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Abstract 

Uncertainty is pervasive in various process operations problems. Its appearance spans from the 

detailed process description of multi-site manufacturing. In practical applications, there is a need 

for making optimal and reliable decisions in the presence of uncertainties. Asking for constraint 

satisfaction at some level of probability is reasonable in many applications, which calls for the 

utilization of chance constraints. This thesis studies the approximation methods for solving the 

chance constrained optimization problems. Two approximation methods were considered: 

Robust optimization approximation and Sample average approximation. For the robust 

optimization approximation method, an optimal uncertainty set size identification algorithm is 

proposed, which can find the smallest possible uncertainty set size that leads to the least 

conservative robust optimization approximation. For the sample average approximation method, 

a new linear programming based scenario reduction method is proposed, which can reduce the 

number of samples used in the sample average approximation problem, thus lead to reduction of 

computational complexity. Furthermore, the proposed scenario reduction method is 

computationally more efficient than the existing methods. The effectiveness of the proposed 

methods is demonstrated by several case studies.
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1. Introduction 

1.1. Optimization Problem under Uncertainty 

Modern process industries face the increasing pressures for remaining competitive in the global 

marketplace. To reduce costs, inventories and environmental impact, as well as to maximize 

profits and responsiveness, a major goal of the process industry is to optimize the process 

operations in supply, manufacturing and distribution activities. Major activities of process 

operations include production planning, process scheduling and supply chain management. 

Those operational activities complement the role of process design and synthesis, and seek to 

improve existing operating process. 

Uncertainty is pervasive in various process operations problems. Its appearance spans from the 

detailed process description of multi-site manufacturing. The source of uncertainty ranges from 

orders placed and equipment availability in scheduling problems, to uncertainties in prices and 

demands for large-scale supply chains. Since decisions made under deterministic assumptions 

can lead to suboptimal or even infeasible operations, a major interest of process industry is to 

generate agile and efficient process operations decisions that allow the producer to be more 

adaptive to uncertainties in manufacturing process and dynamics in the market. 

The operation of chemical processes is inherently subject to uncertainty. For instance, the 

production planning problem needs to consider the availability and prices of raw materials, and 

the demand for products. If the optimization under uncertainty can be well handled, the 

efficiency of chemical process operations can be improved, which will lead to a higher profit. A 

lot of previous studies are focused on the chemical process operations under uncertainty. For 

example, Bitran et al.[1], Lenstra et al.[2] and Escudero et al.[3] studied the production planning 

problem under uncertainty; Liu and Sahinidis[4], Acevedo and Pistikopoulos[5] and Gupta and 

Maranas[6] investigated the process design optimization of chemical processing systems; Birge et 

al.[7] and Tayur et al.[8] studied the process scheduling problem under uncertainty. 

Except process operations, many other realistic decision making problems also face data 
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uncertainty in optimization. Among those problems, water reservoir management is a typical 

case. Water reservoirs are natural or artificial lake, storage pond, or impoundment of a dam 

which is used to store water. Water reservoirs are widely used for direct water supply, 

hydroelectricity, controlling watercourses, flow balancing, and recreation. However, water 

reservoirs are highly impacted by the environment, such as climate change, human impact, and 

demand uncertainties. Therefore, it is critical to conduct efficient water management for the 

poverty of water resources. The study of water management optimization under uncertainty can 

be found in Dupačová et al.[9], Ouarda et al.[10], Sreenivasan et al.[11], and Dhar and Datta[12]. 

Along with the development of economy, financial risk management has received more and more 

attention. This encourages the study of portfolio optimization, which is the process of choosing 

the proportions of various assets to be take place in a portfolio according to some criteria, such as 

the expected value of the portfolio’s rate of return, and the possibility of it. However, portfolio 

optimization is easy to be affected by some uncertainty parameters, such as commodity prices, 

interest rates, exchange rates, and the random return. Hence, it is essential to conduct 

optimization for portfolio selection problems under uncertainty to guarantee the maximum return 

of the total investment with risk control. This kind of study can trace back to Markowitz[13]. 

Further study can be found in Ermoliev et al.[14], Bonami et al.[15], and Pagnoncelli et al.[16]. 

Uncertainty poses major challenges to decision making for the above different problems. The 

challenges lie in not only the modeling/representation of the uncertainty but also in the decision 

making under uncertainty. Those challenges include: 1) lack of efficient scenario generation and 

reduction technique for modeling uncertainty; 2) difficulty in solving large scale stochastic 

optimization problems; 3) complexity in accounting for correlations between uncertain 

parameters; and 4) lack of simple and intuitive modeling and solution platform for optimization 

under uncertainty. In practical applications, there is a need for making optimal and reliable 

decisions in the presence of uncertainties. In many applications, asking for constraint satisfaction 

at some level of probability is reasonable, which calls for the utilization of chance constraints 

(probabilistic constraints). Chance constraints can be used to model the degree of constraint 

violation tolerance, the level of satisfaction. Accordingly, chance constraints can be used for 

modeling restrictions on decision making with the appearance of uncertainty, which induces 

methods called chance constrained optimization (CCP). 
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1.2. Chance Constrained Optimization 

Chance constraint (also called probabilistic constraint) is an important tool for modeling 

reliability on decision making in the presence of uncertainty. A general chance constrained 

optimization problem (CCP) takes the following form 

( )

( ){ }
max

. .  Pr , 0 1
x X

f x

s t h x x a
∈

≤ ≥ −
                                         (1)     

where x  represents the decision variables, x  denotes the uncertain parameters, a  is a 

reliability parameter representing the allowed constraint violation level ( 0 1a< < ). The chance 

constraint ( ){ }Pr , 0 1h x x a≤ ≥ −  enforces that the constraint ( ), 0h x x ≤  is satisfied with 

probability 1 a−  at least (or violated with probability a  at most). 

Chance constrained optimization problem was introduced in the work of Charnes et al.[17] and an 

extensive review can be found in Prékopa[18]. There are many challenging aspects of solving 

chance constrained optimization problem. It is very hard to evaluate the chance /probabilistic 

constraints when solving the CCP problems, for the requirement of a multi-dimensional 

integration. Therefore, Monte-Carlo simulation is the only way. Some breakthrough innovations 

have been achieved in recent years. For example, Alizadeh and Goldfarb[19] gave the theory and 

practice that the individual chance constraint can be transformed into a second order cone, 

Lagoa[20] proved that the individual chance constrained problem is convex under the uniform 

distribution over a convex symmetric set, and Calafiore and El Ghaoui[21] showed that the 

individual chance constraints can be converted to second-order cone constraints under radial 

distribution. Except a few specific probability distributions (e.g. normal distribution), it is 

difficult to formulate an equivalent deterministic constraint and the feasible region of chance 

constrained optimization problem is often nonconvex. To avoid the above difficulties, existing 

methods for solving chance constrained optimization problem largely rely on solving an 

approximation problem. Generally, there are two types of approximation methods in the 

literature to approximate a chance constraint: analytical approximation approach and sampling 

based approach. 
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Analytical approximation approach transforms the chance constraint into a deterministic 

counterpart constraint. Compared to the sampling based approximation, analytical approximation 

provides safe approximation and the size of the model is independent of the required solution 

reliability. There are several ways to perform the transformation from chance constraints to 

deterministic constraints. 

Conditional value of risk (CVaR) is one of the transformation methods, which is a risk 

measurement. It is used in finance (and more specifically in the field of financial risk 

measurement) to evaluate the market risk or credit risk of a portfolio. CVaR theory have been 

explicitly described in the work of Stambaugh[22], Pritsker[23] and Philippe[24]. It is a substitute for 

value at risk (VaR) that is more sensitive to the shape of the loss distribution in the tail of the 

distribution. Based on the contribution of Artzner et al.[25], Ogryczak[26], RockFellar, and 

Uryasev[27, 28], conditional value-at-risk theory poses a potentially attractive alternative to the 

probabilistic constrained optimization framework and other uncertainty approaches. Nemirovski 

and Shapiro[29] give the convex approximation for probabilistic constraints by using CVaR. 

Verderame and Floudas[30] extend the work to the robust optimization problems, which have been 

widely used to solve chance constrained optimization problems. Other deterministic 

approximation of individual chance constraints include using Chebyshev’s inequality[31], 

Bernstein inequality[32-34], and Hoeffding’s inequality[35] as the bound of the probability of 

constraint violation.  

Robust optimization (RO) provides another way for analytically approximating a chance 

constraint. Robust optimization often requires only a mild assumption on probability 

distributions, and it provides a tractable approach to obtain a solution that remains feasible in the 

chance constrained problem. Hence, robust optimization has been widely used to construct a safe 

approximation for chance constraint. One of the earliest papers on robust counterpart 

optimization is the work of Soyster[36]. Li et al.[37] studied the robust counterpart optimization 

techniques for linear optimization and mixed integer linear optimization problems. Even though 

robust optimization can provide a safe approximation to the chance constrained problem, the 

quality of the approximation has not received attention in the existing literature. A safe 

approximation can be unnecessarily conservative and lead to a solution that is of bad 

performance in practice. In this thesis, a two-step algorithm is proposed to address the optimal 
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robust optimization approximation. 

For the sampling based approach, random samples are drawn from the probability distribution of 

the uncertain parameters and they are further used to approximate the chance constraint. Scenario 

approximation and sample average approximation are two different ways of sampling based 

methods. 

Sample average approximation (SAA) uses an empirical distribution associated with random 

samples to replace the actual distribution, which is further used to evaluate the chance constraint. 

By generating a set of samples 1 2, , , Kx x x  of the random parameters x  and approximate the 

chance constraint with a new approximated constraint ( ) ( )( )0,
1

1 1 ,
K

i

i
h x

K
x a∞

=

≤∑ . Here, ( ) ( )0,1 x∞  

is an indicator function. This kind of constrained problems has been investigated by Luedtke & 

Ahmed[38], Atlason et al.[39] and Pagnoncelli et al.[40]. An essential aspect of the sample average 

approximation is the choice of the generated sample size K. If the sample size is too big, the 

computational complexity will be very high, while if the sample size is too small, the reliability 

of the solution will be very low. Lately, Li and Floudas[41] proposed a novel method for scenario 

reduction. The scenario reduction is formulated in a mixed integer linear optimization problem. It 

aims at selecting a small number of scenarios to represent the entire set of possible scenarios. 

However, the complexity of this method will be very high when the size of the entire set of 

scenarios is very large. A new scenario reduction method, which is based on a linear 

programming (LP) problem, is proposed in this thesis. 

Scenario approximation is another sampling based approximation method for solving chance 

constrained problems. The general idea is to generate a set of samples 1 2, , , Kx x x  of the 

random parameters x  and approximate the chance constraint with a set of constraints 

( ), 0, 1, ,kh x k Kx ≤ =  . The scenario approximation itself is random and its solution may not 

satisfy the chance constraint. Research contributions in this direction have been made by 

Calafiore et al.[42], Luedtke et al.[38], and Nemirovski et al.[43]. 
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1.3. Thesis Objective 

The objective of this thesis is to solve the chance constrained optimization problems with robust 

optimization approximation method and sample average approximation method. Section 2 

presents the optimal robust optimization approximation method, and demonstrates the 

effectiveness of the proposed method with three case studies: portfolio optimization problem, 

production planning problem, and process scheduling problem. A linear programming based 

scenario reduction method is proposed in Section 3. It aims at selecting a small number of 

scenarios to represent the original large number of scenarios. Although a mixed integer linear 

optimization (MILP) based scenario reduction method was proposed before, its computational 

time can be very large when the original number of scenarios is very large. The proposed LP 

based scenario reduction method can efficiently reduce the computational complexity of sample 

average approximation problem. In Section 4, sample average approximation is applied to solve 

the chance constrained problems with the proposed scenario reduction method. Five problems 

are considered including three linear problems and two nonlinear problems. Conclusion and 

future work are presented in Section 5.  
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2. Optimal Robust Optimization Approximation 

2.1. Robust Optimization 

2.1.1. Problem Formulation 

In this thesis, linear constraint under uncertainty is investigated. Consider the following 

optimization problem with parameter uncertainty: 

max

. .   
x X

j j
j

cx

s t a x b
∈

≤∑ 

                                             (2) 

where the constraint coefficients ja  are subject to uncertainty. Define the uncertainty as 

ˆ ,j j ja a a j Jx= + ∀ ∈ , where j is the index of uncertainty parameters, ja  represent the nominal 

value of the parameters, ˆ ja  represent positive constant perturbations, jx  represent 

independent random variables which are subject to uncertainty and J  represents the index 

subset that contains the variables whose coefficients are subject to uncertainty. Constraint in (2) 

can be rewritten by grouping the deterministic part and the uncertain part as follows: 

ˆj j j j j
j j J

a x a x bx
∈

+ ≤∑ ∑                                         (3)              

In the set induced robust optimization method, the aim is to find solutions that remain feasible 

for any x  in the given uncertainty set U  with size ∆  so as to immunize against infeasibility. 

The corresponding robust optimization is 

 
( )

max  

ˆs.t.    max

x X

j j j j jUj j J

cx

a x a x b
x

x

∈

∈ ∆
∈

 
+ ≤ 

 
∑ ∑

                            (4) 

The formulation of the robust counterpart optimization problem is connected with the selection 
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of the uncertainty set U . Based on the work of Li et al.[37], different robust counterpart 

optimization formulations can be developed depending on the type of uncertainty set. For 

example, the box uncertainty set { }  ,  jU j Jx x∞ = ≤ Ψ ∀ ∈  induced robust counterpart 

optimization constraint is given by:  

ˆj j j j
j j J

a x a x b
∈

+ Ψ ≤∑ ∑                       (5) 

And the ellipsoidal uncertainty set { }2 2
2 jj J

U x x
∈

= ≤ Ω∑  induced robust counterpart 

optimization constraint is:  

2 2ˆj j j j
j j J

a x a x b
∈

+Ω ≤∑ ∑                          (6) 

where Ψ  and Ω  are the size of the box and ellipsoidal uncertainty set, respectively.  

2.1.2. Relationship between Objective Value and Uncertain Set Size 

For the same type of uncertainty set, as the set size increases, the optimal objective of the robust 

optimization problem (4) will decrease (for a maximizing objective) because the feasible region 

of the robust optimization problem (4) becomes smaller. This is shown in the following 

motivating example. 

0

5

1

max  

s.t.    0.2

        =1

T

x
T

i
i

c x

a x

x

≥

=

− ≤

∑

   

where [ ]= 0.00347 0.00126 0.00476 0.00094 0.0876 Tc − − − . Parameter ia  are subject to 

uncertainty and they are defined as: ˆ ,  1, ,5i i i ia a a ix= + =
 , with ˆ,  0.1i i i ia c a a= = , and ix  

are the random parameters. 

For the uncertain constraint, the box type uncertainty set induced robust counterpart optimization 
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constraint can be formulated as 

ˆ 0.2i i i i
i i

a x a x− +Ψ ≤∑ ∑   

where Ψ  is the size of the uncertainty set. For each fixed Ψ , the resulting robust optimization 

problem is a deterministic linear optimization problem. The optimal objective value of the robust 

optimization problem is solved for different Ψ . The relationship between the uncertainty set 

size and the optimal objective value is plotted in Figure 1, which shows that the optimal 

objective value is a monotonically decreasing function of the uncertainty set size. 

