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Abstract

In Activities of Daily Living (ADLs), humans perform thousands of arm and

hand object manipulation tasks, such as picking, pouring and drinking a drink.

Interpreting such tasks and grasping the underlying concepts of manipulation

from vision is straightforward for humans, but difficult for robotics. Recent

years, fusing computer vision with natural language processing has aided in

many visual understanding tasks, such as action recognition and video cap-

tioning. Despite the advances in natural image tasks, applying visual under-

standing methods in robotic vision has proven to be challenging.

Given the visual observations of the manipulation scene over time, we

aim to estimate their visual attentions and describe the internal relational

structures of all presenting manipulation concepts into a dynamic knowledge

graph. In this thesis, we propose a framework to fuse an attention-based

vision-language model with an ontology system. A convolutional neural net-

work (CNN) with a spatial attention mechanism is invoked for weight feature

extraction. A sequence-to-sequence structure with recurrent neural networks

(RNN) is then followed, encoding temporal information and mapping from

vision to command language. An ontology system, which defines the prop-

erties and attributes over various concepts of manipulation in a taxonomic

manner, is inferred at last, converting command language into the intended

dynamic knowledge graph and governing manipulation concepts with com-

monsense knowledge.

To evaluate the effectiveness of our framework, we construct a specialized
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RGB-D dataset with 100K images spanning both robot and human manipula-

tion tasks. The dataset is constructed under a strictly constrained knowledge

domain for both robot and human manipulations, with annotated concepts

and relations by frame. The performance of our framework is evaluated on

our constructed Robot Semantics Dataset, plus an additional public benchmark

dataset. Furthermore, ablation studies and online experiments with real-time

camera streams are conducted. We demonstrate that our framework works

well under the real world robot manipulation scenario, allowing the robot to

attend to important manipulation concepts in the pixels and decompose ma-

nipulation relations using dynamic knowledge graphs in real time.

The study serves as a fundamental baseline to process robotic vision along

with natural language understanding, thus mimicking human-like intentional

behaviors and represent the evolution of an intended manipulation procedure.

In future, we aim to enhance this framework further for knowledge-guided

assistive robotics.
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Chapter 1

Introduction

1.1 Background and Problem

Visual understanding of contexts in manipulation tasks is fundamental to en-

able human-like intelligent robots. Understanding contexts is important be-

cause humans express intention through hand motions and gestures during the

process of manipulation task execution. To understand specific object manip-

ulation contexts, we need to observe conceptual changes and describe on-scene

manipulation behaviors. For example, in a liquid pouring manipulation task,

its manipulation context involves a sequence of hand motions and grasps ex-

ecuted with a bottle and a cup. Those actions, performed by a human actor,

can include: (a) grasp an object that contains the liquid, (b) move the object

over an empty container, (c) pour the liquid into the empty container, (d)

release the object after finishing the pouring. A core aspect of human intelli-

gence lies in the capability to semantically utilize manipulation information,

as humans process the ability to fundamentally perceive, interpret and utilize

the knowledge of manipulations in the following ways:

• As a result of hand-eye coordination, humans will intentionally focus

their eye gaze onto relevant regions where actions like “grasping” or

“pouring” occur. The cognitive operations that select the conspicuous

parts from the manipulation scene are attributed as the process of vi-

sual attention [1], directly initiated from human eye gazes. That gaze

characterizes how humans perceive the visual world for manipulation
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knowledge.

• The consecutive actions happening throughout the manipulation proce-

dure form structured relationships, initiated from the actor, and mapped

to associated objects on scene. The structured knowledge evolves through

patterns as the manipulation task continues. Therefore, the structured

knowledge of manipulation can be summarized into a taxonomy. Using a

taxonomy, all manipulation tasks can be classified, sorted and organized

distinctively by the involvements of various actors, actions and objects.

• Learned experience over specific scenarios will serve as commonsense

knowledge that describes the necessary instructions or patterns to re-

peat a previously encountered manipulation task successfully. The com-

monsense knowledge known to humans from past experience can explain

“why a human can successfully grasp this object”, as it is known from

common senses that “this object is graspable” without “getting hurt by

hot temperature”, or “simply crushing the object”.

The above process can be deciphered in Figure 1.1. Eventually, for an intel-

ligent robot to assist or to mimic humans in Activities of Daily Life (ADLs), a

similar procedure of decomposing and analyzing manipulation contexts needs

to be carried out first by the robot before carrying out its own motions.

Understanding manipulation contexts for robots to enact manipulation ac-

tions like humans has direct applications in building intelligent robots for daily

life assistance. For example, 23% of Canadians require daily assistance with

their living independence [2], and some of them might suffer nil difficulties even

in grasping daily life objects. A well-versed assistance robot can for example

greatly increase the efficiency of grasping for them, with the help of automatic

planning based on on-scene visual observation. Cooking robots are another

potential development. With robotic vision and external commonsense knowl-

edge of cooking, robots can grasp food ingredients, observe the progress of

cooking and make decisions whether to simply stir food, or to flavor the food

with a specific ingredient in time.
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……

Time

Human Observation

1. Attend eye gazes over 

manipulation actions at 

hand.

2. Imprint manipulation 

knowledge as a taxonomic 

structure.

3. Form commonsense 

knowledge over details of 

manipulation task.

Can HardBottle hold HotWater?
Answer: Yes. 
Reason: Object/HardBottle --> Material --> 
HardPlastic --> canWithstandTemperature--> 
Hot.Human Hold HardBottle

Figure 1.1: The human process of interpreting knowledge of manipulation.
Firstly, from hand-eye coordination, eye gaze will provide visual attention
over the manipulation scene. Then, by describing relationships among the
presenting manipulation actor, action and objects, a taxonomic structure can
represent the current manipulation context. At last, commonsense knowledge
will allow humans to reason about manipulation concepts and deduct facts
based on past experience.

Nowadays, techniques in fields of computer vision and natural language

processing have provided promising tools for intelligent robots to better un-

derstand manipulation tasks and assist humans in their daily life environment.

Still, intelligent robots are far from perfect. As shown in Figure 1.2, intelligent

robots face many challenges when trying to perform human-like task under-

standing. The first challenge is the problem of robustly modeling the dynamics

of any visual scene spatio-temporally. This means that, a vision model needs

to capture any salient action happening in the scene throughout time. This

can further be proven difficult in situations involving fast-changing or cluttered

backgrounds, occlusions, or viewpoint variations. The second challenge is the

problem of bridging vision and language to represent contextual information

in a manipulation scene. Video captioning [3]–[10] is proven successful to com-

press salient actions and interacting objects into captions. However, simple

captions usually lack concept-level modeling. Visual Genome [11] was pro-

posed in later years, allowing researchers to represent the context of an entire
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image scene into a structured scene graph. However, most scene graphs are

intended to describe geometric location relationships like “A next to B” or “A

on top B”, while manipulation tasks are more action-object oriented with rela-

tionships like “pour A into B” or “hold A”. Another challenge that needs to be

considered can come from computational resources, where on-board process-

ing in light-weighted robots cannot easily access heavy computational powers

like methods in computer vision can. Various published works analyze human

behaviors for robotics, from attending to human eye gazes [12]–[19], to struc-

turing ways of manipulations [20]–[25]. Still, none of the studies have offered

a general solution to understanding context for daily life robotics. While the

process of understanding context seems rather straightforward for humans,

how is it possible for robots to capture distinctive phenomenon in observation

and carry out a similar process of understanding manipulation context?

Assistance Robotics Daily-Life Robotics Human-Robot Interaction

Applications

Robotic Context 
Understanding

• Gaze Attention
• Object and Action 

Recognition

Control
React

Vision

Language

Observe 
Manipulation 
Environment

Video 
Modeling

Robot
Manipulation

Language 
Modeling

• Commonsense 
Knowledge Modeling

• Language Interpretation

• Visual Servoing
• Motion Planning

• Difficulties of modeling dynamic 
visual environment.

• Difficulties in modeling and 
reasoning with robot manipulation 
knowledge.

• Limited Computational Recourses 
for Robotics.

Challenges

Figure 1.2: Mindmap of context understanding for robotics. Initiated from
vision and language, intelligent robots need to focus on context understanding
before reacting to decisions and controls.
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1.2 Research Goal

On the basis of the problem and challenges discussed above, we propose to

investigate the fundamental problem of visually perceiving robot and human

object manipulations and interpreting these into structured knowledge. To

achieve this, interpretable and explainable cues that emerge from the process

of manipulation tasks need to be captured. More specifically, given the visual

perception of the real-time manipulation scene and an actor, either a human

or a robot, using visual attention and dynamic knowledge graph, we aim to

describe three specific cues for manipulation contexts understanding: (a) what

manipulation actions the actor is performing; (b) where the manipulation ac-

tions take place in the image frame; and (c) what objects do the actor takes

interests in during the execution of a specific manipulation action. The process

is visually available in Figure 1.3.

……

Visual Attention

Dynamic Knowledge Graph

Figure 1.3: Given visual observation of a manipulation scene over time, visual
attention can attend to salient manipulation actions happening throughout the
scene, while a dynamic knowledge graph can describe the relational structure
among concepts of actor, action and object.

Modeling modeling human eye-gaze-like with attention models allow di-

rect and explainable visualizations over regions corresponding to salient ac-
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tions and events in tasks of visual understanding. A proper attention model

can intuitively explain which part of the manipulation scene a robot attends

to particularly for decision making. For any manipulation task, the evolu-

tion of the task itself can be encoded by manipulation actors, actions and

objects. Manipulation actors and objects are semantically connected by ma-

nipulation actions, thus allowing a manipulation task to be summarized using

a semantic structure like knowledge graphs. A knowledge graph dynamically

predicted by vision-language models and constrained by a knowledge domain

can be helpful to structurally represent activities and events, as they evolve

over time. By connecting vision and language, we can represent manipulation

events through graphical connections between actions and objects from visual

inputs to a dynamic knowledge graph. Furthermore, an ontology system is

capable of storing pre-existing reasonable concepts, and therefore can be used

to specify the underlying properties and attributes of any actions and objects,

ensuring the logical correctness of our dynamic knowledge graph and allowing

us to interact with external high-level knowledge, thus mimicking “human-like

common senses” on robots.

1.3 Research Contents and Methodologies

Based on the research goal proposed above, the main research contents and

methodologies of the thesis deal with the following parts:

• Propose a fundamental framework to capture manipulation concepts and

assess manipulation intention with visual attention and dynamic knowl-

edge graph for real time robot and human manipulation tasks.

• Construct a dataset specifically tailored to record full demonstrations of

robot and human manipulation tasks, highlight key manipulation activ-

ities and events, and develop a sampling mechanism to allow training of

Vision-Language models.

• Investigate the training and deploying of an attention-based Vision-

Language model capable of performing spatio-temporal with the con-
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structed dataset, and assess the capability of visual encoding over real-

time camera streams.

• Develop an ontology system to represent commonsense knowledge over

a domain of robot and human manipulation tasks, and develop an al-

gorithm to allow real-time fusion with a pre-trained Vision-Language

model and the ontology system.

• Design experiments to verify the effectiveness of our framework for robot

manipulation environment, and evaluate the versatility of the generated

visual attention and dynamic knowledge graph.

1.4 Significance of Research

The first important factor to represent commonsense knowledge in real-time

robot manipulation lies in the connection between taxonomies and ADLs.

