
U niversity of A lb e rta

P r o b a b i l i s t ic A n d - O r T r e e R e s o l u t io n

by

M agdalena Jankow ska

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of M aste r o f Science.

Department of Computing Science

Edmonton, Alberta
Spring 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
A rch ives C a n a d a

Published H eritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

B ib liotheque et
A rch ives C a n a d a

D irection du
P atrim o ine d e I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-96494-9
Our file Notre reference
ISBN: 0-612-96494-9

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

An and-or tree is a Boolean expression over a set of independent probabilistic tests,

each with an associated performance cost and truth probability, such that no test

appears more than once. It can be represented by a tree in which leaf nodes are

tests and non-leaf nodes are either and or or. Probabilistic and-or tree resolution

(PAOTR) is the problem of finding an algorithm for evaluating an and-or tree with

smallest expected cost. The complexity of PAOTR is unknown.

Our main result is that a natural partial order of sibling tests in an and-or tree

yields a dynamic programming algorithm for PAOTR which for trees with a bounded

number of non-leaf nodes runs in time polynomial in the input size. We also study

some generalizations of PAOTR and present some special classes of and-or trees for

which PAOTR is in P.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement s

I am especially grateful to my supervisor Ryan Hayward for his assistance, en
couragement, and support. I thank him, Russell Greiner, and Omid Madani for
providing several ideas and conjectures throughout my work. I am very grateful to
Ryan Hayward, Russell Greiner, and Erhan Erkut for the comments on the thesis.
I thank Leah Hackman and Martha Lednicky, WISEST 2003 participants, whose
experimentation with instances of and-or trees resulted in helpful observations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction and Related Work 1
1.1 Introduction... 1
1.2 Definitions and N o ta tio n s .. 3
1.3 Previous W o r k ... 10

1.3.1 NP-Hard R esu lts ... 10
1.3.2 Applications of And-Or T ree s .. 12
1.3.3 Depth-First S trateg ies.. 12
1.3.4 Balanced And-Or T r e e s ... 15
1.3.5 Linear S tra teg ies ... 17
1.3.6 Preconditioned Probabilistic Boolean Expressions.................... 18
1.3.7 Estimations of Success P ro b ab ilitie s ... 19
1.3.8 Non-Stochastic And-Or T ree s .. 20

2 Optimal Order of Sibling Tests 22
2.1 Siblings and Twins L e m m a ... 22
2.2 Dynamic Programming Algorithm for P A O T R 27
2.3 Simplifying And-Or Trees Using the Twins L em m a........................... 32
2.4 Parameter-Uniform L adders... 34
2.5 Reduction to Unit-Cost P A O T R .. 35

3 Conjectures and Counterexamples 45
3.1 Best Test of a S u b tre e .. 45
3.2 Prime Implicants and Im p lica te s .. 46
3.3 Cograph Representation.. 47
3.4 Resolving S u b trees ... 51
3.5 Tests Ordering for Ladders ... 52

4 Preconditioned And-Or Trees 58
4.1 Smith’s A lg o rith m ... 58
4.2 1-Alternation And-Or T re e s .. 65

5 Conclusion 70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Parameters of reduced trees obtained from the and-or tree Td from
Figure 2.3 with less than three tests.. 31

4.1 Parameters of initial blocks shown in Figure 4.3................................... 64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 An and-or tree Tr. An internal node with a horizontal bar (respec
tively no bar) indicates an and-node (respectively or-node). For each
test, the cost and probability values are denoted respectively by c and
P... 1

1.2 Two strategies for the and-or tree Tr.. 2
1.3 Illustration for the proof of Theorem 1. The DAG corresponding to

the formula P = (x \ or -1 x 3 or -'X4) and (x\ or -^X2 or X3) 11
1.4 Depth-First Strategy.. 13
1.5 DFA (Depth First Algorithm)... 15
1.6 Balanced and-or trees 2 \ and T2. Each test has unit cost and success

probability 0.7. T\ is not uniform. T2 is uniform................................... 16

2.1 a) Sibling tests x\, X2 and £3 have R-ratio 0.4. The set W =
{x i,X 2 ,x$} is an R-class. b) Part of a strategy contiguous on W
performing the tests from W .. 23

2.2 Illustration for the proof of Theorem 10. For any node the up (respec
tively down) arc denotes the tru e (respectively fa lse) arc. (a) The
optimal strategy S with substrategies S+x and S~x. (b) The strategy
S'_x that may replace the substrategy S - x. (c) The optimal strategy
S (x y). (d) The optimal strategy S* that fulfills the conditions of
Theorem 10.. 25

2.3 a) An and-or tree Td with sibling classes Li, L 2 , L 3 . For each test the
cost, success probability and R-ratio values are denoted respectively
by c, p and R. b) The reduced tree I = (0,2,1) obtained from Td and
reduced trees obtained from I when 62 succeeds and when 62 fails. • 28

2.4 Dynamic Programming Algorithm (DPA) for PAOTR.......................... 30
2.5 An optimal strategy for the tree I shown in Figure 2.3......................... 32
2.6 A parameter-uniform and-or tree Tu. Each test has cost one and

probability of success 0.2. W and V denote depth one subtrees. . . . 33
2.7 The unique optimal strategy Sopt for the and-or tree Tu where nodes

labeled by W and V denote evaluation of the corresponding subtrees. 33
2.8 An example of an and-or ladder.. 34
2.9 a) A test x in an and-or tree, b) A subtree A replacing the test x.

There is k tests in A, each with the same cost u and the same success
probability p .. 36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 (a) An and-or tree Tc with all costs unit, (b) The unique optimal
strategy for Tc if p (c) = 0.05, encoded by the fixed order of tests,
starting with 01. (c) The unique optimal strategy for Tc if p(c) =0.1 ,
starting with b\... 45

3.2 a) An and-or tree Tj. All tests have probability of success 0.5. b)
The unique optimal strategy Si for Tj. The tests performed on the
true path of Si are from two prime implicants of Tj.............................. 46

3.3 a) An and-or tree Te. All tests have probability of success 0.3. b)
The unique optimal strategy Se for Te. The tests performed on the
false path of Se are from two prime implicates of Te.................... 47

3.4 An and-or tree and the cograph representing the tree................. 49
3.5 a) An and-or tree Tj. All tests have unit cost, b) The unique optimal

strategy for Te. After the first performed test is tru e as well as after
the first test is fa ls e , the strategy leaves the subtree rooted at the
parent of the highest resolved node.. 51

3.6 An and-or ladder. Test y is better than test x 52

4.1 Preconditioned or-trees. a) The test x has the required value tru e .
The tests y and z can be performed only after x succeeds, b) The test
x has the required value fa ls e . The tests y and z can be performed
only after x fails.. 58

4.2 Smith’s Algorithm (SA).. 62
4.3 An example of using Smith’s Algorithm, a) An algorithm’s input:

preconditioned or-tree Tp. All tests have unit cost, b) The initial
blocks built by SA. c) The blocks after combining blocks x and y
together, c) The blocks after combining blocks w and xy together.
These blocks are maximal best blocks for T ... 63

4.4 An illustration for the proof of Theorem 36; the substrategy S'. . . 67
4.5 a) A 1-alternation and-rooted preconditioned and-or tree Tp. The

required value of each internal node is tru e . All tests have unit
costs, b) The unique optimal strategy for the tree Tp. This strategy
is not contiguous on the maximal or-subtree... 68

4.6 Two equivalent preconditioned and-or trees A and A'. The root of A
is an or-node associated with a test x. The root of A' is an and-node
associated with the test x, A' contains a depth one or-subtree rooted
at a degenerate node.. 69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction and Related Work

1.1 Introduction

Consider the following recruitment situation at a hypothetical company. Potential
employees must meet certain psychological standards and either be in good physical
shape or pass both an Intelligence Quotient (IQ) test and a knowledge test. Four
evaluation tests are prepared: a psychological test P, a fitness test F, an IQ test I
and a knowledge test K . For each test the only possible output is either pass or fail.
A candidate will be hired if the Boolean expression e = P and [F o r (J and K)]
evaluates to tru e ; see Figure 1.1. Each test has a performance cost. For each test,
the company knows from its recruiting history the probability that a candidate will
pass that test. There are several algorithms (strategies) the company may use to

Figure 1.1: An and-or tree Tr. An internal node with a horizontal bar (respectively
no bar) indicates an and-node (respectively or-node). For each test, the cost and
probability values are denoted respectively by c and p.

decide whether to accept a candidate. One such strategy is the strategy Si shown
in Figure 1.2a: first administer the psychological test; if the candidate fails this test
then return f a ls e (the candidate is rejected), otherwise next administer the fitness
test; if the candidate passes this test then return tru e (the candidate is accepted),
otherwise administer the IQ test; if the candidate fails this test then return fa ls e ,
otherwise administer the knowledge test; if the candidate passes this test then re
turn tru e , otherwise return fa lse . Another possible strategy the company might

£1

c=l
p = 0 .05

c=l
p = 0 .76

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.2: Two strategies for the and-or tree Tr.

use is the strategy S 2 shown in Figure 1.2b. The company wants to use a strategy
which has the minimum expected cost.

The aforementioned expression e is an example of a probabilistic Boolean expres
sion, namely a Boolean expression with a cost and probability for each variable.
A probabilistic Boolean expression such as e that can be represented by a tree in
which each internal node corresponds to a Boolean operator, either and or or, and
each leaf node corresponds to a test with t r u e / f a ls e output is called an and-or
tree. We will provide more formal definitions in Section 1.2. For a given probabilis
tic Boolean expression (respectively and-or tree), the problem of finding a strategy
with the minimum expected cost over all strategies that evaluate the expression
correctly is called probabilistic Boolean expression resolution (PBER) (respectively
probabilistic and-or tree resolution (PAOTR)).

As discussed above, the problem of deciding the value of a probabilistic Boolean
expression may arise in practical applications. For many Boolean expressions, in
cluding all and-or trees, each (deterministic) strategy has to query all variables in
the worst case. For this reason the expected cost of a strategy is a reasonable per
formance measure. The objective is to find an algorithm that will on average cost
as little as possible.

In this thesis we present the results of our research on PAOTR and some of its
generalizations. PAOTR is a natural restriction of PBER which is also interest
ing from the complexity point of view. PBER is iVP-hard for general probabilistic
Boolean expressions; it is also JVP-hard for the class of probabilistic Boolean ex
pressions in which no variable is negated. And-or trees constitute a subclass of the
latter class, containing expressions in which each variable appears exactly once. The
complexity of finding an optimal strategy for and-or trees is unknown.

Previous to our work, a polynomial-time algorithms were known for depth one or
two and-or trees (see Section 1.3.3) and balanced and-or trees (see Section 1.3.4).
We present a dynamic programing algorithm to find an optimal strategy for and-or
trees which runs in time 0(d2nd), where n is the number of leaves and d is the
number of internal nodes that are leaf-parents in a tree. Thus for trees with a
bounded number of internal nodes, the running time of our algorithm is polynomial
in the input size. The algorithm relies on the discovered optimal relative order of

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

querying tests (variables) that are siblings in a tree. We also show that PAOTR for
some special and-or trees is in P as well. We describe a way in which PAOTR for
trees with all costs unit can be used as an approximation for general PAOTR. We
also consider a generalization of PBER, in which there are precondition constraints
for tests. Among such expressions, preconditioned and-or trees generalize and-or
trees. We show that an extension of a previously known algorithm (Smith’s Algo
rithm) produces an optimal strategy for a subclass of preconditioned and-or trees.

In this chapter we provide formal definitions (Section 1.2) and present a survey
of the previous results related to PBER (Section 1.3).

We state the key lemma describing the optimal relative order of performing
sibling tests in Section 2.1. In Section 2.2 we present the dynamic programming
algorithm to find an optimal strategy for and-or trees. We show that PAOTR for
special classes of and-or trees is in P in Sections 2.3 and 2.4. In Section 2.5 we
describe the reduction that allows to approximate any and-or tree by a tree whose
all tests have the same cost.

In Chapter 3 we discuss several natural conjectures with respect to optimal
strategies for and-or trees. For some, we present counterexamples; others remain
open. In Chapter 4 we study preconditioned and-or trees and describe a general
ization of Smith’s Algorithm for finding an optimal strategy for some such trees. In
Chapter 5 we summarize our findings and discuss open problems.

1.2 Definitions and Notations

Since we use directed graphs to represent both Boolean expressions and algorithms
for their evaluation, we begin with the related definitions. We follow the definitions
from [5].

A directed graph G is an ordered pair (V, A), where V is a finite set and A is a
set of ordered pairs of elements of V. Elements of V are called nodes and elements
of A are called arcs.

Let G = (V , A). For an arc a = (v , w) we say that a leaves v and enters w. The
out-degree of a node v is the number of the arcs that leave u; the in-degree of v is
the number of the arcs that enter v. A subgraph of G induced by a set V' C V is
the directed graph G' = (V7, A!), where A' = { (v , w) e A : v,w G V'}. A path of
length k from v to w in G is a sequence of nodes (vq,vi, . . . ,Vk), k > 0 such that
vo = v, Vk = w and for * = 1 ,2 ,. . . , k (vi-i,Vi) G A. The arcs of the path are the
arcs (uj_i, Vi), i = l ,2 , . . . , k . A node w is reachable from v if there is a path from
v to w. A path (wo, «i, • • •, Vk) is a cycle if vo = v̂ , and k > 1. If there is no cycle in
G , G is acyclic and is called a DAG (directed acyclic graph). In a DAG, for each
arc (v, w) we call w a child node of v and v a parent node of w. A node of a DAG
that has in-degree zero (respectively out-degree zero) is called a source (respectively
sink).

Let us now define formally a special kind of directed acyclic graph called a
directed rooted tree. This concept is often referred to elsewhere as simply a rooted
tree; we add the term “directed” to emphasize that this is in fact a directed graph.

Definition 1 A directed graph T = (V, A) is a directed tree rooted at a node r
if

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i) V — {r} and A = 0, or

U) V = {r} U Vi U V% U . . . U Vk, A = { (r,ri), (r, r2) , . . . , (r, rk)} U Ai U A 2 U . . . U
Ak, k > l , where {r}, Vi, V2, ■ ■ ■, Vk o,re disjoint sets and T\ = (V ^A i),!^ =
(V2, A.2) , . . . ,Tk = (Vk,A k) are directed trees rooted respectively at nodes r i , r 2,
. . . , r fc.

A graph G is a directed rooted tree if there is a node r such that G is a directed
tree rooted at r. The graphs shown in Figures 1.1 and 1.2 are examples of directed
rooted trees.

Let T = (V, A) be a directed tree rooted at r. We call r the root of T. Two
nodes with the same parent node are siblings. A node with out-degree zero is a leaf;
a node with positive out-degree is internal. A (full) binary tree is a directed rooted
tree in which each internal node has out-degree two. The depth of a node v is the
length of the path from the root r to v. The depth of the tree T is the maximum
depth of a node, over all nodes of T.

Each node reachable from v is called a successor of w, each node from which v is
reachable is called a predecessor of v. Notice that each node is both a successor and
a predecessor of itself. Observe that the subgraph of T induced by all successors of
some node v is a directed tree rooted at v.

D efinition 2 A subtree of a directed rooted tree T is a subgraph of T induced by
all successors of some node of T.

A subtree rooted at a child node of r is called an immediate subtree of T and a child
subtree of r; the node r is called the parent node of its child subtrees.

For a directed tree T = (V,A) rooted at r with |V| > 1, there is a unique set of
directed rooted trees Ti,T2, . . . ,Tk that fulfills condition ii) of Definition 1, namely
the set of immediate subtrees of T. Together with the root, this set specifies T. For
a node r and a finite set of directed rooted trees ft, we use

< r ,¥) (1 .1)

to denote the directed tree rooted at r and with the set of immediate subtrees 4'.

A probabilistic Boolean expression is a Boolean expression over a set of proba
bilistic tests, each of which has an associated cost and truth probability; we assume
that costs are non-negative.

We say that a test succeeds if it has the value (the outcome) tru e , otherwise we
say that the test fails. By performing a test we mean determining its value.

For any test a; of a probabilistic Boolean expression, c (x) denotes the cost of
performing x, p (x) denotes the probability of success of x , and p (x) = 1 — p (a:)
denotes the probability of failure of x. We will on occasion use the symbols cx, px,
px to denote c(x), p(x), p(x) respectively.

Consider a set of tests D = {a:i,a:2, .. . ,x k}. A setting of tests x±, x2, . . . ,x k
is an assignment of Boolean values (true or fa lse) for the tests, that is a vector
a = (v(x i),v (x 2), ■ ■ ■ ,v (xk)) where, for i < k, v(xi) is a Boolean value of the test
Xi. The probability p (cr) of a setting o is the probability that for each i < k the
test Xi has the value v(x{).

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The tests x i, *2, . . . , Xk are independent if for any subset D' = {y\, y2 , ■ ■ ■ ,yi} C
D and any setting a = (v(yi),v(y 2), ■.. ,v(yt)) of the tests from D'

I
p W = I I p«(w)» (L2)

*=1

where
n , PiVi) if v(yi) is tru e , , .
Pv(yi) | p(yi) if v(yi) is fa ls e .

D efin ition 3 A strategy for a probabilistic Boolean expression e is a binary tree
S such that each internal node is labeled by a test from e, each leaf node is labeled
either t ru e or fa ls e , and for each internal node v of S, one of the arcs leaving v
is labeled t ru e and the other is labeled fa ls e .

Whenever we represent a strategy graphically, we draw the tree so that arcs point
to the right, and we use the symbols + and — to denote respectively the labels tru e
and fa ls e . See Figure 1.2.

As defined above, a strategy represents an algorithm for calculating (not neces
sary correctly) the value of the expression, for any setting of tests; the algorithm
performs tests sequentially, and the selection of each subsequent test is based on the
values of the previous tests. A leaf node of S represents the return by the algorithm
of the value equal to the leaf label as the value of the input expression. The first
test performed by the algorithm is the test that labels the root r of S. Depending
on the value of this test, one of arcs leaving r (the one labeled by this value) is
followed; the child subtree of r entered by this arc represents the further actions of
the algorithm. For example the tree shown in Figure 1.2a represents an algorithm
that starts with performing the test P. If the value of P is fa ls e , the algorithm
returns the value fa ls e , otherwise the algorithm performs the test F.

Whenever it does not cause any confusion, we use the word “strategy” to denote
both a tree and its associated algorithm. For example, we use alternatively the
equivalent phrases “the root of the strategy 5 is labeled by the test x n and “the
strategy S starts with performing the test x”.

If in a strategy (tree) a path P contains a node labeled by a test x then we say
that x is performed on P. If P contains also a node labeled by a test y and this node
has smaller depth than the node labeled by x, we say that y is performed before x
on P.

Let P = (vo, v i , . . . , Vk) with k > 0 be a path from the root vo of S' to a leaf node
Vk- A setting a corresponds to P if for any i < k, the value in a of the test X{ that
labels the node Vi is equal to the label of the arc (v{, Uj+i). Observe that any setting
corresponds to exactly one root-to-leaf path, and several settings may correspond
to one root-to-leaf path. For example, the settings <j\ = (F —,I + ,P —,K +) and
c7 2 = (F —,/+ , P —,K —), correspond to the same root-to-leaf path of the strategy
S 2 shown in Figure 1.2b.

A strategy S for a probabilistic expression e is correct if for any root-to-leaf path
P of S, the value of e under any setting that corresponds to P is the same as the
label of the leaf of P.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Considering a strategy as an algorithm, correctness of the strategy means just
that the algorithm calculates correctly the value of a probabilistic Boolean expression
for any setting of tests.

The cost of a strategy S under a setting a is the sum of costs of all tests performed
on the root-to-leaf path of S to which a corresponds. For example, the cost of the
strategy S 2 shown in Figure 1.2b under both the above given settings o\ and 0 2 is
c (F) + c (I) + c (P). We denote by ca(S) the cost of S under a setting a.

The expected cost C (S) of a strategy S for an expression e is the average cost
of the strategy S over all settings of the tests of e:

C (S)= £ p (< r)c (S) , (1-4)
a£Settings(e)

where the sum is taken over all settings of the tests of e and p (a) is the probability
of the setting a.

The expected cost is the measure of the performance of a strategy we are con
cerned with in this thesis.

D efinition 4 A correct strategy S for a probabilistic Boolean expression e is op ti
m a l fo r e if S has the minimum expected cost among all correct strategies for e,
that is if for any correct strategy S ' for e it holds that C (S) < C (S').

