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ABSTRACT 

Transportation operations, in connecting the factory with the construction site 

through the delivery of prefabricated building components (e.g., panel) using 

transportation equipment (e.g., trucks and trailers), play a significant role in determining 

the efficiency of overall panelized construction operations. However, several issues 

surrounding transportation operations have been identified, including the fact that 

operations planning and decision making are typically carried out in an experience-based 

manner in the absence of a systematic approach to transportation management, while 

existing construction transportation planning approaches are based on a material flow and 

information flow that are ineffective for offsite construction. Thus, this research proposes 

the development of an automated transportation planning approach tailored to panelized 

construction, the framework for which can provide better transportation planning and 

decision making based on collected data from actual logistics operations. In developing the 

framework, various tools for logistics planning are considered. First, a projection based 

augmented reality (AR) is applied to improve potential transportation quality issue during 

panel manufacturing processes at offsite facility. Second, an extensive data collection 

system using quick response (QR) codes and global positioning system (GPS) is proposed 

to improve the transparency of logistics operations as well as to validate the optimized 

fleet-dispatching plan from the simulation. Third, machine learning (e.g., SVM) and rule-

based algorithms are utilized to extract key information the collect data and perform 

estimations on durations and costs. Fourth, fleet-dispatching discrete-event simulation 

(DES) is established in order to determine the optimum fleet management schedule and 

construction job schedule based on construction site locations. The proposed framework 

addresses existing issues while providing optimized, data-driven planning and decision 

support. Potential contributions include efficiency improvement in transportation 

operations for panelized construction, reduced transportation costs, and improved 

transportation data collection and utilization. 
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1.    Chapter: Introduction 

1.1. Background 

In recent decades, the construction industry has been transitioning toward 

the offsite construction paradigm in an effort to overcome the labour supply and 

productivity issues characteristic of traditional construction (Assaf and Al-Hejji 

2006). Offsite construction, also known by other terms such as industrialized 

construction, has been regarded as a promising construction approach with various 

advantages over traditional on-site construction, and with the potential to overcome 

productivity and labour issues. In efforts to promote adaptation of offsite 

construction, the following benefits are commonly identified: better safety 

performance, lower project cost, shorter project duration, improved efficiency, and 

reduced environmental impact. Considering today’s competitive construction 

market conditions, project owners are highly motivated to adopt offsite 

construction over traditional methods due to the various advantages offered by the 

offsite approach. However, despite the benefits offered by offsite construction, the 

adoption of offsite construction methods by the construction industry has not 

increased significantly, even though government-initiated programs exist in both 

developed and developing nations (Goulding et al. 2015). The main reasons for the 

lag in uptake can be largely divided into technical aspects (e.g., information 

collection and scheduling optimization) and non-technical aspects (e.g., maturity of 

market, perceptions toward offsite construction, and period of warranty), and this 

study will focus on the technical barriers identified in previous research (MBI 

2015). Among these barriers, transportation operations are an area of particular 
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focus in the present research due to its large impact on the overall performance of 

offsite construction. Issues in transportation operations in offsite construction (e.g., 

panelized residential construction) are introduced in the following section, and are 

discussed in greater detail in Section 3.2 of Chapter 3. 

1.2. Challenges for transportation operations in panelized off-site 

construction 

 In panelized offsite construction projects, there is a deficiency in 

understanding surrounding logistics for transportation operations, which continues 

to be inefficiently managed and to show little improvement when compared to other 

operations such as manufacturing and site operations (Hill and Ballard 2001). Key 

causes of inefficient management have been identified in previous studies (MBI 

2015), one of which indicated that the short-term, fragmented nature of construction 

projects causes difficulties in establishing a standardized management system for 

transportation operations such as that employed in the automobile manufacturing 

industry (Shakantu et al. 2008; Wegelius-Lehtonen 2001). Once automobiles are 

manufactured, the finished products are loaded into a car carrier to be delivered to 

retail centres. Since the manufactured cars are completed products, no further 

processes are required, and all that remains after they leave the production floor is 

delivery to the customer. Most manufacturing sectors follow a similar process with 

a simple product delivery process. However, panelized offsite construction is a 

unique combination of two different industries (i.e., manufacturing and 

construction), and a complex and creative approach is necessary in order to properly 

manage transportation operations. To be specific, panelized offsite construction 
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involves additional site assembly processes to complete the project. Unlike in 

traditional manufacturing, in panelized offsite construction additional work is 

required on site (after delivery of prefabricated components) in order to arrive at 

the finished product. Thus, in order to keep costs minimal while satisfying factory 

operation and site delivery schedules, proper planning and management of 

transportation through effective cost estimation, trailer delivery and pick up 

scheduling, and operational data collection have emerged as critical processes that 

have a significant impact on overall project performance.  

Due to the heavy reliance on transportation operations in panelized offsite 

construction, any improvements in overall productivity resulting from the use of 

panelized offsite construction methods tend to be offset by the inefficiencies 

resulting from the insufficient planning and management of logistics operations 

(e.g., incorrect sequence of delivery) (Assaf and Al-Hejji 2006; Navon and Sacks 

2007). Therefore, it is important to improve the efficiency of transportation 

operations in order to fully realize the potential benefits of panelized offsite 

construction; furthermore, in order to improve operational efficiency, advanced 

planning and management approaches are required.  

The principal feature of transportation planning and management is an 

integrated framework that connects the fragmented operations of a construction 

project, while coordinating the transportation of materials and other resources to 

required locations according to a scheduled timeline. Considering the 

interdependencies among various operations (e.g., manufacturing, transportation, 

and site operations), transportation planning in construction has proven effective in 



4 

reducing logistics costs by as much as 10% to 30% (BRE, 2003). However, 

previous construction transportation planning studies have focused on the 

traditional construction method, which has a different flow of materials and 

information compared to offsite construction (Jang et al. 2003; Said and El-Rayes 

2014). For example, traditional construction requires all building materials to be 

delivered to the construction site from various suppliers, whereas offsite 

construction requires the transportation of prefabricated building components, such 

as module or panels, to the site. Therefore, a new transportation planning and 

management approach needs to be developed to improve the efficiency of 

transportation operations in panelized offsite construction in order to leverage the 

benefits of panelized offsite construction. 

1.3. Problem statement, hypothesis and research objective 

Adoption of the panelized offsite construction method in today’s 

construction industry is the most viable way to boost the competitiveness of the 

industry and alleviate issues such as skilled labour shortages and project cost and 

schedule pressures. Transportation operations are essential to panelized offsite 

construction, and the potential impacts of transportation operations on both cost 

and schedule are more pronounced than in traditional construction. Although the 

development of construction transportation planning has led to improvements in 

the efficiency of transportation operations in traditional construction, this planning 

approach cannot be directly applied to panelized offsite construction due to several 

differing material and data flow structures between the two construction paradigms. 

Therefore, a novel transportation planning and management framework is 
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necessary in order to resolve a number of transportation-related issues in offsite 

construction: (1) in experience-based logistics decision making, since no 

transportation plan is available to workers, all transportation decisions are made 

based on the worker’s expertise gained through previous work experience; (2) no 

formal data collection framework is available to collect extensive transportation 

operation data—current practice is mainly focused on GPS fleet data, which cannot 

provide details of logistics operations; (3) no systematic transportation quality 

assurance tool is available; and (4) there is a lack of control in transportation 

operation cost, such that the transportation cost is inaccurately estimated for 

different types of house projects (i.e., the cost is considered part of overhead, and 

this potentially leads to over- or under-estimation of cost). In light of these issues, 

particularly in the context of panelized offsite construction, knowledge-based 

logistics planning and management are essential to improving operational 

efficiency and cost performance. 

The proposed research is based on the following hypothesis: 

“Collection of both real-time and historical transportation operational data 

with detailed project specifications will reduce cost and duration of the 

panelized residential construction.” 

In order to validate the above hypothesis, the following research objectives will 

be pursued: 

1. Application of the projection-based AR method to reduce transportation 

risk during operations. 
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2. Development of an extensive mobile app-based logistics operations data 

collection framework. 

3. Investigation of the logistics operation and cost impacts on different 

projects and development of cost and duration models. 

4. Automated generation of a fleet dispatching sequence by developing a 

discrete event simulation model using the collected data. 

As the basis for the development of a panelized offsite construction-oriented 

transportation planning and management approach, a simulation-based planning 

framework is proposed that utilizes a comprehensive live-data collection method 

employing quick response (QR) codes and global positioning system (GPS) data. 

Based on the collected transportation operation data, the simulation model provides 

the estimated cost and duration of transportation operations. Following completion 

of the simulation model, a transportation supply-demand graph is developed and 

used to visualize and manage the transportation schedule (i.e., fleet-dispatching 

sequence), while the real-time logistics data is used to improve communication 

among various operational units as a means of validating the transportation plan. 

Finally, the proposed study is implemented in actual panelized construction 

project—which is the most rapidly growing offsite construction method for 

residential construction in Canada (FMI 2018)—in order to identify potential 

improvements in transportation operations. 

1.4. Organization of the thesis 

This thesis is organized into the following chapters: Chapter 1 (Introduction), 

Chapter 2 (Literature review), Chapter 3 (Methodology), Chapter 4 
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(Implementation and case studies), and Chapter 5 (Conclusion and future works). 

 The introduction (Chapter 1) presents current transportation issues in offsite 

construction and defines the main objectives of this research. The literature review 

(Chapter 2) provides an overview of the state of the art in offsite construction 

operations, including transportation operations in offsite construction, 

transportation equipment data collection (real-time) and analysis, proactive 

transportation quality improvement, DES in offsite construction transportation 

operation, and transportation cost estimation. The methodology section (Chapter 3) 

explains the framework developed in this study, including the projection-based 

augmented reality (AR) approach to improve transportation operation accuracy, 

advanced equipment operation data collection (GPS and smartphone application), 

operation data analysis using the rule-based algorithm, fleet-dispatching 

optimization using DES simulation, and real-time fleet operation monitoring. The 

implementation and case studies (Chapter 4) encompass the demonstration 

processes of the proposed framework at the selected panelized construction 

projects. Here the framework is deployed on several actual residential construction 

projects in order to measure performance metrics as well as validate the 

methodology. Finally, Chapter 5 summarizes the outcomes from the case studies 

and potential contributions to the body of knowledge as well as limitations. 

Moreover, future research directions in transportation research for offsite 

construction are also suggested. 
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2. Chapter: Literature Review 

This section focuses on five theoretical bases: (1) offsite construction 

operations; (2) logistics planning and management in offsite construction; (3) 

proactive (preventative) transportation quality management; (4) construction 

operation data collection; (5) discrete-event simulation (DES) in construction; and 

(6) a machine learning application in logistics cost prediction 

2.1. Offsite construction operation and management 

In recent decades, the number of studies in the area of offsite construction 

has rapidly increased due to the benefits associated with this construction method 

(Hosseini et al. 2018). In addition to its frequently cited benefits in terms of cost, 

time, and quality, environmental and social benefits have also been identified 

(Jaillon and Poon 2008; Kamali and Hewage 2016). However, a recent review of 

papers on the subject of offsite construction revealed that past research has been 

skewed toward specific areas, such as centering on a specific product (e.g., pre-cast 

concrete), rather than looking at offsite construction operations in general (Hosseini 

et al. 2018; Li et al. 2014). Once products have been manufactured in an offsite 

facility, they require transportation and delivery to a construction site in order for 

the assembly to proceed; these operations and processes entail complex 

interrelationships between the manufacturing facility and the construction site. 

Unlike other, more traditional, sectors of manufacturing (e.g., automobile industry), 

in construction manufacturing, the final product is not generated in the factory but 

at the construction site. Thus, a clear understanding of these complex 

interrelationships is key to improving overall operations (Yuan and Shen 2011); 
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however, this aspect has been disregarded in most offsite construction studies 

(Marasini and Dawood 2006). In order to improve the understanding of these 

interrelationships, a dynamic simulation software, SIMPROCESS, was developed 

for a precast bridge construction project (Pan et al. 2008). This software provides 

overall operations of the construction process, including production, transportation, 

and installing a precast. The outcomes of SIMPROCESS simulation reveal that this 

tool can provide accurate productivity calculations for real-world operations. 

However, their study focuses on transportation operations, while the details of 

processes such as loading, unloading of precast components, the facility operations 

at the yard, and other details have yet to be discussed.  

2.2. Logistic operations management in the offsite construction 

A study by Chan et al. underscores the important role of logistics operations 

in manufacturing, estimating that these activities account for as much as 30%–40% 

of manufacturing costs (Chan et al. 2001). In offsite construction manufacturing in 

particular, logistics operations play a critical role given that 80% of all construction 

activities are directly affected by logistics operations (Browne, 2015). The 

definition of the logistics operations can vary by industry, but in construction 

logistics operations include transportation of all resources (e.g., labour, equipment, 

materials, and information) involved in construction activities. In the offsite 

construction process, logistics operations are required throughout, beginning with 

the transportation of building materials to the prefabrication facility, and, in turn, 

the transportation of fabricated building components to the construction site for 

assembly. Furthermore, other essential resources, such as site crews and mobile 
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cranes, also need to be transported to the site, in order to complete the construction 

project. In addition to the general reliance on, and high cost of, logistics operations, 

it is also worth noting that offsite construction operations are particularly dependent 

on logistics due to the unique requirements for the transportation of prefabricated 

components to a construction site. Without careful planning of logistics operations 

between a site and a facility, panelized construction will not be able to utilize 

advantages of using the panelized construction. Furthermore, the reliability of 

logistics operations is critical in panelized construction due to the unique design of 

prefabricated building components and their fixed assembly sequence. Each 

component is designed for an individual purpose and cannot be replaced by other 

components, such that the assembly process of building components on the 

construction site is a fixed sequence that cannot be changed. Thus, any logistics 

issues such as missing or incorrect components, or delayed deliveries, can lead to 

significant negative impacts on cost and schedule. However, in current practice, 

logistics operations in panelized construction are often managed intuitively or 

manually based on past experience rather than on actual data.  

In recent years, implementation of offsite construction methods (e.g., 

preassembly, offsite multi-trade fabrication, modularization) has been increasing 

due to its various benefits over traditional construction such as reducing cycle time 

and cost. Among these methods, prefabrication has been the most widely used. 

However, a survey conducted in 2018 indicated that the majority of construction 

enterprises have not adopted offsite methods, with 62% of construction company 

executives reporting hesitancy to make such a change. The primary cause of this 
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prevalent mentality is difficult to identify, but in any case, a lack of understanding 

of logistics operations and management aspects of offsite construction presents a 

major challenge (FMI 2018). 

2.3. Proactive transportation quality assurance in offsite construction 

In offsite construction, prefabricated panels from a manufacturing facility 

are transported to a construction site for final assembly processes. In this regard, it 

is important to maintain the quality of prefabricated building component before 

shipping. Once the panels arrive at a construction site, any defective panels can 

have significant negative impacts on both cost and schedule; quality issues could 

halt entire site construction due to the time needed for re-assembly and re-delivery 

of defective panels when the issues cannot easily be resolved at the site. For 

example, a panel may need to be transported back to the manufacturing facility to 

resolve the issue, and this rework may require additional logistical cost and time. 

The preliminary investigation conducted in the present study—in which the quality 

controllers at two panelized construction companies in Edmonton, Canada were 

interviewed—revealed that approximately CAN$270,000, including 84 working 

days, were additionally spent to resolve panel quality issues over three years. 

Causes for the quality issues include the method of quality control, which is 

dependent on a random visual check performed by an employee (the quality 

controller). The random visual check can be considered as the passive quality 

control that can only detect quality issues after they occur. Also, the quality data of 

the two companies revealed that the quality issues such as missing parts or 

dimension errors were often found on a job site during field assembly processes.  
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To facilitate the proactive quality control which is opposed practice to the 

passive quality in the visited companies, augmented reality (AR) approaches have 

applied in the construction industry to improve potential quality issues. Augmented 

Reality (AR) is a technique for superimposing computer generated information 

(e.g., an image) into a real-life setting using a device (e.g., head-mounted display), 

which allows a user to recognize the composite views of the generated information 

and the surrounding environment simultaneously (Barfield 2015). As AR 

technologies and devices become more accessible and popular due to recent 

advancements in software and hardware, AR is being adopted in various industries 

as a means of improving productivity and quality in the workplace (Chi et al. 2013). 

For example, in automobile manufacturing, welding spots are projected onto 

surfaces of vehicles to assist welders in determining the correct welding locations; 

the results indicate that welders are able to recognize the correct welding locations 

in a shorter time and with greater accuracy (Zhou et al. 2003; Zhou et al. 2012), 

resulting in a 52% reduction in welding location errors (Doshi et al. 2016). Funk 

(Funk et al. 2016) also argues that AR technologies could reduce cognitive demands 

while improving performance in terms of speed and accuracy. 

Table 1 Overview of recent information for projection-based AR studies in various 

industries 

Authors 

(Year) 
Industry 

Applied 

Task Projection 

Distance 

Illuminatio

n 

Method 

of 

Alignmen
t 

Device Etc. 

Yeh et al. 

