
U n iversity  of A lberta

H euristic Search A pplied  to A bstract C om bat Scenarios

by

A lexander K ovarsky

A thesis subm itted  to  the Faculty  of G raduate Studies an d  Research in  partia l 
fulfillm ent of the  requ irem en ts  for the degree of M aster of Science

D ep artm en t of C om puting  Science

E dm onton , A lberta 
Fall 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1*1 Library and 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Bibliotheque et 
Archives Canada

Direction du 
Patrimoine de I'edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 0-612-95786-1 
Our file Notre reference 
ISBN: 0-612-95786-1

The author has granted a non­
exclusive license allowing the 
Library and Archives Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats.

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur a accorde une licence non 
exclusive permettant a la 
Bibliotheque et Archives Canada de 
reproduire, preter, distribuer ou 
vendre des copies de cette these sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
electronique.

L'auteur conserve la propriete du 
droit d'auteur qui protege cette these. 
Ni la these ni des extraits substantiels 
de celle-ci ne doivent etre imprimes 
ou aturement reproduits sans son 
autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To my parents, 

Emma and Oleg

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgement

I would like to express my gratitude to my supervisor, Dr. Michael Buro, for his help, 

great advice as well as for financial support during the course of this research. His 

genuine interest and expertise in this research as well as in the areas of heuristic search 

and real-time strategy gaming in general were among my main reasons for deciding to 

pursue this research and for subsequently achieving its goals.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table of Contents
1. Introduction................................................................................................................................ I

1.1 The Field of Artificial Intelligence................................................................................... 1

1.2 Games as a Test-bed in Artificial Intelligence..................................  3

1.3 Real-Time Strategy G am es...............................................................................................4

1.4 Open Real-Time-Strategy Test-Bed (ORTS)................................................................. 6

1.5 Proposed Approach for RTS Research............................................................................ 7

1.6 Abstract Combat Scenarios...............................................................................................9

1.7 Contributions...............................................    11

2. Related W ork............................................................................................................................13

2.1 Lanchester Equations Exam ple  ......................................................................... 15

3. Problem Description..................................................................................  17

3.1 Basic Problem Set-U p......................................................................................................19

3.2 Defensive Actions Modification..................................................................................... 20

3.3 Set-Up with Ranged Attacks.......................................................................................... 22

3.4 Abstract Combat Examples.............................................................................................23

3.4.1 Unlimited Range Exam ple...................................................................................... 23

3.4.2 Range Example.........................................................................   27

4. Abstract Combat Decision Algorithms................................................................................28

4.1 Motivation........................................   29

4.1.1 Examination of Problem Complexity..........................................   31

4.1.2 Dependence in Games with Simultaneous M oves...............................................32

4.1.3 Tackling The Challenges of the Domain............................................................... 33

4.2 Implemented Algorithms...................................................................   34

4.2.1 Linear Programming................................................................................................. 34

4.2.2 Alpha-Beta (A B )............................................................................   37

4.2.3 Random Alpha-Beta (RAB)..........     38

4.2.4 Monte Carlo................................................................................................................43

4.2.5 Random P layer..........................................................................................................45

4.3 Evaluation Functions........................................................................................................46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3.1 Simple Evaluation Function....................................................................................47

4.3.2 Square Root Evaluation Function...............     48

4.3.3 Tournament Evaluation Function........................................................................... 49

4.4 Other Improvements and Applications................................................................  50

4.4.1 Selective Search........................................................................................................50

4.4.2 Removing Duplicates...............................................................................................51

4.4.3 Delayed Move Execution........................................................................................ 51

4.4.4 Balancing Scenarios Application........................................................................... 52

5. Experiments............................................................................................................................. 54

5.1 Experiments Preview........................................................................................................54

5.2 Experimental Setup ..........................................................................................................56

5.3 Results of Experiments.................................................................................................... 59

5.3.1 Experiment 1 (Scoring Setting for RAB and Monte Carlo)............................... 59

5.3.2 Experiment 2 (Performance of All M ethods)....................................................... 60

5.3.3 Experiment 3 (Evaluation Function Selection).................................................... 63

5.3.4 Experiment 4 (Move Selection Experiment).........................................................65

5.3.5 Experiment 5 (Varying RAB’s Nodes vs Constant A B) ............................... 68

5.3.6 Experiment 6 (Strict Constraints)........................................................................... 70

5.3.7 Experiment 7 (Degree of Move Interdependence)...............................................72

5.3.8 Experiment 8 (Sticking to Target Improvement).................................................74

5.3.9 Experiment 9 (Examining the Range Expansion)................................................75

5.4 Unit Value Balancing  ........................................................................................ 79

6. Conclusion................................................................     80

7. Future W ork .............................................................................................................................81

8. References.......................      86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

Table 1: Shows the number of Y survivors and casualties as the number of initial y ’s units 
increases.............................  17

Table 2: Predefined ranges of hitpoints, attack values and cooldown periods for units
used in our experiments.............................................................................................. 57

Table 3: Shows the results for team 2 after balancing for non-defensive (a) and defensive 
scenarios (b ) ........................................................................................................................80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List Of Figures

Figure 1: Shows the LPs for two players for computing Nash-optimal strategies. Player 
“Max” has moves from 1... n, , while “Min” is from 1 . . .n 2. Ai . is the score from

“Max’” s perspective if a pair of moves (i, j)  is chosen. x i and y . are probabilities 
of choosing moves i and j, for “Max” and “Min”, respectively................................... 35

Figure 2: Pseudo-code for the LP player’s algorithm ................................................. 36

Figure 3: Shows a sample RAB tree. The black player moves first at the root followed by 
the white player. At the next level, the player to move is randomly selected. This 
player’s move is followed by the move of the opponent of the randomly selected 
player.....................................................................................................................................40

Figure 4: Randomized binary minimax tree (a) and alternating binary minimax tree (b). 
Both trees have the same structure, number of nodes and exactly the same values at 
leaf nodes. The difference is in the order at which the moves are executed and the 
value that is propagated to the root................................................................................... 40

Figure 5: Pseudo-code for the RAB algorithm................. ... ..................................................41

Figure 6: High-level pseudo-code of the Monte Carlo method............................................ 44

Figure 7: Win ratio of RAB over AB and Monte Carlo over AB for different scoring
settings...................................................................................................................................60

Figure 8: Win ratio for each individual method in a round robin tournament for a non­
defensive scenario................................................................................................................61

Figure 9: Results of all methods playing against one another in a non-defensive scenario.
   62

Figure 10: Win ratio for each individual method in a round robin tournament for a non­
defensive scenario................................................................................................................62

Figure 11: Results of all methods playing against one another in a defensive scenario... 63

Figure 12: Evaluation function performance: (a) non-defensive scenarios (b) defensive 
scenarios................................................................................................................................64

Figure 13: Move selection results in 3 versus 3 non-defensive (a) and defensive (b)
scenarios. Results show that concentrating effort on a subset of moves payoffs 66

Figure 14: Move selection results in 4 vs 4 non-defensive (a) and defensive (b) scenarios. 
Results show that concentrating effort on a subset of moves payoffs......................... 67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 15: Results of RAB wins over AB as the number of RAB nodes is increased from
20,000 to 400,000 and AB’s node count is fixed. The results are shown for non­
defensive scenarios..............................................................................................................69

Figure 16: Results of RAB wins over AB as the number of RAB nodes is increased from
50.000 to 400,000 and AB’s node count is fixed. The results are shown for defensive
scenarios............................................................................................................................... 69

Figure 17: Results of RAB wins over AB as the number of nodes is increased from
10.000 to 100,000 for 3vs3 scenarios and from 20,000 to 200,000 for 4vs4 for non­
defensive scenarios.......................................................................................................   70

Figure 18: Results of RAB wins over AB as the number of nodes is increased from
30.000 to 200,000 for 3vs3 scenarios and from 50,000 to 400,000 for 4vs4 for 
defensive scenarios..............................................................................................................71

Figure 19: The ratio of wins of RAB over the AB for 3 vs 3 scenarios as the move 
dependency increases from no defensive action to high probability of a defensive 
action. The figure also shows the number of wins/losses as a percentage of games 
played in such situation, indicating result variance......................................................... 73

Figure 20: The ratio of wins of RAB over the AB for 4 vs 4 scenarios as the move 
dependency increases from no defensive action to high probability of a defensive 
action. The figure also shows the number of wins/losses as a percentage of games 
played in such situation, indicating result variance................................................... ....73

Figure 21: The percentage of wins for RAB in 3 vs 3 and 4 vs non-defensive scenarios as 
the number of nodes given is increased from 10,000 to 800,000.................................75

Figure 22: The combined totals of win ratio achieved over all methods for each individual 
method in non-defensive scenarios with range............................................................... 77

Figure 23: Results for ranged non-defensive scenarios in 3 vs 3 situations  ...........77

Figure 24: The combined totals of win ratio achieved over all methods for each individual 
method in non-defensive scenarios with range............................................................... 78

Figure 25: Results for ranged non-defensive scenarios in 4 vs 4 situations...  ............. 78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. Introduction

1.1 The Field of Artificial Intelligence

The field of artificial intelligence is a vast area, which is comprised of dozens of sub­

fields. Therefore, providing a single or even adequate definition of what is artificial 

intelligence is a difficult, if not an impossible task. Nevertheless, there are several 

common goals that are relevant to most sub-fields of artificial intelligence. Trying to 

understand intelligent entities is a goal artificial intelligence shares with sciences that 

study humans, such as philosophy and psychology. However the main goal of artificial 

intelligence is to build intelligent systems and subsequently to study them, because of the 

key belief that much can be learned from such systems and the results they produce.

There are many definitions of AI present in the current literature. In their Artificial 

Intelligence textbook [28], Russell and Norvig divide the definitions of AI according to 

two criteria. One criterion separates the definitions that are based on thought-processes 

versus the ones that address behaviour. The other separates between the measures of 

success in terms of human performance as opposed to rationality. Therefore, all 

definitions of artificial intelligence according to [28] fall into four main categories:

1. Systems that think like humans

• “The exciting new effort to make computers think ... machines with minds, in 

the full and literal sense” [16].

2. Systems that think rationally

• ‘T he study of computations that make it possible to think reason and act” 

[40],

3. Systems that act like humans

• “The study of how to make computers do things at which at the moment 

people are better” [27].

4. Systems that act rationally

1
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® “The branch of computer science that is concerned with the automation of 

intelligent behavior” [23].

The broad range of definitions trying to define what AI is or what it should become 

suggests not only that artificial intelligence is still in its infancy and most scientists are 

still not completely sure where it is going, but also that there are many different 

sometimes seemingly unrelated areas that artificial intelligence tries to encompass.

The main areas of artificial intelligence include: agent theory, which studies the 

properties of intelligent agents and the interactions between them; machine learning, 

which studies ways to adapt to new situations and learn from previous behaviours; 

heuristic search, which uses computers’ high computation potential to find solutions to 

complex problems; knowledge representation, which investigates ways to represent and 

store knowledge in intelligent systems; logical reasoning, which looks into ways 

computers should approach and solve different problems; natural language processing, 

which researches ways for computers to understand and communicate in a particular 

human language.

Each of the above sub-fields standalone are still very broad areas and do not provide a 

precise description of a specific research. For example, the area of machine learning is 

further subdivided into areas such as reinforcement learning, neural networks, genetic 

algorithms, etc. Furthermore, the borders that separate different sub areas are not very 

well defined or “fuzzy”. Often it is difficult to determine whether a particular project 

belongs to one or another of the many sub-fields of artificial intelligence and on occasion 

some research can be justifiably claimed to belong to two or more such sub-fields at the 

same time.

The research described here is a good example of this. The techniques used for this 

research belong to the area of heuristic search. The test domain for the research is that of 

game-playing, specifically commercial computer games. But, the research also deals with 

real-time AI issues as well as game theoretical solutions to simultaneous move games.

2
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1.2 Games as a Test-bed in Artificial Intelligence

The research in games started more than 40 years ago by the pioneers of artificial 

intelligence Arthur Samuel, Claude Shannon and Alan Turing. In [31][36][29] they 

introduced the concepts that are still behind many of the modem high-performance game- 

playing programs. Those concepts have been successfully applied to create strong game 

playing programs in chess [18], checkers [30], Othello [7], backgammon [2], and poker 

[4], The main goal of creating strong game playing programs, however, is not to improve 

our knowledge of those games, but to explore new and exciting research ideas. Indeed, 

many advances in the area of search were discovered as a result of building game playing 

programs. Most successful game-playing programs require the use of those methods 

developed by those pioneers; ours is not an exception

Nevertheless, advances made in playing the games themselves cannot be completely 

ignored. Successful programs that can beat the best humans increase the awareness about 

advances in artificial intelligence in the general public and thus generate more interest in 

the subject. There are many examples such successes in the games of chess, checkers, 

backgammon and Othello. The most prominent of these successes is the 1997 victory by 

IBM’s Deep Blue chess playing computer over then world champion Gary Kasparov, 

which generated a lot of interest in the general public, but more importantly helped bring 

AI research into mainstream. There were other major successes including the world 

champion checkers program Chinook [30], developed by University of Alberta’s 

Jonathan Schaeffer.

So the questions of why such AI success was achieved in board games and why games 

are excellent domains to pursue artificial intelligence research naturally arise. The main 

reason is that games provide a well-defined environment in which algorithms can be 

tested, polished, and evaluated. In turn, those algorithms can be applied to help solve 

many real-life problems. Therefore, tackling a simpler and narrower problem in a very 

restricted domain and then trying to apply what was learned from it into a more difficult

3
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realistic environment is preferable to trying to tackle more difficult problems at once 

without having any intuition about them.

1.3 Real-Time Strategy Games

Commercial computer games are quickly becoming a major test-bed for artificial 

intelligence research. In the past most computer game companies concentrated their 

efforts on improving the game graphics, without putting much emphasis on the game AI. 

This was justifiably so since at that time better graphics were the main selling point for 

most games. This trend has changed recently as most games have reached very high- 

levels in graphics and gamers (specifically real-time strategy gamers) are starting to stress 

the often-unintelligent AI behaviour in most games. Also as processors become faster 

every year, more cycles can be used for artificial intelligence computations in computer 

games. This is an exciting development for AI research since the domain presents many 

challenges that are not found in traditional AI research in games.

In games such as chess, where most research in games was done, there is a complete 

knowledge of the state, little restriction placed on the time given to make a decision, and 

only two search agents. However, in most real-life problems there is only a partial 

knowledge of the environment, the environment and the goal state are dynamic in nature, 

decisions have to be made in real time, and there are multiple agents.

Commercial computer games, however, have more elements that exist in real-life 

problems, such as strict time constraints. In addition, there is a demand for AI that can 

provide good solutions under such restrictions. Therefore, such games are ideal 

applications for real-time AI research.

While board games such as chess and checkers are mostly interesting as test-beds for AI 

research, commercial computer games are a huge industry by itself. According to a Time

4
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magazine article [34], the computer games industry is twice as big as the movie industry 

in the United States, having annual revenue of 21 billion US dollars. Thus, research 

performed in such games can be directly and quickly applied to improve games in an 

industry aching for better AI solutions, due to the increasing criticism of often primitive 

game AI behavior.

