
University of Alberta

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

Design Theory and Software Design

by

Kent McPhee

Technical Report TR 96-26
October 1996

(Revised May 1977)

1

Abstract

Software design methods share many characteristics with design methods in other fields. All

these methods are the progeny of philosophies of design that are in turn influenced by more

general philosophic movements. This essay begins with the influence of philosophies of

science on the study of design, highlighting the effects on design discourse of Cartesian

rationality, the hypothetico-deductive account of scientific progress, and Kuhnian paradigms.

Next, the influence of the constructivist and humanist movements on design thinking are

considered, culminating in the introduction of a philosophy of design based on hermeneutics,

or interpretation. The influence of design philosophy on software design methods begins a

categorization of several software design methods according to the design theory framework,

with some emphasis on design methods that support a hermeneutical style of design. Some

justification for a pluralistic approach to software design methodology rounds out the essay.

2

Chapter 1

Introduction

1 . 1 . The software “crisis”

For the first time, the “software crisis” was discussed openly at a 1968 North Atlantic Treaty

Organization (NATO) science committee conference [170]. The demands of developing

increasingly complex computing systems had overwhelmed the computing professionals of

the day. Too often, the computing industry was not able to deliver working software on time

and on budget. Conference attendees agreed on the necessity of a change in the way software

was developed. The main theme of their recommendations revolves around the elimination of

ad-hoc approaches to software development. They advocated the introduction of techniques

based on sound theoretical foundations derived from science and mathematics, thus giving

rise to the field of “software engineering.” Many modern software engineering process

models and formal methods build upon these foundations.

Quintas [170] groups software engineering practitioners into two camps, the “formalists”

and the “pragmatists”. Formalists base their work on the theoretical foundations of

computing science while pragmatists take the view that software engineering is a practical

discipline that can benefit from more than just formal techniques. Underlying both

approaches is the desire to capture what Brooks [35] calls the “conceptual constructs” of

complex systems and to manage the transformation of those constructs into physical software

systems. Formal methods have been used most successfully in application domains like

compiler technology, real-time computing, data transaction processing, and numerical

software. Pragmatic methods and tools are used often to solve problems that seem to defy

successful application of strictly theoretical approaches. For example, software developers

building user interfaces with uncertain or incomplete requirements are more likely to use less

formal techniques.

Today, close to thirty years after the NATO conference, the demand for timely delivery of

reliable, complex, high quality software systems still strains the ability of the computing

community to provide them [188] [200]. Why is this so? Has nothing happened during those

thirty years? The answer, of course, is that a great deal of progress has been made in the

industry’s ability to deliver complicated software systems. Systems developed today are many

orders of magnitude more complex than their counterparts from the 1960’s. Yet, modern

software engineering techniques have not been able to keep up with the demand for more and

3

more complex systems. The question that was asked in 1968 is just as valid now: “How can

we predictably create better software systems?”

1 . 2 . The current state of affairs

The effort of the software engineering community over the last thirty years has been massive

and, for the most part, successful. A great many methods, techniques, and tools are available

to today’s computing professionals. Many problems that were once difficult or intractable

can now be solved routinely or even automatically. Complicated software systems are used to

control airplanes, run businesses, operate stock exchanges, and monitor patients in hospitals.

Despite successes from both the formalist and pragmatist camps, difficult problems arise.

Software projects and software products fail, sometimes spectacularly [211] [154] [228]

[160]. Observers commonly blame these failures on the software developer’s lack of rigour,

failure to use the right tools, or misunderstanding of technical issues. Often, management

decision makers promulgate a solution indoctrinating developers in a new method or tool that

promises to solve the problem [165]. Nearly as often, the indoctrination fails and developers

end up falling back to their old ways. They build new systems, experience new problems, try

another new method or tool, and the cycle continues. Fred Brooks [35] likens the search for

the “one true software method” to the quest for a “silver bullet” that will vanquish all of our

software development ills just as werewolves are laid to rest by projectiles made of silver.

It is no accident that the activities surrounding the development of software are often called

“software engineering”. The software industry seems united in its desire to make software

development a profession. To that end, great strides have been made in the technical aspects

of software development. Computing science has produced a large body of knowledge, some

of which is applicable to software development1. It is interesting to note that the application

of the “science” in computing science is more likely to succeed the farther a target

application gets from the world of humans. It seems that, the more control software

developers have over how their software is used, the more likely it is they can use formal

scientific development methods.

The software industry is less capable of dealing with failures due to aspects of software

development that are outside the realm of the technical issues addressed by engineering-based

methods and processes. The industry needs to learn more about how people design software

and how that knowledge can be put to use supporting, organizing, and managing software

development activities. To this end, software professionals must try to learn more about what

1 ;-)

4

developing software really involves. Why do some methods help and others hinder? Why do

techniques work in some situations but not in others? How have quite successful software

systems been built without the benefit of the most up-to-date software engineering methods?

Software design researchers are working hard on many fronts to answer these questions. This

essay will look at the work of many of them.

Like many human endeavours, software system development involves the creation of an

artifact satisfying some criteria for “goodness”. The criteria for goodness of a software

system is often measured by the success the software system has in meeting the needs of its

users. Before, during, and after designing the software, designers must interact with users and

others to help determine the suitability of their designs. As the software industry realizes that

software development is just as much a “people” problem as it is a “technical” problem,

interest has developed in finding methods and tools that support the more pragmatic, people-

oriented, aspects of software design.

Design forms the foundation for the practical application of computers in society. Software

design shares many characteristics with design as it occurs in other fields, a fact neglected by

the software community in the past. Relatively little work has been done with the goal of

determining how general design knowledge can, or should, be applied to better software

development. By studying how design works in other fields and why it is similar across many

domains, software professionals might be able to answer many questions about how to

approach both the technical and “people” aspects of software design.

The philosophical basis of design is an important place to start studying design. A philosophy

of design provides a foundation for work in developing design techniques, tools, and

methods. Few designers have an appreciation for how the philosophical underpinnings of

design have influenced the techniques that they use in daily practice. Fewer still question the

validity of those techniques based on an understanding of alternative philosophical

approaches to designing. By studying general design issues, software designers can learn

when certain techniques are called for and when they should be eschewed.

The remainder of this essay will expand on the design topics mentioned above. Chapter 2,

Design Theory, will start with a survey of general design research, concentrating on broad

trends in design philosophy and design methods. It presents two major viewpoints in how

humans have come to think about design. The advantages and disadvantages of both are

discussed. Chapter 3, Software Design, discusses the similarities between general design

processes and software design processes. The roots of several software design methods are

illuminated and interesting new software design methods are discussed.

5

Chapter 2

Design Theory

2 . 1 . Introduction

Software design shares many characteristics with design in other fields. Much can be learned

about software design by examining various philosophical and methodological viewpoints

underlying design in general. In many cases, these viewpoints have shaped attitudes towards

software design and software design methods, techniques, and tools. Reflecting the

pervasiveness of design activities in nearly all areas of human endeavour, design research

continues to be carried out in an expanding range of disciplines [205] [78] [44] [177] [175]

[161]. The extensive diversity and volume of design discourse makes a comprehensive review

a difficult task. For brevity, Chapter 2 tries to concentrate on the main themes of design

research. Chapter 2 emphasizes the historical roots of design and provides the background

required for the discussion in Chapter 3, Software Design, of the current state of software

design.

The term “design” can have a variety of meanings. Minneman recounts [150] Dilnot’s three

different meanings of design. In Dilnot’s view, design can refer to an activity (the act of

designing), to the results of that activity (the designed artifacts), or to a value (as in the

aesthetic of “good design”). Typically, design research has concentrated on the first of these

definitions. In the context of design activity, design researchers have tried to answer two

related and fundamental questions.

The first fundamental question is:

• What are the essential characteristics of “design”?

This question relates to understanding when an activity is “designing” and when it is not.

Answers to this question deal with the characteristics and classification of design situations.

These answers are explored in section 2.2, Recognizing design situations.

The second, and perhaps more important, fundamental question asked by design researchers

is:

• What processes are used by designers?

Related sub-questions are numerous. What types of processes do people follow when they

design? Is one process better than another, constituting “right” and “wrong” ways to

6

design? Why are some processes favoured over others? Do different processes lead to

different qualities of results? How is process related to and affected by the configuration of

the design situation and its participants? Should designing even be viewed as a process? The

section 2.3, Approaches to designing, gives a brief history of design processes and discusses

the philosophical, methodological, and pragmatic concerns raised by these questions.

Using these questions as a guide, exploring the design landscape will help to determine the

nature of appropriate software design methods, tools, and techniques. The characteristics of

design situations and the processes used by designers directly affect, in a fundamental

manner, the form and function of the tools most useful to designers.

While researchers generally agree that design results from the desire to satisfy a human need

or want, they debate the nature of the process of designing. Does design fit within the logical

and rational framework traditionally associated with the “scientific” approach to problem

solving? Or are design problems best solved using more ad-hoc techniques dependent on the

nature of the individuals involved? As the remainder of Chapter 2 illustrates, some design

processes seem very similar to the traditional “scientific” approach to problem solving while

others seem highly dependent on human behaviour that is not easily explained within the

rational tradition of science. Design processes may contain elements of both “science” and

“art”2. Acknowledging this assumption is a necessary first step in establishing the form and

function of tools, methods, and techniques that must support design processes. Coyne and

Snodgrass [41] go even further. They propose that the “science” versus “art” dichotomy

depicts an artificial distinction that impedes effective design discourse. The debate’s

philosophical roots, and an evaluation of the implications of the competing philosophies

appear in section 2.3, Approaches to designing.

2 . 2 . Recognizing design situations

What are the fundamental characteristics of “design”? As this question implies, an important

part of the study of design attempts to characterize the situations in which humans find

themselves “designing.”

Once thought to be exclusively within the domain of craftsmen and artists, design is now

generally believed to be fundamental to human existence. This belief is exemplified by the

widely varying application domains in which design research activity is conducted [54] [78]

[44] [192]. Design occurs under circumstances traditionally thought of as “design”

situations, such as planning the layout of buildings or specifying a software system’s

2Here, “art” is defined as “those parts of creativity and human nature that lie outside the realm of science”.

7

architecture. To some, it also occurs in less obvious situations, like proving a simple theorem

in Euclidean geometry [203] or planning a shopping trip [94]. Wittgenstein [221] tries to

show how classification of many conceptual entities transcends simple logical correspondence

between the members of the class. Instead, certain “family resemblances” can be used to

decide whether or not an entity is a constituent of the class. For example, the members of the

family of “design situations” share an indefinite number of “features.” Each feature’s

presence or absence either strengthens or weakens the claim that the activity is a “design

situation.” How an activity is classified as design depends on how the person involved

interprets any “design-like” features. Classification proceeds as a metaphor-like

interpretation. If an activity is enough “like design”, then it is designing. In some sense,

classes are determined by the attributes of their members while simultaneously influencing

decisions regarding membership candidates.

In the absence of a precise definition, “design” often is described by pointing out examples

and counterexamples. For instance, Archer [6] describes architecture and typographical page

layout, but not sculpture and mathematical calculation, as design activities. According to

Archer, architecture and page layout have “practical purpose” and are not “conducted

mechanically.” Often, the difficulty of classification is evident by the relative ease with which

examples and counterexamples can be reversed. Archer’s assertion that sculpture is without

purpose seems counter-intuitive. A sculpture may be designed to evoke a particular

psychological state, perhaps national pride or remembrance. Certainly some sculpture has

purpose, making its creation a design activity with respect to purpose.

Perhaps because of the difficulties associated with classification of conceptual entities, design

researchers debate the precise set of features that characterize design situations. The wide

range of disciplines studied by design researchers leads to different opinions based on

varying criteria. Very often, the aspects identified as important enough to merit a situation’s

admission to the field of design are influenced by the researcher’s educational background

and academic specialty. Typically, a researcher with a background and expertise in the fine

arts appears more inclined to agree that a work of art is “designed.” While another

researcher, firmly grounded in the engineering sciences, is likely to disagree.

8

2 . 2 . 1 . Characteristics of design situations

Even within the somewhat murky waters of design science, a certain degree of consensus

exists. Although there will always be those who disagree with any rendering of the

characteristics of “design”, the following distillation of ideas appear nearly universally

among design science researchers. The following discussion presents general characteristics

of design situations.

• Design situations start with a need and require intention

The aphorism “necessity is the mother of invention” aptly and succinctly describes the

opinion of many design researchers. In summarizing characteristics that are basic to design,

Lawson [136] and Dasgupta [54] note that a real or perceived need, influenced by the value

systems of the individuals involved, forms the basis for the definition of a design project. A

need so identified acts as the initial motivational force that provides the basis for starting

design work. While many researchers use words like “proactive” [192] in implicitly

acknowledging that design can only be undertaken intentionally, Willem [213] expresses this

viewpoint explicitly. He believes that the universal feature of design is simply the intentional

devising of a plan or prototype for something new.

• Design situations involve transformation

A second aspect of design, almost universally accepted (either implicitly or explicitly) among

design researchers, is the transformational nature of design. Dasgupta [54] maintains that

need acts as a seed that design transforms into a form that is eventually used to guide the

implementation of an artifact, plan, or process. Simon writes that design is the restructuring of

a current situation to achieve some preferred situation [192]. Each design conceptually

transforms the environment to satisfy the need posed by the design situation. Willem prefers

to use the term “development” to describe the transformation that occurs during design

[213]. Meanwhile, Freeman [72] describes the transformation (of needs or desires) to a

realizable form as “operationalization.”

• Generation of new ideas is fundamental to design situations

Another commonly cited characteristic of “design” is the requisite generation of new ideas

during the design act. As Page [204] writes, design occurs whenever there is an “imaginative

jump from present facts to future possibilities.” Willem [214] describes design as an activity

where designs occur by the generation of new thoughts. Kaplan [116] points out the

importance of creative insight in the design of computer systems.

9

Creativity is often held up as an important and fundamental characteristic of all designs.

Creativity is held in high regard even though it remains an elusive subject, beyond science’s

firm grasp. The precise manner in which new ideas are generated cannot be codified. Some

researchers, such as Freeman [72], have postulated that idea generation is not entirely a

haphazard activity. He believes that two styles of idea generation exist: abstraction and

elaboration. Together, abstraction and elaboration form a tension. Abstraction is used to

make generalizations [101] while elaboration attempts to develop into great detail the

specifics of a design.

• Constraint satisfaction

An initial need determines the most basic constraints and requirements on a design situation.

The design must satisfy the need. In general, more constraints are eventually discovered

during the design work itself. Many researchers agree that a major part of designing involves

discovery and satisfaction of constraints on the eventual form of the design.

Mostow [152] characterizes design in terms of the constraints that apply both to the designed

artifact and to the processes and participants involved during the design activity. To him,

design is an activity with the goal of creating an artifact description that satisfies constraints

derived from functional and performance specifications of the artifact, limitations of the

medium and process by which the artifact is rendered or produced, and aesthetic criteria on

the form of the artifact. Mostow summarizes that design is “largely a process of integrating

constraints imposed by the problem, the medium, and the designer.”

Willem [214] also believes that design solutions are constrained by the terms and conditions

provided by their media. Such constraints are part of a group of constraints that Willem labels

“external constraints.” External constraints are constraints that are independent of the

designer, for example, function and economy. Willem believes that there are also “internal

constraints” that play an important role in the designer’s creative approach to a design

situation. For Willem, internal constraints are shaped by cultural and experiential factors that

play a large part in the development of human mental habits and attitudes. Such constraints

play a role in determining the types of “new thoughts” produced when a design problem is

pondered.

Writing in the context of architectural design, Lawson [136] presents design problems as the

assembling of constraints along three dimensions. The three dimensions are indexed by the

generator of the constraints, the domain of the constraints, and the function of the constraints.

Constraints are generated from eventual users of the artifact, from designers themselves, from

legislators (e.g. safety related constraints), and from design clients (i.e., the people who have

10

commissioned or sponsored the design and who may or may not be eventual users of the

artifact). Lawson’s constraints fall into one of two domains, external and internal. Example of

external constraints are provided by Mostow’s “implementation medium” constraints.

External constraints are imposed by factors not under the designer’s control, while internal

constraints give the designer at least some ability to control them. Lawson’s third dimension,

constraint function, relates to the rationales behind the imposition of each of the constraints.

Constraints can exist for reasons relating to symbolism and social norms, formal intentions of

the designer, practical implications wrought by the implementation technologies, and

“radical” reasons which deal with the primary purpose of the artifact. Lawson characterizes

design as a process of constraint satisfaction with an exact form determined in large part by

the configuration of constraints present in a particular design problem.

Constraints are essential information supplied to the design process. Freeman [72] believes

that their quantity and quality are “critical parameters” for the success or failure of a

particular design. Consistent with other authors [177] [152], he names design representation

and the experience of the designer as two other critical parameters.

• Problem solving or decision making

Typically, design methodologists from the science and engineering communities characterize

design as a type of problem solving or decision theory where the initial conditions, the goal,

and the allowable transformation operations are all ill-defined [191]. For them, the solution

space for design problems is very large and its sheer size eliminates exhaustive search as a

possible problem solving technique. Design, for many scientists and engineers, invariably

involves the application of some sort of logical analysis on the set of known inputs. Others,

including Willem [214], believe that various design problem solutions are not necessarily

connected through logic to their initial problem state. Design problems are often described as

“ill-structured” problems, referring to their complexity and the difficulties in determining

their associated constraints and requirements.

Rittel and Webber [174] believe that planning and environmental design, because they are

intended to change the human course of affairs constitute so-called “wicked” problems.

These are problems where human actions become the focus of the activity, and consequently

the problems are not easily formulated or solved (i.e., they are ill-structured). By situating a

design in the world of people, the design is affected by the people and the people are affected

by the design. The same design issues may be viewed differently by each of the individuals

involved. Each divergent perspective may influence the progress of the design in different

and unpredictable ways.

11

Thomas and Carroll [203] investigate design from a psychological viewpoint. They describe

“design” as a “way of looking at” a problem, not as a “type” of problem. For Thomas and

Carroll, even problems that are ordinarily solved using rote techniques of calculation or rule

application can be thought of as design problems if “the problem-solver views his/her

problem or acts as … ill-defin[ed] in the goals, initial conditions, or allowable

transformations.” That which constitutes a design problem is not amenable to objective

definition. The designer’s (i.e., problem solver’s) perceptions and experience play a much

larger role in determining what is and what is not a design situation.

Freeman [72] prefers to use a decision making analogy to discuss design problem solving.

For him, “design” is characterized by a series of decisions between various design

alternatives, each alternative determined by the current state of abstractions, elaborations,

operational statements and other known and unknown factors. Like design-as-problem-

solving, the basic characteristic of design-as-decision-making is goal directed activity and

navigation of a design configuration space. Design is information intensive, with more

information being generated, gathered, and used as inputs to decisions assimilated into the

design representation.