Probabilistic Boolean expression resolution (PBER) is the problem of finding an
optimal strategy for a given probabilistic Boolean expression. For a given proba
bilistic Boolean expression e, the optimal resolution cost is the expected cost of an
optimal strategy for e.

Several internal nodes of a strategy can be labeled with the same test; see for
example strategy S 2 of Figure 1.2b. Notice though that for any setting of tests,
performing the same test more than once always yields the same value, while in
creasing unnecessarily the cost of the strategy under this setting (unless the cost of
the test is zero, in which case performing the test does not influence the cost of the
strategy under this setting). More formally, if two nodes of one root-to-leaf path
P of the strategy are labeled by the same test x, then either there is no setting
that corresponds to P (because two arcs of P that leave the nodes labeled by x are
labeled by different values) or removing one node labeled by x does not change the
set of the settings that correspond to the path without increasing the cost of the
strategy under any of these settings. We call a strategy nonredundant if on any
root-to-leaf path of the strategy no two nodes are labeled with the same test. We
can restrict our attention to such strategies, because for any probabilistic Boolean
expression there is an optimal nonredundant strategy.

In this thesis we will concentrate on a special case of a probabilistic Boolean
expression, which we define formally in terms of labeled directed rooted trees with
special features.

D efinition 5 A rooted directed tree T = (r, 'F) with labeled nodes and a Boolean
value is an and-or tree if one of the following conditions is fulfilled:

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• \Ef is empty, r is labeled by a probabilistic test with given non-negative cost and
success probability and the Boolean value of T is equal to the value of the test,
or

• any tree T ' £ has labeled nodes and a Boolean value so that it is an and-or
tree, the tests that label all leaves of all trees in 'S are distinct and independent,
and

— either r is labeled and and the value of T is t ru e if and only if the value
of each tree from is tru e , or

— r is labeled or and the value of T is t ru e if and only if the value of at
least one tree from is tru e .

We draw and-or trees so that arcs point downward. The and-labeled nodes
(respectively the or-labeled nodes) are denoted by a horizontal bar (respectively no
horizontal bar) below the nodes. See for example the and-or tree in Figure 1.1.

Obviously, an and-or tree T defines a probabilistic Boolean expression (obtained
recursively by joining the expressions for subtrees by the logic operators and or or
depending on the label of the root), with the same Boolean value as the value of
T. We identify an and-or tree with the expression it represents. The strategy for
an and-or tree is the strategy for the associated probabilistic Boolean expression.
Probabilistic and-or tree resolution (PAOTR) is the problem of finding an optimal
strategy for an and-or tree.

A Boolean function that corresponds to an and-or tree (that is the function
that for any setting of tests returns the Boolean value of the and-or tree) is called a
read-once function, because it can be expressed by a formula in which each variable
appears exactly once. Observe that any function that can be expressed by such a
formula, corresponds to an and-or tree.

Since all leaf nodes of an and-or tree are labeled by distinct tests, we identify
tests with leaf nodes. Therefore we say that a test a; is a leaf of T meaning that x
labels a leaf of T.

We require that tests of an and-or tree are independent, otherwise we could
convert an arbitrary probabilistic Boolean expression (not necessary with read-once
property) to an and-or tree with dependent tests by replacing any two occurrences of
the same variable (or occurrences of the variable and its negation) by two separate
variables that in any setting must have the same value (or must have opposite
values).

A strategy to evaluate an and-or tree can be viewed as a search through the
tree in order to find any subset of leaf nodes with required value that suffices to
determine the value of the entire tree. There may be several such subsets. This
model of search is called satisficing search by Simon and Kadane in [25], where the
notion of PAOTR first appears.

An and-or tree is strictly alternating if there is no arc (v, w) in T such that v
and w are both labeled and or both labeled or. For any and-or tree there exist
an equivalent strictly alternating one. This is because for any T\ = (r i ,$ i) , T2 =
(r2, ^ 2) such that T2 € t&i and the labels of r\ and r<i are identical (both and or
both or), Ti is tru e if and only if T[= (ri,Wi — {T2} U 'J2) is tru e . Therefore,
without loss of generality, we may assume that and-or trees are strictly alternating.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Observe also that for any and-or tree we can find an equivalent one in which all
internal nodes have out-degree at least two. If T\ = (ri,{T2}), then T\ is tru e if
and only if T% is tru e .

By collapsing we mean replacing an and-or tree by an equivalent one that is
strictly alternating and in which all internal nodes have out-degree at least two.

We say that a subtree U of an and-or tree resolves its parent node if the value
of U alone determines the value of the tree rooted at the parent node of U, namely
if either U has value tru e and its parent node is or or U has value fa ls e and its
parent node is and.

For a given tree T the reduced tree T' obtained by performing some tests from
T is the tree obtained from T by removing all subtrees whose values have been de
termined by the values of the performed tests. The empty reduced tree is obtained
when the value of the entire tree T has been determined.

We now present a few formulae to calculate the expected cost of a nonredundant
strategy. For an internal node v of a strategy, let xv denote the test that labels the
node v. For a leaf node v, let xv denote its label (true or false) and let c(xv) = 0.

Let P = (vo,vi,. . . ,Vk) with k > 0, be a path of a nonredundant strategy. We
define the cost c (P) of a path P as the sum of costs of the tests performed on P

k

C(P) = X]c(ar„4) (1.5)
i= 0

and the probability p (P) of a path P as the product of the probabilities of the
corresponding values of the tests performed on P

fv \ - J 1 if fc = 0, n

where

{p(xv.) if the arc (v*, Vj+i) is labeled true, ,
p(xVi) if the arc (vi, Vi+i) is labeled false.

The sum of the probabilities of all settings that correspond to one root-to-leaf
path of a nonredundant strategy is equal to the probability of this path. Therefore
we have the following expression for the expected cost of a nonredundant strategy
S:

C(S) = £ p(P)c(P), (1.8)
PZRootToLeaf Paths(S)

where the sum is taken over all root-to-leaf paths of 5.
It follows from (1.8) by induction on the number of nodes in a strategy that the

following expression holds for a nonredundant strategy S:

C(S) = £ p(Pv)c(xv), (1.9)
v£lnternalNodes(S)

where the sum is taken over all internal nodes of S and Pv is the path from the root
of S to the node v.

Again by induction on the number of nodes in a strategy it follows that the
following recursive formula computes the expected cost C(-):

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For any leaf node v (labeled tru e or fa lse) of a strategy,

C(v) = 0. (1.10)

For any (sub) strategy Sw rooted at an internal node w,

C (Sw) = c (xw) + p (xw) x C (Sw+) + p (xw) x C (Sw_), (1-11)

where xw is the test that labels the root node w and Sw+ and Sw- are the child
subtrees of w whose root nodes the respective tru e and fa ls e arcs enter.

We will use the following notation to describe strategies: For strategies Si, S 2

and a test x
x : + (S i) ; - (S 2) (1.12)

denotes the strategy whose root is labeled x and whose child subtrees of the root,
entered by tru e and f a ls e arcs are respectively S\ and S2.

For a strategy S that has disjoint substrategies 5 i , . . . ,S m , m > 1, and for
strategies 5 (, . . . , S'm

S { S l < S [, . . . ,S m <S'm) (1.13)

denotes the strategy that is obtained from the strategy S by replacing the subtree
Sfc by the tree S'k for each k — 1 ,2 ,. . . , m.

If an and-or tree contains tests that have cost zero, then there is an optimal
strategy for the tree that first performs in an arbitrary order all 0-cost tests. This
means that the problem of calculating the optimal strategy for a tree that has some
tests with the cost zero reduces to the problem of finding the optimal strategy for the
and-or tree obtained after performing all 0-cost tests. For this reason, we assume
from now on that all and-or tree tests have strictly positive costs.

For any and-or tree T and any test x from T there is a Boolean value v such
that after determining that x has the value v the reduced tree still contains all tests
other than x. From this it follows that that every correct strategy for an and-or
tree performs in the worst case all the tests from the tree (that is it contains a
root-to-leaf path whose nodes are labeled by all tests).

Decision problems are problems for which the only possible solutions are the
answers “yes” or “no”. The decision version of PBER is the following problem:
Given a probabilistic Boolean expression e and a nonnegative real number B, is
there a correct strategy for e with the expected cost at most B? The class P is
the class of decision problems that are solvable in time polynomial in the size of
their inputs. The class N P is the class of decision problems for which there exist
a “certificate” that allows to verify the answer “yes” for problem’s inputs, in time
polynomial in the input’s size. A problem from N P is ATP-complete if any problem
from N P can be reduced to it in polynomial time, which means that if an ATP-
complete problem can be solved in polynomial time, any problem from ATP can. A
problem II is ATP-hard, if there is an ATP-complete problem that can be reduced to
II in polynomial time. See [7, 18] for introduction to the complexity theory.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Previous Work

1.3.1 N P-H ard R esults

Our interest in PAOTR, the restriction of PBER to and-or trees, is motivated by
the fact that for some more general classes of probabilistic Boolean expressions the
problem is JVP-hard.

First consider PBER for arbitrary probabilistic Boolean expressions. Let P be
a Boolean formula and let ep be the associated probabilistic Boolean expression,
constructed by assigning an arbitrary probability and an arbitrary positive cost to
each variable. Now consider the probabilistic Boolean expression e — (x and ep),
where a; is a single test with positive cost. If P is unsatisfiable, then so is e and
the optimal strategy for e has expected cost zero, since it suffices to return f a ls e
without performing any test. If P is satisfiable, then any correct strategy for e has
the expected cost greater than zero, since we will have to perform at least one test
(e is satisfiable but may evaluate to fa ls e for example if x fails). It follows from
this observation and from the ./VP-completeness of the satisfiability problem [7] that
PBER is IVP-hard.

A natural restriction of PBER is to “positive” expressions, namely those that
do not include negated variables (thus are always satisfiable). Such expressions can
be represented as and-or directed acyclic graphs; an and-or DAG is a DAG with
only one source which is called the root, and such that each sink is a probabilistic
test, each node that is not a sink is an or-node or an and-node. The value of an
or-node (respectively and-node) is the value of logical or (respectively and) of its
child nodes’ values. The value of the root is the value of the entire expression.

PBER for and-or DAGs is still ATP-hard as we now show. Our proof follows
by introducing stochasticity into the construction presented in [22] for a different
and-or structure problem.

The decision version of PBER for and-or DAG is the following problem: Given
an and-or DAG D and a positive real number B, is there a strategy to evaluate D
with expected cost at most B?

T heorem 1 PBER for and-or DA Gs is NP-hard, even if all test have unit costs.

Proof: Consider the 3-SAT problem: Given a Boolean formula P that is the and of
m clauses, each of which is the o r of exactly three distinct literals (that is variables
or their negations), is P satisfiable?

3-SAT is N P -complete [7]. We will show that 3-SAT can be polynomially re
duced to PBER for and-or DAG.

For a given instance of 3-SAT let Ci, C2, • • •, Cm be the clauses in the formula P
and let x \, X2 , ■. . , xn be all variables from P. Now construct the and-or DAG D in
the following way: The root of D is an and-node. It has m + n child or-nodes: nodes
Ci, C2 , ...,Cm correspond to the clauses of P while nodes x i,X 2 , ■ ■ ■ ,x n correspond
to the variables from P . Each or-node Xi has exactly two distinct child nodes:
the tests x f and x f , corresponding to the respective values tru e and f a ls e of the

variable Xi. Each test has the cost 1 and the success probability q = ^1 — 2n+1.
These are all the nodes of D. Each or-node Cj has exactly 3 child nodes: if the
clause Cj contains the literal Xi, the test x f is a child of the node, if the clause Cj

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contains the literal ->Xi, the test x f is a child of the node. Figure 1.3 presents an
example of such a construction.

Figure 1.3: Illustration for the proof of Theorem 1. The DAG corresponding to the
formula P — (x\ or - 1x3 or - 1X4) and (xi or - 1X2 or X3).

We can construct such an and-or DAG in polynomial time. Now we will show
that P is satisfiable if and only if there is a strategy for D with expected cost at
most n + 5 .

For any correct strategy the single root-to-leaf path of the strategy that includes
only tru e arcs will be called the true path. Notice that the true path of any correct
strategy has to include at least n internal nodes, because we have to perform at
least one child test of any x, node to conclude that the value of D is tru e .

We will first prove the following claim:
Claim : A correct strategy S for D has the expected cost at most n + ^ if and

only if the true path of S contains exactly n internal nodes.
Proof of Claim: Let Q be the true path of a strategy S and let k be the number of

the internal nodes of Q, k > n. Thus the cost of the path Q is k and the probability
of Q is qk. Notice that the cost of any other root-to-leaf path of S is at most 2n
and at least 1.

Assume that k = n. Then we obtain the following upper bound on the expected
cost of S:

C(S) < qnn + (1 - qn) 2 n = n (2 - qn) =
' (1 \ 2n+l 1 1 M 1

‘ - s) < n
2 - (2») .

= n + -

Now assume that k > n. In this case we have the following lower bound on the
expected cost of S :

C(S) > qkk + (l - q k) l = q k (k - l) + l > q kn + l =

=’i(i-̂ r+,+i>n(i“i)+i=”'4
□

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now we can finish the proof, by means of the following equivalent statements,
for which it is not difficult to see that (i) 43 (ii), (ii) 43- (Hi), (Hi) 43 (iv), and, by
the above Claim, (iv) 43 (v):

(i) P is satisfiable.
(ii) There is a truth assignment cr for P such that for any clause Cj there is at

least one literal that has the value tru e under a.
(Hi) There is a set W of tests from D, |W| = n, such that for any i one and only

one of x f and x f belongs to W and any node Cj has at least one child in W .
(iv) There is a correct strategy for D whose true path contains exactly n internal

nodes.
(v) There is a correct strategy for D with the expected cost at most n + □

And-or trees constitute a proper subclass of and-or DAGs. It is unknown
whether PBER for and-or trees (namely PAOTR) is in P. Previous to our work,
polynomial-time algorithms have been known for special classes of and-or trees,
namely for and-or trees with depth one or two (see Section 1.3.3) and for balanced
and-or trees (see Section 1.3.4).

In this work we prove that PAOTR for the class of and-or trees with bounded
number of internal nodes, as well as for some special classes of trees whose all tests
have identical cost and identical probability, is in P.

1.3.2 A pplications o f And-Or Trees

Previously, various applications of PAOTR have been presented. They include:
screening candidates for a certain position [6], selecting categories at a quiz show
[6], gold m in in g [6, 8, 25], selecting problem-solving methods by simple control
systems [1], performing inferences in expert systems [10, 26], selecting tests for
medical diagnosis [11], and food testing [12].

And-or trees have also been studied as game-trees [14, 19, 20, 27]. A min-max
tree is a directed rooted tree whose leaf nodes are assigned some values and internal
nodes either are labeled max and evaluate to the maximum value of their child
nodes, or are labeled min and evaluate to the minimum value of their child nodes.
Observe that and-or trees are special cases of min-max trees restricted to values 0
(fa lse) and 1 (true). In this context an and-or tree represents all possible plays
of a two-player game. Consider an or-rooted tree. Call the first player OR, the
second player AND. Any leaf node represents a terminal position in the game, that
is win (true) or loss (fa lse) of OR player. Any or-node (respectively and-node)
represents a position in which it is the OR player’s (respectively AND player’s) turn
to move. Each root-to-leaf path corresponds to one complete play of the game.
Observe that the tree evaluates to tru e (win) if and only if the OR player can force
a win.

1.3.3 D epth-F irst Strategies

Natural strategies to consider for evaluating and-or trees are those that evaluate
child subtrees of a node until the value of the node is determined. We call such
strategies depth-first.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D efinition 6 A strategy S for an and-or tree T is depth-first if for any subtree
U of T and any root-to-leaf path P of S, whenever a test x from U is performed on
P, no test from outside U is performed on P until the value of U is determined.

Depth-First Strategy(and-or tree T)

(1) If T is a single test x
(2) Perform x
(3) Return value of x
(4) Else
(5) Take some order UVk,U1(i, . . . , U Vk of immediate subtrees of T
(7) i := 0
(8) Repeat
(9) i := i + 1

(10) ChildValue := Depth-First Strategy {Uni)
(11) Until value of T is determined
(12) Return value of T
(13) End Else

Figure 1.4: Depth-First Strategy.

Notice that in Figure 1.2 the strategy Si is depth-first, but the strategy S 2 is
not: after test I is performed, S 2 “jumps” to test P before the value of the node 23
is determined.

The pseudo-code of the algorithm represented by a depth-first strategy is pre
sented in Figure 1.4. If the root of an and-or tree T is or, the value of T is
determined when any of its immediate subtrees evaluates to true or when all of
them evaluate to fa lse. For a tree T rooted at an and-node, the strategy stops
evaluating subtrees if any of them has value false.

In other words, for any internal node a depth-first strategy recursively evaluates
child subtrees until one of them resolves its parent node or all are evaluated. It is
now only necessary to find for each internal node the best order of evaluating its
child subtrees.

For depth one and-or trees the best such order was described by Simon and
Kadane [25]. Notice that for such trees any correct strategy is depth-first: it is
sufficient to perform one test after another until any of them resolves its parent
node or all are performed.

T heorem 2 [25] Let T be a depth one and-or tree and let x \ ,X 2 , . . . ,x^ be leaf
nodes (tests) o fT . An optimal strategy for T performs one test after another, until
the value of T is determined, in the order xni, xn2, . . . , x„k such that for i < k,

/ rjQ \ \
/ V > / *+V 1 where pr (xi) is the probability that x% resolves its parent node,c (* ,4) - c { x* i + l) *

namely
r , x _ J p{xi) if the root of T is or,

P yXt) | p(xi) if the root of T is and.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof Let x Vl,Xv2, . .. , z Wk be the order of performing the tests by an optimal
strategy S. Assume that this order violates the condition of the theorem, that is

(xir j
there is at least one index I < k such that / v < / +V • We will show that if

C \ X * l) C\ x * l + l)
we switch the tests xn and x V l + 1 , the expected cost of the resulting strategy is not
greater than the expected cost of S. Thus we can continue, if necessary, to switch
tests until the resulting strategy, still optimal, fulfills the condition of the theorem.

Let Pi be the probability of a path from the root of S to the node labeled by Xi,
that is Pi = 1, and Pi = n}=\ (l ~P r for * > 1. The following expression
holds for the expected cost of S:

k
C(S) = Y , Pi C(X«i)-

i= 1

Now let S' be the strategy obtained from S by switching the tests x n and x„l+1.
Then

C(S') - C(S) = Pt \ f (*„,) c K J - pr K (+1) c (a*,)] < 0.

□

Natarajan [17] proposed an algorithm to find the best depth-first strategy for
deeper trees. The algorithm, called DFA (Depth First Algorithm), calculates the
best order of child subtrees for any internal node of a tree. It is described in
Figure 1.5.

Notice that in any depth-first strategy, once one decides how to evaluate each
child subtree of a given internal node, one can treat each such subtree as a single
meta-test, whose effective cost is equal to the expected cost of evaluating the sub
tree and whose probability of success is equal to the probability that the subtree
evaluates to true. For a (sub)tree T, DFA calculates the best order of immediate
subtrees of T (using the rule given in Theorem 2), the expected cost c d f a (T) of
the resulting depth-first strategy for T (as described in the proof of Theorem 2) and
the probability p (T) that T evaluates to true.

The time complexity of DFA is O (N In b), where N is the total number of nodes
in a tree and b is the maximum out-degree of internal nodes (because the time spent
at a node is the time required to order that node’s children).

The next theorem follows by induction on the depth of an and-or tree, with the
base case provided by Theorem 2.

T heorem 3 [12] For any and-or tree T , the depth-first strategy produced by DFA
has minimum expected cost among all depth-first strategies for T.

Greiner, Hayward and Molloy [12] proved that algorithm DFA produces an op
timal strategy for depth-two and-or trees. Combined with Theorem 2 that gives us
the following theorem.

T heorem 4 [12] DFA produces an optimal strategy for and-or trees with depth one
or two.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DFA(and-or t r e e T)

(1) If T is a single test x
(2) Return (c (x), p(x))
(3) Else
(4) For each immediate subtree (7, of T , i < k
(5) (cDFA(Ui), p{Ui)) :=DFk(Ui)

= f p (Ui) if the root of T is or
1 1 1 — p{Ui) if the root of T is and

(7) End For
(8) Find an order Un i , Un2, . . . , U„k of immediate subtrees of T

such that P (UZ ^ s. > P \ f or i < k
C D F A y U n i) C D F A (U w i + 1)

(9) CDFA (T) : = CDFA (U-iri) + H i = 2 CD F A (U ^) n }= i (l “ P T { U n j))

(1 0) v (T) - (1 ~ n i = i (1 - p (U i)) i f th e r o o t o f T i s o r
\ n h p (U i) i f the root of T is and

(1 1) Return (c d f a (T), p(T))
(1 2) End Else

Figure 1.5: DFA (Depth First Algorithm).

