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ABSTRACT 

Among different freeway traffic control strategies, Variable Speed Limit 

(VSL) shows its excellence in terms of control scale, technical feasibility and the 

capability of improving driving environment and traffic throughput. The Model 

Predictive Control (MPC) based VSL method provides a close form control loop 

enabling optimized variable speed limit value. The MPC-VSL control system 

relies heavily on a stable real time data source, an accurate traffic state prediction 

model and timely feedback from field implementation. The Vehicle Detection 

Stations (VDS) system is responsible for providing real time traffic flow related 

data. Most of the time VDS system works well, however, there are occasions 

when one set of loop lost data due to hardware failure, and this thesis provides 

imputation algorithm for missing data. The macroscopic traffic state prediction 

model in MPC-VSL control scheme is the modified METANET model. The 

feasibility of modifying one critical term in the original METANET model, 

namely “desire speed”, is tested in this thesis with different weather conditions 

using real field weather and loop detector data. The last part of thesis will be 

evolutional analysis of VSL field test that was conducted on Whitemud Drive, 

Edmonton from August 13 to September 4 of 2015, borrowing the concept of time 

domain analysis scheme and system robustness analytical tool.
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CHAPTER 1. INTRODUCTION 

This chapter presents the background of model predictive control based 

variable speed limit including its data source, algorithm and implementation. In 

this part, the author will also describe the research motivation, research 

objectives and the structure of this thesis. 

1.1 Background 

Variable Speed Limit (VSL) is one of the main control methods in Active Traffic 

Management (ATM). Other control methods include ramp metering and route 

guidance. The design and implementation of VSL has close relationship with the 

development of Intelligent Transportation Systems (ITS). The new technologies 

support VSL to be efficient and reliable traffic control method for the following 

reasons: 1) Various sources of data enhance each other, such as data fusion of 

loop detector data, probe vehicle data, connected vehicle GPS data, etc. Those 

data technologies set human free and make data stream real time. 2) The 

development of computer software makes it easier to simulate various conditions 

before implementation. 3) The network of road facilities, vehicles and traffic 

management center enables the implementation of large scale VSL control.  

The philosophy of VSL is that it adjusts the speed limit of certain 

segments of freeways on the near upstream of congestion prone locations. The 

decision of VSL values can be made based on past experience, feedback of 

current traffic states, and model predicted future traffic states. The prediction 

based VSL strategy is thought to have the following advantages over the former 
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two simple strategies: 1) The MPC-VSL includes an independent set of traffic 

flow model that is able to make relatively accurate short term traffic state 

prediction that is theoretically possible to prevent worse traffic condition from 

happening. 2) Based on prediction result, there is an optimized VSL decision that 

considers objective functions. 3) There is possibility that some components of 

system can be replaced such as prediction model or optimizer without changing 

the scheme of MPC-VSL control.  

1.2 Problem Statement and Research Motivation 

Since the MPC-VSL been proposed and simulated in VISSIM software, the 

reliability of this system has never been tested in real world. There are several 

vulnerable components in this system that can be bottleneck of the successfulness 

of VSL field implementation.  

 The first vulnerable point is the reliability of data source. Currently the 

system rely solely on duel loop detector data from field VDS and the loop 

detectors sometimes lost one lane data for more than one day, and the major 

reason is hardware failure. If human engineering cannot fix hardware problem 

timely, an imputation method is required. The second vulnerable point is the 

performance of prediction model in the system. Its accuracy significantly impact 

the decision result. 

Since the 4-week VSL pilot field test was conducted in Edmonton, the 

problems listed above seem to be more urgent to be solved. The traffic data during 

test days, either field collected data or predicted data within the system is precious 
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for analysing and evaluation of this MPC-VSL system. The VSL field test is a 

good trigger for me to look into every detail of this control system, from loop 

detector database, prediction algorithm and field performance. 

1.3 Research Objectives 

This thesis looks into the problematic points of MPC-VSL system with 

three angles. There are three specific goals of this thesis: 

1) Developing online loop detector data missing diagnose and 

imputation method for potential use. 

2) Testing the prediction performance of METANET model with 

modification of one critical term. The case study is introducing 

weather factors into this term to improve METANET prediction 

accuracy under different weather conditions. This term in next step 

will be modified for MPC-VSL control. 

3) Analysis of the performance of MPC-VSL field test, to be specific, 

doing time domain analysis for speed response in VSL control case 

and calculate time domain specifications. Also analysis robustness 

of prediction model as well as evaluating measure of effectiveness. 

1.4 Structure of Thesis 

This thesis includes 5 chapters: 
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Chapter 1 introduces the background of Model Predictive Control based 

variable speed limit method using loop detector data, problem statement and 

research objectives.  

Chapter 2 is the literature review chapter, which reviews loop detector 

data and missing data imputation, METANET model formulation and weather 

specific modification, the came into being of MPC-VSL control method 

formulation and VSL simulation and implementation history.  

Chapter 3 describes loop detector data collection and missing data 

imputation method. 

 Chapter 4 describes how original METANET prediction model is 

modified and take weather specific METANET model as case study. 

Chapter 5 introduces a VSL field test conducted in Edmonton and 

analyzes its performance within system control scheme.  
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CHAPTER 2. LITERATURE REVIEW 

This chapter reviews loop detector missing data imputation methods, 

METANET model formulation and weather specific modification methods, the 

MPC-VSL control method formulation and VSL simulation and implementation 

technology.  

2.1 Review of Loop Detector data and Missing Data Treatment 

Duel loop detector systems are widely used in transportation control practice for 

their ability to detect vehicle presence, so that they provide all necessary traffic 

variables in high frequency and accuracy. The more complex physical feature 

over single loop detectors indicates higher possibility of hardware failure and data 

missing. The American Association of State Highway & Transportation Officials 

(AASHTO) Guidelines for Traffic Data Programs do not recommend substituting 

estimated values for missing data points or sections, for the reason that errors will 

be relatively random and cannot be quantified. However, quickly developing 

intelligent transportation system control projects rely heavily on real-time full 

traffic ground truth data, so the missing data issue has become a major hurdle in 

applying sensor data to most traffic control programs. In response to this 

challenge, various imputation methods have been developed over the past few 

decades.  

 Earlier ad hoc methods were utilized to impute missing transportation data. 

This category of method usually uses replacement, average and weighted average 

techniques. Some commonly used ad hoc methods include the following: 1) The 
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historical average is used to represent a value for a given time of day or day of the 

week for imputing missing values [1];  2) The weighted average of surrounding 

upstream and downstream stations is used to impute the missing value for the 

station, and the value is then divided among the lanes using historical lane 

distribution; 3) The average of the surrounding time periods involves averaging 

the values from the 10-minute intervals before and after the missing value, and 

can only be used when upstream and downstream time period data is available. 

Ad hoc methods have been effective in cases where the amount of missing data is 

small and road conditions are both consistent and recurrent.  

 After 1990th, using statistically principled techniques became a trend. 

Chen et al. [2] proposed the pairwise linear regression method, in which each 

missing value is imputed using estimated values for all neighboring loop detectors. 

This technique performs well and is commonly accepted. Al-Deek and Chandra 

[3]used pairwise second-order models with speed, volume and occupancy 

interaction terms and observed good results. Smith et al. [4] proposed a two-tiered 

approach, in which a simple ad hoc technique, such as the historical average 

approach, is used in daytime real-time imputation, while a computationally 

intensive but more advanced technique is employed to refine the imputed values 

during nighttime. 

 Other imputation approaches that have been developed employ a spatial-

temporal relationship to impute a small amount of missing data. Qu et al. [5] 

utilized a probabilistic principal component analysis method. The study showed 

that the fluctuations of traffic flow were Gaussian and that the principal 
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component analysis can reveal the characteristics of traffic flow. Li et al. [6] 

indicate that the hidden spatial-temporal dependence is nonlinear and could be 

better retrieved by the kernel probabilistic principle component analysis based 

method. Asif et al. [7] developed a method that overcame the issue of incomplete 

historical data and addressed large and diverse road networks. The imputation 

method was based on fixed point continuation and canonical polyadic 

decomposition. The expectation maximization and data augmentation methods 

proposed by Smith et al. [4] for missing transportation data also served well in 

panel transportation data imputation when the missing rate was not high. These 

data imputation approaches have been shown to be both accurate and 

computationally efficient when the missing type is random and the missing 

proportion is small, but there were drastic increasing errors when the missing rate 

was higher and missing data was from one lane. Therefore, these imputation 

methods were not suitable for real-time imputation. 

 The abovementioned imputation methods impute one estimate for each 

missing value, and those techniques can be called single imputation methods. The 

multiple imputation method assumes that imputation should consider the 

uncertainty of the value to impute [8]. The multiple imputation technique can 

work in combination with various imputation methods. Kristian Henrickson et al. 

first implemented a proven predictive mean matching multiple imputation method 

and applied it to loop detector volume data collected on Interstate 5 in 

Washington State, using iterative multiple imputation with chained equations [9]. 

This add-on approach improves the accuracy of a complex statistical imputation 
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approach; however, it is still not suitable for real-time imputation due to the fact 

that it is time-consuming.  So that for larger scale of data missing instead of 

random multiple data point missing, a fast and robust imputation method is 

needed such as the method proposed in Chapter 3, which is based on multiple 

linear regression method and the assumption of homogeneous lanes.  

2.2 The Traffic Prediction Model in the System: METANET 

Over the past two decades, the focus of efforts in modelling and forecasting 

macroscopic traffic states has transitioned from univariate temporal correlation to 

multivariate temporal-spatial correlation and from linear to nonlinear forms. 

Those models may be loosely classified as statistical and non-statistical methods. 

Some examples are included in the class of time series models, such as the 

seasonal autoregressive integrated moving average model [10] and Kalman Filter 

state-space model [11], neural network [12], nonparametric regression [13], 

stochastic Newell’s three-detector method [14] and other empirical models. 

Another class of works is based on the use of macroscopic traffic flow 

theory to estimate the internal traffic state for any intermediate point on a freeway 

or arterial segment from the boundary conditions. Macroscopic models consider 

traffic flow as fluid instead of individual vehicles. Three variables are capable of 

describing traffic stream characteristics: flow, density and mean speed. 

Macroscopic traffic flow models are classified as first, second or higher order, 

depending on the number of differential equations included [15]. Of all first-order 

models, the most used is the Lighthill–Whitham–Richards model [16][17], which 

uses one partial differential equation to describe the vehicle flow conservation 
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law. This model was also the first combination of a traffic flow model with a 

static fundamental diagram. Another representative first-order model is the Cell 

Transmission Model [18][19][20], which is a discretized and simplified version of 

the Lighthill–Whitham–Richards model. The Payne model [21] is the oldest 

second order traffic flow model. Besides the flow conservation law equation, the 

Payne model also includes one partial differential equation that describes mean 

speed dynamics. This model can replicate traffic phenomenon with higher 

accuracy. There are other types of second order traffic flow models such as  

variation kinematic waves [22], second-order traffic flow model with Kalman 

filter [23], CTM-based second-order traffic flow model with particle filtering 

[24], the Lighthill–Whitham–Richards partial differential equation with the 

Lagrangian measurements [25], Newell’s simplified kinematic wave model 

[26][27]. The selected second-order traffic flow model in this paper is METANET 

[28][29], which is a discretized and enhanced version of the Lighthill–Whitham–

Richards model combined with the Payne model. METANET model fulfill the 

simplicity and convenience requirement since it has a space-time discrete, explicit 

analytical state-space form and allow for convenient discretization intervals [15]. 