Real-time strategy (RTS) games will be used as a test-bed for our research, since such 

games not only have many of the challenges present in the real world, but also provide a 

well-defined environment in which methods can be investigated and perfected. In RTS 

games players compete for resources, scattered over a terrain, by setting up an economy, 

building armies, and guiding them into battle in real-time. RTS games offer a greater 

variety of fundamental artificial intelligence research problems, as compared to other 

genres of commercial computer games. Some of the challenges found in most real-time 

strategy games are [11]:

1. Resource management -  players gather resources to build 

infrastructure, attack forces and defence structures. Players need to 

balance the way they invest in different areas.

2. Decision making under uncertainty -  players often have to make 

decisions based on incomplete information. For example, they might 

not have complete knowledge of the map or exact knowledge of 

enemy forces’ locations.

3. Spatial and temporal reasoning -  static and dynamic terrain analysis, 

as well as understanding temporal relations of actions, is of utmost 

importance in RTS games. Current AI in commercial games mostly 

ignore these issues.
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4. Collaboration -  In RTS games groups of players can join forces and 

share intelligence. Coordinating those actions effectively by 

communication among the parties is a challenging research problem.

5. Opponent Modeling, Learning -  the biggest weakness of AI in most 

RTS games is the inability to learn from mistakes by adapting future 

behavior. For human players it take a short time to find such 

weaknesses in game AI and exploit them. This makes games less 

enjoyable and reduces their re-playability value.

6. Adversarial real-time planning -  the state space in a typical RTS game 

is far larger than in a board game such as chess, thus searching the 

original state space is impossible in real-time. Therefore, effective 

abstraction techniques have to be found to make the search space 

smaller and to hierarchically divide it into more specialized sub-tasks.

1.4 Open Real-Time-Strategy Test-Bed (ORTS)

Although there are many commercial RTS games that exist today, using them as a test­

bed is not an option. Most of those games were designed as complex rule-based systems 

that are difficult to maintain and expand on. Moreover, game companies, in general, are 

quite reluctant to provide their source code, because of a fear of spying by their 

competitors. Thus, to be able to work on improving the state of the art of AI in real-time 

strategy games, a new test-bed that has most of the features that are present in a typical 

RTS game has to be created from scratch.

Work on the Open-Real-Time-Strategy (ORTS)[8] project is currently being done by the 

ORTS group at University of Alberta. Its main goal is the creation of hack-free server- 

side RTS test-bed that incorporates most elements that are present in typical commercial 

RTS games. Currently, ORTS has an nxm grid in which units of both teams are

6
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positioned. To enhance the realism of the simulation, the grid consists of features such as 

rivers, hills, mountains, as well as realistic views of obstructions (eg. a unit won’t be able 

to see through mountains). In addition, units in ORTS have different attributes such as 

speed, attacking strength, defensive strength, range of weapons, etc. ORTS allows AI 

researchers to connect their own client AI software to the ORTS server to compete 

against other client software.

1.5 Proposed Approach for RTS Research

ORTS provides researchers with an environment, which they can use to test their ideas. 

How they choose to proceed in creating the AI for their team is open to them. Designing 

a complex rule based system to tackle the whole game at once, similarly to what is done 

in most commercial RTS games, is not the best way to approach the problem since such 

systems have proven to be difficult to maintain and almost impossible to expand. Thus, a 

hierarchical approach for solving problems in RTS games that uses the best methods 

available in the areas of machine learning and search can have a great effect on 

improving the state of the art of AI in such games.

Consequently, research in RTS games can be divided into two branches: higher-level AI 

and lower-level AI. Higher-level AI refers to the management of resources, decisions on 

what to build, and strategic decisions on sending units into battle. Lower-level AI refers 

to the behaviors of a single unit and small groups of units that are given a command. 

Lower-level AI should be the starting point of any research, since without effective 

solutions in this area, research on higher-level reasoning and planning cannot proceed.

There are several challenging issues in lower-level AI. One is pathfinding, which refers to 

finding a route in a grid from a start location to the goal. Another issue is the creation of a 

stronger AI for a small group of units that have a common goal. An additional problem is 

finding effective solutions for abstract combat scenarios between two opposing teams

7
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consisting of several units each. Some of the challenges present in each of those areas are 

as follows:

1.) Pathfinding problem for a single agent

Time is a vital issue for pathfinding in the RTS domain. Consequently, traditional 

search algorithms, such as A* will not work, because they cannot guarantee a solution 

within a given time. The A* or IDA* algorithm cannot be interrupted at any time 

during its search because it needs to complete the search in order to find a solution. 

Anytime algorithms can be interrupted at any time always producing a solution (Note: 

A solution produced is not necessarily an optimal solution), while real-time 

algorithms produce solutions given the constraints of the environment they operate in. 

Fortunately, there is a family of newer real-time search algorithms available, which 

can produce near-optimal solutions given a limited time. The two most well-known of 

these are LRTA*[20] and D*[33], Scalability is another issue that needs to be 

addressed, to tackle an expected decline in performance as size of the grid increases. 

To minimize this decline the search space size for a selected algorithm has to be 

decreased. This can be done through search space abstraction, by dividing the search 

space into areas of the grid, instead of searching on individual locations.

2.) Multi-agent coordination for a small group of units

In a typical RTS environment one task is often given to a group of units that belong to 

several different classes (eg. tanks, soldiers) rather than to a single unit. Each class of 

units in such a formation has different strengths and weaknesses. The general issue 

here is how to make units in such a group act in a coordinated way. What types and 

proportions of units should be in a formation? How the units should be positioned on 

a grid? When should they decide to abandon a given goal once it is unattainable or 

too costly to achieve?

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.) Abstract Combat Scenarios

In such scenarios two small groups of units ( 2 - 4  units each), battle it out in real-time 

until one group is eliminated. The key challenge here is how to decide on the amount 

of firepower to direct at each opponent in order to get the most advantage and more 

importantly how to do this in real-time. Designing effective methods that provide 

solutions to abstract combat scenarios can be looked at as the first step towards 

developing advanced pathfinding techniques.

1.6 Abstract Combat Scenarios

The main purpose of this research is investigating and finding effective methods for 

abstract combat situations, or also known in military literature [15] as combat attrition 

scenarios. Such scenarios have long been a focus of military research. They present many 

challenges even without considering the real-time constraints. The main challenge is that 

there is no simple (i.e. cheap to compute) heuristic solution that works in most situations. 

Such heuristics are used in RTS games and commonly result in unintelligent unit 

behavior. Therefore, designing a method that can generate good moves for abstract 

combat scenarios in real-time can improve the combat AI in RTS games.

In a typical scenario two teams consisting of several types of units battle with each other 

in real-time. All defending units are located within reach of every attacking unit and vice 

versa. There are several types of units that are used for this research. They can be looked 

at as units in an army such as tanks, infantry and artillery. Each unit has three attributes: 

attack value, hitpoints, and cooldown period. Attack value refers to the amount of 

damage a unit can inflict on its opponents. For example, tanks and artillery will have 

higher attack values than infantry. Hitpoints refers to the defensive strength of a given 

unit. For instance, a tank will have more hitpoints than artillery or an infantryman, and

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



thus will be more difficult to eliminate. Cooldown refers to how often a given unit can 

fire. An infantryman can fire almost continuously, while it takes time for a tank to 

cooldown its weapon.

Given a scenario where two teams consisting of several units battle each other, the central 

issue is deciding which unit should fire at which enemy unit at a given time. The 

properties of our domain differ from traditional domains where search is used and 

consequently make it more challenging. One complicating issue is that both teams can 

fire simultaneously, which makes it seemingly difficult to use an of-the-shelf algorithm 

such as alpha-beta, since the algorithm is designed for situations where players alternate 

turns. Second, all units move at the same time at each turn. Therefore, the successors are 

all possible combinations of all units’ moves. This increases the branching factor by a 

high degree, as compared to traditional board games where one piece usually moves. 

Another issue is that as a number of units in each team increases, there is an exponential 

increase in the state space, which results in a significant decrease in performance (Refer 

to Section 4.1.1). Even though alpha-beta or other real-time approaches can produce a 

solution given tight time constraints, the quality of such solutions will generally decrease 

significantly as the number of units increases.

In order to develop suitable algorithms for generating moves in such scenarios, we have 

created a simulation environment where such games are played out till the end (i.e. when 

one side is eliminated). In such games we test several approaches for selecting a team’s 

actions in real-time. Two of the approaches are search-based, which use a modified 

version of an alpha-beta algorithm. In one algorithm, which we refer to as randomized 

alpha-beta (RAB), teams do not execute moves one after another, but at certain interior 

nodes there is a probability for either team to go. Other methods are a Monte-Carlo 

simulation type player and a linear program (LP) player.

Although at first glance creating effective methods for such combat scenarios might not 

seem very significant, there are a number of important lessons to be learned from it and 

there are several real-life applications where methods can be applied immediately. First,

10
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this research can determine whether modified two-player heuristic search algorithms can 

be used effectively in situations with simultaneous move executions, huge state spaces, 

and severe real-time constraints.

Second, effective real-time algorithms can be immediately incorporated into an RTS 

game and will be a vast improvement over the currently used rule-based local combat AI. 

In addition, our methods can be used as an AI helper (for a human player) for resolving 

small battles that can alleviate the human commanders from playing them out by hand 

and instead allow them to concentrate on more strategic global decisions. It can also be 

used as a planning assistant for either a human or a computer player. Having such an 

assistant would allow a player to simulate an expected outcome of a potential encounter 

without actually sending units into battle. Such simulations will help the player decide 

whether to send units to fight or not.

Another problem that we can address is that of creating equal strength teams which 

consist of different types and numbers of units. This problem is encountered by game 

designers when designing interesting scenarios for a game. In such scenarios each player 

should have a different looking starting position that consists of different types and 

numbers of units, but each position should have an equal probability of winning. A good 

helper tool would allow scenario designers to play a series of simulated games, which 

perturb the units’ numbers and strengths by a small degree during each simulation turn 

until the game is a draw. Such tool will be able to automatically generate equal starting 

positions that are close to positions given as its input. Currently, such tuning is done by 

hand.

1.7 Contributions

This thesis makes the following contributions:

11
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1.) A new alpha-beta based algorithm (RAB) that simulates action executions in 

simultaneous move domains better than alternating move algorithms such as 

alpha-beta. The algorithm is a modification of an alpha-beta algorithm in which 

the order of player’s moves is based on random numbers.

2.) An experimental analysis of several search and non-search based methods in our 

simultaneous move abstract combat domain. The methods are examined on the 

basis of quality of the solutions they produce, their real-time performance, and 

their suitability to different problem settings. The results show that the degree of 

interdependence between actions in a specific game set-up is the key for 

determining the methods that are most suitable in various situations.

3.) A number of methods (AB, RAB, and Monte Carlo) described in Chapter 4 that 

provide good moves in real-time in the abstract combat domain. Their 

effectiveness varies depending on the specific situation, but each method can 

produce reasonable moves under real-time constraints.

4.) A test environment for the abstract combat domain in which algorihtms can be 

examined by playing death-matches against one another. The environment has a 

generalized, object-oriented structure that allows designers to easily adapt it to 

other competitive domains (both simultaneous move and alternating move 

domains)

5.) A helper tool for creating balanced scenarios, which can be immediately used by 

game designers to create interesting scenarios.

Chapter 2 discusses the related literature. Chapter 3 describes in detail the problem 

domain used in this paper. Chapter 4 describes our methods to solve the problems 

presented. Chapter 5 evaluates different algorithms and Chapter 6 draws general 

conclusions on our findings. Finally, in Chapter 7 we present ideas for future research.

12
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2 . Related Work

Although real-time strategy games have become one of the most popular computer game 

genres over the last decade, the research in such games is in its infancy. Specifically, very 

few academic papers that are dealing with the general area of RTS gaming [8] [10] and no 

papers related to abstract combat simulations were found in my literature survey. The 

military research community [15], is an area with ongoing research in the subject of 

combat simulations. In the military literature the area of predicting and simulating mutual 

attrition between two opponents is widely referred as combat attrition simulations. It is 

considered as one of the key aspects of modem combat modelling. Still, despite the fact 

that combat attrition is one of the most studied combat processes there is still no 

agreement on the best way to model it [15].

Most military researchers agree that understanding of combat phenomena is facilitated by 

using a hierarchy of combat to describe combat events and aggregate them for analysis 

[14]. At the top of such hierarchy is war, followed by a campaign, which refers to a 

sequence of battles closely associated in time and space that all share a single goal. A 

campaign is further subdivided into battles, which refer to a combat between two major 

forces. An engagement refers to a smaller scale battle between two forces. Finally, a duel 

is a fight between two individuals.

Since ancient times beginning 1500 years ago with Sun Tzu’s The Art of War [38] a lot 

of efforts have been invested into developing fundamental laws and theories that help us 

understand the interactions of forces in the battles and predict the outcomes of such 

battles. In modem military combat models are widely used for battle planning, force 

sizing, human resource planning, logistics planning, and weapon purchase decisions [19].

In military research there are two main ways for unit representation in combat scenarios. 

First, are the non-aggregated combat models, where each unit is represented as a single 

entity on the battlefield. The second approach is aggregated combat models, where an
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entity consists of several units. The study of aggregated combat models is the focus of 

most research in the area of combat attrition.

There are two types of aggregated combat models -  homogeneous and heterogeneous 

[25]. In heterogeneous models, there is an interaction between aggregated units. Such 

models assess which unit attacks which enemy unit. In a homogeneous aggregated 

attrition process, all of the units are aggregated into a single unit. The interactions 

between different units are not considered in such models.

In modem military research there are two main ways for modelling combat attrition: 

Lanchester modelling and firepower score approach.

Frederick William Lanchester in 1914 formulated models for attrition. Their purpose was 

to justify the principle of concentration of forces under the conditions of “modem” 

warfare [12]. Lanchester then devised some models based on common differential 

equations to translate his hypotheses into mathematical terms. Currently, Lanchester-type 

attrition models refer to the set of differential equation models that describe changes over 

time in the force levels of fighters and other significant variables that describe the combat 

process [35]. Such models are used to answer such simple questions as who wins the 

battle or more complex questions addressing the force make up and tactics. Lanchester 

differential equation models have gained importance through their ability to provide 

insight into the dynamics of combat and their applicability [12]. While there is a wide 

variety of Lanchester-type differential models based on size and complexity, there are 

several factors that are common to most of them: attrition to a force is a function of force 

size and other associated attributes; force size is a function of time; for two opposing 

forces casualty rates can be written as a pair of differential equations; the solution to such 

models is a pair of functions giving sizes of both forces as a function of time (Refer to 

Section 2.1).

In the firepower score approach for combat attrition, models use force ratio in their 

structure. The ratio of attacker to defender combat power is used to determine the
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casualties for both sides [25]. In this approach the combat power of a unit is computed by 

summing the combat power value for each particular weapon type. This is done both for 

attacking and defending forces. The next step is to divide the attacking forces combat 

power over that of defensive forces. This gives us a measure of a relative combat power 

in a battle. The issue of determining combat powers of units is a very difficult problem. 

There are several methods for computing firepower score values, based on military 

judgement and experience, such as RAND’s ground force scoring system [1] and anti- 

potential-potential-method [25].