However, algorithm DFA does not always produce an optimal strategy for deeper
trees. The best depth-first strategy may be suboptimal for and-or trees with depth
three, even if all tests have unit costs. For example, the unique optimal strategy for
the tree Tr from Figure 1.1 is the strategy S 2 shown in Figure 1.2b, which is not
depth-first.

Notice that for a unit-cost and-or tree with n tests, assuming that probabilities
of tests are greater than zero and less than one, the minimum possible expected cost
of a strategy is 1 and the maximum is n. Thus no strategy can have expected cost
more than n times higher than the expected cost of the optimal strategy. Greiner,
Hayward and Molloy showed that DFA may produce an extremely costly strategy:

T heorem 5 [12] There are unit-cost and-or trees with n tests for which the best
depth-first strategy has expected cost 0 times higher than the optimal res
olution cost.

1.3.4 Balanced And-Or Trees

And-or trees with a uniform structure have been studied extensively in the context
of game-trees.

D efin ition 7

• An and-or tree T is param eter-un iform if all tests o fT have unit costs and
the same probability of success.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• An and-or tree T is balanced if T is parameter-uniform, and all nodes of T
with the same depth have equal out-degree.

• An and-or tree T is u n ifo rm if T is balanced, and all internal nodes of T
have equal out-degree.

Figure 1.6 presents two balanced and-or trees, among which the and-or tree Ti
is not uniform whereas the and-or tree T2 is uniform.

T2

Figure 1.6: Balanced and-or trees Ti and T2. Each test has unit cost and success
probability 0.7. T\ is not uniform. T2 is uniform.

Notice that for an internal node of a balanced tree, all child subtrees are indistin
guishable. Thus any depth-first strategy for a balanced tree has the same expected
cost.

Pearl studied asymptotic properties of uniform trees. The following are his re
sults [19, 20] related to a specific value of success probability of tests that constitutes
a significant threshold.

Let U(d,b,p) denote an or-rooted uniform and-or tree, with depth equal to
d = 2k, for integer k > 0, out-degree of the internal nodes equal to b and the success
probability of tests equal to p.

Let be the positive root of the equation xb + x - 1 = 0. If the probability
of success of tests is £&, the tree U(d,b,£b) evaluates to tru e with the probability

for any depth d. Moreover, in the limit as d goes to 00, the probability that
U(d, b,p) has value tru e is 0 for all p < £& and 1 for all p >

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The threshold value & is also significant with respect to the expected cost of a
depth-first strategy. Let cdfa (U{d, b,p)) denote the expected cost of any depth-first
strategy for U(d,b,p). For test probabilities & and any depth d:

C D F A (U (d , b , £ b)) = > bi .

Also, for any p ^ £„ it holds that

l i m [c D F A { U (d , b , p)) \ * = &5 .
a—>00

Notice that one always has to perform at least 65 tests to determine the value
of a tree U(d, b,p). Thus the above result indicates that for test success probability
different than £& the depth-first strategy is asymptotically optimal for deep uniform
trees.

Tarsi [27] proved the optimality of the depth-first strategy for finite depth, ar
bitrary probability and more general class of trees.
T heorem 6 [27] For any balanced and-or tree, any depth-first strategy is optimal.

In a sense, a depth-first strategy for an and-or tree is a special variant of the
commonly used a-fi pruning search for evaluating min-max game trees (the descrip
tion of the search can be found in [21], Section 5.4). In fact, the optimality of a
depth-first strategy for balanced and-or trees allows to establish the asymptotic
optimality of a-fi algorithm for continuous-valued min-max trees as the tree depth
approaches infinity [27, 20].

Karp and Zhang [14] studied uniform trees U(d,b,p) for the case when p =
£b. They showed that the cost of a depth-first strategy for such trees is likely to
concentrate around the expected cost (1̂) and that the standard deviation for
the cost of the strategy is of the same order as the expected cost with respect to the
depth d of a tree.

1 .3 .5 L in e a r S tra te g ie s

Notice that the strategy Si from Figure 1.2 always performs the tests in the relative
order: P , F, I, K, where a test is skipped if its value is not needed after performing
previous tests. We call such strategies linear.
D efinition 8 A strategy S for an and-or tree T is linear if there is a total order
< on the set of all tests from T such that for any two different tests x and y such
that y < x, x is not performed before y on any root-to-leaf path of S.

Linear strategies are of interest because they can be expressed very efficiently;
it is not known whether optimal strategies can be expressed using space polynomial
in the size of an and-or tree.

Depth-first strategies are linear. Greiner, Hayward and Molloy [12] showed that
the best depth-first strategy for some trees may be arbitrarily worse then the best
linear strategy; the ratio is as bad as the one given in Theorem 5. Moreover, the
best linear strategy can be significantly worse than the optimal one:
T heorem 7 [12] There are unit-cost and-or trees with n tests for which the best
linear strategy has the expected cost 0 times higher than the optimal res
olution cost.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3.6 Preconditioned Probabilistic Boolean Expressions

There is a more general framework in which expressions over probabilistic tests and
their resolution have been studied by many researchers. In this framework, for each
probabilistic test we are given not only non-negative cost and probability of success
but also preconditions in terms of other tests that need to be performed and return
required values before the given test can be queried.

Some such expressions can be regarded as and-or trees with costs and proba
bilities associated with internal nodes as well as leaf nodes. For example, consider
the situation in the recruiting process described in Section 1.1 when the fitness test,
the IQ test and the knowledge test may be administrated only if some additional
single screening test has been performed and passed by the candidate. In this case
we may consider the node *2 of Figure 1.1 as a probabilistic test, and all tests from
the subtree rooted at the node ii may be performed only after this screening test
has succeeded.

By a preconditioned and-or directed acyclic graph we mean a directed acyclic
graph with only one source, called the root node, and such that each node of the
graph is a distinct, independent probabilistic test with a given non-negative cost
and success probability. Each node that is not a sink is either an or-node or an
and-node. Any or-node and and-node is associated with a “required value” (true
or fa lse) : its child tests can be performed only after the test itself has been queried
and returned this required value. The value of a node that has out-degree zero is just
the output of the test. If the output of the test that is an or-node (respectively and-
node) is its required value, then the node evaluates to the logical o r (respectively
and) of its child nodes’ values, otherwise the value of the node is the output of the
test. The value of a preconditioned and-or DAG is the value of its root node.

In our example with the single screening test associated with the node *2 in the
tree Tr in Figure 1.1, the required value of that node is tru e . If the screening test is
passed by the candidate, the value of *2 is the logical or of the values of the nodes
*3 and F. If the candidate fails this test, the value of «2 is fa lse .

A preconditioned and-or DAG that is a directed rooted tree is called a precon
ditioned and-or tree.

The optimal strategy for a preconditioned DAG is defined in the same way as
for a probabilistic Boolean expression, with the restriction that on any root-to-leaf
path of a correct strategy, the precedence constraints of tests must be fulfilled.

Notice that a directed path in a preconditioned and-or DAG does not necessar
ily alternate between or-nodes and and-nodes: we cannot collapse a preconditioned
and-or DAG that contains an arc whose ends are both or or and. By a precon
ditioned ot-D AG (respectively preconditioned o r -tree) we mean a preconditioned
and-or DAG (respectively tree) with no and-node.

Positive Boolean expressions (described in Section 1.3.1) are special cases of
preconditioned and-or DAGs, and and-or trees are special cases of preconditioned
and-or trees, namely such that all tests associated with or-nodes and and-nodes
have the cost zero, the required value tru e , and the probability of success one (thus
one can “reach” any sink node on zero cost and with probability one). Thus the
negative results we stated so far hold also for preconditioned and-or DAGs/trees.
In particular, it is ATP-hard to find an optimal strategy for general preconditioned
and-or DAGs, and the best depth-first or linear strategy may perform very badly

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on some preconditioned and-or trees.
Garey [6] and Simon and Kadane [25] studied preconditioned or-DAGs with

required values f a ls e for any or-node (that means that whenever any test succeeds,
the entire expression evaluates to true). Garey [6] proposed an O (n2) algorithm
to find an optimal strategy for trees of this type, where n is the number of tests.
Simon and Kadane [25] extended this approach to deal with directed acyclic graphs.
The algorithm identifies so-called “maximal indivisible blocks”, that is sets of tests
that are performed together by an optimal strategy.

This approach was also used by Smith [26], who provided a polynomial-time
algorithm to find an optimal strategy for preconditioned or-trees with required
value tru e for any or-node. The algorithm is described in detail in Section 4.1.

Greiner [10] showed that finding an optimal strategy for a preconditioned or-
DAG with required values tru e for any or-node is TVP-complete, even if the prob
ability of success of any or-node is one.

1.3.7 E stim ations of Success Probabilities

An important difficulty related to the success probabilities of tests arises in real
life problems. Though the assumption that one knows the costs of the tests is a
reasonable one, the exact probability distribution of tests is usually not known. The
recruiting company from our example in Section 1.1 may know exactly how much
it has to pay for each test, but the probabilities of success can only be estimated
using data from previous recruiting. Thus the optimal strategy calculated for the
estimated probabilities may not be optimal for the actual, unknown probability
distribution.

Barnett [1] considered and-or trees with only two tests. For such trees he
studied how the expected cost of a strategy is sensitive to the approximation of tests’
parameters. His work indicates that the increase in the cost caused by a suboptimal
strategy, selected for the estimates instead of the exact values of the parameters, is
bounded by the accuracy of these estimates. Thus reasonable approximations will
lead to reasonably good strategies.

Greiner and Orponen [11] addressed the problem of finding sufficiently good
probability estimations for tests of preconditioned and-or trees within the probably
approximately correct (PAC) model [28]. If the success probabilities of tests are to
be estimated using the outputs of the tests for several trials, the authors showed how
many trials are required to get such estimates that the optimal strategy calculated
for them is with high confidence approximately optimal for actual probability values.

First let us concentrate on and-or trees. Assume that a tree contains n tests
and the total cost of all tests is C. If for each test the success probability has been
estimated using 2 In results of performing the test, then the optimal
strategy for these estimations has with probability 1 — 5 the expected cost within e
of the expected cost of the optimal strategy for the actual probability distribution.
This required number of results can be collected while performing some (suboptimal)
strategies; since we always can use a strategy starting with any given test, we are
able to obtain the required number of results in time polynomial in n, C, \ and y.

The situation is more complicated for preconditioned and-or trees, because some
tests can only be performed if other tests have already returned required values, so

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

no strategy can assure performing some tests. Authors proposed for such trees a
polynomial-time algorithm to find estimations of tests’ probabilities accurate enough
so that the resulting best strategy is probably approximately optimal.

1.3.8 N on-Stochastic And-Or Trees

And-or tree resolution has also been studied in frameworks in which values of tests
are not probabilistic variables. Since each deterministic strategy has to perform in
the worst case all tests from the tree, so the simple cost of a strategy under the
worst setting of tests is of no use as a performance measure.

A purely non-stochastic model is proposed by Charikar et al. [2]. For any setting
of tests of a given and-or tree there exists the “proof” of the value of the tree, that
is a set of tests such that the partial setting restricted to this set decides about the
value of the tree. The cost of such a proof is the sum of costs of the tests from the
set. The performance ratio of a strategy under a given setting is the ratio of the
cost of the strategy under this setting to the minimum cost of a proof of the tree’s
value under this setting. For example, consider the and-or tree shown in Figure
1.1. The value of the tree for the setting a = (F —, I+ , P —,K —) is fa ls e . The sets
{P} and {F ,K } are proofs of this value. The minimum cost proof is the set {P}
with the cost equal to 1. The cost of the strategy 52, shown in Figure 1.2, under
setting a is equal to 3. Thus the performance ratio of Si under setting a is equal
to y — 3. The competitive ratio of a strategy is the maximum of the performance
ratio over all settings of tests. The optimal strategy for an and-or tree is the one
that minimizes the competitive ratio.

The authors provide an efficient algorithm to find an optimal strategy for and-or
trees. The algorithm relies on discovered functions (c) and f f (c) which are lower
bounds on the cost that any strategy for an and-or tree T has to pay in the worst
case in order to find a proof with cost c of the value tru e and fa ls e respectively.
These lower bound functions are used by the algorithm to balance for each internal
node the cost spent while performing the tests from each of its child subtrees. The
algorithm runs in time that is polynomial in the number of the nodes in the tree
and in the sum of the costs of all tests.

In the randomized model and-or trees are treated as fixed, non-stochastic struc
tures, but randomness is introduced into strategies.

A randomized strategy is a strategy that is allowed to perform a random ex
periment and use the output of the experiment to decide about a test to perform.
Formally, it is specified by a set of deterministic strategies and a probability dis
tribution on this set. For a given setting of tests of an and-or tree, the cost of a
randomized strategy is the expected cost of using the strategy under this setting
(over all deterministic strategies). The worst case cost of a randomized strategy is
the maximum cost of the strategy over all settings of tests. A correct randomized
strategy is optimal if it has the lowest worst case cost over all correct randomized
strategies for a given and-or tree.

In randomized depth-first strategy the deterministic strategies with non-zero
probability are all depth-first: to evaluate a (sub)tree T the strategy evaluates

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

immediate subtrees of T until the value of T is determined, and the next subtree to
evaluate is selected at random.

Saks and Wigderson [23] showed that the randomized depth-first strategy is
optimal for uniform and-or trees. For uniform binary and-or trees with n tests this
strategy has the worst case cost 0 (n0 753 -); recall that the worst case cost of any
deterministic strategy is n.

It has been conjectured that this is the largest gap between the worst case cost
of a deterministic and a randomized strategy for a unit-cost and-or tree. Heiman
and Wigderson [13] proved that the worst case cost of any randomized strategy for
any unit-cost and-or tree with n tests is at least n0-51.

The randomized strategies mentioned above are always correct (randomized al
gorithms that never err are called Las Vegas algorithms). We can also consider
Monte Carlo strategies (Monte Carlo algorithms are randomized algorithms that
may err with some non-zero probability). By using the best Monte Carlo strategy
instead of a Las Vegas strategy one can never increase the worst case cost. Santha
[24] proved that for any unit-cost Boolean expression one can transform a Las Vegas
strategy into a Monte Carlo strategy with a slightly lower (by a factor linear in the
error probability) worst case cost, however, for unit-cost and-or trees Monte Carlo
strategies cannot achieve any better improvement than this linear one.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Optimal Order of Sibling Tests

2.1 Siblings and Twins Lemma

In the search for an optimal strategy one is led to the problem of efficiently selecting
the first test to perform. A polynomial-time algorithm to find the first test of an
optimal strategy suffices to construct a polynomial-time algorithm to find an optimal
strategy: one just needs to perform the first test, reduce the tree accordingly to its
output and recurse. A simple approach to solving PAOTR is to try each test as
the first one by recursive calculation of the best strategy starting with each test
and then selecting the one with the minimum expected cost. For an and-or tree
with n tests the running time of such an algorithm is in 0(n n). In the search for
properties that lead to efficient first test selection, we investigated local structures of
and-or trees. This approach led us to discovering an optimal a-priori relative order
of sibling test. The order yields a dynamic programming algorithm for finding an
optimal strategy for and-or trees which we describe in Section 2.2. We also showed
that some siblings tests can be performed together by an optimal strategy. We now
present these results.

D efinition 9 For any test x of an and-or tree define the R -ratio as:

(2.1)

where c (x) is the cost of x and pr (x) is the probability that x resolves its parent
node, namely

r / \ _ J p{x) if the parent node of x is or,
^ [p{x) if the parent node of x is and.

Notice that the R-ratio is the same ratio that defines the best order of sibling
tests in a depth one and-or tree (Theorem 2).

D efinition 10 Tests x\ and X2 are R-equivalent if the parent node of x\ and X2

is the same and R (x i) = R (x 2). An R -class is an equivalence class with respect
to the relation of being R-equivalent.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a)

c=l
p=0.5

c=l
p=0.4

b)

<<
c=l c=2

p=0.4 p=0.8
c=l

p=0.3

Figure 2.1: a) Sibling tests x i, X2 and x% have R-ratio 0.4. The set W — {®i, X2 , £3}
is an R-class. b) Part of a strategy contiguous on W performing the tests from W .

D efinition 11 For an R-class W a strategy S is contiguous on W if on any root-
to-leaf path of S, whenever a test from W is performed, no test from outside W
is performed until a test from W resolves its parent node or all tests from W are
performed.

Figure 2.1 shows an example of an R-class and illustrates the way of performing
tests from one R-class by a strategy that is contiguous on this class.

O bservation 8 Let tests x and y he siblings in an and-or tree T . Let Sxy be a
correct nonredundant strategy for T. I f the parent node of x and y is o r (respec
tively and,) and Sxy = x : + (<Si)] - (y : + (S i) ; - (S2)) (respectively Sxy = x : + (y :

+ (£2); — (<51)); — (Si),) for some substrategies S i, S 2 , and the strategy Syx is ob
tained from Sxy by switching the labels x and y, then Syx is nonredundant, correct
for T, and

i) if R (y) ^ R (x) then Syx has lower expected cost than Sxy,
ii) if R (y) — R (x) then Syx has the same expected cost as Sxy.

Proof: The correctness and nonredundancy of Syx follows from the correctness and
nonredundancy of Sxy. We will prove the relations (i) and (ii) assuming that the
parent node of x and y is an or-node. The proof for the other case is symmetric.
For the expected cost of Sxy we have:

C (Sxy) — c (x) + p (x) c (y)+ p (x) p (y) C (S2) + [1 - p (x) p (y)] C (S i) .

Using a similar expression for C (Syx) we obtain

C (Syx) - C (Sxy) — p (x) c (y) - p (y) c (re).

The observation follows immediately from the definition of R(x) and R(y). □

The following observation follows from Observation 8ii).

O bservation 9 Let W be an R-class in an and-or tree T and let S be a correct,
nonredundant strategy for T that is contiguous on W . Then any strategy obtain
from S by changing order of performing tests from W has the same expected cost as
S has.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following theorem specifies two conditions satisfied by an optimal strategy.
The first condition deals with the best order of performing sibling tests. The second
condition specifies the optimal way of performing sibling tests that axe R-equivalent.

T heorem 10 For any and-or tree there is an optimal strategy S such that both of
the following conditions are satisfied:

i) (Siblings Lemma) for any sibling tests x and y such that R (y) > R (x), x
is not performed before y on any root-to-leaf path of S,

ii) (T w ins Lem m a) for any R-class W , S is contiguous on W .

Proof: We prove Theorem 10 by induction on the number of tests in an and-or tree.
The theorem holds for the base case of a tree with only one test. Now assume that
it holds for any and-or tree that has fewer tests than the tree T has.

Let S be an optimal strategy for T. We may assume that it is nonredundant and
that all substrategies of S are optimal for the corresponding reduced trees (because
if it is not, we can replace it by such an optimal strategy). Let x be the first test
performed by S. Assume that a; is a child of an or-node (the proof for the other
case is symmetric). Let S+x, S -x be the substrategies of S that are followed when
respectively x is tru e , x is fa lse . By induction, we may assume that S+x and S -x
are contiguous on any R-class and preserve “the right order” of sibling tests (that
is never perform a sibling test with lower R-ratio before its sibling test with higher
R-ratio) of the corresponding reduced trees.

Now assume that S does not fulfill the conditions of the theorem. That means
that x has at least one sibling test with the same or higher R-ratio. We will show
that in this case there is another optimal strategy that satisfies the conditions of the
theorem. To construct such a strategy we will use the technique of changing order
of parts of the original strategy.

Let Y be the set of all and only sibling tests of x with R-ratio higher than or
equal to R(x). Let y be the test with minimum R-ratio among all tests from Y.
By Observation 9 the order of performing tests from one R-class is arbitrary in
a strategy that is contiguous on this class, thus we may assume that y is always
performed as the last test from Y by the substrategy S - x.

Now let M > 1 be the number of nodes of S - x labeled by test y, let Syi, Sy2, . . . ,
SVM be the subtrees of S - x rooted at nodes labeled by y, and for k = 1 ,2, . . . , M,
let S+Vk, S - Vk be the substrategies of Syk followed in the case when respectively y is
tru e , y is fa ls e . Also let S r denote the (possibly empty) part of S - x that contains
all nodes outside Syi, Sy2, . . . , SVM. See Figure 2.2a.

