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Abstract

Lees, and independently Hill, described an irreducible character of the general linear
group over a finite local ring which can be considered as an analogue of the Steinberg
character in the case of a finite field. The aim of this thesis is to extend the construc-
tion of the analogue to the Chevalley groups over finite local rings and to investigate
the properties of the resultant character.

We begin by defining the analogue of the Steinberg character for the Chevalley
groups extended by the diagonal automorphisms. The analogue is given as a vir-
tual character with an expression as an alternating sum of permutation characters.
However, we show that it is actually the character afforded by a particular module.
Indeed, we prove that its alternating sum formula is a consequence of it being afforded
by the top homology space of a simplicial complex similar to Solomon’s combinatorial
building. Further, by carefully examining the double cosets we are able to prove that
the analogue is irreducible and has a characterisatién identical to Curtis’ characteri-
sation of the Steinberg character. Additionally, we show that it can be described in
terms of a linear character of the Hecke algebra.

Unfortunately, when we examine the analogue for the Chevalley groups them-
selves we find that it is irreducible only when the Chevalley group agrees with its
extended version. Consequently, we determine its decomposition into distinct irre-
ducible constituents. Finally we show that these constituents can be characterised

by analogues of the Gelfand-Graev character.
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Chapter 1

Introduction

Let o be the ring of integers of a non-archimedean local field K with maximal ideal p
and finite residue class field x = o/p of order q. For a fixed integer £ > 1 the quotient
ring R = o/p’ is a finite local ring with unique maximal ideal m = p/p’. Further,
m is principal and if © denotes its generator, then every ideal of R is of the form
m? = 7R for some 0 < 3 < £

We will be interested in the Chevalley group G = G(R) over R and its extension
G=3G (R) by the diagonal automorphisms. More specifically, we will be considering
characters of G and G which can be regarded as analogues of the Steinberg character

in the finite field case.

1.1 The Steinberg character

In 1951, Steinberg [29] described all of the irreducible characters of the general linear
group over a finite field appearing as constituents of the permutation character over
the subgroup B of upper triangular matrices. One of these characters, now called
the Steinberg character, was of particular interest as its degree was the same as the

contribution of the field characteristic to the order of the group. Later, using different
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methods he constructed a character with this same property for the classical groups
[30] and then the Chevalley groups [31] over finite fields.

In 1966, Curtis [4] then gave a description of an irreducible character for the finite
groups with BN-pair which coincided with the Steinberg character in the case of the
Chevalley groups over finite fields. In particular, this character was expressed as the
alternating sum of permutation characters over parabolic subgroups corresponding
to Solomon’s alternating sum formula for the sign character of its Weyl group W [27].
Further, it had a characterisation as the unique irreducible constituent of the per-
mutation character over B which was not a constituent of the permutation character
over any strictly larger parabolic subgroup.

Solomon (28] also showed that the alternating sum formula for the Steinberg
character had a homological origin by considering the combinatorial building of a
Chevalley group over a finite field. This was the simplicial complex whose vertices
were the left cosets of the maximal parabolic subgroups containing B, and whose
simplices were sets of left cosets which had non-empty intersection. The permutation
action of the group on the left cosets then gave rise to an action on the homology
spaces. These were zero except for the bottom homology space which afforded the
trivial character and the top homology space which afforded the Steinberg character.
The alternating sum formula was then obtained from the Hopf Trace Formula. This
approach was later refined and generalised by Curtis and Lehrer [8] and then Curtis,
Lehrer and Tits [9].

An alternative construction of the Steinberg character was given by Curtis, Iwa-
hori and Kilmoyer (7] in terms of the Hecke algebra over B, i.e. the endomorphism
algebra of the permutation module over B. Iwahori [19] had shown for Chevalley
groups over finite fields, and Matsumoto [23] for finite groups with B N-pair, that the
Hecke algebra had a presentation in terms of generators and relations which was sim-

ilar to the presentation of the Weyl group as a Coxeter group. Thus, it was possible
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to define a linear character of the Hecke algebra in the same way as the sign character
of W. This linear character then corresponded to a unique irreducible constituent of
the permutation character over B which was the Steinberg character.

For more details about the Steinberg character for Chevalley groups over finite

fields see [17] or the note by Steinberg himself at the end of [33].

1.2 Analogues of the Steinberg character

If we now consider the general linear group GL,(R) over R with £ > 1, then the
subgroup B of upper triangular matrices no longer forms part of a BN-pair for the
group. Thus, the standard constructions of the Steinberg character do not hold in
this situation. However, it is still possible to consider characters which are analogues
of the Steinberg character.

The first such analogue Sg was constructed by Lees in [20] and [21]. He defined
S¢ inductively as an alternating sum of characters obtained from similar characters
of general linear groups of smaller rank. This virtual character was then shown to be
a constituent of the permutation character over B, except possibly when ¢ = 2, which
was expressible as an alternating sum of permutation characters. Further, the degree
of S was the highest power of char s dividing the order of the group. However, in
general Sg was not irreducible.

The second analogue St; was described by Lees [20] and independently by Hill
[15]. Although the degree of St, was not a power of char x, it was an irreducible
constituent of the permutation character over B. The definition given by Lees was as
the character afforded by the top homology space of a simplicial complex analogous
to the combinatorial building. Consequently, St; again had an expression as an
alternating sum of permutation characters.

Hill defined the analogue in a different way, however. He was primarily interested
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in regular characters of GL,(R) and an analogue of the Gelfand-Graev character
[y. The analogue Sty of the Steinberg character was then the unique irreducible
constituent of both 'y and the permutation character over B. In particular, this
meant that St, was the unique regular character in the permutation character over
B.

We will be considering the second analogue St of the Steinberg character. Our
main aim will be to extend the construction of Sty to the Chevalley and extended

Chevalley groups over R and to investigate the properties of the resultant characters.

1.3 Main results

Let G be the Chevalley group over R corresponding to the irreducible root system X,
and G its extension by the diagonal automorphisms. Further, suppose that II is a base
for 3 with positive roots £t and negative roots ™. For each o € ¥ and r € R, denote
by Z4(r) the usual generator of G with root subgroups U, (m?) = {z4(r) : r € m¢} for
0<i<fZ—1. Then we take B = TU and B = TU where T and T are the diagonal
subgroups of G and G respectively and U = (Ug(R) : € =F).

We begin by defining the analogue St; of the Steinberg character for the extended
Chevalley group G over R. As both Steinberg’s original construction [29] for the
general linear group and Curtis’ later extension [4] to all finite groups with B N-pair
were given in terms of permutation characters over parabolic subgroups, we consider
the parabolic subgroups in our situation. These are taken to be the subgroups which
contain B and can be constructed using the root subgroups of G.

In particular, we find that the minimal parabolic subgroups which strictly contain
B are of the form H, = X, B (Proposition 4.1.4) for some a € S = {Be:-pell}

where X, = Uy(m®1). Then, if we set H 7 = (fIa : a € J) for non-empty subsets
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J C S and fIw = B, the analogue St is defined to be the virtual character
Ste= Y (-)M(1g,)%.
In fact, Sty is the character afforded by the CG-module CGe where e is the idempotent

e= Z(—l)lJ'eﬁJ

JCs
witheg = |Hy|™' 3 g, g for each J C S (Theorem 4.2.6).

Further, if we consider the parabolic subgroup H= fIS of @, then when ¢q # 2
we see that B forms part of a BN-pair for H (Theorem 4.3.4(i)) and Sty is induced
from the Steinberg character

x= Y (-)Vl1g )7

JCs

of H (Corollary 4.3.5).

In Chapter 5 we also show that the alternating sum formula for St; has a ho-
mological origin. We consider a simplicial complex A(f2) which is an analogue of
the combinatorial building of G. Its vertices are the left cosets in G of the parabolic
subgroups H J for maximal proper subsets J C S and a set of left cosets is a simplex if
and only if the intersection of the cosets is non-empty. Then the permutation action
of G on the left cosets gives an action on the homology spaces.

In particular, if we consider the subcomplex A(25) obtained by taking only
the left cosets in H , then we find that the homology spaces of A(Q2) are induced
from the homology spaces of A(Q25) (Theorem 5.2.5). Further, the k-th homology
space of A(Qg) is zero except for k = 0 and k = n — 1 (Proposition 5.3.2). The
bottom homology space affords the trivial character of H (Lemma 5.3.3), while the
Hopf Trace Formula implies that the top homology space affords x (Theorem 5.3.4).

Consequently, the top homology space of A(Q?) affords St; (Corollary 5.3.5).
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To prove that St, is irreducible we need to determine the inner product (Stg, Sty).
However, since Sty is given by an alternating sum of permutation characters, we

obtain

(Ste,Ste) = > (-1 D5 (Hy, Hy)
1,JCS

where Da(fI . H 7) denotes the set of (ﬁ 1 H J)-double cosets in G. Thus, in Chapter 6
we examine the double coset structure of G.

There seems to be a natural distinction between the (§, E)-double cosets of G
that are contained in H and those that are not. We find that (E, E)-double cosets
in H are of the form Bz B for some I C S (Proposition 6.2.3) where

Ty = H ma(we_l).

a€l

Similarly, for J, J' C S the (ﬁ 5 H s7)-double cosets are of the form Hjz Hy for some
I CS—(JUJ') (Proposition 6.2.4). Thus, by counting the double cosets we see that
foreach J C S

( (lA)ﬁ)— L gJ=b (Theorem 6.2.6)
Xo\lg,) )= 2.

0 otherwise

and so x is an irreducible constituent of (1 B\)ﬁ (Corollary 6.2.7).

Unfortunately, the double cosets that are not contained in H have a more compli-
cated structure and it does not seem possible to explicitly describe them in general.
However, it turns out that it suffices to show that each (E, §)-double coset not con-
tained in H is actually an (ﬁla, E)-double coset for some « € S which depends only
on the corresponding (ﬁ , H)-double coset (Theorem 6.3.1). This then allows us to
pair up the double cosets in such a way that they cancel in the alternating sum

(Theorem 6.3.3). Thus we find that for each J C S

(Ste, (13,)@) = (x (1;7J)H) (Corollary 6.3.4)
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and St, is consequently an irreducible constituent of (1 §)é. In fact, this allows us
to characterise Sty as the unique irreducible constituent of (1 E)é which is not a con-
stituent of (1 }3)@ for any parabolic subgroup P strictly containing B (Theorem 6.3.6).

The final construction of St, that we consider is in terms of the Hecke algebra
H(G,B) = GEC@eE of G. For H, the Hecke algebra H(H, ]§) over B is generated
by the basis elements 3, corresponding to the (B, B)-double cosets §$a(ﬂe_1)§

together with the quadratic relations

(Ba—=(@=1))(Ba+1)=0

and the homogeneous relations 8,8y = By Ba (Corollary 7.3.2). Thus we can define
a linear character ¢ of H(H, B) by

¢(Bs) = (=1)V!

for each J C S, where s is the basis element corresponding to the (§, §)-double
coset Bz JE (Proposition 7.3.3). The linear character ¢ then extends uniquely to
a linear character 9 of H(G, ﬁ) (Theorem 7.4.2) which in turn corresponds to a
unique irreducible character of G. This irreducible character is the analogue St,
of the Steinberg character (Lemma 7.4.3). Indeed, the idempotent e from Theo-
rem 4.2.6 is exactly the idempotent in f}f(@, E) which affords the linear character ¢
(Proposition 7.4.4).

Thus far we have only examined the analogue of the Steinberg character of the
extended Chevalley groups. Consequently, in Chapter 8 we turn our attention to the
Chevalley group G with an additional requirement on the characteristic of the residue
field which ensures that the kernel K; of the natural projection #; : G (R) = G (o/p%)
is contained in G for each 1 < ¢ < £ (Proposition 8.1.5).

By considering the corresponding parabolic subgroups H; of G we may repeat
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the definition from the extended case to obtain the character
6, = Y (-1 (1, )C.
JCs
However, St is simply the restriction of Sty to G (Lemma 8.1.4) and is induced from

the restriction

X = ()Y am)".

Jcs
of x to H = Hg

To determine whether or not St} is irreducible we again examine the double coset
structure of G. For each J C S let d; denote the number of distinct (B, B)-double
cosets contained in the intersection of the (ﬁ, E)-double coset Bz JE with G. In
particular, we see that (Emsﬁ) NG decomposes into the union of d = [@ : G] distinct
(B, B)-double cosets (Lemma 8.3.1). Further, for each J,J' C S we again find that
the intersection of G with the (H;, H/)-double coset Hyz;Hy with I C S — (JuJh
contains dy distinct (Hy, Hj/)-double cosets. Thus, by counting the double cosets we

are able to determine that for each J C §

oy =) ¢ ET=0 Theorem 8.3.5
X, (1m,)") = . . (Theorem 8.3.5)
otherwise.

Moreover, we again see that each (B, B)-double coset of G not contained in H is ac-
tually an (H,, B)-double coset for some a € S (Theorem 8.4.1). Hence, the approach

from Section 6.3 gives for each J C S
(Stys (Lar,)¥) = (6 (Lar)™) (Proposition 8.4.2)

and so St} is irreducible only when G = G (Theorem 8.4.4).
Consequently, in the final chapter we decompose St} into its irreducible con-
stituents. We begin by examining the restriction of x’ to the normal subgroup

V = XgV of H where Xg = (Xo : @ € S) and V = (TN K)U. If we let X
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denote the set of linear characters of V which are trivial on V', but non-trivial on X,
for each o € S then

Xy = Z A (Lemma 9.2.2)
AeX

Further, H permutes the linear characters in X (Lemma 9.2.3) forming d orbits. If we

choose a representative ); from each orbit we find that Stabg (A\;) = V (Lemma 9.2.4).

Thus, setting y; = )\{I for each 4, Clifford theory implies the decomposition

d
X=X
=1

where x1,...,xq are the distinct irreducible constituents of x' (Theorem 9.2.5).
Indeed, we are also able to show that x; induces irreducibly for each i (Proposi-

tion 9.3.1). Thus, if we let {; = XiG7 then we obtain the corresponding decomposition

d
Sty =y G
i=1

where (1, ...,{, are the distinct irreducible constituents of St; (Theorem 9.3.2).
Finally, we characterise the irreducible constituents of St} in terms of analogues
of the Gelfand-Graev character. A linear character 6 of U is non-degenerate if its
restriction to U,(mé~1) is non-trivial for each o € II. The non-degenerate characters
are then permuted by T and form d orbits which correspond to the d orbits of H on X.
Thus, if we choose a representative ; from each orbit and set I'; = OiG , then we find

that ¢; is the unique common constituent of I'; and (1p)€ for each i (Theorem 9.4.9).

1.4 Character theory of finite groups

For completeness, we recall some elementary definitions and results from the character
theory of finite groups that will be required later. Proofs can be found in [18], [10]
or [25].
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Let G be a finite group and M be a module for the group ring CG of G over the
field C of complex numbers. The character ¢ afforded by M is the map ¢ : G — C

where for each g € G
p(g) = tr(g, M),

i.e. ¢@(g) is the trace of the linear map on M given by multiplication by g. In
particular, the trivial character 1 of G is the character afforded by the trivial
module of CG and so has 1g(g) = 1 for every g € G.

Suppose that ¢ and v are characters of G. We say that 1 is a constituent of
¢ if ¢ can be expressed as ¢ = 9 + ¢’ where ¢’ is either a character of G or zero.
Further, ¢ is called irreducible if its only constituent is ¢ itself.

An important tool used to show that a character is irreducible is the inner product.
For characters ¢ and 9 of G, their inner product is defined to be the sum

1 -
mw=@2ﬂ@wn

geG
A character ¢ is then irreducible if and only if (¢, ) = 1. Moreover, if ¢ and ¢ are

distinct irreducible characters then we have (¢,v) = 0.

Now suppose that H is a subgroup of G. For any character ¥ of G, its restriction
to H is the character ¥y of H with ¢z (h) = 1(h) for each h € H. On the other
hand if ¢ is a character of H, then the induced character ¢ on G is given by

W@ﬂ%ZWWF)

z€G
where ¢°(g) = ¢(g) for ¢ € H and 0 otherwise. In particular, the permutation

character over H is the induced character (1;7)¢. Further, induction and restriction

are related in terms of the inner product via Frobenius reciprocity

(#°,9) = (¢,%m).

Let H and K be subgroups of G and suppose that ¢ and 1 are characters of

H and K respectively. For any g € G the conjugate character 49 is the character

10
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of gKg~! defined by 49(gkg™!) = (k) for every k € K. Mackey’s Theorem then

expresses (%) g as

@Nr= Y )"

HgKeDg(H,K)
where Dg(H, K) denotes the set of (H, K)-double cosets in G. Thus, combining

Mackey’s Theorem with Frobenius reciprocity we obtain the Intertwining Number

Theorem,

(¢Ga¢G) = E (¢gHg‘1ﬂK”‘/JgHg—an)'

HgKeDg(H,K)

Consequently, for the permutation characters (15)¢ and (1x)¢ we have

(1m), (1x)°) = D (H, K)I.

Finally, suppose that H is a normal subgroup of G. For an irreducible character

¢ of H define
Stabg(¢) ={g € G : ¢’ = ¢}.

If Stabg(¢) = H, then as a special case of Mackey’s Theorem we obtain

CRIEDIN
teT

where T denotes a complete set of left coset representatives of H in G and {¢* : t € T}

are the distinct conjugates of ¢ in H. Further, this implies that

(6%,6%) = (4,¢") = ($,¢) =11

teT

and so ¢€ is an irreducible character of G.

11
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Chapter 2

Chevalley groups over fields

In this chapter we briefly outline the construction of the Chevalley groups over an
arbitrary field K. Following [2], these are defined as groups of automorphisms of
Lie algebras over K corresponding to the non-abelian simple Lie algebras over the
complex numbers. Further, we also consider the extension of the Chevalley groups
by the diagonal automorphisms.

Proofs of the results can be found in [2] or [32] together with [16] for root systems
and simple Lie algebras. The identification with certain classical groups is taken from
(13]. A more general approach to the construction of the Chevalley groups can be

found in [5] or [32].

2.1 Root systems

Let € be a finite-dimensional real vector space together with an inner product (-, ).
To each non-zero a € € there is an associated orthogonal transformation wey : € — &

given by the reflection in the hyperplane orthogonal to a. More specifically,

wa(8) = - 212P),

(2, 0)

for each 8 € € so that wy(a) = —a and we(B) = B if and only if («, 8) = 0.

12
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Definition 2.1.1. A root system X is a finite set of non-zero vectors in € such that
(i) ¥ spans &;

(i) If o, B € X then wo(B) € Z;

(iii) If o,ca € X, then ¢ = £1; and

(iv) If o, B € X, then 2(a, B)/ (o, @) € Z.

Further, the Weyl group W of ¥ is the group of orthogonal transformations on &

generated by the corresponding set of reflections {wq : o € T}.

The most general definition of a root system includes only properties (i) and (ii).
Root systems also satisfying (iii) and (iv) should properly be referred to as reduced
crystallographic root systems. However, the only root systems that we will consider

are those satisfying all of (i) - (iv).
Definition 2.1.2. A base II of the root system X is a subset of X such that
(1) IT is a basis for €; and

(if) Each 8 € ¥ can be expressed as a linear combination

B=> kac (2.1)

where the coeflicients k, are integers which are either all non-negative or all

non-positive.
The rank of ¥ is the number of roots in II.

Every root system must contain a base and the different bases are transitively
permuted by the action of the Weyl group. The elements of II are called simple

roots and the corresponding fundamental reflections {w, : o € II} generate W.

13
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Further, we say that a root 8 € X is positive if all of the coeflicients k, are non-
negative and negative if they are all non-positive. The sets of positive and negative
roots in ¥ are denoted by ¥ and ¥~ respectively.
Additionally, we define the height of each 5 € ¥ to be
ht(8) = Y _ ka
o€l

where the k, are as in (2.1). If we let X denote the set of roots of height &, then in
particular X1 =T and X_; = {f: —p € II}.

Proposition 2.1.3. Let W be the Weyl group of a root system & with base IL.
(1) If w(a) € II for every a € 11, then w = 1.
(ii) For each w € W with w # 1 there is an « € II with w(a) € 7.

(iii) There is a unique element wy € W so that wo(a) € {f : —B € I} for every

a € I1. Further, wg has order 2.

We now describe the classification of the irreducible root systems, i.e. the root
systems that cannot be expressed as a disjoint union of two mutually orthogonal

non-empty subsets.

Definition 2.1.4. The Cartan integers of a root system 3 with base II are the

integers

_ . (@,6)
A =2 )

for each @, § € . The Cartan matrix is then the invertible matrix A = [Aqy gla,8em-

Cartan matrices are independent of the choice of base up to a reordering of the
simple roots and determine root systems up to equivalence, i.e. if two root systems
possess the same Cartan matrix then there must be a bijection from one to the other

which preserves the inner product.

14
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Definition 2.1.5. The Dynkin diagram of a root system ¥ with base II is a graph
whose vertices are indexed by the simple roots and has A, gAg . edges between the

vertices o and B with an arrow pointing in the direction of 8 if (a, &) > (B, B)-

Given the Dynkin diagram of a root system it is possible to recover its Cartan ma-
trix and so Dynkin diagrams also determine root systems up to equivalence. Thus, by
classifying the Dynkin diagrams of irreducible root systems we obtain a classification

of the irreducible root systems themselves.

A (n>1): o———0———0 - - -0—0———0
n (n21) 1 2 3 n-2 n-1 n
B, (n>2): 0—o0—90 - - -0——a 5D
n (n22) 1 2 3 n2 n-1 n
C,. (n>3 o———0—0 - - -O0—a@CX—D
n (n23) 1 2 3 n-2 n-1 n
n-1
Dy (n24) 1 2 3 n-3 n-2
n
2
Es o o I 0 o)
1 3 4 5 6
2
Er : o o I 0 o ‘o)
1 3 4 5 6 7
2
Es : o 0 I 0 o o o)
1 3 4 5 6 7 8
Fy4: o0—a >0 —0
4 1 2 3 4
Ga: fos—=—0]

Table 2.1: The Dynkin diagrams of the irreducible root systems

Theorem 2.1.6 (Classification). Let £ be an irreducible root system with base

II={ai,...,an}, then its Dynkin diagram is one of those contained in Table 2.1.

15
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It should be noted that each diagram in Table 2.1 is indeed the Dynkin diagram
of an irreducible root system. A description of the irreducible root system of each

type can be found in Appendix A.

2.2 Simple Lie algebras over C
Definition 2.2.1. A Lie algebra £ over C is a complex vector space together with
a bilinear map [-,-] : £ x £ — £ such that

(i) [z,z] = 0 for every z € £; and

(i) [[z,9],2] + [[y, 2], 2] + [[z, 2], 9] = 0 for every z,y,2 € £.
For each z € £ the adjoint map ad, : £ — £ is defined for every y € £ by
adg(y) = [z, y].

For subsets X and Y of £, let [X, Y] denote the set of all linear combinations of
commutators [z,y] for z € X and y € Y. A subalgebra 91 of £ is then a subspace
of £ such that [90t, 9] C 9t and an ideal of £ is a subalgebra J such that [£,73] C J.
The Lie algebra £ is said to be simple if it contains no ideals other than itself and
the zero ideal. Further, it is abelian if [£, £] = 0.

The first result that we will need is that each non-abelian simple Lie algebra has
a decomposition corresponding to an irreducible root system. This is achieved by

considering the adjoint action of a particular subalgebra.

Definition 2.2.2. A Cartan subalgebra §) of £ is a subalgebra of £ such that
(i) If we set £! = [£, £] and £¢ = [£, £7!] for each 4, then £F = 0 for some k; and
(ii) If we set Ng(9)) = {z € £: [z,h] € $ for every h € H}, then Ng($H) = 9H.

Every Lie algebra must contain a Cartan subalgebra and any two Cartan subalge-

bras are conjugate. In the particular case of simple Lie algebras the Cartan subalgebra

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



turns out to be abelian. Consequently, the associated adjoint maps commute and £
can be expressed as a direct sum of simultaneous eigenspaces.

More specifically, for each « in the dual space $* of §) define
Lo ={y € £:ad,(y) = a(y) for each z € H}.

Then if we let ¥ be the set of non-zero o € $H* for which £, # 0 we obtain the

following decomposition of £.

Theorem 2.2.3 (Cartan Decomposition). Let £ be a non-abelian simple Lie

algebra over C, then

=90 La
where each £, has dimension 1.