In addition, previous studies have demonstrated that the METANET model is 

highly accurate and relatively easy to calibrate, which makes it one of the most 

frequently utilized macroscopic traffic flow models in a variety of traffic 

engineering tasks and research. This model can also be used for optimal real-time 

traffic control of freeway traffic. In this paper, the macroscopic traffic state 

prediction will be based on the METANET model.  
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The modification of METANET can be of various purposes. In this thesis, 

the ultimate modification of METANET is to make it suitable for short time 

traffic prediction in variable speed limit control environment. A simpler trial of 

modifying the same term in equation is conducted in Chapter 4 which is a case 

study modifying METANET to make if capable of functioning well in varying 

weather conditions. Weather affects many fundamental aspects of road conditions. 

Maze provided evidence that traffic demand, safety, operations and flow can be 

reduced by rain, snow, fog, cold, and wind at different levels[30]. Some quantity 

analysis has been done by researchers in the past years. Methods based on 

aggregated flow and speed measurements from local sensors are used to estimate 

capacity and free flow speed at adverse weather[31]. HCM (2010) also 

recommended how much bad weather had impact on road conditions[32]. 

However, Kwon showed that in many cases the manual always underestimate or 

overestimate the real effects [33]. Hashim et al. showed the empirical analysis of 

the extent of highway capacity loss due to rainfall [34]. After that Hou et al. 

proposed that in mesoscopic network simulation weather factors can be 

introduced in calibration of traffic flow model for adverse weather [35]. In 2013, 

William et al. modelled the effects of rainfall intensity on traffic speed, flow and 

density relationships, and calibrate using hourly rainfall data from Hong Kong 

[36]. The papers indicated that adverse weather has different impact towards 

different locations and times and it is very necessary to identify the true impact 

for estimation. So that weather factors is introduced to METANET. 
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2.3 Variable Speed Limit with Model Predictive Control  

Among all active traffic management strategies such as ramp metering, variable 

speed limit and route guidance, VSL control method changes posted speed limit 

based on real-time road, traffic, and weather conditions, and it can offer 

considerable promise in restoring the credibility of speed limits and improving 

safety and mobility by restricting speeds during adverse conditions. Thus, over 

time, two general views have evolved on the use of variable speed limits. The first 

emphasizes the homogenization effect [37], whereas the second is more focused 

on avoiding or mitigating traffic flow breakdown by reducing the input flow at 

bottlenecks by means of speed limits [38]. 

 Among all active traffic demand management strategies such as ramp 

metering, variable speed limit and route guidance, VSL control method performs 

well in control scale, control method flexibility and feasibility. VSL method 

changes posted speed limit based on real-time road, traffic, and weather 

conditions [39], and it keeps the credibility of speed limits that under adverse 

conditions the speed limits are able to maintain traffic safety and the highest 

possible traffic throughput. There exist two basic thoughts about the effect of 

VSL. One emphasizes that the main role VSL plays is smooth traffic, the aim of 

control is not to reduce average speed, but to reduce speed difference [40], 

whereas the second is more focused on avoiding or mitigating traffic flow 

breakdown by reducing the input flow at bottlenecks by reducing speed limits 

[38]. 
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 Considering both two fundamental contributions of VSL, traffic engineers 

may achieve a more homogeneous traffic density over the freeway links and 

between lanes, at the same time preventing the high traffic density that leads to 

traffic breakdown. The more uniform speed distribution and density distribution 

reduces crash potential. The most commonly used VSL strategies works in a 

reactive manner with simple policies. To be specific, the VSL decision is 

triggered by abnormal traffic states that detected real time, such as a high traffic 

flow or low average speed. The VSL strategy generally includes two or three 

fixed values and chose by switching parameters. The safety benefits of 

implementing the VSL control have been well-acknowledged. To achieve more 

improvement in traffic throughput a more complex control algorithm that includes 

optimized VSL decision is needed. Proactive VSL control is one direction that 

goes further than previous reactive manner.  

 To predict the effects of a control measure several techniques can be used 

[41], such as case-based reasoning [42], knowledge-based systems in which 

policy is made upon previous practices [43], and model-based prediction [44]. In 

this paper we use for the predictions the macroscopic traffic flow model 

METANET first described in [28] and [29]. To find the optimal combination of 

control strategy that utilize traffic state prediction model we apply a model 

predictive control (MPC) framework[45][46][47] in which a close loop is formed 

that the future system state is predicted, optimal decision is made based on 

prediction result and then the optimal decision go back to implementation and 

influence the system state in the future step. MPC is an optimal control scheme 
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applied in a rolling horizon framework. Optimal control is successfully applied by 

Kotsialos et al. [48][49] to coordinate or integrate traffic control measures. Both 

optimal control and MPC have the advantage that the controller generates optimal 

control signal or decision according to a user-defined objective function. The 

objective function we use is a weighted summation of total travel time (TTT) and 

total travel distance (TTD), in which total travel time is minimized and total travel 

distance maximized simultaneously.  

 The simulation and field implementation of VSL had been done by many 

institutions, however, very few researchers conducted computer simulation of 

MPC based VSL and no field test is done using MPC-VSL control strategy. Hegyi 

et al. implemented a MPC-based VSL control, and the simulation in PARAMICS 

software resulted in a 32% reduction in TTT. [50] Hadiuzzaman et al. conducted 

MPC-based VSL simulation in VISSIM software that result in 38.8% reduction in 

TTT and 8.1% increase in TTD. [39] The field experiment of MPC-VSL in this 

paper first provides unique real data that reveals more problem than ideal 

computer simulation, and that the real world sensitivity and robustness of MPC-

VSL control system is first checked in this paper.  
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CHAPTER 3. MISSING TRAFFIC DATA 

IMPUTATION METHOD 

This chapter introduces the basic condition of VDS system and the need to 

introduce missing data imputation algorithm when some hardware are broken. 

The one month field data of one VDS is taken as case study. One lane of data is 

removed and imputation is tried. In the end the performance of imputation is 

evaluated by comparison of real data and imputed data.  

3.1 Introduction of VDS System 

The Vehicle Detection Stations (VDS) on a 10-kilometer corridor of Whitemud 

Drive in Edmonton, Canada, collects and stores traffic data from dual loop 

detectors. This section of road plays an important role in people and freight 

transportation in the city. It has two curves and several bottleneck locations where 

the number of lanes drops. The VDS system currently has 28 VDS in total, and 

each station has three or four dual loop stations. The data reporting frequency is 

20 seconds. Each dual loop reports the volume q—the number of vehicles 

crossing the loop detector during a 20-second time interval—and space mean 

speed measurement v, as well as the occupancy measurement, which cannot be 

used directly in traffic control and cannot be transformed accurately into density. 

The accurate density measurement ρ is calculated by  ρ = q/v .  

The dual loop detector is currently the most prevalent and reliable data 

source for traffic operation related projects. These detectors provide engineers and 

researchers with mass traffic data every day, with a high update frequency and 
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accuracy that enables loop detector data to be input into a real-time traffic control 

module, such as variable speed limit. However, due to the fact that loop detectors 

are embedded into road pavement, hardware failure and errors constantly result in 

missing data. Nowadays, with the increase in data size and accuracy requirements 

for traffic control models, the treatment of missing data has become key to 

improve loop detector data quality.   

Most of time the VDS system functions well, however, some of our loop 

stations lost data of one lane for some days. In this case, it is easy to tell when 

data is missing because, once a lane is detected absent of data at the beginning of 

a day, the imputation should carry on at least for the whole day.  

The missing data pattern can be Missing At Random (MAR), which is 

caused by random events without consistent underlying hardware issues; the 

missing data holes or physically unreasonable values can be safely removed or 

imputed using prior distribution-related imputation methods. In this case, the loop 

detectors on Whitemud Drive do not experience MAR much; instead, the main 

problem is Missing Not At Random (MNAR). The loop detector stations on our 

field test road usually contain three or four dual loops, with each one representing 

one lane. If one detector fails to record data, the consequence is that data for the 

specific lane will be missed for a long period of time, e.g. a day or a week. 

Therefore, this field study examines missing lane data as a type. It is also regarded 

as a major missing type in other jurisdictions. The Figure 3 shows the VDS 

system map on Whitemud Drive, Edmonton. 
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Figure 1 Vehicle detection stations map of Whitemud Drive  

 

3.2 Data Missing Detector Diagnostics Algorithm  

Existing data reliability tests include the threshold method [21] and “acceptable 

region” method [51] . The diagnostic algorithm in this paper is built upon those 

methods. The threshold method places thresholds on minimum and maximum 

flow, speed and density values, and is reported invalid if the detected value falls 

beyond the feasible region. The “acceptable region” method is similar. A region 

in the k-q plane is defined and data samples are declared acceptable if they fall 

into the defined region; this method was founded by researchers at the University 

of Washington and is referred to as the Washington Algorithm. [51] These above 

methods define the boundaries of the feasible region based on historical data. In 
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one specific case, the boundaries were fixed and had to be calibrated before online 

diagnosis.  

 The diagnosis algorithm in this research was based on corresponding lanes 

at the upstream stations. Previous methods tended to report (q = 0, ρ = 0) points 

in the fundamental diagram as bad data points and eliminate them or impute with 

a non-zero value, which brought about significant positive bias to loop detector 

data. In the field, good detectors frequently report (q = 0, ρ = 0) due to the high 

updating frequency; for example, during a 20-second time interval, there is a big 

possibility that no vehicle has passed. If (q = 0, ρ = 0) are accepted as good data 

points, then the missing lane phenomenon would fail to be diagnosed. The speed 

measurement was not used as one of the diagnosis criteria, as it has the same 

result as using flow and density measurements.  

The diagnosis method we proposed is based on corresponding upstream. 

For a specific lane, if the upstream lane had non-zero flow while itself had zero 

flow, then imputation was activated for that day. At the beginning of each day, the 

first five minutes were used for diagnosis, and imputation started after that. This 

diagnosis is feasible when the VDS positions are known. This algorithm is called 

the Daily Diagnosis Algorithm (DDA). The input to the algorithm is the 20-

second frequency data recorded by the VDS of neighboring locations:   

 

∆j
m(d) =

{
 
 

 
 1, if ∑ qj

m(i, d) = 0 15
i=1

                and
            ∑ qj

m−1(i, d) ≠ 0 15
i=1

0, otherwise

  

 (3-1) 
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where, m is the index of our target VDS, and we assume that VDS No. m-1 is the 

station upstream of station No. m. The 20-second flow of lane j is qj
m(i, d); i is the 

index of the 20-second sample number and i =1,2,3,…,4320; d is the index of the 

day of one month and d =1,2,3,…,30. The output of the algorithm is the 

diagnosing index  ∆j
m(d)  for the day d.  ∆j

m(d) = 1  if the loop is bad, and 

∆j
m(d) = 0 if the loop is good. The DDA provides only one diagnosis result for 

one lane each day. The result of the diagnosis from (1) decides whether the 

specific lane should be imputed or not: 

 

{
 
 

 
 {

qtrue,j
m (i, d) = qmeas,j

m (i, d)

ρtrue,j
m (i, d) = ρmeas,j

m (i, d)
, if ∆j

m(d) == 0

{
qtrue,j
m (i, d) = qesti,j

m (i, d) + εq,j
m (i, d)

ρtrue,j
m (i, d) = ρesti,j

m (i, d) + ερ,j
m (i, d)

, if ∆j
m(d) == 1

 

(3-2) 

where, qmeas,j
m (i, d)  and ρmeas,j

m (i, d)  are measured values of flow and density. 

When measurable values from the field exist and  ∆j
m(d) = 0 , the imputation 

program is not triggered and measured values are treated as true values.  

qesti,j
m (i, d)  and  ρesti,j

m (i, d) are estimated values yielded when ∆j
m(d) = 1 and the 

imputation program has started. In the process of imputation, εq,j
m (i, d ) and 

ερ,j
m (i, d) are error values that should be independent of estimated values, and be 

minimized. If imputation is triggered, only the flow measurement q and density 

measurement ρ are imputed; speed would be calculated via v = q/ρ. The reason 

why q and ρ are chosen as imputation variables, while speed is imputed indirectly, 

is that flow and density are found to be highly correlated among nearby lanes, 
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while the speed measurement shows no similar trend. The following section 

explains the imputation algorithm design in detail. 