While daily life can be composed of a significant amount of tedious, repet-

itive actions, those actions can actually be sorted into taxonomies. Further-

more, collaborations from robots for daily tasks can be supported by different

taxonomies from specific robotic domains, such as task taxonomy for arm

manipulation [26]. Those taxonomies can be used to effectively classify and

describe everyday activity tasks, allowing us to capture actions of high impor-

tance and their associating motion data. As such, when developing techniques

for robot manipulation, supporting specific manipulation contexts with robot

taxonomies can greatly benefit our understanding of robot manipulation ac-

tivities in general.

As robotic hardware develops, many robot platforms now integrate high

frame-rate cameras with RGB-D capability, allowing real-time 3D point cloud

rendering. How newer hardware settings influence a robotic vision system is

an interesting factor to explore. Studies in computer vision have also enabled

neural networks to detect objects, recognize actions or extract poses from im-

ages. Still, applications to robot context understanding suffer from factors

like noisy environmental interference, restricted real-time computational re-
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sources, or even human to robot knowledge transferability. This motivates us

to investigate computer vision methods that integrate seemingly onto robotics.

Learning robust action state representations is another important motiva-

tion for this thesis, and why the methods presented are conditioned on real-

time camera streams. A successful vision-guided robotic control policy should

carefully encode visual inputs in a way that visual disturbances like occlusion

or lighting variation do not significantly distract network decisions, and most

ideally, the generated features should be useful to state representation for a

reinforcement learning algorithm. In successful cases, the activations or the

attentions of those visual encoders should focus to localize salient actions or

objects that are task dependent, or have significant implications over the in-

tention of manipulation task in time. As such, we are motivated to investigate

architectures that can perform spatio-temporal encoding in real time.

1.5 Thesis Organization

The organization of the thesis is as follows: Chapter 2 summarizes the ad-

vances in the fields of computer vision and robotics for context understand-

ing. Chapter 3 presents our framework and discusses the associated enabling

methods. Descriptions of dataset and formulations of the methodology are

presented in Chapter 4. Experimental details and analysis are conducted in

Chapter 5. and we draw the final conclusion and summarize possible future

works in Chapter 6. Our code and collected dataset are publicly available at:

https://github.com/cjiang2/rs_concepts.
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Chapter 2

Related Works

Our work on understanding manipulation contexts in robotic vision integrates

areas of computer vision, natural language processing and knowledge repre-

sentation. More specifically, the task of understanding manipulation contexts

can be summarized as:

• Integrating vision and language.

• Attending to visual cues.

• Representing knowledge in robotics.

Moreover, related datasets of video understanding must be categorized first

against different ways of vision and language integration. In this chapter, we

summarize and discuss prior work done in the computer vision and robotics

community for context understanding.

2.1 Datasets for Understanding Manipulation

Contexts

A significant number of computer vision methods rely on a fully annotated

dataset to enable joint vision and language understanding. Numerous datasets

of instructional human activities and tasks [27]–[29], [12]–[15], [30], [31], [8],

[32]–[34] have been proposed over the past years, categorized by fields of visual

understanding tasks. We review the main typical datasets and highlight their

challenges in this section.
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The most dominant field has been action recognition. There are a handful

of datasets specifically tailored to recognize instructional actions. One typ-

ical dataset of action recognition is Something-Something dataset, proposed

in Goyal et al [27], where short clips of 220,847 videos with 174 action labels

are available spamming basic actions that occur in the daily world. EPIC-

KITCHEN dataset, proposed in Damen et al [28], [29], is another typical

dataset of recognizing actions and activities. EPIC-KITCHEN dataset con-

tains 90K vocabulary of human kitchen actions in 700 variable-length videos,

recorded in first-person basis. Apart from focusing on the instructional na-

ture of human activities for construction, GTEA dataset series [12]–[15] shared

some interesting insights for human hand-eye coordination at that time, when

eye gaze data is captured by eye tracking devices, along with the recorded in-

structional videos in egocentric view. The proposal of the GTEA dataset series

enabled interesting applications for attention modeling. Other typical instruc-

tional video datasets include, YouCook2 dataset [30], HowTo100M [31], etc.

Additionally, Kinetics Dataset [35] is widely recognized as the go-to dataset for

pre-trained video action models before experimenting with the above datasets.

Applying video captioning in instructional task videos can be seen as an

extension of the action recognition, as captions required for predictions contain

the salient actions while capturing more attribute or descriptive details of

the scene and objects. IIT-V2C dataset, proposed in Nguyen et al [8], was

constructed on top of the Breakfast dataset [32] with 419 cooking videos.

While the Breakfast dataset was originally used for action recognition, the

author re-purposed the dataset for video captioning. By watching videos and

using predicted captions as instructional commands, a humanoid robot could

indirectly mimic to perform various manipulation tasks in human way.

While datasets like Visual Genome [11] accelerated the developments of

techniques that allow fusion between computer vision and knowledge mod-

eling, modeling knowledge base and performing high-level visual grounding

from instructional task videos has still been a rather new rising field for video

understanding. The most recently proposed dataset requiring knowledge base

modeling on human activities is the Action Genome dataset, proposed in Ji et
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al [33]. The dataset is built on top of Charades dataset [34] with nearly 10k

videos, and it spans challenges of action recognition, few-shot action recogni-

tion and spatio-temporal scene graph prediction. There are 0.4M objects and

1.7M visual relationships annotated in total, making Action Genome dataset

the largest dataset with rich annotations of human-object relationships known

at this point.

The choices of datasets for human video understanding have been rich,

thanks to numerous contributions from the computer vision community. While

those datasets made significant contributions under natural imaging tasks,

they are weakly tied to robotic vision. Human factors have played a huge

role in those datasets, but little traces of robot or human-robot interaction

elements can be presented. Also, those datasets are usually annotated simply

with semantic class labels. And few of those datasets are annotated with

knowledge bases that ground important features for robot manipulation, or

represent manipulation actions and activities spatio-temporally.

2.2 Integrating Vision and Language

There are mainly three popular fields of research that integrate vision and

language for video task and context understanding: Action Recognition, Video

Captioning, Visual Relationship Detection with the extensive Scene Graph

Generation. In this section, we start by discussing the relevant studies under

those fields and then denoting their relevance in robotics.

2.2.1 Action Recognition

Action recognition is one of the most well-studied topics in computer vision,

where a global action label is required for prediction for a given sequence of

video. To capture the instructive nature of manipulation action, videos of ma-

nipulation tasks are usually recorded in egocentric view. The earliest methods

focused on recurrently encoding spatio-temporal features over short clips of

those egocentric manipulation actions. A typical work was Sudhakaran et

al [36], where a ConvLSTM module coupled with class activation maps was
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proposed to encode videos of egocentric activities with spatial attention cues.

The class activation maps generated served as soft masks over the manip-

ulation background and highlighted manipulation actions. The ConvLSTM

encoded clips of video frames recurrently and outputted the egocentric actions

to be recognized. In Lu et al [18], LSTM was integrated into the main network

architecture, where for each consecutive video frame inputted, the CNN net-

work along with the LSTM module could capture both spatial and temporal

information from both appearance and motion stream. Some other works in-

volving modified LSTM modules were Furnari and Farinella [37], Sudhakaran

et al [38], etc. Li et al [39] was another typical work where LSTM could be used

extensively to assess the quality of manipulation spatially and quantitatively

with attention maps and metric scores.

Over the years, computer vision community has moved from simple re-

current networks to 3D convolutional neural networks [40]–[42], due to the

fact that LSTMs are usually harder to train on video data and temporal in-

formation can be better modelled through 3D convolutions. With the sup-

port of large datasets for instructional human activities [31], training by joint

video-action embedding method with large network architectures like S3D [42]

became possible. However, those 3D CNN architectures are large, and take

extensive hardware resources for training and inference. TinyVIRAT proposed

by [43] was an interesting work to tackle the intensive computational resource

demanding situation, where 3D encoder-decoder based CNN architecture was

applied over low resolution action data.

Transformer [44] is an attention-based encoder-decoder architecture proven

adaptive not only on natural language tasks, but on image recognition tasks as

well. One typical work done combining action recognition with transformers

was Gridhar et al [45] where transformer was adapted to not only predict,

but to localize human actions and actors by pixels. TimeSformer proposed

in Bertasius et al [46] was a brand new line of work, where transformer was

proven effective in encoding spatio-temporal information.

While action recognition serves as a well-studied topic in the computer vi-

sion community, however, there has been a very limited number of works on
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action recognition from robotic vision. One work was Pohlt et al [47], where

an I3D network was used to monitor the process of human-robot interaction.

Mason et al [48] explored the connection of human and robot activities and

was able to identify key elements in human activities for robotic control. One

reason for a significantly lower popularity in researching action recognition for

robotics could be the overwhelming human factors involved in action recogni-

tion datasets, leaving little robotic elements in the participation of daily life

activities.

2.2.2 Video Captioning

Video captioning can be seen as a more fine-grained extension of both image

captioning and action recognition, where a vision-language model is required to

compress salient video information into descriptive language. Here, we survey

the typical works of video captioning done.

Due to the sequential nature of video and caption sequences, encoder-

decoder architectures were widely explored for video captioning in the com-

puter vision community. By encoder, recurrent modules like LSTM, or 3D

CNN modules were utilized to encode spatio-temporal information from the

video inputs. Then the decoder accepted the state representations from the

encoder, decoding visual scenes into linguistic sentences that describe the ac-

tions on scene, along with the highlighting objects that enrich the description.

Donahue et al [49] proposed to apply image CNN networks as universal vi-

sual feature extractor, followed by a decoding LSTM for caption generation.

Adapted from NLP tasks, Venugopalan et al [50], [51] proposed to generate

video descriptions of the event from a video clip using sequence-to-sequence

(seq2seq) architecture [3]. Gao et al [4] applied a joint video and language

model for learning robust embedding features. With the success of applying

attention mechanism on top of visual encoding processing [52], similar works of

generating attended spatio-temporal cues were applied maintaining good per-

formance for video captioning in general. A typical work was Zhao et al [5],

where additive attention mechanism was applied in depth of encoder-decoder

architecture. Transformer also made its efforts in video captioning. Zhou et al
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[6] proposed to use transformer for end-to-end video captioning training. Fang

et al [7] proposed to generate commonsense-enriched descriptions.

Utilizing video captioning for robotic manipulation is an interesting re-

search perspective that emerged in recent years. In Nguyen et al [8], [9],

a sequence-to-sequence based video captioning method was first adapted to

translate videos to commands, allowing the robot to understand various ma-

nipulation tasks and perform them simply by watching an input video. Yang

et al [10] improved the effectiveness of video2command, assisting a dual-arm

robotic system to imitate more complex and grounding skills from human

demonstrations. Still, vision-language models need to be evaluated under a

more realistic context, where immediate feedback is constantly requested from

real-time robotic vision.

2.2.3 Visual Relationship Detection and Scene Graph
Generation

Visual relationship detection involves the localization of a pair of objects and

the detection of a predicate relationship between the object pair on a visual

scene. The predicted visual relationship is summarized as a triplet of (ob-

ject1, predicate, object2). In Lu et al [53], a visual module was first used to

generate object proposals. The proposed objects would be sorted into pairs

and inputted into a language module, predicting the most probable relation-

ship. Zhuang et al [54] proposed to build an adaptive classifier for predicate

classification, based on the global context of an image. Materzynska et al

[55] proposed to composite action with objects which can be treated as an

adaptation of visual relationships for human action recognition.

