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Abstract

This thesis studies solutions of nonlocal modifications of Maxwell and linearized grav-

ity equations. We focus on a wide class of Lorentz invariant theories known as ghost

free models in which a form factor of nonlocality is chosen so that no new additional

unphysical degrees of freedom are present. Such form factors introduce a length scale

ℓ that determines the range in which the effects of nonlocality are important. Us-

ing the Green function method we obtain solutions in such theories for stationary

fields created by point-like and extended objects. By performing the boost transfor-

mations of the obtained stationary solutions and taking the Penrose limit we obtain

solutions of the nonlocal theory describing the electromagnetic and gravitational field

of ultrarelativistic objects. The key role in this derivation is played by a property

of the factorization of the Green functions in the Penrose limit. The properties of

electromagnetic and gravitational fields of ultrarelativistic objects are discussed and

concrete examples are presented.
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Preface

This thesis is an original work by Jose Pinedo Soto. All results were obtained by

using the provided references and nothing else.

Chapters 2 - 4 are based on two research papers [1, 2] which are the result of

collaboration with Prof. Valeri Frolov and Dr. Jens Boos. The author of this thesis

was substantially involved in every step of the research process. Chapters 1 and 5

present the reader with a general context to understand the relevance of the thesis and

give an outlook to future venues of research. Appendixes A to F are complementary

information to their corresponding section or chapter.
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Chapter 1

Introduction

The fundamental theories of theoretical physics such as General Relativity and Maxwell

theories are local. In particular, this means that they can be derived from an action

S which is of the form

S =

∫︂
dxL (1.1)

were the Lagrangian density L is a function of the field and a finite number of its

derivatives calculated at a given point x. In such theories a point-like particle “feels”

the field with which it interacts only at the place where it is located. Another impor-

tant feature of these theories is their local Lorentz invariance. As a result their action

S as well as their Lagrangian density L are scalars under coordinate transformations.

However, there exist a long-standing problem with these theories. A static field of

a point-like object in the Maxwell theory as well as in linearized gravity is divergent

at the origin. This results in the infinity of self-energy of such sources. This classical

singularity problem is a manifestation of similar divergences present in their quantum

counterparts. In General Relativity this problem is “reincarnated” in a well known

hassle: the generic and inevitable existence of singularities in cosmology and inside

black holes. One says that the standard General Relativity is ultraviolet (UV) in-

complete and it requires a modification in the regime where the spacetime curvature

becomes very large.

There are a lot of different modifications of General Relativity which were proposed

1



in order to solve the singularity problem and to “cure” this fundamental “disease”

of General Relativity. One interesting and promising approach is using nonlocal

modifications of gravity theory.

The idea of nonlocality in physics is quite old. It has been explored for quite some

time [3–11]. More recently the interest in nonlocal theory greatly increased. This is

mainly motivated by the development of string theory [12–15]. The main focus of

this thesis is the study of the so-called infinite derivative theories. This is a proposed

modification of the local equations that preserves the local Lorentz invariance of the

theory. At the linearized level the standard □ operator is changed to f(□)□, where a

nonlocal form factor f(z) is chosen such that it does not vanish in the complex plane

of z, and hence it has a unique inverse. As a result, no new unphysical degrees of

freedom are present, at least at tree level. For this reason, such nonlocal theories are

sometimes refereed to as “ghost-free” [16, 17]. Recently, there has been substantial

activity devoted to study of nonlocal generalizations of General Relativity. The main

motivation behind this study is an attempt to solve the long standing problems of

General Relativity: cosmological and black hole singularities.

The nonlocal theories of gravity have appealing UV properties [18, 19]. Linearized

solutions of the nonlocal ghost-free gravity equations for stationary objects were de-

rived and discussed in many publications (see Refs. [20, 21] and references therein). It

has been demonstrated that in the weak-field regime this class of theories regularizes

the gravitational field of point-like sources [21–24] as well as thin brane-like extended

objects [20, 25, 26]. Paper [27] contains a nice summary of these results. Discussion of

the nonlocal gravity models in the strong-field regime in connection with black holes

can be found in [28–32] and in references therein; for cosmological applications see

[33, 34]. Nonlocal infinite-derivative form factors have also been explored in quantum

theory [35, 36] as well as quantum field theory [37–43].

It should be emphasized that most of the publications devoted to study of the solu-

tions of the nonlocal linearized gravity equations are focused on the four-dimensional
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theories with static sources. In our work [1] we obtained a far-going generalization of

these results. Namely,

• We studied nonlocal linearized gravity equations in arbitrary number of space-

time dimensions;

• We discussed wide class of so-called GFN theories, where form factor f(□) is

the exponential of the N -th power of the □ operator;

• We obtained stationary solutions for sources which besides mass also have spin.

Chapter 3 of the thesis, which is based on the paper [1], contains discussion of these

results.

It is interesting that while there are many publications devoted to the linearized

nonlocal gravity, the subject of nonlocal modifications of the Maxwell equations re-

mained in the “shadows”. However, there exists a well known similarity between the

Maxwell equations with those of linearized gravity. To fill this “gap” we studied a

class of higher dimensional Lorentz invariant nonlocal generalizations of the Maxwell

theory, which (at least at tree level) do not contain unphysical extra degrees of free-

dom and in this sense they are “ghost-free”. Construction of such theories and their

properties are discussed in our work [2]. Chapter 2 of this thesis is based on these

results.

If one obtains a solution of the field equations for a stationary source in the frame

of reference where this source is at rest (rest frame) one can easily find how these

solutions look like in a frame which moves with a constant velocity with respect to the

rest frame. This is possible whenever one is dealing with a Lorentz invariant theory.

In the Maxwell theory the electric field of a point charge is spherically symmetric and

its equipotential surfaces are spheres. If such a charge moves with a constant velocity

with respect to an observer then its equipotential surfaces are squeezed and take on

an elliptic form, which is a direct result of relativistic Lorentz contraction. In the
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limit when the velocity of the charge tends to the speed of light, this squeezing is so

strong that the field of the charge is practically confined to a null plane and becomes

similar to a plane wave (see Ref. [44] and references therein).

Similar effects have been studied in gravity and are well known, in fact, the study

of the gravitational field of ultrarelativistic particles and beams of light is a very old

subject. The first solution describing the gravitational field of beams of light (“pen-

cils”) was found by Tolman, Ehrenfest and Podolski in 1931 [45]. These authors used

a linear approximation of the Einstein equations. One of their main conclusions was

that the gravitational force acting on a massless particle moving in the same direc-

tion as the beam of light vanishes. Later, Bonnor [46] presented a solution for the

gravitational field produced by a cylindrical beam of a null fluid. This model can be

interpreted as a description of a high frequency light beam in the geometric optics

approximation when diffraction effects are neglected.1 The gravitational field of a

spinning pencil of light was obtained by Bonnor in 1970 [48], see also Refs. [49, 50].

Higher-dimensional solutions describing the gravitational field of spinning ultrarela-

tivistic objects and light beams were obtained in [51, 52]. The latter work introduced

the name “gyraton” for such spinning ultrarelativistic objects, which is now used in

the literature quite frequently. There exist different generalizations of standard gyra-

ton solutions, such as solutions for charged gyratons [53], gyratons in asymptotically

AdS spacetimes [54], in a generalized Melvin universe with cosmological constant [55],

and string gyratons in supergravity [56]. Gyraton solutions of the Einstein equations

belong to the wide class of so-called Kundt metrics [57]. A comprehensive discussion

of gyratons in the Robinson–Trautman and Kundt classes of metrics can be found in

[58–61].

There is another problem that has been widely discussed in the literature and

which is closely related to gyratons. In 1970, Aichelburg and Sexl [62] constructed a

1More recent studies of light beams beyond the geometric optics approximation can be found in
[47] and references therein.
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metric of a massive ultrarelativistic particle. In its rest frame, the gravitational field

of such a particle of mass m is described by the Schwarzschild metric. In order to

obtain the metric when this particle moves with a very high velocity they applied a

boost transformation and considered the limit where the velocity of the object tends

to the speed of light, and hence the Lorentz factor γ diverges. They demonstrated

that keeping the value of the energy E = γm fixed yields a limiting metric which

is now called the Aichelburg–Sexl solution. For this solution the gravitational field

of a particle is localized at the null plane tangent to the null vector of the particle’s

four-velocity. Later, Penrose [63] demonstrated that this is a generic property of any

metric that is boosted to the speed of light, provided the corresponding energy is kept

fixed, and this special limiting case has hence been dubbed as the “Penrose limit”.

Aichelburg–Sexl-type metrics have been widely used for the study of the gravitational

interaction of two ultrarelativistic particles as well as black hole production via their

collision. The area of the apparent horizon in this process just before the moment

of collision was calculated in [64] and has been widely used for estimating black hole

formation cross sections in the collision of ultrarelativistic particles (see e.g. [65–69]

and references therein).

Since in the Penrose limit the initial mass m of the particle tends to zero, one can

obtain the Aichelburg–Sexl metric by starting with a linearized, weak-field gravity

solution for a point-like particle. By considering a superposition of such solutions it

is easy to construct the gravitational field of extended objects in linearized gravity.

In particular, one may consider first a line distribution of mass, and then boost the

solution. Due to the Lorentz contraction in the direction of motion the visible size

of the body in this direction shrinks. This means that in order to obtain a solution

for the ultrarelativistic case featuring a finite energy distribution profile one needs

not only to take the Penrose limit keeping γm constant, but also simultaneously

keep the parameter L/γ fixed, where L is the size of the object in the direction of

motion as measured on the rest frame. Such a procedure can be applied to a spinning

5



object provided the rotation takes place within the plane orthogonal to the direction

of motion. One can show that in such a procedure one reconstructs the linearized

gravitational field of a gyraton. This method is described in details in chapter 5 of

the book [70].

The main motivation for the study of the fields of ultrarelativistic sources in non-

local Lorentz invariant gravity is the hope to understand how a small scale modifica-

tion of gravity might become important for the process of mini black hole formation

in the collision of ultrarelativistic particles. For example, it was shown that if the

Einstein–Hilbert action is modified by the inclusion of higher-derivative as well as

infinite-derivative terms, there exists a mass gap for black hole formation [71–74].

Electromagnetic and linearized gravitational fields of ultrarelativistic objects in the

“ghost-free” higher dimensional nonlocal theories were studied in our works [1] and

[2]. Solutions of the equations for such sources are discussed in chapter 4 of the thesis

which is based on these publications.

1.1 Thesis overview

The thesis is organized as follows. In chapter 2 we start by constructing stationary

solutions for point like particles and charged magnetized “pencils” in Maxwell the-

ory. After this we introduce a higher dimensional nonlocal generalization of such a

theory. Using the Green function method we construct solutions for the same type

of sources in this modified theory. Chapter 3 follows the spirit of the previous chap-

ter by presenting linearized Einstein theory and its generalization for an arbitrary

number of dimensions. Solutions for stationary sources are discussed for this theory.

We then present a nonlocal action for the linearized gravity and using the Green

function method obtain stationary solutions in this theory. In chapter 4 we “boost”

the obtained stationary solutions and after taking their Penrose limit we construct

solutions describing the field of the ultrarelativistic sources of the nonlocal Maxwell

and linearized gravity equations. Properties of these solutions are explored. The
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last chapter 5 contains summary and discussion of the results presented in the thesis.

Several appendices included at the end of the thesis contain details of the calculations

and additional useful information.
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Chapter 2

Maxwell Equations and Their
Nonlocal Modification

2.1 Maxwell theory

2.1.1 Equations

In this chapter we discuss nonlocal generalizations of the Maxwell equations and

their solutions. These generalizations will be introduced in section 2.3. We shall

use a formulation for such a theory in an arbitrary number of spacetime dimensions.

However, it is instructive at first to discuss the case of the standard four-dimensional

Maxwell theory.

We assume that the background metric is flat such that using Cartesian coordinates

Xµ = (t,x) we can write it in the form

ds2 = ηµνdX
µdXν = −dt2 +

3∑︂
i=1

(dxi)2 . (2.1)

However, in what follows we shall use not only the flat (Cartesian) coordinates but

curved coordinates as well. For this purpose it is convenient to write the Maxwell

equations in a general covariant form. We denote the metric by gµν then one has

ds2 = gµνdx
µdxν . (2.2)

We shall also use the covariant derivatives which we denote by ∇µ or by (. . .);µ. In

Cartesian coordinates one has

∇µ =
∂

∂Xµ
. (2.3)
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The Maxwell equations are obtained by varying the following action

SM [Aµ] = −
∫︂ (︃

1

4
FµνF

µν − Aµj
µ

)︃√
−g d4x , (2.4)

over Aµ. Here Fµν is the electromagnetic field strength tensor

Fµν = ∇µAν −∇νAµ . (2.5)

In these definitions we have used Heaviside units and put the speed of light equal

to unity, c ≡ 1. The variation of the action 2.4 gives

∇νF
νµ =

1√
−g

∂ν(
√
−gF νµ) = jµ . (2.6)

In the Cartesian coordinates these equations reduce to

∂

∂Xν
F νµ = jµ . (2.7)

After substituting the expression for the field strength F in terms of the vector

potential A into (2.7) one gets

□Aν −∇ν∇µA
µ = jν . (2.8)

Maxwell equations are invariant under the gauge transformation Aµ → Aµ + λµ,

where λ is an arbitrary function of coordinates. Using this freedom one can impose

the following gauge fixing condition (“Lorenz gauge”) ∇µA
µ = 0 which implies

□Aµ = jµ . (2.9)

2.1.2 Stationary field of point-like objects

The Maxwell equations are linear. This means that it is sufficient to find a solution

for a stationary point-like source. The field of an extended object can be obtained

by integrating such a solution over the volume occupied by the object with a proper

weight representing the charge and magnetic moment density distributions.
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Let Xµ = (t,x) be Cartesian coordinates. Let us consider the following stationary

conserved current

jµ = qδµt δ
(3)(x) + δµi M

ik∂kδ
(3)(x) . (2.10)

Here, q is the charge of the point particle and Mik = −Mki is a constant, antisymmet-

ric matrix that parameterizes the particle’s intrinsic magnetic moment. This current

obeys the conservation law ∂µj
µ = 0.

