable="myString"/> </copy> </assign>

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this testing code, the element <from> invokes the custom function. The custom

function is “elementToXMLString”. It has one input parameter, part ‘brandYearType’ of

variable ‘brandYearTypeMessage’. The custom function returns a string value, and it is

assigned to the variable “myString”. In some cases, there is no value returned from the

custom function, so that in order to make the Copy Operation valid in the grammar, we

add a non-meaningful string as the return value of custom function and then assign that

value to a dummy variable.

C.3 Monitoring code passing variable information

Before we pass the variable values to the trace verification system, we need to retrieve

those values. In a BPEL4WS program, it is easy to retrieve the value of a variable. The

grammar to do that is

bpws:getVariableData('variable name’, ‘part name')

After retrieving the values of the variables, we pass those values to the trace verification

system through invoking a custom function, BPEL: sendVariable (name, value). This

custom function is a part of the trace verification system. It not only receives variable

values but also determines the expected trace behavior upon the variable values. This

function has two input parameters, the name of variable and the value of variable. A

sample monitoring code to call this custom function is:

<assign name="sendVarialbeValue">
<copy><from expression=" BPEL: sendV ariable(

"order.steps",bpws:getVariableData('order','steps'))" />
<to part=''activityName" variable-'bpelTesting" />

</copy>
</assign>

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The monitoring code used to pass the variable values is simple. As to where we should

instrument the monitoring code, it is not difficult either. Although the value of a variable

can change during the running of a BPEL4WS program, what we want to monitor is the

value that is used to determine the result of a conditional expression. Therefore we can

insert the code immediately before the activity that includes the conditional expression.

The location of that activity can be calculated from those activities immediately after the

conditional expression in a trace specification.

C.4 Monitoring code passing chronological information of activities

Major approach

To determine the chronological order in which the activities are executed, our approach is

to record the system time when activities start and end. The system time is the system

time of computer where the BPEL4WS program runs. An activity may be invoking a

remote Web service, and it is not easy to know the real time when the remote Web

service starts and ends. For the sake of simplicity, we use two other times to represent the

actual start and end time.

We use the time when the BPEL4WS process invokes a remote Web service to represent

the time when the Web service really starts. In order to get the system time when

invoking a remote web service, we instrument an <assign> activity immediately before

an <invoke> activity. The assign activity is used to call a custom function to get the

system time. In order to ensure that those two activities are executed one after another.

We put them within a <sequence> activity.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We use the time when the BPEL4WS process receives the response from a remote Web

service as the time when the Web service really ends. Unfortunately, BPEL4WS doesn’t

provide any facility to record the exact time when the BPEL4WS process receives the

response from the remote Web service. Therefore, we can only use a time that most

closely approximates that time. This is achieved by adding an <assign> activity

immediately after the <invoke> activity. The <assign> activity is used to call a custom

function to get the system time, and it is put within the sequence activity where the

activity invoking the Web service resides.

What is monitoring code

For each monitored activity, we instrument two pieces of the code for testing. One is

instrumented before the monitored activity, and the other one is instrumented after it.

Each piece of monitoring code includes four < assign> activities. List C. 1 is a snippet of

sample monitoring code added before the monitored activity. The first <assign> activity

is to call the custom function systemTime () in order to get the computer system’s time.

This time is assigned to the “startTime” part of the variable “bpelTesting”. The second

<assign> activity is to assign a constant value “None” to the ‘endTime’ part of the

variable “bpelTesting”. The constant value “None” is used as a tag to indicate that the

variable “bpelTesting” is only to specify the start time of the activity. The third <assign>

activity is to assign the name of activity to the “activityName” part of the variable

“bpelTesting”. The fourth <assign> activity is to call the custom function “bpelTrace”.

This custom function is our trace verification system. When invoking the custom function

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“bpelTrace”, there are four input parameters. Besides the “startTime”, “endTime”, and

“activityName”, there is a parameter called “ProcessTime”. “ProcessTime” is a unique

identifier for each distinct instance of a BPEL4WS process. With this identifier, we can

separate one instance from the other one.

