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ABSTRACT: The benefit of using genomic breeding 
values (GEBV) in predicting ADG, DMI, and residual 
feed intake for an admixed population was investigated. 
Phenotypic data consisting of individual daily feed in-
take measurements for 721 beef cattle steers tested over 
5 yr was available for analysis. The animals used were 
an admixed population of spring-born steers, progeny 
of a cross between 3 sire breeds and a composite dam 
line. Training and validation data sets were defined by 
randomly splitting the data into training and testing 
data sets based on sire family so that there was no 
overlap of sires in the 2 sets. The random split was 
replicated to obtain 5 separate data sets. Two methods 
(BayesB and random regression BLUP) were used to 
estimate marker effects and to define marker panels and 
ultimately the GEBV. The accuracy of prediction (the 
correlation between the phenotypes and GEBV) was 
compared between SNP panels. Accuracy for all traits 
was low, ranging from 0.223 to 0.479 for marker panels 

with 200 SNP, and 0.114 to 0.246 for marker panels 
with 37,959 SNP, depending on the genomic selection 
method used. This was less than accuracies observed 
for polygenic EBV accuracies, which ranged from 0.504 
to 0.602. The results obtained from this study demon-
strate that the utility of genetic markers for genomic 
prediction of residual feed intake in beef cattle may 
be suboptimal. Differences in accuracy were observed 
between sire breeds when the random regression BLUP 
method was used, which may imply that the correla-
tions obtained by this method were confounded by the 
ability of the selected SNP to trace breed differences. 
This may also suggest that prediction equations derived 
from such an admixed population may be useful only in 
populations of similar composition. Given the sample 
size used in this study, there is a need for increased feed 
intake testing if substantially greater accuracies are to 
be achieved.
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INTRODUCTION

A large number of genomic tools have become avail-
able because of the rapid advancement of DNA marker 
technology after the mapping (and sequencing) of the 
bovine genome. This has led to increasing demands for 
inclusion of DNA marker tools in traditional evalua-
tion systems, to yield marker-assisted EBV, often 
with greater accuracy compared with traditional EBV 
(Johnston et al., 2008). Various strategies have been 
suggested for inclusion of marker information in genetic 
evaluations, but so far none of the methods is optimal 
(VanRaden, 2001; Dekkers, 2007; Kachman, 2008). Re-
sults from a DNA test can be used to create a molecu-
lar score (MS) or a molecular breeding value, which 
is often a weighted sum of the number of copies of 
the frequent alleles of several polymorphisms with the 
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weights estimated in a reference data set (Kachman, 
2008). Because MS will likely account for only a small 
portion of the total genetic variance, it will be neces-
sary to combine polygenic and molecular breeding value 
into a single selection tool (VanRaden, 2001; Dekkers, 
2007; Kachman, 2008). Selection index methodologies 
have been shown in simulation to be useful in combin-
ing polygenic and molecular breeding values (Dekkers, 
2007; Crews, 2008). Genomic selection is also seen as a 
viable option where selection is based solely on genomic 
breeding values (GEBV; Meuwissen et al., 2001). Re-
cently, Bayesian estimation has emerged as the method 
of choice for genomic selection because it allows differ-
ent variances to be fitted to each SNP (Fernando et al., 
2007; Moser et al., 2009). Genomic selection has been 
successfully applied in the prediction of performance in 
dairy cattle, but such success has not been realized in 
beef cattle populations (MacNeil et al., 2010). In this 
study, Bayesian-based methods and the theory under-
lying genomic selection were used to select a subset of 
markers, and ultimately to derive GEBV whose ability 
to predict RFI, DMI, and ADG was then evaluated 
using data from an admixed population of beef cattle 
steers.

MATERIALS AND METHODS

The Canadian Council on Animal Care (1993) pro-
tocols and guidelines were followed when caring for the 
animals.

Animal Resource and Study Design

Data consisted of 721 crossbred steers sired by Angus, 
Charolais, or University of Alberta hybrid bulls with a 
composite dam line. The composition of the dam line 
is described in detail by Goonewardene et al. (2003). 
Feed intake data were collected over a 5-yr period, with 
2 groups (fall-winter and winter-spring) tested every 
year for the first 3 yr. In yr 4, 1 group of animals was 
tested for 2 consecutive periods (fall-winter, and then 
winter-spring), first on a low-energy feedlot diet in pe-
riod 1 (fall-winter), and then a high-energy feedlot diet 
in period 2 (winter-spring). In yr 5, 2 groups of animals 
were tested in 2 consecutive periods as follows: The 
first group was put on a high-energy feedlot diet for 
both periods, whereas the second group was first tested 
on a lower energy diet and then switched to a high-
energy diet in period 2. Animals had free-choice access 
to feed and water. In total, 9 batches of animals were 
available for analysis, with a batch being a combination 
of year and season of testing. All batches were placed 
into 3 groups as follows: Fall-winter tested animals were 
in group 1, winter-spring test animals were in group 2, 
and diet-switch animals were in group 3.

