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Abstract

Drawing on ideas from turbulent plume theory, a novel solution is presented for

buoyant convection from an isolated source in uniform and non-uniform porous

media of finite extents. In the former case, the problem is divided into three flow

regimes: (i) a negatively-buoyant plume, (ii) rectilinear or axisymmetric gravity

current comprising discharged plume fluid that forms when the plume reaches the

bottom (impermeable) boundary, and, (iii) the subsequent ascending motion of

this discharged plume fluid towards the source after the gravity current reaches

the vertical side walls.

We derive analytical solutions for all three regimes in a rectilinear geometry

with a line source and in an axisymmetric geometry with a point source. By

synthesizing the above three flow regimes, a “filling box” model is developed

that can predict the time needed for a source of dense fluid to fill the control

volume up to the point of overflow as a function of the source and reservoir pa-

rameters. For purposes of corroborating our model predictions, complimentary

rectilinear laboratory experiments were performed with fresh water and salt wa-

ter as the working fluids. Images were recorded during the experiments and later

post-processed in Matlab by employing an interface detection algorithm to deter-

mine the height profiles of the gravity current and the first front. We find good

agreement between the measured and predicted height profiles.

Extending the above results to a nonuniform porous medium, the effects of

sudden permeability changes in a filling box flow are studied for the case of rec-

tilinear geometry. The porous medium consists of two thick horizontal layers

of different permeabilities. Two configurations are examined: a lower perme-

able medium on top of the higher permeability layer and vice-versa. While the
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flow dynamics observed in the first configuration are qualitatively similar to the

case of a uniform porous medium, a significantly different flow behaviour is ob-

served in the latter configuration. Here not all of the plume fluid enters the

lower layer. Rather some significant fraction propagates along the (horizontal)

interface between the upper and lower layers as an intrusive gravity current ex-

hibiting fingering instabilities along its bottom surface. Depending on the source

parameters and permeability ratio, the gravity current can reach only a certain

length before draining completely into the lower layer. Analytical solutions are

presented for this runout length and the corresponding filling box time. Simili-

tude experiments were then also performed to verify these predictions. While we

find a good agreement in case of the filling box time, for the runout length an

underprediction is observed. Reasons for this discrepancy are carefully examined.
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Chapter 1

Introduction and overview

A “filling box flow” can be defined as the buoyant convection that arises in a

closed or ventilated control volume where the convection is driven by a localized

source on the boundary that produces an ascending or descending plume. This

plume, after reaching the opposite impermeable horizontal boundary, forms later-

ally propagating gravity current(s) that propagate towards the vertical sidewalls

of the control volume. After the gravity current(s) reach the sidewalls, there

appears a layer of discharged plume fluid that progressively deepens with time.

In the long time limit, this discharged plume fluid is returned to the elevation of

the source. A schematic of a representative filling box flow in porous media is

shown in figure 1.1.

Filling box flows were first studied in the context of free turbulent plumes

by Baines & Turner (1969), who considered a closed control volume filled with

ambient fluid but devoid of porous media. Although there have been significant

investigations of filling box flows in a free medium since then, in the context of a

porous medium this problem still remains unexplored. From the environmental

to industrial applications, e.g. underground thermal storage, cooling of electronic

components etc., filling box type flows occur in porous media in numerous incar-

nations (to be discussed in detail in §1.2). Findings from the present investigation

of filling box flows in porous media can be employed in these applications to de-

termine the maximum amount of fluid, solute or heat that may be sequestered

and the associated filling box time.

As shown in figure 1.1, filling box flows consist of three flow regimes: (i)
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Figure 1.1: Convection in a confined porous medium: (a) plume and gravity current
flow, (b) advection of the first front towards the source.

a negatively-buoyant plume originating from a discrete source, (ii) gravity cur-

rent(s) moving horizontally sidewards or outwards and (iii) a “first front” moving

vertically upwards towards the source of the negatively-buoyant plume. Plumes

are defined as a primarily vertical, buoyancy driven flow, generated from a local

source. The buoyancy difference between the source and ambient fluids may be

caused by a difference either in the solute concentration (haline plumes) or tem-

perature (thermal plumes). However, if the source has both concentration and

temperature differences, the plume is of thermohaline type. Because of the differ-

ence in the fluid velocity between the plume and ambient fluids, an entrainment

of the latter into the former occurs resulting in an increase in the volume flux

of the plume. Buoyant plumes are primarily characterized by three parameters:

the volume flux, momentum flux and the buoyancy flux. For an ideal plume, the

volume flux and momentum flux at the source are assumed to be zero such that

the plume is generated as a result only of a source buoyancy flux. However, in

reality, particularly in case of haline plumes, the volume flux and momentum flux

at the source are almost always nonzero. An example of a negatively-buoyant

plume in porous media is shown in figure 1.2. Notice that the plume diameter

increases in the downstream direction which is indicative of an entrainment of

(clear) ambient fluid into the (dark) plume fluid.

The second component of filling box flows, i.e. the gravity current, is a pri-
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Figure 1.2: A (dark) dense plume falling in a uniform porous medium filled with a
(clear) light fluid.
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Figure 1.3: A dense gravity current propagating outwards over a horizontal imperme-
able boundary in a uniform porous medium.
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Figure 1.4: Image showing the advection of first front having a curved interface in a
confined porous medium.

marily horizontal flow, driven by the density-difference between the contaminated

and ambient fluids. A gravity current is created by dense fluid in a lighter ambi-

ent, over an impermeable or a less permeable boundary. Unlike the case of the

plumes, no significant entrainment occurs in this case, and therefore the density

of the gravity current is assumed to be constant during its propagation. An exam-

ple of the dense gravity current flowing over an impermeable boundary is shown

in figure 1.3. Because gravity currents are invariably considered as semi-infinite

flows, a new flow classification is needed for the period of time after the gravity

current first strikes a lateral sidewall. The interface between the contaminated

fluid and the ambient light fluid is known as the “first front” (Baines & Turner,

1969). The motion of the first front is primarily vertical, and any diffusive or tur-

bulent entrainment across the first front is neglected over advection. A sample

image showing the first front can be found in figure 1.4.

It is important to note that all of the above discussion assumes a negatively-

buoyant plume that falls through an ambient of comparatively light fluid. In fact,

provided the system is Boussinesq so that density differences are comparatively

small (i.e. . 10%), entirely equivalent dynamical results would be obtained if a

source of a light fluid is located at the bottom of the control volume that is filled

with a comparatively denser fluid, thereby creating a rising light plume, followed

by a light gravity gravity current(s) flow below the top impermeable boundary
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and finally a subsequent downwards advecting first front.

1.1 Literature review

Mathematical derivations describing the behavior of free turbulent plumes were

presented by (Morton et al., 1956). The set of 1D integral equations that describe

the variation of the plume volume flux, momentum flux and reduced gravities

with the vertical coordinate, z, were then termed as the MTT equations. By

adapting the MTT equations for axisymmetric turbulent free plumes, Baines

& Turner (1969) studied filling box flows in a confined rectangular box devoid

of porous media. While the horizontal outflow, i.e. the gravity current, of the

plume upon reaching the impermeable boundary was omitted, the vertical flow

obtained after this outflow reaches the lateral sidewalls was characterized with

reference to the time dependent elevation of the “first front”, the interface that

separates contaminated and uncontaminated (ambient) fluid. For an ideal plume

having zero source volume (and momentum) flux, Baines & Turner (1969) found

that the first front reaches the top of the control volume asymptotically at large

time. The gravity current part that was omitted by Baines & Turner (1969) was

considered later by several researchers like Britter (1979); Manins (1979); Kaye

& Hunt (2007) and others.

In considering free turbulent plumes, the behavior of the plume outflow greatly

depends upon the ratio of the box height to radius, H/R. If this ratio is suffi-

ciently large, i.e. H/R & 4.0 according to Barnett (1991), the discharged plume

fluid fails to form a stable horizontal interface. Rather, because of the smaller

box cross-section, the discharged dense fluid upon reaching the sidewall over-

turns. The overturning of the discharged fluid, based on H/R, is studied by

Kaye & Hunt (2007) in detail. By contrast, overturning type motions are not be-

lieved to be significant in porous media filling box flows where the flow is laminar

and inertial effects are much smaller by comparison.

Since the investigation of Baines & Turner (1969), filling box flows have been

studied in significant detail in the context of numerous industrial and environmen-
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tal applications. Some of the primary applications include: building ventilation

(Caulfield & Woods, 2002; Nabi & Flynn, 2013), overturning in chemical storage

tanks (Germeles, 1975), submarine pumice plumes (Head & Wilson, 2003; Woods,

2010), hydrothermal plumes (Speer & Rona, 1989; Baker et al., 1989), seafloor

lava eruptions (Speer & Marshall, 1995; Bush & Woods, 1999) and atmospheric

volcanic plumes (Woods, 2010).

Although filling box type flows are not an unusual occurrence in porous media

(examples to be discussed in §1.2), they have, with the exception of Roes et al.

(2014), remained unexplored from a theoretical point of view. By assuming a

leaky porous medium, Roes et al. (2014) studied the effects of fissure outflow

on the long time behavior of the filling box flow. Consistent with Linden et al.

(1990), they found that in the t → ∞ limit the first front height reaches a

constant value and the volume flux at the elevation of the first front equals the

volume flux exiting through the fissures. They characterized the mean first front

height based on the number and size of the fissures, the source parameters and

the porous media properties, i.e. the porosity and permeability.

Although filling box flows in porous media have not been studied significantly,

a reasonably voluminous literature has accumulated that seeks to describe the

behavior of plumes and gravity currents in porous media. Before discussing the

relevant papers in further detail, it is however vital to first understand the basics

of flow and transport in porous media.

Flows in porous media are characterized primarily by two dimensionless num-

bers: Reynolds number, Re, and Péclet number, Pe. The Reynolds number gives

the ratio of inertia to viscous dissipation. Mathematically, Re =
d0U

ν
, where

d0 is the mean grain diameter, U is the average transport velocity, and ν is the

kinematic viscosity. If Re . O(10), the flow regime is assumed to be laminar and

hence
µ

k
u = −∂P

∂x
+ ρg , (1.1)

where u is the transport velocity in any direction x, ρ is fluid density, µ is dynamic

viscosity and g is the gravitational acceleration. Moreover, k is the permeability

that works as a constant of proportionality in above equation. It defines the ease
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with which fluid can pass through a porous medium, and depends primarily on

the porosity, φ, and d0. For instance, a porous medium comprised of particle

grains has a permeability of k =
d20φ

5.5

5.6
, which is an empirical formula given

by Rumph & Gupte as presented in Dullien (1992). Equation (1.1) is one of

the forms of Darcy’s equation (Bear, 1972; Nield & Bejan, 2013). It describes

momentum conservation for porous media flow and is therefore the analogue

of the Navier-Stokes equations for flows that occur outside of a porous medium.

Darcy’s equation is based on a series of assumptions that flow is steady, isothermal

and incompressible, the cross-section of the flow is uniform and the medium has

uniform porosity and permeability (Bear, 1972). If Re > O(10), the flow is no

longer Darcy. Rather inertial effects, which were neglected in the derivation of

Darcy’s law, become significant. To account for the inertia term, Forchhemier

presented a modified form of Darcy’s equation, now popularly known as the

Darcy-Forchheimer equation (Nield & Bejan, 2013; Nield & Kuznetsov, 2013). It

reads
µ

k
u +

cF
k1/2

ρu2 = −∂P
∂x

+ ρg . (1.2)

Here cF is an inertial coefficient, which for flow through particle beds can be de-

fined using Ergun’s formula as cF =
1.75

1501/2φ3/2
(Ergun, 1952; Nield & Kuznetsov,

2013). Note, moreover, that in case of high viscous flows or when the grains of

the porous medium are themselves porous, another modified form of Dracy’s law

should be employed which is known as Darcy-Brinkman equation and reads

µ

k

(
µe52 u + u

)
= −∂P

∂x
+ ρg . (1.3)

Here, µe =
µ

φτ
is an effective viscosity term (Nield & Kuznetsov, 2013). Moreover,

τ is the flow path tortuosity, i.e. the ratio of total length travelled by a fluid

particle to that it would travel devoid of porous materials.

The Péclet number, on the other hand, gives a ratio of mass transport by me-

chanical dispersion vs. molecular diffusion. Mathematically, Pe =
d0Uτ

Dd

, where

Dd is the molecular diffusion coefficient. If Pe . O(1), the molecular diffusion

part, Dd/τ , dominates over the mechanical dispersion part, d0U , and vice-versa
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when Pe & O(1). The formula for the dispersion coefficient reads

D = d0U

(
1 +

1

Pe

)
. (1.4)

Thus if the velocity is large such that Pe � O(1), the dispersion coefficient be-

comes strongly dependent on the flow-field and basically independent of molecu-

lar effects. Thus the details of the mass transfer are significantly different from

the case where Pe � O(1), a difference that must be reflected in the form and

solution of the relevant governing equations.

By assuming Darcy’s regime with Pe . O(1), such that Dd/τ � d0U , Wood-

ing (1963) derived a similarity solution for laminar plumes in porous media. For

the rectilinear and axisymmetric geometries, Wooding’s formulas for plume vol-

ume flux read

Q =

(
36DdφF0kΛ2x

ν

)1/3

and Q = 8πDdφx , (1.5)

respectively. Here, F0 is the source buoyancy flux and Λ is the width of line

source (Phillips, 1991). The complete derivations of Wooding’s formulas can be

found in Appendices A and B for the rectilinear and axisymmetric geometries,

respectively.

Wooding’s solution was later extended to a non-Darcy regime by several re-

searchers like Chen & Ho (1986), Lai (1991) and Nakayama (1994) for the line

source and Leu & Jang (1995) for the point source. While Chen & Ho (1986) and

Nakayama (1994) considered Pe . O(1), Lai (1991) and Leu & Jang (1995) as-

sumed Pe� O(1). Because of the non-linearity of the velocity term in the Darcy-

Forchheimer equation as in (1.2), finding an analytical solution in the non-Darcy

flow regime is not always feasible or straightforward. Therefore most of the above

papers present only numerical solutions of porous media plume flows. Moreover,

the above mentioned examples consider only one type of source whether haline or

thermal. There are, on the other hand, applications such as packed-bed catalytic

reactors and enhanced oil recovery where the plume buoyancy is due to both heat

and the presence or absence of a dissolved constituent, thus creating thermoha-

line plumes (Jumah et al., 2001). Therefore, adding more complications to the

8



above plume models, several researchers like Nield (1968), Bejan & Khair (1985)

and Jumah et al. (2001) studied thermohaline plumes in porous media by simul-

taneously considering advection-diffusion equations for heat and a solute. This

necessitates the introduction of two dispersion coefficients. While the mechanical

dispersion coefficient as in (1.4) works well for solute transport, a thermal dif-

fusivity constant must be used when considering thermal transport. Regarding

momentum conservation, while Nield (1968) and Bejan & Khair (1985) assumed

that Darcy’s law is valid, Jumah et al. (2001) extended the problem into the

Darcy-Forchheimer regime.

We found that plume solutions are available in the literature for a very broad

range of Péclet numbers in the non-Darcy regime. On the contrary, in the Darcy

flow regime a solution has been derived only for Pe . O(1). However, plumes in

a Darcy regime with Pe & O(1) are not at all unusual. This can be explained by

introducing a Schmidt number, Sc, that is defined as the ratio of momentum to

mass diffusion. Symbolically, Sc = ν/Dd ≡ Pe/Re, where ν is the fluid kinematic

viscosity. For instance, the Schmidt number for salt water at room temperature

and pressure is Sc ≈ 1000 within the limits of the Boussinesq approximation

(Ramsing & Gundersen, 1994). Likewise the Schmidt number of supercritical

CO2 (sc-CO2) in underground brine is Sc ≈ 400 (Kestin et al., 1981; Iglauer, 2011)

and that of dense non-aqueous phase liquids (DNAPL), e.g. tetrachloroethene,

in groundwater is Sc ≈ 1000 (Watch et al., 2014). These large values imply that

if Re . O(10), then Pe & O(1). Motivated by the above discussion, we derive

novel self-similar solutions for laminar plumes with Pe & O(1) for the line and

point source cases. These solutions are respectively presented in Chapters 2 and

3.

The second part of filling box flows, i.e. gravity currents, have been studied

widely in uniform porous media. It should be noted, however, that these studies

were not performed in the context of filling box flows but rather in consideration

solely of the dynamics of the primarily horizontal (and therefore hydrostatic)

flow. Relevant examples include Huppert (1986), Huppert & Woods (1995), Lyle

et al. (2005) and others. Huppert & Woods (1995) presented a similarity solution
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for gravity current propagation over an impermeable horizontal boundary in a

rectilinear geometry with a line source, whereas in the case of an axisymmetric

geometry with a point source, a similarity solution was presented by Lyle et al.

(2005). The similarity solutions so obtained were extended to find the height

profiles and the distance of the gravity current leading edge from the source

against time, t. Huppert & Woods (1995) found that for a constant volume flux

line source, the height and extent of the gravity current edge should respectively

vary as t1/3 and t2/3. Conversely, in case of a point source with constant volume

flux, Lyle et al. (2005) confirmed that the extent of the gravity current leading

edge should vary with t1/2, whereas the height profile should be constant and

independent of time, provided t 6→ 0. This problem has been studied further in

porous media with some additional complications, for example one including an

inclined surface (Vella & Huppert, 2006; Gunn & Woods, 2011), two-layer gravity

currents (Woods & Mason, 2000), or a localized sink/vertical fracture (Neufeld

et al., 2011; Pritchard & Hogg, 2002). Studies have also been made of gravity

current flow over layered porous medium (Pritchard et al., 2001; Neufeld et al.,

2009; Goda & Sato, 2011).