<assign name="reportStartTime">
<copy>ffom expression-'Time:systemTime()" />

<topart-'startTime" variable-'bpelTesting" />
</copy> </assign>

<assign name="reportStartTime2">
<copy><from expression=,"None'" />

<to part="endTime" variable-'bpelTesting" />
</copy> </assign>
<assign name-TeportStartTime3 ">
<copy><from expression='"invokeapprover'" />

<to part="activityName" variable="bpelTesting" />
</copy> </assign>

<assign nam e-' reportStartT ime4 ">
<copy>

<from expression="BPEL:bpelTrace(bpws:getVariableData('bpelTesting',
'processTime'),bpws:getYariableData('bpelTesting',
'activityName'),bpws:getVariableData('bpelTesting',
'startTime'),bpws:getVariableData('bpelTesting', 'endTime'))" />
<to part="activityName" variable="bpelTesting" />

</copy> </assign>

List C.1 Sample monitoring code added before an activity

These four <assign> activities are almost the same for all the activities to be monitored.

The only difference is the value of expression in the third assign activity, since it is the

name of the monitored activity. The monitoring code added after the monitored activity is

quite similar to the monitoring code before the activity. The only difference between

them is that in the monitoring code before, the “startTime” part is system time and the

“endTime” part has value “None”. While in the monitoring code after, the “startTime”

Part has value “None” and the “endTime” part is system time.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D

This appendix describes the implementation of trace verification system

D .l Introduction to parse tree

As we stated in appendix B, we use JavaCC to generate a parser to check the syntax of

the trace specification and automatically instrument the monitoring code. However, the

parser generated by JavaCC lacks the ability to represent the trace specification using an

appropriate data structure, which is suitable for later processing and captures the internal

hierarchy of the input. The most widely used data structure in parsing is tree structure,

called parse tree. Many popular computer programming languages use parse tree to parse

their input strings. Fortunately, JavaCC has a complementary component called JJTree

[JJT01], JJTree is a preprocessor for JavaCC that inserts parse tree building actions at

various locations in the JavaCC source. The output of JJTree is run through JavaCC to

create a parser that can parse input with a parse tree.

In a parse tree, all the leaf nodes of the tree are labeled by terminals of the grammar. The

root node of the tree is labeled by the start symbol of the grammar, and the interior nodes

are labeled by the nonterminals. If an interior node has a label A, and it has n child nodes

with labels XI, X2, ..., Xn from left to right, then the production rule A —>■ XI X2 .. Xn

must exist in the grammar. For example, consider a grammar whose list of productions is

E::=E+E
E::=E*E
E::=id

The tree shown in Figure D. 1 is a parse tree for a string id + id * id.

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure D.l Parse tree for string id+id*id

D.2 Use parse tree to determine the expected trace

The purpose of the parse tree is to determine the expected execution order of all the

monitored activities. An event token in the BNF of C S P bpel is a terminal, hence in a

parse tree all the nodes for events are leaf nodes. Among all those event nodes, we can

find out which event or events should execute first based on the relationship among them.

There are two types of basic relationships between any two events, sequence and parallel.

Any other relationship can be represented as a composition of these two basic

relationships.

How to determine the expected trace between two activities

If two activities have a sequential relationship, then it means that one activity should

finish before the other activity starts. The formula to represent this relationship is:

activityA.s->activityA.E -> activityB.s->activityB.E

If two activities have a parallel relationship, then it means that any activity can start first

as long as it starts before the ending of the other activity. The formulas representing this

relationship are:

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

activityA.s->activityB.s -> activityB.E->activityA.E. OR

activityB.s->activityA.s -> activityB.E->activityA.E. OR

activity A. s->activityB.s -> activity A.E->activityB.E. OR

activityB.s->activityA.s -> activityA.E->activityB.E, OR

The relationship between two activities can be easily represented in a parse tree. If two

activities, activityA and activityB, have a sequential relationship, their trace specification

is activityA->activityB. When this trace specification is parsed into a parse tree, the parse

tree is:

In a parse tree, we can programmatically determine the relationship between two

activities. Since nodes activityA and activityB both are the child nodes of node

ProcessPrefixExprresion, we can deduce that the child nodes of node

ProcessPrefixExpresion have a sequential relationship. After determining that two

activities have a sequential relationship, we have to know which one should execute first.