• Design results in a scheme for implementing an artifact

Like many designers, Dasgupta believes that output or product of design is a symbolic

representation of the artifact for implementation. “Design” is essentially “the formulation of

a prescription or model for a finished work in advance of its embodiment” [6]. Design

representation serves as the basis to conceptualize and compare various design decisions.

Representation is important as a foundation on which to generate design critiques. MacLean,

et al., [142] feel that the true output of design is more than a plan or symbolic representation.

They maintain that, while the final output of design includes a plan, it also includes what they

call the “design space.” A design space is a body of knowledge about the artifact, its

environment, its intended use, its actual use, and the decisions that went into creating the

design. Designers must consider the representations of this kind of meta-knowledge about

how they arrived at a particular design.

Sometimes, a design does not result in a distinct “plan-then-implement” situation. Often the

design output occurs incrementally while the design and the artifact evolve together. This is

especially true when the artifacts being designed must be deployed in partially completed

forms; and can be changed relatively easily. For example, both the design of urban areas and

large software systems entail an enormous amount of complexity. Their complexity often

cannot be managed without allowing parts to be implemented before the “plan” is complete.

12

Further design is informed by the results of these early implementation episodes. Some might

argue that the implemented parts are themselves part of the design, like throw-away

prototypes. But often the intermediate parts are pressed into production and used as the final

artifact would be used.

• Diversity and evolution

Commonly, design researchers acknowledge the diversity and dynamism present in almost all

design situations. Any particular design situation could be drawn in many different

directions. This diversity is derived from the complexity of the inputs to the design, the

different experiences of the designers, the media for the solutions [214], the explicit and

implicit tradeoffs between various constraints and requirements [54], and the varying

amounts of information available at different times in different situations.

Diversity often leads to uncertainty, because the knowledge that there exists many other

solutions to the same design problem causes designers to question the optimality of their

initial solution. Thus, they test and modify their design. Designers compensate for weaknesses

exposed during testing, they test modifications and redesign as necessary until they are

satisfied with their design. Abstractions, elaborations, and operational statements [72] are

verified against known information. Possibly, this process causes changes that must be

verified themselves. The designer’s act of making decisions among the various identified

design alternatives ties together this evolution of the design.

The evolution of a design is often closely linked to the consolidation of the constraints and

requirements applied in a particular design situation. Design requirements are often imprecise

and incomplete [163]. The consequences of design decisions often cannot be forecast with

complete accuracy so design solutions evolve in tandem with known problem constraints and

requirements. Eventually, a successful design process includes a convergence of requirements,

constraints, and knowledge about the design and its effects on the implementation

environment.

Various authors [54] [78] [66] [184] have enumerated the characteristics fundamental to

design situations. They argue these characteristics are observable, to varying degrees, in all

design situations. However, few authors back their claims with statistical evidence.

Nevertheless, from surveys of works by independent authors in a wide variety of application

domains, the preceding section has presented a general picture of the fundamental attributes

of design situations.

13

2 . 3 . Approaches to designing

At the design situation’s nucleus is a human need unsatisfied by prevailing circumstances. If

the desire is strong enough, human ingenuity is brought to bear on the situation.

Requirements and constraints are identified, reorganized, extended, and examined.

Configurations are proposed, tested, and accepted or abandoned based on their ability to

satisfy the need, requirements, and constraints. Eventually, a design is produced.

Section 2.3 examines the second question posed in this chapter’s introduction. Specifically,

what influences design processes and how do these processes unfold? Understanding the

answer is vital to the designer of computer-based design tools, methods, and processes. These

design aids must be sensitive to the processes that structure the work of the designer. Much of

the remainder of this chapter deals with a central issue in design science research. The issue is

the relative influences of subjective and the objective viewpoints on design processes. These

two ways of looking at design influence design processes by setting the tone for the precise

methods used to discover constraints on the design, manage constraints, generate and

communicate ideas, test tentative design solutions, etc.. After a brief historical perspective on

the design process, the next sections discuss various answers to the question “How do people

design?”

2 . 3 . 1 . A brief history of design processes

From prehistoric peoples’ creation of the first primitive tools to the erection of the Egyptian

pyramids, from the architectural marvels of Renaissance Europe to the moon landings, history

has clearly demonstrated that the design of artifacts distinguishes humans from more

primitive species. Design does not belong exclusively to the realm of monumental works of

civilization. Everyone engages in design in seemingly ordinary activities such as arranging

furniture in the living room, selecting the menu for a wedding, or planning a holiday.

A historical view of design focuses on its craft-like properties. Craft-like activity yields

artifacts through the application of what Alexander [4] calls “unselfconscious” thought

processes. Such vernacular design processes integrate an artifact’s design and construction.

Design is embodied in the artisan’s knowledge of how the artifact should be built and each

artifact is a unique expression of that knowledge. Lawson [136] presents the traditional Inuit

igloo and the wheel of the English horse-drawn cart as examples of vernacular,

“unselfconscious” design. In both cases, the designs evolved over a long period of time with

features added and rejected from time to time dependent on the success or failure of the

artifacts that were built with those particular features. Lawson discovered that the reasons for

the specific geometric configuration of the cart wheels were unknown to the craftsmen who

14

made the wheels. Passed from one generation of cart builders to the next, the design was

retained in an almost folkloric way. Succeeding generations learned the design by

demonstration and apprenticeship.

At some point, people created artifacts too complex for a single craftsman to build alone or

with apprentices. Therein the seeds were sown that led to the separation of the

conceptualization and building of artifacts. In order to help coordinate the work of multiple

craftsmen, design became more “selfconscious” [4] and separate from implementation.

“Design-by-drawing” is the label Jones [110] [111] uses for this first step away from

vernacular design. The product of design became a visual representation of an artifact drawn

in advance of the artifact’s embodiment. In an example of shipbuilding in the 18th century,

Jones notes that design-by-drawing is effective only in situations where one person, the

designer, can retain the entire design in his head. In addition to shipbuilding, architecture also

used design-by-drawing to coordinate the work of many craftsmen as they constructed the

various parts of a structure. In both cases, much of the design often omitted details of

construction. The designer left many details to the skill and experience of the craftsmen.

Until this century, little scholarly thought has been directed towards discovering the meaning

of the general processes that define “design.” During the last half of this century design

processes themselves became objects of intense study. Successful technological advances

made during and after World War II, with an incumbent increase in the complexity of the

artifacts humans build, encouraged attempts to systematize design [44]. Thus was born the

field of “design science.” Simon [192] defines design science as “a body of intellectually

tough, analytic, partly formalizable, partly empirical, teachable doctrine about the design

process.” During the 1960’s and 1970’s design science researchers concentrated on trying

to apply scientific thinking to design. More recently, some have started to take a different

approach to design science. They have looked at other aspects of design that fall outside the

boundaries established by the initial design science work. In addition to the technical and

objective aspects of design, they have begun to reexamine the social, psychological, and

subjective aspects of design.

2 . 3 . 2 . Characterizing the process of designing

Theorists in the Jones’ “selfconscious” school agree that design transforms human desires

into a form that guides the satisfaction of human desires. Or, as Archer puts it, the design

process is “the purposeful seeking of a solution” to a problem formulated from those desires

[6]. Essentially, the design process involves some form of constraint satisfaction, although the

constraints may neither be articulated or even known. Theorists disagree, however, on the

extent of possible objectivity in the design process. Is designing a strictly personal experience

15

that defies generalizations? Is design based solely upon human values and experiences? Or is

it an entirely rational process that eventually will be performed mechanically? Are design

processes subjective or objective? Is designing an “art” or a “science”?

According to Coyne and Snodgrass [41], the major assumption behind the respective roles of

science and art in design is the “dual knowledge thesis.” They discuss the argument that

there are two distinct ways of thinking. On one hand, a scientific way of thinking relies on

rationality, logic, and analysis; while on the other hand, an artistic way of thinking relies on

intuition and exhibits irrational and idiosyncratic characteristics. The concepts of subjectivity

and objectivity derive from the dual knowledge dichotomy. The dichotomy itself reflects the

Cartesian separation of the rational self from the world of objects (i.e., Descartes’ subject-

object opposition).

The dichotomy’s consequences are apparent in the various ways in which scholars and

practitioners have tried to describe the process of “designing.” Historically, design processes

have been thought of as subjective manifestations dependent on each designer. Coyne and

Snodgrass [41] call this the “mystery” of designing that is thought to involve “a special

kind of knowledge that is fundamentally difficult to grasp.” Some researchers accept that

“mystery” is a fundamental characteristic of design. On the other hand, many researchers in

the design science movement declare that subjectivity must be overcome to make design

“good” [4] [5]. The appeal of the view that design should proceed objectively lies with the

perceived role of objectivity in the success of fields like operations research, systems

engineering, medicine, etc.. Objective models provide better equipment for the construction

of explanatory models. They accommodate the mass accumulation of knowledge that can be

used reflexively, making them much easier to record, discuss, and teach.

Design-by-drawing was the start of a movement towards Schön's [182] “professionalization”

in the field of design. Separating design and implementation enables a closer examination of

design itself. The separation suggests that perhaps better designs result from a similar

separation of design knowledge and the act of designing. The subsequent development of

design science produced a widening gap between the body of knowledge about design and its

application. Again, Descartes’ subject-object dichotomy influence is apparent, reflected in the

professional body’s desire to separate thought and practice.

In many areas of technological endeavour, the “professional” generally receives higher

regard than an equally intelligent and productive “nonprofessional” counterpart.

Presumably, the professional is intimately familiar with the theoretical knowledge that

constitutes the foundation of the profession. This specialized knowledge elevates the

professional’s status to that of an authority. This authority resonates in the generally accepted

16

practice of promulgating prescriptive models to guide the application of professional

knowledge. The goal of prescriptive models is to reduce pragmatic aspects to merely

following rules set out by the professional. This work style typifies the success of fields like

engineering and medicine in modern society3.

The development of design process prescriptive models is the principal goal of many design

professionals. Often, they look to the scientific method as the standard from which to

elaborate an equivalent “design method.” The influence of the “design-as-science” view

shows in the amount of effort expended in trying to equate “design” and “science.”

As might be expected, the question of the similarity between science and design cannot be

answered in absolute terms. There is a continuum of opinion regarding the verity of science-

based models of design. Many design scientists relate science to design by asking the

question: “How is design like science?” An equally valid question, and one that leads to

answers that question the truth of the design-as-science hypothesis, is: “In what ways does

design differ from science?” The answer leads to other ways of describing designing. These

other ways of viewing design are not based on the tenets of science and rationalism, yet they

provide insight into how design can occur in practice. Section 2.3.4, Criticisms of design-as-

natural-science, reviews some of the differences between science and design offered by

design studies researchers. These differences motivate the claim that science should be used

only as a “convenient benchmark from which to view design” [213], not as a foundation for

design processes. Other views of designing are discussed in Section 2.3.5, Design and the

human sciences.

2 . 3 . 3 . Design and the natural sciences

Design science, with its “intellectually tough” approach, has produced a large body of work

that relates design to science. Design science researchers seek to define a philosophy to

capture the meaning of design. Underlying their desire is the hope that such a universal

design philosophy will establish a consistent unifying foundation for design in the same way

that the logical positivist approach to science provided a foundation for its many different

branches. A design philosophy is regarded as a necessary precursor to a universal language

and methodology of design. Once defined, the “universal philosophy” could then be drawn

upon at each unique design situation [182]. Naturally, an improved understanding of the

design process would lead to a better ability for design research to improve design processes

3This is achieved less often than some professionals would admit. Practitioners often encounter new
situations that don’t fit the prescriptive models. In these cases, they must rely on professional knowledge to
design a solution to the new problem. So we’re back to design and the design process!

17

and outcomes. To this end, design processes in many fields, including software development,

are heavily influenced by the desire to build a large body of general design knowledge

accompanied by a set of methods and prescriptions for “correct” approaches to design. The

trend towards separation of theory and practice is consistent with Schön’s [182] observation

that fields of endeavour with a desire to attain higher status as a “profession” tend to adopt

the methods of science, engineering, and medicine.

When Winograd and Flores [215] discuss the “rationalistic tradition” and “logical

empiricism” of Western science and technology, and when Schön [182] speaks of the

“technical rationality” of the professions, they describe how Cartesian rationality and the

logical positivism of the nineteenth and early twentieth centuries influenced the growth of

modern analytic thinking. A rationalist attempts to describe the world in terms of formal

systems that:

• provide a representation in terms of fundamental objects that have well-defined

properties,

• provide a set of rules for manipulating the objects,

• allow people to use the rules logically to create a new system that somehow

represents the world in a manner that allows them to better understand it.

The influence of the rationalistic tradition is seen in the development of the classical scientific

method. Scientists first carefully observe certain parameters associated with a phenomenon,

then they derive (via inductive or abductive logic) a theory that models the phenomenon. To

be useful, the model must contain detail sufficient enough to motivate predictions about the

phenomenon’s future behaviour. If the predicted behaviour is subsequently observed, the

theory is validated and becomes a natural law.

The rationalist tradition influences and predominates modern Western thought. In the words

of Winograd and Flores:

“The rationalistic orientation not only underlies both pure and applied science but is

also regarded, perhaps because of the prestige and success that modern science

enjoys, as the very paradigm of what it means to think and be intelligent.”

Encouraged by the success of science, designers began to take a more rationalistic approach

to design. Le Corbusier [40] was one of the first architects to be influenced by the new

rationalist view. His approach to architectural design tried to produce “optimal” designs by

strictly rational processes of data gathering, analysis, synthesis, and optimization. According

18

to Le Corbusier, matters of style are relegated to the periphery by proper definition4 of

design problems and thorough analysis using techniques from ergonomics, systems analysis,

operations research, and computer science [19].

Alexander and Poyner [5], March [143], and Zeng and Cheng [227] propose rational

approaches to design. Their approaches stem from Wittgenstein’s ideas of atomism in

language [143], in this case, the language of design. They attempt to reduce design problems

to the specification of atomic constraints. Then, they employ methods based on logic and

mathematics to find optimal design solutions.

In summary, Western society’s rationalistic tradition influenced the earliest attempts to exposit

a philosophical basis for design. Attempts based on the assumption that design, like science, is

rooted in the rational and objective and that the details attending design processes can be

modeled systematically. The higher social status of science, the particularly successful

application of rational thought in science, and the tremendous progress made by science led

design researchers to emulate science when proposing a foundation for design.

During the emergence of a “universal” design philosophy, the generally accepted

philosophy of science was itself undergoing revisions. Design scientists noticed the shift.

Popper’s account of scientific progress [167] [168] refutes the idea that an absolute truth can

be discovered by the application of a logical-positivist style of inquiry. Instead, Popper sees

science as a continuing stream of increasingly stronger hypotheses from which logical

conclusions are deduced. The strength of a hypothesis is determined by the cogency of tests

constructed to disprove the hypothesis. If a hypothesis survives all currently devised tests, it

holds as a law. This law, however, is not fixed. A falsifying test might eventually be

discovered. Popper asserts that any hypothesis, even the strongest, has the potential to be

disproved. In addition, Popper notes that, in trying to test a hypothesis, new hypotheses are

often generated. Some of these new hypotheses must be tested before the original can be

tested, others end up replacing the original hypothesis. Popper ignores how hypotheses are

devised. He requires only that the hypotheses be stated so that they are falsifiable. By doing

so, he allows hypotheses to be generated by systematic analysis, logic, creativity, and random

chance. While admitting that certain parts of scientific progress can occur outside the bounds

of rational explanation, Popper’s view maintains a positivist bias for the processes that occur

within its scope. Describing conjectures, devising falsifiability tests, and applying those tests

remain objective, logic-based processes.

4That problems can be "properly defined" is an assumption that many rationalist arguments are built
upon.....unfortunately, properly defining a problem is often a very difficult task.

19

Just as the philosophy of science has progressed beyond logical positivism, design science has

progressed beyond the belief that atomism and synthesis form the basis for the design

method. Hillier, Musgrove, and O’Sullivan [97] and Broadbent [19] provide an example of

how newer philosophies of science have influenced the study of design. Hillier, et al., take up

Popper’s philosophy as a starting point for their views on design. Broadbent describes design

in terms of Kuhn’s [127] ideas of paradigmatic influences in science.

Hillier, et al., suggest that the post-WWII thinking regarding design, largely based upon a

empiricist point of view, is outdated. The Hillier model of design incorporates an evolving

series of conjecture/analysis cycles and appeals to supporters of Popper’s philosophy of

science. They claim that design is not a wholly logical activity and that a designer’s

preconceptions play a role. The driving force for progress in design is based on a designer’s

“prestructuring” of the problem at hand. The designer uses tacit knowledge and

preconceptions derived from his experience with previous design situations, tools, and

solution types. Design is resistant to inductive rationality because design is essentially a matter

of this prestructuring. In contrast, logical approaches to design exclude the values and

experiences of the designer from playing a role in the design. Logic-based approaches

assume that facts exist independent of theory and investigator, and that designs result from

logical operations on known facts. Hillier, et al., refute this position by noting that “a

complete account of the designer’s operations during design, would still not tell us where the

solution came from.”

The main characteristic of the design process, according to Hillier, et al., is that it involves

“variety reduction.” Variety reduction is the reduction in possible design outcomes by the

application of external and internal constraints on the design. External constraints emanate

from user requirements, costs, standards, appearance norms, and the availability of

appropriate technology. Internal constraints result from the designer’s experience with the

problem area, solution types, and the tool set employed. Even before the designer begins to

further specify the design problem by gathering and organizing data, variety reduction

begins by the creation of a conjecture of an approximate solution to the design problem.

Darke [53] believes that the origins of these conjectures arise from “primary-generators”, a

relatively few main design objectives implicitly selected based upon the values and

preconceptions of the designer. At first, conjectures form little more than a statement of

direction for the design activity. Guided by the conjectures themselves, during data collection

the conjectures become detailed enough to be tested for their suitability. In a manner

analogous to the falsifiability testing of hypotheses in Popper’s model of science, the

conjectures structure the designer’s understanding of the design situation and provide a basis

20

for an analysis to test this understanding. The specification of the problem and the

conjecture/analysis cycle proceed concurrently. At some point, the conjectural approximation

of the design is substantial enough to use as the input to the final design preparation and

implementation.

A more recent development in the philosophy of science was popularized by Kuhn [127]. As

had happened before, the philosophy of design was soon influenced by these new thoughts

about science. Supplementing Popper’s description of the day to day details of scientific

progress, Kuhn proposes that macroscopic scientific progress is manifested by a succession of

“paradigms.” Each paradigm is comprised of shared ideas and assumptions, shared

commitments, and shared values that form the context within which the daily activities of

science are conducted. The conduct of “normal” science accepts as its foundation the

prevailing paradigm. However, eventually a problem appears that is only solvable by radical

new ideas or theories. At first, these new ideas will be treated with skepticism by the majority

of the scientific community. Eventually, more and more scientists corroborate the new

theories and soon the prevailing paradigm is replaced with a new paradigm founded on the

new theories. Thus Kuhn’s paradigms portray science as periods of stable and conventional

activity, separated by “non-cumulative” displacements of underlying ideas and values.

