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Abstract

NetKernel is an experimental kermel for concurrent programming using parallel hard-
ware. It provides low level support for net-oriented programming paradigms. It is
intended to provide a testbed for research into mapping of concurrent software. The basic
requirement for NetKemel is to flexibly support the mapping of software networks to
physical networks without any modification of source code.

A NetKemel program is formulated as a software network of interconnected processes
which communicate by asynchronous message passing. A software network is mapped
to a physical network for execution. NetKernel uses separate descriptions for these three
fundamental concepts: software network, physical network, and mapping. This facilitates
experimentation with different mappings and different configurations of hardware. The
kernel runs on each station in the physical network, managing the execution of concur-
rent processes and providing a distributed message system. The kernel also includes
facilities for loading, controlling, and monitoring the execution of processes at stations
throughout the physical network. NetKernel has a microkernel design, consisting of a
core which provides process switching and local interprocess communication. A collec-
tion of kemel processes provides additional services including transparent nonlocal com-
munication. Development tools running on host workstations provide an environment for
loading, monitoring, and controlling the execution of software networks executing on a
physical network of target processors. Where possible, complexity has been shifted from
the targets to the hosts. This allows NetKernel to run on target systems with very little
memory.

Our current hardware and implementation do not have particularly high performance.
The intention is to provide an economical platform for the investigation of novel con-
cepts in concurrent software rather than to develop a high performance parallel computer.
The requirement for flexible mapping has been achieved and demonstrated. It is antici-
pated that NetKemel will next be used to explore a new design notation based on Petri
Nets.



Acknowledgments

I thank my supervisor, Professor Wemer Joerg, for opening my eyes to the concurrent
systems approach as a powerful way to deal with many problems. 1 am also very grateful
to him for providing rapid feedback on my thesis, even during difficult times. Many
thanks to my examination committee members, Professor Don Koval and Professor
Jonathan Schaeffer, for their time and valuable suggestions concerning this thesis.

I have enjoyed the privilege of working with several undergraduate students who have
contributed to various aspects of NetKernel. Thanks to Darryl Maier (Host Interface Pro-
gram), Collin Roth (Debugger), and fellow graduate student Kal Voruganti (Script Gen-
erator). Also to Andrew Jarman, John McDougald, and Thomas Yoon for their work on
shared memory hardware.

I especially thank my family for their unwavering support and encouragement through-
cut my education.

Finally, I gratefully acknowledge the Department of El:ctrical Engineering, the Univer-
sity of Alberta, and the Natural Sciences and Engineering Research Council for financial
and technical support.



Contents

List of Tables
List of Figures
List of Symbnlg
Lisy ol Athecviations
Traderaarks
Chapter 1 Introduction 1
L1 CONCUITENt SOftWArE ..........ccccvevevreiieiireeiter e ese e 1
1.2 Embedded SYStems ............c.cvviemnieremieieiieireeeeeeceee e et |
L3 MOUVALON .......cocvineenreeictireececeeecectecset ettt e seesee e ere s s ens 2
1.3.1 Parallel Programming Paradigms and Architectures................ 3
1.3.2 Message Passing vs. Shared Data................ccooovovveverne oo, 4
1.3.3 Net-Oriented Programming Paradigms ...............c..ccoverun...... 5
1.4 NetKemel ..ot se e es oo 6
1.5 History of the MPAXS PIOJECt..........c.covivieereeneeeeeeeseereveseerennns 7
L6 OULHRC........eereeeeee ettt e ese e e serne 7
Chapter 2 NetKernel Paradigm and Architecture 9
2.1 OVEIVIEW ...ttt e scsr st e eeseaes s s s 9
2.2 Operational REQUIrEMENLS.............coov.vvreeeceeniececereeeseeeeseeeeessses s 10
Pant A Paradigm
2.3 SOftware NEtWOIK .............cc.ooooeumecereecrimeeeeereseseereeeessesesseses s 10
2.3.1 PIOCESS ...ttt seeeeseastses s s s esassesas 10
2.3.2 Software NEetWorK ...............oceuevuevrmmereseeseseereeesesessssesesessessssens 11
2.3.3 Provision of Services by Kernel Processes.............o.ovvveoven.... 12
2.3.4 INPUVOULPUL........overeerreeeererensieste e eeese s eessseseseeseses e 13
2.3.5 General Process Models ... .........c.coceuereeemermeeermrreereesressessers 14
23.5.1  CHENU-SEIVE...........ccoevnrurrrirerecircresseeeeereessecesesenes 14
2352 Data FIOW ...t cnseeeeeseeseeeesneses s 15

2.4 MESSaBE SYSIEM...........couvertreeeeeeieceereeeeneseeceseseersenesssaessssessseseessesnes 16



................................................

2.4.5 Transparency and Configurability ...

Part B. Architecture

25

2.6

27

Physical Network .............cccccooeummiunioireoreomosooo
2.5.1 SEALONS ...t

2.5.3.1 Treating Processors as I/O Devices...................
2.5.4 Physical NEtWOrK................coueveveireeeenrerneeneeeeoeeoses oo

2.5.5 Variations in the Environment On Different Station Types......
MaPPING ...t oo

.......................................................................

Chapter 3 NetKernel: Design and Implementation

3.1

34

OVEIVIEW ...ttt e s et eoesees e e



3.5

36

4.5 INMEITACE .........eeeeveeeeeeteeeee e sests e e essreeesssesssreesssesesnssseses 39

Microkemel Design.............c.ccoviecinieniienii e v 40
3.5.1 Module SUMMATY ...........ccceviiereinireriiieeeee e 40
3.5.2 Kemnel Data StruCtures.............cccovuinieeiinecerrereereeiseesisesenenns 41
3.5.2.1 Summary of StrUCIUreS............coovee voveeiieririrrerenns 42
3.5.22 Mutual EXclusion...........c.cccevvvvereeneeeeccneerciennnens 42
3.5.3 Process Scheduling.............c.cccoevverivirnrinieniieecece e, 43
3.5.3.1 Process State and Control State................................ 43
3,532 Scheduling Mechanism ................cccoooerevriremnrinrnnnnne, 44
3.5.4 Dynamic Memory Management.................c...coevrvemriierernennnnnn. 45
3.5.5 MesSSage SYStEM ........cccvrieirneerrnensrnreniniernressseeseesssassessanans 46
3550 SeNA() ..ottt 46
3552 WAoottt 47
3553 TAKE() coecovvrerricinrcrre ettt 47
3554 REPIY().coooeeniieriieiees v et reseseseene 47
3.5.6 Exception CatCher............cccccivveviie wvvenivcnreeeeeresresensreneenns 48
3.5.6.1 Device DIivers.........c..ccurvivemniennieereeesevesiresannns 48
3.5.6.2 Interrupt Servicing Through the Microkemel ......... 49
3.56.3 Handler Processes...............ccuooveuiemerereeneerreensennnne 50
3.5.6.4 Process Classification...............cc..couevvreenereeereeecnne 51
3.5.7 ClOCK....cococrerietneeererresuneerirreesemassiessereses s sssssesss seenessesones 51
3.5.7.1 Statistical Profiling.............cc.cooeruvrmrrveeeneericrinnnn. h)|
3.5.7.2 Runaway Process Suspension..................ccceeerrvenecn. 52
3.5.7.3 Updating Station Time and Timers ...............o........ 52
3.5.8 MiSCEllanEOoUS .............ccecerremirrenrcneriereiessinene s eeeesseneens 53
3.58.1 Event Logging........ccccccoeuurenivninmnirereneereneresninsannnes 53
KEMEl PIOCESSES .......c.ovcvcvrmiereriireerireeenitiressstesseesessesensessassssssessnsnes 53
3.6.1 Interaction Between Kemnel Processes.............coeeevnrinnneennnnnns 54
3.6.2 Process DecOMPOSItION...........cceurvereremneeernireenieesinseseeseonsnnns 54
3.62.1 Considerations..............ccccoeeeurveeerireeneeeersernensesecnes 54
3.6.2.2 Processes Priofities.............ocevvenerrenricinriiennniseonninns 55
3.6.3 Station OPEration...............cccevereeuveninriernueresnressssssesseressssssenes 56
3.6.3.1 Process Manager..............ccveemmireenresonnuesnessserenns 56
3.63.2 Default Exception Handler.............c.cccouvrrerenvunnee.. 58
3.63.3  DEDUBEEL ........cooverenrrenre et recsenesnsenaneserensinns 58

3.6.3.4 Serial LDD/IODD (IODD role)...........cccovveemrrrennnnc 59



3.6.3.5 Operator INerfuce.............cooevvrevemvveeomeeeioooo, 60

3636 PIOfEr.......oovicrreeereeeere e, 61

3.6.3.7 SRecord Loader..............cooocoererreeoeeeeesoroes 61

3638 TiMEr ..ot oo 6i

316.3.9  LOB..ooiiieriiiit et 62

363,10 Ittt e 62

3.6.4 Distributed Message System....................c.coocoovvviioo 62
3.6.4.1  OVEIVIEW ....couveeeereeeeeeeeeeee oo, 62

3.6.4.2 Connection Database.....................ccocervvrrerriorinn., 65

36143  ROULET ....cu.oenreeeeeeseeereee e 65

3.6.4.4 Serial LDD/IODD (LDD tole) ........c.covvvvevrrerenn, 66

3.7 Correctness Of DeSIZN ........c.co.cvevveeiiieeeeeeeree oo 68
JTL SALELY ...ttt e, 69
3.7.2 LAVENESS ...ttt et eaes s 69
3720 DeadlOCk......c.oucuerirriieieii e e e 69

3722 LOCKOUL.......covvuiemirenieirieecs e ee oo e 70

3.7.2.3 Termination of System Calls .................ooovrvrvvnnnn, 72

3.8 IMPIEMENLALION ..........ccovurienriereirrieeee et eee e 72
3.8.1 Compiler and Other Support Software..................c.coevevenai 73
3.8.2 Code SAISHCS .......covevurerriicieveeeseecseseseesresee e esssssssese. 73
3.8.3 Process PrOFItEs ................ocoveemvrmerreeesenscesceeese e e 73
3.8.4 Developing User Processes................c.ooueeeeerereereserssserseressones 74
3.8.5 NeXT Workstation Prototype .............cocoovveevrverrererererseesrssoinns 74
Chapter 4 Development Tools: Design and Implementation 75
.1 OVEIVIEW ...t tet e ecte s ssesesessesssseses s e 75
4.2 DesCrPtion FUlES ........cc.o.uevevuuieeiviriceeeeeecese e esees oo oeseoens 76
4.2.1 Software Network Description (SND)............cocevrvevrrrerrrnnann. 76
4.2.2 Physical Network Description (PND) ..........ccooovvvvrevvvreerenn 7
4.2.3 Mapping Description (MD)..............ooceorveeeevmmresererersereessersns 77

4.3 Host Interface Program (HIP).............ccccevvmiremreverirererreseresesse oo 78
4.3.1 MOUVALON...........ccooceuuerrerrernrire et seseesrsesesss e eoes 78
4.3.2 Internal Network Model .................ooveeveemreecnrereereeerseeseens 79
4.3.3 Overview of Process Management Commands...................... 80
4.3.3.1 Starting a Software Network .............coocovvvvrerennn.. 80

4.3.3.2 Other Manipulative Commands .............................. 81

4333 Status COMMANGS ..........c.ooeveevereemeeeeeoeeoeeeeeeoee s 8]



4.3.4 Command ModUIES..................oovvevieieiiiieeeeeeeseeeeie s esies s s 81

4.4 Script Generator (SG) ..o, 82
4.5 Event Log Report Generator (ELRG)...........ccovvveenvriivecinicien, 83
4.6 Implementation .............. ccoiviiinneniinc e, 83
Chapter S Related Work 84
S.1 OVEIVIEW ..ottt st e s sae et eresteetre s renaens 84
5.2 Types of Environments which Support Concurrent Processes............ 84
5.3 Influential Concurrent Programming Paradigms .................c.ocoeuu..... 85
5.4 Contemporary SYSIEMS ........c.ccccceevieveirrienrerireniisreseeseesesssenesssssenens 86
5.4.1 AMOCDA.........ccociiiiiric e 86
542 CAPER ... st s 87
543 CONIC ...ttt st et 87
544 EMPS ...ttt et sae e enee 88
5.4.5 ENEIPISE.......c.cvvviiuiiieiiirtireeininte s reese et s b s s eessnne 88
5.4.6 Transputer SYSIEMS............cccoeveemvvnircrirrienearniessssieesseseenseees 88
5.4.6.1 First Generation ..............ccceeveveevrieevenennereneniesienenns 88
54.62 Parallel C.............cooovrrieeieecreceeteeeeerceenne 89
5463 TOPS ...t 89
5464 T-RaCK......ccoovoerrvreecrecenrceece et 89
54.6.5 Second Generation................coevveeevrrrcrerivreereennnn, 89
5.5 Comparison and DiSCUSSION.............ccevvevivireererieecnniteieisieest e sae e 90
Chapter 6 Conclusions 93
6.1 CONCIUSIONS........cooveenrrrertireerrrtereeterseece e ess s ctesessessen e ersenes 93
6.2 Future WOrk ..........coooeuimemivemnrieereneeeceersensnen e rereaeereaenrereraaees 93
6.2.1 Design Notation Based on Petri Nets.............c...ccovverevrnennne.. 94
6.2.2 Performance Prediction and Mapping..........cc...coevevrevururennnne. 96
6.2.3 Improvements and Extensions to NetKemel. ............................ 97
Bibliography 100
Appendix A Glossary 103
Appendix B Selected Aspects of the NetKernel Interface 105
B.1 Function Prototypes for Message Passing System Calls ................. 105
B.2 Command Interface of the Process Manager......................ccun....... 106
B.3 HIP Commands for Process Management.................cocoevveeneunnnen.. 107
Appendix C Demonstration Programs for NetKernel 109

C.1 Ring Program and Message System Performance........................... 109



C.2 Synthetic Program with Mapping Examples

................................... 11
C3 Repulse Game ..o 13
Appendix D Example Source Code and Description Files 118
Dl SND, PND,MD ..o s
D.2 slave.c, PTD for slave .......... ...coooovenereeereneooooooeooooo 116
D.3 Script for HIP Generatedby SG.............................. n

Appendix E Event Log Report Showing Clock Servicing



List of Tables

Table |
Table 2
Table 3
Table 4
Table §
Table 6
Table 7
Table 8

MPAXS processors and their classification 32

Summary of kernel processes 37

Summary of kemel data structures 42

Periods of system clock activities 52

Relative priorities of kernel processes 55

Source code statistics 73

Message throughput as measured using a ring of two processes 110
Throughput measurements for various mappings of SYNTH 113



List of Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure 19
Figure 20

O 00~ O\ D bW -

Pumb  jud b b pmed ek puwd et s
00 3 N WV bW =D

Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28

Figure 29

Process 11

Example of a software network 12

Hypothetical software network to monitor a reactor 13

Examples of client-server relationship between processes 15
Examples of data flow configuration of processes 15

Guest process 17

Processor classification and functions 20

Link classification and examples 21

Hypothetical physical network 23

Example mapping 25

Hardware of the M6800O0 target station 32

Examples of physical networks constructed from MPAXS hardware 33
High-level views of the kemnel 34

Kemel processes of the M68000 version of NetKernel 36

Structure chart of microkernel modules showing entry/exit points 41
State diagrams for process state and control state 44

Data path and units exchanged for a local message 47

Process classification and functions 51

Example of Serial LDD/IODD managing two /O devices. 59

Dialogue between a terminal and destination x through Operator
Interface 61

Data path and units exchanged for a nonlocal message 63
Distributed message system processes at an example station 64
Some routes through a hypothetical physical network. 65
Communicating Serial LDD/IODD processes at adjacent stations 67
State Diagrams for (a) receiver and (b) transmitter 68

Client-server relationships among kernel processes 70

High-level design of HIP 82

Compiling a Petri Net design description into a NetKernel software
network 95

Compiling by collapsing 96



Figure 30 Software network for a ring consisting of a master and two slaves 109
Figure 31 Softwarc network for SYNTH 111

Figure 32 Five mappings of SYNTH to four differen ohysical networks 112
Figure 33 Software network for Repulse game 114

Figure 34 Example output from Event Log Report Generator 119



List of Symbols

{al P}

w <« ¢ DN m m

|

P(E)

(aj, ag,..., )
f:A-B
Jix)

A

v

empty set
set of natural numbers 0,1,2,3,...
set of elements satisfying property P

is an element of

is not an element of

set inclusion

set intersection

set union

for any

there exists

number of elements of E

power set of E

an ordered sequence of n elements or n-tuple
function which maps each member of A to a member of B

the member of B to which f maps x, where xe A

logical conjunction, “and”

logical disjunction, *“or”



List of Abbreviations

CB Connection Block

DB Diagnostic Block

ECB  Exception Control Block

ELRG Event Log Report Generator

HIP  Host Interface Program

LDD  Link Device Driver

MD Mapping Description

MIMD Multiple Instruction, Multiple Data streams
MPAXS Multiple Processor Asynchronous eXpandable System
0Ss Operating System

PCB  Process Control Block

PID Process ID, also pid

PTD  Process Type Description

PND  Physical Network Description

SCB  Station Control Block

SG Script Generator

SND  Software Network Description

TCB  Timer Control Block

VLN  \Virtual Link Number



Trademarks

UNIX is a trademark of AT&T.

Occam is a trademark of INMOS Limited (a member of the SGS-THOMSON Microelec-
tronics Group).

NeXT is a trademark of NeXT Computer, Inc.
CrossCode is a trademark of SOFTWARE DEVELOPMENT SYSTEMS, INC.
Sun and Sun-3 are trademarks of Sun Microsystems Incorporated.

Ethernet is a trademark of Xerox Corporation.



chapter 1 Introduction

1.1 Concurrent Software

This work describes the development of a tool to explore problems in the field of concur-
rent software. Concurrent software uses programming techniques which explicitly repre-
sent potential parallelism in programs, typically through the use of multiple processes
which execute concurrently. Important constructs over and above those found in ordinary
sequential computer languages deal with the communication and synchronization needs of
concurrent processes. Concurrent programming techniques are particularly suitable for
embedded systems, which must deal with a large number of sensors and actuators at the
same time.

Concurrent execution of processes may be implemented by interleaving the execution of
processes on a single processor, or by executing them in parallel on a number of proces-
sors in a network. In the latter case, the processes are said to have been “distributed” over
the net-vork. Distribution of a program allows exploitation of parallelism to improve time
performance of the program. This extends the applicability of concurrent programming
techniques to include any computationally intensive software (such as scientific program-
ming) for which a shorter execution time is desired. Distribution of processes may also be
motivated by reasons other than speed-up, such as cost-effectiveness, reliability, or the
desire to utilize special purpose processors in a system.

1.2 Embedded Systems

In this work, we are primarily interested in concurrent software for embedded systems.
The remainder of this document should be considered within the context of embedded
systems. An appropriate environment for mapping concurrent software to parallel hard-
ware is developed. A concurrent program is formulated as a software (virtual) network
which is mapped to a physical network. NetKernel facilitates exploring the interplay
between virtual and physical topology in determining performance. Different virtual and
physical topologies are easily realized and tested.

An embedded system performs a predefined set of tasks upon dedicated hardware with
minimal operator intervention. It responds to and generates many asynchronous signals
and commands. Its performance may be improved by distributing activities to different
processors. Since dedicated hardware is used, the topology of the hardware may be spe-
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cially arranged to provide good performance for the software network of a particular
embedded system. The processors are equipped with a minimal set of special-purpose
peripherals, often lacking general-purpose facilities such as memory management hard-

ware and directly accessible file systems. Special-purpose processors are often included as
key components of an embedded system.

The allocation of software elements to physical resources is referred to as mapping. For an
embedded system, it may not be obvious how to arrange the hardware (topology) and map
the software so that performance and economic objectives are met. NetKernel does not
directly address this problem, but provides a platform upon which it may be explored.
[Fernandez89] states the module allocation problem where the goal is to minimize total
execution time. (Other goals expressed in terms such as response time or throughput are
also used for embedded systems.) Both processing time and interprocessor communica-
tion time enter into the minimization. The use of parallel processors and parallel links pro-
vides a means of reducing both times, respectively. Furthermore, irregular requirements
for processing power and communication bandwidth in a software network make the use
of heterogeneous hardware attractive for both the processors and the links. As an example,
an embedded system might contain specialized image processors in a fast network com-
bined with general-purpose processors in a slower network. The current implementation
of NetKemel supports parallel M68000 processors and parallel serial links. The design
allows for other types of processors and links to be added so that heterogeneous systems
can be explored in the future.

1.3 Motivation

NetKernel is an initial effort in the MPAXS (Multiple Processor Asynchronous eXpand-
able System) project at the Department of Electrical Engineering, University of Alberta.
The purpose of the MPAXS project is to develop hardware and software tools for the
exploration of concurrent software on parallel hardware. This includes the areas of pro-
gramming, mapping, and performance modelling. NetKemel is conceived as a bottom
layer of distributed software to facilitate this exploration.

NetKemel’s role on a parallel system is analogous to that of other kernels found on single
processor systems. NetKernel will provide basic support such as process scheduling, inter-
process communication, and input/output. Similar to other kernels, higher level program-
ming paradigms may be built on top of NetKernel. A general programming paradigm will
be selected for NetKemel on the basis of three aspects of concurrent software to be
explored:

Al mapping of concurrent software to heterogeneous parallel hardware,
A2 performance modelling and prediction,
A3 net-oriented programming paradigms.



Items Al and A2 are currently active research areas. It is postulated that net-oriented pro-
gramming paradigms (A3) provide a useful approach. The reasoning behind this approach
will be presented following some discussion of parallel architectures and programming
paradigms. This discussion serves to place the NetKernel paradigm within current classifi-
cations, and also indicates parallel architectures suitable for execution of NetKemel.

1.3.1 Parallel Programming Paradigms and Architectures

Ambler [Ambler92] defines a programming paradigm as:

A programming paradigm is a collection of conceptual patterns that together mold
the design process and ultimately determine a program's structure. Such concep-
tual patterns structure thought in that they determine the form of valid programs.
They control how we think about and formulate solutions, and even whether we
arrive at solutions at all.

Duncan {[Duncan90) defines a parallel architecture as:

...a parallel architecture provides an explicit, high-leve! framework for the develop-
ment of parallel programming solutions by providing multiple processors, whether
simple or complex, that cooperate to solve problems through concurrent execution.

Ambler describes two general classes of paradigms which explicitly represent concur-
rency: synchronous paradigms and asynchronous paradigms. In synchronous paradigms,
ideatical operations are performed in parallel on many data elements. In asynchronous
paradigms. multiple processes execute in parallel, communicating and synchronizing with
one another to accomplish some task. The operations performed by different processes
need not be identical.

These two classes of programming paradigms are closely related to the two major divi-
sions of parallel computer architectures identified by Duncan: synchronous and multiple
instruction multiple data! (MIMD). Synchronous architectures execute related parallel
operations on multiple processors in lockstep enforced by central control. Synchronous
architectures are appropriate for synchronous programming paradigms, as well as related
paradigms involving central control, such as systolic and vector processing. MIMD archi-
tectures execute independent parallel operations on multiple processors which are prima-
rily autonomous. This type of architecture is well suited to executing multiple processes
asynchronously on different processors. Duncan also identifies a third category of archi-
tectures, MIMD-based paradigm, which are asynchronous with multiple instruction and
data streams, but also have “a distinctive organizing principle as fundamental to its overall
design as MIMD characteristics” [Duncan90). Examples include datafiow, reduction, and
wavefront architectures.

! The term MIMD originates in Flynn's classification, (Flynn72).
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The process oriented view of concurrent software falls under the asynchronous paradigm
of programming. We have selected to explore this paradigm on a MIMD architecture. The
choice of architecture was influenced by considerations of expandability, physical distri-
bution, ease of custom configuration, and the possibility of building a machine of this
architecture from readily available stand-alone computers.

Central control is considered to limit the performance of synchronous architectures as
they are scaled up to more processors. Global control signals are particularly unacceptable
for many embedded systems, where physical processors may be distributed throughout a
factory. Another proper:y of MIMD useful for embedded systems is that it can allow many
different topologies, vth the possibility of sclecting a topology to optimize the perfor-
mance of a particular p:ugram. A customized topology can improve performance for most
parallel software, but is | rticularly useful for embedded systems because they tend to 1)
be dedicated to one application over their lifetime, and 2) have irregular communication
patterns.

An additional concern asises when considering performance gains from parallel process-
ing: the amount of inherent parallelism available to be exploited in a programming prob-
lem. Some problems are inherently parallel (eg. image filtering), whereas others are
inherently sequential (eg. computation of some nonlinear recurrence relations, such as the
millionth iterate of z,,,)=z,2+c). Identifying the inherent parallelism in a problem is an
important related topic which is not treated in this work. This thesis focuses on providing
tools to express parallelism. [Courtois85] provides a general discussion on the decomposi-
tion of complex systems. Some criteria used to identify concurrent activities for embedded
systems are presented in [Gomaa84). For a text on parallel algorithms, the reader is
referred to [Quinn87).

1.3.2 Message Passing vs. Shared Data

The asynchronous programming paradigm has been selected for NetKemel. There are two
major refinements of the asynchronous paradigm: message passing and shared data. These
are associated with the two major types of MIMD architecture, distributed memory and
shared memory, respectively. The message passing and shared memory paradigms differ
in the mechanisms used for interprocess communication and synchronization. However,
they are equally powerful in that they can solve the same problems. We shall now consider
these mechanisms and select one of them for NetKemel.

In the message passing paradigm, processes communicate and synchronize by sending
and receiving messages. This is naturally implemented on distributed memory architec-
tures, where processors are interconnected by many communications links. In the shared
data paradigm, processes communicate and synchronize through shared data structures in
a common address space. This is naturally implemented on shared memory architectures,
where all processors have access to a common memory.



Shared memory generally provides higher performance for small numbers of processors,
but becomes a bottleneck when large numbers of processors are used. Communication
links between processors operate indep ‘ly, which results in better expandability
because the total available communicatio:.  .ndwidth can be increased by adding more
links along with additional processors. Efforts to combine the performance of shared
memory with the scalability of communication links have resulted in mixed architectures.
These contain clusters (of processors) which are interconnected by links. Each cluster of
processors has its own shared memory.

The choice of paradigm is no longer clear for mixed architectures. It is undesirable to
employ both mechanisms, using each for processors connected in the corresponding fash-
ion. This makes programs unnecessarily dependent upon the hardware configuration.
Rather, a single mechanism should be uniformly available throughout all processors.
From a system design perspective, it is easier to achieve message passing through shared
memory than the other way around!. Since communication links present an undeniably
message-oriented interface, message passing is almost always used in a lower layer.

In the interests of generality, NetKernel supports architectures which mix shared memory
and links. The message passing paradigm will be supported uniformly throughout all pro-
cessors. Message passing was selected because it is more easily realized on mixed archi-
tectures than shared data. This choice is consistent with the kernel’s role of providing a
low-level paradigm on top of which other paradigms may be realized.

1.33 Net-Oriented Programming Paradigms

The term *“net-oriented” has been adopted to describe the programming paradigm devel-
oped in this work. This is a refinement of the message passing, asynchronous paradigm,
which has been described above.

Network representations of computer software are commonly used in software design and
modelling. Examples include data flow diagrams, petri nets, and queueing networks.
Some asynchronous programming paradigms allow networks of processes to be estab-
lished. These networks of processes are conceptually similar to the network representa-
tions used for design and modelling. The nodes used in modelling and design notations
typically represent transformations or functions which can be realized by processes of the
asynchronous paradigm. The arcs typically represent information flow which can be real-
ized by message passing. Hence the concepts expressed in network models and design

! Message passing is easily achieved through shared memory by the use of data structures such as buffers.
queues, mailboxes, and semaphores. Shared data, on the other hand, is more difficult to achieve through
communication links, since it must be copied between memories by sending messages through the links.
The coherence of the data needs to be maintained in the presence of concurrent accesses, while still provid-
ing adequate performance.
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notations are easily realized in programs with the message passing, asynchronous para-
digm.

It would seem useful for a programming paradigm to employ exactly the same abstract
elements as are being used for design and modelling. Such elements might include the
qQueues of queueing networks, or the transitions of Petri nets. The use of the same elements
for different aspects of software development should improve the consistency and reduce
the translation effort between phases.

A net-oriented paradigm will now be defined as a message passing asynchronous para-
digm in which a program is structured as a network of processes. Interaction between pro-
cesses is determined by the connections in the network. These connections indicate the
flow of messages for purposes of communication and synchronization. High-level net-ori-
ented paradigms may support specific features of design or modelling notations, such as
the queues of queueing networks or transitions of Petri nets.

A benefii of the message passing asynchronous paradigm, which carries over to the net-
oriented refinement, concerns mapping of software to parallel hardware. Processes form
convenient units of distribution. Once a program has been expressed using the paradigm,
it can be allocated to parallel hardware by specifying the processor on which each process
should execute. Such an approach facilitates experimental evaluation of different map-
pings to compare performance. This should prove particularly useful in the effort to
develop iools which predict performance and select good mappings. An even more ambi-
tious tool would identify the best arrangement and interconnection of available hardware
for a particular program.