  

3.3 Missing Data Imputation Algorithm 

The multiple linear regression (MLR) model is proposed to describe the behavior 

of loop detectors in the same station using historical data. It is well accepted that 

volume and density values are highly correlated between adjacent loops at the 

same station (1, 3, 4, 6), while the speed value has not shown such a correlation. 

Since speed values have random characteristics and are difficult to impute directly, 

we have chosen to impute flow and density first, then calculate speed via equation 

= q/ρ . In previous studies using the pairwise linear regression method (3), it was 

found that neighbor detector pairs have a higher correlation than non-neighbor 

loops at the same station, which was not true in our data. We found that all loops 

at the same station are highly correlated and share transportation characteristics. 

Taking all other loops into consideration makes the most use of historical 

information. The reason why a higher-order model was not considered is that 

different lanes in the same road segment are intuitively homogenous. Another 

advantage of MLR over pairwise linear regression is that there is no need to 

choose which loop to define as “neighbor” if one loop has two adjacent loops, and 

this saves computing time and reduces complexity. Finally, MLR is more stable in 

performance than pairwise regression because sometimes one loop detector has a 

high correlation with its left hand neighbor, while at other times it has a higher 

correlation with the right hand one. By taking all other loops in the same location 
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into consideration, the model should be unique and performance should be more 

robust.  

 To exhibit the linear relationship among loop detectors at the same station, 

take VDS 1035 in Whitemud Drive as an example. Figure 2 shows three pairings 

of all three loop detectors in VDS 1035 as well as a 3D scatter figure of all three 

lanes. Table 1 shows that all lanes in the same station have high correlation.  

  

                                   (a)                                                                         (b)                    

  

                                   (c)                                                                         (d)  

Figure 2 Volume data correlation among 3 lanes (VDS 1035 of Whitemud 

Drive, Edmonton) (a): lane 1 vs. lane 2. (b) lane 2 vs. lane 3. (c) lane 1 vs. lane 

3. (d) lane 1 vs. lane 2 vs. lane 3.  
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Table 1 Volume Values Correlation between Lanes (VDS 1035) 

Variables Adjusted R-squared 

q1 vs. q2 0.78 

q2 vs. q3 0.90 

q1 vs. q3 0.77 

  

We use the following multiple linear regression models to relate the 

volume and density measurements from one lane to all the other lanes: 

 

qesti,j
m (i, d) = α0

j
+ α1

j
qmeas,j′
m (i, d) + α2

j
qmeas,j′′
m (i, d) + εq,j

m (i, d) 

ρesti,j
m (i, d) = β0

j
+ β1

j
ρmeas,j′
m (i, d) + β2

j
ρmeas,j′′
m (i, d) + ερ,j

m (i, d) 

(3-3) 

In the above equation, if j=1, then j'=2, j''=3; if j=2, then j'=1, j''=3; if j=3, 

then j'=1, j''=2.  For each target lane j, the parameters αj and βj were estimated 

using days of historical data. In this case, we used 21 days of historical data. The 

regression method was least square regression, which means when calculating 

imputation values error term εq,j
m (i, d) and ερ,j

m (i, d)can be treated as zero.  

 

α0
j
, α1
j
, α2
j
= argmin (

1

n
 ∑[qesti,j

m (i, d) − α0
j
− α1

j
qmeas,j′
m (i, d)

n

t=1

− α2
j
qmeas,j′′
m (i, d)]

2

) 
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β0
j
, β1
j
, β2
j
= argmin (

1

n
 ∑[ρesti,j

m (i, d) − β0
j
− β1

j
ρmeas,j′
m (i, d)

n

t=1

− β2
j
ρmeas,j′′
m (i, d)]

2

) 

(3-4) 

 

3.4 Imputation Approach 

In this part, a multiple linear regression model was configured in MatLab software. 

Of the VDSs on the Whitemud Drive road segment, this paper chose VDS 1035 as 

a test station. The dataset used was VDS 1035 data from November 1, 2013 to 

November 30, 2013, approximately 129600 records in 20-second intervals and 

8640 records in five-minute aggregated intervals. This VDS functions well, 

without losing data. All data model learning and results comparison was based on 

the above data population, which meant that for some days, specific lane data 

would be removed artificially to test the performance of the imputation algorithm. 

The VDS 1035 is a congestion prone location on one main curve of Whitemud 

Drive.  It has three regular lanes and one off-ramp lane as shown in figure 1 

before. In this study we concentrate only on regular lanes. 

The whole diagnosis and imputation process is as follows: First, divide the 

whole month of November 2013 into two groups: the learning group and 

verification group. The learning group is November 1-21 and the verification 

group is November 22-30. Second, aggregate the learning group’s data as a whole, 

and conduct multiple linear regressions on volume and density values. Each lane 

takes turns to be imputed. This step generated six sets of parameters, i.e. 18 
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parameters in total. Finally, the data of the verification group is used to evaluate 

the imputation algorithm. The data of each of the three lanes in the verification 

group was artificially removed and then imputed.  

3.4.1 Methods for Comparison 

The pairwise linear regression (PLR) and average of surrounding detectors (ASD) 

methods have also been implemented in this research for comparison with MLR. 

Pairwise linear regression, as mentioned before, shows high correlation among 

neighbor loop measurements. Two loops are defined as “neighbors” if they are in 

the same station in different lanes, or if they are in adjacent ?. In this case, only 

loops in the same location (station) are regarded as neighbors. The following 

pairwise linear model was used: 

 

𝑃𝐿𝑅: 𝑞𝑒𝑠𝑡𝑖,𝑗
𝑚 (𝑖, 𝑑) = α0

j
+ α1

j
𝑞𝑚𝑒𝑎𝑠,𝑗′
𝑚 (𝑖, 𝑑) + 𝑛𝑜𝑖𝑠𝑒 

           𝜌𝑒𝑠𝑡𝑖,𝑗
𝑚 (𝑖, 𝑑) = β0

j
+ β1

j
𝜌𝑚𝑒𝑎𝑠,𝑗′
𝑚 (𝑖, 𝑑) + 𝑛𝑜𝑖𝑠𝑒 

𝐴𝑆𝐷: 𝑞𝑒𝑠𝑡𝑖,𝑗
𝑚 (𝑖, 𝑑) =

1

2
(𝑞𝑚𝑒𝑎𝑠,𝑗′

𝑚 (𝑖, 𝑑) + 𝑞𝑚𝑒𝑎𝑠,𝑗′′
𝑚 (𝑖, 𝑑))         

(3-5) 

For each pair of neighbor lanes (j, j’), the least squares estimation method 

was used to determine the parameters (α0
j
, α1
j
) and (β0

j
, β1
j
).  Chen et al. used five 

days of historical data to estimate the parameters, while in this study 21 days of 

historical data, commensurate with the MLR method, are used. 
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3.4.2 Aggregation Level  

The aggregation interval in this research was five minutes. The raw 20-second 

data had characteristics of too many (𝑞 = 0, 𝜌 = 0) points and too small of a 

volume value, usually between 0~7. Raw data fluctuates abruptly between zero 

and small numbers. This phenomenon conceals the nature of traffic data by 

making the trend of data obscure. Five-minute aggregation level was chosen 

because it was the shortest time interval compromising statistics data mining and 

the most possible usage of high frequency traffic data. Commonly used traffic 

prediction models also receive data input at five-minute aggregated intervals.   

3.4.3 Imputation Experiment Results 

The MLR of volume and density imputation, as well as reference methods PLR 

and ASD, were conducted. In this research, the root mean square error (RMSE) 

was used to evaluate the performance. Compared to mean absolute error (MAE) 

and mean absolute percentage error (MAPE) that are typically used in other 

similar studies, RMSE does not show bias for a big missing percentage as MAE 

and MAPE do, so it is suitable for this research. As shown below, in this research 

M represents the number of samples in the verification. The RMSE of q and 𝜌 

have the same formation: 

RMSE =
√∑ (𝑥𝑒𝑠𝑡𝑖,𝑗

𝑚 (𝑖, 𝑑) − 𝑥𝑡𝑟𝑢𝑒,𝑗
𝑚 (𝑖, 𝑑))

2
𝑀
𝑖=1

𝑀
, 𝑥 = 𝑝 𝑜𝑟 𝑥 = 𝜌 

(3-6) 
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 Table 2 and 3 below show coefficient values, tests and model goodness of 

fit from MLR. It is clear that the three sets of regression showed a high adjusted 

R-squared value, which generally means any of the three lanes were highly 

correlated with the other two. The high F statistics and corresponding low to zero 

P value indicate that the parameters were all significant at a high confidence level. 

Please note here that those parameters were specific to the aggregation level. They 

were generated from five-minute aggregation intervals and should be adjusted 

when applied to other aggregation intervals.  

 

Table 2 Coefficients and Statistics of MLR Model for Volume Measurement 

Lane Index j 1 2 3 

α0
j
 0.062 -1.689 6.001 

α1
j
 0.285 0.344 0.290 

α2
j
 0.273 0.834 0.730 

R-squared 0.805 0.917  0.915  

F statistic* 11801.772 31653.115 30951.074  

P value 0 0 0 

 

Table 3 Coefficients and Statistics of MLR Model for Estimated Density  

Lane Index j 1 2 3 

β0
j
 0.308 0.017 0.662 

β1
j
 0.146 0.117 0.244 
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β2
j
 0.377 0.956 0.773 

R-squared 0.681 0.908 0.915 

F statistic* 6001.410 27933.557 30464.596 

P value 0 0 0 

 Significance levelα = 0.05. 

 

Table 4 and 5 show the RMSE performance of the MLR method as well as 

the other two comparison methods. For volume imputation, the MLR method 

consistently outperformed PLR and ASD. Among regression-based imputation 

methods, PLR has been regarded as the most accurate and computational effective 

method and deemed the only one suitable for real-time imputation. MLR did not 

show as large of an advantage over PLR as over ASD, but it saved more time in 

the regression process; that is to say, for one specific lane, the imputation model 

was unique. In PLR, the definition of “neighbor” was obscure and the information 

of other highly correlated lanes was unutilized (3). In density imputation, MLR 

still shows a smaller RMSE value than the other methods. Considering the time-

saving advantage and convenience of MLR, it is still assumed to be a better 

method.  

Figure 3 shows boxplots of the absolute imputation error of the three 

methods. Here, absolute value is non-aggregated so that each method has one 

absolute error vector. The upper and lower bottoms of boxes show 25% and 75% 

error values respectively, and red horizontal line shows mean absolute error. It is 

clear that in volume imputation, MLR showed the lowest mean absolute error and 
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also the lowest variance. In density imputation, MLR and PLR both had the 

lowest mean absolute error and the least variance between the 75th and 25th 

percentile values, compared to ASD. Furthermore, MLR had the lowest variance 

in terms of the whole error vector dataset, and its maximum absolute error is the 

smallest among the three methods. 

 

Table 4 RMSE Value of Volume Imputation Using MLR, PLR and ASD 

Methods 

Lane Index 1 2 3 

MLR 9.954 10.761 10.816 

PLR 10.095 11.727 11.000 

ASD 31.243 18.474 17.346 

 

Table 5 RMSE Value of Density Imputation Using MLR, PLR and ASD 

Methods 

Lane Index 1 2 3 

MLR 2.280 2.318 5.352 

PLR 2.103 2.470 5.525 

ASD 5.865 3.673 3.077 
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(a)                                                          (b) 

Figure 3 Absolute errors of three methods for (a) volume, and (b) density 

imputation 

The quantitative measurement of imputation error cannot show the overall 

performance of imputation for the following two reasons. First, the large amount 

of data loop detectors collected contains some random characteristics. So that the 

exact calculation of RMSE was not repeatable; i.e., if we had the chance to collect 

data again for the same lane at the same time, the value of RMSE could change. 

