
EMSE manuscript No.
(will be inserted by the editor)

Preventing Duplicate Bug Reports by Continuously

Querying Bug Reports

Abram Hindle · Curtis Onuczko

Received: date / Accepted: date

Abstract Bug deduplication or duplicate bug report detection is a hot topic
in software engineering information retrieval research, but it is often not de-
ployed. Typically to de-duplicate bug reports developers rely upon the search
capabilities of the bug report software they employ, such as Bugzilla, Jira, or
Github Issues. These search capabilities range from simple SQL string search
to IR-based word indexing methods employed by search engines. Yet too often
these searches do very little to stop the creation of duplicate bug reports. Some
bug trackers have more than 10% of their bug reports marked as duplicate.
Perhaps these bug tracker search engines are not enough? In this paper we
propose a method of attempting to prevent duplicate bug reports before they
start: continuously querying. That is as the bug reporter types in their bug
report their text is used to query the bug database to find duplicate or related
bug reports. This continuously querying bug reports allows the reporter to be
alerted to duplicate bug reports as they report the bug, rather than formulat-
ing queries to find the duplicate bug report. Thus this work ushers in a new
way of evaluating bug report deduplication techniques, as well as a new kind
of bug deduplication task. We show that simple IR measures can address this
problem but also that further research is needed to refine this novel process
that is integrate-able into modern bug report systems.

Abram Hindle
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada
E-mail: hindle1@ualberta.ca

Curtis Onuczko
BioWare ULC
Edmonton, Alberta, Canada
E-mail: curtiso@bioware.com

2 Abram Hindle, Curtis Onuczko

Keywords Duplicate bug reports · issue reports · deduplication · information
retrieval · just in time · Continuously Querying Bug Reports · Continuous
Query

1 Introduction

When software stops working the end-user is often asked to report on their
experience and describe the problem they encountered to the software de-
velopers. These reports become issue tickets or bug reports and are stored
in issue trackers and bug trackers. If two users, whether they are QA, de-
velopers, testers, or end-users, experience the same problem and report it,
their bug reports are referred to as duplicate bug reports. This happens fre-
quently for numerous reasons: users do not search for duplicate reports, users
do not understand duplicate reports, users could not find the duplicate report,
etc. [7, 28] End-users do not necessarily share the same mindset, terminology,
architectural expertise, software expertise, and vocabulary as the developers
of a product. Nor do end-users share the same knowledge of software develop-
ment and the common software development processes. Thus duplicate bugs
happen and they happen frequently.

Duplicate bug reports are a problem for developers, triagers, and QA per-
sonnel because they induce more work [7, 28]. If a developer addresses 2 bug
reports that report the same issue, they might find that they have wasted their
own time searching for a bug that has already been fixed. Triagers have the
same problem, they often must look for duplicate reports in an effort to close
or link related bug reports.

Most users try to prevent duplicate bug reports by searching for existing
bug reports first via keyword querying. This functionality exists in most bug
trackers, such as Bugzilla, github issues, and JIRA. Search via keyword query-
ing is very different than querying by example [19]. Most literature queries
duplicate bug reports by example: they use the whole documents as their
search query [4, 19, 37, 42]. Thus the method used for duplicate bug report
detection is typically not the method that users employ.

Fundamentally, users search for duplicate bug reports before their bug
report exists – once they make a duplicate bug report they have made a
problem for triagers and developers.

Thus as a research community are we addressing duplicate bug reports ap-

propriately? Shouldn’t we be addressing how to prevent duplicate bug reports
instead of how to cluster already existing duplicate bug reports? We argue in
this paper that duplicate bug reports should be prevented before they start.

We approach preventing duplicate reports by recognizing that querying
often fails. If the user already searched for duplicate bug reports and did not
find them, they will start writing a bug report. Since current research already
uses documents as queries why don’t we use the document that the user is
writing as the query. Furthermore as the user writes more words let us keep
querying and trying to find duplicate bug reports based on the text of the bug

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 3

Fig. 1 Continuously Querying UI example whereby a user is typing in a bug report and the
query results appear on the sidebar of the bug report input widget. The duplicate report
that was queried is highlighted for the reader—the user interface would not this was the
duplicate know but could use similarity scores to hide, show, or highlight certain results.

report they have already started writing. Thus we want to stop duplicate bug
reports, before they start, by using the inchoate or in-progress bug report as
numerous queries against the bug tracker. We call this Continuously Querying

Bug Reports, or Continuously Querying for short. This means that we provide
suggestions of duplicate bug reports as the user is writing their bug report.
This enables the user to stop at any time when they see a suggestion of a
likely duplicate bug report. This solution is more query intensive as we have
to query the bug tracker for every few words typed, but we show statistically
that one can find duplicate bug reports quite quickly within the first 5 to 12
words of a bug report on average assuming a duplicate exists (see averages in
Tables 2, 4, and 3).

A continuously querying implementation for an end-user could be a sidebar
of suggested duplicate bug reports that pop up as the user types in their bug
report. As each word typed in, the bug tracker is queried. If the user sees an
interesting bug report they can interrupt inputting their current report and go
investigate one of these suggestions to see if someone has already reported their
problem. Figure 1 provides a visual example. This means that continuously
querying evaluation seeks duplicates sooner with fewer words than later.

In this paper:

– We propose Continuously Querying Bug Reports with Continuously Query-

ing ;
– We statistically evaluate the feasibility of the approach;
– We provide and share a large dataset to evaluate feasibility;
– We discuss and propose a variety of evaluation measures.

4 Abram Hindle, Curtis Onuczko

Fig. 2 Google Suggest suggesting possible query completions.

2 Prior Work

Prior work relevant to continuously querying bug reports includes information
retrieval, code recommenders, and studies and tools for duplicate bug report
detection and bug report deduplication.

2.1 Information Retrieval

Information Retrieval (IR) is the attempt to query for information, often un-
structured text, from a repository of documents. The Google Suggest API [12]
suggests auto-completions for search query terms. As we type in a search
query it queries the Google Suggest API and provides possible query sugges-
tions. Figure 2 depicts a screen-shot of Google Suggest API in action. Google
suggest allows us to navigate to specialize queries that are more appropriate
for our needs. The same can be done for bug reports.

Panichella et al. [22] describe using genetic algorithms to optimize and tune
the choice of IR techniques and models to fit the task at hand. They employ
LSI for software traceability tasks but the general idea of parameterizing the
IR model is quite relevant to this work.

A common model used in information retrieval is TF-IDF: term frequency
multiplied by inverse document frequency. This produces a vector of normal-
ized word counts by “interestingness” in terms of how rare a word is. Cosine
distance is the angle distance between two vectors and is a common distance
function used to compare documents because it normalizes word counts and
vectors by size. In Panichella et al. [22] they found many of their optimal con-
figurations used the TF-IDF vector space model (VSM) and cosine distance.
Much like TF-IDF and cosine distance, Sun et al. [36] exploited BM25 and
BM25F for query result scoring and ranking. VSM and different configurations
of TF-IDF have been explored in bug localization by Wang et al. [41] to find
impacted files.

Continuously Querying is a naive kind of query reformulation as described
by Sonia Haiduc [13]. Essentially the lack of query reformulation with in bug
trackers makes Continuously Querying necessary. Query reformulation can be
combined with Continuously Querying by trying to form a better query from
the current in-progress bug report words.

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 5

2.2 Bug Report Deduplication

Bug report deduplication, also known as duplicate bug report detection, has
been a hot-topic in software engineering research. Bug report deduplication is
the querying of similar bug reports in order to cluster and group bug reports
that report the same issue. Common tools in bug report deduplication are
NLP [33], machine-learning [4, 7, 18, 37], information retrieval [36, 38], topic
analysis [3,4,17], and deep learning [11]. Duplicates also appear in other soft-
ware artifacts, as Zhang et al. [44] have applied typical bug-deduplication
technology to StackOverflow duplicate question detection. Sabor et al. [34]
discuss DURFEX and method of extracting features from bug reports with a
focus on stack traces and reducing the vocabulary or number of features from
a stack report. By smart extraction of features from stack traces and bug re-
port fields they achieve good deduplication performance for bug reports with
stack traces. Similar ideas of applying IR techniques been have to executed
on stack traces from crash repositories [8]. Deshmukh et al. [11] applied deep
learning techniques to create a function that compares bug reports in order
to find duplicate bug reports. They achieved good performance in terms of
accuracy and recall.

Thung et al. [40] have published about a bug report deduplication tool
that provides duplicate bug report suggestions based on a vector space model.
Rocha et al. [32] discuss a similar tool. Rakha et al. [28] discuss the effort
it takes to address duplicate bug reports, firstly implying there is a cost to
duplicate bug reports, but not all duplicates are equal, some are quite trivial.

The closest related work to this work is by Rakha et al. [27], who discuss
another kind of pre-submission bug deduplication used with modern Mozilla
bugzilla trackers called Just In Time (JIT) duplicate retrieval. This differs
from continuously querying in the sense that once the document is mostly
written it is used to query for similar bug reports already committed. Rakha
et al. [26] also discuss similar issues of time of bug reports in evaluation and
appropriate evaluation of duplicate bug reports.

Generally for the majority of these tools, studies, and cases the bug reports
are assumed to have already been written and submitted to the bug tracker
for a bug triager to triage.

2.3 Continuous Query in Database Systems

In database systems research continuous query often refers to the property of
streaming databases [10] whereby a a set of queries is posed and the result set
of each query continuously changes as new data is added to or modified in the
database [5,9,35]. Many of these system use terms such as real-time which can
refer to hard real-time constraints or providing answers quickly [16]. This is
different than the proposed continuously querying method which queries the
database of bug reports numerous times with different queries about the same
problem as the document is typed in.

6 Abram Hindle, Curtis Onuczko

Continuously Querying Bug Reports could be viewed as a modification of
Real-Time Query Expansion without the expansion part as the focus is on
finding documents, not queries [43].

We try to avoid confusing by calling our method continuously querying or
continuously querying bug reports rather than continuous query.

2.4 Code Recommenders

Recommender systems are a relevant topics to continuously querying bug re-
ports. Ponzanelli et al. [23, 24] describe systems that provide StackOverflow
help as the user types in source-code, using the user’s source code as the query.
This is much like the proposed continuously querying except far more elabo-
rate, as they do much query preprocessing for source code. Asaduzzaman et
al. [6] describe a system of contextual code completion which uses the current
document as a query as well. The difference between these recommenders and
continuously querying is more so the domain, continuously querying is initially
envisioned for bug reports.

3 Continuously Querying Bug Reports

Continuously Querying Bug Reports, or Continuously Querying for short, is
the attempt to continuously query relevant documents during the creation of
a document—as the document is being created. The intent of Continuously
Querying Bug Reports is to alert users as they create a bug report that there
are other potential duplicate bug reports already in existence. A user who
notices their bug report is a duplicate should abandon their bug report and
join the duplicate report found through Continuously Querying.

The process of continuously querying bug reports is demonstrated by ex-
ample in Figure 1 whereby as each new word is added to the bug report a new
query is made. Figure 1 shows a prototypical example of a UI for a continu-
ously querying implementation. It provides new suggestions based on each new
term typed in. The query results are returned and displayed to the user near
the bug report text entry widget. The user can then decide whether or not
to investigate any of these potentially duplicate bug reports. Upon each word
entry a new query is made and this list is updated. In Figure 1 and Figure 3
it takes until query 4 , “local variable in procedure”, to find a duplicate bug
report that is returned at rank 3. By the 24th and 25th word, in Figure 3, 2
potential duplicates have shown up in the TOP 3 suggestions. Thus a contin-
uously querying implementation for the user works as follows: For each word
you type into a bug report, up until a threshold, the continuously querying
implementation will query the bug tracker for bug reports similar to the bug
report you are making, displaying the ranked results near your input.

This is different than the Google Suggest API [12], which is used to sug-
gest search queries as the user types a search query. “Google Suggest” for

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 7

title: "local variable in procedure with result block"

description: "It would be usefull to have locale variable de�nition in procedure ... to bug"

Query(Transform("local"))

Query(Transform("local variable"))

Query(Transform("local variable in"))

Query(Transform("local variable in procedure"))

� � � � � ... �

� � � � � ... �

� � � � � ... �

� � � � � ... �

 � � �

 � � �

 � � �

 � � �

Queries
Returned

Documents Top1 Top5 Top10

Per Query Evaluation

Query(Transform("local variable in ... to"))

Query(Transform("local variable in ... to bug"))

......