Individual animal feed intake and feeding behavior 
data were collected using the GrowSafe automated 
feeding system (GrowSafe Systems Ltd., Airdrie, Al-
berta, Canada) at the University of Alberta Kinsella 

ranch. Daily feed intake was converted into daily DMI 
by multiplying intake by the DM content of the diet. 
Daily DMI was then standardized across the different 
years to 10 MJ of ME/kg of DM by multiplying daily 
DMI with the diet ME content and then dividing by 10 
(Basarab et al., 2003). Average daily gain was calculat-
ed as the slope from the regression of BW on test day. 
Metabolic midweight was obtained as the midweight on 
test raised to the power of 0.75.

Residual feed intake (RFI) was calculated within 
group using the following formula:

RFI = DMI − (β0 + β1batch + β2ADG + β3MMWT),

where β1, β2, and β3 are partial regression coefficients; 
β0 is the intercept; and MMWT is metabolic midweight.

Training and validation data sets were defined by 
randomly splitting the data into a training set (2/3, n 
= 485) and a testing set (1/3, n = 243) based on sire 
family so that there was no overlap of sires in the 2 
sets. This random split was replicated 5 times such that 
there were 5 training and 5 testing data sets. Random 
splitting by sire family reduces the ability of genetic 
markers to approximate the relationship between indi-
viduals in the training and testing data, thereby mini-
mizing chances of an inflated correlation of GEBV and 
trait phenotype in the prediction process (Habier et al., 
2007). The first replicate of the training data was used 
for SNP preselection, and the selected SNP were then 
reanalyzed in all replicates of the training data. The as-
sociation between genotypes and phenotypes was tested 
in the training set, whereas the accuracy of prediction 
of the marker-derived breeding value explored in the 
testing set was tested as the correlation between GEBV 
and phenotypes.

Genetic Data

Approximately 50,000 SNP were genotyped for 745 
beef steers by using the Illumina Infinium II (Illumina 
Inc., San Diego, CA) platform. These SNP were tested 
for Hardy-Weinberg equilibrium (P > 0.05), minor al-
lele frequency (>5%), and SNP call frequency (>88%), 
with nonqualifying SNP being discarded. Ultimately, a 
total of 38,158 SNP were selected for further analysis. 
Genotypes were coded as 0, 1, and 2, with 0 being the 
SNP allele with the lesser frequency and 1 being the al-
lele with the greater frequency, respectively, such that 
the 2 homozygotes were represented as 0 and 2, and 1 
was the heterozygote. Missing genotypes (about 1% of 
all genotypes) were imputed by submitting SNP geno-
type calls as well as missing genotype information to 
fastPHASE (Scheet and Stephens, 2006) chromosome 
by chromosome, the SNP having been ordered accord-
ing to their chromosomal position. The parameters used 
were as follows: 10 random starts of the expectation-
maximization (EM) algorithm (T), 30 iterations of the 
EM algorithm (C), 15 cross-validation clusters (K), and 
no sampling of haplotypes from the posterior distribu-
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tion of each random start of the EM algorithm (H). 
The most probable genotype imputed by fastPHASE 
was considered the true genotype. All SNP with un-
known chromosomal positions were discarded. A final 
37,959 SNP were included in the analysis.

The following animal model was used in the whole 
data set to estimate polygenic breeding values, vari-
ance components, and genetic parameters using AS-
Reml (Gilmour et al., 2008). The model included fixed 
effects of contemporary group (breed, batch, and test 
group combinations), with age at the start of test as a 
covariate, as shown below:

 y1 = X1β + Z1a + e,  [1]

where the design matrices X1 and Z1 relate phenotypic 
observations in the vector y1 to fixed (β) and polygenic 
(a) effects, respectively. The vector e contains random 
residual terms specific to animals. The parameters a 
and e were assumed to be normally distributed, with a 
mean of 0 and variances Aσa

2 and In eσ
2, respectively. The 

matrix In is an identity matrix of order equal to the 
number of animals with RFI observations, whereas A is 
the additive relationship matrix, σa

2
 is the random poly-

genic effect variance, and σe
2 the residual variance, re-

spectively. Accuracy was calculated using the formula 
accuracy = −1 2 2se aσ , with se2 being the prediction 
error variance and σa

2 being the additive genetic vari-
ance (Gilmour et al., 2008). A bivariate model was used 
to compute genetic correlations between the traits by 
extending Eq. [1] to include a second trait.

Bayesian Estimation of Marker Effects

Estimation of marker effects was performed using 2 
models:

 1.  Random regression BLUP (RR-BLUP), which 
assumes the same prior variance for all random 
SNP, as described by Meuwissen et al. (2001).

 2.  BayesB, in which a locus-specific variance is es-
timated but the loci are divided into 2 groups: 
one group of a relatively small number of SNP 
with large effects that contribute to the genetic 
variance with probability (1 − π), and a second 
group of a large number of SNP with no effect, 
with probability π (Meuwissen et al., 2001). The 
BayesB model used was similar to that of Meu-
wissen et al., (2001), except that effects of SNP 
genotypes and not haplotype were fitted.