 

Figure 1. Relationship between optimal objective value and uncertainty set size 

2.2. Robust Optimization Approximation to Chance Constraint 

Chance constraint models the solution reliability in an optimization problem. For the uncertain 

constraint in problem (2), its chance constrained version can be formulated by setting a lower 

bound on the probability of constraint satisfaction: 
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max  

ˆs.t.    Pr 1

x X

j j j j j
j j J

cx

a x a x bx a

∈

∈

 
+ ≤ > − 

 
∑ ∑

              (7) 

or equivalently as follows by setting an upper bound on constraint violation: 

max  

ˆs.t.    Pr

x X

j j j j j
j j J

cx

a x a x bx a

∈

∈

 
+ > ≤ 

 
∑ ∑

                  (8) 

where parameter a  denotes the reliability level ( )0 1a< < .  

If the box type uncertainty set induced robust counterpart is applied, and the corresponding 

robust optimization problem can be formulated: 

0
max  

ˆs.t.   

T

x

j j j j
j J j J

c x

a x a x b
≥

∈ ∈

− +Ψ ≤∑ ∑                                     (9) 

and if the ellipsoidal uncertainty set induced robust counterpart is applied, and the corresponding 

robust optimization problem can be formulated: 

0

2 2

max  

ˆs.t.   

T

x

j j j j
j J j J

c x

a x a x b
≥

∈ ∈

− +Ω ≤∑ ∑                                   (10) 

 

2.3. Reliability Quantification 

2.3.1. A Priori Probability Bound Based Method 

Under certain assumptions on the distributions of the uncertainty, the reliability of robust 

solution can be qualified by the so-called a priori probability bound[44], which is a function of the 

10 
 



     

uncertainty set size and provides an upper bound on probability of constraint violation. If the 

uncertainty set’s size ∆  satisfies ( )prioriUB
violationp a∆ ≤ , then:  

ˆPr ( )prioriUB
j j j j j violation

j j J
a x a x b px a

∈

 
+ > ≤ ∆ ≤ 

 
∑ ∑                     (11) 

or a lower bound on constraint satisfaction: 

ˆPr ( ) 1 ( )prioriLB prioriUB
j j j j j satisfaction violation

j j J
a x a x b p px

∈

 
+ ≤ > ∆ = − ∆ 

 
∑ ∑            (12) 

For example, if jx  are independent and subject to bounded and symmetric probability 

distribution supported on [-1,1], then for the box and ellipsoidal uncertainty sets induced robust 

counterparts (5), (6), one valid a priori upper bound is given by Li et al.[44]: 

2

( ) exp
2

prioriUB
violationp

 ∆
∆ = − 

 
                         (13) 

where ∆  represents the size of the uncertainty set. 

While the a priori probability bound based robust optimization provides safe approximation to 

chance constraint, it is a conservative approximation since the feasible set of the robust 

optimization problem is always less than the feasible set of the original chance constrained 

problem as seen from equation (11). In other words, the optimal solution of robust optimization 

problem will be always less than the true optimum of the chance constrained problem (for a 

maximizing objective). 

2.3.2. A Posteriori Probability Bound Based Method 

To find less conservative robust optimization approximation that still satisfies the desired 

probability of constraint satisfaction, a tighter probability upper bound on constraint violation 

can be used. 

With a given solution x∗  to the robust optimization problem, the corresponding probability of 

11 
 



     

constraint violation can be quantified by the a posteriori probability bound[44]. If the probability 

distribution information of the uncertain parameters is known, then the following relationship 

holds: 

*ˆPr ( )posterioriUB
j j j j j violation

j j J
a x a x b p xx

∈

 
+ > ≤ 

 
∑ ∑                                   (14) 

or 

* *ˆPr ( ) 1 ( )posterioriLB posterioriUB
j j j j j violation violation

j j J
a x a x b p x p xx

∈

 
+ ≤ ≥ = − 

 
∑ ∑                   (15) 

where  

*ˆ* *

0
( ) min  exp ( ) ln [ ]j j ja xposterioriUB

violation j jj
j J

p x b a x E eθx
θ

θ
>

∈

 
= − − + 

 
∑ ∑                    (16) 

The above a posteriori probability bound is in general tighter than the a priori probability bound. 

The illustration will be shown later. 

2.3.3.  Iterative Method 

In order to improve the quality of the solution when robust optimization approximation is used to 

approximation chance constraints, Li and Floudas[45] provided an iterative method which 

compromise the aforementioned two methods. This method combined the a priori probability 

bound and the a posteriori probability bound. The initial size of the uncertainty set is determined 

by the a priori probability bound, and then use the a posteriori probability bound to adjust the 

size of the uncertainty set. This iterative method provides a heuristic way to improve the robust 

solution quality. Specifically, if the probability calculated by the a posteriori probability bound is 

larger than the desired level, the set size should be decreased; if the probability is smaller than 

the desired level, the set size should be increased. The adjustment of the set size can lead to an 

improved robust solution from the set induced robust optimization problem, and the solution 

feasibility is guaranteed for the original chance constrained problem. Illustration of this method 
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will be shown in the next section. 

2.3.4.  Application of Reliability Quantification Methods 

The motivating example in section 2.1.2 is reconsidered here with a chance constrained version 

of the uncertain constraint with 0.5a = . The corresponding chance constrained model can be 

written as follows: 

{ }
0

5

1

max  

s.t.    Prob 0.2 0.5

        =1

T

x

T

i
i

c x

a x

x

≥

=

− > <

∑

   

Assume that all the random parameters ix  are uniformly distributed in [-1, 1]. For this type of 

uncertainty distribution, it is hard to obtain an equivalent deterministic formulation of the chance 

constraint. Robust optimization approximation is used here to solve the chance constrained 

problem. The original chance constraint is replaced with the box type uncertainty set induced 

robust counterpart, and the corresponding robust optimization problem can be formulated:  

0
5 5

1 1
5

1

max  

ˆs.t.   0.2

        =1

T

x

i i i i
i i

i
i

c x

a x a x

x

≥

= =

=

− +Ψ ≤∑ ∑

∑

  

Following the aforementioned approximation method in section 2.3.1, the a priori probability 

bound based method, the size of the uncertainty set is determined by the a priori probability 

bound 2

2exp( ) 0.5Ψ− ≤  and the result is 1.1774Ψ ≥ . To make the approximation less 

conservative, we choose 1.1774Ψ =  and solve the robust optimization problem. The optimal 

objective value of the robust optimization problem is 3.66×10-3. To verify the solution reliability, 

Monte Carlo simulation is used to estimate the true probability of constraint violation with the 

obtained robust solution. A total number of N=100000 samples are generated based on the 

uncertainty distribution. The constraint is then evaluated and the number of times that the 
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constraint is violated is recorded as V. The probability of constraint violation is estimated as V/N. 

For the above robust solution, the estimated probability of constraint violation is 0.0662. It is 

seen that this value is much less than the target 0.5, which means that the approximation is 

relatively conservative. 

The above example illustrates a limitation of the traditional a priori probability bound based 

robust optimization approximation to chance constraint: the approximation can be very 

conservative such that the true probability of constraint violation is much smaller than the target.  

As for the a posteriori probability bound based method, for the motivating example, the a 

posteriori probability lower bound given by (15) and (16) and the a priori probability lower 

bound given by (12) and (13) on constraint satisfaction are plotted against uncertainty set size in 

Figure 2, which shows that the a posteriori bound is tighter. 

 

Figure 2. A posteriori and a priori probability lower bound of constraint satisfaction 

Based on this observation, the size of the uncertainty set can be adjusted and the robust solution 

can be improved in an iterative process, until the a posteriori probability bound of the constraint 

satisfaction is close to the target level in the chance constraint, which is the iterative method[45]. 

14 
 



     

Based on the iterative method proposed in Li and Floudas[45], the following solution can be 

obtained as shown in Table 1. The results show that the solution quality is improved (i.e. the 

objective value is increased from -3.66×10-3 to 3.01×10-3) and the solution reliability still 

satisfies the requirement (i.e., the solution has a probability of constraint violation less than 

0.4961 and the target is less than 0.5). 

Table 1. Solution procedure of iterative method[45] 

k kΩ  2

2exp( )Ω−  Obj* posterioriUB
violationprob  

1 1.1774 0.5 -3.66×10-3 2.26×10-6 
2 0.5887 0.8409 2.77×10-3 0.4117 
3 0.2944 0.9576 3.47×10-3 0.6325 
4 0.4415 0.9071 3.47×10-3 0.6325 
5 0.5151 0.8758 3.47×10-3 0.6325 
6 0.5519 0.8587 3.17×10-3 0.5464 
7 0.5703 0.8499 2.96×10-3 0.4791 
8 0.5611 0.8543 3.06×10-3 0.5130 
9 0.5657 0.8521 3.01×10-3 0.4961 

While the a posteriori probability bound can be used to improve the robust solution quality, it 

can also be used to extend the application of robust optimization approximation to general 

uncertainty distributions. Notice that the a priori probability bounds are obtained based on 

certain assumptions on the uncertainty distribution (e.g., bounded and symmetric). 

For the motivating example, it can be assumed that the uncertain parameters 

[ ]T1 2 3 4 5, , , ,a a a a a=a       are subject to independent normal distribution (i.e., it is not a bounded 

distribution) with mean vector [ ]0.00347,  0.00126,  0.00476,  0.00094,  0.0876 T= − − −μ  and 

variance [ ]2 0.1494,  0.0818,  0.0923,  0.0546,  0.0086 T=σ . Although the a priori probability 

bound is not applicable to this distribution, the iterative algorithm can still be applied and it leads 

to a solution that satisfies the desired reliability, as shown in Table 2. 
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Table 2. Solution procedure of the iterative method 

k kΩ  2

2exp( )Ω−  Obj* posterioriUB
violationprob  

1 1.1774 0.5 -3.66×10-3 0.3224 
2 0.5887 0.8409 2.77×10-3 0.7798 
3 0.8831 0.6771 4.89×10-4 0.6670 
4 1.0302 0.5882 -1.90×10-3 0.4965 

2.4. Optimal Robust Optimization Approximation 

2.4.1. Relationship between Uncertainty Set Size and Robust Solution Quality 

While the applicability of robust optimization can be extended and the quality of robust solution 

can be improved with the a posteriori probability bound as shown in section 2.3, a natural 

question on the robust optimization approximation for chance constrained optimization problem 

can be raised: What is the best possible robust optimization approximation? 

Considering a solution obtained from robust optimization approximation, while the solution 

reliability satisfies the original chance constraint, the optimal objective value of the robust 

approximation problem should be as close to the true optimum of the chance constrained 

optimization problem as possible. This also means that the uncertainty set should be designed as 

small as possible while the reliability of the solution is satisfied. 

In the development of an algorithm for finding the best uncertainty set size, the following issues 

need to be considered: 

1) For a robust optimization approximation problem with the same type of uncertainty set, is 

the solution more reliable when the set size is larger? 

2) Can the robust solution’s reliability reach the desired level by adjusting the size of the 

uncertainty set? If not, what is the maximum possible reliability that the robust solution 

can reach? 

3) If the robust solution’s reliability can reach the desired level, what will be the set size that 

leads to the best robust solution (i.e., best objective value)? 
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The above issues will be investigated through the motivating example. 

To study the relationship between solution and the size of uncertainty set, a study is made 

between the solution optimality (i.e., the optimal objective value), the solution reliability (i.e., the 

probability of constraint satisfaction) and the uncertainty set size. Here, it is assumed that the 

uncertainty is following the normal distribution introduced in section 2.3.4. The rest studies on 

the motivating example will be also based on this assumption. 

By varying the uncertainty set size, the a priori probability lower bound, the a posteriori 

probability lower bound, and the true probability (estimated by simulation) of constraint 

satisfaction are plotted together in Figure 3. The following observations can be made. While both 

the a priori and the a posteriori probability bounds underestimate the true probability of 

constraint satisfaction, the a priori probability lower bound is more conservative. The true 

probability of constraint satisfaction is not a monotonically increasing function of the uncertainty 

set size. That is, a larger uncertainty set may not necessarily lead to a robust solution with higher 

reliability. 
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Figure 3. Comparison of probabilities (bounds) of constraint violation 

Figure 3 shows that the true probability of constraint satisfaction and the a posteriori probability 

lower bound demonstrate strong (piecewise) nonlinear behavior as a function of the uncertainty 

set size. This can be explained from the parametric programming point of view. Since the 

uncertainty set size appears as the left-hand-side constraint coefficient (e.g., Ψ  in (5)), the 

optimal solution of the robust optimization problem is a nonlinear parametric function of the set 

size parameter and the function form varies in different critical regions (e.g., different intervals 

of Ψ ). Furthermore, since both the true probability and the a posteriori probability bound are a 

function of the optimal solution, so both of them demonstrate piecewise nonlinear behavior of 

the uncertainty set size parameter. 

Next, the true probability of constraint satisfaction is plotted against the optimal objective value 

of the robust solution. As shown in Figure 4, the black curve represents the solution from box 

type uncertainty set induced robust optimization approximation problem. To show that the robust 

optimization approximation is conservative approximation, the true optimal objective of the 

chance constrained problem and the corresponding probability of constraint satisfaction is also 
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plotted in green curve. The optimal objective of chance constrained problem is obtained by 

replacing the chance constraint with its deterministic equivalent (which can be explicitly derived 

since the uncertainty distribution is multivariate normal). It is seen that the black curve 

representing robust solution is always under the solution curve for the chance constraint problem, 

which shows that the robust optimization provides a conservative approximation to the original 

chance constrained problem. 

If a target reliability level 0.82 (i.e., 0.18a= ) is set for the chance constraint, as shown by the 

blue dash line in Figure 4, the following observations can be made. All the black points, above or 

on the blue line, represent the robust solutions that are feasible to the original chance constraint 

problem. There are three robust solutions on the blue line, that is, they exactly match the desired 

reliability level. Among all the feasible solutions, the best possible robust solution is the one with 

the largest objective value (i.e., point “1” in Figure 4). So, point “1” corresponds to the optimal 

robust optimization approximation problem.  

 

Figure 4. Comparison of solution reliability versus optimal objective value 

If the target reliability level in the chance constraint is set as 0.995 (i.e., 0.005a= ), then a 
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conclusion can be made from Figure 4 that it is impossible to obtain a robust solution that 

satisfies the target. The reason is that the largest possible probability of constraint satisfaction 

from a robust solution is 0.9874 (i.e., point “2” in Figure 4). In this case, the best option is to 

return this best possible robust solution and report its reliability.  

Based on the above observations, algorithms are developed in the next subsection for identifying 

the optimal robust optimization approximation (i.e., optimal uncertainty set’s size) for chance 

constrained optimization problem. 

2.4.2. Algorithm for Optimal Robust Optimization Approximation 

Based on the analysis in previous sections, we formally post the optimal robust optimization 

approximation problem as follows: 

Case 1: If the robust optimization approximation based solution can lead to the desired 

probability of constraint satisfaction, then the minimum possible set size should be 

identified (e.g., point “1” in Figure 4 or point “a” in Figure 5 with the target reliability 

level 0.82). The corresponding optimal robust optimization approximation problem can 

be stated as the following optimization problem 

min  
. .     ( ) 1true

satisfactions t p a

∆

∆ ≥ −
                                         (17) 

which is also equivalent to identifying the first root of equation 

( ) (1 ) 0true
satisfactionprob a∆ − − = .  