In military research, there are many studies that use both Lanchester models and 

firepower score approach. In [5][13] [37] the authors did an empirical validation studes 

based on the data of WWII battles of Kursk and Ardennes. They have found that none of 

the Lanchester-type models fit the data perfectly, with Lanchester logarithmic model 

being the best predictor. There also are several studies that use the firepower score 

approach. In one such study [1], the value of a weapon system is varied as a function of 

the combat situation, dependent on type of terrain and on the type of battle. The ratio of 

attacking combat power to the defending combat power is defined by the environment 

both forces are operating in.

There are many other combat prediction models based both on Lanchester equations or 

on the firepower scoring approach have been widely used for analytical purpose to 

predict and simulate mutual attrition among two opponents (i.e. [22][5][1]). The main 

problem with such analytical methods arises from their exhaustive enumeration, which 

leads to exponential computation time. Therefore, such methods are not real-time and in 

practice can only be used to model small battles [41].

2.1 Lanchester Equations Example

Lanchester equations for modem warfare were developed on the principal that many units 

could concentrate fire on a single target. This was based on the fact that modem weapons
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allow multiple units to engage a single opponent and can concentrate fire from weapons 

scattered on the battlefield [12]. He developed two types of differential equations: one for 

aimed scenarios, in which units have to aim at the opponent, and one for the area fire,

where units do not aim at a specific opponent, but instead attack a specific area. We only

show an example of Lanchester’s aimed fire scenario (because such scenario is closely 

related to our abstract combat scenarios), where individual targets can be attacked by any 

number of opponents at the same time. Under aimed fire the attrition rate for force X, 

where v is the number of X ’s units, depends on how many force Y units are shooting at it 

and the same holds for force Y, where y  is the number F s  units. The Lanchester equations 

for v and y are formulated as follows [12]:

dx dy ,
—  = -a y  —  = —ox 
dt dt

where, a, is the attrition rate coefficient for x expressed in terms of

Xcasualties/(Yattackers * time) and likewise for b. From the above it can be shown that x

and y are related by

b {x l  ~  x 2 ) =  a { y l  -  y 2 )

where x0 and y0 are the initial numbers of forces for X  and Y, respectively.

If a = b (i.e. the attrition rates for forces X  and Y  are the same) and x = 0 (i.e. all x forces

have been eliminated), the number of F s  survivors are shown in y s = y 20 - x 20 .

Enumeration for some values of y0 shows the advantage of concentrating fire, which

Lanchester aimed to illustrate originally. Specifically, as ya (i.e. initial number of F s

units) increases the number of F s  casualties decreases significantly. Results are shown in 

Table 1.
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Table 1: Shows the number of Y survivors and casualties as the number of initial y’s units increases

Y ’s Survivors Y’s Casualties

100 0 100

200 173 27

400 387 13

800 794 6

3. Problem Description

Our primary objective when designing the experimental environment was to make it 

closely resemble fights in real-time strategy games. In addition, it is worthwhile to note 

that many RTS games were originally modelled after modem military forces. The most 

prominent examples are Rise of Nations by Microsoft Game Studios, Command and 

Conquer series by Westwood Studios and later EA Games, and the Warcraft series by 

Blizzard Entertainment. Therefore, our research is of interest to military researchers as 

well.

First, we examine a set-up of a typical real-time strategy game. Normally, a game will 

feature a number of unit types for each player type. This number can range from 2-3 unit 

types to dozens of units, depending on the game and also on the stage in a given game. 

Typically, when a player starts the game only a few basic units are available, however as 

the game progresses and the player gains access to more advanced technologies and gets 

more valuable resources the number of unit types they can produce can become very 

high. It is important to note that at any given time in a game, players will typically use 

only a few unit types out of an assortment of units available to them. Such restrictions can 

mostly be attributed to having more advanced technologies, whereby older units are not 

used since the player now has newer and more efficient alternatives to build.
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Therefore, for our simulation we only need a few unit types that are representative of 

units present in a typical RTS game. We also have to remember that in abstract combat 

situations any unit can attack any other unit, thus making range and speed of movement 

irrelevant features. From examining the land units in some newer RTS games such as 

Rise of Nations, we can see that most land units can be divided into three classes as 

follows:

Strong Attackers / Strong Defenders / Average Shooters

• Such units have high attack power and very good defensive strength, but need 

some time to cool-off between attacks. An example of such a unit can be a 

tank.

Very Strong Attackers / Weak Defenders / Slow Shooters

• Such units have a very high attack power, but very weak armour and require 

long cooldown periods between attacks. A good example of such a unit can be 

artillery.

Average Attackers / Average Defenders / Fast Shooters

• Such units are average attackers and average defenders, but they do not need 

to cooldown between attacks. A good example of such a unit is a marine.

To summarize, each unit has three main attributes, which are attacking strength (attack 

value), defensive strength (hitpoints), and cooldown period. Another attribute is aiming 

time. When the simulation starts each unit picks its target and then both groups attack 

their targets simultaneously. The simulation continues until every unit in one or both 

teams is eliminated.

The above describes the experimental environment used for this research. The 

environment can be extended to be more realistic. However, even the simplified version 

of problem used here is quite challenging. In Section 3.1 we describe in detail the basic 

set-up of the problem, while Sections 3.2 and 3.3 describe two extensions to the basic
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problems, which includes ranged units and units with defensive actions. In Section 3.4 we 

show an execution of two simple combat scenarios in our domain.

3.1 Basic Problem Set-Up

The simulation starts with two groups of units (3-4 in our experiments) facing each other. 

Since this is an abstract combat situation, all units have the ability to shoot at any other 

opponent unit, which makes unit speed and range irrelevant features in our situation. As 

outlined above we consider three main unit classes: tanks, marines and artillery. Tanks 

are strong offensively, strong defensively and have and average cooldown period. 

Marines are average offensively and defensively, but can shoot continuously. Artillery is 

very strong offensively, weak defensively and has a long cooldown period. Each unit has 

the following properties:

a. Attack Value -  refers to the amount of damage a unit can inflict on an 

opponent at any given turn. For example, tanks and artillery will have 

higher attack values than marines.

b. Hitpoints -  refers to the defensive strength of a given unit. For instance, a 

tank will have more hitpoints than artillery or a marine, and thus will be 

more difficult to eliminate.

c. Cooldown period - refers to how frequently a given unit can fire. A marine 

can fire continuously, while a tank needs to wait between shots for its 

weapon to be operable again. A tank with cooldown = 1, will shoot once 

then skip the next turn and during the third turn it can shoot again.

d. Aiming -  before shooting, units have to select their target. In the next turn 

they can shoot only at that target. If a unit wants to shoot at another target 

it needs to re-aim. Re-aiming forces all units to skip one turn. During the

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



next turn the unit can shoot at a new target. Also, units with cooldown 

periods bigger than zero can use their turn to re-aim when their weapon is 

inactive. One exception to aiming occurs at the start of the simulation, 

when units can pick their target and shoot immediately. This is done to 

make the games faster, since the aiming penalty is the same for all units at 

the beginning of the game; it doesn’t change the balance of power 

therefore it can be eliminated. Another exception is when a unit that is the 

current aim has been eliminated. Even if the unit that was aiming at the 

now eliminated unit has a cooldown period of zero (i.e. it can shoot), it has 

to skip the next turn to re-aim at another unit.

The games are played in our tournament environment, whereby each group executes its 

method and returns its move selection. Then both moves are executed simultaneously, by 

subtracting the attacker’s attack value from the defender’s hitpoints, by changing the 

current target, or by simply skipping the move as the unit cools down its weapon. Units 

die when their hitpoints are smaller or equal to zero after each round. Then the state of 

both teams is updated, and the simulation continues. The simulation is finished only 

when one or both teams are eliminated. All units have unlimited firepower, therefore a 

unit can not run out of ammunition. An example of such simulation is described in 

Section 3.4.

3.2 Defensive Actions Modification

In the basic problem set-up despite actions being executed simultaneously we theorize 

that the success of a player’s action does not strongly depend on what the opponent 

chooses to do. We would like to test our algorithms in a set-up where there is much more 

interdependence between simultaneous moves. Specifically, in such situation the 

opponent to some extent can counteract any action of a player.
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To test this hypothesis we have designed a simple modification of the original problem 

that makes the outcome highly dependent on the actions the opponent will take. With this 

modification knowing what the opponent will do in advance can be very advantageous to 

the other player.

The change is an introduction of a defensive action, which enables the player to use its 

attack value for defending rather than for attacking. Specifically, if a unit decides to 

defend instead of attacking, a certain proportion of its attack value (this proportion can be 

> 1) is added to its hitpoints. If this unit is attacked the attacker will only cause damage to 

the unit if its attack value is bigger than the unit’s proportion of attack value used for 

defence. In addition, a defending unit can also cause damage to the attacker. The damage 

such unit can cause to the attacker is also proportional to its attack value.

A simple example demonstrates how a defensive action works. There are two opposing 

units as follows:

A (hitpoints: 10, attack value: 5)

B (hitpoints: 10, attack value: 6)

In this scenario the proportion of attack value for defence is 1.2 and the proportion to hit 

back the attacker is 0.2. If unit B decides to attack unit A and unit A decides to defend, 

unit B will not cause any damage since unit’s A defence value is 5*1.2 = 6, which is 

equal to B’s attack value. In turn unit A will hit back at B with 0.2*5 = 1 and this value 

will be subtracted from B ’s hitpoints. The new state will be:

A (hitpoints: 10, attack value: 5)

B (hitpoints: 9 , attack value: 6)

So, obviously there is a certain benefit to take a defensive stance, as demonstrated above. 

But there is also a certain degree of risk since a unit taking a defensive action might not 

be attacked and therefore it risks wasting its turn. The defensive modification makes the
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outcome much more dependent on the opponent’s actions. With defensive actions, 

knowing in advance what the opponent is planning to do can be of great benefit to the 

player.

3.3 Set-Up with Ranged Attacks

Although the basic problem set-up is an approximation to an abstract combat scenarios 

where units have unlimited ranges or are located very close to one another, in most 

combat situations the units are usually scattered on the battlefield and different units have 

different ranges. Therefore, it is too presumptuous to make an assumption that any unit 

can attack any other unit. Fortunately, the problem is easily expandable to accommodate 

for situations where not all opponent units are within range of every unit. The two new 

required parameters added to describe a unit are weapon range and location.

The addition of these parameters still does not make the scenario completely realistic 

since it does not take into account unit’s movement and speed, which would make the 

simulation closely resemble reality. It does, however, agree with our approach of first 

tackling problems that are easier to solve and then gradually moving towards finding 

moves in more complex and realistic scenarios. Indeed, the situation with weapon range 

and location can be looked at as a snapshot of some units making certain moves. There 

can be many such snapshots considered. Then it would be possible to generate good 

moves for such snapshots and use the results in the general higher-level AI module.

The above can be a topic of future research. Currently we introduce the notion of weapon 

range and spatial location on a 2-dimensional grid. These problem extensions have the 

following properties:

1. Location (x, y) -  Each unit has a spatial location on a 2-dimensional grid. The 

values for x and y  are generated within certain predefined ranges. The area 

outlined by values of x and y  is a playing field on which the units are located.
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2. Weapon Range -  Each unit has a range value for its weapon. Weapon Range 

determines how far from the current location a unit can fire. It can be described as 

a circular area with radius Weapon Range and centre at unit’s location. Whether a 

unit can attack another unit is determined by their Euclidian distance.

3. Connectivity -  represents the ability of units to attack each other. It is the number 

of units in total a team can attack divided by the total number of possible attacks 

when range and locations are not taken into consideration. This value is used for 

generation of scenarios with a certain connectivity and avoids scenarios that are 

either unconnected or have a very poor connectivity.

3.4 Abstract Combat Examples

We closely examine a typical set-up, where we have 2 groups with 4 units each. Both 

groups consist of two marines, a tank and an artillery unit. The example will consist of 

two parts, one that considers range and the other without range.

3.4.1 Unlimited Range Example

The attribute values for the three unit types are as follows (for the purposes of simplicity 

we use small values for unit attributes; the attribute values from actual simulations are 

different):
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Hitpoints Attack Cooldown
(H) Value (A) Period (C)

Marine 2 1 0

Tank 4 2 1

Artillery 1 2 2

Team one consists of two marines, one tank and one artillery unit. Team two consists of 

three marines and a tank. Thus the initial set-up for the two teams is as follows (note: 

initially all units can shoot, including the ones with cooldown period bigger than zero):

Unit 1 Unit 2 Unit 3 Unit 4

Team 1 H: 2 H 2 H: 4 H: 1
A: 1 A 1 A: 2 A: 2
C: 0/0 C 0/0 C: 0/1 C: 0/2

Team 2 H: 2 H 2 H: 1 H: 4
A: 1 A 1 A: 2 A: 2
C: 0/0 C 0/0 C : 0/2 C: 0/1

During the first move units pick their target and then shoot at that target. Let us assume 

the units pick the target as follows:

Team 1 (Unit:Target) (1:1, 2:1, 3:2 ,4 :3) | Team 2 (UnitTarget) (1:1, 2:1, 3:3, 4:3)

Now the units execute their moves simultaneously. Unit 1 of team 1 attacks unit 1 of 

team 2, unit 2 of team 1 attacks unit 1 of team 2, unit 3 of team 1 attack unit 2 of team 2, 

etc. The resulting state after move execution is:
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Unit 1 Unit 2 Unit 3 Unit 4

Team 1
DEAD

H: 2 
A: 1 
C: 0/0 
AIM: 1

DEAD
H: 1 
A: 2 
C: 0/2 
AIM: 3

Team 2
DEAD DEAD DEAD

H: 4 
A: 2 
C: 1/1 
AIM: 3

Tl(team  1)(U1 (unit 1),U3 (unit 3)) and T2(U1,U2,U3) were eliminated. Also, note that 

the surviving units are now aiming at the opponent units the attacked. They can either 

shoot at the target they aim at or have to skip one turn to re-aim. For example, T1U2 can 

shoot because its cooldown period is 0 but it has to skip its turn since the target it has 

been aiming at was eliminated. Therefore it uses the next turn to re-aim. Also, cooldown 

period is now a factor. For example, T1U4 has to wait two turns before it can shoot since 

its cooldown period is 2. The next choice of actions and the resulting state for both teams 

is as follows:

Team 1 (2:Re-aim 4, 4:Re-aim 4) | Team 2 (4:Re-aim 4)

Unit 2 Unit 4

Team 1 H: 2 
A: 1 
C: 0/0 
AIM: 4

H: 1 
A: 2 
C: 1/2 
AIM: 4

Team 2
DEAD

H: 4 
A: 2 
C: 0/1 
AIM: 4

At this turn all units have to re-aim. All units of T1 are currently aiming at T2U4, since 

this is the only surviving T2 unit. Also, all units except T1U4 have their cooldown equal 

to zero so they can shoot. The next actions and state are as follows:
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Team 1 (2:4, 4:skip) | Team 2 (4:4)

Unit 2 Unit 4

Team 1

H: 2 

A: 1 
C: 0/0 

AIM: 4

DEAD

Team 2 DEAD
H: 3 
A: 2 
C: 1/1 
AIM: 4

Actions and state for the next turn are as follows:

Team 1 (3: 4) | Team 2 (4:Re-aim: 2)

Unit 2 Unit 4

Team 1

H: 2 

A: 1 
C: 0/0 

AIM: 4

DEAD

Team 2 DEAD
H: 2 
A: 2 

C: 0/1 
AIM: 2

The final actions and state are as follows:

Team 1 (3: 4) | Team 2 (4:2)

Unit 4

Team 2

H: 1 

A: 2 
C: 1/1 

AIM: 2

Therefore, team 2 wins since team 1 has no units remaining.
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3.4.2 Range Example

The same attribute values as in the first example are used, but there are additional 

attributes: location and weapon range. The teams are composed of one marine, a tank, 

and an artillery unit versus two marines and a tank. Although, in real simulations we 

calculate whether an opponent unit is within range of our unit, here for demonstration 

purposes each unit will have a set of units it can attack, called attack set (AS). The initial 

set up is as follows:

Unit 1 Unit 2 Unit 3

Team 1 H: 2 H: 4 H: 1
A: 1 A: 2 A: 2
C: 0/0 C: 0/1 C: 0/2
AS: 1 AS: 2,3 AS: 1,2,3

Team 2 H: 2 H: 2 H: 4
A: 1 A: 1 A: 2
C: 0/0 C: 0/0 C: 0/1
AS: 1 AS: 2 AS: 1,3

Note that tanks and artillery have longer ranges, therefore their attack set has more units. 