Second, the main goal of lane imputation was to capture the sensitive trend of data 

fluctuation. A successful volume and density imputation should show the 

recurrent as well as non-recurrent increase and decrease as with true data. This 

trend fit can be clearly examined from graphics. 

Figure 4 graphically shows the performance of volume data imputation for 

the verification group on VDS 1035 if lane 1, 2 or 3 constantly miss data, 

respectively. Part (d) of Figure 4 is a zoomed-in picture showing the imputation 

for the specific day of November 30 for missing lane 1.   



 

29 

 

 

(a) 

 

(b) 

 

(c) 
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(d)  

Figure 4 Performance of volume data imputation for verification group using 

MLR, PLR and ASD methods versus true data: (a) missing lane 1, (b) 

missing lane 2, (c) missing lane 3, and (d) missing lane 1 on Nov. 30, 2013.  

 

Figure 5 graphically shows the performance of the density imputation for 

the verification group of November 2013 for VDS 1035 if lane 1, 2 or 3 

constantly miss data, respectively. Part (d) of Figure 4 is a zoomed-in picture 

showing the imputation for the day of November 30 for missing lane 1. 

 

(a) 
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(b)  

 

(c)   
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(d)  

Figure 5 Performance of density data imputation for verification group using 

MLR, PLR and ASD methods versus true data: (a) missing lane 1, (b) 

missing lane 2, (c) missing lane 3, and (d) missing lane 1 on Nov. 30, 2013.  

3.5 Summary of Loop Detector Data and Imputation 

In this part, loop detector data is shown to be reliable especially when the 

imputation algorithm is proved to be good. DDA is presented to detect invalid 

loop detectors and then impute missing volume and density data based on real-

time data from lanes at the same station with a complete dataset. Existing methods 

of imputation mainly focus on offline panel data imputation. The missing type is 

usually random. Previous methods had high accuracy, relatively high computation 

complexity and were perfectly suitable for data stored offline for future research 

use. Those characteristics made many previous methods not suitable for online 

imputation, for that the computing and display time have to be within 20 seconds. 

In the field, hardware damage or instability leads to constantly missing data for 
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one or more specific lanes. If hardware failure cannot be fixed timely, the 

imputation algorithm for the missing lane data should be triggered.  

 As specifically designed, the diagnosis and imputation method for online 

loop detector systems should generate qualified data for real-time traffic control. 

The DDA diagnosis method detects missing data every day with the help of the 

first five minutes of data at the beginning of that day. The diagnosis is not solely 

based on one station but instead on the station and its upstream station together. 

Traditionally, the most used imputation methods for missing lane data include 

historical data filling, average of previous time periods, ASD and so on. They are 

quick interpolation techniques but lack accuracy, and they cannot capture the 

trend of ongoing traffic conditions. The MLR imputation method in this paper 

fully utilizes historical information and is more than simple interpolation. PLR 

has been used as a benchmark to justify the quality of imputation. MLR 

consistently outperformed PLR, especially on volume imputation. Taking into 

account its operational ease, stability and shorter computing time, the MLR 

method has a greater advantage over PLR.  

 However, there is still great potential to improve the algorithms in this 

study. The diagnosis algorithm here relies on data from the upstream loop detector 

station. When the upstream corresponding lane is also absent of data, the 

algorithm fails. The case suggested above is rare but is still a possibility. The 

imputation algorithm is currently suitable for missing data from one lane. If two 

or more lanes at the same station all miss data, the imputation can still be carried 

out, but the accuracy is untested. Imputation relies on good historical data from all 
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lanes, and if the historical data has bias, then the imputation will be biased.  Due 

to the formation of the imputation regression model, the imputed values 

sometimes are a little smaller than zero, although this kind of error does not have 

an observable influence on the traffic control algorithm.  
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CHAPTER 4. A CASE STUDY OF 

MODIFYING METANET MODEL 

This chapter presents the feasibility of modifying one critical term “desire 

speed” in METANET traffic state prediction model to suite different needs 

including VSL control environment and varying weather environment. To be 

specific, this chapter tries making the desire speed term weather specific to 

improve prediction performance using real field data, and that the winter of 

Edmonton is taken as example. 

4.1 Introduction and Background 

This part will proposes a weather factor modelling method for macroscopic traffic 

prediction model, considering adverse weather brings about significant impact on 

road conditions and traffic dynamics. We suggest that adverse weather as a set of 

exogenous factors lower the free flow speed, shift critical density, decrease flow 

capacity and make the freeway more prone to congestion. The non-negligible 

different road nature arouse the question of building weather-specific fundamental 

diagrams so that the traffic state prediction model can be more accurate under 

varying weather conditions, and then to be more reliable to be applied to dynamic 

traffic control.  The entire process of traffic state prediction is computed by 

METANET model. Prediction error of weather-specific prediction and 

conventional overall prediction is compared. Real data collected by loop detectors 

on freeway Whitemud Drive, Edmonton, Canada is used for parameter calibration 
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and prediction error evaluation. The results show that proposed weather models 

reasonably enhanced the accuracy of macro traffic state prediction model than 

conventional one.  

In this part, the weather factor modelling is developed and then be inserted 

to traffic state prediction model using field data. In comparison with the previous 

work, this study has three contributions. Firstly, more than one weather factors are 

considered and filtered under a wider range of weather conditions, varying from 

the worst to the best weather, on different macroscopic traffic variables. Whereas 

previous works only consider one category of extreme weather and one traffic 

variable. Secondly, weather factors are successfully introduced into fundamental 

diagram as well as traffic prediction model. Thirdly, this paper shows clear 

quantitative result that weather significantly impact the traffic dynamics on 

freeways using high resolution field data.  

 

4.2 The Modified METANET Model with Consideration of 

Weather Condition 

The model description is separated into four parts. Section 4.2.1 will be notations 

and assumptions. Section 4.2.2 and 4.2.3 will present the description of the traffic 

state prediction model and the description of the fundamental diagram used in this 

study.  Section 4.2.4 will describe model calibration skills. 
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4.2.1 Notations and assumptions 

For consistency, the freeway are divided into N sections with lengths i , 1,...,i N , 

each having at most one on-ramp and off-ramp. All the variables used throughout 

this paper are defined as following. 

T  Data collection interval=20s 

i  Length of section i 

i  Number of lanes at section i 

  Set of space and time ( , )x t  

( , )x t  Traffic density at time t, space x.  

( , )v x t  Vehicle space mean speed at time t, space x. 

 ,r t x  On-ramp flow at time t, space x 

 ,s t x  Off-ramp flow at time t, space x 

( )iq k  Number of vehicles in the freeway section i at time k T divided by 

the length i  

( )i k  Traffic density at time step k, section i. 

( )ir k  On-ramp flow at time step k, section i 

( )is k  Off-ramp flow at time step k, section i 

( ( ))iV k  Desire speed in speed dynamics in METANET model 

  Set of unknown parameters of METANT model 

,cr i  Critical density of FD at section i 

,jam i  Jam density of FD at section i 
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,f iv  Free flow speed of FD at section i 

  Capacity drop fraction of FD at section i 

,f iv

iw  Weather adjust factor for free flow speed of FD at section i 

,cr i

iw


 Weather adjust factor for critical density of FD at section i 

,jam i

iw


 Weather adjust factor for jam density of FD at section i 

 

 

4.2.2 The framework of METANET prediction model 

The development of mathematical model that describes the dynamic evolution of 

three traffic variables enables the short time prediction of macroscopic traffic 

statues.  METANET model has three dynamics that describes flow, density and 

speed. Among three dynamics, the flow dynamics and density dynamics are exact 

analytical models without parameter calibration, and are derivate from matter 

conservation law [52][53] written as follows: 

   
   

, ,
, ,

t x q t x
r t x s t x

t x

 
  

 
                                                                   (4-1)                                                                      

This conservation law equation indicated the fact that the vehicle entering one 

section will eventually exit, either to next section of main road or the off-ramp. 

The flow and density dynamics together are the first order part of METANET 

model. However with solely first order dynamics one cannot describe the 

dynamics of speed change, although there is certain relationship between speed 

and density, speed do not change instantaneously with density in the real world. 
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Payne proposed that a small time delay should be applied to the speed-density 

relationship in fundamental diagram as follows: 

 ( , ) ( , )v x t V x x t                                                                                           (4-2) 

Papageorgiou et al. expanded the left side of the above equation in a Taylor series 

respect to  and right hand side with respect to x , after rearranging terms we will 

get the following equation: 

( )
v v

V v
t x


 



 
    
 

                                                                                         (4-3)                     

Where the arguments x and t are depressed for convenience, d / dv t is the 

acceleration of an observer moving with the traffic stream [28], d / dv t  is written 

as follows: 

d

d

v v v
v

t t x

 
  
 

                                                                                         (4-4)                             

Substituting (4-3) into (4-4) then we can get the continuous form of speed 

dynamics model  

d
( ) /

d

v v v
v V v

t x x


 



  
      

  
                                                                           (4-5) 

Equation (4-1), (4-5) and the identical equation q v  together forms the three 

dynamics of METANET model. With the introduction of speed dynamics model, 

METANET is expected to be one of the most accurate macroscopic traffic 

dynamics model. The discretized model formulation is written as follows: 

Density Dynamics 

1 1( 1) ( ) ( ) ( ) ( ) ( )ii
i

i i i i ii
i

T
k k q k q k r k s k   

         


                                     (4-6) 

Speed Dynamics 
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   
 

 
1

1

( ) ( )
( 1) ( ) ( ) ( ) ( ) ( ) ( )

( )

i i

i i i i i i i

i i i

T k kT T
v k v k V k v k v k v k v k

k

  


   





 
             

  

(4-7) 

Flow Dynamics 

     1 1 1i i iq k k v k                                                                                 (4-8)                      

In the model τ, κ, α and η (km
2
/h) are global model parameters to be calibrated 

using the historical data. The desired speed   iV k  (km/h) in speed dynamics is 

represented by 

  
 

,

,

1
exp

i

i f i

c i

k
V k v






 

  
        

                                                                        (4-9)                    

The desired speed variable leaves room for the introduction of weather factors 

because it involves two important parameters calibrated from the fundamental 

diagram: free flow speed and critical density, and the fundamental diagram is 

impacted by weather.  Density dynamics do not involve parameters and other 

parameters in speed dynamics are calibrated globally for goodness of fit. Note that 

of the four terms making up the speed dynamics, each term has a physical 

meaning. In equation (4-7), the second term is referred to as the relaxation term, 

describing that with a lag time item τ, the mean speed v  of the link gets relaxed to 

the desired speed which largely depends on parameters of FD. The selection of 

the desired speed is critical to reflect the driver behavior and from previous 

practice we chose the format of equation (4-9). The third is the convection term 

meaning that vehicles travelling from upstream link 1i  to current link i  

gradually adapt their speed rather than instantaneously. The fourth is anticipation 
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term meaning that drivers are always keeping an eye on the traffic condition 

ahead. If a driver observes high traffic density in the downstream link 1i  , he then 

reacts as slowing down, and vice versa. The constant 0  is added to keep the 

anticipation term limited when density is low. It comes to the conclusion that the 

desire speed item is the right place to insert weather factor considering weather 

specific fundamental diagrams.  