We write the electromagnetic potential in the form

Aµ(x) = δtµφ(x) + δiµAi(x) , (2.11)

and impose the Lorentz gauge condition on it ∂µA
µ = 0. Then the Maxwell equations

take the form

△φ = −qδ(3)(x) , (2.12)

△Ai = M i
k∂kδ

(3)(x) . (2.13)

Here △ is a flat Laplacian

△ =
3∑︂

i=1

∂2
xi
. (2.14)

Let us denote by G(x) the Green function of the Laplace operator

△G(x) = δ(3)(x) . (2.15)

One has

G(x) =
1

4π|x|
. (2.16)

Then solutions of the field equations (2.12) and (2.13) are

φ(x) = q G(x) , Ai(x) = −M i
k∂kG(x) . (2.17)

The potential 1-form A = AµdXµ then takes the form

Aµdxµ = φdt + Aidx
i

= q G(r)dt−M i
k∂kG(x)dxi .

(2.18)
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These general expressions can be simplified. Let us note that the three-dimensional

matrix Mij which enters the expression for the potential Ai is antisymmetric and it

has constant coefficients. By using rigid three-dimensional rotations such an object

can be written in the following canonical form (see appendix B )

M =

⎛⎜⎜⎜⎝
0 0 0

0 0 m

0 −m 0

⎞⎟⎟⎟⎠ . (2.19)

We denote the corresponding three-dimensional orthogonal coordinates (Darboux ba-

sis) as (ξ, x⃗⊥). Two coordinates x⃗⊥ span the two-dimensional plane Π orthogonal to

ξ-axes.

Consider an electric current loop in the plane Π with the center at a point ξ = x⃗⊥ =

0. If I is the current in the loop and S is its area then the dipole magnetic moment of

the current loop is m = IS. The current for the point-like source which enters (2.10)

can be obtained as a limit in which the radius of the current loop becomes infinitely

small while the value of the dipole magnetic moment is kept constant.

2.2 Stationary electromagnetic field of extended

objects

Since the Maxwell equations are linear their solutions for extended charged and/or

magnetized objects can be obtained by superimposing the described solutions for the

corresponding point-like objects. In other words, they can be written as integrals

containing the Green functions multiplied by the currents which enter the right-hand

side of the Maxwell equations. In many cases when the current distributions possess

sufficient symmetry these integrals can be calculated in an explicit form (see e.g.

[75]). In this section we present the expressions for the electromagnetic field for two

special cases which will be used in our further discussion of the field of ultrarelativistic

objects. Namely, we consider electrically charged and magnetized pencil-like objects.

In both cases the transverse size of the pencil is infinitely small.
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Later we consider two reference frames: one is the frame where the object is at

rest and the other one in which the object moves with constant velocity. In order to

distinguish them we denote the rest frame by S̄ and the moving frame by S. For this

reason from now on we denote the coordinates (and other objects) in the rest frame

with a bar over them, and omit the bar when we shall be dealing with the moving

frame. Hence, we denote the length of the pencil as measured in the rest frame by L̄.

We specify these coordinates X̄
µ

in the rest frame such that one of the spatial axes is

directed along the linear extension of the pencil, and we denote this coordinate by ξ̄,

while the coordinates in the directions orthogonal to the pencil are labeled x⃗⊥. Thus

we have

X̄
µ

= (t̄, ξ̄, x⃗⊥) . (2.20)

We choose the origin of the coordinate system such that the end points of the pencil

are located at ξ̄ = ±L̄/2. In what follows, we shall boost the pencil in the ξ̄-direction.

We consider two types of pencils. One is a uniformly charged pencil with a total

electric charge q̄, and the second type corresponds to a uniformly magnetized pencil

with a total magnetic moment m̄. To distinguish these cases we refer to them as

q-pencil and m-pencil, respectively.

2.2.1 Field of a q-pencil in its rest frame

We start with the case of a q-pencil and assume that its charge density distribution

is uniform. If q̄ is the electric charge and L̄ the length of the pencil, then its charge

density is

λ̄ =
q̄

L̄
δ(2)(x⃗⊥)Θ(ξ̄| − L̄/2, L̄/2) , (2.21)

and the 4-current j̄µ takes the form

j̄µ = δµt̄ λ̄ . (2.22)
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Here Θ(x|x−, x+) = θ(x − x−)θ(x+ − x) is a step function equal to 1 in the interval

(x−, x+) and zero outside it. In the Coulomb gauge ∂jA
j = 0 we may choose the

vector potential to be of the form1

A ≡ ĀµdX̄
µ

= ϕ̄dt̄ . (2.23)

Solving the field equation for the potential ϕ̄,

△̄ϕ̄ = −λ̄ , (2.24)

one finds

ϕ̄(ξ̄, ρ) =
q̄

4πL̄

L̄/2∫︂
−L̄/2

dξ̄
′√︂

(ξ̄ − ξ̄
′
)2 + ρ2

, (2.25)

where ρ = |x⃗⊥|. Taking the integral one obtains

ϕ̄(ξ̄, ρ) =
q̄

4πL̄
ln

⎛⎝ ξ̄+ +
√︂
ξ̄
2
+ + ρ2

ξ̄− +
√︂

ξ̄
2
− + ρ2

⎞⎠ . (2.26)

We defined ξ̄± = ξ̄ ± L̄/2 for convenience.

2.2.2 Field of an m-pencil in its rest frame

Let us denote by {ρ, φ} polar coordinates in the plane orthogonal to the pencil. Then

the Minkowski metric takes the form2

ds2 = −dt̄2 + dξ̄
2

+ dρ2 + ρ2dφ2 . (2.27)

To obtain the field of the m-pencil let us consider first the magnetic field of a solenoid

with current density

J = J̄φdφ ,

J̄φ =
m̄

πL̄R
δ(ρ−R)Θ(ξ̄| − L̄/2, L̄/2) .

(2.28)

1A as a differential form is invariant under Lorentz transformations. For this reason we omit the
bar on any bold-faced objects here and in what follows.

2Recall that the angular φ-component do not refer to an orthonormal basis but rather the ∂φ-
vector with norm ρ. Care should be taken when comparing our results to the literature, where
sometimes we find expressions evaluated in orthonormal frames with the unit basis vector φ̂ = ∂φ/ρ.
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Here R is the radius of the solenoid, L̄ is its length measured in the frame S̄, and m̄

denotes the magnetic moment of the solenoid which is proportional to the magnetic

flux inside of it. Since the magnetic field is static and axially symmetric one can put

Ā ≡ ĀµdX̄
µ

= Āφdφ, and the potential Āφ in the limit R → 0 is

Āφ =
m̄

4πL̄

⎛⎝ ξ̄+√︂
ξ̄
2
+ + ρ2

−
ξ̄−√︂

ξ̄
2
− + ρ2

⎞⎠ . (2.29)

Here, as earlier, ξ̄± = ξ̄ ± L̄/2. For details of this calculation we refer to Appendix

A. One can also check that the expression (2.29) coincides with the magnetic field

of a monopole–anti-monopole pair located on the ξ̄-axis at the points separated by

distance L̄.

2.3 Nonlocal Maxwell equations

2.3.1 Action and field equations

We present now a far going generalization of the results presented in the previous

section. Namely, we consider a spacetime with arbitrary number of dimensions D ≥ 4

and we do not assume that the electric charge and magnetic moment densities are

constant. We shall also obtain results valid for both higher-dimensional Maxwell

theory as well as for its nonlocal ghost-free generalization.

Consider D-dimensional flat spacetime with Cartesian coordinates Xµ = (t,x),

with x = (xi), i = 1, . . . d, and d = D − 1. The Minkowski metric is

ds2 = −dt2 +
d∑︂

i=1

(dxi)2 = −dt2 + dx2 . (2.30)

Let us consider a vector field Aµ obeying linear equations. We assume that these

equations can be derived from an action and impose the following conditions on it:

1. The action S[Aµ] is a scalar and it can be written in the form

S[Aµ] =

∫︂
dDx

√
gL . (2.31)

where L is the Lagrangian density;
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2. L is bilinear in Aµ

L = AµOµνAν , (2.32)

where Oµν is a symmetric rank two tensor operator constructed from the metric

gµν and covariant derivatives ∇µ;

3. The action S[Aµ] is gauge invariant, that is it is invariant under transformations

Aµ(x) → Aµ̂(x) = Aµ(x) + λ,µ(x) , (2.33)

where λ(x) is an arbitrary function.

Since in the flat spacetime gµν and ∇µ∇ν are the only symmetric rank two tensors

that can be constructed form the metric and covariant derivatives the operator Oµν

which enters relation (2.32) has the following form

Oµν = h(□)gµν + f(□)∇µ∇ν . (2.34)

In a flat spacetime and in the Cartesian coordinates one has gµν = ηµν and ∇µ =

∂/∂Xµ, but it is convenient to work with a covariant form of the action. One only

needs to remember that in this case the operators ∇µ commute and their action on

the metric vanishes, ∇λgµν = 0. Let us also emphasize that we shall use the action

solely for deriving the field equations for Aµ and for that reason one may integrate

by parts without considering the contribution of the boundary terms.

We denote by S[Aµ̂] the action (2.31) for the field Aµ̂ defined by (2.33). Then one

has

δλS ≡ S[Aµ̂] − S[Aµ] =

∫︂
dDx

√
g J , (2.35)

J = −λ [h(□) + f(□)□]∇µAµ +
1

2
λ□ [h(□) + f(□)□]λ . (2.36)

Let us consider first the second term in J which is quadratic in the gauge function λ.

Since this function is arbitrary, the last term vanishes only if

h(□) = −f(□)□ . (2.37)
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However, under this condition the first term on the right-hand side of (2.36) which

is linear in λ vanishes as well. Hence the condition (2.37) guarantees that the action

(2.31)-(2.34) is gauge invariant. As a result the action for nonlocal higher dimensional

modification of the Maxwell theory takes the form

S[Aµ] = −1

2

∫︂
dDx

√
gAµf(□)[gµν□−∇µ∇ν ]Aν . (2.38)

After integration by parts one can write the action in the form

S[Aµ] = −
∫︂

dDx
√
g

[︃
1

4
Fµνf(□)F µν − jµAµ

]︃
,

Fµν = ∂µAν − ∂νAµ .

(2.39)

We added to this action a term describing an interaction the electromagnetic field

with a conserved external current jµ. The operator f(□) in this action is called a

form factor, and its precise form specifies a nonlocal model.

The D-dimensional version of the local Maxwell theory can be easily obtained as a

special case of the action (2.39). It is sufficient to impose one more condition, namely

to require that

• The field equations for the field Aµ obtained from the action (2.31) are not

higher than the second order in derivatives.

This condition implies that f(□) is in fact a constant. One can always put this

constant to be equal to 1 by simply re-scaling the field variables Aµ. The action for

the local Maxwell field in D-dimensional spacetime is

S[Aµ] = −
∫︂

dDx
√
g

[︃
1

4
FµνF

µν − jµAµ

]︃
. (2.40)

The field equations obtained by varying the action (2.39) with respect to Aµ are

f(□)∇µF
µν = jν , (2.41)

∂[ρFµν] = 0 . (2.42)
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The first of these equations is obtained by the variation of the action (2.39). The

second equation implies that locally Fµν = ∂µAν − ∂νAµ. Inserting this expression

into the first equation one finds

f(□) (□Aν −∇ν∇µA
µ) = jν . (2.43)

We may now exploit the gauge invariance in Aµ to fix the gauge to the convenient

choice (“Lorenz gauge”) ∇µA
µ = 0 which implies

f(□)□Aµ = jµ . (2.44)

From now on we shall work exclusively in the Lorenz gauge.

2.3.2 Form factors

Nontrivial generalizations of the Maxwell theory can be obtained if the form factor

is not a constant but it is a nontrivial function of the box-operator. For discussion

of such cases it is convenient to use the following procedure. Let us first consider an

analytic function f(z) of a complex variable z. Such a function can be written in the

form

f(z) =
∞∑︂
n=0

fnz
n . (2.45)

The operator f(□) is obtained from f(z) by substituting z → □.

In the case when only a finite number q of terms is present in the series (2.45) the

form-factor function is a polynomial of order q

Pq(z) = zq + fq−1z
q−1 + . . . f1z + f0 . (2.46)

The corresponding field equations (2.44) are higher derivative modification of the

Maxwell theory. In a general case such models have the following common problem.

A polynomial of order q has q zeroes zj, j = 1, . . . q in the complex plane of a variable

z 3. As a result the inverse function of zPq(z) which enters the equation (2.44) has

3Some of these zeroes can coincide. For simplicity, we do not consider such cases here.
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q + 1 poles so that one has

1

zPq(z)
=

C0

z
+

q∑︂
j=1

Cj

z − zj
. (2.47)

Each of such poles corresponds to a propagating degree of freedom of the field Aµ.

In a general case if one combines all the terms in the right-hand side one gets the

following expression

C0

z
+

q∑︂
j=1

Cj

z − zj
=

Qq

zPq(z)
. (2.48)

Here Qq(z) is a polynomial of order q. Relation (2.47) implies that in fact Qq(z) = 1.

This imposes q+1 conditions on the coefficients C0 and Cj, which uniquely determine

them. In particular, the condition that Qq(z) does not contain zq implies that

C0 +

q∑︂
j=1

Cj = 0 . (2.49)

For the local Maxwell theory Pq(z) = 1 so that C0 = 1 and Cj≥1 = 0. Let us keep the

condition C0 ≥ 0 for a nontrivial polynomial Pq(z). Then relation (2.49) shows that

at least some of the residues Cj≥1 should be negative. The corresponding unphysical

modes are known as ghosts.

Recently it was proposed that this fundamental problem of the higher-derivative

models can be solved by considering special nonlocal modifications of the correspond-

ing local theory [16, 17]. Namely, one can consider such form factors f(z) which are

regular and do not have zeroes in the total complex plane. Consider the function

f(z) = exp[P (z)], where P (z) is an entire function. Notice that this form factor has

no zeroes since P (z) is everywhere holomorphic and therefore the exponent is well

defined in the whole complex plane. This means that the inverse function zf(z) does

not introduce new poles.

This class of theories is often referred to as “ghost-free” as they do not introduce

new unphysicall degrees of freedom. To make our consideration more concrete we

restrict ourselves by considering the form factors of the following form

f(□) = exp
[︁
(−ℓ2□)N

]︁
, ℓ > 0 . (2.50)
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Here N is a positive integer number and ℓ > 0 is a characteristic scale of nonlocality

which is estimated to be ℓ < 10−20m [76]. We call nonlocal models with these form

factors GFN theories. These form factors are choosen so that in the limiting case

of ℓ → 0 one recovers the local theory since f(0) = 1. The latter condition also

guarantees that the residue of the pole of zf(z) at z = 1 is 1, and such a theory

correctly reproduces the properties of the corresponding local theory in the infrared

regime.