Scene graph generation can be seen as a more complex extension of visual

relationship detection, where triplets of visual relationships are collected into

a scene graph G = {B,O,R}, with B representing the bounding boxes of the

localized objects, O representing the collection of objects, and R representing

the collection of predicates. With the proposal of Visual Genome dataset [11]

and the development of object detection, research on scene graph generation

for natural images became more organized and generic. A typical work was
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Neural Motifs, proposed in Zellers et al [56], where predicate classification

could be done by detecting objects using an object detector, then encoding

object and global context with BiLSTMs. Aditya et al [57], [58] proposed to

construct scene graphs using semantic parser, filling scene graphs with com-

monsense knowledge. However, most of the works on scene graph generation

focused on images only. It was not until the proposal of Action Genome [33]

that the problem of scene graph generation was more thoroughly considered on

videos. In Action Genome, a spatio-temporal scene graph was required for pre-

diction, where objects with their category labels and bounding box locations,

and human-object relationship instances are involved.

Compared to other widely researched video understanding methods, the

field of visual relationship detection is relatively new. Some studies have been

conducted where visual relationships are utilized for robotic visual understand-

ing. One example is Zhang et al [59], where scene graphs are constructed over

robotic grasping scenes specifically. Still, visual relationships are considered

to be more action-oriented for robotics. The most typical example was ma-

nipulation action tree banks proposed in [60], which could be seen as an early

adaptation of representing visual relationships specifically for manipulation

actions. Later studies [61]–[63] involved using object detection systems to

compose action manipulation trees from manipulation action videos. Those

action manipulation trees could be inputted into a humanoid robot as direct

manipulation commands. Other slightly relevant studies in robotics included

processing visual relationships to ground for important spatial information,

letting the visual relationships be bounded by trees, triplets or even captions.

Works like Hatori et al [64], Shridhar and Hsu [65], Thomason et al [66], and

Yan et al [67] discussed the importance of grounding manipulation scene in

general for robotic control or human-robot interaction. However those works

focused more on the fields of grounding manipulation scenes with the already

available semantic information rather than detecting and summarizing seman-

tic information into visual relationships.
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2.3 Attending to Visual Cues

Attention mechanisms enable models to encode spatial information and pro-

vide transparent visual explanations for deep neural networks. Studying at-

tention is important to understand the psychological characteristics of human

vision, and to generalize those characteristics onto robotic vision. There are

mainly two divisions in applying attention: implicitly-learned attention models

and attention models with class activation maps. In this section, we summa-

rize the development of attention models in those two major fields and denote

their applications in robotics.

2.3.1 Implicitly-learned Attention Models

The implicitly-learned attention models first came into popularity in neural

machine translation tasks. By implicitly-learned, a mechanism fatt is usually

defined, which applies an grid weight of alignment over any inputted network

feature, thus giving “attention” to the specific grid regions. Bahdanau et al

[68] proposed an additive mechanism to implicitly learn to attend to words of

importance. Later in Xu et al [69], the additive attention model was proven to

be adaptive on image tasks, where attention weight could be “softly” placed

among spatial regions corresponding to the decoding word. There were studies

[39], [5] that adapted the additive attention model onto the specific problems

of action recognition, video captioning, etc. The learnable attention models

could also be replaced by more complex architecture like 2D convolutional

modules, one being most typical was CBAM [70]. Some other examples of

applying convolutional modules for video understanding were Meng et al [71]

and Fan et al [72].

Integrating human gaze data with attention models is a popular variant of

learning attention in general. Yu et al [16] proposed to supervise the attention

model with human gaze data, enhancing the performance of video captioning

in general. Works like Li et al [17], Lu et al [18], and Min and Corso [19] em-

bodied more probabilistic approaches to learn attention from human gaze data.

Vision-based transformer [45], [46] is a natural and more advanced progression
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of the attention models due to the stacking of self-attention modules, and they

have been proven as powerful in extracting spatio-temporal information when

compared to traditional attention models.

In robotics, some works can be seen where attention models enable denois-

ing of a more cluttered environment, and therefore more focused robotic grasp-

ing. Abolghasemi et al [73] proposed to generate task-focused attention which

significantly enhances the performance of its visuomotor network against the

visual disturbance. Ramachandruni et al [74] proposed a multi-level attention

module to learn task-focused features for robot imitation.

2.3.2 Attention Models with Class Activation Maps

Another type of attention model is formulated for the purpose of explaining the

internal mechanisms of convolutional neural networks. Those attention weights

are denoted as class activation maps (CAMs). Any CAM covers regions of

object of interest that are discriminative for the decision of a convolutional

neural network. Studies like CAM [75], Grad-CAM [76], Grad-CAM+++

[77] and Score-CAM [78] have extensively studied the formulation of acquiring

such class activation maps from network activation features. The implicitly-

learned attention models have also exerted their own influences over the CAM

methods, where studies have proposed to enable CAMs to be differentiable and

transferable with respect to the visual understanding task at hand. Li et al

[79] proposed to make the network’s CAMs trainable in an end-to-end fashion.

Ramanishka et al [80] proposed to generate caption related saliency maps for

videos in a similar fashion to Grad-CAM. Sudhakaran et al [36] proposed

to use CAMs to guide recurrent modules to focus on egocentric actions in

videos. While CAMs offer good performance of explaining network decisions

in visual cues, it is more utilized as an offline evaluation tool. In an online

learning environment, the implicitly-learned attention models are usually more

preferred.
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2.4 Representing Knowledge in Robotics

While complex actions can be decomposed by vision models, robots still need

to enact and plan for actions with some generic schemes that can take ad-

vantage of the knowledge of manipulation actions, objects and tasks. Fur-

thermore, methods are required to automatically associate executable robotic

signals with linguistic actions and skills. In this section, we first investigate

specifically how the fields of robotics represent the task evolution when per-

forming complex manipulation tasks. We then investigate some studies that

model commonsense knowledge of manipulation tasks in robotics.

2.4.1 Commonsense Knowledge for Robotics

By representing commonsense knowledge over a set of known manipulation

objects, robots can utilize those pre-stored knowledge and execute manipula-

tion tasks according to the constraints or relations imposed. Various methods

have studied the effect of introducing commonsense knowledge for robotic be-

haviors. RoboBrain, proposed in Saxena et al [81], stored different sources

of robot manipulation information as knowledge bases. Data is captured, in-

cluding symbols, natural language, haptic senses, robot trajectories, visual

features and many others. Misra et al [82] defined task instructions using

logical forms. Paulius et al [83], [84] constrained robot manipulation tasks

as knowledge graphs and defined taxonomies for generic manipulation tasks.

In Petrich et al [26], taxonomies were investigated in ADLs, giving insights

for arm manipulation with various types of manipulation objects and actions.

While representing commonsense knowledge enables understanding of robotic

behavior, how to combine vision with common senses to enable robot cognition

is still a very challenging problem. And few of those studies have formally dis-

cussed a universal strategy in modeling common senses for robot intelligence.

2.4.2 Task Evolution in Robotics

The evolution of manipulation tasks were widely studied in fields of Learning

from Demonstration, Imitation Learning, etc, where robots were usually re-
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quired to execute a task of hierarchical nature with a set of sub-actions and

skills. It should be denoted that, representing taxonomies of manipulation

task evolution itself can be seen as modeling task-specific common senses.

Task evolution can be bounded by semantic structures. The earliest seman-

tic structure widely adapted for direct robotic execution control was semantic

trees or graphs, as in studies like Yang et al [85], Zhang et al [86], Welschehold

et al [87], and [20]. The common point of those studies is that, methods of

visual relationship detection are usually applied here, as the process of generat-

ing semantic trees or graphs is regarded as describing entities and relations into

sets of visual relationships. Additionally, studies like Fox et al [21] parsed se-

mantic trees from human demonstrations for robot imitation learning. Strudel

et al [22] hierarchically arranged policies to achieve a task with different skill

levels with reinforcement learning. State transition graphs were another type

of widely adapted semantic structure, where a series of robotic decisions were

usually assumed to satisfy Markov property. Lee et al [88] discussed a scheme

to extract transition graphs from human activities. Takayanagi et al [23] for-

mulated the transitions of actions and states to complete a task. Behavior

trees [24], [25] were developed more recently, where manipulation tasks can

be semantically composed and executed. While studies in robotics have no

problem applying semantic structures to represent task evolution, few studies

have demonstrated formal systems to interpret task evolution with real-time

robotic vision. By interpreting task evolution online on scene, we can enable

a robot system to perform dynamic decision making, based on the current

manipulation action.

2.5 Summary

In this chapter, we reviewed and discussed the relevant literature in fields of

computer vision, robotics and knowledge representation. We discussed stud-

ies in action recognition, video captioning, and visual relationship detection,

while their adaptation to interpret instructional manipulation tasks were de-

noted. We then investigated attention models and denote their contributions
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in the increasing explanaibility for modeling manipulation tasks from vision.

Knowledge representation in Robotics was discussed at last, where we de-

noted important semantic structures utilized by popular research for robotic

controls. Various studies have supported the fact, that understanding seman-

tics and contexts in manipulation actions is the key to allow robots to learn

the executions of identical or similar manipulation tasks intelligently.
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Chapter 3

Framework

Given a visual observation of a robot or human manipulation scene, we aim to

capture its visual attention and describe the manipulation concepts and their

internal relational structures into a dynamic knowledge graph. In this chap-

ter, we formulate the fundamental definitions for understanding manipulation

contexts in robotic vision, and discuss how to associate visual observations

with commonsense knowledge. We then propose our framework and discuss

its enabling methods.

3.1 Definitions

3.1.1 Visual Observations

To capture visual observations of a robot or human manipulation scene, a cam-

era stream is involved. A camera stream CST1 , from start time T1, observes a

scene of a robot or human performing a sequence of actions A = {a1, a2, ..., Am}

with a set of objects to complete a manipulation task. The camera stream pro-

duces an indefinite sequence of image frames IT1 , IT2 , ... until the camera stream

stops observing at time Tt. Consequently, we denote the stop time as Tt, and

a video V idt of length t can be preserved in the form V idt = {IT1 , IT2 , ..., ITt},

which captures a full demonstration of the manipulation task involving the

sequence of actions A.
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3.1.2 Manipulation Knowledge

As the product of human thinking, manipulation knowledge can be treated as

logical associations of different concepts in a knowledge domain. Those con-

cepts and logical associations are describable by relational language. Specif-

ically, for any two entities ei, ej ∈ E, a relation r ∈ R can be imposed over

them, forming a labelled directed graph lc ∈ LC:

ei
r−→ ej ∈ LC (3.1)

where E = {e1, e2, ..., en} defines the concepts of manipulation, and R =

{r1, r2, ..., rm} defines the relations of manipulation concepts.

The set of linguistic entities E covers the complete linguistic vocabulary

over the manipulation domain knowledge. This includes human, robot, objects

and any other concepts of importance that can be used to describe any piece

of manipulation knowledge.

The set of linguistic relations R logically associates concepts of manipula-

tion among each other. In summary, relations can be composed of two divi-

sions. First division is governed by performing actions and their associating

concepts during the interactive manipulation scene, for example, robot
hold−−→

plastic bottle, human
pour−−→ water, etc. In this case, a labelled directed graph

represents Entity-Relation-Entity (E-R-E) knowledge. Second division is gov-

erned by hierarchical or relational definitions between concepts, for example,

plastic bottle
isA−−→ Bottle, water

canPresentIn−−−−−−−−→ PourScene, and attributes or

properties of any individual concept, for example, milk can
hasMaterial−−−−−−−→ Paper.

In this case, a labelled directed graph represents Entity-Attribute-Value (E-

A-V) knowledge.

3.1.3 Dynamic Knowledge Graph

For any visual observation initiated from a camera stream CST1 , a set of

objects, spanning the set of entities E, will be presented on scene over time.