Consider the strategy S (x ->• y) = S - x (Syi < SXl, . . . , SVM < SXM), where for
k = 1 ,2 ,. . . , M , SXk = x : + {S+Vk) ; - {SVk), shown in Figure 2.2c. In this strategy
we query x just before y. This strategy is obviously nonredundant. To show that it
is also correct, we need to check that for each leaf node L of S (x —»• y), the label of
L (tru e or fa ls e) is the correct value of T for all setting of tests that correspond
to the path Pl from the root of S (x -> y) to L. This obviously holds if Pl contains
a node labeled by test y , since in S there is the root-to-leaf path that differs from
Pl only in the order of performing tests. Knowing that, we see that the label of
L is correct if Pl contains node labeled by x and the arc labeled tru e that leaves
this node (because after x succeeds, we do exactly the same that we do if x fails

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+x

+x

-x

Figure 2.2: Illustration for the proof of Theorem 10. For any node the up (re
spectively down) arc denotes the tru e (respectively fa lse) arc. (a) The optimal
strategy S with substrategies S+x and S - x. (b) The strategy S'_x that may replace
the substrategy S - x. (c) The optimal strategy S (x -» y). (d) The optimal strategy
S* that fulfills the conditions of Theorem 10.

but its sibling test y succeeds). The only remaining case is when neither x nor y is
performed on Pl- Let o l be any setting of tests that correspond to P l • In S we
follow the path identical to P l after x fails. Thus for any o l in which x is f a ls e
the label of the leaf L is correct. To see that it is also correct if x is tru e , consider
any two setting of tests o\ and cr2, that may differ only in the values of x and y,
assume that in o\ x is tru e , in 0 2 x is fa lse , y is tru e , and observe that the value
of the tree T is the same for o\ and <72- Thus the correctness of the label of the
leaf node of Pl in th is case follow s from th e fact th a t in S we do not te st y on th e
corresponding root-to-leaf path.

Now let S* be the strategy obtained by switching the labels x and y of the
neighbour nodes of the strategy S (x —► y). See Figure 2.2d.

If the R-class containing x includes also other tests, then it has to contain y , so
S* is contiguous on this class. And S* is contiguous on any R-class that does not
include x\ for the R-class including y (if R(x) / R{y)) it follows from the fact that
y is performed as the last test from Y . Also, since x is tested just after y, when y

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is false, S* preserves the right order of sibling tests of T.
Observation 8 implies that S* is correct and does not have higher expected cost

than S (x -> y). Thus to complete the proof it is enough to show that S (x —► y) is
optimal.

Let C (Sr) denote the expected cost of performing Sr, that is the sum of costs
of tests labeling nodes of Sr, factored by the probabilities of paths from the root of
S -x to a given node (if Sr is empty, then C (Sr) = 0). For any k, let pyk be the
probability of the path from the root of S - x to the labeled by y root node of

Then we can express the expected costs of S in the following way:

C (S) = c (x) + p (x)C (S+x) + p (x)C (S -x) , (2.2)

where
M

C (S-x) = C (S r) + Y , Pyk [c (y) + p (y)C (S+yk)+ p (y)C (S yk)], (2.3)
fc=i

while for the expected cost of S (x -> y) we have:

M ,

C (S (x - ¥ y)) = C (5 r) + 5 N p ta [c (*)+ p (®)C (S + w) +
k=1 k

+P(x) [c(y) + p (y)C (S+Vk)+ p (y)C (S -Vk)]] J . (2.4)

Now assume, by way of contradiction, that S (x -4 y) has the higher expected
cost than S. Then using the notation D = C (Sr) + J^^f-iPykC (S+yk) - C (S+x)
and P r = 1 - YJk=\Pyki we obtain

p(x) D > P rc (a;).

Notice that Yjk=i Pyk is the total probability of reaching any node labeled by y after
entering the strategy S~x, so PT > 0. That implies that D > 0, thus

> £ • <2-5>c(x) D

We will show that it follows from (2.5) that we can replace the substrategy S - x
of the original strategy by a substrategy with strictly lower expected cost, which
contradicts the optimality of S - x.

Consider the strategy S'_x = y : + (S+x) ; - (S -x (Syi < S- yi, . . . , SVM < S - yu))
shown in Figure 2.2b. Observe that S'_x is nonredundant and correct for the reduced
tree obtained from T when x is false. We have the following expression for the
expected cost of S'_x\

C (s - x) = c (y) + P (v)C (S+x) + P (y)
M

C (Sr) + E P > .C (S- »)
fc=l

(2 .6)

Using the same notation as previously we obtain

C (S -x) - C (S'_x) = p (y)D - P rc (y) . (2.7)

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

But then from (2.5) and the fact that

c(y) c (x) ’

it follows that C (S -x) - C (S'_x) > 0, contradiction

(2 .8)

□

2.2 Dynam ic Programming Algorithm for PAO TR

The ordering of sibling-tests described by the Siblings Lemma allows us to construct
a dynamic programing algorithm for PAOTR that runs in time 0(d?nd), where n
is the number of leaves (tests) and d is the number of leaf-parents (that is nodes
that are parents of tests) in the input and-or tree. Thus the running time of the
algorithm is polynomial if the number of leaf-parents is bounded.

As shown in Section 1.1, for any and-or tree there is an equivalent one whose all
internal nodes have out-degree at least two. For such trees the number of internal
nodes is of the same order as the number of leaf-parents, as we show in the following
observation.

O bservation 11 Let T be an and-or tree whose all internal nodes have out-degree
at least two. Let d be the number of leaf-parents in T and let N be the number of
all internal nodes in T. Then N > d > y .

Proof: Let m be the number of all arcs leaving internal nodes that are not leaf-
parents. Since out-degree of each internal node is at least 2, so m > 2 (IV - d). Since
each such arc enters a distinct internal node, different than the root of the tree, so
m < N . It follows that d > y . □

D efinition 12 A sibling-class is a non-empty set of all leaf children of one inter
nal node of an and-or tree.

For example the and-or tree Tj shown in Figure 2.3a contains three sibling-classes:
L\ = {01, 02}) -̂ 2 = { h i h i h } and L3 = {ci,C2}. The number of sibling-classes of
an and-or tree is the number of leaf-parents in the tree. For an and-or tree T let
d be the number of leaf-parents in T and Li, L2 , • • •, Ai be the sibling-classes of T.
Assume that S is an optimal strategy for T that fulfills the conditions of Theorem
10. While evaluating T using S, we gradually reduce our and-or tree (namely after
performing any test we obtain a new reduced and-or tree to evaluate) until we
obtain the empty tree, at which point the evaluation of T is completed. Consider
any reduced and-or tree I that we encounter while using S. Assume that I still
contains mi tests from the sibling-class Li. If m\ < \Li\, then the remaining tests
from Li were already performed. Since we always query tests with higher R-ratio
before sibling tests with lower R-ratio, the mi tests still present in I must have the
lowest R-ratios among all tests from L*.

That means that for any d-tuplet (mi, m2,..., vrid), 0 < m, < |Lj|, there is only
one reduced tree which we may encounter that has exactly m* tests from the set Li,
for any i: this tree contains the mi tests with the lowest R-ratios among all tests
from L i. In this way we may identify a reduced and-or tree with such a d-tuplet.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a) Td b)

L, U

Figure 2.3: a) An and-or tree Td with sibling classes L i,L 2, £ 3. For each test the
cost, success probability and R-ratio values are denoted respectively by c, p and R.
b) The reduced tree I = (0,2,1) obtained from Td and reduced trees obtained from
I when 62 succeeds and when 62 fails.

For example consider the tree Td shown in Figure 2.3a. Td is represented by the
3-tuplet (2,3,2) while the 3-tuplet (0,2,1) corresponds to the reduced tree I shown
in Figure 2.3b.

Thus there are (|Li| + 1) x (|L2| + 1) x . . . x (\Ld\ + 1) different reduced trees to
consider, including the original tree. This number is in O (nd^ where n = I Ail
is the number of tests (leaf nodes) in T.

Notice also that for any tree we need consider only d tests in order to find the
first test to perform, namely a test with maximum R-ratio from each of d sibling-
classes.

Assume that we are given a structure of internal nodes of an and-or tree T such
that for each internal node we know its parent node as well as its internal child
nodes, and each leaf-parent is associated with its sibling-class. Assume also that
we are given a reduced tree I obtained from T encoded by a d-tuplet. We shall
now discuss how for some sibling class L one can calculate the d-tuplets l \ and l£
corresponding to the reduced trees obtained from I when the test with maximum
R-ratio from L in I respectively succeeds and fails.

Let xl be the test with maximum R-ratio from L in I. If the sum of the numbers
of tests in all sibling-classes of I is one, then xl is the only test in the tree and l£
as well as l£ is the empty tree.

Otherwise we find the parent node of xl in collapsed I. To do this we firstly
need to find the last internal node v on the path from the root of T to the parent of
xl such that the sum of the tests’ number in the sibling-classes inside the subtree
rooted at v is greater than one.

The parent node of xl is the last internal node w on the path from the root of
T to v such that w has the same label (or/and) as v and w is the root of T, or w is

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a child node of the root of T, or the subtree rooted at the parent node of w contains
at least one sibling-class with non-zero number of tests outside the subtree rooted
at w.

Given the parent node w of x i in I we can easily modify the d-tuplet I in order
to obtain or l£ . If xl resolves its parent w, the required modification is setting
to zero the number of tests for each sibling-class inside the subtree rooted at w.
Otherwise, the modification is done by decrementing the number of tests from the
sibling-class L by one.

Notice that the operation of finding the parent w as well as setting the tests’
numbers of the corresponding sibling-classes to zero deal only with internal nodes
and sibling-classes (not with particular tests) and can be performed in time linear
in the number of internal nodes, thus also linear in d.

Consider as an example the reduced tree I = (0,2,1) obtained from the tree Td
from Figure 2.3a. In I the test x l 2 with maximum R-ratio in L 2 is 62- We want
to find I~l2 and Using the algorithm described above we first find the node v
which is 14. Then we find the parent node w which is i\. The parent node i\ is or.
If x l 2 succeeds it resolves its parent node thus we need to set to 0 the number of
tests in all sibling-classes inside the subtree rooted at i\. Thus l£ = (0,0,0). If x l 2

fails, we just need to decrement the number of tests in L 2 by one: n , = (o, 1, i).
See Figure 2.3b.

We shall now describe Dynamic Programing Algorithm (DPA) for PAOTR.
While performing the algorithm we enumerate all possible (|Li| + 1)x (|L 2 |-I-1)x
. . . x (IL^I + 1) reduced trees and identify them with d-tuplets. In other words
we identify each reduced tree with one entry in a d-dimensional matrix of the size
(|Zq| + 1) x (|L2| + 1) X . . . x (\Ld\ + 1). The tree (|Z q |, \L2 \ \ L d\) is the input
tree, containing all the tests, the tree (0, 0, . . . , 0) is the empty tree indicating that
nothing remains to evaluate.

For each tree I we store the following attributes:
Cost[J]: the expected cost of the optimal strategy for I,
F irstT est[/]: a first test performed by the optimal strategy for I,
True Arc [J]: the pointer to the reduced tree obtained if the first test succeeds,
FalseArc[/j: the pointer to the reduced tree obtained if the first test fails.
Once these attributes are stored for each reduced tree, an optimal strategy for the

input tree T is encoded. The strategy starts with performing the test F irstT est[T]
and then depending on the value of this test either TrueArc [T] or FalseArc[T] is
followed; the tree pointed by it is the reduced tree that needs to be evaluated at this
point. The procedure is carried on until the empty tree is reached: if it is reached
by a TrueArc, the value of the tree is tru e , otherwise its value is fa lse .

The algorithm deals with reduced trees in the order of the number of tests, start
ing with the empty tree.

Dynamic Programing Algorithm for PAOTR is presented in Figure 2.4. The
input and-or tree is strictly alternating and such that each internal node has out-
degree at least two. The tree is encoded by the set of its internal nodes, such that
for each internal node we know its parent node and all internal nodes that are its
children. Moreover each leaf-parent is associated with the array of its leaf children.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DPA (and-or t r e e T)
Output: optim al s tra te g y fo r T

(1) For each sibling-class L of T
(2) order tests of L by ratio R
(3) End For
(4) For each tree I
(5) Cost[J]:=oo
(6) C alcu la te the number M of t e s t s in I
(7) Add I to the list of trees with M tests
(8) End For
(9) Cost [empty tree]: =0
(10) FirstTest[empty tree] :=NIL
(11) For M = 1 to # of tests in T
(12) For each tree I with M tests
(13) For each sibling-class L of T that is not empty in I
(14) a:L:=test from L in I with maximum R
(15) I l ' =tree obtained from I if x i succeeds
(16) I l '=tree obtained from I if x i fails
(17) C c (x l) + p (x l) xCost + p (x l) 'x Cost [/£■]
(18) If C <Cost[J]
(19) Cost[J] := C
(20) FirstTest[/] := x l

(21) TrueArc[/] is pointed to 1^
(22) FalseArc[J] is pointed to l £
(23) End If
(24) End For
(25) End For
(26) End For

Figure 2.4: Dynamic Programming Algorithm (DPA) for PAOTR.

T heorem 12 DPA produces an optimal strategy for and-or trees. The time com
plexity of the algorithm is in O and the space complexity is in O (j1̂) where
n is the total number of tests (leaf nodes) of a tree and d is the number of leaf-parents
in a tree.

Proof: The correctness of the algorithm follows from Theorem 10, as discussed
above. Since as shown above the total number of reduced trees is in O and we
store a constant amount of data for each reduced tree, the space complexity is in
0 (n d).

Lines (l)-(3) order tests inside each sibling class, so the time required to perform
them is in O(nlogn). Line (6) takes time 0(d) and is called once for each reduced

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reduced tree I Cost[/] F irstT est[I] TrueArc[/]
points to

FalseArc[J]
points to

(0, 0, 0) 0 NIL NIL NIL
(0, 0, 1) 1 c2 (0, 0, 0) (0, 0, 0)
(0, 1, 0) 3 bz (0, 0, 0) (0, 0, 0)
(1, 0, 0) 2 02 (0, 0, 0) (0, 0, 0)
(0, 0, 2) 1.3 Cl (0, 0, 0) (0, 0, 1)
(0, 1, 1) 2.5 c2 (0, 0, 0) (0, 1, 0)
(0, 2, 0) 2.6 b2 (0, 0, 0) (0, 1, 0)
(1, 0, 1) 2 c2 (0, 0, 0) (1, 0, 0)
(1, 1, 0) 3.2 a2 (0, 1, 0) (0, 0, 0)
(2,0, 0) 2 Ol (0, 0, 0) (1, 0, 0)

Table 2.1: Parameters of reduced trees obtained from the and-or tree Td from Figure
2.3 with less than three tests.

tree thus time required to perform lines (4)-(8) is in 0(dnd).
We will show that time required by lines (ll)-(26) is in 0(d?nd) which ends the

proof. Loop (13) has d iterations and is called once for each of O (nd ĵ reduced trees.
To complete the proof we need to show that time required by the operations inside
this loop is in 0(d). Since each parent node of a sibling-class is associated with an
array of leaf children, ordered by R-ratio, it takes constant time to find xl (line 14).
As we have shown before, we can calculate or in time 0(d) (lines (15) and
(16)). Also, since we identify trees with d-tuplets, we may find data for trees
and (line 17) in 0(d) time, as elements of a d-dimensional matrix. □

The corollary below follows immediately from the previous theorem.

Corollary 13 Probabilistic and-or tree resolution for and-or trees with a bounded
number of internal nodes is in P.

As an example consider again the and-or tree Td shown in Figure 2.3a. Assume
that we already processed all reduced trees with less than three tests. The calculated
parameters for each of these trees is given in Table 2.1. We now want to calculate
the optimal strategy for the reduced tree I = (0,2,1) with three tests; see Figure
2.3b. The sibling-class L\ is empty in I. Now consider the sibling-class L 2. The
test x i 2 with maximum R ratio from L 2 in I is the test 62 and I ^ 2 = (0,0,0),
t e 2 = (0,1,1). Thus we now have

C = c(h) + p (b 2) • Cost [/+] + p(b2) • Cost [l£2] =
= 2 + 0.8 • 0 + 0.2 • 2.5 = 2.5. (2.9)

Thus we set Cost[J] to 2.5 and FirstTest[J] to b2, we point TrueArc [J] to (0,0,0)
and FalseArc[I] to (0,1,1). Now we proceed to the sibling-class L 3 . We have
x l 3 = c2 and l £ 3 = (0,0,0), l£ s = (0,2,0). Thus

C = c(c2) + p(c2) • Cost [ijJ + p (c 2) • Cost [jfJ =
= 1 + 0.5 • 0 + 0.5 • 2.6 = 2.3. (2.10)

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since this cost is lower than current Cost[i], we set Cost [7] to 2.3 and FirstTest[7]
to C2, we point TrueArc [7] to (0,0,0) and FalseArc[7] to (0,2,0). These parameters,
together with the parameters from Table 2.1, encode the optimal strategy for the
reduced tree 7. This strategy is presented as a binary tree in Figure 2.5.

Figure 2.5: An optimal strategy for the tree 7 shown in Figure 2.3.

2.3 Simplifying And-Or Trees Using the Twins Lemma

The Twins Lemma provides a way of simplifying an and-or tree. Since all tests from
an R-class are performed together by an optimal strategy, it only matters whether
any of them resolves their common parent node. Thus we may replace each R-
class containing more than one test by a single meta-test with an effective cost and
probability corresponding to performing all tests from the R-class. By Observation
9 the order of performing the tests from the R-class is arbitrary.

Simple calculations yield the parameters of such a meta-test.

Observation 14 Let W be an R-class and let R be the R-ratio of the tests from
W . In searching for an optimal strategy we can replace W by a single meta-test w
with the following parameters:

The following observation follows immediately from the previous one.

Observation 15 The meta-test w replacing an R-class W has the same R-ratio as
tests from W.

The simplification described above allows us to prove that DFA produces an
optimal strategy for depth three parameter-uniform and-or trees. Recall that an
and-or tree is parameter-uniform if all tests have unit cost and the same success
probability.

Observation 16 Let T be a depth three and-or tree such that for each internal
node v of depth two, all tests that are child nodes of v have the same R-ratio. Then
DFA produces an optimal strategy for T.

P
1 — n x€\vP(x) if tests from W have an or-parent,
Uxew P (x) if tests from W have an and -parent,

if R > 0 and tests from W have an or -parent, (2.12)
if R > 0 and tests from W have an and -parent.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.6: A parameter-uniform and-or tree Tu. Each test has cost one and prob
ability of success 0.2. W and V denote depth one subtrees.

Figure 2.7: The unique optimal strategy Sopt for the and-or tree Tu where nodes
labeled by W and V denote evaluation of the corresponding subtrees.

Proof: By Theorem 3 DFA produces a strategy with minimum expected cost among
all depth-first strategies. Thus it suffices to show that some optimal strategy for T
is depth-first.

Let T ' be the simplified tree obtained from T by replacing each R-class by a
single meta-test. Observe that in T ' each internal node with depth two has only one
child: a single meta-test. Thus T ' collapses to depth two. By Theorem 4 for any
depth two and-or tree there is an optimal depth-first strategy. If we evaluate entire
replaced subtrees in place of meta-tests, the strategy is depth-first for T and by the
Twins Lemma is optimal for T. □

The following theorem follows immediately from Observation 16.

T heorem 17 DFA produces an optimal strategy for depth three parameter-uniform
and-or trees.

However, this property does not always hold for deeper parameter-uniform and-or
trees; there are depth 4 parameter-uniform and-or trees for which the best depth-
first strategy is not optimal. For example the strategy Sopt in Figure 2.7 is the
unique optimal strategy for Tu in Figure 2.6, but it is not depth-first.

S op t

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Param eter-Uniform Ladders

In the previous section we have shown that PAOTR for parameter-uniform depth
three and-or trees can be solved with DFA. By Theorem 6 we also know that an
optimal strategy can be found efficiently for any parameter-uniform tree that is
balanced.

In this section we present another particular subclass of parameter-uniform
and-or trees for which the optimal strategy has a very simple description. PAOTR
for this type of trees is in P.

First let us state two observations; the first of these is an unpublished result due
to Greiner, Hayward, and Molloy.

Observation 18 Let T be an and-or tree and let x be a child test of the root of T.
I f a strategy S after performing the first test, performs x regardless of the value of
the first test, then there is a strategy starting with x whose expected cost is less than
or equal to the expected cost of S.

