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Abstract

An and-or tree is a Boolean expression over a set of independent probabilistic tests, 

each with an associated performance cost and truth probability, such that no test 

appears more than once. It can be represented by a tree in which leaf nodes are 

tests and non-leaf nodes are either and or or. Probabilistic and-or tree resolution 

(PAOTR) is the problem of finding an algorithm for evaluating an and-or tree with 

smallest expected cost. The complexity of PAOTR is unknown.

Our main result is that a natural partial order of sibling tests in an and-or tree 

yields a dynamic programming algorithm for PAOTR which for trees with a bounded 

number of non-leaf nodes runs in time polynomial in the input size. We also study 

some generalizations of PAOTR and present some special classes of and-or trees for 

which PAOTR is in P.
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Chapter 1

Introduction and Related Work

1.1 Introduction

Consider the following recruitment situation at a hypothetical company. Potential 
employees must meet certain psychological standards and either be in good physical 
shape or pass both an Intelligence Quotient (IQ) test and a knowledge test. Four 
evaluation tests are prepared: a psychological test P, a fitness test F, an IQ test I  
and a knowledge test K . For each test the only possible output is either pass or fail. 
A candidate will be hired if the Boolean expression e = P  and [F o r (J and K )] 
evaluates to tru e ; see Figure 1.1. Each test has a performance cost. For each test, 
the company knows from its recruiting history the probability that a candidate will 
pass that test. There are several algorithms (strategies) the company may use to

Figure 1.1: An and-or tree Tr. An internal node with a horizontal bar (respectively 
no bar) indicates an and-node (respectively or-node). For each test, the cost and 
probability values are denoted respectively by c and p.

decide whether to accept a candidate. One such strategy is the strategy Si shown 
in Figure 1.2a: first administer the psychological test; if the candidate fails this test 
then return f a ls e  (the candidate is rejected), otherwise next administer the fitness 
test; if the candidate passes this test then return tru e  (the candidate is accepted), 
otherwise administer the IQ test; if the candidate fails this test then return fa ls e , 
otherwise administer the knowledge test; if the candidate passes this test then re­
turn tru e , otherwise return fa lse . Another possible strategy the company might

£1

c=l 
p = 0 .05

c=l 
p = 0 .76

1
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Figure 1.2: Two strategies for the and-or tree Tr.

use is the strategy S 2  shown in Figure 1.2b. The company wants to use a strategy 
which has the minimum expected cost.

The aforementioned expression e is an example of a probabilistic Boolean expres­
sion, namely a Boolean expression with a cost and probability for each variable. 
A probabilistic Boolean expression such as e that can be represented by a tree in 
which each internal node corresponds to a Boolean operator, either and or or, and 
each leaf node corresponds to a test with t r u e / f a ls e  output is called an and-or 
tree. We will provide more formal definitions in Section 1.2. For a given probabilis­
tic Boolean expression (respectively and-or tree), the problem of finding a strategy 
with the minimum expected cost over all strategies that evaluate the expression 
correctly is called probabilistic Boolean expression resolution (PBER) (respectively 
probabilistic and-or tree resolution (PAOTR)).

As discussed above, the problem of deciding the value of a probabilistic Boolean 
expression may arise in practical applications. For many Boolean expressions, in­
cluding all and-or trees, each (deterministic) strategy has to query all variables in 
the worst case. For this reason the expected cost of a strategy is a reasonable per­
formance measure. The objective is to find an algorithm that will on average cost 
as little as possible.

In this thesis we present the results of our research on PAOTR and some of its 
generalizations. PAOTR is a natural restriction of PBER which is also interest­
ing from the complexity point of view. PBER is iVP-hard for general probabilistic 
Boolean expressions; it is also JVP-hard for the class of probabilistic Boolean ex­
pressions in which no variable is negated. And-or trees constitute a subclass of the 
latter class, containing expressions in which each variable appears exactly once. The 
complexity of finding an optimal strategy for and-or trees is unknown.

Previous to our work, a polynomial-time algorithms were known for depth one or 
two and-or trees (see Section 1.3.3) and balanced and-or trees (see Section 1.3.4). 
We present a dynamic programing algorithm to find an optimal strategy for and-or 
trees which runs in time 0(d2nd), where n is the number of leaves and d is the 
number of internal nodes that are leaf-parents in a tree. Thus for trees with a 
bounded number of internal nodes, the running time of our algorithm is polynomial 
in the input size. The algorithm relies on the discovered optimal relative order of

2
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querying tests (variables) that are siblings in a tree. We also show that PAOTR for 
some special and-or trees is in P  as well. We describe a way in which PAOTR for 
trees with all costs unit can be used as an approximation for general PAOTR. We 
also consider a generalization of PBER, in which there are precondition constraints 
for tests. Among such expressions, preconditioned and-or trees generalize and-or 
trees. We show that an extension of a previously known algorithm (Smith’s Algo­
rithm) produces an optimal strategy for a subclass of preconditioned and-or trees.

In this chapter we provide formal definitions (Section 1.2) and present a survey 
of the previous results related to PBER (Section 1.3).

We state the key lemma describing the optimal relative order of performing 
sibling tests in Section 2.1. In Section 2.2 we present the dynamic programming 
algorithm to find an optimal strategy for and-or trees. We show that PAOTR for 
special classes of and-or trees is in P  in Sections 2.3 and 2.4. In Section 2.5 we 
describe the reduction that allows to approximate any and-or tree by a tree whose 
all tests have the same cost.

In Chapter 3 we discuss several natural conjectures with respect to optimal 
strategies for and-or trees. For some, we present counterexamples; others remain 
open. In Chapter 4 we study preconditioned and-or trees and describe a general­
ization of Smith’s Algorithm for finding an optimal strategy for some such trees. In 
Chapter 5 we summarize our findings and discuss open problems.

1.2 Definitions and Notations

Since we use directed graphs to represent both Boolean expressions and algorithms 
for their evaluation, we begin with the related definitions. We follow the definitions 
from [5].

A directed graph G is an ordered pair (V, A), where V  is a finite set and A is a 
set of ordered pairs of elements of V. Elements of V  are called nodes and elements 
of A  are called arcs.

Let G = (V , A). For an arc a = (v , w) we say that a leaves v and enters w. The 
out-degree of a node v is the number of the arcs that leave u; the in-degree of v is 
the number of the arcs that enter v. A subgraph of G induced by a set V' C V  is 
the directed graph G' =  (V7, A!), where A' =  { ( v ,  w) e A : v,w  G V'}. A path of 
length k from v to w in G is a sequence of nodes (vq,vi, . . .  ,Vk), k > 0 such that 
vo = v, Vk = w and for * =  1 ,2 ,. . . ,  k (vi-i,Vi) G A. The arcs of the path are the 
arcs (uj_i, Vi), i = l ,2 , . . . , k .  A node w is reachable from v if there is a path from 
v to w. A path (wo, «i, • • •, Vk) is a cycle if vo =  v̂ , and k > 1. If there is no cycle in 
G , G is acyclic and is called a DAG (directed acyclic graph). In a DAG, for each 
arc (v, w) we call w a child node of v and v a parent node of w. A node of a DAG 
that has in-degree zero (respectively out-degree zero) is called a source (respectively 
sink).

Let us now define formally a special kind of directed acyclic graph called a 
directed rooted tree. This concept is often referred to elsewhere as simply a rooted 
tree; we add the term “directed” to emphasize that this is in fact a directed graph.

Definition 1 A directed graph T  = (V, A) is a directed tree rooted at a node r
if

3
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i) V  — {r} and A  = 0, or

U) V  = {r} U Vi U V% U . . .  U Vk, A = { (r,ri), (r, r2) , . . . ,  (r, rk)} U Ai U A 2  U . . .  U 
Ak, k > l ,  where {r}, Vi, V2, ■ ■ ■, Vk o,re disjoint sets and T\ = (V ^A i),!^  =  
(V2, A.2) , . . .  ,Tk =  (Vk,A k) are directed trees rooted respectively at nodes r i , r 2, 
. . . , r fc.

A graph G is a directed rooted tree if there is a node r  such that G is a directed 
tree rooted at r. The graphs shown in Figures 1.1 and 1.2 are examples of directed 
rooted trees.

Let T  =  (V, A) be a directed tree rooted at r. We call r the root of T. Two 
nodes with the same parent node are siblings. A node with out-degree zero is a leaf; 
a node with positive out-degree is internal. A (full) binary tree is a directed rooted 
tree in which each internal node has out-degree two. The depth of a node v is the 
length of the path from the root r to v. The depth of the tree T  is the maximum 
depth of a node, over all nodes of T.

Each node reachable from v is called a successor of w, each node from which v is 
reachable is called a predecessor of v. Notice that each node is both a successor and 
a predecessor of itself. Observe that the subgraph of T  induced by all successors of 
some node v is a directed tree rooted at v.

D efinition 2 A subtree of a directed rooted tree T  is a subgraph of T  induced by 
all successors of some node of T.

A subtree rooted at a child node of r is called an immediate subtree of T  and a child 
subtree of r; the node r is called the parent node of its child subtrees.

For a directed tree T  = (V,A) rooted at r with |V| > 1, there is a unique set of 
directed rooted trees Ti,T2, . . .  ,Tk that fulfills condition ii) of Definition 1, namely 
the set of immediate subtrees of T. Together with the root, this set specifies T. For 
a node r  and a finite set of directed rooted trees ft, we use

< r ,¥ )  (1 .1)

to denote the directed tree rooted at r and with the set of immediate subtrees 4'.

A probabilistic Boolean expression is a Boolean expression over a set of proba­
bilistic tests, each of which has an associated cost and truth probability; we assume 
that costs are non-negative.

We say that a test succeeds if it has the value (the outcome) tru e , otherwise we 
say that the test fails. By performing a test we mean determining its value.

For any test a; of a probabilistic Boolean expression, c (x ) denotes the cost of 
performing x, p (x) denotes the probability of success of x , and p (x) = 1 — p  (a:) 
denotes the probability of failure of x. We will on occasion use the symbols cx, px, 
px to denote c(x), p(x), p(x) respectively.

Consider a set of tests D  =  {a:i,a:2, .. .  ,x k}. A setting of tests x±, x2, . . .  ,x k 
is an assignment of Boolean values (true  or fa lse )  for the tests, that is a vector 
a =  (v(x i),v (x 2 ), ■ ■ ■ ,v (xk)) where, for i < k, v(xi) is a Boolean value of the test 
Xi. The probability p (cr) of a setting o is the probability that for each i < k the 
test Xi has the value v(x{).

4
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The tests x i, *2, . . . ,  Xk are independent if for any subset D' =  {y\, y2 , ■ ■ ■ ,yi} C 
D  and any setting a = (v(yi),v(y 2 ), ■.. ,v(yt)) of the tests from D'

I
p W  =  I I p«(w)» (L2)

*=1

where
n , PiVi) if v(yi) is tru e , , .
Pv(yi) |  p(yi) if v(yi) is fa ls e .

D efin ition  3 A strategy for a probabilistic Boolean expression e is a binary tree 
S  such that each internal node is labeled by a test from e, each leaf node is labeled 
either t ru e  or fa ls e , and for each internal node v of S, one of the arcs leaving v 
is labeled t ru e  and the other is labeled fa ls e .

Whenever we represent a strategy graphically, we draw the tree so that arcs point
to the right, and we use the symbols +  and — to denote respectively the labels tru e
and fa ls e . See Figure 1.2.

As defined above, a strategy represents an algorithm for calculating (not neces­
sary correctly) the value of the expression, for any setting of tests; the algorithm 
performs tests sequentially, and the selection of each subsequent test is based on the 
values of the previous tests. A leaf node of S  represents the return by the algorithm 
of the value equal to the leaf label as the value of the input expression. The first 
test performed by the algorithm is the test that labels the root r  of S. Depending 
on the value of this test, one of arcs leaving r (the one labeled by this value) is 
followed; the child subtree of r entered by this arc represents the further actions of 
the algorithm. For example the tree shown in Figure 1.2a represents an algorithm 
that starts with performing the test P. If the value of P  is fa ls e , the algorithm 
returns the value fa ls e , otherwise the algorithm performs the test F.

Whenever it does not cause any confusion, we use the word “strategy” to denote 
both a tree and its associated algorithm. For example, we use alternatively the 
equivalent phrases “the root of the strategy 5  is labeled by the test x n and “the 
strategy S  starts with performing the test x”.

If in a strategy (tree) a path P  contains a node labeled by a test x  then we say 
that x is performed on P. If P  contains also a node labeled by a test y and this node 
has smaller depth than the node labeled by x, we say that y is performed before x  
on P.

Let P  = (vo, v i , . . . , Vk) with k > 0 be a path from the root vo of S' to a leaf node 
Vk- A setting a corresponds to P  if for any i < k, the value in a of the test X{ that 
labels the node Vi is equal to the label of the arc (v{, Uj+i). Observe that any setting 
corresponds to exactly one root-to-leaf path, and several settings may correspond 
to one root-to-leaf path. For example, the settings <j\ =  (F —,I + ,P —,K + )  and 
c7 2  = (F —,/+ ,  P —,K —), correspond to the same root-to-leaf path of the strategy 
S 2  shown in Figure 1.2b.

A strategy S  for a probabilistic expression e is correct if for any root-to-leaf path 
P  of S, the value of e under any setting that corresponds to P  is the same as the 
label of the leaf of P.

5
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Considering a strategy as an algorithm, correctness of the strategy means just 
that the algorithm calculates correctly the value of a probabilistic Boolean expression 
for any setting of tests.

The cost of a strategy S  under a setting a is the sum of costs of all tests performed 
on the root-to-leaf path of S  to which a corresponds. For example, the cost of the 
strategy S 2  shown in Figure 1.2b under both the above given settings o\ and 0 2  is 
c (F ) +  c (I) + c (P ). We denote by ca(S) the cost of S  under a setting a.

The expected cost C (S) of a strategy S  for an expression e is the average cost 
of the strategy S  over all settings of the tests of e:

C (S )=  £  p (< r)c (S ) , (1-4)
a£Settings(e)

where the sum is taken over all settings of the tests of e and p (a) is the probability 
of the setting a.

The expected cost is the measure of the performance of a strategy we are con­
cerned with in this thesis.

D efinition 4 A correct strategy S  for a probabilistic Boolean expression e is op ti­
m a l fo r  e if  S  has the minimum expected cost among all correct strategies for e, 
that is if for any correct strategy S ' for e it holds that C (S ) < C (S').

Probabilistic Boolean expression resolution (PBER) is the problem of finding an 
optimal strategy for a given probabilistic Boolean expression. For a given proba­
bilistic Boolean expression e, the optimal resolution cost is the expected cost of an 
optimal strategy for e.

Several internal nodes of a strategy can be labeled with the same test; see for 
example strategy S 2  of Figure 1.2b. Notice though that for any setting of tests, 
performing the same test more than once always yields the same value, while in­
creasing unnecessarily the cost of the strategy under this setting (unless the cost of 
the test is zero, in which case performing the test does not influence the cost of the 
strategy under this setting). More formally, if two nodes of one root-to-leaf path 
P  of the strategy are labeled by the same test x, then either there is no setting 
that corresponds to P  (because two arcs of P  that leave the nodes labeled by x  are 
labeled by different values) or removing one node labeled by x  does not change the 
set of the settings that correspond to the path without increasing the cost of the 
strategy under any of these settings. We call a strategy nonredundant if on any 
root-to-leaf path of the strategy no two nodes are labeled with the same test. We 
can restrict our attention to such strategies, because for any probabilistic Boolean 
expression there is an optimal nonredundant strategy.

In this thesis we will concentrate on a special case of a probabilistic Boolean 
expression, which we define formally in terms of labeled directed rooted trees with 
special features.

D efinition 5 A rooted directed tree T  =  (r, 'F) with labeled nodes and a Boolean 
value is an and-or tree if one of the following conditions is fulfilled:

6
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• \Ef is empty, r is labeled by a probabilistic test with given non-negative cost and 
success probability and the Boolean value of T  is equal to the value of the test, 
or

• any tree T ' £ has labeled nodes and a Boolean value so that it is an and-or 
tree, the tests that label all leaves of all trees in 'S are distinct and independent, 
and

— either r is labeled and and the value of T  is t ru e  if and only if the value 
of each tree from is tru e , or

— r is labeled or and the value of T  is t ru e  if and only if the value of at 
least one tree from is tru e .

We draw and-or trees so that arcs point downward. The and-labeled nodes 
(respectively the or-labeled nodes) are denoted by a horizontal bar (respectively no 
horizontal bar) below the nodes. See for example the and-or tree in Figure 1.1.

Obviously, an and-or tree T  defines a probabilistic Boolean expression (obtained 
recursively by joining the expressions for subtrees by the logic operators and or or 
depending on the label of the root), with the same Boolean value as the value of 
T. We identify an and-or tree with the expression it represents. The strategy for 
an and-or tree is the strategy for the associated probabilistic Boolean expression. 
Probabilistic and-or tree resolution (PAOTR) is the problem of finding an optimal 
strategy for an and-or tree.

A Boolean function that corresponds to an and-or tree (that is the function 
that for any setting of tests returns the Boolean value of the and-or tree) is called a 
read-once function, because it can be expressed by a formula in which each variable 
appears exactly once. Observe that any function that can be expressed by such a 
formula, corresponds to an and-or tree.

Since all leaf nodes of an and-or tree are labeled by distinct tests, we identify 
tests with leaf nodes. Therefore we say that a test a; is a leaf of T  meaning that x  
labels a leaf of T.

We require that tests of an and-or tree are independent, otherwise we could 
convert an arbitrary probabilistic Boolean expression (not necessary with read-once 
property) to an and-or tree with dependent tests by replacing any two occurrences of 
the same variable (or occurrences of the variable and its negation) by two separate 
variables that in any setting must have the same value (or must have opposite 
values).

A strategy to evaluate an and-or tree can be viewed as a search through the 
tree in order to find any subset of leaf nodes with required value that suffices to 
determine the value of the entire tree. There may be several such subsets. This 
model of search is called satisficing search by Simon and Kadane in [25], where the 
notion of PAOTR first appears.

An and-or tree is strictly alternating if there is no arc (v, w) in T  such that v 
and w are both labeled and or both labeled or. For any and-or tree there exist 
an equivalent strictly alternating one. This is because for any T\ =  ( r i ,$ i) ,  T2 =  
(r2, ^ 2) such that T2 € t&i and the labels of r\ and r<i are identical (both and or 
both or), Ti is tru e  if and only if T[ = (ri,Wi — {T2} U 'J2) is tru e . Therefore, 
without loss of generality, we may assume that and-or trees are strictly alternating.
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Observe also that for any and-or tree we can find an equivalent one in which all 
internal nodes have out-degree at least two. If T\ = (ri,{T2}), then T\ is tru e  if 
and only if T% is tru e .

By collapsing we mean replacing an and-or tree by an equivalent one that is 
strictly alternating and in which all internal nodes have out-degree at least two.

We say that a subtree U of an and-or tree resolves its parent node if the value 
of U alone determines the value of the tree rooted at the parent node of U, namely 
if either U has value tru e  and its parent node is or or U has value fa ls e  and its 
parent node is and.

For a given tree T  the reduced tree T' obtained by performing some tests from 
T  is the tree obtained from T  by removing all subtrees whose values have been de­
termined by the values of the performed tests. The empty reduced tree is obtained 
when the value of the entire tree T  has been determined.

We now present a few formulae to calculate the expected cost of a nonredundant 
strategy. For an internal node v of a strategy, let xv denote the test that labels the 
node v. For a leaf node v, let xv denote its label (true or false) and let c(xv) =  0.

Let P  =  (vo,vi,. . .  ,Vk) with k > 0, be a path of a nonredundant strategy. We 
define the cost c (P ) of a path P  as the sum of costs of the tests performed on P

k

C(P) =  X]c(ar„4) (1.5)
i= 0

and the probability p (P) of a path P  as the product of the probabilities of the 
corresponding values of the tests performed on P

fv \  -  J 1 if fc =  0, n

where

{p(xv.) if the arc (v*, Vj+i) is labeled true, ,
p(xVi) if the arc (vi, Vi+i) is labeled false.