In the first part of the current research, we consider a uniform porous medium.

The similarity solutions presented by Huppert & Woods (1995) and Lyle et al.

(2005) are therefore appropriately adapted in our models. The similarity solu-

tions are used to define the propagation of the gravity currents in terms of height

and length vs. time. In the latter part of our investigation, where a sudden change

in permeability is considered, Goda & Sato (2011)’s numerical solution is corre-

spondingly adapted. More precisely, we use the asymptotic solution presented

by Goda & Sato (2011) to predict the long time behavior of a gravity current

flowing in a layered porous medium. As shall be outlined in much greater be-

low, comparisons can then be made against the measurements made in analogue

laboratory experiments.
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1.2 Applications

Just as with standard filling box flows, those that arise within a porous medium

are related to several industrial and environmental phenomena. Some notable ex-

amples are subterranean thermal storage, carbon sequestration, DNAPL leakage

into potable water, solar thermal storage and the cooling of electrical components.

1.2.1 Geothermal energy recovery

Geothermal energy recovery is a method of injecting cold fluid into a hot aquifer

for subsequent extraction and industrial/domestic use. In other words, this is a

method of recovering geothermal energy for the purpose of fulfilling energy needs

without the combustion of coal or natural gas. With the depletion of fossil fuels

(Sauty et al., 1982; MacKay, 2009), and aiming towards a low carbon environment

(Dickinson et al., 2009), geothermal energy represents an effective sustainable

source of energy. According to Sauty et al. (1982), in the harnessing of geothermal

energy two factors are important above all others: the recovery factor and the

energy level in the recovered water. While the former defines the ratio of thermal

energy recovered to that injected, the latter indicates the level of thermal energy

available in the recovered water. However, both parameters depend upon the

effective filling and extraction of the fluids and the reservoir’s physical properties,

e.g. porosity and permeability. Thus when the porosity and permeability are large

so that water easily flows through the reservoir, the recovery factor and energy

level increase.

Generally a single bore or two bore system is used for the operation of geother-

mal energy recovery (Nordell, 2000). While in the former the same bore is used

for injection and production, the latter one has a separate bore for the injection

and extraction processes. The observed flow closely resembles that of a filling

box, particularly in the former case when injecting cold fluid into a hot aquifer.

Because the injected fluid and the already existing ambient fluid are water of low

and high temperatures, respectively, a dense negatively-buoyant plume is created

if the injection point is towards the top of the aquifer. A gravity current is sub-
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sequently formed when the cold water plume reaches the bottom impermeable

boundary. If, on the other hand, the injection well is at the bottom of the aquifer,

only the gravity current is formed Woods (1999); Dudfield & Woods (2012). In

both cases, the aim is to eventually fill the pore space with a maximum amount

of cold fluid that can be later extracted in the form of hot fluid. Filling box

flow concepts can be applied when calculating the maximum possible injection

rate based on the source and reservoir conditions. Moreover, because geothermal

energy recovery is operated on a cyclic basis depending on energy demand, the

timescales associated with the injection and extraction of fluids are nontrivial

variables. Given the reservoir’s specification, the rate of injection and the asso-

ciated timescales can be optimized using the analytical formulas presented later

on in this thesis.

1.2.2 Geological carbon sequestration

Carbon sequestration is a process of injecting anthropogenic CO2 underground to

a depth of greater than 750 m with an aim of mitigating global warming (Bickle,

2009). The complete process consists of capturing CO2 from a localized source

e.g. industrial chimneys, then compressing it to a supercritical state (sc-CO2)

and finally injecting this fluid into a deep saline aquifer. The injected fluid stays

in the supercritical phase and has a lower density than that of the surrounding

brine, yielding a buoyant plume of sc-CO2 that rises through the aquifer (Bolster,

2014). Upon reaching the upper impermeable boundary of a particular aquifer,

this plume then propagates sidewards in the form of gravity currents, creating

a layer of CO2-rich material (Riaz et al., 2006). Although the sc-CO2 has only

a very limited solubility in the brine, the vast quantities of the latter suggest

that, in a long time limit, sc-CO2 ultimately dissolves into the brine as observed

in the experimental investigation of Kneafsey & Pruess (2010). After dissolv-

ing, a dense layer of CO2-rich brine is formed whose density is greater than the

uncontaminated brine that appears underneath (Riaz et al., 2006). The resul-

tant mixture therefore flows downward towards the lower impermeable boundary.

The overall process of mixing of CO2 in brine is called “convective dissolution”
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(Neufeld et al., 2010; MacMinn et al., 2012; Szulczewski et al., 2013). From the

point of view of safe, long-term storage, it is very important that the CO2-rich

brine moves downward instead of sc-CO2 moving upwards and escaping to the

surface level (Bolster, 2014). Furthermore, apart from convective dissolution, the

capillary trapping of sc-CO2 in a brine aquifer plays an equally important role

in permanently and safely sequestering anthropogenic CO2 (Huppert & Neufeld,

2014).

While other factors like cost and long time feasibility are important parameters

to be considered in connection with geological sequestration, both the timescales

associated with convective dissolution as well as the storage capacity, i.e. the

maximum possible mass of sc-CO2 that may be injected into an aquifer of fixed

volume, are equally important. Filling box timescales are therefore important in

estimating the timescales for completely contaminating the available pore space

in a particular saline aquifer with the mixture of dissolved sc-CO2 and brine.

1.2.3 Leakage and contamination of DNAPL into groundwater

Dense nonaqueous phase liquids (DNAPL), e.g. creosote, coal tar and chlorinated

solvents, are generally denser than underground potable water and also slightly

soluble (Kueper et al., 2003). Indeed, the infiltration of DNAPL through the

vadose zone, i.e. the unsaturated zone between the surface and the underground

water table, then into the potable groundwater is considered as one of the most

dangerous forms of groundwater contamination. This contamination is, in turn,

linked to a myriad of health problems. After reaching to the depth of water

table, a dense plume of DNAPL is created. When, as is typically the case, the

groundwater has its own velocity, the chances of spreading the DNAPL are signif-

icantly increased. To try to limit the reach of dissolved DNAPL, it is important

to consider the timescale associated with the rate of mixing due to the verti-

cally downwards flow and subsequent horizontal outflow along a particular lens

or other impermeable layer (Khachikian & Harmon, 2000). For understanding

the overall process of leakage, dissolution and movement of DNAPL into potable

groundwater, the equations describing the DNAPL plume volume flux and re-
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duced gravity are necessary; by extension, the concepts associated with filling

box flows may prove helpful.

1.2.4 Solar thermal storage

The increasing popularity of renewable energy has accelerated research on so-

lar thermal storage. One particular technology employs phase change materials

(PCM) encapsulated within spherical or cylindrical capsules (Nallusamy et al.,

2007; Dutil et al., 2011). The storage of thermal energy in PCMs can happen

both by way of sensible and latent energies. The PCM capsules are generally kept

inside an insulated cylindrical box and the pore space is filled with water, thus

creating a saturated porous medium (Sarafraz, 2013). The addition or subtrac-

tion of thermal energy from the storage are done by a coiled heat exchanger that

works as an areal source of heating or cooling. The heat exchanger contains a

charge fluid that is warmed by solar collectors and circulated by a pump. During

the daytime, the capsules are warmed as a result of the absorption of solar energy

by the charging fluid. The PCM therefore melts. At night, by contrast, thermal

energy may be needed for domestic heating and the heat energy is extracted in

the form of thermal or latent energy from the storage through the cooling and

subsequent solidification of PCM materials. Nizami et al. (2013) explain and

numerically study the formation of negatively-buoyant plumes inside the storage

medium. The lateral outflow of the plume at the opposite horizontal boundary

gives rise to a filling box type flow. For optimizing the storage capacity based

on the PCM capsule properties, the dimension of the storage medium and the

design of the heat exchanger, it may be helpful to adapt the findings of this the-

sis. For example, the mass flow rate of charge fluid inside the heat exchanger

can be fixed by setting the pump speed to value optimized for maximal storage

efficiency given a particular maximum allowable time for melting/solidifying the

PCM.
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1.2.5 Confined porous enclosures

With the advancements in electronics (Alhashash et al., 2013), nano-technologies

(Oztop et al., 2015) etc., there occur several cases when heating of components

happens in a confined space. Bubnovich & Toledo (2007) explain that by filling

the confined space with porous materials supplemental cooling can be achieved,

provided that the thermal conductivity of the porous material is greater than

that of the saturated fluid. Expanding upon this idea, Saleh & Hashim (2013),

Mansour et al. (2013), Siddiki et al. (2015) and others numerically investigated

the heating or cooling that occurs because of natural convection from a localized

source in confined enclosures filled with porous materials. One of the primary ob-

jectives of their studies was to optimize the volume and other physical parameters

of the enclosure, e.g. the porosity, against the size of the heating dissipating com-

ponent. We find that the flow behavior observed is similar to a filling box type,

and hence our current analytical models can be used in guiding the optimization

process.

1.3 Present contribution and thesis organization

In spite of the manifold possible applications of this research, this is, at its core,

a thesis devoted to an improved fundamental understanding of the flow depicted

schematically in figure 1.1. The objectives of this thesis are threefold: (i) to

derive similarity solutions for porous media plumes in a Darcy regime with Péclet

number Pe� O(1) for both the line and point source geometries, (ii) to estimate

the filling box time, and therefore the maximum amount of source fluid that

can be injected into a confined porous medium as a function of the source and

reservoir parameters and (iii) to study the effect of sudden permeability changes

vis-á-vis flow behaviors and filling box times.

As discussed in §1.1, while plume solutions are available in the literature for

a large range of Péclet numbers in a non-Darcy regime, in the Darcy regime the

solution has been derived only for Pe . O(1). However, the cases of laminar

plumes with Pe & O(1) are not unrealistic and therefore cannot be overlooked.
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The present gap of scientific understanding motivates us to derive a new solution

for Darcy plumes in the Pe � O(1) regime. As we shall see, this new solu-

tion represents an improvement of sorts over one of the key formulas derived by

Wooding (1963), namely that given by (1.5). According to this result, the plume

volume flux is predicted to be independent of the fluid viscosity, the permeability

and even the source buoyancy flux. As we shall see, these surprisingly omissions

do not apply as Pe is increased.

The second important contribution and the main objective of this thesis is

to outline an experimentally corroborated analytical model of filling box flows in

porous media. Although filling box flows have been studied in great detail in free

media with turbulent plumes, to our best knowledge, no analogue study has yet

been performed in the porous medium case. We first derive analytical solutions

for all three flow regimes, i.e. the plumes, gravity currents and first fronts, and

couple these to make a filling box model. The analytical solutions of this filling

box model give an estimation of the filling box time, i.e. the time required by the

first front to reach the source elevation as a function of the source and reservoir

parameters. This filling box time indirectly also yields the amount of source fluid

that can be injected up to the point of overflow. Furthermore, we also present

an analysis that explains how this filling box time and the amount of source fluid

injected can be optimized or maximized by altering the source parameters for

fixed reservoir conditions. Finally, the analytical predictions are supported by

similitude laboratory experiments.

In the third part of our research, considering the real geophysical scenarios

where the porosity and permeability may be nonuniform, we relax the requirement

of medium uniformity. We thus investigate the effects of a sudden permeability

change on the plume and its outflow. While there is significant literature on

plumes in uniform media, the precise effect of sudden changes in permeability

has not yet been studied in the filling box context. In case of a gravity current

in a two-layer medium, the majority of studies are analytical and numerical in

nature (Ungarish & Huppert, 2000; Pritchard et al., 2001; Goda & Sato, 2011).

As a consequence, there is a need to develop a comprehensive experimental data
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Table 1.1: Scientific contribution arising from the present thesis. Here CANCAM
and ISSF stand for the Canadian Congress of Applied Mechanics and International
Symposium on Stratified Flows, respectively.

Chapter Journal/Conference proceeding Status Co-author(s)

2 J. Fluid Mech. Published M. R. Flynn
2 Proc. 25th CANCAM Published M. R. Flynn
2 Proc. 8th ISSF Submitted M. R. Flynn, M. A. Roes,

D. Bolster
3 Transp. Porous Med. Published M. R. Flynn
4 J. Fluid Mech. Submitted M. R. Flynn

set that can be used to validate the predictions of related numerical models.

Considering my contributions to the scientific community, parts of this thesis

work have appeared or have been submitted to appear in a total three journal

publications and two conference proceedings (see Table 1.1). Chapter 2 of the

thesis has already appeared in the Journal of Fluid Mechanics (Sahu & Flynn,

2015), whereas Chapter 3 has been published in Transport in Porous Media (Sahu

& Flynn, 2016b). Moreover, Chapter 4 of the thesis has been submitted to Journal

of Fluid Mechanics for a possible publication (Sahu & Flynn, 2016a). My work

has also been presented at several symposiums and conferences – details can be

found in Table 1.2.

The rest of the thesis is organized as follows: Chapter 2 presents the analytical

solution along with the experimental methods for filling box flows in a rectilinear

geometry. It also compares model predictions with the measurements made in

laboratory experiments. Chapter 3 then discusses the theoretical modeling of

filling box flows in an axisymmetric geometry with a point source. In Chapter

4, theoretical and experimental investigations of filling box flows in nonuniform

porous medium are presented. Finally in Section 5 the conclusions of this thesis

work are presented and topics for future study are identified and discussed.
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Table 1.2: List of scientific meetings where parts of this thesis work have been presented
by the author. Abbreviations are as follows: CAIMS: Canadian Applied Industrial
and Mathematical Society, SCS: Subsurface Carbon Storage, CANCAM: Canadian
Congress of Applied Mechanics, IGR: Institute of Geophysical Research. Moreover,
Interpore is an annual conference organized by the International Society of Porous
Media.

Chapter(s) Conference/Symposium Location Month and Year

2 21st CAIMS Meeting Saskatoon, SK Jun. 2014
2 SCS Symposium University of Calgary Oct. 2014
2 25th CANCAM London, ON Jun. 2015

2, 4 8th Interpore Cincinnati, OH, USA May 2016
2, 3 23rd CAIMS Meeting Edmonton, AB Jun. 2016

2, 3, 4 IGR Symposia University of Alberta Oct. 2013, Oct. 2014,
Oct. 2015, Apr. 2016

18



Chapter 2

Filling box flows in a rectilinear
geometry

2.1 Abstract

We report upon a theoretical and experimental investigation of a porous medium

“filling box” flow by specifically examining the details of the laminar, descend-

ing plume and its outflow in a control volume having an impermeable bottom

boundary and sidewalls. The plume outflow is initially comprised of a pair of

oppositely-directed gravity currents. The gravity currents propagate horizontally

until they reach the lateral sidewalls at y = ±L. The flow then becomes of filling

box type, with a vertically ascending “first front” separating discharged plume

fluid below from ambient fluid above. The flow details are described analytically

by first deriving a new similarity solution for Darcy plumes with Pe > O(1) where

Pe is the Péclet number. From the similarity solution so obtained we then derive

expressions for the plume volume flux and mean reduced gravity as functions of

the vertical distance from the source. Regarding the plume outflow, a similar-

ity solution adopted from Huppert & Woods (J. Fluid Mech., vol. 292, 55–69,

1995) describes the height and front speed of the gravity currents, whereas a

semi-implicit finite difference scheme is used to predict the first front elevation

versus time and horizontal distance. As with high-Reynolds number filling box

flows, that studied here is an example of a coupled problem: the gravity current

source conditions are prescribed by the plume volume flux and mean reduced

gravity. Conversely, discharged plume fluid may be re-entrained into the plume,
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be it soon or long after reaching the bottom impermeable boundary.

To corroborate our model predictions, analogue laboratory experiments are

performed with fresh water and salt water as the working fluids. Our experiments

consider as independent variables the porous medium bead diameter and the

plume source volume flux and reduced gravity. Predictions for the gravity current

front position and height compare favourably against analogue measured data.

Good agreement is likewise noted when considering either the mean elevation or

the profile of the first front.

Results from this study may be adopted in modelling geological plumes. For

example, our equations can be used to predict the time required for discharged

plume fluid to return to the point of injection in the case of aquifers closed on

the sides and below by impermeable boundaries.

2.2 Introduction

The behaviour of free plumes has been well studied since the development of the

MTT equations (Morton et al., 1956). These describe the dynamics of a turbulent

plume in an infinite stratified or unstratified ambient, and require the application

of an empirically-determined entrainment coefficient to prescribe lateral inflow by

turbulent engulfment. By adopting the MTT equations, the behaviour of a free

plume in a closed control volume was studied by Baines & Turner (1969). The

associated “filling box” model has fluid from the (descending) plume spreading

laterally upon reaching the bottom of the control volume then forming an ever

deepening layer. The top surface of this layer is referred to as the “first front”; it

approaches the plume source asymptotically for large time, t, so that hf ∝ t2/3,

where hf is the first front elevation. The inner solution of the filling box flow

describes the vertical variation of the plume volume, momentum and buoyancy

fluxes. Conversely the outer solution predicts, among other quantities, the first

front advection speed. In Baines & Turner’s treatment, the horizontal motion of

the discharged plume fluid was omitted, however, this flow was included in the

form of a gravity current by later researchers e.g. Britter (1979), Manins (1979)
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and Kaye & Hunt (2007).

Whereas a voluminous literature has accumulated on the above convection

problem and its application to mixing in chemical storage tanks (Germeles, 1975),

the built environment (Caulfield & Woods, 2002; Nabi & Flynn, 2013) and ocean

basins (Manins, 1979; Hughes & Griffiths, 2006), comparatively less work has

been conducted to understand plumes and filling box flows in porous media.