(2012) 
Construction 

On-site 

constructio

n drawing 
(2D) 

retrieval 

1.5 m–2.5 m N/A N/A 

LCD 
mobile 

Projecto

r 

Construction 

site 
application 

Zhou et 
al. (2012) 

Automobile 

Manufacturin

g 

Guiding 
welding 

inspector 

for 
checking 

Approximatel
y 2 m–3 m 

N/A Manual 

LCD 

Projecto
r & 

HMD 

Manufacturin

g site 

application 
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spot 
welding 

points 

MacIntyr

e (2005) 
Agriculture 

Guiding 
poultry 

cutting 

instruction 

N/A N/A Manual 

Laser 

Projecto
r 

Production 

line 
application 

Funk et 
al. (2015) 

General 

Manufacturin

g 

Guiding a 

worker to 

pick-up 
correct item 

from 

inventory 

Approximatel
y 2 m–3 m 

N/A 
Optical 
marker 

LCD 

Projecto

r 

Warehouse 
application 

Büttner et 
al. (2016) 

General 

Manufacturin

g 

Compariso

n cognitive 

demands 
between 

HMD and 

projection 

Approximatel
y 2 m–3 m 

Natural + 
artificial 

light 

(approx. 
500 lux) 

Manual 

LCD 

Projecto

r 

Assembly line 
application 

Tabrizi et 

al. (2015) 

Medical 

Industry 

Guiding 

surgeon to 

location 
brain tumor 

Approximatel

y 2 m–3 m 
N/A 

Optical 

marker 

LCD 
Projecto

r 

Medical 
operation 

room 

Wen et 

al. (2013) 

Medical 

Industry 

Guiding 

surgeon to 
visualize 

surgical 

plan 

Approximatel

y 2 m–3 m 
N/A 

Optical 

marker 

LCD 
Projecto

r 

Medical 
operation 

room 

 

In implementing AR, three visualization approaches, such as head-worn, 

hand-held, and spatial, have been applied as visual display and positioning 

techniques. Krevelen et al. (2010) and Carmigniani et al. (2011) compared the 

advantages and disadvantages of the three approaches from technical perspectives, 

as presented in Table 1 (extracted from (Van Krevelen and Poelman 2010; 

Carmigniani et al. 2011)). In general, the head-worn and the hand-held are the most 

popular visualization types and are commercially available. Google Glass and 

Microsoft HoloLens are examples of head-worn AR, and a smartphone or tablet are 

examples of a typical medium for hand-held applications. On the other hand, the 

spatial AR directly visualizes information onto a designated object without 

requiring a user to wear any devices (Bimber and Raskar 2005), examples of which 

include a head-up display (HUD) and an interactive wall and floor using a projector. 
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The comparisons presented in Table 1 show that the head-worn and the hand-held 

methods may allow for relatively higher mobility and outdoor usability than that of 

spatial, which is generally used in a fixed location. However, the spatial approach 

does not require a user to carry or wear a device, which allows the user to freely 

move around using both hands and to easily collaborate with multiple users by 

which the same views can be seen. For the recent applications of AR in construction, 

both head-worn and the hand-held have been actively studies as in Table 1 but 

limited number of the spatial AR has been applied. Due to the mobility issue in the 

spatial AR, most of the studies have examined the head-worn and hand-held to 

visualize information during construction site operations that require constant 

changing locations. But considering the main focused area of this study which is 

the industrialized construction that prefabrication of building components at the 

factory are considered as main processes, the spatial AR with a projector can be 

efficiently applied to provide a visualization of information to manual assembly 

workers rather than using other AR devices. In addition, the previous AR studies in 

the head-worn and hand-held devices had lack of proactive quality management 

feature that an error can be prevented during manufacturing processes.  

The other AR methods such as head-worn and hand-held can also assist 

workers to visualize information but the spatial AR is considered as the best match 

for purpose of this research and practices of the panel manufacturing. The head-

worn AR devices can effectively provide information to users in real world 

environment, but their high costs and limited battery life are critical issue in the 

practice. For example, the panel manufacturing factory often runs 10 hours 
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excluding over-time and the panel assembly lines require 3 to 5 workers to perform 

together. The HoloLens from Microsoft is roughly cost over $3,000 USD with 5.5 

hours of battery life with average use, and the cheaper Google Glass is still cost 

over $1,500 USD with similar 5 hours of battery life. To implement the head-worn 

devices, the cost would be significant and the limited battery life requires additional 

set of the devices. The most of prefabricated construction companies in North 

America is small-to-medium companies that such large investment in the 

information technology may not be feasible. If the head-worn devices can 

significantly improve accuracy and productivity of workers then the investment can 

be considered as reasonable, but the previous studies (Wille and Wischniewski 

2014; Büttner et al. 2016) showed that the head-worn devices did not significantly 

improve performances of workers. On the other hands, the spatial AR with a 

projector can provide visualization of information in real world environment with 

far less financial investment without any battery life issues as in the head-worn 

devices. The utilized projector in this study was roughly cost $700 USD. Unlike 

the head-worn devices that require a device per a worker, the projector can be 

shared by all workers. In addition, use of the head-worn devices may entail a 

learning curve to adapt to new information display system, but the projection 

provides more simple and intuitive visualization of the information to workers. 

Thus, this study focuses on the spatial approach, which is considered suitable for 

panelized construction where (1) manual assembly tasks are performed in a fixed 

position; (2) workers need to use both hands to perform manual activities such as 

lifting, squaring, and laying; and (3) multiple workers often work together to 
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produce one panel. In addition, when instructions were provided through a spatial 

AR approach, the workers significantly outperformed those who were administered 

paper-based instructions in terms of productivity and quality (Bosch et al. 2017). 

Spatial AR using a projector has been proposed and examined in various 

areas where complex manual tasks are involved (Table 2). For instance, in the 

agriculture industry, MacIntyre and Wyvill (2005) applied this type of projection 

to help workers at a meat packing factory to visualize cutting points for the 

improvement of productivity and accuracy of meat cutting. In the medical field, 

Tabrizi et al. (2015) proposed to project the accurate surgical points (e.g., brain 

tumor) using a projector on the surface of a patient’s skull during an operation; this 

particularly helped physicians to recognize tumors that were difficult to see without 

the projection. Wen et al. (2013) also projected the surgical plan on specific areas 

of a patient’s body to visualize detailed operations. In manufacturing, Zhou et al. 

(2011 and 2012) applied a projector to visualize spot welding points to both welders 

and inspectors in order to reduce the amount of time necessary for finding welding 

locations.  

 In construction, however, the spatial approach has seldom been applied due 

to its lower mobility than other approaches. Although Yeh et al. (2012) proposed a 

portable projector mounted onto a hard hat for construction applications, the 

authors pointed out as a limitation the negative impact wearing a helmet with a 

projector may have on the user’s comfort and attentiveness. Furthermore, the spatial 

AR methods proposed in other industries, as presented in Table 1, cannot merely 

be applied to panelized construction due to the following challenges:  
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(1) The use of a projector in the offsite construction facility would require larger-

scale projection due to the large size of building material; in general, the size of 

construction modules would be greater than the objects onto which an image is 

being projected in the manufacturing and medical industries. This may require a 

longer distance between a projector and a target object, but the distances in the 

previous studies provided in Table 2 are approximately less than 3 m, which may 

not be sufficient to project a construction drawing onto the target surface in an 

offsite construction facility. For example, the preliminary experiment presented in 

the current study indicates that at least 7 m are required to project a drawing of one 

wall in a residential home manufacturing facility. 

(2) The projection alignment between a virtual model and an actual target area is 

critical in spatial AR and is directly related to the quality of a product. For example, 

in the previously mentioned brain surgery application (Besharati Tabrizi and 

Mahvash 2015), even a minor misalignment of the projection could lead to serious 

consequences for the patient. As a method of projection alignment, two methods 

(i.e., manual and marker-based) have been applied in previous studies (Table 1). If 

a projection distance is short and safely accessible by a user, then the manual 

adjustment approach offers a more convenient way of performing alignment than 

the marker-based method. On the other hand, if the distance is not accessible, the 

marker-based projection alignment would be suitable since the method can provide 

an automated alignment method using makers. However, previous studies that 

utilized the marker-based alignment approach have only been applied for short 

distances (e.g., 2 m–3 m), and operational conditions such as illumination level 
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were not tested to understand their potential influences on the projection alignment 

accuracy (Tabrizi and Mahvash 2015; Wen et al. 2013; Funk et al. 2015). Rabii and 

Ullah (2015) examined the maker-based AR in a large indoor environment but their 

maximum testing distance was limited in 5 meter by using 0.2 by 0.2 meter size 

marker.  

(3) An illumination condition is another important factor affecting the performance 

of projection-based AR. Amano et al. (2011) stated that the various illumination 

level in computer vision is one of the critical problem, and the marker-based AR 

also need to consider its potential negative impact on quality of tracking accuracy. 

Specifically, if a constant level of illumination can be maintained throughout 

working hours, this illumination issue may be ignored. Nonetheless, panelized 

construction facilities may feature both natural and artificial lighting which can 

result in brightness changes over time. As presented in Table 2, however, 

illumination conditions have yet to be fully investigated to apply projection-based 

AR to offsite construction. 

 To address the quality issues of industrialized construction, the concept of 

spatial AR using a projector remains largely unexplored such that further research 

efforts are required to apply the approach to a field setting. However, issues 

surrounding the projection scale, alignment method and accuracy, and level of 

illumination should be tested and resolved to implement the approach in practice.  

2.4. Construction equipment operation data collection and analysis 

 Concerning the methods available to monitor the operations of construction 

equipment, research efforts have been put forth in the areas of location tracking and 
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action recognition of heavy equipment. Particularly, two major streams of such 

monitoring methods found through literature review include a computer vision 

approach using visual sensors (e.g., cameras) that estimates the positions of 

construction resources on images or classifies equipment’s actions into pre-defined 

ones of interest, and a sensor-based approach using mobile sensors (e.g., GPSs, 

IMUs) or static sensors (e.g., RFIDs) that attempts to identify the activities of 

equipment based on the tracked locations on a jobsite; the summary of relevant 

research is presented in Table 2. The computer vision approaches (Brilaskis et al. 

2011; Zou and Kim 2007; Gong et al. 2011; Memarzadeh et al. 2013) mainly focus 

on computational algorithms that can accurately detect and track objects in the 

image scenes, which are later used to understand the semantics of the images. This 

vision-based approach does not require installations of sensors onto labour or 

equipment, thus being regarded as cost-effective and highly applicable in dynamic 

and busy construction sites where multiple objects are presented. In addition, recent 

advances made in the data analysis area (e.g., deep learning) have significantly 

improved the accuracy of detection and tracking tasks, even for occlusions, varying 

illumination levels, and required computational cost, which have all been common 

issues with respect to construction site images (Brilakis et al. 2011).  

The sensor-based tracking system has also been widely used to collect data 

from heavy equipment in earthmoving construction as shown in Table 2. Unlike 

the computer vision approach, this sensor approach requires an installation of a 

sensor or a tag (e.g., GPS, RFID, or mobile device) onto each piece of equipment. 

In that regard, a large-scale implementation of the sensor-based method can be 
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costly, requiring not only as many sensors as there are pieces of equipment and 

vehicles, but also continuous maintenance or replacement of the sensors over time. 

Furthermore, the sensor-based approach can provide reliable data collection even 

when weather conditions are not favorable such as rain, snow, fog, etc. In addition 

to the benefit during harsh weather conditions, the sensor-based approach does not 

require a line of sight condition in order to provide the transportation equipment 

data in a large construction area (e.g., road construction), and a camera or personnel 

is not required to physically view construction operations. 

In this study, when considering the characteristics of a short duration site 

construction visit for panelized residential construction, the GPS-sensor-based 

approach is selected to collect fleet operation data. Typical construction (not 

including interior finishing) time of a single-family house is approximately 1 or 2 

days while performing multiple construction projects on a daily basis at multiple 

locations. Thus, the GPS data collection approach, which requires a single 

installation of a GPS sensor on a piece of equipment, does not require frequent re-

installation of the sensor for other projects, and the sensors can continuously 

provide equipment operation data from different residential projects without being 

affected by adverse weather conditions.  

Table 2 Different approaches for identifying activity of construction equipment  

Method Description Data source Reference 

Computer 

Vision 

Tracking construction project-related 

entities (e.g., equipment, material, and 

labour) by using two cameras (stereo vision) 

Construction 

site video 

Brilakis et 

al. 2011 

Identification of equipment idle time by 

performing image processing with the image 

colour space data. 

Construction 

site video 

Zou and 

Kim 2007 
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The action analysis framework of the Bag-

of-Video-Feature-Words was used to 

classify construction activities. 

Construction 

site video 

Gong et al. 

2011 

Construction activities from labour and 

equipment were identified using the 

Histograms of Oriented Gradients and 

Colours (HOG + C). 

Construction 

site video 

Memarzadeh 

et al. 2013 

Spatial-temporal visual features of the heavy 

construction equipment are collected by 

using the HOG, and the SVM classifier is 

used to determine different types of 

equipment actions.  

Construction 

site video 

Golparvar-

Fard et al. 

2013 

Mobile sensor The data from mobile devices such as GPS, 

accelerometer, and gyroscope were used to 

classify the front loader’s construction 

activities. 

GPS, 

accelerometer, 

and gyroscope 

Akhavian 

and 

Behzadan 

2015 

Raw GPS data was collected to 

automatically analyze construction 

equipment operation productivity and safety. 

GPS 
Pradhananga 

et al. 2013 

The short-term GPS data were collected 

from the earthmoving operations for 

analysis. 

GPS 
Hildreth et 

al. 2005 

The web-based GPS data analysis was 

performed along with GIS to predict 

earthmoving operation costs. 

 
Alshibani et 

al. 2016 

The smart device’s internal measurement 

unit (IMU) data is used to classify the 

different operations of excavator. 

IMU 
Kim et al. 

2018 

Static sensor The low-cost RFID sensors were applied to 

earthmoving equipment with fixed location 

readers to collect and analyze operation data. 

RFID data 
Monstaser et 

al. 2012 

As shown in Table 1, equipment operation analysis using GPS sensors has 

been proposed and tested in previous studies, for earthmoving equipment in 

particular. For example, Hildreth et al. (2005) used position and velocity of 

earthmoving equipment with a geo-fence (e.g., dumping and loading zones) to find 

out earthmoving cycle durations. In the study, to accurately distinguish activities of 

the equipment, several conditions were pre-defined as follows: 1) velocity should 

be zero, 2) the position must be within the user-defined zone, and 3) preceding and 

following data points must be outside of the zone. Pradhananga and Teizer (2013) 

also examined potential utilization of the GPS data attached to earthmoving 

equipment to analyze equipment operations. In addition to operation analysis, this 
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study further applied the GPS data to provide a collision warning between 

equipment with a working zone detection feature, which allowed automatic geo-

fence assignment. Akhavian and Behzadan (2015) utilized smartphone device 

sensors such as accelerometer, gyroscope, and GPS to collect heavy equipment 

operations data in earthmoving works. In that study, the GPS data is used to 

measure the distance between a front loader and a hauler and to identify a working 

boundary (e.g., geo-fence) approximation. Alshibani and Moselhi (2016) collected 

GPS data from a hauling unit in earthmoving operations and utilized a geographic 

information system (GIS) to estimate hauling operation cost and productivity in a 

web-based environment to achieve real-time monitoring of the equipment. 

These previous studies provide insight into the utilization of GPS sensors 

for the operation analysis of heavy earthwork equipment. However, when applied 

to panelized construction, such approaches can be limited in understating the status 

of transportation equipment (e.g., trucks) due to different operation practices in 

panelized construction. The practices such as delivering to a consolidation area (e.g., 

temporary unloading areas nearby a site), stopping at multiple locations, and 

picking up empty trailers can be randomly occurring during project execution 

depending on site conditions and project requirements. These operational 

conditions are different from an earthmoving operation, in which a hauling truck 

follows a typical cycle (e.g., load-haul-unload-return) with minimal deviation from 

the fixed cycle. In addition, the previous studies applying geo-fence settings to 

earthmoving operations have examined fixed dimensions of operating ranges (e.g., 

boundary of loading or unloading area) to check the status of equipment, but due to 
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the uniqueness of the panelized construction project, a dynamic and comprehensive 

approach to setting up geo-fences are required to collect and analyze GPS data from 

the multiple construction sites. 

2.5. Discrete-event simulation in offsite construction 

DES in offsite construction has been studied to evaluate various 

construction plans or schedules prior to execution (Altaf et al. 2018). Due to the 

application of manufacturing processes in offsite construction, previous studies 

from a general manufacturing perspective have been applied to the construction 

process (AlDurgham and Barghash 2008). Therefore, the manufacturing aspect of 

construction has been explored in previous studies that have focused on optimizing 

the manufacturing of building components (Abu Hammad et al. 2008). In panelized 

construction, the multi-wall panel concept has been optimized to minimize material 

waste and production time using the DES approach (Altaf et al. 2018). In steel 

prefabrication construction, for instance, steel bridge construction processes have 

been simulated using DES to satisfy constraints that occur between fabrication and 

assembly, and the results indicate that projection duration can be reduced by 10% 

(Altaf et al. 2018). 

  The transportation operations in offsite construction are critical processes 

because approximately 80% of all construction activities may be directly affected 

by transportation operations (Browne 2015). In particular, panelized construction 

has a higher dependency on transportation operations due to the unique operation 

requirements given that a prefabricated panel needs to be delivered to designated 

sites within the requirement schedule while considering assembly orders. Since the 
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panel assembly processes at the sites cannot be flexible enough to handle out-of-

order panel deliveries, the transportation dispatching should be able to handle strict 

schedule requirements.  

To generate a precisely coordinated construction schedule to construction 

managers and operators, DES modelling techniques have been widely applied in 

the construction industry (Altaf et al. 2018). In panelized construction, Altaf et el. 

(2018) optimized a panelized construction manufacturing facility operation 

schedule by using the DES model with the particle swarm optimization (PSO) 

method, and the results showed that the manufacturing processes were able to 

reduce the total scheduled duration by 10%. Lu and Olofsson (2014) integrated 

building information model (BIM) with a DES model to evaluate project 

performance. However, previous studies showed that the static DES models had 

limited ability to provide accurate reflection of dynamically changing construction 

environments (Davis and Banks 1998; Song and Eldin 2012). 