The sum of the probabilities of all settings that correspond to one root-to-leaf 
path of a nonredundant strategy is equal to the probability of this path. Therefore 
we have the following expression for the expected cost of a nonredundant strategy 
S:

C(S) =  £  p(P)c(P), (1.8)
PZRootToLeaf Paths(S)

where the sum is taken over all root-to-leaf paths of 5.
It follows from (1.8) by induction on the number of nodes in a strategy that the 

following expression holds for a nonredundant strategy S:

C(S) = £  p(Pv)c(xv), (1.9)
v£lnternalNodes(S)

where the sum is taken over all internal nodes of S  and Pv is the path from the root 
of S  to the node v.

Again by induction on the number of nodes in a strategy it follows that the 
following recursive formula computes the expected cost C(-):

8
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For any leaf node v (labeled tru e  or fa lse )  of a strategy,

C(v) = 0. (1.10)

For any (sub) strategy Sw rooted at an internal node w,

C  (Sw) = c (xw) +  p (xw) x C (Sw+) +  p (xw) x C (Sw_ ), (1-11)

where xw is the test that labels the root node w and Sw+ and Sw-  are the child
subtrees of w whose root nodes the respective tru e  and fa ls e  arcs enter.

We will use the following notation to describe strategies: For strategies Si, S 2  

and a test x
x : + ( S i ) ; - ( S 2) (1.12)

denotes the strategy whose root is labeled x  and whose child subtrees of the root,
entered by tru e  and f a ls e  arcs are respectively S\ and S2.

For a strategy S  that has disjoint substrategies 5 i , . . . ,S m , m  > 1, and for 
strategies 5 ( , . . . ,  S'm

S { S l < S [ , . . . ,S m <S'm) (1.13)

denotes the strategy that is obtained from the strategy S  by replacing the subtree 
Sfc by the tree S'k for each k — 1 ,2 ,. . . ,  m.

If an and-or tree contains tests that have cost zero, then there is an optimal 
strategy for the tree that first performs in an arbitrary order all 0-cost tests. This 
means that the problem of calculating the optimal strategy for a tree that has some 
tests with the cost zero reduces to the problem of finding the optimal strategy for the 
and-or tree obtained after performing all 0-cost tests. For this reason, we assume 
from now on that all and-or tree tests have strictly positive costs.

For any and-or tree T  and any test x from T  there is a Boolean value v such 
that after determining that x  has the value v the reduced tree still contains all tests 
other than x. From this it follows that that every correct strategy for an and-or 
tree performs in the worst case all the tests from the tree (that is it contains a 
root-to-leaf path whose nodes are labeled by all tests).

Decision problems are problems for which the only possible solutions are the 
answers “yes” or “no”. The decision version of PBER is the following problem: 
Given a probabilistic Boolean expression e and a nonnegative real number B, is 
there a correct strategy for e with the expected cost at most B? The class P  is 
the class of decision problems that are solvable in time polynomial in the size of 
their inputs. The class N P  is the class of decision problems for which there exist 
a “certificate” that allows to verify the answer “yes” for problem’s inputs, in time 
polynomial in the input’s size. A problem from N P  is ATP-complete if any problem 
from N P  can be reduced to it in polynomial time, which means that if an ATP- 
complete problem can be solved in polynomial time, any problem from ATP can. A 
problem II is ATP-hard, if there is an ATP-complete problem that can be reduced to 
II in polynomial time. See [7, 18] for introduction to the complexity theory.

9
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1.3 Previous Work

1.3.1 N P-H ard R esults

Our interest in PAOTR, the restriction of PBER to and-or trees, is motivated by 
the fact that for some more general classes of probabilistic Boolean expressions the 
problem is JVP-hard.

First consider PBER for arbitrary probabilistic Boolean expressions. Let P  be 
a Boolean formula and let ep be the associated probabilistic Boolean expression, 
constructed by assigning an arbitrary probability and an arbitrary positive cost to 
each variable. Now consider the probabilistic Boolean expression e — (x and ep), 
where a; is a single test with positive cost. If P  is unsatisfiable, then so is e and 
the optimal strategy for e has expected cost zero, since it suffices to return f a ls e  
without performing any test. If P  is satisfiable, then any correct strategy for e has 
the expected cost greater than zero, since we will have to perform at least one test 
(e is satisfiable but may evaluate to fa ls e  for example if x  fails). It follows from 
this observation and from the ./VP-completeness of the satisfiability problem [7] that 
PBER is IVP-hard.

A natural restriction of PBER is to “positive” expressions, namely those that 
do not include negated variables (thus are always satisfiable). Such expressions can 
be represented as and-or directed acyclic graphs; an and-or DAG is a DAG with 
only one source which is called the root, and such that each sink is a probabilistic 
test, each node that is not a sink is an or-node or an and-node. The value of an 
or-node (respectively and-node) is the value of logical or (respectively and) of its 
child nodes’ values. The value of the root is the value of the entire expression.

PBER for and-or DAGs is still ATP-hard as we now show. Our proof follows 
by introducing stochasticity into the construction presented in [22] for a different 
and-or structure problem.

The decision version of PBER for and-or DAG is the following problem: Given 
an and-or DAG D  and a positive real number B, is there a strategy to evaluate D 
with expected cost at most B?

T heorem  1 PBER for and-or DA Gs is NP-hard, even if all test have unit costs.

Proof: Consider the 3-SAT problem: Given a Boolean formula P  that is the and of 
m  clauses, each of which is the o r of exactly three distinct literals (that is variables 
or their negations), is P  satisfiable?

3-SAT is N P -complete [7]. We will show that 3-SAT can be polynomially re­
duced to PBER for and-or DAG.

For a given instance of 3-SAT let Ci, C2, • • •, Cm be the clauses in the formula P  
and let x \, X2 , ■. . ,  xn be all variables from P. Now construct the and-or DAG D  in 
the following way: The root of D  is an and-node. It has m + n  child or-nodes: nodes 
Ci, C2 , ...,Cm correspond to the clauses of P  while nodes x i,X 2 , ■ ■ ■ ,x n correspond 
to the variables from P . Each or-node Xi has exactly two distinct child nodes: 
the tests x f  and x f ,  corresponding to the respective values tru e  and f a ls e  of the

variable Xi. Each test has the cost 1 and the success probability q =  ^1 — 2n+1.
These are all the nodes of D. Each or-node Cj has exactly 3 child nodes: if the 
clause Cj contains the literal Xi, the test x f  is a child of the node, if the clause Cj
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contains the literal ->Xi, the test x f  is a child of the node. Figure 1.3 presents an 
example of such a construction.

Figure 1.3: Illustration for the proof of Theorem 1. The DAG corresponding to the 
formula P  — (x\ or - 1x3 or - 1X4) and (xi or - 1X2 or X3).

We can construct such an and-or DAG in polynomial time. Now we will show 
that P  is satisfiable if and only if there is a strategy for D with expected cost at 
most n  +  5 .

For any correct strategy the single root-to-leaf path of the strategy that includes 
only tru e  arcs will be called the true path. Notice that the true path of any correct 
strategy has to include at least n  internal nodes, because we have to perform at 
least one child test of any x, node to conclude that the value of D  is tru e .

We will first prove the following claim:
Claim : A correct strategy S  for D has the expected cost at most n  +  ^ if and 

only if the true path of S  contains exactly n internal nodes.
Proof of Claim: Let Q be the true path of a strategy S  and let k be the number of 

the internal nodes of Q, k > n. Thus the cost of the path Q is k and the probability 
of Q is qk. Notice that the cost of any other root-to-leaf path of S  is at most 2n 
and at least 1.

Assume that k =  n. Then we obtain the following upper bound on the expected 
cost of S:

C(S) < qnn  +  (1 -  qn) 2 n = n ( 2 -  qn) =
' ( 1 \  2n+l 1 1 M 1

‘ - s ) < n
2 - ( 2» ) .

=  n + -

Now assume that k > n. In this case we have the following lower bound on the 
expected cost of S :

C(S) > qkk + ( l - q k) l = q k ( k - l )  + l > q kn + l  =

=’i(i-̂ r+,+i>n(i“i)+i=”'4
□
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Now we can finish the proof, by means of the following equivalent statements, 
for which it is not difficult to see that (i) 43 (ii), (ii) 43- (Hi), (Hi) 43 (iv), and, by 
the above Claim, (iv) 43 (v):

(i) P  is satisfiable.
(ii) There is a truth assignment cr for P  such that for any clause Cj there is at 

least one literal that has the value tru e  under a.
(Hi) There is a set W  of tests from D, |W| =  n, such that for any i one and only 

one of x f  and x f  belongs to W  and any node Cj has at least one child in W .
(iv) There is a correct strategy for D whose true path contains exactly n  internal 

nodes.
(v) There is a correct strategy for D with the expected cost at most n  +  □

And-or trees constitute a proper subclass of and-or DAGs. It is unknown 
whether PBER for and-or trees (namely PAOTR) is in P. Previous to our work, 
polynomial-time algorithms have been known for special classes of and-or trees, 
namely for and-or trees with depth one or two (see Section 1.3.3) and for balanced 
and-or trees (see Section 1.3.4).

In this work we prove that PAOTR for the class of and-or trees with bounded 
number of internal nodes, as well as for some special classes of trees whose all tests 
have identical cost and identical probability, is in P.

1.3.2 A pplications o f And-Or Trees

Previously, various applications of PAOTR have been presented. They include: 
screening candidates for a certain position [6], selecting categories at a quiz show
[6], gold m in in g  [6, 8, 25], selecting problem-solving methods by simple control 
systems [1], performing inferences in expert systems [10, 26], selecting tests for 
medical diagnosis [11], and food testing [12].

And-or trees have also been studied as game-trees [14, 19, 20, 27]. A min-max 
tree is a directed rooted tree whose leaf nodes are assigned some values and internal 
nodes either are labeled max and evaluate to the maximum value of their child 
nodes, or are labeled min and evaluate to the minimum value of their child nodes. 
Observe that and-or trees are special cases of min-max trees restricted to values 0 
(fa lse ) and 1 (true). In this context an and-or tree represents all possible plays 
of a two-player game. Consider an or-rooted tree. Call the first player OR, the 
second player AND. Any leaf node represents a terminal position in the game, that 
is win (true) or loss (fa lse ) of OR player. Any or-node (respectively and-node) 
represents a position in which it is the OR player’s (respectively AND player’s) turn 
to move. Each root-to-leaf path corresponds to one complete play of the game. 
Observe that the tree evaluates to tru e  (win) if and only if the OR player can force 
a win.

1.3.3 D epth-F irst Strategies

Natural strategies to consider for evaluating and-or trees are those that evaluate 
child subtrees of a node until the value of the node is determined. We call such 
strategies depth-first.
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D efinition 6 A strategy S for an and-or tree T  is depth-first if  for any subtree 
U of T  and any root-to-leaf path P  of S, whenever a test x from U is performed on 
P, no test from outside U is performed on P  until the value of U is determined.

Depth-First Strategy(and-or tree T)

(1) If T  is a single test x
(2) Perform x
(3) Return value of x
(4) Else
(5) Take some order UVk,U1(i, . . . , U Vk of immediate subtrees of T
(7) i := 0
(8) Repeat
(9) i := i + 1

(10) ChildValue := Depth-First Strategy {Uni)
(11) Until value of T  is determined
(12) Return value of T
(13) End Else

Figure 1.4: Depth-First Strategy.

Notice that in Figure 1.2 the strategy Si is depth-first, but the strategy S 2  is 
not: after test I  is performed, S 2  “jumps” to test P  before the value of the node 23 
is determined.

The pseudo-code of the algorithm represented by a depth-first strategy is pre­
sented in Figure 1.4. If the root of an and-or tree T  is or, the value of T  is 
determined when any of its immediate subtrees evaluates to true or when all of 
them evaluate to fa lse. For a tree T  rooted at an and-node, the strategy stops 
evaluating subtrees if any of them has value false.

In other words, for any internal node a depth-first strategy recursively evaluates 
child subtrees until one of them resolves its parent node or all are evaluated. It is 
now only necessary to find for each internal node the best order of evaluating its 
child subtrees.

For depth one and-or trees the best such order was described by Simon and 
Kadane [25]. Notice that for such trees any correct strategy is depth-first: it is 
sufficient to perform one test after another until any of them resolves its parent 
node or all are performed.

T heorem  2 [25] Let T  be a depth one and-or tree and let x \ ,X 2 , . . .  ,x^ be leaf 
nodes (tests) o fT .  An optimal strategy for T  performs one test after another, until 
the value of T  is determined, in the order xni, xn2, . . . ,  x„k such that for i < k,

/ rjQ \ \
/  V > / *+V 1 where pr (xi) is the probability that x% resolves its parent node,c (* ,4) -  c { x* i + l ) *

namely
r , x _  J p{xi) if the root of T  is or,

P yXt) |  p(xi) if the root of T  is and.
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Proof Let x Vl,Xv2, . .. , z Wk be the order of performing the tests by an optimal 
strategy S. Assume that this order violates the condition of the theorem, that is

(xir j
there is at least one index I < k such that /  v < / +V • We will show that if

C \ X * l )  C\ x * l + l )
we switch the tests xn  and x V l + 1 , the expected cost of the resulting strategy is not 
greater than the expected cost of S. Thus we can continue, if necessary, to switch 
tests until the resulting strategy, still optimal, fulfills the condition of the theorem.

Let Pi be the probability of a path from the root of S  to the node labeled by Xi, 
that is Pi =  1, and Pi =  n}=\ ( l  ~P r for * > 1. The following expression
holds for the expected cost of S:

k
C(S) = Y , Pi C(X«i)-

i= 1

Now let S' be the strategy obtained from S  by switching the tests x n  and x„l+1. 
Then

C(S')  -  C(S) = Pt \ f  (*„,) c K J  -  pr K (+1) c (a*,)] < 0.

□

Natarajan [17] proposed an algorithm to find the best depth-first strategy for 
deeper trees. The algorithm, called DFA (Depth First Algorithm), calculates the 
best order of child subtrees for any internal node of a tree. It is described in 
Figure 1.5.

Notice that in any depth-first strategy, once one decides how to evaluate each 
child subtree of a given internal node, one can treat each such subtree as a single 
meta-test, whose effective cost is equal to the expected cost of evaluating the sub­
tree and whose probability of success is equal to the probability that the subtree 
evaluates to true. For a (sub)tree T, DFA calculates the best order of immediate 
subtrees of T  (using the rule given in Theorem 2), the expected cost c d f a ( T )  of 
the resulting depth-first strategy for T  (as described in the proof of Theorem 2) and 
the probability p (T ) that T  evaluates to true.

The time complexity of DFA is O (N  In b), where N  is the total number of nodes 
in a tree and b is the maximum out-degree of internal nodes (because the time spent 
at a node is the time required to order that node’s children).

The next theorem follows by induction on the depth of an and-or tree, with the 
base case provided by Theorem 2.

T heorem  3 [12] For any and-or tree T , the depth-first strategy produced by DFA 
has minimum expected cost among all depth-first strategies for T.

Greiner, Hayward and Molloy [12] proved that algorithm DFA produces an op­
timal strategy for depth-two and-or trees. Combined with Theorem 2 that gives us 
the following theorem.

T heorem  4 [12] DFA produces an optimal strategy for and-or trees with depth one 
or two.
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DFA(and-or t r e e  T)

(1) If T  is a single test x
( 2 ) Return (c ( x), p(x) )
(3) Else
(4) For each immediate subtree (7, of T , i < k
( 5 )  (cDFA(Ui),  p{Ui ) ) :=DFk(Ui )

=  f  p  (Ui) if the root of T  is or
1 1 1 — p{Ui)  if the root of T  is and

(7) End For
(8) Find an order Un i , Un2, . . . ,  U„k of immediate subtrees of T

such that P (UZ ^  s. > P \ f or i < k
C D F A y U n i )  C D F A ( U w i + 1 )

(9) CDFA  (T ) : =  CDFA (U-iri) +  H i = 2  CD F A  ( U ^ )  n }= i ( l “  P T { U n j ) )

(1 0 )  v ( T )  - (  1 ~ n i = i ( 1 - p ( U i ) )  i f  th e  r o o t  o f  T  i s  o r
\  n h p ( U i )  i f  the root of T  is and

(1 1 ) Return (c d f a ( T ), p( T) )
(1 2 ) End Else

Figure 1.5: DFA (Depth First Algorithm).

However, algorithm DFA does not always produce an optimal strategy for deeper 
trees. The best depth-first strategy may be suboptimal for and-or trees with depth 
three, even if all tests have unit costs. For example, the unique optimal strategy for 
the tree Tr from Figure 1.1 is the strategy S 2  shown in Figure 1.2b, which is not 
depth-first.

Notice that for a unit-cost and-or tree with n  tests, assuming that probabilities 
of tests are greater than zero and less than one, the minimum possible expected cost 
of a strategy is 1 and the maximum is n. Thus no strategy can have expected cost 
more than n  times higher than the expected cost of the optimal strategy. Greiner, 
Hayward and Molloy showed that DFA may produce an extremely costly strategy:

T heorem  5 [12] There are unit-cost and-or trees with n tests for which the best 
depth-first strategy has expected cost 0  times higher than the optimal res­
olution cost.

1.3.4 Balanced And-Or Trees

And-or trees with a uniform structure have been studied extensively in the context 
of game-trees.

D efin ition 7

• An  and-or tree T  is param eter-un iform  if all tests o fT  have unit costs and 
the same probability of success.
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• An  and-or tree T  is balanced if  T  is parameter-uniform, and all nodes of T  
with the same depth have equal out-degree.

• An  and-or tree T  is u n ifo rm  if T  is balanced, and all internal nodes of T  
have equal out-degree.

Figure 1.6 presents two balanced and-or trees, among which the and-or tree Ti 
is not uniform whereas the and-or tree T2  is uniform.

T2

Figure 1.6: Balanced and-or trees Ti and T2. Each test has unit cost and success 
probability 0.7. T\ is not uniform. T2 is uniform.

Notice that for an internal node of a balanced tree, all child subtrees are indistin­
guishable. Thus any depth-first strategy for a balanced tree has the same expected 
cost.

Pearl studied asymptotic properties of uniform trees. The following are his re­
sults [19, 20] related to a specific value of success probability of tests that constitutes 
a significant threshold.

Let U(d,b,p) denote an or-rooted uniform and-or tree, with depth equal to 
d =  2k, for integer k > 0, out-degree of the internal nodes equal to b and the success 
probability of tests equal to p.

Let be the positive root of the equation xb +  x  -  1 =  0. If the probability 
of success of tests is £&, the tree U(d,b,£b) evaluates to tru e  with the probability

for any depth d. Moreover, in the limit as d goes to 00, the probability that 
U(d, b,p) has value tru e  is 0 for all p < £& and 1 for all p >
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The threshold value & is also significant with respect to the expected cost of a 
depth-first strategy. Let cdfa (U{d, b,p)) denote the expected cost of any depth-first 
strategy for U(d,b,p). For test probabilities & and any depth d:

C D F A ( U ( d , b , £ b) )  =  >  bi .

Also, for any p ^  £„ it holds that

l i m  [ c D F A { U ( d , b , p ) ) \ *  =  &5 . 
a—>00

Notice that one always has to perform at least 65 tests to determine the value 
of a tree U(d, b,p). Thus the above result indicates that for test success probability 
different than £& the depth-first strategy is asymptotically optimal for deep uniform 
trees.

Tarsi [27] proved the optimality of the depth-first strategy for finite depth, ar­
bitrary probability and more general class of trees.
T heorem  6 [27] For any balanced and-or tree, any depth-first strategy is optimal.

In a sense, a depth-first strategy for an and-or tree is a special variant of the 
commonly used a-fi pruning search for evaluating min-max game trees (the descrip­
tion of the search can be found in [21], Section 5.4). In fact, the optimality of a 
depth-first strategy for balanced and-or trees allows to establish the asymptotic 
optimality of a-fi algorithm for continuous-valued min-max trees as the tree depth 
approaches infinity [27, 20].