The units actions and the resulting state are:

Team 1 (Unit:Target) (1:1, 2:2, 3:3) | Team 2 (Unit:Target) (1:1, 2:2, 3:3)

Unit 1 Unit 2 Unit 3

Team 1 H: 1 H: 1
A: 1 A: 2
C: 0/0 C: 1/1 DEAD
AS: 1 AS: 2,3
AIM: 1 AIM: 2

Team 2 H: 1 H: 2
A: 1 A: 2
C: 0/0 DEAD C: 1/1
AS: 1 AS: 1, 3
AIM: 1 AIM: 3
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T1(U3) and T2(U2) have been eliminated. The next unit actions and the resulting state 

are:

Team 1 (Unit.’Target) (1:1, 2:Re-aim: 3) | Team 2 (Unit:Target) (1:1, 3:skip)

Unit 1 Unit 2 Unit 3

Team 1

DEAD

H: 1 
A: 2 
C: 0/1 
AS: 2,3 
AIM: 3

DEAD

Team 2

DEAD DEAD

H: 2 
A: 2 
C: 0/1 
AS: 1,3 
AIM:

But, already in this stage it is obvious that T1 has won since it can attack T2(U3), but 

T2(U3) cannot target T1(U2), since it does not belong to its attack set.

4. Abstract Combat Decision Algorithms

Before discussing the challenges in the abstract combat domain and the implemented 

algorithms we introduce several basic terms that are key to understanding this discussion. 

Those terms are mostly used to describe the search-based methods, however they are also 

used when talking about non-search based methods. When mentioning search depth we 

refer to a number of state transitions from the root of a search tree to the current state. For 

example, given a root state, with both players executing a single move results in search 

depth = 2. The root node is the state at which the search is started, while leaf nodes are 

nodes at which the pre-specified search depth was reached. Every leaf-node is assigned a

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



heuristic value by the evaluation function, which is an estimate on the value of that state. 

The nodes where the game has ended (i.e. win, loss, or draw situation) are called terminal 

nodes. All other nodes that are situated between the root node at the top and terminal and 

leaf nodes at the bottom are referred to as interior nodes. Interior nodes are nodes whose 

value is dependent on the value of its children. Cut nodes are nodes at which further 

search is unnecessary after exploring one or more children and therefore search can be 

stopped there.

The branching factor  of any state refers to the number of successors that state has (or 

number of moves that can be executed at that state), while move sorting refers to the 

order of execution of those successors according to a certain heuristic criterion.

The structure of the chapter is as follows: Section 4.1 presents the motivation for 

developing our algorithms; Section 4.2 gives a detailed description of implemented 

methods; Section 4.3 describes the implementation of the evaluation functions; Finally, 

Section 4.4 talks about various improvements and applications.

4.1 Motivation

The major challenges in the abovementioned domain are the simultaneous move 

execution, huge branching factors and more importantly the limited time given to make a 

decision.

Linear programming (LP) provides a way for solving simultaneous move scenarios 

optimally. This requires a solution to a tree of LPs similarly to how it was done in the 

Oshi-Zumo game [9]. Such a computation is very expensive in real-time given currently 

available computation devices. Thus, other approaches need to be explored. For a detailed 

discussion about limitations of LP solutions in the abstract combat domain refer to 

Section 4.2.1.
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Heuristic two-player search algorithms such as alpha-beta have been proven to work 

effectively in domains where the players alternate turns and where there is sufficient time 

to make a decision. However, search has not been applied to the more realistic scenarios 

in which players move simultaneously and have very little time to decide on what move 

to pick.

Indeed, applying an off-the-shelf version of an algorithm such as alpha-beta to our 

combat scenario will not be very useful, since its turn based execution of moves cannot 

be a good predictor of what is happening when moves are executed simultaneously. 

Therefore we propose a modification to the alpha-beta called random alpha-beta (RAB), 

which we believe simulates the simultaneous execution of moves well.

Another major issue is a large branching factor in our domain. This is because at any 

given turn all units in a group can attack any other opponent units at the same time. Thus, 

the number of possible moves generated at each turn equals to the number of all 

combinations of each of the units attacking each of the opponent’s units. The branching 

factor is reduced somewhat by a cooldown period and aiming, whereby units have to skip 

one or more turns.

Even with such reductions, the branching factor remains very large. We propose two 

techniques to reduce it. One is using selective search, which concentrates on the moves 

that look more promising. The other is a smarter generation of moves and elimination of 

moves that are duplicates.

We have also created an alternate non-search-based algorithm, to test against our RAB 

search algorithm. The approach is called Monte Carlo, and it will be described in more 

detail later. First, however we will examine in detail the complexity of our domain. Then 

we will discuss the move dependence or independence in games with simultaneous 

moves. Follows is a discussion on the features of our domain that should enable us to use 

search methods effectively.
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4.1.1 Examination of Problem Complexity

In a game of chess only one piece can move in any given turn. Therefore, the branching 

factor is calculated by counting all of the moves at the given turn. Even though some 

pieces can have many different options to move at any given time, there is still an upper 

bound on the total number of moves possible in any position in the game of chess. More 

precisely: (# moves < # pieces * board size)

Our game is quite different since at any given time all of our units can act at the same 

time. Therefore, the branching factor is exponential, since every time a unit is added, the 

previous number of possible moves is multiplied by the number of actions that a new unit 

can execute. There is still a ceiling on the number of actions possible given the number of 

units involved, but we do not have a restricted board size like in most board games. 

Ideally, we would like to solve for instances with any numbers of units (i.e. 0...n). For 

example, let us examine a game of 4 units versus 4 units. In the initial position, there is 

4A4 = 256 possible attack actions. In a game of 5 units versus 5 units, the branching 

factor increases to 5A5 = 3125. This can be continued, however, the trend can be clearly 

seen already.

Luckily, there are other factors specific to our domain that help to make sure the 

branching factor will be reduced. Cooldown period and aiming ensure that the branching 

factor decreases in deeper tree positions. Also, “natural causes” (i.e. units being killed) 

reduce the branching factor as the game progresses. Unit elimination in our game 

happens much faster than in a typical board game. Specifically, in the non-defensive 

scenario every action results in a significant reduction of opponent’s hitpoints and vice 

versa. Eventually, there will be fewer units, which leads to a considerably smaller 

branching factor. Still, the branching factor is the key obstacle for creating effective 

algorithms to solve our various combat scenarios.
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4.1.2 Dependence in Games with Simultaneous Moves

Another feature of our domain that does not occur in games like chess or checkers is 

simultaneous move execution, which makes the issues present in our domain similar to 

problems researched in the field of game theory in economics and mathematics. The 

famous prisoner’s dilemma [26] and Rock-Paper-Scissors games come to mind. In such 

games the result of an action of a player depends on what the second player chooses to 

do. This makes our domain an incomplete information domain, where the success of 

player’s next action will depend on the move its opponent chooses.

Linear programming (LP) provides a way for solving simultaneous move scenarios 

optimally [9]. However, considering our branching factor, solving this problem, 

particularly solving it in real time, using LPs is currently infeasible. For detailed 

discussion about limitations of LPs in the combat domain refer to Section 4.2.1.

Fortunately, the dependency on opponent moves is not a black and white subject. That is, 

there are simultaneous move problem domains where there is a high correlation between 

the success of a certain action and the opponent’s action, while there are also situations 

where such correlation is very small or even non-existent. For example, a game of Rock- 

Paper-Scissors is a domain where there is a perfect correlation, that is, no matter what 

your action is, the opponent action can always determine the final outcome of the game 

(i.e. draw, win, or loss).

Our abstract combat domain consists of two scenarios: the defensive scenarios and the 

non-defensive scenarios. In the non-defensive scenarios, we predict that there is relatively 

weak interdependence between player’s actions. Since when units attack their opponents, 

no matter what the actions of opponents will be, those units will still cause damage to the 

opponents and the opponents will end up with reduced number of hitpoints. In the 

defensive scenarios, the success of an action depends more on what the opponent’s action 

will be. For example, if a unit attacks an opponent unit that chooses to defend itself, its 

attacking action will likely not be successful. But if the opponent unit chooses to perform
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an attacking action, the outcome of attacking that unit will be successful. Therefore, we 

expect that in non-defensive scenarios a simple deterministic method might prove almost 

as effective as the RAB algorithm, while in defensive scenarios the success of RAB 

should be more noticeable. This allows us to hope that our randomized search based 

method can be applied effectively to find good moves in simultaneous move domains.

As far as move dependency goes, there is a relatively weak dependency between the 

players’ moves when defensive actions are not allowed. That is, there is not as much 

advantage for one player to know, what the opponent’s move selection will be in advance 

in a single turn, as in the defensive scenarios. We intend to show how our methods 

perform as the degree of dependence in the scenarios changes and give specific examples 

where such knowledge would be of some benefit to a player. One of our goals is to see 

how a randomized approach performs compared to a deterministic approach as the degree 

of dependence changes.

4.1.3 Tackling The Challenges of the Domain

From the above we know that the branching factor and the move dependency arising 

from the simultaneous move executions are the main challenges when looking for ways 

to solve our problems. Knowing the challenges is only the first step to trying to 

understand the domain. The second step is trying to find the features in the domain that 

will enable us to overcome such challenges and help us design effective real-time 

algorithms.

The only way of tackling the huge branching factor both for search based and non-search 

based (i.e. Monte Carlo approach, linear program, random) approaches is by reducing the 

number of moves that are considered at every state in the game. In our domain there are 

several ways to achieve this. One approach is trying to remove moves that are duplicates 

(i.e. moves that are symmetric to each other). Another approach is to only consider a 

small subset of promising moves at every state of the simulation.
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Removing duplicate moves from being considered is more of an engineering problem 

than a research one. In a typical scenario there are units that have identical hitpoints, 

identical attack values and are in an identical state at a given point of the simulation. 

Thus, actions by each of the units against a specific opponent are identical to each other. 

Therefore, it is feasible to just consider one of such actions. The technique to do this will 

be described in detail in Section 4.4.2.

The key to reducing the branching factor is by considering a very small subset of 

promising moves. Finding such moves requires having an effective evaluation function at 

interior nodes, which can predict the “goodness” of a current position, meaning that the 

evaluation function should be able to predict the balance of power between opponents 

with high degree of accuracy. We hope that in our domain (i.e. both in defensive and non­

defensive settings) the evaluation function would be able to successfully find a subset of 

promising moves on which our methods can concentrate their additional search effort to 

further narrow down the selection.

4.2 Implemented Algorithms

4.2.1 Linear Programming

The Minimax theorem was developed and proven by John von Neumman. It states that in 

every zero-sum two player games there exist optimal mixed strategies. The term zero-sum 

refers to games where a gain for one player is an equal loss to the opponent. Mixed- 

strategies refer to the probabilities assigned to moves in different states of the game. The 

moves are picked according to these probabilities. The games in abstract combat domain 

are zero-sum games that have optimal mixed strategy solutions.

John Nash proved that not knowing the actions of the opponent forces us to consider 

mixed strategies and that Nash-optimal mixed strategies exist for any matrix game [24].
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Nash-optimal strategies for simultaneous move games can be found by solving linear 

programs (LPs).

To find a Nash-optimal strategy for a given state in our abstract combat game we need to 

solve two linear programs one for the MAX player and the other for the MIN player. 

Figure 1 [9] shows the two LPs that need to be solved. The pseudo-code for the program 

that uses the LP solver from Oshi-Zumo game [9] is shown in Figure 2.

Maximize Z such that Minimize Z such that

For all 1 < j  < n 2 \ Z  <'s£ j  Ai j x i ,
/=i

For all 1 < i < n x : Z > ^  Aji y j ,
;=i

For all 1 < i < n, : xt > 0, For all 1 < j  < n 2 : y ; > 0 ,

j L , = i
i=i

T“(11•—I

4X
JT

Figure 1: Shows the LPs for two players for computing Nash-optimal strategies. Player “Max” has 
moves from 1... nx , while “Min” is from 1... n2. Ai • is the score from “Max’”s perspective if a pair

of moves (i, j) is chosen. x t and y ; are probabilities of choosing moves i and j, for “Max” and 
“Min”, respectively.

A solution of each of the linear programs is the probability distribution for all of the 

moves available for one player. The player then selects the move according to the move’s 

probability. For instance, in Rock-Paper-Scissors all moves have exactly the same 

probability of lA in the Nash equilibrium. Therefore, a Nash-optimal solution produced by 

solving the associated LP will not win anything against even the simplest strategy, such 

as playing Paper all of the time. However, in more complex games such as poker or our 

abstract combat domain, some of the moves are assigned a zero probability and therefore 

the Nash-optimal player will never select such moves. Moves that are assigned a zero 

probability may lead to a loss situation if the opponent is a Nash-optimal player. Thus, 

other strategies that select such moves occasionally can lose against the LP player in the 

long term.
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Move LPPlayer (State state) {

Moves movesToMove [1..movesToMove.sizeQ];
Moves movesOpponent [ I.. movesOpponent. size()];

GenerateMoves (movesToMove);
GenerateMoves (movesOpponent);

int n = movesToMove.size();int m = movesOpponent.size();

//executes all combinations of (player, opp) moves and stores scores of each pair in input
crossProductOfMoves(n, m, movesToMove, movesOpponent, input);

//LP solver; its output is a probability distribution stored in output array
MinMaxLp (n, m, input, output);
double randProb = random number in [0,1];

double totalProb = 0;

for i= l..n  {

totalProb += output[i];
if (randProb < totalProb) {

bestMove = movesT oMove [i]; 
break;

}
}
return bestMove;

}  _ _ _ _ _ _ _ _____________
Figure 2: Pseudo-code for the LP player’s algorithm

LPs provide a way of finding optimal solutions for our abstract combat domain. Their 

biggest problem however is the inability to solve problems in real-time. The computation 

required for solving LPs grows as a proportion of the branching factor as the depth of 

look-ahead increases. For example, when performing a depth = 2 search with 100 actions 

for each player, the LP needs to solve a 100x100 matrix, which is manageable. Increasing 

the depth to 4, even with decreasing branching factor of 50, requires an LP solution for a 

50x50 matrix for each entry in the original 100x100 matrix and then populating that 

matrix (100x100) with expected results from the respective 50x50 solutions. Finally, the 

LP solver needs to compute an optimal strategy (i.e. probability distribution for all the 

moves) for the populated 100x100 matrix. Such computation is quite costly and it is 

already impossible to solve in real-time in our domain. Thus, the LP method for our 

domain cannot comply with real-time constrains and can only perform limited depth
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searches (specifically depth 2). H ow ever, in sim ultaneous m ove dom ains search depth 

was show n to be not as essential as in alternating m ove dom ains. Such results were 

show n in a gam e o f backgam m on [17]. It w ill be interesting to see w hether such results 

hold  true for our abstract com bat dom ain.