Broadbent [19] applies Kuhn’s concept of paradigms to design. Broadbent notes that design

has traditionally progressed through a series of stylistic themes such as Byzantine,

Romanesque, Gothic, Renaissance, and so on. He further suggests that modern designers have

educational backgrounds, social pressures, and shared commitments exactly like those that

Kuhn describes for scientists. Design shares with science the same kind of paradigmatic

progress with the four constituent parts of a design paradigm being:

• technical knowledge,

• professional skills,

• shared beliefs and convictions,

• shared examples.

Dasgupta [54] further notes that, due to the fact that design involves the creation of many

possible models of the world, design paradigms aren’t necessarily as entrenched as their

scientific counterparts. For example, designers operate under local paradigms determined by

their organization’s particular standards for design methods, tools, and technologies. In

addition many different paradigms may be in use simultaneously.

21

From the empiricist’s views on reductionism and verifiability to Popper’s falsifiability and

Kuhn’s paradigmatic constraints, many members of the design research community are

influenced by the prevailing philosophical thoughts regarding science. The

conjecture/analysis design cycle involves the gradual bridging of the gap between need and

artifact. Conjectures are based on the designer’s belief that they will contribute to the design

solution. They are tested and accepted or rejected based on their suitability for advancing the

progress of the design. Finally, both conjecture and analysis occurs within the context

determined by Broadbent’s design paradigms. The similarities between science and design,

combined with the mature philosophy of science, is a powerful motivator for how science-

based models are applied to design. Although similarities are useful, many authors have

concentrated on the differences between science and design as a means of illuminating the

full character of designing. These differences are discussed in section 2.3.4, Criticisms of

design-as-natural-science.

2 . 3 . 4 . Criticisms of design-as-natural-science

Many researchers, even those who explain design in terms of science, point out that the

objectives of science differ from those of design. “Science is analytic” writes Gregory [84],

while “design is constructive.” Simon [192] also differentiates design from science. He notes

that science is “concerned with how things are” while design is “concerned with how things

ought to be.” Willem [213] takes a similar position. He states that science is “knowledge of

the natural world” and the “goal of design is not to produce knowledge, but rather to take

action.” The natural sciences are concerned with discovering and explaining existing

phenomena while design primarily deals with active creation and innovation. March [143]

makes a distinction between science and design when he writes “Science investigates extant

forms. Design initiates novel forms.” Cross [45] addresses several differences between

science and design. For example, design uses the techniques of “modeling, pattern-

formation, and synthesis” to study “the man-made world,” meanwhile, scientific methods

examine “the natural world” using methods of “controlled experiment, classification, and

analysis.” Cross goes on to claim that the values behind the two activities differ significantly.

On one hand, science is based on the values of “objectivity, rationality, neutrality, and a

concern for ‘truth’.” On the other hand, design is concerned with “practicality, ingenuity,

empathy, and a concern for ‘appropriateness’.”

A strong proponent of the design-as-science viewpoint, Dasgupta, tries to sidestep these

concerns. He asserts that the products and goals of design and science should not be confused

with the processes of design and science [54]. One should not compare the products of

design and science, but one can compare the methods and ways of thinking employed by

22

both. Even so, Dasgupta and other authors [66] differentiate science and design on precisely

these grounds. He states that science is “theory-oriented” and “rational” while design is

“result-oriented” and “creative, spontaneous, and intuitive.” Dasgupta’s apparent

contradiction weakens his claim that design is a special case of the scientific way of looking at

the world.

Glanville [77] takes the opposite view to Dasgupta. Glanville claims that science is, in fact, a

special case of design. Any theory of design must include, as a subset, explanatory

mechanisms for science. Broadbent [19] also explores this theme. He categorizes the activities

that comprise both science and design and points out that design involves several aspects

(“diagnosis”, “prescription”, and “advocacy”) that are not normally considered part of

science. Willem [213] casts science into the role of a supporting character that interacts with

the creative act to produce the novel structures characteristic of design. The process of design

benefits from knowledge, the product of science. Science does not guide design, science

informs design such that “science knowledge is part of the fabric with which designers

design.” Science is made visible through products of design. Cross, Naughton, and Walker

[43] propose a very similar idea. For them, design is more fundamentally a technological,

rather than scientific, process. Both technology and design concern the creation of artifacts to

fulfill some need for their builders and users. The output of design (i.e., artifacts) comes to

exist in a manner different than the more abstract output of science (i.e., knowledge).

Some researchers attack the design-as-science viewpoint by questioning the validity of the

philosophies of science. By arguing that a philosophy of science is flawed, they state that

applying such a philosophy to design is flawed and therefore without validity. The logical-

empiricist design theorists were the first who were criticized using this line of argument.

Rzevski [181] notes that even Hume, the intellectual forefather of logical empiricism, found

two major flaws in the traditional scientific method. First, the inductive step has no logical

explanation that adequately can describe how a theory is derived from a set of specific

observations. Second, a natural law that is discovered as a result of applying the scientific

method cannot be independently verified. It wasn’t until Popper’s ideas of “falsification”,

wherein it is always possible that a new experiment might be devised to contradict the

conclusions embodied in the natural law, that these ideas were fully expressed in the

philosophy of science. Even Alexander [4], in attempting to apply empirical traditions to

design, realizes that there are no fundamental truths in design. Instead, he adopts a principle

of fallibility to test designs for success [143]. Alexander acknowledges that designs may not

entirely satisfy the constraints imposed upon them. There exists always the possibility that

another design can better satisfy the constraints.

23

In criticizing the link between science and design, Cross, Naughton, and Walker [43] claim

that the antecedent observations regarding the nature of science are flawed. Citing several

authors who argue against Popper’s and Kuhn’s models of science, they point out the

“epistemological chaos” that plagues the philosophies of science. They claim that design

cannot be equated to science on the grounds that the epistemology of science is unstable.

They don’t wish to use science as a reference for describing design, because the reference is

itself a moving target and poorly described. In critiquing the notion of design as a scientific

activity, Naur [153] recalls that Feyerabend [70] and Medawar [145] have both come to the

conclusion that “the notion of scientific method as a set of guidelines for the practicing

scientist is mistaken.” Naur concludes that such a set of guidelines for design is also

mistaken.

Others view the very act of comparison as being flawed. For example, in his arguments that

there is no methodological difference between design and the hypothetico-deductive view of

science, Dasgupta implies that:

• design is a logical process, expressible using a formal language of symbolic

logic, and

• the scientific models used to describe design correspond to the act of design in a

logically deducible and logically expressible manner.

Snodgrass and Coyne contend that design processes cannot, in general, be expressed using a

logical formulation [193]. The expression of a precise logical correspondence between a

model and its referent is not possible in the same way that a precise logical correspondence

between the referents of a metaphor is not possible [194]. Thus the basis of the comparison

behind the design-as-science viewpoint is weakened enough to cast doubt upon its validity.

Another problem with design science is an observed gap between theory and practice. Schön

believes that the emphasis on problem solving at the expense of problem setting [182] causes

this gap. For rationalist designers (e.g. Le Corbusier and the proponents of formal and

computational methods for software design), problem solving approaches to design often

assume that the problem being solved is well defined and fixed before design starts. In reality

however, design “ends” are often undefined and fluid. Any design “means” that assume

otherwise will likely fail. Thus the Cartesian tendency to separate means and ends weakens,

rather than strengthens, design processes. Rittel and Webber [174] suggest that, since design

problems can never be described completely, they are not amenable to the kind of complete

analysis that science-based methods of designing require for success.

24

The separation of means and ends can lead to what Heidegger [96] calls “blindness.”

Blindness describes the premature selection of a preferred course of action at the exclusion of

many possible interpretations. To avoid blindness, Schön [183] advocates that designers

reorient their design processes to include constant reflection about the problem they are

trying to solve. The increased emphasis on problem setting closes the gap between design

theory and practice by closing the gap between means and ends, subject and object, thought

and praxis. Coyne [42] also notes a gap between practical matters and rationalism’s

theoretical ideals. He believes that pragmatic issues force designers to deal with many

variables concerning the interaction of people’s emotions, ideals, and morals. These are

variables that are simply not observable in a strictly scientific sense. Most science depends on

observable behaviour and well defined ends. If neither exist, then the situation is outside the

scientific realm. Design models cannot ignore the impact of designs on people. Unlike the

popular view of scientific theories, designs are not “truths” that somehow transcend the

interpretations of the people that interact with them.

Design engages its participants in communication, social interaction, and creative thought.

Consequently, researchers like Dilnot [63] and Minneman [150] stress design theory based

on sociological and cultural aspects rather than design’s scientific aspects. This view’s

legitimacy becomes clearer upon more closely considering the nature of paradigms.

Paradigms are more than repositories for facts, methods, and examples utilized by designers

when they work on a problem. More importantly, paradigms form what Kuhn calls a “shared

matrix”. A shared matrix includes tacit and intangible concepts that implicitly guide

designers’ day to day activities. Examples are: the ways that designers present their work to

each other, their “standard” methods, their particular design agenda, their approaches to

obtaining funding, etc. [19]. Day-to-day activities vary from strictly logical tasks to “gut

feeling” approaches. Sociological issues of prestige, economics, and cultural conformity all

play roles in affecting designers’ methods and output. By isolating the rational aspects of

design from the chaotic and irrational aspects, designers and design scientists have bifurcated

design theory. That separation neglects a synergism that is the essence of what it means to

design an artifact. Dilnot believes that a profoundly revolutionary change in the approach to

design theory is required and that a socio-cultural view of design will successfully integrate

the rational and aesthetic aspects of design into a philosophically united view of design.

Many authors note that creativity is central to any design process and that the creative act

must be admitted by any model that attempts to explain design. Under this requirement,

science-based design models have difficulty because science knows too little about the

creative act. No rational formulations exist for the spontaneous insights that occur while

25

designers discuss a difficult design problem. Logic cannot explain how a flash of creative

brilliance occurs, nor predict the next one. However, sociological studies of design [150]

[22] have tried to identify the conditions, shared understandings, and progressions of ideas

where brilliant insights likely occur. Some day, there might be an entirely rational logic-based

approach to the subject of creativity. Although, if such a logic exists, Archer [6] believes that

the original problem ceases to be, by definition, a design problem! He goes on to say that

“the creative leap from pondering the question to finding a solution” is “the real crux of the

act of designing.”

2 . 3 . 5 . Design and the human sciences

The perceived flaws of the design-as-science viewpoint naturally lead to an exploration of

alternative views. A survey of non-scientific ways of understanding creativity and design

processes is necessary in any examination of design. This section describes some of the non-

scientific, some would say more humanistic, ways of looking at design processes. From a

philosophical tradition quite different from natural science-based philosophies, this section

discusses various approaches to design based on the “human sciences” of sociology,

psychology, and anthropology.

Through its genesis in human need and its realization in human activity, design intimately

involves the questioning of human actions and desires. Design belongs in the domain of the

human sciences. To understand how designing works requires one to understand how humans

think and behave. Any theory of design based on a different assumption ignores a

fundamental part of designing.

The methodology of the natural sciences was once touted as the best way to achieve the

Positivist goals of objectivity and certain knowledge [63], even in the human sciences.

However, a large number of human sciences researchers no longer accept this view. The

natural sciences are concerned with the acquisition of knowledge and the separation of

subject and object. The human sciences are concerned with peoples’ behaviour and the

interplay between subject and object. The natural and human sciences are as different as

people are different from things [193]. The human sciences are self-reflexive, the study of

human activity is itself a human activity. In sharp contrast to the Cartesian ideal, the human

sciences do not allow its participants to step outside the sphere of human activity to examine it

as an external object. Thus objectivity does not exist in the human sciences5. When studying

5Some might argue that it does not exist in the natural sciences either. But the natural sciences can make
claims of objectivity by separating and ignoring those aspects of science that do not obey the tenants of
logic (such as the genesis of hypotheses).

26

human behaviour, it is impossible to ignore how hypotheses are generated and how facts are

derived and examined. Self-referential behaviour requires that human sciences researchers

concern themselves with their own background practices. Their success often hinges on their

understanding of those practices.

While unique from the natural sciences, design is not an irrational, felicitous process

inexplicably tied to the individual designer’s whims. Snodgrass and Coyne [193] [194] offer

the view that, although not strictly guided by logic, designing can be explained by appealing

to Heidegger’s and Gadamer’s “hermeneutics”. Hermeneutics originated as the study of

interpretation of texts, especially religious texts. It concerns the phenomena that texts read

and reread over centuries carry with them different meanings for different people at different

and the same times. Gadamer’s hermeneutical view maintains that texts have no meaning

independent of the act of their interpretation. Modeled as an interaction between the

“horizons” (i.e., experiences and ideas) of the text and the reader, interpretation is central to

the understanding of the text.

The interpretive view is important in the study of the human sciences. The human sciences are

concerned with developing an understanding of how humans behave. Such understanding

arises from a constantly evolving interpretive process [193].

Central to Snodgrass and Coyne’s discussion of “understanding” is their concept of the

“hermeneutical circle”. The hermeneutical circle essentially describes how understanding

arises through interpretation and interpretation’s influence on the fundamental relationship

between the whole and its parts. An example of this relationship and its effect on

understanding is seen in the meaning of a language act, such as a sentence. Hermeneutics

states that the meaning of a whole sentence cannot be understood until one understands the

meanings of the words that comprise the sentence. At the same time, one cannot understand

the meanings of the individual words until they are situated within the context of the sentence

as a whole. This circular way of building a sentence interpretation, where the meanings of the

parts and the whole each influence the other, is central. The hermeneutical circle can be

extended to cover any concepts situated within some overall context, a context that gives

meaning to those concepts. The apparent logical contradiction arising from this view of

understanding is evidence, according to Snodgrass and Coyne, of the unsuitability of logic

and method in attempting to explain how understanding arises.

The cyclical nature of the hermeneutical circle implies that understanding is not complete

until a series of cyclical exchanges have been made. How then, do humans understand many

complex concepts, such as speech acts, as they occur, without the benefit of post-mortem

reflection or many iterations of the circle? The answer lies within the way that hermeneutical

27

interpretation begins. The hermeneutical circle is entered with the projection of an

anticipated meaning. A meaning based on the current understanding of the situation vis à vis

the preconceptions of the participant making the projection. Preconceptions are derived from

the past experiences, skills, and tacit knowledge. In ordinary conversation, the anticipated

meaning, which continues to build as a sentence is uttered, is usually very close to the final

constructed understanding. In more uncommon situations (e.g. puns and sarcasm), iteration

between the whole and its parts must be more explicit and complete before full understanding

emerges.

Hermeneutical philosophy asserts the universality of interpretation and understanding to all

human thought. The hermeneutical process preceded, and indeed enabled, the discovery of

logic, formal languages, and the scientific method. The hermeneutical process is basic to

human existence because, in the words of Snodgrass and Coyne, “understanding is not one

of our activities in the world, but is basic to everything we do and are.”

Design can be viewed as a process of learning [153] [152]. The design tasks involve

understanding the goal, constraints, and requirements. That is, designing is the process of

interpreting a design situation, not solving the problem from which the design situation arose.

The hermeneutical view of designing portrays design as dialogical exchanges between the

designer and the designed, between the parts of the design and the whole, between the

designer and the end-users. Within this account, design becomes a cyclic interpretive process

whereby the final design elements emerge from a series of interchanges. A designer’s

understanding of the whole and its constituent parts develops via a hermeneutical circle of

interpretation. An initial understanding, called a “primary generator” by Darke [53], is

obtained from the parts of the situation and the designer’s “horizon” of experiences and

knowledge. A dialectic begins when this initial understanding is “projected” onto the design

situation. Newly acquired understanding, projected back onto the design situation as a whole,

changes the way the designer perceives the design. This new perception alters his

understanding of the role played by the parts of the design. The roles of designer

preconceptions, users, existing design solutions, and the design environment are all affected.

In this way, the design is refined by deeper and more extensive interpretations until designers

gain enough confidence and understanding to consider the design “finished.”

Even after implementation has begun, the dialectic structure must remain fluid and open. The

efficacy of the design depends on constant refinement and evolution of the designer’s

situational understanding. Complex software design situations where the final goal often

remains unknown until it is reached (another characteristic of the “wicked” problems

mentioned earlier) show the practical implications of keeping the dialectic open. Indeed, just

28

as there is no end to the hermeneutical circle, there is often no real “end” to a software

design project - at least not until the software is abandoned [46].

Winograd and Flores believe that much of what one does is attributable to Heidegger’s idea

of “thrownness.” Thrownness means being in a situation where what one does and how one

acts is controlled by almost unconscious interpretations of the situation. Schön [182] calls this

“knowing-in-action.” He gives an example of a baseball pitcher who instinctively throws to

each successive batter’s weakness, changes his pace, and distributes his effort during a game.

Breakdowns occur when thrownness fails to produce desired results. When a breakdown

occurs, things that previously were tacit come to the forefront and must be dealt with

explicitly. The baseball pitcher who starts to walk batters or pitch home run balls experiences

a breakdown that requires conscious corrective action. In the context of design, breakdowns

occur in situations unresponsive to direct application of previously learned behaviours. The

most interesting and common design situations are almost always of this type [191] [174].

Breakdowns are one way in which design situations “talk back” to the designers. Each

breakdown accompanies an opportunity for designers to discover new things and to modify

preconceptions.

Snodgrass and Coyne [194] stress the importance of metaphor in design. Metaphor plays a

central role in how humans think [132] [158] and hermeneutics successfully describes how

metaphors operate. The connection between a metaphor’s compared concepts is understood

by a cyclic interpretation where characteristics of one concept are mapped to the other,

perhaps revealing new characteristics that can be mapped the other way. Snodgrass and

Coyne contend that a metaphor’s characteristics make it impossible to describe the

connection between the compared concepts using logic based methods. Since models of

design are essentially metaphors of what really happens during design and designs themselves

are often based heavily on metaphor, hermeneutics offers a viable explanation of the design

milieu. Thus one is led to believe that the metaphor of “design as science” is as valid an

interpretation as “design as art”. The appropriateness of any metaphor depends on the

circumstances under which it is interpreted.

By thinking of design as an interpretive process, one acknowledges the complex interaction

of many historical, social, cultural, economic, physical, structural, and environmental factors.

These factors permeate many design problems and embrace the experiential nature of human

thought processes. Restrained by strictly logical paths, designers very often fail to

acknowledge the many dimensions of a design problem that transcend logical formulation.