Further, if we consider the Killing form on £ given by (z,y) = tr(ad;ady) for
each z,y € £, then this allows us to identify $ with its dual space. Thus we may
consider ¥ as a subset of §) and setting g to be the R-span of ¥ in ), we find that
¥ forms an irreducible root system in $g with inner product (-,-). The classification
of the irreducible root systems then gives rise to a classification of the non-abelian

simple Lie algebras over C.

Theorem 2.2.4. For each irreducible root system ¥ there is a simple Lie algebra
over C with root system equivalent to ¥ and any two Lie algebras with equivalent root

systems are isomorphic.

We now use the Cartan decomposition to describe a particular basis for £ which
will be an important part of the construction of the Chevalley groups.

Fix a base II of . For each root o € ¥ the associated co-root h, € §) is defined
by
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If for each positive root o € T we pick a non-zero element e, € £4, then there
is a unique e_, € £_, With [es,e_o] = he. Moreover, the {e, : @ € Lt} may
be chosen in such a way that whenever o, 8 € & are such that a+ 8 € X then

leasep] = Nogeq+p for some integer Ny g.

Theorem 2.2.5 (Chevalley Basis). The set {hq,ep: a €II,3 € L} is a basis for

£ and the multiplication of basis elements is given by
(i) [ha,hs) =0 for o, B € II;

(i) [ha,eg] = Aapep for a €11, B € 5;

(iii) [eq,e—qo] = ho for a € TF;

(iv) [ea,es] =0 for o, f € & with a+ B ¢ X; and
(v) [ea,es] = Nopgeatp for a,f € X with a+ B € I.

Finally, we use the Chevalley basis to define certain automorphisms of £. For
each root o € ¥ we have (ade,)* = 0 for all sufficiently large k. Consequently, we

may define a linear map z4(¢) : £ — £ for every £ € C by setting

0 ka k
wa(g) =Z§ (:!ea) .

k=0

Theorem 2.2.6. Let a € ¥ and € € C, then z4(£) is an automorphism of £ where
(i) za(€) - hg = hg — A afeq for f € I1;

(ii) Ta(£) - €a = €q;

(i5i) ©a(§) - e—a = e—q + Eha — E%ea; and

(iv) za(€)-eg = 3% o My g itieinss for B €T with a # 0

for some integers My g; and k.

18
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2.3 Chevalley groups over fields

Let {hq,ep : a € II, B € £} be the Chevalley basis of a non-abelian simple Lie algebra
£ over C with root system ¥ and base II. Denote by £z the Z-span of the Chevalley
basis in £ and define

Lk =Lz QK.
Then L is a Lie algebra over K with basis
{ha ®1k,ep®@ 1 :a €I, 5 € B}
and Lie bracket obtained by taking
[z®1k,y®1k] = [z,9] ® 1k

for each z,y € £7 and extending linearly.

Further, the multiplication constants with respect to this basis are the multipli-
cation constants of £ with respect to the Chevalley basis interpreted as elements of
K. In particular, this means that if we use Theorem 2.2.6 to define a corresponding
linear map z4(r) on £k for each a € ¥ and r € K, then it must automatically be an

automorphism of L.

Definition 2.3.1. For each o € ¥ and r € K define z,(r) € Aut(£x) by
(i) za(r) - (hg® 1K) = (hg ® 1) — Apar(eq ® 1) for B € II;
(ii) za(r) (ea ® 1K) = (ea ® 1k);

(ili) Za(r) - (e—a ® 1K) = (e—a ® 1k) + T(ha ® 1) — r?(eq ® 1); and

(iv) zalr) - (es ® Lg) = % My gir'(€iatp ® 1x) for B € & with a # £8.

The Chevalley group of type X over the field K is then the subgroup

G(K) = (zo(r) 1 € X,r € K)
of the automorphism group Aut(£x) of £k.

19
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G(K) is independent of the choice of Chevalley basis for £ and is determined
up to isomorphism by the irreducible root system ¥ and the field K. Further, it
should be mentioned that this construction actually produces the adjoint Chevalley
group of type ¥ over K. The other Chevalley groups can be obtained by replacing
£z, with an admissible Z-form for a different faithful £-module (cf. [5] or [32]). How-
ever, the resulting groups are merely central extensions of the adjoint group and so
any representation constructed for the adjoint group can easily be pulled back to a
representation of the more general group.

We now examine the structure of G(K). For each « € ¥ and r,s € K we have
Zo(r)Tals) = za(r + s).

Thus, for each @ € ¥ the root subgroup Uy(K) = {z4(r) : r € K} is isomor-
phic to the additive group K. The relation between the generators z,(r) and zg(s)
for o # £ is given by the following commutator formula. Here we are using the

commutator [a,b] = aba~1b7L.

Theorem 2.3.2 (Chevalley Commutator Formula). Let o, 8 € ¥ be such that
o # 8, then for every r,s € K
[wa(r), zp(s)] = ] @iatis(cijas(~r)'s?)
1,7>0

where the product is taken over all positive © and j such that ia + jB € L. Further,
the coefficients c; j o5 are independent of r and s. More specifically, ¢; jop € {£1}
except for ¥ = By, Cy or Fy which have ¢; jop € {£1,£2} and ¥ = G2 which has
Cijap € {£1,£2,£3}.

Let U(K) = (Uy(K) : @« € %) and U= (K) = (Ug(K) : « € £7). As an im-
mediate consequence of the Chevalley Commutator Formula we obtain the following

results.

20
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Theorem 2.3.8. (i) Each g € U(K) can be expressed uniquely as

g= H Ta(ra)

actt
for some r, € K where the product is taken over the positive roots in a fized,

but arbitrary, order.

(ii) Similarly, each g € U (K) can be expressed uniquely as

9= H Ta(ra)

aEx~

for some ro, € K where the product is taken over the negative roots in a fized,

but arbitrary, order.

The Chevalley Commutator Formula only gives the relationship between the gen-

erators when o # £8. If o = —f, then the situation is closely related to SLs(K).
Proposition 2.3.4. For each a € ¥ the map ¢4 : SLa(K) = G(K) given by

1 r 10
Pa = z4(r) and Pa =Z_4(s)
01 s 1

for every r,s € K is a homomorphism.

In view of Proposition 2.3.4, for each @ € £ and r € K* consider the elements

r 0 0 r
ha(r) = ¢a and Na(T) = Pq
0 r! —r~1 90

In particular, na(r) = Ta(r)s—a(—rDa(r) and he(r) = na(r)ne (1)~
Lemma 2.3.5. Let o, € X, r,s € K* andt € K, then

(1) ha(r)ha(s) = ha(rs);

(i1) ha(r)hg(s) = hg(s)ha(r); and
(iii) ha(r)zg(t)ha(r) ™! = zg(riast).
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Thus, if we set T(K) = (ho(r) : @ € Z,r € K*) and B(K) = (U(K),T(K)),
then U(K) is normal B(K) and so B(K) = T(K)U(K).

Lemma 2.3.6. Let o, € X, r € K and s € K*, then
(i) na(1)hg(r)na(1)™" = hy, g (r); and
(i1) 16 (D)2p(r)na(l) ™" = Tuy(s) (Na,67)

where 1o, € {£1} is independent of r.

If we let N(K) = (no(r) : @ € &, € K*), then we find that there is a homomor-
phism from N(K) onto W which has T(K) as its kernel. Further, for each a €
the element ny(1) € N(K) gets mapped to wo, € W under this homomorphism.
Consequently, if we write any w € W as the product w = Wo,, *** Way, for some

QG5+, a5 € I, then setting
Ty = gy, (1) - Moy, (1)

we see that the image of n,, is w.
Indeed, B(K') and N(K) form a BN-pair for G(K) and so G(K) can be expressed
as the disjoint union

G(K) = | J B(K)n,B(K).
wew

2.4 Extension by the diagonal automorphisms

Let A, denote the Z-span of the roots ¥ in §, then a K-character of A, is a
homomorphism p : A, — K*. Further, since A, is a free abelian group generated by
IT, it is clear that each K-character of A, is completely determined by its value on

the simple roots.

Every K-character u of A, gives a diagonal automorphism h(u) of £ via

B - (ha®1k) = (ha®1x)  and  h(w)- (e5 ® 1x) = u(B)les @ 1x) (2.2)
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for each o € IT and 8 € ¥. Further, given any two K-characters p; and pp their

product pps is also a K-character and

h(p1)h(p2) = h(pp2).

Hence the set ff(K ) = {h(p) : 1 is a K-character of A,} of diagonal automorphisms
forms a subgroup of Aut(£x).
Now, for each @ € ¥ and r € K* the element hy(r) € G(K) acts on the Chevalley

basis via
ha(r) - (hg®1k) = (hg®1k)  and  ho(r)- (es ® 1) = r=f(es ® 1k). (2.3)
Thus, if we define a K-character pqr : A, = K* by
o (6) = rP@D(@e)

then we see that hq(r) = h(ta,r). Consequently, T(K) is a subgroup of T(K ) and it
is natural to consider which K-characters u give automorphisms A(u) in T(K).

Let A denote the set of all A € Hr for which 2(\, @) /(a, ) € Z for every a € . A
is called the weight lattice and its elements weights. In particular, for each o € II

the fundamental weight ), is the unique element in A with

Aa,f) _ ) 1 ifa=5

o
(8,8 0 ifa#p

for each g € IT and A is a free abelian group generated by {\, : a € II}. Further, A,
is clearly a subgroup of A and each simple root a € II can be expressed as the linear

combination

a=> Aapis (2.4)
pgen
where A = [A, gla,pen is the Cartan matrix of X.

Theorem 2.4.1. T(K) is the subgroup of T(K) consisting of the diagonal automor-

phisms h(p) where p is the restriction to A, of a K-character of A.
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This means that the quotient group T(K)/T(K) is isomorphic to the group of
K-characters of A/A,. From (2.4) we see that the index of A, in A is equal to the
determinant of the Cartan matrix A and is given in Table 2.2. By investigating the
Cartan integers further it is possible to show that A/A, has the structure shown in
Table 2.3. Then, in the case where K is the finite field F; of g-elements, Table 2.4
gives the index d of T(K) in T(K).

X A, B, C, D, E¢ E; Eg Gy F,

det(4) [n+1 2 2 4 3 2 1 1 1

Table 2.2: The determinants of the Cartan matrices

z A, B, Cn Dy Dy, Es E; Eg Gy Fy

AA N Z/n+ V)2 Z/22 Z/2L ZJ4Z Z/2ZLxZ/2Z Z/3Z Z/2Z 1 1 1

Table 2.3: The structure of A/A,

)Y An By, Cn Dopp Doy, Fe E; Eg Gy Fy

d |(n+1,9-1) (2,9-1) (2,¢-1) (4,¢-1) (2,¢-1)* 3,¢=1) (2,¢-1) 1 1 1

Table 2.4: The index d = [T(F,) : T(F,)]

Lemma 2.4.2. Let y be a K-character of Ay, a € L, r € K and w € W, then
(i) h()za(r)h(p) ™ = zo(p(e)r); and
(i1) nwh(p)ng' = h(i')

where ' is the K-character of A, given by ' (B) = u(w=(B)) for each B € T.
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This implies that T(K ) normalises each root subgroup U, (K) and so therefore also
U(K). Thus, if we define B(K) = (U(K), T(K)) then we have B(K) = T(K)U(K).

Definition 2.4.3. The extended Chevalley group G (K) of type X is the subgroup
of Aut(£x) generated by G(K) and T(K).

Theorem 2.4.4. G(K) is a normal subgroup of @(K) and G(K)/G(K) is isomorphic
to T(K)/T(K).

We conclude this chapter by identifying certain classical groups over K with either
a Chevalley group or its extended version.

The general linear group GL,(K) is the group of n x n invertible matrices
with entries in K

GLn(K) = {g € My (K) : det(g) # 0}
and the special linear group SL,(K) is the subgroup
SL,(K) = {g € GL,(K) : det(g) = 1}.

Further, the projective general linear group is PGL,(K) = GL,(K)/Z(GL,(K))
and the projective special linear group is PSL,(K) = SL,(K)/Z(SL,(K)) where
Z(GL,(K)) and Z(SLy(K)) are the centres of GL,(K) and SL,(K) respectively.

Now, consider the symmetric bilinear form (-,-) on K™ defined by

(z,y) = T1yn + -+ + Ty

for each z = (z1,-..,2Zn),y = (y1,--.,9n) € K™ The orthogonal group O,(K) is

then the subgroup of GL,(K) which preserves (-, )
On(K) = {9 € GLn(K) : (92, 9y) = (z,y) for each z,y € K"}
and GO, (K) is the subgroup of GL,(K) which preserves (-,-) up to a scalar
GO, (K)={g € GLyp(K):there is a, € K* with(gz, gy) =a,z,y) for eachz,y € K"}.
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Further, the special orthogonal group is SO, (K) = O,(K) N SL,(K) and Q,(K)
is the derived subgroup of O,(K). Again, PGO,(K) = GO, (K)/Z(GO,(K)) and

Similarly, if we consider the alternating bilinear form (-,-)' on K?" given by

(2,9) = 21Yon + + TaYntl — Tngil¥n =+ — T2nY1

for each 2 = (21,...,%21),¥ = (1,...,Y2n) € K", then the symplectic group

Spy, (K) is the subgroup of GLg,(K) which preserves (-, )’

Spon = {9 € GLon(K) : (92, 9y)" = (,y)’ for each z,y € K™}
and GSpy, (K) is the subgroup of GLg,(K) which preserves (-,-)' up to a scalar
GSp, (K) ={g € GLy,(K):there is a,€ K * with (g, gy)’ =a{z,y)’ for each z,y € K*"}.
Finally, PGSp,(K) = GSp,(K)/Z(GSp,(K)) and PSp,(K) = Sp,(K)/Z(Sp,(K)).

Theorem 2.4.5. Let G(K) be the Chevalley group of type & over K and G(K) its

extension by the diagonal automorphisms.
(i) If S = Ap, then G(K) ~ PSLn41(K) and G(K) ~ PGLy41(K).
(ii) If © = B,, then G(K) ~ Qg 41(K) and G(K) ~ SOgp41(K).
(iii) If & = Cy, then G(K) ~ PSpy, (K) and G(K) ~ PGSp,,(K).

(iv) If © = D,,, then G(K) ~ PQsy(K) and G(K) has indez 2 in PGOqy (K).
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Chapter 3

Chevalley groups over rings

We now turn our attention to the finite ring R = o /p‘Z obtained as the quotient of
the ring of integers o of a non-archimedean local field K by a power of its prime ideal
p. The structure of the Chevalley groups over R is then inherited from G(K) via the
corresponding Chevalley groups over o. Additionally, certain normal subgroups arise
from the ideal structure of R.

Proofs of the statements involving Chevalley groups over rings of integers can be
found in [32]. The results for congruence subgroups are taken from [1] and a general

reference for local fields is [26].

3.1 Local fields

Definition 3.1.1. A non-archimedean absolute value on a field K is a function

I|-]] : K — R such that for every z,y € K
(1) |lz|| > 0 with ||z|| = 0 if and only if z = 0;
(ii) llzyll = ll«ll - ||yll; and

(iii) ||z + yl| < max{||z]|, [ly]i}.
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K is then called a non-archimedean local field if it is complete with respect to

this non-archimedean absolute value.

Examples 3.1.2. (i) Let p be a prime and consider the field Q of rational numbers.

Each non-zero rational number r € QQ can be written as a quotient

for some non-zero integers z,y € Z. Further, there exist unique non-negative

integers a and b so that

Qa

z=p and y=p’y

for some integers z',7y' € Z which are not divisible by p. Thus we may define

the p-adic absolute value || - ||, : Q = R on Q by ||0||, = 0 and for r # 0

b—a

lIrllp = P

The non-archimedean local field Q, of p-adic numbers is then the completion

of @ with respect to the p-adic absolute value.

(ii) Again, let p be a prime but now consider the field F, (¢) of rational functions in
t with coefficients in the field I, of p elements. Each non-zero rational function

r(t) € Fp(t) can be written as a quotient

_z(®)
rit) = y(t)

for non-zero polynomials z(t),y(t) € Fp[t]. Further, there exist unique non-

negative integers a and b so that
z(t) = t%'(t) and y(t) = %y (¢)

for some polynomials 2’(t), y'(t) € Fp[t] with non-zero constant terms. Thus we

may again define a non-archimedean absolute value || - ||; : Fp(t) = R on Fp(t)
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by |{0]|z = 0 and for r(t) # 0

llr@®lle = p*~*.

The non-archimedean local field F,((t)) of formal Laurent series in ¢ over F, is

then the completion of Fy,(t) with respect to this absolute value.

The ring of integers of a non-archimedean local field K with absolute value || ||
is the subring

o={z € K:|z|| L1}.

The group of units in R is then clearly
o ={zeK:|z|| =1}

meaning that

p={ze K:|z| <1}

is the unique maximal ideal of 6. Thus, the quotient ring K = o/p is a field and is
called the residue class field of K. Further, p is a principal ideal and every ideal

of o is of the form pi for some ¢ > 0.

Definition 3.1.3. Let o be the ring of integers of a non-archimedean local field K
with maximal ideal p and finite residue class field « of order q. Then, for a fixed

integer £ > 1 define R to be the quotient ring R = o/p®.

R is clearly a commutative ring and, since p is the unique maximal ideal of
0, the unique maximal ideal of R is m = p/p’. Thus, the group of units of R is
R* = {r € R: r ¢ m}. Further, since p is principal, m must also be principal.
Consequently, if 7 denotes the generator of m then each ideal of R is of the form
m! = 7' R for some 0 < i < £ since each ideal of o containing p¢ is of the form p for

-1

some 0 < 4 < £. In particular, m*! = 7~1R is the minimal non-zero ideal of R.
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Lemma 3.1.4. Let 0 <1 < ¢, then
(i) |Rl = d"

(u) Imi| = ¢*%; and

(iir) |R*| = q" (g - 1).

Examples 3.1.5. (i) The ring 0 = Z, of p-adic integers is the ring of integers
of Qp. Further, the maximal ideal of o is p = pZ, and its residue class field
Kk = ZLp/pZy is the field of p elements. Then, for £ > 1 the ring R = Zp/peZp

can be identified with the ring Z/p%Z of integers modulo p*.

(ii) The ring o = F,[[t]] of formal power series in ¢ is the ring of integers of
Fp((t)) and its maximal ideal is p = tFp[[t]] so again the residue class field
k = Fp[[t]]/tFp[[t]] is the field of p elements. Thus, for £ > 1 the ring
R = F,[[t])/tF,[[t]] can be identified with the ring F,[t]/t‘F,[t] of polynomi-

als in ¢ with coefficients in F,, modulo .
We also include a result about k-th roots in R which will be required later.

Lemma 3.1.6. Let k be a positive integer which is not divisible by the characteristic

of k, then for every r € 1 +m there is some s € 1 + m with r = s*.

Proof. In fact, we will show that the only element r € 14+m with r* = 1 is 7 = 1. This
would then imply that the map from 1 + m to itself which sends r to ¥ is injective.
Thus, since 1 + m is finite, it must also be surjective and therefore any r € 1 + m is
of the form r = s* for some s € 1 + m.
Suppose that 7 € 1 + m is such that 7* = 1, but that r # 1. Thenr* -1 =0
implies that
(PPl b2 (- 1) =0
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and therefore r*=1 ++8=2 4 ... 4+ r 4+ 1 € m since r — 1 # 0. Consequently, if we
consider the natural projection 7; : R — & which has m as its kernel, then we see

that 7;(r) = 1 and so
O=m(r) t+m)f 2+ +m@)+ml) =1+1+---+1+1=F

However, this implies that the characteristic of x divides k, which is a contradiction.

Hence we must have r = 1. O

3.2 Chevalley groups over finite local rings

Let o0 be the ring of integers of a non-archimedean local field K and £ be a non-abelian
simple Lie algebra over C with root system ¥ and base II. If £z again denotes the

Z-span of the Chevalley basis in £, then

is a Lie ring where the Lie bracket is inherited from £7. Further, since o is a subring
of K, we can consider £, to be a Lie subring of £x. Thus Aut(£,) can be identified
with the subgroup of Aut(£k) consisting of the automorphisms of £x which preserve
£,. In particular, this means that for any o € L and r € o the automorphism z(r)
of £x can be considered as an automorphism of £,.

Now, fix £ > 1 and set R = o/p®. Then
Lr=L79R

is again a Lie ring with the Lie bracket inherited from £z7. Moreover, the natural
projection 7 : 0 — R gives rise to a Lie ring homomorphism 7 : £, — £g and this in

turn induces a homomorphism of automorphism groups
n: Aut(L,) — Aut(Lpr).
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Consequently, if for each o € ¥ and r € R we define

Ta(r) = n(za(r’))

where r' € o has n(r’') = r, then Zo(r) is an automorphism of £g.

Definition 3.2.1. The Chevalley group of type X over the ring R is the subgroup
G(R) = (Toq(r) : ¢ € L,7r € R)

of the automorphism group Aut(Lg).

Let G(0) = G(K) N Aut(L,). By [32, Theorem 18, Corollary 3]

G(0) = (zo(r) :a € E,r € 0)

and so we have

n(G(0)) = (n(za(r)) : a € E,7 € 0) = (Tua(r) : @ € E,7 € R) = G(R).

With this in mind, for each subgroup H(K) of G(K), we let H(0) denote the subgroup
H(o) = H(K)NAut(£,) of G(o) and H(R) its corresponding image H(R) = n(H (o))
in G(R).

From Definition 2.3.1 it is clear that z4(r) € Aut(£,) if and only if r € 0. Thus,
Un(0) = {za(r) : 7 € 0} for each a € ¥ and so Uy(R) = {Zu(r) : r € R}. Further,

for any r, s € R we see that if 7/, s’ € o are such that n(r') = r and n(s’) = s, then
Ta(r)Ta(s) = 1(za(r'))n(zals)) = n(@a(r’ +5') =Talr + 5).

Thus the root subgroup Uy (R) is isomorphic to the additive group R.
More generally, the Chevalley Commutator Formula for G(K) gives the corre-

sponding commutator formula for G(R).
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Theorem 3.2.2 (Chevalley Commutator Formula). For any o, € X with
a# xB and r,s € R we have

[Za(r),Ta(s)] = [] Tiatis(Cijas(-T)'s?)
i >0

where the constants c; j p are considered as elements of R.

Proof. Let r',s' € o be such that n(r') = r and 7(s’) = s, then we see that

[Ea(r), Zp(s)] = [n(zalr)), n(zs(s))] = n([za(r), z5(s)])
and the result follows from Theorem 2.3.2. O

In particular, this implies that if rs = 0, then z,(r) and zg(s) commute.
By [32, Lemma 49(b)] we have U(o) = (Uy(0) : @ € £T) and so applying n we
obtain

U(R) =n(U(0)) = (n(Ua(0)) : @ € T%) = (Ua(R) : x € B7).

Similarly, we have U~ (R) = (Uy(R) : @ € ¥~). Thus, the commutator formula once

again gives the following result.

Lemma 3.2.3. (i) Fach g € U(R) can be expressed as

g= H Ea("'a)

acyt

for some rq € R.

(i) Each g € U™ (R) can be expressed as

9= H Ea("'a)

ac¥s~

for some ro € R.
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For each a € ¥ the homomorphism ¢, in Proposition 2.3.4 restricts to a homo-

morphism ¢, : SLy(0) = G(o) [32, Lemma 48] with
$a(SL2(0)) = da(SLa(K)) N Aut(L,). 32, Lemma 49(d)]
Thus, if we define a map ¢, : SLo(R) — G(R) by setting for each g € SLa2(R)
$a(9) = n(¢ald))

where ¢’ € SLo(0) has n(¢') = g, then this must also be a homomorphism.

Proposition 3.2.4. For each o € &, the map ¢, : SLa(R) — G(R) given by

— 1 r _ 1 0
¢a ( [ ] ) ) ma (r) and ¢a ( [ } ) ) x_a(S)
01 s 1

for every r,s € R is a homomorphism.

Consequently, if we again define

_ _ r 0 _ 0 r
comin([ 2] e woen( )
0 ! —r=1 0

for each a € ¥ and r € R*, then we have hq(r) = n(he(r')) and Ty (r) = n(na(r"))
for some ' € 0* with n(r') = r. Thus, we immediately obtain the corresponding
versions of Lemmas 2.3.5 and 2.3.6.

Further, Proposition 3.2.4 allows us to easily calculate the following special case

of the commutator [z4(r), z—q(s)].