Case 2: If the robust optimization approximation based solution can not lead to the 

desired probability of constraint satisfaction, then the maximum probability of constraint 

satisfaction and the corresponding set size should be identified (e.g., point “2” in Figure 4 

or point “b” in Figure 5 with the target reliability level 0.995). The corresponding optimal 

robust optimization approximation problem can be stated as follows: 

max   ( )true
satisfactionp

∆
∆                                                (18) 
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In the above problem definition, ( )obj ∆  is the optimal objective of the robust optimization 

problem when the size of the uncertainty set is ∆ , and ( )true
satisfactionp ∆  is the probability of 

constraint satisfaction with the robust solution obtained from the robust optimization 

approximation problem (the probability of constraint violation is 1true true
violation satisfactionp p= − ). The 

probability value ( )true
satisfactionp ∆  is estimated as follows. Given a solution x∗  for problem (1), 

we would like to quantify the probability of constraint violation 

{ }*Pr ( , ) 0true
violationp h x x= >                                               (19) 

The above probability is estimated with Monte Carlo sampling technique by testing feasibility of 

N samples on the constraint, and the estimation to true
violationp  is given by 

( )*
(0, )

1

1 1 ( , )
N

violation
i

p h x
N

x∞
=

= ∑                                            (20) 

Where (0, )

1,   if   0
1 ( )

0,   if  0
t

t
t∞

>
=  ≤

 . 

Since the evaluation procedure is based on the known value of x, the simulation can be 

performed with a relatively large sample size so as to get a reliable estimation. 
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Figure 5. Solution reliability as a function of the uncertainty set size 

For both case defined above for the optimal robust optimization approximation, finding the 

optimal set size is equivalent to finding the first global minimum of the absolute difference 

between the solution reliability and desired reliability: 

min ( ) (1 )true
satisfactionprob a

∆
∆ − −                                            (21) 

For the motivating example, the above objective function is shown in Figure 6. If the first global 

minimum objective value is 0, then it means the robust solution can reach the desired reliability 

(case 1). Otherwise, it means the robust optimization approximation cannot reach the desired 

reliability (case 2), and the first global minimum solution corresponds to the maximum possible 

reliability from the robust optimization approximation. 
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Figure 6. Equivalent objective function for optimal set size identification 

(Top: α=0.18; Bottom: α=0.005) 

To identify the optimal robust optimization approximation, a novel two-step algorithm is 

proposed in this section, where an upper bound of the optimal set size is identified first, and the 

optimal set size is identified next. 

First, if the uncertainty set size for a robust optimization problem is too large, then the robust 

optimization problem can be infeasible. So it is meaningful to identify the maximum set size that 

makes the robust optimization problem feasible. The proposed algorithm for the maximum set 

size identification is based on checking the feasibility of the robust optimization problem 

followed by bound contraction. Starting from a feasible set size (lower bound) and an infeasible 

set size (upper bound), the algorithm will gradually reduce the interval until the predefined 

tolerance is satisfied. The algorithm is summarized in Table 3.  

Table 3. Identify a feasible upper bound of the optimal set size 

Algorithm: Feasible upper bound identification 

1. Initialization [ , ]lb ub  

where lb  is a set size that makes the RO feasible (e.g., 0) 

where ub  is a set size that makes the RO infeasible 

2. While | |ub lb ε− >  

3.  solve RO with set size ( ) / 2lb ub∆ = +  

4.  if RO problem is feasible 

5.   lb = ∆  

6.  else (RO problem is infeasible) 

7.   ub = ∆   

8.  end 

9. End 

10. Return lb as maximum feasible set size 

For the motivating example, the following solution procedure shown in Table 4 is used to obtain 
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the maximum feasible set size. 

Table 4. Solution procedure for the numerical example 

Iteration [ , ]lb ub  RO feasibility with ( ) / 2lb ub∆ = +  

1 [0, 4] feasible 
2 [2, 4] feasible 
3 [2, 3] infeasible 
4 [2, 2.5] infeasible 
5 [2, 2.25] infeasible 
6 [2, 2.125] infeasible 
7 [2.0625, 2.125] feasible 
8 [2.0625, 2.0938] infeasible 
9 [2.0625, 2.0781] infeasible 
10 [2.0625, 2.0703] infeasible 
11 [2.0625, 2.0664] infeasible 
12 [2.0645, 2.0664] feasible 
13 [2.0654, 2.0664] feasible 

In the above procedure, the final largest value of the set size that makes the robust optimization 

problem feasible is 2.0654. This will be a valid upper bound for optimal set size identification. 

Once the maximum feasible set size is identified, we can search for the optimal set size. The 

proposed algorithm is based on the branch and bound idea. The following basic principle is used 

to reduce the search region: whenever a solution with zero objective value (within tolerance ε ) 

is found for problem (21), all the regions on the right hand side of the solution point can be 

removed; otherwise, the current search region will be branched at the solution point. If a search 

region width is smaller than tolerance σ , its solution is recorded and the corresponding region 

is skipped. The optimal set size identification algorithm is summarized in Table 5. 

Table 5. Optimal set size identification algorithm 

Algorithm: Optimal set size identification 

1. Initialization 0 0[ , ] [ , ]lb ub lb ub= , set tolerance parameter ε ,σ  
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2. Initial {}, {}local localX F= =  

3. While interval set L  is not empty 

4.  Take out the first interval 1L  from set L : 1{ }L L L= −  

5.  Find the local minimum ( * *,x f ) of f in the first interval 1L  

6.  If *f ε≤  

7.   *globalx x= , *globalf f=  

8.   Empty L  

9.   *{[ , ( ) / 2]}L L lb lb x= + + , * *{[( ) / 2, ]}L L lb x x= + +  

10.  Else  

11.   If ub lb σ− >  

12.    {[ , ( ) / 2]}L L lb lb ub= + + , {[( ) / 2, ]}L L lb ub ub= + +  

13.   Else 

14.    * *{ }, { }local local local localX X x F F f= + = +  

15.   End 

16.  End  

17.  Order the intervals in L  by ascending value of lower/upper bounds 

18. End 

19. If globalx  is empty 

20.  Find the minimum solution from the set ,local localX F arg minglobal localx F=  

21. End 

22. Return globalx , globalf  

The motivating example is used to compare the three methods for robust optimization 

approximation to chance constraint. First, the target probability of constraint satisfaction is set as 

0.5 (i.e., 0.5a = ) in the chance constraint. By applying the traditional method with a priori 

probability bound (traditional), the iterative method with a posteriori probability bound and the 

method proposed in this work with the optimal set size to the numerical example, the following 

results are obtained as shown in Table 6. 
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Table 6. Comparing the different solutions for the motivating example (α=0.5) 

 Traditional Iterative 
method 

Optimal 
approximation 

Obj* -3.656×10-3 -1.901×10-3 3.469×10-3 
true
violationp  0.0662 0.1183 0.2993 

CPU time (s) 0.56 2.16 950 

In Table 6, “Traditional” method corresponds to the a priori probability bound based method 

introduced in section 2.3.1, “Iterative method” corresponds to the method introduced in section 

2.3.3, “Optimal approximation” corresponds to the proposed method in section 2.4.2. All the 

three methods lead to feasible solutions for the original chance constrained problem, and the 

result of the proposed optimal approximation method leads to the best objective value. Compared 

to the traditional approximation method, the robust solution has been improved from -3.656×10-3 

to 3.469×10-3 with the proposed method. For the proposed optimal approximation method, the 

solution leads to a probability of violation 0.2993, which is closest to the target 0.5. Notice that 

there is a gap to the desired value 0.5 because the minimum possible probability of constraint 

satisfaction is 0.7, as shown in Figure 5.  

Next, the reliability for chance constraint satisfaction is changed to 0.82 (i.e., 0.18a = ), and the 

different methods are applied again to this case. The corresponding results are shown in Table 7. 

Table 7. Comparing the different solutions for the motivating example (α=0.18) 

 Traditional Iterative 
method 

Optimal 
approximation 

Obj* -7.994×10-3 -5.052×10-3 2.143×10-3 
true
violationp  0.0139 0.033 0.1801 

CPU time (s) 0.56 3.14 326 

In this situation, the true probability of violation is 0.1801 for the proposed optimal 

approximation method, which is very close to the target value 0.18. Comparing the results of 

those three methods, it is seen that by identifying the optimal set size, the quality of the solution 

is improved while still ensures the desired degree of constraint satisfaction. The robust solution 
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has been improved from -7.994×10-3 to 2.143×10-3. As a trade-off, the computation time is 

increased, since a branch and bound method is used to find the global optimal set size. 

2.5. Quantify the Quality of Robust Solution 

In the previous section, algorithms for optimal robust optimization approximation have been 

introduced. While the solution of the approximation problem will be used as a candidate solution 

for the original chance constrained optimization problem, its quality should be quantified with a 

certain confidence interval. In this section, both the feasibility and the optimality of the obtained 

robust solution will be studied. Specifically, the feasibility is quantified using an upper bound on 

the constraint violation probability with predefined confidence level, and the optimality is 

quantified using upper bound (for a maximization problem) on the optimal objective with 

predefined confidence level. 

2.5.1. Quantify the Feasibility 

With a given solution to problem (1), a (1-δ)-confidence upper bound on true
violationp  in equation 

(19) can be evaluated by the procedure shown in Table 8[29]. 

Table 8. Quantify feasibility of robust solution 

Procedure: Feasibility bound evaluation 

1. Set confidence level δ  

2. Generate N samples  

3. Evaluate the constraint for the N samples  

4. Count the number of times that the constraint is violated V  

5. Evaluate an upper bound on the constraint violation probability 

[0,1] 0

ˆ max : ( ; , ) (1 )
V

i N i

i

N
B V N

iγ
a γ γ γ γ δ−

∈
=

  
= = − ≥  

  
∑  

( ; , )B V Nγ  is the cumulative distribution function of binomial distribution 

6. Then with probability of at least 1 δ− , the quantity â  is an upper bound 

for the true probability of constraint violation  
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The above method is applied to the motivating example and the following results are obtained as 

shown in Table 9. 

Table 9. Results for the reliability quantify 

a   *( )violationp x   â  

0.5 0.2993 0.3026 
0.18 0.1801 0.1819 

In Table 9, a  is the reliability parameter in the chance constraint, *( )violationp x  is the estimated 

probability of constraint violation, â  denotes the upper bound. It can be observed that when the 

probability of constraint violation is set as 0.5, the estimated probability of constraint violation is 

0.2993, and the 90% confidence level upper bound on the probability of constraint violation is 

0.3026. As the target probability of constraint violation is set as 0.18, the estimated probability is 

also close to the 90% upper bound 0.1819. 

2.5.2. Quantify the Optimality 

To quantify the optimality of a solution to the original chance constrained problem, an optimality 

upper bound can be evaluated from the following scenario optimization problem 

( )

max  ( )  

s.t.  ( , ) 0,    1,...,
x

s

f x

h x s Nx ≤ ∀ =
                                         (22) 

The procedure for evaluating the optimality upper bound is reported in Luedtke & Ahmed[38], 

and summarized in Table 10. 

Table 10. Optimality bound quantification 

Procedure : Optimality bound evaluation 

1. Set parameters  

N : sample size for the Scenario Optimization problem 

δ : confidence level 

2. Determine parameter M using the following formula, this is the number of Scenario 
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Optimization problems to be solved 

1 (1 )1ln
(1 )

N

NM a
aδ

− − ≥   − 
  

3. Solve M times the scenario optimization problem (22)  

4. Obtain the optimal objective value m
Nobj , m=1,…,M 

For infeasible problem set Nobj = −∞ , for unbounded problem set Nobj = ∞  

5. Find the maximum objective value (max)
Nobj  

6. Then with probability of at least 1 δ− , the quantity (max)
Nobj  is an upper bound for the 

true optimal value of the chance constrained optimization problem.  

2.6. Case Study 

To evaluate the proposed optimal robust optimization approximation method for solving chance 

constrained optimization problem, three case studies are investigated in this section. The first 

case is a portfolio optimization problem which enforces investment risk by chance constraint, the 

second case is a production planning problem, and the last case is a process scheduling problem. 

2.6.1. Portfolio Optimization Problem 

Consider the following portfolio optimization problem: 

{ }
{ }

max  

s.t.    1

         : 1, 0

T

x X

T

n T

r x

Prob r x v

X x R e x x

a
∈

≥ ≥ −

= ∈ = ≥

                                       (23) 

where x  represents the percentage of a capital invested in each of the available assets, r  

denotes the vector of random returns of the assets, and r  is the expected returns of the assets. 

Historical stock data from Yahoo Finance is obtained for the 100 assets in S&P100. We assume 

the data follow multivariate lognormal distribution and the distribution parameters are estimated 

using monthly stock price data from January 2003 to December 2013.  

The proposed optimal robust optimization approximation algorithm is applied to solve the 
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problem under different target reliability levels, and solution is summarized in Table 10. The 

allocation plan is shown in Figure 7-9. When α=0.01, the total investment goes to 11 stocks, 

AAPL, AIG, BAC, C, EBAY, EXC, F, FCX, MO, MS, and UNH. There are just three same 

stocks are invested for both α=0.07 and α=0.15, and the difference lies in the percentage for each 

stock. When α=0.07, among the total investment, 26 percent goes to the stock AIG, 51 percent 

goes to the stock BAC, and 23 percent goes to the stock C, while the corresponding allocation 

plan is 61 percent, 15 percent and 24 percent, respectively, for the case when α=0.15. 

 

Figure 7. Allocation plan for portfolio problem when α=0.01 
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Figure 8. Allocation plan for portfolio problem when α=0.07 

 

Figure 9. Allocation plan for portfolio problem when α=0.15 

To evaluate the upper bound on optimal objective and upper bound on constraint violation 

probability, the confidence level is set as 0.9. For optimality upper bound evaluations, the sample 

size is chosen as 100 for scenario optimization.   
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Table 11. Results for the portfolio optimization problem 

a  â  *∆  *obj  UBobj  

0.01 0.011505 0.582340 0.021128 0.029177 
0.02 0.022308 0.502012 0.023801 0.035687 
0.03 0.032013 0.460838 0.025516 0.037676 
0.04 0.043243 0.426199 0.027207 0.040642 
0.05 0.052948 0.392795 0.029040 0.043930 
0.06 0.061981 0.367536 0.030538 0.042449 
0.07 0.071503 0.346112 0.031920 0.039054 
0.08 0.082855 0.310249 0.034269 0.041876 
0.09 0.092926 0.289499 0.035679 0.041164 
0.10 0.101532 0.269111 0.037170 0.043759 
0.11 0.113190 0.251315 0.038597 0.043293 
0.12 0.123138 0.237170 0.039843 0.042398 
0.13 0.134308 0.223249 0.041194 0.047350 
0.14 0.143890 0.213045 0.042280 0.042609 
0.15 0.154816 0.202955 0.043448 0.050325 

In Table 11, â  is the constraint violation probability upper bound with 90% confidence level, 
*∆  is the optimal uncertainty set size obtained from the proposed algorithm, *obj  is the 

objective value of robust optimization problem, and UBobj  is the upper bound of the chance 

constrained optimization problem’s optimal objective with 90% confidence level.  