4.2.2 Alpha-Beta (AB)

Undoubtedly, heuristic search has had the most influence on the game playing programs 

in artificial intelligence. The most important of the heuristic search algorithms to which 

most advances in two-player games can be attributed is the alpha-beta algorithm [6]. Our 

research also relies heavily on the alpha-beta algorithm (aP). The base case search-based 

player is implemented using the standard version of the alpha-beta algorithm. aP is an 

enhancement to the min-max algorithm for two player games. In min-max type 

algorithms each of the players is trying to maximize their results and minimize the result 

of their opponent.

The alpha-beta algorithm maintains two bounds alpha (a) and beta (p). Alpha is a lower 

bound of the best score that the player to move can attain, while beta is an upper bound 

on what the adversary can attain. When a> p  the search is stopped at that node, since a 

maximizing opponent can achieve a better minimum score elsewhere. In our work we use 

a Nega-Max [21] formulation o f the aP algorithm, since it is somewhat easier to 

implement than the min-max version o f aP because we can only maintain one bound 

(MAX). In the Nega-Max [21] version when going down the search tree, the a bound 

becomes -p  (i.e. a=-P) and p bound becomes -a  (i.e. P=-a), but when going up the tree 

the returned score is negated. The Nega-Max [21] modification ensures that the a and P 

bounds as the well as the returned score are from the perspective of the player executing 

the move. For example, the a bound, is the minimum score player one can achieve 

already. Thus, the -a is actually an upper limit (i.e. p) on what the second player can 

achieve.
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4.2.3 Random Alpha-Beta (RAB)

Our goal when designing the RAB algorithm was to overcome the major disadvantage of 

the basic alpha-beta algorithm of not addressing possible move dependencies in domains 

with simultaneous move executions. Alpha-beta is an alternating move algorithm 

therefore it gives each player an advantage of knowing the other player’s move. This 

makes alpha-beta a somewhat inaccurate tool for simulating the execution of actions in 

our abstract combat domain, since none of the players know in advance what the other’s 

move will be.

To soften the effect of advance knowledge of opponent’s moves in a game we propose an 

approach where the order of move execution in pair-wise horizontal layers through the 

search tree is randomized. Thus, at some nodes in a tree player one will have an 

advantage of knowing player two’s move, while at other nodes the situation will be 

reversed.

The algorithm works as follows. First, it divides the alpha-beta tree into horizontal layers 

of depth two spanning the entire tree, from top to bottom. At each node at the top-level of 

a given layer the choice of which player is to move is randomized. Thus, at each such 

node there is an equal chance for either player one or player two to move. The only 

exception occurs at the root of the tree where the first move always belongs to the player 

performing the search and its moves are always followed by the opponent moves. 

Children of the root node are not randomized and are assigned the opposite colour to that 

of the root node. A sample RAB tree is shown in Figure 3 and the high-level algorithm 

pseudo-code for RAB is presented at Figure 5. Figure 4 shows two binary minimax trees 

instead of the alpha-beta tree. Both the randomized and the alternating minimax trees 

have the same structure, number of nodes and values at the leaf nodes. The difference is 

in the order of move execution and in the value propagated to the root.

The aim of RAB is to more closely approximate what happens when moves are executed 

simultaneously, since randomization of move order is a more natural simulation for
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simultaneous move execution. Specifically, with RAB our mam hope is that the 

advantage to a player will be minimized, since in the whole search tree both players will 

get roughly equal chances of knowing the opponent’s moves.

For the abstract combat domain, however, there is a need for the algorithm to perform 

under tight time constraints. RAB, as opposed to the base version of the alpha-beta 

algorithm is not deterministic, because every run of the algorithm is likely to produce 

different results. Being a statistical approach it requires multiple runs to be performed for 

every move, which is available to the player executing the search at the root. For every 

such move, the best scores will be recorded for every run. Then for each move the 

average score and the standard deviation are calculated. Multiple runs are required, 

because when dealing with randomized algorithms performing a single run or very few 

runs is not sufficient for drawing valid conclusions about the quality of a given method. 

The move that is chosen for execution is determined by taking the average scores and 

standard deviation of scores of all runs for each considered move. The move with the best 

combination of average score and standard deviation is then executed. The combination 

of average and standard deviation to be used is determined experimentally.

In each run, the order of players’ moves will be randomized producing different scores 

for the player. We think that the average and standard deviation for each move over all 

the runs, better simulates move execution in simultaneous move domains, than a single 

run of a regular alpha-beta algorithm. However, the main concern with RAB is on the 

number of runs that it will require to find the best or close to the best move. Also, if there 

is very little advantage of knowing the opponent’s moves in our domain, it is possible 

that alpha-beta can find a good move or possibly the best move in just a single run. It is 

also possible that it is more worthwhile to invest the extra resources into deeper searches 

rather than on repeated searches.
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Figure 3: Shows a sample RAB tree. The black player moves first at the root followed by the white 
player. At the next level, the player to move is randomly selected. This player’s move is followed by 
the move of the opponent of the randomly selected player.
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(F) Random Move (Q) Move opposite to parent
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Figure 4: Randomized binary minimax tree (a) and alternating binary minimax tree (b). Both trees 
have the same structure, number of nodes and exactly the same values at leaf nodes. The difference is 
in the order at which the moves are executed and the value that is propagated to the root.
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Move GetMove (State state) {
vector of vector of double allMoveScores; 
int i = 1; depth = 2;

while (current_node_count <= node_count_lim it){ 
i++;
if (enoughRuns) 

depth += 2;
TopLevelRAB (state, allMoveScoresfi], depth);

}

return bestMove = GetBestMoveScore (allMoveScores);
}
/////////////////////////////////////////////////////////////////////////////////////////////////////// 
TopLevelRAB (State state, vector of double moveScores, int depth) {

Move moves[l..moves.size()];
GenerateMoves(moves);

//goes through a single run of all generated moves 
for i = 1..moves.size() {

newState = makeMove (moves[ij);
score = RAB (newState, alpha, beta, depth, randGenerate = 0); 
moveScores [i] .score, append (score);

}
}
l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l t l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l  
RAB (State state, int alpha, int beta, int depth, int randGenerate) {

if (terminalNode || depth == 0) return evaluate (state);

score = -oo;

if (randGenerate){
playerToMove = (int)random number in [0,l];//randomly select either 0 or 1 
randGenerate = 0;

}else{
toMove = opponent; randGenerate = 1;

}
if (parentPlayerT oMove —  currentPlayerT oMo ve) { 

alpha = -beta; 
beta = - alpha;

}
GenerateMoves (moves); 
for i = l..moves.size() {

newState=MakeMove(moves[i]);
value= -RAB (newState,-beta,-alpha, depth-1, randGenerate); 
if (value > score) score = value; 
if (score > alpha) alpha = score; 
if (score >= beta) break;

}
if (parentPlayerT oMove == currentPlayerT oMove) return -score; 
else return score;

Figure 5: Pseudo-code for the RAB algorithm
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RAB Implementation and Score Calculation Details

The RAB algorithm is implemented using an iterative deepening [32]. Iterative deepening 

is often used in environments with real-time constraints. It performs multiple searches 

starting with the lowest depth and increases the search depth at every successive iteration. 

The rationale behind the technique is that lower depth searches take only a fraction of 

what the next higher depth search will take and thus there will be only a minimal waste of 

resources. The main benefits are that at anytime a reasonable solution is available and a 

guarantee that a search algorithm will complete in real-time, with a good likelihood that 

the highest depth will be reached given the resources available.

In our case the initial depth for iterative deepening [32] search is two and at every 

successive search the depth is increased by two. Only even depths and depth increments 

are used because in simultaneous move domains both players execute their actions at the 

same time. An odd depth will make the search biased towards the player who starts the 

search, since that player will have one more move than the opponent (such a situation is 

impossible in simultaneous move games).

The complication when implementing iterative deepening with RAB arises due to RAB’s 

need to complete several trials at a single depth. The higher the search depth the more 

iterations random alpha-beta needs to complete at that depth. This is because the deeper 

the search the higher the variability or standard deviation of the results. Therefore, more 

RAB iterations are required to get a high accuracy prediction.

/  I— \(2+rfepl/i)
The formula we use to calculate the number of runs at each depth is [y 2 J . This 

ensures that at each successive search depth, because of higher variability in results, the 

RAB will be able to complete exponentially more runs than at the previous depth. Also, 

in contrast to a simple version of iterative deepening, where only the results from the last 

depth search are used, in our version we accumulate the results of all iterations starting 

with depth two and finishing with the last completed search. Unlike searches in 

traditional two-player domains where increasing the search depth usually results in better
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accuracy and the results of previous iterations can be ignored, in a simultaneous move 

domain there is a dependence on what the opponent will do. Therefore, results from 

lower search depths should not be ignored. It is possible that even a lower depth search 

can produce a very good result (which can determine the winner) depending on what the 

opponent does.

4.2.4 Monte Carlo

Monte Carlo methods solve problems by executing a large number of random or pseudo­

random actions and examining the numerical results such actions produce. The method is 

used for finding solutions to problems that are too complex to solve analytically. Stan 

Ulam first developed the Monte Carlo method’ [39], His original method was developed 

to acquire solutions to complex mathematical problems, using a statistical sampling 

method with random numbers. Monte Carlo [39] methods are used in many areas. In 

computing science, Monte Carlo methods have been used successfully to find solutions to 

incomplete information problems or problems with large state spaces, specifically in the 

game of Go [3]. Of course the way the methods are applied varies widely from field to 

field, and there are many variants of Monte Carlo methods.

In our application we use an approach similar to the one that proved to be successful in 

the Olga Go program [3]. The Olga Go program has very little knowledge of the actual 

Go domain, but it was shown to perform on par with the previous knowledge-based 

system. In our approach we play out a game until one player is eliminated. For each of 

the main player’s (i.e. the player who performs the simulation) moves at the root, a series 

of simulations is performed given the available resources. After the runs, the average 

scores and standard deviations for each move at the top are computed. The move with the 

“best” average score and standard deviation combination is selected by the player to be 

executed. Such combination is determined experimentally.
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At every turn the player randomly selects from the available actions and then executes the 

selected action. The run continues in this fashion with both players executing their 

randomly selected moves, until one of the players is eliminated. At that time the attributes 

of the units of the surviving player are used in the calculation of one of the evaluation 

functions (refer to Section 4.3). The value is then propagated to the top node and is 

recorded as one of the values for the selected move. For the pseudo-code for the Monte 

Carlo method refer to Figure 6.

Move GetMove (State state) {

vector of vector of double allMoveScores; 
int i = 1;

while (current_node_count <= node_count_limit) { //quit if #nodes exceed limit 
i++;
allMoveScores.resize(i);
TopLevelMonteCarlo (state, allMoveScores[i]);

}
return bestMove = GetB estMo veScore (allMoveScores);

1
IIIIIIIIIIIIIIIIIIIII1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

TopLevelMonteCarlo (State state, vector of double moveScores){

Move moves[l..moves.size];
GenerateMo ves(mo ves);

//goes through a single run of all generated moves 
for i = l..moves.size() {

newState = MakeMove (movesfi]); 
score = MonteCarlo(newState); 
moveScores[i].append( score);

1 
1
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIi/IIIIIIIilllllllllllltlllllllllllllllH IIIIIIIIIIIIIIIIIIIIIIH IIIIIII 
MonteCarlo (State state) {

Move movesfi..moves.size()];
GenerateMoves(moves);
int moveChoice = random of fl..moves.size()];
newState=MakeMove(moves[moveChoice]);

if (playerlNumUnits =  0) || (player2NumUnits =  0) //guarantees termination 
return Evaluate (state); 

else
MonteCarlo (newState);

Figure 6: High-level pseudo-code of the Monte Carlo method
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Our hope in using the Monte Carlo simulation is to see whether by repeatedly pseudo- 

randomly selecting moves we will be able to find good moves. However, in a real-time 

domain the key is not just finding the best or close to the best move but finding such a 

move given very limited resources. What will determine its suitability for a domain with 

real-time constraints is the quality of solutions the Monte-Carlo method can produce 

given strict-time constraints.

One likely advantage of Monte Carlo simulation over alpha-beta and RAB in a domain 

with move dependencies and simultaneous move executions, is the fact that Monte Carlo 

incorporates move dependencies in its structure, while the search-based methods do not. 

In a Monte Carlo simulation each player selects its move randomly out of its successor 

move set. Thus, an action a given player selects in no way depends on the action its 

opponent chooses.

4.2.5 Random Player

The random player is the simplest base case method in our abstract combat domain. It 

works as follows: at every turn all actions are generated, then both players randomly 

select one of the actions and finally execute them. The random player was created for the 

purpose of testing and simple experiments. That is, if our other methods did not beat the 

random player by a large margin, there is a bug or they should not be even considered. 

The only likely benefit of a random player is its speed, since it requires very few 

resources to produce a “solution”.
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4.3 Evaluation Functions

Before describing in detail the specifics of our domain and the factors behind choosing 

specific evaluation functions, we examine desired guidelines most evaluation functions 

should adhere to. The key attributes for any evaluation function are:

1. Accuracy -  how accurate is the evaluation function in correctly assessing the 

value (i.e. balance of power between the opponents) of the game state

2. Speed -  the speed of computation is important, because an evaluation occurs at 

the bottom level of the tree and complex evaluation functions can significantly 

hinder the performance of search. It is desirable to have an evaluation function 

that is very accurate in assessing the game, but is still fast to compute.

For evaluation functions it is crucial regardless of the domain to be able to predict the 

goodness of any non-terminal game state with a high degree of accuracy, since most 

searches cannot reach terminal positions. This is especially true when considering the 

real-time constraint of the abstract combat domain. Another issue to consider when 

designing the evaluation function is its speed. Speed is important because the evaluation 

occurs at the leaf nodes of the tree, where there is the largest number of nodes. In general, 

due to the branching factor the performance of any search is proportional to the execution 

at the lowest layer. For example, an evaluation function that is two times faster than a 

more complex evaluation function will make the overall search performance to be almost 

twice as fast. Therefore, there is often a trade-off between speed and accuracy when 

designing an evaluation function.

Next we present the evaluation functions that we designed for the abstract combat 

domain. We start with the simplest evaluation in 4.3.1 and continue with square root 

evaluation in 4.3.2. Finally, we describe the most complex and computation intensive 

Tournament Evaluation function in 4.3.3.
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4.3.1 Simple Evaluation Function

The simple evaluation function takes into account all of the attributes of each unit: 

hitpoints, attack value, and cooldown period. The function has the following form:

where /i,0> = hitpoints, a\}) = attack value, and c\J) = cooldown of unit i of player j

The idea behind the design of the Simple evaluation function is to estimate the lifetime 

damage units can inflict. In general, hitpoints (ht ) estimate the life expectancy of a given

unit, while attack value over cooldown plus 1 (i.e. a / ( c i +1)) represents the average 

damage a unit will deal during each time unit.