A robot or human interacts with those objects according to a sequence of k

actions A = {a1, ..., ak} for the specific manipulation task at hand, producing
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action relations spanning LC. As such, a relational structure can naturally be

used to logically describe the interactive nature of the commonsense knowledge

in total. More specifically, a dynamic knowledge graph associated with time

attributes can be invoked. A dynamic knowledge graph GT1,END = (NG, EG),

initiated from time T1, is a form of spatially connected labeled directed graph,

where nodes NG ⊆ E and edges EG ⊆ LC. A dynamic knowledge graph is the

“blood” of information processing in robotic context understanding, and it is

capable of describing the status or the evolution of manipulation knowledge

over any time period.

Originated from visual observations of the manipulation scene, a dynamic

knowledge graph should fundamentally be composed by action relations in

order to capture current manipulation events and to assess manipulation in-

tention with semantic knowledge. Therefore, E-R-E knowledge should serve as

the skeleton of the dynamic knowledge graph. However, a skeleton is incom-

plete without details or characteristics of any manipulation concepts presented,

and it is necessary to capture the properties and attributes for concepts associ-

ated by action relations. As such, sets E-A-V knowledge need to be appended

in order to complete the skeleton into a fully-grown dynamic knowledge graph.

3.2 Framework and Executive Logic

Guided by visual observation and manipulation knowledge, we propose our

framework to generate a dynamic knowledge graph over a time period of visual

observations. Figure 3.1 presents the overview of our framework. The workflow

of the framework is as follows:

• Encode Visual Perception From Real-Time Robotic Vision: A

live camera stream is set up to observe the scene, where a robot or hu-

man performs a sequence of actions to complete a manipulation task. A

vision-language model is pre-trained on a dataset of manipulation task

videos, where observation clips are generated as training samples by a

video stream sampling algorithm offline. During the online inference pro-

cess, the pre-trained vision-language model is inferred, encoding visual
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Figure 3.1: Overview of our framework.
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observations to detect entities with their associating action relations,

while generating visual attention maps by frame.

• Capture Manipulation Knowledge From Dynamic Scene: By

decoding entities and their associating action relations, a skeleton of

the dynamic knowledge graph can be constructed initially. An ontology

system is pre-constructed, storing concepts of manipulation as common-

sense knowledge. Mapping from the command language predicted by

the vision-language model, objects and action relations will be parsed as

instances of the ontology tree. Furthermore, given a keyword of entity,

sets of commonsense knowledge are queried from the ontology system,

generating triples of manipulation knowledge and thus completing the

dynamic knowledge graph.

3.3 Enabling Methods

In order to implement the framework mentioned above, the following key-

enabling methods need to be developed.

3.3.1 Dataset

A dataset of robot manipulation activities needs to be constructed in order to

be useful for real robot manipulation learning. To fully interpret the manipula-

tion context presenting throughout time, changes to objects being manipulated

and the interactions between objects and manipulator need to be annotated

by the performing action.

3.3.2 Sampling from Stream

In real-time application scenarios, robotic vision is defined as a continuous

data stream. The timeliness of the camera stream demands sampling from a

moving window of recent video frames while flushing out-dated information.

As such, it is important to adapt a suitable stream sampling method for online

streaming applications.
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3.3.3 Combining Vision and Language

A suitable vision and language model is required to encode sequences of visual

observations over the manipulation scene into robust vectors of visual state rep-

resentations. From those visual representations, linguistic entities and action

relations need to be decoded, describing the observable manipulating events

happening at the moment. Visual attentions need to be captured, providing

localizing capability to describe the salient manipulation actions to the pixels.

3.3.4 Ontology System

Humans are capable of learning from linguistic experience. The experience

serves as commonsense knowledge which can be inferred at any time. To

store commonsense knowledge for robots and allow deductive and inductive

reasoning over manipulation concepts, a system of ontological structure is

required.

3.3.5 Generating Dynamic Knowledge Graph

To generate dynamic knowledge graphs for a robot manipulation task, inte-

gration between vision-language model and ontology system needs to be reg-

ulated while allowing individual-based reasoning. To adapt our framework of

understanding manipulation context and allow generating dynamic knowledge

graphs in real-time robotic applications, an algorithm for online inference needs

to be developed, enabling the extraction of visual attention maps by frame and

the generation of dynamic knowledge graphs by demand. A dynamic knowl-

edge graph also needs to be governed by the ontology system constructed,

therefore ensuring the logical correctness of any reasonable concept.

3.4 Experiment for Proposed Framework

In order to validate the effectiveness of our framework and to assess the per-

formance of the associating enabling methods, the following experiments will

be conducted.
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3.4.1 Experiment with Datasets

While the specific dataset of robot manipulation activities is to be constructed,

specialized evaluation categories need to be set up in order to inspect the ro-

bustness of the trained vision-language model. In specific, the evaluation cat-

egories will quantitatively evaluate the scores of linguistic entities and action

relations being correctly decoded by any vision-language model. Moreover,

public dataset will also be utilized to further validate the designs of the atten-

tion vision-language models.

3.4.2 Experiment with Dynamic Knowledge Graph

Under a specific scenario where a robot arm performs a list of manipulation

actions over some designated objects, we wish to inspect whether the fusion

of vision-language model and the ontology system can successfully map the

visual manipulation scene into a fully-fledged dynamic knowledge graph, and

whether the manipulation context of the current scenario can be correctly

reasoned by the ontology system.

3.4.3 Experiment with Visual Attention

Given a pre-trained attention vision-language model, under a real-time cam-

era stream where video frames are constantly produced, we wish to inspect

whether the vision-language model can successfully encode the frames to gener-

ate visual attention maps that indicate where the salient manipulation actions

take place in the pixel. Moreover, we wish to evaluate the correctness of the

generated attention maps based on the network decision, and to inspect the

scenario where the network decision is known to be incorrect.

3.5 Summary

In this chapter, we formally introduced the system framework to incorporate

understanding manipulation contexts for robotic vision. The workflow of our

framework was discussed in detail, while the enabling methods associated and

the list of experiments to be done were highlighted.
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Chapter 4

Methods

Given a visual observation of robot or human manipulation scene in time

period Ti, .., Tj, we aim to capture its visual attention and describe the ma-

nipulation concepts and their internal relational structures into a dynamic

knowledge graph GTi,Tj
. In this chapter, following the definitions and the pro-

posed framework for robot context understanding, we first discuss each of the

enabling methods in detail. We present our Robot Semantics dataset used to

specifically study joint robot and human manipulation context understanding.

Then, we discuss and describe a sampling method against offline videos. Our

attention-based vision-language model is next formulated. The scheme to con-

struct and use the ontology system for robot commonsense knowledge is then

discussed. Finally, we describe an algorithm to generate visual attention and

time-attributed dynamic knowledge graphs for online camera streams.

4.1 Robot Semantics Dataset

While many datasets exist for manipulation tasks and human intentions, few

span both robot and human manipulation tasks. We propose the Robot Se-

mantics Dataset, where videos demonstrating complete particular manipula-

tion tasks such as “pouring water to a cup” are collected. Figure 4.1 presents

an overview over our benchmark data with command language annotations

and robot way-point trajectories.
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Figure 4.1: Samples from our Robot Semantics dataset. Left: Ten of the 3D
trajectories and the velocity vectors from the robot motions used in video
collection. Right: Videos with annotated entities and actions relations.

4.1.1 Collection

The manipulation videos are collected using an Intel RealSense D435i Camera.

For each video collected, objects are first placed at random locations, and a

manipulator (robot or human) executes a sequence of motions to complete the

full manipulation task. During the process, actions such as “grasp”, “release”,

“pour”, “hold” and “intent” are enlisted. Two types of manipulators are

presented in total: human subjects and a Barrett Whole Arm Manipulator

(WAM) robot.

Human: The camera was set up with an egocentric view in a kitchen table

environment. Human subjects were asked to use one hand to perform a series

of actions to complete a manipulation task. For manipulation tasks performed

by a human, 94 videos - 42,681 images are collected in total.

WAM: A Barrett WAM robot was used to perform the same set of ma-

nipulation tasks as the human subjects. The camera was setup on the side to

view the majority of the WAM and a kitchen table top with objects on it. The

experimental protocol originating from IVOS benchmark of Siam et. al. [89] is

used to control the WAM robot. A human operator guided the WAM to reach

the target and perform the intended manipulation actions. Robotic waypoint

trajectories, in the form of quaternions over the 7 joints poses, were recorded

during the kinesthetic teaching. The WAM robot then executed the manipu-
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lation actions by following the teaching trajectories. For the WAM robot arm,

46 videos - 69,368 images and 43 recorded trajectories are collected in total.

4.1.2 Command Language

The command language is annotated to describe the occurring action and the

objects involved in the action over a period of time. An example of the com-

mand language for pouring action is visualized in Figure 4.2. In the example,

the salient action “pouring water” is highlighted, with WAM robot holding the

“plastic bottle” where the pouring liquid “water” comes from. The “water”

goes into “centric mug”, concluding the end purpose of the action.

……

Time

Figure 4.2: Visualization of command language for pouring action in a WAM
robot.

Mathematically speaking, A command language STi...Tj
over the time pe-

riod Ti...Tj is represented as:

e1
r1−→ e2

r2−→ ...
rn−1−−→ en (4.1)

where e1, e2, ..., en ∈ E represents the concepts of manipulation, including

manipulators and objects involved in the manipulation, r1, r2, ..., rn−1 ∈ R

jointly describes the salient actions presenting in the manipulation context,

and S has a length of n. Edges inside STi...Tj
are sequentially composed.
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For any entity ei perceived inside a command language, commonsense

knowledge associated with the entity can be denoted as a labelled directed

graph Gei . A dynamic knowledge graph GTi...Tj
can be seen as the union over

the command language and labeled directed graphs over all associated entities:

GTi...Tj
= STi...Tj

∪Ge1 ∪ ... ∪Gen . (4.2)

In summary, a single graph of command language can be attributed as

Entity-Relation-Entity (E-R-E) knowledge, where things and their probable

action relationships are associated together. Entities are usually denoted by

classes of objects or concepts, such as “Mug”, “Centric”, “Robot”, etc. Re-

lations are denoted as semantic relations that are able to logically associate

any two entities, such as action verbs like “hold”, “pour”, or logical terms

like “from”, “to”, “on”, “with”, etc. A command language serves as a basic

skeleton form to generate the final dynamic knowledge graph.

4.2 Sampling from Stream

Uniformly sampling a fixed number of frames from an entire video to represent

has been the standard practice for action recognition. However, in online

applications, camera vision is provided as a stream of data, where new data

is queued while outdated data is flushed. As such, continuous feedback can

be requested at any time of streaming. However, manipulation actions do

not need to be executed in a strict logical sequential manner for a task of

manipulation. For example, suppose we need to pour water from a bottle to

two different mugs, the manipulation task can be executed in two different

flavors:

• Grasp the bottle, pour to the first mug, then move to pour to the second

mug, release the bottle.

• Grasp the bottle, pour to the first mug, release the bottle, shake your

hand meaninglessly for a while, grasp the bottle again, pour to the second

mug, release the bottle.
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Abruptly encoding long-term video sequences recurrently can cause diffi-

culties in learning. Suppose our objective here is to recognize the actions of

the manipulation task in different stages. Stages of pouring to the first and

second mug can happen concurrently, or in a more separate manner. Espe-

cially for the second scenario, memorizing the context of meaningless shaking

seems unnecessary. For the purpose of recognizing the pouring action for the

second mug, a short time of look-back should be enough to maintain tempo-

ral consistency while avoiding the accumulation of out-dated information. In

this section, we present a sampling mechanism to specifically deal with this

short-term sampling problem for camera streaming.