From Table 11, it can be found that when the desired reliability level decrease (i.e., α increases), 

the optimal set size is smaller, and the objective value of the robust optimization problem 

becomes larger. For each value of α, the corresponding value of 𝛼𝛼� is very close to α, which 

means that the solution reliability is very close to the desired target (notice that â  is an upper 

bound on violation probability with 90% confidence level). Furthermore, the objective value of 

the robust optimization problem is not far from the optimality upper bound, either. The small gap 

between them means that the solution of optimal robust optimization approximation is close to 

the true solution of the chance constrained problem.  
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2.6.2. Production Planning Problem 

A company needs to make a production plan for the coming year, divided into six periods, to 

maximize the sales with a given cost budget. The production cost includes the cost of raw 

material, labor, machine time, etc. The product manufactured during a period can be sold in the 

same period, or stored and sold later on. Operations begin in period 1 with an initial stock of 500 

tons of the product in storage, and the company would like to end up with the same amount of 

the product in storage at the end of period 6. A linear optimization formulation of this problem 

can be formulated as below: 

max  j j
j

P z∑                                                   (24a) 

s.t.   Pr 400,000 1j j j j
j j

C x V y a
 

+ ≤ ≥ − 
 
∑ ∑                         (24b) 

1 1 1       500 ( ) 0 x y z+ − + =                                        (24c) 

1       ( ) 0      2,...,6j j j jy x y z j− + − + = ∀ =                            (24d) 

6       500y =                                                   (24e) 

                1,...,6j jx U j≤ ∀ =                                       (24f) 

                1,...,6j jz D j≤ ∀ =                                       (24g) 

       , , 0   1,...,6j j jx y z j≥ ∀ =                                      (24h) 

In the above model, decision variables jx  represent the production amount during period j, jy  

represent the amount of product left in storage (tons) at the end of period j and jz  represent the 

amount of product sold to market during period j. The objective function (24a) maximizes the 

total sales. The first constraint (24b) is a chance constraint, which enforces that the total cost 

does not exceed a given budget with certain probability level a . Constraints (24c) and (24d) 
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represent the inventory material balances. Constraint (24e) requires that the final inventory meet 

the desired level (i.e., 500 tons). Constraints (24f) and (24g) represent the production capacity 

limitations and demand upper bounds, respectively. Detailed data for the above LP problem are 

in Table 11, where j  denotes period, jP  represents the selling Price ($/Ton),  jC  is the 

production cost ($/Ton), jV  is the storage cost ($/Ton), jU  is the production capacity (Tons) 

and jD  is the demand (Tons). Assume the production costs jC  are subject to uniform 

probability distribution and that there is a maximum of 50% perturbation around their nominal 

values as listed in Table 12 

Table 12. Problem data for the production planning problem 

j  jP  jC  jV  jU  jD  
1 180 20 2 1500 1100 
2 180 25 2 2000 1500 
3 250 30 2 2200 1800 
4 270 40 2 3000 1600 
5 300 50 2 2700 2300 
6 320 60 2 2500 2500 

For this chance constrained optimization problem, the proposed optimization robust 

approximation algorithm is applied under different reliability targets. The solution reliability and 

optimality is evaluated under 90% confidence level. The solution is reported in Table 13. 

Table 13. Results for the production planning problem 

a  â  *∆  *obj  UBobj  

0.01 0.012848 1.238295 2501776.7 2514535.30 

0.02 0.024689 1.112829 2532496.5 2568517.00 

0.03 0.032501 1.051526 2548290.4 2660844.90 

0.04 0.045807 0.971924 2569575.8 2586843.60 

0.05 0.054352 0.931861 2580221.3 2599373.50 

0.06 0.063995 0.889808 2591638.2 2632869.30 

0.07 0.076630 0.840582 2605347.5 2627209.50 

0.08 0.083344 0.816420 2612131.0 2651092.40 

0.09 0.093719 0.776477 2623375.0 2661518.50 
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0.10 0.104950 0.747998 2631422.1 2656777.00 

0.11 0.117767 0.712319 2641546.7 2661465.60 

0.12 0.130524 0.676653 2651725.6 2724279.40 

0.13 0.135712 0.663140 2655597.7 2684241.50 

0.14 0.148773 0.631832 2664611.5 2752402.70 

0.15 0.157501 0.610250 2670859.4 2687806.40 

From Table 13, it can also be observed that the robust solution’s reliability is close to the target, 

and the robust solution’s objective values are close to the chance constrained problem’s solution. 

For example, as the desired constraint satisfaction probability is 0.95 (i.e., α=0.05), the optimal 

set size identified by the proposed algorithm is 0.931861, which leads to a robust solution with 

objective 2580221.3. The 90% confidence level upper bound on constraint violation probability 

is 0.054352, which means the robust solution will satisfy the chance constraint with a probability 

larger than 0.945648 under 90% confidence. The absolute gap between the robust solution’s 

objective and the true solution of chance constrained problem will be less than 

|2580221.3-2599373.5| =19152.2 under 90% confidence, which corresponds to a relative gap less 

than 0.74%. 

The a priori probability bound based method (traditional), the a posteriori probability bound 

based method, the iterative method and the optimal robust optimization approximation method 

are applied to solve the chance constrained problem, and the corresponding results are 

summarized in Table 14. 

Table 14. Comparison of different methods for the production planning problem 

 A priori A posteriori Iterative Optimal 
obj∗  2350437 2569024 2563742 2667047 
true

violationP  0.0186 0.0672 0.0665 0.1479 
time(s) 3.7 1000 1.8 266 

From Table 14, it can be found that while all the solutions satisfy the probabilistic requirement, 

the solution of the optimal robust approximation is the best. It has the largest objective value and 

the largest probability of violation of the constraint, while still less than the target level 0.15. The 

solution obtained from the a posteriori probability based method is a little better than the one got 
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from the iterative method. However, solve time of the iterative method is much less. By 

comparing the traditional method and the iterative method, it can be noticed that the quality of 

the solution has been greatly improved (i.e., from 2,350,437 to 2,563,724, a 9% increase). After 

comparing those four methods, it can be concluded that the iterative method and optimal 

approximation method are good options for solving the original chance constrained problem. 

2.6.3. Process Scheduling Problem 

In this section, a problem about the scheduling of a batch chemical process related to the 

production of one chemical product using three raw materials is involved[37]. The 

state-task-network representation of the example is shown in Figure 10. 

 

Figure 10. State Task Network representation of the batch chemical process 

The mixed integer linear optimization model is formulated as follows. 

max  profit   

( ),
,

. .    
p r

s s n s s s
s S n s S

s t profit price d price STI STF
∈ ∈

= − −∑ ∑                  (25a)       

, ,        1 
j

i j n
i I

wv i I
∈

≤ ∀ ∈∑                                          (25b) 
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, , 1 , , , , , , , 1        , ,
s i s i

C P
s n s n s n s i i j n s i i j n

i I j J i I j J
st st d b b s S n Nρ ρ− −

∈ ∈ ∈ ∈

= − − + ∀ ∈ ∈∑ ∑ ∑ ∑     (25c) 

max
,        , ,s n sst st s S n N≤ ∀ ∈ ∈                                     (25d) 

min max
, , , , , , , ,        , , ,i j i j n i j n i j i j n iv wv b v wv i I j J n N≤ ≤ ∀ ∈ ∈ ∈                  (25e) 

,        ,s n s p
n

d r s S≥ ∀ ∈∑                                          (25f) 

, , , , , , , , , ,        , , ,i j n i j n i j i j n i j i j n iTf Ts wv b i I j J n Na b≥ + + ∀ ∈ ∈ ∈             (25g) 

( ), , 1 , , , ,        1 , , ,i j n i j n i j n iTs Tf H wv i I j J n N+ ≥ − − ∀ ∈ ∈ ∈                (25h) 

( ), , 1 , , , ,        1 , , , ,i j n i j n i j n iTs Tf H wv i i I j J n N′ ′+ ′≥ − − ∀ ∈ ∈ ∈              (25i) 

( ), , 1 , , , ,        1 , , , , ,i j n i j n i j n iTs Tf H wv i i I j j J n N′ ′ ′ ′+ ′ ′≥ − − ∀ ∈ ∈ ∈           (25j) 

, , 1 , ,        , , ,i j n i j n iTs Ts i I j J n N+ ≥ ∀ ∈ ∈ ∈                             (25k) 

, , 1 , ,        , , ,i j n i j n iTf Tf i I j J n N+ ≥ ∀ ∈ ∈ ∈                             (25l) 

, ,        , , ,i j n iTs H i I j J n N≤ ∀ ∈ ∈ ∈                                (25m) 

, ,       , , ,i j n iTf H i I j J n N≤ ∀ ∈ ∈ ∈                                (25n) 

The objective function (25a) maximizes the profit; (25b) state that only one of the tasks can be 

performed in each unit at an event point (n); (25c) represent the material balances for each state 

(s) expressing that at each event point (n) the amount is equal to that at event point (n-1), 

adjusted by any amounts produced and consumed between event points (n-1) and (n), and 

delivered to the market at event point (n); (25d) and (25e) express the storage and capacity 

limitations of production units; (25f) are written to satisfy the demands of final products; (25g) to 

(25n) represent time limitations due to task duration and sequence requirements in the same or 
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different production units. 

In this problem, the demand constraint , 1,s n s
n

d r s P≥ =∑    is affected for the uncertainty of 

demand P1. There is a 20% perturbation of the nominal demand data (
1

50Pr = ):

10.2 ,s s s sr r r s Px= + =  and a uniform distribution on the product is assumed, i.e., sx  is 

uniformly distributed in [-1,1]. Set the desired minimum probability of constraint satisfaction to 

0.5. The corresponding chance constraint is 

, 1Pr 0 0.5     s n s
n

d r s P − ≥ ≥ = 
 
∑                                  (26)           

Based on Li et al.[37], the box uncertainty set induced robust optimization constraint is used to 

approximate the chance constraint. The a priori probability bound based method (traditional), the 

a posteriori probability bound based method, the iterative method and the optimal robust 

optimization approximation method are applied to solve the chance constrained problem, and the 

corresponding results are summarized in Table 15. The corresponding robust schedules for those 

three methods are shown in Figure 11-14, respectively. 

Table 15. Results of the process scheduling problem: case 1 

 A priori A posteriori Iterative Optimal 
obj∗  1015.06 1071.20 1070.06 1088.75 

true
violationP  0 0.1927 0.1832 0.3979 

time (s) 1.1 1000 5.2 2953 
 

If the desired minimum constraint satisfaction is set to 0.9, case 2, which means the maximum 

constraint violation is set to 0.1, the obtained results are shown in Table 16 as follows: 

Table 16. Results for process scheduling problem: case 2 

 A priori A posteriori Iterative Optimal 
obj∗  Infeasible 1050.79 1025.55 1054.14 

true
violationP   0.0247 9.4e-14 0.1 

time (s)  1000 3.4 1492 
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It can be seen from Table 15 and Table 16 that the objective value of the traditional method is the 

worst, the probability of the violation of its solution is also the smallest, and it is even infeasible 

for case 2. The objective value of the iterative method is smaller than the a posteriori probability 

bound based method, because its violation of constraint is smaller. However, the computational 

time of the iterative method is much less. The objective value of the optimal robust optimization 

method is the largest, and the violation of the constraint is smaller than the desired largest 

violation probability level and is the closest one to it. Notice that true probability of violation of 

the optimal solution is still no larger than the desired level. The reason for that case 1 has a true 

probability of violation less than 0.5 is that the minimum probability of satisfaction of the robust 

solution is 0.6021 (i.e., the upper bound of the probability of violation is 0.3979). The results 

demonstrated the trade-off between solution quality and computation time. While computational 

time is not a practical restriction, optimal robust approximation will be the best method since it 

leads to least conservative robust solution. Otherwise, the iterative method will be a good option 

since it leads to good quality solution with relatively small computation time. 

 

Figure 11. Schedule obtained from the traditional method 

40 
 



     

 

Figure 12. Schedule obtained from the a posteriori probability bound based method 

 

Figure 13. Schedule obtained from the iterative method 

 

Figure 14. Schedule obtained from the optimal robust optimization approximation 

2.7. Summary 

In the traditional robust optimization framework, the uncertainty set’s size is determined using 

the a priori probability bound[44] under the assumption that the uncertainty is subject to certain 

distribution (e.g., bounded and symmetric). However, the solution can be very conservative. The 
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iterative method in Li & Floudas[45] combining the a priori probability bound and a posteriori 

probability bound can improve the solution quality, and extend the applicability to general 

distributions. In this section, a novel optimal robust optimization approximation method is 

proposed to identify the best possible robust solution that solves the chance constrained problem. 

The proposed method in this section does not rely on the a priori probability bound, so the 

uncertainty distribution is not limited. By finding the optimal uncertainty set size, the optimality 

of the robust solution is greatly improved while the desired reliability level is still satisfied. The 

effectiveness of the proposed method is demonstrated by a numerical example, as well as 

applications in the portfolio optimization problem, the production planning problem, and the 

process scheduling problem. Finally, it is worth mentioning that only individual chance 

constraint is investigated in this section. Joint chance constraint and its solution method based on 

robust optimization approximation will be studied in future work. 
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3. Linear Programming Based Scenario Reduction 

3.1. Motivation 

The solution of the sampling approach based approximation method is generated by considering 

all the selected scenarios. There is a direct correlation between the size of the approximation 

problem and the number of scenarios. In general, samples with large size can guarantee the 

reliability of the solution, but lead to high computational complexity. An appropriate choice of 

samples can balance the reliability of the solution and the computational complexity. There are 

several methods for scenario generation are proposed, e.g., Luedtke and Ahmed[38], Ahmed and 

Shapiro[40], and Wang and Ahmed[46]. However, in reality, it is very often that a huge number of 

scenarios need to be considered due to the large number of uncertainty parameters, which may 

result in numerically intractable problems because of the limitation of the computational 

recourses. Therefore, demand for finding subset of scenarios which can best approximate the 

original large number of scenarios is generated. Scenario reduction, another important topic of 

scenario based decision making, is induced. It aims at selecting a few representative scenarios 

among the original large number of scenarios, and new probabilities will be assigned to each 

representative scenario. 

Scenred2[47, 48] is a tool for the reduction of scenarios modeling the random data processes, which 

is available in GAMS. However, the reduced scenarios are not the optimal ones. Li and 

Floudas[41] proposed a mixed integer linear problem (MILP) based scenario reduction method, 

which can give the optimal reduced subset to represent the initial super set, so as to reduce the 

computational complexity for solving the sampling based approximation problems while still 

guarantee the solution reliability. This method considers the performance of both input and 

output, while making a decision.  

Although the MILP based scenario method can provide the optimal reduced subset of scenarios, 

its computational complexity can be very high when the size of the initial set of scenarios is very 

large (e.g. 5000).  This may be unacceptable for solving a sampling based approximation 

problem. So a question is naturally raised: Is there a new scenario reduction method to balance 

the performance of the selected subset of scenarios and the computational complexity? In this 
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thesis, a linear programming (LP) based scenario reduction method is proposed. 