To overcome the shortcoming of the static DES model, a real-time data-based 

DES model has been introduced. Unlike the static model, the real-time DES model 

utilizes live input data (e.g., location, progress, and status) from construction sites 

by using information technologies (e.g., a smart device) to run the model to 

determine an optimum schedule based on the most up-to-date information. Since 

the construction sites are dynamically changing due to countless factors including 

weather conditions, it is important to update any previously generated schedule 

(e.g., master schedule) to reflect current conditions. Previously, the manufacturing 

industry has used the real-time simulation idea to support decision-making 
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processes (Yoon and Shen 2006). Vahdatikhaki et al. (2015) used real-time location 

systems (RTLSs) and ultra-wideband (UWB) method to collect operation data from 

earthmoving equipment, and their poses (e.g., loading or unloading) were estimated 

to analyze operations including potential safety risks. Recently, the concept of 

dynamic data-driven application system (DDDAS), which integrates simulation, 

measurement, and application, has been introduced to collect real-time data to 

perform the fine-tuning of simulation models. However, this novel idea has not yet 

been widely applied in practice and further research efforts would be necessary 

(Song and Eldin 2012). 

To the author’s best knowledge, no real-time DES model for dispatching 

transportation equipment in offsite construction has been studied, although the 

transportation operations have a significant impact on overall project management. 

In addition, previous DES models in panelized construction have mainly focused 

on the manufacturing processes rather than considering entire operation processes, 

such as manufacturing, transportation, and site assembly (Husseini et al. 2018). To 

improve overall project management in panelized construction, this research 

proposes a framework using a GPS and QR code-based real-time fleet-dispatching 

DES model that includes an overall system architecture design and potential 

implementation plan. This allows for improving fleet-dispatching efficiency as well 

as increasing performance of overall project management. 

2.6. Equipment cost estimation in construction 

In construction, equipment cost estimation methods have been studied 

extensively in recent decades. As an example, the traditional approach by Peurifoy 
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(Peurifoy et al. 2018) has been widely used in earthmoving operations. The method 

simply utilizes earthwork information such as a quantity of work, productivity of 

equipment, and a unit cost to estimate an equipment cost given earthmoving 

conditions and equipment specification. For instance, estimated quantity of works 

(e.g., volume of soil) is divided by the measured or historical productivity (e.g., 

volume of soil per time) and then multiplied by the unit cost (e.g., cost per hour per 

equipment) to determine final equipment cost. This method and other similar 

approaches, such as the General Contractors of America (AGC) (Popescu 1992), 

the Caterpillar Method (Caterpillar 2017), and the Corps of Engineers method (Hill 

2009), have been proposed and used in estimating equipment costs in construction 

activities. Nonetheless, the comparison study by Gransberg et al. (2006) pointed 

out that each method had different outcomes due to different ways of calculating 

productivity of equipment, and these methods were mostly focused on civil 

construction works rather than other construction areas (e.g., building, residential 

houses). For the estimation of equipment productivity, a machine learning approach 

using historical data instead of equipment specification has recently been applied 

and evaluated in construction, producing reliable prediction results. Ok and Sinha 

(2006) used the nonlinear artificial neural network (ANN) model to predict 

productivities of a dozer with different specifications (e.g., engine output, bucket 

type, etc.). Akhavian and Behzadan (2015) utilized sensors (e.g., accelerometer, 

gyroscope, GPS) in a mobile device to collect front loader operation information 

and predict the productivity by using four different supervised learning methods 

(e.g., SVM). 
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Machine learning is an emerging technology in engineering that has been 

applied to a broad range of domains such as health care, manufacturing, education, 

finance, policing, and marketing (Jordan and Mitchell 2015). Industries involving 

data-intensive issues, such as logistics service providers, have been actively using 

this technology in order to gain better understanding of data and to improve 

decision-making processes. Machine learning techniques can be classified into two 

types: (1) supervised learning and (2) unsupervised learning. Supervised learning 

is applied when a user has both known output and input so that the trained model 

can predict outputs. On the other hand, unsupervised learning is employed when 

output data is unknown. Once the type of learning technique is determined based 

on the available data, an algorithm is selected to obtain optimum results. Broadly 

speaking, supervised learning uses two different algorithms—classification and 

regression—while unsupervised learning employs only clustering algorithms. Each 

type of algorithm offers various techniques that can be applied depending on the 

type of data and the goals to be met. For example, regression encompasses multiple 

methods, including linear regression, support vector machine (SVM), ensemble 

methods, decision trees, and neural networks (NNs), among others. Previously, the 

machine learning approach has been applied to forecast logistics costs in the 

construction industry in order to overcome the difficulties inherent in traditional 

forecasting methods such as activity-based costing (ABC). Various studies describe 

the logistics system as an open complex system whose demands are nonlinear and 

random (Tian and Gao 2009). Due to the nature of logistics systems, applying ABC 

to forecast logistics cost is time-consuming and costly. Furthermore, ABC is unable 
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to accurately predict the demands of logistics. The same studies, it should be noted, 

apply two different regression methods to predict cost, SVM and NN. SVM is based 

on the statistical learning theory, which is adapted from the structural risk 

minimization principle (Weston & Watkins, 1998), and it is applied for nonlinear 

and multidimensional data to forecast output (Cristianini & Shawe-Taylor, 2000). 

NN, on the other hand, is a highly nonlinear dynamic system that has the capacity 

for self-learning (Kosko, 1992). The results of the machine learning application in 

logistics cost indicate that both regression models offer reliable results to predict 

the logistics cost, but the SVM presents a stronger predictive ability between the 

two, and, the NN reveals overfitting issues (Tian and Gao 2009). 

In spite of the promising results of previous studies, the data to be used to 

predict transportation cost remains unexplored in the context of panelized 

construction projects, where equipment productivities (e.g., travel time, loaded 

capacity) may vary in each delivery cycle. In earthmoving operations, the 

equipment productivity can be assumed to be consistent because of similar loading 

conditions (e.g., travel distance) and materials (e.g., soil) in every cycle. On the 

other hand, each trailer load, loading time, and transportation time in a panelized 

construction project can be inconsistent due to different combinations of panels that 

vary in dimensions, assembly order, and level of difficulty for loading. Also, 

transportation demands (e.g., total duration and number of trailers) can vary 

between projects, which makes it difficult to assume a constant cycle time as in 

earthmoving operations. In this regard, further research is required to understand 
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the types of data that must be collected in order to accurately account for the 

operational features associated with transportation cost.  
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3. Chapter: Methodology 

In this section, the proposed framework for advanced transportation 

operation and management in the panelized offsite construction that utilize 

augmented reality to improve transportation accuracy during offsite facility, real-

time data collection using GPS and smartphone application (e.g., web app) to 

efficiently collect equipment operation data, the rule-based algorithm to extract key 

information from the collected data, optimization of transportation planning (fleet-

dispatching), and estimation of transportation cost in various projects conditions 

using machine learning approaches. The framework comprises four modules the 

outcomes of which will be utilized as inputs for the following process. 

Experimentation of this framework will be validated for the panelized construction 

process, but its application is generic and can also be applied in other offsite 

construction methods such a volumetric module construction. 

3.1. Proposed framework 

The proposed framework is illustrated in Fig. 1. Detailed data from 

construction project CAD drawings, contracts, and schedule documents will be 

used as inputs for the framework, and for the criteria, the graphical user interface 

(GUI) will be used to provide flexibility given the dynamically changing project 

environment during transportation operations in offsite construction. The project 

data contains project design information (e.g., dimensions, weights, materials, and 

identification codes) and the project information (e.g., address, type of house, total 

size, and customer). The project information can be acquired from the industry 

research partner’s estimation and project management department, while the design 
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information can be attained from the design department after the design processes 

are complete. To improve data analytic efficiency, especially for a large volume of 

transportation operation data, the project-related data including design data will be 

stored in the database for this study and queried to provide the proper data to the 

user through the selection of a unique project identification code at the beginning 

of the framework application. For the database, a local structured query language 

(SQL) and cloud SQL database will be used to store collected data from throughout 

the project, including production, transportation, and site work.  

For transportation quality assurance (QA), projection-based AR will be 

used to provide 2D drawing information to workers to visualize assembly 

information in order to improve the accuracy of installing construction materials. 

Additionally, the data collection will be accomplished using two data collection 

techniques, namely GPS and QR code scanning, which will be applied to collect 

the operation data throughout the processes. For the GPS, each truck has a GPS 

coordinate transmitter that will automatically update a truck’s location by sending 

its location to the server. The QR code is similar to a barcode system in that a user 

can acquire data by using a scanning device. QR code technology will be used via 

a smartphone application to collect data throughout the transportation processes, 

including loading and unloading, serving as a time stamp that records the beginning 

and finishing time of each transportation process. Upon successful acquisition of 

the operation data, a discrete-event simulation (DES) model will be developed to 

optimize the fleet-dispatching schedule, and the transportation cost will be 

estimated as well to provide the overall transportation cost for various type of 
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offsite construction projects. More details pertaining to each part of the proposed 

framework will be discussed in following sections. 

  

Figure 1 Overall diagram of proposed research 

3.2. Transportation operation processes in the panelized offsite 

construction 

In this research, the working definition of transportation operations used is 

the one presented in Fig. 2, with five steps selected to represent the overall 

operations. At the case company, a panelized construction manufacturer operating 

in Edmonton, Alberta, the loading operations (Step 1) begin once the production 

processes at the facility are completed. The fabricated building components (e.g., 

panels) are sent to a loading area where empty trailers are ready to be loaded using 
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an overhead crane. The crane operator (loader) is given a drawing outlining the 

various components as well as their loading sequence and location. The loader 

locates the components and begins loading them onto the trailers according to the 

given drawing. In current practice, during the loading process, space utilization is 

entirely dependent on the ability of the loader. Upon completion of the loading 

process, the loaded trailers are driven to a yard for the final loading check (Step 2). 

During this checking process, smaller construction materials such as bulk materials 

(e.g., metal connectors) are loaded onto the trailers based on available space. 

However, due to the relatively disorganized loading process in current practice, 

these small items are often transported using a separate material handling vehicle. 

After the loading of the smaller components is complete, the yard workers install 

cargo straps on the trailers and perform the final safety check. Next, the truck 

drivers locate their assigned trailers at the yard and deliver each trailer to the given 

construction site (Step 3). Prior to their arrival at the assigned site, the drivers 

contact the crane operators to check on-site assembly progress. Depending on the 

progress, the drivers must decide whether to wait at the site to pick up the empty 

trailer or not. After the delivery is complete, the drivers return to the yard to make 

subsequent deliveries assigned by the dispatcher at the production facility. In 

current practice, the dispatcher manually collects information such as site progress, 

truck locations, and available trailers as the basis for making decisions regarding 

subsequent deliveries.  
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Figure 2 Overall process of logistics operations in panelized construction 

3.3. Transportation operation data collection  

The data collection is critical to the development and validation of the 

proposed framework in this study. Without reliable and robust data collection 

methods, the framework will not be able to reflect actual offsite construction 

operations and provide accurate cost estimation and fleet-dispatching schedule. In 

the research, two different data collection methods (QR code and GPS) will be 

applied for intensive data collection from both on-site and offsite processes that 

utilize transportation equipment (e.g., truck), with the overall data collection 

framework presented in Fig. 3. The data collection begins during the panel design 

process and continues until the final unloading process at the site. In the production 

and transportation processes, RFID and GPS have already been utilized to collect 

the data, so the proposed data collection technique will be applied to the loading, 

yard work, and unloading processes in order to minimize work interruptions in the 

plant. In addition, the limitations in data collection from previous studies that 

utilized a single data collection method (e.g., RFID or GPS) in offsite construction 

were not able to provide a complete dataset for the case company; as a result, 

accuracy analysis of the processes could not be performed due to missing data 
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points. Therefore, it is important to maintain robust data collection across all 

processes to ensure in-depth understanding that can eventually lead to potential 

process improvements and cost saving. 

 

Figure 3 Overview of the data collection structure 

3.3.1. GPS data 

 GPS is an essential data collection method that will be used to collect fleet 

operation data. Each truck will be equipped with a GPS transmitter that can send 

location and time information to the database. Unlike the QR code, GPS is an 

automatic data collection method that can provide continuous data collection 

without user input. Additionally, a geo-fence can be applied to the system so that a 

dispatcher can be notified when a truck enters a geo-fenced region of interest, as 

illustrated in Fig. 4. 



36 

 

Figure 4 Example of regions of interest identified using a geo-fence 

The main purpose of GPS data collection is to create input database for training 

machine learning models (SVR model) and input data for the DES model. Since 

each residential project is unique in many ways, extensive transportation demands 

data from various residential projects are necessary. Manual collection of fleet 

activities, such as the unloading duration, can be accomplished by human 

observation, but this would be a time and cost intensive process while also 

introducing subjectivity issues. To improve efficiency and accuracy of the 

transportation operation data, GPS data from transportation equipment has been 

used in previous construction equipment operation analyses. This study also uses 

GPS data from transportation equipment such as delivery trucks with GPS 

transmitters on each vehicle to track location. In this study, a commercially 

available Fleet Complete MGS 700 GPS tracker is used to collect fleet GPS data. 

The GPS tracker is hardwired to the vehicle’s ignition system so that it can 
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automatically provide GPS data without any manual controls from drivers. Fig. 5 

presents the GPS tracker and an example of the GPS data. 

  

 

Figure 5 Example of the GPS tracker and the raw fleet GPS data 

The GPS data includes various information such as (1) a unique equipment 

identification code, (2) date and time, (3) speed, (4) latitude, and (5) longitude. The 

unique code is assigned to each truck to distinguish each GPS data point from other 

trucks. The date and time behave like a timestamp that is assigned when the data is 

transmitted to a cloud server. The speed is used to find out the vehicle’s status, 

whether it is idle or moving. For each vehicle, the latitude and longitude are GPS 

coordinates that are used to compare against the geo-fence area (e.g., construction 

site) to calculate transportation demands. For GPS data storage purpose, the GPS 

trackers transmit location and other data to a cloud server for easy access and this 

is offered by the GPS tracker manufacture. The accuracy of the GPS location is set 
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to the highest accuracy with 2 minutes data intervals. During the case study, one 

year of GPS data for the entire fleet belonging to the company participating in this 

research was downloaded in CSV format for transportation demands analysis.  

 3.3.2. QR code data 

 In the construction industry, manual data collection (writing by hand) has 

been a common mode of data collection due to its simple application (Golparvar-

Fard et al. 2009). However, to analyze a large amount of data, the data in paper 

format needs to be converted to electronic format, such as Microsoft Excel, and the 

data conversion process requires significant time and manual labour to perform the 

conversion. Thus, to address this issue, this study utilizes the QR code data 

collection method. 

 Since the QR code was first used in the automotive industry in Japan, the 

method has been widely used in various industries to collect operation data by using 

a simple scanning tool (e.g., a hand scanner). Compared to a one-dimensional 

barcode, the QR code can hold approximately one hundred times more data while 

having less scanning error margin (Lin et al. 2014). In terms of proven track records 

and popularity, the traditional barcode can be a reasonable selection for data 

collection. However, if a company is trying to build a new data collection system, 

then the QR code could provide more benefits (e.g., data size, scanning accuracy, 

and smart device applications) than the barcode. 
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Figure 6 Proposed QR code scanning process throughout the construction project 

 In order to implement the QR code-based transportation operation data 

collection system, the system can include the following three steps, as shown in 

Figure 6: (1) QR code generating and printing, (2) QR code tagging, and (3) QR 

code scanning. For the first step, as shown in Figure 7, a user interface (UI) is 

connected to a local SQL server to acquire required information for generating the 

code. Each code consists of two unique identifiers, such as a panel ID and a project 

ID, and this information is loaded by using the developed interface. For printing, a 

user can select a specific project ID to print out the QR code. Codes are printed on 

self-adhesive paper (e.g., sticker) so that a worker can easily apply them. 

 

Figure 7 User interfaces and QR code printer for proposed data collection system. 
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For the second step, as shown in Figure 8, workers at loading areas will receive the 

printed QR codes to tag finished products (e.g., panels). Loaders will attach the QR 

code sticker to the products based on the unique identification codes for each 

product and project. In addition, other QR codes for trailers are prepared to 

minimize manual data entry time for loaders. For example, during the QR code 

scanning processes, workers are only required to scan QR codes to input operation 

data without the need for any manual data input. This approach will improve the 

accuracy of collected data as well as reduce data entry time required, thus 

improving overall data collection and operation efficiency.  

 

Figure 8 Applied QR codes for trailers and finished panel at factory. 

Furthermore, upon completion of tagging trailers and finished panels, workers (e.g., 

loaders and drivers) need to perform the scanning of QR codes to enter data into 

the database. To read a QR code, the web-based application (e.g., web app) is 

developed to improve the efficiency of data collection. The web-based application 

(web app) is different from a native application (e.g., iOS or Android app) in a 

smart device in that it does not require a download and an installation process. The 

web app can be easily accessed on any smart device by using a web browser (e.g., 
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Google Chrome) to navigate to the web address. In other words, an iOS-based 

application cannot be installed and operated in another operating system such as 

Android; however, for the web app, the operating system limitation is not 

applicable. Since workers can have various types of smart devices with different 

operating systems, this study has decided to utilize the web app to overcome the 

operating system limitation. As shown in Figure 9, the web app is developed for 

four different logistics operations such as loading, delivering, yard managing, and 

craning (unloading). For the development of the web app, html5, CSS, and 

JavaScript (JS) are used together to create the web app. 

 

Figure 9 Developed web app interface for loaders and drivers. 
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For the persons responsible for loading, they are required to scan the finished panels 

and the assigned trailer together to provide the loaded trailer information to drivers. 