However, this latter problem is very much deserving of attention because, here

again, numerous industrial and environmental applications arise. For instance: (i)

geological sequestration of supercritical CO2 (sc-CO2) into deep saline aquifers

for purposes of isolating anthropogenic CO2 (Baines & Worden, 2004; Bickle

et al., 2007). When brine becomes saturated with dissolved sc-CO2 in the upper

layer of aquifers, its density becomes larger than the unsaturated brine. There

follows the appearance of negatively-buoyant plumes that result in convective

dissolution of this dense sc-CO2-brine mixture into the unsaturated brine below

(Ennis-King & Paterson, 2003). Thus in evaluating the long-term efficacy of

carbon sequestration, convective dissolution of the injected sc-CO2 into brine

must be considered and this, in turn, requires an understanding of porous media

plumes and their mixing with ambient fluid (Neufeld et al., 2010; MacMinn et al.,

2012). Moreover, because of the finite horizontal and vertical extent of aquifers,

such plumes must be often studied in the context of filling-box-type flows. (ii)

dissolution of non-aqueous phase liquids (NAPL) in the subsurface environment

(Khachikian & Harmon, 2000; Kueper et al., 2003). NAPL seepage through the

vadose zone and into zones containing groundwater is primarily driven by density

differences between the NAPL and groundwater. Because the zones in question

may have restricted boundaries, filling box models should again be deployed in

quantifying rates of mixing and contamination. Seeking to address some of the

flow behaviours specific to these applications, the recent study of Roes et al.

(2014) considered a filling box flow in a “leaky” porous medium, i.e. one having

one or more discrete fissures, which allow for an outflow of discharged plume

fluid. Steady state is achieved once this outflow equals the plume volume flux

at the level of the (flat, stationary) first front. Note, however, that Roes et al.
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(2014) did not examine the transient approach towards steady state nor the case

of a reservoir sealed by caprock boundaries devoid of fissures for which no steady

state solutions exist. Further aspects of Roes et al.’s study are considered below.

Flows in porous media can be divided into the two following categories de-

pending on the value of the Reynolds number, Re =
d0U

ν
, where d0 is the mean

grain diameter, U is a characteristic velocity that depends upon transport ve-

locity, which we will define in section 2.3.1, and ν is the kinematic viscosity:

(i) Darcy flow where Re . O(10), and (ii) non-Darcy flow where Re > O(10)

(Bear, 1972; Dullien, 1992). A second, equally important non-dimensional num-

ber in (variable-component, miscible) porous media flow, is the Péclet number,

Pe =
d0Uτ

Dd

, in which Dd is the molecular diffusion coefficient and τ (> 1) is

the tortuosity constant, which is defined as the ratio of the actual path length

traveled by a solute molecule to the distance it would travel in the absence of a

porous medium. The Péclet number characterizes the importance of advection

vs. diffusion with diffusive transport playing a subordinate role to mechanical

dispersive transport when Pe � O(1). The combined influence of diffusion and

dispersion can be modelled by defining the following transport coefficient:

D = d0U

(
1 +

1

Pe

)
(2.1)

(Delgado, 2007; Houseworth, 1984). When Pe� O(1), D ' Dd

τ
, however, when

Pe � O(1), D ' d0U . In this latter limit, it is appropriate to refer to D as the

dispersion coefficient.

The dynamics of rectilinear line plumes in porous media were first studied by

Wooding (1963) for Darcy flow with Pe� O(1). Starting from mass continuity,

Darcy’s law and a solute transport equation, Wooding (1963) derived a similarity

solution based on the assumption that the plume is long and thin. On this basis,

he obtained the following equation for the variation of the plume volume flux, Q,

with the vertical coordinate, x:

Q =

(
36DφF0kΛ2x

ν

)1/3

. (2.2)
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Here φ is the porosity, F0 is the source buoyancy flux, k is the permeability and

Λ is the source width in the third dimension.

Roes et al. (2014) adopted Wooding’s equations into the Pe � O(1) fill-

ing box framework, but could only do so by making a limiting assumption on

D, namely that its numerical value was the same everywhere inside the porous

medium. Although there exists some practical justification for this approach,

this assumption is, strictly speaking incorrect: D depends upon the flow speed

and the flow speed, in turn, varies both horizontally and vertically. In fact, Lai

(1991) considered the case of spatially-variable D. However, Lai’s analysis was

complicated by the fact that, as with the earlier investigation by Chen & Ho

(1986), he assumed a non-Darcy flow regime. Thus the Darcy equations were

replaced by the Darcy-Forchheimer equations, which are obtained by introducing

Dupuit-Forchheimer inertial terms into the Darcy equations (Nield & Kuznetsov,

2013). These inertial terms are proportional to the square of the transport ve-

locity and also include a drag coefficient whose value depends on the geometry of

the porous media. In these studies of non-Darcy plumes, it was proved that no

similarity solution exists, and hence solutions were instead presented in terms of a

non-similar variable, whose magnitude depended on various physical parameters

e.g. the permeability and fluid viscosity.

Here we synthesize these previous approaches by assuming Darcy flow with a

spatially-variable D. Our objectives are two-fold: (i) to derive self-similar plume

equations in a rectilinear geometry germane to this case and, (ii) to use the

associated solutions to examine the time-dependent behaviour of porous media

filling box flows, from which various pertinent flow time-scales can be estimated.

Importantly, our analysis includes a description of the gravity current dynamics

associated with plume outflow along the impermeable bottom boundary. As

noted above, these dynamics are sometimes omitted when studying turbulent free

plumes. The theory is validated (where possible) by comparison with analogue

laboratory experiments that employ salt water and fresh water, respectively, as

the source and ambient fluids.

The rest of the manuscript is organized as follows. Our plume solution is given
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Figure 2.1: Convection in a confined porous medium: (a) plume and gravity current
flow, (b) advection of the first front towards the source.

in section 2.3.1 whereas sections 2.3.2 and 2.3.3 describe, respectively, the gravity

current and the ascending first front. Thereafter in section 2.4, the laboratory

experiments are discussed. This description is followed by a comparison between

theory and experiment which appears in section 2.5. Finally section 2.6 presents

conclusions of this work and identifies topics for future study.

2.3 Theory

2.3.1 Plume in an unbounded medium

To derive a solution for laminar plume flow in a porous medium, we begin by

presenting the governing equations based on mass and momentum continuity,

solute transport and a linear equation of state. In contrast to Wooding (1963)

and Roes et al. (2014), we consider a dispersion coefficient that varies in x and

y, where the x and y directions are defined in figure 2.1.

The flow is assumed to be steady, Boussinesq and two dimensional-rectilinear

and the ambient is assumed to remain unstratified above the first front so that
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the governing equations read

∂u

∂x
+
∂v

∂y
= 0 , (2.3)

1

ρ0

∂P

∂x
+
ν

k
u =

gρ

ρ0
, (2.4)

1

ρ0

∂P

∂y
+
ν

k
v = 0 , (2.5)

1

φ

(
u
∂C

∂x
+ v

∂C

∂y

)
=

∂

∂x

(
DL

∂C

∂x

)
+

∂

∂y

(
DT

∂C

∂y

)
, (2.6)

ρ = ρ0(1 + βC) . (2.7)

The above equations represent, in sequence, the mass continuity, the momentum

continuities in x and y directions, the solute transport and the linear equation

of state. Here P is the fluid pressure, C is the solute concentration and β is

the solute contraction coefficient. Moreover, ρ is the fluid density, whose far-field

value is ρ0 corresponding to a solute concentration of zero. Furthermore, DL and

DT are the longitudinal and transverse dispersion coefficients.

The momentum equations, (2.4) and (2.5), are combined to eliminate the fluid

pressure, whereby
ν

k

(
∂u

∂y
− ∂v

∂x

)
=

g

ρ0

∂ρ

∂y
. (2.8)

We then apply Wooding’s boundary layer approximation so that∣∣∣∣∂v∂x
∣∣∣∣� ∣∣∣∣∂u∂y

∣∣∣∣ and

∣∣∣∣ ∂∂x
(
DL

∂C

∂x

)∣∣∣∣� ∣∣∣∣ ∂∂y
(
DT

∂C

∂y

)∣∣∣∣ . (2.9)

The validity of the latter boundary layer approximation is outlined at the end of

section 2.3.1.

Following Delgado (2007), Houseworth (1984) and others, for Pe� O(1), the

transverse dispersion coefficient can be expressed as

DT ' αu. (2.10)

Here α is the transverse dispersivity, and its value shall, consistent with the

turbulent plume entrainment coefficient (Morton et al., 1956), be determined

based on experimental measurement. α is typically on the order of pore space

length-scale, thus it tends to vary with the size of grains in a porous medium. The
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above representation for DT, in particular the use of u rather than the horizontal

transport velocity, v, and the incorporation of α follows from the methodology of

Lai (1991). Finally, and for Pe� O(1), we can now make a connection between

u and the characteristic velocity, U , that appears in (2.1), i.e U =
αu

d0
.

On the basis of the above discussion, (2.6) becomes

u
∂C

∂x
+ v

∂C

∂y
= αφ

∂

∂y

(
u
∂C

∂y

)
. (2.11)

Furthermore, a stream-function, ψ, is introduced such that u =
∂ψ

∂y
and v =

−∂ψ
∂x

. Equations (2.8) and (2.11) can then be rewritten as

∂2ψ

∂y2
=
gβk

ν

∂C

∂y
(2.12)

∂ψ

∂y

∂C

∂x
− ∂ψ

∂x

∂C

∂y
= αφ

(
∂2ψ

∂y2
∂C

∂y
+
∂ψ

∂y

∂2C

∂y2

)
, (2.13)

respectively. We seek a self-similar solution to (2.12) and (2.13) of the form

ψ = A1x
pF(η), C = A2x

qG(η) (2.14)

where the self-similar variable, η, is defined as η = A3
y

xn
. The constants,

p, q, n, A1, A2 and A3, will be determined shortly. Applying (2.14) in (2.12)

yields

A1x
pF ′′

(
A3

xn

)2

=
gβk

ν
A2x

qG ′A3

xn
. (2.15)

Thus, G(η) = F ′(η) ≡ dF/dη, n = p − q and A2 = A1A3
ν

gβk
. Hence, (2.13)

becomes

x2q−1{[qF ′− (p− q)F ′′η]F ′− [pF − (p− q)F ′η]F ′′} = αφA2
3x

2(2q−p) (F ′′F ′′ + F ′′′F ′) . (2.16)

For a possible self-similar solution, we need to get rid of all constants from

the above equation so that its final form contains a single independent variable,

namely η. In that spirit, the factors of x that appear on the left- and right-hand

sides of the equation disappear provided p − q =
1

2
. Equation (2.16) is further

simplified by selecting A3 =
1√
αφ

whereupon

F ′′′F ′ + F ′′F ′′ + pF ′′F − qF ′F ′ = 0. (2.17)
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To determine the values for p and q, we recall that the buoyancy flux, F0, is con-

served i.e. it is independent of the vertical coordinate in an unstratified medium.

Formally, F0 is defined as

F0 = Λ

∫ ∞
−∞

ug′ dy,

where g′ = g
ρ− ρ0
ρ0

≡ gβC is the reduced gravity. By applying the above results,

it can be shown that

F0 = ΛgβA1A2x
(p+q)

∫ ∞
−∞
F ′2 dη, (2.18)

which implies that p + q = 0. But we previously showed that p − q = 1
2

and

therefore p =
1

4
and q = −1

4
. Consequently, (2.17) takes the form

F ′′′F ′ + F ′′F ′′ + 1

4
F ′′F +

1

4
F ′F ′ = (F ′′F ′)′ + 1

4
(F ′F)′ = 0. (2.19)

In solving (2.19), we recall the assumption that D ' d0Ū i.e. Pe � O(1). In

the neighbourhood of the plume center-line, this is a reasonable approximation,

however, its validity is highly suspect far away from the center-line where flow

velocities become small. We therefore restrict ourselves to finding an “inner”

solution to (2.15), valid in the limit of small y (small η). In the outer region, by

contrast, spatial variations in u, v or S are ignored. Such a division of the flow into

inner and outer regions would be inappropriate in case of constant D (Wooding,

1963; Roes et al., 2014), but is, in fact, not at all dissimilar to the approach

followed in the “top hat” description of free turbulent plumes where molecular

diffusive effects are likewise ignored (Morton et al., 1956; Linden et al., 1990). We

therefore proceed by integrating (2.19) remembering that F ′(η) = G(η) prescribes

the non-dimensional solute concentration. This concentration cannot be negative

and must vanish altogether in the far field; symbolically, C(x, y) > 0⇒ F ′(η) > 0

and C(x,±∞) = C0 ⇒ F ′(±∞) = 0. Symmetric suggests, moreover, that the

concentration must be identical left and right so that C(x, y) = C(x,−y) ⇒

F ′(η) = F ′(−η). Symmetry also requires that ψ(x, 0) = 0 so that F(0) = 0.
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Therefore it can be shown that

F =


−c, η < −π
c sin

η

2
, −π < η < π

c, η > π

and G =

{ c

2
cos

η

2
, −π < η < π

0, |η| > π
. (2.20)

Here c is a constant of integration and will automatically disappear shortly. Note

that (2.20) is the only symmetric, nontrivial solution to (2.19) satisfying G =

F ′ ≥ 0. Now on applying (2.18), and recalling that A2 = A1A3
ν

gβk
, we find

A1 =

(
F0k

Λν

√
αφ∫∞

−∞F ′
2 dη

)1/2

.

Equation (2.20) can then be combined with (2.14) to determine the volume flux,

Q, of the plume. More specifically,

Q = Λ

∫ ∞
−∞

u dy =

[(
16F0kΛ

πν

)2

φαx

]1/4
. (2.21)

Similarly, the plume momentum flux and mean reduced gravity are found to be,

respectively,

M =
F0k

ν
and ḡ′ =

F0

Q
=

[(
πF0ν

16kΛ

)2
1

φαx

]1/4
. (2.22)

Note that Q and ḡ′ are proportional to x1/4 and x−1/4, respectively, whereas in

previous investigations such as Wooding (1963) and Roes et al. (2014) where

Pe . O(1), these quantities are proportional to x1/3 and x−1/3. The formula

for M is unchanged, however, because our plumes plus those of Wooding (1963)

satisfy the conditions for Darcy flow.

Equation (2.21) is derived in the limit of an ideal plume whereby Q → 0

as x → 0. However, for a nonideal plume, which has a finite source volume

flux, this assumption cannot be applied. Therefore, a virtual origin correction is

determined by extrapolating the flow to negative x-values and a fictitious point,

x = −x0, where the plume volume flux vanishes (Wooding 1963; see also Hunt &

Kaye 2001). More formally, x0 is given by

x0 =
1

φα

(
πν

16F0kΛ

)2

Q0
4 (2.23)
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so that the plume volume flux and mean reduced gravity are given, respectively,

by

Q =

[(
16F0kΛ

πν

)2

φα(x+ x0)

]1/4
(2.24)

and

ḡ′ = gβC̄ =

[(
πF0ν

16kΛ

)2
1

φα(x+ x0)

]1/4
. (2.25)

We prefer to think of solute concentration in terms of its influence on buoyancy,

thus our preference for using ḡ′ in place of C̄. But the relationship between the

two is, by virtue of the linear equation of state (2.7), very direct, as confirmed

by the above equation.

Finally, we verify the validity of the boundary layer approximation made in

(2.9) by estimating, using scaling analysis, the range of DL and DT for which the

stated inequality holds. When (2.9) is valid,

DLC

L2
x

� DTC

L2
y

or
DL

DT

�
(
Lx
Ly

)2

(2.26)

where Lx and Ly respectively denote characteristic vertical and horizontal length

scales associated with the plume. Given the finite size of the control volume

shown schematically in figure 2.1, we choose Lx = H. Conversely, Ly is defined

to be the plume width at x = H; following from the self-similar solution obtained

in (2.20), it can be shown that Ly ∼ π
√
αH. Thus (2.26) holds provided

DL

DT

� H

π2α
. (2.27)

Using results from section 2.5, it can be argued that
1

π2α
∼ O(10) cm−1, at least

for the experiments of interest here. Moreover, H ∼ O(10) cm and therefore, in

the present context,
H

π2α
∼ O(102). By contrast, we expect

DL

DT

to be signifi-

cantly less: according to Bear & Verruijt (1987),
DL

DT

' 100 only for large Péclet

numbers, i.e. Pe ∼ O(106), roughly three orders of magnitude greater than the

values of Pe relevant to our laboratory experiments. We therefore expect (2.27)

to be satisfied both experimentally and, equally importantly, in real geophysical
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Figure 2.2: Gravity current flow in a porous medium.

flows for which H and α are expected to be larger and smaller, respectively, than

the values germane to section 2.4.

It should also be recalled that numerous authors (Guin et al., 1972) recom-

mend application of a dispersion tensor in (2.6) according to which there must

appear the additional right-hand side terms
∂

∂x

(
Dxy

∂C

∂y

)
and

∂

∂y

(
Dyx

∂C

∂x

)
in

which Dxy = Dyx is the off-diagonal component of the (symmetric) 2× 2 disper-

sion tensor. Using a similar analysis to that described in the previous paragraph,

it can likewise be shown that the contribution of these additional terms is small

compared to
∂

∂y

(
DT

∂C

∂y

)
.