The Courant–Friedichs–Lewy (CFL) condition is followed, which means 

to grant that vehicles cannot travel beyond one link within computing time 

interval T, so that T satisfies the following condition: 

 ,

, 1,2,...,
max

i

f i

T i N
v


                                                                                      (4-10) 

4.2.3 The weather specific fundamental diagrams 

It is assumed that the fundamental diagram (FD) changes according to different 

weather conditions, since weather significantly impacts driver behavior and the 

driving environment. The weather-specific FD defines different   iV k  for 

different weather conditions in the METANET model. To be specific, the 

parameters of FD such as free flow speed, critical density, jam density and 

capacity drop vary with weather conditions instead of being constants as regarded 

before. And those key parameters in the FD are essential for the accuracy of the 

traffic prediction model. The triangular FD is still used here shown as Figure 6(a). 

Note that, to better exhibit the different free flow speeds under different weather 

conditions, we also demonstrate the variation form of the triangular FD, for which 

the vertical coordinate is space mean speed. 
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(a)                                                         (b) 

Figure 6  Illustration of (a) triangular FD and (b) its variation with speed as 

vertical coordinate. 

From the point of the space mean speed, the triangular FD describes that 

before density reaching critical density, space mean speed keeps in free flow 

speed. After reaching critical density, traffic becomes congested and the road 

segment capacity drops by fraction θ due to the unsatisfying driving environment. 

After reaching the congestion point, traffic flow decreases linearly to zero, which 

is when density also reaches maximum, and that density is referred to as jam 

density. In the variation form of the triangular FD, space mean speed behaves 

similarly, remaining constant up until the congestion point, and after that, speed 

will drop together with capacity. During congestion, the space mean speed will 

drop as inverse proportional function of density. Figure 6 (b) shows that we 

anticipate that under different weather conditions FD will shift. The expression of 

the variation form of the FD is as follows: 
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                                            (4-11) 

In the equation (4-11) weather factors will be introduced to adjust the free flow 

speed, critical density and jam density of FD under varying weather conditions. In 

part 3 of this paper, the modeling of three weather factors will be presented. 

Equation (4-12) describes the new form of flow dynamics considering capacity 

drop and weather factors and this equation will replace the original flow dynamics 

in METANET model.  

,

, ,

           ( 1) ( 1), if ( 1) (0, ) 
( 1)

min( ( 1) ( 1), (1 ) ,  otherwise

i i i cr i

i

i i f i cr i

k v k k
q k

k v k v

  

  

    
  

     
                                     (4-12) 

 

4.2.4 Fundamental diagram and METANET calibration methods 

The parameter estimation of the FD is based on data collected by conventional 

loop detectors. For the parameter calibration of FDs, free flow speed ,f iv , critical 

density ,cr i , capacity C, jam density ,jam i  and capacity drop fraction   must be 

estimated. For calibration, the data format we use is  ,i iq data points, where the 

horizontal coordinate is density and the vertical coordinate is flow. The procedure 

of calibrating a triangular FD is as follows: 

 Step1: The identification of 
,cr i and capacity C. In the definition of 

triangular FD, the summit point of the triangle roughly indicates critical 

density and capacity. To be specific, we plot all  ,i iq points and find the 

3
rd

 largest
iq , take it as capacity C and the corresponding 

i as
,cr i . The 
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reason not to choose the largest flow is that rarely the largest flow is 

extremely high as an outlier, this might due to the detection error. 

 Step 2: The identification of
,f iv . After defining ,cr i , the whole dataset can 

be divided into two parts: the left-side triangle represents uncongested 

traffic conditions and the right-side triangle represents congested traffic 

conditions. Then we calculate the slope of each data point distributed in 

the left side and take an average as ,f iv , which is described in equation (4-

13). In this equation n represents the number of data points within the left-

side triangle.  

               ,,

1

1
, 0,ii

ii cr i

i

n

ii i

f i

q
v

n
 



 
  

 
                                                                 (4-13)                          

 Step 3: The identification of ,jam i and capacity drop fraction . The jam 

density ,jam i represents a theoretical value of when the road section is 

totally congested and all vehicles have stopped moving; however, in the 

real dataset, this point is seldom observed. When determining the right-

side triangle, we fix the ,jam i with an empirical value. In the case study 

section, the empirical value will be decided. The slope of the right side is 

determined by least square fit. After determine the foot and slope of right 

side, the intersecting point of the right side and the vertical auxiliary line 

passing through previous capacity C is the new capacity after dropping, 

and the capacity drop fraction is calculated as follows:  
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For the parameter estimation of METANET model, τ, κ, α  and η  (km
2
/h) are 

global model parameters to be calibrated using recent historical data. In this study, 

the global parameters of METANET model are fixed, which are calibrated before 

this study, using loop detector data of the same road segment via the following 

expression. 

   
2 2

*
arg min ( | ) ( | )

i i i i i i i i

obs obs obs ob

N N

ii i

s

i

v f v f 


     
 

  
                     (4-15)     

           

4.3 Modelling Weather Impacts on Fundamental Diagram 

The historical weather data provided by Canadian government website, historical 

climate data webpage, Edmonton area includes three critical categories of weather 

data: temperature, amount of snow on the ground, and maximum wind speed. We 

assume that Free Flow Speed (FFS), capacity, and critical density of FD of each 

day are impacted by weather. Those three categories of weather index are capable 

of express most kinds of weather in Edmonton, Canada. Since people in 

Edmonton seldom experience rainfall that is heavy enough to influence visibility, 

fog is also rare to see, so that the most common adverse weather is snowy 

weather. HCM has pointed out that little snow would reduce capacity by 5-10% 

and heavy snow reduces capacity by 25-30%. From observing and previous data, 
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we assume that ongoing snow may have significant impact on FFS. Due to the 

variable “snow on the ground” may reflect a mean value, “derivative of snow on 

the ground” is added besides the origin variable “snow on the ground” which is 

formulated as below. 

1 2

1

d
,  ( )

d

j j j

j j j

SG SG SG
t

t t t
 






  


                                                                         (4-16)                      

jSG is the depth of the snow on the ground at day j . jt is the date and   is the error 

term. In the dataset, jSG is the depth of snow measured with centimeter in the area 

of the city where the target VDS located. 

1

1

j j

j

j j

SG SG
DSG

t t









                                                                                            (4-17)                                                                                                       

jDSG is a derivative of snow on the ground which is used in our model. We 

assume that the change of jSG indicates that some weather events are going on. 

The positive DSG means that snow is going on, and the negative DSG means that 

the weather is becoming better and snow is melting. We also use Temp to represent 

temperature and MWS to represent max wind speed. To filter the key factors 

impacting FD features, we did T-test prior to our case study utilizing one loop 

detector station data of November of 2013 in Edmonton, Canada. From T-test, we 

found that DSG has significant impact on both FFS and capacity at 95% confidence 

level. Surprisingly, MWS and Temp are found not significant so that we suggest 

that drivers of this area are confident to drive normally under different speed of 

wind and temperature.  
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Table 6 The key weather factors impacting FD features. 

Significance* SG DSG MWS Temp 

FFS YES YES NO NO 

Capacity NO YES NO NO 

Critical Density NO NO NO NO 


 Significance at 95% confidence level 

The flow chart in Figure 7 shows how DSG and SG affect FFS, capacity and 

critical density in the model of this paper. 

 

Figure 7 The significant weather factors impacting FD.  

The fundamental diagram under varying weather is formulated as below. Three 

weather factors ,f iv

iw , ,cr i

iw


and ,icrC

jw are introduced to adjust the free flow speed, 

critical density and capacity of FD under varying weather conditions. The 

capacity adjust factor ,icrC

jw  will not appear in the following FD expression but the 

critical density adjust factor ,cr i

iw


is computed from ,icrC

jw as written as follows 
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So that the flow dynamics will be updated as follows 
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    (4-22)                                                                               

Where  is adjusted factor. This model describes that FFS is mainly impacted by 

jSG which indicates the current weather situation and DSG which indicates the 

ongoing weather events such as snow storm going on. Capacity of FD is mainly 

impacted by DSG  solely. And critical density factor is calculated from the above 

two factors with a constant adjust factor added.  

4.4 Case Study in Edmonton 

The calibration and validation of the models are based on the data of target 

VDSs from May and November of 2013. In this study, three weather conditions 

are involved in testing the stability of the models. Accordingly, three different 

fundamental diagrams and weather-related parameters are generated. In 

Edmonton, Canada, the main type of adverse weather is snowy weather, so the 

three weather conditions are categorized as “good weather condition,” “light snow 

condition” and “heavy snow condition.”  During the day of May 01-05, the snow 

melt and temperature indicated "good weather conditions." From November 11th 

to 15th, "light snow conditions" were observed, with the snow on the ground 

measuring around 6-9 cm. During the days of November 18th to 22nd, "heavy 

snow conditions" were present, as the amount of snow on the ground ranged 16-

26 cm. Figure 3 shows the indexes of the three weather conditions.  
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(a)                                  (b)                                     (c) 

Figure 8 Ground snow and speed of wind under three weather conditions. 

 

 

 

Figure 9 The location of target VDS on Whitemud Drive, Edmonton. 
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Table 7 shows the calibrated FD features and weather factors, while 

Figure 5 combines data points and the calibrated FD together to help visualize the 

difference in macroscopic traffic conditions under different types of weather. 

From the field data we observed that the triangular FD holds. Note that in the 

calibration process, some obvious outlier points have been eliminated. The 

significant differences between the types of weather are visibly evident. For free 

flow speed, good weather conditions experienced the highest free flow speed, 

which is higher than the posted speed limit (80 km/h); under light snow 

conditions, the free flow speed is slightly lower than that under good weather and 

almost equal to the posted speed limit; when it snows heavily, the free flow speed 

drops drastically to 66.7 km/h. In terms of capacity, which cannot be directly 

observed from the FD, under good weather conditions the capacity is 1647 

veh/h/l, while under light snow conditions the capacity is slightly lower with a 

number of 1572 veh/h/l. However, under heavy snow conditions the capacity 

drops as low as 1323 veh/h/l. In terms of critical density, the difference among the 

weather conditions is not as significant as the previous two parameters. Good 

weather conditions still show the largest critical density of 24.84 veh/km/l, and 

under light snow conditions and heavy snow conditions, the critical densities are 

22.30 veh/km/l and 21.46 veh/km/l respectively. Jam density represents the ability 

of a road segment to accommodate vehicles, so in this paper we assume that jam 

density does not change since the length and number of lanes does not change 

with the weather.  

 



 

51 

 

 

Figure 10 Field traffic data and calibrated FD under three weather 

conditions 

 

Table 7 Fundamental Diagram Features in Three Conditions 

Features Good weather 

condition 

Light snow 

condition 

Heavy snow 

condition 

,f iv   (km/h) 84.38 81.52 66.66 

Capacity   (veh/h/l) 1647 1572 1323 

,cr i   (veh/km/l) 24.84 22.30 21.46 

,jam i   (veh/km/l) 100 100 100 

  (Capacity Drop) 0.05 0.09 0.17 
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Table 8 Estimated Weather Factor Parameters and Statistics 

 

 

Coefficients 

with 

 

(95% confidence 

bounds) 

 

0  1  0  1  

0.873 -0.01796 0.9648 -0.01737 

(0.83, 0.90) 

 

(-0.029, -0.006) (0.925, 1.004) 

 

(-0.0236, -0.0111) 

 

2  

-0.00105 

(-0.0034, 0.00136) 

  

0.1344 

 

 

 

 

 

 

 

 

Adjusted R-square ,icrC

jw model:0.7924 ,f iv

jw model:0.833   

 

Table 8 shows the regression results of the weather factor parameters and 

statistics. The weather data used in this regression include the DSG and SG from 

May 01-05, November 11-15 and November 18-22 of 2013. Loop detector data 

for the same period is also used to calibrate the FDs, and the data frequency is 20 

seconds. The negative 1  indicates that capacity decreases with a positive DSG , 

and a positive DSG  indicates that snow is accumulating and road conditions are 

worsening. The negative 1  and 2  indicate that the free flow speed will decrease 

with a positive value of DSG and SG , which implies that the snowfall is relatively 

heavy and snow is accumulating. Note that all the parameters fall within 95% 

confidence bounds and both regressions have a good fit, see adjusted R-square. 