For example, during the loading process, the worker scans the QR codes for panels 

then scans the trailer QR code to complete loading operations. After loading, the 

yard manager brings the loaded trailer out to a yard for drivers to pick up. The yard 

manager only needs to scan the trailer to indicate the loaded trailer is located at the 

yard and it is ready to be picked up by drivers. Next, drivers will perform QR code 

scanning processes to provide and update trailer status through the project 

operations. The drivers are required to scan the trailer QR code whenever the trailer 

status is changed. For example, when the loaded trailer is picked up from a factory 

then the status of trailer is changed to transit status. More details on data type and 

structure will be discussed in section 3.4.  

3.3.3. Project-related data collection 

Along with transportation demands, the residential project data is the other 

important data that is included in the training database for the machine learning 

models. Since the models are based on the supervised learning approach, the 

demands are considered output and the project information is considered as input 

in the training database. The selected project information in this study are as follows: 

(1) project identification code; (2) project execution date; (3) project address; (4) 

project model; (5) wall, floor, and roof dimensions; (6) exterior design options; and 

(7) residential project type. The project ID is assigned to each project to perform 

queries in a relational database, and the project date and address are used to match 

with the GPS data during the transportation demands analysis. The rest of the 
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project information, such as model, dimensions, design options, and building type, 

are collected to develop the transportation demands prediction model. An example 

of the project information data is presented in Fig. 10. To collect the project 

information, a construction project contract, a drawing, and a schedule document is 

used. The contract and drawing documents provide cost, address, and other detailed 

design-related information, and the schedule provides site assembly data.  

 

Figure 10 Examples of the project information such schedule, site plot, and building 

dimensions 

 A unit cost of transportation is used to calculate the transportation costs with 

a predicted transportation demand from machine learning models during the 

transportation cost estimation module in the proposed framework. In this study, the 

unit cost is calculated based on historical operation and ownership data on the fleet 

(Peurifoy and Ledbetter 1985). To estimate the unit cost, data is gathered by 

acquiring all available operation and management records for the panelized 

construction company, including (1) data for one year of transportation operations 

information (e.g., total operation hours and odometers in fleet), (2) financial 

expenses including fuel and maintenance costs, and (3) project information (e.g., 

total transported panels) For details on calculating the unit costs, the Peurifoy 
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method can be found in Peurifoy and Ledbetter (1985). Figures 11 and 12 present 

the estimated ownership and operation cost calculation for the truck fleet.  

 

Figure 11 Ownership cost calculation based on the historical operation data. 

 

Figure 12 Operation cost calculation based on the historical operation data. 
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3.4. Database structure and development 

 A clearly organized data structure in the database is an important issue in 

the effective management of a large volume of data. Considering that transportation 

operations data are constantly being generated from both GPS and QR code 

scanning in this study, multiple data tables in both local SQL and cloud NOSQL 

database are used to perform a basic CRUD operation (create, read, update, and 

delete). For the local and cloud databases, Microsoft SQL 2008 server and 

MongoDB ATLAS are applied, respectively. In Fig. 13, the entity relationship in 

this study is presented, and the green colour tables indicate the cloud and the rest 

of tables are local database. The following sections will discuss more details 

pertaining to the database. 

The local database is a crucial tool for storing data collected by means of 

various techniques, allowing for the quick and efficient analysis of a large amount 

of data using SQL. Considering the multiple data sources in this research, the entity 

relationship diagram is presented in Fig. 13. The project information (pink table) is 

considered the primary table and is able to access other tables, the relationships 

between which are represented by connection lines in Fig. 13. For example, a user 

can access the data in the GPS table from the project schedule table based on these 

connections, and all connected tables are able to perform extensive data searches 

within the database. Each time the data collection processes are performed (e.g., 

GPS transmitter, QR code scanner, and results from the modules) the results will 

be stored in the designated table. Additionally, the equipment tables (blue table) 
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and user tables (white table) are also included in the entity framework to acquire 

information. 

 

Figure 13 Overview of the entity relationship 
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3.5. Transportation quality assurance 

3.5.1. Projection-based AR 

For the implementation of spatial AR using a projector, this section presents 

and evaluates the projection alignment method that superimposes a 2D panel 

assembly drawing (e.g., a plan) onto an assembly line. To automate the alignment 

process, a projector and a camera are used together in a manner that the projected 

scene (i.e., the plan) by a projector is adjusted to the designated position marked by 

a user with specialized markers. In this study, a marker-based approach is adopted 

to set the initial position of a panel being built, as in general the position is often 

manually determined in practice. Fig. 14 provides the overview of the proposed 

framework. Specifically, potential alignment errors such as radial and perspective 

distortions are first eliminated using computer vision techniques. Distortion errors 

can commonly occur when using a digital camera and are mainly caused by the 

type of lens used (e.g., wide angle lens) and orientation (e.g., direction and location) 

of the camera to an object (Mansuriv 2017), as presented in Fig 15a and 15b. These 

errors are corrected through camera calibration processes in which the intrinsic and 

extrinsic parameters of a camera are determined for geometric transformation. 
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Figure 14 Overview of projection-based alignment processes: (a) setting up the 

experiment; (b) placing the markers on a wall panel; (c) taking a photo of the 

panel with the markers; (d) input image for image processing; (e) distortion-free 

image; (f) 2D panel drawing image; (g) alignment ready output image; (h) 

projection of the output image on surface of the wall panel 

 
 

Figure 15 Examples of distortions: (a) radial distortion (e.g., barrel distortion); (b) 

perspective distortion 

A distortion-free image resulting from the camera calibration is then used 

for the object detection that aims to compute coordinates of markers and a projected 

area (i.e., a boundary of projection). To perform the detection, image segmentation 
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is initially performed as a pre-processing step to increase the accuracy of the 

detection by separating the markers and projection area from the background (Figs. 

16b and 16c). In practice, this image segmentation can be performed on a shop floor 

or on a vertical wall assembly line prior to beginning a construction task, which 

makes the process computationally simple and robust. Object detection is then 

performed for markers and a projection area, as in Figs. 16d and 16e, respectively.  

 
Figure 16 Examples of images in different processes: (a) distortion-free image; 

(b) segmentation of the markers; (c) segmentation of the projection area; (d) 

detection of the markers; (e) detection of the projection area 

Once the successful acquisition of the coordinates is achieved, the panel 

assembly drawing as presented in Fig. 14f is prepared for projection by matching 

the four corners of a panel in the drawing with four pre-set marker positions and 

adjusting the image resolution of the drawing. To minimize any error in this 

alignment process, for example, markers can be placed at the position where 

vertical and horizontal studs are joined. A geometric transformation is performed 

to fit the panel drawing within the boundary of the markers, and the image is then 

translated to the correct location based on the marker coordinates. After the final 
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image is sent to the projector, it is projected onto the surface of a wall panel to 

visualize the drawing (Fig 14h).  

To evaluate the performance of projection alignment, alignment accuracy is 

measured by computing an offset distance from the center of each marker to the 

boundary of the projection. Since each corner point of the projection should be 

matched with a center point of a marker, the accuracy of projection can be estimated 

by measuring the distance. The accuracy is measured for various projection 

distances and at various levels of illumination and is compared against the tolerable 

level (e.g., 6.35 mm or ¼ in) of manual assembly error that the case study company 

has set for their production lines. This approach provides a level of potential 

feasibility that the proposed method could be used in actual panel assembly 

workplaces. 

The three technical processes in Fig. 16—(1) image distortion correction, (2) 

markers and projection area detection, and (3) modification of the panel assembly 

image—are explained in detail in the following sections. 

3.5.2. Distortion correction for image projection 

 The distortions (e.g., Fig. 17) are first corrected to improve the accuracy of 

image processing and provide workers with precise visual guidance through 

projection. It was found in the preliminary experiments that two types of 

distortions, such as lens distortion and perspective distortion, are significant when 

using a projector and a camera at a long distance. For example, Fig. 17 illustrates 

the images before and after the distortions are corrected. The lens distortion 

commonly occurs due to optical design of lenses, while the perspective distortion 
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is mainly caused by the location and direction angle of the camera. To minimize 

the distortions, the focal length of the lens can be maintained at the range (e.g., 30 

mm in this study) given in the lens specifications, and the camera can be placed 

near to the center of a target object in the scene. However, as the correction at the 

pixel level is difficult to achieve through manual processes, camera calibration 

processes are adopted in this study to minimize the impact of distortion on the 

image processing, particularly when using a wide-angle zoom lens. Among various 

methods of the camera calibration (e.g., Li et al. 2014; Sun and Cooperstock 2005), 

the checkboard method (Zhang 2000)—which is a widely-used method for its 

accuracy (Sun and Cooperstock 2005)—is applied in this experiment. This method 

utilizes multiple images of a checkboard to estimate the camera parameters (e.g., 

intrinsic and extrinsic), which are then used for the distortion correction processes 

(i.e., geometric transformation). For the camera calibration, multiple images of a 

checkboard (25 images in this study) are taken prior to the experiment.  

 
Figure 17 Examples of distortion correction 

Specifically, tilting errors resulting in perspective distortion can easily be 

caused by the constraint on available camera positions in a field setting; for 
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example, a focal plane of a camera can be placed facing a particular direction either 

slightly upward or downward rather than at the center with a right angle (90°) to 

the target object. To fix such a distortion, the projective transformation, which does 

not necessarily preserve parallelism, is adopted rather than affine transformation; 

Eq. (3) represents the projective transformation (Gonzalez and Woods 1992). Here, 

x and y represent original points in homogeneous coordinates; the x´ and y´ 

represent the scaled coordinates in projective locations; and a through h represent 

parameters for the projective transformation (3 × 3 matrix). The parameters a, b, d, 

and e control scale and rotation, c and f correct tilting, and g and h perform 

translation of an image during the transformation process. The equation has 8 

degrees of freedom and requires four pairs of coordinates to compute the matrix. 

 

[
𝑥′
𝑦′
1

] = [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 1

] [
𝑥
𝑦
1

] (3) 

 

The direct linear transformation (DLT) approach is applied to estimate the matrix 

using the pairs (Hartley and Zisserman 2003). The four pairs of projective 

coordinates (x´ and y´) and the original coordinates (x and y) are measured by 

applying object detection method, which is discussed in the following section. Once 

the coordinates are identified, the projective transformation matrix is estimated to 

transform an input image (e.g., a drawing) for the projection. Additionally, a length 

between two diagonal points is calculated to verify the performance of the 

projective transformation in this process. 
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3.5.3. Estimation of marker positions and projection boundary  

 To perform a geometric transformation for projection, the coordinates of the 

markers and projection area are estimated using computer vision techniques. This 

process consists of two technical steps: (1) image segmentation to filter out a region 

of interest, and (2) object detection to estimate the coordinates of the region. In this 

study, image segmentation is applied to filter out the markers and projection area 

from the background, and the coordinates of the segmented objects are then 

detected for the image as illustrated in Fig. 18. 

 
Figure 18 Examples of segmentation and object detection 

The image segmentation is a technique to partition a certain area of an image 

by using characteristics (e.g., colour, texture, intensity) of segments in the scene 

(Cheng et al. 2001). The format of input images used in this study contains RGB 

values ranging from 0 to 255 for red, green, and blue, and the segmentation is 

performed based on these colour values. Taking into consideration the working 

environment at the panel manufacturing facility, this colour-based segmentation 

approach is suitable due to low colour variation in the working areas. Specifically, 
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blue markers and white projections are used to distinguish the boundaries of the 

projection from the background (Fig. 19).  

 
Figure 19 Limited colour variation on the panel assembly lines: (a) projection 

colour; (b) marker colour 

Initially, the regions of interest (ROI), which in this study include (1) the markers, 

(2) the projection area, and (3) other background areas, are determined prior to the 

segmentation. Then, for the segmentation, each colour range is estimated by 

measuring similarity in Euclidean distance as defined in Eq. (4): 

𝐷(𝑧, 𝑚) = [(𝑧𝑅 − 𝑚𝑅)2 + (𝑧𝐺 − 𝑚𝐺)2 + (𝑧𝐵 − 𝑚𝐵)2]0.5 (4) 

where D(z,m) denotes the Euclidean distance between an RGB vector point (z) and 

the mean RGB vector (m). Then, a threshold level (T), which describes a level of 

similarity between z and m, is used to determine the similarity. When D(z,m) is 

smaller than T, the point (z) is converted to a white pixel and finally the points are 

grouped together with other similar points. Specifically, after the ROI selections, 

the un-selected area is first converted to black by using a binary image mask. Then 

the isolated ROI areas are used to calculate the mean RGB vector (m) and the 

covariance matrix (C) of the ROI area. Different threshold levels are examined to 

determine the optimal segmentation threshold value as presented in Fig. 20. The 

initial threshold value is estimated from the square root of diagonal of the 

(a) (b) 
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covariance metrics (σ2) and the largest number is selected (e.g., 25). In these 

experiments, several initial threshold levels, such as 25, 50, and 75, are tested for 

the marker, projection area, and background, respectively, providing the clearest 

boundary of segments. In this study, the threshold level of 75 is applied for the 

segmentation due to the best segmentation performance in the projection boundary 

segmentation.  

 
Figure 20 Segmentation of different threshold levels (T) 

After the segmentation process, coordinates of the markers and the projection area 

are estimated using the object detection algorithm. To detect the objects from the 

output images (e.g., binary image) from the image segmentation, blob analysis, 

which is suitable to detect objects regardless of their shape (Chen et al. 2007; 

Kurtulmus et al. 2011), is applied. Blob analysis (Gonzalez and Woods 1992) is 

performed by searching every pixel in a binary image and identifying a connected 

region, a blob, in which all the pixels are uniform in colour. Since the binary image 

consists of only two colours (black and white), the blobs can easily be detected and 

clustered based on the colour value. In this study, objects of interest (e.g., markers 

and projection area) are marked in white as an outcome of image segmentation, the 

pixels in white are detected and grouped together as a blob. For example, when the 

algorithm searches every pixel in an image consecutively, each pixel is compared 



56 

to other surrounding pixels to determine whether to create a new blob, add to an 

existing blob, or carry on to the following pixel. Here, the number of surrounding 

pixels to be compared is called a connectivity, the parameter for which is generally 

set to 4 (i.e., top, bottom, left, and right) or 8 (i.e., top, bottom, left, and right, in 

addition to another four diagonal pixels). This connectivity parameter affects the 

processing time and accuracy of the blob analysis as the number of computational 

operations at each pixel is determined; for instance, a higher connectivity often 

provides more accurate results but requires longer processing time. In the 

preliminary experiment, different levels of connectivity are examined (e.g., Fig. 

21), and it is discovered that both levels of connectivity (i.e., 4 and 8) provide 

similar results in estimating the coordinates of markers and projection area due to 

the relatively simple shapes of the objects. The four connectivities are thus selected 

for reduced processing time in this study. 

 
Figure 21 Levels of connectivity in blob analysis 

The results of the blob analysis provide n-by-2 arrays including x- and y-

coordinates of n number of pixels for each blob. For the markers, centroids of the 

markers are calculated to find the coordinates of center points by using Eqs. (5) and 

(6) where C represents a centroid coordinate, A represents an area of an object, n is 
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the total number of points, and x and y represent the coordinates of a blob. On the 

other hand, the four-corner coordinate for a projection area can be calculated by 

finding maximum and minimum x- and y-coordinates of the blob. 

𝐶𝑥 =
1

6𝐴
∑ (𝑥𝑖 + 𝑥𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑛−1
𝑖=0  (5) 

 𝐶𝑦 =
1

6𝐴
∑ (𝑦𝑖 + 𝑦𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑛−1
𝑖=0  (6) 

3.5.4. Modification of the panel assembly image (2D drawing) 

Utilizing the estimated coordinates of markers and projection area, a panel 

assembly drawing is re-sized and adjusted to be aligned onto the actual wall panel 

at a manufacturing facility. The panel assembly drawing can often contain an entire 

wall panel, which can be larger than the projected drawing for which the markers 

are placed (Fig. 22a). Therefore, a proper selection of the wall panel assembly 

drawing is important for accurate projection alignment. To avoid misalignment of 

the projection, it is recommended to place all the markers at areas where vertical 

and horizontal studs are jointed together, as presented in Fig. 8b, since the entire 

panel is divided into sub-sections as work units in current practice. In a drawing, 

the center of the markers can be marked (Fig. 22c) to correspond to the locations of 

actual markers where a user determines to build the panel. An image resolution of 

the selected panel drawing (Fig. 22d) is then adjusted for the projection (e.g., 1,920 

× 1,080 resolution in these experiments).  
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Figure 22 Overview of performing geometric transformation: (a) entire wall panel 

drawing; (b) locations of markers on actual panel; (c) location of marker on 

drawing; (d) selecting a section of panel assembly drawing; (e) transformed panel 

drawing image; (f) translated panel drawing image 

The size of the projected image is then re-adjusted according to the coordinates of 

the actual markers by calculating the differences between the marker coordinates 

(Xm, Ym) and the projection boundary coordinates (Xp, Yp) as presented in Fig. 18. 

In particular, the resolution of the projected panel image aligns to that of the 

projector through the adjustment, and thus a geometric transformation (Eq. 3) can 

be applied to the projected panel image to be fit within the boundary of the markers 

(Fig. 22e). Lastly, the top left corner of marker coordinates is selected to translate 

the panel image onto the correct location (Fig. 22f). The completion of these 

processes results in an aligned panel image on which marker locations in a drawing 
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are matched to the actual markers in the field. Once the image is sent to the 

projector, the image is overlaid on the surface of the wall panel to be built. 