3.2. Mixed Integer Linear Programming Based Scenario Reduction 

The mixed integer linear programming based scenario reduction method was proposed by Li & 

Floudas[41] recently. This method minimizes not only the probabilistic distance between the 

original and reduced input scenario distribution, but also minimizes the difference between the 

best, worst and expected performances of the output measure of the original and the reduced 

scenario distributions. It leads to reduced distribution not only closer to the original distribution 

in terms of the transportation distance, but also captures the performance of the output. However, 

in order to do the comparison with the scenario reduction method proposed in this thesis, a 

similar mixed integer programming based scenario reduction is considered here. It is formulated 

as follows[41]: 

,, , ,
min

new
i i i i i

orig
i iy v d p i I

p d
′ ′ ∈

∑                                      (27a) 

. .    i
i I

s t y N
∈

=∑                                         (27b) 

,        ,i i i
i I

v y i I′
′∈

≥ ∀ ∈∑                                   (27c) 

,        0 1 , ,i i iv y i i I′ ′ ′≤ ≤ − ∀ ∈                              (27d) 

,        1,i i
i I

v i I′
′∈

≤ ∀ ∈∑                                    (27e) 

, ,        ,i i i i i
i I

d c v i I′ ′
′∈

= ∀ ∈∑                                 (27f) 

max        0 ,i id y c i I≤ ≤ ∀ ∈                                (27g) 

( ) ,        1 ,new orig orig
i i i i i i

i I
p y p v p i I′ ′ ′ ′

∈

′= − + ∀ ∈∑                  (27h) 
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{ }        0,1 ,iy i I∈ ∀ ∈                                     (27i) 

where i  and i′  represent scenarios, I  is the set of all scenarios, orig
ip  represent probability 

of scenario i  in original discrete distribution, id  represent the minimum distance from all the 

selected scenarios to a removed scenario i , binary variables iy  denote whether a scenario is 

removed ( )1iy =  or not ( )0iy = , continuous variables ,i iv ′  denote whether a scenario i  is 

removed and assigned to scenario i′  ( , 0i iv ′ > ) or not ( , 0i iv ′ = ), continuous variables new
ip ′  

denote the new probabilities of the scenarios ( 0new
ip ′ =  means scenario i′  is removed), ,i ic ′  is 

the distance between two scenarios which can be evaluated by ,
1

T
i i

i i t t
t

c θ θ ′
′

=

= −∑ , iθ  is a 

realization of uncertain parameters in scenario i , { }1 2, , ,i i i i
Tθ θ θ θ=  , maxc  is the maximum 

distance between two scenarios. The objective function (27a) minimizes the total transportation 

cost; (27b) requires the total number of the binary variables equal to the size of the original 

scenario set; (27c) to (27e) are written to determine the transportation plan; (27f) and (27g) 

express the distance between removed scenario i  and preserved scenario i′ ; (27h) state the 

way to calculate the new probability of a selected scenario. 

The optimal objective value of the mixed integer problem above is obtained when the new 

probability of the selected scenario is equal to the sum of its former probability and of all 

probabilities of removed scenarios that are closest to it[47] (i.e., 

( ) ,1 ,new orig orig
i i i i i i

i I
p y p v p i I′ ′ ′ ′

∈

′= − + ∀ ∈∑ ), as illustrated in Figure 15[41]. 
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Figure 15. Illustration of computing new probability in reduced distribution 

As shown in Figure 15, black dots represent the preserved scenarios and the red dots represent 

the preserved scenarios. Then, scenario 2 and scenario 3 will be assigned to scenario 1 since the 

scenario 1 is closest to them compared to the other preserved scenarios. Thus, the new 

probability of scenario 1 will be equal to the sum of its original probability and the probabilities 

of scenarios 2 and 3. 

3.3. Linear Programming Based Scenario Reduction: Fixed Subset Size 

To quantify the difference between the original superset of scenarios and the selected subset, the 

criteria can be classified based on the input parameter space and the system’s output space. 

Transportation distance is a mathematical measurement for quantifying the cost of the movement 

from one location to another. Kantorovich distance is one type of them, which was studied by 

Kantorovich[49]. In a transportation problem, we intend to minimize the transportation cost (i.e., 

the Kantorovich distance). As for the scenario reduction problem, we can take it as a 

transportation problem, from the super sample set I to the preserved sample set S. The 

Kantorovich distance between I and S can be used to quantify the difference between those two 

sets. If there is less difference between I and S, the corresponding Kantorovich distance will be 

smaller. 

Data and distribution are two distinctive features of a sample set. If the sub sample set is given, 

then, by calculating the Kantorovich distance between I and S, the new distribution of the sub 

sample set can be determined. Kantorovich distance between two sets can be calculated by 
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solving the following linear minimization problem: 
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where i  represent scenarios in the super sample set I; i′  represent scenarios in the sub sample 

set S; orig
ip  represent the probability of scenario i  in the original distribution; new

ip ′  represent 

the probability of scenario i′  in the new distribution; ,i iη ′  is the decision variables represent 

the transportation plan; ,i ic ′  is the distance between two scenarios, which can be evaluated by 

,
1

T
i i

i i t t
t

c θ θ ′
′

=

= −∑ ; iθ  is a realization of uncertain parameters in scenario i , 

{ }1 2, , ,i i i i
Tθ θ θ θ=  . 

According to Dupačová et al.[47], the optimal solution for (28) is obtained at: 

( )
,new orig orig

i i i
i I i

p p p i S′ ′
′∈

′= + ∀ ∈∑                                (29) 

The reduced scenarios will be assigned to the closest preserved scenario[41]. Each preserved 

scenario with the reduced scenarios which are assigned to it can be considered as a set. The 

central sample of this set is the preserved scenario. Then, the super sample set I is divided into 

several subsets. In order to reduce the Kantorovich distance, it can be achieved by reducing the 

cost of each subset. As shown in Figure 16, the black dots are reduced scenarios and the red dots 

are preserved scenarios.  
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Figure 16. Illustration of the algorithm 

The subset S1 has three scenarios, scenario 1, 2 and 3. Scenario 2 and scenario 3 will be assigned 

to scenario 1. The central scenario is scenario 1. Next, consider scenario 2 and scenario 3 as the 

central scenario, respectively, and calculate the corresponding cost under the assumption that the 

other scenarios in the same subset are assigned to it. The total cost for one central scenario is the 

summation of the cost of transportation from the rest scenarios in the same subset to it. For 

example, the total cost for scenario 1 is the summation of the cost of transportation from scenario 

2 to it and the cost corresponds to scenario 3. Update the central sample of S1 to the one with the 

minimum cost among scenario 1, 2 and 3, so as to the rest subsets. The cost between two 

scenarios can be calculated by , ,
orig

i i i i icost p c′ ′= , where scenario i′  is the preserved scenario 

(i.e., the central scenario). All the updated central samples make up the new preserved scenario 

set S, which is more representative. The algorithm is summarized in Table 17. 

Table 17. Linear programming based scenario reduction algorithm (fixed subset size) 

Algorithm 1: Linear programming based scenario reduction (fixed subset size) 

1. Initialization the number of samples for the preserved scenario set, K 

2. Initialization S with K samples, { }1 2, , , KS S S , from the super scenario 
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set I 

3. Initialization tolerance ε  

4. While relative step error > ε 

5.     Solve problem (28) with I and S 

6.     Obtain the transportation plan and Kantorovich distance 

7.     Find the K subsets 

8.     For each subset, calculate the cost for each scenario 

9.     For each subset, find the scenario with minimum cost as  

    the new central scenario 

10.     Update the K central scenarios 

11.     Update S with the new K central scenarios, { }1 2, , , KS S S′ ′ ′
   

12.     Calculate the relative step error 

13. End 

14. Return S as the final preserved scenario set 

After the transportation plan is obtained, there will be a vector , ,i i i Iη ′ ∀ ∈  for each i′  (i.e. 

subset). In step n (n≥2), the relative step error is calculated by: 

( ) ( )
( )

1
  

1
KanDist n KanDist n

nth relative error
KanDist n

− −
=

−
                        (30) 

where ( )KanDist n  represents the Kantorovich distance between super scenario set I and the 

preserved scenario set S obtained in the n-th step. 

Property 1: The Kantorovich distance obtained by Algorithm 1 in each step is monotonically 

decreasing. 

Proof: In each step, the central scenarios are updated to the one with the minimum cost. The 

preserved scenario set is formed by the updated central scenarios. So, the Kantorovich distance 

will be no larger than the former step. 
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3.4. Illustration of the Algorithm 

In this section, small examples will be used to illustrate the LP based scenario reduction 

algorithm proposed in Table 17. The comparison between the proposed method and the MILP 

based scenario reduction method will be conducted. All of the calculations in Section 3 have 

been made on a Windows 8 system with an Intel Core i7 (2.40 GHz) and 16 GB of RAM, using 

MATLAB and GAMS with CPLEX optimizer. 

3.4.1. Normal Distribution 

Consider a normal distribution with mean 0 and variance 1. Generate a super set I with 100 

scenarios, each scenario has two elements (i.e., I is a 100×2 matrix), and set the preserved 

scenario set S to have a size of 5 (i.e., K=5). Initialize S with 5 scenarios selected from I. By 

applying Algorithm 1 and set the tolerance 0.01ε = , the updated S and the corresponding 

distribution can be obtained.  

 

Figure 17. Kantorovich distance between I and S under normal distribution 

The iteration stops at step 3, as shown in Figure 17, which means the Kantorovich distance will 

not significantly decrease and it is the same in this case. There is no need to continue updating S. 
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Plot all the scenarios in each step, as shown in Figure 18 and 19. The scenarios of the same color 

belong to the same subset. They are used to update the central scenario (i.e., the preserved 

scenario). The area of each central scenario represents the probability of this scenario in the 

distribution of S. The final Kantorovich distance is 0.7624. There are two central scenarios 

updated. For example, scenario 1 is the central scenario for the subset with color of green in 

Figure 18. In Figure 19, the central scenario is updated to scenario 2. 

 

Figure 18. The first step of the procedure under normal distribution 
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Figure 19. The second step of the procedure under normal distribution 

For the same super set I, apply the MILP based scenario reduction method. The obtained final 

Kantorovich distance is 0.7560, and the final distribution of the preserved scenario set is shown 

in Figure 20. 

 

Figure 20. Final distribution obtained by MILP method under normal distribution 
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By comparing the final distribution of the preserved scenario set (i.e., Figure 19 and Figure 20), 

it can be found that for the five preserved scenarios, only one scenario of those obtained by the 

LP based scenario reduction method is different from those selected by the MILP based scenario 

reduction method. The difference comes from different transportation plans determined by MILP 

based scenario reduction and LP based scenario reduction. The absolute gap between the 

Kantorovich distances obtained by those two methods is 0.7624 0.7560 0.0064− = , which 

corresponds to a relative gap of 0.85%.  

3.4.2. Uniform Distribution 

Generate 100 scenarios from a uniform distribution in [ ]1,1−  as the super scenario set I (a 

100×2 matrix). Select 5 scenarios to form the initial preserved scenario set S. The tolerance is set 

to 0.01ε = . By applying Algorithm 1, the Kantorovich distance can be obtained, as shown in 

Figure 21. The procedure is shown in Figure 22 and 23. The preserved scenario set S is updated 

three times until there is no big difference between the Kantorovich distances, same in this case, 

and the final Kantorovich distance is 0.4044. As for the results obtained by the MILP scenario 

reduction method, its final Kantorovich distance is 0.4042, and its final distribution of the 

preserved scenario set is shown in Figure 24. There is only one scenario that is not the same in 

the final preserved scenario sets obtained by those two methods, due to the difference between 

the determined transportation plans. The absolute gap between two Kantorovich distance is 

0.4044 0.4042 0.0002− = , which leads to a relative gap of 0.05%. 
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Figure 21. Kantorovich distance between I and S under uniform distribution 

 
Figure 22. The first step of the procedure under uniform distribution 
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Figure 23. The second step of the procedure under uniform distribution 

 
Figure 24. Final distribution obtained by MILP method under uniform distribution 
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are several methods to conduct the selection. The effectiveness of different choice will not be the 

same. 

K-means clustering is a method of vector quantization. It originally comes from signal 

processing, which is popular for cluster analysis. It aims to partition the total n observations into 

k clusters in which each observation belongs to the cluster with the nearest mean, serving as a 

prototype of the cluster[50]. The initial preserved scenario set can be the combination of the most 

representative scenario in each cluster, and the most representative scenario can be obtained by 

select the one closest to the center of the corresponding cluster. 

To demonstrate the effectiveness of different initial selection, a two dimensional super scenario 

set with 1000 scenarios is generated. The desired number of selected scenarios is set to 50 (i.e., 

K=50 in Algorithm 1). Three initial sub scenario sets are generated using k-means clustering, and 

the other two sets are randomly selected from the original super scenario set. The tolerance is set 

to ε=0.01. The relationship between Kantorovich distance and different initial selections is 

plotted in Figure 25 and it can be observed that k-means clustering is a better method to provide 

the initial preserved scenario set. A better initial selection will result in a smaller final 

Kantorovich distance (i.e., a more representative final sub scenario set), and less effort in the 

computation. 

 

Figure 25. Kantorovich distance for different initial selection of sub scenario set 
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3.6. LP based scenario reduction V.S. Scenred2 

In this section, the proposed method and the GAMS scenario reduction routine Scenred2 are both 

applied to perform a comparison study. 

In order to do the comparison, a 2-dimensional super set of scenarios of size 1000, 5000, 10000, 

15000, 20000, 30000 and 40000 is generated, respectively, under the normal distribution with 

mean 0 and variance 1. The desired number of scenarios to be preserved is set to 50, i.e., reduce 

the super set of scenarios to a sub set with 50 scenarios. For the proposed method, the tolerance 

is set to 0.01. The results obtained by applying those two methods are shown in Table 18. 

Table 18. Results of comparison between Scenred2 and Algorithm 1 

 
LP Fixed Scenred2 

Kantorovich 
Distance CPU time(s) Kantorovich 

Distance CPU time(s) 

1000 0.2736 6.6 0.2790 1.3 

5000 0.2888 13 0.2955 21 

10000 0.2963 27 0.3026 87 

15000 0.3000 42 0.3045 214 

20000 0.2986 71 0.3070 443 

30000 0.3025 163 0.3087 1735 

40000 0.2993 313 0.3067 3664 

From the results, it can be observed that the transportation distance (i.e., Kantorovich distance) 

of the proposed algorithm 1, LP based scenario reduction, is consistently smaller than that of the 

Scenred2 tool. Along with the size of the original scenario set getting larger, the CPU time for 

the reduction of the proposed method is much smaller than that of the Scenred2 tool. For the 

proposed method, it can provide a more representative sub scenario set while the computational 

complexity is lower, compared with the Scenred2 tool. The MILP based scenario reduction 

method introduced in section 3.2 is not applicable here, because it cannot conduct scenario 

reduction when the original number of scenario is very large. For example, it will be intractable 

for the case of 40000 scenarios.  
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In order to see the difference between the final transportation plans obtained by both methods, 

taking the case 40000 as an example, the obtained results are shown in Figure 26 and 28. 

Scenarios of the preserved scenario set are shown in Figure 27 and Figure 29. As it can be 

observed, there is no big difference, which can be also seen from Table 18. The Kantorovich 

distance just has a relative error of 0.3067 0.2993 2.5%
0.2993

−
=  between two methods. 

 

Figure 26. Final transportation plan for Algorithm 1 
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Figure 27. Final preserved scenarios for Algorithm 1 

 
Figure 28. Final transportation plan for Scenred2 
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Figure 29. Final preserved scenarios for Scenred2 

If change the way of calculating the distance between two scenarios to squared Euclidean 

distance: ( )2

,
1

T
i i

i i t t
t

c θ θ ′
′

=

= −∑ , the final transportation plans for both methods are shown in Figure 

30 and 32, and the final preserved scenarios are shown in Figure 31 and 33. 