Lemma 3.2.5. Let r,s € R with r2s?> = 0, then for any o € &
[Ta(r), T-a(s)] = ha(l + r8)Ta(—128)T_q(rs?).

Proof. The result follows from Proposition 3.2.4 and the fact that
1r101—r10_1+r50 1 —r?s 1 0
[0 1] L 1] [0 1] [—s 1] - [ 0 1—7‘3] [0 1 } [rﬁ 1}

in SLy(R). O
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Now, T(0) = {(ha(r) : » € 0%,a € T) [32, Lemma 49(a)] with B(o) = T'(0)U (o)
[32, Lemma 49(a)]. Thus,

T(R) = 7(T(0)) = (n(ha(r)) :r € 0%, 0 €X) = (ho(r) : 7 € R*,a € T)

and B(R) = n(B(o0)) = n(T(0)U(0)) = n(T(0))n(U(0)) = T(R)U(R). In this case,
however, B(R) and N(R) do not in general form a BN-pair for G(R). In particular,

although for each w € W we have n,, € N(0) and so may define

Ty = n(nw)?

they do not form a complete set of (B(R), B(R))-double coset representatives in
G(R). Indeed, we will see later that in general the (B(R), B(R))-double coset struc-

ture of G(R) is much more complicated than was the case for G(K).

3.3 Extended Chevalley groups over finite local rings

Let u be a K-character of A, such that h(u) € Aut(L,), then by (2.2) it is clear
that we need p(a) € o* for every a € 3. Conversely, if 4 is a K-character of A,
with p(a) € o* for every o € X, then obviously h(u) € Aut(£,). Thus, if we let

~

f(o) = T(K) N Aut(L,) then we see that
T(0) = {h() : u(c) € 0* for every a € £}.

Now, any K-character 4 of A, with p(a) € o* for each o € ¥ gives rise to an

R-character n(u) of A, by setting for every o €

Further, suppose that i is an R-character of A,. If for each « € II we choose s, € 0%
with 7(ss) = f(a), then we may define a K-character p of A, by setting u(a) = sq.

Thus, we must have 7(u) = & since n{u(a)) = n(sq) = h(a) for every a € II.
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As a consequence of this, if for each R-character 7z of A, we define the diagonal

automorphism h(f) of £ by
R(E) - (hs®1p) = (hg®1r) and KD - (s ® 1g) = Fla)(es ® 1r), (3.1)

then (%) = n(h(n)) for some h(x) € T(0). In particular, this means the correspond-
ing version of Lemma 2.4.2 must hold for A(%). Further, setting T(R) = n(T(v)), we
obtain

f(R) = {h(f) : 7@ is an R-character of A,}.
Moreover, the proof of Proposition 2.4.1 from {2] is also valid in this situation.

Theorem 3.3.1. T(R) is the subgroup of T(R) consisting of the diagonal automor-

phisms h(T) where Ti is the restriction to A, of an R-character of A.

For each r € R* and a € 11, let
To(r) = B(Vay)

where Vo : A, = R is the R-character of A, given by

va,r(ﬂ) = { roife=Fp

1 otherwise

for each B € II. Then we see that any R-character @ of A, can be uniquely expressed

as the sum

p= H va,ﬁ(a)

a€ll
and so any diagonal automorphism h(f) € T(R) can be uniquely expressed as the

product

E(ﬁ) = H E(ﬁa,ﬁ(a))-

a€cll

In particular, this implies that |T'(R)] = ¢~ (g — 1)".
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Lemma 3.3.2. For each a € II, r € R* and S € L, s € R we have

Yo (r)z5(8)ya(r) ™t = za(rFes)

where kq is as in (2.1).

Finally, if we set B(0) = B(K) N Aut(£,) and B(R) = n(B(0)), then by adapting
the proof of [32, Lemma 49(a)] we have B(o) = T(0)U(0) which implies that

B(R) = n(B(0)) = n(T(0))(U(0)) = T(R)U(R).

Definition 3.3.3. The extended Chevalley group of type ¥ over R is the sub-
group @(R) of Aut(Lgr) generated by G(R) and f(R).

Theorem 3.3.4. G(R) is a normal subgroup of G(R) with G(R)/G(R)~T(R)/T(R).

3.4 Congruence subgroups

In the last section of this chapter we consider certain normal subgroups of G(R) and

@(R) which are obtained from the ideals of R. If for each 1 <i < £ — 1, we set
Lospi = L2.8 0/p’

then the natural projection m; : R — o/p® again gives rise to a homomorphism of
automorphism groups

i+ Aut(£R) — Aut(Lo/pi)-

The intersection of the kernel of this homomorphism with G(R) is then the congruence
subgroup K; = ker(r;) N G(R). Further, for each subgroup H(R) of G(R), let H(m?)
denote the subgroup H(m?) = ker(n;) N H(R).

In particular, for each @ € & we see that To(r) € ker(r;) if and only if r € m?.

Thus U, (m?) = {Z4(r) : 7 € m*} and is isomorphic to the additive group m'.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lemma 3.4.1. (i) Each g € U(m%) can be ezpressed as

g= H Ea("'a)

aet

for some ro € m*;

(ii) Each g € U~ (m') can be expressed as

g= H Ta(ra)
¥~
for some ro € m¥; and

(iii) K; = U~ (m)T(m®)U(m?).

Similarly, consider the congruence subgroup K; = ker(n;) N G(R) of G(R) and let
H(m?) = ker(n;) N H(R) for any subgroup H(R) of G(R).

Lemma 3.4.2. (i) T(m%) = {k(E) : G(e) € 1+ m® for each a € £}; and

(i) K; = U~ (m))T(mi)U(m?).

N—

Proof. (i) Suppose that 7 is an R-character of A, with h(%) € ker(n;). Then,
by (3.1) we must have 7;(ji(a)) = 1 and so i(a) € 1 +m' for every a € X.
Conversely, if () € 1 +m® for each « € X then clearly h(g) € ker(n;).

(ii) This can be shown by adapting the proof of Lemma 3.4.1(iii) from [1]. O
We conclude this chapter by recording some commutator calculations.
Lemma 3.4.3. Let 7 € m and s € R be such that rs € m*~1,
(i) If o € £~ and B € £F have ht(a) + ht(B) > 0, then [Ta(r),Ts(s)] € B(mé1).

(ii) If « € £~ and B € &% are such that a + B € £_1, then for some v € B(mf™1)

we have [ZTo(r), Ta(s)] = Tarp(c1,1,0,8(—T)s)v.

(i) If « € &~ and B € T have ht(a) + ht(B) = —1, but o+ 8 ¢ T then
[Za(r), Tp(s)] € B(m*1).

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proof. Let r € m and s € R be such that rs € mé-1,

(i) Consider B € ¥t with 8 # —a. The commutator formula implies that
[Za(r),Z(s)] = || Fiatis(cijas(-r)'s").
1,5>0
Now, since € m and s € R with 7s € m*~! we have (—r)'s = 0 for any ¢ > 1.

Thus

[Za(r), Z5(s)] = | | Tarsplerjas(-r)s").
Jj>0

Further, for any 5 > 0 with a + j8 € ¥ we must have a + j3 € T since
ht(a+58) = ht(a)+5ht(8) > (j—1)ht(8) > 0. Hence [Z4(r),Zs(s)] € B(m*1).

If = —q, then by Lemma 3.2.5
[Za(r), T_a(s)] = Ba(l + r8)T_a(rs?) € B(m® 1),

1

(ii) Again, since r € m and s € R with rs € m*~! we have

Za(r),Z5(s)] = [ [ Zatis(crjap(—)s").
>0
However, on this occasion a + j3 € ¥ implies o + j8 € ¥ only for any j > 1.

Consequently,

[Ba(7), ZTp(5)] = Tatp(cr,1,0,8(—T)s) H Eaz+j/3(cl,j,0£,ﬂ(—7')5'j)
Jj>1

where v = [, Tatjp(c1jap(—r)s) € B(mt1).

(iii) This follows immediately from the proof of (ii) since @+ ¢ X implies that the

J =1 term does not appear and we obtain
[Za(r), Za(s)] = [ [ Zatsolerjan(-r)s’) € Bm). O

i>1
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The above calculations will be used in conjunction with the following general

result about commutators.
Lemma 3.4.4. For any a,b,c we have the following:
(i) [a,bc] = [a,b] (bla,db™1); and
(ii) [ab,c] = (a[b, cJa™?) [a,c].
Proof.
(i) [a,bc = a(be)a~l(c™1b71) = (abab~1)b(aca= e )b~ = [a,b] (bla, Jb™1) .
(i) [ab,d] = (ab)c(b=ta"1)c™! = a(beb~rcY)a " (aca  cY) = (afb,cla™) [b,d. O

In particular, if b commutes with [a, ] then [a,bc] = [a,b][a,c]. Similarly, if a

commutes with [b, ¢] then [ab, c] = [b, c|[a, ¢].
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Chapter 4

Construction

It turns out to be easier to consider the analogue of the Steinberg character first
for the extended Chevalley groups over R. As there is now no risk of confusion we
remove the reference to R from the notation for the groups so that, for example,
@(R) is simply written as G. Similarly, we omit the bars from the notation for the
elements of G which means that, for example, To(r) is denoted by z4(r).

Additionally we will require that the residue class field x has good characteristic

(cf. [3)), i.e.

(i) char x # 2 if ¥ = By, Cy, or Dp;

(ii) char k # 2 or 3 if ¥ = Fy, G, Eg or Ey; and
(iii) char k # 2,3 or 5 if ¥ = Eg.

This will ensure that certain combinations of the Chevalley commutator constants
are invertible in R.

As both Steinberg’s original construction [29] for the general linear group and
Curtis’ later definition [4] for finite groups with BN-pairs were in terms of permuta-
tion characters over parabolic subgroups, we begin by considering the concept of a

parabolic subgroup in our situation.
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4.1 Parabolic subgroups

Definition 4.1.1. A subgroup PofGis parabolic if it is of the form
P=(Uy(m=),B:aecx) (4.1)

for some 0 < i, < 4.

Usually the parabolic subgroups of G are taken to be all of the subgroups con-
taining B. By [34], when char k # 2 or 3 every subgroup containing B must have
the form in (4.1). However, when char k = 2, and char k = 3 for certain ¥, there
exist subgroups of G which contain B but are not of this form. We will need that

our parabolic subgroups can be constructed using the root subgroups of G.
Example 4.1.2. The parabolic subgroups of G= PGL2(R) are of the form

~ a b ~ )
B; = cG:cem’
c d

-

foreach 0 <1 < 4.

Let S = {a € ¥ : —a € II} and for each a € S consider the parabolic subgroup

where X, = Uy (mf™1).
Lemma 4.1.3. fIa = Xa§ = EXa.

Proof. We need to show that Xa§ - §Xa since, by considering inverses, this would
also imply that §Xa - Xaﬁ. Thus, we would obtain Xa§ = §Xa which must
therefore be equal to ﬁa.

Fix r € m¢~! and let 8 € ©t. Clearly ht(a) + ht(8) > 0, and so Lemma 3.4.3(i)

implies that [z4(r), z5(s)] € B(m® 1) for any s € R. Thus if u € U is expressed as
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U= Haez+ zg(sg) for some sg € R, then by Lemma 3.4.4(3)

[wa(r),u] = [za(r), T] 2()) = [] lza(r),2s(s)] € B(m™).

gex+t Bex+
Hence z4(r)u = [z4(r), uluza(r) € BX, for each z4(r) € X, and u € U, implying
that XoU C BX,.
Further, for each h(y) € T

2o (r)R(p) = R()h(1) " 20 (r)h(k) = h(n)za(p(a) 7).

Thus 2o (r)h(i) € BX, for each z4(r) € X, and h(p) € T, which gives XoT C BX,.
Consequently,

o~

XoB = Xo(TU) = (X, T)U C (BXa)U = B(X,U) C B(BX,) = BX,
as required. 0O

Proposition 4.1.4. {ﬁa : a € S} are the minimal parabolic subgroups which strictly

contain B.

Proof. 1t is clear from Lemma 4.1.3 that each fIa is a minimal parabolic subgroup
strictly containing B. Thus we need to show that if P is a minimal parabolic subgroup
which strictly contains E, then P = H, for some .

First note that there must be some o € £~ and 0 < i < £ with U,(m?) < P
since P is parabolic, but not equal to B. In particular this means that we have
Un(mt1) < P. Thus, if @ € S then we must have H,<P implying that P=1,
by minimality.

Suppose that o ¢ S. Then there is a root 8 € ¥t with a+ 8 =  for some v € S.
For any r € m®~! and s € R we have z4(r),zs(s) € P and so [za(r),za(s)] € P.
However, by Lemma 3.4.3(ii) we have [z4(r),z(s)] = #,(c1,1,0,8(—7)s)v for some

v € B(m%~1). Thus, if for each t € m"~1 we choose 7 € m"~! and s € R such that
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c11,a+8(—T)s = t, we obtain [z4(r),zg(s)jv™! = z,(t) € P and therefore X, < P.
<

Hence I;’,y P implying that P= I:T,y by minimality. O
Now, for each non-empty J = {¢j,...,a; } € S consider the parabolic subgroup

-~ o~ ~

H;= (Haj17"' )Hajk>'

Then, since for each o, 8 € S

o~

HyHg = BX,X3B = BX3X,B = HgH, (4.2)
; 8 8 8

we must have H 7= H

aj, " ﬁajk' In particular, this means that if we set

Xy = {;L'ajl (ry)--- Taj, (rg) i 714,71k € mlf—l},
then
Hy=Hyy - Hoy =Xoy B+ Xoy B=Xo; -+ Xoy B=X;B  (4.3)

and similarly H; = BX;. Additionally, let ﬁ@ = B and Xy = {1} so that again
Hy = XyB = BX,.

Lemma 4.1.5. Let I,J C S, then

(i) |Hs| = ¢\ B);

(ii) H By = H;Hy;

(iii) Hyn Hy = Hiny; and

(iv) (Hr, Hy) = Hyyy.
Proof. (i) |Hy| = |XsB| = |X,||B| = ¢M|B| = |H;| since X;n B = {1}.

(i) HHy = BX;X;B = BX;X;B = H;Hj.

(i) AN Hy = X BN X,;B = (X;nX,)B = X;nsB.

(iv) This is immediate from the definition. a
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The analogue of the Steinberg character is then defined to be an alternating sum

of permutation characters over the parabolic subgroups H g for JCS.

Definition 4.1.6. St; is the virtual character
Ste = (-1)1(15,)°
Jcs

Remarks 4.1.7. (i) If we apply the definition of the parabolic subgroup H, in the
case where h = 1, then we obtain the minimal standard parabolic subgroups
of G(k) strictly containing B(k). Thus, the subgroups Hj are exactly the
standard parabolic subgroups and the expression for Sty as an alternating sum
of permutation characters reduces to the formula for the Steinberg character

given by Curtis [4].

(ii) Further, for PGL, (R) the definition of St; can be inflated to give a correspond-
ing alternating sum of permutation characters in GL,,(R). The resulting expres-
sion is identical to the alternating sum obtained by Lees [21, Corollary 3.23] for
the character afforded by the top homology space of the simplicial complex
he described. Consequently, Sty is the same as the analogue of the Steinberg

character defined by Lees after reduction modulo the centre of GL,(R).

4.2 Module affording St,

The definition of St in the previous section was as a virtual character of G. Thus,
we would like to show that it is actually a character of G and to accomplish this we
describe a method of constructing modules whose characters are alternating sums of
permutation characters.

Let G be an arbitrary finite group. For each subgroup H of G define ey to be

the idempotent

1
GHZWZ}L

heH
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in the group ring CG and recall that the permutation module CGep affords the
permutation character (15)°.

Further, if K is a subgroup of G which contains H, then egex = e and so
CGekg C CGep. Indeed, CGep can be expressed as CGey = CG(eg — ex) ® CGek
which implies that CG(ey — ek ) affords the character (15)¢ — (1g)%.

Now, let H; and Hs be two subgroups of G. Then it can be shown that the inter-
section of the corresponding permutation modules is CGey, N CGey, = CGe Hiiz

where Hy, 9y = (Hi, Hz). Consequently
CGep, + CGen, = CG(en, — eH{m}) ® CG(en, — eH{m}) &) (CGeH{l,z}

and thus affords the character

(L)% = (L)% + (L) © = (Largs )+ (L ) = (L) + (1) = (L )

Hence, if we let Hy denote the intersection H; N Hy, then any module M with
CGen, = M & (CGen, + CGep,)

must afford the character

(1H@)G - (1H1)G - (1H2)G + (1H{1,2})G'

To continue this approach with more than two subgroups we need to place certain
restrictions on the choice of subgroup. Suppose that Hy, ..., Hy are subgroups of G
such that H;H; = H;H; for each 4,j. Again, set Hy = Hy N --- N Hy and for each
non-empty J = {j1,...,5} €S ={1,...,k} let H; = (Hj,,...,H;) = Hj, --- Hj,.
In this situation the corresponding permutation modules satisfy the following dis-

tributive law.

Lemma 4.2.1. (CGep, ++--+CGep, ,)NCGey, = CGeH{I,k} +---+(CGeH{k_1,k}.
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Proof. For each i we see that (CGeH{i,k} C CGep, and so therefore we must have
(CGeH{l,k) +-- 4 (CGeH{k_l,k} C (CGeq, + -+ +CGep,_,) NCGep, . Now consider
an element m € (CGey, + -+ + CGepq,_,) N CGep,. Then m = mep, and also
m = riey, +- - +rp-1€H,_, for some r; € CG. Thus, since eg,en, = eny, ,, for each

1, we see that
m = MeH, = r1€H€H, t + Tk—1€H,_1€H, = T1€H( 4y T+ Th=1€Hy_y 4y
Hence (CGen, + -+ CGep,_,) NCGepy, C (CGeH{Lk} + -+ (CGeH{k;-l,k}' O

The sum of the permutation modules can then be shown to give a character which

is expressible as an alternating sum of permutation characters.

Proposition 4.2.2. CGep, + --- + CGep, affords the character
> )M ag,)C.
0£JCS
Proof. We proceed by induction on k, noting that k£ = 1 is true since CGey, affords
(1g,)¢. Now, CGeq, + -+~ +CGep, = (CGeq, + -+ +CGep,_,) ® M where M is a
submodule of CGey, such that CGey, = M ® (CGepq, + --- + CGepy,_, ) N CGegy, .
By induction, CGeg, + --- + CGep,_, gives the character
Y. =y e (4.4)
0#£JC{1,....k—1}
Further, by Lemma 4.2.1, (CGep, + -+ + CGep,_,) N CGen, produces
J|-1 G
Z (—1)| | (1HJu{k})
0£IJC{1,....k—1}
and thus M must afford

(1Hk)G - Z (—l)lJl‘l(lHJu{k})G = Z (_l)m_l(lHJ)G' (4.5)

0£IC{1,...k—1} keJCS
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Hence the character given by CGep, + - - - + CGep, is the sum of the characters (4.4)
and (4.5), i.e. the character

> (0¥ (1m)C. O

9£JCS
The alternating sum produced by Proposition 4.2.2 is not quite in the right form

needed for Sty;. To obtain the correct form we consider the CG-module CGe where

e= Z(—l)meHJ.

JCS

Lemma 4.2.3. ¢ is an idempotent.

Proof. By definition, HyH; = Hjpyy and so eg,eq, = em,,, for each I,J C S.
Thus, emg;e = 3 cs(-DVlenen, = S cs(=DVlep,,, = 0foreach § # I C S
and ep, e = Z]gs(_l)l.”eH@eH_] = ZJQS(—l)”'eHJ = e for I = (. Consequently,

¢’ = E[gs(“l)llleH,e = ef,e = e as required. 0

Further, CGe is the complement in the permutation module over Hy of the sum

of the permutation modules over the parabolic subgroups Hy.
Lemma 4.2.4. CGep, = CGe ® (CGeg, + -+ ClGen,).

Proof. By the proof of Lemma 4.2.3 we have ey,e = 0 for each ¢ and so therefore
CGen(CGen, +-+-+CGen, ) = 0. Further, ey, = e+Z@¢J§S(—1)|J|'1eHJ implies
that CGey, = CGe + (CGeg, +--- + CGep,). a

As a consequence the character afforded by CGe is also an alternating sum of

permutation characters.

Corollary 4.2.5. CGe affords the character

¢= Y (-)M(g,)C.

JCS
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Proof. This is immediate from Lemma 4.2.4 and Proposition 4.2.2. O

Finally, returning to the extended Chevalley group G with its parabolic subgroups

H 7 we obtain the desired result.

Theorem 4.2.6. Sty is the character afforded by the module CGe where e is the

idempotent

e= 3 (-1)Vley. .

JCS

Proof. The character ¢ from Corollary 4.2.5 is exactly the expression for Sty given in

Definition 4.1.6. a

4.3 Induction from a Steinberg character

If we let H = Hg and define X to be the character

x = Z |J|1A

Jcs
afforded by the CH-module CHe, then it is clear that St is induced from y. In fact,
we will show that y is essentially the Steinberg character of H.

For each a € S,

Y—a(—1)za(r)y-a(-1) = y—a(_l)xa(r)y—a(_1)~1 = To(-T).

Thus if we set
Oa = xa(ﬂz_l)y—a(—l)

then
05 = 2o (T )Y-o(~1)2a (T )y_a(-1) = 2o(7* 2o (-71) = L.
Further, for g € S with a £ 3

Y=a(~1)zp(r) = y-a(-1za(r)y—a(~1)"'y—a(-1) = z5(r)y-a(-1)
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which implies that

0a0p = Ta(my-a(-1)zs(m 1 )y_p(-1)
= za(r" Nzp(n* y_a(-1)y-p(-1)
= zp(r" Naa(®y-p(=1)y-a(-1)
= zp(r'Ny-_p(-1)za (" y-a(-1)

= 0p0,.
Consequently, if for each non-empty subset J = {a;,,..., 05, } € S we write
O'J —q o‘ajl ...O-ajk

with oy = 1, then the group N generated by {04 : @ € S} is N={o;:JCS}
We will now show that B and N together form a BN-pair for H. The first

property of BN-pairs we need to prove is that Band N generate H.
Lemma 4.3.1. H = (B, N).

Proof. Clearly B < H and N < H so therefore (]§, ]V) < H. Now, fix @ € S. Let

r € =1 RX and choose s € R* such that r = 7¢~1s. Then

y—a(S*l)Uay—a(—S) = y~a(5_1)-7"04('”e—l)y—a(_l)y—a(_s)
= y—a(s_l)wa('”l_l)y—a(s)
= go(ntls)

= x4(r). (4.6)
Hence z,(r) € (ﬁ, ]V) for each r € m¢~! and « € S, implying that H< (E,JV). O
Next, we prove two results regarding the (B, B)-double coset structure of H.

Proposition 4.3.2. Foranya € S and JC S
UQEUJ C EO'JB\ U EUQUJE.
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Proof. Let b € B and suppose that « ¢ J. Then, since g,b € H, with ob ¢ §,
by Lemma 4.1.3 we may write 0ab = Vo (r) for some r € 7¢"1R* and b’ € B. Let

s € R* be such that r = wt~1s, then y_o(s 1oy = 0jy_a(s™!) and by (4.6)
ooboy =bxo(r)os = b'y_a(s_l)aay_a(—s)aj = b'y_a(s_l)aany_a(—s) Ggaaa,}ﬁ.

Now, suppose that o € J. In particular, this implies that o7 = 0407_(4}. Since
ogbog € fIa, by Lemma 4.1.3 we have 0obog = bz (r) for some r € mé~1 and ¥’ € B.

If r = 0, then oabo, = V' and so
0abo s = 0ab0a0_fa} = V05 (o} =bV0aos € Bo,o;B.
If r # 0, then (4.6) with s € R* such that r = 7°~1s again gives

ouboy = blea(T)UJ—{a}
= b’y_a(S——l)Uay-—a(_S)JJ—{Q}
= Vy_a(s7")0a07-(a}Y~a(-5)

= bly—a(s_l)UJy—a(—s) € EUJB\-
Hence O'a./B\O'J - EG]E U BUQUJE. |

However, the second result only holds when the order ¢ of the residue class field

is greater than 2.
Lemma 4.3.3. If q # 2, then aaﬁaa # B forany a € S.