The BayesB model makes strong assumptions about 
the prior distribution of marker effects, namely, a large 
proportion of SNP have no effect. The BayesB and RR-
BLUP models used are implemented in the AlphaBayes 
software (Hickey and Tier, 2009), which uses a modi-
fied version of the Gibbs sampling algorithm to solve 
for model effects. The SnpBlup and BayesBFast imple-
mentations in AlphaBayes were used for RR-BLUP and 

BayesB analyses, respectively. Even though the real 
value of π was unknown for this data set, π was set at 
0.95 for all analyses, such that 5% of SNP were fitted 
simultaneously in each cycle of the Gibbs chain.

The model of analysis used for RR-BLUP and BayesB 
was as follows:

 y1 = X1β + Z1a* + Z2g + e,  [2]

where the design matrices X1, Z1, and Z2 relate pheno-
typic observations in the vector y1 to fixed (β), residual 
polygenic (a*), and SNP (g) effects, with elements Z2ij 
= 0, 1, or 2, corresponding to the genotype of animal i 
at locus j, with g normally distributed with mean 0, 
and variance σgj

2 , for RR-BLUP, and drawn from an 
inverse χ2 distribution with probability π in BayesB. 
The variance σ σgj a n

2 2=  in RR-BLUP, and was esti-
mated for each instance of j in BayesB. The vector e 
contains random residual terms specific to animals. 
The parameters a* and e were treated as random. The 
matrix In is an identity matrix of order equal to the 
number of animals with trait observations, whereas A 
is the additive relationship matrix, σa*

2
 is the random 

residual polygenic effect variance, and σe
2 is the residual 

variance. Fixed effects fitted included contemporary 
group (breed-batch-test group combinations), whereas 
age at the start of test was used as a covariate.

The first 20,000 iterations from the total 100,000 it-
erations were discarded as burn-in. Mean SNP substi-
tution effects were obtained from the posterior samples 
for each trait, and SNP ranked from greatest to least 
based on the magnitude of the allele substitution effect. 
From this ranking, the top 200 SNP were selected for 
further analysis. Allele substitution effects for the se-
lected SNP were reestimated in each of the 5 replicates 
of the training data, with the first 5,000 iterations of 
the total of 20,000 discarded as burn in. For this analy-
sis, π was set to 0.0005 so that estimates for all 200 
SNP could be obtained.

Genomic Value Estimation

Trait-specific marker panels were obtained from 
analysis using the various methods outlined above. The 
SNP were subsequently used to derive marker scores. 
Marker scores were calculated as a weighted sum of the 
number of copies of the more frequent allele at each 
SNP locus, with the weights being the allele substitu-
tion effects (β) estimated. The summation of all MS for 
each individual yielded a GEBV:

 GEBV T gij jj
Nm=
=∑ ˆ ,

1
 

where Tij represents the marker genotype of animal i at 
SNP j, coded 0, 1, and 2 as described previously; ĝ j  is 
the estimate of SNP effect j; and Nm is the number of 
SNP. The following nomenclature GEBVNo SNP

Trait
.  was used 
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for clarity. The GEBV were derived for panels with all 
37,959 markers as well as the top 200 SNP for each 
trait.

Genomic Predictions

The accuracy of prediction for the GEBV was as-
sessed as the correlation between GEBV and the phe-
notype both within and across sire breeds.

Candidate Gene Analysis for RFI

For the trait of RFI, the 1:2 ratio of validation to 
training records was randomly replicated 5 times, and 
each replicate was analyzed using both RR-BLUP and 
BayesB methods so as to obtain SNP that consistently 
ranked within the top 200 because these were likely 
viable candidate genes for RFI. The number of times 
that an SNP was ranked within the top 200 after the 
5 analyses yielded the “detection” frequency, expressed 
as a percentage. The positions of SNP with the greatest 
detection frequency were used to search for gene an-
notations and associated publications in Entrez Gene, 
HomoloGene, and PubMed.

RESULTS

Genetic Parameters and Variance 
Components

Phenotypic and genetic correlations between the 
3 traits analyzed are shown in Table 1. Correlations 
were greatest between ADG and DMI and were least 
between ADG and RFI. There were significantly high 
phenotypic and genetic correlations for DMI with both 
RFI and ADG.

Table 2 gives variance components and genetic pa-
rameters for the traits evaluated. Estimates of pheno-
typic and genetic variance were greatest for DMI and 
least for ADG. Subsequently, single-trait heritability 
estimates for RFI and ADG were moderate to low, 
whereas DMI heritability was in the medium range.

Accuracy of GEBV Prediction

Table 3 shows trait-specific as well as between-trait 
correlations for GEBV with RFI, DMI, and ADG. For 
both BayesB and RR-BLUP with the 200 SNP panel, 

the highest correlation was observed between RFI and 
GEBVRFI200 , whereas the lowest correlation was observed 
between DMI and GEBVDMI200 . Accuracies between ADG 
with GEBVRFI200

*
 (GEBV obtained from estimates for as-

sociation with ADG, but using SNP identified by train-
ing on RFI) were very low, whereas association between 
DMI and GEBVRFI200

**(GEBV obtained from estimates 
for association with DMI but using SNP identified by 
training on RFI) yielded higher correlations than trait-
specific values. Correlations between traits and GEBV 
with all 37,959 markers included yielded lower correla-
tions than those using only a subset of the top 200 SNP 
for both BayesB and RR-BLUP (Table 3). Generally, 
the RR-BLUP method yielded greater prediction ac-
curacies than did BayesB, whereas prediction accuracy 
for RFI was greater than for DMI and ADG.