� � � � � ... �

� � � � � ... �

 � � �

 � � �

...
� �

��

�

��

�� � � �

1

2

3

4

24

25

Fig. 3 Example of Continuously Querying Queries and Continuously Querying Bug Reports
on a single bug report. A bug report is sequentially, word by word, to produce ever larger
queries intent on finding similar bug reports, as the user types in the bug report.

bug trackers would be to complete common bug tracker search queries or per-
haps to help complete text being typed into the bug report submission form.
Thus the Google Suggest API provides suggestions for queries as you type, a
continuously querying implementation evaluates your input text as the query

as you type. Continuously Querying Implementation do not “code complete”
or “word complete” your bug report, instead they uses your in-progress bug
report as a query to find similar bug reports.

This Google Suggest method [12], employed by continuously querying, is
also employed in software engineering works such as the StackOverflow Code
Snippet querier by Ponzanelli et al. [23,24] that continuously queries of Stack-
Overflow for example source code snippets, and contextual code completion
by Asaduzzaman et al. [6] that uses the entire live document as a query for
code completion.

Continuously Querying is different than classical IR document querying
because it asks many queries for 1 document against a corpus. Therefore former
measures of effectiveness such as mean reciprocal rank (MRR), mean average

precision MAP, or even accuracy have trouble dealing with these numerous
queries per document.

3.1 Continuously Querying Bug Reports Clarified

In this paper Continuously Querying refers to Continuously Querying Bug

Reports while writing a bug report. Continuously Querying Implementation

refers to implemented continuously querying systems, such as DüpeBuster, or
our gensim continuously querying implementation. Continuously Querying Al-

gorithm refers to a method that could be implemented in a continuously query-

ing implementation. Continuously Querying Query refers to a single query in
a set of queries that are generated continuously via a Continuously Query-

ing Queries refers to the set of each continuously querying query necessary to

8 Abram Hindle, Curtis Onuczko

search for a document. Continuously Querying is the act of using a continu-

ously querying implementation to make continuously querying queries.

3.2 Evaluation Methodology

How do we evaluate the effectiveness of continuously querying implementation?
We type in a bug report and look to see how soon duplicate bug reports appear.

Expected evaluation takes a duplicate of a bug report and produces a series
of queries containing more and more words from the duplicate bug report until
a maximum threshold has been met. Given an example bug report of, “This is
a bug report”, queries of “This”, “This is”, “This is a”, “This is a bug”, “This
is a bug report” will be made. Figure 3 provides an example of the progression
of these queries. A good Continuously Querying Algorithm shows duplicate
bug reports sooner in terms of time and rank.

There are three main contexts of evaluation: time agnostic validation; con-
tinuous training where bug reports are added one after another; and historical
splits validation. Each of these evaluation schemes will train models with bug
reports and test these models with duplicate bug reports, typed in 1 word at
a time until a threshold number of words (25 words as explained in Section
3.3) is met.

The first context, time agnostic validation, is when one queries an entire
collection of bug reports with an existing bug report. When the repository
is queried, the bug report being queried is excluded from the results and its
duplicates are sought. This context ignores time. The assumption is that a
corpus exists and that the creation time of a document or its duplicates is
irrelevant. This context is unrealistic but enables cross-fold validation and
due to a lack of empirical data (duplicate bug reports) this often is the most
pragmatic method of evaluation. Cross-folds also have the problem of not
having relevant duplicate reports in the training/query set to find. This context
has a fundamental threat to validity that by training on future bug reports
we are relying upon time travel to build a model. This context is referred to
as “classical evaluation” by Rahka et al. [26]. This context also is inaccurate,
Rahka et al. [26] claim this kind of evaluation boosts performance measures
unrealistically by 17 to 42%. An example of time agnostic evaluation is the
work of Deshmukh et al. [11] where the vocabulary for the deep neural network
is extracted from all of the bug reports across time, rather than from the
training set itself.

The second context, continuous training, is that of evaluation in order of
time. This context is quite realistic as it models the slow build up of a bug
report repository. Each bug is committed and trained upon in order, and if
that bug report is a duplicate report then it is used for evaluation immediately
and then trained upon. Unfortunately to evaluate this model we need to train
the model with the past up to the bug report being queried. This means for
a system with 1000 duplicate bug reports we need to train 1000 models –
compared with 10-fold cross validation, this is 100-times more models. This

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 9

context is unfair to models that can have expensive retraining, such as those
that employ Latent Dirchlet Allocation (LDA) or Latent Semantic Indexing

(LSI).
The third context, historical split validation, chooses N pivot bug reports

where the report and its past will form the training set while any report
after than report will form the evaluation set. This is different than cross-
fold validation because the training set size and evaluation set size will vary
depending on the the bug report being used as the pivot. So the last pivot
will have a large training set and a small test set, and the first pivot will
have a large test set and a small training set. The pivots are meant to equally
partition the sequence of bug reports. This can produce cases where there are
0 duplicate bug reports in the test set. This addresses the unrealistic time-
traveling concerns of the time agnostic first context. It is worse for realism
than the second continuous training context, but it requires less models and
training to produce an evaluation. Given N = 100 and 1000 duplicate bug
reports, only 100 models have to be made rather than 1000 models in the
continuous case. Since the splits are time-ordered there is no time traveling
while training.

A forth context was implemented by Rahka et al. [26] is like the third
context except to take a constant N duplicate bug reports out to tune the
model at that point. So instead of a train and test split, they employ a train
partition, a tuning partition of constant N size, and a test partition.

In this paper we use the third context, historical split validation. The other
contexts can be used for valid evaluations but they might limit reproducibility
or applicability of the results. The first context’s lack of time awareness is a
potential threat to validity so the results might not be relevant to real world
performance. The second context’s continuous updating works fine for models
that train quickly or are updated quickly but if they rely on a heavier technique
that needs to evaluate all the bug reports again usingO(n) or worse algorithms,
like LSI/LSA or LDA [4,17,21], it might be too costly to evaluate as you have
to re-train on each document. The fourth context from Rahka et al. [26] is well
designed and appropriate. We did not rely on tuning in this work, which is
a potential weakness, but the fourth context does address it. It is potentially
more realistic than the 3rd context because you only test so far into the future
before retraining again. The third context is a compromise between the number
of evaluations and the number of models one has to generate.

3.3 Evaluation Measures

How can we evaluate the effectiveness of a continuously querying implemen-
tation or algorithm?

We argue that an effective continuously querying implementation will re-
turn the duplicate bug report to a query formulated of words from that bug
report. The sooner the duplicate bug report appears, the better the perfor-
mance of the continuously querying algorithm. A continuously querying algo-

10 Abram Hindle, Curtis Onuczko

rithm that needs 25 words to find a duplicate report is not as effective as one
that needs only 5 words.

The threshold of 25 words was chosen because it is 2-3 times the length of
the title of a bug report and 1/5 to 1/10th the size of the description of the bug
report (see Table1). Any more would require a lot more time for evaluation. If
we look at Figure 4 of TOP-1 and TOP-5 performance—how often does the
duplicate appear as the first suggestions or top 5 suggestions —we can see
that there are elbows or pivot points at 25 and 50 words for different projects.
100 words often leads to better query performance for many projects but it
is 4X the number of queries to evaluate. Since 25 words is half of the queries
necessary to evaluate than 50 yet provides similar or results we chose 25 words
as the threshold.

A continuously querying algorithm can only return so many duplicate bug
report suggestions at a time. As per search engine IR methodology more than
10 results is often too many. But these are a multitude of queries so only so
much can be evaluated, for example Google Suggestions uses 4 results for 1
query. Many prior works in bug deduplication, localization, and triage use top
5 results [7,41,42]. Thus we argue that top 5 results are probably the maximum
amount of readable context – yet a result that occurs earlier is even better.
We argue that a good continuously querying algorithm will return relevant
duplicate bug reports sooner, thus higher rank correct results are valued more
than lower rank correct results. This implies that treating rank reciprocally or
as a weighted factor is important to evaluation.

All of the following evaluation scores give a score ranging from 0.0 to 1.0
where 1.0 is preferred or perfect and 0.0 is either no correct results, not found,
or no matches. When averaged all of these scores have averages between 0.0
and 1.0. The queries will be duplicate bug reports, as we only have trust-able
information on true-duplicate bug reports and have no cases of marked non-
duplicate bug reports. Thus we assume that when bug reports are marked as
duplicate they are indeed duplicate.

3.3.1 Classical IR and Bug Report Deduplication Evaluation Measures

In this section we describe the measures TOPk, MAP, and MRR which are
commonly used in IR and bug report deduplication literature [2,4,7,15,17,18,
33,36,38].

TOPk: TOPk evaluation is where given k ∈ 1, 5, 10 a query is viewed success-
ful if a duplicate bug report is found within the top k results. So if the first
result is the duplicate bug report, then TOP1, TOP5, and TOP10 all get a
score of 1.0, if none or 0 of the to k results are relevant a score of 0 is given.
Then the reported TOPk is average of these scores: the sum of scores divided
by the number of queries. A TOP1 of 0.5 means that in half of the queries the
first result was the duplicate bug report. When we report TOPk for a set of
bug report we are reporting average TOPk. Thus for 10 bug reports each bug

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 11

Android

App InventorBazaarCyanogenmod

Eclipse
K9Mail
Mozilla

MyTrack
OpenOffice

OpenStack

osmand

Tempest

0.0

0.2

0.4

0.6

0.8

1 5 10 15 20 25 50 100 200 400 800 1600 3200

Maximum Words in Continuously Querying

M
e

a
n

 T
O

P
1

 P
e

rf
o

rm
a

n
c
e

Android

App Inventor

Bazaar

Cyanogenmod

Eclipse
K9MailMozilla

MyTrack

OpenOffice

OpenStack

osmand

Tempest

0.00

0.25

0.50

0.75

1 5 10 15 20 25 50 100 200 400 800 1600 3200

Maximum Words in Continuously Querying

M
e

a
n

 T
O

P
5

 P
e

rf
o

rm
a

n
c
e

Fig. 4 TOP-1 and TOP-5 performance of Parameter sweep of word thresholds at 10 splits
from 1 to 3200 words.

12 Abram Hindle, Curtis Onuczko

report has a TOPk score calculated and the average of these TOPk scores is
reported for that group of bug reports.

ink(i) =

{

1 if indexi ≤ k

0 otherwise

TOPk(Q) =
1

|Q|

|Q|
∑

i=1

ink(i)

Where indexi is the minimum ranked duplicate bug report.

MRR: TOPk does not emphasize the importance of the rank of the correct
suggestion, it just uses a cut-off. MAP and MRR focus on the rank of the cor-
rect answer. MRR, mean reciprocal rank, gives us the average of the reciprocal
rank of the correct answer in a query. This means that correct answers with
low ranks are punished. Mean reciprocal rank only supports 1 correct answer—
which is inaccurate for duplicate bug reports since there can be many possible
duplicates in the same duplicate bug report cluster. Some prior work uses
MRR for bug de-duplicating by suggesting only the first match matters [36].
To evaluate continuously querying we calculate MRR per bug report, because
each bug report consists of multiple queries. The mean of the reciprocal rank
for the correct answer of the queries is used. If there is no correct answer 0
is scored. MRR is unrealistic because it evaluates results further down than a
user would read. MRR does not have a cap rank like TOPk. For multiple bug
reports we usually take the average of mean reciprocal rank for all bug reports
(average mean reciprocal rank).

MRR(Q) =
1

|Q|

|Q|
∑

i=1

1

indexi

MAP: MRR is convenient but unrealistic when there is more than 1 correct
answer. With duplicate bug reports, the reports are part of a cluster so having
multiple correct answers is important, as well having multiple correct answer
early (high ranks such as 1 to 5). MAP or Mean Average Precision is an
information retrieval score that ranks the effectiveness of a set of queries and
punishes query results that are correct but lower ranked. This means that a
result at rank 5 is scored far worse than a result at rank 2. MAP doesn’t have
a cap rank like TOPk. Also MAP allows for multiple matches. MAP calculates
aveP (average precision) of each query and then gives the mean of the aveP
for the set of queries. In the case of continuously querying evaluation MAP
is used to measure 1 bug report’s set of continuously querying queries. When
evaluated with multiple bug reports we will report the average MAP (average

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 13

mean average precision 1). MAP is more appropriate for bug deduplication
because sometimes there is more than 1 duplicate bug that could be returned.