Proof: Let y be the first test performed by S. Assume that T is or-rooted;
the proof for the other case is symmetric. Let 5+ be the substrategy followed
when y is true and x is false, let S - be the substrategy followed when y is
false and x false (if x is true, the value of T is true). The strategy S' =
x : +(true); - (y : + (5+); - (S'-)) is nonredundant, correct for T, and

C(S') - C(S) = c{x) + p(x)c(y) +p(x)p(y)C(S+) + p(x)p(y)C (S-) +
~ [c(y) + c(x) + p(y)p(x)C(S+) + p(y)p(x)C(S-)\ =

= —p(x)c(y) < 0. (2.13)

□
Observation 19 Let T be an and-or tree whose root has a test child x. I f the
root of T is or (respectively and) and for any test y in T p(y)/c(y) < p(x)/c(x)
(respectively p(y)/c(y) < p(x)/c(x)), then there is an optimal strategy for T that
starts with performing x.

Proof: By induction on the number of the tests in T. The observation holds if
T has only one test. Now assume that the observation holds for any tree which has
fewer tests than T has.

Let S be an optimal strategy for T and assume that it starts with performing a
test y different than x. By the Siblings Lemma and Twins Lemma we may assume

Figure 2.8: An example of an and-or ladder.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that S does not perform any sibling test of x before x, so y is not a child of the root
of T. Since we may assume that each internal node of T has out-degree at least two,
that means that the reduced trees obtained from T when y is tru e and y is f a ls e
both contain x and have fewer tests than T. So by the inductive assumption, after
testing y, S performs x, regardless of the value of y. But a: is a child of the root of
T, so by Observation 18 there is a strategy for T that has not higher expected cost
than S and starts with performing x. □

The above observation generalizes an unpublished result of Omid Madani.
An and-or ladder is an and-or tree such that each internal node is a parent of

at most one internal node. Figure 2.8 shows an example of an and-or ladder. From
the Observation 19 follows immediately that if all tests of an and-or ladder are
identical, there is a very simple way of finding an optimal strategy which we now
formalize.

O bservation 20 For any parameter-uniform and-or ladder T there is an optimal
linear strategy S that performs tests “from the top to the bottom”, that is that per
forms first, in an arbitrary order, tests of depth one, and as long as the value of T
is not determined, after performing in an arbitrary order tests of depth k, performs
in an arbitrary order tests of depth k + 1.

2.5 R eduction to Unit-C ost PAOTR

In Section 2.3 we explained how an and-or tree can be simplified by replacing an
R-class by a single metartest. On the other hand, for any test with cost greater than
one, we may consider replacing the test with a depth one subtree having identical
(same probability) unit-cost tests. Notice that if we could find for each test from
the original tree an appropriate replacement collection of identical unit cost tests
such that, for each original test, the replacement subtree probability and evaluation
cost would equal the original leaf probability and cost, then by the Twins Lemma
an optimal strategy for the new unit-cost tree would have the same expected cost
as an optimal strategy for the original tree. Such a replacement subtree is shown
schematically on Figure 2.9.

As we shall show, while it is not always possible to find a unit-cost tree that
yields such an exact correspondence, by keeping sufficient precision it is possible
to obtain by such replacements a unit-cost tree whose optimal resolution cost is
arbitrarily close to the optimal resolution cost of the original tree. We now describe
such a reduction in detail.

We start by considering depth one subtrees with identical leaf nodes in a unit-
cost tree. Let u be the chosen unit of cost, that is the cost of each test in the
tree. Let A be a depth one subtree with k identical leaf nodes and let p, p be
the respective success, failure probability of each test from A. We will denote the
optimal resolution cost of A by C(A), the probability that A evaluates to tru e by
p(A), and the probability that A evaluates to f a ls e by p{A).

If A is and-rooted then

p (A) = p k, (2.14)

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.9: a) A test x in an and-or tree, b) A subtree A replacing the test x.
There is k tests in A, each with the same cost u and the same success probability p.

(2.15)

If A is or-rooted then

p(A) = pk (2.16)

(2.17)C(A) = |
uk if p = 0 .

Now assume that we want to use the subtree A to replace a test x with the cost
cx and the success probability px. The cost of x expressed in units u is cx/u . We

there is no need for replacing it).
We would like to obtain the exact correspondence between the test x and the

subtree A , so we require that p(A) = px and C(A) = cx. Observe, that it is not
possible if px = 0 and A is and-rooted because we would need p(A) = 0, which
requires p = 0, but then we have C(A) = u (meaning that it is always enough to
perform just one test to evaluate A to fa lse) . Similarly, it is impossible to replace
x by an or-rooted subtree i ip x = 1.

Simple calculations lead to the following expressions for k and p, yielding p(A) =
px and C(A) = cx.

For an and-rooted subtree A

require that cx/u > 1. which means that x is not just a unit-cost test (in which case

(2.18)

(2.19)

whereas for an or-rooted subtree A

(2 .20)

(2 .21)

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Before we address the difficulties related to the above conditions, let us investi
gate the dependency of the number k on px and cx/u.

As we shall show at the end of this section in Lemma 23, for an and-rooted
subtree k monotonically decreases from oo to cx/u as px increases from 0 to 1. By
symmetry, as px increases from 0 to 1, A; for an or-rooted subtree increases from
cx/u to oo, and the value of k for px = 1/2 is the same for both kinds of subtrees.
Thus we can minimize k by replacing x by an and-rooted subtree if px > 1/2 and
by an or-rooted subtree if px < 1/2. Then for a given cx we have the maximum k
whenpx = 1/ 2.

We shall show (Lemma 24) that ifpx = 1/2 then k < 2 In2 ^ < 1 .4^. Therefore,
given our way of selecting the root of the subtree, for an arbitrary probability px it
holds that

k < 1.4—. (2.22)
u

If the conditions (2.18) and (2.19) for an and-rooted subtree or (2.20) and (2.21)
for an or-rooted subtree are satisfied, then the subtree has exactly the same cost
and probability of being tru e as the original test x. There are however two obvious
obstacles. Firstly, since k is the number of leaf nodes of A, k must be an integer.
Thus we have to round the value of k given by (2.18) or (2.20) to some integer k ' .

l fkf — 1 fW\Moreover, since the values of tests’ probabilities (px or 1 —px) are not always
rational then assuming that we want to store and use these values as input to some
algorithms, we need to round them using finite number of digits.

Therefore the exact correspondence between a test x and a replacement subtree
A is not always possible to achieve. But by choosing the cost unit u small enough
and by keeping enough precision in probabilities of new tests, we can reach an
arbitrary small error in the optimal resolution cost for the new tree, as described in
the following theorem.

Theorem 21 Given an and-or tree T* with the optimal resolution cost C* and a
real number r, 0 < r < 1, there is a unit-cost and-or tree Tu with optimal resolution
cost Cu such that C*(l — r) < Cu < C*(l + r).

For n being the number of tests in T, cmax the maximum cost over all tests in T
and B the maximum number of digits used to represent a probability over all tests
in T , the construction o fT u runs in time polynomial in n, 1/r, cmax and B .

Moreover, for each leaf-parent of Tu all its test children are identical. I f instead
of constructing all leaf nodes of Tu we rather keep for each leaf-parent of Tu the
number of its test children and the (uniform) success probability of each test, then
such a construction o fT u runs in time polynomial in n, log(l/r), k^Cmaz) and B .

The theorem was stated by Omid Madani, with whom we collaborated to prove
it.

We now describe the construction of the unit-cost tree Tu.
Let r be as stated in the theorem. For the original and-or tree T* let n be the

number of tests in T*, and for each test x of T* let pxo = m in {px,px}.
In the unit-cost and-or tree Tu each test has cost u < §Cmin, where Cmin is the

smallest cost of a test in T*. We construct Tu by replacing each test x of T* by a
depth one subtree A with k' identical tests, such that

i) if px > 1 /2 , A is and-rooted, otherwise A is or-rooted,

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ii) k' = [fcj, where k is given by (2.18) if A is and-rooted, and by (2.20) if A is
or-rooted,

iii) given p' = px ^k for an and-rooted A and p' = px ^k for an or-rooted A, the
success probability p of tests from an and-rooted A (respectively the failure
probability p of tests from an or-rooted A) is obtained by rounding p' up
to p so that p' < p < p '(l + e) (respectively rounding p' up to p so that
p' < P < P'(1 + e)), for any e satisfying e <

Notice that Tu is not necessarily strictly alternating since we may replace a test
child of an or-node (respectively and-node) by a or-rooted subtree (respectively
and-rooted subtree).

Since k' > k — 1 > %■ — 1 > — 1 > 2, each test of T* is replaced by a depth
one subtree with at least two tests. Thus for each leaf-parent of Tu, all its tests
children have the same probability. Now Theorem 21 follows immediately from the
theorem below.

T heorem 22 Let T* be an arbitrary and-or tree, C* the optimal resolution cost
ofT* and 0 < r < 1. I fT u is constructed as described above, then for the optimal
resolution cost Cu o fT u we have C*(1 — r) < Cu < C*(1 + r), and for each depth
one subtree replacing a test x, the number of leaf nodes k' is O (^f), and the number
of significant digits required to obtain the probability precision defined in (iii) is

Proof: We will begin by proving the order of k' and of the number of required
significant digits of probabilities.

Since k' = [fcj, then from (2.22) and the fact that 1/u = 0 (l / r) it follows that
kf = 0 (f) .

1/A/For an and-rooted subtree, we round up the probability p — px ' to p and
require that p < p'(1 -i- e) = p1 4-p'e. So we need to keep a number of significant
digits in order of log) , or

o (log (i) + log (1)) = O (i log (i) + log (̂)) =

= ° (l 0 g (^)) = 0 (b S (^)) ' (2 '23)

where we used the fact that O (log (l/px)) = 1, since for an and-rooted subtree
Px > 1/2. The argument for an or-rooted subtree is symmetric.

We will now prove that the optimal resolution cost of Tu is approximately the
same as of T*.

Consider a strategy S* for T* and the corresponding strategy Su for Tu, that is
the strategy that in place of each test performed by S* evaluates the corresponding
depth 1 subtree of Tu. We will show that for the expected costs of S* and Su the
following condition is satisfied:

C (S*) (1 - r) < C (Su) < C (S*) (1 + r) , (2.24)

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from which, by the Twins Lemma, the desired relation between the optimal resolu
tion costs follows. For the expected cost of S* we have:

C(S*) = E (2.25)
x€Tests(T*)

where the sum is taken over all tests of the tree T* and Pp(x) is the sum of proba
bilities of all paths from the root of S* to nodes labeled by the test x.

If Pp(A) is the sum of probabilities of all paths from the root of Su to nodes
labeled by the first test of a replacement subtree A, then

C (S U)= E Pp(A)C(A), (2.26)
AGRepSubtrees (Tu)

where the sum is taken over all replacement subtrees in Tu.
Now assume that after the reduction, for any subtree A of Tu replacing a test x,

the cost of evaluating A is perturbed at most by 8 C in comparison with cx and the
values of the probability that A is tru e and f a ls e are perturbed at most by Sp in
comparison with px and px, respectively, meaning:

cx (1 - Sc) < C(A) < cx (1 + <y , (2.27)
P x (1 - Sp) < p(A) < P x (1 + Sp) , (2.28)
Px (1 - Sp) < p(A) < px (1 + Sp). (2.29)

Since each path from the root of strategy S* includes at most n nodes labeled by
tests of T*, we have for any subtree A replacing a test x:

Pp(x) (1 - Sp)n < Pp(A) < Pp(x) (1 + Sp)n . (2.30)

This gives us the following relation between the expected costs of S* and Su:

C (S *) (1 - Sp)n (1 - 5C) < C (Su) < C (S*) (1 + Sp)n (1 + Sc) . (2.31)

If Sp < r/An, then (1 - Sp)n > 1 - nSp > 1 — r/3 by Observation 27i, and
(1 + Sp)n < 1 + r /3 by Observation 27ii. Thus if we have

Sp < r/An, (2.32)

Sc < r/3 , (2.33)

then
(1 - Sp)n (1 - Sc) > (1 - r /3)2 > 1 - r, (2.34)

(1 + Sp)n (1 + Sc) < (1 + r /3)2 < 1 + r. (2.35)

Therefore as long as the conditions (2.27), (2.28), (2.29) hold, with Sp and 8 C satisfy
ing (2.32) and (2.33), the desired relation (2.24) is fulfilled. We will now prove these
bounds for an and-rooted subtree. The case of an or-rooted subtree is symmetric.

First let C'(A) be the cost of the subtree A if the conditions (i) and (ii) of the
1 /k'reduction are satisfied, but the success probability of each test is equal to p = p x ,

that is it is not rounded to p. The subtree A has k' tests, k' = l&J, where k is given
by (2.18). Thus k > k' > k — 1. If px — 1 then p' = 1, C'(A) = uk' and k = cx/u

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

so cx > C'(A) > u (k — 1) = cx — u. Lemma 25 implies that also for px j= 1 we have
cx — u < C'(A) < cx . Since u < §cmjn, it holds that

cx(l - r/3) < C'(A) < cx . (2.36)

We now need to incorporate the effect of rounding the probability p' to p, ac
cording to the condition (iii) of the reduction. We have px > 1/2 (A is and-rooted),
and pxo = px < I / 2-

For px = 1 we have p = p' = 1, so C(A) = C'(A). Now assume \ < px < 1.
Observe that e < < 2 (J -i) I • Therefore we can use Lemma
26i and conclude that

C'(A) < C(A) < C'(A)(1 + r/3). (2.37)

From (2.37) and (2.36) it follows that

cx (1 - r/3) < C(A) < cx (1 + r / 3) , (2.38)

which means that (2.27) and (2.33) hold.
Now let us consider the probability p(A) that A evaluates to tru e , p(A) = pk .

For px = 1 we have p = 1 thus p(A) = 1 = px. If ^ < px < 1, it follows from Lemma
26ii and the bound e < ^ ^ that

Px < P (A) < px ^1 + ^ , (2.39)

Px (f - ^ < P(A) < px, (2.40)

so (2.28), (2.29) and (2.32) are satisfied. □

In the remainder of this section we present the proofs of the lemmas used above.

Lem m a 23 I f k(p,c) = ln^n^ - P ̂> where 0 < p < 1 and c > 1, then k(p,c) is a
monotone function of p, decreasing from oo to c as p increases from 0 to 1 .

Proof:
lim............... ...T = oo. (2.41)
p->° In (l - ^)

lim , s = lim------^ _x - = c. (2.42)
p-n ln M _ P-+1 A _ 1^2 \ l

dk(p,c) _ « (l - 1?) t a (l - 1i 2)-|>ln(p)
3P - , (1 -*?)„* (1 - 1?) ' l -3)

The above derivative exists for 0 < p < 1 and c > 1.
We will show that c (l — ln (l — — pln(p) < 0.

Let g(p, c) — c (l — ln (l — . We will firstly show that g(p, c) is a mono
tone decreasing function of c.

« ? M = in (' i _ i z E ' \ + i z £ (2.44)
oc \ c) c

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the above derivative exists for 0 < p < 1 and c > 1.
For — 1 < x < 1, ln (1 — x) = — (x + ^ + ...)) so f°r 0 < * < 1 ln (1 — x) <

—x.
Since 0 < ±=2 < ± < 1, so ln (l - Thus:

< 0. (2.45)
dc

Moreover
Yiva.g(p,c) = p\np. (2.46)
C -¥ 1

Thus g(p,c) < plxip and 9k̂ ’ĉ < 0 . □

L em m a 24 For c > 1, < 21n2c.

Proof: Let k(c) = and g(c) = k(c)/c. Then

/ v In2
9(c) = . / e v ’ 7)

ln (s = b) c

and
In 2 (- r ~ 2)

^ (c) = H m — ^ = 2102. (2.48)
c(c—0.5)

We will show that g(c) is a monotone, increasing function of c, from which
it follows that k(c)/c < 21n2. It is enough to show that h(c) = ln c is
monotonically decreasing while c is increasing.

dh(c)
dc h - <2-49)

The above derivative exists for c > 1. Let 6(c) = ln (c_cQ 5 j • We will show
that 6(c) < 0. Since

6(1) = l n 2 - l < -0 .3 , (2.50)
lim 6(c) = 0, (2.51)

C—> 0 0

so it is enough to show that 6(c) monotonically increases with c:

0 - 2 ^ 5) > „ (2.52)
dc (c - 0.5) \ c J

and the above derivative exists for c > 1. □

L em m a 25 Let 0 < p < 1, c > u for some positive u, k = ln^nffi-P ̂> k —l < k ' < k ,

p' = p1/*' and d = u . Then c — u < c' < c.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof: First notice that from Lemma 23 it follows that k > 1. Thus k' > 0 and
p1 exists.

, 1 - p ,k' 1 - p
c = u — = u-1 — p f 1 — pl/**

From (2.18), (2.19) follows that

c = u
1 _ (pi/*)*

1 — pi/* 1 — pi/*

The inequality d < c follows now from k' < k.

c - c ' = u { l - p) (1 _ pl/k - 1 _ pi/k>) P) (i _ p i / * “ i_p i / (f c - i)) ’
(2.55)

Let B(p,k) = (1 - p) - x_pl/(fc-iy)- We will show that B(p,k) < 1, which
ends the proof.

1 - p

(2.53)

(2.54)

lim B(p, k) = = i n ^ : : <A:—>oo ln(p) ln(l — (1 — p))
(2.56)

where we used the fact that ln(l — x) < — x for 0 < x < 1 and calculated the
first equality using asymptotic expansion into series for k approaching oo from the
“Maple” packet. Now it is enough to show that B (p ,k) increases when k increases.

dB{p,k)
dk

- (1 -p) ln (p)

= (1 - p) ln (p)
p k

i
p k - 1

(l - p * - 1) (A; - l)2 (l - p f c) k2

_J^\ 2 o1 — pfc-i \ 1 k

^1 — k 2 1 - p k Pk (k - 1) (k ~ l)2
(2.57)

(\ 2The above derivative exists for 0 < p < 1, A; > 1. Let Z(p,k) — (1-p t) — t —
y l - p t) pk{k-i)

We will show that Z (p ,k) — > 0, which ends the proof.

lim Zip, k) = oo. p—>o

(

1 — p k~l \ / k _i__i \ 2 fc2
p->i k — 1 (k - iy

(2.58)

r. (2.59)

So now it is enough to show that Z(p, k) is a monotone (decreasing) function of p. Let
us change the variables. Define y(k,p) = p W -1) . Now Z(y(k,p),k) =
y{k,p) increases when p increases and 0 < y(k,p) < 1 . It is enough to show that
Z(y(k,p),k) decreases when y increases.

dZ{y(k,p),k)
dy

1 - y
(1 - y fc~i)3y2

[y2* -1 - (2k - 1)yk + (2 k - l)yk~l - l] .(2.60)

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The above derivative exists for 0 < p < 1, A; > 1.
Let W(y, k) — y 2 k _ 1 — (2k — l)yk + (2k — l)yk~l — 1. We will show that W(y, k) <

0.

lim W(y, k) = —1. (2.61)

lim W(y, k) = 0. (2.62)
y-> 1

Now we need to show that W (y, k) is a monotone (increasing) function of y.

awt*, b\ = ^ _ 1^y2fc—2 _ (2jfc _ i) kyk -i + (2k - l)(k - 1)yk ~ 2 =
dy

= (2k - 1)yk ~ 2 [yk - ky + k - l] . (2.63)

The above derivative exists for 0 < p < 1, A; > 1. Let J(y,k) = yk — ky + k — 1. We
will show that J(y, k) > 0.

lim J(y, k) = k — 1. (2.64)

lim J(y, k) = 0. (2.65)
3/—>l

Now it is enough to show that J(y, k) is a monotone (decreasing) function of y.

= kyk~l - k = k (yk~l - l) < 0. (2.66)
dy v. /

The above derivative exists f o r 0 < p < l , A:>1. □

Lem m a 26 Let \ < p < \ , p' — pl!k' , p' < p < p'(1 + e), for integer k' > 2. Let
d = u (l + p ' + p ' 2 + . . . + p/fc/_1) and c = u (l + p + p 2 + . . . + pfc,_1) , for u > 0 .
For any 0 < 8 < 1:

i) if e < 2(fc'1_i)^ then d < c < d (l + 8),
H) if £ < then p < p k' < p(1 + 8) and (1 — p)(l — 8) < 1 — pk> < 1 — p.