In Table 4, trait-specific correlations for different sire 
breeds are shown, for panels trained using both BayesB 
and RR-BLUP. The correlation of GEBV and RFI was 
slightly different within sire breed compared with the 
value obtained in across-breed comparisons. Further, 
for RR-BLUP, there was a pattern of differential ac-
curacy within sire breed, with differences observed de-
pending on what trait was being evaluated. For ADG, 
the Hybrid and Angus breeds tended to differ from 
each other, whereas for RFI, the Charolais sire breed 
tended to have a correlation pattern different from the 
Hybrid and Angus breeds (Table 4).

Candidate Genes for RFI

Eleven SNP associated with RFI were consistently 
ranked within the top 200 in 3 of 5 replicates (detection 
frequency of 60%) when the training data were ana-
lyzed using the RR-BLUP model. The greatest detec-
tion frequency obtained using the BayesB method was 
40% (a total of 28 SNP had this detection frequency), 
whereas 92 SNP had a detection frequency of 40% or 
greater with the RR-BLUP method. Seven of the 11 
SNP with detection frequency 60% were located either 
within a gene or close to a gene whose function could 
affect feed intake or feed efficiency (Table 5). Further, 
4 of the 11 SNP were identified with a 40% detection 
frequency when using the BayesB method, whereas all 
92 SNP from RR-BLUP had a detection frequency of 
at least 20% with the BayesB method. A total of 6 SNP 

Table 1. Genetic (below diagonal) and phenotypic 
(above diagonal) correlations between feed intake and 
efficiency traits1 

Item RFI ADG DMI

RFI  0.01* 0.55
ADG −0.03 ± 0.30  0.64
DMI 0.51 ± 0.18 0.53 ± 0.18  

1RFI = residual feed intake.
*Not significantly different from zero; all other phenotypic correla-

tions were significant (P < 0.001).

Table 2. Variance components and parameter esti-
mates for feed intake and efficiency traits 

Model item1 ADG DMI RFI

Variance component    
 Var(P) 0.08 2.09 0.85
 Var(G) 0.02 0.86 0.25
 Var(E) 0.05 1.23 0.61
Parameter    
 h2 0.28 ± 0.11 0.41 ± 0.12 0.29 ± 0.12

1RFI = residual feed intake; Var(P) = phenotypic variance; Var(G) 
= direct genetic variance; Var(E) = residual variance; h2 = direct 
heritability.
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were common between the 92 from RR-BLUP and the 
28 from BayesB.

DISCUSSION

Diagnosis of convergence for the posterior estimates 
of SNP effects obtained after burn in was not carried 
out in this study. This is because the software program 
used for this analysis did not lend itself to such interro-
gation. However, AlphaBayes has been extensively test-
ed for convergence in several simulated and real data 
sets. For data sets with 60,000 SNP, 60,000 Markov 
chain Monte Carlo samples with a burn-in of 10,000 
samples was always enough to obtain convergence (J. 
Hickey, Animal Genetics and Breeding Unit, University 
of New England, Armidale, New South Wales, Austra-
lia, personal communication). In this study, we used 
100,000 Markov chain Monte Carlo samples, with the 

first 20,000 samples discarded as burn in to ensure that 
convergence was likely to be reached. As a further con-
firmation, 2 independent runs with different starting 
values were applied, and the estimates of SNP effects 
obtained thereafter (data not shown) had negligible dif-
ferences between the runs. This gave an indication that 
the number of iterations chosen and the burn-in thresh-
old were sufficient.

The strategy used in this analysis, to limit the num-
ber of SNP used for GEBV estimation to the top 200, 
was to maximize the chance of capturing a large num-
ber of SNP in greater linkage disequilibrium (LD) with 
underlying QTL as well as to reduce the number of 
redundant markers. Studies by Kizilkaya et al. (2010) 
and Zhong et al. (2009) have shown that panels that in-
clude QTL or markers in greater LD with QTL perform 
better when predicting across breeds or across multiple 
generations. The foregoing assumption is that markers 

Table 3. Correlations of GEBV200 and GEBV37959 with trait phenotypes for BayesB and RR-BLUP analyses1 

Trait GEBV Method

Replication

Average1 (n = 203) 2 (n = 194) 3 (n = 255) 4 (n = 203) 5 (n = 198)