MAP =

∑|Q|
q=1 aveP (q)

|Q|
(1)

aveP (q) =

∑n

k=1 P (k)× (Rel(k))

number of relevant documents
(2)

Where n is the number of returned documents and P (k) is the precision at
k. Rel(k) = 1 when the documents are duplicates of each other and Rel(k) =
0 otherwise; relevant documents are either all possible duplicates or those
duplicates seen in the result set.

3.3.2 Proposed Continuously Querying Evaluation Measures

We feel that the prior classical IR measures do not describe Continuously
Querying Algorithm performance well. Continuously Querying performance
evaluation should consider how soon a result is received. Thus based on MAP
and MRR we pose 3 metrics, AveP-TOP5, MRRTOP5, and MRRTOP5−1,
that attempt to give more weight to methods that return successful queries
sooner. These measures assume that a very limited set of bug reports will
be shown to the user (5), and they punish results which require more words
(continuously querying queries), rather than less, to have a successful duplicate
bug report appear.

AveP-TOP5: A measure that is arguably more relevant to continuously query-
ing is AveP-TOPk. AveP-TOP5 helps determine if we find our duplicates
quickly or not as those queries that need too many words (continuously query-
ing queries) to find duplicate bug reports should be scored lower. AveP-TOPk
is a combination of MAP and TOPk. AveP-TOPk first takes the continuously
querying queries and ranks them by TOPk, thus each continuously querying
query is evaluated as 1.0 or 0.0 depending if a duplicate result occurs in its top
k results. Then the results are treated as a single query and used in average
precision. Thus the earlier that a result appears in the top5 the higher the
value AveP-TOPk value and the later it appears the lower the AveP-TOPk
value. Thus this measurement boosts the performance of continuously query-
ing algorithms who return duplicates in the fewest number of words. Imagine
a set of continuously querying queries for 5 words for the document, “at the
small dog house”, where all 5 continuously querying queries reveal a duplicate
in their top 5. AveP-TOP5 would result in 1.0 ((1/1+2/2+3/3+4/4+5/5)/5).
If only the last 3 continuously querying queries (“at the small”, “at the small
dog”, “at the small dog house”) returned top5 the AveP-TOP5 score would
be 0.478 ((1/3+2/4+3/5)/3), and if only the last query worked 0.2 ((1/5)/1).

1 average mean average precision rolls off the tongue but perhaps triple mean precision
sounds better.

14 Abram Hindle, Curtis Onuczko

Thus AveP-TOPk promotes queries that result in good TOPk results sooner
than later. It is essentially MAP and TOPk mixed together. Once we take the
average or mean AveP-TOPk over many queries we effectively have something
similar to MAP except that it is realistic in the number of query results that
might be evaluated. When AveP-TOPk is reported in this paper is the mean of
AveP-TOPk calculated over all duplicate bug reports as queries. We primarily
use AveP-TOP5.

AveP -TOPk(Q) =

∑|Q|
i=1 ink(i) ·

∑i

j=1
ink(j)

i
∑|Q|

j=1 ink(j)
(3)

MMRTOP5: AveP-TOP5 allows for multiple queries to be correct but does
not tell us the first query to be correct. This means AveP-TOP5 does not
clearly tell us the rank of the successful queries. An alternative to AveP-
TOP5 is MRRTOP5. MRRTOP5 calculates the mean reciprocal rank of the
first TOP5 query to score a hit : a duplicate bug report in the TOP5 results.
Thus for each bug report the reciprocal rank of the first TOP5 duplicate found
is recorded and then the mean is taken for all bug reports. If there is no TOP5
hit, a 0 is returned instead. This score highlights the earliest possible moment
that a user paying attention to the top 5 ranked results would find a duplicate
bug report.

rank−1
TOP5(Q) =

{

∀q ∈ Q¬TOP5(q) 0

otherwise 1

min(argmax
|Q|
j=1

TOP5(qj))

MRRTOP5(R) =
1

|R|

|R|
∑

i=1

rank−1
TOP5(Qi)

Where R is all bug reports, and Qi is the set of queries of bug report ri
and ri ∈ R. In cases where the MRRTOP5 is not 0 one can take the reciprocal
MRRTOP5−1 to find the mean rank at which the duplicate could be found
where there is a duplicate to be found.

We report MRRTOP5−1 as a convenience. MRRTOP5−1 is convenient
because it tells you the average number of queries or words to get an answer,
but due to its unbounded nature it makes it inappropriate for performance
analysis. Because MRRTOP5−1 is unbounded we report it in tables but do
not rely on it for graphing and statistical analysis—it is a convenience.

3.3.3 Interpretation of metrics

All of these measures, except for MRRTOP5−1, range from 0 to 1. A score of
1 means accurate or perfect query results. While 0 typically means the query
did not return the appropriate result.

For TOPk results the value is a mean of how many queries had duplicates
in the top k results. TOPk results have limited nuance as they do not tell how

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 15

soon a hit was found, they just threshold when a hit was found. TOPk are
included because they are easy to interpret and when a continuously querying
implementation is deployed a small number of examples are typically shown
anyways (k = 5).

For MAP and MRR they can mostly be interpreted reciprocally. If the
number of duplicates for a bug report is 1 then MAP and MRR are essentially
the same measure. If there are more results then MAP can be slightly larger
than MRR. For MAP, MRR, and AveP-TOP5 and MRRTOP5 the closer to
1 the better the result, the closer to 0 the worse the result. Typically one can
interpret these results reciprocally. So a 0.33 MAP or MRR typically means the
duplicates were in the top 3 results. Where as 0.2 indicates top 5, 0.1 top 10 and
0.05 top 20. Although for MAP and MRR these imply average performance
and do not give an indication if the continuously querying implementation
returned duplicate matches sooner.

AveP-TOP5 and MRRTOP5 use the TOP5 measure to help determine the
rank of the successful queries. AveP-TOP5 acts much like MAP. It accepts the
reality that there is more than 1 duplicate bug report for some bug reports
as well there will often be more than 1 successful query a from continuously
querying implementation. But it too can be interpreted reciprocally. An AveP-
TOP5 of 0.2 typically indicates that with the first 5 queries (the first 5 words) a
duplicate bug report appeared in the TOP5 results. Where as MRRTOP5, acts
like MRR, of 0.2 means that the 5th word was typically the first introduction,
on average, of a TOP5 result with a duplicate bug report. An marginally
acceptable MRRTOP5 or AveP-TOP5 should be greater than the reciprocal
of our word limit (25−1 = 0.04), above 0.1 would indicate better than the first
10 words.

In the evaluation we provide Old MAP that is MAP classically applied
across all of the queries where each bug report is a single query and it’s average
precision is calculated, and then the mean of all those average precisions of bug
report queries are taken. Old MAP is meant to represent the baseline MAP
score you can expect if you have all of the information of the bug report.
Old MAP lets us compare against other techniques but it is irrelevant to
actual continuously querying evaluation performance but serves to remind us
of classical bug-deduplication performance.

For simplicity, average TOP1 and TOP5 makes a lot of sense to evaluate
queries with as they are realistic about users ability to read results. For realism
AveP-TOP5 and MRRTOP5 make more sense as they give more weight to
continuously querying implementations and algorithms who return good TOP5
results sooner more than those who take longer to produce TOP5 results.

One aspect we did not measure but is related to effort is that we do not have
empirical measures of user performance evaluating bug reports to determine
how many bug reports need to be evaluated. That is site specific and it depends
on what is shown to the user and how such a system is configured. We suggest
that if you show 5 bug report titles to the user, the user will read, for bug
reports that have a duplicate, b1 · 5 · MRR-TOP5−1 bug report titles, and if
bug report does not have a duplicate they will read up to b1 · 5 · 25 distinct

16 Abram Hindle, Curtis Onuczko

bug reports—assuming 25 words is the limit. We suggest b1 as a coefficient
to represent duplication of results or willingness of a participant to read a
bug-report.

4 Experiment Methodology

Thus we want to demonstrate the performance of naive continuously querying
implementations to show if continuously querying works, that continuously
querying can stop duplicate bug reports before they start. By naive we mean
a simplified and easy to replicate continuously querying implementation using
basic IR tools such as TF-IDF and cosine distance.

Thus the research questions that the following experiments seek to answer
are:

– RQ1: How well does our continuously querying implementation perform?
– RQ2: What percentage of duplicate bug reports could be stopped before

they start?
– RQ3: Does stemming of tokens matter with respect to continuously query-

ing?
– RQ4: How important is the bug report title to continuously querying?

The validation context and method we use is the third context and method
we described in Section 3.2: historical split validation. Historical split valida-
tion is used to be fair to future continuously querying implementations, which
might use models that are slow to train (e.g., LDA-based [4, 17, 21] continu-
ously querying implementation models might take some time to retrain), to
reduce evaluation time, and to ensure we aren’t producing an evaluation based
on time-traveling. We will use 100 splits, inducing 100 train and evaluation
loops. 100 is chosen because it gives enough granularity and enables any 1%
split evaluation. Thus per each split, all bug reports made before the split
are trained upon and all duplicate bug reports after the split are evaluated
upon if their duplicate exists in the training set. This ensures that we do not
learn from the future, we train solely on the past and test solely on the future,
100 times. We rely on the annotations within the bug report repository to
determine if bug reports are duplicates of each other. This means we trust the
developers and that we only have true-duplicate bug reports marked, and not
any true-not-duplicate bug reports.

In the prior Section 3.3 we argued for 25 words as the maximum threshold
for number of words continuously queried. We choose this value because it is
a few times the average bug report title yet smaller than an entire bug report.
Perhaps the user will give up on continuously querying by that time anyways.
Regardless the evaluation will be, a bug report from the test set that is a
duplicate of a bug report in the training set will be chosen, and 25 queries will
be made from it’s first 25 words in increasing length ranging from 1 word to
10 words to 25 words. Each of these sequences of words will be used to query
the IR model to retrieve the duplicate bug reports. The results of each of these

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 17

title: "local variable in procedure with result block"

description: "It would be usefull to have locale variable de�nition in procedure ... to bug"

Queries
Returned

Documents Top1 Top5 Top10

Per Query Evaluation

Query(Transform("local variable in ... bug")) � � � � � ... � � � ��� � � �25

Transform("local variable in ... bug") =

 t�df(stemmer(word_�lter (caser (splitter (digits(char("local variable in ... bug")))))))

Transform("local variable in ... bug") =

 t�df(stemmer(word_�lter (caser (splitter ("local variable in ... bug")))))

Transform("local variable in ... bug") =

 t�df(stemmer(word_�lter (caser ())))

Transform("local variable in ... bug") =

 t�df(stemmer())

Transform("local variable in ... bug") =

 t�df()

Transform("local variable in ... bug") =

local variable in procedure bug...[]
local variable procedure bug...[]

local varia proce bug...[]
[0.0 0.0 0.0 0.0 6.1 5.1 0.0 ... 0.0]

Fig. 5 The NLP transformation chain of a text query (from Figure 3) to a TF-IDF query.

queries will be recorded and TOPk evaluation, MAP, MRR, and AveP-TOPk
evaluations will be applied.

The actual words we use as queries is the sequence of words formed by con-

catenating the bug report title with the bug report description. The documents
queried could be the concatenation of bug report titles, bug report description,
and bug report comments. In this paper we concatenate titles and description,
not the comments, but depending on the model, the training of a model can
be executed differently. Future models using multiple fields for continuously
querying should be considered, like BM25F models [36, 37].

Thus we make the assumption that the order that one types in a bug report
is title first, followed by the body. We also assume the the final text of the
bug report is the text that would be used in continuously querying, but the
text written with continuously querying available to the end-user might be
different than the text of a full bug report in practice.