Proof. Suppose that q # 2, then there is some s € R* with 1 — s € R*. Thus

TaY—all — 5)_10a

= zo(m")y-a(-1)y-a(l = 5) 'wa(r")y_a(-1)
= za(mNy—a(~Dy-a(l = 5) " za(m")y-a(l - s)y-a(l — 8) 'y—a(-1)
= za(™ Ny—a(-1za(m (1~ 8))y-a(-1)y-a(l — )"
(7D aa(r (s = 1))y—a(l - 5)7*
(

= 2o(mtl8)y_o(1 —s)7 L

= xa
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and so aaﬁaa # B. 0

For ¢ # 2 this is sufficient to show that B forms part of a BN-pair for g However,
Lemma, 4.3.3 does not hold when ¢ = 2 and in this case we do not quite obtain a

BN-pair.

Theorem 4.3.4. (i) If q # 2, then Band N form a BN-pair for H.

o~ o~

(ii) If ¢ = 2, then B is normal in H and ﬁ/B ~

Proof. (i) Suppose that ¢ # 2. By Lemma 4.3.1, B and N together generate
H. Further, BN N = {1} is trivially normal in H and ]V/(E NN) = Nis
generated by the set of involutions {0, : @ € S}. The result then follows from

Proposition 4.3.2 and Lemma 4.3.3.

(ii) Now suppose that ¢ = 2. Then, since [fIa : §] = 2 for each a, we must have
aaﬁaal = B. Thus UJEO';l = B for each J C S and so B must be normal in
B , since Band N generate H by Lemma 4.3.1. Finally, N forms a complete

set of left coset representatives for Bin H. []

When ¢ # 2 the subgroups H J are exactly the parabolic subgroups of H as
a finite group with BN-pair. Thus the expression for St, as an alternating sum
of permutation characters is identical to the formula for the Steinberg character of
H given by Curtis [4]. Similarly, when ¢ = 2 the quotient groups H; / B are the
parabolic subgroups of H /§ as a Coxeter group and so the expression for St is

Solomon’s formula [27] for the sign character of H / B inflated to H.
Corollary 4.8.5. (i) If g # 2, then x is the Steinberg character of H.

(i) If q = 2, then x is the sign character of I/-I/E inflated to H.
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Chapter 5

Homology

Before we show that St, is an irreducible character, we will prove that it is afforded
by a homology space of a simplicial complex analogous to the combinatorial building
in the finite field case. We use the approach to homology representations contained

in [11].

5.1 Definitions

A poset is a set € together with a partial ordering < of its elements. Each poset {2
defines a simplicial complex A(§2) whose vertices are the elements of {} and k-simplices
are the (k + 1)-chains in , i.e. subsets {wp,...,wx} of Q such that wy < -+ < w.

For each k, let Ck(f2) denote the Z-space spanned by the k-simplices in A(S2).
Further, for each k define the linear map 9 : Cx(Q) — Cr_1(2) by

for each v = (wp < -+ - < wi) € Cr(f2) where

¥ = (wp <+ < wjm1 < W < wi1 < -+ < W)
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with @; meaning that the term w; has been omitted. Then 010 = 0 for each k and

so the graded vector space
o0
C() =) Cr(9)
k=0

is a chain complex with boundary homomorphism 8 = {9;}72,. Consequently, since

im Og+1 C ker d we may consider the quotient space
H(Q) = ker 0y /im Og41.

This is called the k-th homology space of 2.
Now, suppose that G is an arbitrary finite group which acts on the poset {2 in
such a way that the partial order is preserved, i.e. so that if w < ' then gw < gw'

for each g € G. This gives rise to an action on the simplicial complex A(2) via
glwy < -+ <wk) =gwy < - < gwg.

Clearly G sends k-simplices to k-simplices and so we also obtain a G-action on the

Z-space Ci(Q) for each k. Moreover, for each k-simplex v = (wp < -+ < wg) we see

that
gy = g(wo < <wimy <KW < wigr <+ < W)
= (gwo <--- < gwi—1 < gW; < gwig1 < -+ < gwg)
= (g7)i
implying that
k . k .
90 (7) = Y _(-Digy = D _(=1)"(g7)i = k(g7)-
i=0 i—0

Hence the G-action commutes with the boundary homomorphism 0y and so extends
to an action on the k-th homology space Hy().
Finally, in order to calculate the homology spaces we also need to consider their

reduced versions. These are obtained from the augmented chain complex C(£2) which
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has Z-spaces

_ Ce(Q) ifk# —1;
Ce(Q) =
Z ifk=-1

and boundary map 9 = {5k},3°=_1 with Oy = 0, for k # 0 and 8y : Co(Q) = C_1(Q)
given by 50(w) = 1 for each w € . The reduced k-th homology space is then
the quotient space

Hi(Q) = ker 8 /im Tt
and is related to the k-th homology space [22] via

H(Q)o@Z ifk=0;
H(Q)=<¢ _ (5.1)
Hy(Q) otherwise.

5.2 Combinatorial building for G

We now return to the extended Chevalley group G over R. Suppose that G has rank

n>1with § = {a1,..., 0}

Definition 5.2.1. For each 1 < i < n, let J; = S — {;} and define Q to be the poset
of left cosets

QO={gH; :9eG,1<i<n}

where gi.ﬁji < gj.ﬁjj if 1 < 7 and giﬁ = gij. Then G acts on by permuting the

cosets.

Lemma 5.2.2. Every k-simplez v in A(Q) is of the form

forsomegeéandio<---<ik.

Proof. Suppose that v = (g,-OI:T Tig <00 < gkf-.i Jik). In particular this means that we

must have gioﬁ =g ij and therefore gi_o1 9i; € H for each j. Consequently, we may
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choose an element z;;, € Xaij such that g;, Lg; : H Ji; = i H Ji; which then implies that
gozi; Hy,, = giyHy,,-

Now, if we set g = g;,%;, - - - x;, then for each j

9H 1, = gio®iy - - T, Hyy, = gio®i Hyyp = 93 Hy,,

~

Hence g(lE\IJi0 << Hyp )= (gio.ﬁjio << gy Hy ). O

In particular, this means that for any k-simplex (gioﬁjio < e L gy, H J,.k) in

A(Q2) we have
gioHJiO n--- ngikﬁ.]ik = QHJ,-O M- ngHJ,-k = g(HJ,;O n--- ﬁ‘H—J,;k) = gHS—{aio,...,aik}

which is non-empty.

Conversely, given giofI Jio,...,gikﬁjik € Q with 49 < :++ < i; and non-empty
intersection gioﬁ Tig NN gy, V] iy consider any element g € gioﬁ Tig Moo N Giy, H iy -
Then for each j we have g € g, H Ji; and so g = g;;h; for some h; € ﬁ]ij. Thus
gH = gijhij = gijfl implies that (g,-oI/:iJi0 < < gikﬁjik) is a k-simplex in A(2).

Hence, A(Q2) can be identified with the simplicial complex which has vertices
{gfIJi 1geG,1<i< n} and where (g,-ofIJio, e ,gikﬁ,]ik) is a k-simplex if and only

if Qioﬁ Jig Ve N Giy ﬁjik is non-empty.

Lemma 5.2.3. Let v be a k-simplex in A(Q), then Stabg(y) = gH;g7! for some
geGand JC S with|J|=n—k—1.

Proof. By Lemma 5.2.2 we know that v = (gﬁ‘]i0 < <L gFIJZ.k) for some g € G and
ip < --- < ig. Further, it is clear that ¢’ € Stabgz(y) if and only if g'gfIJij = gﬁjij

for every j. However, this holds exactly when ¢’ € gﬁ Ji; g~ ! for every j. Hence,
Stabg(v) = gHJilg_l N---NgH; gt = g(Hy, NN HJ,-,c)g~1 =gH;g7!
where J = S — {a,,...,q;,}. a
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Now, consider the subset
Qﬁz{gﬁh:geﬁ,lgign}
of Q obtained by taking only the left cosets in H. Then A(Q) can be expressed as
the disjoint union of left translates of A(Q25).

Lemma 5.2.4. Let T be a left transversal for Hin @, then

AQ) = g-A(Q5)
teT
where the union is digjoint.

Proof. Let v be a k-simplex in A(Q2), then by Lemma 5.2.2 we may assume that
’y=g(fIJi0 < - <gFIJik) forsomegeaandio < -+ < ik If we write g as g = th

for some t € T and h € ﬁ, then we see that
Y= g(HJiO <-e < ﬁJik) = th(ﬁJiO <--< ﬁ-]ik)

where h(ﬁ]io < < ﬁ]ik) is a k-simplex in A(Q5). Thus A(f2) can be written as
the union

A =] t-a@p).
teT

Further, if for some t,¢ € T and h, h' € H we have
th(Hy, << Hy )=tW(H;, < <Hy),

then tH = ¢'H and so ¢t = ¢'. Hence the union must be disjoint. a

As a consequence of this, the homology spaces for Q over C are induced from the

homology spaces for {25 over C.
Theorem 5.2.5. H,(Q) @ C = Indg H;(Q5)®C.

Proof. By Lemma 5.2.4 it is clear that

Cr(Q) = P t- Cr(Qp)

teT
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and so Cx(Q)@C = Indng(Qﬁ) ® C for each k.

Now let 9 denote the boundary homomorphism for C(§2) and & the boundary
homomorphism for C(Qg). It is clear from the definition that the restriction of J
to C(Qg) is exactly 9. Thus, if for each v € Cy(2) we write vy = >,y for some
v € Cr(Qg), then

O(y) =D Okltr) =D tok(n) = Y t04( ).

teT teT teT

Consequently, 0y ® 1 : Cx(2) ® C — Cy—_1(22) ® C is the homomorphism induced
from 0 ® 1 : Cx(Qg) ® C — Cx_1(Rp) ® C for each k. Hence, we must have
Hy(Q) ® C = ndZ H, () ® C. O

Remark 5.2.6. When G = PGL,(R), the simplicial complex A(Q) is equivalent to the
simplicial complex defined by Lees [20]. While Lees did not explicitly consider the
subcomplex A(Q5), in determining the homology spaces of A(€2) he did use the fact
that it could be expressed as the disjoint union of certain equivalent subcomplexes.
Indeed, we will use his approach to calculate the homology spaces of Q5 and so

consequently the homology spaces of 2.

5.3 Homology spaces of Q5

The main idea in [20] used to find the homology spaces of Q5 is to show that it arises

from simpler posets using the following construction.

Definition 5.3.1. The join of two disjoint posets 2 and ' is defined to be the poset

Q * Q' with the underlying set Q U Q' and where w; < wy if
(1) wi,ws € Q and w; < wo;

(i) wi,ws € @ and wy < wo; or

(iii) wy € Q and wy € Q.
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The corresponding simplicial complex A(2 x Q') is then the topological join of
the simplicial complexes A(Q) and A(Q'). Consequently, by [24] we know that the

reduced homology spaces of  x ' are given by

He(Q+ Q) = € H(Q) @ H( Q). (5.2)
i+j=k

Now, if for each i we consider the subset
Qi = {gﬁJl tg € H}7
then the simplicial complex A(£2;) consists only of ¢ distinct points. Therefore, the

reduced homology spaces of §2; are

- zZe=D if k=0
Hi(Q;) = (5.3)
0 otherwise.

Further, it is clear that {5 can be expressed as the join
Qg = Q%+ Q.
Thus, by repeatedly applying (5.2) we see that

Hen1(Qp)= P Hiy(W) e ® H, (W)
i1++in=k

and so from (5.3) we obtain

- 7" ifk=n-1;
Hp(Qg) =
0 otherwise.

The homology spaces of {5 then follow from (5.1).

Proposition 5.3.2. The homology spaces of {1 are

z ifk=0;
Hi(Qp) =< 26D ifk=n-1;

0 otherwise.
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We would like to show that x is afforded by the top homology space of {15, but

first we need to examine the bottom homology space.

Lemma 5.3.3. Hy(Q5) ® C affords the trivial character of H.

Proof. For each i > 1 and g € H, we see that (Hj,) = (gfIJi) in Hy(Q5) since
(ﬁIJ1 < gﬁJi) is a 1-simplex with 81(fIJ1 < gI;TJi) = (ﬁJl) - (gﬁJi). Further,
(gHj, < gfbi) is also a 1-simplex and so again 0; (gI’;TJ1 < glE\IJi) = (gFIJI) - (gﬁJi)
implies that (9Hy,) = (gHy;) = (Hy,) in Ho(Qg). Hence Hy(R5) ® C = C(Hj,)

with g(f,) = (gH;,) = (H),) for every g € H. 0

Now, the Hopf Trace Formula states that

n—1 n—1
> (-1)Fr(g, He(Q7)) = Y_(—1)Ftr(g, C(2p))-
k=1 k=1

However, from Lemma 5.2.2 it is clear that the k-simplices in A(25) can be expressed
as the disjoint union
U ﬁ‘(ﬁ]i0<"'<ﬁJik).
o< i
Thus Cx(Q5) ® C can be expressed as the direct sum

Cr(Qp)®C= @ CHH,; <---<Hy)
i< <tk

which, by Lemma 5.2.3, then affords the character

|J|=n~k—1
Hence, if we denote by ¢ the character afforded by H,_1(§25) we see that
n—1 n
)™+ =D D D )= (")
k=1 |J|=n—k—1 JCS

and rearranging we obtain

¢= Y (-DV1g,) + (115 = Y (-DVI(15) .
Jcs JCs
Hence, we have shown the following result.
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Theorem 5.3.4. H,_1(Q5) ® C affords x.

Finally, Theorem 5.2.5 implies that the analogue of the Steinberg character arises

from a representation on the top homology space of €.
Corollary 5.3.5. H,_1() ® C affords the character St,.

Remark 5.3.6. If ¢ # 2 then Q4 is actually the combinatorial building for H and if

q = 2 then Qp is the Coxeter complex of H / B on which B acts trivially.
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Chapter 6

Characterisation

We now wish to show that Sty is an irreducible character of G and to do that we
need to prove that (Stg, Sty) = 1. However, since Sty is given as an alternating sum
of permutation characters over the parabolic subgroups H J, we see that
(Ste,Ste) = Y (-1 Do(HY, H)y)
1,JCS

where @a(ﬁ I H 7) denotes the set of (fl I H 7)-double cosets in G. Thus, we need to
examine the double coset structure of G.

In fact, using this approach we obtain a characterisation of St, in terms of permu-
tation characters over parabolic subgroups which is similar to Curtis’ characterisation

[4] of the Steinberg character for the finite field case.

6.1 Example: PGLy(R)

We begin by considering the case where G= PGLy(R).

Lemma 6.1.1. For each 0 <k < /¥

1 0f ~ a b
B =

k1 c d

B € G:cenFR¥
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Proof. Let a,c,d',d’ € R* and b,b' € R. Then

a bl |1 0] |a ¥ ad' + bd' + 7%a'b  ab' + bd' + wkbb’

0 df |=* 1{]0 d w*a'd dd' + w*v'd

where 7%a’d € 7 R*. Thus

To show the reverse inclusion, suppose that a, b, c,d € R are such that ad—bc € R

with ¢ = 7¥r for some r € R*. If £ > 0 then we must have ¢ € R* and so

1 0 [[|1 Ofle b a b a b

0 alr|{ {x* 1| |0 adr~!—nFb wkr d c d
If Kk =0 then c € R* and

1 acc'=1| |1 0| |c b+d—acld a b
- . (6.1)
0 1 1 1] |0 ac td-b c d

a b ~
€ G:cenfRX
w1 ¢ d

as required. O

Hence

Vo))
| S m— |
o
)
Il

Lemma 6.1.2. G can be expressed as the disjoint union
¢

G=J B B.

k=0 k1

Proof. It 1s clear that any element of G must lie in exactly one of the double-cosets

in Lemma 6.1.1. O

More generally, we need to describe the (E, §j)-double cosets for any 0 < 4,5 < £.

o~

However, these are closely related to the (B, B)-double cosets.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lemma 6.1.3. Let 0 < i,7,< £. Then for any 0 < k < min(3, j)

~]1 0] ~ ~1 1 0f ~
B; B;=B
k1 k1
Proof. Suppose that we have
a b ~ a b ~
€ B; and € B;j
c d d d

Then ¢ € m! and ¢ € mJ which implies that a/,d € RX since 4,j > 0. Consequently,
P

a bl |1 0] |d ¥ aa' + bc + 7ka'b  ab + bd' + wkbb

c dl |7 1| | d dc+dd+nka'd Ve+dd + nkb'd
where a’c € m?, ¢d € m? and 7¥a’d € 7 RX. However, since k < i and k < j this

means that a’c + ¢d + 7*a'd € #* R* and so

~ |1 O ~ ~
B; B;CB
7k 1 k1

1 0f ~
B.

The reverse inclusion is clear. a
When k& = min(z, j) then either B =By or §j = By, and so
~ 11 o]l . . ¢t 11 o 4
B; Bj =B = U B ) B.
& 1 k'=k & 1

Hence, Lemma, 6.1.2 immediately gives the corresponding decomposition of G into

(B;, ﬁj)-double cosets.

Lemma 6.1.4. For each 0 <1,7 < £, we can express G as the disjoint union
_oominGg) [ o]
G = U B; Bj.
k=0 L’“ 1:|

Consequently, by counting the number of double cosets we are able to calculate

the inner product of St, with the permutation character (15 )C.
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Proposition 6.1.5. For each 1,

5 1 ifi=4¢

(Stb (1§1)G) =
0 ifi<d.
Proof. If i = £, then by Lemma 6.1.4
(Ste, (15,)9) = 1D5(Be, Bo)| - [Dg(Be-1, Be)| = (¢ +1) — £ =1
while if ¢ < £ then
(Ste, (15)%) = |Dg(Be, Bi)| - |Dg(Be—1, By) = (i+1) - (i + 1) = 0. 0

Corollary 6.1.6. Sty is an irreducible constituent of (lﬁ)a.

Proof. By Proposition 6.1.5 we have

(Ste, Ste) = (Ste, (15,)) — (Ste, (15, )%) = (Ste, (15)%) = L. 0

6.2 Double coset structure of ﬁ

In general, there seems to be a natural distinction between the double cosets of G
that are contained in H and those that are not. We begin by examining the double
coset structure of H. From Section 4.3 we already know that {o7:J C S} forms a
complete set of (E, E)-double coset representatives. However, we will need a more
detailed description of the double cosets for later use.

In the previous section we saw that each (§, ﬁ)-double coset of PGL2(R) was of

the form

1 0 ~~ ) o~
B = By — Bg41-
7k 1
We will show that each (E, §)-double coset Bo J§ of H can similarly be expressed

as

EO’JE:ﬁJ—UﬁI.
ICJ
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Recall that X forms a set of left coset representatives of Bin H 7. For each
J C S define X; to be the set of left coset representatives

X5=X;-Jxr.
IcJ

Then we see that for non-empty J C S this gives

Xy = {H Za(ra) i Ta € 7t~ 1RX for each a € J}
acJ

while for J = () we obtain Xy = {1}.
Lemma 6.2.1. T transitively permutes the elements in Xy for each J C S.

Proof. Suppose that = [],c; Za(ra) € X;. Then, by Lemma 2.4.2 we see that for
each h(p) €T

h(wzh(p) ™ = [] hw)zalra)h(w)™ = [ alula)rs)

a€d a€d
Further, we have p(a)r, € m*~1R* for each o € J and so h(u)zh(p) ™! € X.
Now, for any z' =[] c; za(ry) € X7 we must have r{, = rys, for some s, € R*.
Consequently, if we define an R-character u of A, by u(a) = s, for each a € S, then

we see that p(a)ry = sarq = rl,. Thus

( )iL'h H Z'a 'ra) H xa =

acJ acJ

Hence the conjugation action of T on X is transitive. (|

In particular, Lemma 6.2.1 implies that T transitively permutes the left cosets

zB for z € X;. Now, consider the subgroup V = T(m)U of B.
Lemma 6.2.2. V is normal in H.

Proof. Since B = TU and T stabilises both T(m) and U it is clear that V is normal

in B. Thus, since H = XS§, we only need to show that zvz™! € V for each
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z € Xg and v € V. However, since V = T(m)U it suffices to show that for each
a € § and z4(r) € X, we have zo(r)h(u)zq(r)~! € V for every h(u) € T(m) and
To(r)zp(s)To(r)~! € V for every zs(s) € U.

Fix a € S and z4(r) € X,. For every h(u) € T(m)

Za(r)h()a(r) ™! = za(r)h(p)za(r) T h(p) " (k) = Ta(r)za(—p(@)r)h(n) = (k)

since p1(e) € 14+ m implies that p(a)r = r for each a € S. Further, for any zg(s) € U
we have ht(a) +ht(8) > 0. Thus, by Lemma 3.4.3(i) we know that [z4(r),za(s)] € V
and 80 z4(r)zp(8)za(r) ™t = [zalr), zs(s)]zs(s) € V. O

Thus, V preserves each left coset zB forz € X 7. Hence, if for each non-empty

subset J C S we set

Ty = H $a(7r€_1)

acJ

with zp = 1, then we obtain the following decomposition of H.
Proposition 6.2.3. H can be expressed as the disjoint union
A= BB
where E.’BJE = xJE for each J C S.
Proof. Let b€ §, then we can write b = tv for some t € T and v € V. Thus
beE = t’U.TJE = t$J$;1U.’EJ§ = t.'n]§ = ta:Jt_lﬁ.

Since conjugation by T preserves X7 we have tzyt~! € X; and so §mJ§ cXx JE.
However, since conjugation by T is transitive on ¥ 7 each element in X is of the form
tz st~ for some t € T and therefore X J§ - Bz JE. Finally, the expression of H as

a disjoint union of the double cosets Bz ;B follows from the fact that

Xs=J %5
JCS
where the union is disjoint. O
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From the definition of o it is clear that Bz J§ = Bo J§ for each J C S. Further,
we can use Proposition 6.2.3 to describe the (ﬁ J, B jt)-double coset structure of g
for any J,J' C S.
Proposition 6.2.4. For each J,J' C S we can ezxpress H as the disjoint union

A= U Bmis
ICS—(JUJ")

Proof. By Proposition 6.2.3 we know that H can be written as the union of dou-
ble cosets ﬁJwIﬁ g for I C S. Fix I C S and consider the subsets Iy = I N J,
IL=I-(JNJ') and I3 = IN(J' - J). This gives a decomposition of I into the
disjoint union I = I} U I, U I3 where I C J and I3 C J'. Thus z1 = zj,z7, 27, with
zn € .ﬁ] and zy, € ﬁ]’. Consequently, ﬁjm]‘ﬁJI = ﬁ]$]1$[2$13ﬁjl = fIJxlszJ:
where I, C S — (JUJ'). Hence each (Hj, H j1)-double coset representative z; can be
chosen with I C S — (JU J').

Now, suppose that Hyz Hy = HyzpHy for some I,I' C S — (JUJ'). Then we
must have 7 = hyxphy for some hy € H sand hy € H J¢. In particular, this means
that xlwl‘,l = hyhy. However, hyhy € ﬁJuJ/ and meI_,l € ﬁ]up. Thus we must

have xjxl_,l € ﬁIUI’ N ﬁ]u]l = ﬁ(IUI,)n(JUJ:) = fI@ — B and therefore zr=zp. O

Again, from Section 4.3 we know that x is irreducible. However, we will show
this explicitly using the double coset structure of H. More specifically, we will count
the number of double cosets in H in a particular way.

For non-empty subsets J, J' C S define & ﬁ(ﬁ' 7, Hy) to be

ex(Hy Hy)=Dg(Hy, Hy),
€5(B,B) = D5(B, B) ~ {BzsB},

the set of (B, E)-double cosets excluding BzgB.
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Now, fix J' C S and let & denote the set
8 = U eﬁ(ﬁj, ﬁ]l)
JCS
& can then be expressed as the disjoint union € = €o U €; where
&= |J ep(Hs Hp) and &= |J eq(Hy, Hy).
|J| even {J| odd
We will show that £y and €; contain the same number of double cosets by constructing

a bijection between them.
Proposition 6.2.5. || = |&;].

Proof. Fix an ordering of the roots in S. Let FIJ:UII?J/ eé&withlI CS—(JulJ).
We can only have I = S if both J = @) and J' = (. However, this would imply that
Vi ijﬁ g = Emsﬁ and we have excluded this double coset from £. Thus § — I is
non-empty and we may choose a minimal root o € S — I. Consequently, we are able

to define a map ®: € — &€ by

~ =~ H; (pziHp fac J;
@(HJQ)IHJ/) = AJ {a} IAJ
HJU{a}l‘[Hjl if ¢ J.