2.4 Static Green functions

Our next step consists of finding solutions that describe the electromagnetic field of

stationary sources. Namely we assume the current jν which enters the right-hand

side of the equation (2.44) does not depend of time t. We also assume that there are

no free propagating electromagnetic waves. Since the field does not depend on time

one may substitute the □-operator by the Laplace operator

△ = ∇2 =
d∑︂

i=1

∂2
i . (2.51)

In both local and nonlocal cases the solution of the field equations for a stationary

sources can be found by using the corresponding Green function. For the nonlocal

theory such a Green function is a solution of the following differential equation:

f(△)△Gd(x
′ − x) = −δ(d)(x′ − x) . (2.52)

Here and later we use the notation Gd(x) for the Green function of the nonlocal

theory. For the local theory it coincides with the usual Green function Gd(x). For a

GFN theory one has

f(△) = exp[(−ℓ2△)N ] . (2.53)

Using the Fourier transformation one can obtain a useful representation of a static

Green function Gd. In this subsection we describe its form following the paper [73].
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We denote the d-dimensional vector of momentum by k = (k1, . . . , kd) and write

Gd(x
′ − x) =

∫︂
ddk

(2π)d
eik(x−x′)Ḡd(k). (2.54)

Here kx =
∑︁d

j=1 kjx
j. Substituting this expression into the equation (2.52) and using

a similar Fourier transform representation for the delta function

δd(x′ − x) =

∫︂
ddk

(2π)d
eik(x−x′) , (2.55)

one gets

Ḡd(k) =
1

k2f(−k2)
.

Let us denote the angle between vectors k and x− x′ by θ, then

kx = kr cos θ, k = |k|, r = |x− x′| , (2.56)

and the Green function reads

Gd(x− x′) = Ad−2

∫︂ ∞

0

dk

(2π)d
kd−3

f(−k2)

∫︂ π

0

dθ sind−2 θ eikr cos(θ) . (2.57)

Here

Ad−2 = 2
π(d−1)/2

Γ
(︁
d−1
2

)︁ , (2.58)

is the area of a unit sphere Sd−2.

Integration over θ gives the expression for the Green function Gd(x, x
′) in terms of

an integral containing the Bessel function

Gd(x, x
′) =

1

2π

∫︂ ∞

0

dk

kf(−k2)

(︃
k

2πr

)︃ d
2
−1

J d
2
−1(kr) . (2.59)

The Green function Gd(x, x
′) depends only on the distance r between points. After

changing of the integration variable z = kr one gets

Gd(r) =
1

(2π)d/2 rd−2

∫︂ ∞

0

dz
z

d−4
2

f(−z2/r2)
J d

2
−1(z) . (2.60)
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Here d ≥ 3. For the local Maxwell theory one has f = 1. In this case the integral in

(2.60) is a constant. Calculating this integral one reproduces the standard expression

for a local Green function

Gd(x, x
′) =

Γ
(︁
d
2
− 1

)︁
4πd/2rd−2

. (2.61)

There is also a recursive formula relating the Green functions in the spaces of

different dimensions

Gd+2(r) = − 1

2πr

∂Gd(r)

∂r
. (2.62)

This result and its derivation can be found in [73]. This means that if the Green

function is known for d = 3, 4 then the higher-dimensional Green functions can be

obtained by using Eq. (2.62). This property allows one to find the Green functions in

an explicit form for some special nonlocal models. For example, in the simplest case

of GF1 theory one has

G3(r) =
1

4πr
erf

(︂ r

2ℓ

)︂
, (2.63)

G4(r) =
1

4π2r2

[︂
1 − e−r2/(4ℓ2)

]︂
, (2.64)

where erf(z) denotes the error function [77]. In the limit ℓ → 0 one recovers the well-

known local expressions. Expressions for Green functions GN
d (r) for some of GFN

theories can be found in [1]. We collect these results in the appendix F.

An important property of the Green functions in such nonlocal ghost-free theories

is that they are regular at r = 0. This can be demonstrated by using the expansion

of the Bessel function in (2.59) for small r. Additional information about nonlocal

static Green functions can be found in [27].

2.5 Stationary solutions for point like sources

Let us consider a conserved stationary external current

jµ = δµt qδ
(d)(x) + δµi M

ik∂kδ
(d)(x) . (2.65)
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Here, q is the charge of the point particle and Mik = −Mki is a constant, antisym-

metric matrix that parametrizes the particle’s intrinsic magnetic moment.

Let us write d = 2k + σ, where σ = 0 if d is even and σ = 1 if d is odd. Any

skew symmetric d × d matrix can be put in a block diagonal form by means of a

rigid rotation in the corresponding d-dimensional space [78–80]. In this new Darboux

coordinate basis the matrix M has the form (see appendix B)

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 0 . . . 0 0

0 m2 . . . 0 0

. . . . . . . . . . . . . . .

0 . . . . . . mk 0

0 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.66)

Here ma are 2 × 2 matrices

ma =

⎡⎣ 0 ma

−ma 0

⎤⎦ . (2.67)

The last column and row in (2.66) which contain zeroes are present when σ = 1

and they are absent for σ = 0. One can identify k quantities ma with independent

components of the magnetic moment. In the four dimensional spacetime when d = 3

only one block is present and there is only one component of the magnetic moment.

We write the electromagnetic potential as

Aµ(x) = δtµφ(x) + δiµAi(x) , (2.68)

then the field equations take the form

f(△)△φ = −qδ(d)(x) , (2.69)

f(△)△Ai = M i
k∂kδ

(d)(x) . (2.70)

Solutions of these equations can be written in terms of the Green function and they

are

φ(x) = q Gd(x) , Ai(x) = −M i
k∂kGd(x) . (2.71)
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The potential 1-form A = AµdXµ then takes the form

AµdXµ = φdt + Aidx
i

= q GN
d (r)dt−M i

k∂kGd(x)dxi .
(2.72)

Using the relation

∂iGd(x) =
xi

r
∂rGd(x) = −2πxiGd+2(x) , (2.73)

we may also write

AµdXµ = q GN
d (r)dt + 2πM i

kxkGd+2(x)dxi . (2.74)

2.6 Pencil-like sources

Let us discuss now a special type of higher-dimensional extended charged and magne-

tized objects which are similar to the four-dimensional pencil-type sources. For this

purpose we single out one spatial coordinate which we denote by ξ̄. This will be a

direction of the pencil. We denote the coordinates as X̄µ = (t̄, ξ̄,x⊥) and write the

metric in the form

ds2 = −dt̄2 + dξ̄
2

+ dx2
⊥ . (2.75)

As earlier, we denote quantities calculated in the source’s rest frame S̄ with bars.

The space orthogonal to ξ̄ is (d− 1)-dimensional and we denote d− 1 = 2n+ ϵ. Here

ϵ = 0 if d is odd and ϵ = 1 if d is even. The metric of this space is

dx2
⊥ =

d−1∑︂
j=1

(dxj
⊥)2 . (2.76)

In the transverse space with coordinates xj
⊥, we choose n mutually orthogonal two-

planes Πa, a = 1, . . . , n. If d is odd and ϵ = 0 these n two-planes span the complete

transverse space. For d even one has ϵ = 1 and in order to fully span the transverse

space, besides n two-planes, there exist one more one-dimensional direction. We

denote the corresponding coordinate by z; see Fig. 2.1 for a visualization of this

decomposition.
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In a general case certainly there is an ambiguity in the choice of a set of two-

planes. We assume that for a given antisymmetric matrix M the planes Πa coincide

with eigen two-planes of this matrix. In particular, this means that the current

(2.65) has non-vanishing components only in the directions transverse to ξ̄. In four

spacetime dimensions, where n = 1, this assumption implies that the vector of the

magnetic moment generated by the current is directed along the ξ̄-direction. The

above condition imposed on Mij plays a similar role in higher dimensions. It is

convenient to use the Darboux coordinates associated with two-planes Πa. Namely,

we denote by (ya, ŷa) orthonormal coordinates in each of the two-planes Πa, so that

the metric takes the form

ds2 = −dt̄2 + dξ̄
2

+
n∑︂

a=1

(dy2a + dŷ2a) + ϵ dz2 . (2.77)

  

....

Figure 2.1: Darboux decomposition of d-dimensional space into n mutually orthogonal
Darboux planes Πa and a transverse z-direction if ϵ = 1 [1]

In what follows it is also convenient to introduce polar coordinates {ρa, φa} in each

of the two-planes Πa related to (ya, ŷa) as follows

ya = ρa cosφa, ŷa = ρa sinφa . (2.78)
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In these coordinates the metric takes the form

ds2 = −dt̄2 + dξ̄
2

+
n∑︂

a=1

(dρ2a + ρ2adφ
2
a) + ϵdz2 , (2.79)

and the field of the point-like source (2.74) can be expressed as

ĀµdX̄µ = q̄ Gd(r̄)dt̄− 2πGd+2(r̄)
n∑︂

a=1

m̄aρ
2
adφa ,

r̄2 = ξ̄
2

+ x2
⊥ = ξ̄

2
+

n∑︂
a=1

ρ2a + ϵz2 . (2.80)

Now we want to construct a solution for a stationary charged and magnetized

higher dimensional extended object. For simplicity we limit our consideration to

charged and/or magnetized pencils whose transverse charge and magnetic moment

densities are δ-shaped, but we allow a density profile in the pre-boosted ξ̄-direction

to be arbitrary functions of ξ̄. We denote these densities by λ̄(ξ̄) and µ̄a(ξ̄) for the

charged and magnetized pencils, respectively. Then, the conserved external current

takes the following form:

jµ = δµt̄ λ(ξ̄)δ(d−1)(x⊥) + δµi µ̄
ik(ξ̄)∂kδ

(d−1)(x) . (2.81)

We shall make the following additional assumptions

• The antisymmetric matrix function µ̄ik(ξ̄) is orthogonal to the ξ̄ direction,

µ̄iξ̄(ξ̄) = 0;

• The two-dimensional eigen planes of the antisymmetric matrix function µ̄ik(ξ̄)

are parallel propagated along ξ̄ axis.

These assumptions allow one to use Darboux coordinates (ya, ŷa) which are also par-

allel propagating along ξ̄. Consider a Darboux plane Πa and denote by

e(a) = e(a)i∂xi = ∂ya , e(â) = e(â)i∂xi = ∂ŷa , (2.82)

a pair of orthonormal vectors in it. The one-forms dual to these vectors are

ω(a) = ω
(a)
i dxi = dya, ω(â) = ω

(â)
i dxi = dŷa . (2.83)
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The volume element in the a-th Darboux frame is

ϵ(a) = ω(a) ∧ ω(â) . (2.84)

Then one has

µ̄ik(ξ̄) =
n∑︂

a=1

µa(ξ̄)ϵ
(a)
ij . (2.85)

Under these assumptions the conserved current of the pencil takes the form

jµ =

[︄
δµt λ(ξ̄) +

n∑︂
α=1

µα(ξ̄)ϵ(a)µj∂j

]︄
δ(d−1)(x⊥) . (2.86)

Here λ(ξ̄) and µα(ξ̄) are the charge density the magnetic moment density distributed

along the pencil.

The total charge q̄ and total magnetic moment m̄a of the pencil are given by the

line integrals

q̄ =

∞∫︂
−∞

dξ̄ λ̄(ξ̄) , m̄a =

∞∫︂
−∞

dξ̄ µ̄a(ξ̄) . (2.87)

If the pencil has a finite length the integrals should be taken over a finite interval of

ξ̄.

One can easily obtain the following expressions for the components of the vector

potential A generated by the current (2.86)

At =

∫︂ ∞

−∞
dξ̄

′
λ(ξ̄

′
)Gd(r) , (2.88)

Aα = −2π

∫︂ ∞

−∞
dξ̄

′Gd+2(r)
n∑︂

α=1

µα(ξ̄
′
)ρ2α .

Here we have used the notations r2 = (ξ̄
′ − ξ̄)2 + x2

⊥ and x2
⊥ =

∑︁n
α=1 ρ

2
α + ϵz2; where

ϵ = 0 for an odd number of d spatial dimensions and ϵ = 1 for even number of spatial

dimensions.

2.7 Summary of chapter 2

In this chapter we discussed models which generalize the Maxwell theory. This gen-

eralization can be performed in two directions. First, we assumed that the number of
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spacetime dimensions is greater than four. And second, which is less trivial, we con-

structed the nonlocal action for the higher dimensional electromagnetic field which

preserves both Lorentz and gauge invariance. Such an action contains one arbitrary

function of the □-operator, called a form factor. It can be chosen so that no new

unphysical degrees of freedom arise. We use the Green function method to construct

solutions for stationary charged and magnetized objects. A characteristic property

of these solutions is that they are regular for point like sources. We also described

stationary solutions for a special pencil-like type of extended objects. These solu-

tions will be used in the chapter 4 in which we discuss the field of the ultrarelativistic

objects.
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Chapter 3

Linearized Gravity and its
Ghost-Free Modification

3.1 Einstein gravity

In Einstein theory of gravity the gravitational filed is described by a metric gµν

ds2 = gµνdx
µdxν . (3.1)

This metric obeys the Einstein equations which can be obtained from the Einstein-

Hilbert action

Sg[g] =
1

2κ

∫︂
dx

√
−g R . (3.2)

Here R is the Ricci scalar and

κ = 8πG , (3.3)

where G is Newton’s coupling constant.

Action (3.2) can be obtained by imposing the following conditions:

1. The action of the gravitational field depends only on the metric and its deriva-

tives;

2. It can be written in the form

Sg[g] =

∫︂
dx

√
−gL(g, ∂g, . . .) . (3.4)
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3. The Lagrangian density L is a scalar under the coordinate transformations;

4. The field equations obtained from S do not contain higher than the second

derivatives of the metric.

These conditions imply that L = C0R + C1, where C0 and C1 are constants. The

parameter C1 is responsible for the cosmological constant. In what follows we shall

study weak gravitational field on a flat spacetime background and put the cosmolog-

ical constant equal to zero. In order to properly reproduce Newton gravity in the

weak field aproximation the constant C0 should be taken as follows C0 = 1
2κ

.

In the presence of matter the action takes the form

S = Sg[g] + Sm[g, . . .] , (3.5)

where Sm[g, . . .] is the action for the matter in the gravitational field. The dots in

this action stands for the dynamical variables responsible for the matter degrees of

freedom. The stress-energy tensor of the matter is defined as follows

T µν =
2√
−g

δSm

δgµν
. (3.6)

The variation of the action (3.5) gives the following Einstein equations

Gµν = κTµν ,

Gµν = Rµν −
1

2
Rgµν .

(3.7)

Here Rµν is the Ricci tensor.