4.1 Experimental Naive Continuously Querying Implementation

In this paper we provide a naive version of continuously querying. We ex-
pect there are more intelligent ways to implement continuously querying that
perform better in terms of run-time and information retrieval performance.
Our naive continuously querying implementation uses an information retrieval
model consisting of TF-IDF transformations of documents, with or without
Porter Stemming [25], with stop word removal [20], with digits stripped, with

18 Abram Hindle, Curtis Onuczko

lower casing of alphabetical characters, and no pruning of infrequent and fre-
quent vocabulary. Finally we use the cosine distance between TF-IDF vectors
as our method of ranking similar documents to a query document. In short, we

use a TF-IDF and cosine distance indexing implementation from Gensim [29].
Gensim is a python-based natural language processing and topic modelling li-

brary. The TF-IDF we use weights each term in a document as tfi · log2
|D|
dfi

and then normalizes the document by unit length [30]. This would be similar
to the V SMnatural model used by Wang et al. [41]. Figure 5 depicts how a
query is transformed by this IR model for querying.

We do not reject or threshold query results that are not similar enough
according to a similarity score, we rely solely on rank. If one wanted to reduce
false positives one could rely on the similar score (normalizing appropriately
for query size).

4.2 Datasets

In this paper we use 12 different issue/bug tracker repositories. These datasets
are described in Table 1. The dataset used in this paper is available online. 2

The code to run the experiments on this data is available online as well. 3

Table 1 shows the projects, their size in bug reports, duplicate bug reports,
and clusters of duplicate bug reports. Table 1 also shows the mean length in
words of the title and the description of the bug reports, and date-range of
collection.

The software systems that were mined range from cloud management sys-
tems, to mobile operating systems, to office suites. The projects were cho-
sen because prior work used them (Android, Eclipse, Mozilla, and OpenOf-
fice [2, 4, 36, 37]) and due to availability of tools to mine their repositories.
We also explicitly selected repositories with more than 50 duplicate bug pairs
that were not used in prior duplicate bug report detection works. Android
is an operating system popular on mobile devices and used to be hosted on
GoogleCode. App Inventor For Android is a visual programming language
that generates Apps for Android. Bazaar is a version control system much like
Git. Cyanogenmod is a fork of the Android operating system without Google
proprietary apps. Eclipse is an IDE popular with Java programmers. K9mail
is an Android app that manages email. Mozilla refers to Mozilla Firefox, a
web-browser. MyTrack is a GPS tracking app for Android. OpenOffice is an
office suite much like Microsoft Office. OpenStack is a kind of Linux distribu-
tion for the cloud to enable management of cloud computers. Osmand is an
open-street-maps enabled GPS/mapping program for Android. Tempest is an
Integration Test Suite for Openstack. Github issues were not mined due to
their lack of consistent markup for duplicate bug reports.

2 https://archive.org/details/2016-04-09ContinuousQueryData
3 https://bitbucket.org/abram/continuous-query

https://archive.org/details/2016-04-09ContinuousQueryData
https://bitbucket.org/abram/continuous-query

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 19

Table 1 Duplicate Bug Report Data Sets and the Papers that cite them

Project Source # Bug
Reports

Dupes # Dupe
Buckets

Mean
Title

Mean De-
scription

Earliest Latest Prior
Works

Android GoogleCode 37626 1363 788 10.447 182.789 2007-11-12 2012-09-19 [2, 4,
17]

App Inventor GoogleCode 2098 265 140 8.343 102.246 2010-09-09 2012-05-24
Bazaar LaunchPad 7020 523 523 9.898 439.733 2005-09-16 2016-04-05

Cyanogenmod GoogleCode 5185 677 403 8.552 245.319 2009-08-18 2012-05-17
Eclipse BugZilla 45234 4341 3382 9.891 199.899 2008-01-01 2008-12-30

[2,4,26,
36,37]

K9Mail GoogleCode 4309 909 471 8.428 205.426 2008-10-28 2012-05-24
Mozilla BugZilla 75648 10479 7050 11.233 188.412 2010-01-01 2010-12-31 [2, 4,

15, 26,
28, 36,
37,42]

MyTrack GoogleCode 921 126 80 8.793 147.263 2010-05-05 2012-05-15
OpenOffice BugZilla 31136 4460 2799 9.161 179.748 2008-01-02 2010-12-21

[2,4,26,
36,37]

OpenStack LaunchPad 17077 211 211 10.326 331.659 2011-04-26 2016-04-06
osmand GoogleCode 1026 73 58 8.329 119.935 2010-04-26 2012-05-25
Tempest LaunchPad 2085 98 98 9.132 389.582 2011-09-09 2016-04-06

Thus in the next section we will describe the results of our experiments
with not-stemming and stemming using a TF-IDF cosine distance model to
implement continuously querying.

5 Experiment Results

Using the maximum query size of 25 words, and treating for Porter stemming
and no stemming we generated 2400 TF-IDF cosine distance models from the
100 splits for each of the 12 evaluated projects. As there are numerous test
sets, training sets, and models to build and evaluate, we decided to limit our
experiment’s breadth by focusing on stemming versus not-stemming because
it potentially has the most impact. We could also experiment with other pa-
rameters such as digit stripping, lower casing, and pruning of vocabulary, but
stemming seemed the most worthwhile to explore due to the technical lan-
guage used in software engineering whereby stemming could mangle meaning-
ful terms. Stemming could help to reduce vocabulary greatly or it could hide
and mangle domain specific terms, reducing query result quality. We evalu-
ated continuously querying queries of duplicate bug reports on these models
and aggregated the results for discussion in this section. Figure 6 depicts the
performance of Continuously Querying over different projects.

20 Abram Hindle, Curtis Onuczko

●

●

●●●●●

●●●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●●

●●

●●●

●●

●●
●

●

●

●
●●

●

●

●●●

●

●

●

●●

●●

0.00

0.25

0.50

0.75

1.00

Android

App Inventor For Android
Bazaar

Cyanogenmod
Eclipse

K9Mail
Mozilla

MyTrack

OpenOffice

OpenStack
osmand

Tempest

Projects with Stemming

T
O

P
1

Android

App Inventor For Android

Bazaar

Cyanogenmod

Eclipse

K9Mail

Mozilla

MyTrack

OpenOffice

OpenStack

osmand

Tempest

●

●●

●●●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●●●●

●

●

●

●●●
●

●

●

●
●

●

●

●●

●●

0.00

0.25

0.50

0.75

Android

App Inventor For Android
Bazaar

Cyanogenmod
Eclipse

K9Mail
Mozilla

MyTrack

OpenOffice

OpenStack
osmand

Tempest

Projects with Stemming

M
A

P

Android

App Inventor For Android

Bazaar

Cyanogenmod

Eclipse

K9Mail

Mozilla

MyTrack

OpenOffice

OpenStack

osmand

Tempest

●
●

●●

●

●

●
●

●

●●

●
●●

●

●●

●●●●

●●●
●
●●●●

●

●

●

●

●

●

●

●

●
●●
●

●
●

0.00

0.25

0.50

0.75

1.00

Android

App Inventor For Android
Bazaar

Cyanogenmod
Eclipse

K9Mail
Mozilla

MyTrack

OpenOffice

OpenStack
osmand

Tempest

Projects with Stemming

a
ve

P
−

T
O

P
5

Android

App Inventor For Android

Bazaar

Cyanogenmod

Eclipse

K9Mail

Mozilla

MyTrack

OpenOffice

OpenStack

osmand

Tempest

●

●

●●

●●

●

●●●●●

●

●

●●

●

●

●●●

●●
●
●
●
●
●
●
●●●

●

●●

●

●
●●
●
●●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●●●●

●

●
●

●

●

0.00

0.25

0.50

0.75

1.00

Android

App Inventor For Android
Bazaar

Cyanogenmod
Eclipse

K9Mail
Mozilla

MyTrack

OpenOffice

OpenStack
osmand

Tempest

Projects with Stemming

M
R

R
T

O
P

5

Android

App Inventor For Android

Bazaar

Cyanogenmod

Eclipse

K9Mail

Mozilla

MyTrack

OpenOffice

OpenStack

osmand

Tempest

Fig. 6 Boxplots of the distributions of evaluation measures for all 12 projects.

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 21

Table 2 Performance per Project with Continuously Querying. Old MAP is not Continu-
ously Querying. Gensim’s default classic TDF-IF Cosine Distance implementation was used.

Old Continuously Querying
Project Exp MAP MAP MRR TOP1 TOP5 TOP10 aveP-

TOP5
MRR-
TOP5

MRR-
TOP5−1

Android Stemming 0.240 0.223 0.231 0.150 0.300 0.404 0.274 0.141 7.099
Android NoStem 0.218 0.194 0.204 0.116 0.294 0.393 0.290 0.164 6.093

App Inventor Stemming 0.205 0.143 0.197 0.056 0.426 0.532 0.408 0.462 2.165
App Inventor NoStem 0.140 0.146 0.201 0.046 0.455 0.536 0.441 0.465 2.149

Bazaar Stemming 0.251 0.185 0.185 0.094 0.278 0.376 0.265 0.148 6.749
Bazaar NoStem 0.253 0.195 0.195 0.109 0.281 0.360 0.276 0.156 6.424

Cyanogenmod Stemming 0.286 0.239 0.247 0.205 0.264 0.352 0.249 0.158 6.310
Cyanogenmod NoStem 0.262 0.179 0.188 0.139 0.260 0.284 0.246 0.172 5.800

Eclipse Stemming 0.306 0.187 0.190 0.124 0.255 0.316 0.231 0.117 8.517
Eclipse NoStem 0.301 0.184 0.185 0.119 0.248 0.314 0.231 0.130 7.672
K9Mail Stemming 0.295 0.226 0.230 0.130 0.348 0.439 0.337 0.207 4.835
K9Mail NoStem 0.265 0.232 0.237 0.123 0.373 0.441 0.348 0.190 5.261
Mozilla Stemming 0.288 0.216 0.220 0.152 0.288 0.359 0.258 0.124 8.086
Mozilla NoStem 0.270 0.199 0.203 0.138 0.263 0.334 0.236 0.116 8.657
MyTrack Stemming 0.158 0.495 0.495 0.439 0.563 0.582 0.496 0.219 4.562
MyTrack NoStem 0.165 0.455 0.458 0.398 0.515 0.529 0.453 0.207 4.829

OpenOffice Stemming 0.248 0.170 0.175 0.121 0.220 0.275 0.196 0.098 10.211
OpenOffice NoStem 0.270 0.176 0.182 0.130 0.224 0.273 0.196 0.095 10.565
OpenStack Stemming 0.435 0.302 0.302 0.184 0.436 0.484 0.396 0.214 4.682
OpenStack NoStem 0.444 0.311 0.311 0.202 0.441 0.500 0.382 0.221 4.518
osmand Stemming 0.091 0.078 0.078 0.002 0.093 0.280 0.114 0.101 9.866
osmand NoStem 0.118 0.103 0.103 0.005 0.208 0.474 0.232 0.180 5.554
Tempest Stemming 0.272 0.184 0.184 0.144 0.206 0.265 0.198 0.156 6.411
Tempest NoStem 0.255 0.177 0.177 0.133 0.197 0.274 0.219 0.175 5.716
Average Stemming 0.256 0.221 0.228 0.150 0.306 0.389 0.285 0.179 6.624
Average NoStem 0.247 0.213 0.220 0.138 0.313 0.393 0.296 0.189 6.103
Average Both 0.252 0.217 0.224 0.144 0.310 0.391 0.291 0.184 6.364

5.1 RQ1: How well does our continuously querying implementation perform?

We sought to evaluate an continuously querying implementation’s perfor-
mance. This implementation relied on Gensim’s TF-IDF implementation for
document indexing and querying. Using 100 splits per project, we queried for
duplicate bug reports using continuously querying queries built from the first
25 words of a bug report, and tallied up the results in Table 2. The perfor-
mance of this continuously querying implementation is somewhat sensitive to
the project under test. The first MAP column of Table 2, “Old MAP”, is
the MAP score calculated when the only query is the entire bug report doc-
ument, rather than the 25 continuously querying queries. “Old MAP” serves
as a reference to how much information is not in the first 25 words of a bug
report. In most cases “Old MAP” is greater than MAP. For all evaluation mea-
sures across stemming and not-stemming, the paired Wilcoxon signed rank test
shows that the old-style entire-document single query results are statistically
significantly different (α = 0.05) than the continuously querying results. Thus
this continuously querying implementation does not have as good performance

22 Abram Hindle, Curtis Onuczko

0.0

0.2

0.4

0.6

Android

App Inventor For Android
Bazaar

Cyanogenmod
Eclipse

K9Mail
Mozilla

MyTrack

OpenOffice

OpenStack
osmand

Tempest

Project

T
O

P
5

Experiment

NoStem

Stemming

NoStem+OLD

Stemming+OLD

Fig. 7 TOP5 score calculated from the entire document, compared against TOP5 score
calculated from TF-IDF gensim continuously querying implementation.

as 1 single query, but it still has enough performance that it can be used to
prevent duplicate bug reports. Figure 7 summarizes graphically the difference
between entire document querying and the continuously querying queries up
to the first 25 words of the document. We can see that query performance
improves with the full document, but it required the user to write the entire
document. This is to be expected as larger document gives more chance for
relevant terms.