4.2.1 Clip Observation

Ideally, a camera stream CST1 produces an indefinite sequence of image frames

{IT1 , IT2 , ..., ITi
, ...}. At any given time Ti, a command language sequence S

can be generated by estimating the conditional probability p(S|IT1 , ..., ITi
).

The process can be denoted as recurrently mapping from visual to language

space {ITt} → S.

The goal of sampling from such a camera stream CST1 can therefore be

defined as maintaining a uniform random sampling of L frames over the most

recent frames arrived from a stream. This segment of L frames can be consid-

ered as an intermediate, short time of visual observation over a manipulation

scene. We further denote this segment as a small observation clip of video

frames CTi
= {..., ITi

}, persisting for a total length of L frames.

4.2.2 Sampling and Temporal Skipping

Fundamentally, a queue of maximum L length is maintained, serving as the

observation window to sample a series of overlapping clip observations from the

camera stream CST1 . As the number of frames sampled accumulate, streams

of image frames continuously arrive into the observation window while the

out-dated frames are flushed. Therefore, the sampled observation clip will be

in form:
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CTi
= {ITi−L, ..., ITi−1

, ITi
} (4.3)

Still, a fixed sampling strategy does not account for temporal variations.

Temporal variations involve the situation, when for example, robotics carry

out motions with a much slower speed compared to humans, or sudden frame

drops occur in camera stream. To remedy this, we can define the sampled

observation clip with temporal skipping:

CTi
= {ITi−Lγ , ..., ITi−γ

, ITi
} (4.4)

Between two subsequal frames ITi
and ITi+γ

, a skip size K can be defined,

representing the maximum number of frames to possibly skip between ith

and i + γth. Furthermore, a probability pi is associated with each incoming

image frame ITi
, representing the probability that the specific ith frame will be

collected to the observation window. The probability increases if a subsequal

frame ITi+1 is dropped. The probability ensures that a future frame has a

higher chance to be collected should skip be considered, until the frame ITi+K

is collected indefinitely should all of its predecessors be dropped.

The sampling algorithm with temporal skipping is presented in Algorithm

1. A clip observation is collected when: (1) the observation window is filled

for the first time; or (2) ⌊L
2
⌋ of the observation window is flushed with newer

images.

4.3 Combining Vision and Language

Given an observation clip CTi
, our goal is to acquire the related visual at-

tentions and estimate the conditional probability p(S|CTi
) over the occurring

command language sequence S = {s1, ..., sn} at the time period Ti−Lγ ...Ti. To

achieve this, we propose to train an end-to-end attention-based sequence-to-

sequence (seq2seq) model. The details of the model are discussed next.

33



Algorithm 1: Sample observation clips from a stream of images

Inputs: A camera stream CST1 . Maximum clip size N . Maximum
number frames to skip K. Step size L.
Result: Observation clips {..., CN , ...} of length N .
initialize CST1 ;
initialize an empty Queue of size N ;
n queued ← 0;
k = 1;
while True do

ITi
← CAMERA CAP(CSTi

);
p = k/(K + 1);
if p < rand(0, 1) then

Queue.add(ITi
);

n queued← n queued+ 1;
k ← 1;

else
// Next frame is more likely to be sampled. ;
k ← k + 1;

end
if (Queue.isFull()) & (n queued mod L == 0) then

CTL
← Queue.retrieve() ;

end

end
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4.3.1 Sequence-To-Sequence

The seq2seq model [3] is an encoder-decoder architecture where an encoding

vector representation v is learned by a sequential encoder, and a sequential

decoder learns to generate the command language sequence S conditioned on

the encoding vector:

p(s1..., sn|xi−Lγ , ..., xTi
) =

n∏︂
k=1

p(sk|v, s1, ..., sk−1) (4.5)

where xTi−Lγ , ..., xTi
is the sequence of visual features extracted from the frames

of clip observation, v is the vector representation from encoding the sequence of

visual features xTi−Lγ , ..., xTi
, and S = (s1, ..., sn) is the corresponding output

command sequence with a maximum length of n. p(sk|v, s1, ..., sk−1) is the

probability of the next probable command token sk, represented with a softmax

over all the tokens in the command vocabulary. The seq2seq structure is

optimized by maximizing the log likelihood objective:

argmax
θ

∑︂
(X,S)

log p(S|X; θ) (4.6)

where θ is the model parameters. Figure 4.3 presents an attention-based

seq2seq architecture for vision-language modeling.

LSTM

<sos>

WAM

LSTM

WAMArm

hold

LSTM

hold

plastic_bottle

LSTM

plastic_bottle

<eos>

word2vec Embedding

Softmax Softmax Softmax Softmax

LSTM LSTM LSTM…

Attention

𝑧𝑡 𝑧𝑡+1 𝑧𝑡+𝐿

ℎ𝑡 ℎ𝑡+1 ℎ𝑡+𝐿

𝑠1 𝑠2 𝑠3 𝑠4

Output Command Language

Attention Attention

ResNet-50 w/ Projection

…
𝐼𝑡 𝐼𝑡+1 𝐼𝑡+𝐿

𝑥𝑡 𝑥𝑡+1 𝑥𝑡+𝐿

Input Observation Clip

𝑀𝑡 ∙ 𝐼𝑡

Visual

Attention

Figure 4.3: Architecture for an attention-based seq2seq.
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4.3.2 Convolutional Feature Extraction

Video appearance features XTi
= {xTi−Lγ , ..., xTi−γ

, xTi
} of a clip observation

CTi
are extracted using a backbone CNN network such as ResNet. The visual

appearance features provide fine-grained appearance details of the objects and

attributes in the entire manipulation scene. The features from the last convo-

lutional layer of the ResNet are used.

4.3.3 Spatial-temporal Encoding

The visual encoder is used to obtain a weight of alignment over the spatial

resolution and a fixed-dimensional representation vector vt which encodes the

spatio-temporal information, given input sequence Xt. The convolutional fea-

tures are attended spatially and temporally for every frame in the duration

of the entire clip observations. And the fixed-dimensional representation vec-

tor can be acquired from the hidden states ht of a recurrent neural network

(RNN).

Attention Mechanism

Figure 4.4 illustrates the architecture of the attention mechanism. The atten-

tion mechanism fatt determines the amount of attention allocated to different

regions of image feature, conditioned on the hidden states ht−1 of the encoder

networks. Given a context vector at at timestamp t which is a dynamic rep-

resentation of the relevant salient part of the image feature xt, the attention

mechanism implicitly generates a positive scalar weight of “soft” alignment

alphai,t, interpreted as the relative importance to give to a pixel location i:

ai,t = fatt(xt, ht−1)

= ωT [tanh (Wxa ∗ xt +Wha ∗ ht−1 + bha)]

αi,t = softmax(ai,t)

xt̃ = αt ⊙ xt

(4.7)

where fatt is an additive mechanism that determines the amount of attention

allocated to different regions of the image feature, conditioned on the previous

hidden state ht−1 of the encoding recurrent network. i = 1, 2, ..., H ×W . “*”
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denotes 1D convolutional operations, Wxa, Wha, bha are learn-able weights and

bias. The attended visual feature xt̃ is acquired by element-wise multiplication.

𝑊ℎ𝑎: 1 × 1 × 𝐹𝑎𝑡𝑡

𝑊𝑥𝑎: 1 × 1 × 𝐹𝑎𝑡𝑡

𝜔: 1 × 1 × 1

𝑥𝑡

ℎ𝑡−1

𝐹𝑓𝑒𝑎𝑡 × 1 × 1

𝐹ℎ𝑖𝑑𝑑𝑒𝑛 × 1 × 1
tanh softmax

𝛼𝑡 𝑥𝑡

Figure 4.4: Architecture of the visual attention mechanism.

Recurrent Neural Network

Given the attended sequence of visual features Xt
˜ applied on observation clip,

one layer of Recurrent Neural Network (RNN) aggregates those frame-based

convolutional features across the entire attended clip observation, encoding

the sequence into hidden states and cell states vt = (ht, ct). The hidden

state vectors implicitly memorize contextual information from all previous

time steps from t− Lγ, up to t. We empirically investigate two types of RNN

for visual encoding: plain LSTM and ConvLSTM.

For plain LSTM, a spatial pooling is first applied over the attended feature

input xt̃ at timestamp t. Given the spatially pooled visual feature input zt

and the previous hidden and cell states vt−1 = (ht−1, ct−1), the hidden state ht

and the memory cell state ct at the next timestamp t are computed as:

zt =
H×W∑︂
i=1

x̃i,t

it = σ(Wxizt +Whiht−1 + bi)

ft = σ(Wxfzt +Whfht−1 + bf )

ct = ft ◦ ct−1 + it ◦ tanh(Wxczt +Whcht−1 + bc)

ot = σ(Wxozt +Whoht−1 + bo)

ht = ot ◦ tanh(ct)

(4.8)
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where σ is the sigmoid function, it, ft and ot represent the input state, for-

get state and output state over the current timestamp t, “◦” denotes the

Hadamard product.

The convolutional LSTM is proposed later in Shi et. al. [90] to extend

gated inputs of the LSTM network into 3D tensors, allowing the recurrent

module to preserve spatial information of image inputs. Given the attended

visual feature input xt̃ at timestamp t, the unattended input feature map xt

is first added back, forming a skip connection. The hidden state ht and the

memory cell state ct at the next timestamp t are then computed as:

zt = x̃t + xt

it = σ(Wxi ∗ zt +Whi ∗ ht−1 + bi)

ft = σ(Wxf ∗ zt +Whf ∗ ht−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ zt +Whc ∗ ht−1 + bc)

ot = σ(Wxo ∗ zt +Who ∗ ht−1 + bo)

Ht = ot ◦ tanh(Ct)

(4.9)

where ∗ denotes 2D convolutional operation.

4.3.4 Language Decoding

Given the visual representational vector vt = (ht, ct), the decoder network com-

putes the probability of s1..., sn, denoted by one-hot indicators si ∈ {0, 1}N ,

with a word-to-vector embedding projection, followed by a standard LSTM.

The word-to-vector embedding projection is employed as:

xsi = Wembdsi (4.10)

where Wembd ∈ R|N |×dembd is the embedding weight, d is the dimension of the

embedding vector. Here Google word2vec [91] is used, with d=300 by default.

The initial hidden state of the decoding LSTM is set to the last hidden state of

the encoding LSTM. The final sequence of command language S is predicted

by applying a softmax over the output layer of LSTM with a linear projection:

vt = Encoder(X̃ t, zeros)

p1...n = LSTM((xs1 , ..., xsn), vt)
(4.11)
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Additionally, to pass the 2D hidden states from the ConvLSTM, inspired by

Abolghasemi et al [73], average-pooling and max-pooling are performed to

squeeze spatial information. The two pooled features are summed together,

serving as the initial hidden state for the decoding LSTM:

ht = AvgPool(Ht) +MaxPool(Ht)

ct = AvgPool(Ct) +MaxPool(Ct)
(4.12)

4.4 Ontology System

4.4.1 Construction

An ontology is a well known way to store machine-interpretable definitions of

concepts in a static knowledge domain. Figure 4.5 visualizes the constructed

ontology tree for manipulation concepts in Protege [92].

The constructed ontology system consists of 4 main classes: (a) “Do-

mainThing”, where kitchen objects in the manipulation contexts, like manip-

ulator, container, food, etc, are presented; (b) “Partition”, where proportional

partitions like temperature, or descriptive partitions like materials, etc, are

presented; (c) “DomainAction”, where executable manipulation actions like

pouring, grasping, releasing, holding are presented; (d) “DomainContext”,

where configurations describing manipulation task scenarios are presented, for

example, GraspingContext, PouringContext, etc. Additionally, 2 main prop-

erties are stored: (a) “topAttributeProperty” which describes internal object

attributes such as hasMaterial, canWithstandTemperature, hasHandles, etc;

(b) “topRelationProperty”, which describes abstract relations over contexts

such as hasAction, hasContainerAtScene, etc.