A final aspect of net-oriented paradigms which will be mentioned here concemns the
potential for manipulating the net of processes as it executes. This may be particularly
useful for embedded systems, for which it is desirable to make on-line changes to soft-
ware. One or more replacement processes may be loaded at runtime. By changing the con-
nections between processes “on-the-fly”, the replacement processes can be integrated into
an executing network of processes. Of course there may be additional concems with
respect to the coherency of such an operation, such as transferring data structures of
replaced processes.

The following section introduces general features of NetKemel and its associated environ-
ment. These features have been selected to support the concept of a net-oriented program-
ming paradigm, as set forth above.

1.4 NetKernel

NetKemel is an experimental kemel for executing concurrent software on heterogeneous
distributed systems. It provides low-level support for net-oriented programming para-
digms, including paradigms not traditionally used for computer programming, such as
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queueing networks and Petri nets. Programming environments for such paradigms may be
implemented on top of NetKemel. In particular, it is anticipated that NetKemel will be
used to explore programs compiled from an intermediate design notation based on Petri
Nets. Netkernel and its associated development environment provide the basic facilities
required for process management, interprocess communication, and configuration.

A NetKemel program is a software network of processes which is mapped to a physical
network of processors. All processes execute concurrently, with the potential to exploit
parallelism by mapping processes to different processors. Message passing is the only
form of interprocess communication directly supported by NetKemel. Other forms of
interprocess communication, such as shared data to enhance performance, are possible by
intioducing mapping constraints upon processes.

The runtime kemel and development environment for NetKemel are described. These
have been implemented on the MPAXS hardware. The design and interface of the kernel
are described. NetKernel takes the “microkernel” approach which has recently gained
momentum for operating systems software. The development environment for NetKemel
programs includes tools to facilitate mapping, loading, start-up, and controlling software
networks.

1.5 History of the MPAXS Project

The MPAXS project was conceived in 1989 approximately one year before this work
began. lis goal is to provide an experimentai parallel computer system to explore issues in
the mapping and programming of concurrent software. Computers being used for an
undergraduate lab course at the department were selected as the initial building blocks for
MPAXS. These provide an economical source of simple units to be interconnected.

Prior to this work, undergraduate projects on providing shared memory hardware and soft-
ware evaluation were underway. The shared memory project is still an ongoing undergrad-
uate project. When shared memory is ready, it can be integrated with the work described
in this thesis.

1.6 Outline

The organization of this thesis reflects the development process of NetKemel. Chapter 2
presents the requirements and initial description. Chapter 3 presents the high level design,
followed by a refinement of the design, followed by some implementation information.
The focus of this thesis is NetKemel itself, but Chapter 4 does introduce some of the
development tools associated with NetKemel. The appendices present further details on
implementation, including some example programs.

Chapter 2 presents the programming paradigm and architecture of NetKemel. A program
is formulated as a collection of processes arranged in a sofiware network. The architecture
introduces two additional key concepts for NetKemnel: physical network and mapping.
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Chapter 3 presents the design and implementation of NetKemel which we have realized
on M6800O targets interconnected by serial links. The design consists of 1) a microkernel
which supports process switching and interprocess communication, and 2) a collection of
kernel processes which provide additional services. Sections Section 3.5 and Section 3.6
g0 into some depth on the design. These might be skipped by a reader who is less inter-
ested in details.

Chapter 4 describes the tools which have been set up to facilitate development and execu-
tion of NetKemel programs.

Chapter S provides an overview of environments and paradigms for process oriented con-
current programming. Some existing parallel systems similar to NetKemel in terms of
goals or approach are described and compared to NetKemel.

Chapter 6 presents our conclusions and ideas for future research. NetKemel is intended as

an environment to support future work, especially investigation of a design notation based
on Petri Nets which is being proposed at our lab,

The appendices present some aspects of the NetKemel interface and sample programs.
These are intended to further illustrate our system and demonstrate its capabilities. In par-

ticular, the ability to flexibly map concurrent software to parallel hardware is demon-
strated.



chapter 2 INetKernel Paradigm and
Architecture

2.1 Overview

The NetKemel programming paradigm and the general target architecture are described.
The paradigm is a net-oriented, as introduced in the previous chapter. Its major feature is
that programs are expressed as a software network of asynchronous processes. Processes
have local input queues and outlets for message passing. Processes are mapped to a physi-
cal network of stations (i.e. processors which run NetKernel). Stations may be intercon-
nected by point-to-point links, such as serial channels, and shared access links, such as
Local Area Networks (LANs) and shared memory.

The NetKemel software runs on each station in the physical network. Each station’s ker-
nel manages the execution of asynchronous processes at that station. Message passing
primitives are available to all processes. The kernel provides transparent suppert for mes-
sage passing between processes at different stations.

The development tools run on workstations, providing runtime control of processes
throughout a physical network. The Host Interface Program (HIP) is the primary tool.
NetKemel is designed to facilitate runtime control by higher level software. This enables
HIP to provide an interface for loading, execution, and control of processes. It also sup-
ports establishment and breaking of connections between processes, which is performed
at runtime to arrange processes into software networks.

This chapter provides a high-level description which is applies to a wide range of hard-
ware (i.e. processors and links). NetKemel is intended to run on platforms ranging from
simple microprocessors without virtual memory, to workstations with native operating
systems. Naturally, there will be some station specific details (eg. process scheduling).
These are discussed for our implementation in the following chapter. The presentation of
this chapter is divided into two parts. The first part presents the NetKemel programming
paradigm, independent of any architectural considerations. The second part presents the
general architecture and framework upon which we support the paradigm.



2.2 Operational Requirements

The purpose of the NetKernel paradigm is to provide an environment for the realization of
higher level net-oriented programming paradigms on parallel hardware. Two major
requirements have been identified for NetKernel:

Bl interprocess communication and synchronization,
B2 flexible mapping of concurrent software to parallel hardware.

Interprocess communication and synchronization is a basic requirement for any multipro-
cessing system. General mechanisms suitable for higher level net-oriented paradigms on
parallel hardware should be provided.

Flexible mapping of concurrent software to parallel hardware requires that the allocation
of a concurrent program to physical hardware is described independently of the program
itself. It should be possible to experiment with different allocations of a concurrent pro-
gram to one o1 more physical networks without changing the program itself,

Part A: Paradigm

The NetKemel paradigm defines the structural organization of concurrent programs as a
software network and primitives for message passing between processes. It is not associ-
ated with any particular programming language. It may be implemented directly as a com-
puter language, or added to an existing language using library functions. It is possible that
processes of a software network could be written in different languages. In general, how-
ever, it is desirable for a single language and interface to be available across different sta-
tion types. This allows for a process type to be mapped to different types of stations, with
only one source program need 1 for it.

2.3 Software Network

A NetKernel program executes as a collection of asynchronous processes arranged in a
software network. The terms software network and NetKernel program are used inter-
changeably, and should not be confused with sequential programs. The description of a
software network is separated into two levels: 1) the description of individual processes,
and 2) the description of how processes are instantiated and connected together. Benefits
of this separation will be discussed in Section 2.7.

2.3.1 Process

A process is a sequential program in execution. Among the instructions a processes may
execute are system calls to NetKernel. This allows a process to access services provided
by the kernel, including message passing. Conceptually, a process may be illustrated as
shown in Figure 1. A set of input queues and a set of outlets are associated with each pro-
cess.



Input : . Outlets
Queues I
1D
Figure 1 Process

Messages from other processes are received in input queues. Messages are sent through
outlets. When a process sends a message through one of its outlets, that message will be
deposited into the input queue to which the outlet has been connected. Connections
between outlets and input queues are usually established by higher level software,
although it is possible for processes to establish their own connections. Processes may
also reply to messages which they have received, which does not involve the use of an out-
let. Processes synchronize with one another by waiting for the arrival of messages into one
or more input queues. The message system is described further in Section 2.4, “Message
System”,

More formally, a process is a triple p=(p;, pq, po) With
* p; = sequential program,
* pQ = set of local input queues,
* Po = set of local outlets where porpo=0.

A process is considered to be of a specific rype, where the type determines the sequential
program, input queues, and outlets for the process. Two processes x and y of the same type
are identical if their sequential programs are the same and they have the same number of

input queues and outlets, i.e. xs = ys, | xg = lygl, Ixd = lygl.

2.3.2 Software Network

A software network is a collection of connected processes. Outlets are connected to input
queues. Connections between processes are established through commands to NetKemel.
Presently there is no kernel support for broadcast or multicast, so an outlet may be con-
nected to at most one input queue. Multiple outlets, however, may be connected to the
same input queue. Figure 2 illustrates an example software network.

A software network is formally defined as s=(P, C).

P =set of processes where
(Vx,ye P) ((xy)—(xqNyQ=2)) no processes share input queues, and
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Figure 2 Example of a software network

(Vx,yeP) ((x£y)—=(xoNyo=D)) no processes share outlets.

The function c is introduced here in order to define C below.

* ¢: 0 — QU@ is the interconnection function of S, which maps each outlet of the
software network to an input queue or @.

O={xlxe PO, PEP } is the set of all outlets in the software network.
Q={xlxe PQ: PEP } is the set of all input queues in the software network.

The function ¢ defines the interprocess connections in a software network. For a particular
outlet o, c(0)=g means that outlet o is connected to input queue q. If ¢(0)=@, then outlet o
is not connected to any input queue (i.e. outlet o is unused).

« C={ <0,q>l0€0, c(0)=g# } = set of connections.

An outlet joined to an input queue is referred to as a connection!. The set of connections C
contains a member <o,q> for every connected outlet in the software network.

2.3.3 Provision of Services by Kernel Processes

NetKermel provides various services such as I/O, process management, outlet connection,
object code loading, and timers. These services are implemented by kernel processes
which begin executing automatically when the kernel is started. This approach has
recently been adopted for some operating systems, which consist of a small core and pro-
vide most services through processes which are implemented similarly to user processes.

NetKemel’s services are accessed by sending messages to kernel processes. This makes
the services easily accessible to user processes through message passing. The services are
also accessible from external /O devices, such as terminals, through a command line
interface to the message system.

Software networks will typically contain both user and kernel processes. As an example,
consider the hypothetical software network in Figure 3. Kemel processes are lightly

1- As used here, the term connection does fot have the same implication as in telecommunications, where it
implies that communication resources or bandwidth have been reserved between a sender and receiver.

-12-



shaded to distinguish them from user processes. Process 15 is a kernel process providing a
timer service. Process mon is a user process. The connection from mon to ts allows mon to
send messages (eg. request/disable a timer) to ts through its outlet. The kernel process
responds by sending reply messages back. Process mon accepts reply messages from s
into its input queue rep. There is no outlet from ts to mon since ts replies to messages from
mon, rather sending messages to mon through an outlet.

2.3.4 Input/Output

Processes referred to as device drivers perform direct /O with devices at a station. The
kemel processes will typically include one or more device drivers. Other processes,
including user processes, may request /O operations by sending messages to device driv-
ers. It is also possible for users to load their own device drivers.

¥} Timer Service

User Device Driver ; = Monitor
/ \
@

Terminal Device Driver ‘ > m @
Command Interpreter Prmter Device Driver

Key: Kermel Process O User Process

Figure 3 Hypothetical software network to monitor a reactor

As an example, consider the following hypothetical situation. Software is to detect events
from a reactor. Events should be logged to a printer. When certain events fail to occur
within a timeout period, this is also logged to the printer. An operator enters commands at
a terminal. These commands select which events should be monitored, and may specify
lengths for various timeout intervals. The operator may also send messages directly to the
printer, in order to add comments to the log.

A software network for this problem is shown in Figure 3. A user-supplied device driver,
udd, detects events and sends corresponding messages to Monitor. Monitor sends mes-
sages to Timer Service to manage its timers. When a timeout or an event which is being
monitored occurs, Monitor sends a log message to the Printer Device Driver. For each
command line typed at the terminal, Terminal Device Driver sends the line to Command
Interpreter. Command Interpreter processes command lines. For each valid command,

-13-



Command Interpreter sends messages to 1) Monitor for selecting events or timeout length,
or 2) Printer Device Driver fi: printing comments.

This example illustrates how user processes interact with kernel processes to make use of
kernel services and perform I/O. A user supplied device driver is also shown. This latter
feature is particularly useful for embedded systems development.

2.3.5 General Process Models

This subsection describes some general relationships between interacting processes.
These relationships will be evident among the kernel processes which are described in the
next chapter. They are also useful for user processes.

Most processes are similar in that they respond to events. There are two types of events:
the arrival of a message and the arrival of an exception. Mechanisms for handling excep-
tions are not discussed in this chapter because they are dependent on the station type. Pro-
cesses may generate events for other processes by sending messages.

The code of a process which responds to events can be structured in a simple fashion. The
process begins by initializing itself and then waits for an event. The occurrence of an event
triggers response activities by the process. It responds by performing various operations
such as updating data structures, sending and receiving messages, accessing peripheral
devices, and updating its internal state. Upon completion of the response, the process then
goes back to waiting for the next event.

Based on its response, a process is considered to be either a server or a transform process.
These correspond to the client-server and data flow models, respectively. NetKemel sup-
ports and makes use of both models. These concepts also apply to user software networks.
The reactor example (Figure 3) contains both server and transform processes.

2.3.5.1 Client-Server

Many processes provide services which are accessed using the client-server model. In this
model, a client process sends requests to a server process. Upon receiving a request, the
server performs some action and sends an answer or confirmation back to the client. A sin-
gle process may act as both server and client in different contexts. This is because a pro-
cess may both provide a service and make use of other services.

Figure 4 illustrates client-server relationships between processes. Figure 4a shows a single
client and server. The server has an input queue into which requests are accepted. A client
sends requests through an outlet connected to that input queue. When sending a request,
the client specifies an input queue of its own into which replies from the server should be
placed. The graphical notation for software networks has been extended with a hollow
arrowhead which points to the input queue selected by a client for replies to messages it
sends through an outlet. Figure 4b shows a more complex software network with a process
which behaves as both client and server. It also demonstrates how two clients, X and ¥,
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b) Both client

Y Client Server and server

Qeg—zO ®jj'0 -0

replies
O
Key: ———p Cornnection
4 Points to input queue into which reply messages are placed

Figure 4 Examples of client-server relationship between processes

may make use of the same server. These clients could be from otherwise unrelated soft-
ware networks, totally unaware of each other’s existence. In the earlier reactor example,
Timer Service is a server.

Client-server models often make use of a name service or directory. Clients retrieve a port
or address for a server from the directory before communicating with that server (eg. the
name server in Mach, [Loepere90, pp. 77-84)). Currently, no such mechanism is provided
for NetKemel, aithough such an extension is conceivable. The current strategy based on
connections is simpler for software networks with static patterns of communication. The
connections are usually established by a development tool when a software network is
loaded, rather than by the clients themselves.

2.3.5.2 Data Flow

OrO=O | O==02@—=0
00" 1
®

Key: ————p Connection
- Points to input queue into which reply messages are placed

Figure § Examples of data flow configuration of processes
a) Simple data flow b) Mixed data flow and client-server

In this model, data flows from one process to the next, being transformed by each process.
Hence, processes in this model are referred to as transform processes. Processes may also
perform input and output with the environment. This model differs from the client-server
model in that reply messages are not used.
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In NetKernel, data flowing between processes takes the form of messages. Figure § illus-
trates a data flow relationship between processes. Figure 5a shows a simple arrangement
of three processes to form a pipeline. Data flow networks are characterized by one way
streams which may split or merge. Figure 5b shows a more complex software network
with both data flow and client-server behavior. Process p transforms a stream flowing from
left to right. It also provides a service to q. As a simple example, the service might return a
count of the number of messages which have flowed through p along the left to right
stream. In the earlier reactor example of Figure 3, most of the processes are transform pro-
cesses.

2.4 Message System

Message passing has been selected as the paradigm for interprocess communicaticn (Sec-
tion 1.3.2). This section motivates and describes message passing in the NetKemel para-
digm.

2.4.1 General

The two basic requirement for the message system are configurability and transparency.
Configurability allows processes to be used as building blocks from which software net-
works are constructed. It should be possible to reuse the sequential program of a process
in two different software networks without modifying the code. Transparency requires
that there is no difference, from the perspective of two processes exchanging a message,
whether they are mapped to the same station, or to different stations connected by links
and intermediate stations. These two requirements resulted in system calls for which the
calling process only refers to objects which are local to itself (i.e. the parameters of a sys-
tem call may refer to input queues or outlets of the caller, and messages previously
received by the caller, but not to input queues or outlets of other processes).

The NetKernel paradigm defines a general model and system calls for accessing an under-
lying communication service. However, NetKernel does not fully specify the characteris-
tics of the underlying service. Ideally, it is a reliable, ordered datagram service. Real
implementations, however, will often provide fewer guarantees.

2.4.2 Primitives

Five primitives associated with the message system are introduced below. Only the basic
functionality of each primitive is presented. An implementation may provide these as con-
structs of a programming language, or as calls added to a language. Information on our
implementation is presented in the next chapter (Section 3.5.5).

EXAMINE() — ReadyQueueSet

Retum value indicates which of the caller’s input queues are ready. A queue is considered
ready if it contains at least one message.
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REPLY(OldMessage, Message)

Send a reply to a previously received message. If the sender of the previously received
message had indicated that replies were not to be accepted, then the call fails.

SEND(Outiet, Message)

Send a message through one of the caller’s outlets. If the specified outlet has been con-
nected to an input queue, then the message will be deposited into that queue. Otherwise,
the call fails.

Note on acceptance of reply messages:

SEND and REPLY are the only calls which send a message. In both cases, the sender
specifies whether replies to the message will be accepted. If replies will be accepted, then
the sender also specifies into which of its input queues any reply messages are to be
placed. (For clarity, the parameters used for this are not shown above.)

TAKE(QueueSet) — Message

Removes and returns one message from the subset of the caller’s input queues specified in
QueueSet. If none of the specified queues contain any messages, then the call fails.

WAIT(Condition) — ReadyQueueSet

Wait until a condition on the caller’s input queues is true. If true, the call returns immedi-
ately. Otherwise the caller is blocked until the condition becomes true. Return value indi-
cates which of the caller’s input queues are ready. A queue is considered ready if it
contains at least one message. Condition is a boolean expression made up of terms M,
where

Mg = Input queue q is ready, qe PQ. where p=calling process

coffee 10
cream T[T}

salad TI7)
dressing 111

Figure 6 Guest process

For example, consider the Guest process in Figure 6. Guest waits to be served either cof-
fee with cream, or salad with dressing. By performing the following wait call, Guest will
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be blocked until either queue coffee and queue cream are both ready, or queue salad and
queue dressing are both ready.

wait( (Mcoﬂ'ee"Mcream)V(Msalad’\Mdressing) )

NetKernel limits Condition to two-level boolean expressions making use of conjunction
and disjunction, but not negation. That is, Condition takes one of the following two forms:

(Ma1A ..A M) v (MyiaMpg) v ... v (My;AM,,), or
MgV ..v My v (M 1AMy v ... v (My1AM,,)

2.4.3 Messages

NetKemel does not define the structure, semantics, or typing of messages. There are two
basic requirements for memory management:

C1 Arrived messages appear in the address space of the receiving process,

C2 The memory occupied by a message can be reused when the message is no
longer needed.

These requirements may be realized at the language level by declaring messages as vari-
ables. Or they may be realized in a less structured fashion using system calls for the
dynamic allocation and freeing of memory blocks.

2.44 Process Blocking and Timeouts

A process whose execution is delayed while it waits for one or more events to occur is said
to be blocked. A blocking call is one which may cause the calling process to become
blocked. An alternative to blocking is polling. A process can simply run in a loop, check-
ing over and over again to see if an event has occurred. Polling is undesirable because it
wastes processor time. It is appropriate to consider the use of timeouts with blocking calls.
Timeouts provide a means for processes to take alternative actions when an event does not
occur within a certain interval of time.

The only NetKemel primitive which needs to block is WAIT. As described earlier, WAIT
causes the calling process to wait until some condition upon its input queues is true. The
SEND and REPLY primitives may also be blocking, depending on the underlying mes-
sage service. If the underlying service incorporates flow control, then the sender may be
blocked until the receiving process has an empty queue slot for the message being sent. If
the underlying service incorporates congestion control, then the sender may be blocked
until the network can accept the message.

Processes using these primitives may need to perform other activities with specific timing
requirements. Hence, timeout options should be provided for system calls which block
(i.e. WAIT, and possibly SEND and REPLY). This avoids blocking a process for unpre-
dictably long periods of time.
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There is a natural approach to providing timeouts for the WAIT call. It makes use of the
kernel process which provides a timer service. Consider a process M which wishes to wait
with timeout. First M establishes a timer with the required timeout period. When the time-
out occurs, the timer service will send a timeout message to an input queue of M. Process
M then includes the arrival of a message into that queue as one of the conditions for the
WAIT call. Should one of the other conditions be satisfied first, M will disable the timer
upon returning from WAIT. This is the approach used by the Monitor process in the reac-
tor example of Section 2.3.4.

If SEND or REPLY are blocking, then they may also require a timeout mechanism in real-
time applications. Extensive use of timeouts in a program, however, can make it hard to
understand. For this reason, it may be preferable to use non-blocking versions of SEND
and REPLY for real-time parts of a system.!

2.4.5 Transparency and Configurability

Processes are building blocks from which software networks are built. To facilitate the
arrangement of processes into networks, it is important that incorporating a process into a
software network does not require making any changes to the sequential program of the
process. This is especially critical for NetKernel since connections between processes are
established by the runtime system. Hence the code of a process should not contain any
direct references to other processes.

All of the message system calls satisfy this requirement. SEND specifies its destination by
referring to a local outlet of the caller. The REPLY primitive specifies its destination by
referring to a previously received message. EXAMINE, TAKE, and WAIT all refer to
local input queues of the caller. The runtime system maintains a database of connections
between input queues and outlets, which can be dynamically modified. This provides the
required configurability.

This approach also provides transparency. The runtime system allows connections to be
made between processes on the same or different stations. From the perspective of a pro-
cess, there is no distinction between the two cases. A process simply sends a message
through an outlet and the runtime system is responsible for delivering the message to the
connected process. Similarly for replies, there is no distinction between replies to mes-
sages of local and nonlocal origin.

I Our implementation will be revealed to use non-blocking versions with the assumption that the underlying
hardware and message service is capable of supporting the real-time demand placed upon it.
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Part B: Architecture
The NetKemel architecture is general in that it does not specify any particular type of

hardware or organization. Instead, it classifies the types of hardware which may be used
and defines the mapping of software networks to physical networks of hardware.

2.5 Physical Network

A specific configuration of parallel hardware is referred to as a physical network. A phys-
ical network is built from stations, links, and /O devices. Links are used to interconnect
stations. A station may also have one or more attached /O devices.

2.5.1 Stations

Processor Class  commeee——yp

Kemel Host Target
Support
Functions Functions
Netl(.cmel -NetKemel software execution | -NetKemel software execution
(Station) -Development environment
Non-NetKernel F;::ii:n": olIWare extcution Functions
i - -Foreign softw. ti
(/O Device) -Develo ¢ environment oreign are execution

Figure 7 Processor classification and functions

A station is a processor which runs NetKemel. Stations running NetKemnel provide an
environment for the execution of software networks. It is possible to incorporate proces-
sors which do not run NetKemel into a physical network, treating them as I/O devices.
The classification of processors in a physical network is illustrated in Figure 7.

Processor Class: Host vs. Target

We distinguish between two classes of processors: host and target. Host processors, typi-
cally workstations, support development tools and other utilities. The development envi-
ronment may use the host’s native operating system and programs for many services, such
as file system and editing. Target processors provide raw processing power and real-time
response. Targets can have simple hardware, lacking virtual memory or secondary storage.

Kernel Support: NetKerne! vs. Non-NetKernel

We also distinguish between processors which run NetKernel and those which do not. A
processor which runs NetKemnel is referred to as a station. It is desirable for as many pro-
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cessors as possible in a network to run NetKernel, in order to support features such as
transparent interprocess communications. However, there are reasons for not running Net-
Kemel on a processor. Such processors may be included in the physical network as /O
devices. This is considered further under “I/O Devices” in Section 2.5.3.

A host may run NetKermel on top of its native operating system. In this case, NetKemnel's
performance on the host will not be as high as a direct implementation on the raw hard-
ware. However, design and implementation of NetKernel on top of a multiprogrammed
OS, such as Unix or Mach, can be far simpler, and the advantage of a uniform program-
ming paradigm across targets and hosts is still achieved. A host may run the development
tools independently of whether or not it runs NetKemel. Hosts which run NetKernel Tnay
also run user processes which are part of a NetKernel software network.

2.5.2 Links
Link Class ——l
Point-to-Point Multiple access
RS 232 serial link Common memory
Two ended parallel link Ethernet
Token Ring
Figure 8 Link classification and examples

A link is hardware which connects two or more processors to allow direct communication
between them. It is useful to classify links as illustrated in Figure 8.

A point-to-point link connects exactly two stations. It is distinguished from multiple
access links in that there is no need for the sender to explicitly select a receiver on the link.
A multiple access link, on the other hand, connects two or more stations. The sender must
explicitly select a receiver. The receiver is selected using some sort of addressing scheme,
such as numbering all potential receivers starting from zero. Shared access links may also
have the capability to broadcast to all receivers, although we do not presently utilize this
capability.

2.5.3 VO Devices

Many different types of /O devices are possible. These include terminals, printers, sen-
sors, actuators, etc. No attempt to classify these will be made. As was noted earlier, pro-
cessors which do not run NetKernel may also be incorporated into the physical network as
/O devices.

The use of I/O devices in the physical network requires device driver processes (see Sec-
tion 2.3.4, “Input/Output™). Each type of device has an associated device driver process,
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which must run at the station to which the device is attached. A single device driver pro-
cess can handle multiple devices of the same type attached to a station. When devices are
attached to different stations, howcve, then each station must run its own device driver.

2.5.3.1 Treating Processors as 1/0O Devices

It may be infeasible to run NetKemel or impractical to implement NetKemel on certain
processors, for reasons such as the following:

D1 Effort of developing NetKemel for the processor is not Justified,
D2 Overhead of executing NetKernel on the processor is unacceptable,
D3 Other system software is more appropriate for the processor.

Such processors may be utilized in conjunction with NetKernel by treating them as /O
devices. As an example, consider a high performance image processor which acquires
data, processes the data, and transmits the transformed data to a NetKernel station.
Although NetKernel could probably be imp'cmented on such a processor, it would be an
unreasonable effort to implement a general purpose kemel for a processor which will be
used in only one specialized way. Additionally, the overhead of executing NetKernel on
the image processor would probably be unacceptable.

The use of specialized processors for performance reasons might seem contradictory
when the intent is to provide a physical network which can be scaled to meet processing
needs. However, specialized processors provide attractive solutions to specific aspects of a
problem which need to be integrated into a larger solution. NetKerel accommodates inte-
gration and provides scalability where needed.

2.5.4 Physical Network

The physical network contains three basic types of hardware which have been described:
stations, /O devices, and links. Stations are interconnected by links, while /O devices are
considered to be directly attached to stations. An example of a physical network is shown
in Figure 9.

This example is for a problem similar to the reactor example of S=ction 2.3.4, “Input/Out-
put”. Now there are three reactors to be monitored. Monitoring each reactor is a high
speed digital signal processor (DSP) attached to its own target station. The DSPs do not
run NetKernel, so they are considered to be I/O devices. Instead they run optimized signal
processing algorithms and detect events from filtered signals. Each DSP sends informa-
tion about detected events to its target station,

All three reactor target stations are intezconnected by an Ethernet link. The development
workstation is used to load and start the software network on the targets. An alternative to
loading the software would be to place it into EPROM at all of the target stations.

A physical network p is formally defined as p=(S, Lp Ly, s, D, d).
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Terminal / 7 / / Printer [_7

Reactor-1 Reactor-1
Operator Target DSP
Target
Ethemet
Link { 7
ial Li Reactor-2 Reactor-2
serial Link-A Target DSP

Development Serial Link-B [ ;

Host Workstation Reactor-3 Reactor-3
Target DSP
. . Point-to-Point
Key: Station —_——  Link
Multiple

Cj 1/0 Device Access Link

Figure 9 Hypothetical physical network

e S = set of stations.
* Lp = set of point-to-point links, Ly = set of multiple access links.
e 5s:L = P(S) where L =LpULy = set of all links,
such that s(x) returns the set of stations directly connected by x, xe L.
» D = set of /O devices.
* d: S— P(D) such that d(y) returns the set of /O devices attached to Yy, YES.

2.5.5 Variations in the Environment On Different Station Types

Since NetKernel is intended to run on stations ranging from simple embedded controllers
to workstations, naturally there will be considerable variation of the environment in which
processes execute. The NetKemel paradigm places as few restrictions as possible on
acceptable environments. The minimum facilities for the runtime environment of a station
are support for the elements of the paradigm and its primitives. These were presented ear-
lier and will be summarized in Section 2.8.
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NetKernel does not specify any scheduling or memory protection, for instance. Consider
memory protection. On a workstation with an operating system, each NetKernel process
could execute in its own address spaces. But on a simple embedded processor lacking
memory management hardware, the processes could execute in a single shared address
space. The ability to exploit specific features of particular stations (eg. scheduling provi-
sions) is provided by the concept of secondary mapping, discussed below.