 

Figure 30. Final transportation plan for Algorithm 1 with squared Euclidean distance 
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Figure 31. Final preserved scenarios for Algorithm with squared Euclidean distance 

 
Figure 32. Final transportation plan for Scenred2 with squared Euclidean distance 
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Figure 33. Final preserved scenarios for Scenred2 with squared Euclidean distance 

By comparing the results obtained by both two methods with different distance calculation, it can 

be found that the final transportation plan and the final preserved scenarios are not the same for 

each method. 

If still use the Manhattan distance and generate the 2-dimensional super scenario set based on the 

uniform distribution whose support is [-1, 1], the final transportation plan and the final preserved 

scenarios obtained by applying Algorithm 1 are shown in Figure 34 and 35. 
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Figure 34. Final transportation plan for Algorithm 1 under uniform distribution 

 
Figure 35. Final preserved scenarios for Algorithm 1 under uniform distribution 

If the final preserved scenarios are taken as the seeds for the Voronoi diagram, then the 

corresponding Voronoi cells can be generated. The result is shown in Figure 36. 
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Figure 36. Voronoi diagram 

By comparing Figure 34, Figure 35 and Figure 36, it can be found that the final transportation 

plan by applying Algorithm 1 is the same as the Voronoi diagram. 

3.7. LP Based Scenario Reduction: Incremental Subset Size 

While the initial selection of the sub scenario set is very important, a new method for generating 

the start sub scenarios based on the following algorithm can be considered. The algorithm is 

summarized in Table 19. 

Table 19. Linear programming based scenario reduction method (incremental subset size) 

Algorithm 2: LP scenario reduction method (incremental subset size) 

1. Initialization the desired number of samples, K; 

2. Initialization a step size d and the start number of samples, K1; 

3. Initialization S with K1 samples from the super scenario set I, 

{ }11 2, , , KS S S ;  

4. Initialization tolerance ε ; 

5. While the size of S<K 
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6.      Randomly choose d samples from I and add to S; 

7.      While relative step error < ε 

8.          Solve problem (28) with I and S 

9.          Obtain the transportation plan and Kantorovich distance 

10.          Find the K1 sub sets; 

11.          For each sub set, calculate the cost for each scenario; 

12.          For each sub set, find the scenario with minimum   

         cost as the new central scenario; 

13.          Update the K1 central scenarios, { }11 2, , , KS S S′ ′ ′
 ; 

14.          Update S with the new K1 central scenarios; 

15.          Calculate the relative step error 

16.      End         

17. End 

18. Return S as the final sub scenario set 

In Algorithm 2, a start sub scenario set S with a size (i.e., K1) smaller than the desired number of 

scenarios (i.e., K), is generated first. A number of d scenarios are randomly chosen and add to 

S ′ . Then, Algorithm 1 is used to find the final preserved scenario set S ′ . It’s the same way to 

find the K1 subsets and calculate the relative step error as Algorithm 1. The size of S ′  is 

updated to K1+d after 1 iteration. While the size of S ′  is less than K, keep conducting the 

procedure of applying Algorithm 1 and adding new scenarios. The sub scenario set S ′  can be 

taken as an initial preserved scenario set when its size is updated to K. The corresponding final 

preserved scenario set can be obtained by applying S ′  to Algorithm 1. 

In order to find the best step size d, a 2-dimensional super set of 1000 samples is generated. The 

size of the subset is set to 50. K is set to 1. The step size d is set to 1, 5, and 10, respectively. For 

this case, if the MILP based scenario reduction method is applied, the obtained optimal 

Kantorovich distance is 0.2565. Apply Algorithm 2 with different d, and the obtained results are 

shown in Figure 37. It can be seen that a smaller d is better. 
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Figure 37. Results for the different step size 

In order to compare Algorithm 1 and Algorithm 2, two 2-dimensional super scenario sets are 

generated based on the normal distribution with mean 0 and variance 1. The size of them is 1000 

and 10000, respectively. The desired number of scenarios is 50 (i.e., K=50). For Algorithm 2, set 

K1=1 and d=1, and the initial selection of sub scenario set for Algorithm 1 is conducted by 

k-means clustering. The tolerance ε  is set to 0.01. The obtained results are shown in Table 20. 

Table 20. Comparison of two LP based scenario reduction methods 

 1000 10000 

 LP Fixed LP 
Incremental LP Fixed LP 

Incremental 

Kantorovich Distance 0.2809 0.2910 0.2955 0.2966 

CPU time (s) 3 108 28 1203 

It can be seen form Table 20 that the final Kantorovich distance of Algorithm 2 is larger than the 

one obtained by Algorithm 1, the LP based scenario reduction with fixed subset size, for both 

cases, which means the initial preserved scenario set generated by k-means clustering is better. 

The computational time of the LP based scenario reduction method (fixed subset size) is smaller 
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for both cases. 

3.8. Extension of LP Based Scenario Reduction 

The MILP based scenario reduction method OSCAR proposed in Li & Floudas[41] minimized 

both the probabilistic distance and the differences between the base, worst and expected 

performance of the output, while the LP based scenario reduction method proposed in this thesis 

just considered minimizing the probabilistic distance. However, it is possible to extend our 

method. The difference of expected performance is calculated by the expected value of the 

difference between the objective value obtained by the original scenario set and the selected 

scenario set. This procedure is a linear programming. As for the difference of the best 

performance, it is obtained by the largest objective value of both the original scenarios and the 

selected scenarios. In order to minimizing this difference, it needs to be guaranteed that no less 

than one of the largest objective values obtained by the original scenarios should be included in 

the ones obtained by the selected scenarios, i.e., the scenario corresponding to the largest 

objective value should be selected. Binary variables should be introduced. However, only a very 

small number of binary variables should be generated. Similarly, the scenario corresponding to 

the smallest objective value should be included in the selected scenarios to realize minimizing 

the difference of the worst performance of the output of both the original scenario set and the 

selected scenario set. Both the worst and best performance can be considered in the proposed LP 

based scenario reduction. Although the introduced binary variables make the problem a MILP 

problem, there are only a very small number of them. If just consider the expected performance, 

which still makes the optimization problem an LP problem, this optimization problem can be 

formulated as follows: 
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where errfexp  is the error between the expected objective value of the original scenario set and 

the preserved scenario set, ifobj  is the objective value obtained by scenario i . 

err orig newfexp fexp fexp= − , where origfexp  is the expected value of the objective value of the 

original scenario set, and newfexp  is the one for the preserved scenario set. Note that 

orig
orig i i

i I
fexp p fobj

∈

=∑  and new
new i i

i S
fexp p fobj′ ′

′∈

= ∑ , then the last two constraints of problem (31) 

can be added. 

3.9. Summary 

In this section, a new scenario reduction algorithm is proposed based on a linear optimization 

model. The proposed method selects a representative subset of scenarios and assigns new 

probabilities to them for a given superset of scenarios. The MILP based scenario reduction 

method proposed by Li and Floudas[41] can give the optimal transportation plan to make the 

preserved sub scenario set have a performance closest to the original scenario set. However, its 

computational complexity can be very high when the size of the original scenario set is very 

large. The proposed LP based scenario reduction method (fixed subset size) can efficiently 

reduce the computational complexity, while the selected subset still has a good performance. The 

difference between the solutions obtained by the proposed method and the MILP based scenario 

reduction method is very small. The representative of the determined preserved scenario set is 

acceptable, and close to the optimal one obtained by the MILP based scenario reduction. The 

difference lies in the determined transportation plans. The effectiveness of the proposed method 
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will be demonstrated in the next section. The proposed Algorithm 1, LP based scenario reduction 

method (fixed subset size), is better than the incremental subset size LP based scenario reduction 

method, Algorithm 2, due to the better selection of the initial preserved scenario set, so the 

demonstration of the effectiveness will use Algorithm 1, the fixed subset size LP scenario 

reduction.  
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4. Sample Average Approximation for CCP with Scenario 

Reduction 

4.1. Introduction 

Sample average Approximation is a sampling based approximation method for solving chance 

constrained optimization problems. It seeks safe or conservative approximations which can be 

solved efficiently. The proposed approximation problem is convex and yields feasible solutions. 

Such an applicable approximation is attractive because it allows efficient generation of feasible 

solutions. The risk level in the sample average approximation problem can be positive, i.e., all 

sampled constrains to be satisfied is not required. It can be chosen optimally which constraints 

will be satisfied. In order to conduct the approximation, the actual distribution of the random 

vector ξ is replaced by the empirical distribution obtained from the random sample. Samples 

need to be generated to obtain the empirical measure to approximate the chance constraint, and 

the choice of its size is an essential work for conducting the approximation. The optimal solution 

of the approximated problem will converge exponentially fast to their true counterparts in the 

original chance constrained problem as the sample size increases. However, due to the limitation 

of the computational resources, it is always impossible to involve such a large number of 

samples, and the computational complexity will be very high. As a result, a demand of using 

fewer samples to replace the original large number of samples, while still guarantee the 

reliability and optimality, is raised. A MILP based optimal scenario reduction method OSCAR 

was proposed by Li and Floudas[41] recently. It can select the optimal sub scenario set to 

represent the original scenario set. However, its computational complexity will be very high 

when the size of the original scenario set is very large. The fixed subset size LP based scenario 

reduction method proposed in Section 3 is another one for selecting the representative subset. 

4.2. Sample Average Approximation Method for CCP 

The chance constraint in problem (1) can be rewritten in the following equivalent formulation: 
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( ){ }, 0P h x x a> ≤                                               (32) 

Let ( ) ( ){ }: , 0P x P h x x= > . An indicator function of ( )0,∞  is defined as follows: 

( ) ( )0,

0,     0
1

1,     0
if x

x
if x∞

≤
=  >

                                           (33) 

Then, the following relationship holds: 

( ) ( ) ( )( )0,1 ,P x h x x∞
 =  Ε                                          (34) 

Generate N realizations of the random parameters x , { }1 2, , , Nx x x . The sample average 

approximation ( )NP x  of function ( )P x  can be obtained by replacing the actual distribution 

P  by the empirical measure NP [40], i.e., 

( ) ( ) ( )( ) ( ) ( ) ( )( )0, 0,
1

1 , 1 ,
N

N
t

N P
t

P x h x prob t h xx x∞ ∞
=

 = =  ∑Ε                 (35) 

where ( )prob t  represents the probability for each realization. If all the realizations have equal 

probability, then it has a value of 1 N  for each realization. 

The sample average approximation of problem (1), which is associated with the generated 

sample { }1 2, , , Nx x x , is 

( )

( ) ( ) ( )( )0,
1

max

. .  1 ,

x X
N

t

t

f x

s t prob t h x x γ

∈

∞
=

≤∑
                                  (36) 

Here, the significance level γ  can be different from the significance level a  of the original 

chance constrained problem[38]. The convergence analysis of the SAA problem (36) can be found 

in Luedtke & Ahmed[38], and a complementary study is provided by Pagnoncelli et al.[40]. With 
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increase of the sample size N, an optimal solution of the SAA problem will approach an optimal 

solution of the original CCP problem (1) with the significance level γ . 

4.3. Sample Size Selection 

For a feasible solution of the SAA problem x X∈ , we can have ( )NP x γ≤ . This means that 

there are no more than Nγ ⋅  times the satisfaction of ( ), 0th x x >  is achieved during N 

trails[40]. Since ( )P x  is the probability of ( ), 0th x x >  is satisfied, it follows that: 

( ){ } ( )( )Pr , ,NP x B m P x Nγ≤ =                                  (37) 

where m  denotes the integer part of Nγ ⋅ , ( )( ) ( ) ( )( )
0

, , 1
m N ii

i

n
B m P x N P x P x

i
−

=

 
= − 

 
∑  is 

the binomial distribution. Due to the fact that the binomial distribution is a monotonically 

increasing function about ( )P x  and ( )P x a≤ , the following relationship holds: 

( ){ } ( )( ) ( )Pr , , , ,NP x B m P x N B m Nγ a≤ = ≤                       (38) 

Given ( )0,1δ ∈  and ( )0,1a ∈ , N ∗  which satisfies ( ), ,B m Na δ∗ ≤  is a sample size that 

yields a solution x̂  making ( )ˆNP x γ≤  have a probability no less than 1 δ− [51]. Here, m  is a 

nonnegative integer no larger than N ∗ . 

According to the study of Alamo et al.[51], under the assumption that X  is a convex and closed 

set, the function ( ),h x x  is convex in X , and the sample average approximation problem (36) 

is always feasible and attains a unique optimal solution for all possible multi-sample extractions 

{ }1 2, , , Nx x x , given ( )0,1a ∈  and ( )0,1δ ∈ , if 

1

1 1inf ln ln
1b

bN n b
ba δ>

 ≥ + −  
                                    (39) 
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then, the optimal solution ˆNx  to the optimization problem (36) satisfies the inequality 

( )ˆN NP x γ≤  with probability no less than 1 δ− . n  is the number of variables. A suboptimal 

sample size bound can be obtained by taking b  equal to the Euler constant: 

1 1ln
1

eN n
ea δ

 ≥ + −  
                                           (40) 

However, in reality, the problems can have a very large number of variables, which will make the 

sample size very large. In order to reduce the computational complexity, a smaller set size can be 

considered to replace the original set size, i.e., select a subset from the original scenario set. The 

appropriate set size can be selected by the following algorithm. Starting from a small reduced set 

size (lower bound), as shown below in (41), and the original set size calculated by (40) (upper 

bound), the algorithm will gradually reduce the set size until the predefined tolerance is satisfied. 

The algorithm is summarized in Table 21. 

1 1ln
1

eN
ea δ

≥
−

                                                (41) 

Table 21. Selection of the reduced set size 

Algorithm 3: Reduced set size selection 

1. Initialization [ , ]lb ub , and δ ，ε ′   

where 0lb =   

where ub n=  

2. Solve SAA problem with set size 1 1ln
1

e lb
ea δ

 ∆ = + −  
, 

and scenarios of size ∆  are selected using scenario 

reduction method from the original scenario set of size 

which is the lower bound of N  obtained by 

1 1ln
1

eN n
ea δ

 = + −  
   

3. If ( )ˆNP x a≤   
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4.     return 1 1ln
1

e
ea δ

 
 −  

as the set size 

5. else While | |ub lb ε ′− >   

6.       solve SAA problem with set size  

      1 1ln ( ) / 2
1

e lb ub
ea δ

 ∆ = + + −  
 

         (scenarios are selected from the original scenarios) 

7.       if ( )ˆNP x a≤   

8.        ( ) / 2ub lb ub= +  

9.       else if ( )ˆNP x a>   

10.        ( ) / 2lb lb ub= +   

11.       end 

12.     End 

13. End 

14. Return 1 1ln 1
1

e lb
ea δ

 ∆ = + + −  
as the reduced set size 

4.4. Linear SAA Problems with Scenario Reduction 

In this section, the proposed Algorithm 3 are applied to several linear SAA problems with the 

MILP based scenario reduction algorithm OSCAR and the LP based scenario reduction 

Algorithm 1 proposed in Section 3, respectively. The tolerance is set to 0.001ε =  for all the 

application of Algorithm 1. All of the calculations in Section 4 have been made on a Windows 8 

system with an Intel Core i7 (2.40 GHz) and 16 GB of RAM, using MATLAB and GAMS with 

CPLEX optimizer. 

