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Abstract. Non-local advection is a key process in a range of biological systems, from cells within individuals to
the movement of whole organisms. Consequently, in recent years, there has been increasing attention
on modelling non-local advection mathematically. These often take the form of partial differential
equations, with integral terms modelling the non-locality. One common formalism is the aggregation-
diffusion equation, a class of advection diffusion models with non-local advection. This was originally
used to model a single population, but has recently been extended to the multi-species case to model
the way organisms may alter their movement in the presence of coexistent species. Here we prove
existence theorems for a class of non-local multi-species advection-diffusion models, with an arbitrary
number of co-existent species. We prove global existence for models in n = 1 spatial dimension and
local existence for n > 1. We describe an efficient spectral method for numerically solving these
models and provide example simulation output. Overall, this helps provide a solid mathematical
foundation for studying the effect of inter-species interactions on movement and space use.
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1. Introduction. It is essential for individuals, whether cells or animals, to gain infor-
mation about their local environment [62, 56]. Not only do individuals sense environmental
features, such as food, temperature, pH-level, and so on, they also are able to detect other
individuals in a local spatial neighborhood, such as predators, prey, or conspecifics [19, 47].
This feature is not only restricted to higher level species, but is also found in cells [31]. For
example human immune cells gather information about their tissue environment and they are
able to distinguish friend from foe [58, 26]. The process of gaining information about presence
or absence of other species in the environment is intrinsically non-local [16, 41]. Mathemat-
ically, the non-local sensing of neighboring individuals leads to non-local advection terms in
the corresponding continuum models, and that is the topic of this paper.

Non-local advection is a mechanism underlying a wide range of biological systems. In
ecology, animals sense their surroundings and make decisions to avoid predators, find prey,
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and/or aggregate in swarms, flocks or herds [16, 21, 27, 38, 44]. This non-local sensing can
occur on several scales, from near to far [7, 4, 43]. These scales affect the overall spatial
arrangement of populations [51, 14, 2] and can lead to species aggregation, segregation, and
also more complex mixing patterns [27, 25, 54]. Whereas animals can sense and interact
over distances using sight, smell and hearing, in cell biology, cells interact non-locally by
extending long thin protrusions, probing the environment [2, 49, 48]. Chemotaxis processes,
leading to the following of chemical trails by organisms, can also be formulated as non-local
advective processes [33, 59], and have been observed in taxa from single-celled organisms to
insect populations to large vertebrate animals [34].

From a mathematical modelling perspective, non-locality in continuum models often arises
as an integral term inside a derivative. The corresponding models become intrinsically non-
local, and classical theories, developed for local models, no longer apply [14, 17]. Non-local
terms in continuum models offer new challenges and new opportunitites [6, 9, 53, 44, 14]. For
example, in single-species models of aggregation, the structure of the non-local advective term
is fundamental for avoiding blow-up and ensuring global existence of solutions [33, 23, 8, 17].
In models of home ranges [11] and territory formation [52], non-local advection is necessary
for ensuring well-posedness. In the context of modelling swarm dynamics, [44] showed that
non-local advection is vital for the formation of cohesive swarms.

Consequently, non-local advection has become a popular feature of biological models [14].
One common class of such models is the aggregation-diffusion equation [61, 22]. This models
a single population, u(x, t), that undergoes diffusion and non-local self-attractive advection,
leading to the following general form [17]

(1.1)
∂u

∂t
= ∆um −∇ · [u∇(K ∗ u)],

where K ∗ u is the convolution of u with a spatial averaging kernel, K, and m is a positive
integer. As such, the structure of K models the non-local interactions of the population
with itself. Equation (1.1) can lead to the spontaneous formation of non-uniform patterns,
consisting of single or multiple stationary aggregations of various shapes and sizes, under
certain conditions [35, 20]. However, there is numerical evidence that the multiple-aggregation
case is often, and possibly always, metastable [61, 12, 17].

One can readily generalise the aggregation-diffusion equation to the multi-species situation
as follows:

∂ui
∂t

= Di∆u
m
i −∇ ·

ui∇ N∑
j=1

hijK ∗ uj

 ,(1.2)

where u1(x, t), . . . , uN (x, t) are locational densities of N ≥ 1 populations at time t, Di ∈ R>0

is the diffusion constant of population i, and hij ∈ R are constants denoting the attractive
(if hij > 0) or repulsive (if hij < 0) tendencies of population i to population j. Indeed, the
N = 2 case has received some attention [28, 18], with equations of the same or similar form to
Equation (1.2) being applied to predator-prey dynamics [29], animal territoriality [52], cell-
sorting [49] as well as human gangs [3]. For N = 2, it is possible to observe both aggregation
and segregation patterns emerge, depending on the relative values of the hij constants [28, 54].
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An example of Equation (1.2) where N is arbitrary was proposed by [54] as a model of
animal ecosystems. The authors assumed that each population can detect the population
density of other populations over a local spatial neighbourhood. The mechanism behind this
detection could have various forms, three of which are explained in [54]: direct observations
of individuals at a distance, indirect communication via marking the environment (e.g. using
urine or faeces), and memory of past interactions with other populations. [54] showed that
all three of these biological mechanisms lead to the same multi-species aggregation-diffusion
model in the appropriate adiabatic limit. The authors analysed pattern formation properties
of Equation (1.2) where the diffusion term is linear, i.e. m = 1, in one spatial dimension
with periodic boundary conditions. They further assumed that K(x) is a top-hat kernel, i.e.
K(x) = 1/(2δ) for x ∈ (−δ, δ) and K(x) = 0 otherwise, and also that j 6= i (i.e. no self-
attraction or repulsion). With these assumptions in place, the authors showed that, whilst
the pattern formation properties when N = 2 can be fully categorised, the N = 3 case is much
richer. Indeed, numerical analysis for N = 3 revealed stationary patterns, regular oscillations,
period-doubling bifurcations, and irregular spatio-temporal patterns suggestive of chaos [54].

These insights highlighted the importance of understanding non-linear, non-local feedbacks
between the locations of animal populations. In the ecological literature, the field of Species
Distribution Modelling (SDM) is dominated by efforts to find correlations between animal
locations and environmental features [1, 64]. These features are then used to predict species
distributions in either new locations or future environmental conditions [5, 42] and hence
inform conservation actions [63]. However, despite considerable research effort into SDMs,
a recent meta-analysis of 33 different SDM approaches revealed that none of the models
studied were good at making predictions in a range of novel situations [46]. Based on the
results of [54], we conjecture that this may be, in part, due to a failure of these models to
account for non-linear feedbacks in movement mechanisms. We propose that employing a
multi-species aggregation-diffusion approach, typified by Equation (1.2), may help improve
predictive performance when modelling the spatial distributions of animal populations.