Karp and Zhang [14] studied uniform trees U(d,b,p) for the case when p = 
£b. They showed that the cost of a depth-first strategy for such trees is likely to
concentrate around the expected cost ( 1̂ )  and that the standard deviation for 
the cost of the strategy is of the same order as the expected cost with respect to the 
depth d of a tree.

1 .3 .5  L in e a r  S tra te g ie s

Notice that the strategy Si from Figure 1.2 always performs the tests in the relative 
order: P , F, I,  K,  where a test is skipped if its value is not needed after performing 
previous tests. We call such strategies linear.
D efinition  8 A strategy S  for an and-or tree T  is linear if there is a total order 
< on the set of all tests from T  such that for any two different tests x  and y such 
that y < x, x  is not performed before y on any root-to-leaf path of S.

Linear strategies are of interest because they can be expressed very efficiently; 
it is not known whether optimal strategies can be expressed using space polynomial 
in the size of an and-or tree.

Depth-first strategies are linear. Greiner, Hayward and Molloy [12] showed that 
the best depth-first strategy for some trees may be arbitrarily worse then the best 
linear strategy; the ratio is as bad as the one given in Theorem 5. Moreover, the 
best linear strategy can be significantly worse than the optimal one:
T heorem  7 [12] There are unit-cost and-or trees with n tests for which the best 
linear strategy has the expected cost 0  times higher than the optimal res­
olution cost.
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1.3.6 Preconditioned Probabilistic Boolean Expressions

There is a more general framework in which expressions over probabilistic tests and 
their resolution have been studied by many researchers. In this framework, for each 
probabilistic test we are given not only non-negative cost and probability of success 
but also preconditions in terms of other tests that need to be performed and return 
required values before the given test can be queried.

Some such expressions can be regarded as and-or trees with costs and proba­
bilities associated with internal nodes as well as leaf nodes. For example, consider 
the situation in the recruiting process described in Section 1.1 when the fitness test, 
the IQ test and the knowledge test may be administrated only if some additional 
single screening test has been performed and passed by the candidate. In this case 
we may consider the node *2 of Figure 1.1 as a probabilistic test, and all tests from 
the subtree rooted at the node ii may be performed only after this screening test 
has succeeded.

By a preconditioned and-or directed acyclic graph we mean a directed acyclic 
graph with only one source, called the root node, and such that each node of the 
graph is a distinct, independent probabilistic test with a given non-negative cost 
and success probability. Each node that is not a sink is either an or-node or an 
and-node. Any or-node and and-node is associated with a “required value” (true  
or fa lse ) : its child tests can be performed only after the test itself has been queried 
and returned this required value. The value of a node that has out-degree zero is just 
the output of the test. If the output of the test that is an or-node (respectively and- 
node) is its required value, then the node evaluates to the logical o r (respectively 
and) of its child nodes’ values, otherwise the value of the node is the output of the 
test. The value of a preconditioned and-or DAG is the value of its root node.

In our example with the single screening test associated with the node *2 in the 
tree Tr in Figure 1.1, the required value of that node is tru e . If the screening test is 
passed by the candidate, the value of *2 is the logical or of the values of the nodes 
*3 and F. If the candidate fails this test, the value of «2 is fa lse .

A preconditioned and-or DAG that is a directed rooted tree is called a precon­
ditioned and-or tree.

The optimal strategy for a preconditioned DAG is defined in the same way as 
for a probabilistic Boolean expression, with the restriction that on any root-to-leaf 
path of a correct strategy, the precedence constraints of tests must be fulfilled.

Notice that a directed path in a preconditioned and-or DAG does not necessar­
ily alternate between or-nodes and and-nodes: we cannot collapse a preconditioned 
and-or DAG that contains an arc whose ends are both or or and. By a precon­
ditioned ot-D AG (respectively preconditioned o r -tree) we mean a preconditioned 
and-or DAG (respectively tree) with no and-node.

Positive Boolean expressions (described in Section 1.3.1) are special cases of 
preconditioned and-or DAGs, and and-or trees are special cases of preconditioned 
and-or trees, namely such that all tests associated with or-nodes and and-nodes 
have the cost zero, the required value tru e , and the probability of success one (thus 
one can “reach” any sink node on zero cost and with probability one). Thus the 
negative results we stated so far hold also for preconditioned and-or DAGs/trees. 
In particular, it is ATP-hard to find an optimal strategy for general preconditioned 
and-or DAGs, and the best depth-first or linear strategy may perform very badly
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on some preconditioned and-or trees.
Garey [6] and Simon and Kadane [25] studied preconditioned or-DAGs with 

required values f a ls e  for any or-node (that means that whenever any test succeeds, 
the entire expression evaluates to true). Garey [6] proposed an O (n2) algorithm 
to find an optimal strategy for trees of this type, where n  is the number of tests. 
Simon and Kadane [25] extended this approach to deal with directed acyclic graphs. 
The algorithm identifies so-called “maximal indivisible blocks”, that is sets of tests 
that are performed together by an optimal strategy.

This approach was also used by Smith [26], who provided a polynomial-time 
algorithm to find an optimal strategy for preconditioned or-trees with required 
value tru e  for any or-node. The algorithm is described in detail in Section 4.1.

Greiner [10] showed that finding an optimal strategy for a preconditioned or- 
DAG with required values tru e  for any or-node is TVP-complete, even if the prob­
ability of success of any or-node is one.

1.3.7 E stim ations of Success Probabilities

An important difficulty related to the success probabilities of tests arises in real 
life problems. Though the assumption that one knows the costs of the tests is a 
reasonable one, the exact probability distribution of tests is usually not known. The 
recruiting company from our example in Section 1.1 may know exactly how much 
it has to pay for each test, but the probabilities of success can only be estimated 
using data from previous recruiting. Thus the optimal strategy calculated for the 
estimated probabilities may not be optimal for the actual, unknown probability 
distribution.

Barnett [1] considered and-or trees with only two tests. For such trees he 
studied how the expected cost of a strategy is sensitive to the approximation of tests’ 
parameters. His work indicates that the increase in the cost caused by a suboptimal 
strategy, selected for the estimates instead of the exact values of the parameters, is 
bounded by the accuracy of these estimates. Thus reasonable approximations will 
lead to reasonably good strategies.

Greiner and Orponen [11] addressed the problem of finding sufficiently good 
probability estimations for tests of preconditioned and-or trees within the probably 
approximately correct (PAC) model [28]. If the success probabilities of tests are to 
be estimated using the outputs of the tests for several trials, the authors showed how 
many trials are required to get such estimates that the optimal strategy calculated 
for them is with high confidence approximately optimal for actual probability values.

First let us concentrate on and-or trees. Assume that a tree contains n  tests 
and the total cost of all tests is C. If for each test the success probability has been
estimated using 2 In results of performing the test, then the optimal
strategy for these estimations has with probability 1 — 5 the expected cost within e 
of the expected cost of the optimal strategy for the actual probability distribution. 
This required number of results can be collected while performing some (suboptimal) 
strategies; since we always can use a strategy starting with any given test, we are 
able to obtain the required number of results in time polynomial in n, C, \  and y.

The situation is more complicated for preconditioned and-or trees, because some 
tests can only be performed if other tests have already returned required values, so
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no strategy can assure performing some tests. Authors proposed for such trees a 
polynomial-time algorithm to find estimations of tests’ probabilities accurate enough 
so that the resulting best strategy is probably approximately optimal.

1.3.8 N on-Stochastic And-Or Trees

And-or tree resolution has also been studied in frameworks in which values of tests 
are not probabilistic variables. Since each deterministic strategy has to perform in 
the worst case all tests from the tree, so the simple cost of a strategy under the 
worst setting of tests is of no use as a performance measure.

A purely non-stochastic model is proposed by Charikar et al. [2]. For any setting 
of tests of a given and-or tree there exists the “proof” of the value of the tree, that 
is a set of tests such that the partial setting restricted to this set decides about the 
value of the tree. The cost of such a proof is the sum of costs of the tests from the 
set. The performance ratio of a strategy under a given setting is the ratio of the 
cost of the strategy under this setting to the minimum cost of a proof of the tree’s 
value under this setting. For example, consider the and-or tree shown in Figure 
1.1. The value of the tree for the setting a =  (F —, I+ , P —,K —) is fa ls e . The sets 
{P} and {F ,K }  are proofs of this value. The minimum cost proof is the set {P} 
with the cost equal to 1. The cost of the strategy 52, shown in Figure 1.2, under 
setting a  is equal to 3. Thus the performance ratio of Si under setting a  is equal 
to y — 3. The competitive ratio of a strategy is the maximum of the performance 
ratio over all settings of tests. The optimal strategy for an and-or tree is the one 
that minimizes the competitive ratio.

The authors provide an efficient algorithm to find an optimal strategy for and-or 
trees. The algorithm relies on discovered functions (c) and f f  (c) which are lower 
bounds on the cost that any strategy for an and-or tree T  has to pay in the worst 
case in order to find a proof with cost c of the value tru e  and fa ls e  respectively. 
These lower bound functions are used by the algorithm to balance for each internal 
node the cost spent while performing the tests from each of its child subtrees. The 
algorithm runs in time that is polynomial in the number of the nodes in the tree 
and in the sum of the costs of all tests.

In the randomized model and-or trees are treated as fixed, non-stochastic struc­
tures, but randomness is introduced into strategies.

A randomized strategy is a strategy that is allowed to perform a random ex­
periment and use the output of the experiment to decide about a test to perform. 
Formally, it is specified by a set of deterministic strategies and a probability dis­
tribution on this set. For a given setting of tests of an and-or tree, the cost of a 
randomized strategy is the expected cost of using the strategy under this setting 
(over all deterministic strategies). The worst case cost of a randomized strategy is 
the maximum cost of the strategy over all settings of tests. A correct randomized 
strategy is optimal if it has the lowest worst case cost over all correct randomized 
strategies for a given and-or tree.

In randomized depth-first strategy the deterministic strategies with non-zero 
probability are all depth-first: to evaluate a (sub)tree T  the strategy evaluates
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immediate subtrees of T  until the value of T  is determined, and the next subtree to 
evaluate is selected at random.

Saks and Wigderson [23] showed that the randomized depth-first strategy is 
optimal for uniform and-or trees. For uniform binary and-or trees with n  tests this 
strategy has the worst case cost 0  (n0 753 - ); recall that the worst case cost of any 
deterministic strategy is n.

It has been conjectured that this is the largest gap between the worst case cost 
of a deterministic and a randomized strategy for a unit-cost and-or tree. Heiman 
and Wigderson [13] proved that the worst case cost of any randomized strategy for 
any unit-cost and-or tree with n tests is at least n0-51.

The randomized strategies mentioned above are always correct (randomized al­
gorithms that never err are called Las Vegas algorithms). We can also consider 
Monte Carlo strategies (Monte Carlo algorithms are randomized algorithms that 
may err with some non-zero probability). By using the best Monte Carlo strategy 
instead of a Las Vegas strategy one can never increase the worst case cost. Santha
[24] proved that for any unit-cost Boolean expression one can transform a Las Vegas 
strategy into a Monte Carlo strategy with a slightly lower (by a factor linear in the 
error probability) worst case cost, however, for unit-cost and-or trees Monte Carlo 
strategies cannot achieve any better improvement than this linear one.
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Chapter 2

Optimal Order of Sibling Tests

2.1 Siblings and Twins Lemma

In the search for an optimal strategy one is led to the problem of efficiently selecting 
the first test to perform. A polynomial-time algorithm to find the first test of an 
optimal strategy suffices to construct a polynomial-time algorithm to find an optimal 
strategy: one just needs to perform the first test, reduce the tree accordingly to its 
output and recurse. A simple approach to solving PAOTR is to try each test as 
the first one by recursive calculation of the best strategy starting with each test 
and then selecting the one with the minimum expected cost. For an and-or tree 
with n tests the running time of such an algorithm is in 0(n n). In the search for 
properties that lead to efficient first test selection, we investigated local structures of 
and-or trees. This approach led us to discovering an optimal a-priori relative order
of sibling test. The order yields a dynamic programming algorithm for finding an
optimal strategy for and-or trees which we describe in Section 2.2. We also showed 
that some siblings tests can be performed together by an optimal strategy. We now 
present these results.

D efinition  9 For any test x of an and-or tree define the R -ratio  as:

(2.1)

where c (x) is the cost of x and pr (x) is the probability that x resolves its parent 
node, namely

r / \ _  J p{x) if the parent node of x is or,
^ [ p{x) if the parent node of x is and.

Notice that the R-ratio is the same ratio that defines the best order of sibling 
tests in a depth one and-or tree (Theorem 2).

D efinition  10 Tests x\ and X2 are R-equivalent if the parent node of x\ and X2 

is the same and R (x i) = R (x 2 ). An R -class is an equivalence class with respect 
to the relation of being R-equivalent.
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Figure 2.1: a) Sibling tests x i, X2  and x% have R-ratio 0.4. The set W  — {®i, X2 , £3} 
is an R-class. b) Part of a strategy contiguous on W  performing the tests from W .

D efinition 11 For an R-class W  a strategy S  is contiguous on W  if on any root- 
to-leaf path of S, whenever a test from W  is performed, no test from outside W  
is performed until a test from W  resolves its parent node or all tests from W  are 
performed.

Figure 2.1 shows an example of an R-class and illustrates the way of performing 
tests from one R-class by a strategy that is contiguous on this class.

O bservation  8 Let tests x  and y he siblings in an and-or tree T . Let Sxy be a 
correct nonredundant strategy for T. I f  the parent node of x  and y is o r (respec­
tively and,) and Sxy = x  : +  (<Si) ] - ( y :  + (S i) ; -  (S2 ) ) (respectively Sxy = x  : + (y :

+  (£2); — (<51)); — (Si),) for some substrategies S i, S 2 , and the strategy Syx is ob­
tained from Sxy by switching the labels x and y, then Syx is nonredundant, correct 
for T, and

i) if R  (y) ^  R  (x) then Syx has lower expected cost than Sxy,
ii) if  R (y) — R (x) then Syx has the same expected cost as Sxy.

Proof: The correctness and nonredundancy of Syx follows from the correctness and 
nonredundancy of Sxy. We will prove the relations (i) and (ii) assuming that the 
parent node of x  and y is an or-node. The proof for the other case is symmetric. 
For the expected cost of Sxy we have:

C  (Sxy) — c (x) +  p (x) c (y )+ p  (x) p (y) C (S2) +  [1 -  p (x) p (y)] C (S i) .

Using a similar expression for C (Syx) we obtain

C (Syx) -  C (Sxy) — p (x) c (y) - p ( y ) c  (re).

The observation follows immediately from the definition of R(x) and R(y). □

The following observation follows from Observation 8ii).

O bservation  9 Let W  be an R-class in an and-or tree T  and let S  be a correct, 
nonredundant strategy for T  that is contiguous on W . Then any strategy obtain 
from S  by changing order of performing tests from W  has the same expected cost as 
S  has.
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The following theorem specifies two conditions satisfied by an optimal strategy. 
The first condition deals with the best order of performing sibling tests. The second 
condition specifies the optimal way of performing sibling tests that axe R-equivalent.

T heorem  10 For any and-or tree there is an optimal strategy S such that both of 
the following conditions are satisfied:

i) (Siblings Lemma) for any sibling tests x and y such that R ( y ) > R (x), x 
is not performed before y on any root-to-leaf path of S,

ii) (T w ins Lem m a) for any R-class W , S  is contiguous on W .

Proof: We prove Theorem 10 by induction on the number of tests in an and-or tree. 
The theorem holds for the base case of a tree with only one test. Now assume that 
it holds for any and-or tree that has fewer tests than the tree T  has.

Let S  be an optimal strategy for T. We may assume that it is nonredundant and 
that all substrategies of S  are optimal for the corresponding reduced trees (because 
if it is not, we can replace it by such an optimal strategy). Let x be the first test 
performed by S. Assume that a; is a child of an or-node (the proof for the other 
case is symmetric). Let S+x, S -x be the substrategies of S  that are followed when 
respectively x is tru e , x is fa lse . By induction, we may assume that S+x and S -x 
are contiguous on any R-class and preserve “the right order” of sibling tests (that 
is never perform a sibling test with lower R-ratio before its sibling test with higher 
R-ratio) of the corresponding reduced trees.

Now assume that S  does not fulfill the conditions of the theorem. That means 
that x has at least one sibling test with the same or higher R-ratio. We will show 
that in this case there is another optimal strategy that satisfies the conditions of the 
theorem. To construct such a strategy we will use the technique of changing order 
of parts of the original strategy.

Let Y  be the set of all and only sibling tests of x with R-ratio higher than or 
equal to R(x). Let y  be the test with minimum R-ratio among all tests from Y.  
By Observation 9 the order of performing tests from one R-class is arbitrary in 
a strategy that is contiguous on this class, thus we may assume that y is always 
performed as the last test from Y  by the substrategy S - x.

Now let M  > 1 be the number of nodes of S - x labeled by test y, let Syi, Sy2, . . . ,  
SVM be the subtrees of S - x rooted at nodes labeled by y, and for k = 1 ,2, . . . ,  M, 
let S+Vk, S - Vk be the substrategies of Syk followed in the case when respectively y is 
tru e , y is fa ls e . Also let S r denote the (possibly empty) part of S - x that contains 
all nodes outside Syi, Sy2, . . . ,  SVM. See Figure 2.2a.

Consider the strategy S  (x ->• y) =  S - x (Syi < SXl, . . . ,  SVM < SXM), where for 
k = 1 ,2 ,. . . ,  M , SXk =  x  : +  {S+Vk) ; -  {SVk), shown in Figure 2.2c. In this strategy 
we query x  just before y. This strategy is obviously nonredundant. To show that it 
is also correct, we need to check that for each leaf node L  of S  (x —»• y), the label of 
L  (tru e  or fa ls e )  is the correct value of T  for all setting of tests that correspond 
to the path Pl from the root of S  (x -> y) to L. This obviously holds if Pl contains 
a node labeled by test y , since in S  there is the root-to-leaf path that differs from 
Pl only in the order of performing tests. Knowing that, we see that the label of 
L  is correct if Pl contains node labeled by x  and the arc labeled tru e  that leaves 
this node (because after x  succeeds, we do exactly the same that we do if x  fails
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Figure 2.2: Illustration for the proof of Theorem 10. For any node the up (re­
spectively down) arc denotes the tru e  (respectively fa lse )  arc. (a) The optimal 
strategy S  with substrategies S+x and S - x. (b) The strategy S'_x that may replace 
the substrategy S - x. (c) The optimal strategy S  (x -» y). (d) The optimal strategy 
S* that fulfills the conditions of Theorem 10.

but its sibling test y succeeds). The only remaining case is when neither x  nor y is 
performed on Pl- Let o l  be any setting of tests that correspond to P l • In S  we 
follow the path identical to P l after x fails. Thus for any o l  in which x is f a ls e  
the label of the leaf L  is correct. To see that it is also correct if x  is tru e , consider 
any two setting of tests o\ and cr2, that may differ only in the values of x  and y, 
assume that in o\ x  is tru e , in 0 2  x  is fa lse , y is tru e , and observe that the value 
of the tree T  is the same for o\ and <72- Thus the correctness of the label of the 
leaf node of Pl  in th is  case follow s from  th e fact th a t in S  we do not te st y  on  th e  
corresponding root-to-leaf path.

Now let S* be the strategy obtained by switching the labels x  and y of the 
neighbour nodes of the strategy S  (x —► y). See Figure 2.2d.

If the R-class containing x  includes also other tests, then it has to contain y , so 
S* is contiguous on this class. And S* is contiguous on any R-class that does not 
include x\ for the R-class including y (if R(x) /  R{y)) it follows from the fact that 
y is performed as the last test from Y . Also, since x  is tested just after y, when y
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is false, S* preserves the right order of sibling tests of T.
Observation 8 implies that S* is correct and does not have higher expected cost 

than S (x -> y). Thus to complete the proof it is enough to show that S  (x —► y) is 
optimal.