Based on Table 2 we can see that different projects such as OpenOffice and
Android have very different responses. Also the evaluation measures tend to
decrease from higher values with the lower ordered splits and lower values with
the later splits. This is likely a consequence of available pool of duplicate bug
report queries, but also left biasing of the data because duplicate bug reports
do not exist in the future. In Figure 8 we can see that Android exhibits this
right tail phenomenon where there are less bug reports to be duplicates with,
as the duplicates are probably coming in the future: it takes time to make
duplicate bug reports.

The Android results in Figure 8 are interesting because if we compare
AveP-TOP5 or TOP1 to MAP we can see that MAP results after the 75%
split are below 0.1, the rank of 10. Those MAP results are essentially unrealistic
query results, with the right answer ranked lower than rank 10 where users
might not find them.

We ask, is the full document necessary? What about 1 query with only
25 words, rather than 25 queries or the full document? We assumed that the
continuously querying implementation would do worse than 1 query of 25
words because the continuously querying method asks many queries that are
lack enough information to resolve. Furthermore we assumed that “Old MAP”
would be greater than MAP at 25 words as it had access to more information.
25 word MAP could be greater than “Old MAP” when the project had good
quality titles. We investigated and compared “Old MAP” to a single query
of the first 25 words. The behaviour observed was relatively consistent: “Old
MAP” is usually larger than the MAP of 25-word queries. 25-word queries typi-

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 23

0.0

0.2

0.4

0.6

0 25 50 75 100

Percent Split

T
O

P
1

project

Android

Eclipse

Mozilla

OpenOffice

0.0

0.2

0.4

0.6

0 25 50 75 100

Percent Split

M
A

P

project

Android

Eclipse

Mozilla

OpenOffice

0.0

0.2

0.4

0.6

0.8

0 25 50 75 100

Percent Split

a
ve

P
−

T
O

P
5

project

Android

Eclipse

Mozilla

OpenOffice

0.0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100

Percent Split

M
R

R
T

O
P

5

project

Android

Eclipse

Mozilla

OpenOffice

Fig. 8 Evaluation metrics, TOP1, MAP, aveP-TOP5, MRRTOP5 performance over 100
splits across 4 different projects.

cally have a better MAP than the continuously querying implementation, much
like “Old MAP”. There are some differences, MyTrack 25-word queries work
better than “Old MAP” and are slightly better in performance than our con-
tinuously querying implementation. The Wilcoxon signed rank test (a paired
test) suggests that 25 words is different from entire document in terms of MAP
(p = 0.0164 with α = 0.05) but the 95% confidence intervals [−0.0332, 0.0487]
do straddle 0. If we exclude MyTrack then the p-value of the Wilcoxon signed
rank test is 0.00177 (significant) while the 95% confidence interval is purely
negative, [−0.0415,−0.0211], suggesting that full document performance is su-

24 Abram Hindle, Curtis Onuczko

perior to 25 words in most cases. A single 25 word query achieves better MAP
scores than 25 continuously querying queries (Wilcoxon signed rank p-value
of 2.015e− 05 and 95% confidence interval of [0.0280, 0.0512]).

5.1.1 Causes of poor performance

Some projects did not perform well at all. This has been observed for tuning
IR parameters and configurations as well: one size does not fit all [22]. Osmand
does not perform well for TOP1 which is evident in Figure 4 as it has TOP1
flat performance. We investigated reasons why. First and foremost osmand
had a small number of bug reports and duplicates, this will cause some bias
as it reduces the number of times we will have a duplicate bug report to query
from. Investigating the language of Osmand’s bug report, we found many are
from mobile device users and the vocabulary in the bug reports can be quite
colloquial and less technical. For instance a pair of marked duplicates have
titles “checks unckeks in download list” and “Almost impossible to download
indexes and voice”. The only shared term in the title is “download”. Osmand
also suffered the most when the bug report description was not used, and
only titles were used (discussed in Section 5.4), thus the titles are not very
informative. This suggest that disambiguation techniques such as LDA term
collocation [17] or contextual approaches [1,4] could help. Another problem is
that for Osmand very few bug reports dominate the top ranked result: 60%
of all queries have less than 4 different bug reports appear in the first ranked
position. Comparatively as for Bazaar and Tempest, only 43.8% and 44.1% of
their queries have less than 4 different bug reports appear in the first ranked
position. This domination appears to occur when a term is newly introduced
in the model and thus has very high IDF and the same term shows up in
the query text—regardless of its relevance. Perhaps discounting or smoothing
the IDF of rare terms or removing terms that do not appear in a certain
number of documents could improve query performance as to not exaggerate
the importance of a new word in the vocabulary of the training set.

5.1.2 RQ1 Summary

What we learn from RQ1 is that typically the performance of an continuously
querying implementation in the first 25 words is worse than querying with
the entire document, but that up to the first 25 words is sufficient in many
cases. This is most likely due to the strength of the keywords used to form
the subject or title of bug reports. This is backed up by the MRRTOP5−1

measure which shows that a TOP5 result can appear by the 6th word of the
query, (see the last column and last rows of Table2) which is within the range
of the title text. Developers and bug reporters should take heed and consider
the importance of writing a good bug report title or subject.

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 25

5.2 RQ2: What percentage of duplicate bug reports could be stopped before
they start?

Based on Table 2 we can see that TOP1 across projects is 0.138 to 0.150.
For a large number of queries the first few results will have the duplicate bug
ranked first. This means that by 25 words typed in a bug tracker user could
notice an immediate duplicate bug. When we move to TOP5 results the value
is between 0.306 and 0.313. Indicating about a third of the queries will have
TOP5 results within them.

Assuming that once we find a duplicate bug report all of our later bug
report queries will have the same response, our AveP-TOP5 indicates that
more than 3 words bug report. This is confirmed by the MRRTOP5 results
between 0.179 and 0.189 whose inverse, MRRTOP5−1 suggests that 6.1 to 6.6
words are needed before a TOP5 hit appears.

But this is actually a skewed result. In projects like OpenOffice approxi-
mately 67% of the duplicate bug queries do not find the duplicate in any of
the continuously querying queries in the TOP5 results. Per project these failed
continuously querying queries make up 16% to 67%. That is 33% to 84% of
continuously querying queries (average 42%) in total across all projects de-
pending on the project, will produce duplicate bug reports in their TOP5
query results. MRRTOP5−1 shows that for TF-IDF with cosine distance we
can achieve on average the first reported duplicate bug report in the TOP5
within 5 to 7 words. This is of course when querying for true duplicate bug
reports, globally for all bug reports it depends on the proportion of duplicate
to non-duplicate bug reports.

Thus from our data 42 to 43% of duplicate bugs could be expected for
projects that initially deploy a continuously querying implementation assum-
ing that the bug reporters can notice the duplicate bug reports via continuously
querying. Once continuously querying is adopted these statistics would change
due to changing behaviours of users and developers.

5.3 RQ3: Does stemming of tokens matter with respect to continuously
querying?

Stemming reduces the size of the vocabulary at a cost of increasing ambigu-
ity. It is argued that stemming is beneficial because it reduces the number of
features needed to represent documents. Figure 9 shows stemming across mul-
tiple evaluation measures. Many times the stemming performance is greater
than the non-stemming performance, but not consistently across all projects
and evaluation measures.

¿ If we compare the aveP-TOP5 results of all the projects with a Wilcoxon
signed rank test we see there’s not evidence to show statistical significant dif-
ference between stemming and not-stemming performance (p-value of 0.622),
with a 95% confidence interval of [−0.0300, 0.00571] for the difference between
stemming and not stemming, which shows a slight bias towards not stemming.

26 Abram Hindle, Curtis Onuczko

0.0

0.1

0.2

0.3

0.4

Android

App Inventor For Android
Bazaar

Cyanogenmod
Eclipse

K9Mail
Mozilla

MyTrack

OpenOffice

OpenStack
osmand

Tempest

Project

T
O

P
1

Experiment

NoStem

Stemming

0.0

0.1

0.2

0.3

0.4

0.5

Android

App Inventor For Android
Bazaar

Cyanogenmod
Eclipse

K9Mail
Mozilla

MyTrack

OpenOffice

OpenStack
osmand

Tempest

Project

M
A

P

Experiment

NoStem

Stemming

0.0

0.1

0.2

0.3

0.4

0.5

Android

App Inventor For Android
Bazaar

Cyanogenmod
Eclipse

K9Mail
Mozilla

MyTrack

OpenOffice

OpenStack
osmand

Tempest

Project

a
ve

P
−

T
O

P
5

Experiment

NoStem

Stemming

0.0

0.1

0.2

0.3

0.4

Android

App Inventor For Android
Bazaar

Cyanogenmod
Eclipse

K9Mail
Mozilla

MyTrack

OpenOffice

OpenStack
osmand

Tempest

Project

M
R

R
T

O
P

5 Experiment

NoStem

Stemming

Fig. 9 Average performance of stemming versus not stemming across projects

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 27

Thus globally there’s no clear difference, but what about per project? When
we drill down and repeat our analysis per each individual project While the
plots make it seem like stemming matters, when we compare the 100 aveP-
TOP5 values from each of the stemmed and not-stemmed runs per project we
find very few results that are not are statistically significant when α = 0.05.
when using the Wilcoxon signed rank test. For aveP-TOP5, only K9-Mail,
MyTracks, Eclipse, and Cyanogenmod did not have evidence to determine if
stemming was different than not stemming for a Wilcoxon signed rank test.
Most projects showed a difference in a performance, but it is inconsistent.
According to their 95% confidence intervals 5 projects (Android, App Inven-
tor, Bazaar, Osmand, and Tempest) do better without stemming, 3 projects
(OpenStack, Mozilla, MyTracks) do better with stemming while the remaining
projects (Eclipse, K9-Mail, OpenOffice, Cyanogenmod) have confidence inter-
vals that straddle 0. Note that a signed test such as the Wilcoxon signed rank
test has better statistical power than it’s unpaired cousin the Wilcoxon rank
sum test so results can be significant even if the confidence interval crosses 0.

We investigated osmand and MyTracks, 2 projects with the most extreme
response to stemming in terms of AveP-TOP5 performance. One example from
MyTracks is a pair of duplicate bug reports which mention “rotating” and “ro-
tation”. When stemmed these bug report match well, when not stemmed it
takes more almost 17 more words to find a duplicate report in the TOP5 re-
sults. For osmand stemming causes confusion between features such as routing
and routes, which sound similar but are very different semantically. Both will
be stemmed to “rout”. Stemming doubled the document frequency of “rout”
thus reducing its importance during similarity. This is disastrous when the
second word of the query is the operational word: the duplicate bug reports
had the titles of “Offline Routing: take care of nodes with barrier=xxx” and
“Offline Routing: ignoring access restrictions”. At split 62 of 100, the differ-
ence between the unstemmed and stemmed query can be a TOP5 hit at two
words unstemmed and 0 TOP5 hits by 25 words stemmed.

Thus stemming can help resolve similar concepts, but if concepts are named
similarly yet are distinct stemming can confuse the two concepts. If two con-
cepts are combined then their document frequencies increase and that term
will be of less importance.

Thus we conclude that stemming typically has an effect on a project, but
across projects it is not a clear effect and it is not consistently statistically
significant. This echos the work of Panichella et al. [22] who showed that
optimal IR configurations differ across projects.

5.4 RQ4: How important is the bug report title to continuously querying?

We wanted to investigate how meaningful the title was to our continuously
querying implementation. Thus we compare training and querying solely on
titles versus training and querying on both title and description. Rerunning

28 Abram Hindle, Curtis Onuczko

the experiment and training solely on titles we found that for most projects
the performances in terms of MRRTOP5 and AveP-TOP5 decreased.