Proof:
i)
Since p > p' so c > d .

c = u (l + p + p2 + . . . + pk _1) <

< u (l + p r(l + e) + p /2(l + e)2 + . . . + p/fc_1(l 4- e)* -1) <

< (1 + e)k'~lu (l + p' + p'2 + . . . + p/fc'_1) =

= (1 + < e (l + < </(! + S), (2.67)

where the last inequality follows from Observation 27ii.
“)
Since p > p' so pk > p'k = p and 1 — pk < 1 — p.

P*' < [p'(l + e)]k> = p(l + e f < p (l + ~ kT~^J = P ^ + ~J_ k'p ‘
(2 .68)

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since > 2 so by Observation 27ii we have

Sp(1+̂) =p(1+,sî)- (2 ' 6 9)

Now since < 1 we obtain eventually pk' < p (1 + £).
For 1 — pk> it holds that

(2.70)

□

O bservation 27 For integer k > l and real x, 0 < x < 1, the following i
hold:

i) (1 — x)k > 1 — kx,
k

ii) f l + 4) < l + - ^ r / o r a > 2. \ a k j a - 1

(2.71)

(2.72)

Proof:
i)
By induction on k. Assume it holds for k.

(1 — x) k + 1 — [1 — (A + l)x] > (1 — #)(! — kx) — [1 — (k + 1)®] = kx 2 > 0. (2.73)

ii)
Trivial for x = 0. Now assume 0 < x < 1.

k k / , A / i k

and

1 ~ (f) fc+1 _ (, , _ ± _ \ 1 L _ ^ (i - g) '
l - f \ a - l) V a) [\ a j a(a - 1). < 0. (2.75)

□

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Conjectures and
Counterexamples

3.1 B est Test of a Subtree

The natural approach to solving PAOTR is to try to exploit the local structures in
the input trees. We expected that the Siblings Lemma can be generalized so that
for each immediate subtree of a given tree we could find, independently on other
subtrees, the “best” test, in the sense that there is an optimal strategy such that
the first performed test is the best test from its subtree. However it turns out not
the case.

Consider as an example the and-or tree Tc shown in Figure 3.1a. Tests ai,
b\ and 62 are grandchildren of the same and-node, but the relative order in which
these tests are queried by an optimal strategy, varies with the probability of success
of test c; depending onp(c), an optimal strategy starts with aq or with 61.

p(c)=0.05

p(c)=0.1

p=0.41 p=0.34p=0.61 p=0.13

Figure 3.1: (a) An and-or tree Tc with all costs unit, (b) The unique optimal
strategy for Tc if p (c) = 0.05, encoded by the fixed order of tests, starting with a\.
(c) The unique optimal strategy for Tc if p(c) = 0.1, starting with 61.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, if p (c) = 0.05, the unique optimal strategy starts with testing
a\ and then follows the linear strategy shown in Figure 3.1b. But if p (c) = 0.1,
the unique optimal strategy is the strategy shown in Figure 3.1c, which starts with
testing b\.

3.2 Prim e Implicants and Implicates

A minimal set with some property P is a set with the property P which does not
include any set with the property P as its proper subset. A prime implicant of an
and-or tree is a minimal set of tests with the property that if all tests from the set
are tru e then the entire tree evaluates to tru e . A prime implicate in an and-or
tree is a minimal set of tests, such that if all tests from the set are fa ls e , the entire
tree evaluates to fa ls e . A tree evaluates to tru e (respectively fa ls e) if and only
if there is at least one prime implicant (respectively prime implicate) whose tests
are all tru e (respectively fa lse) . To see that, assume that the value of T is tru e ,
but each prime implicant of T contains at least one f a ls e test. But then the set
of all tru e tests includes a prime implicant for T, contradiction. Whenever, while
performing a correct strategy, we conclude that an and-or tree evaluates to tru e
(respectively to fa lse) , it is only after all tests of some prime implicant (respectively
prime implicate) have been performed and succeeded (respectively failed).

The true path (respectively false path) of a correct strategy is the root-to-leaf
path of the strategy that contains only tru e (respectively only fa ls e) arcs. Ob
viously the leaf node of the true path is labeled tru e , the leaf of the false path is
labeled fa ls e .

One might conjecture that for an or-rooted and-or tree, all tests performed on
the true path of an optimal strategy are from exactly one prime implicant. In other
words, we expected that in or-rooted tree, if the first test performed by an optimal
strategy succeeds, the strategy will perform tests from this prime implicant, as long
as they are tru e . Notice that it would mean that the optimal strategy does not
leave one child subtree of the or-root as long as the performed tests succeed. The
conjecture is equivalent to the one that all tests performed on the f a ls e path of an
optimal strategy for an and-rooted tree are from exactly one prime implicate.

a) b)

c=l

c—2 c=12

Figure 3.2: a) An and-or tree Ti. All tests have probability of success 0.5. b) The
unique optimal strategy S* for T*. The tests performed on the true path of Si are
from two prime implicants of Ti.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This conjecture turned out to be false. Consider the or-rooted tree Tj in Figure
3.2a. The prime implicants are the sets {®i,®2}> {y ,z 1} and {y,Z 2 }. The unique
optimal strategy Si for Tj, shown in Figure 3.2b, starts with performing x i, but
then, if x \ is tru e , it leaves the subtree. The true path of Si, whose first node is
labeled by x i, contains then the nodes labeled by z\ and y: tests from another prime
implicant.

Figure 3.3: a) An and-or tree Te. All tests have probability of success 0.3. b) The
unique optimal strategy Se for Te. The tests performed on the false path of Se are
from two prime implicates of Te.

Notice that the tests performed on the false path of Si are from only one prime
implicate, {x \,y} . But it also is not always the case. On Figure 3.3a we depict
an or-rooted tree Te, with prime implicates {x i,X 2 ,z} and {yi,V 2 , %}• The false
path of the unique optimal strategy Se for Te shown in Figure 3.3b contains nodes
labeled by tests x i, z, X2 , interlaid by a node labeled by a test y\ from another prime
implicate.

We still expect though that an optimal strategy will either complete one prime
implicant or one prime implicate.

C on jectu re 1 For any and-or tree there is an optimal strategy S such that either
all tests performed on the true path of S are from exactly one prime implicant, or
all tests performed on the false path of S are from exactly one prime implicate.

3.3 Cograph Representation

There is a representation of the and-or trees that may be helpful in studying prime
implicants and implicate. We now describe this representation. We start with basic
definitions related to graphs. We follow the definitions from [5].

In undirected graphs, we consider unordered pairs of nodes (edges) as opposed
to the ordered pairs (arcs) in directed graphs. An undirected graph G is an ordered
pair (V, E), where V is a finite set (whose elements are called nodes of G) and E is
the set of unordered pairs of nodes of G (whose elements are called edges of G). We
denote an edge by (v ,w), understanding that (v, w) and (w,v) is the same edge.

c=100

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let G = (V,E). If (u,v) G E, we say that u and v are adjacent. The no
tion of a path, subgraph and the relation of being reachable for nodes is defined
as for a directed graph (if v is reachable from w then w is reachable from v).
G is connected if every vertex is reachable from every other vertex, and discon
nected otherwise. The connected components of G are the equivalence classes of
nodes for the relation of being reachable from. The graph G = (V, E), where
E = {(v, w) : v, w € V, v ± w, (v, w) ^ E} is called the complement of G.

A set of nodes V' C V is called a clique if the nodes in V' are pairwise ad
jacent, and is called an independent set if no two nodes from V' are adjacent. A
clique (respectively independent set) V' is maximal if there is no clique (respectively
independent set) V" such that V' C V ".

Let Gi = (V i,E i),G 2 = (V2, E2) , . . . , Gk = (Vk,E k), k > 2 be graphs with
disjoint sets of nodes. G is the union of Gi, G2, . . . , Gk, if V = V\ U V2 U . . . U Vk
and E = E iU E 2 U ...U E k. G is the join of G i,G 2, .. -,G k, i iV = Vi U V2U .. .u Vk
and E = E\ U E 2 U . . . U Ek U {(«,«>) : v G Vi,w G Vj,i j , i , j < k}. By the
operation of taking complement, the operation of union, the operation of join we
mean constructing the graph that is the complement of a graph, union of graphs,
join of graphs, respectively.

A cotree of a graph G is a directed rooted tree T whose leaf nodes are nodes
of G, internal nodes axe labeled 0 or 1 and two nodes v and w of G are adjacent
if and only if the least common predecessor (that is the common predecessor with
maximum depth) of v and w in T is labeled 1.

The class of cographs (complement reducible graphs) is the class of graphs that
can be constructed from single nodes using the operations of union and taking
complement.

There is a number of important characterization of cographs.

T heorem 28 [15, 3] The following statements are equivalent:

• G is a cograph,

• there exists a cotree of G,

• G does not contain a path on four nodes as an induced subgraph,

• the complement of each connected induced subgraph of G with more than one
node is disconnected,

• in every induced subgraph H of G, the intersection of any maximal clique of
H and any maximal independent set of H contains precisely one node.

The representation of a cograph by its cotree enables a lineax-time recognition
of cographs [4], and allows to use cographs to recognize whether a Boolean function
is a read-once function [9].

We say that a graph G represents an and-or tree T if each node of G is associated
with a leaf of T and two nodes v and w of G are adjacent if and only if the least
common predecessor of v and w in T is labeled and. From the definition of a cotree
and Theorem 28 it follows that a graph G whose nodes are associated with distinct

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

independent tests represents an and-or tree if and only if G is a cograph. Figure
3.4 shows a cograph representing an and-or tree.

X]

x 2

yi

y 2

z

Figure 3.4: An and-or tree and the cograph representing the tree.

Observe that a join of graphs Gi and G2 is the complement of the union of
complements of Gi and G2. It is easy to see how to build a unique cograph repre
senting given and-or tree, using the operations of union and join. If T is a single
leaf, then the graph with a single node represents T. Let \F = {Ti,T2, . . . ,1*,},
k > 2, be a set of and-or trees and let Gi, G2, ■ - -, Gk be the graphs representing
Ti,T2, . . . ,T fc, respectively. Now consider the and-or tree T = (r, ’F) (that is rooted
at r and whose set of immediate subtrees is ’F) and let G be a graph that represents
T. For any two tests from the same subtree T* their least common predecessor in
T belong to Tj, whereas for any two tests from different subtrees Tj, Tj, their last
common predecessor in T is the root r. Thus if r is labeled and, G is the join of
Gi, G2, . . . , Gk, whereas if r is labeled or, G is the union of Gi, G2, . . . , Gk-

On the other hand, for any cograph G whose nodes are associated with distinct
tests one can construct an and-or tree T that is represented by G. If G is a single
node, then T is a single test. Otherwise, if G is disconnected, then the root of
T is or, and each of the immediate subtrees of T is represented by one connected
component of G, whereas when G is connected, then the root of T is and and
each of its immediate subtrees is represented by one connected component of the
complement of G.

There is a correspondence between prime implicants of and-or trees and maximal
cliques of cographs as well as between prime implicates and maximal independent
sets.

Observation 29 Let T be an and-or tree and let G be the cograph representing
T. A set W of tests of T is a prime implicant (respectively prime implicate) if and
only if the set of nodes of G associated with the tests from W is a maximal clique
(respectively a maximal independent set).

Proof: We will prove the correspondence between prime implicants and maxi
mal cliques. The proof of the other correspondence is analogous. The proof is by
induction on the depth of T. The observation trivially hold for a depth zero tree,
namely for a single test. Now assume that T is of depth at least one and that the
observation is true for any tree shallower than T.

Let Ti,T2, . . . ,Tjfc, A: > 2 be the immediate subtrees of T and G\, G2, . . . , Gk the
cographs representing Ti, T2, . . . , Tk, respectively.

Assume that T is and-rooted. W is a prime implicant of T if and only if
W = W\ U W 2 U . . . U Wk, where for i < k Wi is a prime implicant of Tj. By the

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inductive assumption Wi is a prime implicant of T* if and only if the set of nodes of
Gi associated with tests from Wi is a maximal clique. But since all nodes from dif
ferent subgraphs G», Gj are adjacent in G, so the set of nodes V' of G is a maximal
clique if and only if V' = V{ U Vf U . . . U V ,̂ where for i < k V- is a maximal clique
of Gi.

Now assume that T is or-rooted. W is a prime implicant of T if and only if
W is a prime implicant of one of Ti,T2, . . . ,7*. So the observation for this case
follows from the inductive assumption and the fact that since G is the union of
Gi, G2 , . . . , Gk, a set of nodes of G is a maximal clique if and only if it is a maximal
clique in one of G i,G 2, . . . ,Gfc. □

We can define a problem related to cographs that is equivalent to PAOTR.
We are given a graph G such that each node of G is assigned one of two colours:

it can be either black or white, independently on other nodes. We call any given
assignment of colours to nodes a colouring of nodes. For each node we know a non
negative cost of checking the colour of the node and the probability that the node is
black. The strategy for the graph G is an algorithm that for any colouring of nodes
determines whether there is a maximal clique in G whose nodes axe all black, via
sequential checking colours of nodes. For any given colouring, the cost of a strategy
on this colouring is the total cost of performed colour checking. The expected cost
of a strategy is the average cost of the strategy, over all colourings of the nodes of
G. An optimal strategy for G is a strategy with the smallest expected cost.

From the discussion above it follows that the problem of finding an optimal
strategy for a cograph is equivalent to PAOTR.

Our Conjecture 1 can be now rephrased as follows: For any cograph G there is
an optimal strategy S such that S either does not leave one maximal clique as long
as the checked nodes are black, or does not leave one maximal independent set, as
long as the checked nodes are white.

Generalizing, we could ask for an optimal strategy for an arbitrary graph (which
is not related to the and-or tree problem). We will show that this problem is
iVP-hard.

O bservation 30 Finding an optimal strategy for an arbitrary graph is NP-hard.

Proof: Let G be an arbitrary graph on n nodes. For each node, let the cost of

checking the colour be 1 and the probability of being black be q Let
5 be a strategy for G, represented by a binary tree. The root-to-leaf path of the
strategy that is followed when all checked nodes are black is called the black path. Let
k be the number of internal nodes of the black path of S. Observe that each other
root-to-leaf path of S contains at least 1 and at most n internal nodes. Analogously
as in the proof of Theorem 1, we obtain following bounds on the expected cost of S:

fc
C(S) < qkk + (1 - qk)n = n - (n - k) ^1 - + <

< „ - („ - *) (l - ±) = * + ! !J l* < * + I (3.1)

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and
k

C(S) >«** + < l-« *) l = i + (* - 1) (1 - ^) " +1 >

> ! + (» _ (3.2)

Therefore there is a strategy for G with expected cost not greater than k + \ if and
only if there is a strategy for G that checks at most k nodes along its “black path”
if and only if there is a maximal clique in G with at most k nodes.

But the problem of determining whether a graph G has a maximal clique with
at most k nodes (called the Minimum Maximal Clique Problem) is ATP-complete
by reduction from the Minimum Maximal Independent Set Problem, that is the
problem of determining whether a graph G has a maximal independent set with at
most k nodes [7].

Therefore, by reduction from the Minimum Maximal Clique Problem finding an
optimal strategy for an arbitrary graph is iVP-hard. □

3.4 R esolving Subtrees

A depth-first strategy, which is optimal for depth two and-or trees, does not leave a
given subtree until its value is determined. Such approach is not necessary optimal
for deeper trees, but we conjectured a weaker property of an optimal strategy.

After a test from an and-or tree is performed, let the highest resolved node in
the tree be the root of the maximal subtree whose value has been determined. For
example, assume that a test x is fa lse . If the parent of x is labeled or and x has a
sibling, then the highest resolved node is x itself. But if the parent of x is and and
is a child of an or-node, then the highest resolved node is the parent of x.

b)

p=0.13

p=0.72

p=0.21

p=0.43 p=0.86

Figure 3.5: a) An and-or tree 2). All tests have unit cost, b) The unique optimal
strategy for Te. After the first performed test is tru e as well as after the first test is
fa ls e , the strategy leaves the subtree rooted at the parent of the highest resolved
node.

We expected that after a test x is performed, an optimal strategy would at least
in one case (when x is tru e , or if x is fa lse) performs after x a test from the subtree

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rooted at the parent of the highest resolved node. However it turns out that it is not
always so. Consider the tree T; in Figure 3.5a. The unique optimal strategy for 7} is
presented in Figure 3.5b. After performing the first test d, when d is tru e , as well
as when d is fa ls e , the strategy performs the next test from outside the subtree
rooted at the parent of the highest resolved node. We thank Leah Hackman and
Martha Lednicky, WISEST 2003 participants, whose experimentation with instances
of and-or trees led to the discovery of this example.

3.5 Tests Ordering for Ladders

As defined in Section 2.4, in an and-or ladder each internal node has at most one
internal child node. In an and-or ladder a test y is called better than a test x if y is
a child of a predecessor v of x and either v is labeled o r and p(y)/c(y) > p(x)/c(x),
or v is labeled and and p(y)/c(y) > p(x)/c(x). See Figure 3.6 for an example. For

c=2
p=0.2

c=l
p=0.7

Figure 3.6: An and-or ladder. Test y is better than test x.

a large number of ladders, there is a pattern in the order of tests in an optimal
strategy, observed by Leah Hackman and Martha Lednicky, which can be described
by the following conjecture.

C on jectu re 2 Let T be an and-or ladder. There is an optimal strategy S for T
such that for any tests x and y such that y is better than x, x is not performed before
y on any root-to-leaf path of S.

For and-or ladders the conjecture generalizes the Siblings Lemma and the Ob
servation 19. For depth one ladders, it is equivalent to the Siblings Lemma. For
depth two ladders, the correctness of the conjecture follows by the Observation 32
from the fact that DFA produces an optimal strategy for depth two and-or trees
(Theorem 4). Though a large number of numerically checked examples of ladder
trees justify the conjecture, we were able to prove it only for a special case of a
depth three and-or ladder:

O bservation 31 I f an and-or ladder T has depth one or two, or T has depth three
and has only two tests with depth three, then Conjecture 2 holds for T.

Proof: We prove the observation by induction on the number of the tests of T.
The observation trivially holds for a ladder with only one test. Now assume that
the observation hold for any ladder fulfilling the conditions of the observation, that

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has less tests than T. Since, as discussed above, the observation hold for any depth
1 or depth 2 ladder, assume that T is depth 3 and that the last internal node of
T has exactly 2 tests. Assume that T is or-rooted; the proof for the other case is
symmetric.

Let a, b and c be the tests with the highest R-ratio among the tests with depth
1, depth 2 and depth 3, respectively. By the Sibling and Twins Lemma there is an
optimal strategy that starts with a or with b or with c. If there is a test that is
better than c, then it has either depth 1 or 2. If a test with depth 2 is better than c,
then b is better than c. Then by Lemma 35 there is an optimal strategy for T that
starts either with a or b. If a test with depth 1 is better than c, then a is better
than c and by Lemma 34 there is an optimal strategy that starts with a. Now if
there is a test better than b, then it has depth 1, and thus a is better than b. In this
case, by Lemma 34, there is an optimal strategy for T that starts with a. No test
in T can be better than a. It follows that there is an optimal strategy for T whose
root is labeled by a test for which there is no better test in T.

Now let T ' be the reduced tree obtained from T when the first test performed by
S is, say, tru e . Assume that a test y is better than x in T. If y and x are still present
in the tree T', then y is better than x in T'. Thus by the inductive assumption there
is an optimal strategy for T ' that never performs y before x. The same holds for
the reduced tree obtained when the first test preformed by S is fa ls e . Therefore
there is an optimal strategy for T that fulfills the condition of Conjecture 2. □

In the remainder of the section we present the proofs of the observations used
above.

O bservation 32 Let A be a depth one and-or tree with at least two leaf nodes and
let A! be the tree obtained from A by removing one leaf. Assume that the parent
nodes of A and A' have different labels than the root of A. Let C{A) (C(A')) be the
expected cost of the optimal strategy to evaluate A (respectively A ') and let pr (A)
(pr(A!)) be the probability that A (respectively A ') resolves its parent node. Then
vr(A') > £

Proof: Assume that the root of A is and. The proof for the other case is sym
metric. Now pr(A) (pr (A1)) is the probability that A (respectively A') evaluates to
tru e .

Let x \,X 2 , . .. ,Xk, k > 2, be the tests of A and assume that R (x i) > R (x2) >
. . . > R(xk). Then by Theorem 2 the above order of tests is the order of performing
them by the optimal strategy for A. Let x m, 1 < m < k, be the test that is removed
from A to create A'.