Let C (Sr) denote the expected cost of performing Sr, that is the sum of costs 
of tests labeling nodes of Sr, factored by the probabilities of paths from the root of 
S -x  to a given node (if Sr is empty, then C (Sr) =  0). For any k, let pyk be the 
probability of the path from the root of S - x to the labeled by y root node of 

Then we can express the expected costs of S  in the following way:

C (S) = c (x) + p (x )C  (S+x) + p (x )C  (S -x) , (2.2)

where
M

C (S-x) = C (S r) + Y ,  Pyk [c (y) + p (y )C  (S+yk )+ p (y )C  (S yk)], (2.3)
fc=i

while for the expected cost of S  (x -> y) we have:

M  ,

C ( S ( x - ¥ y ) )  =  C (5 r) +  5 N p ta [c (* )+ p (® )C (S + w ) +
k=1 k

+P(x) [c(y) + p (y )C  (S+Vk)+ p (y )C  (S -Vk)]] J . (2.4)

Now assume, by way of contradiction, that S  (x -4 y) has the higher expected 
cost than S. Then using the notation D = C (Sr) +  J^^f-iPykC (S+yk) -  C (S+x) 
and P r =  1 -  YJk=\Pyki we obtain

p(x) D > P rc (a;).

Notice that Yjk=i Pyk is the total probability of reaching any node labeled by y after
entering the strategy S~x, so PT > 0. That implies that D > 0, thus

> £ •  <2-5>c(x) D

We will show that it follows from (2.5) that we can replace the substrategy S - x 
of the original strategy by a substrategy with strictly lower expected cost, which 
contradicts the optimality of S - x.

Consider the strategy S'_x = y : +  (S+x) ; -  (S -x (Syi < S- yi, . . . ,  SVM < S - yu )) 
shown in Figure 2.2b. Observe that S'_x is nonredundant and correct for the reduced 
tree obtained from T  when x  is false. We have the following expression for the 
expected cost of S'_x\

C  (s - x ) =  c (y) +  P (v )C  (S+x) +  P (y)
M

C (Sr) +  E P > .C (S- » )
fc=l

(2 .6 )

Using the same notation as previously we obtain

C (S -x) -  C (S'_x) = p (y )D  -  P rc (y) . (2.7)
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But then from (2.5) and the fact that

c(y) c (x ) ’ 

it follows that C (S -x) -  C (S'_x) > 0, contradiction

(2 .8)

□

2.2 Dynam ic Programming Algorithm  for PAO TR

The ordering of sibling-tests described by the Siblings Lemma allows us to construct 
a dynamic programing algorithm for PAOTR that runs in time 0(d?nd), where n 
is the number of leaves (tests) and d is the number of leaf-parents (that is nodes 
that are parents of tests) in the input and-or tree. Thus the running time of the 
algorithm is polynomial if the number of leaf-parents is bounded.

As shown in Section 1.1, for any and-or tree there is an equivalent one whose all 
internal nodes have out-degree at least two. For such trees the number of internal 
nodes is of the same order as the number of leaf-parents, as we show in the following 
observation.

O bservation  11 Let T  be an and-or tree whose all internal nodes have out-degree 
at least two. Let d be the number of leaf-parents in T  and let N  be the number of 
all internal nodes in T. Then N  > d >  y .

Proof: Let m be the number of all arcs leaving internal nodes that are not leaf- 
parents. Since out-degree of each internal node is at least 2, so m > 2 (IV -  d). Since 
each such arc enters a distinct internal node, different than the root of the tree, so 
m < N . It follows that d > y .  □

D efinition  12 A sibling-class is a non-empty set of all leaf children of one inter­
nal node of an and-or tree.

For example the and-or tree Tj shown in Figure 2.3a contains three sibling-classes: 
L\ =  {01, 02}) -̂ 2 =  { h i h i h }  and L3 =  {ci,C2}. The number of sibling-classes of 
an and-or tree is the number of leaf-parents in the tree. For an and-or tree T  let 
d be the number of leaf-parents in T  and Li, L2 , • • •, Ai be the sibling-classes of T. 
Assume that S is an optimal strategy for T  that fulfills the conditions of Theorem 
10. While evaluating T  using S, we gradually reduce our and-or tree (namely after 
performing any test we obtain a new reduced and-or tree to evaluate) until we 
obtain the empty tree, at which point the evaluation of T  is completed. Consider 
any reduced and-or tree I  that we encounter while using S. Assume that I  still 
contains mi tests from the sibling-class Li. If m\ <  \Li\, then the remaining tests 
from Li were already performed. Since we always query tests with higher R-ratio 
before sibling tests with lower R-ratio, the mi tests still present in I  must have the 
lowest R-ratios among all tests from L*.

That means that for any d-tuplet (mi, m2,..., vrid), 0 < m, < |Lj|, there is only 
one reduced tree which we may encounter that has exactly m* tests from the set Li, 
for any i: this tree contains the mi tests with the lowest R-ratios among all tests 
from L i. In this way we may identify a reduced and-or tree with such a d-tuplet.
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a) Td b)

L, U

Figure 2.3: a) An and-or tree Td with sibling classes L i,L 2, £ 3. For each test the 
cost, success probability and R-ratio values are denoted respectively by c, p and R. 
b) The reduced tree I  =  (0,2,1) obtained from Td and reduced trees obtained from 
I  when 62 succeeds and when 62 fails.

For example consider the tree Td shown in Figure 2.3a. Td is represented by the 
3-tuplet (2,3,2) while the 3-tuplet (0,2,1) corresponds to the reduced tree I  shown 
in Figure 2.3b.

Thus there are (|Li| + 1) x (|L2| +  1) x . . .  x (\Ld\ + 1) different reduced trees to 
consider, including the original tree. This number is in O (nd^ where n =  I Ail 
is the number of tests (leaf nodes) in T.

Notice also that for any tree we need consider only d tests in order to find the 
first test to perform, namely a test with maximum R-ratio from each of d sibling- 
classes.

Assume that we are given a structure of internal nodes of an and-or tree T such 
that for each internal node we know its parent node as well as its internal child 
nodes, and each leaf-parent is associated with its sibling-class. Assume also that 
we are given a reduced tree I  obtained from T  encoded by a d-tuplet. We shall 
now discuss how for some sibling class L  one can calculate the d-tuplets l \  and l£  
corresponding to the reduced trees obtained from I  when the test with maximum 
R-ratio from L  in I  respectively succeeds and fails.

Let xl be the test with maximum R-ratio from L  in I. If the sum of the numbers 
of tests in all sibling-classes of I  is one, then xl is the only test in the tree and l£  
as well as l£  is the empty tree.

Otherwise we find the parent node of xl in collapsed I. To do this we firstly 
need to find the last internal node v on the path from the root of T  to the parent of 
xl such that the sum of the tests’ number in the sibling-classes inside the subtree 
rooted at v is greater than one.

The parent node of xl is the last internal node w on the path from the root of 
T  to v such that w has the same label (or/and) as v and w is the root of T, or w is
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a child node of the root of T, or the subtree rooted at the parent node of w contains 
at least one sibling-class with non-zero number of tests outside the subtree rooted 
at w.

Given the parent node w of x i  in I  we can easily modify the d-tuplet I  in order 
to obtain or l£ . If xl resolves its parent w, the required modification is setting 
to zero the number of tests for each sibling-class inside the subtree rooted at w. 
Otherwise, the modification is done by decrementing the number of tests from the 
sibling-class L  by one.

Notice that the operation of finding the parent w as well as setting the tests’ 
numbers of the corresponding sibling-classes to zero deal only with internal nodes 
and sibling-classes (not with particular tests) and can be performed in time linear 
in the number of internal nodes, thus also linear in d.

Consider as an example the reduced tree I  =  (0,2,1) obtained from the tree Td 
from Figure 2.3a. In I  the test x l 2 with maximum R-ratio in L 2  is 62- We want 
to find I~l2 and Using the algorithm described above we first find the node v 
which is 14. Then we find the parent node w which is i\. The parent node i\ is or. 
If x l 2 succeeds it resolves its parent node thus we need to set to 0 the number of 
tests in all sibling-classes inside the subtree rooted at i\. Thus l£  = (0,0,0). If x l 2 

fails, we just need to decrement the number of tests in L 2  by one: n ,  =  (o, 1, i). 
See Figure 2.3b.

We shall now describe Dynamic Programing Algorithm (DPA) for PAOTR. 
While performing the algorithm we enumerate all possible (|Li| +  1 )x ( |L 2 |-I-1 )x  
. . .  x (IL^I +  1) reduced trees and identify them with d-tuplets. In other words 
we identify each reduced tree with one entry in a d-dimensional matrix of the size 
(|Zq| +  1) x (|L2| +  1) X . . .  x (\Ld\ +  1). The tree ( |Z q |, \L2 \ \ L d\) is the input 
tree, containing all the tests, the tree (0, 0, . . . ,  0) is the empty tree indicating that 
nothing remains to evaluate.

For each tree I  we store the following attributes:
Cost[J]: the expected cost of the optimal strategy for I,
F irstT est[/]: a first test performed by the optimal strategy for I,
True Arc [J]: the pointer to the reduced tree obtained if the first test succeeds,
FalseArc[/j: the pointer to the reduced tree obtained if the first test fails.
Once these attributes are stored for each reduced tree, an optimal strategy for the 

input tree T  is encoded. The strategy starts with performing the test F irstT est[T ] 
and then depending on the value of this test either TrueArc [T] or FalseArc[T] is 
followed; the tree pointed by it is the reduced tree that needs to be evaluated at this 
point. The procedure is carried on until the empty tree is reached: if it is reached 
by a TrueArc, the value of the tree is tru e , otherwise its value is fa lse .

The algorithm deals with reduced trees in the order of the number of tests, start­
ing with the empty tree.

Dynamic Programing Algorithm for PAOTR is presented in Figure 2.4. The 
input and-or tree is strictly alternating and such that each internal node has out- 
degree at least two. The tree is encoded by the set of its internal nodes, such that 
for each internal node we know its parent node and all internal nodes that are its 
children. Moreover each leaf-parent is associated with the array of its leaf children.
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DPA (and-or t r e e  T)
Output: optim al s tra te g y  fo r  T

(1) For each sibling-class L of T
(2) order tests of L by ratio R
(3) End For
(4) For each tree I
(5) Cost[J]:=oo
(6) C alcu la te  the  number M  of t e s t s  in  I
(7) Add I  to the list of trees with M  tests
(8) End For
(9) Cost [empty tree]: =0
(10) FirstTest[empty tree] :=NIL
(11) For M = 1 to # of tests in T
(12) For each tree I  with M tests
(13) For each sibling-class L of T  that is not empty in I
(14) a:L:=test from L in I  with maximum R
(15) I l ' =tree obtained from I  if x i  succeeds
(16) I l '=tree obtained from I if x i  fails
(17) C c (x l ) + p (x l ) xCost + p (x l ) 'x Cost [/£■]
(18) If C <Cost[J]
(19) Cost[J] := C
(20) FirstTest[/] := x l

(21) TrueArc[/] is pointed to 1^
(22) FalseArc[J] is pointed to l £
(23) End If
(24) End For
(25) End For
(26) End For

Figure 2.4: Dynamic Programming Algorithm (DPA) for PAOTR.

T heorem  12 DPA produces an optimal strategy for and-or trees. The time com­
plexity of the algorithm is in O and the space complexity is in O (j1̂ )  where
n is the total number of tests (leaf nodes) of a tree and d is the number of leaf-parents 
in a tree.

Proof: The correctness of the algorithm follows from Theorem 10, as discussed 
above. Since as shown above the total number of reduced trees is in O and we 
store a constant amount of data for each reduced tree, the space complexity is in 
0 (n d).

Lines (l)-(3) order tests inside each sibling class, so the time required to perform 
them is in O(nlogn). Line (6) takes time 0(d) and is called once for each reduced
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reduced tree I Cost[/] F irstT est[I] TrueArc[/] 
points to

FalseArc[J]
points to

(0, 0, 0) 0 NIL NIL NIL
(0, 0, 1) 1 c2 (0, 0, 0) (0, 0, 0)
(0, 1, 0) 3 bz (0, 0, 0) (0, 0, 0)
(1, 0, 0) 2 02 (0, 0, 0) (0, 0, 0)
(0, 0, 2) 1.3 Cl (0, 0, 0) (0, 0, 1)
(0, 1, 1) 2.5 c2 (0, 0, 0) (0, 1, 0)
(0, 2, 0) 2.6 b2 (0, 0, 0) (0, 1, 0)
(1, 0, 1) 2 c2 (0, 0, 0) (1, 0, 0)
(1, 1, 0) 3.2 a2 (0, 1, 0) (0, 0, 0)
(2,0, 0) 2 Ol (0, 0, 0) (1, 0, 0)

Table 2.1: Parameters of reduced trees obtained from the and-or tree Td from Figure 
2.3 with less than three tests.

tree thus time required to perform lines (4)-(8) is in 0(dnd).
We will show that time required by lines (ll)-(26) is in 0(d?nd) which ends the 

proof. Loop (13) has d iterations and is called once for each of O (nd ĵ reduced trees. 
To complete the proof we need to show that time required by the operations inside 
this loop is in 0(d). Since each parent node of a sibling-class is associated with an 
array of leaf children, ordered by R-ratio, it takes constant time to find xl (line 14). 
As we have shown before, we can calculate or in time 0(d) (lines (15) and
(16)). Also, since we identify trees with d-tuplets, we may find data for trees 
and (line 17) in 0(d) time, as elements of a d-dimensional matrix. □

The corollary below follows immediately from the previous theorem.

Corollary 13 Probabilistic and-or tree resolution for and-or trees with a bounded 
number of internal nodes is in P.

As an example consider again the and-or tree Td shown in Figure 2.3a. Assume 
that we already processed all reduced trees with less than three tests. The calculated 
parameters for each of these trees is given in Table 2.1. We now want to calculate 
the optimal strategy for the reduced tree I  = (0,2,1) with three tests; see Figure 
2.3b. The sibling-class L\ is empty in I. Now consider the sibling-class L 2. The 
test x i 2 with maximum R  ratio from L 2  in I  is the test 62 and I ^ 2 =  (0,0,0), 
t e 2 =  (0,1,1). Thus we now have

C  = c(h)  + p ( b 2) • Cost [/+] +  p(b2) • Cost [l£2] =
=  2 +  0.8 • 0 +  0.2 • 2.5 =  2.5. (2.9)

Thus we set Cost[J] to 2.5 and FirstTest[J] to b2, we point TrueArc [J] to (0,0,0) 
and FalseArc[I] to (0,1,1). Now we proceed to the sibling-class L 3 . We have 
x l 3 = c2 and l £ 3 =  (0,0,0), l£ s = (0,2,0). Thus

C =  c(c2) + p(c2) • Cost [ijJ  + p ( c 2) • Cost [jfJ  =
=  1 +  0.5 • 0 +  0.5 • 2.6 =  2.3. (2.10)
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Since this cost is lower than current Cost[i], we set Cost [7] to 2.3 and FirstTest[7] 
to C2, we point TrueArc [7] to (0,0,0) and FalseArc[7] to (0,2,0). These parameters, 
together with the parameters from Table 2.1, encode the optimal strategy for the 
reduced tree 7. This strategy is presented as a binary tree in Figure 2.5.

Figure 2.5: An optimal strategy for the tree 7 shown in Figure 2.3.

2.3 Simplifying And-Or Trees Using the Twins Lemma

The Twins Lemma provides a way of simplifying an and-or tree. Since all tests from 
an R-class are performed together by an optimal strategy, it only matters whether 
any of them resolves their common parent node. Thus we may replace each R- 
class containing more than one test by a single meta-test with an effective cost and 
probability corresponding to performing all tests from the R-class. By Observation 
9 the order of performing the tests from the R-class is arbitrary.

Simple calculations yield the parameters of such a meta-test.

Observation 14 Let W  be an R-class and let R be the R-ratio of the tests from 
W . In searching for an optimal strategy we can replace W by a single meta-test w 
with the following parameters:

The following observation follows immediately from the previous one.

Observation 15 The meta-test w replacing an R-class W  has the same R-ratio as 
tests from W.

The simplification described above allows us to prove that DFA produces an 
optimal strategy for depth three parameter-uniform and-or trees. Recall that an 
and-or tree is parameter-uniform if all tests have unit cost and the same success 
probability.

Observation 16 Let T  be a depth three and-or tree such that for each internal 
node v of depth two, all tests that are child nodes of v have the same R-ratio. Then 
DFA produces an optimal strategy for T.

P
1 — n  x€\vP(x) if tests from W have an or-parent, 
Uxew P (x) if tests from W have an and -parent,

if R > 0 and tests from W  have an or -parent, (2.12) 
if R >  0 and tests from W have an and -parent.
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Figure 2.6: A parameter-uniform and-or tree Tu. Each test has cost one and prob­
ability of success 0.2. W  and V  denote depth one subtrees.

Figure 2.7: The unique optimal strategy Sopt for the and-or tree Tu where nodes 
labeled by W  and V  denote evaluation of the corresponding subtrees.

Proof: By Theorem 3 DFA produces a strategy with minimum expected cost among 
all depth-first strategies. Thus it suffices to show that some optimal strategy for T  
is depth-first.

Let T ' be the simplified tree obtained from T  by replacing each R-class by a 
single meta-test. Observe that in T ' each internal node with depth two has only one 
child: a single meta-test. Thus T ' collapses to depth two. By Theorem 4 for any 
depth two and-or tree there is an optimal depth-first strategy. If we evaluate entire 
replaced subtrees in place of meta-tests, the strategy is depth-first for T  and by the 
Twins Lemma is optimal for T. □

The following theorem follows immediately from Observation 16.

T heorem  17 DFA produces an optimal strategy for depth three parameter-uniform 
and-or trees.

However, this property does not always hold for deeper parameter-uniform and-or 
trees; there are depth 4 parameter-uniform and-or trees for which the best depth- 
first strategy is not optimal. For example the strategy Sopt in Figure 2.7 is the 
unique optimal strategy for Tu in Figure 2.6, but it is not depth-first.

S op t
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2.4 Param eter-Uniform Ladders

In the previous section we have shown that PAOTR for parameter-uniform depth 
three and-or trees can be solved with DFA. By Theorem 6 we also know that an 
optimal strategy can be found efficiently for any parameter-uniform tree that is 
balanced.

In this section we present another particular subclass of parameter-uniform 
and-or trees for which the optimal strategy has a very simple description. PAOTR 
for this type of trees is in P.

First let us state two observations; the first of these is an unpublished result due 
to Greiner, Hayward, and Molloy.

Observation 18 Let T  be an and-or tree and let x  be a child test of the root of T. 
I f  a strategy S  after performing the first test, performs x  regardless of the value of 
the first test, then there is a strategy starting with x  whose expected cost is less than 
or equal to the expected cost of S.

Proof: Let y be the first test performed by S. Assume that T  is or-rooted; 
the proof for the other case is symmetric. Let 5+ be the substrategy followed 
when y is true and x  is false, let S -  be the substrategy followed when y is 
false and x  false (if x  is true, the value of T  is true). The strategy S' = 
x  : +(true); -  (y : +  (5+); -  (S'-)) is nonredundant, correct for T, and

C(S') -  C(S) =  c{x) + p(x)c(y) +p(x)p(y)C(S+) + p(x)p(y)C (S-) +
~  [c(y) + c(x) + p(y)p(x)C(S+) + p(y)p(x)C(S-)\ =

= —p(x)c(y) < 0. (2.13)

□
Observation 19 Let T  be an and-or tree whose root has a test child x. I f  the 
root of T  is or (respectively and) and for any test y in T  p(y)/c(y) < p(x)/c(x) 
(respectively p(y)/c(y) < p(x)/c(x)), then there is an optimal strategy for T  that 
starts with performing x.

Proof: By induction on the number of the tests in T. The observation holds if 
T  has only one test. Now assume that the observation holds for any tree which has 
fewer tests than T  has.