To validate the necessity of considering weather factors in METANET 

prediction model, we conducted prediction simulation in which the seed of each 
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round of calculation is field data. And we compared the prediction accuracy of not 

adding weather factor and adding weather factor conditions. The prediction 

scenario is set to be 10 min with a calculating frequency of 20s with rolling 

horizon. The calculation interval is 20 seconds and that to predict traffic status 10 

minutes in advance. And we do 30 iterations at each round of calculation. Since 

the prediction simulation is not real time, we evaluate the prediction accuracy by 

comparing the traffic state of 10 min later predicted via METANET and the real 

traffic state of 10 min later in dataset.  

In each pair of the following three comparisons, the “not adding weather 

factor” condition always use the fixed parameters ,f i
v = 80.06; ,cr i

 = 23.83. Note 

that those fix parameters together with other global parameters are used in our 

previous practices, they represents a general situation that under uncongested 

situation free flow speed can be slightly higher than speed limit 80 km/h, however 

under unsatisfying weather condition those setting might problematic. Based on 

weather specific FD assumption mentioned above, we change the value of ,f iv and

,cr i  given calibrated weather factors, while other global parameters of 

METANET remains unchanged. From each kind of weather conditions we picked 

up one day to conduct prediction experiment. For heavy snow weather the chosen 

day is Nov.18, and for light snow weather the day is Nov.14, and for good 

weather that day is May.02. During each day the traffic state prediction is from 6 

AM to 9 PM. Here as follows we only exhibit speed and density prediction results 

for that flow prediction is calculated through flow identical equation from speed 

and density. The global parameter values are shown in Table 9. 



 

54 

 

 

Table 9 Calibrated METANET Global Parameters 

        

120.00 37.98 10.00 2.29 

 

 

 

(a)                                                       (b) 

 

(c)                                                        (d) 

Figure 11 Speed prediction (a, b) and density prediction (c, d) accuracy on 

one heavy snow condition day (Nov.18) (a) (c) ,f iv = 80.06; ,cr i = 23.83. (b) (d) 

,f iv = 66.50; ,cr i = 21.46. 
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(a)                                                    (b) 

 

(c)                                                      (d) 

Figure 12 Speed prediction (a, b) and density prediction (c, d) accuracy on 

few snow condition day (Nov.14) (a) (c) ,f iv = 80.06; ,cr i = 23.83. (b) (d) ,f iv = 

81.08; ,cr i = 22.70.   
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(a)                                                       (b) 

 

(c)                                                       (d) 

Figure 13 Speed prediction (a, b) and density prediction (c, d) accuracy on 

one good weather condition day (May 02) (a) (c) ,f iv = 80.06; ,cr i = 23.83. (b) 

(d) ,f iv = 84.06; ,cr i = 23.83.   
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Table 10 Quantitative Traffic Prediction Performances: Speed 

Feature: RMSE of speed prediction Good weather 

condition 

Light snow 

condition 

Heavy snow 

condition 

Daytime 

Period 

6AM-9PM 

Conventional  6.88 9.12 11.69 

Weather specific  5.32 8.21 9.52 

AM Peak 

Hours 

7AM-9PM 

Conventional  6.47 8.35 16.21 

Weather specific  4.54 6.81 14.96 

PM Peak 

Hours 

4PM-7PM 

Conventional  9.39 15.89 17.43 

Weather specific  6.45 15.29 13.51 

 

Table 11 Quantitative Traffic Prediction Performances: Density (Daytime) 

Feature: RMSE of 

density prediction 

Good weather 

condition 

Light snow 

condition 

Heavy snow 

condition 

Conventional 

prediction 

4.46 6.02 7.17 

Weather specific 

prediction 

4.45 5.98 7.14 

 

From all figures, Table 10 and Table 11 is it found that in speed prediction 

simulation observable difference can be seen while the difference in density 
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prediction is not visible. The reason is that the speed dynamics model heavily 

relies on the parameters while density dynamics is simply derived from mass 

conservation. Under heavy snow condition, the whole daytime speed RMSE of 

conventional prediction is 11.69 while in weather specific prediction the RMSE is 

9.52, especially in PM peak hours the RMSE dropped from 17.43 to 13.51 which 

is more drastic than daytime average, and so does AM peak hours. Under light 

snow weather and good weather condition the whole daytime speed RMSE of 

conventional prediction is 9.12 while in weather specific prediction the RMSE is 

8.21, especially in AM peak hours the RMSE dropped from 8.35 to 6.81 which is 

more drastic than daytime average and PM peak hours. Under good weather 

condition the whole daytime speed RMSE of conventional prediction is 6.88 

while in weather specific prediction the RMSE is 5.32, especially in PM peak 

hours the RMSE dropped from 9.39 to 6.45 which is more drastic than daytime 

average and AM peak hours, however under good weather condition the original 

speed RMSE is small enough. In terms of density prediction, due to the nature of 

density dynamics described above, the convention prediction and weather specific 

prediction did not show significant difference. The RMSE difference ranges from 

0.01~0.03 may be contributed to random computation error. And thus the 

prediction error of flow is proportional to the prediction error of speed. It can be 

concluded that the weather specific METANET prediction will be more helpful 

under the most adverse weather condition and during peak hours when speed drop 

violently.  
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4.5 Summary of Modifying Traffic Prediction Model 

This part proved that weather conditions indeed impact driving environment and 

driver behavior that lead to the significant change of fundamental diagram, so that 

it is necessary to consider about weather specific fundamental diagram. If go 

further into traffic state prediction, we may conclude that this modification of 

METANET was successful in improving prediction accuracy.  

The same weather variable filtering method can be applied to other cases 

if researchers have accessibility to higher resolution weather data such as hourly 

weather data or there are other weather events such as rain and fog. Using the 

same method, researchers will find out different significant variables that fit their 

situations. Through prediction simulation it is found that macroscopic traffic 

prediction accuracy is enhanced after introducing weather specific fundamental 

diagram parameters especially in speed prediction. Given global parameters 

previously calibrated and fixed, in adverse weather conditions weather factors 

perform better than favorable weather conditions. And that the same “desire speed” 

term modification technology can be applied to other application such as variable 

speed limit control.  
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CHAPTER 5. THE IMPLEMENTATION 

AND EVALUATION OF MPC-VSL FIELD 

TEST 

This chapter gives an analysis of VSL field test performance. In this part, 

the time response of VSL speed curve is drawn and time domain analysis is done. 

Moreover, TTT and TTD prediction performance is analyzed.  

5.1 Introduction and Background 

The effectiveness of variable speed limits (VSL) in improving traffic throughput 

and saving travel time for urban freeway users is crucial for future traffic control 

operation. This paper models and examines the effectiveness of VSL control 

based on field test data collected from an urban freeway testbed in Edmonton, 

Canada. The VSL control algorithm is model predictive control (MPC)–based, in 

which the traffic state prediction model is a modified METANET model. The 

desire speed term in the METANET model is modified when VSL control is 

triggered. The value of VSL in each round of calculation is decided by a discrete 

choice model–based optimizer, and its objective is to minimize system total travel 

time (TTT) while maximizing total travel distance (TTD). The TTT and TTD 

compose the measure of effectiveness (MOE) of the MPC-VSL field test. This 

paper conducts a step response analysis of how VSL reacts to field speed 

reduction and evaluates the MOE of the MPC-VSL field test. In the evaluation of 

the MOE, the discrepancy between the predicted MOE and actual MOE, namely 
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the system uncertainty is attributed to system parameters and different VSL 

scenarios.  This study demonstrates the performance of MPC-VSL field test, and 

the proposed analyzing frame serves future traffic control practices. 

 

Posted speed limits are an essential measure for speed regulation, helping 

to reduce traffic accidents and improve traffic throughput. Since static speed 

limits are designed for ideal road conditions, they may not be suitable during 

adverse weather conditions or congestion. Variable speed limits (VSL) have been 

proposed as a means to recommend safe driving speeds during less ideal 

conditions. Implementation of VSL has been successful in European countries and 

the United States. [54] In Edmonton, Canada, a four-week VSL field test was 

implemented on a 10-kilometer stretch of freeway. This paper analyzes the 

performance of the VSL test, and conducts analyses of system stability robustness 

under the scheme of model predictive control. The results show the effectiveness 

of our VSL algorithm. This study provides evaluating scheme for future field 

implementation. 

5.1.1 Description of Variable Speed Limit Testbed 

The Vehicle Detection Stations (VDS) on a 10-kilometer corridor of Whitemud 

Drive in Edmonton, Canada, collect and store traffic data from dual loop detectors. 

This section of road plays an important role in people and freight transportation in 

the city. The VDS system currently has 28 VDS in total, and each station has 

three or four dual loops. The data recording frequency is 20 seconds. Each dual 

loop reports the volume q—the number of vehicles crossing the loop detector 

during a 20-second time interval—and mean speed measurement v , as well as the 
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occupancy measurement, which cannot be used directly in traffic control and 

cannot be transformed accurately into density. The accurate density measurement 

  is calculated by  /q v   . Figure 14 shows the testbed geometry, VDS 

locations and the location of DMS (Dynamic Message Signs) that will be used to 

display variable speed limits. 

 

Figure 14 VDS and DMS location on westbound testbed of Whitemud Drive 

The VSL control decisions are made and sent out by software called 

DynaTAM (Dynamic Analysis Tool for Active Traffic Demand Management). 

During real-time VSL control, data from loop detector stations is sent to 

computers in the traffic management center in the City of Edmonton. The 

DynaTAM software installed in the computers is responsible for providing speed 

limit suggestions. The decisions are then shown on screen with beeping 
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notifications for human operators to check. After the operators check the video 

cameras at corresponding downstream locations and confirm that the speed limit 

needs to be changed, the suggested speed limit values are then put into DMSs 

along the road. From August 13 to September 4 of 2015 on weekdays, the City of 

Edmonton conducted a four-week VSL pilot test on the 10-kilometer testbed of 

westbound Whitemud Drive. There were 5 DMSs in total located upstream of 

predefined congestion-prone points. Figure 2 demonstrates the interface of 

DynaTAM and the actual VSL display used in the field test. Due to legal reasons, 

the variable speed limits were not mandatory to drivers, and they were labeled as 

“Advisory Speed.”  

 

Figure 15 DynaTAM interface and DMS on westbound testbed of Whitemud 

Drive 

 

5.2 Model Prediction Control Based VSL Algorithm 

The model predictive control (MPC)–based VSL algorithm is composed of five 

parts: an original traffic prediction model, control case traffic prediction model, 

optimizer, objective and constraints. As shown in Figure 3, for VSL control road 
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segments, the system uses a modified METANET model for traffic state 

prediction, and the discrete choice optimizer makes a choice based on predicted 

traffic states given objective functions and constraints. After optimization, the 

optimal VSL choice is shown to operators, and at the same time, the VSL value is 

inputted to the VSL-METANET model again for the final traffic state prediction 

results to be recorded. Figure 3 shows a block diagram of the MPC-VSL control 

system. 