2.3.2 Gravity current

When the plume fluid collides with the (impermeable) bottom boundary of the

control volume a pair of gravity currents, traveling in the +y and −y directions,

are formed (Manins, 1979; Kaye & Hunt, 2007). Although the flow initiates at

the instant that the source nozzle is “switched on”, we take t = 0 to be the time

when plume fluid first reaches the bottom boundary. We justify this assumption

as follows. Using (2.14) and (2.20), it is straightforward to estimate the time, tR,

that a fluid particle resides within the plume whilst flowing a vertical distance

H. (The residence time associated with flow within a thermal is expected to

be larger than, but still comparable to, the residence time associated with flow
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within a plume.) Comparing tR against the time, tL, required for the gravity

current to reach the lateral sidewalls, we find that tR/tL ∼ O(10−1) for the

geometry of interest here. (The time-scale tL is defined more precisely below.)

In like fashion, tR/tH ∼ O(10−2) where tH , defined in section 2.3.3, is the time

required for the first front to reach the top of the control volume. By ignoring the

flow dynamics within the time interval tR, we implicitly exclude from considering

control volumes that are tall and narrow. However, this case is not representative

of many real geophysical scenarios where L� H and, in any event, is unlikely to

yield well-defined gravity currents of the type investigated below in section 2.3.2.

The propagation of a gravity current through a porous medium has been

described by Huppert & Woods (1995) – only a brief review of their formulation

is provided below.

Presuming a hydrostatic flow, the gravity current horizontal flow speed, vg,

is depth-independent and varies with ∂h/∂y where h is the interface height (see

figure 2.2) according to

vg = −
kg′g
ν

∂h

∂y
(2.28)

(Huppert & Woods, 1995, equation 2.5). Here g′g is the reduced gravity of the

discharged plume fluid turned gravity current fluid. Strictly speaking, g′g is a

function of t, however, we verify below that the time rate of change of g′g is small

enough to be considered negligible, at least for the problem of interest here.

The equation of local volume flux balance reads

φ
∂h

∂t
= − ∂

∂y

[∫ h(y,t)

0

vg(y, t) d(H − x)

]
. (2.29)

On substituting (2.28) into (2.29), it can easily be shown that

∂h

∂t
− S ∂

∂y

(
h
∂h

∂y

)
= 0. (2.30)

where S =
kg′g
νφ

. Also, the boundary condition at the leading edge of the gravity

current and the mass conservation equation are given by

h(Lg(t), t) = 0 and φ

∫ Lg(t)

0

h(y, t) dy = V (t), (2.31)
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respectively (Huppert & Woods, 1995, equation 3.5). Here V is the total volume

of discharged plume fluid turned gravity current fluid measured from the initial

instant, when the plume first reaches the bottom surface, up to time t at which

point the gravity current is Lg units long.

The methodology presented by Huppert & Woods (1995) is adopted to solve

(2.30); thus, we seek a self-similar solution of the form

h =

(
Q2
g

S
t

)1/3

H(ξ) where ξ =

(
1

QgS

)1/3
y

t2/3
and t 6→ 0. (2.32)

Here Qg is the volume flux per unit span of the discharged plume fluid turned

gravity current fluid. With a similar argument as above for g′g, we neglect the time

dependence of Qg for which a verification is presented at the end of this section.

After some simplification, the pde (2.30) can be rewritten as the following ode

in ξ:

3H′′H′ + 3H′H′ + 2ξH′ −H = 0. (2.33)

The associated boundary conditions, which come from (2.31), read

H(λ) = 0 and φ

∫ λ

0

H dξ = 1 (2.34)

where λ is the dimensionless length of the gravity current so that max(ξ) = λ.

A numerical solution is obtained for (2.33) by employing a shooting method to

find H(ξ = 0) and λ. Note that in this equation, ξ is the independent variable

of integration, not t. Therefore, we initialize our solver using a “clever guess”

for the appropriate condition at ξ = 0 and solve the ode. We then look to see

whether the volume conservation equation φ

∫ λ

0

H dξ = 1 is satisfied given that

H(λ) = 0. The “clever guess” is then updated and the process repeated till

the solution converges. Numerical values of H(ξ = 0) and λ are found to be,

respectively, 2.470 and 2.046. The solution obtained is then used to predict the

gravity current shape as a function of time for which sample results are exhibited

in figure 2.3. Because t = 0 is outside of the region of interest here, the final

solution is plotted only for t� 0.

It should be noted that the result obtained from the similarity solution is only

valid when the gravity current is long and thin, i.e. h(0, t) � Lg(t). Here Lg(t)
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Figure 2.3: Gravity current height and length vs time. The non-dimensional time
increment is 0.25tL, starting with t = 0.25tL for the lowest curve and finishing with

t = tL with the gravity current front located at y/L = 1. Also, S =
kg′

φν
= 0.6 cm/s,

where φ = 0.38.

is the length of the gravity current and is given as

Lg = λ(QgS)1/3 t2/3. (2.35)

Furthermore, the time required by the gravity current front to reach the sidewall

of the control volume, which is at a horizontal distance L from the source, is

tL =

[(
L

λ

)3
1

QgS

]1/2
. (2.36)

From (2.35) and (2.36), a straightforward relation between the dimensionless

length and time can be derived as

Lg
L

=

(
t

tL

)2/3

. (2.37)

Note also that when t = tL, the mean height of the gravity current is given by

h̄tL =
1

L

∫ L

0

h(y, tL) dy =
1

λ

(
Q2
g

φ3S
tL

)1/3

. (2.38)

This mean height of the gravity current will be used in section 2.5 when comparing

the theoretical model with the experimental measurements.
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From (2.24) and (2.25) we observe that Qg ∝ (1 − h/H)1/4 and g′g ∝ (1 −

h/H)−1/4, respectively. Furthermore, h/H � 1 – see figure 2.3. These obser-

vations support our assumption that the time rates of change of Qg and g′g are

negligible. For instance, the change in Qg and g′g between the times, t = 0.25tL

and t = tL for the curves presented in figure 2.3 are −1.59% and 1.59%, respec-

tively, whereas the increase in time is 300%.

2.3.3 First front

After the gravity current reaches the sidewall of the control volume, the dense

fluid near the sidewall begins to move primarily vertically. Following the termi-

nology introduced by Baines & Turner (1969), we refer to the interface between

the discharged plume fluid and the overlying ambient fluid as the first front.

Whereas the first front evolves in time and becomes horizontal in the long-time

limit, its initial profile is prescribed by the shape of the gravity current at t = tL.

For t > tL, the pressure remains hydrostatic and therefore the horizontal velocity

below the first front remains independent of x. Hence, (2.30) can be employed

to describe the spatio-temporal evolution of the first front. In this case, how-

ever, one must replace the front condition (2.31a) with a no-flux condition at the

(impermeable) sidewalls. Symbolically

∂h/∂y = 0 when y = ±L and t > tL. (2.39)

The second boundary condition is obtained from a straightforward extension of

(2.31b), i.e.

φ

∫ L

0

[h(y, t− tL)− h(y, tL)] dy = V (t− tL). (2.40)

The finite length of the box obviously imposes an external length-scale on the

problem at hand and, as a consequence, no self-similar solution is possible. How-

ever, a numerical solution can be obtained by applying a semi-implicit finite

difference scheme (Causon & Mingham, 2010). We rewrite (2.30) in the form

∂h

∂t
=
S

2

∂2h2

∂y2
. (2.41)
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Figure 2.4: Evolution of the first front. The non-dimensional time increment is 0.08tH ,
starting with t = tL for the lowest curve. Note that tH is defined by (2.45). The values

used for the numerical scheme are:
∆y

L
= 10−3,

∆t

tH
= 10−6 and S =

kg′

φν
= 0.6 cm/s,

where φ = 0.38.

The numerical solution is then obtained using the methodology outlined in Ap-

pendix C; sample results are given in figure 2.4.

As the first front advects upward, its curvature diminishes in time so that

as t → ∞, the boundary between discharged plume fluid and external ambient

fluid becomes horizontal. The vertical advection of the first front can then be

determined by simple volume flux balance, i.e.

lim
t→∞

[φAUf (h)] = lim
t→∞

[Q(x = H − h)] (2.42)

where Q is defined by (2.24), A is the control volume cross-sectional area, which

is assumed to be both constant and much larger than that of the plume, and Uf

is the vertical velocity of the (horizontal) first front, which has an elevation of h,

i.e. Uf (h) =
dh

dt
. Even before the long time limit is realized, (2.42) can still be

applied provided h and Uf are replaced by their y-averaged mean values, i.e.

φAŪf (h̄) = Q(H − h̄) (2.43)

where Ūf (h) =
dh̄

dt
. After applying (2.24), and with further integration and

simplification, the predicted vertical distance, h̄2 − h̄1, traveled by the first front
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in time t2 − t1 can be determined from

h̄2 = H + x0 −

[
(H + x0 − h̄1)3/4 −

3

4

(t2 − t1)
A

(
16F0kΛα1/2

πνφ3/2

)1/2
]4/3

. (2.44)

By rearranging (2.44) and setting h̄2 = H + x0 and h̄1 = h̄tL , we obtain the

following characteristic time-scale associated with the ascent of the first-front

from the bottom to the top of the control volume:

tH =
4

3
A

(
πνφ3/2

16F0kΛα1/2

)1/2

(H + x0 − h̄tL)3/4. (2.45)

Qualitatively, this result is similar to (B3) of Caulfield & Woods (2002), who

studied filling box flows for a control volume devoid of porous material and con-

taining a free turbulent plume.

2.4 Laboratory set-up and experiments

Laboratory experiments were performed to verify select theoretical predictions

from section 2.3. A transparent acrylic rectangular box 88.9 cm long × 7.6 cm

wide × 50.8 cm tall was filled with tap water and Potters Industries A Series

Premium glass beads. The beads were of uniform size, and had a diameter of

either 0.3 cm or 0.5 cm and a density of 1.54 g/cm3 as compared to 0.99 g/cm3

for the tap water. We assume a porosity of φ = 0.38 for randomly distributed

spherical beads (Happel & Brenner, 1991).

A schematic of the experimental set-up is shown in the figure 2.5. A specially

designed line nozzle, manufactured to minimize the momentum of the source

fluid by limiting the discharge velocity (Roes, 2014, Appendix C.3), was used

as the source and had a discharge area, Anozzle = 2.8 cm2. For simplicity, the

nozzle, which spanned the width of the box, was positioned on-centre at y = 0.

However, we expect that similar observations would have been recorded had the

nozzle been located off-center (but not too close to either sidewall). Also, because

the tank was confined from all sides, except the top, the vertical location of the

nozzle, and therefore that of the free surface of tap water, was kept roughly

14 cm below the top of the tank. Thus, leaving a fraction of tank volume that
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Figure 2.5: Schematic of the experimental set-up.

got filled during the experiments in absense of any outlet. The filling of this

volume during experiments, however, did not affect the flow behavior because

the flow remains hydrostatic throughout; a changing free surface height would

only matter if the free surface elevation varied with y, but that’s not the case here.

An overhead bucket was used for supplying dense fluid, which consisted of salt

water dyed with Procion MX Cold Water dye. Dye was used for flow visualization

purposes; its addition did not change the fluid density (<1.10 g/cm3) or kinematic

viscosity (0.01 cm2/s). The overhead bucket contained a cylindrical internal weir

to maintain a constant level. A Gilmont GV-2119-S-P flowmeter was used to

measure the (time-invariant) source volume flux which was set with the help of

a ball valve and a needle valve. The overhead bucket was, in turn, supplied by a

reservoir having a maximum capacity of 100 L. Fluid densities were measured to

an accuracy of 0.00005 g/cm3 using an Anton Paar DMA 4500 density meter.

A Canon Rebel EOS T2i 18.0 PM camera with an 18-55 mm IS II zoom lens

was used to capture experimental images, which were collected every 120 s. Thus,

over the course a single experiment, which usually took approximately 3 h to

complete, roughly 90 images were recorded. The camera was placed perpendicular

to the front face of the acrylic tank below which was located a mirror angled at
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45◦ whose purpose was to provide details of the gravity current advance. The

tank was backlit using a 3M 1880 overhead projector; to diffuse the light from

this projector, a large sheet of white sketching paper was taped to the back of the

tank. To minimize parallax effects, and also because of the symmetric nature of

the flow, only one-half of the tank was in the field of view of the camera (figure

2.5).

All experimental images, including reference images which were recorded be-

fore the start of each experiment, were cropped to remove unwanted regions

outside of the flow domain. Cropped images were then converted into gray-scale

and the reference image was subtracted to specifically highlight the descending

plume, gravity current and ascending first front. Subtracted images were then

divided into 20 vertical bands of equal width with bands 3 through 20 falling out-

side of the near plume region. We used the post-processing algorithm described

in Roes (2014) to estimate the interface height of the gravity current or first front

in each of bands 3 through 20. Thus in each band and for every time instant,

pixels were first binned into 10×10 boxes. Row-averaged pixel intensities were

then calculated, which allowed us to compute the elevation corresponding to the

maximum vertical intensity gradient. To improve upon this initial estimate for

the interface height, data within ± 150 pixels of the previously determined eleva-

tion were fit using a high-order polynomial. Our refined estimate of the interface

height was based on the vertical location corresponding to the maximum of the

derivative of the polynomial. Thus we could measure the variation of the gravity

current or first front interface height with y or, by averaging over all 18 bands,

compute the mean elevation over the width of the entire right-hand side of the

tank.

A list of the experiments performed is shown in Appendix D, table D.1. We

regard the bead diameter, d0, and the plume source volume flux, Q0, and re-

duced gravity, g′0, as independent variables. From these, the following derived

variables were computed: the source buoyancy flux, F0, Reynolds number, Re0,

Péclet number, Pe0, and the permeability of the porous medium, k. Note that

F0 = Q0g
′
0. Moreover, Re0 is given by Re0 = Q0d0/(Anozzleν). In the ma-
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jority of experiments, the source Reynolds number was Re0 ≈ O(10). (Note

that Re0 is the maximum value of the Reynolds number, which decreases with

increasing x as Re ∝ (x + x0)
−1/4). In all cases, the source Péclet number,

Pe0 = Q0d0τ/(AnozzleDd) > 100, where the molecular diffusion coefficient of the

solute, Dd, was estimated using the method suggested by Tyn and Calus – see

(11-9.5) of Poling et al. (2000) and following Winsauer et al. (1952) the tortuosity

constant was assumed to be τ = 2.0 for φ = 0.38. Furthermore, the permeability

of the porous medium, corresponding to a medium comprised of uniform spheri-

cal beads, is calculated based on the empirical relationship derived originally by

Rumpf and Gupte, and subsequently applied by Acton et al. (2001), Lyle et al.

(2005) and many others, such that k =
d0

2φ5.5

5.6
.

2.5 Results and discussion

Illustrative experimental images are shown in figure 2.6. The curves on top of

the laboratory images show the measured heights of the gravity current and first

fronts. Panel a shows the time instant t = 0 at which the descending plume, dyed

purple, first reaches the impermeable bottom boundary. Thereafter, a rightward

propagating gravity current is formed, as exhibited in panel b. Although our

equations of section 2.3.2 assume a gravity current of a constant reduced gravity

and corresponding gravity current density, we see in this experimental image

evidence of a horizontal density gradient within the gravity current. By combining

Darcy’s law, a hydrostatic pressure equation and Leibniz’s rule, it can be shown

that this density gradient is dynamically insignificant provided∣∣∣∣(ρ− ρ0)∂h∂y
∣∣∣∣� ∣∣∣∣∫ h

0

∂ρ

∂y
d(H − h)

∣∣∣∣ .
We assume that ρ ∝ I, where I is the intensity of the false-colour grayscale

laboratory images and note that I(ρ = ρ0) = 0. Therefore the condition to be

satisfied becomes: ∣∣∣∣I ∂h∂y
∣∣∣∣� ∣∣∣∣∫ h

0

∂I

∂y
d(H − h)

∣∣∣∣ .
A separate analysis, not presented here, confirms that the above inequality is

satisfied in our experiments. Thus we conclude that the assumption made in de-
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(a) (b)

(c) (d)

Figure 2.6: [Colour online] Plume, gravity current and curved interface experimental
images. Images correspond to Experiment 13 at (a) t = 0, (b) t = 0.7tL, (c) t =
tL + 0.1tH and (d) t = tL + 0.3tH where tL and tH are defined by (2.36) and (2.45),
respectively. The curves shown in (b), (c) and (d) are the interface heights as computed
using the Matlab algorithm of section 2.4. The field of view for each image measures
44 cm long × 36 cm tall.
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Figure 2.7: Gravity current front position vs. time. A representative error bar is
indicated in the upper left hand side corner.
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Figure 2.8: Gravity current profile: (a) Experiment 1, t1 = 0.37tL, t2 = 0.67tL, t3 =
1.0tL, (b) Experiment 4, t1 = 0.25tL, t2 = 0.60tL, t3 = 0.95tL, (c) Experiment 10,
t1 = 0.34tL, t2 = 0.64tL, t3 = 0.95tL, and (d) Experiment 13, t1 = 0.27tL, t2 = 0.64tL,
t3 = 1.0tL. The time scales tL and tH are defined by (2.36) and (2.45), respectively.
Representative average error bars are indicated in the upper right hand side corner
of each figure. Also, a rectangle having unit aspect ratio in physical coordinates is
indicated in panel a.
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Figure 2.9: Curved interface profile: (a) Experiment 1, t1 = tL + 0.04tH , t2 = tL +
0.08tH , t3 = tL + 0.13tH , (b) Experiment 4, t1 = tL + 0.04tH , t2 = tL + 0.08tH ,
t3 = tL+0.13tH , (c) Experiment 10, t1 = tL+0.03tH , t2 = tL+0.09tH , t3 = tL+0.14tH ,
and (d) Experiment 13, t1 = tL + 0.04tH , t2 = tL + 0.07tH , t3 = tL + 0.11tH . The
time scales tL and tH are defined by (2.36) and (2.45), respectively. Representative
average error bars are indicated in the upper right hand side corner of each figure and
a rectangle having unit aspect ratio in physical coordinates is indicated in panel a.
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riving (2.28) is appropriate. Finally, panels c and d correspond to times greater

than tL. Discharged plume fluid accumulates in a deepening layer of contam-

inated fluid at the bottom of the control volume. Qualitatively, the shapes of

the gravity current and of the first front are similar to the results displayed in

figures 2.3 and 2.4, respectively. However, to make this comparison between the

analytical predictions of section 2.3 and the experimental measurements of sec-

tion 2.4 quantitatively meaningful, it is first necessary to estimate the numerical

value of α, which first appears in (2.10) and reappears, for instance, in (2.24) and

(2.44). For this purpose, we focus specifically on the long time measurements of

the first front elevation. (Note that, following the studies of free turbulent plumes

e.g. Baines & Turner 1969, measuring the elevation of the first front is much more

straightforward than trying to directly determine the plume volume flux and its

variation with x). Using (2.42) as the reference analytical solution, the error-

minimizing value of α is determined for each experiment. We then compute the

average over all 16 experiments from table D.1 of Appendix D and find a mean

value of α = 0.015 cm. The mean errors presented in table D.1 have standard

and maximum deviations of ±3% and ±5% for the entire data set. Although α

may vary with bead sizes, in the current experiments the diameters of the larger

and smaller beads are in the same order. Moreover, the small values of deviations

reported above support the hypothesis that α = 0.015 cm is a meaningful average

value.