One of the weaknesses of this evaluation function is its inability to capture the difference 

in cooldown periods. For example, if there are two units, one with attack value = 10 and 

cooldown = 1 and the other with attack value = 5 and cooldown = 0, by computing the 

(Attack value /  (cooldown period+1)) ratio in our formula we get the same result. 

However, it is obvious that the unit with zero cooldown period is a better unit, since it can 

deal the damage earlier and more often. Thus, the main advantage of a unit with a smaller 

cooldown period is its flexibility. It can change targets more often and kill off opponent 

units that have few remaining hitpoints earlier and with less waste of its attack points than 

a unit with a higher cooldown period.

Another weakness of the Simple evaluation function is its inability to distinguish between 

hitpoint distributions of units. In general, it is more beneficial for a player to have units 

that have more uniform hitpoint distributions than having some units with very low 

hitpoint values, while other units with very high hitpoint values. In most cases, units with 

very low hitpoints values are much closer to elimination than units with higher hitpoints 

values. Thus, in groups that are composed of some units having low hitpoints and other
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units having high hitpoints, the low hitpoint units will be eliminated relatively fast, 

meaning that only high hitpoint units will remain to attack the opponent. In scenarios 

where hitpoint distributions are uniform, the expected lifetime of all units in which they 

can cause damage to the opponent is longer than that of units with lower hitpoints. The 

simple evaluation function only looks at the overall number of hitpoints in a team. 

Therefore, if there are two teams with the same number of hitpoints, one with a uniform 

distribution, while the other having a non-uniform distribution, everything else being 

equal, the result of a simple evaluation function will be the same.

Thus, its two main drawbacks are its inability to explicitly emphasize eliminating units 

and its failure to take the difference in cool-down periods into account.

4.3.2 Square Root Evaluation Function

To address the hitpoints distribution problem of the simple evaluation function we 

propose a straightforward modification, which is done by taking the square root of the 

hitpoints of each unit. By applying the square root to hitpoints the evaluation function 

implicitly prefers having units with more uniform distribution of hitpoints to ones with a 

more uneven distribution. The new square root evaluation function is as follows:

where h.J) = hitpoints, a\J) = attack value, and c,0) = cooldown of unit i of player j

To illustrate the effect of the square root, let us examine a simple situation. Consider two 

groups with equal numbers of hitpoints as follows:

Group A (10, 3, 17) 

Vl0+V3 + Vl7 = 9.02

Group B (10, 12, 8) 

VI0 +VT2 +V8 =9.45
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From the above example we can see that the more uniformly distributed set (i.e. group B) 

is assigned a higher value. Thus, a more uniformly distributed hitpoint values will be 

preferred. Another effect of taking the square root of the hitpoints is more emphasis on 

the unit attack values. There is no clear intuition on how increasing the importance of 

attack values will affect the performance; therefore this will be answered in the 

experiments. The performance of the Square Root evaluation function is proportional to 

the number of surviving units for both teams. However, we have to note that the Square 

Root evaluation function still does not address the cooldown problem described above. 

The tournament evaluation described next will try to fix that problem.

4.3.3 Tournament Evaluation Function

The final evaluation function that we will be using in our tests is the Tournament 

evaluation function. The main goal of a Tournament evaluation is to overcome the 

shortsightedness of both Simple and Square Root evaluation functions. Because the depth 

of the search rarely reaches the end of the game there is a need to come up with a better 

estimation of the end game positions at the leaf nodes.

At each leaf node the Tournament evaluation function plays out a simplified game until 

one player’s units are eliminated. The games are a simplified versions of our simulation, 

where all attackers’ attack values are summed, then divided by the number of the 

defenders, and subtracted from each defender’s hitpoints. At the end of such a game only 

one side is remaining. Its units are evaluated to calculate the score using either the Simple 

or the Square Root evaluation. This evaluation function is more computation intensive, 

however, it should produce more accurate prediction of the future.

The tournament evaluation takes cooldown periods into account in its simulations, as 

attack values of units that have to skip a turn are not counted at that turn. The only
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property that the Tournament evaluation function does not consider is aiming, since for 

simplification purposes it is assumed that attack values are distributed equally between 

the defenders. Obviously, the Tournament evaluation function is a simplified version of 

our combat game and it will not always produce correct predictions, but it provides an 

explicit way to look at the possible future state. Its other major weakness is its 

performance, since unlike the other two simpler evaluation functions, whose performance 

is proportional to the number of units remaining in the game, the Tournament evaluation 

function’s performance is proportional to the number of units multiplied by the length of 

the simulated game.

4.4 Other Improvements and Applications

4.4.1 Selective Search

There are two main ways to combat the large branching factor we encounter in our 

domain to enable algorithms to perform effectively in real-time. The naive solution would 

be to decrease the depth of the search, so even with large branching factors the algorithm 

will be able to come up with solutions in real-time. However, as we know from other 

domains, decreasing the search depth leads to lower quality of the result [].

However, in some domains (eg. Backgammon [17]), a limited depth search will produce 

a subset of moves that is likely to contain the best moves available.

Therefore, before the start of each of the proposed methods at each level in the tree we 

perform a complete depth one search for each of the successors. After that, the top N 

successors are sorted in the decreasing order of their scores. Then the search will 

concentrate only on those top N successors. Because of the decreased branching factor 

the search can go much deeper. For such a sorting to be successful, it is important to have 

an evaluation function that can provide an accurate estimate of the state value.
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4.4.2 Removing Duplicates

Another way to decrease the branching factor is by avoiding the generation of all the 

moves. We can get rid of moves that are duplicates. In particular, a small group of units 

consists of units of 3 types: marines, tanks, and artillery. Usually there are 2 or more 

identical units of some type present in a group. Let us consider a situation where there are 

2 or more units that are identical (i.e. they have the same attack value, hitpoints, current 

cooldown period, and aim). Generating all possible combinations of such units attacking 

the opponent is redundant.

For example, if we have 3 identical units and there is one opponent unit i that one of these 

units wants to target. It is sufficient to generate only one action for one of our units to 

target i, since it does not matter which particular unit targets i. Thus there is a saving of 

order of three in the actions generated in this example. We can refer to such units as 

interchangeable units. In general, we only need to consider all unique combinations, for 

each of the group of interchangeable units targeting the opponent.

Permuting out such repeated moves would significantly reduce the number of successor 

moves. Our move generation routine generates only unique combinations of such moves 

for every group of interchangeable units.

4.4.3 Delayed Move Execution

Delayed move execution is required when using turn-based algorithms such as alpha-beta 

in domains with simultaneous move executions. In alternating move games, the first 

player will change the state of the game by executing its move. After that the second 

player will change the state of the game by executing its move. Such a sequence of events 

does not represent our situation accurately, since the state of the game should have 

remained the same when the second player decides on its move.
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Therefore, in the abstract combat domain we should have a situation where player one 

decides on its move. Then without changing the state of the game, player one passes its 

move to the second player. In turn the second player decides on its move based on the 

unchanged state of the game and finally both players execute the moves simultaneously. 

This avoids the incorrect simulation of the game where after the first player executes its 

move the state changes in such a way that actions, which should have been available to 

the second player, are not present anymore. For example, without delayed move 

execution, when player one eliminates one or more of opponent’s units with its move, 

these eliminated units will not be able to cause damage to player one’s units.

4.4.4 Balancing Scenarios Application

In most RTS games there is a set of custom designed sub-games, called skirmish 

scenarios. In such scenarios players cannot build units and infrastructure; their only goal 

is to achieve military domination by eliminating all other players. The main issue is how 

to design such scenarios, so that each player has an equal chance to win (i.e. their 

combined unit strength has to be the same). The naive solution would be to assign each of 

the players exactly the same numbers and types of units. Such solution, however, would 

not make a very interesting scenario, since having the same force makeup would lead the 

players to use exactly the same strategy. Moreover, it reduces the replay value of the 

scenario, since human players would like to play the same scenario again using different 

starting positions (i.e. different player “nationality” or type).

Scenario designers usually know what the approximate make-up of each team in a 

scenario should be. For example, let us assume they would like to design one team that 

consists of 3 marines and one tank and the other team that consists of 2 tanks and one 

artillery unit. Then, how do they decide whether the teams are of equal strengths? 

Currently, they have to perturb each of the parameters manually, give the scenario to the 

testers to play, and wait for their comments. This cycle can continue until designers are
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satisfied with the scenario. This can be a tedious and labour intensive job, which, despite 

of all the effort invested, often produces imbalanced scenarios.

Instead, it is possible, with minimal modification to use one of our proposed methods (i.e. 

which ever algorithm turns out to be the best), to balance the units automatically. When 

using our application the designers provide the initial mark up of both teams, specifying 

the type and attributes (i.e. hitpoints, attack value, and cooldown period) of each of the 

units in both teams as an input. They also specify the team whose attribute values they 

would like to change.

The simulation starts with both teams playing out the abstract combat scenario. 

Depending on the result for the team whose attribute values we would like to change, one 

of the following happens:

1. WIN -  if the team whose attribute values are to be perturbed wins, the 

hitpoints and attack values of each of its units are reduced by e. Then 

the simulation is run again

2. LOSS - if the team whose attribute values are to be perturbed losses, 

the hitpoints and attack values o f each of its units are increased by s. 

Then the simulation is run again

3. DRAW -  in the case of draw the simulation stops. The new hitpoint 

and attack values are the outputs of the simulation. The unit mark-up 

can now be considered balanced.

Changing hitpoints and attack values is not the only option. A more sophisticated 

simulation would be able to change cooldown periods. Another improvement would be 

to change the values of individual units, instead of changing all units at once.

In addition, it is important to notice that this is not the only possible application of this 

method. Similar balancing techniques can be used to design units themselves. For 

example, a designer might want to know how many marines it takes to counter one tank.
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The designer can provide the initial input by guessing the number of marines and the 

simulation can play out the game by increasing or decreasing the number of units until 

the game is a draw.

5. Experiments

5 .1 Experiments Preview

Before describing in detail all the experiments that were performed to test our methods, 

we need to determine the kinds of experiments that are needed to test all proposed 

methods and their features. Our main goal is the creation of a comprehensive set of tests 

that will enable us to determine not only which method and parameter setting work the 

best, but also to gain insight into the advantages and disadvantages of each of the 

proposed methods and their suitability to different scenarios.

This, however, does not mean that we are going to tune any particular method (or make 

significant enhancements to it) to solve specific scenarios. We are going to leave the 

suggested methods as they are, giving them an equal opportunity to succeed, since our 

main goal is to understand the strengths and weaknesses of the proposed algorithms. The 

enhancements that are used, including move selection and better evaluation function, 

equally benefit most of the approaches, with the exception of the LP and Random 

players. Moreover, it will be difficult to test all possible situations, because there is an 

infinite number of ways to combining all the parameters; therefore, we will concentrate 

our efforts on solving several scenarios that are representative of the problems in the 

domain.

The selected scenarios are the 3 versus 3 and 4 versus 4 unit scenarios that belong to our 

original problem and also to the modified defensive version of the problem. In the 

defensive scenario the actions of players become more interdependent. This modification
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is needed to test our hypothesis of whether RAB’s performance is improved in situations 

where there is more interdependence between the actions of the two players.

In our first experiment we will examine the best way to assign scores for the RAB and the 

Monte Carlo methods. For each move these methods complete multiple runs, therefore 

the best move selection should be based on the combination of standard deviation and 

average scores for each such move. We test several such combinations to determine the 

scoring method used for the rest of the experiments. In the second experiment we 

compare the performance of the five proposed algorithms (i.e. RAB, Alpha-beta, Monte 

Carlo, LP, and Random) in typical combat scenarios. Our main goal is finding the best 

performer(s).

After such performers are determined the next step is to test the other search features and 

parameters that can be modified. Those include the evaluation functions (i.e. Simple, 

Square Root, and Tournament).

After such basic experiments are done we will have an idea of what method, evaluation 

function, and move selection setting are dominant and disregard the rest. At this point it 

will be possible to learn more about the advantages and the disadvantages of the best 

methods and to better understand in which cases one algorithm / setting is preferable to 

another.

First, an experiment to test the best method’s accuracy needs to be performed. In such an 

experiment we will keep the number of nodes of the second best method constant, while 

increasing the number of nodes the best method visits. The performance of the best 

method should improve as the number of nodes given to it is increased. Another 

experiment is to test the performance of our algorithm under the strictest time constraints, 

giving an algorithm a very limited amount of nodes. This experiment is important since in 

a real-time domain we want algorithms to produce a good solution quickly.
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Another experiment has to do with the move dependence in our domain. That is, we 

would like to see how the performance of RAB changes as the dependence between the 

players increases (i.e. going from the problem without defensive actions to the one with 

high degree of dependence). We would like to see whether in a defensive version of our 

problem, in which knowing / hypothesizing your opponents’ moves can significantly 

improve the chances of winning, RAB will perform better as compared to the non­

defensive problem.

Once the basic experiments are complete we will show the results for various 

improvements and problem extensions. One experiment will test whether restricting units 

to shoot at a specific target until that target is eliminated improves the performance as 

opposed to allowing units to re-aim at any time. Such a restriction can reduce the 

branching factor significantly; therefore, it is interesting to see how it affects 

performance, especially in situations where there are very few nodes available.

Next the problem extensions such as scenarios with range and the scenario balancing 

application will be tested. For the ranged scenario expansion we will test all of our 

methods to see whether their performance is similar to their performance on the original 

version of the problem. Finally, we will present a method for scenario balancing, which 

produces equal strength teams from originally unbalanced opponents by modifying the 

strength of one of the teams.

The next section describes the setup of the experimental environment, which is followed 

by a detailed description of each of the experiments that were performed.

5.2 Experimental Setup

A tournament style environment was set up for performing the experiments and for 

gathering statistics on the results. A tournament game is a match between two players 

who battle with each other until one player is eliminated. At each state both players
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implement their respective algorithms to find their best move. Then both moves are 

executed simultaneously, the state of the game is updated, and the game continues until 

one or both players are eliminated (refer to Section 3 for a detailed example). Given two 

players A  and B, a win for A(B) occurs when A(B) has unit(s) remaining while B(A) does 

not. A draw occurs when both players have no units remaining. Each experiment consists 

of N  games. To make the summary of experiments easier to analyze and understand the 

experimental results were presented according to:

(#wins+0.5*#draws) / (#wins+ #losses+#draws)

The number of wins, losses, draws, as well as average scores achieved in each run is 

recorded. To minimize the variance symmetric starting positions are chosen.

The units in each team are generated randomly within predefined boundaries. There are 

three types of units: tanks, marines, and artillery. Each type has the ranges of hitpoints, 

attack values and cooldown periods. Shown in Table 2 below.

Table 2: Predefined ranges of hitpoints, attack values and cooldown periods for units used in our 
experiments.

Tank Marine Artillery

Hitpoints 60 to 90 30 to 40 20 to  30

Attack
Value

30 to 45 15 to 25 40 to 60

Cooldown
period

1 0 2

Ranged units’ locations are generated randomly within a square area. Then the 

connectivity of a given scenario was computed. If the connectivity is within 5% of the 

desired connectivity value (85% for our experiments), the tournament is run, otherwise
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the random generation continued until the values are within the specified connectivity 

value.