Let S  be an optimal strategy for T  and assume that it starts with performing a 
test y different than x. By the Siblings Lemma and Twins Lemma we may assume

Figure 2.8: An example of an and-or ladder. 
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that S  does not perform any sibling test of x  before x, so y is not a child of the root 
of T. Since we may assume that each internal node of T  has out-degree at least two, 
that means that the reduced trees obtained from T  when y is tru e  and y is f a ls e  
both contain x  and have fewer tests than T. So by the inductive assumption, after 
testing y, S  performs x, regardless of the value of y. But a: is a child of the root of 
T, so by Observation 18 there is a strategy for T  that has not higher expected cost 
than S  and starts with performing x. □

The above observation generalizes an unpublished result of Omid Madani.
An and-or ladder is an and-or tree such that each internal node is a parent of 

at most one internal node. Figure 2.8 shows an example of an and-or ladder. From 
the Observation 19 follows immediately that if all tests of an and-or ladder are 
identical, there is a very simple way of finding an optimal strategy which we now 
formalize.

O bservation  20 For any parameter-uniform and-or ladder T  there is an optimal 
linear strategy S  that performs tests “from the top to the bottom”, that is that per­
forms first, in an arbitrary order, tests of depth one, and as long as the value of T  
is not determined, after performing in an arbitrary order tests of depth k, performs 
in an arbitrary order tests of depth k + 1.

2.5 R eduction to  Unit-C ost PAOTR

In Section 2.3 we explained how an and-or tree can be simplified by replacing an 
R-class by a single metartest. On the other hand, for any test with cost greater than 
one, we may consider replacing the test with a depth one subtree having identical 
(same probability) unit-cost tests. Notice that if we could find for each test from 
the original tree an appropriate replacement collection of identical unit cost tests 
such that, for each original test, the replacement subtree probability and evaluation 
cost would equal the original leaf probability and cost, then by the Twins Lemma 
an optimal strategy for the new unit-cost tree would have the same expected cost 
as an optimal strategy for the original tree. Such a replacement subtree is shown 
schematically on Figure 2.9.

As we shall show, while it is not always possible to find a unit-cost tree that 
yields such an exact correspondence, by keeping sufficient precision it is possible 
to obtain by such replacements a unit-cost tree whose optimal resolution cost is 
arbitrarily close to the optimal resolution cost of the original tree. We now describe 
such a reduction in detail.

We start by considering depth one subtrees with identical leaf nodes in a unit- 
cost tree. Let u be the chosen unit of cost, that is the cost of each test in the 
tree. Let A be a depth one subtree with k identical leaf nodes and let p, p  be 
the respective success, failure probability of each test from A. We will denote the 
optimal resolution cost of A  by C(A), the probability that A  evaluates to tru e  by 
p(A), and the probability that A  evaluates to f a ls e  by p{A).

If A  is and-rooted then

p ( A ) = p k, (2.14)
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Figure 2.9: a) A test x  in an and-or tree, b) A subtree A  replacing the test x. 
There is k  tests in A, each with the same cost u and the same success probability p.

(2.15)

If A  is or-rooted then

p(A) = pk (2.16)

(2.17)C(A) = |
uk if p =  0 .

Now assume that we want to use the subtree A  to replace a test x  with the cost 
cx and the success probability px. The cost of x expressed in units u is cx/u . We

there is no need for replacing it).
We would like to obtain the exact correspondence between the test x  and the 

subtree A , so we require that p(A) =  px and C(A) =  cx. Observe, that it is not 
possible if px =  0 and A  is and-rooted because we would need p(A) =  0, which 
requires p  =  0, but then we have C(A) = u (meaning that it is always enough to 
perform just one test to evaluate A  to fa lse ) . Similarly, it is impossible to replace 
x  by an or-rooted subtree i ip x =  1.

Simple calculations lead to the following expressions for k and p, yielding p(A) =  
px and C(A) = cx.

For an and-rooted subtree A

require that cx/u  > 1. which means that x  is not just a unit-cost test (in which case

(2.18)

(2.19)

whereas for an or-rooted subtree A

(2 .20)

(2 .21)
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Before we address the difficulties related to the above conditions, let us investi­
gate the dependency of the number k on px and cx/u.

As we shall show at the end of this section in Lemma 23, for an and-rooted 
subtree k monotonically decreases from oo to cx/u  as px increases from 0 to 1. By 
symmetry, as px increases from 0 to 1, A; for an or-rooted subtree increases from 
cx/u  to oo, and the value of k for px =  1/2 is the same for both kinds of subtrees. 
Thus we can minimize k by replacing x  by an and-rooted subtree if px > 1/2 and 
by an or-rooted subtree if px < 1/2. Then for a given cx we have the maximum k 
whenpx =  1/ 2.

We shall show (Lemma 24) that ifpx =  1/2 then k < 2  In2 ^  < 1 .4^. Therefore, 
given our way of selecting the root of the subtree, for an arbitrary probability px it 
holds that

k < 1.4—. (2.22)
u

If the conditions (2.18) and (2.19) for an and-rooted subtree or (2.20) and (2.21) 
for an or-rooted subtree are satisfied, then the subtree has exactly the same cost 
and probability of being tru e  as the original test x. There are however two obvious 
obstacles. Firstly, since k is the number of leaf nodes of A, k must be an integer.
Thus we have to round the value of k given by (2.18) or (2.20) to some integer k ' .

l fkf — 1 fW\Moreover, since the values of tests’ probabilities (px or 1 —px ) are not always 
rational then assuming that we want to store and use these values as input to some 
algorithms, we need to round them using finite number of digits.

Therefore the exact correspondence between a test x  and a replacement subtree 
A  is not always possible to achieve. But by choosing the cost unit u small enough 
and by keeping enough precision in probabilities of new tests, we can reach an 
arbitrary small error in the optimal resolution cost for the new tree, as described in 
the following theorem.

Theorem 21 Given an and-or tree T* with the optimal resolution cost C* and a 
real number r, 0 < r  < 1, there is a unit-cost and-or tree Tu with optimal resolution 
cost Cu such that C*(l — r) < Cu < C*(l + r).

For n being the number of tests in T, cmax the maximum cost over all tests in T  
and B  the maximum number of digits used to represent a probability over all tests 
in T , the construction o fT u runs in time polynomial in n, 1/r, cmax and B .

Moreover, for each leaf-parent of Tu all its test children are identical. I f  instead 
of constructing all leaf nodes of Tu we rather keep for each leaf-parent of Tu the 
number of its test children and the (uniform) success probability of each test, then 
such a construction o fT u runs in time polynomial in n, log(l/r), k^Cmaz) and B .

The theorem was stated by Omid Madani, with whom we collaborated to prove
it.

We now describe the construction of the unit-cost tree Tu.
Let r be as stated in the theorem. For the original and-or tree T* let n be the 

number of tests in T*, and for each test x  of T* let pxo =  m in {px,px}.
In the unit-cost and-or tree Tu each test has cost u < §Cmin, where Cmin is the 

smallest cost of a test in T*. We construct Tu by replacing each test x  of T* by a 
depth one subtree A  with k' identical tests, such that

i) if px > 1 /2 , A  is and-rooted, otherwise A  is or-rooted,
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ii) k' =  [fcj, where k is given by (2.18) if A  is and-rooted, and by (2.20) if A  is 
or-rooted,

iii) given p' = px ^k for an and-rooted A  and p' =  px ^k for an or-rooted A, the 
success probability p of tests from an and-rooted A  (respectively the failure 
probability p of tests from an or-rooted A) is obtained by rounding p' up 
to p so that p' < p < p '(l +  e) (respectively rounding p' up to p so that 
p' < P <  P'( 1 +  e)), for any e satisfying e <

Notice that Tu is not necessarily strictly alternating since we may replace a test 
child of an or-node (respectively and-node) by a or-rooted subtree (respectively 
and-rooted subtree).

Since k' > k — 1 > %■ — 1 > — 1 > 2, each test of T* is replaced by a depth
one subtree with at least two tests. Thus for each leaf-parent of Tu, all its tests 
children have the same probability. Now Theorem 21 follows immediately from the 
theorem below.

T heorem  22 Let T* be an arbitrary and-or tree, C* the optimal resolution cost 
ofT* and 0 < r  < 1. I fT u is constructed as described above, then for the optimal 
resolution cost Cu o fT u we have C*( 1 — r) < Cu < C*( 1 +  r), and for each depth 
one subtree replacing a test x, the number of leaf nodes k' is O (^f), and the number 
of significant digits required to obtain the probability precision defined in (iii) is

Proof: We will begin by proving the order of k' and of the number of required 
significant digits of probabilities.

Since k' =  [fcj, then from (2.22) and the fact that 1/u =  0 ( l / r )  it follows that 
kf = 0 ( f ) .

1/A/For an and-rooted subtree, we round up the probability p — px ' to p and
require that p < p'( 1 -i- e) =  p1 4-p'e. So we need to keep a number of significant
digits in order of log ) , or

o (log (i) + log (1)) = O (i log (i) + log (̂ )) =

=  ° ( l 0 g ( ^ ) ) = 0 ( b S ( ^ ) ) '  (2 '23)

where we used the fact that O (log (l/px)) =  1, since for an and-rooted subtree 
Px > 1/2. The argument for an or-rooted subtree is symmetric.

We will now prove that the optimal resolution cost of Tu is approximately the 
same as of T*.

Consider a strategy S* for T* and the corresponding strategy Su for Tu, that is 
the strategy that in place of each test performed by S* evaluates the corresponding 
depth 1 subtree of Tu. We will show that for the expected costs of S* and Su the 
following condition is satisfied:

C (S*) (1 - r ) < C  (Su) < C  (S*) (1 +  r ) , (2.24)
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from which, by the Twins Lemma, the desired relation between the optimal resolu­
tion costs follows. For the expected cost of S* we have:

C(S*) = E  (2.25)
x€Tests(T*)

where the sum is taken over all tests of the tree T* and Pp(x) is the sum of proba­
bilities of all paths from the root of S* to nodes labeled by the test x.

If Pp(A) is the sum of probabilities of all paths from the root of Su to nodes
labeled by the first test of a replacement subtree A, then

C (S U)=  E  Pp(A)C(A), (2.26)
AGRepSubtrees (Tu)

where the sum is taken over all replacement subtrees in Tu.
Now assume that after the reduction, for any subtree A  of Tu replacing a test x, 

the cost of evaluating A  is perturbed at most by 8 C in comparison with cx and the
values of the probability that A  is tru e  and f a ls e  are perturbed at most by Sp in
comparison with px and px, respectively, meaning:

cx (1 -  Sc) < C(A) < cx (1 +  <y , (2.27)
P x  (1 -  Sp) < p(A) < P x (  1 +  Sp) , (2.28)
Px  (1 -  Sp) < p(A) < px (1 +  Sp). (2.29)

Since each path from the root of strategy S* includes at most n  nodes labeled by 
tests of T*, we have for any subtree A  replacing a test x:

Pp(x) (1 -  Sp)n < Pp(A) < Pp(x) (1 +  Sp)n . (2.30)

This gives us the following relation between the expected costs of S* and Su:

C (S *) (1 -  Sp)n (1 -  5C) < C (Su) < C (S*) (1 +  Sp)n (1 +  Sc) . (2.31)

If Sp < r/An, then (1 -  Sp)n > 1 -  nSp > 1 — r/3  by Observation 27i, and
(1 +  Sp)n < 1 +  r /3  by Observation 27ii. Thus if we have

Sp < r/An, (2.32)

Sc < r/3 , (2.33)

then
(1 -  Sp)n (1 -  Sc) > (1 -  r /3 )2 > 1 -  r, (2.34)

(1 +  Sp)n (1 +  Sc) < (1 +  r /3 )2 < 1 +  r. (2.35)

Therefore as long as the conditions (2.27), (2.28), (2.29) hold, with Sp and 8 C satisfy­
ing (2.32) and (2.33), the desired relation (2.24) is fulfilled. We will now prove these 
bounds for an and-rooted subtree. The case of an or-rooted subtree is symmetric.

First let C'(A) be the cost of the subtree A  if the conditions (i) and (ii) of the
1 /k'reduction are satisfied, but the success probability of each test is equal to p = p x , 

that is it is not rounded to p. The subtree A  has k' tests, k' =  l&J, where k is given
by (2.18). Thus k > k' > k — 1. If px — 1 then p' =  1, C'(A) =  uk' and k = cx/u
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so cx > C'(A) > u (k — 1) =  cx — u. Lemma 25 implies that also for px j= 1 we have 
cx — u < C'(A) < cx . Since u < §cmjn, it holds that

cx(l -  r/3) < C'(A) < cx . (2.36)

We now need to incorporate the effect of rounding the probability p' to p, ac­
cording to the condition (iii) of the reduction. We have px > 1/2 (A is and-rooted), 
and pxo =  px < I / 2-

For px =  1 we have p =  p' =  1, so C(A) =  C'(A). Now assume \  < px < 1. 
Observe that e < < 2 (J -i)  I  • Therefore we can use Lemma
26i and conclude that

C'(A) < C(A) < C'(A)( 1 +  r/3). (2.37)

From (2.37) and (2.36) it follows that

cx (1 -  r/3) < C(A) < cx (1 +  r / 3 ) , (2.38)

which means that (2.27) and (2.33) hold.
Now let us consider the probability p(A) that A  evaluates to tru e , p(A) =  pk .

For px =  1 we have p  =  1 thus p(A) =  1 =  px. If ^ < px < 1, it follows from Lemma
26ii and the bound e < ^  ^  that

Px < P ( A ) < px ^1 +  ^  , (2.39)

Px ( f  -  ^  < P(A) < px, (2.40)

so (2.28), (2.29) and (2.32) are satisfied. □

In the remainder of this section we present the proofs of the lemmas used above. 

Lem m a 23 I f  k(p,c) =  ln^n^ - P  ̂> where 0 < p < 1 and c > 1, then k(p,c) is a 
monotone function of p, decreasing from oo to c as p increases from 0  to 1 .

Proof:
lim............... ...T  =  oo. (2.41)
p->° In ( l  -  ^ )

lim ,  s =  lim------^  _x - =  c. (2.42)
p-n ln M _  P-+1 A _  1^2 \  l

dk(p,c) _ « ( l - 1? ) t a ( l - 1i 2)-|>ln(p)
3P  -  , ( 1 -*?)„* (1 - 1?) ' l -3)

The above derivative exists for 0 < p < 1 and c > 1.
We will show that c ( l  — ln ( l  — — pln(p) < 0.

Let g(p, c) — c ( l  — ln ( l  — . We will firstly show that g(p, c) is a mono­
tone decreasing function of c.

« ? M  =  in ( ' i _ i z E ' \ + i z £  (2.44)
oc \  c )  c
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and the above derivative exists for 0 < p < 1 and c > 1.
For — 1 < x < 1, ln (1 — x) =  — (x +  ^  +  ...)) so f°r 0 < * < 1 ln (1 — x ) <

—x.
Since 0 < ±=2 < ± < 1, so ln ( l  -  Thus:

< 0. (2.45)
dc

Moreover
Yiva.g(p,c) = p\np. (2.46)
C -¥  1

Thus g(p,c) < plxip and 9k̂ ’ĉ  < 0 . □

L em m a 24 For c > 1, < 21n2c.

Proof: Let k(c) = and g(c) = k(c)/c. Then

/  v In2
9(c) =  . / e v  ’ 7)

ln ( s = b ) c

and
In 2 ( - r ~ 2)

^ ( c ) = H m — ^  =  2102. (2.48)
c(c—0.5)

We will show that g(c) is a monotone, increasing function of c, from which
it follows that k(c)/c  < 21n2. It is enough to show that h(c) =  ln c is
monotonically decreasing while c is increasing.

dh(c) 
dc h -  <2-49)

The above derivative exists for c > 1. Let 6(c) =  ln ( c_cQ 5 j  • We will show
that 6(c) < 0. Since

6(1) = l n 2 - l  < -0 .3 , (2.50)
lim 6(c) =  0, (2.51)

C—> 0 0

so it is enough to show that 6(c) monotonically increases with c:

0 - 2 ^ 5 )  > „  (2.52)
dc (c -  0.5) \  c J

and the above derivative exists for c > 1. □

L em m a 25 Let 0 < p  < 1, c > u for some positive u, k =  ln^nffi-P  ̂> k —l < k ' < k ,

p' =  p1/*' and d  =  u . Then c — u < c' < c.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proof: First notice that from Lemma 23 it follows that k > 1. Thus k' > 0 and 
p1 exists.

, 1 - p ,k' 1 - p
c =  u —   =  u-1 — p f 1 — pl/**

From (2.18), (2.19) follows that

c = u
1 _  (pi/*)*

1 — pi/* 1 — pi/*

The inequality d  < c follows now from k' < k.

c - c '  = u { l - p )  ( 1 _ pl/k -  1 _ pi/k>) P) ( i _ p i / *  “  i_p i / ( f c - i ) )  ’
(2.55)

Let B(p,k) = (1 - p )  -  x_pl/(fc-iy)- We will show that B(p,k) < 1, which
ends the proof.

1 - p

(2.53)

(2.54)

lim B(p, k) =  =  i n  ^  : :  <A:—>oo ln(p) ln(l — (1 — p))
(2.56)

where we used the fact that ln( l  — x) < — x  for 0 < x  < 1 and calculated the 
first equality using asymptotic expansion into series for k approaching oo from the 
“Maple” packet. Now it is enough to show that B (p ,k ) increases when k increases.

dB{p,k)
dk

- (1  -p ) ln (p )

=  (1 -  p) ln (p)
p k

i
p k - 1

( l - p * - 1) ( A; - l )2 ( l - p f c )  k2

_J^\ 2 o1 — pfc-i \ 1 k

^1 — k 2 1 - p k Pk ( k - 1) (k ~  l )2
(2.57)

(  \ 2The above derivative exists for 0 < p < 1, A; > 1. Let Z(p,k) — ( 1-p t ) — t —
y l - p t  )  pk{k-i)

We will show that Z (p ,k ) — > 0, which ends the proof.

lim Zip, k) = oo. p—>o

(

1 — p k~l \  /  k _i__i \ 2 fc2
p->i k — 1 (k -  iy

(2.58)

r. (2.59)

So now it is enough to show that Z(p, k) is a monotone (decreasing) function of p. Let 
us change the variables. Define y(k,p) =  p W -1) . Now Z(y(k,p),k) = 
y{k,p) increases when p increases and 0 < y(k,p) < 1 . It is enough to show that 
Z(y(k,p),k)  decreases when y increases.

dZ{y(k,p),k)
dy

1 - y  
(1 - y fc~i)3y2

[y2* -1 -  (2k -  1 )yk +  (2 k -  l )yk~l -  l] .(2.60)
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The above derivative exists for 0 < p < 1, A; > 1.
Let W(y,  k) — y 2 k _ 1  — (2k — l )yk + (2k — l)yk~l — 1. We will show that W(y,  k) <

0.

lim W(y, k) = —1. (2.61)

lim W(y,  k) = 0. (2.62)
y-> 1

Now we need to show that W  (y, k ) is a monotone (increasing) function of y. 

awt*, b\ =  ^  _  1^y2fc—2 _  (2jfc _  i ) kyk -i + (2k -  l)(k -  1 )yk ~ 2  =
dy

= (2k -  1 )yk ~ 2  [yk -  ky +  k -  l ] . (2.63)

The above derivative exists for 0 < p < 1, A; > 1. Let J(y,k)  =  yk — ky + k — 1. We
will show that J(y, k) > 0.

lim J(y, k) = k — 1. (2.64)

lim J(y, k) = 0. (2.65)
3/—>l

Now it is enough to show that J(y, k) is a monotone (decreasing) function of y.

=  kyk~l - k  = k (yk~l -  l )  < 0. (2.66)
dy v. /

The above derivative exists f o r 0 < p < l ,  A:>1. □

Lem m a 26 Let \  < p  < \ ,  p' — pl!k' , p' < p < p'( 1 +  e), for integer k' > 2. Let 
d  = u ( l + p '  + p ' 2  + . . .  + p/fc/_1) and c = u ( l + p  + p 2  + . . . +  pfc,_1) , for u > 0 . 
For any 0 < 8 < 1:

i) if  e < 2(fc'1_i)^ then d  < c < d ( l  + 8 ),
H) if  £ < then p < p k' < p( 1 +  8 ) and (1 — p)(l — 8 ) < 1 — pk> < 1 — p. 