As a step to this end, the aim of this paper is twofold: to begin building solid mathemat-
ical foundations underlying the model and observations of [54], and to construct an efficient
numerical scheme for future investigations. For our mathematical analysis, we are able to drop
the assumption from [54] that j 6= i, thus allowing for self attraction or repulsion. However,
we have to assume that K is twice differentiable, so cannot be the same top-hat function used
by [54] but can be a smooth approximation of the top-hat function. With these assumptions
in place, we prove the global existence of a unique, positive solution in one spatial dimension
and local existence (up to a finite time T∗) in arbitrary dimensions. We also propose an ef-
ficient scheme for solving multi-species aggregation-diffusion models numerically, based on a
spectral method, and give some example output of both stationary and fluctuating patterns.

We focus here on the case of linear diffusion m = 1 in Equation (1.2). One reason is that
linear diffusion models have been used with great success in biological modelling, and the
common reaction-diffusion setting is a natural place to start ([45]). Also, the use of the heat
equation semigroup is quite essential in our analysis. The general case for m > 1 has a more
physical motivation, as it is based on an energy minimizing principle. Variational calculus can
then be used to address the corresponding well-posedness problem [6, 12, 17].

Our paper is organised as follows. Section 2 introduces the study system and states
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the main results (global existence and positivity in one spatial dimension; local existence in
arbitrary dimensions). In Section 3 we prove the main results. Section 4 details a method for
numerically solving the study system, together with some example numerical output. Section 5
gives a discussion and concluding remarks.

2. The Model. We consider N different populations of moving organisms. These could
either be different species or different groups within a species, such as territorial groupings or
herds. In either case, we use the term population and write ui(x, t) to denote the density of
population i ∈ {1, ..., N} at time t. As with Equation (1.2), we assume that each population
detects the population density of other populations over space, and adjusts its directed motion
via advection towards a weighted sum of the spatially averaged population densities.

Before generalising to arbitrary dimensions, we first define our system in one dimension
(1D) as follows

∂ui
∂t

= Di
∂2ui
∂x2

− ∂

∂x

ui ∂
∂x

 N∑
j=1

hij ūj

 ,
ūj(x) = (K ∗ uj)(x) :=

∫ L

0
K(x− y)uj(y)dy.(2.1)

We examine this system on a domain [0, L] with periodic boundary conditions, so that Ω =
[0, L]/{0, L} (the topological quotient of [0, L] by {0, L}). Here, K ≥ 0 is a local averaging
kernel (i.e. a probability density function on Ω with zero mean), Di is the diffusion constant
of population i, and hij is the strength of attraction (resp. repulsion) of population i to (resp.
from) population j if hij > 0 (resp. hij < 0). The local averaging kernel, K, describes the
spatial scale over which organisms scan the environment when deciding to move in response
to the presence of other populations. Here, we will assume K is twice differentiable with
∇K ∈ L∞(T).

Notice that
∫

Ω ui(x, t)dx does not vary over time so we define a constant pi =
∫

Ω ui(x, t)dx
for each i. Consequently, our model is suitable for modelling systems of animal or cell popu-
lations over timescales where births and deaths have a negligible effect on the population size.
For example, for systems of organisms whose population sizes vary by only small amounts
across a season (as is the case for many mammals, birds, and reptiles in summer), this could
model dynamics over a single season.

We can use vector notation to write System (2.1) in a more compact form. Let

u = (u1, . . . uN )T , D = diag(D1, . . . , DN ), H = (hij)i,j ,

where (hij)i,j denotes the matrix whose i, j-th entry is hij . Then System (2.1) can be written
as

(2.2) ut = Duxx − (u · (Hū)x)x.

In higher dimensions we make the analogous assumption that Ω ⊂ Rn is a periodic domain,
i.e. a torus T. Then the system on the general n-dimensional torus T becomes



MULTISPECIES NON-LOCAL ADVECTION MODELS 5

(2.3) ut = D∆u−∇ · (u · ∇(Hū)).

To avoid confusion in this vector notation we can write each row as

uit = Di

∑
k

∂2

∂x2
k

ui −
∑
k

∂

∂xk

ui∑
j

∂

∂xk
(hij ūj)

 ,

which leads to

ut = D
∑
k

∂2

∂x2
k

u−
∑
k

∂

∂xk

u ◦∑
j

∂

∂xk
(H·j ūj)

 ,

where H·j is the j-th column of H and ◦ is the Hadamard product. We now state our main
result, as follows.

Theorem 2.1. Assume u0 ∈ H2(T)N and K is twice differentiable. If n ≥ 1 then there
exists a time T∗ ∈ (0,∞] and a unique solution u to Equation (2.3), valid for t ∈ [0, T∗), such
that

u ∈ C1((0, T∗), L
2(T))N ∩ C0([0, T∗), H

2(T))N .

If n = 1 and u0 ∈ C2(T)N such that u0(x) > 0 for x ∈ T, then there is a unique positive
solution u to Equation (2.3) such that

u ∈ C1((0,∞), L2(T))N ∩ C0([0,∞), C2(T))N .

The first part of this theorem (n ≥ 1) will follow from Lemma 3.8 and does not require a
non-negative initial data. The second (n = 1) will be established in Theorem 3.10.

2.1. Notation. We will employ the following notation throughout. Let f : Lp(Ω)→ R.
• ‖f‖Lp = (

∫
Ω |f |

p)1/p, where 1 ≤ p <∞.
• ‖f‖L∞ = inf{C ≥ 0 : |f(x)| ≤ C, a.e.}.

Let g = (g1, g2, . . . , gN ) : (Lp)N → R. We will use the following norms
• ‖g‖(Lp)N =

∑N
i=1 ‖gi‖Lp , where 1 ≤ p <∞.

• ‖g‖(L∞)N = maxi=1,2,...,N{‖gi‖L∞}.
To ease the notation, we will usually omit the index N and write ‖g‖Lp instead of ‖g‖(Lp)N .

3. Model Analysis.

3.1. Existence and uniqueness of mild solutions.

Definition 3.1. Given u0 ∈ (L2(T))N and T > 0. We say that

u(x, t) ∈ L∞((0, T ), L2(T))N

is a mild solution of Equation (2.3) if

(3.1) u = eD∆tu0 −
∫ t

0
eD∆(t−s)∇ · (u · ∇(Hū))ds,

for each 0 < t ≤ T , where eD∆t denotes the solution semigroup of the heat equation system
ut = D∆u on T, i.e. on Ω with periodic boundary conditions.
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The crucial term in (2.2) is the non-local term Hū and the following a-priori estimates for
ū are essential for the existence theory of this model. We will consider convolution with an
appropriately smooth kernel, K. Eventually, in Lemma 3.4, we will need to assume that K is
twice differentiable, but the first two Lemmas only require K to be (once) differentiable, so
we state them in this more general case.