 

 

Figure 16 Block Diagram of MPC-VSL control 

5.2.1 METANET Prediction Model and Modification 

The METANET model as a second-order traffic flow model introduces speed 

dynamic functions instead of only including density dynamics to describe flow 

conservation law. This feature of the METANET model enables it to predict 

density, speed and flow variables respectively and accurately, as well as with a 
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small time interval. The discretized model formulation of the original METANET 

is written as follows: 

Density Dynamics 
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Flow Dynamics 

     1 1 1i i iq k k v k                                                                                 (5-3)                         

Where, i is the index of links, and 1,2,......i M , with M representing the number 

of testbed sections. K is the index of time instants, and T is the calculating time 

interval, where T=20s. 
i  represents the segment length of link i, and   is the 

lane number of link i. In the model, τ, κ,  and  (km
2
/h) are global model 

parameters calibrated using the historical data. The desired speed   iV k  

(km/h) in speed dynamics is represented by the following expression: 

  
 

,

,

1
exp

i

i f i

c i

k
V k v






 

  
        

                                                                       (5-4)                                   

The triangular fundamental diagram (FD) is assumed in the control algorithm. In 

equation (5-4) ,f iv means free flow speed and that ,c i represents for critical density 
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which is the density associated with capacity. In this model density dynamics does 

not involve parameters and other parameters in speed dynamics are calibrated 

globally for goodness of fit. Note that of the four terms making up the speed 

dynamics, and each of terms has physical meaning. In equation (5-2), the second 

term is referred to as the relaxation term, describing that with a lag time item τ, 

the mean speed v  of the link gets relaxed to the desired speed which largely 

depends on parameters of FD. The selection of the desired speed is critical to 

reflect the driver behavior and from previous practice we chose the format of 

equation (5-4). The third is the convection term meaning that vehicles travelling 

from upstream link 1i  to current link i  gradually adapt their speed rather than 

instantaneously. The fourth is anticipation term meaning that drivers are always 

keeping an eye on the traffic condition ahead. If a driver observes high traffic 

density in the downstream link 1i  , he then reacts as slowing down, and vice 

versa. The constant 0  is added to keep the anticipation term limited when 

density is low.  

 The METANET algorithm for the VSL control environment is modified 

by replacing desired speed with a modified one. In the control segments, the 

desired speed is assumed to be the posted advisory speed rather than the speed 

determined by the fundamental diagram as in the non-control case. In the VSL-

METANET model, the desired speed term then becomes the optimized variable 

speed limit value, as decided by the optimizer in the MPC system. 

Modified Desire Speed 

   ( )iiV k u k                                                                                                   (5-5)                           
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The Courant–Friedichs–Lewy (CFL) condition is followed, which means 

to grant that vehicles cannot travel beyond one link within computing time 

interval T, so that T satisfies the following condition: 

 ,

, 1,2,...,
max

i

f i

T i N
v


                                                                                       (5-6) 

5.2.2 Object Function and Constraints  

The objective function minimizes a weighted sum of TTT and TTD in a discrete 

choice fashion. In terms of definition, total travel time indicates a weighted sum 

of density of all time steps and links. Only minimizing TTT produces system bias 

wherein the optimizer tends to choose a lower speed limit to decrease the density, 

so that in this system TTD is maximized simultaneously. In the objective function, 

weights 
TTT and 

TTD are applied to TTT and TTD. 
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The desired speed within the VSL environment is then decided by the 

optimizer. The optimization is subjected to several constraints of traffic safety, 

driver acceptance and traffic flow characteristics. [39] The first constraint is the 

upper limit of ( )iu k ; since the regular speed limit is 80km/h, we consider that 
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under congested conditions ( ) 80iu k  . The second constraint is to maintain 

continuous traffic flow even under congestion. From local regulations, the lower 

bound of the speed limit is 30km/h, which means ( ) 30iu k  . In Canada, the speed 

limit is in multiples of 10km/h, and in our system, to ensure safety the change in 

speed limit between two time instants is 0 or 10km/h, that is to say 

( ) ( 1) { 10,0,10}i iu k u k    . Given the above constraints, the optimizer becomes a 

discrete choice model described as follows. 

 

Figure 17 MPC-VSL Optimizer Decision Tree 

5.3 Time Domain Analysis of Speed Control 

The concept of time domain analysis is borrowed from automatic control. It is 

usually used to describe the time response of a system, and more specifically, how 

the input signal oscillates until stable given all theoretical control algorithms. 

Time domain analysis is usually conducted in pure theoretical calculation and 

simulation. In this study, we use time domain analysis concepts to describe the 

time response characteristics of the VSL as it responds to a drop in speed 

downstream at a congestion location. In Figure 5, the VSL line is observed to 
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capture the drop trend of the average speed for the corresponding location with 

little delay, as well as detect when the field average speed begins to recover.  
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Figure 18 Speed Profiles of Valid Field Test Days near DMS 1 
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In the control system design language, there are certain quantities involved 

that associate with the step response of the system. The MPC-VSL control is more 

complex than a basic control system that besides standard quantities rise time, 

settling time, overshoot and peak time, latency time is added to better analyze the 

sensitivity of system response. 

lt =the latency time, which is the time lag between a drastic speed drop and 

VSL triggering, measured in minutes. 

rt = the rise time, which is the time it takes for the VSL control system to 

reach its extremum, measured in minutes. 

st = the settling time, which is the time it takes for VSL control system 

transients to decay, measured in minutes. 

p

Maximun Overshoot
M

Final Value
 . Overshoot in this paper refers to how much 

the VSL value deviates from 80km/h, measured as a positive number. 

pt =the peak time, which is the time it takes for the VSL system to reach 

the maximum overshoot point, measured in time instants. 

 In reality the VSL response curve includes more than one oscillation; the 

following table shows results for the first wave of VSL drop and recovery. The 

first oscillation indicates the capability of the system to be sensitive to traffic 

conditions and react correctly.   
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Table 12 Quantities of Step Response of MPC-VSL Control System 

TEST 

DAY 

Speed 

Drop 

Began 

VSL 

Control 

Began 
lt  

rt  st  pM  pt  

Aug. 

13 

4:41:20 

PM 

4:45:40 

PM 

4.33 6.00 12.00 25% 4:51:40 

PM 

Aug. 

17 

5:03:00 

PM 

5:08:00 

PM 

5.00 5.00 3.67 38% 5:13:00 

PM 

Aug. 

18 

5:12:00 

PM 

5:16:40 

PM 

4.67 3.00 20.00 38% 5:19:40 

PM 

Aug. 

19 

4:54:40 

PM 

4:56:40 

PM 

2.00 8.00 17.00 63% 5:04:40 

PM 

Aug. 

25 

5:17:20 

PM 

5:21:20 

PM 

4.00 17.33 8.00 50% 5:38:40 

PM 

Aug. 

26 

5:35:00 

PM 

5:39:00 

PM 

4.00 2.00 5.00 38% 5:41:00 

PM 

Aug. 

27 

5:22:20 

PM 

5:29:00 

PM 

6.67 1.00 4.67 38% 5:30:00 

PM 

Aug. 

31 

5:05:00 

PM 

5:10:00 

PM 

5.00 5.67 4.00 38% 5:15:40 

PM 

Sep. 

01 

4:18:20 

PM 

4:18:40 

PM 

0.33 2.67 3.00 13% 4:21:20 

PM 

Sep. 

02 

5:00:00 

PM 

5:03:40 

PM 

3.67 3.33 6.67 50% 5:07:00 

PM 

Sep. 

03 

4:50:20 

PM 

4:55:00 

PM 

4.67 7.33 31.00 50% 5:02:20 

PM 

Sep. 

o4 

4:35:40 

PM 

4:39:40 

PM 

4.00 1.67 2.00 13% 4:41:20 

PM 

 

Typically those system step response quantities in Table 1 are equations 

that can be solved to meet certain requirements. In this case in contrast those 

quantities are constants to be evaluated empirically. Since no analyses on VSL 

field test system response exist for comparison, engineering experience is used to 

analyze the performance of the VSL step response. In this test, latency time 

ranges from 0.33 to 6.67 minutes, which we suggest is acceptable. The rise time is 

largely decided by the field condition, which was hard to judge, except for August 
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25, where the rise time falls between 1.00 and 8.00 minutes. The settling time 

reflects the length of time between the lowest VSL point and its first point that is 

nearest to 80km/h. If we consider the overshoot together with the settling time, the 

finding is that the bigger percentage of overshoot, the relatively longer settling 

time to take.   

5.4 Analysis of Measure of Effectiveness 

The measures of effectiveness (MOE) of MPC-VSL in this study are TTT and 

TTD, which are also components of the control objective function. In this section, 

a block diagram and an error transfer function are formulated to analyze the 

source of uncertainties for TTT and TTD. 

 

Figure 19 Block Diagram of TTT and TTD 

In the above block diagram, at each time step, the TTT and TTD are 

calculated from a weighted sum of the density and flow of all links, in which the 

weight is the segment length of each link. The discrepancies of TTT and TTD, 

between the predicted and field-collected values of each, are attributed to the 

prediction error of density and flow, the segment length measurement error and 

the inaccuracy of the prediction model. To further explain, we borrow the concept 
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of a transfer function from the automatic control field, which is typically used to 

describe the transition of statues of system. Here, we use this concept to describe 

the discrepancy between the anticipated performance and real performance. 

The error transfer function  

1 2 91 2 ...... 9MOE G G G                                                                           (5-10) 

Where, 1 2 9, ......   represent the prediction error of link 1 to link 9 from the 

METANET model, and 1, 2...... 9G G G represent the mismatch of segment length, 

segment division, prediction steps and other system fixed-parameter errors. 

In this system, the discrepancies between the actual MOE and those predicted via 

VSL-METANET fall under two types of uncertainties related to the prediction 

model: structured uncertainties and unstructured uncertainties. The data utilized in 

this analysis is from loop detectors and DynaTAM for the day of August 17, 2015, 

during 4PM-7PM peak hours. All traffic state data and VSL data are aggregated at 

each minute. The data is from one VDS that corresponds to DMS 1 in the field, 

since on that day only DMS 1 reacted in response to one bottleneck that was 

activated. 

Structured Uncertainties 

In the following figure, Structured Uncertainty (StrU) means the 

difference between model predicted and adjusted model predicted MOE. This 

category of uncertainty came from 1, 2...... 9G G G , and global parameters of 

METANET which contribute to part of 1 2 9, ......   . The adjustment strategy will 

be presented after figure. 
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Unstructured Uncertainties 

Unstructured Uncertainty (UU) means the difference between adjusted 

model predicted and field measured MOE. This uncertainty came from the 

accuracy of METANET and the choice of optimized VSL.   

 

Figure 20 (a) Comparing field measured TTT, model predicted TTT and 

adjusted model predicted TTT. (b) Model prediction error using adjusted 

prediction results.  

 

Figure 21 (a) Comparing field measured TTD, model predicted TTD and 

adjusted model predicted TTD. (b) Model prediction error using adjusted 

prediction results. 

The structured uncertainty of predicted MOE is assumed to be 

proportional to original predicted MOE, after trying other assumptions such as 
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proportion to measured MOE, fixed value of uncertainty, and finally the denial of 

assuming normal distribution. So that the adjusted predicted MOE is calculated by 

scaling down original predicted MOE, in which the reference point is the 

beginning of the study period 4:00:00PM, meaning the suggestion that at the start 

point of this time period no structured prediction uncertainty existed. Based on the 

above understanding, although the exact values of 1 2 9, ......   and 1, 2...... 9G G G

are not known, the overall structured uncertainty can be calculated. After 

eliminating structured uncertainty by scaling down original predicted MOE, there 

remains unstructured uncertainty. Figure 21 (b) and (d) show unstructured 

uncertainty. The expression of structured and unstructured uncertainties of the 

MOE can be expressed as follows: 

 

 
 ' 4:00:00
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Where,  mMoe t and  pMoe t represent field-measured and DynaTAM software 

predicted TTT and TTD respectively, at time step t before adjustment. From 

Figure 21 (b) and (d), it can be observed that approximately between 5PM and 

6PM, when VSL control was active, the UUs were unnaturally high, and that the 

UU fluctuated around zero during other times. We then conducted further data 

mining aimed at finding the quantitative relationship between detailed VSL 

overshoot values and UU of TTT and TTD during 4PM-7PM.  
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(a)                                                              (b) 

Figure 22 (a) Boxplot of Unstructured Uncertainty of TTT over VSL 

Overshoot Value. (b) Boxplot of Unstructured Uncertainty of TTD over VSL 

Overshoot Value. 