 
Figure 23 Marker coordinates adjustment 

3.5.5. Performance evaluation 

Through both laboratory and field experiments, the accuracy of the 

proposed projection alignment process is evaluated. The accuracy is measured by 

estimating an offset distance from the center of a marker to the corner of the 

projected area as presented in Fig. 24c. This method, which takes measurements of 

offset distances between a marker and the projection area boundary, has been 

utilized to quantify the level of accuracy in previous studies (Besharati Tabrizi and 

Mahvash 2015; Wen et al. 2013). In the present study, a Cartesian coordinate 

measurement template (Fig. 24a) is superimposed over the image, which is taken 

after the image projection (Fig. 24b), and an offset distance is measured from the 

template (Fig. 24a). In Fig. 24c, point A represents the center of a marker in a pixel 

coordinate, and point B represents the corner of a projection area. The coordinates 

of markers are acquired using the polar coordinate template to mark points A and 

B. After the acquisition of the offset distance in polar coordinates, the actual offset 
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distance in mm is calculated using Eq. (7), where R represents the radius of the 

marker in mm and C represents the distance from the center of marker A to point 

B in the template with a distance range of 1 through 6 as presented in Fig. 24a. 

Since the radius of the marker is a constant value and can easily be measured using 

a ruler during the experiment, the only variable in the equation that is required to 

be checked in each experiment is the offset reading (point B in Fig. 24c) from the 

template. 

𝑜𝑓𝑓𝑠𝑒𝑡 𝑖𝑛 (𝑚𝑚) = 𝑅 ∗ 𝐶 ÷ 6 (7) 

 

 
Figure 24 (a) polar coordinate template; (b) example of actual projection; (c) 

offset measurement using template 

3.6. GPS data analysis for transportation equipment 

 GPS data analysis is performed in order to gain an intuitive understanding 

of the raw GPS data by abstracting key information (e.g., transportation demands), 

which is then used for building a machine learning model for the transportation 

demand prediction in this study. In general, GPS data is considered large scale 

because a single GPS data transmitter can create over 10,000 data points per month 

based on a 2-minute data interval, and because, in construction, multiple trucks are 

usually operating simultaneously. For example, in panelized construction, as shown 

in Fig. 25, 45,000 GPS data points (a single GPS data per row) from the 
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transportation operations of 13 residential projects can be generated from five 

operating trucks. From these datasets, transportation demands for each project are 

extracted through the proposed methods including a structured query language 

(SQL) query, geo-fences, and the rule-based algorithm. These abstraction processes 

can allow for reducing the time and effort required to understand the GPS data, as 

well as for encouraging the utilization of the GPS data (Hildreth et al. 2005). In 

addition, through the GPS data abstraction, different outputs such as driver 

speeding and hard-braking situations, the frequency of potential collisions between 

different equipment, and ratio of idling to moving can also be collected. Therefore, 

accurate GPS data processing is important to generate transportation demands as 

well as to make it possible to apply GPS data for other purposes.  

 

Figure 25 Example of the GPS data analysis (abstraction) processes 

3.6.1. GPS data querying and the geo-fence setup 

 Since the collected raw GPS data contains many different projects over time 

in various locations, the large volume of data can negatively affect the accuracy of 

data processing due to multiple projects in an adjacent area. To resolve this issue, 

the SQL query and the geo-fence are utilized to reduce the volume of the relevant 

GPS data through information retrieval and to recognize GPS data points only 

related to a targeted project. In these processes, it is assumed that all projects have 
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information on a starting and finishing date and a location (i.e., address) as such 

data can be easily acquired from project specifications and documents.  

 To perform the date query in the database where a historical GPS dataset is 

stored, the acquired project start and finish date information is applied to reduce the 

volume of the GPS data, as shown in Fig. 26. When applying the date query, the 

GPS data that satisfies the queried date range will be filtered as a result. Unlike in 

Fig. 26 where a single project is shown as a result, the results may contain multiple 

projects. In this case, another GPS date filtering condition is required to accurately 

determine the GPS data points for each project, and the geo-fence can be applied to 

improve the GPS data filtering accuracy. 

 

Figure 26 Example of the GPS data reduction by using the SQL query 

The concept of geo-fence (Reclus and Drouard 2009) is adopted to check 

the status of transportation equipment in specific locations, such as a panel 

fabrication shop or construction sites. The geo-fence can be considered an 

imaginary fence on a map where the specific area or the area of boundary is defined 

by multiple GPS coordinates (e.g., latitude and longitude). The shape of the geo-

fence can be varied (e.g., square, trapezoid, or diamond) based on user preference, 

and in this study, a circular shaped geo-fence is applied because of its advantages 

in determining equipment status (e.g., inside or outside of a geo-fence); namely, the 
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circular geo-fence, because of its shape, can provide more consistent detection of 

equipment status compared to the other shapes. To set up the geo-fence, a center 

location and a radius of the geo-fence need to be determined. For the center 

coordinates, a construction project address can be used as the center point, and a 

GPS coordinate of the project address (e.g., street address) should be converted to 

GPS coordinates by using a geo-coding conversion process. One of the popular 

geo-coding service providers is the Google Maps API, which requires an http 

protocol in order to return the latitude and longitude of the street address. Once the 

center location of the geo-fence is determined, a radius of the geo-fence is also 

required in order to establish the boundary of the fence. As shown in Fig. 27, the 

virtual circular boundary (red dotted line) on the map presents the geo-fence applied 

area based on the user-defined radius of the fence, and in this study, a graphical 

user interface (GUI) is developed to get the user-defined radius and apply different 

radiuses (e.g., 50 m, 100 m, 150 m, 200 m, and 250 m) to find out the most accurate 

geo-fence setting. Once the center coordinates and the radius of the geo-fence are 

acquired, the status of transportation equipment can be determined by calculating a 

distance between the center of the geo-fence and the equipment. 

 

Figure 27 Example of the geo-fence set-up by using a project address and a radius 
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 The Haversine equation shown in Eq. (7) (Sinnott 1984) is utilized to 

calculate the distance between two GPS points on a map as shown in Fig. 28. In 

this study, the two points are represented by the locations of the residential project 

and the transportation equipment, respectively. For example, when the user defines 

the geo-fence radius as 100 m, if the distance between the two GPS point is less 

than 100 m, then the status of the transportation equipment will be determined as 

inside of the geo-fence. On the other hand, if the distance is greater, then the status 

will be outside of the geo-fence. 

 

Figure 28 Haversine equation and its variables 

𝑑 = 2𝑟 ∗ arcsin (√𝑠𝑖𝑛2 (
𝜑2−𝜑1

2
) + cos(𝜑1) cos(𝜑2)𝑠𝑖𝑛2 (

𝜆2−𝜆1

2
) Eq. (7) 

 
 Description 

d Distance (km) between two GPS coordinates 

r Radius of the Earth (e.g., 6,371 km) 

D Distance between factory and site (km) 

𝜑 Latitude 

𝜆 Longitude 

 

3.7. Application of machine learning in an input analysis 

 To develop a transportation cost prediction SVR model, the input data 

(training data) is prepared by combining the previously calculated transportation 

demands from existing projects with the detailed project specifications. The SVR 
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is one of the supervised learning algorithms used for performing regression analysis 

instead of classification, as in the case of a support vector machine (SVM). Unlike 

the SVM, the SVR seeks to identify a hyperplane that is located as close as possible 

to all data points by setting up a threshold. Previously, the SVR has provided 

accurate prediction performance in various areas (e.g., stock price, weather 

forecasting, cancer diagnosis) including cost prediction (Suganyadevi and Babulal 

2014), and it has shown its advantages over the popular multilayer neural network 

approach in the global optimum solution, robustness to outliers, and accurate and 

rapid prediction results in small sets of data (Pedregosa et al. 2011). The detailed 

project specifications are acquired from the project documents, such as drawings 

and contracts. As shown in Table 3, information is selected based on potential 

impacts on transportation costs for a total of eight different projects. For example, 

in the case of the building type, each building type (e.g., attached garage, detached 

garage, duplex), has different impacts on the transportation demands due to the 

differing total areas, design features, and models.  
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Table 3 Example of the input data for training SVR models 

Inputs Outputs 

Projec

t# 
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Wa
ll 

are

a  

Flo
or 

area 
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e 
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Cou

nt 
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k 
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r 

Cag

e 

Veran

da 
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g Type 

# of 

Trail
er 
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min 

1 
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Summit 
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2 
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5 

Boston 

Nationa

l 
Railroa
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9Mflr 

Sho

p-
Buil

t 

7 1 0 0 

Attach

ed 
garage 

 

12 65 

2 
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rs 

123

0 

328

6 

Tokyo 

Craftsm
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9Mflr 

Site-

Buil
t 

6 0 1 0 

Detach
ed 

garage 

 

15 77 

3 
Aspen 

Trail 

123

0 

294

2 

Prague 
Craftsm

an B 

9Mflr 
Stone 

Ens 

Sho

p-

Buil
t 

11 1 1 0 
Duplex 
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… … …  … …  … … … … … … 

 The selected attributes are (1) type of community, (2) total wall area, (3) 

total floor area, (4) house model, (5) roof-type, (6) roof count, (5) deck, (6) stair 

cage, (7) veranda, and (8) building type. The community includes different 

residential areas where each residential project is found. Each community is unique 

in its location, environment (e.g., mature versus new neighbourhood), and type of 

house. The wall and floor area are estimated areas based on 2D CAD drawings. The 

model represents a different base design of house that does not include any design 

options, and this information can be used to determine minimum transportation 

demands for each project. The roof type shows the different build-type and 

dimension of roof. Depending on the site condition, a roof can be either pre-built 

or site-built to satisfy schedule constraints. The roof count is the number of sub-

components that require delivery to site. The deck, stair cage, and veranda can be 

varied on each residential project based on the customer’s requests or designs, and 

the attributes represent how many deck, stair cage, and veranda are used in a project. 
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The building type attribute may include single detached or attached garage house, 

or duplex. Detailed descriptions of the selected attributes are shown in Table 4. 

Table 4 Description of the selected attributes 

No. Attribute Image 
Attribute 

Name 
Data Type 

Data 

Range 
Misc. 

1 

 

Community Categorical 17 unique 

List of residential 

communities 

throughout a city 

2 

 

Wall Area Numerical Continuous 
Total wall area in sq 

ft 

3 

 

Floor Area Numerical Continuous 
Total floor area in sq 

ft 

4 

 

House 

Model 
Categorical 154 unique 

List of different 

model types 

5 

 

Roof Type Categorical 2 unique 
Two different roof 

types 

6 

 

Roof Count Numerical Discrete 
Number of roof 

components 

7 

 

Deck Count Numerical Discrete 
Number of deck 

components 

8 

 

Stair Cage 

Count 
Numerical Discrete 

Number of stair 

cages 
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9 

 

Veranda 

Count 
Numerical Discrete 

Number of veranda 

components 

10 

 

Building 

Type 
Categorical 3 unique 

Type of building 

(e.g., detached and 

attached garage 

house, duplex) 

 After the input data acquisition from the GPS data analysis and the project 

documents, data pre-processing steps are required to improve the predication 

accuracy of SVR model. Among the selected attributes, different data types (e.g., 

categorical and numerical) are included, and the categorical data types, such as 

house models and types, should be converted to numerical types in order to train 

SVR models. To perform the data type conversion, one-hot-coding (Pedregosa et 

al. 2011) is applied to the categorical data to convert it into numerical data format. 

This method creates an individual data column for each data category and assigns 

1 or 0 based on the original data. For example, in case of the house type, three 

additional data columns (e.g., detached and attached garage house, duplex) are 

added to the conversion. For the numerical data types, they also require the pre-

processing step to normalize (e.g., Z-transformation) the numerical data into the 

same scale (0 to 1). Once the pre-processing is completed, the data is divided into 

training and test sets by a ratio of 8:2 respectively. To determine the most accurate 

SVR model, three different kernels, such as a linear, poly, and radial, are applied to 

the data set. For validation purposes, the 10-folds cross validation is adopted, which 

splits data into 10 equal datasets and then uses each one set as a testing dataset 

while the other 9 sets are used for training (Refaeilzadeh et al. 2009). In addition, 



69 

the parameters (e.g., gamma and C) of each SVR model are optimized by using the 

grid search method (Pedregosa et al. 2009) along with cross validation as in Table 

5. During the grid search, a range for each parameter should be defined and the 

exponential growth sequence is selected based on the recommendation from the 

previous grid search study (Hsu et al. 2003). Once the parameters are optimized, 

new project data are entered into the models to predict transportation demands 

while monitoring how closely the predicted demands are estimated from the actual 

values. To measure deviations from the actual values, the three performance 

evaluation measures, such as the mean absolute error (MAE), the root-mean-square 

error (RMSE), and the coefficient of determination (R-square), are applied to find 

the best models. The development of the SVR models are written in Python using 

the Scikit-learn library (e.g., GridSearchCV).  

Table 5 Parameter ranges for the grid search processes 

Kernel Type C Gamma (γ) 

Linear 

[1,10,100,1000] 

N/A 
Polynomial 

Radial basis function 

(RBF) 
[0.001, 0.01, 0.1, 1, 10, 100, 1000] 

 

3.8. Transportation cost estimation and comparison 

 The transportation cost estimation processes are presented in Fig. 29. The 

process consists of two steps: (1) new panelized construction project data is entered 

into the developed SVR model to predict transportation demands; and (2) the 

transportation unit’s cost per time (hour) and distance (km) are applied to the 

predicted demands to estimate a transportation cost of the new project by using Eq. 
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(8). The equation considers both traveling and idling situations that transport trucks 

often face during deliveries. The distance (d) between a factory and a construction 

site is calculated by using Google Maps. To validate the accuracy of the estimation 

results, the results are compared against actual transportation costs. 

  
Figure 29 Example of proposed transportation cost estimation processes 

 

𝐶𝑇 =  ∑(𝑁 ∗ 𝐷 ∗ 𝐶𝑜𝑝) +  ∑(𝑇 ∗ 𝐶𝑖𝑑) (8) 

 Description 

CT Total transportation cost, in CAD 

N Predicted number of truck visits 

D Distance between a factory and a site, in km 

Cop Unit operation cost, in CAD/km 

T Predicted duration of stay, in hr 

Cid Unit idling cost, in CAD/hr 

 

3.9. Development of the Fleet-dispatching schedule optimization 

model 
 

 Prefabricated home construction is a relatively new construction method 

where a prefabricated wall, floor and roof panels are built in the factory and 
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shipped to the site for installation. As the majority of the work takes place in a 

factory environment, this method produces a much higher quality with less 

environmental impact. Compared to modular construction, the panelized 

system can adapt to suit different types of architectural design due to its 

panelized nature (two-dimensional production of wall and floors). However, 

panelized construction requires more coordination in terms of operational 

logistics, as the wall, floor, and roof panels can be in different areas of the plant 

at a different time and are needed on site at different times according to site 

assembly sequences. In modular construction, on the other hand, each module 

is produced and dispatched to the site in a linear manner. As shown in Figure 

30, in a prefabrication facility, wall, floor, and roof panels are produced as per 

the production schedule and loaded into different trailers. Then, based on the 

site crane schedule, these trailers are dispatched from the plant accordingly. 

Once the site installation is complete, truck drivers go to the site and bring the 

empty trailers back to the plant. 
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Figure 30 Logistics operation of the prefabricated home production process 

 Current trailer operation practices in panelized construction mainly focus on 

delivering panels to site to achieve high crane productivity, and due to site-focused 

operation approaches, the offsite panel fabrication facility needs to hold the 

production line until empty trailers are available. Also, to locate empty trailers at 

sites, current practices rely on phone calls or text messages between drivers and 

factory operators, which can potentially lead to inaccurate and inefficient 

communications between workers. The logistics operation for panelized 

construction is a complex system with multiple job sites, multiple truck drivers, and 

empty and loaded trailers in the plant and other job sites. All these different factors 

make it difficult to optimize a trailer dispatching schedule that is generated and 

updated manually.  
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 As applications of information technologies (IT) are being increasingly used in 

the construction industry (FIATECH 2011), a smart device (e.g., iPhone) 

application based construction data have been used in a discrete-event simulation 

(DES) model to improve the accuracy of the master schedule (Song and Eldin 

2012). Using the smart device with advanced data collection such as GPS and QR 

code, workers and drivers can provide accuracy operation conditions from both the 

factory and job sites for developing DES model as in Figure 31, and the model can 

provide an optimum dispatching schedule based on comparisons between all 

possible choices using a heuristic algorithm approach. To validate the model, the 

panelized residential project is selected and compared with actual operation 

processes with outcomes from the model. 

 
Figure 31 Overview of the proposed fleet-dispatching DES model 

3.9.1. Fleet-dispatching DES model overview 

 The proposed fleet-dispatching DES model (Fig. 31) consists of four main 

modules as follows: (1) inputs for the model such as schedules, (2) the model 
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constraints that reflect dynamically changing transportation operation 

environments, (3) the fleet-dispatching decision-making processes that optimize 

truck dispatching, and (4) the last module provides results from the developed DES 

model. Basically, the pre-defined factory and site schedules with equipment (e.g., 

truck, trailer, and mobile crane) information are entered into the model to find out 

an optimum fleet-dispatching schedule, while considering such given constraints as 

information delay, site layout, distance, travel time, unloading time, etc. During the 

simulation processes, a truck’s availability is consistently checked in every second 

to assign the next optimum decision for the truck to improve overall equipment 

utilization, lead time, and transportation costs. The following section will discuss 

more details pertaining to each introduced module (1-4) above. 

3.9.2. Fleet-dispatching DES input data 

 Three types of information are required as input for the DES model, namely 

site schedules, factory schedules, and equipment information. First, the site 

schedule data presents a required panel delivery time where a site manager usually 

has a tentative delivery time for both truck drivers and crane operators. The site 

schedule data has three columns with a unique site ID, panel ID, and delivery time. 