Lemma 3.2. Let ϕ ∈ L2(T) and K : T→ R be differentiable. Then ‖ϕ̄‖H1 = ‖K ∗ ϕ‖H1 ≤
(‖K‖L1 + ‖∇K‖L1)‖ϕ‖L2.

Proof. First, ‖K ∗ ϕ‖H1 = ‖K ∗ ϕ‖L2 + ‖∇(K ∗ ϕ)‖L2 . We also observe that ∇(K ∗ ϕ) =
∇K ∗ϕ = (∂x1K ∗ϕ, ∂x2K ∗ϕ, . . . , ∂xnK ∗ϕ). Then, applying Young’s convolution inequality
to both summands, we have ‖K ∗ ϕ‖L2 ≤ ‖K‖L1‖ϕ‖L2 and ‖∇(K ∗ ϕ)‖L2 = ‖(∇K) ∗ ϕ‖L2 =
‖(∂x1K ∗ ϕ, ∂x2K ∗ ϕ, . . . , ∂xnK ∗ ϕ)‖L2 =

∑n
i=1 ‖∂xiK ∗ ϕ‖L2 ≤

∑n
i=1 ‖∂xiK‖L1‖ϕ‖L2 =

‖∇K‖L1‖ϕ‖L2 , proving the lemma.

Lemma 3.3. Let ϕ ∈ L∞(T) and K : T → R be differentiable with ∇K ∈ L∞(T). Then
‖∇K ∗ ϕ‖L∞ ≤ |T|1/2‖∇K‖L∞‖ϕ‖L2.

Proof. First note that

‖∇(K ∗ ϕ)‖L∞ = ‖(∇K) ∗ ϕ‖L∞
= ‖(∂x1K ∗ ϕ, ∂x2K ∗ ϕ, . . . , ∂xnK ∗ ϕ)‖L∞
= max

i=1,2,...,n
{‖∂xiK ∗ ϕ‖L∞}

≤ max
i=1,2,...,n

{‖∂xiK‖L∞‖ϕ‖L1}

= max
i=1,2,...,n

{‖∂xiK‖L∞}‖ϕ‖L1

= ‖∇K‖L∞‖ϕ‖L1 ,

using Young’s convolution inequality in the fourth line. Then, since T is of finite measure in
RN , we have ‖ϕ‖L1 ≤ |T|1/2‖ϕ‖L2 (this step uses Hölder’s inequality, applied to ‖1ϕ‖L1 where
1 : T → R such that 1(x) = 1). Hence ‖∇K‖L∞‖ϕ‖L1 ≤ |T|1/2‖∇K‖L∞‖ϕ‖L2 , proving the
lemma.

Lemma 3.4. Let ϕ ∈ H1(T) and K : T → R be twice differentiable with ∇K ∈ L∞(T).
Then ‖∆(K ∗ ϕ)‖L∞ ≤ ‖∇K‖L∞‖∇ϕ‖L2 |T|1/2.

Proof. First note that

‖∆(K ∗ ϕ)‖L∞ =

∥∥∥∥∥
n∑
i=1

∂2
xi(K ∗ ϕ)

∥∥∥∥∥
L∞

=

∥∥∥∥∥
n∑
i=1

∂xiK ∗ ∂xiϕ

∥∥∥∥∥
L∞

≤
n∑
i=1

‖∂xiK ∗ ∂xiϕ‖L∞
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≤
n∑
i=1

‖∂xiK‖L∞ ‖∂xiϕ‖L1

≤ ‖∇K‖L∞‖∇ϕ‖L1 ,

where the second inequality uses Young’s convolution inequality. Then, as in Lemma 3.3, we
have ‖∇ϕ‖L1 ≤ |T|1/2‖∇ϕ‖L2 . Hence ‖∇K‖L∞‖∇ϕ‖L1 ≤ |T|1/2‖∇K‖L∞‖∇ϕ‖L2 , proving
the lemma.

Before we formulate the proof of local and global existence, we recall a regularity result
for the heat equation semigroup on a torus as formulated by [60] p.274:

Lemma 3.5. For all p ≥ q > 0 and s ≥ r we have the embedding

e∆t : W r,q(T)→W s,p(T), with norm Ct−κ,

where C is a constant and

κ =
n

2

(
1

q
− 1

p

)
+

1

2
(s− r).

Theorem 3.6. For each u0 ∈ L2(T)N , if K is differentiable then there exists a time T > 0
and a unique mild solution (3.1) of Equation (2.3) with

u ∈ L∞((0, T ), L2(T))N .

Proof. The proof uses a Banach fixed-point argument. Let M := 2‖u0‖L2 . We define a
map

v 7→ Qv := eD∆tu0 −
∫ t

0
eD∆(t−s)∇ · (v · ∇(Hv̄))ds,

for v ∈ L∞((0, T ), L2(T))N .

Step 1: Q maps a ball into itself: Let BM (0) ⊂ L2(T)N be the ball of radius M in L2(T)N .

Let v = (v1, . . . , vN ) ∈ L∞((0, Tmin), BM (0))N , where Tmin will be determined later. Writing
u0 = (u10, ..., uN0), for each T ∈ (0, Tmin) we have

‖Qvi‖L2 ≤ ‖ui0‖L2 +

∥∥∥∥∫ T

0
eD∆(T−s)∇ · (vi∇((Hv̄)i))ds

∥∥∥∥
L2

≤ ‖ui0‖L2 +

∫ T

0
C(T − s)−

1
2 ‖vi∇((Hv̄)i)‖L2ds

≤ ‖ui0‖L2 + 2C
√
T sup

0<t≤T
‖vi∇((Hv̄)i)‖L2 .