This is well-defined since for each double coset we are using the distinguished double
coset representatives from Proposition 6.2.4. Further, note that since o ¢ I we see
that I is contained in S — (J —{a} UJ) ifa€ Jand S — (JU{a}UJ)ifa ¢ J.

Now, suppose that I/-Lx[ffy € & and a € S — I is minimal. If o € J then
O(Hy_(yzrHy) = Hy-jaquioyzstHy = HymHy
whereas if a ¢ J
®(Hy(ay218r) = Hyogay-(yzrHy = Hyz Hy.
Thus @ is surjective and therefore bijective since £ is finite.
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Finally, it is clear that ®(&y) C &; and ®(€;) C &;. Moreover, we must have
®(Ey) = &1 and ®(&1) = & since P is surjective and € = Eg U ;. Hence P restricts

to a bijection @ : €9 — &; and so |Eo] = |&1]. O
Theorem 6.2.6. For each J C S

- 1 if J=0;
(6 (1g,)) =
0 otherwise.

Proof. Using the expression of x as an alternating sum of permutation characters we

see that

(6 1g)") = Y DMag) (g,

Ics

= Y (- Dg(Hy, Hy)
ICS

= > |DpHLHA) - Y |Dp(HLHY).
|I] even |7{ odd

Now, if J # () this gives
(x: (15,)") = 1€ — [&1] =0
while if J = () we obtain

06 (1)) = &o| +1— |&1] = 1. O

Corollary 6.2.7. x is an irreducible constituent of (1§)H.

Proof. By Theorem 6.2.6 we have

063 = S (DY (1)) = (x, (19 = 1. O
JCS
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6.3 Characterisation of Sty

Unfortunately, it seems to be difficult to explicitly describe the double cosets that
are not contained in H. However, this is not necessary as we only need to consider
an alternating sum involving the number of double cosets.

The key to showing that Sty was irreducible for PGLy(R) was the fact that given

any k < ¢ we had

~11 0] ~ = 1 0| ~
B B =B, B
k1 7 1
and so the double cosets cancelled in the alternating sum. Indeed, it will be sufficient
for our purposes to show a similar result for the (§, ﬁ)-double cosets of G which are

not contained in H.

Theorem 6.3.1. For each (E, §)-d0uble coset §g§ not contained in H we have
§g§ = flagé for some o € S which depends only on the (I:T, I:T)-double coset ﬁgFI

Appropriately enough for such an important result, the proof of Theorem 6.3.1
is long and is consequently postponed until the next section. However, from The-
orem 6.3.1 we immediately obtain a similar result concerning the (ﬁ I,ﬁJ)—double

cosets.

Proposition 6.3.2. Let HigH; be an (FII,fIJ)-double coset not contained in H,
then there is an oo € S, depending only on the (ﬁ,ﬁ)—dauble coset ﬁgfl, with

ﬁ[_{a}gﬁ,] if a €1

Aoty = | et
HiyoygHy ifa g I

Proof. Since §g§ is a (3, §)-double coset not contained in H , by Theorem 6.3.1

]§g§ = I;TagB\ for some « € S depending only on ﬁgﬁ Thus,ifa e ]

Ar-(ayofls = Br_yBoBA, = Ay BagBR, = Hrgl,
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and ifa ¢ I
HigH; = HiBgBH; = HiHogBH; = HyyjoygHy. o

This then gives us a method of pairing up the double cosets in a way which allows
us to repeat the approach from the previous section.

Fix J C S and consider the set of double cosets

D= | ) Dg_p(Hr, Hy)
ICS

where ‘Da_ﬁ(ﬁb H) denotes the set of (Hy, Hy)-double cosets contained in G-H.

D then decomposes into the disjoint union D = Dy U Dy of subsets

Do = U Q)é_ﬁ(ﬁlaﬁJ) and Dy = U Dé_ﬁ(ﬁ[,ﬁj).
H| even (1| odd

Again, we can show that Dy and D; contain the same number of double cosets by

constructing a bijection between them.
Theorem 6.3.3. |Dg| = |Dy|.

Proof. Fix an ordering of the roots in S. For each H Igﬁ 7 € D choose a minimal root

«a € S from Proposition 6.3.2. Then we may define a map ¥ : D — D by setting

I?I_{a}gﬁ_] ifael,;

(HgHy) ={ N
Hiy(ey9Hy; ifa gl

This is well-defined since if H, Igﬁ J= b7 9 Jij 7 then the minimal o € S is the same
for both choices of representative and, by Proposition 6.3.2, if « € I

U(HrgHj) = Hi_{aygH; = HigH; = Hig'Hy = Hy_(oyg'Hy = Y(Hg' Hy)
whereas if @ ¢ T

U(HigH)) = Hiooy9Hy = HygHy = Hig' Hy = Hyypoyg' Hy = Y (Hig Hy).
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Now, let H [gﬁ 7 € D and suppose that o € § is minimal from Proposition 6.3.2.

If @ € I, then « is also the minimal choice for H I—{a} gﬁ 7 € D and therefore
Y(H;_(oy9H7) = Hi_(ayo{ay9ls = HigHy.

Similarly if o ¢ I, then « is the minimal choice for H 1u{a} gﬁ s and so
Y(Hro(ey9H1) = Hiotay—(ay9Hs = HigHy.

Hence V¥ is surjective and, since D is finite, therefore bijective.
Finally, it is clear from its definition that ¥(Dg) C D; and ¥(D;) C Dy. Thus,
since ¥ is surjective and D = Dy U D1, we must have ¥(Dy) = D; and ¥ (D) = Dy.

Hence ¥ restricts to a bijection ¥ : Dy — Dy and so |Dy| = |D4]. d

Corollary 6.3.4. For each J C S,
(Ste, (1,)8) = (6, (1) ).
Proof. For each J C S,

(Ste, (15,)%) = Y (=)V((z)%,(15)%)

I J
ICS
= S (-)VIDg(Hy, Hy)l
Ics
= ST (-)VIDgHL A+ S (~-)Dg_g(Hy, Hy)|
Ics cs
= S (-)VIDg(Hy, Hy)| + |Do| - D1
ICS
= S (-)V|Dg(H;, H))l
ICS

= (X, (1EJ)G)a
as required. |

Thus, from Theorem 6.2.6 we immediately have the following result.
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Corollary 6.3.5. For any J C S,

~ 1 if J=0,
(Ste, (15,)%) = |
0 otherwise.

Finally, the characterisation of Sty is a simple consequence of its expression as an

alternating sum of permutation characters and Corollary 6.3.5.

Theorem 6.3.6. St; is the unique irreducible constituent of (lﬁ)@ which is not a

constituent of (1 13)6 for any parabolic subgroup P strictly containing B.

Proof. Using Corollary 6.3.5,
(Ste, Ste) = D (=1)VI(Sty, (15,)%) = (Ste, (15)) =1
JCS

and so St; is an irreducible constituent of (1 E)é_ Further, Sty cannot be a con-
stituent of (1 13)a for any parabolic subgroup P which strictly contains B since, by

Proposition 4.1.4, we have P > ﬁa for some «. This then implies that
0 < (St (15)%) < (Ste, (15,)%) =0

which gives (Sty, (lﬁ)a) =0.

Conversely, suppose that ¢ is an irreducible constituent of (1 3)6 which is not a
constituent of (1 }3)@ for any parabolic subgroup P strictly containing B. In particu-
lar, this means that ((, (1§)@) > 0 and (¢, (113)6) = 0 for any parabolic subgroup P

which strictly contains B. Hence,

(¢St = 3 (-DVI(¢, (15,)%) = (€, (15)%) > 0

JCS

and, since { and St; are both irreducible, we must have { = St,. O

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.4 Proof of Theorem 6.3.1

We are trying to show that Egﬁ = ﬁIagE for some o € S. However,

o~

I/-fagﬁ = BX,9B = U §:L‘a(7")gB.
remé-1

1 we have

Thus we need to show that there is an @ € S so that for each r € mé~
zq(r)g = b'gb for some b,b' € B since then Bzq (r)gﬁ = BgB. In fact we will prove
that we can find v,v' € V = T(m)U such that [v,g] = v'z4(r) as this then implies

-1,/

that we have z4(r)g = (v') " W'zo(r)g = (v') " lvgv~!.

Proposition 6.4.1. Let §g§ be a (ﬁ,ﬁ)-double coset not contained in H. Then

1

there exists an o € S so that for every r € m~1 we have [v,g] = v'zo(r) for some

v,v' € V. Moreover, a depends only on the (ﬁ, ﬁ)-double coset ﬁgﬁ

Proof of Theorem 6.3.1. Suppose that Egﬁ is a double coset of G which is not con-
tained in H and let o € S be as in the conclusion of Proposition 6.4.1. Then, for

each r € m*™! we have [v,g] = v'z4(r) for some v,v’' € V and therefore

1 -1

g=v"1v,glg7 vt = vl 2o (r)gv
which implies that BgB = Bzq (r)gﬁ. Hence

HogB = U Ewa(r)gﬁ = §g§

remé-1

where, by Proposition 6.4.1, o depends only on H gﬁ . O

The remainder of this section will be concerned with the proof of Proposition 6.4.1.
We begin by showing that the (B, B)-double coset representatives can be chosen to

have a particular form. This is a weaker version of [15, Proposition 2.6].

Lemma 6.4.2. Each (ﬁ,ﬁ)-dauble coset has a representative of the form g = kny,

for some k € U™ (m) and w € W.
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Proof. The natural projection 7; : G > G(k) maps (E, B)-double cosets of G to
(ﬁ(/ﬁ),ﬁ(m))-double cosets of G(k). Thus we may assume that the image of the
double coset representative under 7y is n,, for some w € W and so the double coset
representative itself can be chosen to be kn,, for some k € K; and w € W. However,

o~

K; = B(m)U~(m) and therefore we may take k € U™ (m). O

Assuming that the (3, §)-double coset representative g has this form we can

prove Proposition 6.4.1 by considering four different cases for £ and w.

Lemma 6.4.3 (Case 1). Ifw # 1, then there is an o € S so that for each r € m*™!

we have [v, g] = V'zq(r) for some v,v' € V.

Proof. By Proposition 2.1.3(ii) there must be some o € § with w™!(a) € Z*. Thus

1 1

for every r € mé~! we have njlzy(r)n, = Ty-1(q)(Er) € U. Hence, fixing r € mé-

we see that v = nglz,(r)n, € V gives

[v, 9] = vgvg™! = vknyng e (r)neng kTt = vkza (r)kT! = vaa(r). O

If w=1, then g € U~ (m) with g ¢ H and we may express g as
g= [[ =s(rs)
BeT-
for some rg € m. Further, suppose that rg € 7% R* for some 1 < ig < £ and consider
¢ = min{ig : § € ¥7}. In the case where the minimum occurs only for roots in S

there is again a reasonably straightforward choice for v.

Lemma 6.4.4 (Case 2). Suppose that i, = i for some o € S and that ig > i for
any root B € £~ with B ¢ S. Then for each r € mé~! we have [v,g] = v'zo(r) for

some v,v' € V.

Proof. First note that since g ¢ H we have i < £. Thus 1+ s € R for every
semf~"1 and s0 y_o(l + s)~} € V. For each B € ¥~ with 8 ¢ S we have rgs =0
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since ig > 1. Thus by Lemma 3.3.2

[y_a(1+5) 7t zp(rp)] = 1.

Further, for 8 € S with 8 # a we have k, = 0 and so again obtain

[Y-a(l+5) 7", z5(rp)] = 1.
Finally, for 8 =«

oa(l+8) ™ 2a(ra)] = Y-a(l+ )7 Ta(ra)y—all +8)za(ra) ™
= Zo(ra(l+ 3))$a(-ra)
= Zo(ras).

Hence, if we fix r € mé~1 and choose s € mé*~! with r,s = r, then setting

v =1y_o(l +5)"! € V we see that, by Lemma 3.4.4(i),

gl =, J] 26(ra)l = [] [v:26(rp)] = za(ras) = za(r). O

Bex~ Bex-
Now, suppose that i, = i for some v € ¥~ with v ¢ S and let a denote the

minimal height of such a root 7.

Lemma 6.4.5. Let € ¥_,_1 and sg € mé=i=1 then

[5(sp), 9) = vp | [ #p4+(c1,1,8,7(—38))
¥

for some vg € V where the product runs over all y € ¥, with iy =7 and S+ € S.

Proof. If ht(v) < a, then i, > i by the minimality of a. Thus, for any f € ¥_,_1 we

have sgry, = 0 and so

vg,y = [2(s), 2y (ry)] = 1.
Similarly, if ht(y) = a and i, > 7 we again have

vg,y = [z(sp), Ty (ry)] = 1.
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Further, if ht(y) > a then by Lemma 3.4.3(i) we see that
vg,y = [28(58), Ty(ry)] € B(mt™).
Finally, suppose that ht(y) = @ and i, = 7. By Lemma 3.4.3(iii), if 8+ v ¢ &
va,y = [2(sp), T4(ry)] € B(m*™)
whereas if § + v € X, there is an element vg 5 € B (mf~1) with
[25(38), Ty (ry)] = Tpr(c1,1,8,7(—38)4) U8,y

Now, set £~ = {y1,...,7} and for each ¢ let v; = 2y, (ry,) -+ Ty (r;). Then,
since v; € U™ (m), it commutes with any commutator [zg(sg), Zy;(r+;)]. Thus, by

Lemma 3.4.4(i)

[@p(sp),9] = [ma(sp); Ty (ry) -~ By (ry)]
= [l‘ﬁ(Sﬂ), Ty (T’Yl)](vl[mﬁ(sﬂ)’ Ty (7"72 )]Ul_l)

 (vk-2lp(38), Ty ()]0 ly) (V1[5 (36), T (e ] 1)

["L‘ﬂ (Sﬁ)? I’Y1] [$ﬁ (Sﬁ)v Ty (T’Yz)]
- [@8(58)s Doy (T )@ (58) s Ty (T )]-

Hence, using the description of the commutators given above, and the fact that since

each vg, lies in E(me‘l) it must also commute with any of the commutators, we

obtain

[z5(s8), 9] = g [] zo4v(cr1,8(~58)7)
Y

where the product runs over all roots v € ¥, with 4y = ¢ and 8+ v € X, and

vg = H’yEE_ vgy € V. O

In particular, if in Lemma 6.4.5 there is only one v € X, withi, =4 and 8+v € S,

then we may choose v to be zg(s) for some s.
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Lemma 6.4.6 (Case 3). Suppose that 8 € £_q_1 is such that 4+ € § for ezactly
one y € Bq with iy = i. Then, for each r € m*~! we have [v, g] = v'zg4,(r) for some

v,v' € V.
Proof. By Lemma 6.4.5 we know that for any s € mé~i=1 we have

[zs(5),9] = U,$ﬁ+7(cl,1,ﬁ,7(“3)7"7)

1

for some v' € V. Thus, if we fix an element r € m¢~1 and choose s € m~#~! so that

c1,1,8,4(—8)ry =, then setting v = zg(s) gives [v, g] = v'zg (7). O

Now, if we let § = {y € &, : iy = i} then the following Proposition shows that
Lemma 6.4.6 suffices for all but a small number of exceptional cases. In particular,

it suffices whenever ¥ = A,,, B,, Cy, or Gs.

Proposition 6.4.7. Let X be an irreducible root system and 8 be a non-empty subset

of X; for some i < —1, with the exception of the following cases:
(i) £ = Dgy, and 8 = L1_gp;

(ii) ¥ = Eg and 8§ = X_4;

(iti)) ¥ = E7 and § = L _g;

(iv) ¥ = Eg and 8§ = X_g, X_q9 or X_15; and
(v)E=Fyand S=X_4

together with the corresponding sets obtained when % contains a subsystem equivalent
to Doy, Eg or E7. Then there exists a f € ¥_;_1 such that B+ € S for ezactly one
v € S.

Proof. The details can be found in Appendix B. a

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For the exceptional cases we consider the element v € V given by

v=J] =s(sp)

,Bez—a—-l

where for each B € X_,_; we fix sg € mé—i-L

Lemma 6.4.8. Let v be as above, then

[v,9] =o' ][ %alta)
a€sS
for some v' € V', where for each a € S
ta= D, cLipa(-sp)ry
Bt+y=a

with the sum running over all B € ¥_q_1 and v € 8 such that f+ v = a.

Proof. Setting X_o_1 = {B1,...,0c} and v; = zp,(s5,) - zp,(sp;) € V for each j,

by Lemma 3.4.4(ii) we obtain

[z, (s8,) - ©B, (58, ), 9]

[v, 9]
= (vi-1lzp, (sp,)s 9Jvi 1) (vr-2[z, (38x_1)s 9Jvis)

-+ (vi[zg, (sp,), glvr ') [z, (38,), 9],

However, since [z3(sg), g] € V for each § and V is normal in H, this can be rearranged
to give

[v,g9] = ' H [z5(s5), 4] (6.2)

BET a1

for some v/ € V.
Further, by Lemma 6.4.5 we know that for each S € ¥_,_; there is some vg € V
with

[z5(58), 9] = vs [ [ 2+ (c1,1,84(—38)T5),s
v
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where the product runs over all v € § with 8+ v € S. Thus, from (6.2) we obtain

[’l),g]Z’UH H Hwﬁ-f-'y(cl,l,ﬂ,'y(—sﬂ)r’)’) (6.3)

,Bez—a—l Y

for some v" € V where once again the second product runs over all v € § with
B+~ € S. Hence, combining terms in (6.3) we obtain

v, g] =" H o (to)

a€sS
where for each o € §

to = Z €1,1,8,7(—38)Ty

B+y=a
with the sum running over all 5 € ¥_,_; and v € § such that 5+ v = «. a
Lemma 6.4.9 (Case 4). Suppose that 8 is one of the exceptional cases from Proposi-
tion 6.4.7. Then there is an a € S so that for every r € mé~1 we have [v, g] = v'za(r)
for some v,v' € V.

Proof. By Lemma 6.4.8 we only need to prove that there is an a € S so that for

any r € mé-1

we may choose the sg in such a way that ¢, = r and tyy = 0 for
o' # a. For each case, this can be shown explicitly and the details are contained in

Appendix C. O
Finally, we are able to prove Proposition 6.4.1.

Proof of Proposition 6.4.1. We have shown in Lemmas 6.4.3, 6.4.4, 6.4.6 and 6.4.9
that for any g ¢ H of the form g = kn,, for some k € U~ (m) and w € W, there is an

a € S so that for any r € m%!

we have [v, g] = z4(r)v’ for some v,v’ € V. If we can
show that this o depends only on B gI:f then we will be done.

Suppose that g1,g0 ¢ H are such that ﬁglﬁ = FIggI? and fix r € m1. Then
g2 = higiho for some hy,hy € H. Further, since B= Xs and B = fV, we can

express h; as h; = z1tjuy where 21 € Xg, t; € T and u; € V. Thus
R zo(r)ht = uT M 2 g () zrtiur = uT ] a0 (r)tiwy = ul tee (r)uy = wiza(r')
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with 7' € mé! and u} € V.
Now, suppose that v1,v] € V are such that [vy, 1] = v]z(r"). Then, since V is

normal in H , we have vy = hy loihe € V. Finally,

[v2,92] = wvagavy gyt
= va(higrhe)(hy "oy ) (hy gy T hT)
= wvphigivy gy R
= wvohi(v7 o) groy gy AT
= wvhiifv, g1kt
= vghyvi(viza(r'))hy!
= vphyviv) ((w)) 7)) za ()R
= vphiorvy (u)) Huyza(r')) By

= wvohyv1v} (u}) " (AT aa (r)h )R]

= v3a(r)

where v} = vohy (v1} (u}) AT € V. 0
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Chapter 7

Hecke algebras

An alternative construction of the analogue of the Steinberg character can be given
in terms of the Hecke algebra 9{(@, E) of G over B. We are able to define a linear
character 1 of H(G, B) by first considering a certain linear character ¢ of the Hecke
algebra H (fI , E) of H and then showing that ¢ extends uniquely to a linear character
9 of H(G, B). The analogue Sty is then the unique irreducible constituent of the

permutation character over B which corresponds to 1.

7.1 Definitions and standard results

We begin with some standard definitions and results for an arbitrary finite group G

with subgroup B. Proofs can be found in [6] or [10].

Definition 7.1.1. The Hecke algebra H(G, B) of G over B is the subalgebra
H(G, B) = egCGep

of CG.

Proposition 7.1.2. For each (B, B)-double coset BgB define
B, = ind(g)epges,
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where

ind(g) = [B: BNg !By

Then {By : BgB € D(B, B)} forms a basis for H(G, B) which is independent of the

choice of double coset representatives.

Further, it can be shown that for any BgB € Dg(B, B)

ind(g) = 221

and the standard basis element 3, is given by
By=1BI"" Y h
heBgB
In the same way as for groups, irreducible characters of the Hecke algabra arise
from simple H(G, B)-modules by taking the traces of the linear maps corresponding
to multiplication by the elements of H(G, B). The connection between the irreducible

characters of the Hecke algebra and of the group G is given by the following theorem.

Theorem 7.1.3. Let ¢ be an irreducible character of G with (¢, (15)¢) > 0, then the
restriction of ¢ to H(G, B) is an irreducible character of (G, B) of degree (¢, (18)).
Conversely, each irreducible character ¢ of H(G, B) is the restriction of a unique

irreducible character of G.

For linear characters of the Hecke algebra, i.e. characters which are non-zero
homomorphisms from H(G, B) to C, we are also able to give an idempotent which

generates a module affording the corresponding irreducible character of G.

Theorem 7.1.4. Let 9 be a linear character of H(G, B), then 1 is the restriction

of a unique irreducible character ¢ of G with (¢, (15)¢) = 1. Moreover,

1 1
= [é( .)B] Z PERETIRY (ﬁg‘l)ﬂg

BgBeDg(B,B) lnd(g)

is a primitive idempotent in CG such that CGe affords ¢.
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7.2 Example: PGLy(R)

o~

Now consider the Hecke algebra 3 (G, B) for G = PGLy(R). For each 0 < i < ¢, let

B; denote the basis element of H(G B) corresponding to the (B, B)-double coset

~|11 0] ~
Bl B.
™ 1

Clearly, 8¢ = eg. Further, for each 0 <i < £-1

1
a0
implies that
=Bt Y g=1BI"" > g-1BI"" Y g9=1Bi: Bleg, ~|Bi+1: Bleg,, -
9€B;—Biy1 9€B; 9€Bin

For ease of notation, set ¢; = IE, : §I for each 0 < i < £ and ¢g4+1 = 0 so that
Bi = ciep, — Cit1€g,
for every 0 <7 < L.

Theorem 7.2.1. (i) For each 0 <i < /¢

B = (ci — 2ci41) B + (ci — cit1) Z Bi- (7.1)

j=i+1
(i) BiB; = PP for each 0 < 4,5 < L.

(iii) For each 0 <1< j</{
BiBj = (¢j — ¢j+1) Bs. (7.2)
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Proof. (i) For each i

5 2
/Bi = (Cieﬁi — Ci+le§i+1)
= 26k —eciiies €n  — CiaiCies €n 2 e
= e —CiCitiegep cz+1czeBi+1eBi+cH‘leBi+1

2 ciiien +c2ea
= cjeg —2ccitieg, t Ci+1€5,,,

= (& — 2¢i11) (Cieﬁi - C¢+1€§i+1) + (i — ciy1) (Cz’+1€§i+1)

2
= (¢ — 2¢i41) Bi + (¢ — ¢ix1) Z B

Jj=t+1
(ii) This follows immediately from the fact that eg e B, = €5,B;"

(iii) For each i < j we see that

51‘,33‘ = (cieﬁi - ci+1e§i+1) (cjeﬁj - Cj+1e§j+1>
= cicjegeg — CiCj+1€p.€p, T CitlCi€p,  €p, T Ci+1Ci+1€p,  €p,
= cicjep, — CiCj+1€p, — ci+1cje§i+1 + Ci+1cj+]_e§i+1

= (¢ —cjt1) (Cieﬁi - Ci+1e§i+1)

= (¢ —¢j1) B
as required. O

Having described the multiplication of the basis elements in I}{(@, §) we want to
construct a linear character of .‘H(@, 3) which will correspond to St,. However, it is
easier to check that a linear map of H (@, §) is a homomorphism by noting that (7.1)

can be rewritten as

¢
(Bi — (ci —cis1)Be) > B =0 (7.3)
Jj=t
and (7.2) as
Bi (B; — (¢j — ¢j+1)Be) = 0. (7.4)
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Proposition 7.2.2. The map 9 : I}C(@, §) — C given by

1 if i = £
Y(B)=<¢ -1 ifi=4L4—1;
0 ifi<i—1

is a homomorphism.