3.2 Linearized Einstein gravity

3.2.1 Action and field equations

To obtain linearized gravity equations we write the metric in the form

gµν = ηµν + hµν , (3.8)
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where ηµν is a flat metric and hµν is its perturbation. The equations for hµν can be

obtained from the Einstein equations (3.7). One can proceed in two ways which give

the same result.

As earlier, we denote by Xµ Cartesian coordinate in which ηµν = diag(−1, 1, 1, 1).

To obtain linear equations for the perturbation hµν it is sufficient to keep the quantities

of the second order in h in the action (3.5) expansion. One can show (see e.g. [73])

that

Sg = − 1

2κ

∫︂
dX

(︃
−1

2
hµν□hµν + hµν∂µ∂α h

α
ν − hµν∂µ∂νh +

1

2
h□h

)︃
. (3.9)

The variation of this action (with matter term included) gives

Gµν ≡ □hµν − ∂σ
(︁
∂ν hµ

σ + ∂µhν
σ
)︁

+ ηµν
(︁
∂ρ∂σh

ρσ −□h
)︁

+ ∂µ∂νh = −2κTµν ,
(3.10)

where h = ηαβhαβ denotes the trace of hµν . The same linearized gravity equations

can be obtained starting with Einstein equations (3.7). In this case it is sufficient to

keep only linear terms in hµν in the Eintein tensor Gµν expansion.

3.2.2 Gauge invariance

Suppose we have a perturbed metric gµν = ηµν + hµν . Or, written in contravariant

form gµν = ηµν − hµν . Let us make the coordinate transformation

Xµ → X̄
µ

= Xµ + ξµ(X) , (3.11)

where ξµ is small. Then the metric g in the new coordinates is

ḡµν =
∂X̄

µ

∂Xα

∂X̄
ν

∂Xβ
gαβ =

(δµα + ξµ,α)(δνβ + ξν,β)(ηαβ − hαβ) = ηµν − h̄
µν

+ . . . , (3.12)

where

h̄µν = hµν − ξµ,ν − ξν,µ . (3.13)
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The dots in the above relation stand for the omitted higher order terms. The linearized

gravity action and equations of motion are obtained starting with the covariant Ein-

stein theory. This guarantees that the linearized action and equations are invariant

under the gauge transformation (3.13). This property can also be shown directly (see

appendix C).

3.2.3 Equations in de Donder gauge

Linearized equations (3.10) can be simplified. For this purpose we denote

ĥµν = hµν −
1

2
hηµν . (3.14)

The inverse transformation is

hµν = ĥµν −
1

2
ĥ ηµν . (3.15)

We also impose the de Donder gauge conditions ∂µĥ
µν = 0. Then, Eq. (3.10) simplifies

greatly and takes the form

□ĥµν = −2κTµν . (3.16)

The conservation law ∂µT
µν = 0 implies that the imposed gauge conditions are con-

sistent.

3.3 Stationary field of point-like sources

As earlier we denote by

Xµ = (t,x), x = (x1, x2, x3) , (3.17)

Cartesian coordinates in the flat spacetime. Let us consider now a case when the

stress-energy tensor is stationary, that is it does not depend on time t. We also

assume that there are no freely propagating gravitational waves. Then the linearized
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gravitational field hµν is also stationary and one can replace the box-operator in (3.16)

by the three-dimensional Laplace operator △. Thus one has

△ĥµν = −2κTµν . (3.18)

Since the field equations are linear it is sufficient to find the field created by a

point-like source. A solution for an extended object can be obtained by integrating

these solutions with functions describing the corresponding stress-energy tensor dis-

tribution. The stress-energy of a point-like spinning particle can be written in the

form

T µν = δtµδ
t
ν mδ(x) + δt(µδ

i
ν) ji

j ∂

∂xj
δ(x) . (3.19)

Here δ(x) is a three-dimensional delta-function, m is the mass of the particle and

jij is a constant antisymmetric matrix parameterizing its angular momentum. As

for the electromagnetic field current one can use Darboux coordinates in which the

antisymmetric 3 × 3 matrix j takes the form

j =

⎛⎜⎜⎜⎝
0 0 0

0 0 j

0 −j 0

⎞⎟⎟⎟⎠ . (3.20)

The structure of the stress-energy tensor (3.19) implies that only the following

components of ĥ do not vanish

ϕ = ĥtt, Ai = ĥti . (3.21)

A solution for such a source takes the form

ϕ(r) =
κm

4πr
, (3.22)

Ai(x) = −κjijx
j

4πr3
. (3.23)

Here r = |x| and κ = 8πG. Let us note that ϕ = −2φ, where φ is Newton’s potential

of a point source of mass m. Using Darboux coordinates (t, z, y, ŷ) in which the
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matrix j is of the form (3.20) one can write the components of Ai as follows

A = (0, Ay, Aŷ) , (3.24)

Ay =
κj

4πr3
ŷ, Aŷ = − κj

4πr3
y . (3.25)

One may write the metric perturbation ĥ in spherical coordinates (t, r, ϕ, θ) using

the change of variables

y = r cosϕ sin θ ,

ŷ = r sinϕ sin θ ,

z = r cos θ .

(3.26)

Then, the perturbation of the metric becomes

ĥ =
κm

4πr
dt2 − κj sin2 θ

2πr
dϕ dt . (3.27)

The full perturbed metric is

ds2 = −
(︃

1 − 2m

r

)︃
dt2 − 4j sin2 θ

r
dϕ dt +

(︃
1 +

2m

r

)︃
×

[︁
dr2 + r2(dθ2 + sin2 θdϕ)

]︁
.

(3.28)

Here, we substituted the value of κ = 8πG and after this we put G = 1. For studying

the motion of nonrelativistic particles (in Newton’s limit) the factor 2m
r

in the spatial

part of the metric can be omitted and one gets

ds2 = −
(︃

1 − 2m

r

)︃
dt2 − 4j sin2 θ

r
dϕ dt + dr2 + r2(dθ2 + sin2 θdϕ) . (3.29)

This metric has a resemblance to the vacuum solution for Einstein equations for

a rotating black whole, known as the Kerr metric. In Boyer-Lindquist coordinates it

has the form

ds2 = −
(︃

1 − 2mr

Σ

)︃
dt2 − 4jr sin2 θ

Σ
dt dϕ +

A sin2 θ

Σ
dϕ2 +

Σ

∆
dr2 + Σdθ2 . (3.30)

Where

Σ = r2 +
j2

m2
cos2 θ , ∆ = r2 − 2mr +

j2

m2
,

A = (r2 +
j2

m2
)2 − ∆

j2

m2
sin2 θ .

(3.31)
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Taking the limit r → ∞ the metric (3.30) becomes

ds2 ≃ −
(︃

1 − 2m

r

)︃
dt2 − 4j sin2 θ

r
dϕdt + dr2 + r2(dθ2 + sin2 θdϕ) . (3.32)

Therefore, we see that our perturbed metric (3.29) has exactly the same form as

(3.32), this is, the asymptotic form of the Kerr metric.

3.4 Linearized higher-dimensional Einstein grav-

ity

Higher-dimensional generalization of the Einstein equations are now often discussed in

the literature. Mainly this is motivated by string theory which is naturally formulated

when the number of spacetime dimensions D is greater than four. For this purpose

one can use the following generalization of the action (3.2)

Sg[g] =
1

2κ

∫︂
dDx

√
−g R . (3.33)

Here R is the Ricci scalar and

κ = 8πG(D) , (3.34)

where G(D) is the higher-dimensional Newton’s coupling constant. The form of the

higher-dimensional Einstein equations (3.7) and their linearized version (3.10) remains

the same. As ealier it is convenient to introduce new variables ĥµν

ĥµν = hµν −
1

2
hηµν . (3.35)

After imposing the de Donder gauge fixing condition

∂µĥ
µν = 0 , (3.36)

Eq. (3.10) simplifies greatly and takes the form

□ĥµν = −2κTµν . (3.37)
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The conservation law ∂µT
µν = 0 implies that the imposed gauge conditions are con-

sistent. The only significant difference where the number of dimensions is important

is the inverse transformation for h which now takes the form

hµν = ĥµν −
1

d− 1
ĥηµν . (3.38)

Once again, we denote by d = D − 1 the number of spatial dimensions.

3.5 Stationary field of point-like sources in higher

dimensions

Following a similar procedure as in the case of 4D linearized Einstein gravity, one can

find stationary solutions for an arbitrary number of dimensions. As earlier we denote

Xµ = (t,x), x = (x1, x2, . . . , xd) . (3.39)

Again, we are interested in the case where the stress-energy tensor does not depend

on time. Therefore our equation takes the same form as (3.18) only that this time the

Laplace operator is acting on all d spatial dimensions. A point-like spinning particle

in an arbitrary number of dimensions has the following stress-energy

T µν = δtµδ
t
ν mδ(d)(x) + δt(µδ

i
ν) ji

j ∂

∂xj
δ(d)(x) . (3.40)

Now δ(d)(x) is the d-dimensional delta function and all the other variables remain

the same as on the Einstein case. The general structure of h remains unchanged and

therefore we have that the only non-vanishing components are

ϕ = ĥtt, Ai = ĥti , (3.41)

where i = 1, 2, . . . , d. The solution for the metric perturbation can be found using

the d-dimensional Green functions. These solutions are

ϕ(r) = 2κ
d− 2

d− 1
mGd(r) ,

Ai(x) = −2πκjijx
j Gd+2(r) .

(3.42)
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Using (2.61) one finds

ϕ(r) =
Γ
(︁
d
2

)︁
(d− 1)π

d
2

κm

rd−2
, (3.43)

Ai(x) = −
Γ
(︁
d
2

)︁
2π

d
2

κjijx
j

rd
. (3.44)

We choose the sign of Ai such that in the three-dimensional case d = 3 one obtains

the standard Lense–Thirring expression (jxy = j and κ = 8πG)

Ai(x)dxi ∼ 2Gj

r3
(xdy − ydx) =

2Gj

r
sin2 θ dφ . (3.45)

These solutions can be generalized for an extended pencil-like object as we will see

later.

3.6 Linearized nonlocal gravity

Nonlocal ghost-free equations for linearized gravity were discussed in many publica-

tions starting with pioneer work by Mazumdar and collaborators [16, 81]. A higher

dimensional generalization of these results was obtained in [73]. Let us remind here

the main steps of the derivation of the corresponding nonlocal linearized action and

present the final result of this analysis.

We consider the metric perturbation hµν over D-dimensional flat spacetime back-

ground. To obtain the most general action for the linearized nonlocal gravity one

can proceed in the same way as it was done in chapter 2 for the nonlocal Maxwell

theory. Namely, one can start with the most general action which is quadratic in the

metric perturbation h and which contains an arbitrary number of derivatives. Using

the assumption that the action and its Lagrangian are gauge invariant scalars and

omitting the total derivatives one can arrive at the final version of the action which

will be given later (see equation (3.49)).

However, this procedure requires quite lengthy calculations. The same answer can

be obtained in much more ”cheap and clever” way which was proposed by Mazumdar
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and collaborators [16, 81]. For this purpose it is convenient to use the ”curved metric”

language and to write the corresponding action in a covariant form. This guarantees

that the resulting equations are covariant. Infinitely small coordinate transformation

xµ → xµ + ξµ results in the change hµν → hµν − ξµ;ν − ξν;µ. On the flat-space

background this is nothing but the gauge transformation of the perturbation h. If

the field equations for h are derived from a scalar action then this guarantees the

gauge invariance of these equations.

We start with the action

S =
1

2κ

∫︂
dDx

√
g L . (3.46)

The most general form of the scalar Lagrangian L which is quadratic in curvature is

L = R + Rµ1ν1λ1σ1O
µ1ν1λ1σ1

µ2ν2λ2σ2
Rµ2ν2λ2σ2 . (3.47)

Here Oµ1ν1λ1σ1

µ2ν2λ2σ2
is an operator constructed from ∇µ and the metric gµν . This La-

grangian will be used to obtain the linearized equations for the perturbation. Each

of the curvature terms which enter (3.47) are already of the first order in h. This

means that the terms proportional to the third and higher order in curvature do not

contribute to the field equations in the linear order.

One can simplify the action (3.46)-(3.47) by using the symmetry properties of

the curvature tensor, Bianchi identities and by omitting the terms which are total

derivatives. Moreover, since the goal is to get the equations on the flat background

one can commute the covariant derivative. Really, the commutator of the covariant

derivatives is proportional to the curvature and it vanishes on the flat background.

As it was shown in [16, 81] after using these properties the action (3.46)-(3.47) greatly

simplifies and it reduces to the form

S =
1

2κd

∫︂
dDx

√
−g

[︁
R + RF1(□)R + RµνF2(□)Rµν + RµνλσF3(□)Rµνλσ

]︁
.

This form of the action is also valid in the case where the number of spacetime

dimensions is greater than 4 [73]. This form of the quadratic in curvature action
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can be further simplified using the following observation [82, 83]: the ”Gauss-Bonnet

structures” of the form (k ≥ 1) obey the following relations

∗Rαβγσ □k ∗Rαβγσ = Rαβγσ□kRαβγσ − 4Rαβ□kRαβ + R□kR = O(R3) + div . (3.48)

These relations are valid in an arbitrary number of spacetime dimensions. This prop-

erty allows one to reduce the term with the form factor F3 to the other ones with

form factors F1 and F2 by omitting the terms which are either of the third and higher

order in curvature or are total divergences. As a result, the general higher derivative

action can be written in a form which contains only two arbitrary functions of the

box operator [81]. The result is the following: The most general linearized action S

in a Lorentz invariant theory with an arbitrary number of derivatives and quadratic

in the perturbation hµν can be written in the form [16]

S =
1

2κ

∫︂
dDX

(︂1

2
hµν f(□)□hµν − hµν f(□)∂µ∂α h

α
ν + hµν f̃(□)∂µ∂νh

− 1

2
h f̃(□)□h +

1

2
hµν f(□) − f̃(□)

□
∂µ∂ν∂α∂β h

αβ
)︂
. (3.49)

We write this action in Cartesian coordinates and use partial derivatives instead of

the covariant ones. □ is the d’Alembert operator of Minkowski space, □ = ηµν∂µ∂ν .

The functions f(□) and f̃(□) can be chosen freely to parameterize different Lorentz-

invariant modifications of gravity, subject only to the constraint

f(0) = f̃(0) = 1 , (3.50)

which guarantees the proper Newtonian limit; see also the related discussions in

Refs. [16, 42]. In the case of f(□) = f̃(□) = 1 one recovers the linearized General

Relativity.