In the second inequality we used the regularizing property of the heat equation semigroup
from H−1 to L2 with a norm Ct−

1
2 , as in Lemma 3.5. Since (Hv̄)i =

∑N
j=1 hijK ∗ vj , we
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continue the previous estimate as:

‖Qvi‖L2 ≤ ‖ui0‖L2 + 2C
√
T sup

0<t≤T

∥∥∥∥∥∥vi∇
 N∑
j=1

hijK ∗ vj

∥∥∥∥∥∥
L2

≤ ‖ui0‖L2 + 2C
√
T sup

0<t≤T

N∑
j=1

|hij | ‖vi∇ (K ∗ vj)‖L2

≤ ‖ui0‖L2 + 2C
√
T

N∑
j=1

|hij | sup
0<t≤T

n‖vi‖L2 ‖∇ (K ∗ vj)‖L∞

≤ ‖ui0‖L2 + 2C
√
T‖∇K‖L∞ |T|1/2

N∑
j=1

|hij | sup
0<t≤T

n‖vi‖L2‖vj‖L2

In the third inequality we used Hölder’s inequality, and in the last one we used Lemma 3.3.
From the previous estimate, we obtain

‖Qv‖L2 =
N∑
i=1

‖Qvi‖L2

≤
N∑
i=1

‖ui0‖L2 + 2C
√
Tn|T|1/2‖∇K‖L∞

N∑
i,j=1

|hij | sup
0<t≤T

‖vi‖L2‖vj‖L2

≤ ‖u0‖L2 + 2C
√
Tn|T|1/2‖∇K‖L∞‖H‖∞ sup

0<t≤T
‖v‖2L2 ,

where ‖H‖∞ = maxi,j |hij |. Notice that ‖u0‖L2 = M
2 , hence we can always find a time T1

small enough such that

sup
0<t≤T1

‖Qv‖L2 ≤M,

so that Qv ∈ L∞((0, T1), BM (0))N .

Step 2: Q is a contraction for T small enough: Given v1 = (v11, ..., v1N ), v2 = (v21, ..., v2N ) ∈
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L∞((0, Tmin), BM (0))N , we compute for T ∈ (0, Tmin) the following

‖Qv1i −Qv2i‖L2 =

∥∥∥∥∫ T

0
eD∆(T−s) [∇ · (v1i∇((Hv̄1)i))−∇ · (v2i∇((Hv̄2)i))] ds

∥∥∥∥
L2

≤
∥∥∥∥∫ T

0
eD∆(T−s)∇ · ((v1i − v2i)∇((Hv̄1)i)ds

∥∥∥∥
L2

+

∥∥∥∥∫ T

0
eD∆(T−s)∇ · [v2i∇(H(v̄1i − v̄2i))i]ds

∥∥∥∥
L2

≤
∫ T

0
C(T − s)−1/2‖(v1i − v2i)∇((Hv̄1)i)‖L2ds

+

∫ T

0
C(T − s)−1/2‖v2i∇((H(v̄1 − v̄2))i)‖L2ds

≤ 2C
√
T sup

0<t≤T
(‖(v1i − v2i)∇((Hv̄1)i)‖L2 + ‖v2i∇((H(v̄1 − v̄2))i)‖L2)

In the second inequality we used the regularizing property of the heat equation semigroup
from H−1 to L2 with a norm Ct−

1
2 , as in Lemma 3.5. Since (Hv̄1)i =

∑N
j=1 hijK ∗ v1j and

(Hv̄2)i =
∑N

j=1 hijK ∗ v2j we continue the previous estimate as:

‖Qv1i −Qv2i‖L2 ≤ 2C
√
T sup

0<t≤T

∥∥∥∥∥∥(v1i − v2i)
N∑
j=1

|hij |(∇K ∗ v1j)

∥∥∥∥∥∥
L2

+

∥∥∥∥∥∥v2i

N∑
j=1

|hij |(∇K ∗ (v1j − v2j))

∥∥∥∥∥∥
L2


≤ 2C

√
T sup

0<t≤T
(‖v1i − v2i‖L2n

N∑
j=1

|hij |‖∇K ∗ v1j‖L∞

+ ‖v2i‖L2n
N∑
j=1

|hij |‖∇K ∗ (v1j − v2j)‖L∞)

≤ 2C
√
T‖H‖∞‖∇K‖L∞ |T|1/2n sup

0<t≤T

‖v1i − v2i‖L2

N∑
j=1

‖v1j‖L2

+‖v2i‖L2

N∑
j=1

‖v1j − v2j‖L2

 ,

where ‖H‖∞ = maxi,j |hij |. In the second inequality we used Hölder’s inequality, and in the
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last one we used Lemma 3.3. From the previous estimate, we obtain

‖Qv1 −Qv2‖L2 =

N∑
i=1

‖Qv1i −Qv2i‖L2

≤ 2C
√
T‖H‖∞‖∇K‖L∞ |T|1/2n sup

0<t≤T

 N∑
i=1

‖v1i − v2i‖L2

N∑
j=1

‖v1j‖L2

+

N∑
i=1

‖v2i‖L2

N∑
j=1

‖v1j − v2j‖L2


≤ 2C

√
T‖H‖∞‖∇K‖L∞ |T|1/2n sup

0<t≤T
(‖v1 − v2‖L2(‖v1‖L2 + ‖v1‖L2))

≤ 4MC
√
T‖H‖∞‖∇K‖L∞ |T|1/2n sup

0<t≤T
‖v1 − v2‖L2 .

The last inequality is obtained from v1, v2 ∈ L∞((0, Tmin), BM (0))N , so ‖v1‖L2 , ‖v2‖L2 ≤ M .
For

T < T2 :=
1

|T|(4MCn‖H‖∞‖∇K‖L∞)2

we have
sup

0<t≤T
‖Qv1 −Qv2‖L2 < sup

0<t≤T
‖v1 − v2‖L2 ,

which meansQv1−Qv2 ∈ L∞((0, T2), BM (0))N . ThusQ is a strict contraction in L∞((0, Tmin), BM (0))N ,
where we can finally define Tmin as

Tmin := min {T1, T2} .

Step 3: The previous argument also shows that Q is Lipschitz continuous, hence, by the
Banach fixed point theorem, Q has a unique fixed point for T < Tmin. This fixed point is a
mild solution of (2.2) and it satisfies

u ∈ L∞((0, T ), L2(T))N

for T < Tmin. The mild solution automatically satisfies the initial condition:

lim
t→0

u(x, t) = u0(x).

3.2. Global existence in time. Let u be a mild solution of Equation (2.3). Our strategy
moving forward will be to show that, for the period of time that ‖u‖L1 remains bounded,
solutions exist and grow at most exponentially in L2. We will then show that the statement
‘‖u‖L1 is unbounded’ leads to a contradiction.