2.6 Mapping

A mapping is a description of the allocation of a software network to a physical network.
It establishes which physical resources and underlying services are used to realize the
abstract elements of the software network.

A NetKemel mapping is divided into two parts: primary and secondary. The primary part
specifies fundamental allocations required by the NetKernel paradigm. The secondary part
is purposefully left undefined. It describes mapping issues which are particular to an
implementation. The related issues of mar  ng objectives and constraints will be consid-
ered briefly, although we do not yet provic. any techniques for dealing with them.

2.6.1 Primary Mapping
A primary mapping specifies the following information:
El the allocation of processes to stations (for each process in the software network,
this indicates the station on which it executes),

E2 the allocation of input queues to buffers (for each input queue in the software
network, the length of the queue is specified).

A primary mapping for a software network s=(P, C) to a physical network p=(S, Lp Ly, s,
D, d) is defined as My=(m,, m;).
o mg: P — § such that my(p) returns the station on which process p executes, peP.
* my: Q — N such that my(q) returns the queue length allocated to input queue q.9€Q
where Q= { x| xe PQ: PEP } is the set of all input queues in the software network.

2.6.2 Secondary Mapping

The secondary mapping is purposefully left undefined. Each implementation can define it
based upon the intended application area and hardware supported. The secondary map-
ping establishes implementation specific details about the mapping of a software network
to the elements of a physical network. These details will relate to the types of stations and
services available in the physical network. The secondary mapping allows a software net-
work to take advantage of features which may be unique to a particular physical network.

To elaborate, two possible areas for secondary mapping will be considered. The first is
mapping of processes to scieduling priorities and policies. Scheduling schemes may be
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vary for different types of stations in a physical network. For instance, one type of station
might support numeric priorities from 0-7. On another station type, several classes such as
batch, interactive, and high priority might be supported. For every process, the secondary
mapping would specify either a numeric priority or a class, depending upon the type of
station to which the process is mapped.

Another possible area is the mapping of connections to different qualities or priorities of
message delivery. Mapping choices would depend on the underlying message services
available to the NetKernel runtime system. Different services distinguished by factors
such as reliability, ordering, routing technique, performance, or flow control might be
available.

2.6.3 Example
Figure 10 illustrates an example mapping. The software network of Figure 3 has been

3) (W) (2

Operator
Target
()
Serial Link
sl
Reactor
Reactor rt DsP
Target
Figure 10 Example mapping

mapped to a physical network of two stations. The physical network is similar to that of
Figure 9, except that only one reactor is considered and the host workstation is not
included. This leaves only two stations, the operator target and reactor target. Each pro-
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cess has been drawn inside of the station to which it is mapped. The length of each input
queue is specified by a number at each queue. The process allocation and queue lengths
constitute the primary mapping.

Figure 10 also shows other some other allocation details, which are part of the secondary
mapping. For this hypothetical example, we assume that both stations support processes
having execution priorities from 0 to 3. The bracketed number by each process indicates
the priority at which the process runs.

2.6.4 Mapping Objectives

A software network is executed on a physical network to accomplish some task. How it is
mapped to the physical network affects its performance. Mapping processes to different
stations can improve performance through parallel execution. On the other hand, the
resulting communication overhead between stations may diminish or even outweigh the
benefits of parallel execution.

A designer has certain objectives to achieve. These goals provide a basis for comparing
different mappings. One straightforward goal is to minimize execution time. More specific
objectives are possible, such as particular throughput and response time requirements for
activities performed by the software network. Response time goals are commor for
embedded systems. When there is flexibility in terms of the hardware to be used, minimiz-
ing its cost can be an important goal.

This work does not directly address the problem of how to select a mapping. By setting up
a framework which facilitates mapping of software netwoiks to physical networks, we
hope to provide a basis for future research into that problem.

2.6.5 Const: s

The mapping u. a software network to a physical network can be subject to constraints.
Constraints reduce the number of possible mappings. Note that constraints differ from
objectives. Constraints are direct restrictions on acceptable mappings, whereas objectives
are goals to be achieved by finding a suitable mapping. Constraints on mapping are usu-
ally independent of each other, making it easier to determine whether or not they can be
satisfied and to ensure their satisfaction where possible. Finding a suitable mapping to sat-
isfy multiple objectives is much harder because each mapping decision usually affects
several objectives.

One basic constraint which NetKerel imposes is that each device driver process must be
mapped to the station to which its device is attached. So for the previous example, Termi-
nal Device Driver and Printer Device Driver must both be mapped to the station Operator
Target.

Many other constraints are possible. Three brief examples will be presented. A process
could be constrained to execute on a particular type of station. This might occur because it
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is written in a language whose compiler is only available for that station type. Two or
more processes could be constrained to execute on stations having access to a common
memory. This might occur because the processes interact through shared data structures in
a common address space. This is an example of using an interprocess communication
mechanism other that of NetKernel’s message passing, thereby introducing mapping con-
straints. As a final example, processes could be constrained not to execute on certain sta-
tions. This might occur because those stations do not have adequate resources (eg.
meniory) to execute the processes.

2.7 Software Development

Tools to facilitate the development of NetKemel programs and the associated develop-
ment cycle will be considered. Associated with the tools are a number of description for-
mats used for input and output. The development cycle involves two phases: construction
and mapping. Construction encompasses formulating a software network and supplying
the code for its processes. Mapping, as described earlier, allocates a software to a physical
network for execution. A fundamental benefit of the approach described in this chapter is
that it provides a streamlined approach for mapping concurrent programs to parallel hard-
ware. The actual program, expressed as a software network and associated code, need not
be modified in order to change the mapping.

2.7.1 Description Files

The development tools use and produce various descriptions files. These files relate to var-
ious aspects of the paradigm and architecture:

F1 Process Type Description (PTD),

F2 Software Network Description (SND),
F3 Physical Network Description (PND),
F4 Mapping Description (MD).

2.7.2 Host Interface Program (HIP)

HIP is the most important of the development tools. It allows for runtime control of pro-
cesses on a physical network. Some typical operations are loading, starting, stopping, and
connecting outlets to input queues. These commands may be executed interactively or
from scripts. Another tool, the script generator, creates script files for loading software
networks.

2.7.3 Construction

The construction of a software network is broken into two parts. The first is a high-level
description of the structure of the software network. This is referred to as the Software
Network Description (SND). It declares the processes of the software network and their
interconnection.
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The second part of constructing is coding. A Process Type Description (PTD) and sequen-
tial program must be supplied for each type of user process in the software network. These
may be reused in different NetKernel programs. The avoidance of connectivity informa-
tion in the code of programs allows such reuse.

2.7.4 Mapping

Once a software network has been constructed, it may be executed on an available physi-
cal network. A Physical Network Description (PND) should be developed which describes
the configuration of the hardware in the physical network. A mapping description (MD) is
then developed which describes how the software network is mapped to the physical net-
work.

Different MDs can be used to accomplish various mappings of a software network. Pres-
ently mappings are selected manually. Software tools to assist in selecting an appropriate
mapping may be developed in the future. A software network may also be mapped to dif-
ferent physical networks. A PND is required for each different physical configuration.
Software tools to identify the good configurations of physical hardware for a particular
software network would also be useful.

There is no need to iterate between construction and mapping in order to explore different
mappings. Some iteration, however, can be considered normal during development of
software as it is tested and refined.

2.8 Simplicity and Adequacy of the Paradigm and Architecture

In the interests of simplicity, we have tried to limit the paradigm and architecture to a
small number of basic concepts. The basic concepts of the paradigm are listed below.

¢ process

* software network

* input queue

* outlet

e connection

* message

The paradigm also defines a small number of primitives for message passing: SEND,
REPLY, EXAMINE, WAIT, and TAKE. The architecture adds the following concepts.

* physical network

e station

e I/O device

e link

* mapping
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The adequacy of the message passing primitives is considered in comparison to the para-
digms of other environments in Chapter 5. The adequacy of the paradigm and architecture
for achieving the operational requirements of Section 2.2 will be informally demonstrated
by test programs in the appendices. Finally, the ability to support a higher level net-ori-
ented programming paradigm based on a Petri Net design notation will be considered in
the context of future research in Section 6.2.1.
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chapter 3 NetKemnel: Design and
Implementation

3.1 Overview

The NetKernel paradigm and architecture presented in the previous chapter have been
implemented for Motorola 63000 based computer units. This chapter presents the design
of the kernel software, as well as some information on implementation. Prior to the
M68000 implementation, a prototype of NetKernel was developed which runs on NeXT
workstations. The design of the prototype is described briefly at the end of the chapter,
illustrating how NetKemnel may run on stations ranging in complexity from simple micro-
processor systems to workstations.

The design decisions presented in this chapter reflect particular approaches to realization
of the NetKemel paradigm. Other approaches are certainly possible. For instance, static
source routing was selected to route messages. Other techniques could have been used.

NetKermel provides a concurrent processes programming model for parallel hardware. In
particular, Netkernel provides process management and interprocess communication
across a physical network. Each station runs its own copy of Netkernel. Netkernel has
been designed and implemented using the microkernel approach. The microkerel is u
core which provides some basic facilities and services for the execution of processes. A
collection of kernel processes present at start-up provide further services. The actual ker-
nel processes present may vary from station to station due to differing processor types and
peripheral devices. Services may also be varied at runtime by loading and unloading of
processes. Stations of a particular type will usually run identical versions of NetKemel,
although this is not required.

The microkernel provides the following basic facilities and services:

G1 message passing,

G2 process scheduling,
G3 memory management,
G4 exception handling,
GS system clock activities.
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The message passing system realizes the NetKemel concept of process outlets which are
dynamically connected to input queues at runtime. A straightforward priority-based
scheme was adopted for process scheduling. Scheduling is driven by the occurrence of
exceptions and the message passing activities of processes. Memory management and
exception handling are relatively minor aspects. Memory management is limited to alloca-
tion/deallocation of physical memory blocks. A special kind of process is used to service
exceptions.

A benefit of the microkemnel design is that kernel services can be added or deleted by add-
ing or removing kernel processes. Kernel processes currently address the following areas:

H1 message routing,

H2 device servicing,

H3 process management,

H4 command line interface to the message system.

Message routing is performed using source routing through a store-and-forward network.
A serial channel device driver supports both protocol-based passing of messages over net-
work links, and a line oriented /O interface to devices such as terminals and workstations.
Process management includes creation, suspension, and profiling of processes. The com-
mand line interface allows dialogue of text messages with processes in the network. The
decomposition into processes and a description of each process is presented later in the
chapter.

In the following section, the design philosophy of this project is presented. Next, the hard-
ware is described. The following section presents the high-level design, including a sum-
mary of each kemnel process and the major functions of the microkernel. The following
two sections elaborate on the kemel processes and microkernel, respectively (these two
sections should be skipped if the reader is not interested in such details). A short, informal
treatment of correctness is then presented. Finally, some implementation details are men-
tioned.

3.2 Design Philosophy

The design and implementation of a distributed system’s kemel is a large project. To facil-
itate completion of this project within a reasonable period of time, a suitable design phi-
losophy was adopted. The philosophy is to use simple mechanisms when such
mechanisms do not compromise the operational goals laid out in the preceding chapter.

This philosophy is intended to avoid expenditure of excessive effort on non-central
aspects of NetKernel. Areas requiring enhancement may be identified upon completion of
the initial version and addressed in future work.
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3.3 The MPAXS Hardware

The MPAXS hardware is an assortment of computer systems available in the department.
The computers are interconnected using communication links to realize physical net-
works. Regular and irregular topologies are both possible. A specific configuration is
described by a Physical Network Description (PND). Departmental hardware presently
being used for MPAXS will now be presented. The level of integration currently achieved
with the NetKernel paradigm for different types of hardware will also be indicated.

3.3.1 Processors
Computer Classification
M68000 unit NetKemel Target (Station)

Sun-3 workstation Non-NetKemel Host (I/0 Device)

NeXT workstation | Prototype NetKemel Host (Station)

Table 1 MPAXS processors and their classification

Three types of computers are presently being used. These are listed in Table | along with
their classification under the scheme of Section 2.5.1, “Stations”.

CPU Card Expansion Card
M68000 M68681 Serial Port
Microprocessor DUART Serial Port

I ROM (64K) I M6840

PTM
RAM (64K)

Backplane with VME Bus

DUART = Dual Universal Asynchronous Receiver/Transmitter
PTM = Programmable Timer Module

Figure 11 Hardware of the M68000 target station

Relatively simple Motorola 68000 microprocessor systems are being used for target sta-
tions. These units are also used in a stand-alone configuration for a microprocessor lab in
the department. Each unit has a VME bus backplane holding at least two cards. A block
diagram of the system is shown in Figure 11. A total of 128K RAM and 64K ROM is
available in the basic unit. The DUART provides two serial ports, which are used to inter-
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connect units. A speed of 9600 baud is being used for the serial ports. An additional
expansion card can be added, providing an additional two serial ports and 64K RAM.
Software available as a starting point for this work includes an assembler level debugger
and a C cross compiler for programming.

Sun-3 workstations are used to run the development tools. This includes the Host Interface
Program (HIP). HIP facilitates downloading object code to targets, and provides runtime
control of processes. NetKernel has not been implemented to run on the Suns. Hence, the
Sun workstations are included in the physical network as I/O devices. Each Sun has two
serial ports for interfacing to the physical network.

A prototype of the kemel was developed which runs on NeXT workstations. NeXTs
linked together by Ethernet are supported. As well, NeXTs have two serial ports which
may be interfaced to M6800O target stations. This allows for the same physical network to
contain two different station types (i.e. NeXT and M68000), as well as Suns used as /O
devices.

a) b) [Sun; /—T—7
M68

Mé68

Mé8

N e

M68

E 1N

P
[]

T M&YM&[T;

M68
Key: [.._Js“"
T = Terminal Station | Serial Link
Sun = Sun Host Workstation
M68 = M68000 Target Station D /O Dev. Shared Memory
Link
Figure 12 Examples of physical networks constructed from MPAXS hardware
a) Using serial links only (same configuration as test case in Section
C.2).

b) Future physical network using both serial links and shared mem-

3.3.2 Physical Network

The hardware described above allows physical networks to be constructed by intercon-
necting M6800O stations with serial lines. Up to four serial ports are available per M68000
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station. Sun-3 workstations may be interfaced to M68000 stations as I/O devices. Note
that a single Sun-3 is sufficient for control of an entire physical network. An example
physical network using available hardware is shown in Figure 12a.

Work on implementing a shared memory subsystem for the M68000 stations is underway
at the time of writing. The shared memory will be used to link two to four M6800O0 sta-
tions. The NetKernel design considers both point-to-point links and shared access links.
Hence, shared memory can be readily incorporated when it becomes available. Figure 12b
shows an example of a physical network containing two clusters of stations, each cluster
having a shared memory.

3.4 High-Level Design

This section provides an overall picture of the interface and design of the kernel. The ker-
nel at a station runs concurrently with user processes. as shown in Figure 13a. An interior
view of the kernel itself is shown in Figure 13b. It consists of the microkemnel and a num-
ber of kernel processes. Kernel processes are similar to user processes. The difference is
that kernel processes are automatically loaded and started at power up, whereas user pro-
cesses are loaded and executed dynamically at runtime.

a) b)

Processes: e
u OO O Kemel Processes: O OO

EMicrokemel B

Kemel

Figure 13 High-level views of the kernel
a) External view. b) Interior view.

A summary of the kemnel’s operation follows. Next, kernel processes and associated ser-
vices are summarized. The major functions of the microkernel are then considered.
Finally, NetKernel's interface is described.

3.4.1 Summary of Operation

The CPU of a station spends most of its time executing processes. Occasionally, an excep-
tion occurs or a process performs a system call. This results in the microkemel being
entered. The microkemel performs a few short operations in response and then exits, pos-
sibly switching to a different process. The highest priority ready process always gets to
execute, while other ready processes wait in queues for their tumns.

Processes executing at a station are of two types: kernel and user. Some of the kemel pro-
cesses provide services directly accessible to user processes, whereas other kemel pro-
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cesses transparently perform support operations. Services include setting up, starting, and
control of user processes. The major function which kemel processes provide transpar-
ently is the distributed message system.

3.4.2 Message System

Design issues for the message system are routing, flow control, congestion control, and
error control. These are major areas in the study and operation of computer networks.
Consistent with the design philosophy, simple approaches have been taken.

The software of the message system consists of two layers. These correspond to the data
link and network layers of the Open Systems Interconnection (OSI) reference model
[Day83]. Note that only some of the OSI functions associated with the two layers are actu-
ally present. The data link layer handles the transmission and reception of packets over
individual physical links. A reliable, ordered packet service is provided across links. Spe-
cific error control may vary with link type. For the serial lines, backward error recovery is
used in conjunction with checksums.

The network layer handles only the routing of packets through the physical network. An
unacknowledged datagram service is provided. The size of a datagram is limited to the
packet size. The technique of source routing is used. When an outlet is connected to an
input queue, a route must be specified. All messages sent through the outlet will follow
that route. The use of a static route and first-come-first serve queueing of packets along the
route has the result that messages arrive at the destination in the order that they are sent.
No mechanisms for dealing with congestion are provided. Nor does the network layer per-
form any error control. It is strictly best-try. Two approaches are possible to avoid losing
messages due to congestion. The first approach is to map the software network in such a
way that the physical network can keep up with the demand placed on it. When this is
done, the reliability of the network layer is directly determined by that of the underlying
data link layer. The second approach is to build mechanisms for dealing with congestion
on top of NetKernel.

No transport layer is provided. So there is no end-to-end error control or flow control. The
lack of end-to-end error control is considered acceptable here since the data link layer is
reliable. This avoids duplicating error control in different layers. To avoid losing messages
due to a fast sender overrunning a slow receiver, the approaches of suitable mapping or
user level mechanisms are again appropriate.

One additiona! onsideration in the design of the message system will be mentioned. In
order to facilitaic inapping to a wide variety of hardware, it should be easy to add support
for new types of links to the message system. This has been accomplished by associating a
device driver process with each link type. Incorporating a new type of link simply requires
adding a new device driver to the kemnel.
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3.4.3 Kernel Processes

3
Network O c O
Distributed Message Layer i Router Dz:::’e:stenon
System
¥ O 0-0
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* indicates a process which provides user accessible services.
LDD = Link Device Driver, IODD=I/O Device Driver
! Serial LDD/IODD has two roles, one as a data link process (LDD) and one as a “1sic service (I0DD).

Figure 14 Kemmnel processes of the M68000 version of NetKernel

Each M68000 station has an identical suite of kernel processes. These processes are acti-
vated from ROM upon start-up. Specific processes have been selected to support the para-
digm and architecture presented in Chapter 2. These are illustrated in Figure 14. For
simplicity, only a bubble is drawn for each process. Input queues, outlets, and connections
are not shown. The criteria of [Gomaa84] were used to make the process decomposition.
These criteria include dependency on I/O, time-critical functions, functional cohesion,
temporal cohesion, and periodic execution.

The kernel processes have been divided into major groups according to function. One
group is concemed with operation of individual stations. These processes are involved in
local affairs of the station on which they run. The other group supports the distributed
message system. The functions of processes from both groups are summarized in Table 2.

Kemnel processes which provide services directly accessible to user processes have been
marked with an **’ in both Figure 14 and Table 2. A user process accesses a service by

-36-



Process Description

Distributed Message System

Connection Records connection information for process outlets, including routes for nonlocal

Database connections.

Router All incoming and outgoing packets pass through Router. If an incoming packet
has arrived at its destination station, then Router places the arrived message into
its destination input queue. Otherwise, the packet is sent to the Link Device
Driver (LDD) for its next hop.

Serial LDD/IODD | Manages the serial ports of a s:ation. Each portis in one of two modes: link mode

(LDD role) or /O mode. Ports in link mode (LDD role) are used to exchange packets with
other serially connected stations.

(Other LDDs) May be added in the future to support new link types.

Station Operation

Debugger® Provides a low-level debugging service.

Default Exception | Responds to unexpected and debugging exceptions.

Handler

Init Involved in system start-up.

Log’ Allows messages to be sent to a local and central log.

Operator Interface” | Provides a command line interface to the message system. This allows an opera-
tor or development tool to dialogue (i.e. send messages and receive replies) with
any process in the physical network.

Process Manager’ | Central process in managing station operation. Commands are sent to Process
Manager to set up, start, interconnect, and otherwise control the execution of pro-
cesses at a station.

Profiler’ Reports statistical profiling of execution of processes.

S Record Loader’ | Loads object code from a host into the memory of an M68000 target station.

Timer" Provides timer services. One-shot, periodic, and shared timers are available,

Serial LDD/IODD | Manages the serial ports of a station. Each portisin onc of two modes: link mode

(/O role) * or /O mode. Ports in 1/0 mode (IODD role) are used to input and/or output data
with serial /O devices.

LN . . . . .
indicates a process which provides user accessible services

Table 2

Summary of kernel processes

exchanging messages with the corresponding kernel process. The two groups of services
will be considered briefly. More details on services and the kernel processes which imple-
ment them are provided in Section 3.6.

Most of the station operation processes provide services. These have been divided into
two groups: management services and basic services. Management services include set-
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ting up, controlling, and monitoring the execution of processes at a station. These can be
accessed interactively by an operator or by higher level software such as development
tools. Basic services are useful to the processes running at a station, but are of little inter-
est for management of the station.The processes Init and Default Exception Handler have
been shown in this group even though they provide basic support for the kernel rather than
user accessible services.

The distributed message system processes are largely transparent in the operation of Net-
Kernel. They do not provide services which are directly accessed by user processes or the
operator. Packets are received, routed, and transmitted transparently. When a process
sends a message to a nonlocal destination, the microkernel transparently passes the mes-
sage to Router.

The Serial LDD/IODD process is unusual in that it has two roles. In one role. it is a trans-
parent component of the distributed message system. In the other role, it acts as a station
operation process which provides a service for serial /O. The use of a single process for
both roles was preferable here for low-level implementation reasons. Each DUART has
two serial ports which may be used independently. In the case where one port is being
used as a link and the other for I/0, it would have been awkward to coordinate the access
of two processes to the hardware registers of a single DUART. Otherwise, two processes
would have been used. Command messages are sent to Serial LDD/IODD to select the
mode for each serial port.

3.4.4 Microkernel

The five major responsibilities of the microkernel were listed earlier as items G 1 through
G5. The approach taken for each of these is summarized below. All system calls are ser-
viced by the microkemel. System calls support message passing, .1emory management,
some other miscellaneous functions.

Process scheduling is preemptive based on priority, but it is not round robin. The micro-
kernel uses a Process Control Block (PCB) to record information about each process. This
includes its state, priority, a Condition expression when it is blocked waiting (Section
2.4.2), and other information. A queue of ready processes is maintained for each priority.
The highest priority ready process executes until it gives up the CPU by performing a
blocking WAIT, or until it is preempted by a higher priority process becoming ready. A
higher priority process can become ready due to the arrival of a message or an interrupt for
it. Round robin scheduling of some or all priorities could be added, but this has not been
done yet.

The message passing system calls of the microkernel, together with the Router process,
constitute the network layer of NetKemel. When a message is sent, the microkernel deter-
mines whether it is being sent to a local or nonlocal process. If the destination is local,
then the message is immediately deposited into its destination input queue. If the destina-
tion is nonlocal, then the message is put into a network packet and deposited into an input

-38-



queue of the Router process. The network packet has a header specifying the destination
process and queue, as well as the route to be taken. Once a message has arrived at its final
destination, the kernel deposits the message and a reply key into the receiver’s input
queue. The reply key may be used by the receiver to send reply messages if the original
sender indicated that replies are allowed.

The M68000 target stations do not have any memory management hardware. All pro-
cesses execute in a single address space. As a result, there is no protection between pro-
cesses. A malicious or erroneous process can disrupt the kernel or other processes by
writing to memory for which it has no rights. A scheme for memory allocation/dealloca-
tion has been devised so that well behaved processes can co-exist in the same address
space. There are two levels to this scheme. At the first level, physical memory is divided
into regions which are owned by processes for code, data, and stack. This level is actually
the responsibility of the Process Manager. At the second level, the microkemel dynami-
cally allocates blocks of memory to processes making Allocate() and Free() system calls.
Blocks are limited to a fairly small size to simplify memory management. A message
arrives into the address space of a process as a new block. The block should be deallocated
by the process when it is no longer needed.

All exceptions, including interrupts, cause the microkernel to be entered. The microkernel
responds by either servicing the exception itself or informing a process which services the
exception. An example of an exception serviced by the microkernel itself is the clock
interrupt. Exceptions not serviced by the microkemel are serviced by a special type of
process, referred to as a handler process or simply handler. Handlers are subject to certain
restrictions compared to ordinary processes in order to improve the efficiency of excertia::
servicing.

The various station activities driven by the clock interrupt are part of the niviol i2i.
These could have been realized using one or more kernel processes. Inste.” 1o - zduce
overhead, routines directly in the microkernel were used. The following activiii-: - -2 per-
formed:

I1  statistical prc filing of execution of processes,

12 suspension of high priority runaway processes,
I3  updating of station time and timers of the Timer process.

3.4.5 Interface

NetKemel presents two distinct interfaces. The first of these is the system call interface of
the microkernel. The second is the message interface presented by kernel processes.

The message passing primitives described in Section 2.4.2 have been realized as system
calls. Some refinements of the Chapter 2 presentation have been made. A process also
obtains a reply key whenever it removes a message from an input queue. The reply key
may used by the receiving process to send reply messages if the original sender indicated
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that replies are to be accepted. Function prototypes for selected system calls are included
in Section B.1.

Each of the services mentioned earlier has an individually defined message interface. Each
interface specifies the format of messages exchanged with the associated kemel process.
An ASCII format has been used for all messages. This has the benefit that an operator may
access any of the services interactively through the Operator Interface process using a ter-
minal. Process management commands, for instance, can thereby be issued to any station
from a single terminal of the physical network. The development tools may also issue
commands in the same manner, to provide a higher level interface from workstations. The
specific syntax of the messages will not be discussed here, but as an example the interface
for Process Manager is included in Section B.2.

3.5 Microkernel Design

The microkemel is intended to be small and fast. Most of the kemel's complexity is con-
tained in kemnel processes, meeting the goal of small size. A top-down procedural
approach to the design of the microkernel has been manageable due to its small size. The
two main aspects of the design are its procedure hierarchy and data structures.

The kernel data structures contain information about a station’s state. This information
needs to be maintained in static variables as opposed to local variables of procedures,
because it must be persistent between entries to the microkernel. To improve the design by
reducing data coupling between modules, the number of modules which access each data
structure was kept to a minimum,

The procedures of the microkemel are grouped into a collection of modules. These are
introduced in the following subsection. A discussion of access to global data structures
follows. The responsibilities and design of each module are then considered individually.
Important global data structures are described where appropriate.

3.5.1 Module Summary

A module has been associated with each of the microkernel responsibilities listed in items
G1 through G5. The modules contain procedures, microkemel entry points, and microker-
nel exit points. The call structure of the modules is shown in Figure 15. Each module calls
procedures in other modules which are connected directly beneath it.

The figure also shows entry points into the microkernel. There are three types of entry into
the microkemel: system calls, processor exceptions, and the clock interrupt. There is only
one exit point from the microkernel, which is from the Process Scheduling Module. Hence
all of the other modules exit through this point. Upon exit, control is either returned to the
previously exezuting process, or given to a different process.
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Clock

Interrupt
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Call
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Message
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Call Processor
Exception
~a
Dynamic ~a
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Management Catcher
All of the above modules exit through the
N/ Process Scheduling module
Process
Scheduling
Microkernel
Exit
Figure 1§ Structure chart of microkernel modules showing entry/exit points

3.5.2 Kernel Data Structures

The kernel data structures provide a mechanism for the microkernel and the kernel pro-
cesses to exchange information and influence each others’ behavior. From a design per-
spective, this could have been accomplished more elegantly by using only the following
mechanisms:

J1  system call parameters for inforn:ation from kemel processes to the microkermnel,

J2 system call return values and messages for information from the microkemel to
kemel processes.

Indeed, system calls are the only mechanism permitted for exchange between user pro-
cesses and the microkerel. It would be highly undesirable for user processes to directly
access kernel data structures since this would introduce data coupling and makes the ker-
nel more vulnerable to erroneous user processes. These concerns do not apply to the same
extent for kemel processes. Data coupling within the kernel is less of a problem than data
coupling between the kernel and user processes. We have more confidence in the correct-
ness of kernel processes than user processes, so vulnerability of the kernel is also less of a
concern. Hence data coupling has been used to achieve a more efficient implementation. It
should not be used excessively and needs to be well documented.
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The following subsection summarizes the most important kernel data structures. Next, the
need for mutual exclusion and how the kernel achieves it are described.