Design decisions, especially early in the design, often are driven more by a designer’s

intuition [53] [133] than by precise analytic or empirical investigation. Much of what goes on

29

in design is attributable to designers “just knowing”. They know what to do based on their

own interpretation of paradigmatic norms and the configurations of particular design

situations [133]. Generally, designers know when they have sufficient experience and when

they need more [1]. The differences between designers’ experiences causes their approaches

to similar design situations to be sufficiently varied to significantly change final design

outcomes. In practice, software quality assurance methods that advocate independent

duplication of design effort rely on this characteristic of design to decrease the likelihood of

errors in critical software components [7].

Certainly, logical analysis and empirical inquiry have their place in design. But only by

interpreting the current situation do good designers know when a more careful analysis is

required. The hermeneutical approach to design frees the designer from the constraints of

logic based approaches without requiring them to abandon those approaches altogether.

Although relegated from its implied role as the foundation of design, logic remains a useful

tool that helps designers master design situations. Traditional design techniques become one

of the many parts that shape the progress of the whole. Hermeneutics acknowledges the

notion that design cannot be described by a single method or theory. The complexity of real

design situations requires methodological pluralism by designers. Simply put, there is no

“silver bullet” [35] for design.

Schön's observations of designers and their tutors [182] [183] reveal the presence of the

hermeneutical circle. In his observations, designers engage in a “reflective conversation”

with the design situation (i.e., design materials, configuration, participants). Design instructors

encourage their students to find a position from which to start the “conversation” and to

“listen” to the design by reflecting on their “moves” from the design situation’s point of

view. In situations involving more than one designer, often the design situation can “talk

back” through alternative points of views generated by the participants. The dialogical nature

of group interaction helps to make the hermeneutical circle of understanding more explicit.

The hermeneutical circle is enlarged to encompass the group’s understanding of the design

and its role. In successful design situations designers achieve a “congruence of meaning” by

constructing an interpretation that merges their horizons to form a shared understanding.

For some, interpretation is the central mechanism behind human understanding and influence

in the world. Researchers and philosophers, especially those working within the “human”

sciences, have adopted a view that reality is “constructed” in the sense that reality depends on

how people construct, or create, meaning via interpretive processes. The existence of an

objective reality upon which the natural sciences are founded, can never be determined

because the observers cannot escape from the hermeneutical circle that determines how they

30

see and react to the world. Social constructivism goes further. Social constructivists [52] claim

humans build interpretations of their world coloured by social norms. The interpretations are

influenced by the ways in which people interact with others in various social contexts.

Most complex design situations involve teams of designers. Thus, designing occurs within a

social context (Broadbent’s design paradigms) and the influence of social context plays a

role in determining the outcome of the activity. Elaborating and testing design ideas in social

settings is useful and often governs the acceptance of those ideas. To interact socially, people

must communicate – with the people they meet, with the objects they use, with the users of the

artifacts they produce, and even with themselves. Communication is the basic building block

of social constructivism. Schön notes that conversation plays an important role in building

social reality. Others, like Reddy [171], have pointed out that tacit contextual information is

just as important as that which is explicitly stated during conversation. Such tacit

understanding is built up through experience and trial and error. The success of social

interactions depend on how people communicate, through what medium they communicate,

and with whom (or with what) they communicate.

For the most part, the “human” sciences eschew the Cartesian notions of rationality in favour

of more “relativistic” views of human existence. The human sciences tend to treat individuals

as part of their world, rather than as separate from it. Designing is seen by many to be highly

dependent on human values. Because of this, the ideas of the human sciences are brought to

bear on designing by many researchers. Interpretation seems particularly suitable to

designing. Hermeneutics, which concerns itself with interpretation, emphasizes a progression

towards understanding that is often seen reflected in actual design situations. Designers are

constantly interpreting the constraints placed upon them by users, other designers,

technology, their own experience, and their social working context. Of course these ideas are

not above criticism. Like the science-based views on designing, human-science-based views

have their critics. Section 2.3.6, Criticisms of design-as-human-science, discusses some of

their criticisms.

2 . 3 . 6 . Criticisms of design-as-human-science

The human science contention that no objective reality exists (or at least it is impossible to

know whether an objective reality exists) and there can be no separation of thought and

praxis, shakes the foundation of the natural sciences. Natural scientists complain about the

“fuzzy” or “mystical” nature of the human sciences. The imprecise descriptive nature of

the writing encountered in the human sciences is often difficult to grasp. The lack of formal

(i.e. rational) methods for describing the ideas of the human sciences adds to the problem.

31

These “fuzzy” descriptions of the nature of designing are accompanied by very little

prescription for precisely what should be done in lieu of rational approaches.

Some researchers have difficulty with the implication that the interpretive processes of the

human sciences will never be explained using formal symbol systems. Many human science

researchers imply that the current failures of rational approaches will never be overcome. This

implication is dangerous as long as progress in formal analytic approaches continues to be

made. Sometimes, human science researchers point out the superiority of their methods over

those from the natural sciences without fully understanding the current state of the affairs in

the natural sciences. Outdated philosophies of science and superseded scientific views are

used to criticize science-based views of designing. These same criticisms often ignore newer

ideas from the rationalist camp. For example, Winograd and Flores use the problems

associated with logical-empiricism and Searle’s views on literal meaning to support their

arguments regarding the applicability of hermeneutics to thought and language. Both logical-

empiricism and Searle’s views are outdated and no longer supported by most rationalists.

Vellino [198] expands on this in his criticism of Winograd and Flores research, citing several

researchers [138] [197] whose work weakens the claims made by Winograd and Flores.

It is difficult for natural science researches to grasp concepts that cannot be phrased within

the context of the rational tradition that begat the natural sciences. By the metrics of success

used in the natural sciences, theories from the human sciences appear to lack rigor, predictive

power, precision, and testability. Such theories are simply not valid to scientists who strive to

use reason to order their worlds. The fact that many human science researchers are admittedly

not interested in these metrics makes the division even worse. Because they cannot measure

and analyze, rationalists claim that ideas like hermeneutics and constructivism fair no better

than rational theories of language and meaning.

There are pragmatic problems associated with the interpretive view of designing. By shifting

control of design towards the designers, management of the design process is affected. It

becomes more difficult to tell exactly where a design effort currently stands. Predicting where

a design is going and how long it will take to get there become more difficult. This is an

important issue due to the increasing pace at which design work must occur today. Unlike the

craftsmen of ancient times, designers no longer have the luxury of developing shared

understanding over long periods of time.

Another practical problem that is aggravated by the accelerated modern world is the difficulty

in recording and passing on the knowledge that is gained through interpretive processes. This

is an important problem because the human sciences approach to design depends on

continuity between generations of designers. Rational approaches have historically been most

32

suited to abstracting generalizations and explaining how things get done. In today’s fast

paced world, high volumes of hard-learned design lessons must be passed from one

generation of designers to the next. A lack of formal methods for doing that impedes

progress over time. Inexperienced designers can learn and be more productive by following

rational, prescriptive methods. In addition, rational methods can detect errors in the detail that

human science methods overlook.

Natural scientists try to eliminate human bias from their work. An inflammatory criticism of

the human sciences is that they encourage practitioners to embrace their biases to the point

that alternative views are occluded. Practitioners become “lazy” and do not expend the

intellectual effort required to fully investigate phenomena, inflating the importance of their

own point of view at the expense of others.

2 . 4 . Chapter Summary

Designing is recognized as a fundamental part of human existence. Everybody “designs”

when they purposefully attempt to solve a problem posed by some need. Design researchers

have noticed that design is geared to situated human needs and it is therefore action-oriented

(primarily concerned with transformation) and governed by the interests of involved end-

users, designers, clients, and other members of society. The close association between

designing and other high-level cognitive processes has led people in many fields to believe

that understanding how people design is commensurate to understanding how people think.

The knowledge gained in examining philosophical and methodological underpinnings to

design will help determine the kinds of techniques, tools, and methods that are needed to

support software design. In addition, the value of such an exploration in educating designers,

making them more aware of the ways in which their designs move forward, should not be

overlooked.

Design philosophy in Western society has been evolving within the context of broader

movements in philosophical thought, from the Enlightenment to Post-Modernism. Ideas from

the rationalistic tradition to the constructivist movements have influenced thinking about

design and design methodology.

The traditional way of thinking about science, which rests on the contrast of the subject/object

dichotomy, is commonly applied to design. Even the outdated ideas of logical empiricism are

still seen in design methods in use today. The subject/object dichotomy is apparent in the

separation of analysis and synthesis found in many design methods. The principle

assumption is that an objective reality exists, a reality that can be observed and reasoned about

without the observer creating a “probe effect”. The emphasis is on analytical and logical

33

thinking, observation, empiricism, and proofs. Such thinking serves to separate mankind from

nature and assert mankind’s dominance over nature. The success of rationalist approaches to

science has influenced design to the point where a “science” of design was promulgated by

many thinkers, culminating in Simon’s The Sciences of the Artificial [192]. Since the early

days of computers, computing “science” has adopted the traditional scientific paradigm

through both its theoretical teachings and its professional practice.

Rational approaches to design engender formal methods based on control and empiricism.

While such methods are appropriate in many circumstances, they do not present a complete

picture of the design process. In design, especially exploratory design, the creative spark

seems to be struck often in situations where control is not absolute, where errors occur, where

the human mind must deal with irregularity and unpredictability.

More recently, design researchers have been applying post-modern ideas of interpretation

and constructivism to design. The difficulties of rationalist approaches in accounting for the

human influence has provided an opportunity for what some perceive as an “anti-science”

movement in design discourse, led by proponents of constructivism. Constructivists believe

that a separation of object and subject is not attainable, instead a holistic view of mankind

situated within nature is emphasized. Such a view embodies an awareness of how an observer

constructs reality by the act of observation and how interpretation governs perceptions of

reality. Interpretation is the primary process of thought and interpretations are always

influenced by experiences, social situations, and context. Constructivist approaches to design

hope to deal with complexity and diversity not by conquering it, but by putting into place

methods that are capable of rapid adaptation and facilitation.

While science discounts and tries to eliminate the effects of human vagary, much design work

directly involves, and cannot escape from, the value systems of individuals and groups. The

influence of value systems has been a major part of design discourse in fields such as

architecture. But it is only relatively recently that human values have become important to

computing professionals who are trying to build highly interactive systems that are situated in

the homes and workplaces of ordinary people. The increasing use of computers in society has

led to an increased interest in applying post-modern ideas to computing science. While the

subject/object dichotomy allows science to progress without regard for the individual scientist,

design outcomes often are biased by the characteristics of the involved individuals and

groups.

Of course, formal design methods are not mistaken or useless. A good deal of control and

measurement is required for organized progress, learning, and reflection. However, the

weakness of formal methods lies in their inability to take into account their own limitations (a

34

product of the subject/object dichotomy) and the rationalist tendency to apply them in a rigid,

top-down hierarchical manner. Interpretative approaches give designers the flexibility to

apply both formal and informal methods. Sometimes formalism is needed to make progress,

sometimes it is not. For example, a group defining a new programming language requires the

formalisms of BNF grammars and lexical analysis at some point. But during an exploratory

design session the emphasis is on idea generation and establishing a shared vision of the

language.

Humans have a drive to accomplish goals that they set for themselves. The rationalist

inclination is to improve the degree of certainty that those goals will be accomplished by

imposing some sort of structure on the thoughts and actions of those involved. Recent work

in chaos theory notwithstanding, much has been accomplished by yielding to the natural

tendency to break things down into parts, conduct affairs rationally, employ hierarchical

organizations, etc.. However, absolute certainty can never be attained. The evolutionary nature

of interpretive models of design have a built-in ability to deal with uncertain outcomes. They

promote an ongoing, flexible, continuous adaptation to the situations at hand.

The nature of design is a continuum where design activities range from less structured

hermeneutical activities to highly formalized methods. Good designers interpret their design

situations to determine when each type of activity is appropriate. Interpretive activity

sometimes prevents rational control and measurement and sometimes requires that design

constructs ultimately be submitted to a rational treatment so that the design can be

implemented and explained to others in a coherent manner.

This chapter has examined a wide range of ideas from rationalist to constructivist, from

scientific to romantic, from logical to non-logical. No single theory of how people design has

emerged as clearly superior. The strongest conclusion that can be made is that it is probable

there is no “best” way to design and that flexibility is the key. While this implies that there

can be no “best” technique to support design, a pragmatic approach is to determine which

attributes are common in current design practices and to create methods, techniques, and tools

that support those practices. To that end Chapter 3, Software Design, examines software

design practice.

35

Chapter 3

Software Design

3 . 1 . Introduction

Over the years, computing science researchers and practitioners have developed many

different software design methodologies, process models, techniques, and tools. Some

successfully help designers design better software, others are less successful. Some are

sweeping in their scope, others specialized to a particular problem, domain, or technology.

While there are no “standard” ways to design computer software, most computing

professionals are familiar with several common methods and process models. Many methods

are based on the technological and engineering aspects of software design, a few are based on

psychology and sociology. Taking their cue from the discourse in design philosophy, many

software researchers equate computer software design with “hard” sciences like mathematics

[99] [98] [85] and engineering [178] [161]. Software design methods and processes have

followed suit. They are often highly structured, based on formalisms [100], or employ

reductionist principles.

Kapor [119] believes that most common approaches to designing software focus too much on

technology and engineering. He is typical of an emerging class of software professionals

[216] [153] [34] who are looking for new ways to develop the computer systems of

tomorrow. Kapor calls for a change toward “the software design viewpoint”, wherein

software designers concern themselves equally with science and people. Cohill [34]

recommends augmenting software development teams with “information architects.”

Information architects concern themselves less with engineering methodology and more with

human factors issues, although they do not ignore technology. They all hold the belief that

successful software design must combine equally the natural-science-based world of

technology with the human-science-based world of the users of technology. The ultimate

benefactor is the public at large, especially as software systems become integrated into their

daily lives [210] [67] [151] [82] [128]. DeGrace and Hulet Stahl [57] point out that

interactive computer systems design is one of Rittel and Webber’s [174] “wicked” problems.

They claim “traditional” engineering-based software design methods have proved unwieldy

in solving these problems.

Software design’s “people issues” are not limited to the involvement of users in the design

process. Issues surrounding the designers themselves have surfaced. Empirical studies [51]

[159] and industry surveys [139] [125] [92] often note contradictions between “industry

36

approved” rationalistic software development approaches and the methods software

developers actually use. Many developers customize or outright abandon traditional methods

after running into difficulties applying those methods. Pressures caused by budget

constraints, externally imposed schedules, demand for features, and maintenance obligations

often cause software designers to take “shortcuts” that maximize short term gain [225].

The development and adoption of software design processes, methods, and techniques show

the influence of general design philosophies. Understanding the relationship between

software design and general design will help software designers understand why software

design methods succeed or fail. This chapter begins by showing how design philosophies

based on the natural sciences have influenced software design methodology. The chapter

goes on to discuss newer approaches to software design that are based on the human sciences

discussed in Chapter 2, Design Theory. Finally, software design trends and research

incorporating both views are discussed. This section gives some justification for adopting a

mix of “hard” and “soft” [158] science in software design. The tremendous number of

published software design techniques, tools, processes, and methods precludes including all in

this survey. Examples are selected based on their popularity, relevance, and illustrative nature.

3 . 2 . Natural sciences influence on software design

From its beginnings at the 1968 NATO conference, the field of software engineering has

been influenced by the philosophies of science, particularly the rationalism of Descartes. This

is not surprising given the many highly technical aspects of software development. In the

early days of computing, the emphasis was on hardware and mathematical algorithms, both of

which are direct descendants of scientific enquiry. It made perfect sense to use design models

derived from analytical thinking in designing computer systems [61] [85]. Even today there

is still a strong perception that, since computers are essentially math-and-logic machines at the

lowest level, the activities of design and programming should also be based strictly on math

and logic. Hoare [98] is representative of this belief when he states:

• computers are mathematical machines

• programs are mathematical expressions

• a programming language is a mathematical theory

• programming is a mathematical activity

Formal methods involve the building of precisely stated abstract models of the design

situation followed by a constructive phase that manipulates the formal abstractions in such a

way as to satisfy the design requirements [8] [113]. This implies, of course, that the

37

requirements themselves must be stated in very precise formal language. Usually, symbolic

languages akin to the languages of logic and mathematics are used to express requirements

and provide the rules for symbol manipulation. The advantage of formal methods lies in the

unambiguity of the languages that are used. They rely on the ability of designers to describe

requirements as a set of atomic, objective facts. Once that is done, validation and verification

of design alternatives is accomplished by formally relating the precisely expressed design

decisions back to the requirements. The importance of precisely and completely specified

design requirements shifts the emphasis in the design process towards the “front end”

analysis phase. The transformations that occur during the ensuing synthesis phase are

generated and verified using well defined rules.

The combination of formal design methods, mathematical verification, and statistical testing

has been used to develop “cleanroom” software development process models [189] [149].

Such models emphasize error avoidance by starting with a well-defined specification and

using verifiably correct transformations to eventually produce the working software.

Cleanroom processes have been shown to be effective in producing more complete, less

complex software in a timely manner [186].

Example of formal methods that are used in practice are algebraic specification, model-based

specification, and mathematical program verification [146] [195] [135]. Often these methods

are used for safety critical systems where risk of failure must be minimized. Algebraic

specification defines software entities in terms of the operations that act on the entities and the

relationships between the operations. It was first used to specify abstract data types [89] and

has since found use in the specification of object-oriented software [147] and as a general-

purpose approach to system specification [73] [90]. Model-based specification allows

designers to specify software using well defined mathematical entities such as sets, functions,

and sequences. Model-based specification languages like Z [95] and VDM [112] specify

system operations by using a wide variety of mathematical operations and by defining their

effects on the state of the system being modeled. Formal program verification uses the

machinery of mathematical proofs to establish that a program correctly implements its

specification [61]. The axiomatic approach [99] to verification proceeds by inserting

assertions concerning the state of the program’s execution at various points and then proving

that if a preceding assertion is true and the intervening code executes, then the next assertion

must be true. If the next assertion cannot be shown to be true, the intervening code is

incorrect.

38

In addition to theoretical approaches based on mathematics and logic, Cartesian rationality

has influenced more pragmatic software design methods and software development processes.

Most such methods are influenced by the traditional engineering fields, the methods tend to:

• prescribe desired behaviour through normative models

• stress management issues

• emphasize reductionism and atomism

Influenced by the perception that the “scientific method” serves as the foundation of

“good” science, software design researchers often have tried to prescribe a “design

method” for obtaining “good” designs [84] [56] [80]. Many researchers believed that

design could be codified thus, even the creative aspects of design [6]. Even though

application domains, technologies, and programmers are very diverse, many early software

design processes and methods are very similar in their goal of prescribing desired behaviour

in the form of checklists and discrete stages. These normative models concentrate on

explaining how software developers should proceed when engaged in the design of a software

system. The models explicitly or implicitly specify a series of steps to be applied during

design [161]. Many also include “rules of thumb” to guide designers through the complex

design process. Normative models usually include a descriptive component, but the overall

intention is to prescribe a desired behavior and to dictate the way designers work.