Proof:
i)
Since p > p' so c > d .

c = u ( l +  p + p2  + . . .  + pk _1) <

< u ( l  + p r(l +  e) + p /2(l +  e)2 +  . . .  +  p/fc_1(l 4- e)* -1 ) <

< (1 +  e)k'~lu ( l  +  p' +  p'2 +  . . .  +  p/fc'_1) =

=  (1 +  < e  ( l  +  < </(! + S), (2.67)

where the last inequality follows from Observation 27ii.
“ )
Since p > p' so pk > p'k = p and 1 — pk < 1 — p.

P*' < [p'(l + e)]k> =  p(l + e f  < p ( l  +  ~ kT~^J =  P ^  + ~J_ k'p ‘
(2 .68)
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Since > 2 so by Observation 27ii we have

Sp(1+̂ ) =p(1+,sî )- ( 2 ' 6 9 )

Now since < 1 we obtain eventually pk' < p (1 +  £). 
For 1 — pk> it holds that

(2.70)

□

O bservation  27 For integer k > l  and real x, 0 < x < 1, the following i 
hold:

i) (1 — x)k > 1 — kx, 
k

ii) f l  +  4 )  < l  +  - ^ r / o r a > 2. \  a k j  a - 1

(2.71)

(2.72)

Proof:
i)
By induction on k. Assume it holds for k.

(1 — x ) k + 1  — [1 — (A +  l)x] > (1 — #)(! — kx) — [1 — (k +  1)®] =  kx 2  > 0. (2.73)

ii)
Trivial for x  = 0. Now assume 0 < x  < 1.

k k / , A  /  i  k

and

1 ~  ( f ) fc+1 _  ( ,  , _ ± _  \  1 L  _  ^ ( i - g ) '
l - f  \  a - l )  V a )  [ \ a j  a(a -  1). < 0. (2.75)

□
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Chapter 3

Conjectures and 
Counterexamples

3.1 B est Test of a Subtree

The natural approach to solving PAOTR is to try to exploit the local structures in 
the input trees. We expected that the Siblings Lemma can be generalized so that 
for each immediate subtree of a given tree we could find, independently on other 
subtrees, the “best” test, in the sense that there is an optimal strategy such that 
the first performed test is the best test from its subtree. However it turns out not 
the case.

Consider as an example the and-or tree Tc shown in Figure 3.1a. Tests ai, 
b\ and 62 are grandchildren of the same and-node, but the relative order in which 
these tests are queried by an optimal strategy, varies with the probability of success 
of test c; depending onp(c),  an optimal strategy starts with aq or with 61.

p(c)=0.05

p(c)=0.1

p=0.41 p=0.34p=0.61 p=0.13

Figure 3.1: (a) An and-or tree Tc with all costs unit, (b) The unique optimal 
strategy for Tc if p (c) =  0.05, encoded by the fixed order of tests, starting with a\. 
(c) The unique optimal strategy for Tc if p(c) =  0.1, starting with 61.
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For example, if p  (c) =  0.05, the unique optimal strategy starts with testing 
a\ and then follows the linear strategy shown in Figure 3.1b. But if p (c) =  0.1, 
the unique optimal strategy is the strategy shown in Figure 3.1c, which starts with 
testing b\.

3.2 Prim e Implicants and Implicates

A minimal set with some property P  is a set with the property P  which does not 
include any set with the property P  as its proper subset. A prime implicant of an 
and-or tree is a minimal set of tests with the property that if all tests from the set 
are tru e  then the entire tree evaluates to tru e . A prime implicate in an and-or 
tree is a minimal set of tests, such that if all tests from the set are fa ls e , the entire 
tree evaluates to fa ls e . A tree evaluates to tru e  (respectively fa ls e )  if and only 
if there is at least one prime implicant (respectively prime implicate) whose tests 
are all tru e  (respectively fa lse ) . To see that, assume that the value of T  is tru e , 
but each prime implicant of T  contains at least one f a ls e  test. But then the set 
of all tru e  tests includes a prime implicant for T, contradiction. Whenever, while 
performing a correct strategy, we conclude that an and-or tree evaluates to tru e  
(respectively to fa lse ) , it is only after all tests of some prime implicant (respectively 
prime implicate) have been performed and succeeded (respectively failed).

The true path (respectively false path) of a correct strategy is the root-to-leaf 
path of the strategy that contains only tru e  (respectively only fa ls e )  arcs. Ob­
viously the leaf node of the true path is labeled tru e , the leaf of the false path is 
labeled fa ls e .

One might conjecture that for an or-rooted and-or tree, all tests performed on 
the true path of an optimal strategy are from exactly one prime implicant. In other 
words, we expected that in or-rooted tree, if the first test performed by an optimal 
strategy succeeds, the strategy will perform tests from this prime implicant, as long 
as they are tru e . Notice that it would mean that the optimal strategy does not 
leave one child subtree of the or-root as long as the performed tests succeed. The 
conjecture is equivalent to the one that all tests performed on the f a ls e  path of an 
optimal strategy for an and-rooted tree are from exactly one prime implicate.

a) b)

c=l

c—2 c=12

Figure 3.2: a) An and-or tree Ti. All tests have probability of success 0.5. b) The 
unique optimal strategy S* for T*. The tests performed on the true path of Si are 
from two prime implicants of Ti.
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This conjecture turned out to be false. Consider the or-rooted tree Tj in Figure 
3.2a. The prime implicants are the sets {®i,®2}> {y ,z  1} and {y,Z 2 }. The unique 
optimal strategy Si for Tj, shown in Figure 3.2b, starts with performing x i, but 
then, if x \ is tru e , it leaves the subtree. The true path of Si, whose first node is 
labeled by x i, contains then the nodes labeled by z\ and y: tests from another prime 
implicant.

Figure 3.3: a) An and-or tree Te. All tests have probability of success 0.3. b) The 
unique optimal strategy Se for Te. The tests performed on the false path of Se are 
from two prime implicates of Te.

Notice that the tests performed on the false path of Si are from only one prime 
implicate, {x \,y} . But it also is not always the case. On Figure 3.3a we depict 
an or-rooted tree Te, with prime implicates {x i,X 2 ,z}  and {yi,V 2 , %}• The false 
path of the unique optimal strategy Se for Te shown in Figure 3.3b contains nodes 
labeled by tests x i, z, X2 , interlaid by a node labeled by a test y\ from another prime 
implicate.

We still expect though that an optimal strategy will either complete one prime 
implicant or one prime implicate.

C on jectu re  1 For any and-or tree there is an optimal strategy S  such that either 
all tests performed on the true path of S  are from exactly one prime implicant, or 
all tests performed on the false path of S  are from exactly one prime implicate.

3.3 Cograph Representation

There is a representation of the and-or trees that may be helpful in studying prime 
implicants and implicate. We now describe this representation. We start with basic 
definitions related to graphs. We follow the definitions from [5].

In undirected graphs, we consider unordered pairs of nodes (edges) as opposed 
to the ordered pairs (arcs) in directed graphs. An undirected graph G is an ordered 
pair (V, E ), where V  is a finite set (whose elements are called nodes of G) and E  is 
the set of unordered pairs of nodes of G (whose elements are called edges of G). We 
denote an edge by (v ,w ), understanding that (v, w) and (w,v) is the same edge.

c=100
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Let G =  (V,E). If (u,v) G E, we say that u and v are adjacent. The no­
tion of a path, subgraph and the relation of being reachable for nodes is defined 
as for a directed graph (if v is reachable from w then w is reachable from v). 
G is connected if every vertex is reachable from every other vertex, and discon­
nected otherwise. The connected components of G are the equivalence classes of 
nodes for the relation of being reachable from. The graph G = (V, E), where 
E  =  {(v, w) : v, w € V, v ±  w, (v, w) ^ E}  is called the complement of G.

A set of nodes V' C V  is called a clique if the nodes in V' are pairwise ad­
jacent, and is called an independent set if no two nodes from V' are adjacent. A 
clique (respectively independent set) V' is maximal if there is no clique (respectively 
independent set) V" such that V' C V ".

Let Gi =  (V i,E i),G 2  = (V2, E2) , . . . ,  Gk = (Vk,E k), k > 2 be graphs with 
disjoint sets of nodes. G is the union of Gi, G2, . . . ,  Gk, if V = V\ U V2  U . . .  U Vk 
and E  =  E iU E 2 U ...U E k. G is the join of G i,G 2, .. -,G k, i iV  =  Vi U V2U .. .u  Vk 
and E  =  E\ U E 2  U . . .  U Ek U {(«,«>) : v G Vi,w G Vj,i j , i , j  < k}. By the 
operation of taking complement, the operation of union, the operation of join we 
mean constructing the graph that is the complement of a graph, union of graphs, 
join of graphs, respectively.

A cotree of a graph G is a directed rooted tree T  whose leaf nodes are nodes 
of G, internal nodes axe labeled 0 or 1 and two nodes v and w of G are adjacent 
if and only if the least common predecessor (that is the common predecessor with 
maximum depth) of v and w in T  is labeled 1.

The class of cographs (complement reducible graphs) is the class of graphs that 
can be constructed from single nodes using the operations of union and taking 
complement.

There is a number of important characterization of cographs.

T heorem  28 [15, 3] The following statements are equivalent:

• G is a cograph,

• there exists a cotree of G,

• G does not contain a path on four nodes as an induced subgraph,

• the complement of each connected induced subgraph of G with more than one 
node is disconnected,

• in every induced subgraph H of G, the intersection of any maximal clique of 
H and any maximal independent set of H contains precisely one node.

The representation of a cograph by its cotree enables a lineax-time recognition 
of cographs [4], and allows to use cographs to recognize whether a Boolean function 
is a read-once function [9].

We say that a graph G represents an and-or tree T  if each node of G is associated 
with a leaf of T  and two nodes v and w of G are adjacent if and only if the least 
common predecessor of v and w in T  is labeled and. From the definition of a cotree 
and Theorem 28 it follows that a graph G whose nodes are associated with distinct
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independent tests represents an and-or tree if and only if G is a cograph. Figure 
3.4 shows a cograph representing an and-or tree.

X]

x 2

yi 

y 2

z

Figure 3.4: An and-or tree and the cograph representing the tree.

Observe that a join of graphs Gi and G2  is the complement of the union of 
complements of Gi and G2. It is easy to see how to build a unique cograph repre­
senting given and-or tree, using the operations of union and join. If T  is a single 
leaf, then the graph with a single node represents T.  Let \F =  {Ti,T2, . . .  ,1*,}, 
k > 2, be a set of and-or trees and let Gi, G2, ■ - -, Gk be the graphs representing 
Ti,T2, . . . ,T fc, respectively. Now consider the and-or tree T  = (r, ’F) (that is rooted 
at r and whose set of immediate subtrees is ’F) and let G be a graph that represents 
T. For any two tests from the same subtree T* their least common predecessor in 
T  belong to Tj, whereas for any two tests from different subtrees Tj, Tj,  their last 
common predecessor in T  is the root r. Thus if r  is labeled and, G is the join of 
Gi, G2, . . . ,  Gk, whereas if r is labeled or, G is the union of Gi, G2, . . . ,  Gk-

On the other hand, for any cograph G whose nodes are associated with distinct 
tests one can construct an and-or tree T  that is represented by G. If G is a single 
node, then T  is a single test. Otherwise, if G is disconnected, then the root of 
T  is or, and each of the immediate subtrees of T  is represented by one connected 
component of G, whereas when G is connected, then the root of T  is and and 
each of its immediate subtrees is represented by one connected component of the 
complement of G.

There is a correspondence between prime implicants of and-or trees and maximal 
cliques of cographs as well as between prime implicates and maximal independent 
sets.

Observation 29 Let T  be an and-or tree and let G be the cograph representing 
T. A set W  of tests of T  is a prime implicant (respectively prime implicate) if  and 
only if the set of nodes of G associated with the tests from W  is a maximal clique 
(respectively a maximal independent set).

Proof: We will prove the correspondence between prime implicants and maxi­
mal cliques. The proof of the other correspondence is analogous. The proof is by 
induction on the depth of T. The observation trivially hold for a depth zero tree, 
namely for a single test. Now assume that T  is of depth at least one and that the 
observation is true for any tree shallower than T.

Let Ti,T2, . . .  ,Tjfc, A: > 2 be the immediate subtrees of T  and G\, G2, . . . ,  Gk the 
cographs representing Ti, T2, . . . ,  Tk, respectively.

Assume that T  is and-rooted. W  is a prime implicant of T  if and only if 
W  =  W\ U W 2  U . . .  U Wk, where for i < k Wi is a prime implicant of Tj. By the
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inductive assumption Wi is a prime implicant of T* if and only if the set of nodes of 
Gi associated with tests from Wi is a maximal clique. But since all nodes from dif­
ferent subgraphs G», Gj are adjacent in G, so the set of nodes V' of G is a maximal 
clique if and only if V' =  V{ U Vf U . . .  U V ,̂ where for i < k V- is a maximal clique 
of Gi.

Now assume that T  is or-rooted. W  is a prime implicant of T  if and only if 
W  is a prime implicant of one of Ti,T2, . . .  ,7*. So the observation for this case 
follows from the inductive assumption and the fact that since G is the union of 
Gi, G2 , . . . ,  Gk, a set of nodes of G is a maximal clique if and only if it is a maximal 
clique in one of G i,G 2, . . .  ,Gfc. □

We can define a problem related to cographs that is equivalent to PAOTR.
We are given a graph G such that each node of G is assigned one of two colours: 

it can be either black or white, independently on other nodes. We call any given 
assignment of colours to nodes a colouring of nodes. For each node we know a non­
negative cost of checking the colour of the node and the probability that the node is 
black. The strategy for the graph G is an algorithm that for any colouring of nodes 
determines whether there is a maximal clique in G whose nodes axe all black, via 
sequential checking colours of nodes. For any given colouring, the cost of a strategy 
on this colouring is the total cost of performed colour checking. The expected cost 
of a strategy is the average cost of the strategy, over all colourings of the nodes of 
G. An optimal strategy for G is a strategy with the smallest expected cost.

From the discussion above it follows that the problem of finding an optimal 
strategy for a cograph is equivalent to PAOTR.

Our Conjecture 1 can be now rephrased as follows: For any cograph G there is 
an optimal strategy S  such that S  either does not leave one maximal clique as long 
as the checked nodes are black, or does not leave one maximal independent set, as 
long as the checked nodes are white.

Generalizing, we could ask for an optimal strategy for an arbitrary graph (which 
is not related to the and-or tree problem). We will show that this problem is 
iVP-hard.

O bservation  30 Finding an optimal strategy for an arbitrary graph is NP-hard.

Proof: Let G be an arbitrary graph on n  nodes. For each node, let the cost of

checking the colour be 1 and the probability of being black be q Let
5  be a strategy for G, represented by a binary tree. The root-to-leaf path of the 
strategy that is followed when all checked nodes are black is called the black path. Let 
k be the number of internal nodes of the black path of S. Observe that each other 
root-to-leaf path of S  contains at least 1 and at most n  internal nodes. Analogously 
as in the proof of Theorem 1, we obtain following bounds on the expected cost of S:

fc
C(S) < qkk +  (1 -  qk)n = n -  (n -  k) ^1 -  + <

< „ - ( „ - * ) ( l - ± ) = *  + ! !J l* < *  + I  (3.1)
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and
k

C(S) >«** +  < l-« * ) l  =  i  +  ( * - 1 ) ( 1 - ^ ) " +1 >

> !  +  (» _  (3.2)

Therefore there is a strategy for G with expected cost not greater than k + \  if and 
only if there is a strategy for G that checks at most k nodes along its “black path” 
if and only if there is a maximal clique in G with at most k nodes.

But the problem of determining whether a graph G has a maximal clique with 
at most k nodes (called the Minimum Maximal Clique Problem) is ATP-complete 
by reduction from the Minimum Maximal Independent Set Problem, that is the 
problem of determining whether a graph G has a maximal independent set with at 
most k nodes [7].

Therefore, by reduction from the Minimum Maximal Clique Problem finding an 
optimal strategy for an arbitrary graph is iVP-hard. □

3.4 R esolving Subtrees

A depth-first strategy, which is optimal for depth two and-or trees, does not leave a 
given subtree until its value is determined. Such approach is not necessary optimal 
for deeper trees, but we conjectured a weaker property of an optimal strategy.

After a test from an and-or tree is performed, let the highest resolved node in 
the tree be the root of the maximal subtree whose value has been determined. For 
example, assume that a test x  is fa lse . If the parent of x  is labeled or and x  has a 
sibling, then the highest resolved node is x  itself. But if the parent of x  is and and 
is a child of an or-node, then the highest resolved node is the parent of x.

b)

p=0.13

p=0.72

p=0.21

p=0.43 p=0.86

Figure 3.5: a) An and-or tree 2). All tests have unit cost, b) The unique optimal
strategy for Te. After the first performed test is tru e  as well as after the first test is 
fa ls e , the strategy leaves the subtree rooted at the parent of the highest resolved 
node.

We expected that after a test x is performed, an optimal strategy would at least 
in one case (when x  is tru e , or if x is fa lse )  performs after x  a test from the subtree

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



rooted at the parent of the highest resolved node. However it turns out that it is not 
always so. Consider the tree T; in Figure 3.5a. The unique optimal strategy for 7} is 
presented in Figure 3.5b. After performing the first test d, when d is tru e , as well 
as when d is fa ls e , the strategy performs the next test from outside the subtree 
rooted at the parent of the highest resolved node. We thank Leah Hackman and 
Martha Lednicky, WISEST 2003 participants, whose experimentation with instances 
of and-or trees led to the discovery of this example.

3.5 Tests Ordering for Ladders

As defined in Section 2.4, in an and-or ladder each internal node has at most one 
internal child node. In an and-or ladder a test y is called better than a test x  if y is 
a child of a predecessor v of x  and either v is labeled o r and p(y)/c(y) > p(x)/c(x), 
or v is labeled and and p(y)/c(y) > p(x)/c(x). See Figure 3.6 for an example. For

c=2
p=0.2

c=l
p=0.7

Figure 3.6: An and-or ladder. Test y is better than test x.

a large number of ladders, there is a pattern in the order of tests in an optimal 
strategy, observed by Leah Hackman and Martha Lednicky, which can be described 
by the following conjecture.

C on jectu re  2 Let T  be an and-or ladder. There is an optimal strategy S  for T  
such that for any tests x  and y such that y is better than x, x  is not performed before 
y on any root-to-leaf path of S.

For and-or ladders the conjecture generalizes the Siblings Lemma and the Ob­
servation 19. For depth one ladders, it is equivalent to the Siblings Lemma. For 
depth two ladders, the correctness of the conjecture follows by the Observation 32 
from the fact that DFA produces an optimal strategy for depth two and-or trees 
(Theorem 4). Though a large number of numerically checked examples of ladder 
trees justify the conjecture, we were able to prove it only for a special case of a 
depth three and-or ladder:

O bservation  31 I f  an and-or ladder T  has depth one or two, or T  has depth three 
and has only two tests with depth three, then Conjecture 2 holds for T.

Proof: We prove the observation by induction on the number of the tests of T. 
The observation trivially holds for a ladder with only one test. Now assume that 
the observation hold for any ladder fulfilling the conditions of the observation, that
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has less tests than T. Since, as discussed above, the observation hold for any depth 
1 or depth 2 ladder, assume that T  is depth 3 and that the last internal node of 
T  has exactly 2 tests. Assume that T  is or-rooted; the proof for the other case is 
symmetric.

Let a, b and c be the tests with the highest R-ratio among the tests with depth 
1, depth 2 and depth 3, respectively. By the Sibling and Twins Lemma there is an 
optimal strategy that starts with a or with b or with c. If there is a test that is 
better than c, then it has either depth 1 or 2. If a test with depth 2 is better than c, 
then b is better than c. Then by Lemma 35 there is an optimal strategy for T  that 
starts either with a or b. If a test with depth 1 is better than c, then a is better 
than c and by Lemma 34 there is an optimal strategy that starts with a. Now if 
there is a test better than b, then it has depth 1, and thus a is better than b. In this 
case, by Lemma 34, there is an optimal strategy for T  that starts with a. No test 
in T  can be better than a. It follows that there is an optimal strategy for T  whose 
root is labeled by a test for which there is no better test in T.