ADG GEBVADG200 BAYESB200 0.12 0.34 0.26 0.12 0.28 0.22 ± 0.05

RRBLUP200 0.00 0.52 0.46 0.42 0.46 0.37 ± 0.09
GEBVADG37959 BAYESB37959 0.15      

RRBLUP37959 0.13      
DMI GEBVDMI200 BAYESB200 −0.03 0.29 0.29 0.08 0.35 0.20 ± 0.07

RRBLUP200 0.27 0.38 0.35 0.38 0.55 0.39 ± 0.05
GEBVDMI37959 BAYESB37959 0.24      

RRBLUP37959 0.25      
RFI GEBVRFI200 BAYESB200 0.15 0.57 0.47 0.45 0.53 0.43 ± 0.07

RRBLUP200 0.18 0.57 0.50 0.61 0.53 0.48 ± 0.08
GEBVRFI37959 BAYESB37959 0.12      

RRBLUP37959 0.11      
ADG GEBVRFI200

* BAYESB_RFI200 0.06 0.06 0.00 0.06 −0.02 0.03 ± 0.02

RRBLUP_RFI200 −0.02 0.07 −0.06 −0.22 −0.12 −0.07 ± 0.05
DMI GEBVRFI200

** BAYESB_RFI200 0.29 0.47 0.31 0.33 0.22 0.32 ± 0.04

RRBLUP_RFI200 0.41 0.42 0.25 0.43 0.48 0.40 ± 0.04
1RFI = residual feed intake; BAYESB = Bayesian estimation using an algorithm called BayesBFast implemented in AlphaBayes (Hickey and 

Tier, 2009); RR-BLUP = random regression BLUP; GEBV = genomic breeding value. Standard errors for the average calculated as SD 5 . 
GEBVRFI200

* = GEBV obtained from ADG effects, with SNP selected for being associated with RFI; GEBVRFI200
** = GEBV obtained from DMI ef-

fects, with SNP selected for being associated with RFI.

Table 4. Correlations (±SE, as the average of 5 replications) between GEBV200 and 
trait phenotypes by sire breed for GEBV trained using BayesB and RR-BLUP1 

Method Breed ADG DMI RFI

Bayes Across 0.22 ± 0.05 0.196 ± 0.07 0.43 ± 0.07
Angus 0.25 ± 0.05 0.333 ± 0.07 0.55 ± 0.04
Charolais 0.28 ± 0.13 0.200 ± 0.10 0.30 ± 0.12
Hybrid 0.35 ± 0.10 0.261 ± 0.08 0.45 ± 0.08
Undefined2 0.17 ± 0.06 0.291 ± 0.08 0.31 ± 0.14

RR-BLUP Across 0.37 ± 0.10 0.385 ± 0.05 0.48 ± 0.08
Angus 0.36 ± 0.11 0.514 ± 0.04 0.54 ± 0.04
Charolais 0.45 ± 0.13 0.319 ± 0.17 0.31 ± 0.08
Hybrid 0.51 ± 0.08 0.495 ± 0.08 0.53 ± 0.09
Undefined2 0.39 ± 0.12 0.362 ± 0.11 0.44 ± 0.13

1RFI = residual feed intake; RR-BLUP = random regression BLUP; GEBV = genomic breeding value.
2Sire breed not known.
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with a large effect signify markers in greater LD with 
the trait, and thus account for a larger portion of the 
trait variance. This strategy in itself has a practical 
implication in that by using a subset of SNP instead 
of the whole range of markers available in the analysis, 
equivalent prediction accuracy can be achieved without 
incurring the costs of genotyping associated with high-
density SNP chips when used in a commercial applica-
tion. In any case, it is very probable that for the 50K 
bovine SNP chip, only a subset of markers are useful 
for prediction purposes for various traits, and inclusion 
of additional SNP increases noise without a substantial 
change in prediction accuracy. This has been demon-
strated in several studies (Luan et al., 2009; Kizilkaya 
et al., 2010) in which smaller subsets of markers have 
achieved accuracies equivalent to or greater than those 
of larger sets.

In this study, for all traits with 200 SNP markers, the 
BayesB method performed marginally less well than 
the RR-BLUP method. When allele substitution effects 
of SNP selected using RFI were reestimated using ADG 
as the training phenotype, the resulting GEBV 
GEBVRFI200

*( ) could not predict ADG for either BayesB 
or RR-BLUP. However, the same process with DMI 
resulted in a greater predictive accuracy than when us-
ing trait-specific GEBV GEBVDMI200( ). The RFI SNP 
panel was able to achieve greater accuracies with DMI 
than when using the within-trait panel. This offers the 
prospect of a multitrait panel that can be used for both 
DMI and RFI. When using all available SNP (37,959), 
the predictive accuracy was much less than that ob-
served with a smaller subset of 200 SNP. This informed 
the decision not to evaluate all 5 replicates with the full 
SNP panel (37,959), but rather to concentrate on the 
top 200 SNP.