With this in mind, we define a time T∗ as follows: if ‖u‖L1 is bounded for all time, then
let T∗ = ∞. Otherwise, ‖u‖L1 → ∞ as t → Tmax for some Tmax ∈ (0,∞], so let T∗ be the
earliest time at which ‖u‖L1 = 2‖u0‖L1 . Our objective will be to show that the case where
‖u‖L1 →∞ as t→ Tmax leads to a contradiction when n = 1 (one spatial dimension), so that
‖u‖L1 is bounded for all time. This will enable us to prove that the solution from Theorem 3.6
is global in time when n = 1.
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Lemma 3.7. Let u = (u1, . . . , uN ) be a mild solution and K : T→ R be differentiable with
∇K ∈ L∞(T). Then there exists a constant νi such that ‖∇(K ∗ ui)‖L∞ ≤ νi for all t < T∗,
i ∈ {1, . . . , N}. If ν = ν1 + · · ·+ νN then ‖∇(K ∗ u)‖L∞ ≤ ν.

Proof. Applying Young’s convolution inequality, we have ‖∇(K∗ui)‖L∞ ≤ ‖∇K‖L∞‖ui‖L1 .
By the definition of T∗, ‖ui‖L1(t) is bounded for t < T∗. Thus there exists a constant νi such
that ‖∇K‖L∞‖ui‖L1 ≤ νi. The result ‖∇(K ∗ u)‖L∞ ≤ ν follows from the definitions of ν and
the norm on (L1)N .

Lemma 3.8. Assume u0 ∈ H2(T)N and K is twice differentiable. Then the mild solution
from Theorem 3.6 satisfies

u ∈ C1((0, T∗), L
2(T))N ∩ C0([0, T∗), H

2(T))N

In one spatial dimension this implies

u ∈ C1((0, T∗), L
2(T))N ∩ C0([0, T∗), C

2(T))N ,

and mild solutions are classical up to time T∗.

Proof. As we are dealing with a system of equations u = (u1, . . . , uN ), we consider each
component separately. For each of the components ui for i = 1, . . . , N we multiply the i-th
row of Equation (2.3) by ui and integrate:

1

2

d

dt
‖ui‖2L2 =

∫
T
uiuitdx

=

∫
T
Diui∆uidx−

∫
T
ui∇ · (ui∇((Hū)i))dx

= −
∫
T
Di|∇ui|2dx+

∫
T
ui∇ui · ∇((Hū)i)dx

= −
∫
T
Di

n∑
h=1

(∂xhui)
2dx+

∫
T
ui

n∑
h=1

(∂xhui)∂xh((Hū)i)dx

≤
n∑
h=1

(
−
∫
T
Di(∂xhui)

2dx+ ‖∂xh((Hū)i)‖L∞
∫
T
|ui∂xhui|dx

)
= −

∫
T
Di |∇ui|2 dx+ ‖∇((Hū)i)‖L∞

∫
T
|ui∇ui|dx

= −
∫
T
Di |∇ui|2 dx+ ‖

N∑
j=1

hij∇(K ∗ uj)‖L∞
∫
T
|ui∇ui|dx

≤ −
∫
T
Di |∇ui|2 dx+ ‖H‖∞

N∑
j=1

‖∇(K ∗ uj)‖L∞
∫
T
|ui∇ui|dx



12 V. GIUNTA, T. HILLEN, M. A. LEWIS, J. R. POTTS

≤ −
∫
T
Di |∇ui|2 dx+ ‖H‖∞ν

∫
T
|ui∇ui|dx

≤
(
−Di +

ε

2
(‖H‖∞ν)2

)∫
T
|∇ui|2 dx+

n

2ε

∫
T
|ui|2dx

where ‖H‖∞ = maxi,j |hi,j |. In the third equality we used integration by parts and the
periodic boundary conditions, the first inequality uses Hölder’s inequality, the third inequality
uses Lemma 3.7, which is valid for t < T∗, and the fourth inequality uses Young’s inequality.

Now we choose ε such that −Di + ε
2 (‖H‖∞ν)2 < 0 for all i, j = 1, . . . , N so that

1

2

d

dt
‖ui‖2L2 ≤

n

2ε
‖ui‖2L2 .

Applying Grönwall’s Lemma, we find

‖ui‖L2 ≤ ‖ui0‖L2e
nt
2ε .

Finally, we observe that

N∑
i=1

‖ui‖L2 ≤
N∑
i=1

‖ui0‖L2e
nt
2ε ,

from which we obtain

‖u‖L2 ≤ ‖u0‖L2e
nt
2ε .(3.2)

Hence solutions exist and grow at most exponentially in L2 up to time T∗.

Now we find an estimate in H1 for each component ui, i = 1, . . . , N :

1

2

d

dt
‖∇ui‖2L2 =−

∫
T
(∇uit) · (∇ui)dx

= −
∫
T
uit∆uidx

= −
∫
T
Di(∆ui)

2dx+

∫
T

∆ui∇ · (ui∇((Hū)i))dx

=
(
−Di +

ε2

2

)∫
T
(∆ui)

2dx+
1

2ε2

∫
T
(∇ · (ui∇((Hū)i)))

2dx,

where we used Young’s inequality to obtain the last estimate. We now chose ε2 > 0 small
enough such that −Di+

ε2
2 < 0 for every i = 1, . . . , N . We then continue the previous estimate
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as
1