Now let T ' be the reduced tree obtained from T  when the first test performed by 
S  is, say, tru e . Assume that a test y is better than x  in T. If y and x  are still present 
in the tree T', then y is better than x  in T'. Thus by the inductive assumption there 
is an optimal strategy for T ' that never performs y  before x. The same holds for 
the reduced tree obtained when the first test preformed by S  is fa ls e . Therefore 
there is an optimal strategy for T  that fulfills the condition of Conjecture 2. □

In the remainder of the section we present the proofs of the observations used 
above.

O bservation  32 Let A be a depth one and-or tree with at least two leaf nodes and 
let A! be the tree obtained from A by removing one leaf. Assume that the parent 
nodes of A  and A' have different labels than the root of A. Let C{A) (C(A')) be the 
expected cost of the optimal strategy to evaluate A (respectively A ') and let pr (A) 
(pr(A!)) be the probability that A  (respectively A ') resolves its parent node. Then 
vr(A') > £

Proof: Assume that the root of A  is and. The proof for the other case is sym­
metric. Now pr(A) (pr (A1)) is the probability that A  (respectively A') evaluates to 
tru e .

Let x \,X 2 , . .. ,Xk, k > 2, be the tests of A  and assume that R (x i) > R (x2) > 
. . .  > R(xk). Then by Theorem 2 the above order of tests is the order of performing 
them by the optimal strategy for A. Let x m, 1 < m  < k, be the test that is removed 
from A  to create A'.

Thus we have pr{A) =  ]}*<*:PfaiK Pr(A') =  Ui<k,i^mP(x i)  ̂ and c iA ) =  c(x i) +
L̂i2 <i<k c(x i) Y[l<j<iP{xj)-

We introduce the following notation:

f - i  J  0  i f  771 1 ,

1 \  c{x\) +  £ 2 < i < m - i  c{xi) Yli<j<iP(xj)  i f  r n  >  2 ,

-Ii
J *  i f  771 =  1 ,

P l  ~  ’ I I l< i< m —1 P{x ) i f  777 >  2,
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C  =  j ° if m  = k, .3 5*
2 \  c(xm+i) +  Z r n + 2 < i < f c  c(xi) Ylm+l<j<iP(xj ) if m < k .

Then we can use the following expressions:

C(A) = Ci + pic(xm) + pip(xm)C2, (3.6)
C(A') = C i+ PlC2. (3.7)

Now we obtain

im - im= [ ( 1  ~p{Xm))Cl+Pic(xm)] 2 a <38)
□

Lemma 33 Let T  be an and-or tree and let x  and y be different tests from T. 
Assume that y is a child of a predecessor of x and that there is an optimal strategy 
Sx for T  that starts with performing the test x. I f

i) y is the first test performed by Sx after x  is f a ls e  and R(y) > or

ii) y is the first test performed by Sx after x  is t ru e  and R(y) > 

then there is an optimal strategy Sy for T  that starts with performing y.

Proof: We will prove the theorem for the case when the condition (i) is ful­
filled. The proof for the condition (ii) is symmetric. Assume that y is the first test 
performed by Sx after x  is f a ls e  and R(y) >

If x  and y are child nodes of the same or-node then we may assume that the 
substrategies followed when x  is tru e , and when x  is fa lse , y is tru e , are the 
same (because if they are not, we may replace them by such strategies). Then, by 
Observation 8, the strategy Sy obtained by switching labels x  and y is optimal.

Now assume that x  and y are not child nodes of the same or-node. Since y is a 
child node of a predecessor of x, so after x  is tru e , y is still present in the reduced 
tree. Let S + x , S - x  be the substrategies of Sx followed when x  is tru e , fa ls e , 
respectively. The root of S - x is labeled by y. Let S_y be the substrategies 
of S - x followed when y is tru e , fa ls e , respectively. Let M  > 1 be the number of 
nodes of S + x labeled by test y, let S y i , SV2, . . . ,  SVM be the subtrees of S+x rooted 
at nodes labeled by y, and for k =  1 ,2 ,. . . ,  M, let S+Vk, S - yk be the substrategies of 
SVk followed in the case when y  is tru e , y is fa lse , respectively. Also let S r denote 
the (possibly empty) part of S+x that contains all nodes outside Syi, Sy2, . . . ,  SVM.

The following strategy S'+ x  is nonredundant and correct for the tree obtained 
from T  when x  is tru e , and may replace the substrategy S+x:
S'+,  = y .  + (SV+) ; -  (Sl+ ) ,  where S'+ = S+I (S„ ^ S+yi !•••■> ^  S+ vm ))

S '-y  =  S + x  (S y i  < S - y I , .  . . , S y M < S - y M ).
Assume that y is a child of an or-node. The proof for the other case is symmetric.

—
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Let C (Sr) denote the expected cost of performing Sr, that is the sum of costs 
of tests labeling nodes of Sr, factored by the probabilities of paths from the root of 
S+x to a given node (if Sr is empty, then C (Sr) =  0). For any k, let pyk be the 
probability of the path from the root of S+x to the labeled by y root node of 

Then we have
M

c ( s ' + ) = C { S r) + Y,PmC(S+,t) (3.10)
k=1

If y  is tru e , its parent node is resolved. Since y is a child of a predecessor of a;, so 
the reduced trees evaluated by S'+y and S+y are identical. Since is a substrategy
of the optimal strategy Sx, so C (s+y) < C (s'+yj, that is

M
c ( s + ) < C ( S r) + ' £ p ViC (S +yk). (3.11)

k=1

Now it is obvious that the following strategy Sy is nonredundant and correct for 
T: Sy =  y : +  (■S'+y) 5 ~ (® : +  ( ^ )  5 ~ (^ -s /))’ For the exPected costs of Sx and
Sy we have

C(SX) = c{x) +p{x) C{Sr) + J2Pyk (c(y) + p{y)C (S+yk) + p(y)C ( S - y j ' j  
k= 1

+p(x) [c(y) + p(y)C  (5+y) +P(y)C  ( 5 I „ ) ] ,

C(Sy) =  c(y) +p(y)C  (5+j,) +
/ M \

c(x) +p{x) I C (Sr) +  ^ 2 p ykC ( S - y k) I +p(x)C  ( S l y)

+ 

(3.12)

+p(y) , (3.13)

thus

C(Sy)  -  C(SX) =  -  \p(y)c(x) —p(x)c(y)\ +

-p(x)p(y)
M

C(Sr) + Sj> ,.C (S+tl) - C ( s ^ )
k=1

+

- p ( x ) c ( y ) Y ^ P y k <
k=1

< 0 , (3.14)

where the inequality holds by (3.9), (3.11). Therefore Sy is optimal for T. □

Lem m a 34 Let T  be an o r-rooted depth three ladder. Let a, b and c be each a test 
with the highest R-ratio among all tests with depth one, depth two and depth three 
respectively. I f  > m in then there is an optimal strategy for T  that
starts with a.

Proof: First assume that ^  The proof is by induction on the number
of tests with depth 3. If there is only one such test, then the tree collapses to depth 
2 and by Observation 32 from the fact that it follows that DFA prefers a
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to the and-rooted subtree of the root. Now assume that the lemma hold for a depth 
3 ladder that has fewer tests with depth 3 than T  has.

Let S  be an optimal strategy for T. Assume that S  starts with c. If c is fa ls e , 
the reduced tree is a ladder fulfilling the condition of the lemma (because each 
sibling of c has lower ratio of success probability to the cost, than c). So by the 
inductive assumption S  performs a after c is fa ls e , thus by Lemma 33 there is an 
optimal strategy for T  that starts with a.

Assume that S  starts with 6. Let b \= b  and let 62, h ,  • • •, bk, k > 1, be siblings 
of 61 such that 5  performs 6,4.1 after 6, is tru e , and S  does not perform a sibling 
of 61 after 6*. When any 6, is fa ls e , the optimal strategy performs a (because the 
only tests left in the reduced tree are child tests of the root). After bk is tru e  the 
value of the tree is not resolved yet; let T ' be the reduced tree obtained at this point 
of the strategy and let S' be the optimal strategy for T'. If S' starts with a, then 
by Observation 18 we can “move” a to the root of the strategy 5, that is there is an 
optimal strategy for T  that starts with a. If bk was the last test with depth 2 then 
T ' collapses to depth 1. Then, since the S' starts with a. So assume the
there is still at least one test sibling of 6 and S' starts with c. But then the reduced 
tree obtained from T ' when c is f a ls e  fulfills the conditions of the lemma, so by 
the inductive assumption S' performs a after c is fa ls e . Thus by Lemma 33 there 
is an optimal strategy for T ' that starts with a.

Now assume that The proof is by induction on the number of the
depth 3 tests. If there is only one such test, then the tree collapses to depth 2 and 
by Observation 32 from the fact that follows that DFA prefers a than
the and-rooted child subtree of the root. Now assume that the lemma hold for a 
depth 3 ladder that has less tests of depth 3 than T  has.

Let S  be an optimal strategy for T. Assume that S  starts with 6. If 6 is fa ls e , S  
performs a (because the only tests left in the reduced tree are child tests of the root). 
So by Lemma 33 there is an optimal strategy for T  that starts with a. Assume that 
S  starts with c. By the inductive assumption, S  performs a after c is fa ls e . If c is 
tru e , the reduced tree collapse to depth 2 or depth 1, if 6 does not have any test 
sibling. From the fact that follows that in both cases a is the first test to
perform by an optimal substrategy (for depth 2 tree, it follows by Observation 32). 
Thus S performs a after c regardless of the value of c, so by Observation 18 there is 
an optimal strategy for T  that starts with a. □

Lem m a 35 Let T  be an o r-rooted depth three ladder such that there are only two 
tests with depth three. Let a, b and c be the tests with the highest R-ratio among 
the tests with depth one, depth two and depth three, respectively. I f  then
there is an optimal strategy for T  that starts either with a or with b.

Proof: Let S  be an optimal strategy for T. Assume that S  starts with performing 
c. Let B C  be the subtree rooted at the and-child of the root and let B  be the depth 
1 subtree obtained from B C  when c is tru e  and B ' be the depth 1 subtree obtained 
from B C  if c is f a ls e  (after collapsing the or-node); B ' has all child tests of B  and 
additionally the test that was a sibling of c in BC.

If the first test performed by S  after c is tru e  is a, it means that DFA prefers 
a than B. Thus by Observation 32 DFA also prefers a than B', and a is also the
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first test performed when c is false. But a is a child of the root of T, so there is an 
optimal strategy for T  that starts with a (see Observation 18).

So assume that the first test performed after c is tru e  is b. But then by Lemma 
33 there is an optimal strategy for T  that starts with b. □
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Chapter 4

Preconditioned And-Or Trees

4.1 Sm ith’s Algorithm

In this chapter we deal with a generalization of and-or trees, namely with precondi­
tioned and-or trees. As explained in Section 1.3.6, in a preconditioned and-or tree 
both leaf nodes and internal or-nodes and and-nodes are probabilistic tests, with 
given success probabilities and performance costs. The value of a leaf node is the 
output of the associated test. Each internal node is additionally associated with a 
required value, tru e  or fa ls e . The tests that are child nodes of a given and-node 
(respectively or-node) v may be queried only if the test associated with v was per­
formed and returned its required value: in such a case v evaluates to the logic and 
(respectively or) of the child nodes’ values. If the output of the test associated with 
v is not the required value of v, the node v evaluates to the output of this test. The 
value of a tree is the value of its root node.

To understand better the notion of the required value of an internal node, con­
sider the following example. A company uses three tests x, y and z  to evaluate 
candidates for a certain position. There are precedence constraints: the test x  has 
to be performed before y and z.

Figure 4.1: Preconditioned or-trees. a) The test x  has the required value tru e . The 
tests y  and z  can be performed only after x  succeeds, b) The test x  has the required 
value fa ls e . The tests y and z  can be performed only after x  fails.

First consider the case when a candidate is rejected if he or she fails test x  
(that is passing this test is a necessary condition for accepting the candidate). Ad­
ditionally the successful candidate has to pass either y  or z. To describe this situa­
tion, we use the preconditioned or-tree presented in Figure 4.1a, where the or-node 
x  has the required value tru e . If the output of x  is f a ls e  then the tree evaluates 
to fa ls e . If the output of x  is tru e  then the tree evaluates to o r of values of y and 
z. Thus the value of the tree is the value of the expression e\ — x  and (y o r z).
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But what if a candidate to be accepted needs just to pass one of the tests x, 
y or z l  In such a case we use the preconditioned or-tree from Figure 4.1b, where 
the or-node x  has the required value fa ls e . If x  has the value tru e  then the tree 
evaluates to tru e , otherwise it evaluates to o r of the values of y and z. Thus the 
tree evaluates to the value of the expression e<i =  x  o r y o r z.

Consider the negation of a preconditioned and-or tree. For the tree in Figure 4.1a 
we have -iei =  (->s) o r [(->y) and (->z)]> which is equivalent to the preconditioned 
and-tree with tests ->x, ->y and ~>z, in which the required value of the and-node ~>x is 
fa ls e . For the tree in Figure 4.1b ->e2  = (~>x) and (->y) and (~<z). This expression 
describes the preconditioned and-tree in which the required value of the and-node 
-<x is tru e . In general, we obtain the negation of a preconditioned and-or tree by 
negating the output of any test, changing each or-node to an and-node and vice 
versa, and negating the required value of each internal node.

Smith [26] presented an efficient algorithm to find an optimal strategy for pre­
conditioned or-trees (that is preconditioned and-or trees without and-nodes) if the 
required value of each or-node is tru e . We will call this algorithm SA (Smith’s 
Algorithm).

We will first describe the idea of SA, then explain the natural generalization 
of the algorithm that deals with both tru e  and f a ls e  required values of internal 
nodes in a preconditioned or-tree, and present the pseudo-code of the generalized 
algorithm.

SA operates on blocks, that is sequences of tests. Each block has to obey the 
precedence constraints in a given tree. For a block a we can calculate the expected 
cost C(a) of performing the tests from a and the resolving probability P r (a), that is 
the probability that performing the tests from a will cause the entire tree to evaluate 
to tru e . The R-ratio R(a) for a block a is defined as R(a) = Pc ^ . Notice that for 
a block that contains a single leaf test it is equivalent to our previous definition of 
R-ratio in and-or trees. A block is rooted at a test x  if it starts with x  and contains 
only tests from the subtree rooted at x.

The best block for a node, called “best strategy” in [26], is the block that maxi­
mizes the R-ratio, over all blocks rooted at this node. Consider any two tests x  and 
y  such that y  is inside the subtree rooted at x. It turns out that if the best block for 
x  contains y, then it also contains the entire best block for y, not interlaid by other 
tests. A maximal best block in a tree is the best block for some node that is not 
included in the best block for any other node. The optimal strategy for the entire 
or-tree performs one maximal best block after another, ordered by nonincreasing 
blocks’ R-ratios. An equivalent description of an optimal strategy may be used. 
Instead of constructing and storing the maximal best blocks, we can rather store 
with each test the R-ratio of the best block for this test, called the worth of the test. 
Then the best-first strategy, that is the strategy that always performs the test with 
the highest worth over all available tests, is optimal for the tree.

The best block for a node is created by starting with the block that contains 
only the single test associated with the node, and then building it up as long as we 
can improve its R-ratio. Nodes are processed from bottom up, that is any test x  is 
processed only after the best block for each node inside the subtree rooted at x  has 
been already found. As mentioned before, whenever a test is added to a block, at
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the same time the entire best block for this test needs to be added to it.
Since any tw o te s ts  axe never considered separately  after th ey  have b een  included  

in one block, a block is treated as a single meta-node. Two blocks are combined 
(one sequence added at the end of another) by merging two meta-nodes into a single 
one. At the beginning each original node is a single block. Notice that at this stage 
if there is a directed path from a block a to a block 6, then b has to be performed 
after o, but if there is no directed path between a and b then there is no restriction 
on the order of performing a and b. This property is maintained because a parent 
block a can be only merged with its child block b, by replacing a with aft, with the 
set of child nodes being the union of child nodes of a and b.

For a leaf node, the smallest, single-test block is the best block. Now consider 
an internal test x  and the block a rooted at x  that is initialized with x. We first 
recursively find the maximal best blocks for each child subtree of x. We then select 
the child block b of a with the highest R-ratio. If the R-ratio of b is not less than 
the R-ratio of a, then we combine a and b together, as described above: the new 
block will have higher R-ratio than a previously had. We repeat this process until 
no child block of a has higher R-ratio than a, at which point a is the best block for 
x  and we are left with the maximal best blocks for the subtree rooted at x.

Smith proved the correctness of the algorithm under the assumption that the 
required value of each or-node is tru e , that is that performing an internal test can 
never resolve the entire tree. But the algorithm builds a best block by combining 
nodes together and then treats it as a single meta-node. In doing so, it creates nodes 
that are internal (that is have children) but that can resolve the entire tree (because 
they result from combining internal and leaf nodes). This is the intuitive argument 
why in fact Smith’s Algorithm can deal with the presence of or-nodes with the 
required value fa ls e  (that is internal tests whose success resolves the entire tree). 
We now explain formally this generalization to arbitrary required values of or-nodes.

SA and the proof of its correctness [26] deal with blocks and are based on the 
following expressions for the expected cost C(a) and the resolving probability P r(a) 
of a block o:

For any test x  we have
C(x) = c(x), (4.1)

if a test a; is a leaf node
P r(x) = p(x), (4.2)

if a test a: is an internal node with the required value tru e

P r(x) = 0. (4.3)

Moreover if x  is an internal node with the required value tru e , a parameter L(x) is 
defined as follows:

L(x) =  p(x). (4.4)

Notice that the value of L(x) is the value of the probability that child tests of x 
became available to perform after querying x.

For a sequence a of internal tests, L(a) is defined as

L(a) =  J ]  L(x), (4.5)
x6 a 
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where the product is taken over all tests from a.
Given blocks a and 6, where b is rooted at its first test, the following expression 

calculates the expected cost and the resolving probability of the bigger block ab 
regardless of the required values of nodes:

C{ab) = C{a) + P0 (a, b)C{b), (4.6)

P r(ab) = P r(a) +  P0 (a,b)Pr(b), (4.7)

where Po(a, b) is the probability that one starts performing the block b after per­
forming a, that is that the block a fails to resolve the tree, but in such a way that 
performing b is still possible.

In the case when all internal nodes in an or-tree have the required value tru e , 
no internal node can resolve the tree, and performing b is still possible only if all 
internal nodes of a that are predecessors of the first test (thus of all tests) of b 
succeeded. Thus the expression for Po (o, b) used in [26] is

P0 (a ,b )= L (a b) ( l - P r(a-b)), (4.8)

where ab is the subsequence of internal tests of a that are predecessors of the first 
test of 6, ab is the remaining subsequence of a.

Now assume that in a tree internal nodes can have both required values. For a
block containing a single internal test x  with the required value fa ls e , the resolving
probability is p(x). Moreover, in a block ab (with b rooted at its first test) we start 
performing the block b if and only if all internal tests from a that are predecessors 
of the first test of 6, returned their required values (notice that at the same time 
it means that none of these tests resolved the tree) and the remaining subsequence 
of a did not resolve the tree. Observe that we may use exactly the same formulae 
(4.5) and (4.8) if we use the following expressions for internal or-nodes with required 
value fa lse :

if x  is an internal node with the required value fa lse :

P r(x)= p{x), (4.9)

L{x) = l - p ( x ) .  (4.10)

Thus if in addition to formulae (4.1) and (4.2) we use (4.3) and (4.4) for the 
or-nodes with the required value tru e  and (4.9) and (4.10) for the or-nodes with 
the required value fa ls e , we obtain correct values of the expected cost and the re­
solving probability for single-test blocks and the same expressions to calculate these 
parameters for bigger blocks as the ones on which SA and the proof of its correctness 
rely, namely (4.5), (4.8), (4.6) and (4.7).