Proof. To show that 1) is a homomorphism it suffices to check that it respects (7.3)
and (7.4). If ¢ = £ then

Y(Be) — (ce — cer)¥(Br) =1 - (1-0)(1) =0

whereas if 7 < £ then

£
D () =0+ +0+(-1) +1=0.
j=t
Consequently, for every 7 we have

£

($(8:) = (ci — civ1)¥(Be) Y_ b(B5) = 0.

j=t

Similarly, if ¢ < j and 4 = £ — 1 then j = £ and so again

P(Be) = (o — cor1)¥(Be) = 0
while ¢ < £ — 1 implies 4(5;) = 0. Thus, for every i < j
Y(B:)(W(B) — (¢c; = cjr1)¥(Be)) = 0.
Hence 4 is a homomorphism. -

The linear character v is then the restriction of a unique irreducible character of
G which appears as a constituent of (1 ﬁ)a with multiplicity 1. This character is the

analogue of the Steinberg character.
Lemma 7.2.3. 1 is the restriction of St; to H(G, B).
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Proof. From Proposition 6.1.5 we know that (Ste, (15 )@) =1 and so we have

Ste(Be) = Ste(ep ZSte = (Stg, (15 )é)=1-
gEB

Further, (Stg, (lﬁi)é) = 0 for ¢ < £ implying that

Ste(e = (Ste, (1 i)é) = 0.

geBz

Thus,
Ste(Be-1) = Stg(cZ_leﬁl_l - ceeﬁl) = ce_lstg(egl_l) - ceStg(eEt) =-1
and fori < ¢ -1
Ste(B:) = Stelcieg, — ci+1e§i+1) = ciStg(eEi) - ci+1Ste(e§i+1) = 0.

Hence (Stg):}{(é B =9 O

7.3 Hecke algebra of H

For each a € S we have §x{a}§ =H, - B and so the corresponding basis element

B of H(H, B) can be expressed as

More generally, for each J C S

§$J§=ﬁj— Uﬁ[
IcJ

and so the corresponding basis element §; is given by

By = Z(_l)IJI—HIqIIIeﬁ .

IcJ

This allows us to easily determine the multiplication of the basis elements.
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Theorem 7.3.1. Let a,0/ € S and J C S, then
(i) B% = (a—2)Ba + (a2~ 1)Bo;
(it) BaBor = BotBa;
(i#i) BaBs = Biayus if @ ¢ J; and
(iv) BaBs=(q—2)Bs+(q—1)Bj—yay f € J.
Proof. (i) For each o € S we see that
Ba = (g, —ep)2
= ¢’ch, —dgeg,ep—depeq, + 5
= qzefla —2¢eg +ep
= (¢-2)(geg, —ep) +(¢—eg

= (¢—2)Ba+(g—1)By

(ii) This follows immediately from the fact that eg ez  =eg eg .

o a

(iii) Suppose that a ¢ J, then

BeBs = (qeﬁa — eﬁ) Z(—1)|J|‘|Ilq11|eﬁl

ICJ
= g )PHIgey ep — S (-Gl
IcJ IcJ
- J|=1| ,|I]+1 Ji=Il+1 I
= (Vg S g,
IcJ IcJ
= Y ()@, ¢ S (el
I I
acIC{a}uJ agIC{aluJ
— Z (_1)|{a}UJ|—|IIqIIIeﬁI
IC{a}uJ
= ﬂ{a}u]‘
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(iv) Suppose that a € J, then by parts (i) and (iii)

BaBs = BaBi—{a}
= ((¢—2)Ba — (- 1)Bp)Br—(a}
= (¢ -2)BaBr—{a} — (@ —1)BsBr—{a)
= (¢—-2)8s— (g - 1)Br—{a

as required. O

Corollary 7.3.2. H(ﬁ, §) is generated by the basis elements {fq}acs together with

the quadratic relations

(Ba — (¢ = 1)Bp)(Ba + Bg) =0 (7.5)
and the homogeneous relations BoBo = Bu Ba for each a,d/ € S.

Proof. As the proof shows, Theorem 7.3.1(iv) can be obtained from (iii) using (i).
Thus, it is clear that 3((H, B) is generated by {8a}acs together with Theorem 7.3.1

(i) and (ii). However,

(ﬂa - (q - 1)5@)(,311 + ﬂ(b) = Bafa— (q - l)ﬂ(?),Ba + 6(1:80 - (q - 1):30:30
= Ba-(2—2)Ba—(¢- 1)

and so (i) is equivalent to (7.5). O

Proposition 7.3.3. The linear map ¢ : U{(fl, §) — C given by ¢(Bs) = (=11l is a

homomorphism.

Proof. By Corollary 7.3.2 it suffices to show that ¢ respects (7.5), but ¢(Ba) = -1
implies that ¢(8a) + ¢(Bp) = 0 for each a € § and so

(¢(Ba) — (7 — 1)¢(B0)) (8(Ba) + 6(Bp)) = 0.

Hence ¢ is a homomorphism. O
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Lemma 7.3.4. ¢ is the restriction of x to 9{(?[, E)

-~

Proof. By Theorem 6.2.6, (x, (15)¢) = 1 and so x(eg) = 1. Thus x restricts to a non-

zero homomorphism of I}C(ﬁ , E) Further, for each a € S we see that (), (1 ﬁa)a) =0

and thus
X(Ba) = ax(eg,) — x(eg) = —1.
Hence, for each non-empty subset J = {a1,...,ax} C S,
X(B7) = X(Ban ++* Boy) = X(Ba) -+ x(Bey,) = (-1)F = (=1)V!
and X‘J{(ﬁ,ﬁ) = ¢ O

7.4 Extending to the Hecke algebra of G

To obtain the linear character of I}C(@, ]§) that gives the analogue Sty we will show
that ¢ extends uniquely to a linear character 9 of H (@, B )

Let X denote the subspace of H (@, §) spanned by the basis elements correspond-
ing to (]§, J§)-double cosets not contained in H. Then it is clear that we obtain the

vector space decomposition

)

H(G,B) = H(H,B) o X.

A~ A~

Lemma 7.4.1. X is a left and right H(H, B)-module.

Proof. Let 8 be a basis element of 9{(@, l§) corresponding to a (B, ﬁ)-double coset
BgB with g ¢ H. Then for any h € H and b,b' € B we must also have h(bgt') ¢ H.
Consequently, if 8, € f}C(ﬁ, ﬁ) we must have 8,8 € X. Hence, X is a left %(ﬁ, E)-

module. The proof for multiplication by 3 (fI , E) on the right is similar. |

When we proved that ¢ was a linear character of the Hecke algebra for PGL2(R)
in Proposition 7.2.2 we needed that it was 0 on the basis elements 8; with i < £. If we

similarly define % to be 0 on X then we again obtain a linear character of 9{(@, §)
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Theorem 7.4.2. ¢ extends uniquely to the homomorphism 1 GC(@, §) — C defined
by ¥(B) =0 for any B € X.

Proof. We begin by showing that ) is a homomorphism. As ¢ is already a homomor-
phism on ﬂ{(ﬁ , B), it suffices to show that P(BB') = Y(B)¢(B') for basis elements
B,6 € 9{(@, B) where at least one of 8 or ' lies in K. However, this means that
one of () or ¢(B') is zero and so we need to show that (88') = 0.

Suppose that § € K and that S corresponds to the double coset Egg with g ¢ g

If we express BB’ as BB' = v+~ for some v € H(H, B) and v € K, then we see that

P(BB) = ¥(7) +¢(Y) = ¢(7) + 0 = ¢(7).
Thus we would like to show that ¢(vy) = 0. By Theorem 6.3.1 we know that BgB =
H,gB for some a and so € 7,8 = B. Consequently,
BB =eq BB =eg v+eg Y
where eV € I}C(ﬁ , §) and eﬁa’y’ € X by Lemma 7.4.1. In particular, this means
that eg v =7 and eg_ v’ = 4'. Therefore
Bay = (geg, —eg)y =4qeg v —egy=(q—1)7
and so, since ¢ is a homomorphism on IH(I/IT , ﬁ),
(g — Do) = 6(Bar) = d(Ba)e(7) = —¢(7)-

Hence ¢(v) = 0 and (B8') = ¢¥(B)¥(8'). The case where §' € X is similar, using
the fact that X is also a right ‘.?C(FI , §)-module.

Now, suppose that ¢ is any extension of ¢ to 9{(@, E) Let 8 € X be a basis
element corresponding to the double coset §g§ with g ¢ H. Again §g§ = fIagﬁ
for some a € S and so 3,8 = (¢ — 1)3. Hence

(= DY (B) = 9¥'(BaB) = ¥'(Ba)¥'(B) = —¢/(B)

implies that ¢'(8) = 0 and ¢’ = 9. O
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Lemma 7.4.3. 1 is the restriction of St; to %(é, E)

Proof. As in the proof of Lemma 7.3.4, (Sty, (1§)@) =1 and (Sty, (lﬁa)é) = 0 imply
that Sty restricts to a homomorphism of f}f(@, §) where Sty(87) = (=1)!! for each
J C S. Hence the restriction of Sty to 9{(@, §) is an extension of ¢ and so, by

uniqueness, must be 1. O

Finally, we show that the idempotent e used to define the module affording St,
in Theorem 4.2.6 is exactly the idempotent obtained from the linear character ¢ of
H(G, B).

Proposition 7.4.4. The primitive idempotent corresponding to i is
= —1Hle~
e= Z( 1)le i,
ICS
Proof. By Theorem 7.1.4 we know that the idempotent is given by the formula

e:SGA“_(lA) ) L (8,-1)B,

ind
(C: B) g,5emy5,5 ™00

Since Sty = xé we see that Ste(l) = X(l)[@ : ﬁ] where
x(1) =D (~DVIH : B} = 37 (-l = (g - 1)1l
Jcs JCS
In particular, this means that

Ste(1) _ x(1) _ (q—1)|5|
[G:B] [H:B el

Further, if ]§g§ is not contained in H then §g_1§ also must not be contained in H.

Thus the corresponding basis element 5,-1 lies in X and (5,-1) = 0. Consequently,

— 18l 1
ez(qﬁﬂ) S 8B )Bs.

ics (zJ)

Now, for each J C 8§

ind(zy) = B%Bl _ 1z = (- 1)V
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Moreover, since :c}l € Bz ;B we have ,Bm;l = By and thus ¢(ﬂw;1) = ¢(8y) = (-1)VL.
Hence
(g — 1) 1 1|
€ = S Z _ 7 (_1) ﬁ.]
¢sl L= (g -1V
= z(_l)lJl(q _ 1)|SI*IJ|q—ISI Z(—l)“"“'ql”eﬁl
JCS IcJ
ICS icJ
= Z(_l)meﬁf
Ics
as required. O
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Chapter 8

Restriction

Having described the analogue of the Steinberg character for the extended Chevalley
group over R we now turn our attention to the Chevalley group G itself. Further, we
strengthen the requirement on the residue class field x and assume that its charac-

teristic is very good (cf. [3]), i.e.
(i) char & is good; and
(ii) char x does not divide n + 1 if 3 = A,.

It is possible to repeat the approach in Chapter 4 to construct an analogue St}
for G. However, it turns out that the resulting character is merely the restriction of

St¢ of G. Further, we will show that St} is irreducible only when G = G.

8.1 Restriction to the Chevalley group

Definition 8.1.1. A subgroup P of G is parabolic if it is of the form
P = (Uy(ia),B: a € &™)

for some 0 < i, < 4.
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However, these are exactly the subgroups obtained by intersecting the parabolic

subgroups of G with G.

Lemma 8.1.2. Fach parabolic subgroup P of G is of the form P = PnGg for some

parabolic subgroup p of G.

Proof. We may express Bas B=TB where T preserves each root subgroup Uy, (mie).
Thus, if we consider the corresponding parabolic subgroup P= (Ualia), B:iaex)

of @, then we see that
P =(Us(ia),TB:a € 27) = T(Ualia),B: 0 € 7) = TP.
Hence PNG = (TP)NG=(TNG)P=TP=P. 0

In particular, this means that if we let Hy, = (X,, B) for each a € S, then
H, = H,NG and so {H, : a € S} are again the minimal parabolic subgroups of G
which strictly contain B.

Further, if for each non-empty subset J = {a;;,...,a;,} C S we define

HJ = (Hajla""Hajk>

with Hy = B then H; = H; NG for each J C 8. Consequently, we obtain the

following results from the corresponding results for the parabolic subgroups H g of G.
Lemma 8.1.3. Let I,J C S, then

(i) Hy = X;B = BXj;;

(i) |Hj| = ¢”'B;

(i) HiH; = H Hy;

(wv) HyN Hy = Hiny; and

(v) (Hr,Hy) = Hpyy.
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More importantly, we see that if we define the analogue St, of the Steinberg
character for G to be the virtual character
sty = > (-)Vlag,)¢,
JCS

then St} = (Sty)¢.
Lemma 8.1.4. St} is the restriction of Stg to G.

Proof. Since H;G=Gforeach JC S , Mackey theory implies that

(Stoe = Y. (-DVI((15,)%¢

JCS

= > (-)Vlg 0

JCS

= Z(_l)m(lHJ)G

JCS
= St

as required. O

Similarly, if we let H = Hg and consider the character
J H
X = (~)V(1m,)",
JCS
then again St} = (x')¥, where ' is the restriction of x to H.
Finally, we note that the additional restriction on the characteristic of x ensures

that the congruence subgroup K 1 of G is actually contained in G.
Proposition 8.1.5. I?l is a subgroup of G.

Proof. We need to show that f(m) < T'(m), since then we would have T(m) = T'(m)
and therefore K; = U~ (m)T(m)U(m) = U~ (m)T(m)U(m) < G. Let h(u) € T(m) so
that g is an R-character of A, with u(a) € 1 + m for each @ € £. To show that

h(u) € T we need to prove that u is the restriction of some R-character u’ of A.
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Let A = [Aq,gla,en denote the Cartan matrix of ¥ and recall that for each a € II,

o= Z Aqprp.
pgen

Thus, if we consider the inverse matrix A~! = [A], gla,gem, then for each 8 € II

)\ﬂ = Z A;,ﬂa.
a€ll

Now, since char x does not divide det(A), by Lemma 3.1.6 we may choose an
element sq € 1+ m for each a € II, so that p(a) = s9¢4) Thus, since det(A)A], 4 is
an integer for each «a, 8 € I, we are able to define

det(A)A!
rg=J[sa "
a€cll

for every B € II. Consequently, if we consider the R-character u' of A given by

w (Ag) = rg for every § € II, then we see that for each a € II

Aq
w(e)=p' | D Aaprs | = [T #Og)*s = [ rp™® = 86 = (o).
Bell Bell Bell

Hence, 4 is the restriction of y' and h{u) € T'(m). O
As a consequence of this, we see that
G/G = (G/R)/(G/ K1) = G(x)/G(r) = T(x)/T(x)

and therefore [G : G] = d where d is as in Table 2.4.

8.2 Example: PSLy(R), char « # 2

We now examine the situation where G = PSLy(R) and the characteristic of « is
odd. Let RY = {r? : r € R*} denote the set of squares in RX. As char x # 2, we
know that [R* : RY] = 2 and so if we fix a non-square element ¢ € R*, then R* can

be expressed as the disjoint union
R* = Ry UeRJ.
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Lemma 8.2.1. For each 1 <k <{-—1 we have

~|11 0f ~ 1 0
B BI|(1G=B B|JB B
m* 1 7k 1 mhe 1
where the union is disjoint, while for k=0
~ 1 0Of ~ 10
B B|(1G6=B B. (8.1)
11 11

Proof. Suppose that 1 < k < £— 1. If we are able to show that

. r ]
1 0 a b

B B= € G:ce "R, ac € T™°R} (8.2)
7k 1] ¢ d
and ) i )
1 0 a b

B B= € G:cen"R*,ac € nFeR} (8.3)
ke 1] c d

then the first result will follow from Lemma 6.1.1.

For any a,c € R* and b,d € R,

a b 1 0oflle d ac + w%bc  ad + be ! + 7Fbd
wfa~lc  a"lc! 4 wka1ld

where (ac + nfbc)(rFa=1c) = 7% (1 + 7*a~1b) € 7*RY. Thus

1 0 a b 5 k
B BC €eEG:cenR*;ace R} }.
1 c d

Further, suppose that a,b,c,d € R are such that ¢ € 7™*RX, ac € ka; and ad — bc =

k

1. Then we must have ¢ € R* and so ¢ = wFa~1r? for some r € R*. Thus

d=a"1(1+m*a"1br?) and we see that

ar~! 0 1 0| |r a lor a b
0 a~lr| |#* 1] [0 o2 c d '
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Hence,

1 0 a b
B B= €G:cen®R*ace "R} } .
7k 1 c d

The proof of (8.3) is similar and (8.1) follows from the proof of Lemma 6.1.1 since if

ad — bc = 1 then (6.1) involves only matrices from G. d

Consequently, this together with Lemma 6.1.2 gives the decomposition of G in

terms of (B, B)-double cosets.

Lemma 8.2.2. G can be expressed as the disjoint union
-1
1 0 1 0 10
G=B|J|B B|JB B||JB B.
k=1 w1 ke 1 11

For each 0 < i < ¢, let B; denote the parabolic subgroup

a b )
B; = €EG:cemt ).
c d

Again, the (B;, B;)-double cosets of G are related to the (B, B)-double cosets.

€

Lemma 8.2.3. For any 1 <1i,5 < £ and k < min(s, j),

1 0 1 0
B; B;=B B
7wk 1 k1
and i i
1 0 1 0O
B; B;j=B B (8.4)
ke 1_ _7rke 1
Further, for k=0
10 10
1 1_ _1 1
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proof. Let

€ B; and € B;.

Then
a bl |1 0| ]d ¥ aa’ +bc' +7%a'b  ab' + bd' + wFbY
c d| |=* 1| | d dc+cdd+nka'd be+dd +bd
Further, since ¢ € m* and ¢/ € m? with both k£ < i and k < j then we see that we
may write aa’ + b’ + 7%a'b = aa’ + 7r and a'c + ¢/d + 7*a'd = 7 (a’d + 7s) for some
r,s € R. Thus
(aa’ + bc' + a'b)(a’c + /d + n*a'd)
= (ad + 7wr)(n*(d'd + 7s))
= 7F(a(a’)?d + m(aa's + a'dr + 7rs))
= 75 2ad(1 + 7((a")"1d " s + a1 (a')"Ir + a1 (a!)"2d " Irs)) € nF RS

since ad =1+ bc € 1 + m. Hence

and the reverse inclusion is clear.
The proof of (8.4) is similar while the proof of (8.5) follows immediately from the

k =0 case in Lemma 6.1.3. a
Thus, we obtain the corresponding decomposition of G into (B;, Bj)-double cosets.

Lemma 8.2.4. For each 0 <4,j < £ if we set k = min(s, j) then G can be ezpressed

as the disjoint union

k-1
1 0 1 0 10
¢=B J |B| , |BUB| |, B;| U B Bj.
k=1 & 1 e 1 11
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Proposition 8.2.5. For each 0 <1i </,
2 ifi=1{

(Sty, (18,)%) = {
0 ifi<d.

Proof. If 1 = £ then by Proposition 8.2.4
(Sty, (18,)%) = |D(Be, Be)| — |Da(Be-1, Be)| =26 - 2(£ — 1) = 2,
while for 1 <i<£-1
(Sty, (18,)%) = |Da(Be, Bi)| — |Da(Be-1, Bi)| = 2i = 2i =0
and finally, for ¢ =0
(Stys (1Bo)) = [Da(Bes Bo)| — |Dg(Be-1, Bo) =1 - 1=0. O
Corollary 8.2.6. (St),St}) = 2.

Proof. Using Proposition 8.2.5 we see that

(Ste, Sty) = (Stp, (Ls,)%) = (St (15,-,)¢) = (Stp, (1)) = 2. .

8.3 Double coset structure of H

As can be seen from the previous section, the easiest method of finding the double

cosets of H is by examining how the double cosets of H decompose on intersection

with H.

From Proposition 6.2.3 we know that ExJE = %JE for each J C §. Thus,
(Bzy;B)nH = (x;B)nH = %,B.

The action of T on X restricts to an action of T', but this is no longer transitive in

general. Consequently, consider the decomposition

dy
xr=Jx§

=1
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of X7 into its T-orbits If(Jl), cees %(JdJ ) and for each i choose a representative m(}) € fff,i).

As in the proof of Proposition 6.2.3, we see that
Bz'B=xVB
and therefore we have the disjoint union
dj )
(Bz;B)nH = | JBsY B. (8.6)
=1

While it is difficult calculate dj in general, for J = S it turns out to be the index
dof GinG.

Lemma 8.3.1. dg = d.

Proof. Let h(p) € T and & = [[,c5 Za(ra) € Xs. Then
h(p)zh(p) ™! = [] Mp)zalra)h(p) ™ = [] zalp(@)rs).
a€ES a€eS
Thus h(u) € Staby(z) if and only if p(a)re = ro for each o € S. However, since
ro € 1R this is true exactly when pu(a) € 14+mé~1 for each o € S. Consequently,
Stabr(z) = T'(m).

In particular, this means that for each i

(@) _ 1 (g _ C[T:T(m)] _ (¢-1)"
19| = [T : Stabp(zD)] = [T : T(m)] = A

Finally, since

o 120 _ g, (@= 1"
(- 1" = |xs| = Y |x§)| = ds- T
i=1
we must have dg = d. O

Further, we see that for any J,J' C Sand I C S — (JUJ'), the (.ﬁ], FIJ:)-double

coset H J.’E[ﬁ s also decomposes into dj distinct (Hy, H )-double cosets.
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Lemma 8.3.2. For each J,J'C S and ICS—(JUJ'),

djy )
(HyzfHp)NH = U HJ.’I:(;)HJ/

i=1

where the union is disjoint.

Proof. From (8.6) it is clear that

ds _
(ﬁ]iﬂ[ﬁ]/) NH = U HJ:L'?)HJI

i=1
and so we need only show that this union is disjoint. Suppose that for some 4,3’ we
have HJx(Ii)HJI = Hngi,)HJ:. Then wgi) = g:cgil)g’ for some g € Hy and ¢’ € Hy.
If we write ¢ = zb and g = b'z’ for some b,b' € B, z € X; and ' € X, then
we see that bzgil)b’ = 771z ()1 = z71(z")"12{? and so z~1(2') 1) € X
However, since :c(,i) € X7 this would imply that z=!(z')~! € X;. On the other hand,
z71(z")"t € X up and so 27 ()7t € XN X0y = Xg = {1}. Hence, ba:(lil)b’ = mgi)

which gives Bmgi)B = Bcvgi/)B and so 7 = 7' O

Lemma 8.3.3. For each J,J' C S, G can be expressed as the disjoint union

dr .
¢= U U HsYH,.
ICS—(JuJ') i=1

Finally, this allows us to adapt the approach in Section 6.2. For each non-empty

subset J,J' C S define &5 (Hy, Hy) to be
€y (Hy, Hy) = Du(Hy, Hy),
the set of (H;, Hy )-double cosets in H. Further, let £% (B, B) denote
'.(B,B) = Dy(B, B) - {Bz{"B,..., Bz B},

the set of (B, B)-double cosets excluding Ba:(sl)B, . ,Bm(sd)B.
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Fix J' C S and set

& = &y(Hs, Hy).
JCs

&' can then expressed as the disjoint union & = € U &} where
86 = U 8’H(HJ,HJ/) and 8’1 = U EIH(HJ,H_]I).
|J| even |J| odd

Again, we can show that &}, and &} contain the same number of double cosets.
Lemma 8.3.4. |&)| = |&]].

Proof. Fix an ordering of the roots in S. Let ijgi)HJl €& withICS—-(JUJ).
Then, since we are excluding double cosets of the form Bm(;)B, we have I # S and
so we may choose a minimal root @« € S — I. Consequently, we can define a map
o' : & — & by

Hy (oo Hy fael;

@ (Hyaf) Hy) = O,
HJU{a}wI HJ/ if ¢ J.

This is well defined since mgi) is a distinguished double coset representative from
Lemma 8.3.3. Further, since o ¢ I we see that if @ € J then I C S—(J—{a}UJ’) and
S0 ;v(li) is again a distinguished (Hy_{4}, Hj )-double coset representative. Similarly,
if ¢ Jthen I C S —(JU{a}UJ) and 2\ is a distinguished (H y(a}, Hr)-double
coset representative.