This decrease was insignificant according to a Wilcoxon signed rank test
with p-value of 0.509, greater than our α = 0.05. The 95% confidence interval of
the difference in AveP-TOP5 and MRRTOP5−1 between title and description
and just title was [-0.00560,0.0262] and [−0.300, 1.88]. Effectively this means
that just the titles can work for continuously querying, but at a cost of -0.3 to
1.88 words worth of the queries, but it depends on the project.

Few projects had a large change in MRRTOP5−1 performance. Projects
that had improved consistent performance using titles, across stemming and
not stemming included: Tempest, OpenStack, OpenOffice, MyTrack and Eclipse.
Projects that did have consistent drops in performance using titles across stem-
ming and not stemming included: AppInventor, Bazaar, Cyanogenmod, and
Osmand. The lack of a clear significant signal suggests that performance for
using only titles depends on the project itself. Otherwise the gain for using
titles and description over just titles was about 1 queries (MRRTOP5−1 mean
difference 0.698).

As there was some difference in stemming we checked if aveP-TOP5 was
affected by stemming by comparing the distributions with the Wilcoxon signed
rank test, which concluded that for title-only queries there was no evidence to
support that stemming or not stemming were significantly different (p-value
of 0.6221) with a 95% confidence interval of [−0.0300, 0.0564]. We conclude
that for title-only queries stemming has little effect.

Cyanogenmod and Osmand had particularly poor performance using only
titles: each respectively had a MRRTOP5−1 difference of 2.97 and 11.09 with
no stemming. For osmand this suggests that osmand bug report subjects and
titles are not descriptive enough to find similar duplicates and thus the de-
scription needs to be relied upon.

We conclude that title-only querying does perform relatively well and if
run-time performance was an issue and the scale was small enough title-only
querying can be very efficient and potentially done client side. Although the
gain in run-time performance comes at a penalty in terms of general retrieval
performance and the number of words till a duplicate is returned.

6 BM25 Evaluation

How does this baseline technique stand up to the techniques used in other
research? Sun et al. [36,37] proposed REP which used multiple fields, bi-grams
of titles, and text from the description combined with BM25F a multiple field
form of BM25 and Okapi BM25 [31]. BM25 evaluates queries much like TF-
IDF and cosine distance. It has 2 parameters k and b1. Since our continuously
querying implementations did not have multiple fields yet to rely upon we could
not use the more complicated parts of REP. Thus we made a REP-inspired
continuously querying implementation using BM25 instead of TF-IDF and
cosine distance.

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 29

Table 3 Performance per Project with BM25 Gensim Continuously Querying Implemen-
tation. Old MAP is not Continuously Querying.

Old Continuously Querying
Project Exp MAP MAP MRR TOP1 TOP5 TOP10 aveP-

TOP5
MRR-
TOP5

MRR-
TOP5−1

Android Stemming 0.113 0.035 0.041 0.022 0.051 0.074 0.087 0.075 13.314
Android NoStem 0.079 0.037 0.045 0.025 0.060 0.075 0.102 0.078 12.828

App Inventor Stemming 0.086 0.104 0.143 0.064 0.200 0.271 0.216 0.098 10.193
App Inventor NoStem 0.029 0.104 0.134 0.078 0.206 0.254 0.228 0.105 9.510

Bazaar Stemming 0.140 0.086 0.086 0.060 0.110 0.133 0.106 0.053 18.773
Bazaar NoStem 0.171 0.085 0.085 0.055 0.113 0.142 0.108 0.055 18.085

Cyanogenmod Stemming 0.058 0.034 0.042 0.036 0.040 0.052 0.040 0.040 25.000
Cyanogenmod NoStem 0.074 0.045 0.053 0.036 0.079 0.119 0.065 0.048 20.638

Eclipse Stemming 0.197 0.104 0.105 0.074 0.136 0.169 0.126 0.068 14.643
Eclipse NoStem 0.202 0.120 0.123 0.090 0.154 0.188 0.148 0.091 11.000
K9Mail Stemming 0.079 0.038 0.039 0.009 0.052 0.094 0.080 0.059 17.025
K9Mail NoStem 0.057 0.089 0.091 0.031 0.148 0.186 0.146 0.091 11.009
Mozilla Stemming 0.113 0.062 0.065 0.043 0.085 0.104 0.087 0.047 21.419
Mozilla NoStem 0.128 0.078 0.080 0.056 0.101 0.119 0.099 0.052 19.296
MyTrack Stemming 0.052 0.151 0.153 0.080 0.205 0.306 0.257 0.164 6.103
MyTrack NoStem 0.069 0.142 0.144 0.074 0.230 0.287 0.279 0.166 6.038

OpenOffice Stemming 0.089 0.084 0.090 0.072 0.104 0.117 0.099 0.056 17.744
OpenOffice NoStem 0.107 0.086 0.092 0.071 0.108 0.124 0.106 0.060 16.575
OpenStack Stemming 0.258 0.128 0.128 0.071 0.201 0.220 0.162 0.082 12.180
OpenStack NoStem 0.232 0.160 0.160 0.108 0.219 0.269 0.195 0.118 8.455
osmand Stemming 0.059 0.071 0.071 0.053 0.078 0.079 0.087 0.070 14.227
osmand NoStem 0.057 0.066 0.066 0.047 0.073 0.082 0.081 0.067 14.940
Tempest Stemming 0.128 0.066 0.066 0.038 0.085 0.116 0.125 0.095 10.548
Tempest NoStem 0.140 0.072 0.072 0.039 0.096 0.119 0.137 0.101 9.858
Average Stemming 0.114 0.080 0.086 0.052 0.112 0.145 0.123 0.076 15.097
Average NoStem 0.112 0.090 0.095 0.059 0.132 0.164 0.141 0.086 13.186
Average Both 0.113 0.085 0.091 0.056 0.122 0.154 0.132 0.081 14.142

We repeated the same methodology as the TF-IDF gensim continuously
querying implementation and executed continuously querying queries across
all of the projects in the dataset. We used Gensim’s implementation and we
used unoptimized defaults of k1 = 0.7 and b = 1.25 from Gensim.

6.1 BM25 Performance

Unfortunately BM25’s performance was lackluster compared to our TF-IDF
implementation. Table 3 shows that the average query taking 10 to 12 words
to find a duplicate bug report. The AveP-TOP5 performance of 0.123 to 0.141
was worse than the 0.285 to 0.296 performance of the initial TF-IDF imple-
mentation. But even in the case of Old Map the BM25 suffered heavily with
Old MAP values of to 0.112 to 0.114. A Wilcoxon signed rank test shows
that BM25 stemmed and not-stemmed AveP-TOP5s are significantly differ-
ent than TF-IDF with cosine distance (p = 1.192e− 07 with α = 0.05) with a

30 Abram Hindle, Curtis Onuczko

Table 4 Performance per Project with DüpeBuster ElasticSearch/Lucene Lucene-Score
based Continuously Querying Implementation. Old MAP is not Continuously Querying.

Old Continuously Querying
Project Exp MAP MAP MRR TOP1 TOP5 TOP10 aveP-

TOP5
MRR-
TOP5

MRR-
TOP5−1

Project Exp MAP MAP MRR TOP1 TOP5 TOP10 aveP-TOP5 first-TOP5 1/1stTop5
Android Stemming 0.197 0.243 0.276 0.195 0.385 0.465 0.364 0.202 4.947
Android NoStem 0.211 0.241 0.268 0.175 0.406 0.478 0.380 0.202 4.944

App Inventor Stemming 0.171 0.147 0.184 0.071 0.330 0.530 0.374 0.463 2.158
App Inventor NoStem 0.115 0.173 0.230 0.137 0.344 0.543 0.390 0.401 2.493

Bazaar Stemming 0.236 0.227 0.227 0.142 0.322 0.397 0.302 0.159 6.285
Bazaar NoStem 0.242 0.225 0.225 0.148 0.312 0.380 0.298 0.160 6.232

Cyanogenmod Stemming 0.209 0.169 0.174 0.107 0.262 0.294 0.233 0.134 7.480
Cyanogenmod NoStem 0.222 0.222 0.223 0.144 0.309 0.345 0.265 0.138 7.252

Eclipse Stemming 0.292 0.230 0.233 0.168 0.307 0.365 0.290 0.145 6.899
Eclipse NoStem 0.304 0.234 0.237 0.170 0.316 0.366 0.299 0.158 6.314
K9Mail Stemming 0.210 0.200 0.205 0.117 0.302 0.378 0.315 0.186 5.364
K9Mail NoStem 0.224 0.264 0.269 0.200 0.360 0.414 0.347 0.179 5.574
Mozilla Stemming 0.271 0.228 0.232 0.164 0.312 0.372 0.293 0.144 6.964
Mozilla NoStem 0.283 0.232 0.236 0.172 0.310 0.366 0.296 0.145 6.905
MyTrack Stemming 0.114 0.458 0.459 0.403 0.531 0.586 0.490 0.245 4.082
MyTrack NoStem 0.127 0.434 0.436 0.394 0.465 0.531 0.428 0.194 5.158

OpenOffice Stemming 0.189 0.186 0.194 0.146 0.240 0.296 0.226 0.109 9.207
OpenOffice NoStem 0.209 0.182 0.189 0.142 0.243 0.294 0.232 0.120 8.362
OpenStack Stemming 0.402 0.316 0.316 0.193 0.481 0.530 0.421 0.239 4.180
OpenStack NoStem 0.354 0.331 0.331 0.218 0.472 0.531 0.418 0.240 4.158
osmand Stemming 0.125 0.126 0.126 0.028 0.286 0.384 0.294 0.189 5.284
osmand NoStem 0.090 0.152 0.152 0.058 0.289 0.397 0.313 0.218 4.592
Tempest Stemming 0.215 0.145 0.145 0.091 0.189 0.290 0.276 0.198 5.056
Tempest NoStem 0.208 0.161 0.161 0.099 0.220 0.310 0.301 0.194 5.155
Average Stemming 0.219 0.223 0.231 0.152 0.329 0.407 0.323 0.201 5.659
Average NoStem 0.216 0.238 0.246 0.171 0.337 0.413 0.331 0.196 5.595
Average Both 0.217 0.230 0.239 0.162 0.333 0.410 0.327 0.198 5.627

95% confidence interval of difference between TF-IDF and BM25 of 0.138 to
0.178.

This indicated that perhaps tuning needed to be done. We explored various
values for k1 and saw little difference. Following a grid search of b from 0.0
to 1.0 on App Inventor we found the highest MRRTOP5 of 0.149 at b = 0.0
and lowest of 0.103 at b = 1.0. The b parameter normalizes for length and
by setting b to 0.0 normalization is disabled, but even at b = 0.0 the average
performance of BM25 versus TF-IDF cosine distance was for MRRTOP5 was
0.149 versus 0.465. Thus tuning can improve BM25 performance, but BM25
did not fair well potentially due to document length which the b parameter was
modifying the weight of. An alternative could be to evaluate a newer BM25
derivative.

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 31

7 Industrial Evaluation

How would a continuously querying implementation perform in actual software
development? Can we design systems capable of handling the sheer number of
queries that continuously querying of bug reports calls for?

We have deployed continuously querying through our industrial continu-
ously querying implementation called Bug-Party/DüpeBuster product 4. What
we have found is that providing a RESTful webservice that can respond to con-
tinuously querying queries on bug reports is quite possible with modern NLP
indexing. The TF-IDF continuously querying implementation depicted in the
paper is not the same as DüpeBuster, which uses elasticsearch’s and Lucene’s
TF-IDF implementation with Lucene and ElasticSearch scoring. We integrated
DüpeBuster with existing bug trackers to enable continuously querying. By
injecting some JavaScript into a bug tracker’s webpage one can add function-
ality to enable text input fields to provide continuously querying queries to the
DüpeBuster continuously querying webservice. The DüpeBuster UI is similar
to the UI depicted in Figure 1. As the developer types in a bug report sug-
gestions pop-up beside their text input area. This is an online behaviour. The
user’s browser queries the webservice and then the suggestions are laid out
beside the user’s bug text input area. They can mouse over the suggestions to
get more information or they may click one of them to open a new tab with
that potential duplicate bug report. One difference between the DüpeBuster’s
UI and the continuously querying implementation described previously is that
when DüpeBuster is deployed the Lucene score of similarity is shared and used
as a threshold to determine whether or not a duplicate suggestion should be
shown to the user. Thereby reducing false positives, but obviously reducing
recall. In a deployed system it can make sense to engage in thresholding of
results based on score or confidence.