In Figure 22, boxplot and original UU data points are overlaid since VSL 

overshoots are discontinuous. There is positive correlation between VSL 

overshoot and the value of UU. We assumed that the larger the VSL overshoot is, 

the lower the ( )iu k in the speed prediction function, the lower of predicted traffic 

state variables. Theoretically, if drivers comply 100% with speed limit, the MOE 

prediction accuracy remains the same in different VSL scenarios. However, when 

VSL is low, the road condition becomes complex and that the compliance rate 

dropped, indicating that drivers keep driving faster than VSL that displayed. Due 

to the above reason, the adjusted-predicted MOE is lower than field measured in 

low VSL scenarios. After the low VSL period, the positive UU decays to zero 

again. Figure 8 shows the result of mining UU data of MOE, where it is clear that 

the mean of UU of each box increases with the increase of VSL overshoot. Each 
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box has similar and small variance, and except for the scenario with zero VSL 

overshoot, other VSL scenarios have much fewer data points.  

Table 13 Statistics of Unstructured Uncertainty of MOE versus VSL 

Overshoot 

Unstructured 

Uncertainty(UU) 

TTT  TTD 

VSL Overshoot  0 10 20 30  0 10 20 30 

Sample N= 139 11 18 12  139 11 18 12 

Mean of UU 0.25 1.04 1.33 1.03  19.2 73.7 97.99 91.3 

Linear Fit of 

VSL Overshoot 

(VSLO) and UU 

 

 

 

 

 

 

     UU = p1*VSLO + p2 

     with 95% confidence bounds, 

   p1 = 0.03826  (0.03121, 0.04532) 

   p2 = 0.2787  (0.206, 0.3514) 

 

 

 

 

 

 

 UU = p1*VSLO + p2 

with 95% confidence bounds,  

p1 = 3.079  (2.611, 3.546) 

 p2 = 21.04  (16.23, 25.86) 

 

Detailed statistical analysis was conducted, and the results are shown in 

Table 13. Besides providing specific values of classified sample numbers and 

mean values of UU for both TTT and TTD, a linear fit is used to check the 

correctness of the positive correlation between VSL overshoot and UU, or in other 

words, to check the significance of the parameters. The R-square values are not 
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shown because the data is distributed in four small clusters, which results in a 

naturally lower R-square, and both R-square are around 0.5.  For both TTT and 

TTD, the parameters of variable VSLO fall between the 95% confidence bounds, 

which indicate that we have 95% confidence in the VSL overshoot value being 

closely correlated with the UU of MOE. 

5.5 Summary of MPC-VSL Field Test 

From the field implementation of MPC-VSL control, firstly the step response 

analyzing scheme proves to be suitable for evaluating the sensitivity of control 

system. The analyzing result is that the system is quick and reasonable in terms of 

speed reaction. Once traffic broke down, or a speed drop occurred, the loop 

detector immediately upstream of the bottleneck promptly detected that change 

and successfully reacted with a latency ranging 0.33-6.67 minutes (20-400 

seconds); on average, the latency time was around 2-3 minutes. Even without 

clear criteria to judge the promptness of reaction, this latency is considered 

acceptable for humans. Moreover, with the time response curve, it can be 

observed that VSL signals help stabilize the fluctuation of the speed curve, and in 

some cases, helps with speed recovery. Secondly, the analysis of MOE shows that 

the MPC-VSL algorithm performs robustly in the field test. The StrU is stable and 

eliminable.  The UU is small in value compared to StrU, and that the UU is able 

to converge to zero after peak time. The value of UU is positively and closely 

related to the deviation of VSL values from the regular speed limit 80km/h, and 

that the UU can be attributed to low compliance rate and chaotic traffic condition, 

when VSL is low and the road get congested. 
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The step response analyzing tool and system uncertainty attributing 

method proposed in this paper provide a framework for evaluating traffic control 

systems as well as mining traffic flow data in non-control and control cases. For 

future improvements, considering improving field test performance, the manual 

check of software provided VSL decisions can be simplified for saving latency 

time, and the StrU can be eliminated before field implementation. Considering 

studies about VSL evaluating methods, the step response analyzing method needs 

to be generalized, and the uncertainty analyzing method should take more factors 

into consideration. Considering improving MPC-VSL algorithm, the driver 

compliance rate should be taken into account when optimized VSL value is too 

low to comply. When traffic is extremely congested, an alternative optimizer may 

be needed. 

CHAPTER 6. CONCLUSION AND 

DISCUSSIONS 

This chapter presents a general conclusion of the thesis and discusses 

about limitations of this thesis as well as future studies.  

6.1 General Conclusions 

This thesis is concerned with investigating the problems about field 

implementation of MPC-VSL traffic control, and the evaluation of the first pilot 

field test of MPC-VSL control in Edmonton, Canada. 
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Chapter 3 investigated a real time missing loop detector data imputation 

method which is specifically designed for the data missing of a lane for a 

continuous period of time. This type of data missing was observed in loop 

detector system in Edmonton as well as other disciplines, and this type of missing 

data significantly impact the performance of real time traffic control such as the 

MPC-VSL control in this thesis. The imputation algorithm is imputing the 

missing lane utilizing the information of its neighbor lanes in the same loop 

detector station via multiple linear regression. The algorithm is based on the 

assumption that all lanes in the same location are homogeneous in terms of road 

geometry and traffic volume. The results show that the proposed multiple linear 

regression method outperforms other commonly used methods and is more 

convenient to be put into practice.  

Chapter 4 investigated the feasibility of modifying one critical term called 

“desire speed” in METANET prediction model for better prediction accuracy. In 

this case study, weather factors are introduced into the desire speed term to 

improve prediction accuracy under unsatisfying weather conditions. The 

mathematical form of weather factor is linear in terms of weather variables, and 

that the key weather variables are filtered using real weather and loop detector 

data of November 2013. It is found that the difference between conventional fixed 

parameter prediction and weather specific prediction is larger when weather 

condition is worse. This is proved that desire speed term is critical in representing 

driver’s expected speed, and this term is reasonable to be modified for other uses 

such as MPC-VSL control that will be described in next chapter. 
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Chapter 5 first describes the scheme of MPC-VSL system, and then 

evaluates the performance of field test that conducted in Edmonton. The field 

feedback shows that the MPC-VSL system reacts quickly with the speed drop of 

bottle neck area, and is able to catch the trend of speed change. In terms of 

measure of effectiveness, both total travel time and total travel distance show 

discrepancy between model predicted values and accrual values. This discrepancy 

or model uncertainty can be classified into two kinds, structured uncertainty and 

unstructured uncertainty. The structured uncertainty is caused by fixed 

METANET parameters which were calibrated before and may not be suitable for 

all situations. Another source of structured uncertainty is inaccurate measured 

segment length. Fortunately the structured uncertainty can be eliminated since it is 

proportional to the original predicted total travel time and total travel distance. 

The unstructured uncertainty is caused by randomness of METANET model, the 

optimized variable speed limit value and so on. The unstructured uncertainty is 

found closely related to the VSL overshoot, which indicate that the lower VSL 

value is, the larger the unstructured uncertainty will be.  

6.2 Limitation of this Thesis 

The missing data imputation method proposed in this thesis has the following 

limitations. Firstly, it is suitable for lane missing type instead of random missing 

type which seems to be more common in sensor data collection. When random 

missing data imputation is needed, more complex statistics based imputation 

method should be used instead. Secondly, the proposed multiple linear regression 

technique is not granted to perform better than pairwise linear regression model in 
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the example of this thesis. However, multiple linear regression is more easy to 

apply into practice since when doing pairwise linear regression, the “pair” of lane 

should be defined before, and in multiple linear regression, the imputation is 

based on all other lanes in the same station.  Thirdly, the performance of 

imputation relies heavily on the quality of training data. In practice it is better to 

choose training days that are closest to missing days.  

When checking the feasibility of modifying desire speed term by showing 

case study of introducing weather factors, the limitation is the quality of weather 

data. The weather data frequency is one day, which is thought to be insufficient 

when weather changes drastically within one day. The weather variables in 

Edmonton are mostly related to snow, but in other countries of the world more 

weather variables such as rainy variables and foggy variables should be added and 

be filtered again.   

In field test evaluation, the limitation lies in the following aspects. Firstly, 

the driver compliance rate was not measured during field test. The sensor 

corresponding to one specific DMS is on the bottleneck location while the DMS is 

located 500m upstream of the bottleneck. There is no sensor at the location of 

DMS to measure how people slow down responding to the variable speed limit. 

Secondly, the effectiveness of MPC-VSL is not directly measured since during 

the field test the before and after compare is not conduct. The compare requires 

that the system to be turned off for a while during test period. In this thesis the 

most direct indicator of the effectiveness of MPC-VSL is the speed profile. 
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Thirdly, the source of unstructured uncertainty is not fully investigated. The 

current finding is that this type of uncertainty is related to the VSL overshoot.  

6.3 Recommendations for Future Researches 

In the future, the loop detector missing data method can be expanded to be able to 

address more missing types. Imputation methods those are suitable for small scale 

random missing pattern, such as multiple imputation method and expectation 

maximization method. Currently the missing data imputation is an algorithm in 

research papers, to implement it into real time actual traffic control more 

programing work is needed. The multiple linear regression imputation method can 

be implemented to not only online traffic control, but also off line database that 

suffers from data missing.  

The modification of the desire speed term in METANET model can serve 

different purposes. In the case study in Chapter 4, the modification goal is 

improving the model prediction accuracy under bad weather conditions. In the 

future if higher resolution weather data is available, the weather factor parameters 

can be more reliable and more accurate. What is more, different categories of 

weather variables should be included and modelled with real world data for 

building a complete weather factor modelling system that helps improving traffic 

state prediction models not only in winter cities such as Edmonton, but in cities all 

over the world. The desire speed can be modified to other uses such as different 

road geometry and different vehicle types if data is accessible. The modification 

of METANET model is not restricted to modifying desire speed. Speed dynamic 

as the only dynamic function in METANET that involve approximation and 
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parameter calibration, new terms may be introduced to improve the accuracy of 

speed prediction, and that requires the Payne model to be expanded again into 

higher orders. 

Through this thesis, the major finding in MPC-VSL field test is that there 

are discrepancies between expected and actual measure of effectiveness, for both 

TTT and TTD. The expected measure of effectiveness under estimate the increase 

of TTT and TTD, and that under-estimate is correlated with VSL overshoot. This 

finding in field test is a result, and different component in the system contribute to 

that discrepancy. Part of the reasons can be the improper missing data imputation 

method since in current system the imputation algorithm imbedded in software is 

average of surrounding detectors which is proved not the best method so far. 

Another part of reason is the modification of desire speed term in METANET, the 

optimal VSL value may be hard for drivers to follow during short period of time, 

and that the current optimal VSL value does not consider driver compliance rate, 

so that when desire speed term value is far from 80km/h, prediction error become 

large.  

In this thesis, the missing data problem and METANET modification 

problem are investigated separately under the title of MPC-VSL implementation. 

In the future, those two problems are to be investigated further and together in 

terms of how they eventually cause prediction error of VSL-METANET model 

and then cause the discrepancy between expected and actual measure of 

effectiveness. More sensors will be installed on exact DMS locations. The before-

and-after study will be done to enable direct observation of the effectiveness of 
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MPC-VSL control. All those plans will be carried on in the next stage of MPC-

VSL field test in the future.   
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