Now suppose that H _].’E(Ii)H 7 € €& and o € § — I is minimal. If o € J, then

a¢ J—{a} gives

‘I’I(HJ—{a}wgi)HJ') = HJ—{a}U{a}m(Ii)HJ’ = Hya{ Hy:
and if & ¢ J, then o € J U {a} implies that

(I),(HJU{a}mgi)HJ') = HJU{a}—{a}x(Ii)HJ’ = H;a Hy.
Hence @' is surjective and so therefore bijective since & is finite.
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Finally, it is clear that ®'(&})) C &} and ®'(&}) C &;. Thus, since ¢’ is surjective
and &' = €} U &), we must have ®'(€j) = &} and ®'(&}) = &). Consequently, '

restricts to a bijection &' : &) — &} implying that |Eg| = |E7]- O
Theorem 8.3.5. For each J C S

d if J =10
s (L)) =
0 otherwise.

Proof. Using the expression of x' as an alternating sum of permutation characters

we see that

o m)™) = DN AR)T, )™

ICS

= Y () Dy(Hr, Hy)|
ICS

= > |Du(Hp,H) - . |Du(Hr, Hy)l.
|I} even {1] odd

Now, if J # () then this gives
O (Lr,) ™) = 1€ — [€1] =0
whereas if J = 0 then we obtain
(X, (1B)") = (|&] + d) = €] = d. O
Corollary 8.3.6. (x/,X') =d.

Proof. From Theorem 8.3.5 we see that

s x) =D (=DM, (e, ) = (s (1s) ) = d. O
JCS
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8.4 Reducibility of St;

The main result about the (E , E)-double coset structure from Chapter 6 was Theo-
rem 6.3.1 and the key to its proof was Proposition 6.4.1.

Proposition 6.4.1 stated that given any g ¢ H there wasan a € S , depending only
on the (H, H)-double coset HgH, such that for any r € R we had [v,g] = v'za(r)
for some v,v' € V. In particular, if we take ¢ € G with ¢ ¢ H, then we must
also have g ¢ H. Further, since T(m) < G we also have V < G. Consequently,
Proposition 6.4.1 immediately implies that we have the corresponding version of

Theorem 6.3.1 for G.

Theorem 8.4.1. For each (B, B)-double coset BgB not contained in H we have
BgB = Hu,gB for some a € S which depends only on the (H, H)-double coset HgH.

Further, the argument in Section 6.3 relies only on Theorem 6.3.1 and so remains

valid in our current situation.

Proposition 8.4.2. For each J C S, we have

(Ste, (Lrr,)®) = O, (L))"
Thus, Theorem 8.3.5 implies the following result.
Corollary 8.4.3. For each J C S,

st ()& = ¢ HT=0

0 otherwise.

Finally, we are able to determine when St} is irreducible.
Theorem 8.4.4. St} is irreducible if and only if G =aG.

Proof. By Corollary 8.4.3
(Sty, Sty) = > (=1)VI(Sty, (1m,)%) = (St}, (15)F) = d.
JCS

Hence (St},St}) =1 if and only if d = [G : G] = 1. 0O
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Chapter 9

Decomposition

In Section 8.4 we saw that the analogue Stj, of the Steinberg character for G was only
irreducible when G = G. We will now describe how it decomposes into its irreducible
constituents. Further, we will characterise the distinct irreducible constituents in
terms of characters which can be regarded as analogues of the Gelfand-Graev char-

acter in the finite field case.

9.1 Example: PSLy(R), char k # 2

Consider the group G = PSLy(R) when the characteristic of x is odd. From Corol-
lary 8.2.6 we know that (Stj,St;) = 2 and so Stj, must decompose into the sum of

two distinct irreducible constituents. Let V denote the normal subgroup of By_;

~ a b -1
V= €G:a,del+m, cem™
c d

Fix a non-trivial linear character X' : m~1 — C of the additive group mé~1. Then, if

for r € mt=1 we choose r' € R with r = n¢~!r', we can define a map A, : V — C by
a b
Ar = N(r'c).
c d
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Lemma 9.1.1. )\, is a linear character of V for each r € mt~1.

a b a b ] -
, ev.
c d cd d |

Then, we have a’c = ¢ and ¢'d = ¢ which gives

Proof. Let

a b| |a ¥ -aa’ +bc ab +bd
Ar = A
c dl |d d _c+c’ cb +dd'
= N({F'(c+))
= N(@')N(r'd)
a b a b
= Ar Ar
c d d d
where v € R is such that r = 781/, O

Lemma 9.1.2. For each r € wt~LR* the distinct conjugates of A, in By_; are

{Xs :s €TRS}.

Proof. Let s € R so that s = rt? for some ¢ € RX. For each

a b -
eV
c d
we see that

o (0 | e (| R ()

Thus A; is a conjugate of A,.

Now, suppose that
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Then ac¢’ = ¢ and ¢d = ¢’ which means that

\ d a v ad'd —abc+bcd ~be ab'd — (b')%c+b(d')*-bdd’
T
—c a {lc d|ld d able—b'd +a'dd' —bcd’
= )\’

a b
= AT(GI)2
c d
Hence any conjugate of A, is of the form A, for some s € rR}. d

Further, [By_; : V] = |R}| and so Stabp,_,(\;) = V for each r € m¢=1, Hence,
Clifford Theory implies that A>*~* is irreducible and
Bl 1 Z )\
sETRY

Now, for each r € 71 R* consider the induced character ¢, = AS of G.
Lemma 9.1.3. Let r,s € 7 1RX, then

(C’I")C-S) = byse ng;

0 otherwise.

Proof. By the Intertwining Number Theorem

(Cra(:s) = (Afa )‘sG) - Z ((Ar)gf/g—lnva (Ag)gﬁg—lnv)- (9'1)
9€Da(V,V)

Consequently, suppose that
a v
g= €q.
cd d
If g € By_1, then we know from the proof of the previous Lemma that AJ = As(a’)2-
Thus if s € RS then there is exactly one (V,V)-double coset representative g in

By_; for which (A, AJ) = 1, while if s ¢ 7R then (Ar, A?) = 0 for all (V,V)-double

coset representatives.
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Now, suppose that ¢ € 7*R* for some 1 < i < £—1. If we fix a € m®~!, then
since @’ € R* we can find an element ¢ € m*~! such that ta’c’ = a. Further, since

1+t €1+ mand char k # 2, there must be some ¢ € R* with ¢® = 1 +¢. Thus we

obtain
d =] |t of |a ¥V a'ctd —bed bdce ™t —bed
= ) (9.2)
- d 0 ¢l |d d a aed — b1
and so
¢l 0 ¢l 0 '
Ar =1  whereas A = N(s'a).
0 e 0 ¢

Hence ()\r)g“;g_ln“; 79 ()\g)gvg_lﬂ"; and (()\r)g“;g_ln";, ()\g)g‘*;g_ln‘*;) =0.
Finally, suppose that ¢ € R*. Fix a € mf! and choose b € m¢~! such that
a = —b(c')%. Then

d =bv| |1 bl |d ¥V 1+bdd  b(d )2
= (9.3)
- d 0 1| | d a 1-bdd
which means that
1 b 1 b
Ar =1  while M = N (s'a).
0 1 01

Thus (M) 7,-107 7 (M) 7,-107 304 ((Ar) ,7g-1n72 (A8),77-1n77) = 0.

Hence from (9.1) we obtain
1 if s € rRy;
(Cra Cs) = O
0 otherwise.
In particular, for r € 7"'R} and s € n*"1eRy, this means that ¢, and {, are
distinct irreducible characters of G.
Lemma 9.1.4. For eachr et and 0<i < ¢
1 ifi=¢;

0 otherwise.

(Cra (1Bi)G) = {
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Proof. Let r € a®"1R* and 0 < i < £. Then, by the Intertwining Number Theorem
(15)5,6) = ((12)°A) = 3 Upging MDypging)-  (04)
B,‘g?é@g(Bi,f})
Consequently, o', b, ¢/, d’ € R with a’d’ —b'c’ =1 and ¢’ ¢ m'.
Suppose that ¢ € m/R* with 1 < j < £—1. If we fix a € m*~! and set c € RX as

in (9.2), then again we see that

Thus (Ag)gf/g-lnBi # 1,7g-1np, a0d 50 (15 1np., (Ag)gf/g-lnBi) = 0.
Similarly, if ¢ € R* then fixing a € m?~! and setting b € mf~1 as in (9.3) we again

obtain

1 b
N = MN(r'a).
01

Therefore (Ag)ng"lﬂBi #+ 1,50-1nB; and so (19179—103,-’ ()\g)gf,g_lnBi) = 0.

Hence, the g # 1 terms disappear in (9.4) and we find that
((18.)%,¢r) = (Lp.npr M) i)
which is 1 if ¢ = £ and 0 otherwise. (]
Thus, for each r € 7t~1R*
(8te, ) = (15 &) = (L5,-,) %60 = 1.

Hence, if r € 7*71 Ry and s € 7*~1eRY, then ¢, and {; must be the distinct irreducible

constituents of St.

Lemma 9.1.5. St} = (, + {; for any r € 7*"'RX and s € " 1eR*.
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9.2 Clifford theory for x’

Our approach to determining the decomposition of St} into its irreducible constituents
is to first decompose x’. This is achieved by examining its restriction to the subgroup
V = XgV of H. Indeed, since H = TV and T preserves both Xg and V, we see that
V is a normal subgroup of H.

Consider the abelian group Xg. This is generated by the root subgroups X, for
a € S and so any linear character A of Xg is uniquely determined by its restriction
to each X,. Further, since V is normal in H, each linear character A of Xg extends
to a linear character of V which we will again denote by .

In particular, let X denote the set of linear characters A of V which are obtained
from linear characters of Xg with Ax, # lx, for each @ € S. The number of such

characters is equal to the degree of x'.
Lemma 9.2.1. |X| = x/(1).

Proof. Each root subgroup X, is abelian of order ¢q. Thus, there are ¢ — 1 possi-
ble choices of non-trivial character A\x, for each @ € S and so a total of (¢ — 1)"

possibilities for A. However, we also find that

X(@) =Y ()VIH: Hy) =Y (-1)VIg¥=M = (g — 1), O

JCS JCS

Indeed, the linear characters in X completely describe the restriction of x' to V.
Lemma 9.2.2. x5 =3 cx M-

Proof. Let A € X, then since H ﬂ7 = H for each J C S, Frobenius reciprocity and

Mackey theory imply that
M) = D EDMION () D)) = Y EDMI 0%, v, Lxgw). (9.5)

JCS JCS

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Now, if J # () then for any a € S
0< (AXJV’ ]'XJV) < (>\Xa7 1Xa) =0.

Consequently, the J # @ terms disappear in (9.5) and we obtain

A x3) = (v, 1y) = L.

Thus each A € X appears as a constituent of x/ with multiplicity 1 and the result

follows from Lemma 9.2.1. O
As an immediate consequence of Lemma 9.2.2 we have the following result.
Lemma 9.2.3. H permutes the characters in X.

Proof. For each g € H we have (X’f/)g = Y zex M. However, since x%; is the restric-
tion of a character from H we must have (XIV)g = x> and so (X%/)g = x"7 =D sex A

Hence M € X for each A € X. d
Further, the stabiliser of each character in X is the group V itself.
Lemma 9.2.4. Stabg()\) =V for each ) € X.

Proof. Clearly V < Stab i (A) so consider g € Stabg(A). As H = TV we may express
gasg=tvforsomet e T and v € V. In particular, if g € Stabg(A) then since
14 < Stabg(A) we must have ¢ € Stabg ().

Now, suppose that ¢ = h(u) for some R-character of u of A. Then for each

remf! and o € S we need that

Mza(r)) = X(za(r) = Ah(1) " za(r)h(1) = A(zalu(@) ™ 7).

However, since A\x, # lx, this is only possible if u(a)~lr = r for every r € mé1.

Hence, p(e) € 1+ m for each o € S implying that ¢ € T(m) and g € V. O
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By Lemma 9.2.4, for each A € X we have

: —H- 7. i
[H :Stabg(N)] = [H : XsV]=[T: T(m)] = DR
Thus, the size of each H-orbit on X is (¢ — 1)"/d and X decomposes into the disjoint

union of d orbits, i.e. X can be written as the disjoint union

where the action on X; is transitive for each 7. Therefore, we choose a representative

\; from each orbit X; and define x; = (A\;)¥.

Theorem 9.2.5. J
X =Y x
i=1
where X1,...,Xq are the distinct irreducible constituents of x'.

Proof. Lemma 9.2.4 and Clifford Theory imply that each x; is irreducible with
PALEIPPY
AEX;
In particular, this means that the x; are distinct since the orbits X; are disjoint.

Further,

(X,7Xi) = (X,7 (Al)H) = (X,{},)‘l) = Z()‘a >‘1) =L
AeX
Thus each x; is a constituent of ¥’ with multiplicity 1 and the result then follows

from the fact that Ele xi(1) = (g —1)" = x/(1). O

Remark 9.2.6. (i) If we consider the extended Chevalley group @, then H transi-

tively permutes the linear characters in X. Thus, for any A € X we have y = \¥

which is therefore irreducible.

(ii) It is possible to parameterise the characters in X by the elements of Xs in a

manner similar to the definition of A, from the previous section. The H-orbits
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X; in X then correspond exactly with the T-orbits %g) in Xg. Consequently,

there is an explicit connection between the distinct irreducible constituents of

x' and the distinct (B, B)-double cosets contained in (§m5§) NH.

9.3 Decomposition of St}

For each i, if we consider ¢; = (;)¢ then it is clear from Theorem 9.2.5 that

d
St% = Z G-

=1
Thus, we would like to show that (1,...,{s are the distinct irreducible constituents
of St}.
Proposition 9.3.1. For each 1 <14,j <d,

1 ifi=j;

0 ifi#7.

Proof. By the Intertwining Number Theorem

G ¢) = ()% 06)%)

= Z ((Xi)gHg‘lﬂH) (Xj)gHg'lnH)' (9'6)
HgHeDqg(H,H)

Now, by Proposition 6.4.1 we know that if HgH # H then thereisan o € S so that for

1

every r € m*~! we have [vr, g] = v.24(r) for some v, v. € V. Thus gu,g~! = v/z4(r)

for some v, v € V.
Consequently, if we let Y = (gu,g~' : 7 € m¢1), then Y < gHg~! N H. Further,

for each A\ € X and r € m¢~! we see that

Mgvrg™") = Muf'zo(r)) = Aoy)A(@a(r)) = A(za(r))
and so Ay # ly. However, )\"{, = 1y since for every r € mé~1

M(gvrg~) = Aw,) = 1.
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Thus

o
IN

((Xi)gHg‘lﬁH7 (X?)gHg-lnH)

IN

(Ca)y> (XDy)

Yo v, (A9

AEX;, MeX;

= Z ()‘Y, ]-Y)
AeX;, MeX;

= 0.

Hence the g # 1 terms in (9.6) disappear and we obtain
which, by Theorem 9.2.5, is 1 if 2 = 5 and 0 otherwise. 0

Proposition 9.3.1 implies that the ¢; are distinct irreducible characters of G. Thus,
from Theorem 9.2.5 we immediately obtain the decomposition of St} into its irre-

ducible constituents.

Theorem 9.3.2.
d
Sty= ¢
i=1
where (1,...,Cq are the distinct irreducible constituents of St).

Remark 9.3.3. If we consider the extended Chevalley group G , then from the previous

section we obtain ( = Sty. Thus, Proposition 9.3.1 implies that St; is irreducible.

9.4 Gelfand-Graev characters for G

Finally, we characterise the irreducible constituents of St} in terms of analogues of the
Gelfand-Graev character for G. Our approach to the construction of the analogues

follows [15].
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Definition 9.4.1. A linear character 6 of U is non-degenerate if 0y, y¢-1) is non-
trivial for each a € II. Further, let © denote the set of non-degenerate linear charac-

ters of U.
Lemma 9.4.2. 0] = ¢"¢~V (g — 1),

Proof. Any 6 € O is completely determined by its values on the root subgroups U,
for o € TI. Each root subgroup U, is abelian of order ¢° with U, (mf™!) as a subgroup

of index ¢%~1.

Thus there are ¢¢ linear characters of U, of which exactly ¢*~! are
trivial on Uy (mf~1). Hence for each o € II there are ¢¢~1(¢ — 1) possible choices for
each linear character which is non-trivial on Uy (m¢~1) and so a total of g"¢~1) (g—1)™

possibilities for 6. O

Lemma 9.4.3. Stabp(0) = U for each 0 € ©.

Proof. Clearly U < Stabp(6) so suppose that g € Stabg(6). Since B = TU we may
express g as g = tu for some ¢ € T and u € U. Then we see that g € Stabp () implies
t € Stabp(0) since U < Stabp(6).

Now, let ¢ = h(u) for some R-character u of A. For each o € S and r € R we
need that

0(z4(r)) = 0"(za(r)) = 8(h(1) " za(r)h(p)) = O(zalu(x) " 7).

1

However, since 87 (mt-1) # 1y, (me-1), this means that we need pu(a)™'r = r for every

r € R and so p(a) =1 for each a« € II. Hence t =1 and g € U. O

In particular, for each 8 € ©

¢ Dg-1)"

(B:Stabp(@)] = [B: U] =|T| = p

Thus © decomposes into the disjoint union of d orbits under the action of B, i.e.
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where B permutes the elements of ©; transitively for each ¢. Note that this is the
same as the number of H-orbits in X. In fact, there is a connection between them.
First note that

N Unge N H = Xg.

Further, for each o € S and any z,(r) € X, we see that

6"0 (50 (r)) = 0(ngyTa(r)nu,) = 0(2451(a)(r))

where wy'!(@) € II. Consequently, the non-degeneracy of ¢ implies that 9;’(‘;" #1x,

for each oo € S. Thus 9}"5’0 = Ax for exactly one A € X and we can then set

©;,={0€0: 9;?;0 = Ax, for some X € X;}.

wy

Now, suppose that OXS = Axg for some XA € X;. Let g € B and express g as

g=tufort €T and u € U. Then we see that
w TNy TN =1 w n,’[,ltnw
(ag)’;(so — (gt) 0 (HXSo)nwotn 0 — )‘X 0wy

Xs s

where n;(}tnwo € T. Thus, we also have Ao tug ¢ X; and so ©; is indeed a B-orbit

in ©.

Definition 9.4.4. For each 1 < i < d, let 8; be a representative from the orbit ;.

The analogue I'; of the Gelfand-Graev character is then the induced character OiG .

We will now show that the irreducible constituents of St; are given by the char-
acters I';. We begin with two lemmas involving the (U, B)-double coset structure of

G. The proof of the first is similar to the proof of Lemma 6.4.2

Lemma 9.4.5. Each (U, B)-double coset has a representative of the form g = kny,

for somek € U (m) and w e W.

In particular, there is a unique (U, B)-double coset corresponding to w = wyg.
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Lemma 9.4.6. Ukny,B = Uny,B for any k € U~ (m).
Proof. Let k € U~(m), then we have ng kny, € U and so we see that
Uk B = Unyongeknuw, B = Unuy, B. O
Thus, we see that T'; and (13)¢ have a unique common constituent.
Proposition 9.4.7. (I';,(15)%) =1 for each i.

Proof. By the Intertwining Number Theorem,

(T4, (18)°) = ((6:)¢, (15)%) = > ((9)gug-1n8: Lvg-1nB)- 9.7)
UgBeDg(U,B)

Suppose that g = kn,, is a (U, B)-double coset representative with w $# wyp. Then

we must have w(a) = o for some a € II and s0 nyza(r)ny' = zo(r) for every

To(r) € Up(mf1). Further,
-1 _ —13-1 _ -1 _
92 (1) = knyxo(r)ng k™" = kzo(r)k™ = z4(r)

and U, (m*™1) < gUg™' N B. Therefore we see that

0 < ((0:)gug-1nB> Lgug-1nB) < ((0i)u,(mt-1)s lug (me-1)) =0
since @ is non-degenerate. Hence the g # n,, terms disappear in (9.7) and we are
left with
(Ty, (18)%) = ((ei)nwOUn;,énB’ 1nw0Un,;(§nB) =1
since ny,Ung, N B = {1}. O

Further, each (; is a constituent of exactly one of the analogues of the Gelfand-

Graev character.
Proposition 9.4.8. For each i,

1 ifi=y;

0 otherwise.
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Proof. By the Intertwining Number Theorem,
(Ci,rj) = (XiG,ajG) = Z ((Xi)gUg—lﬂH, (oj)ng—lnH)- (9'8)
9€Da(H,U)
Again, if we consider an (H,U)-double coset representative g = kn,, with w # wg,
then g commutes with the elements of U,(mf~1) for some « € II. Thus, we see that

Upy(mf~1) < gHg ' NU and (ej)gUa(ml-l) = Oy, (mt-1)- Consequently,

0

IN

((Xi)gUg’lﬂH’ (0j)gUg—1r1H)

IN

((Xi)Ua(m"l), (oj)%a(ml—l))

E (AUa(ml"l)a (Oj)Ua (m‘—l))
AeX;
0

since Ay, (mt-1) = Ly, (me-1) for each A € X; and 6; is non-degenerate.
Hence the g # ny, terms disappear in (9.8) and we obtain
(6>T) = (O omginm (ej)Z:zUnl_uénH) = AE; (Axs (65)%2)
€

which is 1 if 7 = j and 0 otherwise. a

Consequently, Propositions 9.4.7 and 9.4.8 imply that each irreducible constituent
of St} is the unique common constituent of the permutation character over B and

exactly one of the analogues of the Gelfand-Graev character.

Theorem 9.4.9. (; is the unique common constituent of T'; and (15)%.

Remark 9.4.10. In the case of the extended Chevalley group @, we see that B transi-
tively permutes the elements of ©® and so there is a unique Gelfand-Graev character
Ty = 9G . Again, I'y has a unique common constituent with the permutation charac-

ter (1 6, which must therefore be Sty. In the case of PGL,(R), this is exactly the

B)

construction given by Hill [15] for the analogue of the Steinberg character.
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Appendix A

Irreducible root systems

For use in Appendices B and C we need an explicit description of the irreducible
root system of each type together with a base and the corresponding set of positive
roots. These have been taken from [13] with a reordering of the simple roots in the
root systems of types Fg, E7 and Eg so that they agree with the Dynkin diagrams

in Table 2.1. Here ey, ..., e, denote the standard basis vectors of R* and

1 n
€ = — E €;€;
2 i=1

for each € = (€1,...,€,) € E™ where € = {+£1}. This notation is shortened further by
recording only the signs involved. For example, the first simple root in Ej is

1 1 1 1 1 1 1 1
€ + = 561 — 562 — 563 — 564 — 565 - -2—66 —_ 567 + 568.

Let & denote the subspace of R**! which is orthogonal to €; + -+ + e;41. The root

system of type A, is then
T={*(esi—e;):1<i<j<n+1}.
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A base for ¥ is given by Il = {o; = €; — €j+1 : 1 < i < n} and the corresponding
positive roots are

E+:{ei—ej:1§z'<j§n+1}.
B, (n > 2):

Let € = R", then the root system of type B, is
T={te;tej:1<i<j<n}U{xe;:1<i<n}.

A base for L is given by Il = {a; = €; —e;41: 1 <4 <n—1}U{a, = ey} and the

corresponding positive roots are

Tt={ei—ej:1<i<j<n}U{ei+ej:1<i<j<n}U{e:1<i<n}

C, (n>3):
Let € = R”, then the root system of type C, is
L={tetej:1<i<j<n}U{2e:1<Li<n}

A base for T is given by I = {a; = ¢; —e€;41: 1 <7 <n—1} U {a, = 2e,} and the

corresponding positive roots are

St={e—¢:1<i<j<n}U{ei+e:1<i<j<n}U{2;:1<i<n}.