We worked with BioWare to refine and deploy Bug-Party/DüpeBuster and
it was deployed within the bug trackers for a few of their games. As testers and
developers type a bug report into the internal bug tracking tools, the current
report’s title and description would be sent to DüpeBuster which would reply
with possible suggestions. These suggestions would be displayed underneath
the typed text and the bug reporter could click on any of the suggestions to
open a new tab containing that bug report.

7.1 DüpeBuster performance

The performance of DüpeBuster is measured in Table 4. It follows the same
evaluation methodology as the experiments in Table 2. The main difference
is that ElasticSearch has to be told to refresh its index after bug reports
are loaded individually in DüpeBuster. The 95% confidence interval of mean
difference between the gensim TF-IDF continuously querying implementation

4 To install DüpeBuster visit https://bitbucket.org/abram/bugparty-docker and
https://bitbucket.org/abram/bugparty/.

https://bitbucket.org/abram/bugparty-docker
https://bitbucket.org/abram/bugparty/

32 Abram Hindle, Curtis Onuczko

and the DüpeBuster continuously querying implementation for AveP-Top5 is
0.0216 to 0.0595, about a 0.0409 difference in performance. A Wilcoxon signed
rank test between gensim and DüpeBuster performance indicates a significant
difference with a p-value of 0.00158.

The DüpeBuster implementation performance is slightly better on average
than the Gensim implementation.

One difference between the Gensim implementation and DüpeBuster imple-
mentation was that stemming had limited effect on in performance according
to bootstrapped confidence intervals of difference of means between not stem-
ming and stemming at 95% was between 0.00610 and 0.0208. Yet a Wilcoxon
signed rank test on the per project means had a p-value of only 0.0923 indicates
that the difference is insignificant as it is above the α of 0.05.

If we look to Table 2 and Table 4 the mean difference in MRR-TOP5 per-
formance is about 0.7 words. The gensim based prototype returns a successful
hit in the TOP5 1 query/word later than DüpeBuster. Performance is prob-
ably different for a few practical reasons. First of all, DüpeBuster was made
earlier than the TF-IDF continuously querying implementation demonstrated
here, second it only returns 25 results, so MAP and MRR scores will be cut off
at 25 results for all queries. Thirdly, when DüpeBuster is deployed 2 queries
are made against the subject and description of the bug report and the re-
sults are interleaved. Fourthly, DüpeBuster uses Lucene which might do far
more work than Gensim. Since this evaluation engages in concatenation of
bug report subject and description we only queried and ranked against the
description match. Furthermore ElasticSearch employs Lucene’s default lan-
guage model and thus would not benefit much from pre-stemming as it was
expecting English words—although ElasticSearch and Lucene are quite config-
urable. The benefit of using an ElasticSearch-based backend is that the index
is flexible, it updates rapidly, it can be clustered, and it has performance that
allow numerous concurrent clients to make multiple queries per second.

7.2 Interviews with Developers and Testers

At BioWare we sent out interview invites to more than 80 developers and
testers for a variety of BioWare games that were using Bug-Party/DüpeBuster.
We recruited and interviewed 6 volunteers who used the tool and the bug
trackers. While 6 is not enough to describe deployment statistically we will
report differences and commonalities that occurred within the interviews. The
volunteers ranged from testers to developers, to project managers. Some used
the bug tracker all day, some used the bug tracker a few times a week. All of
them had encountered and could identify the DüpeBuster.

We asked the interviewees about how bug reports were filed and they re-
sponded that testers received formal training and documentation about how
to search and how to write bug report titles. A typical process for reporting
a bug was to search an bug tracker manually for the bug in question using
attributes such as levels, dates, and keywords from the title. If a relevant bug

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 33

report was not found they would report the bug through BioMetrics where
DüpeBuster was installed. As they typed in the bug report DüpeBuster would
provide suggestions that could be relevant.

Half (3/6) of the interviewees intentionally and actively used the DüpeBuster
to query bug reports. The others claimed it was more passive, they would try
to report a bug and if DüpeBuster reported anything they might investigate.

All (6/6) of the interviewees stated that DüpeBuster had prevented a du-
plicate bug. An interviewee responded, “Its a really good tool and it should
be developed. It cuts down on QA time.”

Most (5/6) interviewees believed that BioWare saved money due to time
saved not writing duplicate bug reports. Of those who said it does not save
money tended to have bug reporting workflows where they would query JIRA
first and quite thoroughly. Some suggested improvements such as integrating
DüpeBuster into tools used earlier in the process.

All (6/6) of the interviewees said it was fast, quick, or fast enough. One
interviewee expressed: “It’s very fast. Visually, DüpeBuster responds to each
word typed within less than a second.”

When asked how many words we needed to provide before continuously
querying would find an appropriate bug the answers ranged from 2 to 5 words,
3 words, to 4 to 5 words, to the entire title. Many interviewees emphasized the
importance of the bug report title.

The interviewees tried to estimate the rate of bug prevention, their re-
sponses were: 3 times a month, 2/500, 1/100, 1/50, 1/30, and 30%. So there was
a consistent belief that some duplicate bug reports were being prevented. One
interviewee was commenting on how duplicates were found by DüpeBuster,
“It catches dupes from titles about 50% of the time.” This indicates that the
potential claims of bug report prevention presented in this paper could be
over-stated yet much of this responding could due to the common process of
searching JIRA first by hand then moving on to report the duplicate.

Improvements were suggested by all of the interviewees. They suggested
that meta-data such as Bug ID or date, and short summaries were needed as
the title was not always enough. Many of the interviewees said not to show
closed bugs, or instead to focus on recent bug reports. Some suggested to keep
a query dictionary in order to address aliases for terms.

Aliases for terms are important because the name for an asset or entity
in a program can be different than the name of the asset or entity in a level
or story, so there can be ambiguity in bug reports. The theme of common
vocabulary came up numerous times as aliased keywords were perceived to
cause problems with bug report search.

Two interviewees were asked if the continuously querying implementation
was distracting and they responded that it was easy to ignore when it was no
longer relevant. Yet this suggests that continuously querying UI might have
to face human limits and different strategies should be employed based on the
amount of provided text.

If we relate our 42% duplicate prevention from RQ2 in Section 5.2 with
observations from this section we can see that developers perceive that the

34 Abram Hindle, Curtis Onuczko

continuously querying implementation prevents duplicate bug reports, and
that it saves money due to preventing duplicates even if that rate of duplicate
prevention is low.

Thus we can see that not only is the continuously querying method indus-
trially relevant but it incurs minimal costs for developers to use as it can be
integrated into their existing systems. We thank BioWare employees for their
participation in this study.

8 Threats to Validity

Construct validity faces many threats. First and foremost, do we trust the
duplicate bug report data extracted from numerous bug report systems? Do
we trust developers to properly mark duplicate bug reports? Even so, at no
point do they mark non-duplicate bugs, thus we have no negative examples.
Since we only supposedly have true positive examples we can only measure
precision and thus are stuck with measures like MAP or MRR.

In our evaluation, We assume that users type in their bug reports in order.
We do not know if this is how they compose their bug reports. We assume that
users write the title of their bug report first as per our interviews. We also
assume that users will read some of the duplicate bug report suggestions yet
we cannot present evidence of this yet without more invasive logging. We also
did not measure how many bug reports a user would have to read or evaluate
to find or not find a duplicate bug reports in a deployed scenario.

Furthermore we assume the words in these bug reports are the words that
would be used in continuously querying. An edited bug report might be very
different from the text a developer would type if a continuously querying im-
plementation was available to them.

Internal validity is hampered by the lack of negative queries, we only ask
positivist queries where we know there is an answer. This means we might
have abysmal performance for bug reports that are not duplicates and we
might waste the user’s time evaluating non-duplicate bug reports. Internal
validity of the industrial evaluation was hampered by the limited number of
employees who used the tool and the limited number of volunteers even.

External validity is threatened by the small number of systems and small
number of duplicates per system. External validity could be better addressed
with more and wider varieties of duplicate bug data. External validity is further
hampered by the lack of sampling in terms of the datasets used – they are
used opportunistically rather than statistically sampled and this will affect the
reliability of the results as well as external validity. Our industrial deployment
was only at 1 company.

9 Conclusion

The Continuously Querying approach to preventing duplicate bug reports al-
lows users to find duplicate bug reports as they type in their bug report. The

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 35

string of their in-progress bug report becomes a query to find duplicate bug
reports. This is done by continuously querying the bug tracker for duplicate
reports with every new word that the user types in, much like search engine
suggestions. By rapidly querying the bug tracker, duplicate bug reports may
be found and suggested before a user finishes writing a bug report.

Continuously Querying Bug Reports is a new kind of bug deduplication
task that has the potential to prevent duplicate before they occur in 42% or
more of observed duplicate bug report cases. We demonstrated via a rigorous
experiment that continuously querying implementation are effective at finding
duplicate bug reports in multiple projects. We created a simple information
retrieval model using TF-IDF and cosine distance to find similar documents
from our prefixed queries. We found that in general stemming our vocabulary
showed inconsistent statistical evidence of improving performance.

Can current state-of-the-art bug report deduplication techniques transition
well into continuously querying algorithms and implementations? As this is
a new kind of bug deduplication method which needs further research into
appropriate IR techniques to retrieve bug reports, we have shared our dataset
and source code. 5

9.1 Future Work

As this work introduces continuously querying bug reports, there is only so
much can be done in one paper. There are many possibilities for future research
on continuously querying and we hope that the availability of our benchmark
dataset will attract some new research in this area.

New continuously querying algorithms should be proposed and tested. Yet
future work should also consider evaluation in terms of runtime performance,
IR performance, and human performance in terms human effort to filter and
read these duplicate bug report suggestions. Runtime performance and more
importantly human effort deserve more attention than this study gave them.

We employed very naive IR in this paper to implement continuously query-
ing. We used TF-IDF with cosine distance and BM25 in this work, where as
other bug deduplication works have used BM25F [36, 37]. We did evaluate
BM25 but have not used BM25F—BM25 on multiple fields.

While some of our results showed that the application of techniques pro-
duce conflicting results based on the project, we did not attempt to find or
choose near optimal configurations. We were not able to explore the effect of
different NLP and IR treatments beyond the use of stemming. Clear follow
up studies would be about the effects of different IR and NLP techniques on
continuously querying: does stop word removal matter; should entity recogni-
tion be employed; is there a benefit to limiting the vocabulary; could character
n-grams perform better; can we improve run-time performance with stateful
queries or caching result sets? Continuously Querying research can be bolstered

5 Datasets https://archive.org/details/2016-04-09ContinuousQueryData. Code:
https://bitbucket.org/abram/continuous-query

https://archive.org/details/2016-04-09ContinuousQueryData
https://bitbucket.org/abram/continuous-query

36 Abram Hindle, Curtis Onuczko

with search based software engineering [14], IR search techniques employed by
Panichella et al. [22], and query quality and reformulation techniques proposed
by Haiduc et al. [13].

Furthermore the elephant in the room of continuously querying is that the
words used in a bug report are not the same as words used in queries. Thus
word filtering, query-word expansion, and query word re-weighting need to be
investigated to improve continuously querying implementation performance.

Acknowledgments

This work was funded by an NSERC Discovery Grant, NSERC Engage Grant,
and a MITACS Accelerate Cluster Grant in conjunction with Bioware ULC.
We would also like to thank prior reviewers and Ahmed Hassan.