4.4.2 Usage

To query an ontology tree, we start by collecting hierarchies among linguis-

tic vocabulary of entities E = {e1, ..., en} being stored. For any ontology

tree, superclass-subclass hierarchy is fundamentally applied to specialize the

required descriptions that define the hierarchical relation. For example, a

bottle is simply a type of Container.
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Figure 4.5: Visualization of the ontology tree for robot manipulation knowl-
edge.

However, superclass-subclass hierarchy is not enough to cover up the graph-

ical connectivity of commonsense knowledge. Furthermore, properties need to

be collected linking two concepts, or defining characteristics that a specific

concept holds with constraints. To describe the property or the attribute of

an entity ei, a labelled directed graph can be populated into the onto with an

linguistic relation r and restriction re (Quantifier, Cardinality, and hasValue):

onto←− ei
r, re−−→ ej (4.13)

We denote this entire process as growth of concept, similarly as humans de-

scribe an abstract concept by attributes and relations. For example, when

robot describes a concept of “paper cup”, superclass-subclass hierarchy can

initiate the description, where a PaperCup is simply a child concept of Cup,
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and the family of Cup concept is a concept of Container. Then the descrip-

tion of the concept can grow with its distinctive characteristics or attributes,

where PaperCup, is a cup while possessing the property hasMaterial some

Paper of some types of Material. Going further, distinctive characteristics for

the concept Paper can be defined as well, for example, where any Material

of Paper canWithStandTemperature of some temperature Cold, or the

fact that PaperCup isGraspableBy Human only, as the gripper of WAM

robot has a tendency of crushing the paper material with too much force, etc.

As critical properties become available, reasoning becomes possible. For ex-

ample, since PaperCup isGraspableBy Human only, therefore PaperCup

is a type of Container which can be reasoned as HumanGraspableCon-

tainer. Figure 4.6 demonstrates such a representation over the commonsense

knowledge for “PaperCup” as a labelled directed graph.

The generated labelled directed graph from the ontology system serves as

a robot’s commonsense knowledge over a single concept of “PaperCup”, and

can be generalized to different instances of paper-cup-like objects in real life.

The usage of ontology system can also be denoted as querying and reason-

ing with tuples of Entity-Attribute-Value (E-A-V) knowledge, allowing us to

capture and distinguish the properties of any entity and to assert certain re-

strictions given different attribute values, and thus completing the skeleton of

the dynamic knowledge graph with commonsense knowledge.

4.5 Generating Dynamic Knowledge Graph

4.5.1 Mapping Manipulation Concepts By Instance

The process of constructing a dynamic knowledge graph can be summarized as

a process of mapping by instance. This is achieved by inheriting grounded E-

R-E knowledge captured inside a command language and instantiating entities

and relations inside to their ontological parents, which in turn inheriting any

E-A-V knowledge available for all grounded concepts. To begin, we assume

that any dynamic knowledge graph starts by “scene”, which is an instance

of “DomainContext” under the ontology definition. The “scene” context is
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PaperCup
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is_a
(onto_rel)

Paperhas_material
(onto_prop)

ColdOKContainer
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NamedContainer
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Figure 4.6: Commonsense knowledge for the object concept “PaperCup”.
Given a keyword concept, “PaperCup”, we can query from the ontology tree,
extract associating E-A-V knowledge into a Labeled Directed Graph.

generic and thus does not fall under any predefined contexts stored inside

the ontology until further information becomes available. Next, we consider

manipulator, manipulation actions, objects and their observable attributes

which have been grounded by a Vision-Language model. Each word token in

the command language can identify an object and be mapped to its conceptual

counterpart in the ontology system easily. Therefore, a simple word-based NLP

tagger can be invoked here, mapping manipulator, action and the associating

objects into the ontology system as instances of the concepts defined. Finally,

any ontological instance inherits all properties and attributes predefined and
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reasoned in the ontology tree. Now, the process of capturing commonsense

knowledge simply becomes the process of extracting the defined concepts in

the ontology tree. As actions and objects are individualized, their presence

will satisfy certain configurations and thus “scene” can be reasoned to be

associated with a specific manipulation context like “PouringContext”.

4.5.2 Algorithm for Online Inference

The pseudo-algorithm for online inference is shown in Algorithm 2. The algo-

rithm can be segmented into three procedures: (1) attend to visual observa-

tions by frame; (2) predict command language by schedule; and (3) complete

a dynamic knowledge graph by ontology system querying.

Attend: The attending procedure generates predictions of visual attention

for every frame captured from a camera stream, much similar to frame-based

visual tracking methods. In a real-time manipulation scene, a camera stream is

CST1 setup at T1 to observe the progression of the manipulation task. At any

time Ti, a camera frame ITi
is captured. The encoder of the vision-language

model is inferred, encoding the appearance of the manipulation scene into an

encoding vector representation VTi
and generating the visual attention map

αTi
at time Ti.

Predict: For each L numbers of frames flushed, the encoding vector rep-

resentation VTl
at the specific time Tl is used to decode a command language

STl−L+1...Tl
for time period Tl−L+1...Tl. The predicted command language se-

quence is then converted into a labelled directed graph GTl
. To convert from

a command language, two steps are needed: (a) instantiate observed manipu-

lators, objects and actions as instances of manipulation concepts stored in the

ontology system, and (b) associate all concepts under an unknown instance

of manipulation context denoted as “scene”. The converted labelled directed

graph serves as the skeleton of our dynamic knowledge graph.

Complete: Each entity ei inside the command language is queried over

the ontology tree onto by a word-based close matching. Triples of E-A-V

knowledge are collected into a Labeled Directed Graph Gei , which are further

merged with GTl
and thus complete the dynamic knowledge graph. After-
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wards, the LSTM states for the vision-language model are reset to zeros. This

gives the vision-language model a chance to avoid accumulating model drifts

and stabilize predictions. At last, GTl
will be merged with GT1...TEND

, recording

the progression of the manipulation knowledge over time.

Algorithm 2: Attend Visual Observations and Generate a Progres-
sive Dynamic Knowledge Graph in Real Time

Inputs: A camera stream CST1 . A Vision-Language Model Model. A
static ontology tree onto. Step size L.
Result: Visual attention αT1...TEND

and dynamic knowledge graph
GT1...TEND

over time period T1...TEND.
initialize CST1 ;
initialize an empty GT1...TEND

;
initialize an empty αT1...TEND

;
while True do

ITi
← CAMERA CAP(CSTi

);
αTi

, VTi
← ATTEND(ITi

, Model);
αT1...TEND

← APPEND(αTi
);

if Ti mod L == 0 then
STi−L+1...Ti

← PREDICT(vTi
, Model);

GTi
← CONVERT(STi−L+1...Ti

, onto);
for ei in STi−L+1...Ti

do
Gei ← QUERY(onto, ei);
MERGE(Gei , GTi

)
end
if Collect Progressive then

MERGE(GTi
, GT1...TEND

);
end
RESET(Model);

end

end

4.6 Summary

In this chapter, we formally discussed the methods that enable manipula-

tion context understanding for robotic vision. Firstly, we proposed our Robot

Semantics Dataset which is guarded under a strict knowledge domain with

knowledge bases annotated to the frame. Next, we discuss the potential chal-

lenges we might face to sample from streams for manipulation scenes, and
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we propose our probabilistic stream sampling algorithm to enable generating

observation clips with temporal skipping. Followed by our stream sampling

algorithm, our attention encoder-decoder architecture to model from vision to

language, and to generate visual attention over salient manipulation actions

are formulated. We then detailed the construction and usage of our ontol-

ogy system to query and reason with manipulation knowledge. Lastly, we

proposed our algorithm for inferring visual attention and dynamic knowledge

with real-time camera vision.
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Chapter 5

Experiments

In this chapter, we outline the details for our experiments. First, we specify

details of implementation. Next, we highlight different settings for our experi-

ments, including strategies to validate our framework and baseline model set-

tings. Results and comparisons against state-of-art methods will be presented

next. Performance of our manipulation context understanding framework will

at last be discussed.

5.1 Experiment Details

5.1.1 Dataset

Robot Semantics Dataset

The majority of the videos collected for our Robot Semantics dataset will be

used for the training of the vision-language models. To evaluate any trained

vision-language model , three specialized evaluation categories are set up:

• Stream: Human operators significantly hinder the smoothness of task

execution by slowing down or performing a number of task-invariant

motions. There are 5 human videos - 6159 images for evaluation in this

category.

• Unknown: Objects that are never presented during model training are

collected into this category. There are 18 human videos - 8463 images

and 15 WAM videos - 22821 images in this category.
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• Complex: Multiple objects are presented at the robotic manipulation

scene. One human first uses a finger to point to some objects of interest

at specific locations. The manipulator then performs the action on the

specified objects. 7 WAM videos - 9708 are available in this category.

Public Dataset

We also evaluate the designs of our Vision-Language models on a public

dataset. The IIT-V2C dataset is originally proposed in Nguyen et al [8] to

process fine-grained human action understanding. The videos in the dataset

are 2 to 3 minutes long on average. Each video is randomly segmented into

around 10 - 50 short observation clips, and a grammar-free command sentence

is annotated per clip to describe the presenting human actions. We follow

the same experiment protocols in Nguyen et al [8], where annotated clips of

maximum 30 frames are extracted from the food manipulation videos. For any

clip not reaching to 30 frames length, a synthetic mean image calculated from

ImageNet dataset is padded.

5.1.2 Sampling from Stream

To train with our Robot Semantics Dataset under a normal, offline fashion,

the proposed video sampling method with an overlapping size of 15 frames is

adapted to generate observation clips, with a drop size of 0. The length of clip

sequence is chosen as 30, equivalent to a one full sec of observing under a 30

frames per second (FPS).

Additionally, we assess the effectiveness of our probabilistic stream sam-

pling algorithm in a semi-online fashion. To do this, we conduct a scheme in-

volving 5 runs of experiments. For each experiment run, evaluation clips will

be sampled from all evaluation categories of Robot Semantics Dataset with

our probabilistic stream sampling algorithms. More specifically, evaluating

skip sizes of 0, 1, 3, 6, 15 are employed. Then, the stream sampling algorithm

will be employed on the training set of Robot Semantics Dataset. We choose

the skip sizes for training observation clips to be 0, 1, 3 and 6, indicating that

for each experiment run, 4 models will be trained with those different choices
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of skip sizes correspondingly. Each model trained with a training skip size

of choice will eventually be evaluated against the evaluation observation clips

with all the five chosen evaluating skip sizes. An algorithm outline to per-

form evaluation experiment with our probabilistic stream sampling algorithm

is available in 3.

Algorithm 3: Perform Evaluation with Probabilistic Stream Sam-
pling Algorithm

Inputs: Training skip sizes Ktrain = {0, 1, 3, 6}, evaluating skip sizes
Keval = {0, 1, 3, 6, 15}, training dataset Dtrain, eval dataset Deval.
Result: Average score over 5 runs of experiments.
nexps = 0 ;
Initialize scoresexp as an empty list;
while nexps<5 do

for keval in Keval do
Ckeval ← TRAIN(Deval, keval) ;
for ktrain in Ktrain do

Cktrain ← SAMPLE(Dtrain, ktrain) ;
Modelktrain ← TRAIN(Cktrain);
scores← EV AL(Modelktrain , Ckeval) ;
scoresexp.update(scores) ;

end

end
nexps += 1 ;

end

5.1.3 Vision-Language Model

Implementation Details

The implementation for Vision-Language models are done using PyTorch. For

convolutional video feature extraction, we investigate different backbones pre-

trained on ImageNet without finetuning, including ResNet18, ResNet50 and

MobileNetV3. For seq2seq, the weights for video encoder, language decoder

and attention mechanism are initialized randomly with a hidden unit size of

256. Training is done with Adam optimizer for 50 epochs, with an initial

learning rate of 0.0001, decaying by a factor of 0.1 after epoch 5 and epoch

35. For word embedding against the command language, Google Word2Vec
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[91] is used, where we allow finetuning of the word embedding after the first

learning rate decay. The maximum command sentence length is chosen as 10.