JJTree is a LL parse tree. A LL parser is a top-down parser for a subset of context-free

grammars. It parses the input from left to right, and constructs a leftmost derivation of the

ProcessPrefix
Expression

4.

activityA | | activityB

Figure D.2 Parse tree for two sequential activities

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sentence. [LLP01]. A leftmost derivation means replacing the left-most non-terminal

during the process of parse. Since JJTree parses the input from left to right and in that

trace specification token activityA is on the left of token activityB, therefore, token

activityA is first parsed into the parse tree between itself and token activityB. Node

ProcessPrefixExpression only has two child nodes, activityA and activityB. Since node

activityA is parsed first, therefore its index as a child node is 0, and the index of

acitivityB is 1. As we know that activityA should execute before acitivityB, hence we can

deduce a rule that among the child nodes of a ProcessPrefixExpression node, the node

with the smaller index will execute before the node with bigger index. There is a JJTree

API method Node.getChild (index) to retrieve a child node by index, so that we can

programmatically find out what is the first activity.

Analogously, if two activities, activityA and activityB, have a parallel relationship, their

trace specification is activityA|| activityB. When this trace specification is parsed, its

corresponding parse tree is:

P ro cessP ar
| allel

Expression

I activityA activityB |

Figure D.3 Parse tree for two parallel activities

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since nodes activityA and activityB both are the child nodes of node

ProcessParallelExprresion, we can deduce that the child nodes of node

ProcessParallelExprresion have a parallel relationship. For two activities in a parallel, we

don’t have to determine which one can execute first since anyone can execute first.

How to determine the expected trace of a whole process

Normally, a BPEL4WS process includes more than two activities. In the previous

section, we described how the two basic relationships of two activities are represented in

a parse tree. Since the relationships between any two activities in a whole process are still

those two basic relationships, therefore the parse tree of a whole process can be built

based on the parse tree of two activities. For example, a process has four activities, and

its trace specification is activity A-> (activityB | |activityC) ->activityD. In this trace

specification, since activityB and activityC are included in a pair of brackets, they are

treated as a unit when they are parsed. They have a parallel relationship, so in the parse

tree they are child nodes of node ProcessParallelExpression. As a unit, they have a

sequence relationship with activityA and activityD. Therefore in the parse tree, their

parent node ProcessParallelExpression and nodes activityA and activiytD, are child nodes

of node ProcessPrefixExpression. The parse tree for this trace specification is:

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

, . I , ProcessParallel i , . . _activityA | | Fvn„ _ _ inn , activityD

| activityB | j activityC |

Figure D.4 Parse tree for activities with complex relationship

The approach to programmatically deduce the execution order of activities includes two

major steps. Step 1 is to determine which activity should execute first (Figure D.5). Step

2 is to determine the expected trace of activities thereafter (Figure D.6).

In step 1, we declare a variable “currentNode”. This variable indicates currently which

activity is expected. It is used all through the implementation of the approach. From

figure D.5 we can find that the activity, which should execute first, might not be

deterministic in some situations. If there are a group of activities having a parallel

relationship, then any activity in the group can execute first. It means we can not

determine exactly which one should execute first, but determine that any activity in the

group executing first is acceptable. For instance, for trace specification

(activityA||activityB) -> activityC, activityA or activity B can execute first. To tackle this

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

issue, we define a collection and put all the activities that execute parallel into that

collection, and then assign this collection to variable “currentNode.”