The field equations corresponding to the action (3.49) are

f(□)
[︁
□hµν − ∂σ

(︁
∂ν hµ

σ + ∂µhν
σ
)︁]︁

+ f̃(□)
[︁
ηµν

(︁
∂ρ∂σh

ρσ −□h
)︁

+ ∂µ∂νh
]︁

+
f(□) − f̃(□)

□
∂µ∂ν∂ρ∂σh

ρσ = −2κTµν ,
(3.51)
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where T µν is the energy-momentum tensor of matter, and h = ηαβhαβ denotes the

trace of hµν .

From now on we shall restrict ourselves to the case of

f̃(□) = f(□) . (3.52)

This condition guarantees that no extra massive scalar modes are present in the theory

and the only physical degrees of freedom are massless gravitons [16]. We denote

ĥµν = hµν −
1

2
hηµν . (3.53)

The inverse transformation is

hµν = ĥµν −
1

d− 1
ĥηµν . (3.54)

We also impose the de Donder gauge conditions ∂µĥ
µν = 0. Then, Eq. (3.51) simplifies

greatly and takes the form

f(□)□ĥµν = −2κTµν . (3.55)

The conservation law ∂µT
µν = 0 implies that the imposed gauge conditions are con-

sistent.

3.7 Nonlocal stationary solutions

Equations (3.55) written in the Cartesian coordinates are similar to the equations for

the electromagnetic potential in the nonlocal Maxwell theory which were discussed in

the previous chapter, and one can solve them by using the same method as described

earlier in chapter 2.

We assume that Tµν does not depend on time. For a stationary metric generated

by such a stress-energy tensor the □-operator reduces to the d-dimensional Laplace

operator △ = δij∂i∂j. We denote

D = f(△)△ . (3.56)
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In what follows we also assume that the form factor f is of the form (2.50), that is,

we consider GFN nonlocal models.

Then, we can solve the field equations (3.55) by using the static Green function

DGd(x,x
′) = −δ(d)(x− x′) . (3.57)

These Green functions are the same as we introduced earlier in the case of nonlocal

Maxwell theory.

The stress-energy tensor for stationary distribution of spinning matter can be writ-

ten in the form (see, e.g. [70])

Tµν = ρ(x)δtµδ
t
ν + δt(µδ

i
ν)

∂

∂xj
ji

j(x) . (3.58)

Here ρ(x) is the mass density and ji
j(x) is the angular momentum density. A solution

hµν of the field equations (3.55) for this source can be written as follows:

h = hµνdXµdXν , (3.59)

h = ϕ

(︃
dt2 +

1

d− 2
δijdx

idxj

)︃
+ 2Aidx

idt ,

ϕ(x) = 2κ
d− 2

d− 1

∫︂
ddy ρ(y)Gd(x− y) , (3.60)

Ai(x) = κ

∫︂
ddy ji

j(y)
∂Gd(x− y)

∂xj
. (3.61)

Due to the translational symmetry of Eq. (3.57), the Green function Gd(x,x
′) is

a function of x − x′, while due to the spherical symmetry it depends on the radius

variable r = |x− x′| alone. Thus one has

Gd(x− x′) = Gd(r) . (3.62)

Using the property of the Green function (2.62) the expression for A can written in

the form

Ai(x) = −2πκ

∫︂
ddy jij(y)(xj − yj)Gd+2(x− y) . (3.63)
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3.7.1 Point-like particle

The stress-energy tensor for a point-like particle is

T µν = δtµδ
t
ν mδ(d)(x) + δt(µδ

i
ν) ji

j ∂

∂xj
δ(d)(x) , (3.64)

where m is the mass of the particle and jij is a constant antisymmetric matrix

parametrizing its angular momentum. A solution for the perturbed metric (3.59)–

(3.61) for such a source takes the form1

ϕ(r) = 2κ
d− 2

d− 1
mGd(r) ,

Ai(x) = −2πκjijx
j Gd+2(r) .

(3.65)

Since all corresponding static nonlocal Green functions in GFN models are regular at

r = 0, the same property is valid for the solutions (3.65).

At large distances one recovers the standard expressions known from linearized

General Relativity [85]:

ϕ(r) ∼
Γ
(︁
d
2

)︁
(d− 1)π

d
2

κm

rd−2
, (3.66)

Ai(x) ∼ −
Γ
(︁
d
2

)︁
2π

d
2

κjijx
j

rd
. (3.67)

We choose a sign of Ai such that in the three-dimensional case d = 3 one obtains the

standard Lense–Thirring expression (jxy = j and κ = 8πG)

Ai(x)dxi ∼ 2Gj

r3
(xdy − ydx) =

2Gj

r
sin2 θ dφ . (3.68)

For illustration purposes let us explicitly write the expressions for the metric per-

turbations for d = 3 dimensions in the simplest GF1 model

ϕ(r) =
κm

4πr
erf

(︂ r

2ℓ

)︂
,

Ai(x) = −κjijx
j

4πr3

[︃
erf

(︂ r

2ℓ

)︂
− r√

πℓ
e(r/2ℓ)

2

]︃
.

(3.69)

1In four-dimensional spacetime, this solution can be used to obtain a metric for a spinning ring
discussed in [84].
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3.8 Pencil-like gravitational sources

As we did in the previous chapter, we now focus on a particular type of higher-

dimensional objects with a finite extension in one spatial direction and a zero trans-

verse size. We assume that this object is massive and it rotates around its own axis.

We consider the field of such an object in the frame S̄ where it is rest. As earlier,

we denote by t̄ the time coordinate in the rest frame and by ξ̄ a coordinate along the

pencil direction. We also write the flat metric in the form

ds2 = −dt̄2 + dξ̄
2

+ dx2
⊥ . (3.70)

To specify the stress-energy tensor (3.58) to the case of the pencil-like distribution

of the spinning matter we proceed as follows. We assume that both the matter

density ρ and the density of the angular momentum jij are concentrated on the line

representing the pencil. We introduce the quantities λ̄(ξ̄) and j̄ij(ξ̄) as the mass

and angular momentum line densities, respectively. They describe the distribution

of the mass and angular momentum along the pencil. We also impose the following

restrictions on the tensor structure of jij:

• Matrix functions jij(ξ̄) are orthogonal to ξ̄ direction, jiξ̄(ξ̄) = 0;

• Eigen two-planes Πa of jij(ξ̄) are parallel propagated along the ξ̄ axis.

The second property implies that by using the rigid spatial rotations the matrix
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functions jij(ξ̄) can be presented in the form

j̄ =̂

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 j̄1 . . . 0

−j̄1 0

0 j̄2

−j̄2 0
...

. . .

0 j̄n

−j̄n 0

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.71)

Here j̄a are functions of ξ̄ alone.

Let us specify the (d− 1) coordinates xj
⊥ orthogonal to the ξ̄-direction further:

xj
⊥ = (ya, ŷa, ϵz) , a = 1, . . . , n ,

n =

⌊︃
d− 1

2

⌋︃
, d = 2n + 1 + ϵ .

(3.72)

One can say that the (d− 1)-dimensional “transverse space” orthogonal to the ξ-axis

is spanned by n mutually orthogonal two-planes Πa, and (ya, ŷa) are right-handed

coordinates in these planes. We shall refer to these planes as Darboux planes. If

the number of spacetime dimensions d + 1 is odd one has ϵ = 1 and besides these

two-planes there exists an additional one-dimensional z-axis which is orthogonal to

each of the planes as well as to ξ-axis. In even spacetime dimensions there is no such

additional z coordinate: for example, in four spacetime dimensions there exists only

one two-plane orthogonal to the ξ-direction. We denote by e(a) = ∂ya and ê(a) = ∂ŷa

unit vectors along the ya-axis and ŷa-axis, respectively. The 1-forms dual to these

vectors are ω(a) = dya and ω̂(a) = dŷa such that the volume 2-form for each Darboux

plane Πa is given by ϵ(a) = ω(a) ∧ ω̂(a).

In these coordinates the stress-energy tensor of a thin spinning pencil is

Tµν =

[︄
δt̄µδ

t̄
νλ̄(ξ̄) +

n∑︂
a=1

(︂
j̄a(ξ̄)δt̄(µδ

i
ν)ϵ

(a)j
i ∂j

)︂]︄
δ(d−1)(x⊥) . (3.73)
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We assume that this object has a finite length in ξ̄, such that both λ̄(ξ̄) and ja(ξ̄)

vanish when ξ̄ is outside some interval (0, L̄). We call L̄ the length of the pencil. The

mass and the angular momentum of such a pencil are

m̄ =

∫︂
dξ̄ λ̄(ξ̄) , (3.74)

J̄ ij =

∫︂
dξ̄ j̄ij(ξ̄) , (3.75)

j̄ij(ξ̄) =
n∑︂

a=1

ϵ
(a)
ij j̄a(ξ̄) . (3.76)

The gravitational field hµν for the thin spinning pencil is

h = ϕ̄

[︃
dt2 +

1

d− 2
(dξ̄

2
+ dx2

⊥)

]︃
+ 2Āidx

i
⊥dt , (3.77)

where

ϕ̄(ξ̄, xi
⊥) = 2κ

d− 2

d− 1

∫︂
dξ ′̄λ̄(ξ ′̄)Gd(r̄) ,

Āi(ξ̄, x
i
⊥) = −2πκ

∫︂
dξ ′̄j̄ij(ξ

′̄)xj
⊥Gd+2(r̄) .

(3.78)

The expression for r̄2 is given in (2.80).

3.9 Summary of chapter 3

In this chapter we discussed linearized gravity equations in four and higher dimen-

sions. We started with a higher dimensional generalization of General Relativity,

and after this we described the nonlocal action of the so called linearized ghost-free

gravity theories. In both cases we constructed solutions for point-like and pencil-like

spinning objects. For this purpose we used the Green function method. As a result,

solutions of the nonlocal linearized gravity equations for stationary sources have a lot

of similarities with those constructed in the previous chapter for nonlocal Maxwell

equations. In particular, the field of a point-like spinning particle in the ghost-free

gravity is regular at the origin. In the next chapter we use the obtained stationary

solutions of nonlocal Maxwell and gravity equations to obtain solutions for the field

of ultrarelativistic sources.
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Chapter 4

Field of Ultrarelativistic Objects

4.1 Boost transformation and Penrose limit

In this chapter we discuss electromagnetic and gravitational field of ultrarelativistic

pencils with a finite length. We demonstrate that the corresponding solutions can

be obtained by boosting the obtained earlier solutions for stationary sources. For

this purpose we first rewrite these solutions in an inertial frame S which moves with

respect to a static frame S̄ with velocity β = v/c. After this we take the limit β → 1.

In order to obtain a finite result in such a limit one should properly rescale the

parameters which enter S̄ solutions. This rescaling depends on the spin of the field

and it is different for the electromagnetic and gravitational cases. In the gravitational

theory instead of the mass of the object in the frame S̄ one should keep the energy

in the S frame fixed. Penrose demonstrated that such a rescaling is valid not only in

the linearized gravity. In his famous paper [63] Penrose wrote:

We envisage a succession of observers travelling in the spacetime M whose

world lines approach the null geodesic γ more and more closely; so we

picture these observers as travelling with greater and greater speeds, ap-

proaching that of light. As their speeds increase they must correspond-

ingly recalibrate their clocks to run faster and faster (assuming that all

spacetime measurements are referred to clock measurements in the stan-

dard way), so that in the limit the clocks measure the affine parame-
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ter along γ. (Without clock recalibration a degenerate spacetime metric

would result.) In the limit, the observers measure the spacetime to have

the plane-wave structure.

The corresponding procedure for getting solutions for the field of ultrarelativistic

objects is called the Penrose limit. We apply this procedure to the solutions of

electromagnetic and linearized gravity equations both for local and nonlocal versions

of these theories. We shall also consider the cases of four-dimensional and higher

dimensional spacetimes.

Let us consider two frames. The first one is frame S̄ where the matter creating the

gravitational field is at rest. The second frame S moves with a constant velocity β

with respect to S̄. We adapt now the choice of the coordinates which is convenient

for this situation. Let ξ be a coordinate along the vector of velocity of S and denote

by x⊥ the d − 1 coordinates orthogonal to the ξ-direction. To distinguish the rest

frame coordinates from the coordinates in the boosted frame we use a bar for the rest

frame coordinates and write

Xµ = (t, ξ, xi
⊥), X̄

µ
= (t̄, ξ̄, xi

⊥) . (4.1)

The index i = 1, 2, . . . , d−1 enumerates the coordinates transverse to the direction of

motion. We omit the bar for the coordinates xi
⊥ since the Lorentz transformation for

the motion in the ξ-direction does not affect their values. The background Minkowski

metric is

ds20 = −dt
2

+ dξ
2

+ dx2
⊥ = −dt2 + dξ2 + dx2

⊥ . (4.2)

Here, (t, ξ) are coordinates in the rest frame S̄ and (t, ξ) are the corresponding co-

ordinates in the moving frame S. For the remainder of the chapter, we denote all

quantities defined with respect to the rest frame S̄ with a bar. For example, the

radial distance from the origin to a point (ξ̄, xi
⊥) is r̄2 = ξ̄

2
+ x2

⊥. We specify (d− 1)

coordinates xj
⊥ orthogonal to the ξ̄-direction in the same way as it was done in sec-

tion 2.6.
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In what follows we apply the Penrose limit to the previously described solutions

for electromagnetic and gravitational “pencils”. We shall apply to these solutions the

boost transformation in the ξ-direction

t = γ (t− βξ) , ξ = γ (ξ − βt) . (4.3)

Here β = v/c is the boost parameter and v is the velocity of the frame S with

respect to the rest frame S̄. For fixed ξ, that is, for a fixed point in frame S one

has ξ̄ = −γβt + const. This means that the frame S moves in the negative (“left”)

direction of ξ̄ with respect to the rest frame S̄. In other words, a pencil which is at

rest with respect to S̄ moves with a positive velocity in S frame.

We introduce the retarded and advanced null coordinates in the S frame defined

as follows:

u =
t− ξ√

2
, v =

t + ξ√
2

. (4.4)

Then (4.3) implies

t =
γ√
2

[(1 + β)u + (1 − β)v] , (4.5)

ξ =
γ√
2

[−(1 + β)u + (1 − β)v] . (4.6)

In the ultrarelativistic limit, β → 1, one has

t →
√

2γu , ξ → −
√

2γu . (4.7)

This implies that if one considers the matter distribution of an ultrarelativistec pencil

in the frame S̄ such that it is located in the strip between ξ̄ = 0 and ξ̄ = L̄, then

by keeping the length L = L̄/γ fixed in the moving frame the pencil will be located

between the region u = −L/
√

2 and u = 0 of spacetime after taking the Penrose

limit; see Fig. 4.1.
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Figure 4.1: The pencil of length L moves within the two-dimensional (t, ξ)-section of
Minkowski space in the frame S.