With this value for α to hand, separate comparisons can be made for the

gravity current and first front problems. Starting with the gravity current, two

different comparisons between theory and experiment are drawn: (i) the front

position vs. time, t (figure 2.7), and (ii) the gravity current profile for various

times (figure 2.8). In figure 2.7, the solid curve is adopted from (2.37). For clar-

ity, we do not include the entirety of our experimental data set but rather choose

eight representative experiments from table D.1 that span small and large Q0, g
′
0

and d0. Because the plume has a finite thickness when it reaches the bottom of

the control volume at t = 0 (see figure 2.6 a), the initial gravity current length is

some finite value. Therefore measured values for Lg > 0 when t = 0. To make
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a consistent comparison with the predictions of (2.37) for which Lg = 0 when

t = 0, it is therefore necessary to adjust the measured data so that the first data

point of each set coincides with the solid curve. The meaningful comparison to be

drawn between theory and experiment is therefore for intermediate and large val-

ues of t; in the former case, good agreement is observed whereas in the latter case

predicted values for Lg typically over-predict their measured counterparts. This

observation is consistent with Huppert & Woods (1995), who, in their investiga-

tion of a constant volume release in a Hele-Shaw cell, made similar observations

and attributed their discrepancy to the influence of bottom friction near the front

(see e.g. their figures 2 and 3). In figure 2.8, we show the gravity current profile

at three distinct times for four different experiments. Experiments are chosen on

the basis of their values for F0 and d0, being in some instances comparatively

small and in others comparatively large. In all cases, the measured heights show

good agreement with the profiles predicted from (2.32). The positive comparisons

drawn in figures 2.7 and 2.8 constitute an indirect validation for the computed

value of α: the influx to the gravity current depends on Qg and g′g, which are, in

turn, functions of α as prescribed, for instance, by (2.24) and (2.25).

In considering the first front, figure 2.9 compares the measured and predicted

first front elevations for the same experiments, 1, 4, 10 and 13, as are considered

in figure 2.7. In all cases, and consistent with figure 2.4, it is observed that the

first front becomes more horizontal as t increases. Equation (2.40) shows that the

elevation, h, of the first front depends upon the total volume, V , of plume fluid

discharged into the lower layer up until that particular instant in time. Hence

the minor discrepancies observed in figure 2.9 are likely the result of differences

in the values of the actual volume flux vs. that estimated from (2.24).

Furthermore, we can estimate the y-averaged first front elevation vs. time

by adopting (2.44). Results are shown in figure 2.10, which includes the same

set of representative experiments as in figure 2.7. We do not separately show

the solution of (C.1) because this curve overlaps with the solid curve already

present in figure 2.10. Elevations are non-dimensionalized by H +x0− h̄tL where

x0 is defined by (2.23) and h̄tL is defined by (2.38). Conversely, the abscissa is
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non-dimensionalized by tH , which is defined by (2.45). The overall comparison

between theory and experiment is favourable. In particular, both suggest that the

speed of ascent decreases as the first front approaches the source. This behaviour

is qualitatively consistent with (2.24) and (2.43), the former of which indicates

that the plume volume flux scales as x1/4.

We tried rationalizing the variation of the (non-dimensionalized) data by

grouping our experimental measurements into different families according to the

values of g′0, Q0 or d0. For better or worse, this analysis did not reveal any defini-

tive trends other than that the first front elevation is moderately larger for small

Q0 – see figure 2.10. On this basis, we conclude that the non-dimensionalizations

outlined above are appropriate in that they capture the leading order physics of

the flow.

A video comparing the numerical and experimental height profiles of the grav-

ity current and first front for Experiment 13 is included as Electronic Supplemen-

tary Material (Movie.mp4). The video is made in Matlab by first combining 29

images, spaced at 20 s intervals where the horizontal and vertical axes are respec-

tively normalized by L and H. Analogue numerical solutions are then superposed

on top of the experimental images where we use the equations of sections 2.3.2

and 2.3.3, respectively, when t < tL and t > tL.

2.6 Conclusions

Motivated by studies of filling box flows with turbulent free plumes (Baines &

Turner, 1969), and based on previous investigations of laminar plumes (Wooding,

1963; Roes et al., 2014) and gravity current flow (Huppert & Woods, 1995) in

porous media, a solution for filling box flows in the Darcy regime with Pe� O(1)

is derived. We assume a Boussinesq system where the dense and light fluids

are fully miscible. The following three flow components are considered: (i) a

(negatively-buoyant) laminar plume, (ii) a pair of gravity currents comprised of

discharged plume fluid that propagate along the bottom of the control volume

and (iii) the subsequent vertical advection of the discharged plume fluid towards
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the source.

In section 2.3.1, we derive a similarity solution for laminar plume flow. This

solution assumes that molecular diffusion is negligible compared to mechanical

dispersion, D, and so applies in the “inner” region close to the plume axis where

flow speeds are comparatively large. In the context of (2.1), we assume that Pe�

O(1). The solution is derived by employing a tranverse dispersivity constant, α, in

the governing equation (2.13) whose value, 0.015 cm, is determined by comparison

with experimental measurements. In the inner region, variables such as the fluid

density and vertical velocity change rapidly in the horizontal direction, y, so

that a Wooding-type boundary-layer approximation can be applied in deriving

the self-similar solution. In the outer region, by contrast, we assume that the

vertical velocity and density perturbation are both zero. Our solution is therefore

qualitatively similar to the “top hat” description of turbulent free plumes, first

proposed by Morton et al. (1956), where molecular diffusion is likewise ignored.

The self-similar solution allows us to compute the plume volume flux, Q,

and mean reduced gravity, ḡ′, as functions of x, the vertical coordinate. Indeed

(2.24) and (2.25) respectively indicate that Q and ḡ′ are proportional to x1/4

and x−1/4 contrary to the scalings x1/3 and x−1/3 that apply when Pe . O(1)

(Wooding, 1963; Roes et al., 2014). The values of Q and ḡ′ calculated at the

bottom of the control volume, comprise the source conditions for the pair of

gravity currents that are formed when the plume encounters the impermeable

bottom boundary. The equations governing porous media gravity current flow

are reviewed in section 2.3.2. In particular, the self-similar ode (2.33), originally

derived by Huppert & Woods (1995) for (hydrostatic) gravity current flow and

based on Darcy’s law (2.28) and a volume conservation equation (2.29), describes

the variation of the gravity current height in space and time. The self-similar

ode (2.33), and associated boundary conditions (2.34), is solved by employing

a shooting method to draw curves such as those shown in figure 2.3. Once the

gravity current reaches the (impermeable) vertical sidewall of the control volume

at t = tL, the motion becomes primarily vertical. The solution describing the

motion of the first front, the interface separating the discharged plume fluid from
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the overlying ambient fluid, is presented in section 2.3.3. Similar to the gravity

current problem, the equation that describes the spatio-temporal evolution of

the first front, (2.41), is also based on Darcy’s law and a volume conservation

equation. However, in this case no self-similar solution is possible and hence a

finite difference numerical method is applied instead. Figure 2.4 indicates that

the first front, whose initial shape matches that of the gravity current at t = tL,

becomes progressively more horizontal with time so that, in the large t limit, the

first front moves only vertically. Moreover, the advection speed of the first front

decreases as it moves towards the plume source.

To verify key model predictions, complementary experiments are performed

using fresh water and salt water as the working fluids. Particular emphasis is

placed on the motion of the gravity current and of the first front, both of which

depend on Q and ḡ′. A comparison between theory and experiment is given in

section 2.5. Figures 2.7 and 2.8 show, respectively, the gravity current front posi-

tion, Lg, vs. t, and the gravity current height, h, vs. y at three different instants

in time. Conversely figure 2.9 shows the shape of the first front, again for three

different values of t. Finally figure 2.10 presents the time variation of the aver-

age first front elevation, h̄. In all cases, the agreement between the predictions

and the measurements is promising. Thus, the experimental measurements pro-

vide support for the functional form of our plume solution according to which

Q ∝ x1/4.

By necessity, the present research is conducted using a set of limiting as-

sumptions: the medium is isotropic, the fluids are miscible and the flow is both

Boussinesq and of Darcy type. In many geological scenarios of interest, however,

other factors e.g. surface tension and anisotropy may be relevant. In future re-

search, the most restrictive of our assumptions will be relaxed by studying filling

box flow in media characterized by spatially-variable φ and k. Further extensions

of the research could include an examination of non-Boussinesq and/or non-Darcy

flow.
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Chapter 3

Filling box flows in an
axisymmetric geometry

3.1 Abstract

We present an analytical solution for buoyancy-driven “filling box” flows in ax-

isymmetric porous media having closed bottom and side boundaries. The flow

consists first and foremost of a descending, point source plume. When plume fluid

reaches the (horizontal) bottom boundary, it begins to flow radially outward in

the form of an axisymmetric gravity current. The leading edge of the gravity

current advances with time as t1/2 until it reaches the vertical sidewalls. At this

point, the flow is characterized by a vertically-ascending “first front” that steadily

advects towards the plume source. We assume the plume to be in a Darcy regime,

i.e. Re . O(10), with Pe > O(1), where Re and Pe are respectively the Reynolds

and Péclet numbers, and derive a similarity solution for the plume by applying

a boundary layer approximation. Formulas are thereby obtained for the vertical

variation of the plume volume flux and area-averaged concentration. The former

result shows important qualitative differences with the analogue equation derived

in the limit Pe < O(1). In particular, the plume volume flux is now predicted

to explicitly depend on the reservoir permeability, plume buoyancy flux and fluid

viscosity. The gravity current problem is likewise solved using a self-similar so-

lution, this time adapted from the work of Lyle et al. (J. Fluid Mech. vol. 543,

293–302, 2005) but connected to the outflow conditions of the plume. Finally, in

solving for the motion of the first front, we apply a volume flux balance equation
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and thereby estimate the time scale required for the first front to advect from the

bottom of the control volume to the source elevation. By synthesizing the above

results, we can estimate the total volume of source fluid and mass of solute that

can be injected into an axisymmetric reservoir without overflow. Predictions can

also be made for the time-variable mean concentration of this contaminated fluid

layer, which must obviously be less than the source concentration.

3.2 Introduction

The term “filling box flows” was first coined by Baines & Turner in 1969 (Baines

& Turner, 1969) in their study of buoyant convection from an isolated source in

a closed cylindrical control volume devoid of porous media. Since then filling box

flows have been studied extensively because of their applicability to numerous

environmental and industrial scenarios, e.g. in volcanic and submarine pumice

eruptions (Woods, 2010), hydrothermal plumes (Speer & Rona, 1989) and build-

ing ventilation (Nabi & Flynn, 2013). A recent theoretical and similitude labora-

tory experimental extension of the filling box methodology has been to the case of

porous media plumes that rise or fall within “leaky” (Roes et al., 2014) or closed

(Sahu & Flynn, 2015) aquifers. The latter case is of particular interest because

of its applicability to numerous geophysical and industrial scenarios, for instance,

(i) injection of hot water underground for the purpose of thermal storage in a

confined reservoir (Dudfield & Woods, 2012), (ii) injection, and subsequent disso-

lution, of supercritical CO2 into deep saline aquifers for purposes of sequestering

the CO2 that is produced as a result of localized industrial activities, e.g. coal

combustion for power generation (Bolster, 2014), (iii) dense plumes generated as

a result of leakages from landfills, waste piles or composting facilities that sub-

sequently contaminate potable groundwater (Lesage & Jackson, 1992; Oostrom

et al., 2007; Parlange & Hopmans, 1999), (iv) disposal by re-injection of the pro-

duced water associated with either shale gas or heavy oil activities (McCurdy,

2011; Shaffer et al., 2013). In each case, a comprehensive analytical description of

the flow requires combination of vertical convection and the primarily horizontal
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flow that follows when plume fluid reaches an impermeable horizontal boundary.

In this spirit, a central objective of the present contribution is to expand upon

existing descriptions of porous media filling box flows by extending the Cartesian

analysis employed in Sahu & Flynn (2015) to an axisymmetric geometry. Such

an extension is not at all trivial; for instance, it provides an opportunity to

supplement a well-established, but physically counter-intuitive, expression for the

plume volume flux – see (1) and the corresponding discussion below. A further

objective of our research is to clarify the mathematical treatment of the different

components of the dispersion tensor under the boundary layer approximation and

thereby justify, more carefully than before, why some of these terms can be safely

ignored.

As suggested by the schematics of figure 3.1, we divide our problem into

three constituent parts comprising the plume, gravity current and the first front.

Although the plume shown in figure 3.1 is negatively-buoyant, it should be under-

stood that dynamically equivalent results are expected if the plume rises rather

than falls, provided, of course, that the flow is Boussinseq, i.e. density differ-

ences are less than about 10%. Note that in either orientation, we assume that

the plume originates from a compact source and thereafter propagates through

a uniform porous medium. The gravity current describes the radially outward

motion of the discharged plume fluid over an impermeable horizontal boundary.

Unlike the studies of Neufeld et al. (2011) and Roes et al. (2014), we do not

include any localized sinks in this bottom boundary and so the gravity current

outflow is uniform in all directions. Finally the first front describes the primarily

vertical motion of this discharged plume fluid after the leading edge of the gravity

current has reached the impermeable vertical walls that define the sidewalls of

the control volume.

A solution for axisymmetric plumes falling through an unbounded porous

medium can be derived from a Wooding (1963)-type boundary layer approxi-

mation using a constant value for the dispersion coefficient. On this basis, and

supposing that dispersion is, in fact, dominated by molecular diffusion effects,

the plume volume flux, Q, can be shown to vary with the vertical distance, x,
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Figure 3.1: Schematic of a filling box flow in an axisymmetric geometry. (a) and (c)
represent, respectively, the top view and front view of the plume and gravity current.
(b) and (d) represent, respectively, the top and front view of the plume and the first
front.
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from the source as

Q = 8πDdφx . (3.1)

(see equation 7.5.34 of Phillips (1991), section 9.10 of Turcotte & Schubert (2014)

and equation 3.1 of Roes et al. (2014)). Here Dd is the solute molecular diffusion

coefficient and φ is the porosity. This equation is notable for several reasons.

Firstly, and as suggested above, it assumes that mechanical dispersion is subor-

dinate to molecular diffusion. Thus the Péclet number, which is defined as the

ratio of mass transfer by mechanical dispersion to mass transfer by diffusion, is

Pe =
dUτ

Dd

< O(1), where d is the mean grain size, U is the transport velocity

and τ (> 1) is the tortuosity constant, which is defined as the ratio of the ac-

tual path length traveled by a solute molecule to the distance it would travel in

a free medium. Conversely when Pe > O(1), a situation not at all uncommon

in practice, mechanical dispersion effects dominate over molecular diffusion and

must therefore be taken into account when evaluating the mass transfer. In this

case, the diffusion coefficient must be replaced by a dispersion tensor whose com-

ponents depend on the flow velocity. More specifically, the components of the

dispersion tensor are associated with the normal and tangential directions of the

longitudinal and radial components of the velocity field as explained by Ogata

(1970) and reviewed in greater detail below.

Equation (3.1) is also notable for the fact that Q is independent of the plume

buoyancy flux, F . This prediction, though mathematically consistent, is quite

different from the corresponding result for a line source plume for which

Q =

(
36DdφFkΛ2x

ν

)1/3

(3.2)

where Λ is the width of the line source, k is the permeability and ν is the kinematic

viscosity (Phillips, 1991). Note, moreover, that free plumes, whether axisymmet-

ric or 2D planar both predict Q to vary with F – see e.g. (5) and (16) of Baines &

Turner (1969). Equations (1) and (2) also differ in that the plume volume flux de-

pends on k and ν only in the latter instance. Thus one of the strong motivations

for extending the analysis of Sahu & Flynn (2015) to the case of an axisymmetric

plume issuing from a point source is to determine whether the unusual functional
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form of (1) is somehow preserved. Indeed, as we illustrate below, by specifically

considering Pe > O(1), it is possible to derive a self-similar solution for Q that

more closely conforms to (2) and the related expressions from free plume theory.