The classic waterfall development process [178] [12] [2], with its emphasis on separate

“analyze-synthesize-evaluate” phases, is an echo of the classic scientific method and logical

empiricism. The analysis phase tries to break the problem into discrete, separately solvable

chunks and the synthesize phase tries to derive a solution through some sort of inductive

process. The solution is implemented and tested in an evaluation phase. The classic waterfall

separates the “what” from the “how” [226] with no opportunity for feedback. Results of

later phases do not inform earlier phases in any way, a deficiency that is overcome by later

modifications to the model. One such modification is Boehm’s spiral process model [14],

with its “design a bit, build a bit” approach. The spiral process model is an example of an

iterative design method perhaps inspired by Hillier’s conjecture/analysis and Popper’s

hypothetico-deductive philosophies. Many other modified versions of the waterfall method

have been proposed [57]. These and other prescriptive software development methods have

become more sophisticated and more detailed since the original waterfall was developed and

their number has grown as quickly as their degree of sophistication [164] [222] [68].

By making clear distinctions between analysis, synthesis, and evaluation, normative models are

breaking the problem of designing software systems into discrete temporal chunks. Other

39

kinds of decomposition are also used in software design. Due to the inherent limitations in

cognitive capacity of human designers, software design problems must almost always be

decomposed into smaller, more manageable pieces [62]. Some methods of decomposing

software design problems have been influenced by the logical positivist approach to science.

Classically, these methods are algorithmic in nature and seek to create a complete

decomposition of the problem before any attempt is made to solve the problem. The

individual subproblems are then solved, and those solutions are combined in a grand

synthesis to create the final software design. These methods are clearly influenced by the

tendency in science to isolate the object of study.

Elaborating a design using functional decomposition is familiar to most software

professionals. Top-down methods like step-wise refinement [220], structured analysis and

design [223] [58], architectural layering [60], data decomposition [105] [209], and a host of

other methods all start with a high-level view of the design problem and proceed to

progressively break it down into more detailed subproblems based on the functional structure

of the problem. The result is usually a hierarchical view of the system where higher levels

represent more abstract concepts. Lower levels become increasing more detailed until the

subproblems they represent can be directly implemented in a programming language. In

theory, once all the lowest levels have been specified, the software design is complete.

There is an engineering management benefit to the systematic, disciplined decomposition of a

design problem. Assuming the decomposition is detailed and accurate enough, it is relatively

easy to estimate time to completion of the individual tasks implied by the lowest levels of the

decomposition. These individual estimates are used to estimate and track progress of the

project as a whole. Normative methods often require that specific outputs be produced by one

phase and consumed in the next. These “documentation interfaces” are used to clearly

separate the phases and serve as snapshots for measuring project progress. Despite some

weaknesses, the waterfall method and its ilk have excelled as management tools, as was their

original purpose [178]. The application of science and engineering methods to software

design is a very appealing and reasonable practice, especially to control software design

situations as they are scaled up [18] [137]. Design processes become tools for coordinating

and organizing groups of designers. Discipline is necessary when attacking a software design

problem – particularly a large one. Processes based on science and engineering have been

able to provide this discipline.

The engineering and science background of early software design methodologists was an

important influence on the types of methods and processes they developed. Their work was a

productive and necessary step towards modern software engineering practices. They were

40

perhaps a little naive in not anticipating some of the problems that the explosive growth of

computers in society have caused software designers. Many of these problems are mentioned

in the section 3.3, Human sciences influence on software design. Section 3.4, Pragmatic

software design, highlights ways in which traditional “structured” methods have been

adapted to address human factors in software design.

3 . 3 . Human sciences influence on software design

Software engineering is no longer just the prescription of “hard and fast” rules of system

design. Fairly recently, software professionals began to realize there are many important

aspects to software systems. Such issues, which may be just as important as the traditional

technical issues, include economic, psychological, sociological, organizational, philosophical,

political, and aesthetic issues [109] [124] [83] [206]. Thus, software development should be

looked at from many perspectives, including the perspective of the human sciences. Two

trends influence the interest in human sciences and software development:

• the widespread use of computers in all areas of society [25] [82]

• empirical and ethnographic observations that normative models are not flexible

enough to accommodate the needs of individual software designers [88] [133]

These trends intimate software design’s dependence on human factors involving both users

and designers of software systems. As the products of software design become more

ubiquitous in society, designers face difficulties trying to abstract requirements into consistent

and complete specifications that capture precisely what the software should do. Users often

don’t know their own needs and introducing computers often changes users’ needs in

unpredictable ways. An important part of software design is understanding the context in

which the software will operate [20]. Questions of how the software affects users, tasks, and its

environment must be addressed during the software design process.

Researchers in human-computer interaction were among the first to realize that a user-

centered approach to software design is different from the “traditional” technology-centered

structured approaches [157]. The constant flux caused by the instability of users, tasks, and

environment require software design processes where sociology and psychology play a more

significant role [24] [150] [69]. Such process often emphasize flexibility. They “grow” the

software design in the environment in which the software will be used. Indeed, the software

itself should remain adaptable throughout its lifetime [20] [172]. While Hoare’s

programming is mathematical in nature, discovering the requirements for the software

involves much more than mathematics and logic. This is the motive for almost all human

sciences based software design methods.

41

A criticism voiced by many software designers and researchers points out that normative

models are inflexible in the face of changing requirements and constraints [144] [202] [76]

[57] [225]. These critics note that constantly changing requirements is an attribute of almost

every software design project. Normative models rarely acknowledge that software design

involves highly iterative, interleaved, loosely ordered tasks [87]. Software design work is not

always “balanced”, partial solutions at different levels of abstraction are common.

Unexplained jumps between levels of abstraction are observed [88]. The dynamic nature of

software development, the ease with which software can be changed, and the complexities of

dealing with errors and uncertainty conspire to make software design a globally

undeterministic activity [17] [76]. Forcing software designers to follow strict normative

models, especially those that separate specification from implementation, places them in a

straight-jacket that prevents them from dealing effectively with these issues.

A common theme is methodological pluralism. Software designers themselves will admit they

rarely follow a single normative process in a strict manner. Instead, they adapt to the current

situation based on their experience or the realization that they need to learn more about the

situation [1]. When asked what they do when they design software, they will reply with

comments like “you use what works” [141], “it's such a personal choice” [207], or “it

depends on the situation” [37]. This real-world inclination to adapt methods to both designer

and design situation is perhaps what inspired Feyerabend’s [70] attitude that the idea of a

fixed method rests on too naive a view of people and their social surroundings. Only one

principle can be defended under all circumstances, that is, the principle “anything goes.”

Mechanisms that support a gradual building of the software designer’s understanding are

important. The success of a design depends on the designer’s ability to get feedback on ideas

and to adjust the design process in response to that feedback. Communication, particularly in

the form of dialog, plays a large role in software design. Designs come about as designers

present their understandings of the situation to each other and to users. They bring up past

experiences, clarify one another’s comments, create new abstractions and metaphors, discuss

scenarios, draw pictures, etc..

Using this dialogical model of designing, the software designer and the design conduct a

“conversation” during which the designer comes to “know” the design [183]. Software

design practice is influenced by the work of design researchers, methodologists, and tool

builders interested in communication. Many have looked more closely at how designers

communicate among themselves and with users. While most of the rationalist approaches to

software design try to formalize and prescribe the ways in which designers communicate

[129], most human science based approaches use interpretive models as a basis for providing

42

support to the communication and social needs of designers [36] [117] [118] [215] [93].

They try to find ways to help software designers build a shared understanding of the design

with minimal adverse interference to the communication patterns they use normally.

Many software design methods that try to overcome the weaknesses of the normative models

use an “exploration” metaphor. The Oxford English Dictionary defines exploration using

phrases like “connected with investigation or searching” and “to range over for the purpose

of discovery.” Most conventional software development approaches make a clear distinction

between describing what should be implemented and developing a plan for how it should be

implemented. Within these approaches, software design is concerned with determining the

internal structure of a software system whose functions are fully described in some sort of

requirements document. In practice, however, design activities often illuminate deficiencies in

the knowledge about what should be implemented. Many software design activities thus

become directed toward finding, understanding, and refining the software system’s

requirements. These activities mark the beginning of exploratory design [17]. Almost all

purposeful design activities involve some exploration of the designed artifact’s constraints,

requirements, context, function, and form. Exploratory design is part of a new emphasis on

human science based software design as an activity to complement and inform the

engineering of software [119] [217] [34].

Exploratory software design is used whenever a complete understanding of the situation is not

obvious. Whenever one or more designers don’t know exactly what to do next, they will

engage in some sort of exploration. For example, Wirfs-Brock, et al., use the term

“exploratory design” to describe the initial discovery of objects and their responsibilities

during object-oriented design [219].

Some techniques seem to be particularly suited to exploratory design. Three examples are:

Class-Responsibility-Collaboration (CRC) cards, scenario (or use-case) elaboration, and

prototyping. The three are used independently or together to help multiple designers form a

“common horizon” [171] and act as repositories for the “theory”, or rationale, of the

software system [153].

The CRC card method [212] [10] uses index cards to represent design entities. CRC cards

give designers a way to represent exploratory design entities with physical tokens. The cards

take on anthropomorphic qualities and, in a sense, become a mechanism for the design itself

to communicate with the designers. Designers often spatially distribute the cards to match the

current avenue of exploration, they observe the interactions implied by the cards, and then

they rearrange and edit the cards. In addition to software design, the CRC concept has been

used in education [9] and software development process evaluation [38].

43

CRC cards are used often as a kind of “stand-in” for object instances during simulations of a

proposed system. Such simulations are called “scenarios” [30] [29] [121]. Scenarios are

instances of “use-cases”, which specify the proposed system’s behaviour [106]. Scenarios

are simulated sequences of events that provide a mechanism for focusing on specific system

behaviours. Through scenarios, designers can communicate and document the semantics of

the software being designed. Scenarios drive software designs by motivating discourse and

helping designers explore the implications of various decisions. In addition to helping

designers, scenarios can help managers create more accurate schedules by giving a good

indication of the size and complexity the software system [16].

Nielsen [155], Rettig [173], and Booch [16] all discuss the relationship between scenarios and

prototyping. While scenarios are a simpler low-cost relative of prototyping, sometimes more

elaborate and expensive executable prototypes are required to fully explore a design

situation. Prototypes are usually executable programs that model a subset of whole system

functionality. They help define system requirements by allowing designers to deploy working

software in the user’s environment. The software is used in experiments that are watched by

designers to find flaws in the design and to answer specific questions regarding the design.

Prototyping is a venerable software design technique that has found growing support and use

in the software design community [81] [3]. Some researchers have even proposed that

prototyping forms the basis for an entire software design process wherein prototypes are

eventually converted to final products [134] [55]. Others point out the difficulties with such

an approach. Alavi [3] notes that designers who use prototyping can experience difficulties

managing and controlling the design process. Davis [55] points out the quality problems that

can arise when “throw away” prototypes are retrofitted in the rush to release a working

system.

In addition to CRC cards, scenarios, and prototyping, the recent work in software design

patterns [33] [74] [39] [169] is an important part of exploratory software design. Designers

determine and interpret requirements based on their experiences with similar design problems

and applications domains [1]. Patterns provide a “ready made” experience repository for

designers who don’t have direct knowledge of a particular software design model. Design

patterns influence the primary generators [53] designers use to drive their designs. And, in

turn, the design patterns they choose influence how they go about understanding and

elucidating requirements. Patterns provide broad alternative approaches and architectures to

investigate with an emphasis on finding a match between the current design situation and

those previously encountered.

44

Exploratory design involves those parts of the design process characterized by exploration of

the relationship between the problem domain and the solution domain, creation of scenarios

of use, discovery of implementation constraints, and rapid generation of design alternatives.

Unlike rational approaches to software design, exploratory design allows the introduction of

possible solutions before the problem is fully defined [57]. In this way, exploratory software

design acts as a bridge between requirements analysis and wholesale detailed design.

Exploratory design sets the stage for more analytical “downstream” design work by creating

initial frameworks. Exploratory software design clarifies the problem, creates a foundation for

further design, identifies promising approaches, and tries to find potential technical problems

that will require closer scrutiny.

As long as the amount of detail is appropriate, exploratory design can be done at any level of

detail from sweeping architectural alternatives to particular communications protocols.

Factors limiting the efficacy of exploratory software design include the experience level and

the cognitive capacity of the designers themselves. Designers who lack experience may have

difficulty finding appropriate patterns or determining which details are important. Human

cognitive capacity is a natural limiting factor on the amount of information that can be

examined simultaneously during exploratory design.

Good tools allow more information to be brought to the table during exploratory design.

They help designers to overcome knowledge and short term memory capacity limitations.

Developing tools to support exploratory design constitutes an important design problem in its

own right. To maintain the flexibility of exploratory design, such tools must feel as natural as

a whiteboard [120] [176] [126]. While many tools suitable for use in exploratory design have

been developed in different contexts, Winograd [216] points out that there is a need for

integrated environments that support software design. Such environments should support

software design activities much like programming environments support programming. Tools

that could be integrated in such an environment include: knowledge bases that offer

alternative design patterns where appropriate, responsive prototyping media, design language

support tools, tools to help determine user conceptual models, and tools to facilitate

communication between co-located and remote designers.

Integrated design environments do not yet exist, but many current groupware tools try to

facilitate software design by mediating communication among designers and between

designers and users [120] [126] [116] [199]. In addition, they often provide a foundation to

support specific software design activities. Groupware tools hope to encourage frequent

“high bandwidth” design discourse using various representations. High bandwidth

communication between designers is important during exploratory software design. Tools

45

must help build a shared understanding of the design situation [201] [11]. It is important at

this point for designers to be able to share their ideas and past experiences with no “probe

effect” caused by tools that interfere with their communication [171].

Overcoming hurdles by discussing ideas, generating alternatives, and allowing new

associations to be created are attributes of exploratory software design. Exploratory design

situates new information (changes in user requirements, discovery of technical information,

changes in the constraints on the system, etc.) within the context of what is already known

about the design. Exploratory design is really a type of learning where the concern is

“learning what must be done” [153] to solve the design problem at hand. These episodes of

learning occur frequently throughout the entire software development process because of the

difficulties in developing a complete and consistent prior understanding of the requirements,

constraints, technical issues, and human factors issues.

Users play a central role in learning how a software system should operate. Participatory, or

cooperative, design is a field that was born of the desire to involve users [32]. Cooperative

design elevates users from being objects of study to a role more intimately involved in the

design process. Cooperative design methods overcome the tendency for normative models to

separate designers from users. They are aimed squarely at reducing the damage caused by

“impedance mismatch” between software designers and users.

The focus is not only on improving the usability of a software system, it is also on the

political, ethical, and sociological aspects of deploying the system in society. Influenced by

the need for users and designers to acquire common shared horizons, cooperative design

involves finding new ways for users to learn, participate, and cooperate with software

designers. They allow software designers to gain a deeper understanding of the in situ

operation of their software. They empower users to co-determine how the software will affect

their jobs and lives. Thus, cooperative design is influenced by social constructivism

philosophy.

46

Greenbaum and Kyng [83] summarize cooperative design with an analogy to traditional

software design approaches. Their table comparing the two is reproduced here.

TRADITIONAL APPROACH

focus is on

COOPERATIVE APPROACH

focus is on

problems situations and breakdowns

information flow social relationships

tasks knowledge

describable skills tacit skills

expert rules mutual competencies

individuals group interaction

rule-based procedures experience-based work

3 . 4 . Pragmatic software design

The preceding sections have established two endpoints in a continuum. Proponents of formal

techniques and processes emphasize prescription, control, discipline, correctness, logical

proofs, etc.. Those who advocate less structured methods value interpretation, flexibility,

creativity, social values, etc.. Neither approach is the “right” or “wrong” way to design

software. Control is needed, constraints must be satisfied, local determinism is necessary, and

the software must compile and run. At the same time, the creative spark must be nourished,

communication must not be hindered, and the effect of software on the situation into which it

is deployed must be considered.

A mature, repeatable development process is beneficial in many ways to the long term

viability of any software development organization [104] [103]. Yet the process must provide

sufficient latitude to encourage creativity, innovation, and user involvement. Parnas and

Clements [163] claim that a totally rational design process that allows for creativity and

innovation is not achievable, therefore compromises must be made. They suggest that

defining and attempting to follow a rational design process helps to create a framework for

design progress and management control but such attempts will always go astray. However,

the benefits of appearing to have followed a rational design process are so important that it is

worth creating a trail of documents just like those that would have been produced had the

project been completed the ideal, rational way.

47

In practice, software designers mix and match rational methods with non-rational methods.

Sometimes they modify a rational method to accommodate the need for flexibility or

creativity Sometimes they do the opposite, adding formal design aspects to informal methods.

Carroll and Kellogg [28] attribute this behaviour to the drawbacks associated with pure

rational (i.e. quantitative) methods and with methods based solely on the human sciences (i.e.

hermeneutical interpretation). Strictly rational methods don’t work because “the limited

scope of quantitative theories precludes adequate grounding for design decisions” and

strictly interpretive methods are weakened because “bridges from hermeneutic interpretation

into design decision-making are essentially mystical. There is no systematic methodology, no

conceptual framework, no explicit way to abstract from particular experiences.” Carroll and

Kellogg think that using design methods based on an artifact’s psychological “claims” (i.e.

rich qualitative descriptions) helps to reconcile formalism and hermeneutics by “enriching

the vision of the former and disciplining that of the latter.” Interpretations are valid insofar as

they produce results that can be tested against the psychological claims.

Combining informal unstructured techniques with formal structured techniques mirrors the

continuum of the informal ideas and values that spark a software project to the necessarily

formal and structured software and hardware that implements the project. In addition, there is

psychological, empirical, and ethnographic evidence to suggest that software designers are

likely to produce better designs if they effectively combine formal and informal methods.

Section 3.4.1, Psychology and software design, and section 3.4.2, Empirical and

ethnographic studies of software design, discuss psychological and empirical evidence that

indicate a balance is required. Finally, section 3.4.3, Practical software design methods,

discusses some modern software design methods that might best fulfill the need for balance.

3 . 4 . 1 . Psychology and software design

From a psychological point of view, claims that software design is best served by a blend of

methods is illustrated by Kay’s [122] review of the work of Piaget, Papert, Bruner, and

Hadamard. Using the results of a famous set of experiments [166], Piaget developed a theory

that traced the intellectual development of children through three stages characterized by

what Kay calls “action”, “image”, and “symbol”. Intellectual activities of children in the

first stage are manifested in their actions. For children at this stage, thinking is doing

(touching, grabbing, banging, tasting, etc.). More abstract notions like planning, consequence,

and judgment are not apparent.