Name Description

Dynamic Memory Map | Used to manage allocation of dynamic memory blocks.

(DMM)

Connection Block (CB) | Holds the destination information, including route, for one connection.
Each connected outlet of a process has its own CB.

Exception Control An ECB is associated with each type of M68000 exception. The ECB indi-

Block (ECB) cates a handler process and contains exception statistics.

Process Control Block
(PCB)

A PCB is associated with each process. It contains information on state,
resource usage, parameters, and statistics of the process.

Diagnostic Block (DB)

This block records diagnostic information which may be useful for post-
mortem debugging following a kemel crash

Station Control Block
(SCB)

Holds various aspects of a station’s state, including resource usage and the
process queues for scheduling.

Timer Control Block
(TCB)

A TCB is allocated for each timer in use at a station. Holds timer parame-
ters and state.

Table 3 Summary of kernel data structures

3.5.2.1 Summary of Structures

The kernel data structures hold information on the state of the kemel and the processes
being managed by the kemel. Table 3 summarizes the kemel data structures. These are
accessed by both the microkernel and kernel processes. To reduce data coupling through-
out the design, the number of microkernel modules and kernel processes accessing each
data structure has been kept to a minimum.

3.5.2.2 Mutual Exclusion

Multiprocessing systems require mutual exclusion of access to shared data. This is dis-
cussed in most operating systems texts such as [Silbersch89] and [Tanenbaum92). To
illustrate the need, consider two concurrent processes A and B which must both increment
a shared variable counter. The execution of these processes may interleave such that the
following sequence of operations occurs.

¢ A reads counter

¢ B reads counter

» A increments its version of counter
» B increments its version of counter
e A writes its new value

e B writes its new value
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Upon completion, counter will have been increased by one instead of two. The solution to
this and other similar errors is to provide a general mechanism which allows a process to
obtain exclusive access to some data while operating on it. Given such a mechanism, the
execution of processes A and B could no longer interleave in such a way as to produce an
incorrect result.

Mutual exclusion is a concern for NetKemel since the microkemel and kemel processes
concurrently access the kernel data structures. The approach taken in NetKemel is to pro-
tect these accesses in critical sections. Upon entry to a critical section, the CPU priority is
raised to its maximum level, blocking out all interrupts which could possibly result in a
violation of mutual exclusion. Upon exiting the critical section, the CPU priority is
restored 1o its previous value. [Tanenbaum92, p. 35] states that disabling interrupts is a
useful technique for kernels, but is generally dangerous for user processes.

The use of priority to realize critical sections is quite efficient in that it imposes almost no
synchronization overhead. It is also attractive from the perspective of avoiding deadlocks.
Since processes are never blocked to wait for a data structure, this mechanism cannot
cause the kernel to deadlock. The alternative 1 ‘echanism of semaphores has greater over-
head and requires care to avoid deadlocks. A disadvantage of blocking all interrupts in
comparison with the use of semaphores is that absolutely no other activities may take
place concurrently, including higher priority i~terrupts which do not conflict with the crit-
ical section. To minimize the blocking of other activities, critical sections should be kept
as short as possible.

A common source of difficulty when dealing with concurrent processes is to ensure that
all the appropriate data accesses are protected. Omitting protection of an access can lead
to timing dependent errors which are hard to detect and reproduce. To avoid such prob-
lems, a fairly sweeping approach has been adopted. All entries to the microkernel are
blanketed within a critical section. The critical section ends upon exit from the microker-
nel. A similarly comprehensive approach has been used for kernel processes. This has the
benefit of providing full coverage of accesses with little effort. However, it is overkill, pro-
ducing critical sections much longer than necessary. This conflicts with the need to keep
critical sections short in order to avoid blocking other activities. This compromise has
been accepted for the moment since it simplifies the kernel and reduces the likelihood of

programming errors.

3.3 Process Scheduling

The scheduling policy has been described in Section 3.4.4. The mechanism used to imple-
ment the policy will now be presented. First, the two state variables of a process which
affect scheduling are presented.

3.5.3.1 Process State and Control State

For ¢very process, two state variables related to scheduling are maintained in the Process
Conuol Block of the process. These are referred to as the control state and process state of
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the process. Figure 16 shows the corresponding state diagrams. The control state is influ-
enced by process control operations, such as start and suspend commands to Process Man-
ager. The process state is influenced by the process’s own behavior (eg. waiting for a
message) and the behavior of other processes (eg. arrival of a message from another pro-
cess, preemption by a higher priority process). When a process is first allocated, its control
state and process state are initially New and Ready, respectively.

Note the distinction between Waiting and Suspended. A Waiting process is blocked from
executing while it voluntarily waits for some input. A Suspended process is prevented
from executing as a result of some external or unexpected event, such as a debugging
breakpoint or zero divide exception. Since the two state variables are largely independent,

initial control state
state @ D /4 ;/E Q‘

la
Enabled Suspended @

mmal
state process state

A. Start command for newly allocated process is issued to Process Manager

B. Process is suspended due to an exception or by a command to the Process Manager or Debugger.
C. Process is continued by a command to Process Manager or Debugger.

D. Process is selected by the microkemel to execute. Occurs only when control state=Enabled.

E. Process is suspended or preempted.

F. Process becomes blocked to wait for input, i.e. message(s) or interrupt.

G. Input for which process was waiting arrives.

Figure 16 State diagrams for process state and control state

it is possible for a process to be both Waiting and Suspended at the same time. The only
coupling between process state and control state is expressed in state change D of Figure
16.

3.53.2 Scheduling Mechanism

Scheduling is achieved by keeping processes which are both Enabled and Ready in pro-
cess queues. There is one such queue for each priority level. The microkemel selects the
process to run by taking the front process of the highest priority process queue which is
nonempty. If a process is preempted by a higher priority process, then the preempted pro-
cess is returned to the front of its queue.

The microkernel checks to see if the Running process should be preempted every time that
there is an exit fr - n the microkernel. This is implemented in the Process Scheduling mod-
ule, which contains the sole exnt point of the microkernel. It will select a new process 10
become the Running process if any of the following events have occurred:
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K1 A process queue of higher priority than the Running process has become non-
empty, :

K2 The Running process has become blocked waiting for input,

K3 The Running process has been suspended,

K4 Anexception has occurred.

These events always result in an entry to the microkernel, which guarantees the opportu-
nity to select a new process for execution upon exit. To illustrate, consider item K1. One
situation in which this event occurs is when the Running process does a Send() to a local
process of priority higher than itself. If the receiving process is unblocked due to the arriv-
ing message, then it will be placed at the end of its process queue by the Send() system
call. In this case, the microkernel will detect K1 upon exit from Send().

3.5.4 Dynamic Memory Management

The lack of memory management hardware and the basic approach to memory manage-
ment were described in Section 3.4.4, “Microkernel”. The Memory Management module
of the microkemel provides system calls for allocation and freeing of small blocks of
dynamically allocated memory. Consistent with the design philosophy, simplicity has
been favored. The penalty here has been performance, utilization, and vulnerability to
fragmentation, although the scheme is not excessively poor in any of these areas. The ker-
nel also supports reservation of larger regions of memory for process code and data, which
is handled by the Process Manager (Section 3.6.3.1).

Dynamic blocks are allocated from a single contiguous region of physical memory. This
region is finely divided into lines. Currently, the line size is 32 bytes. The present maxi-
mum block size is 256 bytes which requires eight contiguous lines. This maximum also
limits the length of messages, since each message must fit into a block. A kernel data
structure, Dynamic Memory Map, holds a table indicating the usage of lines. Each entry
indicates either 1) the process to which the line is allocated, or 2) that the block is cur-
rently unused. The scheme to select a contiguous group of lines to satisfy a request has
been designed to reduce search time and fragmentation, but could still be improved. The
small maximum block size also helps avoid fragmentation problems since it eliminates the
need to find large contiguous sections of free memory.

The Memory Management module also provides procedures for use only by the kemnel.
The Transfer() procedure, for instance, is used to transfer ownership of a block between
two processes at a station. This avoids copying when a message is passed between pro-
cesses at the same station if the sender has indicated that it no longer needs the message
block (indicated by the freeFlag parameter of the Send() system call). Another internal

! The Init process executes an empty loop at the lowest possible priority, so there is always at least one pro-
cess available 10 execute.
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procedure, FreeAll(), is by called Process Manager to free all the memory blocks owned
by a process which has been killed.

The microkerel enforces a limit on the number of lines which a process may own. Limits
may be specified individually for processes. A process which tries to exceed its limit is
suspended. The dynamic memory usage of individual processes can be monitored using
Profiler (Section 3.6.3.6).

3.5.5 Message System

As introduced earlier, the microkernel contributes to the network layer of the message sys-
tem. The other component of the network layer is the Router process. The data link layer
is realized by device driver processes. Messages passed between processes at the same sta-
tion are handled entirely by the microkernel which avoids the overhead of going through
intermediate processes. Passing of messages between processes at different stations
involves the microkernel, Router, and data link processes at all stations along the route.

Here we focus on the contribution of the microkernel (kernel processes will be discussed
later). The Message System module realizes the system calls related to messaging. Design
aspects of four of the main calls are presented below. Of these calls, only Wait() is block-
ing. Since no flow or congestion control is provided, both Send() and Reply() are non-
blocking. Function prototypes for selected system calls are provided in Section B.1,
including the four calls below (for which the implementation names are MPO_send(),
MPO_waitExpression(), MPO_take(), and MPO_reply(), respectively). Call parameters are
not shown below, but are included in the prototypes of Section B.1.

3.55.1 Send(

The microkemel determines whether the destination process is local or nonlocal. This is
determined by examining the Connection Block (CB) associated with the outlet through
which the message is being sent. If the destination process is nonlocal then the route to the
destination station is read from the CB. In both cases, a header is constructed which
includes the following information:

the route to the destination process, which is null if the destination is local,
the destination process id and queue id,

the sender’s process id,

the length of the message,

the id of the sender’s input queue into which reply messages are to be sent (a
special value indicates that the sender does not wish to accept replies).

"EEEE

If the destination process was determined to be local, then the microkernel immediately
deposits the message and header into the destination input queue. If the destination pro-
cess is in the Waiting state, then the microkernel checks to see if it should be unblocked
with the arrival of the message. If so, the destination process is added to the end of the
appropriate process queue. Figure 17 shows the data path for a local message. It is quite
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Figure 17 Data path and units exchanged for a local message

simple, involving no intermediate processes. Hence, local message passing involves rela-
tively little overhead.

If the destination process was nonlocal, then the microkernel passes the message and
header to the Router process. These will propagate through the physical network. Upon
reaching the destination station, both are placed irto the destination input queue. The data
path for nonlocal messages will be illustrated later when kernel processes are discussed
(Figure 21).

The reply key which the microkemel passes to the receiving process is actually just a
pointer to the header for the message. The receiving process should never examine the
header, but may use the key to send reply messages.

3.55.2 Wiit)

Wait() is the only system call which may block the calling process. The input queues of
the caller are tested to see if the Condition parameter is true. If true, then the call returns
immediately without blocking.

If Condition is false, then Condition is recorded in the PCB of the caller. The caller is
blocked by changing its state to Waiting. As for all other system calls, exit is through the
Process Switching module. Since the caller has been blocked, a new process will be
selected to run.

3.553 Take()

Take() removes a message and header pair from an input queue of the calling process. The
caller is not actually entitled to examine the header, but rather considers it is as a reply key.
It may be used by the caller to send replies to the message which was just removed.

3.5.54 Reply(

Reply is identical to Send(), except that it examines the reply key instead of the Connec-
tion Database. The reply key points to the header of the message to which a reply is being
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made. From this header, it can be determined whether the destination process is local or
nonlocal. If the destination station is nonlocal, then the header also contains the route to
the destination. Given this information, the call proceeds identically to Send().

The route to the destination was constructed in the header as it propagated through the
physical network. This will be described further in Se ion 3.6.4.3.

3.5.6 Exception Catcher

The M68000 produces an exception in response to exceptional internal or external condi-
tions.

The exception may be intemally generated by an instruction or by an unusual con-
dition arising during the execution of an instruction. Externally, exception process-
ing can be forced by an interrupt, by a bus error, or by a reset. [Motorola89, p. 6-1]

The kernel provides a response for all possible exceptions. The Exception Catcher module
is invoked upon the occurrence of any of the M68000 exceptions apart from a few special
ones. Exception Catcher responds by notifying a handler process of the exception. Han-
dler processes are distinguished from ordinary processes in that the microkernel informs
them of exceptions. They are implemented differently and subject to certain restrictions
compared to ordinary processes. The default handler for most exceptions is Default
Exception Handler. Exceptions can be individually associated with other handlers through
setup commands to Process Manager. For more information on the default response to
various exceptions, see Section 3.6.3.2, “Default Exception Handler”.

The special exceptions which do not go throu ... Exception Catcher are the system call
trap, event log trap, clock interrupt, and reset. Eac:: of these has its cwn individual entry
point into the microkernel.

The microkernel should incur as little overhead as possible in exception servicing. This is
particularly important with respect to interrupts, as discussed in the nex! subsection. The
motivation for handling interrupts through the microkemnel is then presented. Next, the
differences between handler processes and ordinary processes are presented. The final
subsection summarizes the classification of processes under NetKernel on the M68000.

3.5.6.1 Device Drivers

Devices attached to the VME backplane of a station are serviced using interrupts. As with
other exceptions, interrupts are serviced by handler processes. A handler which services
interrupts is referred to as a device driver. Handlers are allowed to perform interprocess
communication using the message system similarly to ordinary processes. This makes the
services of device drivers readily accessible to other processes through message passing.

The microkemnel adds overhead to the processing of interrupts. This results from code in
the microkemmel that is executed for every interrupt. This microkemel code is executed in
addition to the device driver code which actually services the interrupt. It is important that
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exceptions can be serviced quickly since interrupts can occur at high rates. Too much
overhead will unacceptably limit the maximum rate. Another factor is that the servicing of
an interrupt is often simple, such as reading a character and storing it in a buffer. Too
much overhead results in a poor ratio of (device driver service time) / (microkernel over-
head time).

3.5.6.2 Interrupt Servicing Through the Microkernel

The fastest and simplest method to service interrupts is to simply avoid going through the
microkernel. However, certain aspects of this design require going through the microker-
nel:

M1 use of message system by service code,

M2 statistical profiling of exception handlers,

M3 recording exception entries and exits into the event log (to be introduced in Sec-
tion 3.5.8.1),

M4 counting the number of exceptions.

The primary advantage of going through the microkernel is the use of the message system
(item M1). The handler can then communicate with other processes by message passing.
So from the perspective of other processes, the handler appears to be simply another pro-
cess. Items M2 through M4 are less fundamental but useful elements of the design.

If the simple approach of avoiding the microkernel were taken, then an interrupt’s vector
would point directly to the code which services it. Upon completion, the service code
would return to the context which was executing at the time of the interrupt. The disadvan-
tage of this approach for NetKernel is that the service code would be unable to send mes-
sages. To support message sending, the service code should exit shrough the microkemel
so that the context can be switched if necessary. A switch will be necessary if the service
code sent a message which unblocked a process of higher priority than the interrupted pro-
cess. The MCX-16 uniprocessor kemel for embedded systems, for instance, provides a
“common Interrupt Service Exit Function™ [Barrett92. p. 3.6] to determine if a context
switch is required as a result of an interrupt.

In this design, we go one step further in that all exceptions both enter and exit through the
microkernel. The microkemnel perfcrms operations associated with items M1 through M4
before and after the service: code for an exception is invoked. Statistical profiling is sup-
ported by updating a kemci va:iable containing the pid of the currently executing process
before service code is invoied {his variable is read by the Clock module upon clock inter-
rupts). Calls may be made to record the start and end of exception processing in the event
log. The total number of occusrences for each exception is updated in its ECB.

The specific mechanism used to realize service code, the handler process, is discussed
next.
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3.5.6.3 Handler Processes

Handler processes have been introduced to efficiently support M68000 exception process-
ing within the NetKemnel paradigm. Although the previous two subsections have focused
on interrupts, recall that handlers also respond to other exceptions such as bus error or
divide by zero. Two specific overheads have been avoided. First, no context is saved or
restored for a handler between exceptions. Second, there are no system calls required on a
per exception basis.

Handlers are M68000 specific. Other station types in the physical network need not sup-
port them. Indeed, other station types may provide different forms of support for integrat-
ing their exception servicing into the NetKernel paradigm. Exception handling is
generally platform specific, so this does not introduce any new constraints on the mapping
of processes.

A handler is not implemented in the same fashion as other processes. An ordinary process
is implemented by a sequential program which may intermittently block waiting for input.
A handler is implemented by an initialization procedure and a service procedure. Neither
of these procedures are allowed to perform any blocking calls. For purposes of runtime
control and from the perspective of other processes, however, a handler is treated identi-
cally to other processes. The same commands to Process Manager are used to start, kill,
etc. Other processes may send messages through their outlets to handlers and receive
replies back. Handlers also have outlets through which they send messages. Hence, we
will still refer to handlers as “processes”.

Exceptions are associated with a handler using setup coii: -ads to Process Manager.
When a handler is started, its initialization procedure is invoked. Following initialization,
its service procedure will be called by the microkernel each time an exception associated
with the handler occurs. No context (i.e. CPU registers or stack) is restored or saved for
the handler between calls to its service procedure. This reduces overhead and improves
the response time to service an exception. Handlers may preserve state information
between invocations using static variables for flags, counters, buffers and so on. Handlers
run in privileged mode and share the same stack as the microkernel. Therefore, an errone-
ous handler is more liable to bring down the kemel (by not properly cleaning up the stack,
for example). This makes handlers harder to develop and debug. A good design philoso-
phy is to minimize the functionality in handlers by using additional ordinary processes
where acceptable. Ordinary processes have the advantages of being easier to debug and
develop since they are not subject to the restrictions of handlers.

There are no system calls that must be made by the service procedure on a per interrupt
basis. Requiring a system call such as Wait() for every exception would have introduced
substantial overhead. When the service procedure is finished, it simply executes a retumn
instruction. Note that the service procedure is allowed to perform system calls to send
messages, allocate blocks, etc. But the service procedure of a device driver with high
interrupt rate will typically make such calls on only a small fraction of its invocations.
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Handlers are not allowed to perform calls which block. Blocking calls require context to
be saved for a process while it is blocked, which is being specifically avoided for handlers.
Forbidding blocking calls also avoids the problem of what should be done if a device
driver is blocked waiting for something else when its interrupt occurs. The restriction on
blocking calls required a new mechanism (other than Wait()) to inform handlers of arrived
messages. Essentially, a handler can specify that its service procedure should be invoked
upon the arrival of messages into selected input queues. This is in addition to invocation
upon associated exceptions. Two system calls, Enable() and Disable() are provided for this
purpose (prototypes in Section B.1). This mechanism is not as convenient or powerful as
the blocking Wait(), but has been adopted to facilitate simple and efficient handlers.

3.5.6.4 Process Classification

Kemel User
Ordinary Any processing other than Any processing other than
exception servicing. exception servicing.
Handler Exception servicing only. Exception servicing only.
(M68000 only) )
Figure 18 Process classification and functions

The types of processes are summarized in Figure 18. To review, kemel processes are
started automatically at start-up as part of NetKemel’s operation. User processes may be
loaded and started dynamically at runtime. Most processes are ordinary processes. Han-
dlers are a special type of process which are used on M68000 stations to service excep-
tions. Handlers have a special structure consisting of initialization and service routines,
and are restricted from performing the Wait() call since it can block.

3.5.7 Clock

The Ciock module is driven by clock interrupts to perform a number of periodic activities.
These were presented as items I1 through I3. The clock interrupt repeats at a fixed inter-
val. The activities of the clock module are performed at various multiples of this interval.

The intervals currently used are shown in Table 4. These may change with further experi-
ence and study. The various activities of Clock are discussed below.

3.5.7.1 Statistical Profiling

Statistical profiling is performed by periodically recording which process is executing.
The purpose of this activity is to determine the approximate CPU utilization of the pro-
cesses at a station. The clock module maintains two tables. The first indicates how many
times each process has been recorded in the current profiling interval. The second table
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Name Period (ms) | Rate (1/5)
Cocklmemp |3 00
Statistical Profiling 5 200
Runaway Process Suspension S 200
Updating Station Time and Timers | SO 20
Table 4 Periods of system clock activities

indicates how many times each process was recorded in the previous profiling interval. A
profiling interval of 200 clock interrupts, which equals one second, is being used pres-
ently. A lifetime total for each process is also recorded in its PCB. Profiling information
can be reported using the services offered by Profiler and Debugger.

3.5.7.2 Runaway Process Suspension

User processes may be placed at priority higher than kernel processes in order to ensure '
good response time. High priority user processes should not perform excessively lengthy
operations since kernel processes are prevented from running during such operations. In
the worst case, a high priority user process can erroneously enter an infinite loop. When
this happens, the process is referred to as a runaway process. A runaway process prevents
any reactive control by other processes, since they never obtain the CPU. Even the opera-
tor cannot send commands to the station because the link device drivers do not get any
CPU time. Hence, a mechanism to suspend runaway processes has been included in the
clock module. Whenever the priority of the CPU does not fall below a predefined level for
a predefined length of time, the next user process interrupted by a clock interrupt will be
suspended. This mechanism is effective because the priority of the clock interrupt is high
enough to interrupt all processes .

3.5.7.3 Updating Station Time and Timers

The time since start-up is maintained by the Clock module. The Clock module also assists
the Timer process with the provision of timer services. Clock decrements countdown vari-
ables in Timer Control Block data structures which Timer sets up. Whenever one of the
countdown variables reaches zero, Clock sends a message to Timer. This approach avoids
the overhead of having to perform many context switches to Timer in order to simply dec-
rement timers.

As Table 4 indicates, time is updated less frequently than other clock activities. This was
done to reduce the likelihood of a critical section blocking the clock interrupt for so long

I The clock interrupt does not interrupt a process in a critical section. Hence a process which goes runaway
within a critical section can hang up its station. Fortunately, critical sections are not ordinarily found in user
processes.
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that the station time falls behind. Updating of timers is a fairly lengthy operation, so per-
forming it less frequently also reduces microkernel overhead.

3.5.8 Miscellaneous
This scstion describes minor aspects of the microkernel design which did not fit into any
of the precedifig subsections.

3.5.8.1 Event Logging

The microkernel supports recording event occurrences along with a timestamp into an
event log. This can be used to provide a trace of events to assist in debugging. It can also
be used to assess ¢nftware performance through timing measurements. The kernel cur-
rently supports logging a number of standard event types including exception entries and
exits, system call entries and exits, and context switches. The logging of each event type
can be turned on and off individually. The user can also define additional event types by
introducing trap instructions, referred to as event log traps, into user code.

Each log entry includes a timestamp which is read from a free-running counter of a
peripheral chip (i.e. the M6840 Programmable Timer Module). The recording of each
event into the log introduces an overhead of approximately 100 microseconds. This <. 2r-
head changes the timing of processes, making the event log inadequate for studying errors
which are sensitive to exact timing. Nonetheless, the event log can be useful for detecting
errors not related or less sensitive to timing,

An example of an event log report produced by one of the development tools is included
in Appendix E.

3.6 Kemnel Processes

Kemel processes perform two types of activities: transparent activities and user accessitle
services. Examples of each type are packet switching and timer services, respectively. The
individual kernel processes along with their functions a..d services were introduced in
Section 3.4. “High-Level Design”. In particular, Figure 14 showed the organization of the
kemnel processes into Network Layer, Data Link Layer, Management Services, and Station
Services. This section describes the interactions between kemel processes and their indi-
vidual designs.

First, general aspects on the design of the kemnel processes are presented. Next, the kernel
processes are presented in two groups, corresponding to the major division of Figure 14.
One group performs individual station activities and the other realizes the distributed mes-
sage system.
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3.6.1 Interaction Between Kernel Processes

The standard mechanism for exchanging information between processes is message pass-
ing. This is the only mechanism which NetKernel directly supports for user processes. In
addition to message passing, kemel processes exchange information through shared
access to kernel data structures. This improves the performance of the kernel by avoiding
the overhead of message passing.

The kernel data structures were introduced in Section 3.5.2, “Kernel Data Structures”.
Mutual exclusion is required between kernel processes and also between kernel processes
and the microkernel. Critical sections are used to provide mutual exclusion. The sweeping
approach of placing large amounts of kernel code in critical sections has been adopted. As
discussed in Section 3.5.2.2, this approach is taken for reasons of simplicity and coverage,
bui does compromise the response time for high priority processes.

3.6.2 Process Decomposition

This subsection describes the decomposition of the kemel into individual processes. A
useful result of process decomposition is that response time to various events can be influ-
enced by the arrangement of process priorities. The relative priorities of the kernel pro-
cesses will also be presented.

3.6.2.1 Considerations

Each of the processes in the station operation group (Figure 14) is largely independent of
the others in terms of the service or support it provides. The activities of this group were
decomposed into separate processes based on the following criteria of [Gomaa84]:

« response time criticalness,
« periodic execution,

» dependency on /O,

« functional cohesion.

Better respon:e time is achieved for time critical activities by using high priority pro-
cesses. Activitics driven by the clock interrupt or /O are also placed into separate pro-
cesses so that 1aterrupt servicing may proceed concurrently with other activities. Many of
the services of the station operation group do not fall under any of the first three criteria.
They could have all been realized using a single process. Nonetheless, they have been sep-
arated into a small number of distinct processes which provide relatively independent ser-
vices. Separate processes are advantageous since a software error in a service can result in
suspension of the offensive process. The station may then be able to continue operating
with other services unaffected. This is particularly helpful during kernel development, and
also improves the reliability of the station software in general. Each process has sufficient
functional cohesion that there is negligible overhead introduced by communication
between service processes.
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For decomposition of the distributed messages system, the main consideration was depen-
dency on I/O. A separate process is used to service each link type. At present, only serial
links are used, but different types of link may be added in the future.

3.6.2.2 Processes Priorities

Priority has been used to influence response time of kernel processes. If a process of
higher priority than the currently executing process becomes ready, then it will preempt
the executing process. The higher priority processes at a station should only perform a
small amount of processing each time they become ready. This avoids degrading the
response time of other high priority processes, which could prevent them from correctly
carrying out their functions.

Range’ . Processes
| a Exception Handler
b Timer
Console Log
c Serial LDD/IODD
d Router
e Process Manager
Profiler
S Record Loader
Operator Interface
Connection Database
Debugger
f Init
" In order of highest to lowest priority,
with range a being the highest.
Table § Relative priorities of kenel processes

Table 5 shows the relative priorities of the kernel processes. This arrangement may be
adjusted as more experience with NetKemel is gained. User processes may use the same
priority ranges as kernel processes except for the highest, range a. Additional priority lev-
els between the ranges of Table 5 are also available for user processes.

Exception Handler is at the highest priority so that it can service exceptions generated by
any other process, particularly error exceptions. Group b is for critical kernel processes. It
is particularly undesirable to delay the processing of messages by Timer. Any such delay
in processing of a timer request is added to the interval which Timer measures, reducing
the accuracy of the Timer service. Console Log is also placed at high priority to avoid
delaying of log messages, which are used to report critical events. So although user pro-
cesses may be placed at priority higher than range b, this should be limited i0 device driv-
ers requiring very fast response times.
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Ranges ¢ and d are used for the processes of the distributed message system which
actively participate in the propagation of messages throughout the physical network.
Serial LDD/IOD has been placed at the higher level since it also functions as an /O device
driver. Some /O devices may not support flow control so a fast response time is desirable
to avoid the loss of characters. The placement of user processes with respect to these pri-
orities depends on the application. User processes at priorities immediately above ¢ or d
have the potential to reduce the performance of the distributed message system. This can
be an appropriate design decision since local activities often require a faster response than
distributed activities. The performance of local messaging is unaffecte since it is handled
entirely by the microkernel.

Range e is used for non real-time kemel processes. These processes prer ide management
services which should not interfere with the real-time operation of user processes. Hence,
the priority of real-time user processes should be greater than e. The Init process runs at
the very lowest priority. It executes an empty loop whenever there is no other ready pro-
cess at a station.

3.6.3 Station Operation

Each of the processes in the Station Operation group shall be described. Treatment of the
simpler processes will be quite brief. The client-server and data flow process mcdels were
presented in Section 2.3.5. All of the processes in this group except for Init and Default
Exception Handler act as servers, accepting requests for a service and returning reply mes-
sages. Serial LDD/IODD also acts as both a server and a transform process. In the latter
role, it exchanges data between processes and the serial port. Default Exception Handler
and Init have supervisory roles in the operation of the kemel.

The processes of this group are fairly independent of each other. Although the Manage-
ment Services make use of Basic Services, the latter were designed to provide generally
useful services rather than to cater to the needs of any particular Management Service.
Process Manager, Default Exception Handler, and Debugger are all related in that they
directly control the processes of a station. All three of these processes access the PCBs of
processes, as well as other kernel data structures related to their specific roles. These three
processes shall be presented first, followed by the remaining Management Service pro-
cesses and then the remaining Basic Service processes.