Smith’s Algorithm for preconditioned or-trees is presented in Figure 4.2. The 
procedure Create_Blocks(a;) builds maximal best blocks for a tree rooted at test x-, 
the procedure Combine(*,y) combines blocks x  and y into one block xy. Instead of 
using (4.8) directly to calculate Po(a, b), we rather keep for each block b the value 
Po(b) = P0 (a,b), where a is the node (block) that is the current parent of b. Notice 
that this is all we need since we add a block b at the end of a only in the case when 
a is the parent of b. If the parent a is a single test x  then Po(x, b) = L(x). If a is 
being combined with other block c, we update Po(b) using the following expressions:
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SA(preconditioned or tree T)
(1) Create_Blocks(root test of T)
(2) Order maximal best blocks from T  by nonincreasing R()

Create_Blocks(test x )
(1) C(x) := c(x)
( 2 )  I f  x  i s  a le a f
( 3 )  P r(x):= p(x)
(4) R(x) := 5 $
(5) Else

. f 0 if required value of x is true
(6) P r(x) := \  x H

( p(a;j i f  req u ired  value of x  i s  f a ls e
( 7 )  R(x) :=  4$
(8) For each child y of x

„ . , f p(x) if required value of x  is true
(9) PQ(y) := < .

( p(a;) i f  req u ired  value of x  i s  f a ls e
( 1 0 )  Create_Blocks(y)
( 1 1 ) End For
( 1 2 )  While x  has ch ild  blocks
( 1 3 ) Find child yi>est of x  with maximum R()
( 1 4 )  I f  R (y best) < R{x) Then Go To (1 7 )

( 1 5 )  Combine (x.ybest)
( 1 6 ) End While
( 1 7 )  End Else

Combine (block z,block y)
(1) P r(x ) := P r(x )+ P 0 (y)Pr(y)
(2) C(x) := C(x) + P0 (y)C(y)
(3) R(x) :=
(4) For each child y' of x  other than y
(5) P0 (y '):= P 0 (y,) ( l - P r(y))
(6) End For
(7) For each child z  of y
(8) Pq{z) := P0(y)Po(z)
(9) End For

(10) x  := xy
(11) Add all children of y to the set of children of x
(12) Discard y

Figure 4.2: Smith’s Algorithm (SA).
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if block a is being added at the end of c, which means that in the current tree a is 
a child of c, we have

P0 (ca, b) =  L((ca)b) [1 -  P r ((ca)5)J =  L(ca)L(ab) [1 -  P r (c5)] [1 -  P r (a5)] =
= P0 (c,a)P0 (a,b), (4.11)

whereas if block c is being added at the end of a, it means that in the current tree 
block c is a child of a, thus a sibling of b, therefore

P„(ac, b) =  H(ac)t ) [1 -  J>, ((oc)i)] =  £(«*) [1 -  P > s)] [1 -  Pr(c)] =
= P0(a,6)[l-F-(c)]. (4.12)

Observe that if each or-node from a tree has either the required value fa ls e , 
or the probability of success 1, then for any block b rooted at its first test and the 
parent block a of b we have Po(a, b) =  1 -  P r{a). Therefore in such a case we do 
not need to store Po(b).

Let n  be the number of all tests (nodes) in the tree. Notice that except for the 
initialization of blocks which is performed n times, SA combines blocks at most n 
times. Each combining two blocks requires time linear in the number of child nodes 
of the combined blocks, so the worst case complexity of SA is 0 (n 2).

a)

p=0.5

b)
f w j  R = 0

C x )  R = 0 .4  

R = 0 .5  ( y j  C z j  R = 0 .2

Figure 4.3: An example of using Smith’s Algorithm, a) An algorithm’s input: 
preconditioned or-tree Tp. All tests have unit cost, b) The initial blocks built by 
SA. c) The blocks after combining blocks x  and y together, c) The blocks after 
combining blocks w and xy  together. These blocks are maximal best blocks for T.

We will now discuss a simple example of using SA. The input preconditioned or- 
tree Tp is given in Figure 4.3a. Firstly after the initialization of blocks the structure 
of blocks is given in Figure 4.3b. Since all tests have cost one, so all blocks have
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cost one as well. The other parameters of the blocks have the values shown in Table 
4.1.

P r(w) =  0 
P r(x) = p(x) = 0.4 
P  (y) = p (y ) = 0 .5  
P r(z) = p (z ) =  0.2

R(w) = 0 
R( x) =  0.4 
R(y) = 0.5 
R(z) = 0.2

P0 (x) =p(w) = 1
Po(y) = p(x) = 0.6
Pp(z) =p{x) =  0.6

Table 4.1: Parameters of initial blocks shown in Figure 4.3.

Blocks z  and y  do not have any children. Now we process the block x. Among 
its child blocks, y has the highest R-ratio and R(y) > R(x). So we combine blocks 
x  and y together. The resulting blocks are shown in Figure 4.3c. The following 
parameters change:

P r{xy) =  P r(x) + P0 {y)Pr{y) =  0.4 +  0.6 • 0.5 =  0.7,
C(xy) = C(x) + P0 (y) ■ C(y) = 1 +  0.6 • 1 =  1.6,

R{xy)  = % £ $  = a4375'
P0 (z) = P0 (z) (1 -  P r(y)) =  0.6 • 0.5 =  0.3. (4.13)

The only child of the block xy  is the block z and it has less R-ratio than xy  has. 
Thus now we process the block w. This block has only one child xy  whose R-ratio 
is higher than R(w). Thus we combine w and xy  and in this way obtain the blocks 
shown in Figure 4.3d. Notice that, according to the algorithm, Po(xy) = Pq(x ). 
The following expressions describe parameters update:

P r(wxy) = P r(w) +  P0 (xy)Pr(xy) = 0 +  1 • 0.7 =  0.7,
C(wxy) = C(w) + Po{xy) • C(xy) =  1 +  1 • 1.6 =  2.6,

= w  = ̂ a2692'
P0 (z) = P0 (xy)P0 (z) -  1 • 0.3 =  0.3. (4.14)

Since R{z) < R(wxy), z and wxy are the maximal best blocks of T. By order­
ing them according to nonincreasing R-ratios we obtain the optimal strategy for T: 
wxyz.

As discussed at the beginning of this section, a preconditioned and-tree is equiv­
alent, up to the negation of its value, to some preconditioned or-tree, namely the 
tree obtained by changing every and-node into or-node, negating output of every 
test and negating the required value for each internal node. In a preconditioned 
and-or tree the resolving probability is the probability that the entire tree evalu­
ates to fa ls e . From this it follows that the obvious modification in lines (3) and
(6) of the Create_Blocks procedure allow us to use the algorithm for preconditioned 
and-trees.

The alternation number of a path in an and-or tree is the number of arcs of the 
path whose ends are internal nodes with different (or/and) labels. The alternation
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number of a tree is the maximum alternation number of a path over all root-to-leaf 
paths in the tree. For a strictly alternating and-or tree the alternation number 
is equal to the tree’s depth minus one. We call a preconditioned and-or tree a 
k-alternation tree if its alternation number is k.

Using the above definition, we may summarize the main result of the section 
that SA finds an optimal strategy for O-alternation preconditioned and-or trees.

To end this section let us discuss a feature of the optimal strategy produced by 
SA that we will use in the next section. Consider an internal test x  and let W  be 
the set of all maximal best blocks from all child subtrees of x. Because any maximal 
best block has higher R-ratio than any of its child maximal best blocks (otherwise 
it would be combined with the best child block), so the best block for x  is grown by 
combining it with maximal best blocks from W  in the order of their nonincreasing 
R-ratio until all remaining blocks from W  have lower R-ratio than the current block 
for x. Now assume that x  is the root test of the entire tree. Observe that in this 
case it does not really matter whether we create the best block for x  or not, because 
after building the best block for x, all remaining blocks from W  are added at its end 
in the order of their nonincreasing R-ratios, to create the entire strategy. Therefore 
we can use the following description of the optimal strategy calculated by SA: given 
a set W  of all maximal best blocks for all child subtrees of the root test a; of a tree, 
the optimal strategy first perform the root test x and then, if the tree is not resolved 
yet, performs the blocks from W , ordered by their nonincreasing R-ratios.

4.2 1-Alternation And-Or Trees

We will present an extension of SA that finds an optimal strategy for some 1- 
alternation preconditioned and-or trees.

Let T  be a 1-alternation preconditioned and-or tree and let A be a subtree of T. 
A is a maximal pure included subtree if A is O-alternation subtree, is not a leaf node, 
and the parent node of the root of A has different label (or/and) than the internal 
nodes of A. If a maximal pure included subtree is an or-subtree (respectively and- 
subtree), we call the subtree a maximal or-subtree (respectively and-subtree).

We call an internal node degenerate if it is associated with a test with cost 0, 
success probability 1 and required value tru e . Observe that and-or trees are pre­
conditioned and-or trees whose internal nodes are all degenerate. Also, once a test 
associated with an internal node has returned its required value, the node becomes 
degenerate.

The following algorithm, proposed in [12] is called DFA*: in a 1-alternation pre­
conditioned and-or tree T, first run SA on each maximal pure included subtree of 
T. Then replace each maximal pure included subtree A by a leaf meta-test, whose 
cost is equal to the expected cost of the calculated strategy for A and whose success 
probability is equal to the probability that A evaluates to tru e . Given maximal 
best blocks for A found by SA, the expected cost and the resolution probability of 
the entire strategy can be easily calculated in the same way as SA calculates them 
for combined blocks; the resolution probability of the entire strategy is equal to the 
probability that the tree evaluates to tru e , if it is an or-tree, and to the probability
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that the tree evaluates to fa ls e , if it is an and-tree. After such a replacement, 
the tree is O-alternation: use SA again to find an optimal strategy for it. In the 
resulting strategy we understand that any meta-test denotes the sequence of tests 
for the corresponding original subtree.

We call a strategy S  contiguous on a subtree T ' if on any root-to-leaf path of 
S, whenever a test from T ' is performed, no test from outside T ' is performed until 
the value of T ' is determined. Since SA calculates an optimal strategy for any 0- 
alternation tree, so DFA* produces an optimal strategy for a 1-alternation tree T  if 
and only if there exists an optimal strategy for T  that is contiguous on any maximal 
pure included subtree of T. Unfortunately this is not true for all 1-alternation trees, 
as we shall discuss at the end of this section, but there are trees for which this 
condition hold. The following theorem specifies such trees.

T heorem  36 DFA* produces an optimal strategy for a 1-alternation preconditioned 
and-or tree T  if for each maximal pure included subtree A  of T  one of the following 
conditions is fulfilled:

i) A  is depth one and rooted at a degenerate internal node, or

ii) the required value of each internal node of A  is tru e  if T  is o r -rooted, or 
f a ls e  if  T  is and-rooted.

Proof: Assume that T  is an or-rooted preconditioned and-or tree fulfilling the 
conditions of the theorem. The proof for the other case is symmetric.

If a test from a maximal and subtree in T  fails, the entire subtree evaluates to 
fa ls e . A strategy S  is not contiguous on some maximal and-subtrees if and only if 
there is at least one node v of S  such that v is labeled by a test from a maximal and- 
subtree A , the substrategy followed when this test is tru e  starts with performing a 
test not in A, but contains at least one node labeled by a test from A. We will call 
such a node v a violating node of a subtree.

Let S  be an optimal strategy for T. Let k be the number of violating nodes of 
S. We will show that there is an optimal strategy for T  that is contiguous on any 
maximal and subtree (from which the theorem follows). The proof is by induction 
on k. The base case when k =  0 is trivial. Now assume that the statement holds if 
k < K , for some K  > 1, and let S  contain K  violating nodes.

Let v be a violating node of S  such that both child substrategies of v do not 
contain any violating node (there is at least one such node). Let S' be the strategy 
rooted at v and let T ' be the corresponding reduced tree, evaluated by S'. Let x 
be the test that labels v and let A  be the maximal and-subtree of T ' that contains 
test x. Let T'+, T'_ be the reduced trees obtained from T ' when x  is tru e , f a ls e  
respectively and let S'+, S'_ be the substrategies of S' followed when x is tru e , f a ls e  
respectively.

If T ' contains any and-subtree other than A, then it is evaluated as one meta-test 
by both and S'_. Thus we may replace any such subtree by a single meta-test, 
in other words we may assume that A  is the only and-subtree of T'.

A test from a preconditioned and-or tree is available to perform if it is a root 
test, or if all internal nodes on the path from the root of the tree to the test are 
degenerate. We can collapse any degenerate node that is a child of a node with the
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Figure 4.4: An illustration for the proof of Theorem 36; the substrategy S'.

same label (and/or), thus a test from a tree can be perform only if it is the root 
test or there is a path of degenerate internal nodes from the root of the tree to the 
parent node of the test strictly alternating between and-nodes and or-nodes.

Therefore in T ' test x  is either a root of A or a child of the root of A, and the 
root of A is a child of the root of T'. If x  is fa lse , the entire subtree A, and only 
it, disappears. Let A+ be the reduced subtree obtained from A+ when x  is tru e . 
Notice that S'+ evaluates A+ as one meta-test. Thus we can treat A+ as a one node, 
observe that it is a leaf child of the root of T'+.

We may assume that S'+ and S'_ are obtained by running SA on t ;  and T'_ 
respectively (because if they are not, they may be replaced by such optimal strate­
gies). Let W+ and W -  be the sets of all maximal best blocks for all child subtrees 
of the root of T'+ and T!_ respectively. S'+ (respectively S'_) first performs the de­
generate root test and then preforms blocks from W+ (respectively W -)  in order of 
their R-ratio. Since A+ is a single leaf child of the root, so it is a separate maximal 
best block in W+. All other subtrees of the root are the same for both n and T'_, 
so W+ =  W -  U {A+}. Let 61,62 > • • • > k , I > 1 be all maximal best blocks from W+ 
performed (in this order) by S'+ before A+, and d\, di, ■ ■ ■, dm, m  > 0 be all (if any) 
maximal best blocks performed (in this order) by S'+ after A+. This means that S'_ 
performs maximal blocks 61, f>2> • • • > h, d\, di, ■ ■ ■, dm, in this order. S' is shown on 
Figure 4.4.

Let b be the block consisting of 61,621 • • •, h. Since A4. is a child of the root 
test, so it does not depend on any internal test from the block 6; A+ is performed 
if b does not resolve the tree. For any 1 < i < m  let Po(d{) be the probability that 
b, di, d2 , . . . ,  d i-i fail to resolve the tree but in such a way that performing di is still 
possible. Thus we have the following expression for the expected cost of the strategy 
S':

C{S') = c(x) +  

+p(a;)

+p(z)

C(b) + (1 -  Pr(b))C(A+) +  (1 -  P r (A+)) £ p 0(di)C(di)
i= 1

+

C(b) + '£ P o (d i)C(di)
<=i

=  c(x) + C(b) + p(x)( 1 -  P r (6))C(A+) +
m

+  [pOc)(1 -  ^ r (Af)) +P(*)] Y ^P o id iM d i). (4.15)
i = l

Now let S'* be the linear strategy consisting of blocks b, x, A+ , d\, d2 , . . . ,  dm in this 
order. Test x  also does not depend on any internal node from b. Thus the expected
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cost of S'* is given by

C(S**) =  C{b) +  (1 -  P rib))c{x) +  (1 -  P r(b))p(x)C(A+) +
m

+ [p(x) + p (a )( l -  P r (A+))] J 2 p o(di)C(di) =
i = i

=  C { S ') - P r (b)c(x) <
< C{S'). (4.16)

Since S' is optimal for T', thus so is S'*. We can replace the substrategy S' in 
the optimal strategy S  by S'*. But there is no violating node in S'*, so after this 
replacement S  has K  — 1 violating nodes, so by the inductive assumption there is 
an optimal strategy for T  that is contiguous on any maximal and-subtree. □

If a 1-alternation tree is and-rooted and some or-nodes have the required value 
tru e  or, equivalently, it is or-rooted and some and-nodes have the required value 
fa ls e , the strategy produced by DFA* is not necessary optimal. Figure 4.5 presents 
an and-rooted tree, for which the unique optimal strategy is not contiguous on the 
maximal or-subtree.

a) b)

p=0.8

p=0.1

p=0.9 p=0.9

N=>

Figure 4.5: a) A 1-alternation and-rooted preconditioned and-or tree Tp. The 
required value of each internal node is tru e . All tests have unit costs, b) The 
unique optimal strategy for the tree Tp. This strategy is not contiguous on the 
maximal or-subtree.

While DFA* may also produce an suboptimal strategy for a tree that contains a 
depth one maximal pure included subtree rooted at a non-degenerate node, we can 
use a simple procedure to transform any depth one maximal pure included subtree 
into a depth one maximal pure included subtree rooted at a degenerate node. Let 
A be a depth one m a x im a l pure included subtree of a 1-alternation tree T  and let 
x  be the test associated with the root of A.

Let L\ be the label (and/or) of the root of T  and let L 2  be the (different) 
label of the root of A. Now consider the following subtree A': the root v of A’ 
is associated with test x  but has label L\. The root v has only one child node w 
which is a degenerate node with label L 2. The leaf nodes of A  are the child nodes of 
w. Figure 4.6 illustrates the subtrees A  and A'. Subtrees A  and A' are equivalent. 
If we replace A  by A' in the tree T, then instead of a depth one maximal pure
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c=0

Figure 4.6: Two equivalent preconditioned and-or trees A  and A'. The root of A  is 
an or-node associated with a test x. The root of A' is an and-node associated with 
the test x, A' contains a depth one or-subtree rooted at a degenerate node.

included subtree rooted at a non-degenerate node, we have a depth one maximal 
pure included subtree with a degenerate root node.

Therefore, if all maximal pure included subtrees with depth greater than one 
fulfill the condition (ii) of Theorem 36, then after processing all depth one maximal 
pure included subtrees in a tree as described above we obtain a tree for which DFA* 
computes an optimal strategy. The processing takes constant time for every such 
subtree.
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Chapter 5

Conclusion

The problem of finding an optimal strategy for an arbitrary and-or tree remains 
open. In this thesis we showed that for tests that are child nodes of the same internal 
node, there exists a relative order of performing the tests by an optimal strategy 
that does not depend on the other parts of the tree. Moreover, some of such sibling 
tests are always performed together. These findings led to the design of the Dynamic 
Programming Algorithm (DPA) to find an optimal strategy for and-or trees which 
runs in time 0 (d2nd), where n is the number of tests in the tree and d is the number 
of internal nodes that are leaf-parents. For and-or trees with a bounded number of 
internal nodes this time is clearly polynomial in the trees’ size. We also showed that 
the known efficient algorithm DFA produces an optimal strategy for depth three 
and-or trees whose all tests are identical (have the same cost and probability of 
success). For other type of trees with identical tests: parameter-uniform ladders, an 
optimal strategy also can be found in a simple, efficient way. On the other hand, 
we showed that the probabilistic and-or tree resolution for trees whose all tests 
have the same cost, but may have different success probability, can be used as an 
approximation of the problem with arbitrary costs.

We also studied a subclass of probabilistic Boolean expressions with precedence 
constraints imposed on the set of tests, called preconditioned and-or trees. We 
showed that an extension of Smith’s Algorithm produces an optimal strategy for 
some type of such expressions.

We hope that the optimal order of performing sibling tests we described may 
be helpful in designing a polynomial-time algorithm to solve the problem, either for 
general and-or trees or at least for further subclasses (for example for depth three 
and-or trees). Such an algorithm does not necessary have to construct the entire 
strategy at once (as DPA or DFA does); it would be sufficient to show how to find in 
polynomial time the first test to be performed, as we can simply reduce the original 
tree, given the value of the first test and recurse.

If it turns out that PAOTR is AP-hard, then it would be of interest to find 
an approximation algorithm. The present known algorithms cannot be used in this 
way: DPA does not run in polynomial time for general and-or trees, whereas the 
strategy produced by DFA may be arbitrarily worse than the optimal one for some 
trees.

In the thesis we showed how to find an optimal strategy for two types of parameter-
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uniform trees. It is interesting whether PAOTR for parameter-uniform trees is sim­
pler than the general problem; whether the algorithm to find an optimal strategy 
for and-or trees with identical tests can be designed.

Preconditioned and-or trees generalize and-or trees. We showed how to find 
an optimal strategy for a subset of 1-alternation preconditioned and-or trees; the 
important first step on the way to solving the general problem would be to discover 
an algorithm for an arbitrary 1-alternation tree.
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