Differences Between Methods

The performances of BayesB and RR-BLUP were 
quite varied, given the differences in assumptions for 
the Bayesian and BLUP methods. In the Bayesian 
methods, posterior estimates are influenced to a large 
extent by the choice of parameters given by the prior 
distribution. The biggest difference between the meth-
ods is in the assumptions associated with SNP vari-
ances. Typically, the genetic variance associated with 
each SNP in RR-BLUP is assumed to be small, and a 
uniform value of σ σg a n

2 2=  is often used (as in this 
study because it is the one implemented in Alpha-
Bayes), where σa

2 is the total genetic variance estimated 
by REML, σg

2
 the variance associated with each SNP, 

and n is the number of loci. This SNP variance struc-
ture has been deemed unrealistic because many of the 
SNP are believed to have a small or no effect on trait 
variance, and many effects are fitted compared with the 
number of records present (Xu, 2003). An alternative 
definition, σ σg a j jj

p p2 2 2 1= −∑ ( ), has been proposed 

(with pj being the frequency of an allele at locus j), 
under assumptions of Hardy-Weinberg equilibrium and 
linkage equilibrium between QTL (Fernando et al., 
2007).

Given that RR-BLUP fits all marker effects in the 
model, with marker variances obtained as a fraction 
of the total genetic variance, a larger number of mark-
ers would be needed to account for substantial genetic 
variance, especially for traits with low genetic vari-
ance. This means that for the RR-BLUP method, to 
achieve equivalent prediction accuracy compared with 
the Bayesian methods, larger SNP panels would be nec-
essary, especially for ADG and RFI, whose trait vari-
ance is small compared with DMI, whereas n is the 

Table 5. Locations, closest genes, and associated gene functions for SNP that ranked within the top 200 in 3 of 5 
replicates of the training data analyzed using the random regression BLUP (RR-BLUP) method1  

SNP ID

Detection  
frequency,  

%
Position,  

bp BTA
Distance  
to gene Gene name Gene function

ss86322201 60 147355780 1 21,611 ES 1 protein Inhibition of cellular growth
ss86274038 60 45908516 24 51,911 SET binding protein 1 SET binding protein
ss86285204 602 14738309 19 121,112 Chaperonin containing TCP1, 

subunit 6B
Mediates protein folding in the cytosol; 
folding of actin and tubulin

rs41641502 602 14541593 19 5,326 Caspase regulator (CARP2) Ubiquitin ligase/protein metabolism
rs42316404 602 8899286 17 179,149 Endonuclease reverse transcriptase Endonuclease reverse transcriptase
rs43557189 60 53208327 8 0 Transient receptor potential cation 

subfamily M, member 6 (TRPM6)
Ion exchange/Mg++ transport

rs42142693 602 24107627 28 0 Bovine homolog of SLC25A16 solute 
carrier family (mitochondrial solute 
carrier)

Binding in transmembrane transport

rs41636768 60 55150035 18 NA No gene annotation found  
ss105256889 60 44671099 21 NA No gene annotation found  
rs41579807 60 14667205 19 NA No gene annotation found  
rs41663853 60 14379998 28 NA No gene annotation found  

1SNP ID = National Center for Biotechnology Information rsSNP identification number; detection frequency = number of times an SNP ranks 
in the top 200 in 5 replicates for the RR-BLUP method; BTA = chromosome number; distance to closest gene (bases); rs = reference; ss = sub-
mitted; NA = no genes identified.

2Single nucleotide polymorphism also detected using the BayesB method with frequency 40%.
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same. Therefore, the results obtained in this study run 
contrary to that expectation. Such a result as seen in 
this study is possible where the SNP selected actually 
capture a reasonable proportion of QTL underlying the 
traits, which in turn reduces the number of SNP mark-
ers required in the prediction panel. The ability of the 
selected markers to be effective in prediction can be 
tested only by validation in an independent population.

Further, based on the suggestion by Meuwissen et al. 
(2001) that large QTL are heavily regressed back to the 
mean in RR-BLUP, the effects estimated by RR-BLUP 
will typically be small in comparison with those from 
Bayesian analyses, which fit only a fraction 1−( )π  of 
the total numbers of SNP available. This means that 
given that the SNP selection was accomplished by 
ranking SNP from greatest to least based on the mag-
nitude of the allelic substitution effect, such regression 
would lower the rank of erstwhile larger QTL.

The use of a Bayesian model that includes a poly-
genic effect is expected to aid in effect estimation by 
properly partitioning the phenotypic variance to the 
various components. However, some studies (e.g., Ca-
lus and Veerkamp, 2007) have alluded to the minimal 
influence of including polygenic effects on accuracy in 
genomic selection analyses.

In all instances, the RR-BLUP method obtained 
greater correlations than the BayesB method. This dif-
ference may be related to the underlying genetic archi-
tecture of the traits. The infinitesimal model applied 
by RR-BLUP may fit the RFI and DMI data quite well 
compared with the notion of a few key QTL underlying 
the traits, as implemented in BayesB. Given that the 
range of metabolic processes that underlie RFI is quite 
large (Richardson and Herd, 2004) and considering re-
cent discoveries suggesting that many putative genes 
may be associated with feed intake (Barendse et al., 
2007; Chen et al., 2009), there is increasing evidence 
to suggest that a larger portion of the trait variance 
is under the influence of many QTL of small effect. 
This lends support to assertions that the assumptions 

underpinning RR-BLUP may closely approximate the 
genetic architecture for RFI and DMI compared with 
Bayesian models. Still, a substantial number of QTL of 
large effect may be affecting these 2 traits.