3.63.1 Process Manager

The Process Manager provides services for process management. These include com-
mands for setting up, starting, suspending, resuming, and killing processes. Information
such as a list of processes or the status of an individual process can also be requested from
Process Manager. As an example of the message syntax for a kernel process, the com-
mand and reply formats for Process M::2.azer have been included in Appendix B. The
operations which Process Manager performs in response to several of its more important
commands will now be considered.
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The Allocate command to Process Manager creates a new process at a station. An identity
is established for the process and some resources are reserved for it. The identity consists
of a process id number, referred to as a pid. Process Manager allocates and initializes a
PCB for the process. The microkemel and other kernel processes will access the PCB at
later times for purposes such as scheduling and recording statistics, but only Process Man-
ager creates and destroys PCBs. The control state of the new process in its PCB is initial-
ized to New (Section 3.5.3.1), so the process is not yet eligible to be scheduled. This
permits other setup activities to be performed prior to starting the process.

The context (i.e. stack pointer and other registers) of a nonexecuting process is stored in
its PCB. Commands to Process Manager are used to set up the context of a process prior
to starting it. Memory regions are also reserved for a process prior to loading it. All pro-
cesses execute in a common address space. Process manager allows up to five non-contig-
uous regions to be reserved in this space for each process. Process Manager does not
provide any allocation scheme for regions. That is considered the responsibility of a
higher level entity such as a development tool which manages processes from a worksta-
tion (i.e. HIP). Requests to reserve a region for a process include the start address, end
address, and a usage tag: private or sharable. The latter facilitates code and data sharing
between processes. Requests either succeed or fail depending on whether the request con-
flicts with previously reserved regions. Regions are intended to satisfy long term require-
ments of a process for large sections of memory, such as code, data and stack. Smaller
requirements may be satisfied using the system calls for dynamic memory allocation.

The outlets of a process are typically connected to input queues prior to starting the pro-
cess. It is also possible for a process to establish connections on its own and for connec-
tions to be changed while a process is executing. In all cases, an outlet is connected to an
input queue by sending a Connect command to Process Manager. Process Manager makes
use of the services offered by Connection Database which maintains Connection Blocks
(CB) for all connected outlets.

Upon receiving a Start command for a process in the New state, Process Manager changes
its states to Enabl~d and Ready and places it at the end of the process queue for its priority.
Process Manager also accesses the process queues to service the Suspend, Continue, and
Kill commands. The Kill command results in freeing of all kernel resources which were
allocated to the process being killed, including its PCB, dynamic memory blocks, and tim-
ers.

The Process Manager also accepts commands for associating exceptions with handles pro-
cesses. It directly accesses the ECBs to record the pid associated with an exception.

To summarize, the Process Manager performs various operations associated with process
management. It allocates, initializes, and deallocates PCRs as processes are created and
killed. It changes the state of processes and removes/adds them to process queues as they
are started, suspended, continued, and killed. Pro« . - . *nager dialogues with Connection
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Database to establish CBs for the connection of outlets. Process Manager also accesses
ECBs to associate handlers with exceptions. Some additional minor functions are pro-
vided which have not beer: mentioned.

3.6.3.2 Default Exception Handler

Default Exception Handler (DEH) is the default handler for most of the M68000 excep-
tions. Special exceptions are listed in Section 3.5.6, “Exception Catcher”. Kernel initial-
ization and user activities may select different handlers for some exceptions suck as
device interrupts, but typically DEH remains the handler for many exceptions. When acti-
vated, DEH takes response actions based on the particular exception and circumstances.

DEH interacts with the Debugger process. When the execution of a some process pro-
duces an exception handled by DEH, DEH responds by suspending the process and send-
ing a message to Debugger. This enables the Debugger to provide tracing, breakpoints,
and generation of status messages for unexpected exceptions such as a bus error or a
divide by zero.

There are several unrecoverable errors which cause Default Exception Handler to shut
down its station. Upon shutdown, the execution of processes is abandoned until a reset is
performed. Diagnostic information such as register contents at the time of the error is
recorded into the Diagnostic Block (DB). A low-level monitor is then activated which
supports the dumping of memory contents for postmortem analysis. Unrecoverable errors
include unexpected exceptions such as bus error during the execution of the microkemel
or a handler process (bus error during the execution of a user process simply causes that
process to be suspended). The occurrence of an unexpected interrupt is also an unrecover-
able error.

3.63.3 Debugger

Debugger provides facilities for low-level debugging of processes. Debugging at the level
of machine code is supported. Additionally, various NetKemel variables and statistics
concerning a process may be examined. Debugger provides commands for tracing, break-
points, examining/modifying registers and memory, and suspending/resuming processes.
Breakpoints and tracing involve interaction with Default Exception Handler (DEH), as
described earlier. Most of the debugging functionality is contained in Debugger, with
DEH simply notifying Debugger of exceptions. The functionality contained in the handler
is minimized to simplify development as recommended in Section 3.5.6.3.

Debugger has read access to most of the kernel data structures in order to allow display of
various kemel variables. Debugger has read/write access to PCBs to allow examining and
modifying of process context and state. Some of the process control commands of Debug-
ger that overlap with those of Process Manager are implemented by sending messages to
Process Manager.
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3.6.3.4 Serial LDD/IODD (IODD role)

Serial LDD/IODD manages the serial ports of a station. More specifically, it controls the
DUART peripheral chips associated with the serial ports. The DUARTS have a memory
mapped register interface which supports asynchronous character-oricnted serial 1/O.
Since it is a device driver, Serial LDD/IODD is implemented as a handler process.

Serial LDD/IODD provides two modes of operation for each port of a station: link mode
and /O mode. The modes of different serial ports are independent and may be changed
dynamically at runtime. For instance, it is possible for some ports to be in link mode while
others are in /O mode. The two modes correspond to the Link Device Driver (LDD) and
/O Device Driver (IODD) roles of Serial LDD/IODD, respectively. The justification for
supporting the two roles with a single process was presented in Section 3.4.3. This subsec-
tion describes how the mode of a port is switched and the IODD role.

At start-up all serial ports default to link mode. A port may be changed from link mode to
/O mode using either of two methods. The first is to send a control message to Serial
LDD/IODD. The second method allows the I/O device itself to initiate /O mode on its
port. This allows an operator to switch a port to /O mode from a terminal attached to the
port. The operator waits for a timeout period to elapse, and then types a special character
at the terminal. The special character is necessarily different from the first character of a
link layer packet so that Serial LDD/IODD can recognize it as a request to switch from
link mode to /O mode. The same two methods, control message or special character, are
available to switch a port back to link mode.

station A

&,

e Cj Contrl Paoe

[ s

Key: Serial Port lndiFm devices controlled by a device d!iver.prooss
i (serial ports controlled by the process ser in this figure).

Figure 19 Example of Serial LDD/IODD managing two I/O devices.
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Serial LDD/IODD supports message-oriented VO with devices attached to ports which are
in /O mode. Associated with each serial port is an outlet and an input queue of Serial
LDD/IODD. This is illustrated in the simplified example of Figure 19. The Serial LDD/
IODD process (ser) at station A is managing two serial ports (a and b), both of which are
connected to I/O devices. Process al sends output to Control Panel by sending messages
to queue qa of ser. Process al also receives input from Control Panel as messages sent
from ser through outlet oa. Three processes interact with Terminal. Processes b/ and b2
send output to the terminal. Process b3 receives input from the Terminal. The messages
from b/ and b2 to the terminal will be interleaved—they are outputted to Terminal in the
order that they arrive at queue gb. To avoid interleaving of messages, a locking mechanism
between bl and b2 could be provided at the user level. Note that a Serial LDD/IODD pro-
cess can manage more than two ports, which would involve more queues and outlets than
shown in the Figure. Also, the queue of ser to which control messages are sent for switch-
ing the mode of ports is not shown.

Characters received from a device by Serial LDD/IODD are accumulated into an input
message until some end-of-message character (such as carriage return or line feed) is
received from the device. Serial LDD/IODD then sends the input message through its out-
let which is associated with the device. Each output message for a device received by
Serial LDD/IODD is simply transmitted one character at a time to the device.

3.6.3.5 Operator Interface

Operator Interface provides a command line interface for dialoguing with processes. It is
used in conjunction with another interface process, that handles input/output, such as
Serial LDD/IODD. The interface process reads and displays lines to a device such as a ter-
minal or a workstation window.

Operator Interface forwards command lines typed by the operator to a destination process.
Any reply messages from the destination are forwarded back to the operator. The destina-
tion is selected using control commands to Operator Interface which begin with a special
escape character. Control commands are interpreted by Operator Interface rather than
being forwarded to the destination process.

Figure 20 illustrates how dialogue with processes is performed from a terminal using
Serial LDD/IODD (ser) and Operator Interface (opi). Lines typed at the terminal are col-
lected by ser and sent as messages to opi. Opi filters out control messages, which it inter-
prets to select a destination process (such as x or y). Destination processes may be local or
nonlocal. The selection of a new destination process causes opi to send a message to Pro-
cess Manager (the connection from opi to Process Manager is not shown in the figure) to
change the connection of outlet oa’ to the new destination process.

Operator Interface supports multiple sessions, with each session having an independent
destination process. Each session sends its messages to a different input queue of Operator
Interface. Only one session is shown in Figure 20. Two sessions, for instance, could be
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Figure 20 Dialogue between a terminal and destination x through Operator

Interface

used to allow two terminals attached to a station to perform independent dialogues with
different destination processes. Extending Figure 20, different input queues and outlets of
ser and opi would be associated with the second terminal.

3.6.3.6 Profiler

Profiler reports profiling information maintained by the kernel. Commands to profiler may
request a single report for one or more processes, or may request the periodic generation
of reports. Periodic reports allow the resource usage of processes to be tracked over time.
Profiler makes use of a periodic timer from the Timer service to provide periodic reports.
Presently, statistical cpu usage (Section 3.5.7.1) and dynamic memory usage are available
in Profiler reports.

3.6.3.7 S Record Loader

S Record Loader is used to load object code to a station. It accepts messages containing
Motorola S records to be loaded into memory. A few other commands provide simple
functions such as setting a relocation offset, reporting the number of S records received,
etc.

3.63.8 Timer

Timer provides three types of timer services: one-shot, periodic, and shared. Timer
accepts command messages for setting up, resetting, and cancelling timers. A process,
referred to as the owner, may request a new timer by sending a setup message to Timer
which specifies the timer type and an interval. Upon expiry of the interval, Timer sends a
timeout message back to the process.

Shared timers are a service included specifically to reduce the overhead associated with
handler processes (Section 3.5.6.3). When a shared timer is set up, Timer returns a mem-
ory address to the owner. The current value of the timer is stored at this address. The
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owner is allowed to change the value directly. This avoids the overhead of having to send
messages to Timer in order to change a timer value. For serial LDD/10ODD, which needs to
reset the timer associated with a link each time a new character arrives, the overhead saved
is substantial.

Timer manages a Timer Control Block (TCB) for each active timer. As discussed in Sec-
tion 3.5.7.3, the microkernel decrements the countdown values of timers and sends a mes-
sage to Timer whenever there is a timeout. This reduces the overhead incurred by Timer.
Upon receiving a message from the microkernel, Timer sends a timeout message to the
owner of the timer.

3.639 Log

Critical status messages are sent to the log process. These are recorded locally and for-
warded to a central output device. The local record is accessible during regular operation,
postmortem diagnosis, and following a reset. Two buffers are used for the log, with one
always containing log messages which have been preserved from prior to the most recent
reset. A central output device can be specified following start-up by connecting an outlet
of the Log process. By connecting all log processes to some central process such as a
device driver for a printer, log messages from all stations can be displayed at a single
device.

3.6.3.10 Init

At reset, two processes are bootstrapped by start-up code: Process Manager and Init. Init
makes use of Process Manager’s services to set up and start the remaining kemel pro-
cesses. Both the start-up code and Init also initialize various kernel data structures. After
initialization is completed, Init executes an empty infinite loop. Init is at the lowest prior-
ity possible, so the empty loop is executed whenever no other processes at a station are
ready to run.

3.6.4 Distributed Message System
3.64.1 Overview

The organization of the distributed message system into a data link layer and a network
layer has already been described. Figure 21 illustrates the data path of a nonlocal message
through these layers. The figure also shows the NetKemel entities at each step and the data
units exchanged between layers. The case of a single intermediate station is illustrated, but
other cases are similar.

The data path begins when a process performs a Send() or Reply() to pass a message to a
nonlocal process. The microkemel module Message System handles the system call. For
Send(), it determines that the message is nonlocal by examining the Connection Block
associated with the outlet through which the message is being sent. The information in
Connection Blocks is maintained by the Connection Database process. The Process Man-
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Figure 21 Data path and units exchanged for a nonlocal message

ager makes use of Connection Database services to establish connections between pro-
cesses. For Reply(), the Message System determines that the message is nonlocal by
examining the header to which the reply key points.

Having determined that the destination is nonlocal, the microkernel generates a network
packet containing a header followed by the message. The header contains items L1
through LS (Section 3.5.5.1), including the route which the packet will take through the
network. The Message System module then passes the Network Packet to Router.

Router examines the header to determine the link over which the message should be trans-
mitted for its first hop through the network. It then passes the network packet to the Link
Device Driver (LDD) that manages the link. The LDD generates a link packet suitable for
transmission over the link. This may involve the addition of frame delineating codes,
length information, error detection codes, etc. The link packet is then transmitted over the
link to the second station along the route. The receiving LDD at that station unpackages
the network packet and passes it up to Router. Router examines the header and determines
the LDD to be used for the packet’s second hop through the network. Router passes the
network packet down to that LDD for transmission to the third station along the route.
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Router at the third station determines that the network packet has finally arrived at its des-
tinatio~ station. It passes the message and reply key to the destination process (receiver),
which is local to that station.

D Station A
Stations linked \ Serial

by serial links LDDAODD X o
- =g ob N
D\ g . m Router %

o gb
/ .‘id /-.‘ %, af

oa
$he) mx u
O qc Message | o¢
Shared System O
Access
LDD of Other local

Stations linked by a shared access link

Summary of Qutlets:

oa, ob: LDDs send arrived network packets to Router.

oc: Router sends outgoing network packets to LDDs qa, gb, or qc, depending on outgoing link.

od: Router deposits arrived messages (with reply keys) into input queues of local destination processes.
oe, of: Local processes performing nonlocal sends. A local send causes Mess:zge System to deposit a
message/key pair into the input queue of the local destination process. A nonlocal send causes Message
System to send a network packet to Router.

Figure 22 Distributed message system processes at an example station

Figure 22 shows the elements of the distributed messag s system from a different perspec-
tive. The connections between processes at a single hypothetical station are shown. The
station is directly linked to two other stations through two serial ports. It is also linked to a
group of stations through a shared access link. Hence two LDDs are active at the station:
one to manage the serial ports and one to manage the shared access link. Router and the
LDDs direct the flow of nonlocal messages from source to destination, forming a data
flow style of software network.

An LDD has a separate input queue for each physical link that it manages. Network Pack-
ets for each link are deposited by Router into the corresponding input queue. The LDD
may service its queues concurrently since messages may be tiansmitted over different
links at the same time. The LDD ser in the figure manages two serial links. Hence it has
two input queues into which Router deposits network packets. The LDD sha manages a
single shared access link. Hence it has only a single input queue into which Router depos-
its network packets.



3.6.4.2 Connection Database

The Connection Database process manages Connection Blocks. A unique ¢ h
block is associated with each connected outlet of a process. The block records the desiana-
tion pid, input queue, and route to be used. If the destination process is local, then the
route is null. Presently, Connection Database does not provide enough functionality to jus-
tify a separate process. It was provided as a stub which may be expanded in the future to
explore dynamic routing. Since Connection Blocks contain routes, this process is in a
good position to change routes in response to network conditions such as congestion. Cur-
rently, Connection Database simply provides a service for use in setting up Connection
Blocks. This service is intended for use only by Process Manager (to establish connec-
tions between processes).

3.6.4.3 Router

Router receives network packets of local origin from Message System and incoming net-
work packets from the LDDs of a station. It performs a small amount of processing on the
header of the packet. It then either passes the packet to an LDD for transmission to another
station, or passes the message/key pair of the packet to a local process. The latter occurs
once a network packet has arrived at its final destination station.

Router determines whether or not the network packet has arrived at its final destination by
examining the route length and index contained in the header. The length gives the number
of hops to be taken through the network. The index indicates how many hops have been
completed. Router increments this index as a message propagates through the network.

Pp—< [>\ oy
s

4
1,23
4 0,2,3 0,13 0,1,2
B C D
<

A directly to F: <5>

A toF through stations B and E: <1, 4, 4>

A to E through station B <1,4>

E to A through station B <5, 0>
Figure 23 Some routes through a hypothetical phy sical network.
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The routing fields used in Connection Blocks and network packet headers contain a
sequence of Virtual Link Numbers (VLN) which indicate the link to be taken for each hop.
The VLN for each hop has meaning only with respect to the station at which the hop orig-
inates. It uniquely identifies one of the directly linked stations as the destination of the
hop. In Figure 23, the VLNs recognized by each station have been shown next to the cor-
responding links of a hypothetical physical network. Station A. for instance, recognizes
VLNs 1 through 5. Stations E recognizes only VLNs 4 and 5. The assignment of VLNs is
arbitrary, but it can be helpful to adopt conventions. For instance, on a station with two
serial ports, we are currently using the convention that VLNs 4 and 5 are used to refe- to
the ports physically located on the left and right sides of the expansion card, tespectively.
In Figure 23, we have also adopted the convention that VLNs 0 through 3 are used to refer
to stations A through D, respectively. Each of these stations recognizes only three of the
four VLNs from 0 through 3 since it would not make sense for it to transmit a message to
itself over the link. Note that there is no requirement for VLNs to be unique in any way
throughout the network. VLNs must only be unique at a station.

A knowledge of the associz:ion bersveen VLNs and links is required to specify the route
for connections between prwz-ses at ditferent stations. The route is included as a parame-
ter to the Connect command of Process Manager. Some example routes are shown in Fig-
ure 23. Note that the reverse of a route is not necessarily equal to the reverse sequence of
VLNs (see the routes for A to E and E to A). The Reply() system call makes use of the
reverse route (Section 3.5.5.4). The sequence of VLN for the reverse route is recorded by
Router in the header of a packet as it propagates through the network. The reverse route is
then available should the destination process send a reply message.

Router makes use of an internal VLN-10-LDD Translation Table (VLTT). It describes the
association between VLNs and links by associating each VLN with a LDD. Our current
implementation generates this table at start-up by testing for the presence of links and
using some simple niles io generate VLNs. The table maps each VLN to a 3-tuple of the
form (LDpid, LDDgid, Share.ID). LDDpid is the pid of the LDD which manages the
link associated with the VLN. LDDgid is the input queue of the LDD into which networ:.
packets for the link should be deposited. SharedID is used only for sharad access links—it
provides an id that may be used by the LDD to identify the destination station on the link.
This is required since there may be many stations attached to a shared access link. Router
sends a network packet on its next hop by looking up the VLN of the hop in VLTT. h
sends the packet to the indicated LDD, passing sharedID along as well.

3.6.4.4 Serial LDD/IODD (LDD role)

Serial LDD/IODD manages the serial ports of a station. It serves two roles: link device
driver (LDD) and I/O device driver JODD). This subsection describes its role as an LDD.
The I0ODD role and switching between modes were described in Section 3.6.3.4. All srial
ports default to link mode upon reset, making them im:nediately ready for exchange of
link packets between stations.
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Figure 24 Communicating Serial LDD/IODD processes at adjacen stations

Serial LDD/IODD transmits and receives outgoing and incoming link packets on serial
ports that are connected to other stations. Figure 24 illustrates the role of Serial LDD/
IODD in a simple physical network of two stations connected by a serial link. Consider
the transmission of a message from station A to station B. The Serial LDD/10ODD pro-
cesses (sA, sB) and router processes (rA, rB) of both stations are all involved. Router rA
passes the outgoing network packet to sA for transmission. A header and trailer are added
by sA to form a link packet which is then transmitted over the serial port. After receiving
the incoming link packet, sB removes the header and trailer. The resulting network packet
is passed to Router rB.

Consistent with the design philosophy of Section 3.2, a fairly simple communication pro-
tocol has been adopted for Serial LDD/IODD: the one bit sliding window protocol. This
protocol is described in [Tanenbaum90, pp. 225-228). A full duplex version with back-
ward error recovery is used here. !t was selected because it is one of the simplest protocols
that is robust. It is inefficient under certain circumstances, which may motivate the use of
a more sophisticated protocol in the future. Tanenbaum describes its robustness: “No com-
bination of lost frames or premature timeouts can cause the protocol to deliver duplicate
packets to either network layer, or to skip a packet, or to get into a deadlock” [Tanen-
baum90, p. 226). Checksums are used to detect errors in arrived link packets. The occur-
rence of an error results in retransmission of the packet.

This protocol is inefficient in the presenc. of errors since an error results in the link going
idle in one direction until a timeout occurs. This inefficiency may be addressed by extend-
ing the protocol to support negative acknowledgment (NACK), but this has not been done
yet. The protocol’s small window size also makes it inefficient when the propagation
delay of the link approaches or exceeds the transit time of a packet. Since Serial LDD/
IODD manages relatively low bandwidth links over short distances, the window size of
one does not impact link level performance in sur design.

The DUART hardware managed by Sesial LDD/IODD provides asynchronous character-
oriented serial YO with hardware flow control. A benefit of hardware flow control is that a
slow response time in servicing incoming characters does not cause characters to be lost.
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This is important since 3 station will occasionally execute higher priority processes than
Serial LDD/IODD. Above the datalink layer. NetKernel provides no flow or congestion
control (Section 3.4.2).

RI
2 Yy by
Receive Transmit
Link Packet Link Packet
T
R
1 T i R2 or R3 TIT "\4
) Waiti
( No Activity y TS LNO Activity j «— ( AcK for j
RS T l R4 TS l T-r(, ‘/TS

(Coma ) H( o)

R1. START arrives T1. Network packet received from Router
R2. END arrives T2. Finished transmitting START, link packet, and END
R3. Timeout occurs T3. ACK with correct sequence number arrives

R4. Pending request to switch port to VO mode  T4. Timeout occurs
R5. Pending request to switch port to link mode  T5. Pending request to switch port to I/O mode
T6. Pending request to switch port to link mode

Figure 2§ State Diagrams for (a) receiver and (b) transmitter

Conceptually, a state machine is associated with each of the receivers and transmitters
managed by Serial LDD/IODD. Figure 25 shows the «wo state diagrams. Most of the tran-
sitions in these diagrams occur due to the arrival of a control character or the occurrence
of a timeout. The following control characters are used in the protocol.

 START: Marks start of link packet

* END: Marks end of link packet

* ACK: Positive Acknowledgment of successfully received linked packet. A single bit
in this code indicates the sequence number of the packet being acknowledged.

3.7 Correctness of Design

No rigorous or formal attempts have been made to completely prove the correctness of the
kernel design. Analytical proof methods for concurrent processes are only just emerging
(eg. Communicating Sequential Processes, [Hoare85]). This section informally considers
two logical properties required for the correctness of concurrent software: safety and live-
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ness. An additional physical property, timeliness, becomes of interest for systems with
hard real-time requirements [Stankovic88). Real-time properties will no: be considered
here. Mapping techniques to meet real-time requirements are an important area for future
research.

The correctness of a sequential program can be shown by proving that it terminates with
the correct result. Demonstrating correctness for kernel software must be done differently
than for ordinary sequential programs.

.the single most distinguishing feature of an operating system or real-time system

is that it must never halt. The only way to halt a typical operating system is to push

the start button on the computer panel. An operating system prints nothing of its

own (except some non-essential logging and accounting data). Thus when studying

operating systems, we must revamp our notions of what it means for a program to

be correct... In our abstraction, we shall distinguish two types of correctness prop-
erties: safety properties and liveness properties [Ben-Ari82).

We shall use the concepts of safety and liveness as defined by Ben-Ari.

The analysis of this section considers only the correctness of an individual station. This is
appropriate for evaluating the kernel since 1) it is replicated at each station, and 2) stations
do not communicate until user software networks are loaded. For user software networks
which are distributed among stations, it would be necessary to consider correctness at both
the level of individual stations and the I . ¢l of the entire network.

3.7.1 Safety

Safety properties are static requirements which must be satisfied throughout the execution
of conc urrent software. Mu.»al exclusion is the only safety property which will be consid-
ered. A shared data structure :nust not he accesscd concurrent! v by the microkemel and
one or more kernel processes such that inconsistent data is read or written. This has been
achieved by blanketing code which accesses shared data structures in critical sections, as
described in Section 3.5.2.2 and Section 3.6.1.

3.7.2 L.veness

Liveness properties are dynamic requirements refiecting events which should occur under
various circumstances during the execution of concurrent software. “Liveness means that
if something is supposed to happen then eventually it will happen” [Ben-Ari82]. The fol-
lowing three subsections consider the liveness issues of deadlock, lockout, and termina-
tion of system calls.

3.7.2.1 Deadlock
Deadlock is the most dramatic violation of liveness.

A set of processes is deadlocked if each process in the set is waiting for an event
that only another process in the set can cause [Trnenbaum92, p. 242).
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Circular arrangements of client-server processes can result in deadlock. For instance, con-
sider process A which sends a message to B and then waits for a response. If B then sends
a request message (but not the reply for which A is waiting) to A and waits for a response,
then the two processes will be deadlocked. Processes A and B are each waiting for the
other to respond. The potential for this type of deadlock can be detected by drawing a
dependence graph of client-server relationsi.ips. An arc from process A to B indicates that
A acts as a client with respect to B, making use of a service offered by B. A sufficient con-
dition for the absence of deadlocks due to circular client-server relationships is that the
graph contain no directed cycles.

Ronter {::- Serial Debu Init
LDD/ODD Qb sect M
Operator O Prcfiler Qb Process Qb
N:\_J

Interface Manager
Timer O Connection
Database
Figure 26 Client-server relationships among kernel processes

Figure 26 shows the graph for kernel processes which operate in client or server roles.
Only client-server relationships, not data flow relationships, are shown. Kemel processes
which do not participate in any client-server relationships have been omitted. To simplify
the graph, several processes that operate exclusively in server roles have been shown at the
bottom “ince these processes make no use of other services, it is nrt possible for them to
be pav: ot a cycle. The graph is simplified considerah! by not drawing all the individual
arcs tc these processes since their services are used extensively by the other processes.
The lack of cycles in Figure 26 shows that the kernel processes do not deadlock due to cir-
cular client-server relationships. Similar analysis may be performed for user processes, to
ensure that their addition does not introduce the possibility of deadlock.

3.7.2.2 Lockout

Lockout, also referred to as starvation or livelock, occurs when one or more processes are
indefinitely delayed from obtaining a resource due to the activities of other processes. The
kernel manages two resources: the cpu and the links of a station. Processes acquire the cpu
for execution. Links are accessed indirectly by sending messages, with the sender being
unaware that it is using the link resource.

We first consider the potential for CPU and link lockout under NetKernel. Next, avoidance
of lockout is considered.
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CPU Lockout

The microkernel implements the following simple scheduling policy: The highest priority
ready process gets the cpu. Lockout is possibie. under this scheme. If one or more high pri-
ority processes take up al! the cpu time, then a lower priority process will never get to exe-
cute.

Link Lockout

Packets to be transmitted over a particular link are serviced on a First-Come-First-Serve
basis using queues. Any packet placed in the queue for a link will eventually ve serviced,
so lockout does not occur. Due to the finite length of the input queues, however, it is possi-
ble for packets to be lost due to overflow. This ocours when packets aie deposited into a
queue faster than they can be transmitted. This is not technically the same as lockout,
since there is no discrimination between processes. Al processes are equally likely to lose
packets going to a full queue. But the end result is similar to lockout: access to a resource
is lost.

Avoidance

When the kemnel executes by itself, there is little demand on the cpu and no demand on the
links. When user processes are added, however, CPU lockout and packet loss become pos-
sible. Avnidance of these problems for embedded system software and purely computa-
tional sostware will each be considered separately.

In an embedded system, data flow organization of processes is common. The system must
keep *:p with incoming data by performing all necessary transform and output operations.
Simple conditions which need to be satisfied are suggested by the preceding discussion of
lockout:

N1 (sum of cpu demands of processes at station) < (cpu capacity of stat.on),
N2 (sum of demands on link) < (link capacity)

Evaluating these conditions can be difficult in practice because it is hard to quantify the
demands of processes. One apr-ach is to make ccnservative es.... tes  icl atisfied
by mapping and validated by resting. Providing general guarantees is not possible with
this approach. Rather we rely on our understanding of the program’s demands and the
hardware’s capacity to ensure correct operation. This is less than ideal. It wou.d be prefer-
able if logical analysis alone could guarantee correctness.

Purely computational or off-line programs are not driven by a real-time environment,
These programs can be written to avoid CPU lockout and packet loss. ..oidance of CPU
lockout requires that a program is specially designed to be fair. Arbitration between com-
peting processes must be programmed at the user level, since the NetKernel priority
scheme is inherently unfair. Packet loss can be avoided by limiting the number of mes-
sages which are allowed into the network at once. As a simplistic example, consider a sys-
tem where all the queues are length 10. If the softw are network contains S user processes,
each having a maximum of two outstanding messages, then none of the queuzs will ever
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overflow. Flow control between processes could be used to limit the number of messages a
process injects into the network. This is essentially a very simple scheme to avoid packet
loss from congestion, with many more sophisticated schemes known.