References

1. Aggarwal, K., , Timbers, F., , Rutgers, T., , Hindle, A., , Stroulia, E., , Greiner, R.:
Detecting duplicate bug reports with software engineering domain knowledge. Journal
of Software: Evolution and Process 29, 1–15 (2017). DOI 10.1002/smr.1821. URL
http://softwareprocess.ca/pubs/aggarwal2017JSEP.pdf. E1821 smr.1821

2. Aggarwal, K., Rutgers, T., Timbers, F., Hindle, A., Greiner, R., Stroulia, E.: Detecting
duplicate bug reports with software engineering domain knowledge. In: Software Anal-
ysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd International Conference
on, pp. 211–220. IEEE (2015)

3. Alipour, A.: A contextual approach towards more accurate duplicate bug report detec-
tion. Master’s thesis, University of Alberta (2013)

4. Alipour, A., Hindle, A., Stroulia, E.: A contextual approach towards more accurate
duplicate bug report detection. In: Proceedings of the Tenth International Workshop
on Mining Software Repositories, pp. 183–192. IEEE Press (2013)

5. Arasu, A., Babu, S., Widom, J.: The cql continuous query language: semantic founda-
tions and query execution. The VLDB Journal 15(2), 121–142 (2006)

6. Asaduzzaman, M., Roy, C.K., Schneider, K.A., Hou, D.: Cscc: Simple, efficient, con-
text sensitive code completion. In: 2014 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 71–80. IEEE (2014)

7. Bettenburg, N., Premraj, R., Zimmermann, T., Kim, S.: Duplicate bug reports consid-
ered harmful really? In: Software Maintenance, 2008. ICSM 2008. IEEE International
Conference on, pp. 337–345. IEEE (2008)

8. Campbell, J.C., Santos, E.A., Hindle, A.: The unreasonable effective-
ness of traditional information retrieval in crash report deduplication.
In: International Working Conference on Mining Software Repositories
(MSR 2016), pp. 269–280 (2016). DOI 10.1145/2901739.2901766. URL
http://softwareprocess.ca/pubs/campbell2016MSR-partycrasher.pdf

9. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M.,
Hong, W., Krishnamurthy, S., Madden, S.R., Reiss, F., Shah, M.A.: Tele-
graphcq: Continuous dataflow processing. In: Proceedings of the 2003 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’03, pp. 668–
668. ACM, New York, NY, USA (2003). DOI 10.1145/872757.872857. URL
http://doi.acm.org/10.1145/872757.872857

10. Chandrasekaran, S., Franklin, M.J.: Streaming queries over streaming
data. In: Proceedings of the 28th International Conference on Very Large
Data Bases, VLDB ’02, pp. 203–214. VLDB Endowment (2002). URL
http://dl.acm.org/citation.cfm?id=1287369.1287388

http://softwareprocess.ca/pubs/aggarwal2017JSEP.pdf
http://softwareprocess.ca/pubs/campbell2016MSR-partycrasher.pdf
http://doi.acm.org/10.1145/872757.872857
http://dl.acm.org/citation.cfm?id=1287369.1287388

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports 37

11. Deshmukh, J., M, A.K., Podder, S., Sengupta, S., Dubash, N.: Towards accurate du-
plicate bug retrieval using deep learning techniques. In: 2017 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME), pp. 115–124 (2017). DOI
10.1109/ICSME.2017.69

12. Google: Google suggestion service. https://goo.gl/4sFq8n (2016)
13. Haiduc, S.: Supporting query formulation for text retrieval applications in soft-

ware engineering. In: 30th IEEE International Conference on Software Mainte-
nance and Evolution, Victoria, BC, Canada, September 29 - October 3, 2014, pp.
657–662. IEEE Computer Society (2014). DOI 10.1109/ICSME.2014.117. URL
http://dx.doi.org/10.1109/ICSME.2014.117

14. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: Trends,
techniques and applications. ACM Comput. Surv. 45(1), 11:1–11:61 (2012). DOI
10.1145/2379776.2379787. URL http://doi.acm.org/10.1145/2379776.2379787

15. Jalbert, N., Weimer, W.: Automated duplicate detection for bug tracking systems. In:
Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE In-
ternational Conference on, pp. 52–61. IEEE (2008)

16. Kao, B., Garcia-Molina, H.: An overview of real-time database systems. In: Real Time
Computing, pp. 261–282. Springer (1994)

17. Klein, N., Corley, C.S., Kraft, N.A.: New features for duplicate bug detection. In: MSR,
pp. 324–327 (2014)

18. Lazar, A., Ritchey, S., Sharif, B.: Improving the accuracy of duplicate bug report detec-
tion using textual similarity measures. In: Proceedings of the 11th Working Conference
on Mining Software Repositories, pp. 308–311. ACM (2014)

19. Lukins, S.K., Kraft, N.A., Etzkorn, L.H.: Source code retrieval for bug localiza-
tion using latent dirichlet allocation. In: Proceedings of the 2008 15th Work-
ing Conference on Reverse Engineering, WCRE ’08, pp. 155–164. IEEE Com-
puter Society, Washington, DC, USA (2008). DOI 10.1109/WCRE.2008.33. URL
http://dx.doi.org/10.1109/WCRE.2008.33

20. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language
Processing. The MIT Press, Cambridge, Massachusetts (1999). URL
http://nlp.stanford.edu/fsnlp/

21. Nguyen, A.T., Nguyen, T.T., Nguyen, T.N., Lo, D., Sun, C.: Duplicate bug report de-
tection with a combination of information retrieval and topic modeling. In: Proceedings
of the 27th IEEE/ACM International Conference on Automated Software Engineering,
pp. 70–79. ACM (2012)

22. Panichella, A., Dit, B., Oliveto, R., Penta, M.D., Poshyvanyk, D., Lucia, A.D.:
Parameterizing and assembling ir-based solutions for SE tasks using genetic al-
gorithms. In: IEEE 23rd International Conference on Software Analysis, Evolu-
tion, and Reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18, 2016,
pp. 314–325. IEEE Computer Society (2016). DOI 10.1109/SANER.2016.97. URL
http://dx.doi.org/10.1109/SANER.2016.97

23. Ponzanelli, L., Bacchelli, A., Lanza, M.: Seahawk: Stack overflow in the ide.
In: Proceedings of the 2013 International Conference on Software Engineering,
ICSE ’13, pp. 1295–1298. IEEE Press, Piscataway, NJ, USA (2013). URL
http://dl.acm.org/citation.cfm?id=2486788.2486988

24. Ponzanelli, L., Bavota, G., Di Penta, M., Oliveto, R., Lanza, M.: Mining stackover-
flow to turn the ide into a self-confident programming prompter. In: Proceedings
of the 11th Working Conference on Mining Software Repositories, MSR 2014, pp.
102–111. ACM, New York, NY, USA (2014). DOI 10.1145/2597073.2597077. URL
http://doi.acm.org/10.1145/2597073.2597077

25. Porter, M.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980). DOI
10.1108/eb046814. URL http://www.emeraldinsight.com/doi/abs/10.1108/eb046814

26. Rakha, M.S., Bezemer, C.P., Hassan, A.E.: Revisiting the performance evaluation of
automated approaches for the retrieval of duplicate issue reports. IEEE Transactions
on Software Engineering PP(99), 1–1 (2017). DOI 10.1109/TSE.2017.2755005

27. Rakha, M.S., Bezemer, C.P., Hassan, A.E.: Revisiting the performance of automated
approaches for the retrieval of duplicate reports in issue tracking systems that perform
just-in-time duplicate retrieval. Empirical Software Engineering (2018)

https://goo.gl/4sFq8n
http://dx.doi.org/10.1109/ICSME.2014.117
http://doi.acm.org/10.1145/2379776.2379787
http://dx.doi.org/10.1109/WCRE.2008.33
http://nlp.stanford.edu/fsnlp/
http://dx.doi.org/10.1109/SANER.2016.97
http://dl.acm.org/citation.cfm?id=2486788.2486988
http://doi.acm.org/10.1145/2597073.2597077
http://www.emeraldinsight.com/doi/abs/10.1108/eb046814

38 Abram Hindle, Curtis Onuczko

28. Rakha, M.S., Shang, W., Hassan, A.E.: Studying the needed effort for identifying du-
plicate issues. Empirical Software Engineering pp. 1–30 (2015). DOI 10.1007/s10664-
015-9404-6. URL http://dx.doi.org/10.1007/s10664-015-9404-6

29. Řeh̊uřek, R., Sojka, P.: Software Framework for Topic Modelling with Large Corpora.
In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks,
pp. 45–50. ELRA, Valletta, Malta (2010). http://is.muni.cz/publication/884893/en

30. Řeh̊uřek, R., Sojka, P.: models.tfidfmodel — TF-IDF model (2018).
https://radimrehurek.com/gensim/models/tfidfmodel.html (retrieved March
2018)

31. Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford,
M.: Okapi at trec3. In: Overview of the Third Text REtrieval Con-
ference (TREC3), p. 109126. Gaithersburg, MD: NIST (1995). URL
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/

32. Rocha, H., De Oliveira, G., Marques-Neto, H., Valente, M.T.: Nextbug: a bugzilla ex-
tension for recommending similar bugs. Journal of Software Engineering Research and
Development 3(1), 1–14 (2015)

33. Runeson, P., Alexandersson, M., Nyholm, O.: Detection of duplicate defect reports
using natural language processing. In: Software Engineering, 2007. ICSE 2007. 29th
International Conference on, pp. 499–510. IEEE (2007)

34. Sabor, K.K., Hamou-Lhadj, A., Larsson, A.: Durfex: A feature extraction technique
for efficient detection of duplicate bug reports. In: Software Quality, Reliability and
Security (QRS), 2017 IEEE International Conference on, pp. 240–250. IEEE (2017)

35. Shah, M.A., Hellerstein, J.M., Chandrasekaran, S., Franklin, M.J.: Flux: an adaptive
partitioning operator for continuous query systems. In: Proceedings 19th International
Conference on Data Engineering (Cat. No.03CH37405), pp. 25–36 (2003). DOI 10.1109/
ICDE.2003.1260779

36. Sun, C., Lo, D., Khoo, S.C., Jiang, J.: Towards more accurate retrieval of duplicate
bug reports. In: Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, pp. 253–262. IEEE Computer Society (2011)

37. Sun, C., Lo, D., Wang, X., Jiang, J., Khoo, S.C.: A discriminative model approach
for accurate duplicate bug report retrieval. In: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, pp. 45–54. ACM (2010)

38. Sureka, A., Jalote, P.: Detecting duplicate bug report using character n-gram-based
features. In: Software Engineering Conference (APSEC), 2010 17th Asia Pacific, pp.
366–374. IEEE (2010)

39. Tange, O.: Gnu parallel - the command-line power tool. ;login: The USENIX Magazine
36(1), 42–47 (2011). URL http://www.gnu.org/s/parallel

40. Thung, F., Kochhar, P.S., Lo, D.: Dupfinder: Integrated tool support for du-
plicate bug report detection. In: Proceedings of the 29th ACM/IEEE In-
ternational Conference on Automated Software Engineering, ASE ’14, pp. 871–
874. ACM, New York, NY, USA (2014). DOI 10.1145/2642937.2648627. URL
http://doi.acm.org/10.1145/2642937.2648627

41. Wang, S., Lo, D., Lawall, J.: Compositional vector space models for improved bug lo-
calization. In: Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on, pp. 171–180. IEEE (2014)

42. Wang, X., Zhang, L., Xie, T., Anvik, J., Sun, J.: An approach to detecting duplicate
bug reports using natural language and execution information. In: Proceedings of the
30th international conference on Software engineering, pp. 461–470. ACM (2008)

43. White, R.W., Marchionini, G.: Examining the effectiveness of real-time
query expansion. Information Processing & Management 43(3), 685
– 704 (2007). DOI https://doi.org/10.1016/j.ipm.2006.06.005. URL
http://www.sciencedirect.com/science/article/pii/S0306457306000951. Spe-
cial Issue on Heterogeneous and Distributed IR

44. Zhang, Y., Lo, D., Xia, X., Sun, J.L.: Multi-factor duplicate question detection in stack
overflow. Journal of Computer Science and Technology 30(5), 981–997 (2015). DOI
10.1007/s11390-015-1576-4. URL http://dx.doi.org/10.1007/s11390-015-1576-4

http://dx.doi.org/10.1007/s10664-015-9404-6
http://is.muni.cz/publication/884893/en
https://radimrehurek.com/gensim/models/tfidfmodel.html
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/
http://www.gnu.org/s/parallel
http://doi.acm.org/10.1145/2642937.2648627
http://www.sciencedirect.com/science/article/pii/S0306457306000951
http://dx.doi.org/10.1007/s11390-015-1576-4

	Introduction
	Prior Work
	Continuously Querying Bug Reports
	Experiment Methodology
	Experiment Results
	BM25 Evaluation
	Industrial Evaluation
	Threats to Validity
	Conclusion