For example, as shown in Fig. 32, if the schedule data shows Site_A with panel ID 

of the W1_A by 8:15 am, then a truck driver needs to pick up the specific panel to 

perform a delivery to Site A by 8:15 am. Next, the factory schedule is similar to the 

site schedule, but it requires an empty trailer from project sites. Since the factory 

production lines need to have a consistent supply of empty trailers to maintain high 

productivity, the empty trailer supply is the critical part of the operation for the 
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offsite construction facility. The factory schedule data also has three columns with 

a production line ID, the number of empty trailers required, and a delivery time. 

Lastly, the equipment information contains equipment ID, location, availability, 

and next available times for trucks, cranes, and trailers. For the equipment ID, each 

equipment has own identification code so that all activities can be tracked by 

equipment. The current location is where a piece of equipment is located; as the 

simulation is running, locations will be updated based on the assigned schedule. 

The availability of equipment is used to find out which equipment is available for 

the next upcoming delivery, and once the next delivery schedule is assigned to the 

available equipment then both availability and next available time are updated for 

next dispatching analysis. For example, as in Fig. 32, if the Truck02 is assigned a 

delivery to the Site A by 8:35 a.m. then the availability is changed to “No” and the 

next available time is assigned with the delivery time. 

 

Figure 32 Input data to the DES model 
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3.9.3. Fleet-dispatching DES constraints 

 The following constraints are considered in this DES model to simulate 

common obstacles that are faced in actual transportation operations of the panelized 

construction company. The common obstacles are (1) an information delay, (2) 

limited site trailer parking, and (3) serviceable area.  

 The information delay is a commonly occurring issue in construction 

projects, and its potential negative impacts are greater in panelized construction 

relative to traditional construction due to the fixed panel assembly order. For 

example, as shown in Fig. 33, the master schedule (the site and the factory schedule 

in this model) may not be fixed and could be changed throughout project operations 

due to unforeseen risks (e.g., weather conditions), which means the panel delivery 

schedules could be reported to truck drivers on very short notice. Since this 

constraint can frequently occur in practice, the DES model tries to determine the 

potential negative impacts due to various magnitudes of information delays.  
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Figure 33 Information (schedule) delays in panelized construction 

To evaluate the impacts from information delay in transportation operations in 

panelized construction, ten different time delay magnitudes are examined. From 0.5 

hours up to 2.75 hours with 0.25 hour increments, each information delay is 

examined then its impacts are measured using the transportation key performance 

index to have an objective perspective on results.  

 The next constraint is the limited site trailer parking that allows only a 

limited number of trailers at construction sites due to limited available parking areas. 

As in Fig. 34, each job site can have a unique situation where the parking area can 

hold only a specific number of trailers. A certain site may hold one only trailer at a 

time, while other sites may hold more than one trailer, even up to 5 or 7 trailers. 

Sites that can hold a larger number of trailers have a buffer that provides flexibility 

to both truck drivers and crane operators. However, for the site with one trailer 

parking space, it does not have the buffer meaning trailers should be supplied and 

removed from the site on-time, otherwise, the site operation can be stopped and this 
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may cause significant schedule and cost impacts to the overall project. To simulate 

this constraint, the DES model uses a site-specific weight factor that can provide a 

different factor to reflect the limited trailer parking conditions. More details 

pertaining to the weight factor calculation will be discussed in following section.  

 
Figure 34 Limited trailer parking constraints at project job sites 

 The last constraint in the transportation operation in panelized construction 

is the serviceable area. Since transportation equipment, especially trucks, require 

frequent round-trips to sites, different site locations in various areas would impact 

the overall transportation operation performance in cases where the distance from 

a facility is significantly long. However, current transportation planning has been 

managed manually based on the logistic dispatcher’s past experiences and a 
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serviceable distance or area has not been clearly defined. As a result, long distance 

projects required a high estimation cost in an effort to mitigate any unforeseen 

potential transportation risks during job execution periods. To clarify the current 

vague limitations of the serviceable area, this DES model incorporates various 

ranges in project distances to simulate and determine potential impacts with respect 

to transportation key performance index. To simulate the constraint, six different 

serviceable areas are examined by increasing distance by 10% on each run. For 

example, 0% to 60% increases in the serviceable areas are simulated to determine 

the corresponding indexes. 

 

Figure 35 Serviceable area constraints in panelized construction 

3.9.4. Matrix based fleet-dispatching decision-making processes 

 Once the input data for the DES model are entered with the constraints, two 

different matrices are calculated to perform heuristic optimization on the fleet-

dispatching plan. As shown in Fig. 36, the DES model starts by checking for any 

available trucks in every one second increment to perform and assign loaded or 

empty trailers to the available truck. If there is an available truck at a given moment, 

the DES model will calculate the matrix to determine the optimum decision at that 
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given moment, otherwise if there are no available trucks then the model increases 

the time until it finds available trucks. To calculate the matrix, upcoming schedules 

(sites and factory) with potential operation durations and distances are used to 

calculate transportation costs for the matrix, and site-specific weights are included 

in the matrix to differentiate site operation priority. Thus, by combing (1) 

transportation costs, (2) distances, and (3) site priority factors to calculate the 

matrix, the decision-making algorithm is used to determine the optimum fleet-

dispatching decisions as shown in Fig. 36. Since the three different elements have 

different levels of importance in terms of dispatching decision-making processes, 

the transportation cost is set as the most important factor with 70% of total matrix 

(e.g., maximum matrix event point = 1.0) and the other distance and the site priority 

are given 20% and 10%, respectively. Considering the limitations in previous 

transportation simulation studies where only durations were considered for 

decision-making processes, this study can provide more comprehensive 

considerations of entire transportation operations. Therefore, using the dispatching 

selection matrix with the decision-making algorithm, the DES model will optimize 

each decision while improving on-time delivery performance.  
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Figure 36 Detailed algorithm for fleet-dispatching DES model 

 

 

Figure 37 Fleet-dispatching decision-making matrix 

 Among the three factors in the matrix, the transportation costs require three 

element calculation processes to accurately reflect outcomes from potential 

dispatching decisions. The three elements presented in Fig. 37—travel time, truck 

unit costs, and potential waiting time—are the main contributors to the 

transportation cost. The cost can be calculated based on distance traveled, but 
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considering truck idling times, the duration (cost per time) based unit cost is 

applied. First, the travel time presents a required duration to perform a delivery to 

a specific construction site, and this information can be acquired from the Google 

Maps API-based travel time estimation. However, the Google Maps API is 

currently based on passenger car travel duration rather than a commercial vehicle 

such as a truck; therefore, to improve the travel time estimation accuracy, the 

historical GPS data of trucks are analyzed to determine actual travel time to sites 

when they are located in newly developed areas. Next, the unit costs for mobile 

crane, truck, and factory production line are used with previously calculated 

durations to calculate the transportation cost. The calculation of the unit costs is 

discussed in previous sections.  

 

Figure 38 Transportation cost calculations for fleet-dispatching decision matrix. 

Lastly, the waiting time is used to account for situations when potential delays 

occur due to either on-site crane operation or factory loading operations because of 

the late delivery of trailers. Delays are an inevitable issue in transportation 

operations in panelized construction, and it is important to consider the financial 
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impacts these delays cause. To calculate the waiting time for equipment, the matrix-

based available time calculation process is proposed as shown in the Fig. 38. Based 

on the provided schedule from the initial input, next upcoming schedules for both 

sites and factory can be calculated based on current time. For example, the current 

time is 8:00 am and the next delivery schedule at Site_A is 8:45 am, so the next 

event time will be in 45 minutes. By calculating time for all possible sites, factory, 

and trucks, the next event time matrix can be populated as shown in Fig. 38. Next, 

the execution time matrix needs to be calculated to determine the waiting time. The 

execution time matrix contains travel durations for all possible site and truck 

combinations as in the next event time. Based on the current location of equipment, 

the execution (travel) time is calculated based on the previously mentioned 

historical GPS data and the Google Maps API. Finally, the available time matrix 

can be calculated by subtracting the next event time matrix from the execution time 

matrix. Depending on the situation, the available time matrix could be negative or 

positive. Positive means that extra time will be available after completing the 

delivery; however, the negative number represents potential delays in delivery. For 

example, if the number is negative five (−5) then the time will be delayed relative 

to the assigned schedule. Thus, by calculating the three matrices, the waiting time 

can be calculated if the available time is negative. Also, if the negative number is 

estimated for site delivery then the crane unit cost will be applied to calculate 

transportation cost, and if the factory has the negative number then the factory unit 

cost will be used. Since the factory has more workers and equipment than site 

operations, the factory unit cost is highest. 
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Figure 39 Available time matrix calculation process 

3.9.5. Dispatching decision-making processes 

 As shown previously in Fig. 36, the DES model needs to determine a 

dispatching decision based on following a heuristic optimization approach to 

achieve on-time delivery, as well as improve overall transportation operation 

efficiency. Unlike the conventional DES model that follows given event durations, 

the developed DES model incorporates the heuristic greedy best-first search 

approach. Using the available time and the decision matrix, the DES model can 

make an optimum fleet-dispatching decision that considers all possible dispatching 

options. Since the applied heuristic approach consciously selects the event with the 

lowest value in the two matrices, each decision will continuously improve overall 

performance of the dispatching plan at the end of the simulation. 
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Figure 40 Comparison between conventional DES and heuristics greed best-first 

search integrated DES 

As shown in Fig. 39, three different matrices are used to make a decision for 

dispatching. The left matrix is called the available time until the next schedule 

matrix that represents an available time until the next schedule on each site and 

factory based on the current time. For example, if the current time is 9 a.m. and the 

next schedule at Site A is 10 am, then SA,01 will be 1 hour, or 60 minutes. The next 

matrix, called the duration matrix, represents expected times to perform the 

schedules. For example, to perform a panel delivery to Site A (DA,01) it will 

calculate a potential travel time between Site A, the factory, and the current truck’s 

location by using the Google Maps API, and it also includes estimated loading time 

when the truck picks up the trailer from the factory. Lastly, the final matrix, called 

the difference between the times, represents a difference between the previous two 

matrices. For example, for truck01 and Site A, TDA,01 would be equal to subtracting 

DA,01 from SA,01. This difference shows the minimum time required for performing 

transportation operation tasks. Once the difference matrix is prepared, the next step 

is to determine optimum dispatching decisions, as shown in Fig. 41. If truck #1 is 
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assumed as being the only available truck in this matrix, the truck #1 column is 

selected initially and the smallest number in that column is found. The negative 

number represents a potential delay in the schedule. In Fig. 41 the smallest number 

is −10 for picking up empty trailer #1. But, in the same row, truck #2 could do the 

same task without any delays. Thus, the picking up empty trailer #1 task would be 

better performed by truck #2. Then, in truck #1’s column, the second smallest 

number is −5 for delivering a trailer to Site B. In the same row, truck #1 could better 

perform this task than the others, so the task is given to truck #1 in this case. 

Multiple trucks can be available at the same time, but in this study, it is assumed 

that only one truck is available at one time. 

 

Figure 41 Fleet-dispatching selection processes (heuristic greedy best-first search) 

 Beside the heuristic approach for the fleet decision making, five additional 

rules as shown in Tables 6 and 7 are applied in this DES model to improve overall 

simulation operations, such as termination conditions and special situations.  
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Table 6 The DES model comparison excluding conditions  

No. Conditions 

1 
If the available time is greater than 90 min, the event is excluded for 

the comparison. 

2 
If the site is complete, then the specific site is excluded for the 

comparison 

3 
If the site has more than the allowable number of trailers, then the 

specific site is excluded for the comparison 

 

Table 7 The DES model termination conditions 

No. Conditions 

1 
If the DES model running time exceeds the end time, then the 

simulation will be terminated. 

2 
If all project sites are completed, then the simulation will be 

terminated. 

 

3.9.6. Transportation key performance indicators 

 Accurate performance measure in transportation operation is important to 

continuously improve operation efficiency (Chow et al. 1994), and this study adapts 

four commonly used performance measurement indicators in logistics operation 

and one industry (e.g., panelized construction) specific indicator (e.g., empty trailer 

return) is utilized to measure overall performance of the operation in panelized 

construction, as shown in Table 8.  

 On-time delivery is a measured as keeping the time window for deliveries. 

On-time delivery is a critical issue in the panelized and other offsite construction 

methods due to the high cost of mobile crane and the fixed assembly order. If a 

panel delivery is delayed, then the rest of the assembly processes cannot proceed 

until the prior assembly is complete. Thus, on-time delivery can be the single most 

important factor in panelized construction. The lead time presents an offset time 

from a schedule delivery time. This lead time provides a magnitude of the on-time 
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delivery in that a positive time value indicates ahead of schedule, and a negative 

time value means a potential delay. The transportation cost is an especially 

important decision-making indicator for construction or transportation managers 

who try to reduce overall construction operation costs, but the transportation cost 

cannot be the single decision-making factor because the cost only reflects 

transportation aspects in panelized construction. Sometimes a high transportation 

cost can contribute to saving on overall operation costs at the end of the project. 

The equipment utilization is a popular indicator in the measurement of logistics 

performance in that it provides concise equipment operation information used to 

understand equipment operation efficiency. Ideally, 100 percent operation of all 

equipment would be desirable, but in practice, considering physical limitations, 

finding the maximum equipment utilization based on current resources would be 

beneficial for project managers. Lastly, the empty trailer return percentage is a new 

key performance indicator for the panelized construction operation. Due to the 

unique combination of two different industries, namely manufacturing and 

construction, transportation operations must satisfy both ends of operations (factory 

and sites) by supplying empty trailers for the factory and loaded trailers for the sites. 

Thus, for the factory side, the return percentage of empty trailers is a critical 

element that directly influences performance of the factory. Without the empty 

trailer, the factory cannot load the finished products and start a new product. Thus, 

this new indicator is included in this study to measure the overall transportation 

operation performance.  
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Table 8 Five transportation key performance indicators in panelized construction.  

No. 
Key performance 

indicator 
Description 

1 
On-time delivery 

(%) 

Assigned trailer is delivered to a designated site 

within the scheduled time window. 

2 
Average lead time 

(min) 

A time gap between scheduled and actual delivery, 

Positive (+) means that an activity is performed 

before the scheduled time. 

3 
Transportation cost 

($) 
A cost dedicated to performing an assigned delivery 

4 
Equipment 

utilization (%) 

Total operation percentage (%) of trucks, cranes, 

and trailers based on given working hours  

(e.g., 8 am – 6 pm). 

5 
Empty trailer 

return (%) 

A percentage (%) of returned empty trailers back to 

factory (empty trailer retuned / total used trailer). 

 

3.9.7. Fleet-dispatching DES outputs 

 Upon successful completion of the DES model run, each piece of equipment 

(truck, trailer, and crane), and the site and factory operation logs are generated to 

identify the optimum schedule from the model. Fig. 42 presents the structure of the 

logs where each activity is recorded per row with equipment ID, location, activity 

start and end time, duration, associated equipment ID, and previous location. For 

the fleet-dispatching plan, the truck logs are analyzed to identify the dispatching 

order. 

 

Figure 42 Outputs from the developed DES model 
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4. Chapter: Implementation and Case Studies 

 In this chapter, the implementation processes of the developed 

methodologies in the Chapter 3 are presented. To evaluate the developed 

methodologies, they are implemented in collaboration with an industrial research 

partner (Fig. 43) which is one of the largest and most advanced panelized residential 

construction company in North America. The transportation quality assurance 

method which utilized the projection-based AR is examined at wall panel 

production lines at the panel manufacturing facility, and the rest of the 

transportation data collections, transportation cost estimations, and fleet-

dispatching schedule optimizations are applied in actual residential project to 

validate its performances. 

 

Figure 43 Panelized construction facility and operations (courtesy of ACQBUILT, 

Inc.) 
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4.1. Transportation quality assurance (Projection-based AR) 

The proposed framework for projection alignment is examined in both lab 

and field environments. In the lab experiment presented in Fig. 44a, accuracy of the 

projection alignment at various distances and levels of illumination is measured to 

determine the performance of the framework. Additionally, the field experiment 

presented in Fig. 44b is conducted as a proof of concept to validate the framework 

in a working environment as well as to determine any potential issues in practice. 

For performance evaluation, the results of projection accuracies and ANOVA tests 

are presented and analyzed in this section. 

 

Figure 44 Experiment setup: (a) at lab; (b) at panel manufacturing facility 

4.1.1. Equipment and experiment setting 

This experiment utilizes four pieces of equipment as outlined in Table 9 to 

perform the proposed alignment. All equipment is selected considering minimal 

up-front costs, which may be a barrier for industry implementation (Van Krevelen 

and Poelman 2010). High-end equipment, such as a higher resolution projector, 

distortion-free lens, and faster processor, can also be considered to improve the 

accuracy and robustness. In the present research, the EPSON projector with 1,920 

× 1,080 resolution and 3,500 lumen brightness is used. This projector is equipped 

(a) (b) 
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with both the vertical and horizontal automatic keystone effect adjustment feature, 

and the feature is enabled throughout the experiment. A Nikon D80 camera with 

10.2 MP sensor resolution is used to take the photograph. The level of ISO in the 

camera is set to 100 to minimize potential noise on the image. The Tamron zoom 

lens is used as an attachment to the camera, and the focal length is fixed at 30 mm 

to minimize image distortion according to the lens manufacturer. Lastly, a laptop 

with an i7 processor and 16 GB RAM is used to perform image processing. 