To review our consideration of lockout, the kernel by itself makes minimal demands on
resources and there is no possibility of lockout. The presence of a user software network
increases the demand for resources, making cpu lockout and packet loss possible. For
embedded systems, these can be avoided by considering performance issues. For off-line
software, user level mechanisms provable by logical analysis can avoid the same prob-
len  In practice, software may have both embedded and off-line components. making the
application of these techniques even less straightforward.

3.7.2.3 Termination of System Calls

Wait() is the only system call which is allowed to block the caller in this design. All sys-
tem calls must return control to some process within a finite time. This requirement upon
system calls is a liveness property. The absences of infinite recursion among the system
calls is a necessary condition for a call to return. An approach similar to the earlier depe::-
dence graph (Figure 26) was taken to verify this condition. A structure chast of the rou-
tines in the microkernel (not presented here) was drawn. A structure chart shows each
routine as a node. Routines which directly call each other are connected by a directed arc
from the caller to the callee. The presence of cycles in the chart indicates the potential for
infinite recursion.

One problem in an early design iteration was uncovered through the structure chart analy-
sis. When an attempt to allocate memory by the microkernel failed due to lack of free
memory, the microkernel would call Send() to pass a warning message to the Log process.
Send(), however, needs to allocate memory as part of its operation. The d.'sign was refined
to detect this case and shut down the station in an orderly fashion. The orderly shutdown
includes recording the reason for failure as opposed to the previous behavior where recur-
sion would simply continue until stack space ran out. Other than the case just noted, there
were no other cycles in the structure chart. Hence we can be confident that no system calls
fail to terminate due to infinie recursion. Other errors, such as an infinite loop, could still
result in a system call which fails to terminate. Nonetheless, one non-trivial source of
design errors has been eliminated.

To summarize the preceding sections treating correctness, it has been informally demon-
strated that the high-level design of the kerel satisfies various aspects of liveness and
safety. The treatment is far from a complete proof of these properties, but it does improve
our confidence in the design.

3.8 Implementation

This section presents a few aspects of the NetKernel implementation on the M68000 tar-
get statiuns. Tools, source code statistics, and several refinements of the design are pre-
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sented. The final subsection briefly discusses the NeXT workstation prototype of
NetKemel.

3.8.1 Compiler and Other Support Software

NetKemel was developed using the CrossCode C package [Software88). This package
includes a C compiler, M68000 assembler, linker and several other miscellaneous tools. It
is well suited to the development of embedded ROM applica: -, providing good control
over the placement of program segments in the memory space of the target system. A
cross-development version which runs on the department’s HP9000 computer system was
used.

Debugging at the ta-get stations was performed using monitor/debug firmware from
Motorola called TUTOR. TUTOR supports debugging at the assembler level, providing
functions such as instruction disassem’ 'y, register examine and modify. breakpoints and
tracing.

3.8.2 Code Statistics

Some source code statistics for NetKemel are included in Table 6. The source contains
about 7500 lines, which excludes comments, blank lines, and .h header files. File types .s
and .c contain assembier source code and C source code, respectively. .Most of the code is
written in C for reasons of maintainability, portability, and ease of development. Some
sections were written in assembler for either efficiency or direct access to the cpu architec-
ture. For instance, the microkemel code for context switching and clock servicing was
written in assembler. Substantial portions of Serial LDD/IODD were written in assembler
to minimize the overhead of passing link packets through the serial ports.

Section of Kernel Lines of code
s files « files Total
Microkemnel, including system calls 708 1533 2241
Kernel processes 1219 4155 5374
Total 1927 5688 2615
Table 6 Source code statistics

3.8.3 Process Priorities

Software priorities numbered from 0 to 14 have been adopted. The priority of kernel pro-
cesses have been assigned within this range to preserve the relative priorities presented
earlier in Table 5. The M68000 interrupt mask levels of 0,1,2,...,7 correspond to software
priorities of 0,2,4,...14, respectively. Several unused ranges are present at levels appropri-
ate for different classes of user processes, such as device drivers and low priority pro-
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cesses. User processes may also be placed at the same priority level as kemel processes
other than Exception Handler.

3.8.4 Developing User Processes

User processes are written as sequential programs and compiled with a conventional com-
piler. It is preferable if the compiler produces relocatable code since the memory regions
of a process can then be placed anywhere in the single memory space of an M68000 sta-
tion. Process Manager and the development tools allow for processes of the same type
which are mapped to the same station to share code regions, thereby saving memory at the
station. Code must be re-entrant to take advantage of code sharing. Although it is not par¢
of the MetKernel [ wradigm, processes may also share data regions which allows them to
interact through shared data. Processes which share data are under the constraint that they
must be mapped to a set of stations having common physical memory.

User processes are presently being developed in C with the same compiler that is used for
the kemel. However, the use of other languages and compilers is feasible.To make use of a
different compiler, a library for performing the NetKernel system calls needs to be pro-
vided. These are simply stub functions which set up system call parameters on the stack
and trap to the kernel.

3.8.5 NeXT Workstation Prototype

As part of this work, a prototype of the kernel was developed early on. The prototype was
developed and runs on a NeXT computer. The NeXT provided a useful environment for
testing high-level design ideas, such as the selection and organization of kernel processes.
The development effort for the prototype was also reduced by making use of the NeXT's
native operating system (Mach with Unix emulation). For instax.ce, it was not necessary to
develop context switching code. As with any modern workstation, the operating system
(OS) already supports multiprocessing.

From a high-level perspective, the prototype design is quite similar to the M68000 design.
The system calls and kemel processes are largely the same. Some incompatibilities are
present reflecting minor improvements made to the interface after the prototype was fin-
ished. User processes written in C can be compiled without change for either station type
if they do not make use of station-specific features. Some of the NeXT services vary from
their M68000 counterparts due to the fact that the prototype kernel ruas on top of a work-
station OS3. Thzse differences will b discussed further when the Host Interface Program
(HIP) is presented in Chapter 4. HIP needs to recognize the differences since it is a single
tool for managing processes in the phys.cal network, which may be heterogeneous.

The prototype design should not be discounted due to the inefficiency of implementing a
kernel on top of an OS. Some major benefits compensate for this inefficizucy. Far less
effort is required compared to an implementation on the bare workstation architecture.
The kemel may also be portable to future architectures by the same or other vendors
which support the same OS.
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chapter 4 Development Tools:
Design and
Implementation

4.1 Overview

The development tools provide support for managing the execution of software networks
on physical networks. It should be noted that these tools manage user software networks.
The kernel processes described earlier are present upon start-up at each station. Following
start-up, user software networks may be loaded and executed at stations. The development
tools support these activities.

NetKemel itse!" 'vides management services at the station level, typically operat-
ing on individuai _ .ses. These services are rcplicated at each station in the physical
network. The development tools shield the use: from having to directly access these ser-
vices by providing a higher level interface at workstations. One benefit is that control
operations at a higher level of abstraction are possible---the user is no longer concerned
with the organization and interface of kemel processes. Another benefit is that the low-
level interface of the station services is translated to a more attractive format. For example,
HIP allows processes to be referred to by user-defined names rather than the numeric pro-
cess ids (pids) used by Process Munager.

Presently, three tools supporting NetKernel development are available: HIP, Scripi Gen~r-
ate (SG), and Event Log Report Generator (ELRG). HIP and SG are concerned with the
management of software networks. HIP is an on-line tool which supports loading and con-
trol of software networks. Commands may be issued to HIP interactively or read from a
script file. SG is an off-line tool which generates scripts to load and start software net-
works. ELRG is an unrelated miscellaneous tool for working with event logs. i produces
a text report from the memory image of a NetKernel event log. Description files used for
input and output by HIP and SG will be presented in the first section. The three following
sections each describe one of the development tools.
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4.2 Description Files

Chapter 2 defined software networks, phy cal networks, and mappings. Three types of
description files are used to provide textual descriptions of these entities for manipulation
by the development tools: Software Network Description (SND), Physical Network
Description (PND), and Mapping Description (MD). SNDs and PNDs are independent
descriptions of software networks and physical networks, respectively. An MD describes
the mapping of a software network to a physical network. SNDs contain references to an
additional type of description file: the Process Type Description (PTD). Each PTD
describes the attributes of a particular type of process.

The purpose and content of each description file type are presented in the following three
subsections. Information on syntax will not be p-esented here, but some examples of
description files are included in Appendix D. To summarize, cach file contains declara-
tions of elements, parameters, and structural information. The SND and PND, for
instance, both contain graph descriptions in that they declare nodes and connectivity infor-
mation. As well, various parameters associated with the nodes and arcs wre declared. An
inheritance scheme is used whereby each description file may declare a super-file. If a
piece of information cannot be found in a file, then its super-file is searched. Borrowing
again from object-oriented terminology, we use the term sub-file to describe the relation-
ship of a file to its super-file.

4.2.1 Software Network Description (SND)

An SND describes a software network. The processes and connections of the software net-
work are declared. The type of each process is declared by specifying a PTD for each pro-
cess. A PTD is a file independent from the SND. It specifies various attributes of a proccss
such as number of input queues and outlets, priority, and memory requirements. The PTD
also declares names for the input queues and outlets of a process. These names are used in
the SND for the declaration of connections between processes.

The SND and associated PTDs contain all the information about a software network that
is required to load the network, such as object code file numes, memory requirements and
connections between processes. But no information about the allocation of software com-
ponents to hardware is specified, this being contained in MDs. As described in Section
2.3.3, a software network may contain kernel processes. So for each process, the SND
indicates whether the process should be loaded. Processes which need to be loaded are
declared as new processes; processes which do not need to be loaded are declared as ser-
vice processes. The term service process reflects the typical role of such processes which
is to provide services to software networks which are loaded later. Since kerna! processes
always exist in advance, they are alway: declared - service pEnce e, '

A PTD defines a process type. These types pre= ... ¥ - # Deosis 11 which software

networks are built. Collections of PT')s may be established to allow ihe reuse of process
types. A software network may contain multiple processes of a paniicular type. Processes
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declared to have the same PTD will have identical attributes. Parametrization of processes
is not currently supported. A limited way to imitate parameterization would be to send ini-
tialization messages containing parameters to processes. Sub-files of a PTD can also be
used to describe process types which are variati < of a common type.

4.2.2 Physical Network Description (PND

A PND describes a physical network. Starior.., ...ks, /O devices, and their connectivity
are declared. These have already been covt . Section 2.5. Service processes available
in the physical network are also declared in .ixe PND. (The MD relates service processes
which are gxpected to exist for a softwure network to scrvice processes which getually
exist in the physical network. The fornv:. re declared in the SND, whereas the latter are
declared in the PND.)

Two types of service processes may be declared in the PND: common services and unique
services. Common services are replicated at each station of a particular type in the net-
work. A user process making use of a common service will be connected to the local pro-
cess providing the service. For example, consider declaring the Timer process as a
common service. Processes of an SND connected to Timer will then always be connected
to their local Timer process. This is usually desirable for Timer since using a nonlocal ver-
sion involves more message system overhead.

A unique service is available at only one station in the network. When a specific service
process is to be accessed by user processes throughout the physical network, it should be
declared as a unique service. For example, a device driver for a terminal should be
declared as a unique service. Any processes connected to that service will then be con-
nected to the device driver at the station of the terminal. This allows the processes to per-
form /O with the terminal, regardless of their locations in the physical network.

4.2.3 Mapping Description (MD)

An MD refers to a particular SND and a particular PND. As described in Section 2.6, a
mapping allocates elements of a software network to elements of a physical network. Both
the SND and PND assign names to the various elements they contain. The MD declares
the mapping using the names from the SND and PND.

There are three types of allocations declared in the MD:

O1 the allocation of user processes to stations,
02 the allocation of service processes to common services and unique services,
O3 the allocation of nonlocal connections to routes through the physical network.

Items O1 and O2 correspond to item E1 of the primary mapping (Section 2.6.1). Item O3
is part of the secondary mapping for our implementation. The primary mapping was also
defined to include lengths of input queues (E2). This and other (secondary) mapping
information concerning a process can be placed into its Process Type Description (PTD).
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This information, however, will be used for all processes of that type. In order to declare
mapping parameters unique for an instance of a process (eg. different queue lengths for
«ferent processes of the same type), a sub-file of the PTD can be used. The sub-file is
it.cn specified instead of the original PTD for the process declaration in the SND. Such a
sub-file may be thought of as containing instance specific information for a process. It is
more accurate though, to consider it as declaring a new (related) process type since the
sub-file can still be referred to repeatedly in an SND to specify several identical processes.
Hence such a sub-file is still considered to be a PTL.

4.3 Host Interface Program (HIP)

HIP is the most important of the development tools. It executes on one or more worksta-
tions in the physical network. From each workstation, it provides an independent point of
control for managing processes throughout the entire physical network. Commands to HIP
may be issued interactively from a command line, as well as read from script files.

The following subsection motivates HIP, describing why it is preferable over direct inter-
action with kernel processes u..ug Operator Interface. Next, HIP's internal model of the
physical and software network is described. The following section presents an overview of
commands supported by HIP. Finally, the audition of new command modules for support-
ing activities other than process management is considered.

4.3.1 Motivation

HIP performs management operations by messaging with kernel processes throughout the
physical network. The same operations could be performed by an operator sending mes-
sages directly to kernel processes using Operator Interface (Section 3.6.3.5). Advantages
of HIP over the direct approach are that it provides a higher level interface, supports the
use of description files, and supports a set of commands which are independent of station
type.

The HIP interface is higher level than the direct approach in ths. fewer commands are
required to accomplish tasks and the commands having a more readable format, making
human errors less likely and easier to detect. The Operator Interface requires that the user
explicitly select the destination process for a command, including the route to the process
if it is nonlocal. HIP is easier to use since it implicitl; determines and selects the kernel
process(es) to which messages should be sent. A singlc HIP command may result in sev-
eral messages being sent to one or more kemel processes. HIP commands have a mne-
monic format while the kemel processcs have a hexadecimal format for commands. HIP
identifies entities such as processes, stations, and links with user-defined names, rather
than numeric codes as used by the kemnel processes. The use of mnemonics and names
rather than hexadecimal codes is friendlier and also makes some errors easier to detect—
for instance, a mistyped mnemonic or name is less likely to have a valid interpretation
than a mistyped hexadecimal code. HIP also adds new functionality on top of the kemel
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processes. One such area is the allocation of memory regions, on which the following sub-
section elaborates.

By accessing description files, HIP reduces the amount of information that needs to be
specified in commands. For example, when a new process is allocated, HIP reads the num-
ber of input queues, outlets, priority, and memory requirements of the process from its
PTD. A final benefit of HIP is that it can support a set of commands which is independent
of station type. This is accomplished by building support for different station types into
HIP. Consider a ‘Start Process’ command to HIP. For an M6800C target station, HIP
would send the initial values for the program counter and stack pointer to Process Man-
ager at that station. For a NeXT workstation, HIP would send the name of an executable
file. In this fashion, HIP provides transparency of station type to the user.

4.3.2 Internal Network Model

HIP maintains an internal model of the physical network and processes executing on the
physical network. Knowledge of the physical network enables HIP to send messages (o
processes at the various stations of the network. By maintaining an internal list of named
user processes, HIP allows the user to refer to processes transparent of their location in the
physical network. '

HIP’s representation of the physical network is based on a PND selected by the user. HIP
keeps an internal list of processes executing in the physical network, but it does not explic-
itly associate processes with particular software networks. This may be added in the
future, but for the moment a separate HIP session can be used for each software network
to achieve the same effect. A number of parameters are recorded internally for each pro-
cess. These include a user-defined name, the name of the station on which the process is
executing, and the name of the PTD for the process. HIP does not preser.dy make use of
SNDs. HIP’s knowledge of executing processes comes from two mechanisms. Informa-
tion conceming kernel processes on different types of stations is programmed into HIP.
Information conceming user processes is accumulated and updated by HIP as it receives
commands for process management such as allocate, start, kill, and so on.

A HIP session does not initially have any information about user processes executing in
the physical network. As a user allocates processes during a session, these processes are
added to HIP’s internal list. Hence, a HIP session generally has access only to user pro-
cesses created during that session. In this manner, a number of independent HIP sessions
can simultaneousty manage processes in the same physical network. Each session is aware
of only the processes that it created.

HIP can maintain internal representations of various aspects of the network which are use-
ful for process management. An internal model is maintained of the allocation of memory
regions on M68000 target stations (memory regions were discussed in Section 3.6.3.1).
When allocating a process at a station, HIP reserves code, data, and stack regions for it.
HIP consults its internal model to select appropriate unused regions. Requests to reserve
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regions are sent to Process Manager. A request to Process Manager may fail because
HIP's internal model is stale (does not accurately reflect the station’s current memory allo-
cation). This could occur as a result of the activitics of other HIP sessions, for instance. In
this case, HIP regenerates its internal model for the station by querying the station’s Pro-
cess Manager. HIP then selects different region: for the process and tries again.

4.3.3 Overview of Process Management Commands

Process Management commands are broadly divided into two categories: manipulative
and status commands. Manipulative commands change the state of the network. Examples
include allocating, starting, connecting, and suspending a process. Status commands
report on the state of the network without modifying it. The format for these commands
has been included in Section B.3. Of the manipulative commands, the sequence for allo-
cating and starting a software network is partiCularly important. It is presented in the fol-
lowing subsection. The following two subsections discuss remaining manipulative and
status commands, respectively. An example sequence of HIP commands for starting a
software network is shown in Section D.3 (the sequence can be automatically generated
by Script Generator, which is described later in this chapter).

4.3.3.1 Starting a Software Network

To launch or initiate the execution of a software network, several commands must be
issued on behalf of each process in the software network. These commands and the corre-
sponding operations performed by HIP will be discussed. The commands are designed to
be independent of the type of station to which the process is mapped. HIP will transpar-
ently perform operations appropriate for the type of station. Currently, HIP only supports
the management of processes at M68000 target stations. But the following discussion will
also consider the issues anticipated for management of processes at workstations running
NetKernel on top of a local operating system, as in the case of the NeXT prototype.

The activities required to launch a software network have been divided into four steps.

P1 Allocate processes

P2 Establish connections between processes
P3 Load processes

P4  Start processes

For each step, a corresponding HIP command must be issued for each process in the soft-
ware network. The commands are Allocate, Connect, Load and Start, respectively. As an
example, the Allocate command has the following format:

ALLOCATE <user-defined process name> <PTD file name> <station-name>

The three parameters of Allocate are recorded internally by HIP so that subsequent com-
mands involving the process need not repeat the PTD or station name. HIP will frequently
refer to the PTD to look up information about the process. The station name parameter
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specifies the station at which the process should be allocated. Station names are declared
in the current PND for the session.

In response to an Allocate command for a process at an M6800O station, HIP performs
several operations, including the following. First, various parameters of the process such
as number of input queues are looked up in its PTD and passed in an Allocate command to
Process Manager at the station. The memory requirements of the processes are determined
from the PTD. Using its internal model, HIP selects unused regions and then sends a
Reserve Regions command to Process Manager. HIP looks up the priority of the process
and sends a Set Priority command to Process Manager. For a workstation runaing NetKer-
nel, HIP would transparently issue different commands. For instance, HIP would not need
to reserve memory regions since workstations handle their own memory management for
code, data, and stack.

The other commands of the start-up sequence are not as involved as Allocate. For a Load
command to an M68000 station, HIP sends S record lines containing the object code of
the process to S Record Loader at the station. For a workstation, it might be assumed that
workstation has direct access to an executable file for the process so no operations would
be performed by HIP. For the Start command to an M68000 station, HIP sets up the initial
context for the process (start address, stack pointer, and so on) and sends a Start command
to Process Manager. For a workstation, HIP would pass an executable file name and send
a Start command to Process Manager at the workstation.

4.3.3.2 Other Manipulative Commands

The remaining manipulative commands of HIP are relatively straightforward. The follow-
ing commands are supported: Continue, Remove, SetPriority, and Suspend. These com-
mands are directly translated to corresponding Process Manager commands.

4.3.3.3 Status Commands

The HIP status commands return information conceming stations and processes. Lists of
process and station names can be displayed. More detailed status information is also avail-
able. For instance, a list of the connections of a process or the memory model for a station
can be requested. Some of the status commands cause HIP to query kemel processes in
the physical network; however, other status commands do not require such queries since
they return information which is intemal to HIP.

4.3.4 Command Modules

HIP has been designed to serve a more general role than simply process management. The
code for the process management commands described abave is contained in a single
command module of HIP. Other command modules supporting commands for different
activities may be added to HIP. Support for both general activities and specific applica-
tions is anticipated. An example of a general activity other than process management
which could be supported is debugging. As an example of a command medule supporting

-81-



Main

Module
Process Command Command
Management Module X Module Y
Command Module
Figure 27 High-level design of HIP

a specific application, we have developed a command module for a simple game. The
game, Repulse, is described in Section C.3.

Figure 27 shows the high-level design of HIP in terms of interacting modules. Commands
to HIP are passed from the Main Module to the appropriate command module. The com-
mand modules make use of some general functions provided by the main module such as
functions for sending messages to kemel processes in the physical network. The figure
also shows that the command modules interact with each other. Each Command Module
should define a programmer’s interface for operations which could be potentially useful to
other modules. For example, a command module to manage an application with dynamic
processes could make use of the Process Management Command Module in order to man-
age its processes.

4.4 Script Generator (SG)

It was pointed out in Section 4.3.3.1 that initiating the execution of a software network
requires several commands for each process in the network. For networks of even just a
few processes, it becomes tedious to manually specify these commands.' SG solves this
problem by automatically generating the required commands. As input, SG requires a
SND, PND, and MD. They describe the software network to be executed, the physical net-
work being used, and the mapping of the software network to the physical network,
respectively. As output, SG produces a script of commands which can be read by HIP.
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Generating the SND, PND, and MD by hand is usually less tedious and less subject to
error than generating HIF commands. It also has the advantage that the descriptions may
be reused. For instance, given a PND and an SND, one may experiment with different
mappings of the software network to the physical network by medifying only the MD. In
the future, graphical editors could be used to generate the PND, SMD, and MD.

The output script produced by SG contains four sections of commands. Each section cor-
responds to one of the phases from Section 4.3.3.1: allocate. connect, load, and start. An
example of an output script is included in Section D.3.

4.5 Event Log Report Generator (ELRG)

ELRG is a miscellaneous tool unrelated to the ones presented above. It analyzes hexadec-
imal memory dumps of the event log (Section 3.5.8.1) and produces a formatted text
report based on its contents. An example report is included in Appendix E. ELRG can be
customized to include the names of user processes and user-defined events in reports.

4.6 Implementation

The tools were programmed in C++ and C. Currently, they run on Sun-3 and NeXT work-
stations. The Sun-3 workstations do not run NetKemel, so they are included in a physical
network as I/O devices (as described in Section 2.5). An object-oriented approach was
used for the detailed design and implementation of HIP. The high-level modules shown in
Figure 27 were refined in terms of interacting objects.
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chapter 5 Related Work

5.1 Overview

Related work in the field of parallel computer systems will be described and compared to
this work. Basic paradigms and architectures have already been considered in Chapter 1.
This chapter begins with an overview of environments and paradigms for process oriented
concurrent programming. Selected contemporary systems having similar goals to NetKer-
nel are then described. Emphasis is placed on 1) support for the mapping of concurrent
programs to hardware, and 2) the runtime environment under which concurrent programs
execute. The final section compares NetKernel with the contemporary systems.

5.2 Types of Environments which Suppert Concurrent Processes

There are two basic levels at which an environment can support the execution of concur-
rent processes on parallel hardware: runtime software support and direct hardware sup-
port. Both approaches provide interprocess communication and synchronization
constructs to the programmer. The constructs may be an integral part of a programming
language, or they may be added to an existing language (eg. function library).

The runtime software approach entails system software which runs at each processor con-
currently with user processes. It makes various services available to users and their pro-
grams. Runtime software may be classified as either a kernel or an operating system,
depending on the particular services offered. There is no clear-cut boundary, but in general
a kernel provides fewer services than an operating system. A kernel might only provide
support for multiprocessing with interprocess communication and synchronization.' An
operating system provides the same functionality and also addresses concemns such as
multiple users, protection, file system, /O, and management of any other resources. Ker-
nels are typically used for single purpose embedded applications, while operating systems
are found on general-purpose, multi-user systems such as workstations.

Kernels are particularly suitable for embedded applications, which serve a single purpose
over their lifetime. The complexity of an operating system is not justified in this case since
many of its features (eg. multi-user support, protection) are not needed. The kernel
approach may also prove useful in applying parallel computers to large problems one at a
time. Parallel computers may be built from inexpensive processors so simple that they
cannot even run full-fledged operating systems. Instead they run kemels. The collection of
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inexpensive computers may be controlled by more sophisticated computers which do run
operating systems.

When each processor in a parallel system runs its own operating system, then the proces-
sors generally have more facilities than in the case of a kernel. For instance, each proces-
sor will usually have direct access to a local or network file system and hardware support
for memory management. Usually, multiple users are allowed to utilize the processors in
the network based on their demands and privileges. A network of workstations may be
used in this manner. The term distributed system is sometimes preferred over parallel
computer in this case, to indicate the autonomy of computers in the network and the sup-
port for multiple users. In this work, however, it is not important for us to distinguish
between the two terms.

The commercial Transputer [Graham90] is unique in that it provides enough hardware
support for the execution of concurrent processes on parallel hardware that no runtime
software support is required, although additional functionality may be added through soft-
ware. Most parallel computers, however, are built from processors with less support for
parallelism. These processors typically provide hardware support for concurrent processes
to execute on a single processor, but provide less support for multiple processors to exe-
cute together in parallel. Hence, runtime software is required.

5.3 Influential Concurrent Programming Paradigms

A number of programming paradigms have been proposed for concurrent processes.
These will be reviewed since they have influenced the development of kemels and operat-
ing systems.

The distinguishing feature of a concurrent programming paradigm in comparison with a
sequential paradigm is the provision of facilities for the coordination of processes. Facili-
ties for communication and synchronization are needed. Synchronization includes both
mutual exclusion and cross-stimulation of processes.

One of the earliest and most influential constructs proposed for concurrent programming
is Dijkstra’s semaphore [Dijkstra68]. Another early construct for concurrent programming
is the critical section, for which an explicit programming notation was introduced in
[BrinchHan73]. Semaphores and critical sections are low-level constructs such that pro-
gramming with them is prone to errors. Slightly different versions of a higher level con-
struct, the monitor, were proposed in [Hoare74] and [BrinchHan75). The concept of
processes communicating through message passing is formalized in [Hoare78) for which
an algebraic analysis technique was presented in [Hoare85). Hoare’s Communicating
Sequential Processes (CSP) are synchronized in that both the sender and receiver of a
message must be ready for the exchange before either can continue. Such an exchange is
referred to as a rendezvous. In asynchronous message passing schemes, the sender of a
message may continue even if the receiver is not yet ready to accept the message. PLITS
(Programming Language In The Sky) [Feldman79] was one of the first such schemes, pro-
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viding unbounded input queues for processes. Tanenbaum criticizes user level message
passing schemes having separate send and receive primitives as “the distributed system’s
answer to the goto statement: parallel spaghetti programming’ [Tanenbaum92, p. 604). A
solution to this criticism is the remote procedure call (RPC) introduced by [BrinchHan73]
and further considered in [Birrel84). Concurrency is also now being considered in the con-
text of object-oriented paradigms, as in [Booch91, pp. 65-68, p. 171].

5.4 Contemporary Systems

Parallel systems which share goals with NetKemel will be considered. For each system,
we summarize the hardware architecture and then consider the support for concurrent pro-
grams in somewhat greate; . 2tail.

In particular, we are i.icr 2 teC in systems whick 4 i-4~ss the following concemns:

Q1 hardware which can be arranged into «. Fer i pus ssical confignrations,
Q2 support for the mapping of processes to processors,
Q3 interprocess communication by message passing.

Systems from both research institutions and industry are considered. The common
denomirator of all the systems considered is that they support the execution of communi-
cating processes on parallel hardware, where software is exp'icitly formulated as a collec-
tion of processes. There are other approaches to parallel software development, such as
compilers which automatically parallelize sequential code and programming languages
with constructs that lend to parallel execution (eg. pardo). Limiting ourselves to
approaches which explicitly identify concurrent processes, we do not consider the other
techniques.

§.4.1 Amoeba

Amoeba [Tanenbaum90], [Tanenbaum92, pp. 588-636] provides a transparent distributed
operating system. It is also a platform for parallel programming. The hardware model for
Amoeba consists of a pool of inexpensive processors (although more complicated proces-
sors such as workstations may be used) accessed by users at inexpensive graphics termi-
nals. The justification for this model is that it avoids dedicating expensive and powerful
workstations to individual users. It thereby makes all of the computing power available to
all of the users.