In the next stage, the visual channel becomes the dominant force behind intellectual activity.

At this stage of development, images play a crucial role in children’s perceptions of reality.

For example, in one experiment children observed the same quantity of liquid poured from

48

identical measuring cups into each of two glasses, a short wide glass and a tall narrow glass.

When asked which glass contains more liquid, children consistently choose the tall narrow

glass because the liquid level looks higher.

The final stage of intellectual development begins in the teenage years and continues into

adulthood. The acquisition of principles of logic and symbolic representations embodied in

the rationalist view of intelligence characterizes teenagers and adults. At this stage, young

people create abstractions of the world around them, plan, and make predictions based on

manipulations of those abstractions. The degree to which a particular person is able to attain

this level of intellectual development is often used to ascertain the intelligence and even the

worth of the individual.

As an example of Piaget’s theories, Kay recounts Papert’s experiences teaching children to

design software using the Logo programming environment [162]. Papert observed a marked

variation in the way children at different developmental stages approached the task of

drawing a circle. For the youngest children, the best way to develop an algorithm for drawing

a circle was to ask them to close their eyes and draw a circle by moving their bodies in a

circle. Their Logo programs for drawing a circle thus involved repeated application of

“move a bit, turn a bit” steps. At the next stage of development, older children were inclined

to think about drawing circles geometrically. The algorithms they developed were based on

the observation that a circle consists of a series of points equidistant from the circle’s center.

Their programs consisted of repeated application of “move a distance equivalent to the

radius from the center, draw a point, return to the center, turn a bit” steps. Finally, the oldest

children, those who had reached the symbol-oriented stage, tended to think of a higher order

symbolic representation of circles. Consequently, their Logo programs involved plotting

points that solved the algebraic equation for a circle.

Piaget’s theories affirm the rationalist notion that by the time people become adults their

intellectual activities are symbol oriented. They progress through the lower order stages of

action and image and attain the highest level of intellectual development. They have left their

childish (and thus inappropriate for adults) behaviour behind them. Whether Piaget’s theories

independently confirm the rationalist stance or are merely a product of them has not been

fully addressed. For example, is the third stage a product of an intrinsic rationality or merely

the result of an education based on rationalist principles?

Both the development of intellect and the development of a software design have the property

that later stages require more generalized knowledge than do earlier stages. Lack of

generalized knowledge in the earlier stages is overcome by doing and observing. It is this

doing and observing that forms the basis for most iterative software design methods.

49

These experimental results can be used to create abstractions and generalization useful in

creating abstract symbolic representations. However, in practice this abstraction process

cannot or does not occur as readily as one would think, perhaps due to the extreme

complexity of a situation, the use of an inappropriate frame of reference, or even

technological and socio-cultural obstacles. When the required knowledge has not been

attained, earlier stages are (or must be) used to make progress. For example, building software

prototypes lets software designers experiment with different solutions (the “action” part) and

observe the prototype in operation (the “image” part). The experience thus obtained can be

used in future similar situations but, when the situation is too complex or each instance is too

different, there is no guarantee that a strictly rational stage can ever be reached. This is

sometimes seen in computer science when theoretical knowledge is gained only through a

constant process of exploratory programming.

While Piaget’s work implied that children move through each stage in sequential order,

leaving each earlier stage completely, Bruner [23] showed that although certain characteristics

may dominate at certain times, the others are still present. Individual and situational variation

can cause the characteristics of all stages to show up. This view is supported by an empirical

study conducted by Hadamard. He asked the top 100 scientists in the world what they do

when working. Very few reported they use symbol-oriented approaches. The vast majority

said that they worked with imagery and visual representation. A surprising 30 percent

reported that they “felt” their work in the sense that they actually had kinesthetic

experiences while working. Bruner’s experiments and Hadamard’s empirical work seem to

indicate that, regardless of society’s general perception of the importance of

rational/symbolic intellectual activity, intellectual discovery really occurs at many different

levels simultaneously.

Kay treats the design of computer user interfaces as the creation of objects to satisfy

computer users’ needs for actions, imagery, and symbolic manipulation. The success of

graphical user interfaces and kinesthetic devices (like the mouse) are a testament to the

importance of image and action to our interaction with computers. While Kay applies these

principles to the interaction with the users of the final software artifact, they can also be

applied to the processes and tools used in designing those artifacts. The activities comprising

software design bear striking similarities to many of the activities of software users. In the

context of Chapter 2’s discussion classifying “design” activities, writing a book, creating a

brochure, and making a presentation are all software supported design activities.

Labouvie-Vief [131] discusses another style of thinking that contrasts, or perhaps

complements, formal symbol oriented thinking. “Postformal” thinking goes beyond

50

context-free rational thinking to include the context in which a problem is embedded.

Emotion and social concerns are recognized as important parts of thinking and being in the

world. Rybash et al. [180] note that “real-life problems, in contrast to formal problems, are

‘open’ to the extent that there are no clear boundaries of a problem and the context within

which it occurs.” Thus, postformal thinking is more concerned with problem-setting, or

problem understanding, rather than problem-solving, or logical analysis. Research indicates

that, as people age and become more experienced, they are more likely to engage in

postformal thinking before committing themselves to a formal solution-oriented thought

process.

For most people, action and images are dominant in the early parts of software design.

Formal symbol systems become more important closer to the implementation of the software,

which must occur in a totally rational, symbol-based system. Postformal thinking is important

throughout to ensure that the “right” problem is being solved. The answer to the question of

how the stages of action, imagery, and symbol manipulation are used during software design

can perhaps best be understood by appealing to the theory of hermeneutical interpretation.

Hermeneutics serves as the glue that binds a particular software designer’s approach to a

particular design problem. Because individuals interpret situations differently depending on

their personal experiences, knowledge, and abilities, there is no single “correct” way to

approach a complex design situation. Designers try things, observe consequences, and attempt

to abstract ideas as they see fit for a particular situation. The codification and dissemination

of the knowledge that they gain proceeds at a pace bounded by their abilities to absorb new

ideas and, perhaps more importantly, by the opportunities given to them to try these new

ideas out in practice.

The single most important conclusion that can be drawn regarding software methods is that

such methods must support many different modes of intellectual activity, not merely the

manipulation of formal symbolic systems. Although, formal systems must be introduced to

realize the software artifact, designers are just as likely to work in the kinesthetic or visual

modes. For example, one software designer might prefer to manipulate physical tokens (e.g.

CRC cards) that represent design objects, perhaps moving them around while thinking about

how the software will operate. Another might prefer to draw various diagrams (e.g. class

diagrams and object diagrams) to develop and convey the software design. A third designer

might be more comfortable using formal notations (e.g. Z or VDM). Commonly, a single

designer uses all three modes at different times during a specific design process.

51

3 . 4 . 2 . Empirical and ethnographic studies of software design

Empirical methods are not new, they have been used in the design of man-machine interfaces

well before their utilization in the design of computers and software [31]. Many different

kinds of empirical and ethnographic studies are used by software designers and those

studying software design methods and processes. Examples of such techniques are usability

testing [156], quantitative studies of problem solving behaviour [94] [115], protocol and

“think aloud” analysis of designer behaviour [27] [208], interviews with participants in

large-scale development efforts [125], and in situ observations of design group interaction

[150]. Not only are empirical techniques increasingly being used to study software designers,

they are now regularly used by software designers themselves. Software designers use

empirical techniques to study the interaction of their designs with the user community [79].

In addition, they use such techniques to study and improve their design processes through

such techniques as software metrics [47].

The hallmark of empirical methods is the direct observation of people as they perform well

defined activities under controlled conditions. The proponents of empirical methods stress

that such methods provide direction to the development of software design methods tailored

to the observed needs of designers and users. Because of their behavioural orientation, these

methods often employ techniques borrowed from the cognitive sciences to develop models of

how people perceive the tasks under study. In contrast, ethnographic studies rely more on

rich qualitative description. They serve to communicate experiences in a manner that is useful

for educating others. They often provide a richness of context that is not possible to obtain

through purely quantitative experiments. Ethnographic studies are sometimes the only

feasible way to learn from real-life situations that happened in the past or are too expensive to

study using more controlled methods.

As computers leave the data processing facility and enter the offices and homes of ordinary

people, interest in the interaction between users and software systems has increased. One of

the first design techniques used to address this trend was “task analysis” [148] [59]. Task

analysis involves observing and classifying user actions. Task analysis is commonly used to

determine functionality requirements and to generate and validate design alternatives. In

traditional design processes, such analysis is conducted early with little opportunity for

designers and users to later update the data given the influence of the software system on the

user’s environment. As design processes become more user-centered, empirical “user

testing” methods have been developed to overcome this weakness. Such methods have been

used extensively to test user interface designs by observing users as they attempt to

accomplish tasks by working with live software [155] [79] or prototypes [173]. But even

52

these methods tend to separate the designers and the software design from users. Cooperative

design researchers believe this separation is detrimental to the eventual acceptance and

successful deployment of the software. Recall from section 3.3, Human sciences influence on

software design, cooperative design tries to make users an integral part of the design team. In

some sense, empirical studies have helped to illuminate the gap in designer/user

communication created by traditional methods. They have provided impetus for the

development of methods that try to bridge the gap.

In addition to empirical studies involving users, the study of the interaction between software

designers has influenced software design processes. The complex social and psychological

issues that surface during software design are being dealt with using methods that measure the

physical, psychological, and social responses of designers. Such methods are divided between

those that study the “micro”, or designer-centric, aspects of design and those that study the

“macro”, or process-centric, aspects of software development. Generally, studies of

individual designers or small groups of designers are more likely to involve strictly

quantitative methods while larger organizational studies involve anecdotal and ethnographic

methods.

When empirical studies concentrate on the activities of individual software designers, they

often observe:

• breakdowns [91] [86] [125] [208]

• opportunistic behaviour [1] [88] [51]

• cognitive biases [1] [196]

• methodological diversity [1] [176] [208]

In their studies of software design, Guindon et al. [86] observe Gadamer-style

“breakdowns”, especially during the early phases of software design. Breakdowns usually

involve a lack of knowledge or a miscommunication that requires the designer to stop and

sort out the problem. Guindon et al. find that the design is dependent on the nature of the

breakdowns that occur during its elaboration. In addition, the breakdowns that occur are

partially dependent on the prior experiences of the designers. Since different designers have

different backgrounds, they experience different breakdowns and thus produce different

designs.

Opportunistic behaviour is observed when designers move between levels of abstraction. Since

insight during design requires establishing a relationship between the problem domain and

the solution structures [115], designers constantly shift their attention between a “high level”

53

domain oriented view and a “low level” implementation oriented view [88]. Thus, empirical

studies show that designers do not use strictly rational top-down decomposition methods

unless both the application domain and the implementation structures are already well known

[108] [50].

Guindon and Curtis [87] give an account of opportunistic design elaboration that closely

resembles Snodgrass and Coyne’s [194] discussion of the hermeneutical circle in

understanding metaphors. In both cases, an iterative, back-and-forth process is undertaken

that eventually arrives at an understanding (i.e., a design or a metaphor meaning). Guindon

and Krasner [86] report that designers often engaged in an exploratory form of design to

help them better understand requirements by reinterpreting their current understanding of the

design situation.

Empirical studies reveal that irrational cognitive biases influence how designers think and act.

Stacy and MacMillan [196] observe that biases can “block” designers from fully evaluating

all consequences of design decisions. For example, they might pay more attention to

confirming evidence and ignore disconfirming evidence when testing design decisions. Biases

also exist due to different levels of knowledge and experience among designers. Adelson and

Soloway [1] find that different levels of experience with the application domain can

profoundly affect software design outcomes. In addition, experience with particular design

patterns can cause designers to ignore others that may be more suited to the design task at

hand. Empirical studies often conclude that design quality depends more on individual

designer abilities than on anything else [48]. Good designers are better able to adapt their

previous experiences to new design situations. Adelson and Soloway note that, even when

designers try to use similar methods, they end up creating designs that differ significantly.

The observed range of final designs reduces the feasibility of the positivist expectation that,

by following design methods based on the rationalistic tradition, any designer will produce

“the” optimal design.

Formal software design methods try to avoid biases by preventing them, while pragmatic

methods try to anticipate biases and include ways of dealing with them. Stacy and MacMillian

believe that biases cannot be completely eliminated and that any software design process must

include methods that acknowledge designer biases.

Empirical and ethnographic studies of software designers often observe a blend of formal and

less formal design methods. Interviews with software designers [133] [187] [140] often

illuminate the variety of methods they use. After studying software designers in a variety of

situations, Rosson et al. [176] note that designers use “an array of tools appropriate to

different design contexts.” They come to this conclusion after observing designers using a

54

variety of methods during design, from informal strategies to formal design elaboration

methods. They believe that both approaches to software design are important and relevant.

While empirical and ethnographic studies of the group design process as a whole are

becoming more common, such studies are less common than studies of individual designers

and small groups of designers. The effort, expense, and control difficulties involved in

studying larger groups may contribute to the difference. Many researchers, believe that such

studies are necessary to properly understand how software design processes can be improved

and supported. Minneman [150] advocates an approach that generates a broad ethnography

and includes detailed analysis of specific interactions.

Most studies of group software development concentrate on the most visible aspect of group

interaction, communication. Curtis et al. [49] [125] have identified those circumstances where

designers believe communication facilitates or hinders design progress. Communication

problems seem to occur most when development processes and organizational modes revolve

around top-down, hierarchical models. While acknowledging that such models provide some

high level management control, Curtis et al. point out that lower level design processes are

detrimentally affected. They conclude that traditional software project management strategies

do not provide the flexibility needed for design work. They point out the right blend of

unstructured, exploratory techniques and traditional, normative methods might have been

achieved in Japan. The Japanese “software factories” separate software development into a

research-like (i.e. divergent then convergent) design phase followed by a structured

manufacturing-like phase. While traditional normative process models help managers, they

seem to be less effective at guiding the designers’ activities. One study by Hale [92] found

that about half of the designers’ time could not be attributed to activities prescribed by the

process model they were using.

A few in situ studies have been conducted to determine the effectiveness of traditional

normative process models. For example, Boehm et al. [13] examined prototyping as an

alternative to traditional, top-down, design methods. They conclude that prototyping yields

smaller, easier to use, programs with less effort but the discipline of traditional methods yields

more robust, coherent, and maintainable software designs. They conclude that both

prototyping and structured methods have their place in software design.

3 . 4 . 3 . Practical software design methods

Although formal and informal design methods address the problems of software design in

different ways, in practice they often have influenced each other. Practitioners recognize the

strengths and weaknesses of each style of designing and create a blend of methods that best

55

serves their needs. For example, incremental prototyping may provide the methodological

framework for a real-time software project in which formal methods are embedded to ensure

correctness of critical parts of the design. Empirical methods may be used early in the design

of interactive software, giving way to an artificial intelligence approach as the design

progresses towards implementation of an expert system or knowledge base. Data driven

design demonstrates that early empirical work, in this case the observation of data flows within

a real-life business process, can serve as a precursor to a structured top-down design [195].

Highly prescriptive process models, like SSADM [80], now sanction exploratory techniques

like prototyping. Structured design documentation is sometimes produced at the end of an

ad-hoc design process [163].

In trying to find a balance between formal and exploratory software design methods, software

design methodologists have tried to combine the two approaches. For example, various

researchers and practitioners use rigorous prototyping methods in an attempt to combine the

flexibility of iterative techniques with the discipline of structured techniques. Davis [55]

advocates “operational prototyping” where prototypes are built to high standards using

rigorous methods. Each prototype implements well understood functionality and is used to

uncover requirements that may have been missed. The prototypes are “operational” in the

sense that they evolve until all new requirements are met at which time the “prototype”

becomes the final product. Zave [226] discusses “operational specification” wherein formal

specifications modeling the problem are created using executable languages. The

specifications are exercised as prototypes against the known requirements in an attempt to

discover weaknesses and omissions. Finally, the specifications are transformed into a running

program implemented using a “real” programming language running on a “real” system.

In practice, the specification language is not executed, it is only used in scenario elucidation

and use-case development. For example, the data-decomposition oriented techniques and

notations of Jackson System Development have been used as operational specifications [26].

Luqi [130] also presents a more formal specification based prototyping technique whose

rigor allows it to be better supported by automated tools.

Another example of combining formal and informal methods involves a formal approach to

scenario analysis proposed by Hsia et al. [102]. Their approach tries to retain the user and

application domain focus of scenarios while introducing a systematic way to analyze,

generate, and validate the scenarios. The goal is to provide a disciplined approach to avoid

incomplete or missing requirements. Their approach systematizes scenarios by creating a

decision tree representation of the events that comprise a use-case. The trees are converted to

a corresponding formal grammar and state machine. The grammar and state machine are

56

used to validate the use-case for consistency and completeness and to generate particular

instances, or scenarios (i.e. particular sequences of events that conform to the various

representations of the use-case). Designers can use the scenarios in normal design discourse

or to automatically generate prototypes and acceptance test plans.

For Hsia et al., the generation of scenarios depends on user involvement and designer

interpretation of user needs. Once generated, the scenarios can be analyzed using formal

techniques. Edmonds et al. [65] provide another example of augmenting interpretive

processes using more formal methods. They use pattern recognition techniques from artificial

intelligence to support, but not replace, interpretive design activities. Case based reasoning

[184] tries to capture design experience in a more formal way by using persistent scenarios,

or “cases”, that are matched against the design problem at hand. These approaches are

representative of a number of AI-based tools for design support [75] [114].

In their discussion of formal specification methods, Duke and Harrison [64] note that even

formal, structured, top-down specifications can be developed using exploratory methods.

Formalizing the output of exploratory methods illuminates important hidden issues and

highlights questions that may have not been properly considered early on. These questions

may then be answered by another round of exploration. Parnas and Clements [163] also

discuss the presentation of exploratory results using more traditional structured

documentation methods. They believe that such an approach is a good compromise between

the conflicting needs of the project managers and software designers. Booch [16] advocates a

process model characterized by reconciling “macro” and “micro” processes. The macro

process is very similar to the traditional waterfall and serves as a controlling framework for

the micro process. The macro process is used by project managers and outsiders to gauge the

progress of the project. The micro process is an ongoing, iterative, and incremental

development process. It is used by software designers who utilize informal development

methods on a day-to-day basis.

Object-oriented models seem to provide a blend of exploratory and formal techniques that

appear to be useful in practice [15] [179] [190] [106] . Proponents of object-oriented design

argue that one of its strengths is how it reflects ways of thinking that are more “natural”

[15]. The methods work, it is claimed, because they complement designers’ ways of thinking.

Furthermore, one of the strengths of object-oriented methods is their ability to smooth the

transition from initial conceptual models of the world to formalized models (i.e. executable

programs) that are amenable to computation. There is a natural harmony between

exploratory design, which very often takes place in the application or real-world domain, and

57

object-oriented design methods, which often begin by identifying relevant domain-level

objects.