4.2 Green functions in the Penrose limit

As we have demonstrated in the previous chapters solutions for the stationary sources

in the rest frame S̄ can be found explicitly by using the Green functions of the equation

f(△)△Gd(x− x′) = −δ(d)(x− x′) . (4.8)

Here f is the form factor of the nonlocal theory and d = D−1 is the number of spatial

dimensions. For f = 1 Gd(x− x′) = Gd(x− x′) where Gd is the Green function of d

dimensional Laplace equation.

In order to obtain the Penrose limit of the Green function it is convenient to use the

following trick. Let us write the following representation of the static Green function

Gd(r)

Gd(r) =
1

2π

∞∫︂
−∞

dη

f(−ηℓ2)η

∞∫︂
−∞

dτ Kd(r|τ) eiητ . (4.9)

Here

Kd(r|τ) =
1

(4πiτ)
d
2

ei
r2

4τ , (4.10)
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is the d-dimensional heat kernel in imaginary time τ = −it which satisfies the follow-

ing equations

△Kd(r|τ) = −i∂τKd(r|τ) , (4.11)

lim
τ→0

Kd(r|τ) = δ(d)(r) . (4.12)

The derivation of the representation (4.9) for the static Green function is given in

Appendix E.

The following property makes this representation very useful for the study of the

Penrose limit of solutions: Relation (4.9) expresses the Green function Gd(r̄) as a

double Fourier transform, wherein the radius r̄ enters only quadratically via the ex-

ponential function ∼ exp[ir̄2/(4τ)]. This observation allows us to perform the Penrose

limit procedure in a very general and convenient form. In the representation (4.9)

the only quantity which is “sensitive” to the boost is the heat kernel Kd. It factorizes

such that the boost-sensitive factor is the exponent of the form ∼ exp[i(ξ̄ − ξ̄
′
)2/4τ ],

which for large γ factors takes the form ∼ exp[iγ(u − u′)2/2τ ]. To take the Penrose

limit we use the following relation (see also [86]):

δ(u) = lim
ϵ→0

1√
2πiϵ

ei
u2

2ϵ . (4.13)

Denote ϵ = τ/γ2 and apply this relation to (4.9) to obtain

lim
γ→∞

γ Gd(r̄) =
1√
2
Gd−1(r⊥)δ(u− u′) , (4.14)

where r2⊥ = δijx
i
⊥x

j
⊥.

This means that in the Penrose limit the Green function is factorized and becomes

a product of the delta function and a similar Green function in a space with one

spatial dimension less. Note that this property is universal in the following sense: It

is valid in any number of dimensions and for an arbitrary choice of the form factor.

49



4.3 Electromagnetic field of ultrarelativistic charged

and magnetized objects

The main tool for the study of the fields of ultrarelativistic objects both in the elec-

tromagnetic and gravitational theories is using the transformation law of the Green

functions in the Penrose limit (4.14) described in the previous section. However, these

two cases are technically slightly different. This difference is connected with the spin

of the fields. For the electromagnetic field the spin is one and it is described by a

vector potential A. For gravity the spin is two and the linearized metric is a rank

two tensor. As a result the behavior of the charge and magnetic moment under the

boost transformation differs from the behavior of the energy and angular momentum

of the gravity sources.

4.3.1 Electromagnetic field in the Penrose limit

We consider first the electromagnetic field of ultrarelativistic objects. For simplicity

we limit our consideration to charged and magnetized pencils whose transverse charge

and magnetic moment densities are δ-shaped, but we allow a density profile in the

pre-boosted ξ̄-direction to be arbitrary functions of ξ̄. Let us denote these densities

by λ̄(ξ̄) and µ̄a(ξ̄) for the charged and magnetized pencils, respectively. Results for

objects with a transverse extension can be obtained by superposing these solutions.

We use the obtained earlier (in chaper 2) expressions for the potential Āµ for a

pencil like distribution of the electric charge and magnetic moment

Āt̄ =

∞∫︂
−∞

dξ̄
′
λ̄(ξ̄

′
)Gd(r̄) , (4.15)

Āa = −2π

∞∫︂
−∞

dξ̄
′ Gd+2(r̄)

n∑︂
a=1

µ̄a(ξ̄
′
)ρ2a , (4.16)

r̄2 = (ξ̄
′ − ξ̄)2 + x2

⊥, x2
⊥ =

n∑︂
a=1

ρ2a + ϵz2 . (4.17)

Both λ̄(ξ̄) and µ̄a(ξ̄) are one-dimensional line densities.
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We boost these solutions by applying the Lorentz transformation (4.3) to it. After

this we need to take the limit γ → ∞. In order to obtain finite (and non-vanishing)

expressions for the field in the Penrose limit one should keep the total charge q

fixed, q = q̄, while the magnetic moment should be rescaled as follows m = γm̄. In

accordance with this scaling we define

λ(u) = lim
γ→∞

√
2γλ̄(−

√
2γu) , (4.18)

µa(u) = lim
γ→∞

√
2µ̄a(−

√
2γu) . (4.19)

For this reason, again making use of the relation (4.14), one finds the following ex-

pressions for the ultrarelativistic charged and magnetized pencils:

AµdXµ = λ(u)GN
d−1(r⊥)du− πGN

d+1(r⊥)
n∑︂

a=1

µa(u)ρ2adφa . (4.20)

The spacetime metric in (u, v) coordinates is

ds2 = −2dudv +
n∑︂

a=1

(dρ2a + ρ2adφ
2
a) + ϵdz2 . (4.21)

The potential (4.20) is regular as r⊥ → 0, which is in stark contrast to the results

one obtains in standard local Maxwell theory.

4.3.2 Properties of solutions

Let us now make some remarks concerning the properties of the obtained solutions

within nonlocal Maxwell theory. To that end, the obtained solution (4.20) can be

written in the form

A =
n∑︂

a=0

λa(u)aa(r⊥)ζa , (4.22)

where λ0(u) = λ(u) and λa≥1(u) = µa(u). We denoted by ζ the following Killing

vectors:

ζ0 = ∂v, ζa = ∂φa . (4.23)
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It is easy to check that

Lζa
A = 0 , (4.24)

where Lζ is the Lie derivative in ζ direction. These relations show that the boosted

solutions have the expected symmetries, that is, no dependence on advanced time v

as well as rotational isometries in the φa-directions of Πa two-planes.

Another observation is the following. In the absence of the magnetic moments,

µa = 0, both in the local and nonlocal case, the electromagnetic field F is null 1,

F µαF
α
ν = Su,µu,ν , F 2 =

1

2
FµνF

µν = 0 . (4.25)

In general, the presence of the magnetic field violates this property. However, the case

of electrodynamics in four-dimensional spacetime is an exception. To demonstrate

this, let us write the potential 1-form A as

A = b(u)c(ρ)ζ0 + B(u)C(ρ)ζ1 , (4.26)

where ζ0 and ζ1 are the 1-forms that are dual to their respective Killing vector. Then,

calculations show that

F 2 = B2

(︃
ρ

dC

dρ
+ 2C

)︃2

. (4.27)

Thus F 2 = 0 only when C = C0/ρ
2. This is precisely the case for the field of the mag-

netized and charged ultrarelativistic pencil in four dimensions in the framework of the

standard local Maxwell theory. For the theory in higher dimensions this property is

violated. Let us emphasize that in the nonlocal theory F 2 ̸= 0 for ultrarelativisic mag-

netized pencils not only in the higher dimensions, but in four spacetime dimensions

as well.

1Let us note that for a static q-pencil of fixed length L̄ the invariant F 2 does not vanish. However,
when one takes the Penrose limit, the length L̄ is not fixed but is multiplied by γ. As a result, F 2

decreases and becomes zero in the limit γ → ∞.
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4.4 Gravitational field of ultrarelativistic massive

and spinning objects

We already mentioned that there exist a similarity between electromagnetic and lin-

earized gravity equations. However, there is also a quite important difference. In

the electromagnetism a charge can have both, positive and negative signs. For this

reason one can consider neutral magnetized objects. In gravity the situation is quite

different. The energy of physical objects is positive. One cannot put the energy of

an object equal to zero and keep only the spin-induced component of the gravita-

tional field. This means that in application of the results discussed in this section

to a beam of spinning massless particles one should analyze the relation between the

energy density and spin distribution in the beam. This can be done for example in

the framework of the geometric optics approximation. This subject is beyond the

scope of this thesis. In what follows we focus on the solutions for the gravitational

field of ultrarelativistic sources in linearized gravity and its nonlocal ghost-free gen-

eralization. In this approach we keep the energy and angular momentum density

parameters arbitrary.

4.4.1 Scaling properties

Let us first make a simple remark concerning the scaling properties of the pencil

characteristics under a boost transformation (4.3). Let us assume that both mass

and angular momentum are uniformly distributed along the pencil and their densities

in the rest S̄ frame, λ̄ = m̄/L̄ and j̄ = J̄/L̄ are constant. Because of the Lorentz

contraction, the length of the same pencil, as measured in the moving frame S is

L = L̄/γ, while its energy is E = m = γm̄. As a result, the linear energy density of

the pencil in the S frame is λ = γ2λ̄. In the Penrose limit the energy E is taken to

be fixed. Thus the energy density λ grows to infinity as γ → ∞. To keep it finite,

one needs to rescale L̄ → γL̄ in the boost process, such that the length L remains

53



unchanged2.

Because we keep the ratio L̄/γ constant during the Penrose limit, the linear density

scales as follows:

λ(u) = lim
γ→∞

√
2γ2 λ(−

√
2γu) . (4.28)

This guarantees that in the Penrose limit the product mγ and the ratio L̄/γ remain

constant,

E = γ m = γ

∞∫︂
−∞

dξ λ(ξ) =

∞∫︂
−∞

duλ(u) = const . (4.29)

The angular momentum line density jij(ξ̄) “lives” in transverse space and its tensorial

structure is unaffected by the boost. Using this property we define the boosted linear

density of the angular momentum in the S frame as follows:

jij(u) = lim
γ→∞

√
2γ jij(−

√
2γu) , (4.30)

ja(u) = lim
γ→∞

√
2γ j̄a(−

√
2γu) . (4.31)

The total angular momentum J of the boosted pencil remains unchanged, finite and

has the form

Jij =

∞∫︂
−∞

dξ jij(ξ) =

∞∫︂
−∞

dujij(u) . (4.32)

4.4.2 Metric

After the Penrose limit, as defined above, the resulting metric takes the form

g = (ηµν + hµν) dXµdXν

= −2dudv + ϕdu2 + 2Aidx
i
⊥du + dx2

⊥ ,
(4.33)

2Let us emphasize that in this thesis we do not discuss restrictions on the properties of the
matter which creates the gravitational field. If for example one requires that the matter obeys the
null energy condition then one can expect that |J̄ | ≤ Rm̄, where R is the transverse size of the pencil.
So that to keep |J̄ | fixed while m̄ → 0 without violation of the null energy condition one needs to
consider “thick pencils”. Let us note that beyond the linear approximation in higher dimensions the
situation is quite different. Namely, Myers and Perry in [85] demonstrated that “for N > 5 black
holes with a fixed mass may have arbitrarily large angular momentum”. (N is the umber of spatial
dimensions, which we denoted by d).
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where we defined

ϕ = lim
γ→∞

2γ2d− 1

d− 2
ϕ̄ , Ai = lim

γ→∞

√
2γĀi . (4.34)

Here, ϕ̄ and Āi are given by (3.78). The integrands in their representations contain

the Green function Gd(r̄). Performing the limit γ → ∞ in the relations (4.34) for the

potential ϕ and the gravitomagnetic potential Ai using the factorization property of

the Green functions in the Penrose limit one finally gets

ϕ = 2
√

2κλ(u)Gd−1(r⊥) , (4.35)

Ai = −2πκjij(u)xj
⊥Gd+1(r⊥) . (4.36)

Introducing polar coordinates {ρa, φa} in each Darboux plane Πa such that

ya = ρa cosφa , ŷa = ρa sinφa , (4.37)

one may use the relation

jij x
i
⊥dxj

⊥ =
n∑︂

a=1

jaρ
2
adφa , (4.38)

to rewrite the gravitomagnetic potential 1-form as

Ai(x⊥)dxi
⊥ = 2πκGd+1(r⊥)

n∑︂
a=1

ja(u)ρ2adφa , (4.39)

which makes the rotational symmetry in each Darboux plane manifest.

4.5 Gravitational field of ghost-free gyratons

Ultrarelativistic spinning objects creating the gravitational field described in the pre-

vious section are often called gyratons (see e.g. [70]). In this section we present and

discuss gyraton-like solutions in General Relativity and in infinite-derivative nonlocal

gravity.

In General Relativity, the form factor f(□) is simply

f(□) = 1 , (4.40)
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whereas in infinite-derivative GFN gravity model this form factor as the form

f(□) = exp
[︁
(−□ℓ2)N

]︁
. (4.41)

The static Green function (2.60) can be computed for a wide range of theories, but in

the context of the present thesis we shall consider General Relativity as well as two

infinite-derivative theories corresponding to the choices N = 1 and N = 2, which we

shall hence refer to as GF1 and GF2. It is also possible to extend these studies to

arbitrary number of spatial dimensions d.

4.5.1 Gyratons in d=3

Gyraton metrics in General Relativity

As a warm-up, let us consider the well-known gyraton solutions of (3+1)-dimensional

General Relativity [44, 46, 51, 52]. The relevant two-dimensional and four-dimensional

static Green functions are

G2(r) = − 1

2π
log(r) , G4(r) =

1

4π2r2
. (4.42)

Since in d = 3 the transverse space is two-dimensional we have n = 1 and ϵ = 0.

Therefore we may write |x⊥| = ρ, call the polar angle φ, and denote by j(u) the

linear density of the angular momentum in the S frame. Then, the gravitational

potentials ϕ and A = Aidx
i are

ϕ(u, ρ) = −
√

2κλ(u)

2π
log(ρ) , (4.43)

A(u) =
κj(u)

2π
dφ . (4.44)

This gravitomagnetic field is locally exact such that

F = dA = 0 . (4.45)

Observe, however, that the gravitomagnetic charge does not vanish:

Q0 =

∫︂
A

F =

∮︂
∂A

A = κj(u) . (4.46)
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Here, A denotes a surface in the Darboux plane. For later convenience we may assume

A to be a circle of radius ρ. However, in a given null plane u = const this charge

does not depend on the choice of the contour ∂A. As we shall see soon, this property

is no longer valid in nonlocal gravity, and effectively the gravitomagnetic current is

spread out of the ρ = 0 line in the direction transverse to the motion.