The Amoeba operating system consists of a microkernel and a collection of server pro-
cesses. The main functions of the microkemel are process and thread management, mem-
ory management, communication, and /O. Servers also control access to processors, files,
and other devices. Threads within a process may synchronize using signals, mutexes, and
semaphores. Processes, which may execute on different machines, communicate using
RPCs and group communication. Group communication primitives support one-to-many
message passing and guarantee that messages are received in the same order by different
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processes. This particularly simplifies the programming of consensus algorithms and is
efficient when the underlying hardware directly supports broadcast between processors.
Processes may also communicate through distributed shared memory. Each processor
maintains its own copies of memory regions it is sharing. Writes to these regions are han-
dled by broadcasting to all affected processors. Processes are created and managed by
RPCs to servers.

$.4.2 CAPER

CAPER ([Sugla89] is a programming environment for parallel applications. It is suitable
for message passing multiprocessors, with an implementation described for the HPC/
VORX [Gaglianell89). This machine uses a general-purpose architecture where process-
ing power is added in the form of multiprocessors and workstations, and interconnection
bandwidth is added in the form self-routing cluster switches arranged in any topology
(with an incremental hypercube topology actually in use). CAPER Applications are
described by a graph whose vertices represent parallel algorithms and dataforms (data
transformation routines). These are joined by lines which indicate the flow of data. Hierar-
chical expansion of the graph is supported. Dataforms restructure and distribute data for
parallel algorithms. The number of processors to be used for executing algorithms and
dataforms is specified on the graph. A program is described by selecting these elements
from libraries and connecting them, with the possibility of coding and adding new ele-
ments to the library. The runtime system dynamically establishes channels between ele-
ments as they are needed. Data is then transmitted over channels using the underlying
message system. A planned extension to CAPER would allow processes to share virtual
memory.

543 CONIC

CONIC [Kramer85,Magee89.Kramel90] supports the development and execution of dis-
tributed software in a mixed host and target environment. It is based on a model of asyn-
chronous processes communicating by message passing. CONIC provides two languages:
a module programming language and a configuration language. Modules are parameter-
ized sequential programs (i.e. processes) which communicate by sending ressages
through exitports and receiving messages through entryports. Message passing is asyn-
chronous. Primitives include send, reply, and receive. The binding between ports is speci-
fied using the configuration language. Modules are structured into a hierarchy of group
modules. The top-level group modules of a distributed application, logical nodes, are the
basic software units which are allocated to processors. A logical node may be executed as
UNIX process on a host machine, or directly under the CONIC executive on a target
machine. The configuration language can launch new distributed applications or modify
applications which are already executing. CONIC also has facilities to support data con-
versions for messages sent between machines having different data representations. When
required, such conversions are performed automatically at the destination machine.
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544 EMPS

EMPS [Dijk91] provides a set of hardware modules which can be arranged into various
physical configurations to build a parallel computer system. A hierarchical scheme is used
for the interconnection of processors. The two lowest levels support communicativn
through shared memory over cluster and system buses. LANs are used for the intercon-
nections of system buses. Kemel software handles process management and message
passing between processes. Message passing and RPCs are provided transparently
between processes at different processors. Message passing uses the rendezvous. Pro-
cesses executing on processors sharing physical memory may also interact through that
memory, including the use semaphores for synchronization and shared data.

5.4.5 Enterprise

Enterprise [Wong92] supports distributed programming for a network of workstations. An
ordinary C program is parallelized by graphically associating its function definitions with
different icons. Its source code remains unchanged. The types of icons and their intercon-
nection specify the parallelism of a program, such as pipeline and fixed or dynamic pools
of worker processes. The Enterprise runtime system cre s processes to execute the func-
tions associated with icons. Enterprise inserts extra code for RPCs to pass parameters and
return values between processes, thus relieving the user from having to explicitly specify
interprocess communication. The runtime system varies the number and mapping of pro-
cesses based on network conditions and program behavior. New worker processes, for
instance, can automatically be started when work piles up for a pool of workers.

5.4.6 Transputer Systems

The Transputer family of processors and an associated software environment are commer-
cially available from INMOS. As well as providing a complete environment for the devel-
opment of parallel software, these products have been used as a starting point for higher
level environments and experimental systems. The first generation of Transputers, some
derived works, and the recently announced second generation of Transputers will be con-
sidered.

5.4.6.1 First Generation

Transputers [Graham90),[Carlini91] may be arranged into arbitrary networks using high
speed serial links, subject to the limitation that each processor has a maximum of four
serial ports. Crossbar switches are also available. These are typically used to allow off-line
reconfiguration without changing physical connections. It is also possible to dynamically
route messages at runtime through a crossbar by setting up an appropriate control system.
Transputers provide complete hardware support for the scheduling of processes and mes-
sage passing between processes. Transputers have been specially designed to execute
Occam (more recently Occam2), a concurrent programming language inspired by Hoare's
CSP. Channels are declared between processes. Each channel has exactly one sender and
one receiver which synchronize (rendezvous) every time a message is exchanged. A major
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limitation is that only processes at the same Transputer or two Transputers which are
directly connected by a serial link may exchange messages. Furthermore, only two chan-
neis may be mapped to each serial link, one for each of the link’s two directions. Informa-
tion on the mapping of processes is contained within an Occam program. It should be
emphasized the preceding functionality is provided directly by hardware executable
instructions. The limitations mentioned have been removed by higher level environments
provided by runtime software such as TOPS (to be described shortly).

54.6.2 Parallel C

Parallel C (Graham90, pp. 76-84) from 3L Lud. provides a C programming environment
for Transputers. Programs are structured as a collection of tasks. Connections between
input and output channels of tasks are described in a configuration file. The configuration
file also describes the physical topology of the Transputer network and the mapping of
processes to Transputers. A runtime library provides send and receive functions for mes-
sage passing between tasks. As with message passing under Occam on the Transputer,
rendezvous is used. The code of a task contains no fixed references to other processes.
Message destinations are specified using local variables which the runtime system initial-
izes. The runtime library also includes functions for thread creation and synchronization.
A task may spawn threads dynamically while it is executing, but all threads of a task exe-
cute on the same Transputer. Variables may be shared by threads in the same task.

54.63 TOPS

TOPS [Hubertus90] is a distributed kernel for Transputer systems. It provides a new pro-
cess model and extends the message passing system. Each process is the sole owner of a
collection of ports (message queues) through which it may asynchronously receive mes-
sages. Other processes may send messages to these ports. The TOPS kemel provides a
higher level message passing model than Occam. RPCs and broadcasting are supported.
Additionally improvements over Occam are that processes on non-adjacent stations may
communicate and that serial links are no longer limited to only two channels. This allows
all mappings of a process network to a transputer network to be realized.

54.64 T-Rack

T-Rack [Boianov91] is a reconfigurable Transputer network developed at Manchester
University. A shared memory subsystem was designed to support higher bandwidth
exchange of messages between Transputers. The subsystem is compatible with Occam
message passing and therefore supports that programming environment. Transputers are
arranged in clusters of four on a single board. Transputers on the same board communi-
cate by passing messages through shared memory, while Transputers on different boards
communicate via serial links.

5.4.6.5 Second Generation

The second generation of the Transputer family [Carlini91, pp. 182-206] removes the lim-
itations mentioned earlier (Section 5.4.6.1) through improvements to the hardware, as well
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as providing numerous other improvements in terms of performance and convenience.
Most importantly, it allows all mappings of a process network to a transputer network to
be realized (with the addition of an interconnection network). A new processor, the
T9000, allows many virtual channels to be multiplexed on a single link. This allows any
number of processes. which still must be at adjacent stations, to communicate over a sin-
gle link. However, interconnection networks may be built between T9000s using the new
C104 routing chip. Processes at stations which are not directly linked may communicate
using messages which take one or more hops through the interconnection network. All of
this support is provided directly in hardware, with the possibility of adding runtime soft-
ware for further extensions.

5.5 Comparison and Discussion

The preceding systems were selected as ones having major goals in common with NetKer-
nel. Comparisons will now be drawn between these systems with respect to their goals and
the approaches taken to achieve them. Architecture, interprocess communication, pro-
gramming-in-the-large, and mapping will be considered.

The NetKemel hardware model particularly resembles that of Amoeba, Conic, Transputer,
and EMPS. In all of these, software may be executed on different arrangements of taiyet
processors, which are controlled from one or more hosts. As a distributed operating sys-
tem, this is mainly a matter of generality for Amoeba. For the others and NetKernel, itis a
primary concemn that the physical network can be arranged into a configuration selected
on the basis of enhancing the performance of a particular concurrent program. This is
especially appropriate for embedded systems where a physical network is dedicated to the
execution of a single program over its lifetime. In contrast, the processors of an Amoeba
system will be arranged to provide good performance in general for a wide range of differ-
ent programs and users. Enterprise is a tool for making use of idle workstations in a net-
work, so it does not consider target systems. The emphasis for Amoeba, Enterprise, and
CAPER is on providing a general-purpose environment for a fixed arrangement of proces-
sors, although the actual arrangement may vary from site to site. Any virtual topology can
be realized at a site, but the hardware is almost never rearranged to provide a more effi-
cient physical topology for user programs.

Amocba, T-Rack and EMPS describe hardware in which processors may share memory.
Amoeba and EMPS allow processes to communicate directly through shared memory. In
EMPS, processes which communicate through shared memory must be mapped to sta-
tions which actually share physical memory. Amoeba emulates shared memory between
processors when necessary, so no such mapping constraints are introduced. T-Rack does
not include shared data in its programming paradigm, but uses the common memory to
achieve faster message passing. This is the primary benefit envisioned for NetKemel once
shared memory has been implemented. The presence of links of varying performance (i.e.
serial links and shared memory) provides a more interesting experimental environment for
mapping. Processes which exchange messages at relatively high rates can be clustered
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onto processors sharing memory for better performance. It is anticipated that NetKemel
processes will also be allowed to communicate directly through shared memory in special
cases. The decision to do so, however, should not be made lightly since it introduces map-
ping constraints on processes.

All of the systems including NetKernel make use of message passing to exchange data
between processes. Amoeba and Enterprise do not allow user processes to directl, send or
receive messages, but instead provide RPCs which are built on top of an underlying mes-
sage system. As Tanenbaum suggests, this results in more comprehensible concurrent pro-
grams [Tanenbaum92, p. 604). The remaining systems make send and receive primitives
directly available to the programmer. Except for the Occam and Parallel C Transputer
environments, a reply primitive is also available. This allows the realization of client-
server relationships and RPCs. Other runtime systems for the Transputer, such as TOPS
make reply available on that platform. The send primitive in Conic, TOPS and NetKemel
is asynchronous, while it is synchronous in Occam and Parallel C. Amoeba also supports
group communication. Of the other systems considered, only TOPS has any support for
One-to-many message communication, providing a broadcast primitive. However, one-to-
many communication between processes is also possible on EMPS (and Amoeba) through
shared data.

CAPER, CONIC, NetKemel, and Parallel C support programming-in-the-large [DeRe-
mer76]. This allows concurrent programs to be built by specifying connections between
software components. No changes need to be made to the source code of components in
order to incorporate them into different programs, unless the functionality needs to be
changed. A new component may be developed when no satisfactory component already
exists. An essential feature of these systems is that the code of a process contains no direct
references to the processes with which it communicates. Message passing operations are
specified in terms of local entities of processes, such as input queues and outlets (NetKer-
nel), entryports and exitports (CONIC), or CHAN variables (Parallel C). A graph descrip-
tion contained in a configuration file is used to describe how processes are connected
together to form a concurrent program. CAPER and CONIC allow for hierarchizal
descriptions, which NetKemel does not presently support. The runtime system is respon-
sible for establishing the specified connections between processes so that they may com-
municate. The other systems contain explicit references to processes within the code of
processes, so they do not directly support the construction of concurrent programs by
interconnecting library components without the modification of any source code. For
RPCs, particularly as in Amoeba and Enterprise, users may make use of library compo-
nents simply by including the appropriate function calls in their code. Other approaches
such as named channels (Occam) and process identifiers (EMPS and TOPS) require
greater effort to maintain the appropriate linkages between processes in their code,
although runtime schemes to initialize variables with identifiers as in Parallel C could be
added. Some advantages of allowing user code to directly manipulate process identifiers
are that it 1) provides a way to identify processes dynamically spawned by user processes
at runtime, and 2) allows references to processes to be easily exchanged between pro-
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cesses. Because CAPER, CONIC, NetKernel, and Occam are conccr J with mainly
static networks of processes, these issues are not major concems.

Occam, CONIC, Parallel C, and NetKernel provide several different, but equally power-
ful, mechanisms for a process to wait non-deterministically until a message arrives on any
channel of a set of input channels. CONIC uses a select statement in which alternative
channels and corresponding actions are declared. The Occam ALT statement is similar,
Parallel C requires that a process associate a different thread with each channel. The Net-
Kernel Wait() call specifies alternatives as terms of a disjunction. The use of boolean
expressions relating to input queues for a blocking wait primitive is unique to NetKermnel.
It allows synchronization of several channels to be expressed particularly compactly. This
feature has been included to specially support the future exploration of programs com-
piled from a design notation based on Petri nets (Section 6.2.1).

Amoeba, CAPER and Enterprise automatically select processors for processes at runtime,
with optional provisions for users to explicitly specify processors when desired. The auto-
matic selection of least loaded stations is highly appropriate since these are general-pur-
pose systems where multiple users are likely to run programs at the same time. Amoeba
and Enterprise monitor loading throughout the network and select the least loaded sta-
tions. Conic, EMPS, NetKermel and the Transputer require that stations be selected for
each process prior to runtime (i.e. mapping). This approach is appropriate when a system
is being used to execute a single program. In this case, no prior load is present to influence
the selection of stations. It is then more appropriate to base the mapping on structural and
performance matching between the concurrent program and target hardware.

Of the systems considered, CONIC, CAPER, NetKemel and Parallel C provide environ-
ments for programming-in-the-large, allowing programs to be constructed by intercon-
necting software components. Program code is associated with components (i.e.
processes) and need not be changed when components are reused in different programs.
Of these, CAPER differs in that it does not promote a reconfigurable physical network nor
does it encourage the user to explicitly select the mapping for concurrent programs. NetK-
ernel bears the most similarity to CONIC and Parallel C. Of these, Parallel C is distin-
guished by synchronous message passing and lack of a reply primitive, needed for general
client-server relationships. Parallel C and NetKemel do not support hierarchical descrip-
tion of the process graph as CONIC does. But they do provide finer control over the map-
ping of processes, allowing the target station for each process to be individually identified.
In CONIC, the top level components of the hierarchical description are mapped to sta-
tions. All sub-components of a top level component are therefore mapped to the same sta-
tion. NetKemel emphasizes flexibility in mapping by separating the descriptions of the
physical network, software network, and mapping. CONIC and Parallel C mix aspects of
these descriptions into a single configuration file (although it would be relatively trivial to
generate the single file from separate descriptions).
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chapter 6 Conclusions

6.1 Conclusions

Chapter 1 motivated and established the basic approach for NetKernel. An asynchronous,
message passing network of processes executing on parallel hardware was selected. The
NetKernel paradigm was presented in Chapter 2. In particular, the concepts of software
network, physical network, and mapping were defined. Chapter 3 described the design and
implementation of the NetKernel paradigm on M6800O target stations available in depart-
ment. The NetKemel software runs on each station in the physical network. Its design
consists of two parts: a microkernel and a collection of kernel processes. Together, these
provide facilities for local process management and transparent distributed interprocess
communication. Chapter 4 presented the design and implementation of workstation based
development tools which are used in conjunction with NetKernel. HIP and Script Genera-
tor support loading, execution, and control of a software network on a physical network.
Chapter 5 described some systems with similar goals to NetKernel and compared these
approaches.

The paradigm, design, and implementation of NetKernel have been presented. This consti-
tutes the initial effort in the development of an experimental platform for concurrent soft-
ware. Some simple test programs presented in Appendix C demonstrate that the
operational requirements (Section 2.2) for NetKernel have been achieved. These require-
ments were to support interprocess communication and synchronization, and to provide
flexibility in the mapping of concurrent software to parallel hardware. The ability to
achieve different levels of performance through different mappings has been demonstrated
(Section C.2). Although our platform is not high performance in any sense, it does provide
speedup for certain granularities of concurrent programs. We are confident that it can be
used to explore some general issues in concurrent systems that will be applicable to more
state of the art parallel computers. In particular, a primary motivation for NetKemel is to
provide a software environment for the execution of programs derived from a design nota-
tion based on Petri Nets (discussed further in Section 6.2. 1). Having achieved our opera-
tional requirements, NetKernel now provides such an environment.

6.2 Future Work

There are many possibilities for extending and improving NetKernel. But NetKemel is
now ready to serve its intended purpose as a software environment for the execution of
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higher level net-oriented paradigms. A design notation based on Petri Nets is of particular
interest. This should now be pursued. Then, based on exp: ‘ence in that effort, the most
pertinent extensions and improvements can be determined and added to NetKernel. Some
ideas concerning our approach using Petri Nets will be presented. The related areas of per-
formance prediction and mapping are then considered. Finally, an assortment of possible
extensions and improvements to NetKernel are discussed.

6.2.1 Design Notation Based on Petri Nets

We are interested in using NetKemel to explore a design notation based on Petri Nets. The
flexibility of mapping provided by NetKemel and the form of the wait() system call were
conceived specifically to support this endeavour, The motivation for a design notation
based on Petri Nets is discussed below. In order to execute these designs in software using
NetKernel, a compiler is required which outputs NetKernel programs from J-net designs.
We consider some issues of this comilation.

For a general introduction to Petri Nets, the reader is referred to [Murata89]. Petri Nets are
well known as a powerful modeling tool for representing concurrency and non-determin-
ism. The design notation we are considering, J-nets, has been proposed in [Joerg91]. To
briefly summarize the notation, processing functions are carried out in places of the net.
Places may also be used purely for the storage of tokens. Places are interconnected by arcs
and transitions. Data tokens and control tokens flow along arcs. Transitions serve to syn-
chronize the flow of tokens by firing when all incoming tokens are available. Arcs may
also provide control operations, such as resetting a place to empty. Design using J-nets
requires 1) formulation of a J-net, and 2) description of the processing performed by
places in the net. The J-net provides an overall structural description of the design. The
processing functions may be described in various ways, such as program code, logic, or
circuit designs.

One of the motivations behind J-nets is scalability of design. Once a design has been
expressed as a J-net, it is mapped to physical resources for implementation. The design
may be adjusted to meet different constraints (eg. performance) through a new mapping
without any need for redesign. J-net notation is suitable for both hardware and software,
so mapping may include the allocatior. ¢ processing functions to both dedicated VLSI
circuitry and to programs executing on processors. Compilers will be used to generate the
circuitry and/or software associated with a mapped design. An exciting aspect of this
approach is that a design expressed as a J-net may be compiled into a mixed implementa-
tion of custom digital circuitry and software. The compilers could automatically generate
the interface for exchanging information across the hardware/software boundary. The
boundary may be adjusted through diffcrent mappings.

Figure 28 illustrates a direct compilation of a Petri Net fragment into a NetKernel program
(note that J-net notation has not been used here—ordinary Petri Nets will suffice for these
examples). The approach taken is to convert each place in the net to a corresponding Net-
Kemel process, referred to as a place-process. Each conflict set (of transitions) of the net

-94.



./ )
Key for Petri Net (above): /

Place (performs processing function @
in design notation)

Arc (carries tokens in direction of

arrow in design notation) pp = place process
Transition (synchronizes token flow in csp = conflict set process
design notation)

Figure 28 Compiling a Petri Net design description into a NetKemel software
network

a) A simple Petri Net
b) A corresponding NetKernel software network.

is also converted to a corresponding process, referred to as a conflict-set-process. A con-
flict set is a set of transitions whose firing may conflict with each other. The flow of tokens
in the net directly corresponds to the flow of messages in the software network. In this
example, the two transition may conflict, so they are mapped to a single conflict-set-pro-
cess, csp, in Figure 28b.

Assuming that the processing functions of the Petri Net places are described by code seg-
ments, the compiler would insert these segments into code templates which handle the
message operations associated with token flow. These templates then provide the code for
the place-processes of the software network. The code for transition sets is automatically
generated to preserve the semantics of the transitions contained in the design notation. In
Figure 28, the software network contains outlets corresponding to the directed arcs of the
Petri Net and also in the reverse direction of the arcs. This allows for flow control in soft-
ware networks. Places in J-Nets, for instance, have a capacity of 1 tcken. A process-place
sends a message to its source conflict-set-process to indicate when it is able to accept
another token.

Petri Net semantics imply that a transition fires whenever all of the places connected by
arcs towards the transition (i.e. input places) contain tokens. An additional limitation may
be imposed that all output places of the transition must be empty. The NetKemel system
call wait() has been specially designed to support these semantics for conflict-set-pro-
cesses. Using the compilation scheme of Figure 28, the conflict-set-process receives mes-
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sages corresponding to tokens from all input places. It also receives “ready” messages
from empty output places. By using the disjunctive normal form of the wait() call, the pro-
cess can be activated when any of its associated transitions are ready to fire. For Figure 28,
csp would use the system call wait((14244)v(24345)) to wait until either ¢/ or 12 is ready
to fire. Satisfaction of the left term indicates that ¢/ can fire, whereas the right term indi-
cates that 2 can fire.

a) b)

*

oFe
b &

Figure 29 Compiling dy collapsing

The preceding example illustrates a very direct compilation from J-Net design to NetKer-
nel program. This scheme results in NetKernel programs with high overhead if many pro-
cesses are mapped to the same station. The overhead results from the exchange of
messages and context switching between processes. A more efficient approach would be
to collapse portions of a net into processes, as shown in Figure 29. Criteria for selecting
the boundaries need to be determined. One reasonable criterion is that all of the transitions
of a conflict set should be collapsed into the same NetKemnel process.

[Biitler90] describes a distributed Petri Net simulator implemented using Occam on
Transputers. A variant of Predicate/Transition nets [Genrich87] is used which allows data
to be associated with tokens and operated upon inside transitions (in contrast to J-nets,
where processing is associated with places). A separate process is used for each place and
each transition. A distributed scheme arbitrates between conflicting transitions. The
Transputer’s low overhead for context switching and message passing is conducive to this
approach. Biitler has developed configuration tools which select mappings and hardware
configurations using a simulated annealing algorithm.

6.2.2 Performance Prediction and Mapping

NetKemel can be used as a tool to verify performance prediction and mapping techniques
for concurrent software on parallel hardware. Performance prediction would provide an
estimate of the performance of a software network for a particular mapping to hardware.
The performance might be described in terms such as throughput, response time, or total
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execution time. An accurate prediction of performance avoids the need to experimentally
measure the performance of mappings, particularly bad mappings which do not come
close to meeting objectives.

Mapping techniques select a mapping which satisfies performance objectives on available
hardware. Having designed a software network, for instance, we might wish to determine
a mapping which provides a certain throughput upon any configuration of available hard-
ware whose total cost does not exceed some figure. Ideally, a mapping technique would
either determine a satisfactory mapping and physical configuration, or indicate that none
exists. The general mapping or module allocation problem is shown to be NP-complete in
[Fernandez89] (some special cases which do have polynomial time solutions are also dis-
cussed). As a result, heuristic methods for mapping are being proposed as in [Sinclair87).

Performance prediction and mapping are general issues in concurrent software. These
investigations are relevant with respect to the Petri Net design notation described previ-
ously. The scalability of J-net designs rests on being able to map J-nets to the physical
resources available for implementation, whether those resources are custom circuitry, pro-
cessors executing software, or both.

6.2.3 Improvements and Extensions to NetKernel

Various improvements and extensions which could be made to NetKemne!l will be consid-
ered. The subjects of zdditional hardware, hierarchical software network descriptions,
graphical interfaces, improving serial link performance, error recovery, new message sys-
tem primitives, flow and congestion control, and process migration are touched upon.

Support for new hardware in the physical network would allow for more interesting map-
ping problems to be considered. MPAXS is ultimately envisioned as a scalable, reconfig-
urable parallel computer built from hardware components with different levels of
performance. To this end, work is currently underway to develop a shared memory sub-
system allowing up to four M68000 units to access a common memery. The memory wili
be used for higher bandwidth message passing between the units than is possible over
serial links. The incorporation of a new link type requires that a new Link Device Driver
(LDD) process be written and added to the kernel.

Eventually, the kernel should be ported and/or rewritten for different processor types {both
target and host). This would provide a heterogeneous, mixed host/target environment. The
Repulse game (Section C.3) is an initial demonstration of a mixed host/target NetKernel
system. But the Next prototype has not been fully integrated with the development tools,
particularly the Host Interface Program (HIP). Developing NetKemel on the Sun worksta-
tion would be quite useful since the Sun could then be incorporated into physicai networks
as a station rather than just an I/O device. This would make it possible to run multiple HIP
sessions from a single Sun, as well as providing a mixed environment. Different processor
types often have incompatible data formats. The issue of data conversion needs to be con-
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sidered. One approach would be to insert conversion processes at appropriate places in the
software network.

The description of software networks could be extended to allow the use of hierarchy. It
would be convenient if a description of a network of processes could be encapsulated and
then included into other designs simply by referring to the encapsulated description. It is
unclear whether the hierarchy should be flattened at runtime or maintained by the kernel.

Currently software network descriptions, physical network descriptions, and mapping
descriptions are created manually using a text editor. Graphical editors would provide a
more convenient way of generating these descriptions.

The packet format used for messages over the serial links could be optimized to eliminate
a few bytes, resulting in less overhead. The network layer header could be changed to
allow for packets sizes of greater than 255 bytes. Running the serial links at a rate higher
that 9600 baud could improve their packet throughput, although the cpu overhead of ser-
vicing interrupts would soon become the limiting performance factor.

Error handling and recovery need to be considered further. Allowing messages to be prior-
itized could be useful here. Currently, there is no way for a nonlocal message to receive
preferential treatment as it propagates through the physical network. It is possible for pro-
cesses to offer preferential treatment to arrived messages by the order in which they ser-
vice their input queues.

More message passing primitives could be added. Group communication or at least some
primitive for one-to-many message communication could be added. A simple although
inefficient altemnative for one-to-many communication is to develop a library of “broad-
caster” processes which receive messages and then send them to many destinations. These
could then be included in software networks whenever one-to-many communication is
needed. A process was used for this purpose in the Repulse game (Section C.3).

NetKemel provides no direct treatment of flow control between processes or congestion
control of network traffic (Section 3.4.2). The current approach is that congestion is
avoided through choice of an appropriate mapping. Flow control may be handled similarly
or mechanisms may be built into processes as in SYNTH (Section C.2). Or flow control
could be added to NetKernel. The obvious approach of flow control between all pairs of
communicating processes introduces more overhead than necessary. SYNTH, for
instance, is more efficient in that it uses only one outer feedback loop for flow control of
the entire software network (Figure 31b).

Process migration could be added, although it would be terribly slow over our current
serial links. Higher bandwidth links such as shared memory might make this more feasi-
ble. The code for processes could also be placed into shared memory, making no transfer
of code necessary to migrate processes between stations sharing memory. The drawback
of this approach is that there is much more contention for shared memory when it contains
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program code. For this reason it is preferable to use shared memory only for the exchange
of messages (and possibly for data shared between processes).

Some features lacking from NetKernel which would make it a more attractive environ-
ment for programmers have been mentioned above. It should be kept in mind, however,
that NetKemnel has been designed to execute on simple processors having very little mem-
ory. The benefits of new features should be weighed against their cost in terms of memory
and cpu utilization. The approach until now has been to minimize the functionality
required at target stations, trading it off for increased complexity at the hosts where possi-
ble (eg. Host Interface Program). Since NetKemel is intended to execute programs com-
piled from net descriptions, it is of little value to add functionality for the convenience of a
NetKernel programmer. If this emphasis shifts and programs are being developed directly
for NetKernel, then such improvements would be more justified.
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Appendix A Glossary

Connection

A connection joins an outlet of a process to an input queue of a different process. Connec-
tions are established dynamically at runtime, usually after the processes of a software net-
work have been loaded and before they are started. When a process sends a message
through one of its outlets, the message gets deposited into the input queue to which the
outlet is connected. Note: As used here, the term connection does not have the same impli-
cation as in telecommunications, where it implies that communication resources or band-
width have been reserved between a sender and receiver.

Handler Process

A handler is a special kind of process on M68000 targets stations which can service
exceptions. Hence they are used to implement device drivers. Handlers are subject to cer-
tain restrictions compared to ordinary processes in order to reduce the overhead associ-
ated with exception servicing.

Host

A hcau is typically a workstation running an operating system with access to a file system.
Hosts are used for running development tools and controlling physical networks. Contrast
to target. Currently Sun-3 and NeXT workstation hosts are supported.

/O Device

/O devices are attached to stations in the physical network. NetKemel programs may
receive input from an /O device or send output to it through a device driver process run-
ning at the same station. Examples include terminals, printers, and disk drives (of these,
only terminals are currently in use). Processors which do not execute NetKernel may also
be included in the physical network as /O devices. This is useful for workstations and
special purpose processors, and is currently being used for Sun workstations.