Use-cases provide structure to object-oriented design decomposition. Scenarios are used to

“drive” the discovery of objects in both the application domain and the implementation

domain. The clear relationship between domain and implementation objects facilitate Kant

and Newell’s [115] “insight” mechanisms. In addition, the principles behind object-

orientation – modularity, abstraction, encapsulation, reuse – have firm theoretical foundations

[71].

Object-oriented design provides a vocabulary for communication between designers and

users in cooperative design episodes. Booch [15] notes that object diagrams, used extensively

in object-oriented software design, have also been used independently in fields as diverse as

astronomy and banking. Object-oriented design facilitates many interpretive methods, such as

CRC cards, design patterns, and scenarios. Objects are often anthropomorphized during

dialogical exchanges in design sessions. They provide a way for designers to “listen” to the

design by imagining themselves to be the objects. The design-a-bit, implement-a-bit strategy

that is often employed in object-oriented design echoes the iterative, opportunistic nature of

software design. Object-oriented design methods are one of the few places that acknowledge

the exploratory nature of software design [218].

Critics of object-oriented methods have mentioned that such methods lack a discipline

necessary for large-scale software design [224]. Recent work by Jacobson [107], Booch [16],

and Rumbaugh et al. [179] have tried to show how object-oriented methods can be integrated

into full-featured process models. Indeed, the methods proposed by these authors seem to be

converging toward a standard for object-oriented software development. They hope such a

standard will retain the exploratory nature of software design while providing the discipline

needed to properly manage the overall process of software development.

Only time will tell if such a standard will successfully unite formal and structured methods

with informal and exploratory methods. Meanwhile, software design practice and software

engineering research continue to refine established design methods and discover new ways of

designing software. Since designing software is an activity ultimately limited only by human

imagination, it is likely that it will never be “easy.” However, software design methods and

tools can enable designers to reliably develop new kinds of software in important application

domains. When these methods and tools are based on a sound theoretical understanding of

human nature and thought, they have the potential to vastly elevate the productivity and

quality of software designers.

58

59

References

[1] Adelson, B. and Soloway, E., “The role of domain experience in software design,”

IEEE Transactions on Software Engineering, vol. 11, no. 11, 1351-1360, Nov. 1985.

[2] Agresti, W.W., “The Conventional Software Life-cycle Model: Its Evolution and

Assumptions,” in New Paradigms for Software Development, Agresti, W.W., Ed.

IEEE Computer Society Press, 1986.

[3] Alavi, M., “An Assessment of the Prototyping Approach to Information Systems

Development,” Communications of the ACM, vol. 27, no. 6, 556-563, Jun. 1984.

[4] Alexander, C., Notes on the Synthesis of Form. Cambridge, Mass.: Harvard University

Press, 1964.

[5] Alexander, C. and Poyner, B., “The atoms of environmental structure,” in

Developments in Design Methodology, Cross, N., Ed. John Wiley & Sons, 1984, chap.

2.2, pp. 123-133.

[6] Archer, L.B., “Systematic method for designers,” in Developments in Design

Methodology , Cross, N., Ed. John Wiley & Sons, 1984, chap. 1.3, pp. 57-82,

Originally published by The Design Council, London (1965).

[7] Avizienis, A., “The N-version approach to fault-tolerant software,” I E E E

Transactions on Software Engineering, vol. 11, no. 12, 1491-1501, Dec. 1985.

[8] Bauer, F.L., “From Specifications to Machine Code: Program Construction through

Formal Reasoning,” in Proc. 6th International Conference on Software Engineering,

IEEE, 1982, pp. 84-91.

[9] Beck, K. and Cunningham, W., “A Laboratory For Teaching Object-Oriented

Thinking,” in Proceedings of Object-Oriented Programming Systems, Languages,

and Applications, 1989, pp. 1-6.

[10] Beck, K., “CRC: Finding objects the easy way,” Object Magazine, vol. 3, no. 4, 42-

44, Nov./Dec. 1993.

[11] Bly, S.A., Harrison, S.R., and Irwin, S., “Media Spaces: Video, Audio, and

Computing,” Communications of the ACM, vol. 36, no. 1, 28-47, Jan. 1993.

60

[12] Boehm, B.W., “Software Engineering,” IEEE Transactions on Computers, vol. C-25,

no. 12, 1226-1241, Dec. 1976.

[13] Boehm, B., Gray, T.E., and Seewaldt, T., “Prototyping vs. Specifying: A Multiproject

Experiment,” IEEE Transactions on Software Engineering, vol. SE-10, no. 3, 290-

302, 1984.

[14] Boehm, B.W., “A spiral model of software development and enhancement,” ACM

SIGSoft Software Engineering Notes, vol. 11, no. 4, 14-23, 1986.

[15] Booch, G., Object-Oriented Analysis and Design with Applications.

Benjamin/Cummings, 1994.

[16] Booch, G., Object Solutions: Managing the Object-Oriented Project. Menlo Park,

CA: Addison-Wesley, 1996.

[17] Bradley, G., “Control vs. Creativity: Software Engineering at a Crossroads,” in

Human Aspects in Computing: Design and Use of Interactive Systems and Work with

Terminals, Bullinger, H.J., 1991, pp. 561-565.

[18] Branson, M. and Herness, E., “The object-oriented development process,” Object

Magazine, vol. 3, no. 4, 66-70, Nov. 1993.

[19] Broadbent, G., “Design and theory building,” in Developments in Design

Methodology, Cross, N., Ed. John Wiley & Sons, 1984, chap. 4.3, pp. 277-290.

[20] Brooke, J., “Usability, Change, Adaptable Systems and Community Computing,” in

Human Aspects in Computing: Design and Use of Interactive Systems and

Information Management, 1991, pp. 1093-1097.

[21] Brooks, F.P., The Mythical Man-Month. Addison-Wesley, 1975.

[22] Brown, J.S. and Newman, S.E., “Issues in Cognitive and Social Ergonomics: From

Our House to Bauhaus,” Human-Computer Interaction, vol. 1, 359-391, 1985.

[23] Bruner, J., Goodnow, J., and Austin, G., A study of thinking. New Brunswick, NJ:

Transaction Books, 1986.

[24] Bucciarelli, L.L., “An ethnographic perspective on engineering design,” Design

Studies, vol. 9, no. 3, 159-168, 1988.

[25] Burnham, D., The Rise of the Computer State. Random House, 1982.

61

[26] Cameron, J.R., “An overview of JSD,” IEEE Transactions on Software Engineering,

vol. SE-12, no. 2, 222-240, Feb. 1986.

[27] Carroll, J.M., Thomas, J.C., and Malhotra, A., “Clinical-experimental analysis of

design problem solving,” Design Studies, vol. 1, no. 2, 84-92, 1979.

[28] Carroll, J.M. and Kellogg, W.A., “Artifacts as theory-nexus: hermeneutics meets

theory-based design,” in CHI Proceedings, 1989, pp. 7-14.

[29] Carroll, J.M. and Rosson, M.B., “Human-Computer Interaction Scenarios as a Design

Representation,” in Proceedings of the Hawaii International Conference on System

Sciences (HICSS), 1990, pp. 555-561.

[30] Carroll, J.M., Scenario-Based Design: Envisioning Work and Technology in System

Development. John Wiley & Sons, 1996.

[31] Chapanis, A., Man-Machine Engineering, Behavioral science in industry series.

Belmont, California: Wadsworth, 1965.

[32] Clement, A. and den Besselaur, P.V., “A Retrospective Look at PD Projects,”

Communications of the ACM, vol. 36, no. 4, 29-37, Jun. 1993.

[33] Coad, P., “Object-Oriented Patterns,” Communications of the ACM, vol. 35, no. 9,

152-159, Sep. 1992.

[34] Cohill, A.M., “Information architecture and the design process,” in Taking Software

Design Seriously, Karat, J., Ed. Academic Press, 1991, chap. 5, pp. 95-113.

[35] Brooks, F.P., “No silver bullet: essence and accidents of software engineering,” IEEE

Computer, vol. 20, no. 4, 10-19, Apr. 1987.

[36] SIGOIS Bulletin: Workshop on software architectures for cooperative systems,

Benford, S., Johnson, P., Rodden, T., Dix, A., and Kaplan, S., ACM Press, ACM�Special

Interest Group on Office Information Systems, Apr. 1995.

[37] Buie, S., Private communication.

[38] Coplien, J.O., “Examining the Software Development Process,” Dr. Dobb's Journal,

vol. 19, no. 11, 88-97, Oct. 1994.

[39] Pattern Languages of Program Design, Coplien, J.O. and Schmidt, D.C. (eds),

Addison-Wesley, 1995.

62

[40] Le Corbusier, Towards a New Architecture. London: Architectural Press, 1946.

[41] Coyne, R. and Snodgrass, A., “Is designing mysterious? Challenging the dual

knowledge thesis,” Design Studies, vol. 12, no. 3, 124-131, 1991.

[42] Coyne, R., “Computers and praxis: How the theoretical is giving way to the pragmatic

in computer systems design,” Jul. 1993, Department of Architectural and Design

Science, Universit of Sydney.

[43] Cross, N., Naughton, J., and Walker, D., “Design method and scientific method,” in

Design: Science: Method. Proceedings of the 1980 Design Research Society

Conference, 1980, pp. 18-29.

[44] Developments in Design Methodology, Cross, N. (ed). John Wiley & Sons, 1984.

[45] Cross, N., “Designerly ways of knowing,” Design Studies, vol. 3, no. 4, 221-227,

1984.

[46] Cunningham, W., Private communication.

[47] Curtis, B., “Measurement and Experimentation in Software Engineering,”

Proceedings of the IEEE, vol. 68, no. 9, 1144-1157, 1980.

[48] Curtis, B., Krasner, H., Shen, V., and Iscoe, N., “On building software process models

under the lamppost,” in IEEE International Conference on Software Engineering,

vol. 91987, pp. 96-103.

[49] Curtis, B., Krasner, H., and Iscoe, N., “A field study of the software design process for

large systems,” Communications of the ACM, vol. 31, no. 11, 1268-1287, 1988.

[50] Curtis, B., “...But You Have to Understand, This Isn't the Way We Develop Software at

Our Company,” Tech. Rep., MCC Technical Report, STP-203-89, 1989.

[51] Curtis, B., “Empirical Studies of the Software Design Process,” in Human-Computer

Interaction - INTERACT '90, 1990, pp. xxxv-xl.

[52] Dahlbom, B., “The Idea that Reality is Socially Constructed,” in Sof tware

Development and Reality Construction, Floyd, C., Züllighoven, H., Budde, R., and

Keil-Slawik, R., Eds. Berlin Heidelberg: Springer-Verlag, 1992, chap. 3.3, pp. 101-

126.

63

[53] Darke, J., “The primary generator and the design process,” Design Studies, vol. 1,

no. 1, 36-44, 1979.

[54] Dasgupta, S., “The structure of design processes,” in Advances in Computers, Yovits,

M.C., Ed. Academic Press, 1989, pp. 1-67.

[55] Davis, A.M., “Operational prototyping: a new development approach,” IEEE

Software, vol. 9, no. 5, 70-78, Sep. 1992.

[56] of Defense, U.S.D., Defense System Software Development, DOD-STD-2167, Jun.

1985.

[57] DeGrace, P. and Hulet-Stahl, L., Wicked Problems, Righteous Solutions : A Catalogue

of Modern Software Engineering Paradigms. Englewood Cliffs, New Jersey: Yourdon

Press, 1990.

[58] DeMarco, T., Structured Analysis and System Specification. New York, NY: Prentice-

Hall, 1979.

[59] Task analysis for human-computer interaction, Diaper, D. (ed). New York, NY:

Halsted Press, 1989.

[60] Dijkstra, E.W., “The Structure of the T.H.E. Multiprogramming System,”

Communications of the ACM, vol. 11, no. 6.

[61] Dijkstra, E.W., A Discipline of Programming. Englewood Cliffs, N.J.: Prentice-Hall,

1976.

[62] Dijkstra, E.W., “Programming Considered as a Human Activity,” in Classics in

Software Engineering, Yourdon, E., Ed. New York, NY: Yourdon Press, 1979.

[63] Dilnot, C., “Transcending science and anti-science in the philosophy of design

method,” in Design: Science: Method. Proceedings of the 1980 Design Research

Society Conference, 1980, pp. 112-116.

[64] Duke, D.J. and Harrison, M.D., “FSM: Overview and Worked Examples,” Tech. Rep.,

1995, Amodeus-2 Technical Report SM/WP44. Filename: sm_wp44.rtf.

[65] Edmonds, E.A., Candy, L., Jones, R., and Soufi, B., “Support for Collaborative

Design: Agents and Emergence,” Communications of the ACM, vol. 37, no. 7, 41-47,

Jul. 1994.

64

[66] Eekels, J. and Roozenburg, N.F.M., “A methodological comparison of the structures

of scientific research and engineering design: their similarities and differences,”

Design Studies, vol. 12, no. 4, 197-203, 1991.

[67] Elrod, S., Hall, G., Constanza, R., Dixon, M., and Rivieres, J.D., “Responsive Offic

Environments,” Communications of the ACM, vol. 36, no. 7, 84-85, Jul. 1993.

[68] Engineering, T.B., “Software Methodology Catalog,” Tech. Rep., Tinton Falls, N.J.,

MC87-COMM/ADP-0036, Oct. 1987.

[69] Erickson, T., “Methods and Tools: Design as Storytelling,” Interactions, vol. 3, no. 4,

30-35, Jul. 1996.

[70] Feyerabend, P., Against Method. London: Verso, 1975.

[71] Fichman, R.G. and Kemerer, C.F., “Object-oriented and conventional analysis and

design methods - comparison and critique,” IEEE Computer, 22–39, Oct. 1992.

[72] Freeman, P., “The nature of design,” in Tutorial on Software Design Techniques,

Freeman, P. and Wasserman, A.I., Eds. IEEE, 1980, pp. 46-53.

[73] Futatsugi, K., Goguen, J.A., Jouannaud, J.P., and Meseguer, J., “Principles of OBJ2,”

in Proc. 12th ACM Symp. on Principles of Programming Languages, New Orleans,

1985, pp. 52-66.

[74] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.

[75] Artificial Intelligence in Design: Workshop Preprints, Twelfth IJCAI, Gero, J.S. and

Sudweeks, F., University�of Sydney, 1991.

[76] Giddings, R.V., “Accomodating Uncertainty in Software Design,” Communications

of the ACM, vol. 27, no. 5, 428-434, 1984.

[77] Glanville, R., “Why design research?,” in Design: Science: Method. Proceedings of

the 1980 Design Research Society Conference, 1980, pp. 86-94.

[78] Goel, V. and Pirolli, P., “The structure of design problem spaces,” Cognitive Science,

vol. 16, 395-429, 1992.

[79] Gomoll, K., “Some techniques for observing users,” in The Art of Human-Computer

Interface Design, Laurel, B., Ed. Addison-Wesley, 1990, pp. 85-90.

65

[80] Goodland, M. and Slater, C., SSADM Version 4 - A Practical Approach. McGraw

Hill, 1995.

[81] Gordon, V.S. and Bieman, J.M., “Rapid Prototyping: Lessons Learned,” IEEE

Software, vol. 12, no. 1.

[82] Design At Work: Cooperative Design of Computer Systems, Greenbaum, J. and Kyng,

M. (eds). Lawrence Erlbaum Associates, 1991.

[83] Greenbaum, J. and Kyng, M., “Introduction: SItuated Design,” in Design at Work,

Greenbaum, J. and Kyng, M., Eds. Hillsdale, NJ: Lawrence Erlbaum Associates, 1991.

[84] The Design Method, Gregory, S.A. (ed), . Butterworths, 1966.

[85] Gries, D.G., The Science of Programming. Berlin: Springer-Verlag, 1981.

[86] Guindon, R., Krasner, H., and Curtis, B., “Breakdowns and processes during the early

activities of software design by professionals,” in Empirical Studies of Programmers

: Second Workshop, Olson, G.M., Sheppard, S., and Soloway, E., Eds. Ablex, 1987,

chap. 5, pp. 65-82.

[87] Guindon, R. and Curtis, B., “Control of cognitive processes during software design:

What tools are needed?,” in CHI Proceedings, 1988, pp. 263-268.

[88] Guindon, R., “Designing the design process: exploiting opportunistic thoughts,”

Human-Computer Interaction, vol. 5, 305-344, 1990.

[89] Guttag, J.V., “Abstract data types and the development of data structures,”

Communications of the ACM, vol. 20, no. 6, 396-405, 1977.

[90] Guttag, J.V., Horning, J.J., and Wing, J.M., “The Larch family of specification

languages,” IEEE Software, vol. 2, no. 5, 24-36, 1985.

[91] Hacker, W., “Designing the designer's tasks: participative analysis and evaluation of

software development tasks,” in Work with Computers: Organizational,

Management, Stress and Health Aspects, 1989, pp. 163-168.

[92] Hales, C., “Analysis of the Engineering Design Process in an Industrial Context,”

Ph.D. thesis, University of Cambridge, 1987.

[93] Harrison, S. and Minneman, S., “The Media Space: a research project into the use of

video as a design medium,” Tech. Rep., Xerox-Parc, 1990.

66

[94] Hayes-Roth, B. and Hayes-Roth, F., “A cognitive model of planning,” Cognitive

Science, vol. 3, 275-310, 1979.

[95] Specification Case Studies, Hayes, I. (ed). London: Prentice-Hall, 1987.

[96] Heidegger, M., Being and Time. Oxford, England: Basil Blackwell, 1962.

[97] Hillier, B., Musgrove, J., and O'Sullivan, P., “Knowledge and Design,” in

Environmental Psychology: People and Their Physical Settings, Proshansky, H.M.,

Ittelson, W.H., and Rivlin, L.G., Eds. Holt, Rinehart and Winston, 1976, chap. 6, pp.

69-83.

[98] Hoare, C.A.R., The Mathematics of Programming, Inaug. Lect., University of Oxford.

Clarendon Press, Oxford.

[99] Hoare, C.A.R., “An axiomatic basis for computer programming,” Communications

of the ACM, vol. 12, no. 10, 576-583, 1969.

[100] Hoare, C.A.R., “Programming: Sorcery or Science?,” IEEE Software, 5-16, Apr.

1984.

[101] Hoover, S.P. and Rinderle, J.R., “Models and abstractions in design,” Design Studies,

vol. 12, no. 4, 237-245, 1991.

[102] Hsia, P., Samuel, J., Gao, J., Kung, D., Toyoshima, Y., and Chen, C., “Formal

Approach to Scenario Analysis,” IEEE Software, 33-41, Mar. 1994.