Gyraton metrics in ghost-free gravity

We consider now a similar gyraton solutions in the nonlocal theories GF1 and GF2.

The two dimensional static Green function for GF1 theory can be written as

G2(r) = − 1

4π
Ein

(︃
r2

4ℓ2

)︃
, (4.47)

where Ein(x) denotes the complementary exponential integral and E1(x) is the expo-

nential integral [77],

Ein(x) =

x∫︂
0

dz
1 − e−z

z
= E1(x) + ln x + γ , (4.48)

E1(x) = e−x

∞∫︂
0

dz
e−z

z + x
= −Ei(−x) , (4.49)

and γ = 0.577 . . . is the Euler–Mascheroni constant. Then, the gravitational poten-

tials ϕ and A take the form

ϕ(u, ρ) = −
√

2κλ(u)

2π
Ein

(︃
ρ2

4ℓ2

)︃
, (4.50)

A(u,x⊥) =
κj(u)

2π

[︃
1 − exp

(︃
− r2⊥

4ℓ2

)︃]︃
dφ . (4.51)

This gravitomagnetic field is no longer exact and hence the gravitomagnetic charge

depends on the radius,

Q1(ρ) = κj(u)

[︃
1 − exp

(︃
− ρ2

4ℓ2

)︃]︃
. (4.52)
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At large distances, ρ ≫ ℓ, we recover the gyraton solution obtained in General Rela-

tivity. In GF2 theory one has

G2(r) =
y

2π

[︂ √
π 1F3

(︁
1
2
; 1, 3

2
, 3
2
; y2

)︁
− y 2F4

(︁
1, 1; 3

2
, 3
2
, 2, 2; y2

)︁ ]︂
,

(4.53)

where we defined y = ρ2/(16ℓ2). The gravitomagnetic charge now takes the form

Q2(ρ) = −κj(u)
[︂
1 − 0F 2

(︁
1
2
, 1
2
; y2

)︁
− 2

√
πy0F 2

(︁
1, 3

2
; y2

)︁ ]︂
.

(4.54)

See Fig. 4.2 for a plot of these charges. Interestingly, the GF1 charge is monotonic,

whereas the GF2 charge exhibits an oscillatory behavior.

  

Figure 4.2: The gravitomagnetic charges on a plane u = const. of the four-dimensional
gyraton in linearized General Relativity as well as linearized GF1 and GF2 theory
plotted as a function of ρ/ℓ. The charges are normalized to the value Q0 encountered
in General Relativity.

Curvature invariants

One may wonder about the geometric properties of the four-dimensional gyraton

spacetime

g = −2dudv + ϕ(u, x, y)du2 + dx2 + dy2

+ 2 [Ax(u, x, y)dx + Ay(u, x, y)dy] du .
(4.55)
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This spacetime is a pp-wave because it features a covariantly constant null Killing

vector k = ∂v [57],

∇νk
µ = 0 . (4.56)

This property remains valid for any choice of the functions ϕ, Ax and Ay, provided

their functional dependence remains the same. Since pp-wave spacetimes have van-

ishing scalar polynomial curvature invariants one finds

R = RµνR
µν = RµνρσR

µνρσ = 0 . (4.57)

For this reason they remain unchanged for solutions found in the context of linearized

infinite-derivative gravity as compared to linearized General Relativity.

4.5.2 Gyratons in d ≥ 4 dimensions

d = 4 case

In five spacetime dimensions one has d = 4, which implies that n = 1 and ϵ = 1. In

this case there is only one Darboux plane orthogonal to ξ as well as one additional

z-axis. Let us write the transverse distance as r2⊥ = ρ2 + z2, where ρ is the radial

variable in the Darboux plane. Then, from Eqs. (4.35) as well as (4.39), one obtains

ϕ = 2
√

2κλ(u)G3(r⊥) , (4.58)

Aidx
i
⊥ = − κ

r⊥

d

dr⊥
G3(r⊥)j(u)ρ2dφ , (4.59)

where φ is the polar angle in the Darboux plane, j(u) is the angular momentum

eigenfunction, and λ(u) describes the density profile. The explicit expressions for the

functions G3 in linearized General Relativity as well as in GF1 and GF2 theories are

given in Appendix F.

Higher dimensions

In higher dimensions one can proceed analogously to find expressions for the gyraton

metrics. Instead of repeating previous steps, we give here an algorithmic procedure

of how to construct such solutions in an arbitrary number of higher dimensions.
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First, given the number of spatial dimensions d, determine the number of Darboux

planes n using (3.72). If d is even there will be an independent z-axis as well. Due

to the rotational symmetry around the pre-boosted ξ̄-direction it makes sense to

introduce polar coordinates in each Darboux plane called {ρa, φa} where a labels the

Darboux planes. This construction is unique, provided one fixes the direction of the

polar angles φa to be right-handed with respect to the original ξ̄-direction.

Second, one introduces the perpendicular radius variable r⊥ according to

r2⊥ =
n∑︂

a=1

ρ2a + ϵz2 . (4.60)

Recall that ϵ = 1 if d is even, and ϵ = 0 if d is odd. Now one can insert this radius

variable into (4.35) and (4.39). In order to determine the static Green function Gd(r⊥)

in higher dimensions one may utilize the recursion formula (2.62) as well as Appendix

F.

Last, one may want to start with a known line energy density λ̄(ξ̄) as well as angular

momentum line densities j̄a(ξ̄) in the original rest frame. In that case, Eqs. (4.28)

and (4.30) provide prescriptions as to how to retrieve the resulting functions λ(u) and

ja(u) in retarded time.

Realistic gyratons may also have a finite transverse thickness, but due to the lin-

earity of the problem it is always possible to supplement a transverse density function

in (3.73) and construct the gravitational field of a “thick gyraton” by superposition.

4.6 Summary of chapter 4

This chapter is devoted to study fields of objects moving with very large speed close

to the speed of light. For this purpose we apply the Lorentz boost to the stationary

solutions of the nonlocal modification of the Maxwell and linearized gravity equa-

tions. We demonstrated that for a properly chosen scaling of the parameters of the

stationary solutions one can obtain a well defined Penrose limit. We then proved a

remarkable property that the Green functions: In the Penrose limit they are dimen-
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sionally reduced and factorized. Namely, after taking the Penrose limit, the Green

function takes the form of a product of a delta-function localized at the null plane and

a similar Green function in a space with one dimension less. We study and describe

properties of the obtained solutions.
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Chapter 5

Summary and Discussion

Let us summarize the results included in this thesis. We study higher dimensional

Maxwell and Einstein equations. General interest in such higher dimensional theories

was motivated by string theory in which the existence of extra dimensions is important

for the consistency of the theory. We considered nonlocal modifications of Maxwell

and linearized gravity where the action and the field equations contain infinite number

of derivatives. The assumptions that the theory possess Lorentz invariance and is

invariant under corresponding gauge transformation greatly restrict the form of the

actions. The next important assumption was that the modified theories contain the

same number of physical degrees of freedom as its local counterpart. This assumption

requires that the form factor of the nonlocal theory does not have zeroes on the

complex plane of its argument. We focused on wide class of models GFN with form

factors of the form

f(□) = exp
[︁
(−ℓ2□)N

]︁
. (5.1)

The chapters 2 and 3 of the thesis are devoted to the study of stationary solutions

of point-like and extended sources in nonlocal versions of the Maxwell and linearized

gravity equations. The main tool for this study is the method of Green function.

Using static Green functions we obtained solutions for the higher-dimensional elec-

tromagnetic field of charged and magnetized sources in the nonlocal modification of

the Maxwell theory (chapter 2). Similar results are also obtained for the gravitational
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field of massive spinning objects in the weak field approximation of the nonlocal grav-

ity equations (chapter 3).

The analyses of the obtained solutions show that all of the solutions for the point-

like sources in the ghost-free modifications GFN of the electromagnetism and gravity

are regular at their origin. This is a common and interesting property of these models.

Earlier publications demonstrated similar results for static (non-spinning) massive

particles in the ghost-free gravity. We generalized these results in the two following

ways:

• We proved the regularity of the gravitational field for massive spinning point-like

particles in the modified nonlocal gravity;

• We obtained a similar result for the electromagnetic field of a point-like parti-

cle with electric charge and magnetic moment in the nonlocal modification of

Maxwell theory.

In the second part of the thesis we studied the electromagnetic and gravitational

field of ultrarelativistic objects. In our analysis we assume that the number D ≥ 4 of

spacetime dimensions can be arbitrary. We also considered both local and nonlocal

theories. To find a field of an ultrarelativistic object we first made a boost trans-

formation of the stationary solutions obtained in chapters 2 and 3. After this, we

considered a limit when the velocity of the boost tends to the speed of light. In order

to obtain a finite physically meaningful result we accompanied this process by ad-

ditional scaling transformations of the parameters of the initial stationary solutions.

We demonstrated that these scaling transformations depend on the nature (spin) of

the field. A very important technical point in obtaining these results is played by a

special integral representation of the Green functions (see appendix E). This repre-

sentation demonstrates that in the Penrose limit the d dimensional Green function is

factorized and it can be presented as a product of the delta-function localized at the

null plane and the corresponding (d− 1)-dimensional Green function. This universal
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behavior of the Green functions in the Penrose limit greatly simplifies obtaining the

required solutions. We studied the obtained solutions for the fields of the ultrarela-

tivistic objects and demonstrated that in the class of GFN theories they are regular

at the source position.

The results obtained in this thesis might have several interesting applications.

They can be used for studying the scattering of two ultrarelativistic particles. This

would allow one to single out properties of the scattering amplitudes which might

indicate the the existence of extra dimensions and nonlocality. In the latter case, the

experimental results might restrict the value of the nonlocality scale ℓ. Another more

complicated problem is to study how non-linearity of the nonlocal gravity equations

modified the results obtained in the linear approximation. This is a very important

question connected with the existence of black-hole and cosmological singularities.

Finally, let us mention one more interesting problem. In Einstein gravity the Penrose

limit of a weak field static solution coincides with the Aichelburg-Sexl metric which

is an exact solution to the full non-linear Einstein equations. An open question is

whether this property (under some reasonable conditions) is valid for the considered

nonlocal theories. It would be interesting to answer these questions, which go far

beyond the scope of this thesis.
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Appendix A: Field of a magnetized
pencil

In this appendix we give an expression for the potential of an m-pencil in three spatial

dimensions, which is used in the main body of this thesis. To that end, let us consider

a thin cylinder of radius R of the length L along the ξ̄-axis. Let us further assume that

the cylinder has a total electric charge Q and is rotating with the angular velocity ω

around its symmetry axis. If one wishes to consider an uncharged magnetized object,

then—by linearity of the Maxwell equations—one may just add another cylinder with

the opposite charge −Q. At any rate, the magnetic moment m of a system of charges

qa located at ra and moving with velocity va is given by the following expression [87]:

m =
1

2

∑︂
a

qa[ra × va] . (A.1)

In cylindrical coordinates {ρ, φ, ξ̄} the magnetic moment of the rotating charged

cylinder takes the form

m = (0, 0, m̄), m̄ =
1

2
QR2ω . (A.2)

The current density of a system of charged particles is

J̄ =
∑︂
a

qavaδ
(d)(r − ra) . (A.3)

For the rotating cylinder one finds

J̄ = (0, J̄
φ
, 0) ,

J̄
φ

=
Qω

2πRL̄
δ(ρ−R)Θ

(︁
ξ̄| − L̄/2, L̄/2

)︁
.

(A.4)
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The field equations (2.6) give the following equation for the potential Āφ:

ρ∂ρ

(︃
1

ρ
∂ρĀφ

)︃
+ ∂2

ξ̄ Āφ = J̄φ . (A.5)

Let us denote ∂ρĀφ = ρZ, then (A.5) gives

1

ρ
∂ρ (ρ∂ρZ) + ∂2

ξ̄Z = j , (A.6)

where j(ρ) = 1
ρ
∂ρJ̄φ. The left-hand side of this equation is nothing but the flat

three-dimensional Laplace operator in cylindrical coordinates applied to the function

Z(ρ, ξ̄). Using the Green function of this operator, expressed in cylindrical coordi-

nates, one then obtains

Z(ρ, ξ̄) =

L̄/2∫︂
−L̄/2

dξ̄
′

2π∫︂
0

ρ′dφ′P, P = −
∞∫︂
0

dρ′
j(ρ′)

4πr
, (A.7)

r = (ρ2 + ρ′2 − 2ρρ′ cosφ′ + z2)1/2 . (A.8)

Here we abbreviated z = ξ̄−ξ̄
′
. The integral for P can be evaluated with the following

result

P =
QωR

8π2L̄

∂

∂R

(︃
1

r

)︃
, (A.9)

where r is given by (A.8) subject to the substitution ρ′ = R in this expression. Using

definition (A.2) of the magnetic moment one can write

Z(ρ, ξ̄) =
m̄

4π2RL̄

L̄/2∫︂
−L̄/2

dξ̄
′ ∂I

∂R
. (A.10)

Here we introduced the shorthand notation

I =

2π∫︂
0

dφ

r
=

4K

(︃
2
√
Rρ√

(ρ+R)2+z2

)︃
√︁

(ρ + R)2 + z2
, (A.11)

where K is the complete elliptic integral of second type. Using its expansion for small

valuse of its argument one can find

S = lim
R→0

1

R
∂RI = π

ρ2 − 2z2

(ρ2 + z2)5/2
. (A.12)
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Using these results and restoring Āφ one obtains

Āφ =
m̄

4πL̄

L̄/2∫︂
−L̄/2

dξ̄
′

ρ∫︂
0

dρ′ρ′ S . (A.13)

Performing the integration over ρ′ and ξ̄
′

finally yields

Āφ =
m̄

4πL̄

⎛⎝ ξ̄+√︂
ρ2 + ξ̄

2
+

−
ξ̄−√︂

ρ2 + ξ̄
2
−

⎞⎠ , (A.14)

where we abbreviated ξ̄± = ξ̄± L̄/2. Let us mention that this expression for the field

of a magnetized infinitely thin pencil can be also obtained by using the expression

for the potential of a magnetized solenoid of finite radius R, which can be found in

Jackson’s book [75].
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Appendix B: Darboux basis

Consider a skew-symmetric matrix Aij = −Aji in d = 2n + ϵ dimensional space. Let

γij be the Euclidean metric in it. We define Ai
j = γikAkj. Let v be a vector with

components vj. We denote Av = u, where u is a vector with components ui = Ai
jv

j.

Since for any vector u one has

< u,u >= γiju
iuj ≥ 0 , (B.1)

then

0 ≤ γijA
i
kv

kAj
mv

m = −vkA j
k A

j
mv

m = − < v,A2v > . (B.2)

This means that a symmetric matrix A2 is non-positive definite.