4.4.1. Portfolio Optimization Problem 

The portfolio optimization problem is formulated as below: 
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{ }
{ }

max  

s.t.    1

         : 1, 0

T

x X

T

n T

r x

Prob r x v

X x R e x x

a
∈

≥ ≥ −

= ∈ = ≥

                                     (42) 

where x  represents the percentage of a capital invested in each of the available assets, r  

denotes the vector of random returns of the assets, and r  is the expected returns of the assets. 

Historical stock data from Yahoo Finance is obtained for the 29 stocks, MMM, AA, AXP, T, 

BAC, BA, CAT, CVX, KO CSCO, DIS, DD, XOM, GE, HPQ, HD, IBM, INTC, JNJ, JPM, 

MCD, MRK, MSFT, PFE, PG, TRV, UTX, VZ, and WMT. We assume the data follow 

multivariate lognormal distribution and the distribution parameters are estimated using monthly 

stock price data from January 2003 to December 2013. 

By applying the sample average approximation optimization method, problem (42) can be 

reformulated in a mixed integer linear problem[40]: 

{ }
1

max  

s.t.    

        

        0,1

T

x X
T

i i
N

i
i

N

r x

r x vz v

z N

z

γ

∈

=

+ ≥

≤

∈

∑
                                                (43) 

In this problem, 0.05a = , 29n =  and 0.001δ = , so, 0lb =  and 29ub = , then the upper 

bound of the set size is 1136, and the lower bound of the set size is 218. Let =1ε ′  and 

0.001δ = . γ  is set to 0, 0.025, 0.05, respectively. If apply the MILP scenario reduction method 

OSCAR directly, select 218 scenarios from the super set, and run 50 times for each γ. The results 

are shown in Figure 38, 39 and 40. 
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Figure 38. Results for portfolio with OSCAR when γ=0 

 
Figure 39. Results for portfolio problem with OSCAR when γ=0.025 
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Figure 40. Results for portfolio problem with OSCAR when γ=0.05 

From Figure 38-40, it can be seen that, in the first step, where lb  is 0, the reduced scenario set 

satisfies the desired reliability level for all the 50 runs. The Pareto frontier is obtained by 

transforming the original chance constrained problem into a deterministic formulation, due to the 

fact that it follows multivariate lognormal distribution[19]. The average objective value and the 

average probability of satisfaction are shown in Table 22. 

Table 22. Average objective value and probability of satisfaction for portfolio problem 

 
N 

1136 218 
aveobj  avep  aveobj  avep  

γ 
0 0.003702 0.99636 0.003797 0.99549 

0.025 0.003643 0.99657 0.003717 0.99582 
0.05 0.003747 0.99643 0.003847 0.99551 

In Table 22, aveobj  is the average objective value for 50 runs, and avep  is the average 

probability of satisfaction for 50 runs. The average objective value for the reduced scenario set is 

larger while the average probability of satisfaction is smaller than the original scenario set. 

Algorithm 3 is applied for problem (43) with OSCAR and Algorithm 1, respectively. The 

obtained results are shown in Table 23. 
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Table 23. Results for portfolio optimization problem 

 

N 
1136 218 

SAA without 
scenario reduction SAA with OSCAR SAA with LP Fixed 

Objective satisfyp  Objective satisfyp  CPU 
time(s) Objective satisfyp  CPU 

time(s) 

γ 
0 0.003826 0.9963 0.003829 0.9951 15.5 0.003988 0.9964 13.9 

0.025 0.003567 0.9974 0.003850 0.9959 15.6 0.004939 0.9903 13.6 
0.05 0.004403 0.9934 0.004495 0.9915 15.5 0.005044 0.9900 13.3 

From the above results, it can be observed that the lower bound set size corresponding to lb  is 

the appropriate reduced set size. By applying Algorithm 3 with MILP and LP based scenario 

reduction, respectively, all the solutions satisfy the desired reliability level for both scenario 

reduction methods. However, the solution obtained by the MILP based scenario reduction 

method OSCAR is closer to the original solution when using 1136 scenarios. CPU time 

represents the time for conducting scenario reduction. Although the objective value of the LP 

based scenario reduction method is larger than the one obtained by the MILP based scenario 

reduction method OSCAR, and the corresponding probability of satisfaction satisfyp  is less, the 

results obtained by the LP based scenario reduction still meet the desired reliability and its CPU 

time for conducting the scenario reduction is less. 

4.4.2. Weighted Distribution Problem 

A weighted distribution problem is considered here. A company sells n  products with m  

machines. The objective is to minimize of the net cost, that is, the difference between the total 

cost and the total revenue in the time period. The constraint is the machine availability. The 

formulation of the problem is shown below[52]: 

1 11 1 1 1

1

min    

,s.t.   Pr  min 1

             

         0            ,

m mm n n n

jk jk k jk jk kjk jk k k
j jj k k k

n

jk j
k

jk

l

p x d p x dl c x h u

x a j

x j k

a
= == = = =+

=

ì üæ ö æ öï ïï ï÷ ÷ç ç- ÷ ÷³ + - ³ -ç çí ý÷ ÷ç ç÷ ÷ç çï ïè ø è øï ïî þ

£  

³   

å ååå å å

å
   (44) 
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where 1, ,k n=   is the index of products, 1, ,j m=   is the index of machines, kd  

represents the demand of product k  over a given period, jkp  is the capacity parameter, i.e., 

quantity of product k  that is produced in a time unit when machine j  is allocated to that 

product, ja  is the limited amount of time that can be used for machine j , jkc  is the cost 

incurred when machine j  is allocated to product k  for a time unit, ku  is the revenue from 

selling a unitary of product k , kh  is the inventory holding cost for a unitary quantity of 

product k . jkx  are the decision variables, which represent the amount of time that machine j  

is allocated to product k . 

In this problem, take 5m =  and 10n = . The corresponding parameters are given as below: 

1.8 2.2 1.5 2.2 2.6 2.1 2.2 1.7 2.8 1.9
1.6 1.9 1.3 1.9 2.3 1.9 2.0 1.5 2.5 1.7

[ ] 1.2 1.5 1.0 1.5 1.9 1.4 1.6 1.1 2.0 1.3
1.3 1.6 1.1 1.6 2.0 1.5 1.7 1.2 2.2 1.4
1.2 1.5 1.0 1.6 1.9 1.5 1.6 1.1 2.1 1.3

jkc

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úê úë û

  

[ ]10 13 22 19 21jaé ù =ë û   

[ ] [ ]1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3kh =   

[ ] [ ]1.5 1.8 1.2 1.9 2.2 1.8 1.9 1.4 2.4 1.6ku =   

Demand kd  follows Dirichlet distribution ( )380 25,38,18,39,60,35,41,22,74,30Dir× , and 

capacity jkp  follows independent uniform distribution with a variation of 5%±  around the 

following nominal valus 
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5.0 7.6 3.6 7.8 12.0 7.0 8.2 4.4 14.8 6.0
3.8 5.8 2.8 6.0 9.2 5.4 6.3 3.4 11.4 4.6

[ ] 2.3 3.5 1.6 3.5 5.5 3.2 3.7 2.0 6.7 2.7
2.6 4.0 1.9 4.1 6.3 3.7 4.3 2.3 7.8 3.2
2.4 3.6 1.7 3.7 5.7 3.3 3.9 2.1 7.0 2.9

jkp

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úê úë û

  

Applying SAA method to problem (44), it can be reformulated as below: 
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                 (45) 

where 1000M = . Set the desired reliability level as 0.05, and γ is set to 0, 0.025, and 0.05, 

respectively. δ is set to be 0.001. Use the MILP based scenario reduction method OSCAR to 

select 218 scenarios from the original 1800 scenarios and run 50 times for each γ. The results are 

shown in Figure 41-43. 
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Figure 41. Results for weighted distribution problem with OSCAR for γ=0 

 
Figure 42. Results for weighted distribution problem with OSCAR when γ=0.025 
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Figure 43. Results for weighted distribution problem with OSCAR when γ=0.05 

From Figure 41-43, it can be seen that if set the size of the preserved scenario set equal to the 

one when 0lb = , the selected scenarios can give infeasible solution. The average objective 

value and the average probability of satisfaction are shown in Table 24.  

Table 24. Average objective value and probability of satisfaction for weighted distribution 
problem 

 
N 

1800 218 
aveobj   avep   aveobj   avep   

γ 
0 -467.6 0.9952 -477.6 0.9669 

0.025 -490.4 0.9690 -507.4 0.8488 
0.05 -483.9 0.9790 -509.1 0.8205 

From Table 24, it can be found that the average objective value of the reduced scenario set is 

smaller. However, the average of probability of satisfaction is smaller and even less than the 

desired reliability level 0.95. 

In order to avoid this problem, Algorithm 3 can be applied. The desired reliability level is 

0.015a = , and set 1ε ′ = , 0.001δ = . There are 50 variables, so 0lb =  and 50ub = . γ  is set 

to 0, 0.0075, and 0.015, respectively. The lower bound of the set size is 728, and the upper bound 

is 6001. Different desired reliability level is chosen for demonstrating the effectiveness of 
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Algorithm 1 when the initial number of scenarios is very large. The obtained results are shown 

below: 

Table 25. Results for weighted distribution problem 

 γ 
0 0.0075 0.015 

SAA 
without 
scenario 
reduction 

N 6001 6001 6001 
Objective -453.8 -475.0 -473.3 

satisfyp  0.9989 0.9940 0.9946 
CPU 

time(s) 398 1002 1023 

SAA 
with LP 
Fixed 

N 728 1150 1466 
Objective -460.8 -482.2 -481.8 

satisfyp  0.9956 0.9857 0.9867 
CPU 

time(s) 236 327 388 

From Table 25, it can be found that the objective value obtained by Algorithm 3 with LP scenario 

reduction method is smaller than that of solving the SAA problem directly using the original 

super set of scenarios. However, the probability of satisfaction is smaller. All the solutions satisfy 

the desired reliability level, 0.985. The CPU time means the time for solving the SAA problem. It 

can be seen that the solving time of the reduced scenario set is less. For the MILP based scenario 

reduction method OSCAR, it is unable to conduct the scenario reduction due to the large number 

of the original scenario set. The CPU time for conducting the scenario reduction with the LP 

based scenario reduction method is 452, 16686, and 23687, respectively, for γ=0, 0.0075, and 

0.015, respectively. 

The solution procedure of Algorithm 3 with LP based scenario reduction method is shown in 

Table 26. 

Table 26. Solution procedure for weighted distribution problem with Algorithm 1 

γ 
0 0.025 0.05 

[ ],lb ub  [ ],Sizelb Sizeub  [ ],lb ub  [ ],Sizelb Sizeub  [ ],lb ub  [ ],Sizelb Sizeub  

[ ]0,50  [ ]728,6001  [ ]0,50  [ ]728,6001  [ ]0,50  [ ]728,6001  
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  [ ]0,25  [ ]728,3365  [ ]0,25  [ ]728,3365  

  [ ]0,12  [ ]728,1994  [ ]0,12  [ ]728,1994  

  [ ]0,6  [ ]728,1361  [ ]6,12  [ ]1361,1994  

  [ ]3,6  [ ]1044,1361  [ ]6,9  [ ]1361,1677  

  [ ]3,4   [ ]1044,1150   [ ]6,7   [ ]1361,1466   

For Algorithm 3 with LP based scenario reduction method, the final lb  for different gamma is 0, 

3, and 6, respectively, which lead to the returned set size 728, 1150, and 1466, respectively. 

4.4.3. Blending Problem 

A blending problem is considered here[40]. A farmer wants to use fertilizers to increase the 

production. The recommended plan is 7g of nutrient A and 4g of nutrient B. There are two kinds 

of fertilizers available: the first has 1ω g of nutrient A and 2gω  of nutrient B per kilogram. The 

second has 1g of each nutrient per kilogram. 1ω  and 2ω  are assumed to follow independent 

continuous uniform in the intervals [1,4] and [1/3, 1], respectively. The problem can be 

formulated as below[40]: 

1 2
1 20, 0

1 1 2

2 1 2

min

7
. .      Pr 1

4

x x
x x

x x
s t

x x
ω

a
ω

≥ ≥
+

+ ≥ 
≥ − + ≥ 

                                   (46) 

The SAA formulation of problem (46) is[40]: 
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1 2
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where N is the number of samples, 1,iω  and 2,iω  are samples from 1ω  and 2ω , ( )0,1γ ∈  

and K is a positive constant greater or equal than 7. In this case, 0.05a = , 1ε ′ = , and 

0.001δ = . There are 2 variables, so 0lb =  and 2ub = . The upper bound of the set size is 281, 

and the lower bound of the set size is 218. γ  is set to 0, 0.025, and 0.05, respectively. If apply 

the MILP based scenario reduction method OSCAR directly, select 218 scenarios from the 

original 281 scenarios, and run 50 times for each γ. The following results can be obtained, as 

shown in Figure 44-46.  

 

Figure 44. Results for blending problem with OSCAR when γ=0 
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Figure 45. Results for blending problem with OSCAR when γ=0.025 

 
Figure 46. Results for blending problem with OSCAR when γ=0.05 
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For [ ]0,1 2a ∈ : 

( )1
9

11 9 1
x

a
∗ =

− −
 ( )

( )2

41 36 1
11 9 1

x
a
a

∗ − −
=

− −
 ( )( )

( )
2 25 18 1

11 9 1
v

a
a

∗ − −
=

− −
 

where 1x∗  and 2x∗  are decision variables and v∗  is the objective value. The average objective 

value and average probability of satisfaction for the total 50 runs are shown in Table 27. 

Table 27. Average objective value and probability of satisfaction for blending problem 

 
N 

281 218 
aveobj   avep   aveobj   avep   

γ 
0 6.9190 0.9882 6.9190 0.9879 

0.025 6.7267 0.9685 6.7407 0.9694 
0.05 6.4481 0.9423 6.4696 0.9442 

From Table 27, it can be found that for both preserved scenario set and original scenario set, the 

average probability of satisfaction can be smaller than the desired reliability level. This is 

because the different selection of γ. If γ is larger, the average probability of satisfaction will be 

smaller. 

By applying Algorithm 3, it can be guaranteed to return a feasible solution, and the following 

results can be obtained, as shown in Table 28. 

Table 28. Results for blending problem 

 γ 
0 0.025 0.05 

SAA 
without 
scenario 
reduction 

N 281 281 281 
Objective 6.914 6.793 6.578 

satisfyp  0.9933 0.9821 0.9636 

SAA 
with 

OSCAR 

N 218 218 218 
Objective 6.914 6.727 6.680 

satisfyp  0.9868 0.9764 0.9734 
CPU 

time(s) 2.4 2.3 3.0 

SAA N 218 218 218 
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with LP 
Fixed 

Objective 6.914 6.727 6.578 
satisfyp  0.9933 0.9764 0.9636 

CPU 
time(s) 3.0 2.0 2.9 

From Table 28, it can be seen that the final lb  for both methods is 0 for all the γ, which gives a 

final reduced set size of 218. CPU time represents the time for conducting the scenario reduction, 

and it is very fast for both methods. It can be found that the results obtained by Algorithm 3 with 

OSCAR and Algorithm 1 have no big difference, and they are very close to the original solution. 

Both methods can give a solution that satisfies the desired reliability.  