The second part of the filling box flow consists of a gravity current, which is

formed when dense plume fluid reaches the bottom impermeable boundary. In

this case, the plume acts as a distributed source of dense fluid for the axisym-

metric gravity current; the plume volume flux and mean reduced gravity at the

bottom of the control volume are therefore needed in order to correctly specify

the gravity current inflow conditions. Lyle et al. (2005) studied the axisymmetric

gravity current problem both theoretically and experimentally, but in a radially

infinite ambient. We adopt their theoretical solution, couple it with the equations

describing the descending plume and finally present a solution for the horizontal

motion of the discharged plume fluid in a finite ambient.

Note finally that as the gravity current propagates radially outward, it gets

progressively thinner. At a particular point in time, tR, the (well-defined) leading

edge of the gravity current reaches the cylindrical sidewall. We develop estimates

for tR and also the height profile of the gravity current at this instant in time. The

latter piece of information is needed when modelling the subsequent motion of the

discharged plume fluid back towards the plume source. This primarily vertical

motion is characterized by a so-called first front, which separates dense fluid below

from fresh ambient fluid above. The shape of this first front obviously matches

that of the gravity current when t = tR but its slope subsequently decreases as

the first front advects upwards. We follow the approach of volume flux balance,

presented by Sahu & Flynn (2015) for the rectilinear case, and derive an equation

that describes the temporal evolution of the first front. Thus the motion of the

first front will be shown to depend on both the solution of the plume and the

gravity current problems.

The rest of the manuscript is organized as follows: we present a theoretical

solution for the plume, gravity current and first front in sections 3.3, 3.4 and

3.5, respectively. Thereafter section 3.6 shows the output of our composite an-

alytical model, discusses the key time scales associated with a filling box flow
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and identifies conditions associated with a maximal filling of the control volume.

Finally, section 3.7 summarizes the work as a whole and briefly identifies topics

for further study.

3.3 Plume

The flows exhibited schematically in figure 3.1 are assumed to be both Boussinesq

and miscible. Flow speeds are small enough that the flow remains laminar but

large enough so that Pe > O(1). We further assume that the porous medium is

uniform and saturated. Therefore the governing equations, i.e. mass continuity,

momentum conservation in x and r, solute transport by advection-dispersion and

a (linear) equation of state, are respectively given by

∂u

∂x
+
∂v

∂r
= 0 , (3.3)

1

ρ0

∂P

∂x
+
ν

k
u =

gρ

ρ0
, (3.4)

1

ρ0

∂P

∂r
+
ν

k
v = 0 , (3.5)

1

φ

(
u
∂C

∂x
+ v

∂C

∂r

)
=

∂

∂x

(
Dxx

∂C

∂x
+Dxr

∂C

∂r

)
+

1

r

∂

∂r

(
Drxr

∂C

∂x
+Drrr

∂C

∂r

)
, (3.6)

ρ = ρ∞(1 + βC) . (3.7)

Here u and v are the transport velocities in the axial and radial directions,

respectively. Meanwhile, P is the fluid pressure, C is the solute concentration, β

is the solute contraction coefficient and ρ is the fluid density, which approaches

a constant value of ρ∞ in the far-field limit, r → ∞. Furthermore, Dxx, Dxr,

Drx and Drr are respectively the components of the axial and radial dispersion

coefficients in the tangential and normal directions.

By combining (3.4) and (3.5), it can be shown that

ν

k

(
∂u

∂r
− ∂v

∂x

)
=

g

ρ0

∂ρ

∂r
. (3.8)

Next, by applying the former of Wooding’s two boundary layer conditions (Wood-

ing, 1963), we conclude ∣∣∣∣∂v∂x
∣∣∣∣� ∣∣∣∣∂u∂r

∣∣∣∣ . (3.9)
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Incorporating (3.7) and (3.9) into (3.8) gives

∂u

∂r
=
gβk

ν

∂C

∂r
. (3.10)

Regarding the right-hand side of (3.6) and following Scheidegger (1961), the

dispersion coefficients can be defined in terms of the axial velocity as follows:

Dxx = αxxu, Dxr = αxru, Drx = αrxu and Drr = αrru, where αxx, αxr, αrx and

αrr are the corresponding dispersivity constants whose values vary between 0.01

to 1 cm (Delgado, 2007). Therefore (3.6) can be written as

1

φ

[
u
∂C

∂x
+ v

∂C

∂r

]
=

∂

∂x

[
u

(
αxx

∂C

∂x
+ αxr

∂C

∂r

)]
+

1

r

∂

∂r

[
ur

(
αrx

∂C

∂x
+ αrr

∂C

∂r

)]
. (3.11)

Scheidegger (1961) further suggests that the tangential components of the dis-

persivity are larger than the normal components, and therefore αxx � αxr and

αrr � αrx. Also, from Wooding’s latter boundary layer condition (Wooding,

1963), we have ∣∣∣∣∂C∂x
∣∣∣∣� ∣∣∣∣∂C∂r

∣∣∣∣ . (3.12)

Thus, it can be shown that∣∣∣∣αxx∂C∂x
∣∣∣∣ ∼ ∣∣∣∣αxr ∂C∂r

∣∣∣∣ and

∣∣∣∣αrx∂C∂x
∣∣∣∣� ∣∣∣∣αrr ∂C∂r

∣∣∣∣ . (3.13)

However, on performing a scaling analysis and remembering that axial length

scales are much larger than their radial counterparts, we find∣∣∣∣ ∂∂x
(
uαxr

∂C

∂r

)∣∣∣∣ ∼ ∣∣∣∣1r ∂∂r
(
urαrx

∂C

∂x

)∣∣∣∣ , (3.14)

which suggests that only the final term on the right hand side of (3.11) is dy-

namically significant. In other words, (3.11) can be rewritten in the following

approximate form:

u
∂C

∂x
+ v

∂C

∂r
=
φ

r

∂

∂r

(
urαrr

∂C

∂r

)
. (3.15)

Hereafter we refer αrr to simply as α.

We now introduce a streamfunction, ψ, such that u =
1

r

∂ψ

∂r
and v = −1

r

∂ψ

∂x
.

Therefore on further substitution, (3.10) and (3.15) respectively become

1

r

∂2ψ

∂r2
− 1

r2
∂ψ

∂r
=
gβk

ν

∂C

∂r
, (3.16)

∂ψ

∂r

∂C

∂x
− ∂ψ

∂x

∂C

∂r
= αφ

(
∂2ψ

∂r2
∂C

∂r
+
∂ψ

∂r

∂2C

∂r2

)
. (3.17)
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We seek a self-similar solution to (3.16) and (3.17) of the form

ψ = A1x
pF(η), C = A2x

qG(η) (3.18)

where η = A3
r

xm
is the self-similar variable and A1, A2 and A3 are constants to

be determined shortly. Substituting (3.18) into (3.16) and further simplifying

gives

ηF ′′ −F ′ = gβk

ν

A2

A1

r2xq

xp
G ′ = gβk

ν

A2

A1A2
3

[
A3r

x(p−q)/2

]2
G ′ (3.19)

Self-similarity requires that p−q = 2m so that η = A3
r

x(p−q)/2
andA2 =

ν

gβk
A1A

2
3.

Upon making these substitutions, (3.19) simplifies dramatically, i.e.

ηF ′′ −F ′ = η2G ′ . (3.20)

From (3.18), and remembering that the solute concentration is maximal at r = 0

and vanishingly small when r → ∞, we have the following boundary conditions

to be applied in conjunction with (3.20): G ′ = 0 at η = 0 and G = 0 when

r → ∞. We shall apply the former boundary condition later; employing the

latter boundary condition now, it can be shown that (3.20) has a general solution

of the form

G =
F ′

η
. (3.21)

We now repeat the above process but focus attention on (3.17) rather than

(3.16). Substituting (3.18) into (3.17), it can be shown that

F ′(qG −mG ′η)− (pF −mF ′η)G ′ = αφx(1−2m)A2
3(F ′′G ′ + F ′G ′′) . (3.22)

By selecting m = 1/2 and A3 = 1/
√
αφ, (3.22) reduces to the following simpler

form:

F ′′G ′ + F ′G ′′ − qF ′G + pFG ′ = 0 . (3.23)

To determine p and q, we recall that the buoyancy flux, F , is constant and equal

to its source value, F0. Thus

2π

∫ ∞
0

ug′r dr = F0 . (3.24)
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Here g′ = g
ρ− ρ∞
ρ∞

= gβC is the reduced gravity of the plume. Substituting

(3.18) into (3.24), shows that

2πxp+qA1A2gβ

∫ ∞
0

F ′Gdr = F0 , (3.25)

and this in turn implies p + q = 0. Recalling p − q = 2m = 1, we conclude that

p = 1/2 and q = −1/2. Also, with reference to (3.25), and remembering that

A2 =
ν

gβk
A1A

2
3 and A3 = 1/

√
αφ, it is easy to verify that

A1 =

(
F0kαφ

2πν

1∫∞
0
F ′G dη

)1/2

.

Using the above results, (3.23) takes the form

F ′′G ′ + F ′G ′′ + 1
2
F ′G + 1

2
FG ′ = 0 . (3.26)

After combining (3.21) and (3.26), and with some algebra, we get

G ′′ + G
′

η
+ G = 0. (3.27)

G therefore represents a Bessel function of first kind, J0(η), and can be expressed

in integral form as

G = J0(η) =
2

π

∫ π/2

0

cos (η sin θ) dθ . (3.28)

Before applying this solution to the problem at hand, we recall the assumption

that Pe > O(1), or Drr = αu. In the region close to the plume centerline

where flow velocities are comparatively large, this approximation is certainly

appropriate, however, the above assumption breaks down as we move to the far-

field, which is characterized by much smaller vertical (and radial) velocities. We

therefore divide our solution into an inner region where Pe > O(1) and an outer

region where Pe ≤ O(1). In determining the appropriate boundary between the

inner and outer region, recall that G represents the solute concentration (see

equation 3.18), whose value cannot become negative. Therefore the inner region

is formally defined by η ≤ ηmax = 2.4048 for which G ≥ 0 (Zakharov, 2009). In

the outer region, we assume, consistent with the analysis of Sahu & Flynn (2015),
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Figure 3.2: Analytical solution obtained for the self-similar functions G and F of (3.18)
vs. the self-similar variable, η.

that the fluid velocity and solute concentration are identically zero. Thus, in place

of (27), it is more appropriate to write

G =

 2

π

∫ π/2

0

cos (η sin θ) dθ, η ≤ ηmax

0, η > ηmax .
(3.29)

Furthermore, by considering the relationship between G and F ′ from (3.21), the

solution for G can be extended to find F such that

F =

 2

π

∫ η

0

∫ π/2

0

cos (η sin θ) dθ dη, η ≤ ηmax

1.2485, η > ηmax .
(3.30)

The variation of F and G with η are presented in figure 3.2. The kink, or a

discontinuity in other words, observed in the curve of G is because of the division

of plume solution into inner and outer regions. The solution presented by (3.28)

for (3.27) is therefore valid only in the inner region, i.e. when η ≤ ηmax = 2.4048.

Furthermore, by combining (3.29) and (3.30) with (3.18), a contour plot may be

drawn that shows the variation of u/u0 or, equivalently, C/C0 with x/H and r/H

where u0 and C0 are the plume vertical velocity and solute concentration at the

source and H is the control volume height – see figure 3.3. Note that u and C

therefore vary in proportion to one another.

With a formula for ψ to hand, it is straightforward to evaluate the plume
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volume flux, Q, i.e.

Q = 2π

∫ ∞
0

u dr =

[
2π
F0kαφ

ν

(∫∞
0
F ′ dη

)2∫∞
0
F ′2
η

dη
x

]1/2
. (3.31)

From the solution presented in figure 3.2, we have

(∫∞
0
F ′ dη

)2∫∞
0
F ′2
η

dη
= 2. Thus the

volume flux for an ideal plume with Pe > O(1) and Drr = αu is given simply by

Q =

(
4πF0kαφ

ν
x

)1/2

. (3.32)

On comparing this result with (3.1), our result shows that the plume volume

flux depends not only on the porosity, but also on the plume buoyancy flux, the

reservoir permeability and the fluid kinematic viscosity, all of which seems very

reasonable on physical grounds. Another potentially significant difference with

(3.1) is that this previous equation predicts Q ∝ x, whereas our solution predicts

a more conservative result, namely Q ∝ x1/2.

Because the plume buoyancy flux is constant, it is straightforward to obtain an

expression for the plume mean reduced gravity, averaged over the cross section.

The corresponding formula,

ḡ′ = gβC̄ =

(
F0ν

4πkαφ

1

x

)1/2

, (3.33)

unambiguously specifies the connection between ḡ′, C̄, F0 and x. For (3.32) and

(3.33) to be applicable to a nonideal plume, for which the source volume flux is

not vanishingly small, we back-extrapolate our result so that Q = 0 at a virtual

source defined by x = −x0 (Hunt & Kaye, 2001; Wooding, 1963). Thus

x0 =
νQ2

0

4πF0kαφ
=

νQ0

4πg′0kαφ
, (3.34)

where g′0 is the reduced gravity of the source fluid. Therefore for a nonideal

plume, the volume flux and mean reduced gravity are given, respectively, by

Q =

[
4πF0kαφ

ν
(x+ x0)

]1/2
. (3.35)

and

ḡ′ = gβC̄ =

[
F0ν

4πkαφ

1

(x+ x0)

]1/2
. (3.36)
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Figure 3.3: [Colour online] Contours showing the variation of u/u0 or C/C0 with x/H
and r/H where u0 and C0 are respectively the plume vertical velocity and solute con-
centration at the source.

Substituting x0 using (3.34) and expressing (3.35) and (3.36) in non-dimensional

form yields

Q

Q0

=

[
1 +

4πg′0kαφH

Q0ν

( x
H

)]1/2
and

ḡ′

g′0
=

[
1 +

4πg′0kαφH

Q0ν

( x
H

)]−1/2
. (3.37)

The functional variation of Q/Q0 and ḡ′/g′0 is depicted in the left- and right-hand

side panels of figure 3.4, respectively.

The above results apply to a time-independent flow and so do not fully cap-

ture the dynamics associated with the initiation of dense source fluid and the

thermal that results therefrom. Plumes and thermals share some similarities, of

course, but also some important differences. In the former case, for instance, en-

trainment occurs only laterally whereas in the latter case, ambient fluid may also

be entrained along the descending underside of the thermal. With this caveat in

mind, we nonetheless proceed to estimate, on the basis of the previous formulas,

the time interval, tP , between activating the source and observing plume fluid

along the lower impermeable boundary of the control volume. The average axial
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plume velocity at any arbitrary elevation is given by

U(x) ≡ Q(x)

Ap
=

[
4F0k

η4maxπναφ

1

(x+ x0)

]1/2
(3.38)

where the plume cross-sectional area is given by Ap = πb2 = παφη2maxx. By

extension, the mean value of U(x) in a control volume having height H is given

by

Ū =
1

H

∫ H

0

U(x) dx =

(
16F0k

πη4maxναφ

)1/2 [
(H + x0)

1/2 − x1/20

]
. (3.39)

Employing this result, the time required for the plume to traverse a vertical

distance H is estimated as

tP =

(
πη4maxναφ

16F0k

)1/2
H[

(H + x0)1/2 − x1/20

] . (3.40)

Below, we shall compare tP against other relevant time-scales of the flow e.g. those

due to the gravity current and ascending first front.

3.4 Gravity current

As the dense plume reaches the impermeable bottom of the cylindrical control

volume, it transitions to a gravity current and propagates radially outward. As-

suming a hydrostatic pressure condition, and adapting the self-similar solution
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presented by Lyle et al. (2005), we may describe the motion of the gravity current

as outlined below.

According to Darcy’s law, the outward radial velocity of the discharged dense

fluid can be expressed as a function of the slope of the interface that separates

this fluid from the overlying ambient, i.e.

vg = −
kg′g
ν

∂h

∂r
. (3.41)

Here h is the interface height as depicted in figure 3.1 and g′g is the mean reduced

gravity calculated at x = H using (3.36).

Local volume flux balance states that the difference of the volumetric inflow

and outflow at any radial location r must be balanced by the time rate of change of

the interface height at the same location. Expressing this balance mathematically

yields

φ
∂h

∂t
+

1

r

∂

∂r
(rvgh) = 0 . (3.42)

On combining (3.41) and (3.42), we find that

∂h

∂t
− S

r

∂

∂r

(
rh
∂h

∂r

)
= 0 , (3.43)

where S =
kg′

νφ
. The above equation is a nonlinear heat equation and is subject

to the following boundary conditions:

h(rN , t− tP ) = 0 and 2πφ

∫ rN (t−tP )

0

rh(r, t− tP ) dr = Vg(t− tP ) . (3.44)

Here rN is the radial distance measured from the origin to the gravity current

leading edge (or nose) and Vg is the total volume of fluid discharged by the plume

up till time t − tP > 0. The former boundary condition states that the height

of the gravity current at its leading edge is always zero. By contrast, the latter

boundary condition states that the amount of the dense fluid contained within

the gravity current must equal Vg. Following Lyle et al.’s approach, we define a

self-similar solution of the form

h(r, t− tP ) = ξ2N

(
Qg

S

)1/2

H (y) where

ξ(r, t− tP ) =
r

(SQg)1/4(t− tP )1/2
. (3.45)
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Here 0 ≤ y = ξ/ξN ≤ 1 and ξN = ξ(rN , t− tP ) is the dimensionless radius of the

leading edge. On substituting (3.45) into (3.43), we obtain

yH′′H + yH′H′ +H′H +
y2

2
H′ = 0, (3.46)

subject to the boundary conditions

H(1) = 0 and

[
2π

∫ 1

0

yH dy

]−1/4
= ξN . (3.47)

To find a solution to the above ode, a shooting method is employed. Graphical

results are presented in figure 3.5 and the value of ξN is found to equal 1.19.