Declare a variable:
currentNode. This variable
indicates which activity is

cuirently expected

Get the left m ost leaf node.
Save the path used to find

the node into a stack

Is it an activity
node

No

Retrieve its parent node
Its parent m ust be

ProcessW hileExpression

ProcessIfElseExpression
Assion it to currentNode

Yes

Retrieve its parent
node

ProcessPrefixExpression
or P rocessParalle

Expression

Prefix
▼

The activity node is the
activity should execute first.

Assign this activity to
currentNode

Receive var.able
information from the
running BPEL4WS

pn

Use variable values to calculate
the value of condition expression

then determ ine which activity
should execute next and assign it

to currentNode

Parallel

Put this activity and all other
activities parallel to it into a
collection Any activity in the
collection can execute first.

Assign this collection to
currentNode

Figure D.5 Process to find the first expected activity

In step 2, we don’t calculate which activity should execute next until we receive the

current expected activity event from the running BPEL4WS program. An activity event is

the chronologic information sent to the trace verification system . After receiving the

chronological information, step 2 verifies if the activity event is correct. How to verify

will be discussed in details in next section. After the verification action, we make use of a

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stack structure to find out which is the next expected activity. The stack structure is

created in step 1. When we look for the first expected activity, we push the name and

index of all its parent nodes into the stack. The index of a node is its index among itself

and all its brother nodes. When we determine the next expected activity, we pop up the

parent node of current node and then use the index of current node to find out if the next

activity is in its brother nodes or if we need to pop up a higher level node to find the next

expected activity. The detailed process to find the next activity using a stack structure is

shown in figure D.7.

With curren tN ode,
w e know w hich
activity shou ld

e x e c u te currently

v
R ece iv e th e

chronological
inform ation of ar

activity

If th e activity is
e x p ec ted -N o ► Log an error

It cu rren tN ode
po in ts to a
collection

U se th e stack to
find out th e next

activity Lhat shou ld
ex ecu te

Y esT
It th e activities in th e ..x____
collection all fin ished N o on m ° M' ^

execu tion curren tN ode

Y es

U se th e s ta c k to
find out th e next

activity th a t shou ld
e x e c u te

Figure D.6 Process to find the next expected activity

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Start

Stack is empty

No

The trace
verification is done

■ up the nam e of parent node and
the index of current node Yes

Is there any other
brother node w hose

index is after
the current index

Yes

No

lndex=index+1
Push the new index and nam e of

parent node back to the stack

Is the stack
* emtpy >

No

Pop up the nam e of parent of
parent node and the index of

parent node

m

Set the next brother node
a s the currentNode

Is the currentNode v
ProcessPrallelExpression > Yes *

No
-JL

Is the current node
an activity node

No
Then current node is

ProcesslfElseExpresiion or
ProcessW hileExpression

Find all the parallel
activities it includes
and put them in the
collection of parallel

activites

W hen variable values is received
the value of condition expression

will be calculated and currentNode
will be recalculated based on the

value of condition expression

End

Figure D.7 How to use stack structure to find next expected activity

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D.3 Verify the actual trace

In appendix C, we illustrated what is monitoring code and how the instrumentation

system inserts monitoring code into appropriate locations in a BPEL4WS programs.

During the execution of the BPEL4WS program, that monitoring code passes

chronological information and variable values to the trace verification system. After

receiving the actual trace information, the trace verification system verifies it upon the

expected activity, which can be deduced by the approach described in the previous

section. How to verify the actual trace is shown in figure D.8.