4.5. Nonlinear SAA Problems with Scenario Reduction 

In this section, the proposed Algorithm 3 are applied to two nonlinear SAA problems with the 

MILP based scenario reduction algorithm OSCAR and the LP based scenario reduction 

Algorithm 1 proposed in Section 3, respectively. The tolerance is set to 0.001ε =  for all the 

application of Algorithm 1. 

4.5.1. Nonlinear Pooling Problem 

In this section, the performance of Algorithm 3 on a classical pooling problem is discussed. The 

formulation given here is closer to the one in Parpas et al.[53]. Figure 47 shows the problem 

procedure. 
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Figure 47. Haverly pooling problem 

There are three input chemicals A, B and C. Q and R will be provided when these chemicals 

blended, and they are assumed uncertain. The cost per unit of raw materials is also uncertain. All 

the distributions for the uncertainty are assumed to be uniform distribution, and the uncertainty is 

specified in Table 29. 

Table 29. Uncertainty specification 

Variable Support 
QD  : Demand for Q  [50,100] 

RD  : Demand for R  [100,200] 

AC  : Costs for A  [5,10] 

BC  : Costs for B  [10,20] 

CC  : Costs for C  [12,25] 

The profit per unit for each product is 100QC =  and 150RC = . Storage cost is 5QS =  and 

8RS = . The formulation of the chance constrained problem is as shown below: 
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where ix  is the amount of chemical or product , , , ,i A B C R Q=  used,  jy  is the flow from 

the pooling tank to product ,j Q R= , Cjx  is the flow from chemical C  to product ,j Q R=  

and z  is the Sulphur concentration of the pooling tank. Problem (48) can be reformulated as 

follows by using SAA method: 
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where 1v , 2v , 3v , and 4v  are introduced positive variables, iλ  are the introduced binary 

variables, iu  are introduced variables. 

For this problem, let 0.05a = , 0.001δ = , and 1ε ′ = . There are 16 variables, so 0lb =  and 

16ub = .  Then, the lower bound of the reduced set size is 218, and the upper bound is 724. γ  

is set to 0, 0.025, and 0.05, respectively. If apply the MILP based scenario reduction method 

OSCAR directly, select 218 scenarios from the original 724 scenarios, and run 50 times for each 

γ. The results are shown in Figure 48-50. 
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Figure 48. Results for nonlinear pooling problem with OSCAR when γ=0 

 
Figure 49. Results for nonlinear pooling problem with OSCAR when γ=0.025 
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Figure 50. Results for nonlinear pooling problem with OSCAR when γ=0.05 

From Figure 48-50, it can be found that if directly select 218 scenarios from the original 724 

scenarios, the obtained scenarios may give infeasible solution. The average objective value and 

average probability of satisfaction are shown in Table 30. 

Table 30. Average objective value and probability of satisfaction for nonlinear pooling problem 

 
 

N 
724 218 

aveobj   avep   aveobj   avep   

γ 
0 17913.3 0.9952 17985.9 0.9579 

0.025 17891.2 0.9760 17967.0 0.9494 
0.05 17945.5 0.9649 18033.7 0.9502 

From table 30, it can be found that the average objective value of the reduced scenario set is 

larger, while the average probability of satisfaction is smaller than the original scenario set. The 

average probability of satisfaction even can be less than the desired reliability level for the 

reduced scenario set. 

In order to avoid this problem, Algorithm 3 can be applied. By applying Algorithm 3, with the 

MILP based scenario reduction method OSCAR and Algorithm 1, respectively, the following 

results can be obtained, as shown in Table 31. 
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Table 31. Results for nonlinear pooling problem 

 γ 
0 0.025 0.05 

SAA 
without 
scenario 
reduction 

N 724 724 724 
Objective 17388.5 17596.8 17689.3 

satisfyp  0.9986 0.9745 0.9618 

SAA 
with 

OSCAR 

N 281 250 250 
Objective 17670.6 17650.9 17730.9 

satisfyp  0.9622 0.9610 0.9569 
CPU 

time(s) 31.5 24.5 37.1 

SAA 
with LP 
Fixed 

N 218 218 218 
Objective 17741.7 17762.2 17714.0 

satisfyp  0.9576 0.9516 0.9585 
CPU 

time(s) 7.1 11.7 11.4 

From Table 31, it can be found that, the results obtained by the MILP based scenario reduction 

method OSCAR is closer to the solution of the original scenario set. However, the results of the 

LP based scenario reduction method still satisfy the desired reliability level, 0.95. The objective 

value when 0,  0.025γ =  is larger than that of MILP based scenario reduction method OSCAR. 

The CPU time for conducting the scenario reduction is also less for Algorithm 3 with LP based 

scenario reduction.  

For the LP based scenario reduction method, its reduced set size is obtained when 0lb = . The 

solution procedure of Algorithm 3 with the MILP based scenario reduction is shown in the 

following Table 32. 

Table 32. Solution procedure for nonlinear pooling problem with OSCAR 

γ 
0 0.025 0.05 

[ ],lb ub  [ ],Sizelb Sizeub  [ ],lb ub  [ ],Sizelb Sizeub  [ ],lb ub  [ ],Sizelb Sizeub  

[ ]0,16  [ ]218,724  [ ]0,16  [ ]218,724  [ ]0,16  [ ]218,724  

[ ]0,8  [ ]218,471  [ ]0,8  [ ]218,471  [ ]0,8  [ ]218,471  

[ ]0,4  [ ]218,345  [ ]0,4  [ ]218,345  [ ]0,4  [ ]218,345  

[ ]0,2  [ ]218,281  [ ]0,2  [ ]218,281  [ ]0,2  [ ]218,281  
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[ ]1, 2  [ ]250,281  [ ]0,1  [ ]218,250  [ ]0,1  [ ]218,250  

In Table 32, Sizelb  and Sizeub  is the lower bound and the upper bound of the returned set 

size, respectively. Taking 0γ =  as an example, the final lb  equals to 3, then the returned 

reduced set size is 1 1ln 1 345
1

e lb
ea δ

 ∆ = + + = −  
. For 0.025γ = , the final lb  equals to 1, so 

1 1ln 1 281
1

e lb
ea δ

 ∆ = + + = −  
 , so as to the case 0.05γ = . 

4.5.2. Continuous Stirred Tank Reactor Design Problem 

This case is taken from Ostrovsky et al.[54]. This design problem is defined as the cost 

minimization under the product specification, as shown in Figure 51.  

 

Figure 51. Flowsheet of the reactor network 
It is assumed that the uncertainties are from the kinetic parameters (the activation energy and the 

frequency factor in the Arrhenius equation), while the decision variables are the volumes of both 

reactors. The chance constrained problem is formulated as[54]: 
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 (50) 

where AiC , BiC , iV , and iT  are the concentrations of component A and B, the volume of both 

rectors, and the temperature of both reactors, respectively, 1, 2i = . 1 5180.869RT = ,

2 4765.169RT = , and 2 0.5SP
BC = . The random kinetic parameters are assumed to conform to a 

joint normal distribution, and the data are as shown in Table 33: 

Table 33. Joint normal distribution for kinetic parameters 

Parameter Expected value Standard deviation Correlation matrix 
1E  6665.948 200 1 0.5 0.3 0.2

0.5 1 0.5 1
0.3 0.5 1 0.3
0.2 0.1 0.3 1

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ë û

 2E  7965.248 240 

10k  0.715 0.0215 

20k  0.182 0.0055 

The SAA problem formulation of problem (50) is: 
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where 1000M = . In order to solve this SAA problem, the parameters are set as: 0.05a = , 

0.001δ = , 1ε ′ = . Let 0lb =  and 2ub = , due to the fact that there are 2 variables. The lower 

bound of the set size is 218, and the upper bound of the set size is 281. γ is set to 0, 0.025, and 

0.05, respectively. If apply the MILP based scenario reduction method OSCAR directly, select 

218 scenarios from the original 281 scenarios, and run 50 times for each γ. The results are shown 

in Figure 52-54. 
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Figure 52. Results for tank reactor design problem with OSCAR when γ=0 

 
Figure 53. Results for tank reactor design problem with OSCAR when γ=0.025 
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Figure 54. Results for tank reactor design problem with OSCAR when γ=0.05 

From Figure 52-54, it can be seen that if directly select 218 scenarios from the original 281 

scenarios, the selected scenarios may give infeasible solution. The average objective value and 

probability of satisfaction for the total 50 runs are shown in Table 34. 

Table 34. Average objective value and probability of satisfaction for tank reactor design problem 

 
N 

724 218 
aveobj   avep   aveobj   avep   

γ 
0 3.789 0.9930 3.789 0.9919 

0.025 3.747 0.9848 3.748 0.9823 
0.05 3.713 0.9723 3.713 0.9733 

In Table 34, it can be found that the difference between the results obtained by the preserved 

scenario set and the original scenario set is very small, although there will be some scenarios that 

lead to infeasible solutions. 

By applying Algorithm 3, this problem can be avoided and the following results can be obtained. 

Table 35. Results for continuous stirred tank reactor design problem 

 γ 
0 0.025 0.05 

SAA N 281 281 281 
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without 
scenario 
reduction 

Objective 3.769 3.719 3.721 

satisfyp  0.9893 0.9738 0.9750 

SAA 
with 

OSCAR 

N 218 218 281 
Objective 3.769 3.719 3.721 

satisfyp  0.9885 0.9735 0.9761 
CPU 

time(s) 2.6 2.5 7.5 

SAA 
with LP 
Fixed 

N 218 218 218 
Objective 3.769 3.710 3.736 

satisfyp  0.9890 0.9705 0.9808 
CPU 

time(s) 3.0 2.9 2.3 

From Table 35, it can be found that the solution of both scenario reduction methods is very close 

to the original solution. They both satisfy the desired reliability level. The CPU time for the 

procedure of scenario reduction is very fast for both methods. For Algorithm 3 with LP based 

scenario reduction, its final lb  is 0 for all the γ. For the one with OSCAR, its final lb  equals 

to 0, 0, and 2, respectively. The solution procedure of Algorithm 3 with OSCAR is shown below 

in Table 36. 

Table 36. Solution procedure for continuous stirred tank reactor design problem with OSCAR 

γ 
0 0.025 0.05 

[ ],lb ub  [ ],Sizelb Sizeub  [ ],lb ub  [ ],Sizelb Sizeub  [ ],lb ub  [ ],Sizelb Sizeub  

[ ]0,2  [ ]218,281  [ ]0,2  [ ]218,281  [ ]0,2  [ ]218,281  

    [ ]1,2  [ ]250,281  

4.6. Summary 

We have studied sample average approximation for chance constrained optimization problems 

with scenario reduction, and demonstrated how Algorithm 3 can be used to generate feasible 

solutions and reduce the computational complexity for three linear problems and two nonlinear 

problems. Two scenario reduction methods have been considered: the MILP based scenario 

reduction method OSCAR and the proposed LP based scenario reduction method. It can be found 

through the study that OSCAR may be intractable for large original scenario set, even though it 
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can provide optimal reduced scenario set. The proposed LP based scenario reduction method is 

able to provide feasible solution for the original chance constrained optimization problem, and 

still works well for large initial scenario set. The corresponding solution is very close to the 

optimal one. By applying scenario reduction method, the resulted sample average approximation 

problem can be solved efficiently with less computational complexity. Future work in this area 

will be finding a new method to update the preserved scenarios to obtain the optimal 

transportation plan (i.e. the optimal preserved scenario subset). 
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5. Conclusion and Future Work 

5.1. Conclusion 

Solving optimization problems under uncertainty has received increasing attention in recent 

years. Chance constraint is one way to formulate optimization problems under uncertainty, which 

allows the constraint to be satisfied with a certain probability level. However, chance constrained 

optimization problem is challenging. In order to solve chance constrained problems, the 

development went into two major directions: analytical approach based approximation method 

and sampling approach based approximation. In this thesis, two approximation methods are 

considered: robust counterpart optimization approximation is one of the analytical approximation 

methods, while sample average approximation is a sampling based approximation method.  

There are two contributions of this thesis. The first one is an optimal robust counterpart 

optimization method. Based on a branch and bound method, the two-stage algorithm can provide 

the optimal size of the uncertainty set to solve the robust optimization problem, so as to find the 

optimal robust solution, while still satisfies the desired reliability level. The main drawback of 

this method is that the computational time can be very large due to the application of the branch 

and bound method. While computational time is not a practical restriction, the proposed optimal 

robust optimization method will be the best since it leads to the least conservative robust solution. 

Section 2 first reviews the set induced robust counterpart optimization problem and three 

methods for improving the solution quality while it is used to approximate the chance 

constrained problem. Then, an optimal approximation method is proposed to identify the optimal 

set size that leads to the optimal robust solution. The proposed two-step algorithm is not 

restricted by the uncertainty distribution. The obtained robust solution’s optimality can be greatly 

improved while still satisfies the desired reliability level. As a tradeoff, the computational time of 

the proposed method can be a little large due to the usage of a branch and bound method to find 

the optimal set size. However, it can balance the solution quality and the computational time.  

The other contribution is the LP based scenario reduction method. The MILP based optimal 

scenario reduction method OSCAR will have a very large computational time when the original 
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number of scenarios is very large, which may be unacceptable. A LP based scenario reduction 

method is proposed in Section 3. It uses the Kantorovich distance between the original scenario 

set and the selected sub scenario set to update the scenarios in the subset. By reducing the 

Kantorovich distance until the desired tolerance reached, the selected subset will become more 

representative. In the comparison between the proposed LP based scenario reduction method and 

the GAMS scenario reduction tool Scenred2, both the CPU time and the results of the proposed 

LP scenario reduction method are better than that of Scenred2. The proposed method is not as 

good as the optimal scenario reduction method. However, it does not need too much time when 

the original scenario set has a very large size, while the MILP based optimal scenario reduction 

method is very hard to get the results due to the high computational complexity. In OSCAR, it 

considers all the possible scenario subset and selects the optimal one, which will result in 

intractable problem for large initial scenario set. The LP based scenario reduction method just 

considers one scenario subset in each iteration to obtain the Kantorovich distance, so the 

computational complexity can be decreased efficiently. In Section 4, sample average 

approximation method is applied to three linear optimization problems and two nonlinear 

optimization problems with scenario reduction. The proposed Algorithm 3 uses the MILP based 

scenario reduction method OSCAR and the proposed LP based scenario reduction method in 

Section 3, respectively. Although the proposed LP based scenario reduction method is not the 

optimal one, it can still give a solution that satisfy the desired reliability, even very close to the 

optimal solution obtained by the MILP based scenario reduction method, and the computational 

time for solving the sample average approximation problem and conducting scenario reduction 

can be significantly reduced when the original number of scenarios is very large. 

5.2. Future Work 

The optimal robust optimization method proposed in Section 2 is just applied to single chance 

constrained problem, and the application to joint chance constrained problem will be conducted 

in the future.  

The proposed LP based scenario reduction method is not the optimal one, as shown in Section 3. 

The final transportation plan has a larger Kantorovich distance and it is not the same as the 

optimal one obtained by the MILP based scenario reduction method. Based on the principle that 
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minimizing the transportation cost, the proposed scenario reduction method selects the one with 

a less cost to update the whole selected scenario set. However, it cannot return the optimal 

transportation plan. In order to get the optimal solution, i.e., the optimal transportation plan, a 

new method of updating the selected scenarios needs to be addressed in the future.   
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