The batch size is chosen as 16.

Ablation Study

To validate the effectiveness of our architectural design, we employ ablation

studies with the following variations:

• no att vs. att, where no visual attention mechanism is employed vs.

with spatial attention during the stage of video feature encoding. This

aims to observe the effects of attention mechanisms over the network

decision.

• ConvLSTM vs. LSTM, where we inspect the effectiveness of spatial

encoding with ConvLSTM network vs. a plain LSTM network where

spatial resolutions are either pooled with attention weights or by an

average pooling operation.

• no concat vs. concat, where only the passing of the visual repre-

sentational vector is employed vs. the last encoded hidden state ht is

also collected and concatenated along with the word embedding feature

during the sequence decoding stage.

5.1.4 Ontology System

The ontology system is jointly constructed using Protégé [92] and owlready2

[93]. HermiT reasoner is invoked to assess the correctness of the constructed

ontology tree. There are 70 classes and 11 relations on record.

5.1.5 Dynamic Knowledge Graph Generation

In addition to an offline evaluation setting, a real-time camera stream CST0...Tinf

is set up to observe the manipulation scene in our WAM robotic grasping en-

vironment. The proposed online inference algorithm is employed to extract

visual attention by frame over time. For any inference invoked, a command
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language is generated. For each entity ei inside the command language, a

word-based close matching and a recursive tree searching algorithm are jointly

employed to query over the ontology tree onto, returning a labelled directed

graph of taxonomy. HermiT reasoner is invoked along with the querying pro-

cess, padding logically reasoned facts into the queried labelled direct graph.

The command language and labelled direct graph is merged at last into the

final dynamic knowledge graph.

5.2 Results

5.2.1 Quantitative Results on Robot Semantics Dataset

The best experimental scores on Robot Semantics Dataset are shown in Table

5.1. The standard machine translation and language generation metrics are

reported with coco-evaluation code [94]: BLEU 1-4, METEOR, CIDEr, and

ROUGE-L, which quantify the grammar structures and the semantic meanings

of the generated sentences.

In summary, the attn-seq2seq-ConvLSTM achieves superior performance

against others, given its superior capability of encoding spatial information

from visual inputs. The seq2seq models in general outperform traditional

ConvNet-LSTM designs like EDNet, indicating that the sequential modeling

strategy is more viable when dealing with a real-time camera stream. Interest-

ingly, it is observed that the models with visual attention mechanisms converge

faster in the training process while maintaining a steady performance, while

performance of a simple seq2seq model is more variant, and spikes can be ob-

served for BLEU scores (e.g. for model “seq2seq” with ResNet50 backbone).

This might indicate that finetuning of learning rate for attention mechanisms

need to be explored, or visual attention may cause difficulties for the decoder

to look into fine-grained scene details, which we provide some analysis next.

5.2.2 Quantitative Results on IIT-V2C Dataset

The best experimental scores on IIT-V2C Dataset are shown in Table 5.2.
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Table 5.1: Quantitative Evaluation Results on Robot Semantics Dataset.
We report the standard machine translation and language generation metric
scores, including BLEU 1-4, METEOR, CIDEr, and ROUGE-L. The highest
scores achieved are highlighted.

Name Backbone B-1 B-2 B-3 B-4 M R C
attn-
ConvLSTM-
seq2seq

ResNet18 0.743 0.648 0.559 0.489 0.472 0.779 3.891
ResNet50 0.786 0.706 0.641 0.603 0.515 0.827 4.274

MobileNetV3 S 0.751 0.664 0.588 0.526 0.484 0.788 4.008
MobileNetV3 L 0.761 0.681 0.615 0.567 0.496 0.800 4.128

attn-
seq2seq

ResNet18 0.733 0.635 0.543 0.462 0.468 0.772 3.831
ResNet50 0.759 0.677 0.611 0.580 0.494 0.803 4.038

MobileNetV3 S 0.714 0.625 0.553 0.500 0.461 0.748 3.739
MobileNetV3 L 0.745 0.657 0.582 0.531 0.483 0.789 3.937

attn-
seq2seq-cat

ResNet18 0.717 0.618 0.529 0.456 0.464 0.763 3.741
ResNet50 0.768 0.687 0.623 0.581 0.494 0.801 4.082

MobileNetV3 S 0.710 0.616 0.533 0.476 0.451 0.758 3.672
MobileNetV3 L 0.751 0.662 0.587 0.535 0.469 0.785 3.925

seq2seq ResNet18 0.717 0.617 0.524 0.444 0.451 0.756 3.581
ResNet50 0.772 0.685 0.624 0.593 0.476 0.786 3.966

MobileNetV3 S 0.653 0.542 0.442 0.367 0.418 0.703 3.168
MobileNetV3 L 0.719 0.627 0.543 0.486 0.460 0.757 3.690

EDNet[8] ResNet18 0.712 0.612 0.522 0.455 0.448 0.751 3.592
ResNet50 0.762 0.672 0.605 0.555 0.481 0.790 3.962

MobileNetV3 S 0.674 0.558 0.460 0.335 0.405 0.696 3.137
MobileNetV3 L 0.713 0.614 0.525 0.447 0.434 0.735 3.644

When invoking ResNet50 as backbone feature extraction, all seq2seq ar-

chitectures significantly outperform the recent state-of-the-art methods, in-

dicating the effectiveness of modeling video sequences recurrently. Models

with visual attention present significant improvements compared to methods

like V2CNet, where auxiliary action recognition and captioning are performed

side-by-side. This indicates the importance of encoding spatial visual features

to capture salient actions, and the fact that encoding fine-grained actions

in the pixel with visual attention mechanism is more effective compared to

traditional ways of implicitly “forcing” fine-grained action encoding through

auxiliary classification tasks. The ”attn-ConvLSTM-seq2seq” model signifi-

cantly outperforms all methods, even with using much smaller networks like
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Table 5.2: Quantitative Results on IIT-V2C Dataset. The best metric scores
among the State-of-the-Art methods are highlighted.

Name Backbone B-1 B-2 B-3 B-4 M R C
attn-
ConvLSTM-
seq2seq

ResNet18 0.425 0.301 0.233 0.185 0.208 0.427 1.695
ResNet50 0.452 0.331 0.262 0.218 0.222 0.452 1.875

attn-
seq2seq

ResNet18 0.376 0.258 0.194 0.146 0.180 0.377 1.384
ResNet50 0.413 0.2967 0.230 0.187 0.200 0.416 1.638

attn-
seq2seq-cat

ResNet18 0.371 0.254 0.192 0.145 0.177 0.371 1.370
ResNet50 0.410 0.292 0.226 0.184 0.199 0.410 1.601

seq2seq ResNet18 0.381 0.262 0.197 0.148 0.182 0.390 1.380
ResNet50 0.413 0.292 0.226 0.179 0.200 0.423 1.654

S2VT[51] ResNet50, AlexNet 0.397 0.280 0.219 0.177 0.196 0.401 1.560
SGC InceptionV3 0.370 0.256 0.198 0.161 0.179 0.371 1.422
SCN ResNet50, C3D 0.398 0.281 0.219 0.190 0.195 0.399 1.561
EDNet[8] ResNet50 0.398 0.279 0.215 0.174 0.193 0.398 1.550

InceptionV3 0.400 0.286 0.221 0.178 0.194 0.402 1.594
VGG16 0.372 0.255 0.193 0.159 0.180 0.375 1.395
ResNet18 0.365 0.248 0.185 0.145 0.174 0.370 1.265

V2CNet[9] ResNet50 0.406 0.293 0.233 0.199 0.198 0.408 1.656
InceptionV3 0.401 0.289 0.227 0.190 0.196 0.403 1.643
VGG16 0.391 0.275 0.212 0.174 0.189 0.393 1.528

ResNet18 as the backbone, where frame feature representations are believed

to be less robust compared to other choice of backbone. This signals the

importance of learning spatial information in recurrent modeling.

5.2.3 Results for Dynamic Knowledge Graph

We demonstrate the dynamic evolution of the knowledge graph over time for

a pouring action with our WAM robot in real time, along with the generated

visual attentions, the predicted command languages and the knowledge graph

without external commonsense knowledge in Figure 5.1. Blue parts of graphs

are governed by predictions of the vision-language model, while yellow parts

are queried from the ontology system, and purple parts are from ontological

reasoning. The visualization of dynamic knowledge graphs in Figure 5.1 only

present instances and fundamental context reasoning due to space limitation
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GT: (None)

attn-seq2seq: (None)

attn-ConvLSTM-seq2seq: (None)

EDNet: (None)

GT: (WAM, grasp, plastic_bottle)

attn-seq2seq: (WAM, grasp, plastic_bottle)

attn-ConvLSTM-seq2seq: (WAM, grasp, plastic_bottle)

EDNet: (WAM, hold, plastic_bottle)

…
GT: (WAM, pour, cold_water, 

from, plastic_bottle, to, centric_mug)

attn-seq2seq: (WAM, hold, plastic_bottle) 

attn-ConvLSTM-seq2seq: (WAM, pour, cold_water, 

from, plastic_bottle, to, centric_mug)

EDNet: (WAM, hold, plastic_bottle)

GT: (WAM, release, plastic_bottle)

attn-seq2seq: (WAM, hold, plastic_bottle) 

attn-ConvLSTM-seq2seq: (WAM, release, plastic_bottle)

EDNet: (WAM, empty_move)

…
…

…

Figure 5.1: Visualization of predicted command language, generated visual
attention and dynamic knowledge graph.
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here. We attach the full queried version of dynamic knowledge graphs with

more video examples in Appedix A.2. For each frame received from the real-

time camera stream, our attention-based video encoder is able to successfully

generate spatial attention maps focusing on the regions where manipulation ac-

tions present themselves. For every 30 frames passed, a command language is

successfully summarized by our language decoder and is summed into the pro-

gressive dynamic knowledge graph. With the ontology system, commonsense

knowledge is queried given any entity presenting under the visual observation,

and the dynamic knowledge graph can be populated with rich taxonomy of ma-

nipulation knowledge. Furthermore, ontological reasoning can be performed

during the querying process and populate our dynamic knowledge graph with

logical fact. We distinguish the parts of the dynamic knowledge graph into

parts where it is generated either by Vision-Language model prediction, static

ontology querying, or by ontological reasoning. The combination of visual at-

tention and the evolving dynamic knowledge graph fundamentally is able to

reflect the intended manipulation knowledge over the robot pouring task.

5.2.4 Results for Probabilistic Stream Sampling

The mean and standard deviation of over 5 runs of evaluation on Robot Seman-

tics Dataset with probabilistic stream sampling are plotted in Figure 5.2, using

our best performing architecture ”attn-ConvLSTM-seq2seq” with ResNet50

backbone. Each dot in the figure represents a model trained with a specific

temporal skip size, and each model is evaluated against different choices of

evaluating temporal skip size.