2

d

dt
‖∇ui‖2L2 ≤

1

2ε2
‖∇ · (ui∇((Hū)i))‖2L2

=
1

2ε2

∥∥∥∥∥∥
n∑
h=1

∂xh

ui∂xh N∑
j=1

hijK ∗ uj

∥∥∥∥∥∥
2

L2

≤ 1

2ε2

∥∥∥∥∥∥
n∑
h=1

(∂xhui)∂xh

N∑
j=1

hijK ∗ uj +
n∑
h=1

ui∂
2
xh

N∑
j=1

hijK ∗ uj

∥∥∥∥∥∥
2

L2

≤ 1

2ε2

∥∥∥∥∥∥
n∑
h=1

(∂xhui)∂xh

N∑
j=1

hijK ∗ uj

∥∥∥∥∥∥
L2

+

∥∥∥∥∥∥
n∑
h=1

ui∂
2
xh

N∑
j=1

hijK ∗ uj

∥∥∥∥∥∥
L2

2

≤ 1

ε2

∥∥∥∥∥∥
n∑
h=1

(∂xhui)∂xh

N∑
j=1

hijK ∗ uj

∥∥∥∥∥∥
2

L2

+

∥∥∥∥∥∥
n∑
h=1

ui∂
2
xh

N∑
j=1

hijK ∗ uj

∥∥∥∥∥∥
2

L2


≤ 1

ε2

 n∑
h=1

‖∂xhui‖L2

N∑
j=1

|hij |‖∂xh(K ∗ uj)‖L∞

2

+
1

ε2

‖ui‖L2

N∑
j=1

n∑
h=1

|hij |‖∂2
xh

(K ∗ uj)‖L∞

2

≤ 1

ε2

‖∇ui‖L2‖H‖∞
N∑
j=1

‖∇(K ∗ uj)‖L∞

2

+
1

ε2

‖ui‖L2‖H‖∞
n∑
h=1

N∑
j=1

‖(∂xhK) ∗ (∂xhuj)‖L∞

2

≤ 1

ε2

‖∇ui‖L2‖H‖∞
N∑
j=1

‖∇K‖L∞‖uj‖L2 |T|1/2
2

+
1

ε2

‖ui‖L2‖H‖∞
n∑
h=1

N∑
j=1

‖∂xhK‖L∞‖∂xhuj‖L1

2

≤ 1

ε2

‖∇ui‖L2‖H‖∞|T|1/2
N∑
j=1

‖∇K‖L∞‖uj‖L2

2

+
1

ε2

‖ui‖L2‖H‖∞|T|1/2
N∑
j=1

‖∇K‖L∞‖∇uj‖L2

2

≤ 1

ε2
‖H‖2∞|T|‖∇K‖2L∞

‖∇ui‖2L2

 N∑
j=1

‖uj‖L2

2

+ ‖ui‖2L2

 N∑
j=1

‖∇uj‖L2

2
≤ N

ε2
‖H‖2∞|T|‖∇K‖2L∞

‖∇ui‖2L2

N∑
j=1

‖uj‖2L2 + ‖ui‖2L2

N∑
j=1

‖∇uj‖2L2

 ,
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in which we have used Young’s inequality in the fourth inequality, Lemma 3.3 in the seventh,
Lemma 3.4 in the eighth, and Young’s inequality in the ninth.

Taking the sum over all the components i ∈ {1, . . . , N}, we have

1

2

d

dt

N∑
i=1

‖∇ui‖2L2 ≤
2N

ε2
‖H‖2∞|T|‖∇K‖2L∞

N∑
i=1

‖∇ui‖2L2

N∑
j=1

‖uj‖2L2 .

By defining

A =
4N

ε2
‖H‖2∞|T|‖∇K‖2L∞

N∑
j=1

‖u0j‖2L2 ,

and using (3.2), we arrive at

1

2

d

dt

N∑
i=1

‖∇ui‖2L2 ≤
A

2
e
nt
2ε

N∑
i=1

‖∇ui‖2L2 .

Applying Grönwall’s Lemma, we have

N∑
i=1

‖∇ui‖2L2(t) ≤
N∑
i=1

‖∇ui0‖2L2 exp

(
A

∫ t

0
exp

(ns
2ε

)
ds

)
,

for each time t < T∗. Thus solutions remain bounded in H1(T) until time T∗.
Now let us consider the claim:

u ∈ C1((0, T∗), L
2(T))N︸ ︷︷ ︸

(I)

∩C0([0, T∗), H
2(T))N︸ ︷︷ ︸

(II)

.

Looking again at the mild formulation in Equation (3.1), we have that u ∈ H1, ∇(Hū) ∈ H1

and the integral term is in H1. The first term involves the heat equation semigroup and the
initial condition, and by the classical theory of the linear heat equation, the term eD∆tu0 is
in H1 and differentiable in time. Hence also ut exists and is in L2. This explains (I). Finally,
writing down the equation once more:

ut = D∆u−∇ · (u∇ · (Hū))

we now know that ut is in L2 and the non-local term as well. Hence ∆u ∈ L2, which implies
(II).

In one spatial dimension, we also have the Sobolev embedding from H2 to C1. Indeed, we
can use this to show that solutions are in C2 for n = 1. First note that

((Hū)i)x =
N∑
j=1

hij
∂K

∂x
∗ ui,
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and

((Hū)i)xx =
N∑
j=1

hij
∂K

∂x
∗ ∂ui
∂x

,

which are both continuous. Therefore [ui((Hū)i)x]x = uix((Hū)i)x+ui((Hū)i)xx is continuous.
It follows from the mild formulation in Equation (3.1) that uit is continuous. Consequently,
Diuixx = uit + [ui((Hū)i)x]x is continuous, so ui is in C2(T) (where T = [0, L] here, since
n = 1).

Lemma 3.9. Consider the solution from Lemma 3.8 in one spatial dimension, so that n =
1, T = [0, L], and u ∈ C1((0, T∗), L

2(T))N ∩ C0((0, T∗), C
2(T))N . Let u0 ∈ C2(T)N such that

u0(x) > 0 for x ∈ T. Then u(x, t) > 0 for x ∈ T and t < T∗.

Proof. We let u = (u1, . . . , uN ) and work with each component separately. Assume that
there is a first time t0 > 0 such that the solution for ui becomes zero at a point x0. We can
rule out the case that ui(t0, x) ≡ 0, since the system (2.3) conserves total mass. Then we have

u(t0, x0) = 0, uix(t0, x0) = 0, uixx(t0, x0) > 0, uit(t0, x0) < 0.

System (2.1) evaluated at (t0, x0) becomes

uit(t0, x0)︸ ︷︷ ︸
<0

= Diuixx(t0, x0)− [ui(t0, x0)((Hū)i(t0, x0))x]x

= Diuixx(t0, x0)︸ ︷︷ ︸
>0

−
[
uix(t0, x0)︸ ︷︷ ︸

=0

((Hū)i(t0, x0))x + u(t0, x0)︸ ︷︷ ︸
=0

(Hū(t0, x0))ixx

]
,

leading to a contradiction. Hence ui(x, t) > 0.

Theorem 3.10. Let u0 ∈ C2(T)N such that u0(x) > 0 for x ∈ T. Then the solution from
Lemma 3.8 is global in time (i.e. T∗ =∞) when working in one spatial dimension (n = 1).

Proof. Recall that if T∗ < ∞ then ‖u‖L1 → ∞ at some point in time and T∗ defined as
the earliest time at which ‖u‖L1 = 2‖u0‖L1 . Therefore ‖u‖L1 will be strictly greater than
‖u0‖L1 for some t∗ ∈ (0, T∗). But, since

∫
T udx = ‖u0‖L1 for all time, we have

∫
T u(x, t∗)dx <∫

T |u(x, t∗)|dx, which implies that there must be some x such that u(x, t∗) < 0, contradicting
positivity (Lemma 3.9). Thus we must have T∗ =∞ and solutions are global in time.

4. Numerics. In this section we describe a method to solve System (2.1) numerically,
based on the general class of spectral methods [15]. For simplicity, we focus on simulations
within 1D domains. However, this procedure may be also extended to any spatial dimension.
Although our analytic results rely on the averaging kernel, K, being twice differentiable, our
numerical method does not rely on this constraint. Since the study of [54] used a top-hat
kernel (which is not differentiable), we demonstrate our method using this kernel as well as
an example twice-differentiable kernel.