To simulate real-time constraints, each player is given a limited number of resources. In 

order to ensure the comparability of experimental results that are run on different types of 

machines, the time given for each move is approximated by the number of nodes. The 

main reason for preferring node count over time is that machines with different CPU 

speeds and memory sizes perform different amounts of computations in a given time 

period. Approximating time as the number of nodes given per method ensures that similar 

amount of computation is performed. This holds true because there is no significant other 

overhead in all of the methods, therefore number of nodes counted is proportional to the 

execution time of the program.

For RAB (Random Alpha Beta) and AB (Alpha-Beta), which are search-based methods, 

the number of nodes consists of combination of interior nodes, cut nodes, terminal nodes, 

and leaf nodes. For the Monte-Carlo method the number of nodes consist of the total 

number of locations visited. The exceptions are the Random player and the LP player, 

which do not use number of nodes to approximate time. The Random player only visits 

one node every move, while the LP player has to perform a complete depth two search 

before it can produce a result. An LP player performing a complete depth two searches 

comes up with a solution within reasonable time frame, however increasing its search 

depth to four results in an explosion in the LP’s execution time.

The actual node count limits that are used in the experiments were selected in order to 

produce acceptable real-time performance on the machines used for the experiments. 

Specifically, the experiments are run on Athlon MP / XP 2400+ to 2500+ processors with 

512 MB -  1024 MBs of memory. For the experiments without defensive actions the node 

limit for one move in a game for each player when set to 200,000 nodes results in average 

game durations of -4.5 seconds (Note: each non-defensive game consists of -5 -6  moves 

for each player). For experiments with defensive actions, when the node limit is set to
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300,000 nodes, each game lasts on average ~9 seconds, consisting of ~6-7 moves for 

each player.

The two types of scenarios examined in most of the experiments are the 3 units versus 3 

units and 4 units versus 4 units scenarios. The make up of the 3 vs 3 scenarios are two 

marines and one tank. In the 4 vs 4 scenarios there are one artillery unit, two marines, 

and one tank. In each game the unit parameters are generated randomly within specified 

ranges described in Table 2.

5.3 Results of Experiments

5.3.1 Experiment 1 (Scoring Setting for RAB and Monte Carlo)

In our first experiment we examine the best way to assign scores for the RAB and the 

Monte Carlo methods. For each move these methods complete multiple runs, therefore 

the best move selection should be based on the combination of standard deviation and 

average scores for each such move. We test several such combinations to determine the 

scoring method used for the rest of the experiments. The experiment is run for 3 vs 3 non­

defensive scenario. Each experiment consists of 200 games. All players use the Square 

Root evaluation function and move selection with the limit of 15 moves. Both the RAB 

and Monte Carlo were tested against the AB player. The independent variable is the 

scoring setting, which consists of adding or subtracting a certain proportion of standard 

deviation from the average score. The results are presented in Figure 7.
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Figure 7: Win ratio of RAB over AB and Monte Carlo over AB for different scoring settings.

The results of this simple experiment show that the type of scoring setting used 

influences the performance of both RAB and Monte Carlo methods. Furthermore, they 

show that adding standard deviation to the average score results in significant decreases 

in performance for both RAB and Monte Carlo, compared to the method that uses only 

average scores. Subtracting standard deviation from the average results in a slight 

improvement in performance. For both the RAB and Monte Carlo the setting of (Average 

Score -  1 * Standard Deviation) produces the best results. Therefore, this scoring setting 

is used for these methods in the rest of the experiments.

5.3.2 Experiment 2 (Performance of All Methods)

The main goal of this experiment is to evaluate the relative performance of each method 

in two typical types of scenarios. The goal is to identify the methods that perform the best 

and then use those methods for further testing and discard the rest. The methods tested 

are: RAB, AB, Monte Carlo, LP and Random. We have run an experiment to test the 

performance of all the methods against each other on two scenarios, one without
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defensive actions and the other one with a possibility to defend. Each experiment consists 

of 200 games, with randomly generated starting positions within specified boundaries. 

Each move is given 200,000 nodes for non-defensive scenario and 300,000 for defensive 

games. (Note: Defensive scenarios have higher branching factor and generally last longer, 

therefore more nodes are needed.) To make the experiment fair for all methods and also 

to simplify it, all methods use the same move selection values and the same evaluation 

function. Thus, all players (except Random and LP) use move selection with 15 move 

limit and Square Root evaluation function for the non-defensive scenarios. In the 

defensive scenarios the move selection setting is always 25. Each game is played between 

two equal teams of 3 units versus 3 units. Two of those units are marines and one is a 

tank. The results are presented in Figures 8 and 9 for non-defensive scenarios and in 

Figures 9 and 10 for defensive scenarios. Figures 8 and 10 show the cumulative win 

ratios achieved by each method over all other methods, while Figures 9 and 11 show the 

results of individual matches.

3 vs 3 Non-defensive Overall Performance
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Figure 8: Win ratio for each individual method in a round robin tournament for a non-defensive 
scenario.
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3 vs 3 Non-Defensive Scenarios Results
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Figure 9: Results of all methods playing against one another in a non-defensive scenario.
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Figure 10: Win ratio for each individual method in a round robin tournament for a non-defensive 
scenario.
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Figure 11: Results of all methods playing against one another in a defensive scenario.

The results of this experiment suggest that the RAB and Alpha-beta players are the best 

performers in two typical scenarios, with Monte Carlo coming third. The LP player’s 

performance is not very close to that of the best methods, because of its limited search 

depth. But in more interdependent scenarios (Figure 10) the LP player’s performance 

improves significantly, but still is not on par with that of either RAB or AB. Therefore, 

the rest of the experiments will concentrate on the RAB and AB methods to gain more 

understanding about their advantages and disadvantages.

5.3.3 Experiment 3 (Evaluation Function Selection)

The goal of the third experiment is to determine the evaluation function that produces the 

best results. We test the following functions: Simple Evaluation, Square Root Evaluation, 

and Tournament Evaluation. For this experiment we only use the RAB method since its 

performance was determined to be the best. Each run consists of 200 games, with each
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team  given 300,000 nodes for scenarios with defensive actions and 200,000 nodes for 

scenarios without defensive actions. The scenario is the same as described in experiment 

2 (i.e. two marines and one tank). The results are shown in Figure 12(a) for non-defensive 

scenarios and Figure 12(b) for defensive scenario.
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Figure 12: Evaluation function performance: (a) non-defensive scenarios (b) defensive scenarios.
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The results for both the defensive and non-defensive scenarios show that our initial 

hypothesis was incorrect and suggest that the Square Root evaluation function is better 

than the Tournament evaluation function and therefore it is the most suitable for our 

domain. This suggests that the extra computation involved in Tournament evaluation 

function does not pay; the Square Root evaluation function can complete more RAB 

iterations with the same number of nodes and it is a better choice. This is especially true 

for the defensive scenarios, where the Tournament evaluation function’s games do not 

take into account the possibility of defensive actions. The Simple evaluation function was 

proven to be inferior by a significant margin to both the Tournament and the Square Root 

evaluation functions.

5.3.4 Experiment 4 (Move Selection Experiment)

Another key feature that needs to be tested is the number of moves to be considered at 

each level. As a reminder, in our methods, move selection is executed by performing 

depth one greedy executions of all moves and selecting the top N  moves based on the 

results returned by the evaluation function. Therefore, it is important to determine which 

evaluation function performs the best (i.e. has the best future prediction), before we can 

find the optimal number of moves to be selected for a given scenario. Also, the number of 

moves to be selected is likely dependent on the type of scenario at hand and is expected 

to be proportional to the branching factor of a given scenario. Because the number of 

moves in 4 vs 4 scenarios is exponentially larger than that in the 3 vs 3 scenarios, it is 

likely that there are many more good moves that are close to each other. Thus, in a 3 

versus 3 scenario the optimal number of moves to be selected is expected to be smaller 

than in 4 versus 4 scenarios.

For this experiment we are using only the RAB method applied to defensive and non­

defensive scenarios. There are two problem scenarios: 3 versus 3 and 4 versus 4. For non­

defensive scenarios each team gets 200,000 nodes for 3 vs 3 scenarios and 400,000 nodes
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for 4 vs 4 scenarios. For defensive scenarios the number of nodes is 300,000 and 600,000 

respectively. The evaluation function used is the one determined to be the best in Section 

5.3.3 (i.e. Square Root Evaluation). Each run consists of 200 games. The results are 

shown in Table 13 for 3 vs 3 scenarios and Table 14 for the 4 vs 4 scenarios.

Move Selection Experiment (3 vs 3 non-defensive)
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Figure 13: Move selection results in 3 versus 3 non-defensive (a) and defensive (b) scenarios. Results 
show that concentrating effort on a subset of moves payoffs.
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Move Selection Experiment (4 vs 4 non-defensive)
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Figure 14: Move selection results in 4 vs 4 non-defensive (a) and defensive (b) scenarios. Results show 
that concentrating effort on a subset of moves payoffs.
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In general, the results for the move selection experiments show that in all situations some 

degree of move selection is preferable to having no move selection. This means that it 

pays off to concentrate search effort on a small subset of moves that can be searched 

deeper, instead of searching all moves to a lower depth. For the Random Alpha-Beta 

method it means that it is beneficial to invest more nodes into more iterations for more 

accurate predictions rather than into exploring more moves. Also, it shows that our 

Square Root evaluation function is successful in selecting good moves based only on 

depth one look-ahead search. Thus, for 3 vs 3 non-defensive and defensive scenarios the 

move selection is 10 and 20, respectively, while for 4 vs 4 non-defensive and defensive 

scenarios it is set to 40 and 60, respectively.

5.3.5 Experiment 5 (Varying RAB’s Nodes vs Constant AB)

This experiment is designed to determine whether the quality of RAB’s results improves 

as the algorithm is given more nodes. In this experiment RAB is playing against the AB 

algorithm whose maximal node count is held constant and the number of nodes assigned 

to RAB is varied. The experiment is performed on 4 representative scenarios: 3 vs 3 non­

defensive, 3 vs 3 defensive, 4 vs 4 non-defensive, and 4 vs 4 defensive. For 3 vs 3 

defensive and non-defensive scenarios AB is assigned 50,000 and 100,000 nodes, 

respectively. For both 4 vs 4 defensive and non-defensive scenarios AB is assigned 

200,000. The evaluation function and move selection values used are the best determined 

in experiments three and four, respectively.

The results are shown in Figures 15 and 16 for non-defensive and defensive scenarios, 

respectively. The general trend is that as the number of nodes increases the quality of 

RAB solutions increases. The increase is more gradual in the case of defensive scenarios, 

as compared to the non-defensive ones. In the case of non-defensive scenarios 

(specifically the 4 vs 4 non-defensive scenario) there is a big improvement in 

performance from 100,000 to 200,000. From examining the solutions it seems that such 

improvement is due mostly to the higher depth RAB reaches when given 200,000 nodes.
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In non-defensive scenarios there is less interdependence than in the defensive scenarios, 

therefore reaching higher depths has more effect on the quality of the resultant solution. 

This is further supported by the gradual increase when moving from 200,000 to 600,000, 

when the improvement reached its peak.

Varying RAB’s Nodes vs Constant AB 
(Non-Defensive Scenarios)

0.68  -

Figure 15: Results of RAB wins over AB as the number of RAB nodes is increased from 20,000 to 
400,000 and AB’s node count is fixed. The results are shown for non-defensive scenarios.

Varying RAB’s Nodes vs Constant AB 
(Defensive Scenarios)
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Figure 16: Results of RAB wins over AB as the number of RAB nodes is increased from 50,000 to 
400,000 and AB’s node count is fixed. The results are shown for defensive scenarios.
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5.3.6 E x p e r i m e n t  6 (Strict Constraints)

The abstract combat domain is most and foremost a real-time domain, because in actual 

RTS games AI is allotted only a small percentage of CPU cycles. Therefore, it is very 

important to see how the algorithms perform under the strictest time constraints and 

whether their performance changes as more resources become available to them. For this 

experiment we are using the RAB and AB methods with the best setting from previous 

experiments (i.e. best evaluation function and the best number of moves). The 

experiment is run for 3 vs 3 and 4 vs 4 non-defensive and defensive scenarios. Each run 

consists of 200 games. The independent variable is the number of nodes given to each 

method. The Square Root evaluation function is used as well. The results are shown in 

Figure 17 for non-defensive scenarios and Figure 18 for defensive scenarios.

Strict Contraints Experiment (Non-Defensive Scenarios)
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Figure 17: Results of RAB wins over AB as the number of nodes is increased from 10,000 to 100,000 
for 3vs3 scenarios and from 20,000 to 200,000 for 4vs4 for non-defensive scenarios.
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Strict Contraints Experiment (Defensive Scenarios)
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Figure 18: Results of RAB wins over AB as the number of nodes is increased from 30,000 to 200,000 
for 3vs3 scenarios and from 50,000 to 400,000 for 4vs4 for defensive scenarios.

The results for both defensive and non-defensive scenarios show that RAB performs 

better than AB across most of the settings. The most surprising finding is that given a 

very limited number of nodes for both defensive and non-defensive scenarios RAB 

outperforms AB. This shows that even though AB can reach greater depth than RAB with 

the same node limit, investing into randomization and extra runs rather than into deeper 

searches pays off very early for the RAB algorithm. Another general trend observed is the 

gradual reduction of RAB’s improvement over AB. The results show that as the number 

of nodes increased for both algorithms RAB reaches a ceiling in its winning percentage 

over AB.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5,3.7 Experiment 7 (Degree of Move interdependence)

Our initial hypothesis was that the original abstract combat scenarios (i.e. no defensive 

action) do not feature a high interdependence between opponent’s moves. That is, it is not 

very important for a player to know what the opponent will do. With the introduction of 

the defensive action the outcome can become highly dependent on the player’s ability to 

guess correctly (or estimate) what the opponent’s action will be. Therefore, our 

expectation is that RAB will improve its performance as the degree of dependence 

increases. We think that in highly interdependent domains the search depth, which is 

RAB’s main weakness, is not as important as its ability to estimate what the opponent 

will do. In such situations estimating correctly which move the opponent is likely to 

choose immediately, can give a player a significant advantage.

The RAB and AB methods will be used in this experiment. The independent variable will 

be the degree of dependence of a given scenario. This can be easily adjusted in our 

domain starting with a setting with no defensive actions, and finishing with the setting 

where the probability of selecting a defensive action is similar to that of selecting an 

offensive action. Specifically, in a scenario with no reward for the defensive actions units 

are not motivated to execute the defensive actions since the defensive actions do not 

benefit them. Then the reward for choosing a defensive action increases, by increasing 

the weight of ratios of attack values assigned for defence and for hitting back at the 

attacker, until the likelihood of selecting a defensive action is similar to that of selecting 

an offensive action. For 3 vs 3 scenarios 300,000 nodes are given for one search. For 4 

vs 4 500,000 nodes are provided. The number of moves selected are 20 and 50 for 3 vs 3 

and 4 vs 4, respectively. The Square Root evaluation function is used. The results are 

shown in Figures 19 and 20 for 3 vs 3 and 4 vs 4 scenarios, respectively.
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Figure 19: The ratio of wins of RAB over the AB for 3 vs 3 scenarios as the move dependency 
increases from no defensive action to high probability of a defensive action. The figure also shows the 
number of wins/losses as a percentage of games played in such situation, indicating result variance.