Table 9 Summary of utilized equipment in experiment 

 
EPSON 

Powerlite 965 
Nikon D80 Tamron Lens HP Pavilion 

Equipment Home Projector DSLR Camera Lens Laptop 

Price $899 CAD $1,000 CAD $300 CAD $1,000 CAD 

Major 

specifications 
3,500 Lumen 

1,920 × 1,080 
10.2 MP 

17-50 mm zoom 

lens 

Intel core i7 

RAM 16 GB 

 

Two variables to be tested in this experiment include projection distance 

and level of illumination. The performance of projection AR at a distance of more 

than 3 m under various levels of brightness has yet to fully been examined for the 

various application areas (Zhou et al. 2011; Zhou et al. 2012; Besharati Tabrizi and 

Mahvash 2015). Additionally, the level of illumination is also a constant factor in 

previous studies where the experiments are performed in an indoor environment 

under artificial lighting sources. Therefore, in the present study, to determine any 

potential influences of distance and illumination levels on the projection alignment 

accuracy, the accuracy is measured in various conditions of distances and 

illuminations as presented in Table 10. In the lab experiment, four different 

distances with two different illumination levels are examined. For example, at a 5-

m distance, projection alignment is repeated 40 times under each illumination level 
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(e.g., low and high). The level of illumination is controlled by turning the artificial 

light sources on an off. In the field experiment, the projection alignment with an 

actual drawing is performed at a 7-m distance under a constant level of illumination; 

7 m was determined to be the minimum distance to cover the height of a wall panel. 

The level of illumination remains constant due to the existing metal halide light 

bulb that is installed on the factory ceiling.  

Table 10 Pre-determined inputs for alignment processes 

 Lab Experiment Field Experiment 

Distances 5,6,7, and 8 m 7 m 

Level of 

illumination 
With and without artificial 

lights 

Under normal working 

environment 
Number of 

repetitions 
40 at each distance 8 

 

Before each projection alignment experiment, four markers are placed within an 

area of projection. In the lab experiment, the markers are randomly located for each 

projection distance to verify projection alignment accuracy at different marker 

locations. In the field experiment, the markers are located at the point where a 

vertical and horizontal stud meet as per current practice (Fig 44b).  

 Aligned projection images are then collected using the digital camera. The 

image resolution is 3,872 × 2,592 in jpeg file type. Once the image is collected, 

alignment accuracy is further evaluated to record offset values. 

4.1.2. Projection alignment accuracy 

To assess the performance of the proposed projection alignment, the metrics 

outlined in Section 3.4 are used to analyze accuracy of the projection by measuring 

the offset distances. To understand the performance of the projection at each 



94 

distance under different levels of illumination, the mean and standard deviation are 

calculated as presented in Fig. 45. The experiments are performed beginning with 

the nearest distance to the farther distance. The lowest projection offset distance is 

achieved at the shortest distance (at 5 m) for both low and high levels of 

illumination, respectively (Mlow = 1.23, SDlow = 0.65; Mhigh = 2.15, SDhigh = 2.87), 

and the highest offset is found at the longest distance (8 m) (Mlow = 5.18, SDlow = 

3.4; Mhigh = 6.3, SDhigh = 3.84). The results also indicate that the accuracy is 

inversely related to the distance in general. As the distance is increased from the 

initial point at 5 m to the final projection of 8 m, the mean offset distances increase 

by 3.95 mm and 4.12 mm for high and low illumination, respectively. Overall, the 

mean offset distance does not exceed the factory tolerance level of 6.35 mm for all 

projection distances.  

 

Figure 45 Mean offset distance and standard deviation (SD) at different levels of 

illumination over the various distances. 
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Furthermore, the ANOVA test and T-test are applied to the offset distance 

dataset in order to understand the potential impact of the distance and illumination 

variables from a statistical perspective. In both tests, the level of significance (α) is 

set as 0.05. For the projection distance, the data set is divided into two separate 

groups with four different sub-groups based on the level of illumination and the 

distances, respectively. Considering the illumination as the independent variable, 

statistical significance of the projection distance is tested and the results are 

presented in Table 11. According to the ANOVA test, the distance is the statistically 

significant factor on the projection alignment accuracy since the P-values are 

smaller than the significance value in this test regardless of the level of illumination. 

Thus, it is concluded as statistically significant that a longer projection distance 

increases offset distances overall.  

Table 11 Summary of ANOVA analysis on projection accuracy over distance 

change 

 

Source of Variation df (Between Groups) F F critical P-Value (α = 0.05) 

Distances in high illumination 3 9.84 2.66 5.53E-06 

Distances in low illumination 3 7.83 2.66 6.64E-05 

 

For the level of illumination, the T-test is applied to the data set to determine the 

statistical significance of the illumination on the projection alignment accuracy. 

Since the comparison is made between two groups, the T-test is used. Prior to the 

T-test, distribution of variances in both groups are examined using the F-test, and 

the results indicate that they have similar variance distributions. Considering the 

distance as the independent variable, the data is divided into two groups based on 

the level of illumination. The results are presented in Table 12; notably, the level 
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of illumination is also a statistically significant factor on the projection alignment 

accuracy since the P-value is smaller than the significant factor. Consequently, 

these statistical results indicate that the high level of illumination reveals a smaller 

mean offset distance than at the low illumination level.  

Table 12 Summary of F- and T-test analysis on projection accuracy under different 

levels of illumination 

 
 Low illumination High illumination 

Mean 4.71 3.76 

Variance 18.41 14.84 

Significant value (α) 0.05 

T-Test, df 318 

T-Test, P(T ≤ t), one-tail P(2.08 ≤ 1.65), P_Value = 0.02 

 

For field testing, the proposed projection alignment is conducted for a manual wall-

assembly line at the case study panel manufacturing facility. The results indicate 

that the offset distance (M = 6.17, SD = 1.68) is greater than the lab experiment 

(Mlow = 5.0, SDlow = 4.9) at the same distance (7 m) under low illumination. 

Although the lab tests offer better results for both illumination levels, performance 

gaps between the two environments are less than 1.3 mm, and such gaps could be 

acceptable in practice considering the factory tolerance level of 6.35 mm. Final 

overlay of the panel assembly drawing on the wall panel is presented in Fig. 46. 
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Figure 46 Projection of 2D assembly drawing on the panel: (a) zoom out view; (b) 

zoom in view 

4.1.3. Summary 

This research proposes and examines the automated projection alignment 

method to provide site workers with visual guidance for quality improvement in an 

offsite manufacturing facility. The experiment results imply that this approach can 

accurately provide drawing information to manual assembly workers in a large-

scale manufacturing facility under limited conditions. As presented in Fig. 12, the 

mean offset distances are smaller than the tolerance level up to 8 m. It is statistically 

found that the offsets increase when the distances increase, while illumination 

conditions also affect performance of the proposed vision approach. The 

relationship between the distance and the error may be due to limited resolutions in 

the camera and projector. At 5 m, the diameter of a marker occupies 143 pixels, but 

decreases to 100 pixels when the projection distance increases to 8 m. Therefore, 

accuracy of marker coordinates can be reduced as a smaller number of pixels are 

covered by the markers during the segmentation and the blob analysis. Additionally, 

as the projection distance increases by moving the projector further from an object, 

a dimension of the projection area increases, but the total pixel number does not 

change. As a result, the size of each pixel increases as the projection distance 

(a) (b) 
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increases, leading to enlargement of the line as well as reduction in sharpness of 

pixels. In this regard, it is possible to use equipment with a higher resolution in 

order to improve accuracy in long-distance projection alignment.  

Projection-based AR has potential to be used in industrialized construction. 

The manufacturing process continues to involve a significant amount of manual 

work, but working environments can be easily controlled compared to outdoor 

environments on a jobsite. Due to the nature of manual work, quality issues can 

inevitably occur and should be minimized in order to successfully complete projects. 

Current quality control in the industry can be considered as passive: quality checks 

are performed after the completion of jobs. If workers are able to actively check 

and compare their work with a drawing as the tasks are being performed, then 

quality issues could be even further reduced compared to the current process. 

Previous studies on visualization of information in manual workplaces indicate that 

quality and productivity can be improved through visualizing information thereby 

reducing cognitive demands (Funk et al. 2015; Wang and Dunston 2006; Dunston 

and Wang 2005). Therefore, this proposed method can serve as a foundation for 

quality control study in the industrialized construction industry where the quality 

of prefabricated building components is critical. In addition, this proposed method 

offers clear benefits over other AR devices: (1) it does not require workers to hold 

or wear any specialized equipment while working, and (2) it is able to project 

information over the actual view of workers.  

When the proposed method is applied in practice, the need for a longer 

projection distance and possible occlusions (e.g., worker’s body or other moving 
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objects) may be issues due to the limited space and task objectives in working areas. 

To this end, identifying appropriate installation positions for the projector can be a 

key to the implementation; on the other hand, the use of an advanced projector can 

also be considered to address such issues. For example, an ultra-short throw 

projector can be placed extremely near to an object, yet still providing coverage for 

a large projection area. Thus, different projector types should be examined to 

overcome issues due to the projector location. Also, the legibility issue has been 

identified during the experiment where the high illumination level washes out the 

projected drawing on the panel surface. A brighter projector will provide better 

legibility, but potential damage to eyes should be considered in case of direct 

exposure to such a high-intensity projector (Schulmeister and Daem 2016). For the 

limitations during the initial alignment processes, the selection of the marker colour 

can influence accuracy of the alignment so that the colour segmentation processes 

can precisely differentiate the markers from background. 

4.2. Transportation demand and cost estimation 

The proposed framework is implemented and assessed through a case study 

of a panelized residential construction company in Edmonton, Canada. The 

company mainly focuses on local residential construction projects, and on average 

2 to 3 projects are executed per day, this rate being constrained by the availability 

of mobile cranes for on-site assembly operations. To deliver prefabricated panels 

to sites, the company operates 5 trucks with 50 flatbed trailers. For tracking 

purposes, each truck has an individual GPS transmitter with a location transmission 

to a cloud server at 2-minute intervals. For development of the reliable SVR model, 
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GPS data from 221 residential projects was collected and analyzed for the 

transportation demands along with the project information, and all the residential 

projects were located nearby the city of Edmonton. A summary of the project data 

is presented in Table 13.  

Table 13 Description of the residential project data 

Attribute Description 

The number of panelized residential projects 221 projects 

House types Duplex:45, 

Detached garage: 50, 

Attached garage: 128 

House models 27 different models 

House size Smallest: 1290 sq ft 

Average: 2113 sq ft 

Largest: 2732 sq ft 

Community 11 different areas 

 For easier access and control of the collected fleet GPS data in the database, 

a simple graphical user interface (GUI) is developed as shown in Fig. 46a. Since 

the job name is the unique identifier in the database, the project’s detailed 

information, such as community name, address, and others, can be accessed by 

performing database queries. For the radius selection, a user can choose different 

ranges between 50 m and 250 m from the center of the project location. In the case 

where the street address in a new community may not be available in the Google 

Maps API, manual GPS data input can be applied to provide GPS coordinates to 

the interface. To validate the accuracy of the calculated transportation demands, 

previous truck operation logs, shown in Fig. 46b, are used to compare against the 

calculated demands, as shown in Fig. 46c. Once the analysis of the residential 

projects is complete, the project information in Fig. 46d is combined with the results 

to create input data for training SVR models.  
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Figure 46 (a) the GUI for the GPS data access and analysis; (b) truck operation logs; 

(c) the results from the GPS data analysis; (d) the project-related information 

database 

4.2.1. Transportation demands 

 To determine the accuracy of the proposed approach, outcomes (e.g., truck 

visit counts and durations) from the algorithm are compared against the actual 

demands from the truck operation logs that show the truck dispatching history on 

each residential project. In addition, different geo-fence radiuses were examined to 

determine the most accurate geo-fence setting. The comparison results are 

displayed in Fig. 47. The results showed that the smallest (50 m) geo-fence had the 

highest accuracy with respect to recognizing the number of visits on job sites. The 

average error for the 50 m geo-fence was 0.77 with 2.19 standard deviation. The 

largest radius, 250 m, resulted in the lowest level of accuracy with an average error 

(c) 

(d) 

(a) (b) 
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of 4.29 with 3.02 standard deviation. For the unloading duration comparison shown 

in Fig. 10, the geo-fence with the shortest radius (50 m) had the best accuracy with 

the average error of −0.30 hours with 3.21 hours in standard deviation, and the 

largest radius again had the lowest accuracy among them with an average error of 

1.84 hours and 3.34 hours in standard deviation. The main reason the reduction in 

accuracy with a longer radius was due to the recognition of picking up empty 

trailers from sites. For example, for the 250 m radius geo-fence, the visit counts 

falsely included activities such as picking up an empty trailer, passing through the 

site, and finding parking spots. These activities were identified as the main causes 

of the high error in the longer geo-fences radius. In addition, other potential reasons 

might include a situation where two projects were located close together, and this 

could cause a miscounting of the site visits. 

 

Figure 47 Truck visit accuracy comparison between different geo-fence radiuses 
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Figure 48 Unloading duration accuracy comparison between different geo-fence 

radiuses 

Next, three different SVR kernels (linear, poly, and RBF) were examined 

for their ability to accurately predict transportation demands. In Fig. 48, the 

predicted visit counts and durations are compared against actual data. Both visit 

and duration predictions showed a good accuracy in lower ranges, such as 0 to 15 

truck visits in the total visit plot and 0 to 5 hours in the duration plot. In the upper 

ranges, the prediction resulted in relatively inaccurate results (e.g., over or under-

prediction) in both prediction cases. From the statistical point of view, both 

prediction results in Table 14 showed that the poly kernel had the best accuracy 

among other kernels. The total visit predictions using the poly kernel had a root-

mean-square error (RMSE) of 2.86 with an R-square of 0.89. Since the difference 

between the RMSE and mean absolute error (MAE) is 1.18, the variances in the 

errors in the data are expected to be small and no significant error was identified. 

Moreover, for the unloading duration predictions, the poly kernel also had the best 

accuracy with a RMSE of 2.56 and an R-square of 0.88, and the difference between 

the RMSE and the MAE was 0.79. Thus, given these results, the MAE provides a 
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better overview of the average difference between the predicted and the actual 

values. In addition, considering the magnitude of the MAE in both predictions, 

errors are not expected to cause any significant impacts on the overall transportation 

cost estimation. 

  

Figure 49 Predicted versus actual response plots for different kernel types 

Table 14 Truck visit and duration counting conditions.  

Method Predictions 
Linear 

Kernel 

Poly 

Kernel 

RBF 

Kernel 

RMSE 

Total Visit (Each) 3.77 2.86 3.46 

Unloading Duration 

(Hour) 
2.71 2.56 2.84 

R-

Square 

Total Visit (Each) 0.81 0.89 0.84 

Unloading Duration 

(Hour) 
0.86 0.88 0.85 

MAE 

Total Visit (Each) 2.63 1.68 2.30 

Unloading Duration 

(Hour) 
1.92 1.77 1.94 

 After the initial training, the three kernel types were optimized by using the 

grid search method. The ranges of parameters were given to the grid search to 
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perform iterations to determine the most accurate model with the optimum 

parameters. The results of this parameter optimization are presented in Table 15. 

RBF was the selected as the most accurate kernel for both prediction models with 

accuracy of 86% and 88% for total visit and unloading duration, respectively. 

Table 15 Results of optimizing parameters using grid search method 

Predictions 
Kernel 

Type 
C γ Accuracy (%) 

Total Visit (EA) RBF 100 100 86% 

Unloading 

Duration (hr) 
RBF 1000 1000 88% 

 

4.2.2. Transportation costs 

 The data for new residential projects were utilized to estimate the 

transportation costs and then compared with the actual transportation costs from the 

same actual projects. The fixed-cost-based estimation results were also compared 

against the actual cost to measure potential improvements in the transportation cost 

estimation performance of the proposed GPS-based estimation method. The 

comparisons were performed by calculating offset costs in percent error (%) from 

the actual operation data from truck logs, as shown in Fig. 50b, and the comparison 

results are represented visually in Fig. 50 where distances (km), house sizes (sq ft), 

and cost differences (%) are set as the x-, y-, and z-axes, respectively. To calculate 

cost estimation errors, differences between fixed cost and actual cost, and between 

GPS-based cost and actual cost, were calculated, and the results were then divided 

by the actual costs to determine differences as a percentage (%). The fixed-cost 

estimation is presented in Fig 50a, and the GPS-data-based estimation is shown in 

Fig 50b. In addition, the colours represent the amount of error over different 
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distances and house sizes: the highest error percentage (e.g., over-estimation) is 

displayed as a yellow colour and the lowest (e.g., under-estimation) is displayed as 

a dark blue colour. The results show that the fixed-cost-based transportation 

estimation approach created over-estimations for different house sizes, and the 

over-estimation was especially higher for projects a short distance from the panel 

manufacturing factory compared to projects that were located far from the factory. 

However, the proposed GPS-data-based estimation method showed accurate 

transportation cost estimation throughout the range of distances. In different house 

sizes, the results were similar to the distance cases where the fixed-cost approach 

had produced an over-estimation in general, and the larger house projects had 

higher errors than smaller house projects. Overall, the fixed-cost approach had an 

average error (µ) of 57% with 61% standard deviation (SD), and the GPS-based 

estimation method showed a relatively significant improvement in errors—the 

method had a −14% average error (µ) with 24% standard deviation (SD), as shown 

in Table 16. 
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Figure 50 Transportation cost estimation comparisons: (a) Fixed cost versus actual 

cost estimation; (b) GPS-data-based cost versus actual cost estimation  

 

 

 

 

 

(a) 

(b) 
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Table 16 Comparisons between estimated transportation costs versus actual 

estimation costs 

 
Average 

(µ) 

Standard Deviation 

(SD) 

Fixed-cost estimation versus actual cost 57% 61% 

GPS-data-based estimation versus actual 

cost 
−14% 24% 

 

4.2.2. Summary 

 The proposed GPS-data-based transportation cost estimation method is able 

to provide improved cost estimation over a range of different house sizes and 

locations of projects. The results of the case study are summarized as follows: (1) 

the average difference of 0.77 number of trucks and −0.3 hours of unloading 

duration from the fleet GPS data analysis given a 50 m geo-fence radius setting; (2) 

prediction accuracy of 86% and 88% in transportation demands of the visit and the 

duration from the SVR model, respectively; and (3) the improvement in average 

transportation cost estimation error of −14% (SD = 24%) over various project 

conditions. The 50 m geo-fence setting is similar to the range of a mobile crane’s 

workable radius in this study, and within a distance of 50 m, the crane operator can 

unload the trailer without any additional entering and departure of the geo-fence. 