The leading idea behind a spectral method is to write the solution of a PDE as a sum of
smooth basis functions with time dependent coefficients. By substituting this expansion in
the PDE, we obtain a system of ordinary differential equations (ODEs), which can be solved
using any numerical method for ODEs [13].
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In the previous section we showed that, under the hypothesis of Lemma 3.8, any solution
u(x, t) to System (2.1) is C2-smooth, so it is possible to expand it as

u(x, t) =
∞∑

h=−∞
ûh(t)φh(x),

where the coefficients ûh are computed by using the global behaviour of the function u and
{φh}h is a complete set of orthogonal smooth functions.

Since System (2.1) is periodic in space with period L, we adopt the Fourier basis as com-
plete set of orthogonal functions and expand each component of the solution u = (u1, . . . , uN )
as

(4.1) uj(x, t) =
∞∑

h=−∞
ûjh(t)e

2πi
L
hx, for j = 1, . . . , N,

where ûjh(t) = 1
L

∫ L
0 uj(x, t)e

− 2πi
L
hxdx are the Fourier coefficients, which represent the solution

in the frequency space.
One of the advantages of working with the Fourier expansion is that the operation of

derivation becomes particularly simple if performed in the frequency space. Indeed, differen-
tiating Equation (4.1), we find

(4.2) ∂xuj(x, t) =
∞∑

h=−∞

2πi

L
hûjh(t)e

2πi
L
hx, for j = 1, . . . , N,

we see that the Fourier coefficients of the derivative are obtained by multiplying each ûjh by
the term 2πi

L h.
Another important property of the Fourier transform, particularly useful in our case, is

that the convolution in the physical space is equivalent to a multiplication in the frequency
space. Indeed, the Convolution Theorem states that the convolution between two functions

f(x) =
∑∞

h=−∞ f̂he
2πi
L
hx and g(x) =

∑∞
h=−∞ ĝhe

2πi
L
hx has the following Fourier expansion

(4.3) f ∗ g(x) =
∞∑

h=−∞
f̂hĝhe

2πi
L
hx.

Therefore, to solve numerically System (2.1) the operations of differentiations and convolution
will be performed in the frequency space, while multiplications will be done in the physical
space.

To implement our numerical method, we discretize both spatial and temporal domain,
and consider the approximation of the solution u(x, t) on the grid points xm = m∆x and
tn = n∆t, with m ∈ {0, 1, . . . ,M − 1} and n ∈ N. We define Unjm = uj(xm, t

n). Then, in
discrete space, the coefficients ûjh(t) of Equation (4.1) are replaced by

(4.4) Ûnjh =
1

M

M−1∑
m=0

Unjme
− 2πi
M
hm,
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which represent the discrete Fourier transform (DFT) of uj(x, t).
The inverse discrete Fourier transform (IDFT), used to compute Unjm from Ûnjh, is given

by the formula

Unjm =
M−1∑
h=0

Ûnjhe
2πi
M
hm.(4.5)

We can convert the solution from physical to frequency space, and vice versa, using the
relations (4.4) and (4.5). However, we can speed the procedure up considerably by using a
Fast Fourier Transform (FFT) algorithm, which reduces the number of computations from M2

to M logM [55]. Analogously, an Inverse Fast Fourier Transform (IFFT) algorithm can be
used to perform a fast backward Fourier transform from the frequency domain to the physical
domain.

Let Un
j = [Unj0, . . . , U

n
j(M−1)], for j = 1, . . . , N and Ûn

j = [Ûnj0, . . . , Û
n
j(M−1)], for j =

1, . . . , N , which represent the solution in the frequency domain at time t = n∆t. Then the
algorithm for calculating the solution is as follows.

First, we calculate the non-local terms Ūn
j = K ∗Un

j by passing to the frequency domain
and applying the Convolution Theorem (Equation (4.3)). We then stay in the frequency
domain to calculate the derivative ∂xŪ

n
j . Passing back to physical space, we calculate the

product Un
i · ∂xŪn

j . Then the derivative of this product, ∂x(Un
i · ∂Ūn

j ), is calculated in the
frequency domain. This deals with the second term in our PDE (System 2.1). Finally, we
calculate the diffusion term from System (2.1) by passing to frequency space.

This whole procedure results in defining a function, f(Un
j ), which is a discrete represen-

tation of the right-hand side of the PDE in System (2.1). Thus we have the following system
of ODEs

dUn
j

dt
= f(Un

j ), j = 1, . . . , N,(4.6)

which can be solved using any ODE solver. In particular, we used a Runge-Kutta scheme.
To calculate the coefficients of Fourier transform and inverse Fourier transform, we used the
drealft fast Fourier transform subroutine from [55]. This routine requires that the number
of grid points must be a power of 2. We used the spatial domain [0, 1] with 128 spatial grid
points (so ∆x = 1/128) and periodic boundary conditions.

For the spatial averaging kernel K, we used two different functions. The first is the von
Mises distribution

(4.7) Ka(x) =
ea cos(2πx)

I0(a)
,

defined on [−1/2, 1/2] (which is equivalent to [0, 1] due to the periodic boundary condi-
tions), where I0(a) is the modified Bessel function of order 0. This distribution both sat-
isfies the periodic boundary conditions and is twice differentiable, as required by Lemma 3.2,
Lemma 3.3, Lemma 3.4 and Lemma 3.7. We compare this with the following top-hat function
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σ = 0.1, ∆t = 10−4

E t(s)

O(10−6) 0.5216

O(10−8) 0.6043

O(10−10) 0.8522

σ = 0.05, ∆t = 10−4

E t(s)

O(10−6) 0.2354

O(10−8) 0.4131

O(10−10) 0.6768

σ = 0.025, ∆t = 10−6

E t(s)

O(10−6) 1.785

O(10−8) 3.918

O(10−10) 5.908
Table 1

Three tables showing numerical computation time, each for a different set of values of σ and ∆t. The first
column of each table contains the order of magnitude of the maximum distance between numerical solutions
at times t and t + ∆t (first column) at the point when we stop the numerics. The second column shows the
computational time in seconds to reach this point. The corresponding numerical simulations are shown in
Figure 1

on [−1/2, 1/2], used by [54]

(4.8) Kγ(x) =


1

2γ , −γ ≤ x ≤ γ,

0, otherwise.

To compare numerical solutions with the two averaging kernels, Ka and Kγ , we use a common
standard deviation

(4.9) σ =

√√√√∫ 1/2

−1/2
x2K(x)dx−

(∫ 1/2

−1/2
xK(x)dx

)2

.