On the other hand, given that little variation typi-
cally exists in ADG between animals both in this study 
and in similar studies, it is logical to assume that the 
genetic contribution toward this trait may be limited to 
a smaller number of QTL compared with RFI and DMI. 
Thus, the assumptions of the Bayesian model would be 
expected to favor a trait such as ADG. It is not imme-
diately clear why this is not the case in this study, and 
further analysis with a larger data set will be necessary 
to verify this result. Estimates of variance components 
obtained from the 5 replicates of the training data are 
shown in Tables 6 and 7. Estimates obtained with the 
BayesB method were substantially greater than those 
obtained for RR-BLUP, and the proportion of the vari-
ance attributable to the SNP in BayesB was quite high. 
However, the correlations observed using both BayesB 
and RR-BLUP were less than those observed for the 
polygenic EBV (0.575, 0.504, and 0.602 for ADG, DMI, 
and RFI, respectively).

Within-Breed Correlations

The admixed population of crossbred animals used in 
this analysis consisted of steers sired by bulls of vari-
ous breeds. Accuracy of prediction within sire breed 
showed greater variation between breeds when using 
the RR-BLUP method that when using the BayesB 
method. There was also greater prediction accuracy 
within breed than across breed.

This pattern of greater within-breed accuracy with 
RR-BLUP was clearly different from that observed us-
ing BayesB, for which the within-breed correlations 
were closer to the across-breed estimates. A possible 
reason for this may be the possibility that SNP selected 
using RR-BLUP may trace breed differences (SNP are 
optimized to capture breed differences) such that the 

Table 6. Estimates of variance components for ADG, DMI, and residual feed intake (RFI) obtained in the 5 rep-
licates of the training data with the random regression BLUP (RR-BLUP) method 

Trait1 Parameter

Replicate

Average1 2 3 4 5

ADG ResVar 0.004 ± 0.003 0.021 ± 0.003 0.021 ± 0.003 0.021 ± 0.003 0.023 ± 0.004 0.018 ± 0.003
 GenVar 0.012 ± 0.004 0.005 ± 0.003 0.006 ± 0.004 0.006 ± 0.004 0.004 ± 0.005 0.006 ± 0.004
 SNPVar 0.036 ± 0.001 0.036 ± 0.002 0.038 ± 0.002 0.038 ± 0.002 0.030 ± 0.002 0.035 ± 0.002
DMI ResVar 0.725 ± 0.088 0.720 ± 0.247 0.954 ± 0.220 1.040 ± 0.121 0.702 ± 0.177 0.828 ± 0.171
 GenVar 0.111 ± 0.095 0.734 ± 0.331 0.481 ± 0.228 0.193 ± 0.148 0.524 ± 0.226 0.408 ± 0.206
 SNPVar 0.069 ± 0.005 0.034 ± 0.005 0.032 ± 0.004 0.035 ± 0.003 0.034 ± 0.004 0.041 ± 0.004
RFI ResVar 0.306 ± 0.025 0.349 ± 0.062 0.339 ± 0.118 0.385 ± 0.121 0.320 ± 0.090 0.340 ± 0.083
 GenVar 0.022 ± 0.025 0.166 ± 0.067 0.153 ± 0.137 0.200 ± 0.125 0.164 ± 0.106 0.141 ± 0.092
 SNPVar 0.067 ± 0.004 0.045 ± 0.004 0.044 ± 0.006 0.042 ± 0.008 0.046 ± 0.006 0.049 ± 0.006

1Trait units are kilograms per day for ADG and DMI and kilograms of DM per day for RFI. ResVar = residual variance; GenVar = genetic 
variance; SNPVar = variance attributed to SNP as the difference between ResVar and ResVar + SNP (residual variance when SNP are included 
in the model as fixed effects).
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accuracy observed across breeds is confounded and not 
purely attributable to LD between SNP and underlying 
QTL.

Given that varying amounts of shrinkage are applied 
to SNP on the basis of differences in allele frequencies 
(the shrinkage term is the same for all SNP for the 
RR-BLUP method), any differences in allele frequen-
cies between breeds for any locus will affect the size 
of the allele substitution effect and, by extension, the 
prediction accuracy. Habier et al. (2007) showed that 
for RR-BLUP, genetic relationships captured by the 
genetic markers affect prediction accuracy to a larger 
extent than in Bayesian methods because more mark-
ers are fit in the model. The consequence of this is 
that there would be an increase in prediction accuracy 
if validation animals became more related to training 
animals, especially if the markers were able to resolve 
relatedness more than the average relationship matrix.