At the same time, a larger radius geo-fence, such as 250 m, can result in the 

potential miscounting of truck visits due to picking up empty trailers. A geo-fence 

setting smaller than 50 m (e.g., 25 m radius) can be considered, but considering the 

crane operations in practice, the smaller radius may have potential errors of 

skipping a visit count when a truck unloads a trailer outside the smaller radius. Next, 

the transportation demand prediction using the RBF kernel in SVR shows good 

prediction results in terms of accuracy, and the grid search technique is used to 
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optimize parameters (e.g., C and γ) to further improve performance of the SVR 

model. Although the SVR and the grid search approach can provide a satisfying 

result using a small data set, large-scale implementation could be challenging due 

to the complex patterns involved in the big data. Therefore, to implement in 

practice, a deep-learning approach would be necessary to examine its feasibility 

and performance. Lastly, the GPS-data-based approach shows improved 

transportation accuracy over various project distances and house sizes compared to 

the fixed-cost method. Since the fixed-cost method applies the same transportation 

cost percentage for all projects based on a house size, a location has not been 

considered during project estimation processes. Specifically, in short distance 

projects within a 15 km range, the fixed-cost approach significantly overestimates 

costs by as much as 200%. House size is another direct influencer of transportation 

cost, and it does not show any distinctive error trend over various house sizes as 

was observed with the various distances, but overall the majority of projects are 

overestimated. Thus, the comparison shows large gaps between the actual cost and 

the estimated cost when using the fixed-cost approach in practice, and the gaps can 

be minimized by applying the proposed GPS-data-based transportation cost 

estimation method that improves both average error and standard deviation of the 

cost estimation. By using the proposed method, project estimation costs could have 

a greater competitive advantage during bidding processes while also improving 

transportation cost transparency issues. For example, as analyzing the GPS data 

along with project specification for each project, a project estimator can have a 

detail operation data that provides project specific transportation costs. In addition 



110 

to the cost estimation benefit, the proposed method can provide potential benefits 

in transportation planning (i.e., delivery schedules) by more accurately predicting 

transportation demands for future jobs. 

 In addition, the utilization of GPS data can be further expanded by 

combining other data collection methods such as QR code, RFID, and computer 

vision. This study provides highly abstracted transportation operation data (e.g., 

loading and unloading), and more detailed data can be acquired and utilized by 

combining the proposed methods with other methods. For example, GPS data from 

trucks do not provide detailed information regarding the loads that the trucks are 

carrying around. By adding data from RFID or QR code, prefabricated building 

components (e.g., panel, module, and precast) can be tracked to provide their real-

time status. The real-time tracking of the components can be used to predict 

progress of assembly status at site as well as manufacturing progress at the factory. 

Thus, the GPS data combined with other data collection methods will be worthy of 

further examination to provide rich and real-time information to managers who are 

required to control both factory and site operations while trying to achieve optimum 

operation conditions on entire projects.  

4.3. Fleet-dispatching schedule optimization and performance 

 To determine the performance of the proposed framework, the roof panel 

delivery processes are simulated based on actual operation data from a panelized 

construction company in Edmonton, Canada. Initial conditions of the simulation 

are presented in Fig. 51 and Table 17 below. This scenario includes three different 

jobs (sites) around the City of Edmonton. Each site and factory have their own 
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schedules to follow. For the sites, trailers should be delivered according to the 

schedule. For the factory, empty trailers should be delivered back to the factory for 

continuous operation. A total of three trucks are available for performing deliveries. 

In the beginning, all three trucks are available, and then only one truck will be 

available for each instance of dispatching decision making. In reality, rarely does 

more than one trailer become available at the same time. For empty trailers, a total 

of four empty trailers are available for pick-up. Two of them will be in the factory, 

and the other two will be outside the factory. 

 

Figure 51 Initial setting for evaluating the DES model. 
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Table 17 Parameters for the DES model. 

Parameter Value Description 

Truck 3 each Delivery trucks for carrying 

trailers 

Empty trailers at sites 2 each Did not pick up empty 

trailers from previous jobs 

Empty trailers at factory 2 each  Available empty trailers at 

factory 

Start time 7:00 AM Site starts at 8 AM 

End time 6:00 PM Last delivery 4 PM to avoid 

working overtime 

Travel time Varies  Based on Google Maps API 

travel time outcomes 

Unloading time 

 (Wall, Floor, and Roof) 

Wall: (50, 55, 70) 

Floor: (40, 50, 60) 

Roof: (20, 25, 30) 

Triangular distributions 

(Min, Most likely, Max) 

 

 In addition, the user interface (UI) is also developed for improving user 

inputs as shown in Fig. 52. Once a user imports the factory and site schedules in 

CSV file format, the UI will save the schedule data into the database. After 

importing the schedule, a user also can change control travel times between 

different sites, initial empty trailer numbers, as well as working hours. In this study, 

three trucks, two empty trailers at the factory, and working hours of 7 am to 6 pm 

are used as defaults. Once the schedules and the initial settings are complete, the 

DES model can process the dispatching plan optimization. 
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Figure 52 Developed user interface for the DES model 

4.3.1. Schedule information delay 

 To determine the on-time delivery percentage (%) based on different levels 

of schedule information delays, the equipment, site, and factory logs from the DES 

model area collected and analyzed based on the transportation key performance 

indicator. The results of the simulation are presented in Fig. 53, and the overall 

trend of the on-time delivery percentage showed that the percentage was improved 

as the information delay was reduced. At the 0.5 hours schedule notification case, 

only 3% of the required delivery schedules were delivered to designated sites on-

time, and the average lead time was −43 minutes, which presented the average 

schedule delays including factory empty trailer deliveries. As the earlier schedule 

notifications were delivered to drivers, the on-time percentage was significantly 

improved as shown in Fig. 54. The results showed that if the drivers were notified 
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of the schedules at least 2 hours ahead, then over 92% of the on-time deliveries 

were achieved. Along with the on-time delivery percentage, the lead time was also 

improved when the information was received earlier. The 1.25-hours-earlier 

schedule delivery changed the negative lead time to a positive lead time, which 

means that the magnitude of delay time was decreased. The transportation costs 

(Fig. 54) were decreased as information delivery time was improved, and the results 

showed that the best case scenario (2.75 hours) reduced transportation costs over 

the 34% when compared to the worst case (0.5 hours) scenario. The equipment 

utilizations were improved such that trucks, cranes, and trailers increased their 

utilization percentage up to 9%, 12%, and 15%, respectively, as shown in Fig. 56. 

Lastly, the empty trailer return percentage was also increased to 65% (at 2.25 hours) 

from 42% (0.5 hours) as shown in Fig. 57.  

 
Figure 53 Key performance indicator results from changing a level of the 

information delay. 
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Figure 54 On-time delivery percentage versus information delays 

 

Figure 55 Transportation cost (CAD) versus information delays 
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Figure 56 Equipment utilization (%) versus information delays 

 

Figure 57 Empty trailer return (%) versus information delays 

4.3.2. Serviceable distance variations 

 To determine the on-time delivery serviceable distance from the panel 

manufacturing facility, this study examined the key performance indicators based 

on seven different distance settings, as shown in Fig. 58. As expected, the on-time 

delivery percentage was reduced when the distance from a factory increases. At a 
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10% increment from 0%, the on-time percentage was reduced by approximately 

38% while the lead time was still positive, which means the deliveries still arrived 

close to the schedule time window. Although the on-time delivery showed a 

significant reduction, the rest of the key performance indicators showed shallow 

changes relative to the on-time percentage. The transportation cost had only 6.9% 

increment, the equipment utilization had less than a 2% reduction overall, and the 

empty trailer return percentage showed an 11% reduction at the 10% distance 

increment. As the serviceable distance was further increased up to 30%, the lead 

time entered a negative range with 53% on-time delivery percentage. At the 

maximum 60% distance increment, the on-time delivery percentage was 34% with 

an average lead time of −28. In addition, the transportation cost was up by 41.4%, 

the crane utilization had 12% reduction, the trailer utilization had 3% reduction, 

and the empty trailer return percentage was reduced by 34.6%. Due to the long 

distance traveled, the truck utilization was maintained at a 100% utilization rate.  

 

Figure 58 Key performance indicators based on different serviceable distance 

settings (10% distance increments) 
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Figure 59 Serviceable distance increment percentage versus information delays 

 

Figure 60 Transportation cost (CAD) versus serviceable distance increment 

percentage 
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Figure 61 Equipment utilization (%) versus serviceable distance increment 

percentage 

 

Figure 62 Empty trailer return (%) versus serviceable distance increment 

percentage 
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on-time delivery status with site progresses. The y-axis is the total delivered trailer 

count and the x-axis is time. In addition, the time gap between the supply and 

demand can show the on-time delivery status. For example, if the supply (orange 

dotted line) is located left side of the demand curve (blue line) then the delivery is 

considered ahead of schedule by the gap time; however, if the demand curve is 

located in front the supply curve then the delivery is delayed.  

 

Figure 63 Trailer supply and demand at site 

 The graph shown in Fig. 64 shows trailer count and crane status (on/off) on 

site. The x- and y-axes are the same as in the previous trailer supply and demand 

graph. This graph allows a visualization of more detailed operation status at sites 

so that loaded trailer delivery, empty trailer pick-up, number of trailers at site, and 

crane utilization can be analyzed. For example, if the loaded trailer is delivered then 

the total trailer number (y-axis) at site is increased and the number is reduced as a 

driver picks up the empty trailer from the site. For crane utilization, if a crane is 

working or idling then the status is equal to 1 or −1, respectively. 
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Figure 64 Trailer count and mobile crane status 

4.3.3. Summary 

 The developed fleet-dispatching DES model is able to provide an optimized 

dispatching plan to achieve on-time delivery under various working conditions, 

such as information delays and serviceable distances. Compared to current 

dispatching planning, which is manual and experience-based, the DES model can 

improve overall performance of the transportation operations in panelized 

construction projects. According to the simulation results, over 96% on-time 

delivery could be achieved by providing delivery schedules to drivers within 2 

hours. This understanding of the information delay and the transportation 

performance can be beneficial to project managers. Instead of planning a full 

schedule, which can be constantly changing due to dynamic construction 

environments, the manager could make a short-term plan based on current working 

conditions then provide the schedule information to drivers and crane operators 

while maintaining a high (96%) on-time delivery performance. In addition, the 

highest on-time delivery was limited to 96% in the DES model, but considering the 
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average lead time of 32 minutes, the delayed delivery time (negative lead time) in 

the simulation result was less than −3 minutes, which could be considered as on-

time deliveries in real transportation operation situations in construction. 

 The understanding of potential operation performances on larger 

serviceable area could be another benefit to the project managers during planning 

stage. Since the logistics dispatcher working in panelized construction has to rely 

on their own experience, a project that is located at new location would be difficult 

to plan for without past experience. Thus, this DES model can provide guidance to 

the dispatcher or planner in order to make a more accurate plan based on actual 

data. As shown in Fig. 65, 10% increments in serviceable area increased the 

serviceable area within the city. Although the results showed that the 10% 

increment (0% → 10%) reduced the on-time delivery percentage to 57% from 96%, 

this simulation assumed that all three projects are located on the edge of the service 

area boundary. So, if only one project is located at the edge of the serviceable area 

and the other two projects are closer to the factory, then the on-time delivery 

percentage would be higher than 57%. Considering the actual practice, the planner 

would rarely schedule multiple simultaneous projects that are located a long 

distance from the factory. In addition, the increased transportation cost could be 

recovered by applying the higher rate for long distance projects. 
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Figure 65 Serviceable area comparison between current and 10% increments from 

0% 

 Lastly, considering the actual transportation KPI as shown in Table 18, the 

current practice of manual transportation planning can be easily improved by 

having short-term planning (for the next 2 hours) without also having an unreliable 

master plan (for the full day). The real-time data from QR code and GPS can be 

used to support the planning process by visualizing the current transportation status 

as shown in Figures 63 and 64. 

Table 18 Comparison between actual KPI data and collected transportation 

operation data 

KPI list 
Actual 

projects 

Information Delay 

(2 hours) 

Serviceable area 

(10%) 

On-time Delivery (%) 0.90 0.96 0.57 

Average Lead Time 

(min) 
58.3 33 5.3 

Average Transportation 

Costs (CAD) 
4050.2 3578.1 4151.2 

Truck Utilization (%) 0.76 1 1 

Crane Utilization (%) 0.68 0.76 0.69 

Trailer Utilization (%) 0.75 0.83 0.85 

Empty Trailer Return 

(%) 
0.33 0.65 0.5 
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5. Chapter: Conclusion and Future Work 

5.1. Research summary 

 Transportation operations in panelized offsite construction is a critical 

element that has significant potential impacts on both the offsite manufacturing and 

the on-site assembly operations. Due to its importance in panelized offsite 

construction operations, appropriate management and planning of transportation 

would be necessary to improve overall project operation, including factory 

manufacturing. Transportation operations have traditionally not been managed in 

systematic ways using advanced data collection and analysis, passive transportation 

quality assurance, and fleet-dispatching plan optimization. Current transportation 

data collection and planning processes are manual, subjective, and unreliable, 

which can lead to potential errors and even performance reductions in both site and 

factory operations. Thus, in order to achieve the systematic approaches to 

transportation operations in panelized offsite construction, an advanced method is 

necessary and this study proposes the following methods: (1) projection-based AR 

to improve transportation quality before loading at factory, (2) GPS-data-based 

transportation cost estimation using machine learning approaches, (3) web-based 

transportation data collection using QR code, and (4) fleet-dispatching DES model 

to optimize planning. In general, the transportation operations in panelized 

construction involved the following six steps: loading, picking up loaded trailer, 

performing a delivery, unloading, picking up an empty trailer, and returning to a 

factory. In this research, all transportation steps are involved in the data collection 

processes to support the proposed cost estimations and the fleet-dispatching 
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optimization methods, and the projection-based AR is applied during the 

manufacturing stage. 

 In the projection-based AR method, the projector is used at the wall panel 

assembly line to visualize the 2D wall drawing to workers to reduce potential 

quality issues so that site operations can be performed without the need to send 

back defective panels to the factory, which requires unscheduled transportation 

operations. The web-based transportation collection is used to replace the 

unreliable and error prone manual data collection. The developed web application 

is given to all loaders, drivers, and crane operators to scan QR codes on both panels 

and trailers; they scan the QR code to record transportation activity data in the cloud 

server. The collected QR code and transportation installed GPS data are analyzed 

to extract key information such as transportation demands (e.g., the duration and 

the number of trailers required) by using the rule-based algorithm. The extracted 

data is used to train and develop the SVR model to predict the transportation cost 

for future jobs. In addition, by using the collected data from GPS and QR codes, 

the fleet-dispatching DES model is developed to improve on-time delivery 

performance given various constraints such as the schedule information delays and 

the serviceable area. These developed methods (except the projection-based AR) 

can be accessible via user interfaces on a desktop computer and any web-browser. 

By using the proposed methods, the transportation operations in panelized 

construction can be more efficient, transparent, and economical. The limitations of 

the research are: (1) the performance of the projection-based AR can vary in 

varying levels of brightness; (2) the web application-based data collection still 
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requires manual selection of trailer status, and it can lead to errors in the data; (3) 

the developed SVR and DES models may not be able to perform well in an 

unsupervised situation when custom types of buildings and remote site locations 

are selected. 

5.2. Research contributions 

This research makes the following contributions: 

a) Applied a projection-based AR method in a large-scale manufacturing 

facility and determines its performance in different levels of distance and 

brightness settings. 

b) Developed a rule-based algorithm to extract key information (e.g., 

transportation demands) from a collection of large-scale fleet GPS data in a 

local server environment.  

c) Determined detailed specifications of transportation data requirements to 

develop the SVR machine learning model, and applied this to actual 

panelized residential projects. 

d) Developed web-based real time transportation data collection method using 

a web application that is simple, economical, and highly compatible on any 

smart device. In addition, a real-time transportation and site operations 

integrated visualization tool was developed to monitor overall project 

progress. 

e) Developed the fleet-dispatching DES model for offsite construction that 

achieves on-time delivery for both factory and multiple construction site 
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schedules while reducing transportation costs and number of empty trailer 

returns. 

f) Determined the impacts on on-time delivery and transportation costs from 

site information delays and increasing serviceable distance in panelized 

construction operations. 

Based on this research, the following future research topics are proposed: 

a) Use an optical augmented reality device (e.g., Google Glass) to visualize 

2D drawing information during the panel assembly processes and 

determine potential errors by using incorrect image searching.  

b) Use a game engine (e.g., unity) to develop a panel loading plan simulation 

to figure out the optimal way to load finished panels, as well as an 

efficient way to unload the panel at the site. 

c) Develop a QR code and RFID data connected BIM model to visualize 

real-time transportation operations in the web environment.  

d) Develop an unsupervised machine learning model to understand fleet 

movement patterns to extract key information from a large-scale GPS 

data. 

e) Convert GPS data into a heat-map image file to train a neural network 

model to estimate overall transportation costs and operations. 

f) Use dash-cam video data in transportation equipment to analyze operation 

productivity by using a computer vision approach.  

g) Extend application of the developed DES model to other offsite 

construction methods. 
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h) Develop an artificial intelligence (AI)-based fleet-dispatching model that 

is connected to multiple users in real-time to get input and provide an 

optimum dispatching decision in real-time.  
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