Thus we have pr{A) =]}*<*:PfaiK Pr(A') = Ui<k,i^mP(x i) ̂ and c iA) = c(x i) +
L̂i2 <i<k c(x i) Y[l<j<iP{xj)-

We introduce the following notation:

f - i J 0 i f 771 1 ,

1 \ c{x\) + £ 2 < i < m - i c{xi) Yli<j<iP(xj) i f r n > 2 ,

-Ii
J * i f 771 = 1 ,

P l ~ ’ I I l< i< m —1 P{x) i f 777 > 2,

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C = j ° if m = k, .3 5*
2 \ c(xm+i) + Z r n + 2 < i < f c c(xi) Ylm+l<j<iP(xj) if m < k .

Then we can use the following expressions:

C(A) = Ci + pic(xm) + pip(xm)C2, (3.6)
C(A') = C i+ PlC2. (3.7)

Now we obtain

im - im= [(1 ~p{Xm))Cl+Pic(xm)] 2 a <38)
□

Lemma 33 Let T be an and-or tree and let x and y be different tests from T.
Assume that y is a child of a predecessor of x and that there is an optimal strategy
Sx for T that starts with performing the test x. I f

i) y is the first test performed by Sx after x is f a ls e and R(y) > or

ii) y is the first test performed by Sx after x is t ru e and R(y) >

then there is an optimal strategy Sy for T that starts with performing y.

Proof: We will prove the theorem for the case when the condition (i) is ful
filled. The proof for the condition (ii) is symmetric. Assume that y is the first test
performed by Sx after x is f a ls e and R(y) >

If x and y are child nodes of the same or-node then we may assume that the
substrategies followed when x is tru e , and when x is fa lse , y is tru e , are the
same (because if they are not, we may replace them by such strategies). Then, by
Observation 8, the strategy Sy obtained by switching labels x and y is optimal.

Now assume that x and y are not child nodes of the same or-node. Since y is a
child node of a predecessor of x, so after x is tru e , y is still present in the reduced
tree. Let S + x , S - x be the substrategies of Sx followed when x is tru e , fa ls e ,
respectively. The root of S - x is labeled by y. Let S_y be the substrategies
of S - x followed when y is tru e , fa ls e , respectively. Let M > 1 be the number of
nodes of S + x labeled by test y, let S y i , SV2, . . . , SVM be the subtrees of S+x rooted
at nodes labeled by y, and for k = 1 ,2 ,. . . , M, let S+Vk, S - yk be the substrategies of
SVk followed in the case when y is tru e , y is fa lse , respectively. Also let S r denote
the (possibly empty) part of S+x that contains all nodes outside Syi, Sy2, . . . , SVM.

The following strategy S'+ x is nonredundant and correct for the tree obtained
from T when x is tru e , and may replace the substrategy S+x:
S'+, = y . + (SV+) ; - (Sl+) , where S'+ = S+I (S„ ^ S+yi !•••■> ^ S+ vm))

S '-y = S + x (S y i < S - y I , . . . , S y M < S - y M).
Assume that y is a child of an or-node. The proof for the other case is symmetric.

—
54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let C (Sr) denote the expected cost of performing Sr, that is the sum of costs
of tests labeling nodes of Sr, factored by the probabilities of paths from the root of
S+x to a given node (if Sr is empty, then C (Sr) = 0). For any k, let pyk be the
probability of the path from the root of S+x to the labeled by y root node of

Then we have
M

c (s ' +) = C { S r) + Y,PmC(S+,t) (3.10)
k=1

If y is tru e , its parent node is resolved. Since y is a child of a predecessor of a;, so
the reduced trees evaluated by S'+y and S+y are identical. Since is a substrategy
of the optimal strategy Sx, so C (s+y) < C (s'+yj, that is

M
c (s +) < C (S r) + ' £ p ViC (S +yk). (3.11)

k=1

Now it is obvious that the following strategy Sy is nonredundant and correct for
T: Sy = y : + (■S'+y) 5 ~ (® : + (^) 5 ~ (^ -s /))’ For the exPected costs of Sx and
Sy we have

C(SX) = c{x) +p{x) C{Sr) + J2Pyk (c(y) + p{y)C (S+yk) + p(y)C (S - y j ' j
k= 1

+p(x) [c(y) + p(y)C (5+y) +P(y)C (5 I „)] ,

C(Sy) = c(y) +p(y)C (5+j,) +
/ M \

c(x) +p{x) I C (Sr) + ^ 2 p ykC (S - y k) I +p(x)C (S l y)

+

(3.12)

+p(y) , (3.13)

thus

C(Sy) - C(SX) = - \p(y)c(x) —p(x)c(y)\ +

-p(x)p(y)
M

C(Sr) + Sj> ,.C (S+tl) - C (s ^)
k=1

+

- p (x) c (y) Y ^ P y k <
k=1

< 0 , (3.14)

where the inequality holds by (3.9), (3.11). Therefore Sy is optimal for T. □

Lem m a 34 Let T be an o r-rooted depth three ladder. Let a, b and c be each a test
with the highest R-ratio among all tests with depth one, depth two and depth three
respectively. I f > m in then there is an optimal strategy for T that
starts with a.

Proof: First assume that ^ The proof is by induction on the number
of tests with depth 3. If there is only one such test, then the tree collapses to depth
2 and by Observation 32 from the fact that it follows that DFA prefers a

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the and-rooted subtree of the root. Now assume that the lemma hold for a depth
3 ladder that has fewer tests with depth 3 than T has.

Let S be an optimal strategy for T. Assume that S starts with c. If c is fa ls e ,
the reduced tree is a ladder fulfilling the condition of the lemma (because each
sibling of c has lower ratio of success probability to the cost, than c). So by the
inductive assumption S performs a after c is fa ls e , thus by Lemma 33 there is an
optimal strategy for T that starts with a.

Assume that S starts with 6. Let b \= b and let 62, h , • • •, bk, k > 1, be siblings
of 61 such that 5 performs 6,4.1 after 6, is tru e , and S does not perform a sibling
of 61 after 6*. When any 6, is fa ls e , the optimal strategy performs a (because the
only tests left in the reduced tree are child tests of the root). After bk is tru e the
value of the tree is not resolved yet; let T ' be the reduced tree obtained at this point
of the strategy and let S' be the optimal strategy for T'. If S' starts with a, then
by Observation 18 we can “move” a to the root of the strategy 5, that is there is an
optimal strategy for T that starts with a. If bk was the last test with depth 2 then
T ' collapses to depth 1. Then, since the S' starts with a. So assume the
there is still at least one test sibling of 6 and S' starts with c. But then the reduced
tree obtained from T ' when c is f a ls e fulfills the conditions of the lemma, so by
the inductive assumption S' performs a after c is fa ls e . Thus by Lemma 33 there
is an optimal strategy for T ' that starts with a.

Now assume that The proof is by induction on the number of the
depth 3 tests. If there is only one such test, then the tree collapses to depth 2 and
by Observation 32 from the fact that follows that DFA prefers a than
the and-rooted child subtree of the root. Now assume that the lemma hold for a
depth 3 ladder that has less tests of depth 3 than T has.

Let S be an optimal strategy for T. Assume that S starts with 6. If 6 is fa ls e , S
performs a (because the only tests left in the reduced tree are child tests of the root).
So by Lemma 33 there is an optimal strategy for T that starts with a. Assume that
S starts with c. By the inductive assumption, S performs a after c is fa ls e . If c is
tru e , the reduced tree collapse to depth 2 or depth 1, if 6 does not have any test
sibling. From the fact that follows that in both cases a is the first test to
perform by an optimal substrategy (for depth 2 tree, it follows by Observation 32).
Thus S performs a after c regardless of the value of c, so by Observation 18 there is
an optimal strategy for T that starts with a. □

Lem m a 35 Let T be an o r-rooted depth three ladder such that there are only two
tests with depth three. Let a, b and c be the tests with the highest R-ratio among
the tests with depth one, depth two and depth three, respectively. I f then
there is an optimal strategy for T that starts either with a or with b.

Proof: Let S be an optimal strategy for T. Assume that S starts with performing
c. Let B C be the subtree rooted at the and-child of the root and let B be the depth
1 subtree obtained from B C when c is tru e and B ' be the depth 1 subtree obtained
from B C if c is f a ls e (after collapsing the or-node); B ' has all child tests of B and
additionally the test that was a sibling of c in BC.

If the first test performed by S after c is tru e is a, it means that DFA prefers
a than B. Thus by Observation 32 DFA also prefers a than B', and a is also the

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

first test performed when c is false. But a is a child of the root of T, so there is an
optimal strategy for T that starts with a (see Observation 18).

So assume that the first test performed after c is tru e is b. But then by Lemma
33 there is an optimal strategy for T that starts with b. □

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Preconditioned And-Or Trees

4.1 Sm ith’s Algorithm

In this chapter we deal with a generalization of and-or trees, namely with precondi
tioned and-or trees. As explained in Section 1.3.6, in a preconditioned and-or tree
both leaf nodes and internal or-nodes and and-nodes are probabilistic tests, with
given success probabilities and performance costs. The value of a leaf node is the
output of the associated test. Each internal node is additionally associated with a
required value, tru e or fa ls e . The tests that are child nodes of a given and-node
(respectively or-node) v may be queried only if the test associated with v was per
formed and returned its required value: in such a case v evaluates to the logic and
(respectively or) of the child nodes’ values. If the output of the test associated with
v is not the required value of v, the node v evaluates to the output of this test. The
value of a tree is the value of its root node.

To understand better the notion of the required value of an internal node, con
sider the following example. A company uses three tests x, y and z to evaluate
candidates for a certain position. There are precedence constraints: the test x has
to be performed before y and z.

Figure 4.1: Preconditioned or-trees. a) The test x has the required value tru e . The
tests y and z can be performed only after x succeeds, b) The test x has the required
value fa ls e . The tests y and z can be performed only after x fails.

First consider the case when a candidate is rejected if he or she fails test x
(that is passing this test is a necessary condition for accepting the candidate). Ad
ditionally the successful candidate has to pass either y or z. To describe this situa
tion, we use the preconditioned or-tree presented in Figure 4.1a, where the or-node
x has the required value tru e . If the output of x is f a ls e then the tree evaluates
to fa ls e . If the output of x is tru e then the tree evaluates to o r of values of y and
z. Thus the value of the tree is the value of the expression e\ — x and (y o r z).

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

But what if a candidate to be accepted needs just to pass one of the tests x,
y or z l In such a case we use the preconditioned or-tree from Figure 4.1b, where
the or-node x has the required value fa ls e . If x has the value tru e then the tree
evaluates to tru e , otherwise it evaluates to o r of the values of y and z. Thus the
tree evaluates to the value of the expression e<i = x o r y o r z.

Consider the negation of a preconditioned and-or tree. For the tree in Figure 4.1a
we have -iei = (->s) o r [(->y) and (->z)]> which is equivalent to the preconditioned
and-tree with tests ->x, ->y and ~>z, in which the required value of the and-node ~>x is
fa ls e . For the tree in Figure 4.1b ->e2 = (~>x) and (->y) and (~<z). This expression
describes the preconditioned and-tree in which the required value of the and-node
-<x is tru e . In general, we obtain the negation of a preconditioned and-or tree by
negating the output of any test, changing each or-node to an and-node and vice
versa, and negating the required value of each internal node.

Smith [26] presented an efficient algorithm to find an optimal strategy for pre
conditioned or-trees (that is preconditioned and-or trees without and-nodes) if the
required value of each or-node is tru e . We will call this algorithm SA (Smith’s
Algorithm).

We will first describe the idea of SA, then explain the natural generalization
of the algorithm that deals with both tru e and f a ls e required values of internal
nodes in a preconditioned or-tree, and present the pseudo-code of the generalized
algorithm.

SA operates on blocks, that is sequences of tests. Each block has to obey the
precedence constraints in a given tree. For a block a we can calculate the expected
cost C(a) of performing the tests from a and the resolving probability P r (a), that is
the probability that performing the tests from a will cause the entire tree to evaluate
to tru e . The R-ratio R(a) for a block a is defined as R(a) = Pc ^ . Notice that for
a block that contains a single leaf test it is equivalent to our previous definition of
R-ratio in and-or trees. A block is rooted at a test x if it starts with x and contains
only tests from the subtree rooted at x.

The best block for a node, called “best strategy” in [26], is the block that maxi
mizes the R-ratio, over all blocks rooted at this node. Consider any two tests x and
y such that y is inside the subtree rooted at x. It turns out that if the best block for
x contains y, then it also contains the entire best block for y, not interlaid by other
tests. A maximal best block in a tree is the best block for some node that is not
included in the best block for any other node. The optimal strategy for the entire
or-tree performs one maximal best block after another, ordered by nonincreasing
blocks’ R-ratios. An equivalent description of an optimal strategy may be used.
Instead of constructing and storing the maximal best blocks, we can rather store
with each test the R-ratio of the best block for this test, called the worth of the test.
Then the best-first strategy, that is the strategy that always performs the test with
the highest worth over all available tests, is optimal for the tree.

The best block for a node is created by starting with the block that contains
only the single test associated with the node, and then building it up as long as we
can improve its R-ratio. Nodes are processed from bottom up, that is any test x is
processed only after the best block for each node inside the subtree rooted at x has
been already found. As mentioned before, whenever a test is added to a block, at

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the same time the entire best block for this test needs to be added to it.
Since any tw o te s ts axe never considered separately after th ey have b een included

in one block, a block is treated as a single meta-node. Two blocks are combined
(one sequence added at the end of another) by merging two meta-nodes into a single
one. At the beginning each original node is a single block. Notice that at this stage
if there is a directed path from a block a to a block 6, then b has to be performed
after o, but if there is no directed path between a and b then there is no restriction
on the order of performing a and b. This property is maintained because a parent
block a can be only merged with its child block b, by replacing a with aft, with the
set of child nodes being the union of child nodes of a and b.

For a leaf node, the smallest, single-test block is the best block. Now consider
an internal test x and the block a rooted at x that is initialized with x. We first
recursively find the maximal best blocks for each child subtree of x. We then select
the child block b of a with the highest R-ratio. If the R-ratio of b is not less than
the R-ratio of a, then we combine a and b together, as described above: the new
block will have higher R-ratio than a previously had. We repeat this process until
no child block of a has higher R-ratio than a, at which point a is the best block for
x and we are left with the maximal best blocks for the subtree rooted at x.

Smith proved the correctness of the algorithm under the assumption that the
required value of each or-node is tru e , that is that performing an internal test can
never resolve the entire tree. But the algorithm builds a best block by combining
nodes together and then treats it as a single meta-node. In doing so, it creates nodes
that are internal (that is have children) but that can resolve the entire tree (because
they result from combining internal and leaf nodes). This is the intuitive argument
why in fact Smith’s Algorithm can deal with the presence of or-nodes with the
required value fa ls e (that is internal tests whose success resolves the entire tree).
We now explain formally this generalization to arbitrary required values of or-nodes.

SA and the proof of its correctness [26] deal with blocks and are based on the
following expressions for the expected cost C(a) and the resolving probability P r(a)
of a block o:

For any test x we have
C(x) = c(x), (4.1)

if a test a; is a leaf node
P r(x) = p(x), (4.2)

if a test a: is an internal node with the required value tru e

P r(x) = 0. (4.3)

Moreover if x is an internal node with the required value tru e , a parameter L(x) is
defined as follows:

L(x) = p(x). (4.4)

Notice that the value of L(x) is the value of the probability that child tests of x
became available to perform after querying x.

For a sequence a of internal tests, L(a) is defined as

L(a) = J] L(x), (4.5)
x6 a

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where the product is taken over all tests from a.
Given blocks a and 6, where b is rooted at its first test, the following expression

calculates the expected cost and the resolving probability of the bigger block ab
regardless of the required values of nodes:

C{ab) = C{a) + P0 (a, b)C{b), (4.6)

P r(ab) = P r(a) + P0 (a,b)Pr(b), (4.7)

where Po(a, b) is the probability that one starts performing the block b after per
forming a, that is that the block a fails to resolve the tree, but in such a way that
performing b is still possible.

In the case when all internal nodes in an or-tree have the required value tru e ,
no internal node can resolve the tree, and performing b is still possible only if all
internal nodes of a that are predecessors of the first test (thus of all tests) of b
succeeded. Thus the expression for Po (o, b) used in [26] is

P0 (a ,b)= L (a b) (l - P r(a-b)), (4.8)

where ab is the subsequence of internal tests of a that are predecessors of the first
test of 6, ab is the remaining subsequence of a.

Now assume that in a tree internal nodes can have both required values. For a
block containing a single internal test x with the required value fa ls e , the resolving
probability is p(x). Moreover, in a block ab (with b rooted at its first test) we start
performing the block b if and only if all internal tests from a that are predecessors
of the first test of 6, returned their required values (notice that at the same time
it means that none of these tests resolved the tree) and the remaining subsequence
of a did not resolve the tree. Observe that we may use exactly the same formulae
(4.5) and (4.8) if we use the following expressions for internal or-nodes with required
value fa lse :

if x is an internal node with the required value fa lse :

P r(x)= p{x), (4.9)

L{x) = l - p (x) . (4.10)

Thus if in addition to formulae (4.1) and (4.2) we use (4.3) and (4.4) for the
or-nodes with the required value tru e and (4.9) and (4.10) for the or-nodes with
the required value fa ls e , we obtain correct values of the expected cost and the re
solving probability for single-test blocks and the same expressions to calculate these
parameters for bigger blocks as the ones on which SA and the proof of its correctness
rely, namely (4.5), (4.8), (4.6) and (4.7).

Smith’s Algorithm for preconditioned or-trees is presented in Figure 4.2. The
procedure Create_Blocks(a;) builds maximal best blocks for a tree rooted at test x-,
the procedure Combine(*,y) combines blocks x and y into one block xy. Instead of
using (4.8) directly to calculate Po(a, b), we rather keep for each block b the value
Po(b) = P0 (a,b), where a is the node (block) that is the current parent of b. Notice
that this is all we need since we add a block b at the end of a only in the case when
a is the parent of b. If the parent a is a single test x then Po(x, b) = L(x). If a is
being combined with other block c, we update Po(b) using the following expressions:

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SA(preconditioned or tree T)
(1) Create_Blocks(root test of T)
(2) Order maximal best blocks from T by nonincreasing R()

Create_Blocks(test x)
(1) C(x) := c(x)
(2) I f x i s a le a f
(3) P r(x):= p(x)
(4) R(x) := 5 $
(5) Else

. f 0 if required value of x is true
(6) P r(x) := \ x H

(p(a;j i f req u ired value of x i s f a ls e
(7) R(x) := 4$
(8) For each child y of x

„ . , f p(x) if required value of x is true
(9) PQ(y) := < .

(p(a;) i f req u ired value of x i s f a ls e
(1 0) Create_Blocks(y)
(1 1) End For
(1 2) While x has ch ild blocks
(1 3) Find child yi>est of x with maximum R()
(1 4) I f R (y best) < R{x) Then Go To (1 7)

(1 5) Combine (x.ybest)
(1 6) End While
(1 7) End Else

Combine (block z,block y)
(1) P r(x) := P r(x)+ P 0 (y)Pr(y)
(2) C(x) := C(x) + P0 (y)C(y)
(3) R(x) :=
(4) For each child y' of x other than y
(5) P0 (y '):= P 0 (y,) (l - P r(y))
(6) End For
(7) For each child z of y
(8) Pq{z) := P0(y)Po(z)
(9) End For

(10) x := xy
(11) Add all children of y to the set of children of x
(12) Discard y

Figure 4.2: Smith’s Algorithm (SA).

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if block a is being added at the end of c, which means that in the current tree a is
a child of c, we have

P0 (ca, b) = L((ca)b) [1 - P r ((ca)5)J = L(ca)L(ab) [1 - P r (c5)] [1 - P r (a5)] =
= P0 (c,a)P0 (a,b), (4.11)

whereas if block c is being added at the end of a, it means that in the current tree
block c is a child of a, thus a sibling of b, therefore

P„(ac, b) = H(ac)t) [1 - J>, ((oc)i)] = £(«*) [1 - P > s)] [1 - Pr(c)] =
= P0(a,6)[l-F-(c)]. (4.12)

Observe that if each or-node from a tree has either the required value fa ls e ,
or the probability of success 1, then for any block b rooted at its first test and the
parent block a of b we have Po(a, b) = 1 - P r{a). Therefore in such a case we do
not need to store Po(b).