R etrieve th e activity s
nam e an d its 's ta rt ' and
e n d ' attribu te form th e
received chronological
inform ation of activity

Is th e ac tual
activity n a m e in No^

th e collection

f
D o e s

th e ac tual
s ta r t’ an d 'en d

attribu te m atch the
ex p e c te d

Y es

Is it a e n d ' tim e

Y es

No

No

Log an error

» P a s s verification

cu rren tN ode po in ts to a
sing le activity o r a

collection of activities
Single ► P a s s verification

collection

H ave all o th er
activities in th e

collection sta rted
No Log an erro r

Yesw_

P a s s verification

Figure D.8 How to verify the actual trace

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When verifying the actual activity trace, we not only check if the actual activity is what

we expect but also check if its start time and end time are correct. Since the sequence or

parallel relationship between two activities can be represented as a relationship between

their start and end time, as we describe in appendix C.4. Therefore, by verifying their real

start time and end time, we can validate if the relationship between two activities is

satisfied.

There is a special case where no chronological information is passed to the trace

verification system due to the exception or deadlock in the process. When there is an

exception in the process, the normal execution of the process is stopped and exception

handling is performed. In the exception handler, as no monitoring code is instrumented,

therefore no chronological information is passed. Analogously, when the process is in a

deadlock state, no activity in the process is able to execute. Therefore, no activity can

pass chronological information to the trace verification system either. When there is no

chronological information is passed, the trace verification waits for a period of time then

throws out a time out error. The length of the waiting time can be specified through

configuration.

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Appendix E

This appendix gives the details of mutants used in the experiments.

(Legend: “//” implies that we comment the code on its right side. Code without “//” on the left side is the code added)

No. Mutants Description Location
(in file

purchase.bpel)

Fault Model

1 //<sequence>
<flow>

Line 189 Sequential to
Parallel(FMl)

//</sequence>
</flow>

Line 194

2 //<invoke partnerLink-'scheduling" name ="InitiateProductionScheduling"
// portType="sch:scheduling" operation-'requestProductionScheduling"
// inputVariable="PO" outputVariable="productionSchedule"/>

<invoke partnerLink="scheduling" name ="CompleteProductionScheduling"
portType="sch:scheduling" operation="sendShippingSchedule"
inputVariable="shippingSchedule" outputVariable ="finalSchedule">

<target linkName="ship-to-scheduling"/>

Line 190 Switch
Activity(FM3)

//<invoke partnerLink="scheduling" name -'CompleteProductionScheduling"
// portT ype=" sch: scheduling" operation-' sendShippingSchedule"
// inputVariable="shippingSchedule" outputVariable ="finalSchedule">
// <target linkName="ship-to-scheduling"/>

Line 191

<invoke partnerLink-'scheduling" name ="InitiateProductionScheduling"
portType="sch:scheduling" operation-'requestProductionScheduling"
inputVariable="PO" outputVariable="productionSchedule"/>

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

o

3 //</links>
clink name="shipper 1 First"/></links>

Line 108 Parallel to
Sequential(FM5)

//<source linkName-'quoteShipperl"/>
<source HnkName="quoteShipperl "/><source linkName="shipperlFirst"/>

Line 119

//<source linkName="quoteShipper2"/>
<source linkName="quoteShipper2"/><target linkName=’'shipper 1 First"/>

Line 122

4 //</invoke>
</invoke><terminate/>

Line 123 Unexpected
Terminate (FM2)

5 //</links>
<link name="start-scheduling"/></links>

Line 108 Deadlock (FM4)

//</invoke>
<target linkName=”start-scheduling’7></invoke>

Line 191

//</invoke>
<source linkName=”start-scheduling”/></invoke>

Line 194

6 //<source linkName="quoteShipper2"/>
<target linkName=”quoteShipperr7> <source linkName=”quoteShipper2’7>

Line 122 Synchronization
to Sequence
(FM6)

//<target HnkName="quoteShipperl "/> Line 125

//joinCondition-'quoteShipperl AND quoteShipper2" Line 127

7 //<source linkName="quoteShipper 1 "/>
<source linkName="quoteShipperl" transitionCondition=
"bpws:getVariableData(‘shippingInfor, 'price')<200'7>

Line 119 Extra Single
Condition (FM8)