Consider eigenvectors of A2. Let v be its eigenvector

A2v = −λ2v . (B.3)

Denote uA = v. Then

A2u = AA2v = −λ2Av = −λ2u . (B.4)

In other words, if v is the eigenvector of A2 with the eigenvalue −λ2, then the same

is true for the vector u. It is easy to see that these two vectors are orthogonal,

< u,v >= 0. We chose the vector v to have unit norm, then the vector v̂ = u/λ is

also a unit vector.

Let us enumerate the eigenvalues and eigenvectors by index a. Let us assume that

the matrix A in non-degenerate, that is:

• It has maximal number of non-vanishing eigenvalues n, that is a = 1, . . . , n;
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• All these eigenvalues are different.

Then it is easy to check that eigenvectors with different eigenvalues are mutually

orthogonal. Really

− λ2
a2

< va1 ,va2 >=< va1 ,A
2va2 >=< va2 ,A

2va1 >= −λ2
a1

< va1 ,va2 > . (B.5)

Since λa2 ̸= λa1 then < va1 ,va2 >= 0. Thus one has n mutually orthonormal pairs

of vectors (va, v̂a). Each such pair spans a two-plane Πa. For even d = 2n these

two-planes span all the d dimensional space. For odd d = 2n+ 1 there exist one more

spatial direction, orthogonal to all the two planes. The basis constructed of va, v̂a

vectors is called Darboux basis. The corresponding Cartesian coordinates are known

as Darboux coordinates.

In this Darboux basis the matrix A has the form

A = diag(Λ1, ....,Λn, 0) . (B.6)

Where

Λa =

⎡⎣ 0 λa

−λa 0

⎤⎦ . (B.7)

The last term 0 in (B.6) is present when d is odd, so that ϵ = 1. One can show that a

similar representation is valid also when the matrix A is degenerate. Further details

can be found in [80].
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Appendix C: Gauge invariance of
the linearized gravity equations

Let us show that both the action and the field equations of the linearized gravity are

invariant under gauge transformations. Consider the following transformation of the

metric perturbation

hµν → hµν − (ξµ,ν + ξν,µ) . (C.1)

Here ξµ(X) are arbitrary functions. Let us apply this transformation to the linearized

Einstein action

Sg = − 1

2κ

∫︂
dX

(︃
−1

2
hµν□hµν + hµν∂µ∂α h

α
ν − hµν∂µ∂νh +

1

2
h□h

)︃
. (C.2)

We denote by δξSg the change of the action under the gauge transformation and

keep only the first order ξµ terms in it. It is convenient to consider separately the

variation of each of the four terms in the integrand of (C.2) which we denote by δSgi,

i = 1, 2, 3, 4. For the first term inside the parenthesis we have

δξSg1 = − 1

2κ

∫︂
dX

(︃
1

2
(ξµ,ν + ξν,µ)□hµν +

1

2
hµν□(ξµ,ν + ξν,µ)

)︃
= − 1

2κ

∫︂
dX (hµν□(ξµ,ν + ξν,µ)) .

(C.3)

The variation of the second term yields

δξSg2 = − 1

2κ

∫︂
dX (−hµν∂µ∂α(ξα,ν + ξν,

α) − (ξµ,ν + ξν,µ)∂µ∂αh
α
ν)

= − 1

2κ

∫︂
dX (−2hµν∂µ∂α(ξα,ν + ξν,

α)) .

(C.4)
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The variation of third term gives

δξSg3 = − 1

2κ

∫︂
dX (hµν∂µ∂ν(ξα,α + ξα,

α) + (ξµ,ν + ξν,µ)∂µ∂νh)

= −1

κ

∫︂
dX (hµν∂µ∂νξ

α
,α + h□ξα,α) .

(C.5)

Finally

δξSg4 = − 1

2κ

∫︂
dX

(︃
−1

2
h□(ξµ,µ + ξµ,

µ) − 1

2
(ξα,α + ξα,

α)□h

)︃
=

1

κ

∫︂
dXh□ξµ,µ .

(C.6)

Combining these results we obtain

δξSg = −1

κ

∫︂
dX

(︃
hµν□ξµ,ν − hµν∂µ∂α(ξα,ν + ξν,

α)

+ hµν∂µ∂νξ
α
,α

)︃
.

(C.7)

The expression under the integral vanishes and we have

δξSg = 0 . (C.8)

This proves the gauge invariance of the linearized action (C.1).

Similarly, for the linearized field equations

Gµν ≡ ∂σ
(︁
∂ν hµ

σ + ∂µhν
σ
)︁

+ ηµν
(︁
∂ρ∂σh

ρσ −□h
)︁

+ ∂µ∂νh = −2κTµν .
(C.9)

We can perform the same gauge transformation (C.1) to obtain the variation. Using

the same procedure as we did for the action, that is, going term by term one obtains

δξG
1
µν = −□(ξµ,ν + ξν,µ) , (C.10)

δξG
2
µν = ∂σ

[︁
(∂ν(ξµ,

σ + ξσ,µ) + ∂µ(ξσν, + ξσ,ν)
]︁
, (C.11)

δξG
3
µν = −ηµν∂ρ∂σ(ξρ,σ + ξσ,ρ) + ηµν□(ξα,α + ξα,

α) , (C.12)

δξGµν
4 = −∂µ∂ν(ξα,α + ξα,

α) . (C.13)

First, we check that

δξGµν
3 = ηµνg

ραgσβ (∂ρ∂σ∂βξα + ∂ρ∂σ∂αξβ − ∂β∂σ∂αξρ − ∂β∂σ∂ρξα) . (C.14)

77



If one makes the change ρ ↔ α on the first term and α ↔ β, ρ ↔ σ on the second

one all terms cancel

δξG
3
µν = 0 . (C.15)

By combining the remaining terms we get

δξGµν = δξG
1
µν + δξG

2
µν + δξG

4
µν = gαβ

(︃
−∂α∂β∂νξµ − ∂α∂β∂µξν + ∂α∂ν∂βξµ

+ ∂α∂µ∂βξν + ∂α∂ν∂µξβ + ∂α∂µ∂νξβ

− ∂µ∂ν∂αξβ − ∂µ∂ν∂βξα

)︃
= 0 .

(C.16)

Therefore, we conclude that both the linearized action and the linearized field

equations are invariant under the gauge transformation. Let us emphasize that in the

above relations we do not use the property that the number of spacetime dimensions

is four. In fact, this result does not depend on the number of dimensions and is valid

in the higher dimensional case.
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Appendix D: Mass and angular
momentum of extended objects

We denote by Xµ = (t, xα) Cartesian coordinates in d + 1 dimensional Minkowski

spacetime and use indices α, β, . . . = 1, 2, . . . , d from the beginning of the Greek

alphabet to label spatial coordinates. Let us consider distribution of matter described

by the stress-energy of the form

T00 = ρ(x), T0α =
1

2

∂

∂xβ
jαβ(x) , Tαβ = 0 , (D.1)

where jαβ(x) is an anti-symmetric tensor function. It is easy to check that this stress-

energy tensor satisfies the required conservation law ∂µT
µν = 0. Denote by ξ(µ) a

generator of the spacetime translations, and by ζ(αβ) the generators of the rigid spatial

rotations, then one has

ξ(µ) = ξν(µ)∂ν = ∂µ , (D.2)

ζ(αβ) = ζν
(αβ)∂ν = xα∂β − xβ∂α . (D.3)

The conserved quantities related to these symmetries are

Pµ =

∫︂
ddxT0νξ

ν
(µ) , (D.4)

Jαβ =

∫︂
ddxT0γζ

γ
(αβ) . (D.5)

Or in an explicit form

M = P0 =

∫︂
ddxT00 , (D.6)

Pα =

∫︂
ddxT0α , (D.7)

Jαβ =

∫︂
ddx (xαT0β − xβT0α) . (D.8)
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We assume that the stress-energy tensor (D.1) either vanishes outside some compact

region, or it is sufficiently fast decreasing at far spatial distance, so that the surface

terms arising as a result of integration by parts in (D.8) vanish. Simple calculations

give

M =

∫︂
ddxT00, Pα = 0, Jαβ =

∫︂
ddx jαβ . (D.9)

The relation Pα = 0 implies that the stress-energy tensor (D.1) is written in the center

of mass frame.
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Appendix E: “Heat kernel”
representation

The static Green function Gd considered in this thesis satisfies the relation

f(△)△Gd(x,x
′) = −δ(x− x′) . (E.1)

Here △ is a Laplace operator in d-dimensional space. We denote by Kd(x|τ) the

d-dimensional “heat kernel” of △ under the Wick rotation t = −iτ 1. It is defined as

a solution of the equation

△Kd(x|τ) = −i∂τKd(x|τ) , (E.2)

obeying the boundary conditions

lim
τ→0

Kd(x|τ) = δ(x) ,

lim
τ→±∞

Kd(x|τ) = 0 .
(E.3)

It has the following explicit form:

Kd(x|τ) =
1

(4πiτ)d/2
exp

(︃
ix2

4τ

)︃
. (E.4)

Let us define the object Kd(x|τ) as a solution of the equation

f(△)Kd(x|τ) = iKd(x|τ) . (E.5)

Then it is easy to check the required Green function Gd can be written in the form

Gd(x,x
′) =

∞∫︂
0

dτ Kd(x− x′|τ) . (E.6)

1Strictly speaking the notion of the heat kernel is introduced for the parabolic equations. The
equation (E.2) has the form of the Schrödinger equation. For brevity, we still use the name “heat
kernel” with quotation marks.
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We introduce now the Fourier transform of Kd and its inverse by means of the relations

˜︁Kd(x|ω) =

∞∫︂
−∞

dτ eiωτKd(x|τ) ,

Kd(x|τ) =

∞∫︂
−∞

dω

2π
e−iωτ ˜︁Kd(x|ω) .

(E.7)

Then we may write

Gd(x,x
′) =

∞∫︂
0

dτ

∞∫︂
−∞

dω

2π

∞∫︂
−∞

dτ ′e−iω(τ−τ ′)Kd(x− x′|τ ′) (E.8)

=

∞∫︂
0

dτ

∞∫︂
−∞

dω

2π

∞∫︂
−∞

dτ ′e−iω(τ−τ ′) i

f(△)
Kd(x− x′|τ ′) (E.9)

=

∞∫︂
0

dτ

∞∫︂
−∞

dω

2π

∞∫︂
−∞

dτ ′e−iω(τ−τ ′) i

f(−i∂τ )
Kd(x− x′|τ ′) (E.10)

=

∞∫︂
0

dτ

∞∫︂
−∞

dω

2π

∞∫︂
−∞

dτ ′e−iω(τ−τ ′) i

f(−ω)
Kd(x− x′|τ ′) . (E.11)

In the first equality we have used (E.5), then used the properties of the “heat kernel”

via Eq. (E.4), and finally integrated by parts where the boundary terms vanish due

to (E.3). The integral over τ can be easily calculated assuming that one takes care

about its asymptotic behavior and uses the standard regularization. By using the

relation

∞∫︂
0

dτe−iωτ ≡ lim
ϵ→0

∞∫︂
0

dτe−i(ω−iϵ)τ =
−i

ω
, (E.12)

one obtains

Gd(x,x
′) =

∞∫︂
−∞

dω

2π

∞∫︂
−∞

dτ ′eiωτ
′ 1

ωf(−ω)
Kd(x− x′|τ ′) , (E.13)

which is the double Fourier representation for the Green function Gd used in the main

body of the thesis.
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Appendix F: Static
infinite-derivative ghost-free Green
functions

Let us consider theories with the form factor f(△) of the form fN(△) = exp
[︁
(−△ℓ2)N

]︁
,

where N is a positive integer number. We refer to such a theory as ghost-free grav-

ity and use the abbreviation GFN for such a theory. For N = 0, f 0(△) = 1 and

the corresponding theory is nothing but linearized General Relativity. Let us write

DN = fN(△)△ and denote by GN
d a static Green function for GFN theory in a space

with d dimensions. Such a Green function obeys the equation

DNGN
d (r) = −δ(d)(r) . (F.1)

For N = 0, that is, in General Relativity, we also use the notation Gd(r) = G0
d(r). The

static Green functions can be found by using Eqs. (2.62) and (2.60). In this appendix

we collect exact expressions for these Green functions for General Relativity as well

as GF1 and GF2 theory for the number of spatial dimensions d = 1, 2, 3, 4. Using the

recursive relation (2.62) one can obtain their expression for d ≥ 5. In what follows
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we will use the abbreviation y = (r/4ℓ)2.

G1(r) = −r

2
, (F.2)

G1
1(r) = −r

2
erf

(︂ r

2ℓ

)︂
− ℓ

exp [−r2/(4ℓ2)] − 1√
π

, (F.3)

G2
1(r) = − ℓ

π

{︂
2Γ(1

4
)y 1F3

(︁
1
4
; 3

4
, 5
4
, 3
2
; y2

)︁
+ Γ(3

4
)
[︂
1F3

(︁
−1

4
; 1

4
, 1
2
, 3
4
; y2

)︁
− 1

]︂}︂
, (F.4)

G2(r) = − 1

2π
log

(︃
r

r0

)︃
, (F.5)

G1
2(r) = − 1

4π
Ein

(︃
r2

4ℓ2

)︃
, (F.6)

G2
2(r) = − y

2π

[︂ √
π 1F3

(︁
1
2
; 1, 3

2
, 3
2
; y2

)︁
− y 2F4

(︁
1, 1; 3

2
, 3
2
, 2, 2; y2

)︁ ]︂
, (F.7)

G3(r) =
1

4πr
, (F.8)

G1
3(r) =

erf[r/(2ℓ)]

4πr
, (F.9)

G2
3(r) =

1

6π2ℓ

[︂
3Γ

(︁
5
4

)︁
1F3

(︁
1
4
; 1

2
, 3
4
, 5
4
; y2

)︁
− 2yΓ

(︁
3
4

)︁
1F3

(︁
3
4
; 5

4
, 3
2
, 7
4
; y2

)︁ ]︂
, (F.10)

G4(r) =
1

4π2r2
, (F.11)

G1
4(r) =

1 − exp [−r2/(4ℓ2)]

4π2r2
, (F.12)

G2
4(r) =

1

64π2yℓ2

[︂
1 − 0F2

(︁
1
2
, 1
2
; y2

)︁
+ 2

√
πy 0F2

(︁
1, 3

2
; y2

)︁ ]︂
. (F.13)

Here we use the standard notation aFb for the hypergeometric function [77].
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