Let n be the number of all tests (nodes) in the tree. Notice that except for the
initialization of blocks which is performed n times, SA combines blocks at most n
times. Each combining two blocks requires time linear in the number of child nodes
of the combined blocks, so the worst case complexity of SA is 0 (n 2).

a)

p=0.5

b)
f w j R = 0

C x) R = 0 .4

R = 0 .5 (y j C z j R = 0 .2

Figure 4.3: An example of using Smith’s Algorithm, a) An algorithm’s input:
preconditioned or-tree Tp. All tests have unit cost, b) The initial blocks built by
SA. c) The blocks after combining blocks x and y together, c) The blocks after
combining blocks w and xy together. These blocks are maximal best blocks for T.

We will now discuss a simple example of using SA. The input preconditioned or-
tree Tp is given in Figure 4.3a. Firstly after the initialization of blocks the structure
of blocks is given in Figure 4.3b. Since all tests have cost one, so all blocks have

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cost one as well. The other parameters of the blocks have the values shown in Table
4.1.

P r(w) = 0
P r(x) = p(x) = 0.4
P (y) = p (y) = 0 .5
P r(z) = p (z) = 0.2

R(w) = 0
R(x) = 0.4
R(y) = 0.5
R(z) = 0.2

P0 (x) =p(w) = 1
Po(y) = p(x) = 0.6
Pp(z) =p{x) = 0.6

Table 4.1: Parameters of initial blocks shown in Figure 4.3.

Blocks z and y do not have any children. Now we process the block x. Among
its child blocks, y has the highest R-ratio and R(y) > R(x). So we combine blocks
x and y together. The resulting blocks are shown in Figure 4.3c. The following
parameters change:

P r{xy) = P r(x) + P0 {y)Pr{y) = 0.4 + 0.6 • 0.5 = 0.7,
C(xy) = C(x) + P0 (y) ■ C(y) = 1 + 0.6 • 1 = 1.6,

R{xy) = % £ $ = a4375'
P0 (z) = P0 (z) (1 - P r(y)) = 0.6 • 0.5 = 0.3. (4.13)

The only child of the block xy is the block z and it has less R-ratio than xy has.
Thus now we process the block w. This block has only one child xy whose R-ratio
is higher than R(w). Thus we combine w and xy and in this way obtain the blocks
shown in Figure 4.3d. Notice that, according to the algorithm, Po(xy) = Pq(x).
The following expressions describe parameters update:

P r(wxy) = P r(w) + P0 (xy)Pr(xy) = 0 + 1 • 0.7 = 0.7,
C(wxy) = C(w) + Po{xy) • C(xy) = 1 + 1 • 1.6 = 2.6,

= w = ̂ a2692'
P0 (z) = P0 (xy)P0 (z) - 1 • 0.3 = 0.3. (4.14)

Since R{z) < R(wxy), z and wxy are the maximal best blocks of T. By order
ing them according to nonincreasing R-ratios we obtain the optimal strategy for T:
wxyz.

As discussed at the beginning of this section, a preconditioned and-tree is equiv
alent, up to the negation of its value, to some preconditioned or-tree, namely the
tree obtained by changing every and-node into or-node, negating output of every
test and negating the required value for each internal node. In a preconditioned
and-or tree the resolving probability is the probability that the entire tree evalu
ates to fa ls e . From this it follows that the obvious modification in lines (3) and
(6) of the Create_Blocks procedure allow us to use the algorithm for preconditioned
and-trees.

The alternation number of a path in an and-or tree is the number of arcs of the
path whose ends are internal nodes with different (or/and) labels. The alternation

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of a tree is the maximum alternation number of a path over all root-to-leaf
paths in the tree. For a strictly alternating and-or tree the alternation number
is equal to the tree’s depth minus one. We call a preconditioned and-or tree a
k-alternation tree if its alternation number is k.

Using the above definition, we may summarize the main result of the section
that SA finds an optimal strategy for O-alternation preconditioned and-or trees.

To end this section let us discuss a feature of the optimal strategy produced by
SA that we will use in the next section. Consider an internal test x and let W be
the set of all maximal best blocks from all child subtrees of x. Because any maximal
best block has higher R-ratio than any of its child maximal best blocks (otherwise
it would be combined with the best child block), so the best block for x is grown by
combining it with maximal best blocks from W in the order of their nonincreasing
R-ratio until all remaining blocks from W have lower R-ratio than the current block
for x. Now assume that x is the root test of the entire tree. Observe that in this
case it does not really matter whether we create the best block for x or not, because
after building the best block for x, all remaining blocks from W are added at its end
in the order of their nonincreasing R-ratios, to create the entire strategy. Therefore
we can use the following description of the optimal strategy calculated by SA: given
a set W of all maximal best blocks for all child subtrees of the root test a; of a tree,
the optimal strategy first perform the root test x and then, if the tree is not resolved
yet, performs the blocks from W , ordered by their nonincreasing R-ratios.

4.2 1-Alternation And-Or Trees

We will present an extension of SA that finds an optimal strategy for some 1-
alternation preconditioned and-or trees.

Let T be a 1-alternation preconditioned and-or tree and let A be a subtree of T.
A is a maximal pure included subtree if A is O-alternation subtree, is not a leaf node,
and the parent node of the root of A has different label (or/and) than the internal
nodes of A. If a maximal pure included subtree is an or-subtree (respectively and-
subtree), we call the subtree a maximal or-subtree (respectively and-subtree).

We call an internal node degenerate if it is associated with a test with cost 0,
success probability 1 and required value tru e . Observe that and-or trees are pre
conditioned and-or trees whose internal nodes are all degenerate. Also, once a test
associated with an internal node has returned its required value, the node becomes
degenerate.

The following algorithm, proposed in [12] is called DFA*: in a 1-alternation pre
conditioned and-or tree T, first run SA on each maximal pure included subtree of
T. Then replace each maximal pure included subtree A by a leaf meta-test, whose
cost is equal to the expected cost of the calculated strategy for A and whose success
probability is equal to the probability that A evaluates to tru e . Given maximal
best blocks for A found by SA, the expected cost and the resolution probability of
the entire strategy can be easily calculated in the same way as SA calculates them
for combined blocks; the resolution probability of the entire strategy is equal to the
probability that the tree evaluates to tru e , if it is an or-tree, and to the probability

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that the tree evaluates to fa ls e , if it is an and-tree. After such a replacement,
the tree is O-alternation: use SA again to find an optimal strategy for it. In the
resulting strategy we understand that any meta-test denotes the sequence of tests
for the corresponding original subtree.

We call a strategy S contiguous on a subtree T ' if on any root-to-leaf path of
S, whenever a test from T ' is performed, no test from outside T ' is performed until
the value of T ' is determined. Since SA calculates an optimal strategy for any 0-
alternation tree, so DFA* produces an optimal strategy for a 1-alternation tree T if
and only if there exists an optimal strategy for T that is contiguous on any maximal
pure included subtree of T. Unfortunately this is not true for all 1-alternation trees,
as we shall discuss at the end of this section, but there are trees for which this
condition hold. The following theorem specifies such trees.

T heorem 36 DFA* produces an optimal strategy for a 1-alternation preconditioned
and-or tree T if for each maximal pure included subtree A of T one of the following
conditions is fulfilled:

i) A is depth one and rooted at a degenerate internal node, or

ii) the required value of each internal node of A is tru e if T is o r -rooted, or
f a ls e if T is and-rooted.

Proof: Assume that T is an or-rooted preconditioned and-or tree fulfilling the
conditions of the theorem. The proof for the other case is symmetric.

If a test from a maximal and subtree in T fails, the entire subtree evaluates to
fa ls e . A strategy S is not contiguous on some maximal and-subtrees if and only if
there is at least one node v of S such that v is labeled by a test from a maximal and-
subtree A , the substrategy followed when this test is tru e starts with performing a
test not in A, but contains at least one node labeled by a test from A. We will call
such a node v a violating node of a subtree.

Let S be an optimal strategy for T. Let k be the number of violating nodes of
S. We will show that there is an optimal strategy for T that is contiguous on any
maximal and subtree (from which the theorem follows). The proof is by induction
on k. The base case when k = 0 is trivial. Now assume that the statement holds if
k < K , for some K > 1, and let S contain K violating nodes.

Let v be a violating node of S such that both child substrategies of v do not
contain any violating node (there is at least one such node). Let S' be the strategy
rooted at v and let T ' be the corresponding reduced tree, evaluated by S'. Let x
be the test that labels v and let A be the maximal and-subtree of T ' that contains
test x. Let T'+, T'_ be the reduced trees obtained from T ' when x is tru e , f a ls e
respectively and let S'+, S'_ be the substrategies of S' followed when x is tru e , f a ls e
respectively.

If T ' contains any and-subtree other than A, then it is evaluated as one meta-test
by both and S'_. Thus we may replace any such subtree by a single meta-test,
in other words we may assume that A is the only and-subtree of T'.

A test from a preconditioned and-or tree is available to perform if it is a root
test, or if all internal nodes on the path from the root of the tree to the test are
degenerate. We can collapse any degenerate node that is a child of a node with the

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.4: An illustration for the proof of Theorem 36; the substrategy S'.

same label (and/or), thus a test from a tree can be perform only if it is the root
test or there is a path of degenerate internal nodes from the root of the tree to the
parent node of the test strictly alternating between and-nodes and or-nodes.

Therefore in T ' test x is either a root of A or a child of the root of A, and the
root of A is a child of the root of T'. If x is fa lse , the entire subtree A, and only
it, disappears. Let A+ be the reduced subtree obtained from A+ when x is tru e .
Notice that S'+ evaluates A+ as one meta-test. Thus we can treat A+ as a one node,
observe that it is a leaf child of the root of T'+.

We may assume that S'+ and S'_ are obtained by running SA on t ; and T'_
respectively (because if they are not, they may be replaced by such optimal strate
gies). Let W+ and W - be the sets of all maximal best blocks for all child subtrees
of the root of T'+ and T!_ respectively. S'+ (respectively S'_) first performs the de
generate root test and then preforms blocks from W+ (respectively W -) in order of
their R-ratio. Since A+ is a single leaf child of the root, so it is a separate maximal
best block in W+. All other subtrees of the root are the same for both n and T'_,
so W+ = W - U {A+}. Let 61,62 > • • • > k , I > 1 be all maximal best blocks from W+
performed (in this order) by S'+ before A+, and d\, di, ■ ■ ■, dm, m > 0 be all (if any)
maximal best blocks performed (in this order) by S'+ after A+. This means that S'_
performs maximal blocks 61, f>2> • • • > h, d\, di, ■ ■ ■, dm, in this order. S' is shown on
Figure 4.4.

Let b be the block consisting of 61,621 • • •, h. Since A4. is a child of the root
test, so it does not depend on any internal test from the block 6; A+ is performed
if b does not resolve the tree. For any 1 < i < m let Po(d{) be the probability that
b, di, d2 , . . . , d i-i fail to resolve the tree but in such a way that performing di is still
possible. Thus we have the following expression for the expected cost of the strategy
S':

C{S') = c(x) +

+p(a;)

+p(z)

C(b) + (1 - Pr(b))C(A+) + (1 - P r (A+)) £ p 0(di)C(di)
i= 1

+

C(b) + '£ P o (d i)C(di)
<=i

= c(x) + C(b) + p(x)(1 - P r (6))C(A+) +
m

+ [pOc)(1 - ^ r (Af)) +P(*)] Y ^P o id iM d i). (4.15)
i = l

Now let S'* be the linear strategy consisting of blocks b, x, A+ , d\, d2 , . . . , dm in this
order. Test x also does not depend on any internal node from b. Thus the expected

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cost of S'* is given by

C(S**) = C{b) + (1 - P rib))c{x) + (1 - P r(b))p(x)C(A+) +
m

+ [p(x) + p (a)(l - P r (A+))] J 2 p o(di)C(di) =
i = i

= C { S ') - P r (b)c(x) <
< C{S'). (4.16)

Since S' is optimal for T', thus so is S'*. We can replace the substrategy S' in
the optimal strategy S by S'*. But there is no violating node in S'*, so after this
replacement S has K — 1 violating nodes, so by the inductive assumption there is
an optimal strategy for T that is contiguous on any maximal and-subtree. □

If a 1-alternation tree is and-rooted and some or-nodes have the required value
tru e or, equivalently, it is or-rooted and some and-nodes have the required value
fa ls e , the strategy produced by DFA* is not necessary optimal. Figure 4.5 presents
an and-rooted tree, for which the unique optimal strategy is not contiguous on the
maximal or-subtree.

a) b)

p=0.8

p=0.1

p=0.9 p=0.9

N=>

Figure 4.5: a) A 1-alternation and-rooted preconditioned and-or tree Tp. The
required value of each internal node is tru e . All tests have unit costs, b) The
unique optimal strategy for the tree Tp. This strategy is not contiguous on the
maximal or-subtree.

While DFA* may also produce an suboptimal strategy for a tree that contains a
depth one maximal pure included subtree rooted at a non-degenerate node, we can
use a simple procedure to transform any depth one maximal pure included subtree
into a depth one maximal pure included subtree rooted at a degenerate node. Let
A be a depth one m a x im a l pure included subtree of a 1-alternation tree T and let
x be the test associated with the root of A.

Let L\ be the label (and/or) of the root of T and let L 2 be the (different)
label of the root of A. Now consider the following subtree A': the root v of A’
is associated with test x but has label L\. The root v has only one child node w
which is a degenerate node with label L 2. The leaf nodes of A are the child nodes of
w. Figure 4.6 illustrates the subtrees A and A'. Subtrees A and A' are equivalent.
If we replace A by A' in the tree T, then instead of a depth one maximal pure

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c=0

Figure 4.6: Two equivalent preconditioned and-or trees A and A'. The root of A is
an or-node associated with a test x. The root of A' is an and-node associated with
the test x, A' contains a depth one or-subtree rooted at a degenerate node.

included subtree rooted at a non-degenerate node, we have a depth one maximal
pure included subtree with a degenerate root node.

Therefore, if all maximal pure included subtrees with depth greater than one
fulfill the condition (ii) of Theorem 36, then after processing all depth one maximal
pure included subtrees in a tree as described above we obtain a tree for which DFA*
computes an optimal strategy. The processing takes constant time for every such
subtree.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusion

The problem of finding an optimal strategy for an arbitrary and-or tree remains
open. In this thesis we showed that for tests that are child nodes of the same internal
node, there exists a relative order of performing the tests by an optimal strategy
that does not depend on the other parts of the tree. Moreover, some of such sibling
tests are always performed together. These findings led to the design of the Dynamic
Programming Algorithm (DPA) to find an optimal strategy for and-or trees which
runs in time 0 (d2nd), where n is the number of tests in the tree and d is the number
of internal nodes that are leaf-parents. For and-or trees with a bounded number of
internal nodes this time is clearly polynomial in the trees’ size. We also showed that
the known efficient algorithm DFA produces an optimal strategy for depth three
and-or trees whose all tests are identical (have the same cost and probability of
success). For other type of trees with identical tests: parameter-uniform ladders, an
optimal strategy also can be found in a simple, efficient way. On the other hand,
we showed that the probabilistic and-or tree resolution for trees whose all tests
have the same cost, but may have different success probability, can be used as an
approximation of the problem with arbitrary costs.

We also studied a subclass of probabilistic Boolean expressions with precedence
constraints imposed on the set of tests, called preconditioned and-or trees. We
showed that an extension of Smith’s Algorithm produces an optimal strategy for
some type of such expressions.

We hope that the optimal order of performing sibling tests we described may
be helpful in designing a polynomial-time algorithm to solve the problem, either for
general and-or trees or at least for further subclasses (for example for depth three
and-or trees). Such an algorithm does not necessary have to construct the entire
strategy at once (as DPA or DFA does); it would be sufficient to show how to find in
polynomial time the first test to be performed, as we can simply reduce the original
tree, given the value of the first test and recurse.

If it turns out that PAOTR is AP-hard, then it would be of interest to find
an approximation algorithm. The present known algorithms cannot be used in this
way: DPA does not run in polynomial time for general and-or trees, whereas the
strategy produced by DFA may be arbitrarily worse than the optimal one for some
trees.

In the thesis we showed how to find an optimal strategy for two types of parameter-

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

uniform trees. It is interesting whether PAOTR for parameter-uniform trees is sim
pler than the general problem; whether the algorithm to find an optimal strategy
for and-or trees with identical tests can be designed.

Preconditioned and-or trees generalize and-or trees. We showed how to find
an optimal strategy for a subset of 1-alternation preconditioned and-or trees; the
important first step on the way to solving the general problem would be to discover
an algorithm for an arbitrary 1-alternation tree.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Jeffrey A. Barnett. How much is control knowledge worth? A primitive exam
ple. Artificial Intelligence, 22:77-89, 1984.

[2] Moses Charikar, Ronald Fagin, Venkatesan Guruswami, Jon Kleinberg, Prab-
hakar Raghavan and Amit Sahai. Query strategies for priced information. J.
Computer and System Sciences, 64:785-819, 2002.

[3] D. G. Corneil, H. Lerchs, L. Stewart Burlingham. Complement reducible
graphs. Discrete Applied Mathematics, 3:163-174, 1981.

[4] D. G. Corneil, Y. Pearl, L. K. Stewart. A linear recognition algorithm for
cographs. SIAM Journal of Computing, 14:926-934, 1985.

[5] Thomas H. Cormen. Charles E. Leiserson, Ronald L. Rivest, Clifford Stein.
Introduction to Algorithms The MIT Press, Cambridge, Massachusetts, 2001.

[6] Michael R. Garey. Optimal task sequencing with precedence constraints. Dis
crete Mathematics, 4:37-56, 1973

[7] Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, New York,
1979.

[8] Dan Geiger and Jeffrey A. Barnett. Optimal satisficing tree searches. Proceed
ings of AAAI-91, 441-445, 1991.

[9] Martin C. Golumbic, Aviad Mintz, Udi Rotics. Factoring and Recognition of
Read-Once Functions using Cographs and Normality. Proceedings of the 38th
Design Automation Conference, 109-114, 2001.

[10] Russell Greiner. Finding optimal derivation strategies in redundant knowledge
bases. Artificial Intelligence, 50:95-115, 1991.

[11] R u s s e l l G r e in e r , P e k k a O r p o n e n . P r o b a b l y a p p r o x i m a t e ly o p t i m a l s a t i s f i c in g

strategies. Artificial Intelligence, 82:21-44, 1996.

[12] Russell Greiner, Ryan Hayward and Michael Molloy. Optimal depth-first strate
gies for and-or trees. Proceedings of AAAI-02, 725-730, 2002.

[13] Rafi Heiman, Avi Wigderson. Randomized vs. deterministic decision tree com
plexity for read-once boolean function. Proceedings of 6th IEEE Structure in
Complexity Theory, 172-179, 1991.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[14] Richard M. Karp and Yanjun Zhang. Bounded branching process and AND/OR
tree evaluation. Random Structures and Algorithms, 7(2):97-116, 1995.

[15] H. Lerchs. On cliques and kernels. Technical Report, Dept, of Computer Sci
ence, University of Toronto, 1971.

[16] David Francis Manlove. Minimaximal and maximinimal optimisation problems:
a partial order-based approach. PhD Thesis, University of Glasgow, 1998.

[17] K. S. Nataxajan. Optimizing depth-first search of AND-OR trees. Report RC-
11842, IBM Watson Research Center, 1986.

[18] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, Reas-
ing, MA, 1995.

[19] Judea Pearl. Asymptotic properties of minimax trees and game-searching pro
cedures. Artificial Intelligence, 14(2):113-138, 1980.

[20] Judea Pearl. Heuristic. Addison-Wesley, Reading, MA, 1984.

[21] Stuart Russell, Peter Norvig. Artificial Intelligence: A Modem Approach. Pren
tice Hall, 1995.

[22] Sartaj Sahni. Computationally related problems. SIAM Journal on Computing,
3(4):262-279, 1974.

[23] Michael Saks, Avi Wigderson. Probabilistic boolean decision trees and the com
plexity of evaluating game trees. Proceedings of 27th IEEE FOCS, 29-38, 1986.

[24] Miklos Santha. On the Monte Carlo boolean decision tree complexity of read-
once formulae. Random Structures and Algorithms 6(l):75-88, 1995.

[25] Herbert A. Simon and Joseph B. Kadane. Optimal problem-solving search: all-
or-none solutions. Artificial Intelligence, 6:235-247, 1975.

[26] David E. Smith. Controlling backward inference. Artificial Intelligence,
39 (2): 145-208, 1989.

[27] Michael Tarsi. Optimal search on some game trees. Journal of ACM, 30:389-
396, 1983.

[28] L. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, 1984.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