T3a<
03ao

ONT3a 2x o g
W U fe-

ON

<d
S3

.A
©o(N

<N<N
a>
S3

CN

oo

co
Pi §O '—'u .-s O 03 T3 '—1is g 5X ° £W U fe,

On

<D

<NCN
<Ds3

<N
<Ds3
A

CNk*
<D _SP <NS-Hoa,a,

♦-C03<Uh-»o
g<

Pi
O

Oh
2
<D +-<
O 3cr
Q
|
kH — |^ T-
O h 5
O h O h

3 .&03 XI « 03
2 & 3 O

S h

II =
S 1Lo d X o
2 £ n t3 o c
U o d U
n 0

ON

eo
-S3 o4->
J U fe

(N
<0
S3

<o
o•a
o

£30
_E3

O Ao A
a

03 O

to
*5
<d
o

’Co

a

00g
o , O A
-P *oO 03 <u

<N
£2
S3HH

‘B<U HhQrr co SP w£ a
O h M

!p Q
ii a

aO £0
• rH • ^^ H33 d

o t3O op
W 5
03 <
«* Q. CD &V

3" O
^ ’S
3 -®r
Q CN
a A
•S *CS M
•g a*

3 > o<o .Qh
oox
03 _«>

O t i

C °II jd
l - s
=T§
c >O V* o <D bfi
S ^S3 £o O V d

CD
2?<D

i-2
f |
03 fe-

NOO<N
<D
S3

a

03 -
<D>»

03
<D
hO

,2 o

.2 o
p '3
£ JL
-2 8 §
w S -x tg II “ o ^ 2 (D •' in d ^ = „» 2

" "o
csHHVH

9 °O P h

¥ ¥ d d
Q Q(D <D

1 1
d3 ^

> >H-" O'
(D0) M-

00 60
03 c/3

£ ' o _-O XI
S3_o*o

a
S3o
<JS3O

&PhT3<D
<D£̂3
o
P h

, Io Q^ <D
1
3S3_o|0

"So
U
S3o

<Dop
03

od
Q
5

.2*o
U

Ph

Jh

CLh

in
o(N
§

co<u

<u
’o
I—I
a3
&

P hT3U
S
0
2h

a
Q<D
1

<u
?p73
£o

-S3

S3_o|0
ado
O
S3O
03

gs-

(N

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

v oo
(N
<u
a

4>

(U
o

' o

£I— I
0

*3
1
o

s
0)
<D
a

0
P h

Q
<d

1

>
IS
s o
(A
Z
P h

P

c
o♦ »*H

.'tn
T 3
C
O

U
c
o

00
p

' n

p_o
3
N

VO
S
h

N N ^
'p o ’3 0 a
§ ~ 2 5 .2

3 & 3 < ! * i

a “ g JS *2F «) F h Bm >» -c; ow 2 a) ? o

(N

§

<u
o

* o

ei

cB cB

» spq W
<U 73

Q

p

&
o
4>

_ o
’ o

£
Jh '7
& « cB o

P h cB
*2 ^ P T3
«
VI <D
ll =w
B !Lo a

•-P op :-s
P t 3 o a

O O
P U
o . 3

cB
T3
<U

B S<D +3 B
3 S P

5 a x
i*5 O <D

VO

+
~<D
O

u
: o A
P h > -

■p -2 P E
Q _P<
« _ *>

3 <£ .3 p
§ "3)> .a
a &pp.&
c/i -P
£ £
P h cB

r ° 3
l l Q
P P

‘I *§
e ' §

o
o

&H

:o A
A > - s

' s ' «
p - 2 p e
Q Oh 1) ^ ^
3 < s

3

D
?P
73

£
P h

„ 00

£ -S
O &
o p . & 1
Vi -P
£ ^
P h P

rP 3
ll Q
P »