Dependence Experiment (4 vs 4 Scenarios)
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Figure 20: The ratio of wins of RAB over the AB for 4 vs 4 scenarios as the move dependency 
increases from no defensive action to high probability of a defensive action. The figure also shows the 
number of wins/losses as a percentage of games played in such situation, indicating result variance.
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The results for both 3 vs 3 and 4 vs 4 situations show that as the tendency to pick a 

defensive action increases the win ratios for RAB over AB increase in both the 3 vs 3 and 

4 vs 4 case. This result underpins our initial hypothesis that in highly interdependent 

scenarios the RAB will perform better. Another correlation that can be observed in both 

graphs is between the win ratio of RAB and the number of wins and losses as a 

percentage of the number of simulations. This is not surprising, since as the move 

interdependence increases the success of actions increasingly depends on what the 

opponent will choose to do. Therefore, in a highly defensive scenario there is no single 

move that guarantees at least a draw for a player. The opponent can counteract most 

moves taken by the player leading to a higher standard deviation of the results.

5.3.8 Experiment 8 (Sticking to Target Improvement)

One of the constraints that can significantly reduce the branching factor is not allowing 

re-aiming. It means that if a unit has picked a target it should keep shooting (stick) at that 

target. That is, from the time the unit has picked a target until the target elimination, that 

unit has only one action available to it. We would like to see whether not allowing units 

to re-aim could lead to a better real-time performance.

In this experiment we use our best method (RAB), in combination with re-aiming in the 

first case and without re-aiming in the second case. The experiments are performed for 3 

vs 3 and 4 vs 4 non-defensive scenarios. For all cases the Square Root evaluation 

function is used. The move selection number is 10 for 3 vs 3 non-defensive scenarios and 

40 for 4 vs 4 non-defensive scenarios. The independent variable is the number of nodes 

given for each search. Each run consists of 200 games. The results are shown in Figure 

21.
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Sticking vs Re-Aiming Experiment
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Figure 21: The percentage of wins for RAB in 3 vs 3 and 4 vs non-defensive scenarios as the number 
of nodes given is increased from 10,000 to 800,000.

The results show a small advantage when units implement the sticking to the target 

policy. Because of the reduced branching factor when no re-aiming is allowed it is more 

advantageous to use no re-aiming when the number of nodes given is small. As the 

number of nodes given increases the performance of the method that does not stick to its 

target slowly increases to over 0.5 in the 3 vs 3 case. We can conclude that not allowing 

re-aiming is especially useful when there are strict real-time constraints, however when 

the node limit is increased the performance of the no-sticking algorithm improves.

5.3.9 Experiment 9 (Examining the Range Expansion)

This experiment is similar to the second experiment except that it tests the performance 

of various methods on scenarios where range is included. The experiment is performed 

only on the non-defensive scenarios because during ranged scenarios not all units are 

within reach of all other opponent units. This situation can increase the likelihood of 

deadlocks occurring, where units that are within reach of each other use only defensive
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actions, in our application we do not allow all units to take a defensive action at the sam e 

time to avoid deadlocks. Therefore, in a situation where a unit is the only one that can 

attack a target or a group of targets it will not be allowed to perform a defensive action. 

Thus, in a scenario where range is considered due to such restrictions only a few 

defensive actions will be selected, which will make the move selection there comparable 

to that o f non-defensive scenarios.

The methods tested are RAB, AB, Monte Carlo, LP and random. We run a round robin 

tournament on two scenarios: 3 vs 3 units and 4 vs 4 units. Each experiment consists of 

200 games, with randomly generated starting positions within specified boundaries. The 

boundaries are defined by a square of size 20 by 20. A game only takes place when its 

randomly generated connectivity value (refer to Section 3.3) is within 0.05 of 0.85. Each 

move is given 200,000 nodes for 3 vs 3 scenarios and 400,000 nodes for 4 vs 4 scenarios. 

To make the experiment fair for all methods and also to simplify it, all methods use the 

same move sorting values and the same evaluation function. Thus, all players (except 

Random and LP) use move selection of 20 and 40 moves for 3 vs 3 and 4 vs 4, 

respectively and the Square Root evaluation function. In 3 vs 3 scenarios there are two 

marine units and one tank unit. For 4 vs 4 scenarios an artillery unit is added to the setup. 

The results are presented in Figures 22 and 23 for 3 vs 3 scenarios and in Figures 23 and 

24 for 4 vs 4 scenarios. Figures 22 and 24 show the cumulative win ratios achieved by 

each method over all other methods, while Figures 23 and 25 show the results of 

individual games.
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3 vs 3 Non-defensive Overall Performance
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Figure 22: The combined totals of win ratio achieved over all methods for each individual method 
non-defensive scenarios with range.
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Figure 23: Results for ranged non-defensive scenarios in 3 vs 3 situations.
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4 vs 4 Non-Defensive Overall Performance
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Figure 24: The combined totals of win ratio achieved over all methods for each individual method in 
non-defensive scenarios with range.
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Figure 25: Results for ranged non-defensive scenarios in 4 vs 4 situations.
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The results for experiments in both the 3 vs 3 and 4 vs 4 situations show that again RAB 

has a small edge over AB. The performance of Monte-Carlo and LP players is similar to 

that in the experiments where range was not considered. So our hope that the RAB 

performs better than other methods in scenarios with range expansion was confirmed in 

this experiment.

5.4 Unit Value Balancing

To test the simple version of the balancing application we have run two sample games: 

one for the defensive scenarios, while the other for the non-defensive scenarios. For each 

game we set up two teams. The first team consists of units that cannot be changed while 

the second teams’ unit strengths can be increased or decreased depending on the results 

of the previous game. For both the defensive and non-defensive scenarios the constant 

team consists of one tank and one marine. The second team to be changed consists of 

three marines. Thus, our primary goal is to change the values of the second team’s units 

in such a way that they are equal opponents to the first team. The initial set-up for the two 

teams is as follows:

Unit 1 Unit 2 Unit 3

Team 1 H 60 H 25
A 30 A 45
C 0/1 C 0/2

Team 2 H 35 H 35 H: 35
A 20 A 20 A: 20
C 0/0 C 0/0 C: 0/0

The results after balancing was performed are shown in Table 3.
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Table 3: Shows the results for team 2 after balancing for non-defensive (a) and defensive scenarios
(b)

U nit 1 Unit 2 U nit 3 U nit 1 Unit 2 Unit 3

Team  1 H 60 H: 25 Team 1 H 60 H 25

A 30 A: 45 A 30 A 45

C 0/1 C: 0/2 C 0/1 C 0/2

T earn 2 H 30 H: 30 H: 30 Team 2 H 29 H 29 H: 29
A 15 A: 15 A: 15 A 14 A 14 A: 14

C 0/0 C: 0/0 C: 0/0 C 0/0 C 0/0 C: 0/0

(a) (b)

The results show that the hitpoints / attack values for the team of marines was reduced to 

(H:30 A: 15) for each marine in non-defensive situation and (H:29, A: 14) for the 

defensive scenarios. The results for both the defensive and non-defensive scenarios are 

very close. The slight difference between the two scenarios suggests that some units, such 

as marines, that have a lower ratio of attack value over hitpoints are better suited for 

scenarios with defensive actions. Units such as artillery and tanks that have a higher ratio 

are more reluctant to defend due to the risk of wasting their higher attack value.

6. Conclusion

One of the goals of our research was to examine whether search-based methods can be 

used effectively in real-time domains with simultaneous move execution. In our research 

we have overcome many challenges. We have shown that search-based methods can be 

successful in a domain with the real-time constraints and with move interdependence. 

Moreover, we have shown that non-deterministic search methods such as RAB perform 

better in such situations than a traditional alpha-beta algorithm. This result shows that the 

search depth is not the most essential feature when designing algorithms in simultaneous
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move domains, as opposed to alternating move complete information domains, where 

search depth was shown to strongly correlate with the quality of the resultant solution.

In the process we have also varied the settings of problems in our simultaneous move 

abstract combat domain and have shown that there is no single best method for all 

simultaneous move scenarios. The key to solving simultaneous move scenarios 

effectively is through examining the degree of interdependence between the opponents’ 

actions. Some domains that have simultaneous move execution have very low degree of 

move interdependence and therefore in those domains the deterministic methods can 

perform well. In cases with higher degree of interdependence our RAB method was 

proven to be the most suitable real-time algorithm.

We have also achieved more practical goals. We have created an experimental 

environment where methods can be tested and improved, algorithms can be added and 

parameters can be adjusted with minimal effort, by playing tournament games against 

other methods. Moreover, the object-oriented structure of our software ensures that it can 

be expanded to work in other simultaneous and alternating move domains with minimal 

adaptations required.

Our main goal, however, was to create effective real-time algorithms for abstract combat 

scenarios. We have shown that three of our proposed methods (i.e. AB, RAB, Monte 

Carlo) can provide reasonable anytime solutions for various scenarios in the abstract 

combat domain. Out of these the RAB algorithm was proven to be the most solid 

performer since in most situations it produced the best overall results.

7. Future Work

The goal of our work was to examine how abstract combat problems can be solved 

effectively in real-time. We have shown that search-based approaches can be used
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effectively. In the process of tackling our problems, we have discovered numerous 

problem areas that were not intended to be researched initially and have raised many 

challenging questions that could not be addressed in this research.

One such issue is that of determining or estimating the degree of move interdependence 

in the games with simultaneous move execution. Specifically, we think that in non­

defensive scenarios there is very little dependence between the players’ actions meaning 

that alpha-beta can be used there almost as effectively as RAB, while the opposite is true 

for the defensive scenarios. However, we have no theoretical proof for that. Such a proof 

together with a tool that can estimate a degree of dependence in a given domain could be 

very useful in helping determine the kinds of algorithms suitable for different 

simultaneous move domains. For example, a simultaneous move scenario that has no 

dependence between opponent’s moves will be solved most effectively by the alpha-beta 

algorithm without the need for randomization.

Our RAB algorithm can also be a focus of future work. The current version has one 

problem, which arises because the successors of the root node in the RAB tree are not 

randomized, that is there RAB behaves just like AB. For instance, in a game of Rock- 

Paper-Scissors, which is at a maximum a depth=2 game, the player executing the search 

will always lose, since the opponent at all times can select a move that counteracts that 

player’s move. The same applies to our defensive scenario, where most pure strategies 

can be defeated by other pure strategies. In such a situation it is often sensible to model 

what move the opponent is likely to choose and then select a move that counteracts the 

opponent’s move. Such a strategy might be riskier but it can also pay off. Since there is 

no guarantee that one move will lead to a win, it might be useful to select several 

promising moves and pick one of them each turn. This weakness of RAB can be 

addressed by performing two searches and then combining their results. The first search 

is performed where the player to move starts at the root, while the second search is 

performed where the opponent starts at the root. The top moves for the player to move 

from each of the searches are then selected and one of these move is executed according 

to certain probability distribution.
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Another area of interest is improving algorithms to solve more complicated problems in 

the abstract combat domain. The best proposed algorithm (i.e. the RAB) is currently 

capable of providing quality solutions only in smaller-scale combat scenarios. But as the 

number of units in a scenario grows the branching factor increases exponentially. 

Therefore, given similar resources the quality of solutions produced by our method will 

decrease. This impact is somewhat softened by the fact that the evaluation function is 

capable o f successfully selecting only a fraction of generated moves for future 

examination. Also, as the number of units increases the branching factor does not seem to 

be exponential (i.e. for 3vs3 the best move selection setting is 10 moves, while for 4vs4 

the best setting is only 40 moves). Nevertheless, the solution quality still decreases as 

more units are added, requiring either more resources, which can make algorithms to 

become non-real-time, or acceptance of poorer quality solutions with unchanged amount 

of resources.

There are at least two ways of tackling the abovementioned problem. First, we can 

aggregate a number of units into a single or multiple super-units. So, given any number 

of units, the number of aggregated units is always reduced to a size that the algorithm can 

manage in real-time. Such approach does guarantee an upper bound on the time required 

to produce a solution for a scenario of any size, but it also has some significant 

drawbacks. For one, lumping many units into one bigger unit restricts all the units 

belonging to a single super-unit to attack only a single opponent super-unit. Another 

major problem is that of distributing the firepower between the opponent’s units that 

belong to the super-unit. The questions that arise here are whether every unit should 

attack different opponent unit or whether they should all concentrate fire on one or 

several of the opponent’s units belonging to that super-unit. We have tried implementing 

a simple aggregation approach with mixed success, which did not adequately address 

those problems. In the process, we have realized that successfully implementing an 

effective aggregation application would require algorithms that go beyond the scope of 

the intended research in this thesis.
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Another way of addressing the multi unit problem is to divide units into independent 

groups with hierarchical top-down control. In other words, instead of simulating a single 

large battle scenario, we propose simulating a series of smaller localized battles. Each 

group involved in a small battle is only concerned with that particular battle, which 

ensures that search is performed within given time frame. Up the hierarchy is the 

commander whose responsibility is to decide on how to create such (player, opponent) 

groupings. Making such grouping decisions to effectively simulate the real situation is the 

key challenge. In scenarios, where weapon range and movement are considered the 

grouping decisions can be based on proximity of a unit to its opponents and its range.

One more interesting area for future research is that of extending our ranged scenarios to 

include unit movement. Such an extension would make the abstract combat domain 

closely resemble the realistic environment of both real-time strategy games and real 

military combat. Such an extension is, however, the most difficult challenge to tackle, 

since adding the possibility of movement increases the branching factor tremendously. 

But instead of performing a complete search in all possible move situations we propose 

performing complete searches only on selective possible future states. The player 

performing the search can select a certain number of promising moves using a good move 

selection technique. Then for each such move a number of promising opponent moves 

can be considered. After that a search can be performed for each of these situations and 

statistics for each of the players’ moves can be gathered (Note: this is very similar to how 

current random alpha-beta works) and the best move will be selected. The key challenge 

here is coming up with a successful move selection technique that can reduce the large 

number of possible states to a few likely candidates. Such a technique will be more 

difficult to design than the move selection for the scenarios we studied, because of the 

two added degrees of freedom (i.e. the range and movement parameters).

The last area where research can be concentrated has to do with balancing units. This 

application is more of an engineering problem than a research issue but it is still an 

important area because game designers can use this application almost immediately. 

Currently, the balancing is done in a primitive way by adjusting the hitpoints and attack
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values o f all units in a team by e until the balance is achieved. The application can be 

made more comprehensive by being able to adjust the attributes of a single unit and by 

also adjusting the cooldown periods. Another possibility is extending the application to 

game length balancing. This can be useful when trying to fix the number of turns, which 

approximates the time-length it takes one team to eliminate another team. In a typical 

situation, a game designer would like to create teams in a way that the human player’s 

units will win over the computer player’s units, but the fight has to last at least N turns.

Our next step will be to incorporate our methods into an ORTS [8] client either as a part 

of architecture of a standalone AI player or as a helper for a human player. There they 

can be used to alleviate the human players from the command of all the details and as an 

actual AI technique for resolving smaller scale battles for computer players.
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