A key issue in genomic selection of RFI is the utility 
of GEBV in selecting unphenotyped animals. In this 
study, the accuracies obtained were low compared with 
those seen in studies using dairy breeds, for which more 
accurate phenotypes are used to train SNP. A frame-
work that allows incorporation of EPD and GEBV into 
a single unit of merit after appropriate weighting will 
be useful. The weights used could be derived from the 
reliability of the polygenic EBV and the percentage of 
genetic variance accounted for by the marker panels 
(VanRaden, 2001; Dekkers, 2007; Cerón-Rojas et al., 
2008; Moser et al., 2009). A model that uses BLUP 
(Kachman, 2008) has also been proposed. Such a com-
bined index for selection seems to be the best option, 
especially for beef cattle until such a time when large 
populations of animals have been tested for feed intake 
and GEBV accuracies are greater than the EBV ac-
curacies obtained using traditional BLUP evaluations.

The number of animals in the training set also has a 
bearing on the accuracy of GEBV (Hayes et al., 2009). 
For RFI, a need therefore exists for increased testing 
of feed intake, despite the cost associated with such 
an undertaking. This is a priority for several Canadian 

collaborations involving the Universities of Alberta and 
Guelph, Alberta Agriculture and Rural Development, 
and Agriculture and Agri-Food Canada.

Candidate Genes for RFI

Several studies have attempted to characterize the 
molecular basis of RFI. Barendse et al. (2007) and 
Sherman et al. (2008, 2010) describe a series of poly-
morphisms associated with RFI, but the usefulness of 
these SNP and associated genes in explaining the total 
RFI variance has yet to be determined. In this study, 
several SNP with a high detection frequency were in 
close proximity to genes that may be useful in control-
ling feed efficiency. Despite the fact that these SNP are 
associated with some genes of interest, their individual 
contribution was small. So far, no study involving RFI 
has shown a gene(s) with a significantly large effect, 
such that a candidate gene approach may not be the 
best strategy in characterizing the molecular basis of 
RFI. The SNP identified in this study may be more 
useful when seen as key elements of a gene network 
controlling RFI because the contribution of individual 
genes is likely to be small. Further research and analy-
sis of gene networks for RFI is therefore warranted and 
is currently at an advanced stage in our laboratory.

Conclusions

In this study, accuracy of prediction, defined as the 
correlation between ADG, DMI, and RFI and trait-
specific GEBV, was compared between SNP panels 
derived using 2 genomic selection methods, namely, 
BayesB and RR-BLUP. The RR-BLUP-derived GEBV 
achieved greater correlations with trait phenotypes, 
with accuracy being greatest for RFI. Differences in 
accuracy between sire breeds were observed with the 
RR-BLUP method. This may imply that significant 
differences may exist in SNP associated with RFI be-
tween the component breeds in the study population, 
and the SNP selected are consensus SNP that seem 

Table 7. Estimates of variance components for ADG, DMI, and residual feed intake (RFI) obtained in the 5 rep-
licates of the training data with the BayesB method 

Trait1 Parameter

Replicate

Average1 2 3 4 5

ADG ResVar 0.017 ± 0.005 0.020 ± 0.010 0.023 ± 0.013 0.031 ± 0.009 0.019 ± 0.009 0.022 ± 0.009
 GenVar 0.007 ± 0.006 0.031 ± 0.015 0.026 ± 0.016 0.016 ± 0.010 0.023 ± 0.012 0.021 ± 0.012
 SNPVar 0.081 ± 0.006 0.083 ± 0.012 0.102 ± 0.012 0.096 ± 0.008 0.088 ± 0.010 0.090 ± 0.009
DMI ResVar 0.582 ± 0.150 0.662 ± 0.151 0.720 ± 0.120 0.870 ± 0.244 0.771 ± 0.174 0.720 ± 0.184
 GenVar 0.143 ± 0.169 0.596 ± 0.163 0.564 ± 0.210 0.326 ± 0.234 0.289 ± 0.180 0.384 ± 0.191
 SNPVar 0.599 ± 0.081 0.523 ± 0.064 0.483 ± 0.043 0.507 ± 0.096 0.492 ± 0.049 0.521 ± 0.067
RFI ResVar 0.247 ± 0.033 0.274 ± 0.076 0.193 ± 0.119 0.188 ± 0.097 0.198 ± 0.107 0.220 ± 0.086
 GenVar 0.048 ± 0.034 0.242 ± 0.085 0.339 ± 0.174 0.362 ± 0.126 0.310 ± 0.142 0.260 ± 0.112
 SNPVar 0.410 ± 0.049 0.364 ± 0.046 0.360 ± 0.039 0.390 ± 0.035 0.321 ± 0.041 0.369 ± 0.042

1Trait units are kilograms per day for ADG and DMI and kilograms of DM per day for RFI. ResVar = residual variance; GenVar = genetic 
variance; SNPVar = variance attributed to SNP as the difference between ResVar and ResVar + SNP (residual variance when SNP are included 
in the model as fixed effects).
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to be inadequate for some breeds that are part of the 
composite population used. The accuracies obtained for 
all 3 traits were low, signaling a need for continued 
feed intake testing to acquire a large number of phe-
notyped animals, which may aid in better selection of 
SNP markers to be used for prediction as well as the 
continued evaluation of whether an admixed popula-
tion such as ours can be useful in providing an across-
breed prediction panel for RFI.
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