• i - s
g ‘S
P h >
X •+-*S 2r>
p ??G 73

2 £ Ph Oh
V &

x>
a> <o

11
> >

p
0)
S
<D

Ji
3 h

2

CN

t N =
.© i- h

OP Ph
op3
P 00•a.a
P h P h

3 . &
J " hP
II =“

II
3 J 2cS Xl♦ »-H

S I > ^

B* 3 3 &
O o

\ o

LTl

£H Vi
S p

a -as p
O S
£ >

VO

s

+
"<D0
■a
:A A

X 3
P 'E

Q P h(O . *V
1 £ P PhH

00 p
-a
P h

3
Vi

c3
p pp
M
^ w
P h CS

ll Q
P P
° 373
73 *r*J ^ s

2 a
73

77 P̂ V hP

+
o-s A(U >'
.2 oVh O
_Ph H—I

■‘o ' X,_Oh “gj
V .2
3 Bh
Q : -
1 <2
•§ 3
■ f l 60 c3 p
> -a
a .&oo3
p rW
^ cB
P h 'p

f Q
II w
S.2 c3
73 * C
8? « S >
Gh ^ s> <1>
S hnppa t/i>
2 a
v -p

VO

T f\

G M
l lo E o as
Q >

VO

op

+
-<D
_ o

a
■o' A_Ph>V
a <u _ <->
Q
3 3 .a p
c3 oo
> 3
3 g;op .&M hP
P h P
3 -a
ll Q p p
•i -p
S ’S

s &
3 73

2 ^
P P h
V ^0

« A
‘S IPh®
~o A_P< “o
IT .2
a a
Q A
1 <2
•9 3E po
e3 p

P h
>
«
00 X !

^ 'a
P h I P

^ QII ps ^ .2 ^
73 * Cw ?3
p< IP
g a
S i
2 a
V *

hP
<u +J

1 ^

>

GDa<D Ow eg G Q . O o> o —

00

§

(D <u

00

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T
ab

le

E
.l

M
ut

an
ts

of

E
xp

er
im

en
t

1

VT3
O
2
53
A

fc
CD

.2 fan
'S w<D

D «3
G O P h

<N

T ,
& <D

^ Icl .5
><; aU H d <U
P H

T|-
3
w
M
o
0

1<D
Q

cl
O ,-N•-d o-«j 5
N

•a fe
O —
3 o

1 1
05 PL,

0H-»
G Co0

%-» 2
Ph

*s CD
0 O
3 a

CD0 S3
d a"

CD
05 S/2

Cl
. oyd

o
U
XS
o■H

in

«

© 3 ^
•■§ « g
w S S© w g
J 5sc

G

t ' ' d -
<N

<Ud

oo in 00 inCN
<ud
3

>n
o
u
d

o
o

§

in
o

H

on

<Dcl

ao

s-
wsc
V

Q

e55
S
2

©
z On

©
CS
d

©
A V
JS £
£ 2
^ = 1 A:: V

O
CN

A
<u
0
1
VA

V

.1cn
C/2a
\7A

V

CN

4
<d
y-

<N
(N

£
d3

4
.sp S>
g ‘55
-* 3

sc -y
O ‘sc
Cl o
© CLn ©
3 9
3 8
33 .h__ »N

J . 1
*© -5
v e
3 3 Q cd
© Q

3 JB_cd ,0
"C 3

> S
3 > 00 ©c/i 00

& ̂do Oh
=, X

v v

A
<DO
g
§■<Dc/2V

A0)o
d
©3cf«cc
V

d0
■-d
1 o
U
d o
C/3
g
d

d
o

*HH
-a
d
o
Udo

m
cn

Tf
C N

m
ON

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CDO ^
O

u S
CD O h

> ^
' 3 (U
p —

73 S
x «3W Ph

§=8
I I
5 y
On g

• - 4t/3 2

60 fe ,
•S H*w F
.2 <2

oo

w26g
xo
03

"O
CD60

S "3
I S
§ 1Ph S
13 «
2 &

^ «X <D
<D <L> g

1 1 8 .2 .2 s
§ c3 Oh > > 2

CO
aoo
a<D

<u
S-hO
a

©to
a>
G

OnTt"
<L>
g

©to cn
<DG

CO
00
<DG

©
to
<DG

00
©

<D
a

00
©

<uG

CO
COT—H
<DG

CO
<u _
*rr >>

COO xflCli o
M ^ Q «
t3 Q
<d o

. 2 c d T3 .*31 * T3
S - "