[103] Humphrey, W.S., “Characterizing the Software Process: A Maturity Framework,”

IEEE Software, vol. 5, no. 2, 73-79, Mar. 1988.

[104] Humphrey, W.S., Managing the Software Process. Addison-Wesley, 1989.

[105] Jackson, M., Principles of Program Design. London: Academic Press, 1975.

[106] Jacobson, I., Christerson, M., Jonsson, P., and Övergaard, G., Object-Oriented Software

Engineering : A Use Case Driven Approach. Addison-Wesley, 1992.

[107] Jacobson, I., “Is object technology software's industrial platform?,” IEEE Software,

vol. 10, no. 1, 24-30, Jan. 1993.

67

[108] Jeffries, R., Turner, A.A., Polson, P., and Atwood, M.E., “The processes involved in

designing software,” in Cognitive Skills and Their Acquisition, Anderson, J.R., Ed.

Lawrence Erlbaum Associates, 1981, pp. 255-283.

[109] Johnson, D.G. and Nissenbaum, H., Computer Ethics and Social Values. Prentice

Hall, 1995.

[110] Jones, J.C., Design Methods: Seeds of Human Futures. John Wiley & Sons, Wiley-

Interscience, 1980.

[111] Jones, J.C., Essays in Design. New York, NY: John Wiley, 1984.

[112] Jones, C.B., Systematic Software Development using VDM. London: Prentice-Hall,

1986.

[113] Case Studies in Systematic Software Development, Jones, C.B. and Shaw, R.C.F. (eds).

Englewood Cliffs, N. J.: Prentice-Hall, 1990.

[114] Jones, R.M. and Edmonds, E.A., “A framework for negotiation,” in CSCW and

Artificial Intelligence, Connolly, J. and Edmonds, E.A., Eds. London: Springer-

Verlag, 1994, pp. 13-22.

[115] Kant, E. and Newell, A., “Problem Solving Techniques for the Design of

Algorithms,” Information Processing and Management, vol. 28, no. 1, 97-118, 1984.

[116] Kaplan, S.M., “ConversationBuilder: An Open Architecture for Collaborative Work,”

in Human-Computer Interaction - INTERACT '90, 1990, pp. 917-922.

[117] Kaplan, S.M., “Flexible, Active Support for Collaborative Work with

ConversationBuilder,” in Proceedings of the 1992 Conference on Computer-

Supported Cooperative Work: Sharing Perspective, Toronto, 1992.

[118] Kaplan, S., “Space as a Basis for Collaborative Systems,” SIGOIS Bulletin, vol. 15,

no. 3, 21-22, Apr. 1995.

[119] Kapor, M., “A Software Design Manifesto,” Dr. Dobb's Journal, vol. 16, no. 1, 62-

67, Jan. 1991.

[120] Karat, J. and Bennett, J., “Supporting effective and efficient design meetings,” in

Human-Computer Interaction - INTERACT '90, 1990, pp. 365-370.

68

[121] Karat, J. and Bennett, J.L., “Using scenarios in design meetings - a case study

example,” in Taking Software Design Seriously, Karat, J., Ed. Academic Press, 1991,

chap. 4, pp. 63-94.

[122] Kay, A., Doing With Images Makes Symbols: Communicating with Computers, Video

- Stanford University Video Communications, Oct. 1987.

[123] Kidder, T., The Soul of a New Machine. Avon Books, 1982.

[124] Kling, R., Computerization and Controversy: Value Conflicts and Social Choices, 2.

Academic Press, 1996.

[125] Krasner, H., Curtis, B., and Iscoe, N., “Communication breakdowns and boundary

spanning activities on large programming projects,” in Empirical Studies of

Programmers : Second Workshop, Olson, G.M., Sheppard, S., and Soloway, E., Eds.

Ablex, 1987, chap. 4, pp. 47-64.

[126] Krueger, M.W., “Environmental Technology: Making the Real World Virtual,”

Communications of the ACM, vol. 36, no. 7, 36-37, Jul. 1993.

[127] Kuhn, T.S., The Structure of Scientific Revolutions, 2. University of Chicago Press,

1970.

[128] Kuhn, S. and Muller, M.J., “Participatory Design,” Communications of the ACM, vol.

36, no. 4, 24-28, Jun. 1993.

[129] Kwiatkowska, B., “A Communication Model for the Software Systems Development

Process - a Unifying Approach,” Master’s thesis, University of Alberta, 1991.

[130] L., L., “System Engineering and Computer-Aided Prototyping,” Journal of Systems

Integration, vol. 6, no. 1, 15-17, 1996.

[131] Labourvie-Vief, G., “Intelligence and Cognition,” in Handbook of the Psychology

of Aging, Birren, J.E. and Schaie, K.W., Eds. Van Nostrand Reinhold, 1985, pp. 500-

530.

[132] Lakoff, G. and Johnson, M., Metaphors We Live By. Chicago: University of Chicago

Press, 1980.

[133] Lammers, S., Programmers at Work. Microsoft Press, 1986.

69

[134] Lantz, K.E., The Prototyping Methodology. Englewood Cliffs, NJ: Prentice Hall, Inc.,

1987.

[135] Larsen, P.G., Fitzgerald, J., and Brookes, T., “Applying Formal Specification in

Industry,” IEEE Software, vol. 13, no. 3, 48-56, 1996, World Wide Web page at

http://www.computer.org/pubs/software/abs96.htm.

[136] Lawson, B., How Designers Think. The Architectural Press Ltd.: London, 1980.

[137] Lee, M.M., “Object-oriented analysis in large-scale projects,” Object Magazine, vol.

4, no. 3, 45-49, Nov. 1993.

[138] Lewis, D., “Scorekeeping in a language game,” J. Philos. Logic, vol. 8, 339-359,

1979.

[139] Lyytinen, K., “Different perspectives on information systems: problems and

solutions,” ACM Computing Surveys, vol. 19, no. 1, 5-46, 1987.

[140] Maccoby, M., “The Innovative Mind at Work,” IEEE Spectrum, vol. 28, no. 12.

[141] MacDonald, S., Private communiction.

[142] MacLean, A., Bellotti, V., and Young, R., “What rationale is there in design?,” in

Human-Computer Interaction - INTERACT '90, 1990, pp. 207-212.

[143] March, L., “The logic of design,” in Developments in Design Methodology, Cross,

N., Ed. John Wiley & Sons, 1984, chap. 4.2, pp. 265-276.

[144] McCracken, D.D. and Jackson, M.A., “A Minority Dissenting Position,” in Systems

Analysis and Design – A Foundation for the 1980's, Cotterman, W.W., Ed. Elsevier

Science Publishing Co., Inc., 1981, pp. 551-553.

[145] Medawar, P.B., Plato's Republic. Oxford, England: Oxford University Press, 1982.

[146] Meyer, B., “On Formalism in Specifications,” IEEE Software, 6-26, Jan. 1985.

[147] Meyer, B., Object-oriented Software Construction. Prentice-Hall, 1988.

[148] Miller, R.B., “A method for man-machine task analysis,” Tech. Rep., WADC

Technical report, 53-137, 1953.

[149] Mills, H.D., Dyer, M., and Linger, R.C., “Cleanroom Software Engineering,” IEEE

Software, vol. 4, no. 5, 19-24, Sep. 1987.

70

[150] Minneman, S.L., “The Social Construction of a Technical Reality: Empirical Studies

of Group Engineering Design Practice,” Ph.D. thesis, Stanford University, 1991.

[151] Minsky, M. and Riecken, D., “A Conversation with Marvin Minsky About Agents,”

Communications of the ACM, vol. 37, no. 7, 22-29, Jul. 1994.

[152] Mostow, J., “Toward better models of the design process,” AI Magazine, vol. 6, no. 1,

44-57, Spring 1985.

[153] Naur, P., “Programming as theory building,” Microprocess ing and

Microprogramming, vol. 15, 253-261, 1985.

[154] Neumann, P.G., Inside Risks, Regular column in Communications of the ACM.

[155] Nielsen, J., “Usability engineering at a discount,” in Designing and Using Human-

Computer Interfaces and Knowledge Based Systems, 1989, pp. 394-401.

[156] Usability Inspection Methods, Nielsen, J. and Mack, R.L. (eds). New: John Wiley &

Sons, 1995.

[157] User centered system design – New perspectives on human computer interaction,

Norman, D.A. and Draper, S.W. (eds). Hillsdale, N.J.: Lawrence Erlbaum Associates,

1986.

[158] von Oech, R., A Whack On The Side Of The Head. Warner Books, 1983.

[159] Empirical Studies of Programmers : Second Workshop, Olson, G.M., Sheppard, S.,

and Soloway, E., Ablex, Norwood, NJ, 1987.

[160] Oz, E., “When Professional Standards are Lax: The CONFIRM Failure and its

Lessons,” Communications of the ACM, vol. 37, no. 10, 29-36, Oct. 1994.

[161] Pahl, G. and Beitz, W., Engineering Design. The Design Council, 1984.

[162] Papert, S., Mindstorms: Children, Computers, and Powerful Ideas. New York, NY:

Basic Books, 1980.

[163] Parnas, D.L. and Clements, P.C., “A rational design process: how and why to fake it,”

IEEE Transactions on Software Engineering, vol. 12, no. 2, 251-257, Feb. 1986.

[164] Peters, L., Software Design. New York, NY: Yourdon Press, 1981.

71

[165] Peters, L., “The ‘Chinese Lunch’ syndrome in software engineering education:

causes and remedies,” in IEEE Computer Society Workshop on Software

Engineering Technology Transfer, IEEE�Computer Society, Apr. 1983.

[166] Piaget, J. and Inhelder, B., The Psychology of the Child. New York, NY: Basic Books,

1969.

[167] Popper, K.R., Conjectures and Refutations: The Growth of Scientific Knowledge. New

York, NY: Harper and Row, 1965.

[168] Popper, K.R., The Logic of Scientific Discovery. New York, NY: Harper and Row,

1968.

[169] Pree, W., Design Patterns for Object-Oriented Software Development. New York, NY:

Addison-Wesley, 1995.

[170] Quintas, P., “Software Engineering Policy and Practice: Lessons From the Alvey

Program,” J. Systems Software, vol. 24, 67-88, 1994.

[171] Reddy, M.J., “The Conduit Metaphor - A Case of Frame Conflict in Our Language

about Language,” in Metaphor and Thought, Ortony, A., Ed. Cambridge University

Press, 1979, pp. 284-324.

[172] Rettig, M., “Cooperative Software,” Communications of the ACM, vol. 36, no. 4, 23-

28, Apr. 1993.

[173] Rettig, M., “Prototyping for Tiny Fingers,” Communications of the ACM, vol. 37, no.

4, 21-27, Apr. 1994.

[174] Rittel, H.W.J. and Webber, M.M., “Dilemmas in a general theory of planning,” Policy

Sciences, vol. 4, 155-169, 1973.

[175] Roozenburg, N.F.M. and Cross, N.G., “Models of the design process: integrating

across the disciplines,” Design Studies, vol. 12, no. 4, 215-219, 1991.

[176] Rosson, M.B., Maass, S., and Kellogg, W.A., “The designer as user: building

requirements for design tools from design practice,” Communications of the ACM,

vol. 31, no. 11, 1288-1298, Nov. 1988.

[177] Rowe, P.G., Design Thinking. Cambridge, MA: MIT Press, 1987.

72

[178] Royce, W.W., “Managing the development of large software systems,” in Proc.

WESTCON, Calif., U.S.A., 1970.

[179] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorenson, W., Object-Oriented

Modelling and Design. Englewood Cliffs, New Jersey: Prentice Hall, 1991.

[180] Rybash, J.M., Hoyer, W.J., and Roodin, P.A., Adult Cognition and Aging. Elmsford,

NY: Pergammon Press, 1986.

[181] Rzevski, G., “On the design of a design methodology,” in Design: Science:

Method. Proceedings of the 1980 Design Research Society Conference, 1980, pp. 6-

17.

[182] Schön, D., The Reflective Practitioner : How Professionals Think in Action. Basic

Books, 1983.

[183] Schön, D., “Designing as a reflective conversation with the materials of a design

situation,” Research in Engineering Design, vol. 3, 131-147, 1992.

[184] Schmitt, G.N. and Chen, C.C., “Classes of design - classes of methods - classes of

tools,” Design Studies, vol. 12, no. 4, 246-251, 1991.

[185] Participatory Design: Principles and Practices, Schuler, D. and Namioka, A. (eds).

Hillsdale, N. J.: Lawrence Erlbaum Associates, 1993.

[186] Selby, R.W., Basili, V.R., and Baker, F.T., “Cleanroom Software Development: An

Empirical Evaluation,” IEEE Transactions on Software Engineering, vol. SE-13, no.

9.

[187] Shasha, D. and Lazere, C., Out of Their Minds: The Lives and Discoveries of 15 Great

Computer Scientists. New York , NY: Springer-Verlag, 1995.

[188] Shaw, M., “Toward higher-level abstractions for software systems,” Data and

Knowledge Engineering, vol. 5, 119-128, 1990.

[189] Sherer, S.W., Kouchakdjian, A., and Arnold, P.G., “Experience Using Cleanroom

Software Engineering,” IEEE Software, vol. 13, no. 3, 69-76, 1996, World Wide Web

page at http://www.computer.org/pubs/software/abs96.htm.

[190] Shlaer, S. and Mellor, S., Object Lifecycles: Modeling The World In States. Prentice

Hall, 1991.

73

[191] Simon, H.A., “The structure of ill-structured problems,” Artificial Intelligence, vol. 4,

181-200, 1973.

[192] Simon, H.A., The Sciences of the Artificial, 2 ed.. Boston, Mass.: The MIT Press,

1981.

[193] Snodgrass, A. and Coyne, R., “Is designing hermeneutical?,” Tech. Rep., Sydney,

Australia, 1990.

[194] Snodgrass, A. and Coyne, R., “Models, metaphors and the hermeneutics of

designing,” Design Issues, vol. 9, no. 1, 56-74, 1992.

[195] Sommerville, I., Software Engineering, 3. Addison Wesley, 1989.

[196] Stacey, W. and MacMillan, J., “Cognitive Bias in Software Engineering,”

Communications of the ACM, vol. 38, no. 6, 57-63, Jun. 1995.

[197] Stalnaker, R., “Presuppositions,” J. Philos. Logic, vol. 2, 447-457, 1973.

[198] Stefik, M.J., “Understanding Computers and Cognition: A New Foundation for

Design - Four Reviews and a Response,” Artificial Intelligence, vol. 31, 213-261,

1987.

[199] Stefik, M., Foster, G., Bobrow, D.G., Kahn, K., Lanning, S., and Suchman, L.,

“Beyond the Chalkboard: Computer Support for Collaboration and Problem Solving

in Meetings,” in Computer-Supported Cooperative Work: A Book of Readings, Greif,

I., Ed. Morgan Kaufmann Publishers, Inc., 1988, chap. 13, pp. 335-366.

[200] Stroustrup, B., The C++ Programming Language, 2. Reading, MA: Addison-Wesley,

1991.

[201] Stults, R., “Experimental Uses of Video to Support Design Activities,” Tech. Rep.,

SSL-89-19 [P89-00019], Dec. 1988.

[202] Swartout, W. and Balzer, R., “On the Inevitable Intertwining of Specification and

Implementation,” Communications of the ACM, vol. 25, no. 7, 438-440, Jul. 1982.

[203] Thomas, J.C. and Carroll, J.M., “The psychological study of design,” Design Studies,

vol. 1, no. 1, 5-11, 1979.

[204] Building for People, 1965 Conference Report, UK�Ministry of Public Building and

Works, London, 1965.

74

[205] Ullman, D.G., “The status of design theory in the United States,” Design Studies, vol.

12, no. 4, 204-207, 1991.

[206] Wagner, I., “A Web of Fuzzy Problems: Confronting the Ethical Issues,”

Communications of the ACM, vol. 36, no. 4, 94-101, Jun. 1993.

[207] Wallace, L., Private communication.

[208] Walz, D.B., Elam, J.J., Krasner, H., and Curtis, B., “A methodology for studying

software design teams: an investigation of conflict behaviors in the requirements

definition phase,” in Empirical Studies of Programmers : Second Workshop, Olson,

G.M., Sheppard, S., and Soloway, E., Eds. Ablex, 1987, chap. 6, pp. 83-99.

[209] Warnier, J.D., Logical Construction of Programs. New York, NY: Van Nostrand

Reinhold, 1977.

[210] Weiser, M., “The Computer for the 21st Century,” Scientific American, vol. 265, no.

3, 94-104, Sep. 1991.

[211] Wiener, L., Digital Woes: Why We Should Not Depend on Software. Addison-Wesley,

1993.

[212] Wilkinson, N.M., Using CRC Cards: An Informal Approach to Object-Oriented

Development. New York, NY: SIGS Publication, Inc., 1995.

[213] Willem, R.A., “Design and science,” Design Studies, vol. 11, no. 1, 43-47, 1990.

[214] Willem, R.A., “Varieties of design,” Design Studies, vol. 12, no. 3, 132-136, 1991.

[215] Winograd, T. and Flores, F., Understanding Computers and Cognition. Ablex, 1986.

[216] Winograd, T., “From Programming Environments to Environments for Designing,”

Communications of the ACM, vol. 38, no. 6, 65-74, Jun. 1995.

[217] Winograd, T., Bringing Design to Software. Addison-Wesley, 1996.

[218] Wirfs-Brock, R. and Wilkerson, B., “Object-Oriented Design: A Responsibility-Driven

Approach,” in Proceedings of Object-Oriented Programming Systems, Languages,

and Applications, 1989, pp. 71-75.

[219] Wirfs-Brock, R., Wilkerson, B., and Wiener, L., Designing Object-Oriented Software.

Prentice Hall, 1990.

75

[220] Wirth, N., “Program Development by Stepwise Refinement,” Communications of the

ACM, vol. 14, no. 4.

[221] Wittgenstein, L., Philosophical Investigations. New York, NY: MacMillan, 1958.

[222] Yau, S. and Tsai, J., “A Survey of Software Design Techniques,” IEEE Transactions

on Software Engineering, vol. SE-12, no. 6.

[223] Yourdon, E. and Constantine, L.L., Structured Design. Prentice-Hall, 1979.

[224] Yourdon, E., “Object-Oriented Observations,” American Programmer, vol. 2, no. 7-8,

3-7, Summer 1989.

[225] Yourdon, E., “When Good Enough Is Best,” Byte Magazine, vol. 21, no. 9, 85-90,

Sep. 1996.

[226] Zave, P., “The Operational versus the Conventional Approach to Software

Development,” Communications of the ACM, vol. 27, no. 2, 104-118, Feb. 1984.

[227] Zeng, Y. and Cheng, G.D., “On the logic of design,” Design Studies, vol. 12, no. 3,

137-141, 1991.

[228] comp.risks USENET Newsgroup.