We implemented our algorithm in the C programming language and demonstrated it using
the simple case of two interacting populations, u1 and u2. The numerical code is available at
https://github.com/MathGiu/MS.

In Figure 1 we show the spatiotemporal evolution of the numerical solution, with K = Ka,
for different values of the standard deviation σ. For σ = 0.1, we used a smooth random
perturbation of the homogeneous steady state as initial condition. In this case, the solution
appears to evolve towards a stationary state, and we stopped the numerics when the maximum
distance between solutions at times t and t+ ∆t is below 10−10. This took about 0.8 seconds
of computational time to reach (see Table 1). We then used this stationary state as initial
condition for a simulation with σ = 0.05, whose spatiotemporal evolution is shown in the
second line of Figure 1. As in the previous case, the solution appears to settle into a stationary
state, which was used as initial condition to perform a simulation with σ = 0.025. We see
that, as σ is decreased, the steady state solutions become increasingly flat-topped.

In each of these examples, hii = 0 for i = 1, 2. In this case, [54] showed that the system
admits an energy functional which decreases over time, a feature that often accompanies
systems that reach a stable steady state, and indeed this is what we observe in our numerics.
However, if we drop the hii = 0 assumption, it is possible to observe patterns that exhibit
oscillatory behaviour that does not appear to stabilise over time (Figure 2).

Comparing the numerical solutions obtained with the von Mises kernel (4.7) and top-hat
kernel (4.8) for different values of σ, we see a good numerical agreement between numerical
steady-state solutions (Figure 3). Hence, numerically, either choice is possible.

https://github.com/MathGiu/MS
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Figure 1. Spatio temporal evolution of the numerical solution of (2.1) with K = Ka defined in Equa-
tion (4.7), for different values of the standard deviation σ. On the right column: spatial profile of the numerical
stationary solution. The parameter values are: D1 = D2 = 1, h11 = h22 = 0, h12 = h21 = −2. For σ = 0.1,
a = 3.225; for σ = 0.05, a = 10.664; for σ = 0.025, a = 41.01.

5. Discussion. The development of our model (Equation (1.2)) has been driven by the
need to include non-local spatial terms into realistic models for organism interactions. How-
ever, when developing a new modelling framework, it is always a good idea to show that the
model is well defined and biologically sensible, as we do here. In particular, it is important
to identify the mathematical conditions that are needed to prove existence and uniqueness of
solutions. In our case, for example, we find that the smoothness of the averaging kernel is
essential to prove existence of classical solutions for the PDE model. This implies that our
favorite choice, the indicator function on a ball of radius R, used by [54], is not included in
the existence results. This is not a large restriction for the biology, since the indicator func-
tion can always be mollified (smoothed out) to obtain a regular kernel. However, it opens an
interesting mathematical question to try to understand what goes wrong when the averaging
kernel has jumps. In our case we cannot find a uniform L∞ estimate for convolution with ∇K,
which is an observation, but not an explanation of this limitation. In numerical simulations,
we compare smooth and non-smooth averaging kernels and we see no appreciable difference.
The difference is certainly much smaller than can ever be expected from errors that arise
through empirical measurements of species distributions.

In our theory we consider a periodic domain, represented through the n-torus T. Other
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Figure 2. Spatio temporal evolution of the numerical solution of (2.1) with K defined in Equation (4.7),
for different values of σ. The parameter values are: D1 = D2 = 1, h11 = h22 = h21 = 1.5, h12 = −1. For
σ = 0.1, a = 3.1; for σ = 0.05, a = 10.5; for σ = 0.01, a = 250.

domains with other boundary conditions can be studied with minimal modifications. The
boundary conditions were essential to establish Lemma 3.5 about the regularity of the heat
equation semigroup on T. Similar regularity results are known for other boundary conditions
[36, 40], and in those cases our method applies directly.

Non-local models for one or two species have been extensively studied before (see for
example [18, 16] and the references that were mentioned in the Introduction). Our emphasis
here is on a multiple species situation. This system was originally introduced in [54], in a
slightly modified form, for the purposes of understanding the effect of between-population
movements on the spatial structure of ecosystems, something generally ignored in species
distribution modelling [24]. Understanding the spatial distribution of species has been named
as one of the top five research fronts in ecology [57], so the model presented here has potential
for giving insights into various important problems in biology where biotic interactions affect
movement. These include, but are not limited to, the emergence of home range patterns [10],
the geometry of selfish herds [30], the landscape of fear [37], and biological invasions [39].
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Figure 3. Comparison between the spatial profiles of the stationary solutions obtained with the smooth
kernel K (4.7) and the non-smooth kernel Kγ (4.8), for different values of the standard deviation σ. The
parameter values are: D1 = D2 = 1, h11 = h22 = 0, h12 = h21 = −2. For σ = 0.1, a = 3.225 and γ = 0.1732.
For σ = 0.05, a = 10.664 and γ = 0.0866. For σ = 0.025, a = 41.01 and γ = 0.0433.

The study of [54] focused on pattern formation via the tools of linear stability, numerical
bifurcation, and energy functional analysis. This study showed that the linear stability prob-
lem became ill-posed in the ‘local limit’, i.e. as K tends towards a Dirac delta function so
that advection becomes local. Analogously, here we show that solutions exist for smooth K,
but depend upon ‖∇K‖∞ being finite, so will also break down if K is a Dirac delta function.
This highlights the importance of non-locality in our advection term. Indeed, numerical sim-
ulations (e.g. Figure 1) suggest that, as K narrows (i.e. its standard deviation decreases),
the maximum gradient of any non-trivial stable steady state increases. We conjecture that
failure to include non-locality in the advection term (equivalently, setting K to be a Dirac
delta function) will lead to gradient blow-up.

Our results, together with those of [54], suggest a rich variety of pattern formation prop-
erties in non-local multi-species advection-diffusion models. Here, specifically, we see two new
features related to pattern formation. The first is the appearance of oscillatory solutions in
two-species models, enabled by the inclusion of self-attractive terms. Second, we see that
changing the width of spatial averaging, given by σ, can have a qualitative effect on the pat-
terns that emerge (Figure 2). We have only scratched the surface here, in order to introduce
our numerical method, the main purpose of this work being to establish existence of solutions.
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Nonetheless, the ability to link underlying processes with emergent patterns is a principal
question in biology [32, 19, 50], and the evident rich pattern formation properties of these
models suggest this will be a formidable task for future work, building on the increasing lit-
erature in this area [52, 14, 17].

Acknowledgements We are grateful to two anonymous reviewers whose comments and
suggestions helped improve the manuscript, and also Marco Sammartino who developed the
preliminary coding structure on which our numerics were based.
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