These results match very well with figures 2 and 3 of Lyle et al. (2005).

Using the above equations, the radius of the gravity current as a function of

time t > tP can be given as

rN = ξN(SQg)
1/4(t− tP )1/2 . (3.48)

On the other hand, the time required for the gravity current to reach the sidewalls

of the cylindrical control volume, located at r = R, can be found from

tR =
R

ξN(SQg)1/4
, (3.49)

where we assume that the plume radius at x = H is negligible compared to R.

In light of this definition, (3.48) can be simplified to read

rN
R

=

(
t− tP
tR

)1/2

where t > tP . (3.50)
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Finally we can also calculate the mean height of the gravity current at t = tR+tP

from the following equation:

h̄tR =
1

R

∫ R

0

h(y, tR) dr = ξ2N

(
Qg

S

)1/2 ∫ 1

0

H dy = ξ2N

(
Qg

S

)1/2

H̄. (3.51)

From the numerical solution presented in figure 3.5, we find that H̄ ≡
∫ 1

0

H dy =

0.2641. This result will be used in the following section where we describe the

evolution of the flow for t > tR.

3.5 First front

Once the gravity current reaches the impermeable sidewall, dense fluid begins

moving upward and thus turns into a primarily vertical flow. As noted above,

the interface between this ascending dense fluid and the ambient fluid is termed as

the first front (Baines & Turner, 1969). In the analogue Cartesian problem (Sahu

& Flynn, 2015), we observe that the curvature of the first front is comparatively

high initially but then relaxes as the first front approaches the plume source. We

expect similar behaviour here and so focus on the variable of greatest dynamical

significance, namely the mean elevation, h̄, of the first front, averaged over the

cross sectional area of the control volume. Further following Sahu & Flynn (2015),

we can apply a volume flux balance approach to find h̄ vs. time i.e.

φAŪf (h̄) = Q(H − h̄). (3.52)

Here A = πR2 is the control volume cross-sectional area and Ūf =
dh̄

dt
is the

mean advection speed of the first front, averaged over A. On substituting Q from

(3.35) it can be shown that

h̄2 = H + x0 −

[
(H + x0 − h̄1)1/2 −

(t2 − t1)
A

(
F0kπα

νφ

)1/2
]2

(3.53)

where h̄2− h̄1 is the mean vertical distance travelled by the first front over a time

interval t2 − t1. By setting h̄2 = H and h̄1 = h̄tR , we can estimate the time, tH ,

required by the first front to advect from the bottom to the top of the control
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volume. Thus

tH = A

(
νφ

F0kπα

)1/2 [
(H + x0 − h̄tR)1/2 − x1/20

]
. (3.54)

3.6 Discussion

In the above sections we have separately considered solutions for the plume,

gravity current and first front. The latter two solutions are applicable for a

closed box or reservoir with an open upper boundary whose radius is significantly

larger than the maximum plume radius i.e. R � bmax. On substituting bmax =

ηmax(αφH)1/2, where ηmax = 2.4048, we get

R2

η2maxαφH
� 1. (3.55)

For real geophysical flows, the horizontal length-scale is usually much larger than

the vertical length scale; moreover φ < 0.38 (Peters, 2012), α < 0.01 m (Delgado,

2007), and therefore the above criteria is well satisfied.

In the context of filling box flows, an important parameter is the time, tT ,

required to completely fill the control volume void space with contaminated fluid.
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For t > tT , we expect contaminated fluid overflow and, possibly, the advection

of contaminated fluid above the elevation of the source. We calculate tT by

superposition, i.e.

tT = tP + tR + tH , (3.56)

and focus attention on cases where (3.55) is valid. Plotting tP , tR and tH

vs.
R2

η2maxαφH
shows that tH is typically much larger than either tP or tR (see

figure 3.6). In our subsequent analysis, it is therefore appropriate to assume

tT ≈ tH where tH is given by (3.54) with h̄tR → 0. On the basis of this approxi-

mation, it is possible to simplify (3.53). To wit

h̄ =

[
1−

(
1− t

tH

)2
]
H , (3.57)

where h̄ is the mean height of the first front at time t. Thus, based on the time

of injection, the mean depth and volume, Vc, of the contaminated layer can be

straightforwardly predicted. In particular, Vc is given by

Vc = φAh̄ = φA

[
1−

(
1− t

tH

)2
]
H . (3.58)

Conversely, the volume of injected source fluid is simply Vt = Q0t. With Vc and

Vt to hand, we can compute their ratio from

Vt
Vc

=
VT
V

t

tH

1[
1−

(
1− t

tH

)2] , (3.59)

where V = Vc(t = tH) = φAH is the pore volume and VT = Vt(t = tH) = Q0tH is

the total volume of source fluid that can be injected up to the point of overflow.

Having calculated the volume of the contaminated layer, an estimate for the

associated mean reduced gravity, ḡ′c, can be obtained from simple mass balance,

i.e.

ρ̄cVc = ρ0Vt + ρ∞(Vc − Vt) . (3.60)

Here ρ0 is the density of the source fluid, ρ∞ is the reservoir fluid density at t = 0

and ρ̄c is the mean density of the contaminated fluid. Manipulation of (3.60)

gives
ρ̄c − ρ∞
ρ∞

=
ρ0 − ρ∞
ρ∞

Vt
Vc

or
ḡ′c
g′0

=
Vt
Vc
, (3.61)
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Figure 3.7: [Colour online] Volume ratio Vt/Vc vs. t/tH for various VT /V (see equation
3.59).

where g′0 is the reduced gravity of the source fluid.

Figure 3.7 shows the variation of Vt/Vc with t/tH for various VT/V . The

maximum value of ḡ′c, realized when t = tH , is g′0
VT
V

. Using the definitions of VT ,

V , (3.34) and (3.54), it can be shown that VT/V varies with x0/H as

VT
V

=
2x0
H

[(
1 +

H

x0

)1/2

− 1

]
(3.62)

(see figure 3.8). Thus as x0/H increases, so too does (i) the total volume of fluid

injected up to the point of overflow relative to the pore volume, and, (ii) the final

mean reduced gravity of the contaminated layer relative to the source reduced

gravity. In turn, and for constant k, φ and H, (3.34) shows that larger VT/V is

associated, respectively, with larger and smaller Q0 and g′0 whereby entrainment

into the plume is comparatively modest. Whereas the latter conclusion applies

for arbitrarily small g′0, it cannot necessarily be said that the former applies for

arbitrarily large Q0: large source volumes fluxes are associated with large flow

velocities so that the Reynolds number restriction Re . O(10) must eventually

be violated. More specifically, let us suppose a source diameter of d0 = 2b0 so
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that the source discharge velocity is given by U0 =
4Q0

πd20
. Now on recalling that

the Reynolds number in porous media is defined as Re =
dU0

ν
, we can conclude

Q0 ≤
5πνd20

2d
. (3.63)

Using above results, we can also calculate the mass, MT , of solute that can

be sequestered up until t = tH from

MT = C0VT (3.64)

where C0 =
g′0
gβ

is the solute concentration of the source fluid – see (3.7). Then

by combining (3.64) with (3.54) and (3.34), it can be shown that

MTβ

V
=

νQ0

2πgkαφH

[(
1 +

4πgkαφH

νQ0

g′0
g

)1/2

− 1

]
. (3.65)

The variation of
MTβ

V
with

νQ0

πgkαφH
and

g′0
g

is shown in figure 3.9, which suggests

that for a fixed pore volume, V, a larger mass of solute can be sequestered for

larger Q0 and g′0.

3.7 Conclusions

In this manuscript a solution for filling box flows in axisymmetric porous media,

which has closed lower horizontal and side vertical boundaries, is presented. This
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vs. νQ0/(πgkαφH) for various g′0/g (see equation 3.65).

filling box model consists of three interrelated flow components: (i) a negatively-

buoyant axisymmetric plume, (ii) a radially spreading gravity current consisting

of plume fluid discharged along the bottom boundary, and (iii) an upwelling-type

flow that develops after the gravity current reaches the sidewalls.

The plume is assumed to be in Darcy regime with Pe > O(1); moreover,

the flow is Boussinesq and miscible. In section 3.3, we derive a novel similarity

solution assuming an unstratified ambient and present formulas for the plume

volume flux, Q, reduced gravity, ḡ′, and the time, tP , required for the plume to

reach the bottom of the control volume respectively in (3.35), (3.36) and (3.40).

It is found that Q and ḡ′ vary respectively as x1/2 and x−1/2, whereas in previous

studies with Pe < O(1) it has been shown in that Q ∝ x and ḡ′ ∝ x−1. We also

argue that the new solution is more reasonable on physical grounds compared to

the previous solution that Q and g′ now depend on the buoyancy flux, viscosity

and permeability, in addition to the porosity.

The above results are extended to derive a solution for the gravity current flow,

where Q and ḡ′ calculated at the bottom, x = H, of the control volume dictate

71



the gravity current source volume flux and reduced gravity, respectively. We

adapt the similarity solution of Lyle et al. (2005), which is derived by combining

Darcy’s law and a mass balance equation. By synthesizing the similarity solutions

for plume and gravity current flow, we present in figure 3.5 a solution for the

gravity current height profile. Moreover (3.49) gives the corresponding amount

of time, tR, required for the gravity current front to reach the vertical sidewalls,

which are located a radial distance R from the plume source.

Finally when t > tP + tR, the dense plume discharge starts advecting upward

towards the source elevation. There exists an interface between this dense fluid

and the overlying ambient fluid which is termed the first front. An equation that

describes the temporal evolution of the first front is derived in section 3.5 based

on a volume flux balance borrowed from Sahu & Flynn (2015). We thereby obtain

an estimate for the time, tH � tP , tR, required for the first front to advect all

the way to the elevation of the source.

In section 3.6, we estimate via (3.59) the total volume, VT , of source fluid

that can be injected into a reservoir of pore volume V = φAH = φπR2H up

to the point of overflow. For fixed reservoir properties and dimensions, larger

VT can be realized by respectively increasing and decreasing the source volume

flux and source reduced gravity (or concentration). The corresponding maximum

reduced gravity of the contaminated layer, consisting of source fluid plus ambient

fluid entrained into the descending plume, is given by (3.61). Finally (3.65) gives

an expression for the total mass of solute sequestered, again up till the point of

overflow. In contrast to VT , figure 3.9 confirms that it is advantageous to increase

both the source volume flux and source concentration assuming the objective is

to sequester as much of the solute as possible.

The current research is conducted assuming a Darcy flow regime with uniform

porosity and permeability and miscible fluids. However, real geological reservoirs

are characterized by spatial variations in φ and therefore k. In future, therefore,

we will study filling box flows in porous medium with nonuniform permeability.
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Chapter 4

The effects of sudden
permeability changes in porous
media filling box flows

4.1 Abstract

We report upon experimental and analytical investigations of filling box flows in

non-uniform porous media characterized by a sudden change in the permeability.

The porous medium consists of two layers separated by a horizontal interface and

is initially filled with light ambient fluid. A line source located at the top of the

upper layer supplies dense contaminated fluid that falls towards the bottom of the

domain. Two configurations are studied, i.e. a low permeability layer on top of a

high permeability layer and vice-versa. In the former scenario, the flow dynamics

are qualitatively similar to the case of a uniform porous medium. Thus the ana-

lytical formulation of Sahu & Flynn (J. Fluid Mech., vol. 782, 2015, pp. 455–478)

can be adopted to compute the parameters of interest, e.g. the plume volume

flux. In the latter scenario, the flow dynamics are significantly different from

those of the uniform porous medium case; after reaching the interface, some frac-

tion of the dense plume propagates horizontally as a pair of oppositely-directed

interfacial gravity currents. Meanwhile, the remaining fraction of the plume flows

downwards into the lower layer where it accumulates along the bottom bound-

ary in the form of a deepening layer of discharged plume fluid. Depending on

the permeability ratio of the upper and lower layers and the source conditions,
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the gravity currents may become temporarily arrested after travelling some finite

horizontal length. An analytical prediction for this so-called run-out length is

adopted from Goda & Sato (J. Fluid Mech., vol. 673, 2011, pp. 60–79), whose

analysis pertains to immiscible fluids rather than the miscible fluids of interest

here. Finally, a prediction of the filling box time, consisting of the time required

to fill the control volume up to the point of contaminated fluid overflow, is made.

These predictions are compared with analogue experimental measurements. Gen-

erally positive agreement is found when the higher permeability layer is located

below the lower permeability layer. In the opposite circumstance, the agreement

is conditional. If the run-out length of the gravity current is less than the hor-

izontal dimensions of the control volume (or tank in case of the experiments),

the agreement is relatively good. By contrast, when the run-out length is large,

comparatively poor agreement may be realized: in spite of the higher density

of the contaminated fluid, it may occupy the entirety of the upper layer before

filling the lower layer.

4.2 Introduction

Filling box flows arise in closed or ventilated control volumes, often rectilinear

or cylindrical in shape, where the flow is buoyancy-driven and originates from a

compact hot or cold source. Though first developed in the context of turbulent

buoyant convection (“plumes in rooms”), porous media filling box-type models

have recently gained popularity because of their application to various geophysi-

cal phenomena, e.g. carbon sequestration (Bolster, 2014) and thermal storage in

confined reservoirs (Dudfield & Woods, 2012). In that context, Roes et al. (2014)

studied the particular impact of fissure drainage on the long time behaviour of

a porous media filling box flow. As t → ∞ outflow through the fissure(s) is

balanced by the incoming volume flux supplied to the contaminated layer by the

plume. They estimated the depth of this contaminated layer in terms of the

plume source conditions (i.e. volume flux and reduced gravity), and the prop-

erties of the porous medium (height, porosity and permeability) and fissure(s)
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Figure 4.1: Filling box flows in two-layer porous media: (a) k1/k2 < 1, (b) k1/k2 > 1.

(height and permeability). Thereafter, and motivated by the analogue problem

investigated by Baines & Turner (1969), Sahu & Flynn (2015, 2016b) studied

filling box flows in closed rectilinear and axisymmetric geometries and presented

analytical solutions for the associated flow dynamics consisting of a descending

plume and plume outflow along the impermeable bottom boundary. For early

times, the outflow takes the form of a horizontally-propagating gravity current

or currents. Once the gravity current(s) reach the sidewalls of the control vol-

ume, there evolves a deepening layer of discharged plume fluid. An important

simplifying assumption applied in each of the above studies is that they consider

uniform porous media consisting of a constant porosity, φ, and permeability, k.

In real geophysical scenarios, however, φ and k typically vary in space and can be

considered constant only within localized, and often quite thin, geological strata.

Although the effects of variations in φ and k have been studied previously in the

context of gravity currents (Pritchard et al., 2001; Goda & Sato, 2011), these

effects remain unexplored in the more general context of filling box flows. There-

fore in the present investigation, we study nonuniform porous media filling box

flows paying particular attention to the effects of a sudden change of permeability

between adjacent horizontal layers.

Figure 4.1 shows schematics of the flow and flow domain. A rectilinear control

volume (or tank) consists of two different porous media layers and is closed along
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all but the upper boundary. This upper boundary in turn contains a source of

negatively-buoyant fluid that falls in the form of a laminar plume. We invoke

the Boussinesq approximation, valid for modest density differences, according to

which our results apply equally well to a buoyant rising plume. After falling

a vertical distance H1, the plume encounters the interface between the upper

and lower layers and thereafter its motion, and the consequent dispersion of

contaminated fluid, depends upon the permeability, k2, of the lower layer. If

k2 > k1 where k1 is the permeability of the upper layer, then plume fluid easily

descends to the bottom of the control volume (figure 4.1 a). Contrarily, when

k2 < k1, the plume fluid splits in two with some fraction flowing horizontally

in the form of a “leaky” interfacial gravity current and the remaining fraction

propagating directly into the lower layer.

Predicting the fraction of the plume that detrains along the interface as a

function of k1/k2 and the source conditions is a complicated task. Nonetheless,

helpful insights into the flow behaviour can be realized using comparatively simple

formulas based, in part, on existing plume models. Such models enjoy a rich

history dating back to Wooding’s seminal paper wherein he derived an analytical

solution for plumes in a Darcy regime, i.e. with Reynolds number Re ≤ O(10).

Wooding (1963) further assumed a small Péclet number, i.e. Pe � O(1). His

study was subsequently extended to a non-Darcy flow regime by Chen & Ho

(1986) and Lai (1991) who respectively considered cases where Pe � O(1) and

Pe � O(1). More recently, Sahu & Flynn (2015) returned to Wooding’s Darcy

flow formulation but assumed Pe � O(1). Following this line of inquiry, and

consistent with the experiments to be described in section 4.3, we likewise consider

the flow to be in a Darcy regime with Pe � O(1). Where needed (see section

4.4), Sahu & Flynn’s formulas may therefore be employed.

As indicated schematically in figure 4.1 b, fluid detrained from the plume at

the interface (and also at the bottom of the control volume) form gravity currents

that propagate left and right. Gravity current flow through a free medium but

over a porous base has been studied by several researchers e.g. Thomas et al.