Kernel Process
Kernel processes are part of NetKernel. They are started at the same time as the kernel.
They are contained in either ROM or start-up files, depending on the implementation.

Link

A link is hardware which allows direct communication between two or more stations.
Links are classified as either point-to-point or multiple access.
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Mapping
A mapping is an allocation of the (abstract) elements of a software network to the (con-

crete) elements of a physical network.

Multiple Access L'
A multiple access unk provides direct communication between two or more stations. This

link is distinguished from a point-to-point link in that the sender must explicitly select a
receiver. Ex. common memory, Local Area Networks (Ethernet, token ring, etc.).

Operator
An operator is a person who controls the execution of NetKernel software networks.

Ordinary Process
An ordinary process executes under the NetKemel paradigm with access to all the primi-

tives defined by the paradigm. This is in contrast to a handler process, which is a restricted
form of process available on M68000 targets.

Physical Network
A physical network is an arrangement of interconnected hardware. A physical network
contains stations, links, and /O devices.

Point-to-Point Link

A point-to-point link provides direct communication between exactly two stations. These
links are distinguished from multiple access links in that there is no need for the sender to
explicitly select a receiver on the link. Ex. RS232 serial link.

Process

A process is a sequential program in execution. NetKernel associates a set of input queues
and a set of outlets with each process. Processes are classified in two ways: user vs. kernel
and ordinary vs. handler (M68000 only).

Software Network
A software network contains processes and connections. Connections join input queues of
processes to outlets of processes.

Station
A station is a (single processor) computer system which runs the NetKemel software.

Target

A target is a relatively simple (single processor) computer system. Targets do not usually
run an operating system and may be as simple as a processor, memory, and minimal
peripherals (ex. a communications interface peripheral). Targets are useful in a physical
network for guaranteeing real-time response and providing inexpensive computational
power. Contrast to host. Currently M68000 targets are supported.

User Process
User process are developed by users, in contrast to kernel processes.
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appendix B Selected Aspects of the NetKernel
Interface

This appendix provides some details on our M68000 implementation of NetKernel. Sec-
tion B.1 presents the message passing system calls available to NetKemel processes. The
command interface for one of the kemnel processes, Process Manager, is summarized in
Section B.2. The Host Interface Program (HIP) commands for process management, sum-
marized in Section B.3, provide a higher level interface for managing processes.

B.1 Function Prototypes for Message Passing System Calls

The library MPO.a provides a basic but complete set of system calls. Prototypes for the
message passing calls of this library are shown below. Other calls for dynamic memory
allocation, generating console messages, etc. have been omitted for brevity. Functions
from this library are prefixed by ‘MPO_’.

The library MP1.a builds on these calls to provide higher level calls with a more conve-
nient interface. For instance, MP1.a adds timeout options and composite message opera-
tions (eg. wait-and-take, RPC). Calls of this library are prefixed by ‘MP1_’. Only three of
these calls have been shown for brevity.

// Send a message through an outlet. Parameters (below) will be summarized for this call only.

/* Parameters: outlet is the outlet number; data points to the message; length is message length in bytes;
freeFlag indicates whether the message memory is still needed by the caller process; replyQid is the queue
number of the caller to which replies should be sent; confirmQid is presently unused, but may eventually
support confirmation of delivery; messageNumber is used to identify replies to the message being sent. */

int MPO_sendOutlet(int outlet, void *data, int length, int freeFlag, int replyQid, confirmQid, int
*messageNumber);

/I Reply to a previously received message. The header taken with the previous message is passed.

int MPO_reply(void *header, void *data, int length, int freeFlag, int replyQid, confirmQid, int
*messageNumber);

// ' Wait until an expression (which refers to the input queues of the caller) is satisfied.
int MPO_waitExpression(struct waitExpression *w);

// Take a message from an input queue.
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int MPO_take(int queueMask, int policy, void **header, void **data, int *length, int *qgid, int
*replyToNumber, int *replyFlag);

// Examines input queues of caller specified in examineMask, returning those which are ready in readyMask.
int MPO_examine(int examineMask, int *readyMask)

/I Handler processes use MPO_enable() and MPQ_disable() instead of MPO_wait(). These two calls

/l enable and disable calling the handler’s service procedure when specified input queues are nonempty.
int MPO_disable(int queueMask);

int MPO_enable(int queueMask);

Selected Calls from MP1.a

/! Wait with optional timeout. Messaging with the Timer process is used within the call.
int MP!_waitExpression_t(struct waitExpression *w, int timeout, int temporaryQid);

// Shorteut to wait for and take a message. But the wait condition is limited to the form MyvMv.. v M,

int MP1_wait_take(int queueMask, int policy, int timeout, int temporaryQid, void **header, void **data,
int *length, int *qid, int *replyToNumber, int *replyFlag);

// Remote procedure call (send a message through an outlet, wait for a reply, and take the reply).

int MP1_rpc(int outlet, void *data, int length, int freeFlag, int temporaryQid, int replyQid, int timeout, void
**replyHeader, void **replyData, int *replyLength, int *messageNumber);

B.2 Command Interface of the Process Manager

The Process Manager at each station accepts command messages in an ASCII format,
consisting mainly of hexadecimal numbers. For every command received, Process Man-
ager returns a reply message. The reply message starts with a two digit error code, fol-
lowed by any additional information returned by the command. An error code of ‘00’
indicates that the command was successfully performed.

An explanation and example are provided for the first command. The remaining com-
mands of Process Manager are simply listed along with their format. Other kernel pro-
cesses accept different commands using a similar format. Process Manager and Debugger
are the two processes with the largest repertoires of commands. Parameters marked with
“*" may be repeated zero or more times.

Allocate: 00 <forcePid> <numberOutlets> <numberlnputQueues> <queueLength/queuePolicyCode>*
Explanation: Allocates a new process with the specified number of input queues and outlets. For each input
queue, its length and a policy code indicating the action upon overflow is specified. A particular process id
(pid) may be requested for the process in <forcepid>. If <forcepid> is zero, then Process Manager selects an
unused pid.

Example: 00 00 02 04 0300 0300 0600 0700. Allocates a new process with 2 outlets and 4 input queues. The
queues have lengths of 3, 3, 6, and 7 messages, respectively. All queues are declared to use the default
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policy, ‘00", which discards messages arriving at a full input queue. The outlets and input queues are both
referred to using id numbers starting at zero in other commands below.

Change Priority of Process: 05 <pid> <newPriority>

Connect Outlet to Input Queue: 03 <sourcePid> <sourceOutlet> <destPid> <destQid> <numberHops>
<hopVirtualLinkNumber>*

Continue Process: 03 <pid>

Kill Process: 04 <pid>

List Processes: 08

Report Connection of Process Qutlet. OD <pid> <outlet>

Report Memory Regions of Process: 47 <pid>

Report Status and Name of Process: 09 <pid>

Report Outlets and Input Queues of Process: 0A <pid>

Report User-Defined Codes of Process: 0C <pid>

Report User Memory Space: 48

Reserve Memory Regions of Process: 46 <pid>

Set Initial Context of Process: 40 <pid> <initialPC> <initialUSP> <initialA5> <initialA4>

(The Debugger process can be used to define the initial context more completely when needed).
«et Process Nume: OE <pid> <processName>

Set User-Defined Code of Process: 0B <pid> <codeNumber> <codeValue>

Start Process: 01 <pid>

Suspend Process: 02 <pid>

B.3 HIP Commands for Process Management

The Host Interface Program (HIP) builds on the Process Manager commands to provide a
higher level interface for the manage...ent of processes. HIP commands have a friendlier
mnemonic format, and refer to objects by user-defined names rather than id numbers.
Some of the names are declared by commands, while others are taken from description
files. While processing a command, HIP transparently refers to the current Physical Net-
work Description (PND) and to Process Type Description (PTD) files, both of which con-
tain declarations of user-defined names. A single HIP command may result in the
generation of several commands to Process Manager.

An explanation and example are provided for the first command. The formats for a num-
ber of other selected commands are listed. The nature of many commands is evident from
the leading keyword. Modules of commands supporting activities other than process man-
agement may also be added to HIP.

ALLOCATE <newProcessName> <newProcessDescriptionFileName> <stationName>

Explanation: Allocates a new process to the specified station. The process will be referred to by the user
defined name <newProcessName>. Parameters for the process are looked up from the specified process type
description (PTD) file. <stationName> must be present in the currently selected PND. Declarations in the
PTD include the number of input queues and outlets for the process, as well as the lengths and policies of
each input queue. The PTD also declares memory requirements of the process. ALLOCATE reserves
appropriately sized memory regions for the process. (The PTD also contains other information as well. This
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includes user-defined names for referring to each input queue and outlet of the process, used in the
CONNECT command. It also includes object file names, which are used by the LOAD command.)

Example: allocate master vnd/master.idf hub
Allocates a new process called ‘master’ to the station ‘hub’. Information about master is looked up from the
PTD file named vnd/master.idf. Appropriately sized memory regions are reserved for master.

ALLOCATEPID <newProcessName> <newProcessDescriptionFileName> <newPid> <stationName>
CLEARALL

CONNECT <sourceProcessName> <outletName> <destinationProcessName> <inputQueueName>
<oute>

CONNECTIONREPORT <processName>

CONTINUE <processName>

LOAD <processName>

PROCESSINFO <processName>

PROCESSLIST

PROCESSLISTAT <stationName>

PROCESSREPORT <processName>

REMOVE <processName>

SELECTPND <newPhysicalNetworkDescriptionFileName>

SETPRIORITY <processName> <newPriority>

START <processName>

STATIONINFO <stationName>

STATIONLIST

STATIONREPORT <stationName>

SUSPEND <processName>
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appendix ¢ Demonstration Programs for
NetKernel

The NetKemel programs written to date have been fairly simple tests and demonstrations
of the kernel and development tools. As such, they are quite trivial in nature. Several of
these programs and a few performance measurements are presented.

These programs informally demonstrate the operational requirements of Section 2.2. The
processes communicate and synchronize with one another (requirement B1). The map-
ping of a program’s software network to a particular configuration of hardware can be eas-
ily changed (requirement B2) by modifying the Mapping Description (MD). Through the
Physical Network Description (PND), a program can be mapped to different configura-
tions of hardware.

The results of this appendix were collected using M6800O0 stations interconnected by 9600
baud serial links (i.e. the hardware described in Section 3.3).

C.1 Ring Program and Message System Performance

In this program, a token circulates around processes arranged in a ring. This is illustrated
in Figure 30 for a ring consisting of a master and two slaves, Any number of slaves may be
used. In the case of zero slaves, the outlet of master is simply connected back to an input
queue of master.

master slave slave
=@ —s=@D—=@
‘ /
\

Figure 30 Software network for a ring consisting of a master and two slaves

To begin circulation of a token, a start message is sent interactively to the start queue of
master. The message should contain the number of times that the token is to be circulated.
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Master then forms a token message containing the number and sends it through its outlet.
Each slave simply forwards any message it receives through its outlet. The token is decre-
mented each time it returns to master. When the token reaches zero, master stops forward-
ing it and sends a completion reply to the original start message. The reply indicates that
the token has been successfully circulated the requested number of times. It is interesting
to note that multiple tokens may circulate around a ring at the same time if several start
commands are sent in rapid succession.

This program has been used to measure the performance of our implementation of NetK-
ernel. A ring consisting of master and a single slave was used. The interval between send-
ing the start command and receiving the completion reply was timed for a large number of
circulations. The throughput for local messages was determined by mapping both pro-
cesses to the same station. The throughput for messages over a single serial link was deter-
mined by mapping the processes to two different stations connected by a serial link. One
circulation of the token counted as two messages since a two process ring was used.
Results are shown in Table 7 for two different sizes of message. Case b differs in that mas-
ter and slave request that the token buffer be copied upon Send(), rather than allowing its
ownership to be transferred. In addition to data bytes, the link and network layer headers
add 32+2N header bytes for messages transmitted over serial links. N is the number of
hops the message traverses, with N=1 for case c.

Throughput (messages/second)
4 bytes of data 180 bytes of data
a. Local 176 176
b. Local with copy (and call to Free()) 130 130
¢. Nonlocal (one hop over a serial link) | 13 38
Table 7 Message throughput as measured using a ring of two processes

No detailed analysis of performance will be made, but we will quickly show that these
values are reasonable for our hardware. In case a, four system calls (Send(), Wait(),
Take(), and Free() the reply key) and one context switch are being made per message
exchange. So a performance of 704 system calls/second and 176 context switches/second
is obtained. The M68000 units execute approximately 500 000 machine instructions per
second (0.5 MIPs). Dividing this by (704+176) results in an estimate of 568 machine
instructions for each system call and context switch, which is a reasonable figure. In case
b, an extra system call per message is performed to Free() the token buffer and the Send()
call must internally allocate a new buffer every time it is called. For case c, the link perfor-
mance needs to be considered. The link packet sizes are 38 and 214 bytes for the cases of
4 and 180 data bytes, respectively. The throughputs obtained are 494 and 813 bytes/sec-
ond, respectively. A 9600 baud link with one start bit, eight data bits, and one stop bit has
a maximum throughput of 960 characters per second. So link utilizations of 51% and 85%
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are being obtained, again reasonab': figures. An additional 6 characters per message for
link protocol signaling (2 characters for each of START, END, and ACK) were omitted
from the calculations.

Several files from this example are included in Appendix D.

C.2 Synthetic Program with Mapping Examples

A simple synthetic program, referred to as SYNTH, has been written to demonstrate dif-
ferent mappings of a software network. A synthetic program is one which performs no
useful computation, but demonstrates some capabilities of a system or serves as a basis for
comparison bet'veen cases [Poplawski91]. The program presented here demonstrates that
the mapping of a concurrent program can affect its performance, and that NetKemel is
capable of achieving speedup for this particular program.

a
) 0.5 sec b)

:255ec /“@\mo.zssec st /m@\
®\m /.m@ @—m@\

A 2(3)
N

Figure 31 Software network for SYNTH

a) Basic software network b) Software network with feedback loop
added to simplify measurement

The basic software network is shown in Figure 31a. Process a is a source of input data (in
areal situation, process a might read data from some device). For each input message gen-
erated by process a, several computations and messages result as follows. Process a sends
the messages it generates to b. For each message received, process b performs 0.25 sec-
onds of computation and then sends two messages, one to c/ and one to c2. Processes c/
and c2 are identical, although they are connected differently in the software network. For
each message received, these processes perform 0.50 seconds of computation and then
send a message to process d. Process d waits for the two messages from ¢/ and c2, and
then performs 0.25 seconds of computation. It then discards the messages (in a real situa-
tion, process d might send data to some output device). All messages contain 4 data bytes.

It should be stated at the outset that the parameter values used in SYNTH were selected
such that the overhead time in running the distributed version is low compared to the com-
putation time. This ensures that the performance will improve when more processors are
used, up to a limit dependent on the amount of inherent parallelism in SYNTH. By select-
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E) Four stations arranged in a ring

Figure 32 Five mappings of SYNTH to four different physical networks

ing different parameter values (i.e. smaller time constants), it would be possible to come
up with a version of SYNTH where the best performance is on a single processor. The
overhead of nonlocal message-passing would outweigh the benefits of performing the
(shorter) computations on different stations. The selection of a good mapping must con-
sider both the benefits of parallel computation and the overheads involved in distributing
the computation. Due to its flexibility of mapping, NetKernel provides a useful tool for the
verification of experimental techniques to select good mappings.

In order to determine the maximum throughput possible for different mappings, a feed-
back loop was added as shown in Figure 31b. Process a sends N messages initially, and
then sends an additional message each time an acknowledgment is received from process
d. This is a window scheme for flow control. It has the effect of limiting the rate at which
process a produces messages so that it will not produce the (k+N)th message until input
message k has completely propagated through the software network. A window size of

=5 was used. The program is operated by sending a message to the start queue. The time
for 30 messages from process a to propagate through the software network was measured.
Results were recorded for five different mappings involving four different physical net-
works, illustrated in Figure 32. Results for each mapping are given in Table 8.
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Mapping | Ideal T Actual T | Actual Throughput= 30/T
a 45 7 0.61 T
b X ] 26 1.2

c 15 19 1.6

d 23 26 1.2

] 16 19 1.6

T = total time for 30 input messages (sec)
(All values for T are rounded to the nearest second)

Table 8 Throughput measurements for various mappings of SYNTH

The column labelled Actual T shows that the performance of SYNTH varies significantly
for different physical networks and mappings. Mappings ¢ and e provide the highest per-
formance, with ¢ being preferable since it uses fewer stations. Results for ¢ and 4 illustrate
that even for the same physical network, the mapping has an impact on performance.

The column labelled /deal T shows th: ideal value for T for with no overhead. Ideal T con-
siders only the processing times shown in Figure 31 (which were set up using empty ‘for’
loops). In practice, there is overhead time for message passing, context switching, etc.
Ideal T can be computed for SYNTH in a fashion similar to computing the execution time
for a set of data to flow through a pipeline. Mapping a is trivial since only one station is
involved. For every input message, 0.25+0.5+0.5+0.25 = 1.5 seconds of computation must
be performed by the station. For 30 input messages, the total time is (30)(1.5) = 45 sec,
which is close to the measured T of 49 seconds. For mapping b, the processes have been
mapped to two stations. While process ¢ operates on the first message, station 2 will be
idle for 0.25 seconds. The remaining component of ideal T is attributed to station 2 operat-
ing on 30 messages. So the complete expression for mapping b is ideal T = 0.25 +
(30)(0.5+0.25) = 22.75. The factor (0.5+0.25) is equal to the amount of time station 2 (i.e.
processes c2 and d) spends on each message. Ideal T for the other mappings is computed
similarly. It can be seen that the actual T for mappings b-e is significantly better than the
ideal T of the single processor case (mapping a). This indicates that the parallel version
provides speedup over the best possible single processor implementation.

C.3 Repulse Game

A simple game has been developed to test the NetKernel runtime environment. To summa-
rize the game’s operation, one to eight balls are released onto a rectangular playing field.
The field is surrounded by walls. The balls an¢ walls all repel each other. The repulsive-
ness of the balls and walls can be controlled by the player, along with the positions of
balls. A “graphical” representation of the playing field and balls is displayed on a VT100
terminal.
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Figure 33 Software network for Repulse game

Figure 33 shows the software network for a game with four balls. A process is associated
with each of the four balls (processes b1 through b4). Each ball maintains its own internal
model of the playing field and other balls. The game evolves in real time, with eacn ball
having its own time constant. Periodically, each ball process computes a new position for
itself based on its internal model. All balls need to be informed whenever a ball moves,
but NetKernel has no broadcast operation. So a Broadcaster process was used. Whenever
br receives a message, it sends a copy of the message to all balls. Each time a ball moves,
that ball also sends an output message to Outputter, which forwards the message to Termi-
nal Device Driver to update the display. The processes wait for their period to expire using
a timer (connections to Timer were omitted from Figure 33 for simplicity).

To demonstrate a mixed host/target environment, a modified version of Repulse was
developed. The outlet from Outputter is instead connected to a process 3dField executing
on a Next workstation under the prototype kernel (Section 3.8.5). 3dField displays a 3
dimensional representation of the playing field and balls within a window.
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appendix D Example Source Code and
Description Files

This appendix contains listings of several files for the Ring example of Section C.1. A
Software Network Description (SND), Physical Network Description (PND), and Map-
ping Description (MD) are included. The source code and Process Type Description
(PTD) for the slave process are also included.

The script which Script Generator (SG) generates from the SND, PND, and MD is pre-
sented last. This script is read by the Host Interface Program (HIP) to load and start the
software network.

D.1 SND, PND, MD

// ring2.snd: software network description(SND) for a ring containing one master and one slave
// This file declares the processes of the software network and their interconnection
NEWPROCESS Master vnd/master.idf; {
OUTLET OutputOut OutputTerminal Inputln;
OUTLET ToNextOut Slave FromPreviousIn;
}
NEWPROCESS Slave vnd/slave.idf; {
OUTLET OutputOut OutputTerminal Inputln;
OUTLET ToNextOut Master FromPreviousln;
}
SERVICEPROCESS OutputTerminal TerminalServiceType; {
OUTLET OutputOut Master Commandin;
}

// hubsat.pnd: physical network description (PND) for a network of two stations joined by a serial link
// The stations are referred to as hub and sat. A terminal is attached to hub.
STATION Hub vme68; {
ROUTE Hub;
}
STATION Sat vme68; {
ROUTE Hub Sat;
}
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LINK . Hub 0B Sat 09;
UNIQUESERVICE Hub_Terminal_Service TerminalServiceType; {
STATION Hub;
PID 10;
QUEUE Inputin 04;
OUTLET OQutputOut 00;
}

// ring2_to_hubsat.map: mapping description (MD) to map ring2.snd to hubsat.pnd
// Process master is allocated to station sat. Process slave is allocated to station hub.
NEWPROCESS Master Sat;

NEWPROCESS Slave Hub;

SERVICEPROCESS OutputTerminal Hub_Terminal_Service:

ROUTE Master OutputOut Sat Hub;

ROUTE Master ToNextOut Sat Hub;

ROUTE Slave OutputOut Hub;

ROUTE Slave ToNextOut Hub Sat:

ROUTE OutputTerminal OutputOut Hub Sat;

D.2 slave.c, PTD for slave

// slave.c: source code of the siave process
#include "MPO.h"

#define PREVOUS_IN_MASK 2

#define OUTPUT_OUT 0

#define NEXT_OUT |

void show(int code, char *message) {
int messageNumber;
if (code)

MPO_sendOutlet(OUTPUT_OUT, (void *)message, strlen(message)+1, MPO_NOFREE,
MPO_NOREPLY, MPO_NOCONFIRM, &messageNumber);

!

void main() {
int ret;
int size,qid, messagenumber.replyflag;
void *dptr,*hptr;

ret = MPO_init();
show(1, "*#*** Process SLAVE is running...\n");
while(1) {

ret = MP1_wait_take(PREVIOUS_IN_MASK, MPO_TAKE_ANY, MP1_NOTIMEOUT,
MP1_SYSTEM_IN, &hptr, &dptr, &size, &qid, &messagenumber, &replyflag);
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show(ret,"slave:MP1_wait_take, Q1");

ret =« MPO_sendOutlet(NEXT_OUT. dptr, size, MPO_FREE, MPO_NOREPLY,
MPO_NOCONFIRM, &messagenumber);

show(ret,"slave:MPO_sendOutlet”);
ret = MPO_free((void *) hptr);
show(ret,"slave:MPO_free, hptr");

// slave.tdf: process type description (PTD) for slave

/I This file declares input queue names, outlet names, memory regions lengths, object file names, prionity.
/I This file also refers to default.df, which contains a number of default settings.

#SUPER_FILE df/default.df;

NUMBER_INPUT_QUEUES 02;
QUEUE Systemin 00;
QUEUE FromPreviousIn 01;

NUMBER_OUTLETS 02;
OUTLET OutputOut 00;
OUTLET ToNextOut01;

SHARED_CODE_SIZE 1000;

PRIVATE_DATA_SIZE 600;

STACK SIZE  0500;

START_CODE_REGION shared;

SHARED_CODE_FILE process/slave/slave.shared. mot;
PRIVATE_DATA_FILE process/master/master.unshared. mot;
PRIORITY 2;

D.3 Script for HIP Generated by SG

// ring2_to_hubeat.hip: Loads and starts ring2.snd as described by the MD ring2_to_hubsat.map
ALLOCATE master vad/master.idf sat;

ALLOCATE slave vnd/slave.idf hub;

CONNECT master outputout hub_terminal_service inputin sat hub;
CONNECT master tonextout slave frompreviousin sat hub;

CONNECT slave outputout hub_terminal_service inputin hub;
CONNECT slave tonextout master frompreviousin hub sat;

CONNECT hub_terminal_service outputout master commandin hub sat;
LOAD master;

LOAD slave;

START master;

START slave;
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appendix E Event Log Report Showing Clock
Servicing

NetKemnel provides an option for recording timestamped events into an event log, as
described in Section 3.5.8.1. Some standard system events are predefined. The user may
define additional events by inserting traps into user code. An example of a log will be pre-
sented and some observations concerning clock servicing will be drawn from it.

The Event Log Report Generator (Section 4.5) accepts a hexadecimal memory image of
the event log. It is executed off-line on a workstation to produce a formatted textual report
of the event log. An excerpt from an example report is shown in Figure 34. A ring of two
processes (similar to Figure 30, but containing only one slave) was executing on a single
siation during this trace. Most of the standard events were disabled. Only three events
were enabled: context switches, entry to clock service routine, and exit from clock service
routine.

The TIME TO PREVIOUS SAME column indicates the elapsed time since most recent
event of the same type. This provides a convenient measure of the interval between con-
text switches, for instance. The TIME TO PREVIOUS indicates the elapsed time since the
immediately preceding event. The clock entry and clock exit events are a matching pair,
with the time in square brackets indicating the elapsed time from entry to exit. Matching
pairs are also used to measure the duration of system calls, for instance.

Pids 40 and 41 are the master and slave processes, respectively. The ‘???" indicates that
ELRG does not know the names of these processes, although it may be customized to
include that information. An estimate of the overhead for clock servicing may be made
from the log. As discussed in Section 3.5.7, the clock interrupt rate is 200/second, but
most service activities are performed on only every 10th interrupt. This is evident on the
log: The first and eleventh clock interrupts take longer to service than the others. The
bracketed service times for the clock interrupts result in an estimate of clock overhead
equal to 4.2% of cpu time. It is interesting to examine the skewing of clock interrupts,
which should otherwise arrive every 5000 microseconds. The TIME TO PREV SAME on
TICK ENTRY lines shows the interval between clock interrupts. The skewing is due to
critical sections within the system calls being made by master and slave (which are mak-
ing system calls in rapid succession since they perform no significant computation). None-
theless, no clock interrupts were lost in Figure 34 since it shows 11 clock interrupts over a
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2048 events in trace.

Trace spans 258107% microseconds, approx. 2.58 sec. or 0 min. 1 gec.
All times are in microseconds. Timestamp resolution ie 35 microseconds.
Each log entry incurs approx. 100 microseconds overhead.

EVENT  RELATIVE RAW TIMK TO TIME TO DESCRLIPTIUN
NUM TIME TIME PREV SAME PREVIOUS ITIME TO EXIT IF MATCKED)
[ ... deleted ...}
50) 89975 262112875 6975 950 CONTEXT SWITCH to pid Ox4l (?77)
51) 94850 262108000 6000 487% TICK ENTRY
52) 95375 262107475 6350 529 TICK EXIT (525)
53) 96975 262105875 7000 1600 CONTEXT SWITCH to pid Ox40 (27?)
54) 98325 262104525 3475 1350 TICK ENTRY
55) 98500 262104350 3125 175 TICK EXIT (175)
56) 102950 262099900 4625 4450 TICK ENTRY
£7) 103125 262099715 4625 17% TICK EXIT (175}
58) 103950 262098900 6975 8325  CONTEXT SWITCH to pid O0x41 (277)
59) 108825 262094025 587% 4875 TICK ENTRY
60) 109000 262093850 5875 17% TICK EXIT (175])
61) 110600 262092250 6650 1600 CONTEXT SWITCH to pid 0x40 (?:7)
62) 1161235 262086725 7300 5528 TICK ENTRY
63) 116300 262086550 7300 178 TICK EXIT [175)
64) 117250 262085600 6650 950 CONTEXT SWITCH to pid Oxdl (?77)
65) 117950 262084900 1825 700 TICK ENTRY
66) 118125 262084725 1825 175 TICK EXIT (175)
67) 123125 262079725 5175 5000 TICK ENTRY
68) 123275 262079575 5150 150 TICK EXIT (150)
69) 124225 262078625 6975 950 CONTEXT SWITCH to pid 0x40 (?77)
70) 129750 262073100 6625 5525 TICK ENTRY
) 129900 262072950 6625 150 TICK EXIT (150)
72) 130850 262072000 6625 950 CONTEXT SWITCH to pid Ox4l (?777?)
73) 135725 262067125 5975 487S TICK ENTRY
74) 135900 262066950 6000 178 TICK EXIT (175)
75) 137500 262065350 6650 1600 CONTEXT SWITCH to pid 0x40 (727?)
76) 138175 262064675 2450 675 TICK ENTRY
n 138350 262064500 2450 178 TICK EXIT (175}
78) 143375 262059475 5200 5025 TICK ENTRY
79) 143875 262058975 5525 500 TICK EXIT (500)

[... deleted ...]

Figure 34 Example output from Event Log Report Generator

span of 54525 microseconds. Lost interrupts up to a maximum of nine in a row are
detected and recorded by the microkemel, appearing occasionally. For correct timekeep-

ing, only one in ten interrupts need actually arrive, so there is little danger of any timers
falling behind.

The recording of a log entry is fairly expensive. By generating two log entries one after the
other, the overhead per entry was estimated to be approximately 100 microseconds (which
agrees with adding up the execution time for the machine instructions involved). So the
estimate for clock overhead made above is substantially greater than the overhead incurred
if clock entry and exit logging are turned off (the usual case), which works out to 2.2% of
Cpu time.
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