I - 1o ^
V - °
•2 ^ 03 *2
Q «
« Q

3 ,2
_cd X i•a ks
Cd - C
> &H-> *>.<D £
60 u
M 60
^ •£
s* ^

ll ^
d II o el •■g o

t3 +3
S ^ o c

U o
a u
2 « vg o

‘w '-3

C/2
<d
kO

CO
O
Oh<D

Q4—*O
8

-2

c«
Q<u

3

CD
60
CO
£O,X
d

,0
*-G

1o
U
ao
C/3

P

to
<N

CO
a>
>>

CO
O
aa>
Q
8
s -

c3
73

t3
Q

c d

1
c3

<D
pp
CO
£
O h

Xi

a_o
t3
elo
Uclo

Q
§
ooo

~a
03
el
CD

S'x
w
73

£ ? 1 3 J) bQ c/i .tr
Cl P3« a) *g

•S x 1 2
•a w o
^ «s -e
£ O S u S1fp-fl*' /g
“ .1 ‘s? s y
S 173 'S
li p -S'
h % *

•2 0 ^
5 -s Q ^ -S Ji
§ 1 1O c3 .2

. 2 13 > .is 00^?
3 y 60

>n OhX

A

iX
<u

I

iX-I

A,

A
eloo_o
“<u

C/3el
CD
S'xW A T3 >- U

OJD
“ CDC/3Oa>OhXW A T3w

cd 3
3 o
Q :«;

•8 8
'S &
> w
+-* .is
00
CO <D
£ &
O ' cd

^ 13
ll Q o «>
■§ 'r t

e |

s &
S "O co

,%4

s
3 o

la §
'S ^
> w■4-* . H“ 3OX) ry
co 1>
^ eO'

rP -S
ll Q o «
•1 -8
S | .

® 8)
a

7? >-Jh o
P

CO
£
O hv x

+

fo_p
“<DC/3
o<D
O hXW A

T3
<D >-v

E l
-2 o cd o

2 8
x ocd <D
’S ^c3 x

8» ^
P E

E l
ll Q0 «
•2 1 C/3 cd C/3 'C
2 |

u 8)
a m

1 -

+

o
J J

7)COa<L>a
X!
W.b A >-

O h > v <U
C3 §
2 o

2 8 X o cd cd
•dc3 x > w +-< .2 & «300 Q .
CO P

 ̂ t .Oh cd
^ 2
ll Q
C O

•1 'rt

I I

r »C CO
H ^ T? a V X

jA
Ooo
/p
“uc/3«CD
S'Xw

73

.A
oooo
Â
‘cdC/3o(D
o.Xm

”3

cd

x(N CN
60
CN

ON
CN

OCl

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

§ g
S 38 a
o 2

n §Q o

CO
cn

<D
el

t3
4 3 CD

(D ■M s

? -+->
CO

CD

jj£
'U a H
> o

o <D
S-H

ooO
<u

+

.A

o
oin
+

cscn

Ojd
“<dGO
PI<u
x

W A
T3 > <D >\
8 s
£ o03 O
£ g
-S fic3 (U
‘fi ^8 X
> £
8> 1i/j <D
£ &&< 8
:P ta
l l Q
el «
•2 3C/3 Cd co *r-j
S §

§ 8) C wO 8 <+h a
X =£

cn
cn

§
oJD
lu
COCS
<DaXw
ID

cd
'S
Qa>
I
'§

op
CO

£a-o
e

_o
‘tn

C/3

ax
ID

8
o
*
V

CN-w&U
s-<D&X
w«tH
o

CN

W
a>
38
H

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