By observing horizontally and vertically, we can conclude that choices of

temporal skipping can significantly influence the model’s capability in tem-

poral modeling. Horizontally, for a small training temporal skip size like 1,

the performance drops in small amounts with each consecutively increasing

evaluating temporal skip size. However, a larger choice of training temporal

skip size like 6 can potentially increase the model’s robustness against various

choices of evaluating temporal skip size, thus maintaining a steadily linear-like

path. Vertically, the model performance drops with each increasing training

54



Figure 5.2: Plots of evaluation scores against various temporal skip sizes.
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skip size in most cases. This again signals the fact that a model’s capability

in temporal modeling is associated deeply with how frames are sampled from

streams.

5.3 Analysis

5.3.1 Analyzing Video Encoding Over-time

Figure 5.3: Visualization of T-SNE embedding over LSTM states from Vision-
Language model.

To inspect the effectiveness of our video encoding procedure, a T-SNE

embedding visualization of the representational hidden states produced for

every single frame from Robot Semantics videos is shown in figure 5.3. As

individual video progresses, the recurrent video encoder integrates consecutive
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visual features over time, resulting in LSTM states having same or similar

semantic contexts cluster together and extend recurrently in forms of long

thin paths. This is important as it backs up the effects of temporal encoding

of our video encoder. However, significant gaps can still be observed among

different stages of semantic actions, which can possibly be a consequence of

sub-sampling of videos into observation clips.

5.3.2 Analyzing Class Activation

In this section, we further evaluate the robustness of network decision mak-

ing and analyze mis-classifications from our vision-language model with class

activation maps (CAMs). Grad-CAM [76] is a gradient-based method to com-

pute and visualize network decision through backpropagated gradients from

convolutional activation features. In practice, last convolutional layers are

used which maintain a good balance between high-level semantic and low-

level spatial information. Here, we first introduce our technique to generalize

Grad-CAM with our seq2seq vision-language model over clip observation.

Suppose an observation clip is composed by a sequence of convolutional

video feature maps X = {x1, ..., xt, ..., xT} of T length, inferred from a con-

volutional neural network. xt ∈ RK×u×v is a stack of K convolutional fea-

ture maps at timestamp t. A seq2seq vision-language model encodes the fea-

ture maps spatial information of the visual scene over time 1...T , and trans-

lates from a sequence of video features into a sequence of semantic language

S = {s1, ..., sj, ..., sn}.

To obtain the neuron importance weights α
sj
k,t for a word token sj at times-

tamp t:

α
sj
k,t =

1

Z

∑︂
u

∑︂
v

∂ysj

∂xk
t,uv

(5.1)

where ysj is the score for predicting the word token sj (before the softmax),

the gradients ∂ysj

∂xk
t,uv

can be acquired with backpropogation over time. A global

average pooling operation is then followed by acquiring the final importance

weight. A weighted combination of forward activation maps with a ReLU
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can then be applied to obtain the final class-discriminative localization map

L
sj
t ∈ Ru×v:

L
sj
t = ReLU(

∑︂
k

α
sj
k x

k
t ) (5.2)

The ReLU activation enforces that only pixels with positive influence on

the word token of interest are collected. In theory, a total of T × n CAMs

can be generated across all frame features maps. However, only the feature

map xT at end timestamp T is used to generate the localization map in our

experiments, resulting in n CAMs for each observation clip.

Given a command language prediction generated from any vision-language

model baseline after encoding 30 frames, at 30th timestamp, the gradient of

its log probability w.r.t. the last convolutional feature map is computed and

Grad-CAM visualizations are generated for each predicted word token in our

command language prediction. We discuss some selected cases of Grad-CAM

visualizations with specified model information or mis-classifications.

CAMs w/wo Visual Attention

Figure 5.4 shows up the Grad-CAM visualizations for seq2seq models with

implicitly-learned visual attention vs. no attention mechanism in the video

encoding process. It can be clearly observed that the distributions of activated

regions are more organized and focused for models with visual attention, com-

pared to plain seq2seq learning, where activated regions are more scattered

around. This implies that implicitly-learned attention does help the video

encoder to attend more on salient motions. Interestingly, for plain seq2seq

models with comparable performance to ones with visual attention, the acti-

vation maps are distributed around the salient actions in a similar fashion of

models with visual attention.

CAMs for Mis-classification

Figure 5.5 shows up the Grad-CAM visualizations for incorrect entities inter-

preted in the command language prediction. When an incorrect command to-
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Video: Human_Water_HardBottle_CentricMug_Pouring

GT: (WAM, pour, cold_water, from, hard_bottle, to, centric_mug)

Model: attn-seq2seq Model: seq2seq

Video: WAM_Water_PlasticBottle_CentricMug_Pouring

GT: (WAM, hold, plastic_bottle)

Figure 5.4: Grad-CAM visualizations for seq2seq models with visual attention
vs. no attention mechanism.

ken is predicted, the associating CAM appears to be more random and chaotic,

distributed across the scene in most cases. The CAMs can also become less in-

dicative when, for example, the wrong attribute words like “centric” or “hard”

is interpreted, where in this case the CAM does not fully cover the regions of

the ground truth object “glass mug” or “hard bottle” on scene.

5.4 Summary

In this chapter, we formally presented the experiments to validate the ef-

fectiveness of our manipulation context understanding framework for robotic

vision. First, experiment setups were discussed, followed by metric scores for

our vision-language models. Next, we demonstrated the results of capturing
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Video: WAM_Water_PlasticBottle_CentricMug_Pouring

GT: (WAM, hold, plastic_bottle)

Model: attn-seq2seq

Video: Human_Water_PlasticBottle_CentricMug_Pouring

GT: (Human, pour, beverage, from, plastic_bottle, to, glass_mug)

Model: attn-seq2seq

Figure 5.5: Grad-CAM visualizations for incorrectly interpreted entities.

visual attention and dynamic knowledge graphs in real time with our frame-

work. Analysis over the pros and cons of our attention video encoding was

discussed in detail.
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Chapter 6

Conclusion

6.1 Contributions

In this thesis, we propose a framework and describe its key enabling methods

to represent context in robot manipulation tasks by capturing visual atten-

tion and generating dynamic knowledge graphs in real time. The framework

allows the fusion of any attention-based Vision-Language model with an ontol-

ogy system to capture manipulation intention by pixel and by commonsense

knowledge; this enables us to interpret any robot manipulation task visually

and semantically in a timeliness manner. The contributions of our work is

summarized as follows:

• We construct our Robot Semantics Dataset, which consists of manipula-

tion tasks performed by both robots and humans. Ground truth object

and action relations in forms of knowledge bases are annotated to the

video frames. A specific sampling method is developed to sample obser-

vation clips with temporal skipping from videos.

• We apply a Vision-Language model using sequence-to-sequence structure

with spatial attention mechanism to perform spatio-temporal encoding

over real-time robotic camera stream. The Vision-Language model is

able to implicitly learn spatial attention on the salient regions corre-

sponding to the manipulation actions to the pixels, while grounding

salient actions and the related objects into semantic language.
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• We present a scheme to constrain manipulation knowledge into a time-

independent knowledge domain using an ontology system. The ontology

system stores objects and relations in a taxonomic structure, serving as

the robot’s commonsense knowledge over a particular domain of manip-

ulation tasks.

• We present a framework to generate dynamic knowledge graphs over the

manipulation context by combining a Vision-Language model with an

ontology system. Predictions from the Vision-Language model are first

instantiated, inheriting reasonable taxonomies governed by the ontology

system. An algorithm for online inference is then proposed, allowing the

robot to generate dynamic knowledge graphs filled with reasonable com-

monsense knowledge and interpreting the evolution of a manipulation

task in real-time.

Apart from good performing metric scores, we analyze the key enabling

methods of our framework by first inspecting the robustness of spatio-temporal

encoding with feature visualizations, then presenting the correctness of our

dynamic knowledge graph with reasoning capability. We successfully demon-

strate that our framework works well under the real world robot manipulation

scenario, allowing the robot to mimic human-like intentional behaviors and

represent the evolution of an intended manipulation procedure in real time.

6.2 Future Work

The proposed framework is simple and adaptive. In future works, many aspects

of the framework can be explored to enable more complex and straightforward

grounding of manipulation knowledge in real time. Real time robotics are

usually limited by their resources, and it is mandatory to explore network ar-

chitectures with lower computational cost. With the development of new com-

puter vision methods like transformers, the complexity of the vision-language

model can be expanded to generate more robust visual attentions while ensur-

ing spatio-temporal encoding with higher performance. Visual attention maps
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themselves are also open for further interpretation, where connections between

machine generated attention can possibly be associated with human eye gaze.

Apart from improving methods, a number of things still need to be ex-

plored to further evaluate the helpfulness of our framework for robotic deci-

sion making. Visual state representations can possibly be helpful with a rein-

forcement learning environment, encoding raw visual observations into highly

robust state representations with semantic meanings. A captured dynamic

knowledge graph reflects the manipulation intention at a given time period,

and as such, it will be interesting to forecast future manipulation actions or

interpolate key intentional visual frames from the dynamic knowledge graph.

Ultimately, we hope our proposed framework can serve as our milestone to

connect computer vision, robotics and knowledge representation, and it can

be helpful in our future research of vision-guided robotics.
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[92] M. A. Musen, “The protégé project: A look back and a look forward,”
AI matters, vol. 1, no. 4, pp. 4–12, 2015. 39, 49

[93] J.-B. Lamy, “Owlready: Ontology-oriented programming in python with
automatic classification and high level constructs for biomedical ontolo-
gies,” Artificial intelligence in medicine, vol. 80, pp. 11–28, 2017. 49

[94] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár, and
C. L. Zitnick, “Microsoft coco captions: Data collection and evaluation
server,” arXiv preprint arXiv:1504.00325, 2015. 50

72



Appendix A

Appendix

A.1 Attention Maps for IIT-V2C Dataset

Visualizations of attention maps for IIT-V2C dataset are shown in Figure A.1.

Predicted: lefthand reach egg

GT: righthand carry egg

Predicted: righthand carry juicer

GT: righthand carry cup

Predicted: righthand place knife

GT: righthand cut fruit

Predicted: righthand take pan

GT: righthand take plate

Predicted: righthand take out plate

GT: righthand take out plate
Predicted: righthand pour salt to pan

GT: righthand pour salt to pan

Predicted: righthand cut fruit

GT: righthand cut fruit

Predicted: righthand reach kettle

GT: righthand reach kettle

Predicted: bothhand carry cereal

GT: bothhand carry cereal

Figure A.1: Visualization of attention maps for IIT-V2C dataset.
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A.2 More Results for Dynamic Knowledge Graph

We attach additional visualizations of dynamic knowledge graphs for differ-

ent manipulation tasks from our Robot Semantics Dataset. The visualized

dynamic knowledge graph contains all queried and reasoned ontological facts,

based on command language predictions from our vision-language model.
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GT: (human, hold, plastic_bottle)

Predicted: (human, hold, plastic_bottle)

…
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GT: (human, hold, centric_bowl)

Predicted: (human, hold, centric_bowl)

…
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GT: (human, pour, beverage, from, plastic_bottle,

to, centric_mug)

Predicted: (human, pour, beverage, from, 

plastic_bottle, to, centric_mug)

…
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GT: (WAM, grasp, milk_can)

Predicted: (WAM, grasp, milk_can)

…
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GT: (WAM, hold, plastic_bottle)

Predicted: (WAM, hold, plastic_bottle)

…
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GT: (WAM, pour, cold_water, from, plastic_bottle,

to, glass_cup)

Predicted: (WAM, pour, cold_water, from, 

plastic_bottle, to, glass_cup)

…
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