D, (n>4):

Let € = R*, then the root system of type D, is
L={fe; tej:1<i<j<n}

A basefor Disgiven by I ={o; = e;— €41 : 1 <i<n—-1}U{a, =e,—1+ep} and

the corresponding positive roots are

St={e;—e:1<i<j<n}U{eite:1<i<j<n}
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E6:

Let & denote the subspace of R® which is orthogonal to both e; + ez and e; — e3. The
root system of type Ejg is then

8
Ez{:i:ei:tej:452'<j§8}U{ee:e€8",Hei=1,el=—62=—63}.

=1

A Dbase for X is given by

______ +,Gf2 :e7+68aa3 = €7 —€g,04 = € — €7,

a5 = e5 — €5,06 = €4 — €5}

and the corresponding positive roots are

rt o= {ei—e;:4<i<j<8tU{e;+ej:4<i<j<8}
8
U{GE:GEEn,HGiZI,Gl=—62=—€3=1}.
i=1

E7:

Let & denote the subspace of R® which is orthogonal to e; + e;. The root system of

type E7 is then

8
E:{i(el—@)}U{ieiie]‘13Si<jS8}U{€e5€€€",H6i=1,€1=—€2}-

i=1

A base for ¥ is given by

______ 402 = €7+ eg,3 = ey — eg, 04 = €6 — €7,

Q5 = e5 — 6,0 = €4 — €5,Q7 = €3 — 4}

and the corresponding positive roots are

Tt = {e1—e}U{ei—e;:3<i<j<8tU{e;+ej:3<i<j<8}
8
U{eE:eEE”,Heizl,el=—62=l}.
i=1
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Eg:

Let ¢ = R®, then the root system of type Fj is

8
E={:I:ei:tej:1§i<j§8}u{ee:e€8",nei=1}.
i=1
A base for ¥ is given by

12 =e7+eg,03 = €7 — €8,04 = €6 — €7,
a5 = e5 — €5, Q6 = €4 — €5,07 = €3 — e4,03 = €2 — €3}
and the corresponding positive roots are
Tt = {ei—e;:1<i<j<8}U{e;+e;:1<i<j<8}

8
U{ec: €€ Sn,Hei = l,e; = 1}.

i=1
F4:
Let & = R*, then the root system of type Fy is
T={tete:1<i<j<4}U{Fe:1<i<4}U e e}

A base for X is given by I1 = {a] = ez — e3,a0 = e3 — €4, a3 = €4, 004 = €4 __} and

the corresponding positive roots are
St={e;—e;:1<i<j<4}U{e;+e;:1<i<j<4}U{e;:1<i<4}U{ec:e € &he =1}
Gz:

Let & = R?, then the root system of type G is
Y ={xa,x8, £(a+ B), (e + 28), £(a + 38), £(2a + 38)}.
A base for ¥ is given by II = {«, 8} and the corresponding positive roots are

ot ={a,B,a+ B,a+28,a+ 38,2« + 38}.
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Appendix B

Proof of Proposition 6.4.7

To simplify notation, we replace the set 8§ of negative roots with the corresponding

set of positive roots and prove the following equivalent Proposition.

Proposition B.1. Let ¥ be an irreducible root system and S be a non-empty subset

of X for some i > 1, with the exception of the following cases:
(i) £ = Doy, and § = Xop_1;

(1i)) & = Eg and 8 = Zy;

(i1i) ¥ = E7 and 8§ = Ly;

(tv) ¥ = Eg and 8§ = Xg, L9 or Lys;
(v) £ = Fy and § = Zy4;

together with the corresponding sets obtained when ¥ contains a subsystem equivalent
to Do, Eg or E7. Then there exists a B € ;,_1 such that v — 3 € II for exactly one

v €S.

We prove Proposition B.1 by considering each irreducible root system separately.
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A, (n>1):

Lemma B.2. Let 3 = A, and 8 be a non-empty subset of ¥; for some i > 1. Then

there is a B € X;_1 such that v — B € II for ezactly one vy € S.

Proof. Suppose that ¥ = e; — e; € 8 with ¢ minimal. Then since v ¢ II we may
set B = e; —ej—1 € Yj_1. Further, if « € Il has o + § € %, then a = ;1 or o;.

However, a;_1 +f=¢€;i_1 —ej_1 ¢ Sand a; + B = 1. O

B, (n>2):

Lemma B.3. Let ¥ = B, and 8 be a non-empty subset of ¥; for some ¢ > 1. Then

there is a B € X;_1 such that v — 3 € I for exactly one v € 8.

Proof. (i) Suppose that e; —e; € 8 for some i < j. Choose v = e; — e; € 8 with ¢
minimal. Again we may set § = e; — ej_1 € 2;—1 and we see that o € II with
a+ B € X only for o = a;—1 or ;. However, o;_1 + 8 = €;-1 — €j—1 ¢ 8 and

a; + B =17.

(i) Suppose that there are no roots of type (i), but e; +e; € § for some i < j # n.
Choose v = e; + e; € 8§ with ¢ minimal. Then setting 8 = e; + e;41 € Zj—1
then o € II with a + 8 € ¥ implies that ¢ = a;—1 or «;, but we see that
i1+ B=¢€_1+e41¢8and o + 8 =1.

(iii) Suppose that there are no roots of types (i) or (ii), but e; € S for some i. Choose
v = e; € 8 with ¢ minimal and note that since v ¢ II we have ¢ # n. Then
setting 8 = e; — e, € X;_1 we see that a € II with a + § € ¥ means that

a=qi 10 ay, buta;_1+B=e-1—e, ¢Sand o, +8="1.

(iv) Suppose that there are no roots of types (i) - (iii). We must have e; — e, € §

for some 4, so choose v = e; — e, with ¢ minimal. Again, since y ¢ II, we have
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i #n—1and so we may set 8 =¢€;4+1 —€p € Lj—1. f @ € [T has o+ € ¥ then

a=qa;or ag, but ap +B=¢e;41 ¢Sand o+ =1. O

Cn (n > 3):

Lemma B.4. Let ¥ = C, and 8 be a non-empty subset of &; for some ¢ > 1. Then

there is a B € X;_1 such that v — B € 11 for exactly one v € 8.

Proof. (i) Suppose that e; — e; € 8§ for some ¢ < j. This is the same type (i) for
B,.

(i) Suppose that there are no roots of type (i), but e; +e; € 8 for some i < j # n.

This is the same as type (ii) for Bj.

(i) Suppose that there are no roots of type (i) or (ii), but e; + e, € 8 for some 1.
Choose v = e; + e, € § with ¢ minimal. Then if we set 8 = e; — e, € Z;1
we see that o € II with o + f € X implies that a = ;.1 or a,. However,

ai—1+B=e_1+e,¢8and o, + B=1.

(iv) Suppose that there are no roots of types (i) - (iii). We must have 2e; € § for
some 1%, so choose v = 2¢; € § with 7 minimal and note that 7 # n since y ¢ II.
Setting S =e€; +ej41 € ;1 ifa €Il has a4+ 3 € ¥ then a = a;-1 or o4, but
ai1+PB=e-1+e41¢8and oy +G=1. O

Gz:

Lemma B.5. Let 3 = G2 and 3 be a non-empty subset of 33; for some 1 > 1. Then
there is a B € ¥;_1 such that v — B € II for ezactly one v € S.

Proof. There is at most one root of each height 7 > 1. a

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D, (n>4):

Lemma B.6. Let ¥ = D, and 8§ be a non-empty subset of Yon—1 with the exception
of § = X9,_1. Then there is a 8 € ¥;—1 such that v — B € II for ezactly one y € 8.

Proof. First note that ht(e; — e;) = j — ¢ and ht(e; + ¢;) = 4n — i — j. Thus
22n——1 = {'70) Ty a'Yn}

where vy = e; — €2, and 7; = €; + eg, ;41 for 1 < ¢ < n. Similarly,

E?n—? - {ﬂ(hﬂl) s ,:Bn}

where ffy = eq — eap, f1 = €1 — ep—1 and B; = e; + eap_iy2 for 2 < i < n. Moreover,
the possible ways of expressing each root in 3g,_1 as the sum of a simple root and a

root in ¥o,_o are

Y = a1+Pf = am-1t+f

Nn = o+pPf = amth

Yo = az+f3 = apm-1+tP2 = am+b
Yo = Ont1tPn

with
Y = o5+ Biv1 = Qi1 + G;

for 3 <i < n—1in general. In particular, it is clear that for i > 1 we have y—3; € II
if and only if v = ; or ~y;_1. Finally, since there must be some 7 > 1 so that exactly

one of 7; or y;_1 lies in 8, setting 8 = B; we have v — 3 € II for exactlyone y € §. O

Lemma B.7. Let ¥ = D,, and 8§ be a non-empty subset of Lop. Then there is a
B € Tog—1 such that v — B € I1 for ezactly one v € 8.

Proof. (i) Suppose that e; +e; € 8 for some i < j. Choose v = e; +e; € § with

i maximal. Since § C Xy, we cannot have j = ¢ + 1. Thus, if we choose

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B = ei+1 + € € Tok—1 then we see that o + 8 € ¥ only for a = o; or «;.

However, a; + 8 = ejt1 +ejr1 ¢ S and o + B = 1.

(ii) Suppose that e; +e; ¢ 8 for any i < j. Choose v = e; — e; € 8 with ¢ minimal.
Setting 8 = e; —ej—1 € Yg—1 we see that a+ 8 € T only for a = a;—1, o or oy
if j = n. However, aj_1+8 =ej_1—€j—1 ¢ S,if j = nthen ap+8 = e;+en ¢ S,
and finally o; + 8 = 7. O

Lemma B.8. Let ¥ = D,, and 8§ be a non-empty subset of Xox_1, with the exception
of 8 = {ear—n—1 — €ny€2%—n—1 + €ny€2k—n + €n+tl,---,Enk + €n—k+1}. Then there is

a B € og_o such that v — B € I for exactly one y € S.

Proof. (i) Suppose that e; — e; € 8 for some 1 < j with i < 2k — n — 1. Choose
v =e; —ej €8 with ¢ minimal, so that j < n by assumption. Then setting
B =e; —ej_1 € Lgp_o we see that o+ 8 € ¥ only for @ = o;1 or o;. However,

ai——1+,8:ei—1“€j_1¢Sandaj+ﬂ=’y,

(ii) Suppose that e; +e; € 8§ for some i < j with i < 2k —n — 1. Choose
¥ =e€; +e; €8 with ¢ minimal, so that j < n by assumption. Then setting
B =e;+ej_1 € Lgk_o we see that o+ 8 € X only for o = o;—1 or ;. However,

ai_1+ﬁ=ei_1+ej_1gESandaj-l-B——-'y.

(iii) No roots of type (i) or (ii). In this case we see that 8 can be identified with a

proper subset of Xo,_1 for Dsg. The result then follows from Lemma B.6. [

F4:

Lemma B.9. Let X = F; and 8 be a non-empty subset of X; for some i > 1, with
the exception of & = X4. Then there is a 8 € ;1 such that v — 8 € I1 for exactly
one y € 8.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proof. We order the roots in ; so that for each v € 3; we can find a 8 € ¥;_; with
v— B €Il but v/ — 8 ¢ II for any smaller v’ € ;. Thus, given a set § C ¥; we need
only choose 8 € ¥;_; corresponding to the maximal root v € 8.

Table B.1 gives the roots in X; in decreasing order and the choice of 8 in each
case for i = 2,3,5,6 and 7. Thus, for example if 8§ = {e,_,_,e3 + eq} C X3 then

v = e,_,_ is the maximal element of § and so 8 = e,__, is the required root in .

ht(7) 2 ht(7) 3
¥ €2 — €4 e3 €, . ¥ () e,_,. etey
B |ex—e3 e3—eq e ___ B |ea—es e,__, €3
ht(7) 5
Y €,,_, exte3 e —e
B |e - etes e,
ht(7) ht(7) 7
T o|€17€ Chpql A B R
€1 €2 €44y B |ei—es ey

Table B.1: The roots X9, X3, X5, X and 37 for & = Fy

Note that there is exactly one root of each height 8 to 11 and so the result is then
trivially true. Thus, it remains only to show that if 8 is strictly contained in 34 then

there is a choice of 8. Table B.2 again gives the roots in X4 — {7’} in decreasing order

for each v/ € ¥, and the choice of 3 in each case. a
! ! !
v Chi—— v €2 + €4 v €h—tv
Y|eztes e V| G- Chiyt Y | €p-- €2t€4
B €s €y 4o B () €, 4 Ié] e,_._ e3tes

Table B.2: The roots in X4 — {7’} for & = Fy

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E77 E67 ES:

Lemma B.10. Let ¥ = E7, Eg, or Eg and 8 be a non-empty subset of 3; for some

1 > 1, with the exception of the following cases:

(i) £ = Eg, E7 or Eg and 8 = {eg + e7,e5 — eg,e5 +eg} C La;

(ii) ¥ = Fg, E7 or Eg and 8§ = 54N Eg.

(i1i) ¥ = E7, or Eg and 8 = {e3 — eg,e4 + e7,e5 + €g,e3 + eg} C Bs;
(iv) £ = Eg and § = Xg;

(v) £ = E7 or Eg and 8§ = X9 N E7.

(vi) £ = Eg and 8§ = Xqy;

(vit) ¥ = Eg and 8§ = ¥5.

Then there is a B € 3;_1 such that v — B € 11 for exzactly one v € S.

Proof. This can be shown in the same way as the proof of Lemma B.9 by explicitly

describing which g to choose in any given situation. The details are omitted. a

Note that if we let ¥’ denote the subsystem spanned by {as, a3, a4, a5} in & = Eg,
E7 or Eg then 8 = {eg + er,e5 — eg,e5 + eg} is the set of roots of height 3 in ¥'.
Further, ¥’ is equivalent to Dy under the identification of = a5, o = a4, of = a3
and oy = .

Similarly, if ¥” is the subset of & = E; or Fg spanned by {as, as, a4, as, ag, az}
then 2" is equivalent to Dg with 8 = {es — eg, e4 + €7, €5 + €g,€3 + €g} as the set of

roots of height 5.
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Appendix C

Proof of Lemma 6.4.9

To simplify notation, we replace the set 8 of negative roots with the corresponding
set of positive roots and then write 8§ = {y1,...,Ym}, Z-a-1 = {B1,..., 0w} and
I = {a1,...,a,}. Further, we choose r; € R* with r,, = wir; and sj € R with
sp; = ﬂl‘i‘lsg for each j. Thus, if for each | we set
= c11,8,-m (—55)Tk
gk

where the sum runs over all j and k with v, — 8; = o, then t_,, = We_lt;. Hence
we wish to find an ! so that for every » € R we can choose the 39 in such a way that
t;=rand t}, =0 for k #[.

In particular, we need to know the constants c) 1, _, for each j, k. From [2] we
see that c1;1 5, = Ny _, and

N, B,—y
(,a)  (1,7)

where v — 8 = a. The structure constants N, g for & = Dsg, were then obtained
using the explicit description of the simple Lie algebra of type Da, contained in [2],
for ¥ = Fy, Eg and E; they were taken from [14], and for ¥ = Ejg they were calculated
using the GAP computer algebra package [12].
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8§ = Xop-1 in Dy,
As in the proof of Lemma B.6, set 8§ = Xop—1 = {70, 71,---,Vn} Where
Yo=¢€1—¢€m, Yi=¢€ texy_j1 forl<i<n
and 3o, o = {fo, b1, --.,0n} With
fo=¢e2—em, Pr=e1—en-1, Pi=¢€i+emity for2<i<n.

The different ways of expressing each v € § as the sum of a simple root o and a
root A of height 2n — 2 are given in the proof of Lemma B.6 and the corresponding
non-zero structure constants are

Na, g =1, Noaips =1, Nogu 1,8 = —1,

Nagoo1,82 =1, Nagapo =1, Nag,,pr = —1,

No; iy =1 for2<i<n-—1,

N fon_iys =1 forn+1<i<2n—2.

Consequently, we see that

! ! ! ! o/ / — ! ol ! ! ! — ol ot ! !
t1 = —ToSp — 1181, lop_y = —TSy + TSy, bop = T1S3 — TaSp;
ty=-ris;,, for2<i<n~1, t;, =0,

= =Ty _ii15m—iy1 forn+1<4<2n -2,

Thus, if we set

=~ s = —hO0) ) e, s =~ )
and s} =0 for 3 <7 < n then we obtain ¢} =7 and th =t§ =--- =1t,, =0.
8§ =24 in Fy

Consider 8 = {71,72,73} = £4 where

YI=€, 4.y V2=€p,__, V3=e€2tey
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Further, if we set X3 = {81, B2, B3} where

ﬂ1=62, ,32=€+__+_, ,83=€3+64

then the decompositions of each v € § into the sum of a simple root o € II and a

root 3 € X3 with the corresponding structure constants N, 4 are given in Table C.1.

+ |/ P Bs N| B B2 Bs
a1 Y2 3 a0 1 1
a3 a| 0 0 O
a3 |3 M az | -2 -1 0
o4 | Y2 0% ag | -1 0 ~—1

Table C.1: The decompositions and structure constants for § = X4 in F}
Consequently,
B = —2rhsh —risy th =0, th=ris)+rish, t)=r)s]+rsh

and so if we let

= A1), sy = =3, sh= )
then we obtain t} =’ and t) =14 =1t} = 0.
S = 24 in EG
Consider 8 = {71,Y2,7s,V4, V5 } = 24 where
M =€ 4y Y2=€___, ., V3=es+ter, Ya=esteg, Y5=e€4—¢€g.
Further, if we set
Pr=e,____. _, Pr=es+er, Pa=es+es, Pr=e5—es, [s=es—e7
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then the decompositions of each v € § into the sum of a simple root o € II and a

root B € ¥z with the corresponding structure constants N, g are given in Table C.2.

+ |5 B Bs Bu Bs NiB B2 Bs Bs PBs
a1 M Y2 ap| 0O 1 0 1 O
az [N Y3 V4 a1 0 0 1 1
a3 3 Y5 ag| 0 0 1 0 1
Q4 asi 0 0 0 0 O
as | Y2 73 as | -1 -1 0 0 O
Qg Y4 s | 0 0 -1 -1 0

Table C.2: The decompositions and structure constants for § = ¥4 in Fg

Consequently
I __ ! o/ ! ol A ! o I o ! ! ! ! of ! ol
t) = —T18p — T3Sy, Iy = —T8] —T384 — T4, I3 = —T3S3 — TS5,
t, =0, tp = rhs) +rish, tg = 1)8h + 58}

and so if we let-

s = 2(r) ") "I, sh=-2(r)) 71, sy = 3(ry)~L(ry) " trkr,
sy =—5(ry) 7, st = —1(ry)"r(ry) "1’
then we obtain ¢} =7' and t) =ty =¢) =t =t; =0

8=29inE7

Consider 8 = {v1,72,73,74} = X9 where
M =€ 4 44y M2=€C_ L o+ 4y MB=€__41 1+ YT4=6€3 +eq -
If we set Xg = {B1, B2, B3, Ba} where

Pr=e, o 4 4 Po=e _, ., Ps=estes, fa=e, __ .
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then the decompositions of each v € § into the sum of a simple root o € Il and a

root B € Xg with the corresponding structure constants N, g are given in Table C.3.

+ B B2 B3 B N B B2 B3 pa
aj Y2 a0 0 1 O
02 a0 0 0 O
az [ M 73 a3 |1 0 0 1
(07 a0 0 0 0
as |2 V3 s 1 1 0 O
Qg Y4 ag| 0 0 1 0
%4 M Y2 a7 |0 -1 0 -1

Table C.3: The decompositions and structure constants for § = X9 in E7

Consequently,
! 1 ! __ ! __ 1 ! ! '
tl = —7'233, 2= 0, t3 = —'7'131 - 7'334, t4 = 0,
! [ (N ! I .l i !
Uy = —T98] — 1389, g = —Ty83, t; =785+ 1resy
and so if we let
t _ _leN—1,.0 to__ L1, (=1, ! _ o 1l anN=1_1
5= —5(7"1) ™, 8= ‘2‘(7"1) ro(ry)~ir!, s5=0, sy= '5(7"3) r

then we obtain tf =7 and t] =t =t} =t =t =t, =0.

SZZGinEg

Consider 8 = {71, V2,73, Y4575, V6, 77} = E6 where

M=€ __4hqy M2TE€L___ 4 4 V3=E€4L_ 4 y Y4 = €4+ es,

vs = e3 + ez, Y6 = ez + eg, Y7 = ea — €sg.
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Further, if we set X5 = {1, B2, B3, 1, B5, B6} where

Bi=e, __1 41y Ba=e ., Bz=es+tes, Pa=ester,
+

Bs = e3 + eg, Bs = e3 — es, Pr=ex—e7

then the decompositions of each v € § into the sum of a simple root o € II and a

root B € ¥5 with the corresponding structure constants N, g are given in Table C.4.

+ | B B2 Bs Bs Bs Bs Br Nip Bo B3 Bu Bs Bs DBr
a1 Mo 3 |0 0 -1 -1 0 -1 0
Qs Yo Y5 Y6 az | 0 -1 0 0O 0 -1 -1
a3 Y5 vr a3 0 O 0 -1 0 -1
ay | M Y4 gl 0 0 1 0 0 O
as a0 0 O O O 0 O
ag | 72 V4 |1 0 1 0 0 0 O
ar 73 Y5 ar|0 1 0 1 0 0 O
Qg Yo V7 ag| 0O 0 0 0 1 1 O

Table C.4: The decompositions and structure constants for § = Xg in Eg

Consequently,
B =risy + rhsy +rysg, th =rhsh +rlsg +rgsy, th =rlsi + rhsh,
ty = —ris) —rish, 5 =0, ts = —Ths) — ryss,
= —rish—rhsh, = —rhsh —rhsh

and so if we let

s = 3D ) I sh =) )i, s = 36,

N sh = =3r) M) I, s = Er) M,
1

sh = 1) i)~

then we obtain ¢} =7’ and t) =t =1t} =t =t; =t, =0.
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S = 210 in Eg
Consider the set 8 = {1, 2, 73, 14, 15, Y6} = L6 Where

M= iy M2 €yt M=l

Ya=€, 44 oy Vs=€,, _, ., and v =ez+eq4

Further, if we set X9 = {1, B2, B3, B4, b5, B} where

Pr=e _qois Bo=er s oy Ba=ep iy

Bo=e . __, ., Bs=estesand Pg=ex+es

then the decompositions of each v € § into the sum of a simple root o € Il and a

root B € Xy with the corresponding structure constants N, g are given in Table C.5.

+ (b1 B2 B3 Bs Bs Do N|b B Bs Bs B DBs
oy Y4 Vs ;| 0 0 0 0 -1 -1
oo |0 0 0 0 0 O
a3 Ya s az| 0 0 -1 -1 0 O
a4 | M |l 0O 0 0 0 O
as Y2 5 as| 0 1 0 1 0 O
O Y4 Yo {0 0 1 0 0 1
ar | 7 7|1 0 0 0 0 O
og Y3 s Yo cg| 0 1 1 0 1 O

Table C.5: The decompositions and structure constants for 8§ = ¥y in Fg

Consequently,

Y N A | ! ! ! A N | VN
1] = rys5 + 1555, ty =0, 13 = ros3 + 1354,

! ! [N 1! ! __ [N ! !
ly = —T151, ls = —T8y — T'584, lg = —T453 — IS¢
N A N I ! 1 !
ty = —T387, tg = —T385 — T583 ~ TS5
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and so if we let

sh =0, sy = —3(ry) "1 (ry) g,
= =B ) = B ) ) e
s = 3 s = Hop)

then we obtain t] =r' and t) =ty =t) =tf =t =t7 =15 =

S = 215 in Eg
Consider 8 = {71,72,73} = 15 where

M =€t M2 €y iy BT Chp o py MTC

Further, if we set £14 = {f1, 2, 83, B4} where
Br=€s yirsr Pa=€pp gy Ba=epp oy o, Ba=e o

then the decompositions of each v € 8§ into the sum of a simple root o € II and a

root B € Y14 with the corresponding structure constants NV, g are given in Table C.6.

Table C.6: The decompositions and structure constants for § = X5 in Fy

+ 161 B2 Bs B N B B B3 Ba
al a0 0 0 O
Qg Y2 3 a0 0 1 1
a3 a3 0 0 0O O
sl m oyl 0 0 O
a5 V2 V4 as | 0 1 0 1
g as| 0 0 0 O
ay Y3 V4 a7 0 1 1 0
ag | 72 ag| 1 0 0 O
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Consequently,

I ot I of 1 I ol
t,]_:(), t/2=""r233""r334, to = , t4— 7'131,

! ! 1!
ty = —rysy —rysy, tg =0, t7 = —T38y —T483, g = —T38)
and so if we let

- - 1
sy =0, sh=5(ry)7H(rs)Tiryr’, sy =—3

then we obtain th) =7’ and t] =ty =t} =ty =tg =17, =13 = 0.
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