(1998), Ungarish & Huppert (2000) and Spannuth et al. (2009). The problem
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at hand draws insights from these helpful investigations but more properly falls

into the category of gravity current flow in porous medium over a low perme-

ability substrate, which was first studied analytically by Pritchard et al. (2001).

They assumed a constant volume flux source and a lower layer thickness that was

much less than the gravity current height. Pritchard et al. (2001) found that,

after reaching a certain horizontal distance, the gravity current stopped mov-

ing forward at which point the influx from behind the gravity current head was

balanced by drainage along the gravity current underside. Extending this investi-

gation to lower (and upper) layers of infinite depth, Goda & Sato (2011) presented

a numerical solution that specified the forward propagation of the gravity current

and the downward motion of the draining fluid as functions of time as well as pa-

rameters such as the permeability ratio, k1/k2. Consistent with Pritchard et al.

(2001), Goda & Sato (2011) found that the gravity current length approaches

some maximum value in the long time limit, t → ∞. This maximum length is

given by

Ľg =
q1ν

k2g′1
. (4.1)

Here ν is the kinematic viscosity and q1 and g′1 = g
ρ1 − ρ∞
ρ∞

are respectively the

gravity current volume flux per unit length and reduced gravity. Moreover ρ1

and ρ∞ are the dense and far-field ambient fluid densities, respectively. Although

the present investigation considers miscible fluids and a confined volume, we

employ Goda & Sato’s solution in section 4.4 to describe interfacial gravity current

propagation until either the gravity current front or the draining fluid reaches a

lateral sidewall or the lower boundary, respectively.

The model predictions derived as part of our analysis are compared against

analogue laboratory data. Of particular interest are the gravity current run-out

length and the timescales required for the contaminated fluid to reach to the

point of overflow. These estimates are made with respect to the permeability

and height ratios of the lower to upper layers and the source volume flux and

reduced gravity.

The rest of the manuscript is organized as follows: section 4.3 outlines the
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experimental setup and procedure, image post-processing details and qualitative

observations. Corresponding model equations are developed and discussed in

section 4.4 and a comparison with laboratory data is given in section 4.5. Finally,

section 4.6 presents conclusions and defines topics for future work.

4.3 Experimental technique

4.3.1 Laboratory set-up and experiments

Laboratory experiments were performed with the aim of studying, both quali-

tatively and quantitatively, the effects of sudden permeability changes vis-à-vis

porous media filling box flows. A schematic of the experimental set-up is shown

in figure 4.2. A transparent acrylic tank 88.9 cm long × 7.6 cm wide × 50.8 cm

tall was filled with tap water of density 0.998 g/cm3 and two layers of Potters

Industries A Series Premium glass beads. We considered three different sets of

experiments where the ratio of upper (H1) to lower (H2) layer depth was 0.5,

1.0 or 2.0. The total depth of both layers, H = H1 + H2, was always 40 cm.

The beads measured either 0.1 cm, 0.3 cm and 0.5 cm in diameter, which yielded

permeability ratios, k1/k2, of 0.04, 0.11, 0.36, 2.77, 9.0 and 25.0. Permeabili-

ties were calculated using the relationship originally derived by Rumpf & Gupte

(1973), and described in Dullien (1992), such that k =
d2φ5.5

5.6
where d is the bead

diameter and φ is the porosity. Following Happel & Brenner (1991), we assume

φ = 0.38 corresponding to randomly distributed spherical beads. Note that, in

the immediate vicinity of the interface and because of the bidisperse nature of

the distribution, a reduction of porosity to φ ' 0.34 was anticipated (Schulze

et al., 2015).

The plume source fluid consists of salty water to which Procion MX Cold

Water dye has been added for purposes of flow visualization. Before the start of an

experiment, this fluid was mixed in a 100 L reservoir (see figure 2). The dense fluid

in question was then supplied to the rectangular acrylic tank using a hydraulic

pump, overhead bucket, flowmeter, flow valves and a line nozzle. The overhead

bucket had a cylindrical internal weir which helped to maintain a constant source
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Figure 4.2: Schematic of the experimental setup.

pressure. A Gilmont GV-2119-S-P flowmeter was used to measure the flow rate,

which was adjusted using ball and needle valves. The last component of the flow

system before dense fluid reached the tank was a line nozzle of discharge area

Anozzle = 2.8 cm2, which was fitted at the top centre of the tank and spanned the

tank width. The nozzle, which is further described in Roes (2014), was designed

so as to minimize the momentum of the exiting fluid.

Experimental images were captured every 60 s using a Canon Rebel EOS T2i

18.0 PM camera fitted with an 18-55 mm IS II zoom lens. The experiments usually

lasted between 1 h and 3 h depending upon the flow rate and permeability ratio.

Thus, over the course of a single experiment, roughly 60 to 200 images were

recorded. Because of the symmetric nature of the flow, and so as to reduce

parallax errors, only one half of the experimental tank was visualized. The tank

was backlit using a 3M 1880 overhead projector and its backside was covered

with tracing paper, which acted to diffuse the light from this projector.

As summarized in Appendix E, a total of 50 experiments were performed

where we regard k1/k2, H1/H2, the plume source volume flux, Q0, and reduced

gravity, g′0, as independent variables. Here g′0 = g
ρ0 − ρ∞
ρ∞

where ρ0 is the source

fluid density.
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4.3.2 Experimental images

Experimental images were post-processed using Matlab. Images were first cropped

then converted from RGB to grey-scale. They were then subtracted from a ref-

erence image taken just before the beginning of an experiment. This subtraction

operation helped to highlight differences between ambient (clear) fluid and dense

(dyed) fluid whether within the plume or discharged in the form of a deepen-

ing layer along the bottom of the tank. Regions uncontaminated by dense fluid

therefore have an intensity of zero and appear as black in the figures to follow.

Low permeability layer on top of high permeability layer: experiments with
k1/k2 < 1

Figure 4.3 shows post-processed experimental images for all six permeability ra-

tios considered in this study. In each case, images are collected 1000 s after the

descending plume is “switched on.” For the first three cases where k1/k2 < 1, the

flow behaviour is qualitatively similar to the case of a uniform porous medium

(Sahu & Flynn, 2015, figure 6). The dense plume flows with comparative ease

into the lower layer, and subsequently produces a pair of laterally propagating

gravity currents, followed by a deepening layer of discharged plume fluid. The

depth of this lower layer is described in terms of the average elevation of the “first

front,” the fluid interface separating the dense lower layer from the ambient upper

layer. First front elevations were determined using the maximum gradient algo-

rithm developed by Roes (2014) and subsequently employed by Roes et al. (2014)

and Sahu & Flynn (2015). By measuring the first front elevation and its time

derivative, it was straightforward to estimate the advection speed as a function

of time. Consequently the time required by the first front to reach the interface

and then the nozzle was calculated. Further quantitative details, e.g. showing

the filling box time vs. k1/k2,H1/H2 etc., are presented in section 4.4.1.
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(a) k1/k2 = 0.04 (b) k1/k2 = 0.11 (c) k1/k2 = 0.36

(d) k1/k2 = 2.77 (e) k1/k2 = 9.0 (f) k1/k2 = 25.0

Figure 4.3: Sample images of experiments with Q0 = 0.75 cm3/s, g′0 = 80.0 cm/s2 and
H1/H2 = 1.0 at t = 1000 s. Permeability ratios are as indicated. In sequence, the
images belong respectively to Experiments 19, 22, 27, 31, 35 and 40 from table E.2,
Appendix E. The field of view for each image measures 44 cm long × 40 cm tall.
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High permeability layer on top of low permeability layer: experiments with
k1/k2 > 1

In cases where k1/k2 > 1 (i.e. figures 4.3 d,e,f), we observe qualitatively different

flow dynamics from cases where k1/k2 < 1. To wit, some fraction of the plume

detrains along the interface and forms a pair of (primary) gravity currents that

propagate in the tank interior. The remaining fraction of the plume drains down

into the lower layer. Because the horizontal length of the primary gravity current

(at x = H1) is significantly larger than that of the line nozzle (at x = 0), the

former works as a distributed source of dense fluid at the interface for the lower

layer, contrary to the latter that works as a discrete source for the upper layer.

Note that in a discrete source, mixing occurs via entrainment from the sides

whereas in case of distributed source the mixing process is more complicated in

that it results from a Rayleigh-Taylor-type instability. The draining fluid from

this distributed source eventually reaches the tank bottom where it ultimately

forms a pair of secondary gravity currents (see figure 4.3 e). As k1/k2 increases,

so too does the relative flow resistance in the lower layer and the fraction of

plume fluid detrained along the interface. However, as indicated by (4.1), there

exists a primary gravity current run-out length Ľg. Once the front travels this

horizontal distance, the volume flux of fluid that drains from the gravity current

underside matches that detrained from the plume at the level of the interface, H1.

Consistent with the above remarks, Ľg increases with k1/k2. Figure 4.3 f shows

that when the permeability ratio is large, i.e. k1/k2 = 25, Ľg exceeds the tank

half-length, L. In this case, the primary gravity currents reach the sidewalls and

start advecting upward well before the lower layer is filled with contaminated

fluid. In other words, when Ľg > L plume fluid detrained at z = H1 advects

upwards much more quickly than it drains into the (tight) lower layer; the lower

layer therefore becomes effectively isolated. Consequently, by the time of control

volume overflow, only a small amount of dense fluid has permeated into the lower

layer, a scenario that becomes more pronounced with decreasing H1/H2 whereby

the time required to fill the upper layer decreases. For an effective filling of the

entire control volume with dense fluid, it is, irrespective of H1/H2, advantageous
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(a) Q0 = 0.25 cm3/s,
g′0 = 20.0 cm/s2,
t = 1400 s

(b) Q0 = 0.75 cm3/s,
g′0 = 20.0 cm/s2,
t = 1750 s

(c) Q0 = 0.25 cm3/s,
g′0 = 80 cm/s2,
t = 850 s

(d) Q0 = 0.75 cm3/s,
g′0 = 80 cm/s2,
t = 400 s

Figure 4.4: Sample images of experiments with k1/k2 = 9.0 and H1/H2 = 1.0 at the
approximate time instants when the draining fluid first reaches the lower impermeable
boundary. In sequence, the images belong respectively to Experiments 32, 33, 34 and
35 from table E.2, Appendix E. The field of view for each image measures 44 cm long
× 40 cm tall.

for Ľg < L as in figures 4.3 d,e.

Because the inflow conditions for the primary gravity currents are prescribed

by the outflow conditions of the plume at the interface, the primary gravity cur-

rent behaviour also depends on the source parameters, i.e. Q0 and g′0, as well

as k1/k2 and H1/H2. Figure 4.4 shows experimental images collected at the ap-

proximate time instants when the draining fluid first reaches the lower boundary.

The source conditions represent different permutations of Q0 = 0.25, 0.75 cm3/s

and g′0 = 20, 80 cm/s2, whereas H1/H2 = 1.0 and k1/k2 = 9.0. Thus we compare

in the different panels of figure 4.4 the gravity current length, Lg, against Q0

and g′0 for the same mean depth, b̄, of the draining fluid. Consistent with (1),

Lg increases with increasing Q0 and decreasing g′0. For fixed Q0, larger Lg (and

hence Ľg) signifies a smaller fraction of plume fluid propagating into the lower,

less permeable layer.

Figure 4.5 depicts gravity current flows for the same Q0, g
′
0 and k1/k2, but

various H1/H2, namely 0.5, 1.0 and 2.0. Owing to the influence of ambient en-

trainment into the plume, Lg increases as the depth of the upper layer (and hence

H1/H2) increases. Additional quantitative details relevant to this observation will

be provided in section 4.4.

Note finally that the draining flow, particularly that of figure 4.3 f, is typically

characterized by fingering patterns, which are indicative of a Rayleigh-Taylor-
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(a) H1/H2 = 0.5,
t = 250 s

(b) H1/H2 = 1.0,
t = 1400 s

(c) H1/H2 = 2.0,
t = 250 s

Figure 4.5: Sample images of experiments with Q0 = 0.25 cm3/s, g′0 = 30.0 cm/s2 and
k1/k2 = 9.0 at the approximate time instants when the draining fluid reaches the lower
impermeable boundary. Height ratios are as indicated. In sequence, the images belong
respectively to Experiments 9, 32 and 48 from tables E.1, E.2 or E.3, Appendix E. The
field of view for each image measures 44 cm long × 40 cm tall. (Note that in last image
the lower layer appears to be completely dark, which is however not the case. Because
of the smaller reduced gravity of the draining fluid compared to panels (a) and (b), the
draining fluid is visible only through magnification and/or image thresholding.).

I11 
I12 

(a) k1/k2 = 0.11

I21 

I22 

(b) k1/k2 = 9.0

Figure 4.6: Sample images of experiments with Q0 = 0.30 cm3/s, g′0 = 50.0 cm/s2 and
H1/H2 = 1.0 at the approximate time instants when the dense fluid reaches the lower
impermeable boundary. Permeability ratios are as indicated. In sequence, the images
belong respectively to Experiments 23 and 36 from table E.2, Appendix E. The field
of view for each image measures 22 cm long × 40 cm tall.
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type instability (Saffman & Taylor, 1958; Homsy, 1987; Drazin & Reid, 2004).

Because of the mixing associated with the downwards propagation of these fin-

gers, pixel intensities tend to be depressed beneath the interface as compared to

the brighter pixels seen behind the front of the primary gravity current. Dye

concentration can be taken as a surrogate for salinity, therefore, we likewise ex-

pect that the contaminated fluid below the interface is generally less dense than

that above the interface. However, because the tank is backlit and the images

are recorded from the front, the image intensity must also depend upon the lo-

cal bead diameter. Therefore to make a more definitive statement regarding the

entrainment of ambient fluid into the draining fluid, it is necessary to consider

bead diameter effects. In this spirit, figures 4.6 a and b show snapshots of post

processed experimental images from two separate experiments where the beads

in the upper and lower layers are flipped, such that k1/k2 = 0.11 in panel (a)

and k1/k2 = 9.0 in panel (b). All other parameters were kept the same between

the two experiments. In panel (a), we assume that the entrainment in the im-

mediate neighbourhood of the interface is small enough that the reduced gravity

just above and below the interface is effectively the same. Thus the difference in

the spatial-average intensities, I12 − I11, of the two boxes shown in panel (a) is

primarily as a result of the difference of bead diameter. Of course in panel (b)

the situation is more complicated because the intensity difference I21− I22 arises

both because of the difference of bead diameter as well as the aforementioned en-

trainment. Provided I21−I22 > I12−I11 and assuming a linear variation between

pixel intensity and fluid density, the mean reduced gravity, g′2B , of the lower layer

relative to the reduced gravity, g′1, of the upper layer can be estimated from

g′2B = g′1

(
I22 + I12 − I11

I21

)
. (4.2)

For the parameters relevant to figure 4.6, g′2B/g
′
1 = 0.43: vertical mixing is obvi-

ously less dramatic than in the analogue turbulent case devoid of porous media,

but its influence here is nonetheless palpable. Unfortunately, our efforts to further

quantify the extent of mixing were frustrated poor measurement repeatability.

Not surprisingly, we found that g′2B/g
′
1 depends on g′0 and, to a lesser extent, Q0.
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However, even for the images of a single experiment, we found that the magni-

tude of g′2B/g
′
1 can vary significantly depending on frame number and the size of

the interrogation window. Wishing to avoid a lengthy, and ultimately tangential,

discussion of this topic, we defer to future studies a detailed investigation of the

influence of the source and medium parameters and other factors on g′2B/g
′
1.

Horizontal time series for measuring gravity current propagation

Post-processed images were assembled to make movies using Matlab’s immovie

command. Horizontal time series (HTS) images of the type shown in figure

4.7 d,e,f were then constructed. They show the time variation of pixel intensity

along a particular horizontal line within the field of view. In the HTS images,

light and dark regions correspond, respectively, to regions occupied by discharged

plume fluid and ambient fluid. The boundaries between the light and dark regions

therefore denote the front position of the primary (figure 4.7 d) and secondary

(figure 4.7 f) gravity current against time, which is here non-dimensionalized by

the residence time, defined by

t0 =
2φΛLH

Q0

. (4.3)

The primary gravity current is first apparent shortly after the time, t = 0,

when the plume is switched on. (Note that for the quantitative analysis to be

presented in section 4.4, we assume t = 0 when the dense plume first reaches either

the lower impermeable boundary or the interface, for k1/k2 ≤ 1 or k1/k2 > 1,

respectively). Until the time instant, t1, when the draining fluid first reaches the

bottom boundary, the primary gravity current propagates with a large (nearly-

constant) velocity, which drops to a much smaller value as Lg reaches Ľg. The

gravity current then maintains roughly the same length Ľg until t = t2, i.e. when

the secondary gravity current, formed just after t1, reaches the right sidewall.

Discharged plume fluid then steadily accumulates in the lower layer and the

primary gravity current again advances along the interface. Finally at t = t3 the

lower layer becomes completely filled with contaminated fluid.

To experimentally measure Ľg, we consider the flow dynamics only until t1,
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Figure 4.7: [Colour online] Images showing examples of horizontal (HTS) and compos-
ite (CTS) time series images. HTS images are collected along the interface (panel d
corresponding to the long-dashed lines in panels a, b and c), at a depth H2/2 below the
interface (panel e corresponding to the dashed lines in panels a, b and c) and close to
the bottom of the tank (panel f corresponding to the dotted lines in panels a, b and c).
The associated timescale t0 is defined in (4.3). Images belong to Experiment 32 from
table E.2, Appendix E, for which the experimental parameters read Q0 = 0.25 cm3/s,
g′0 = 20.0 cm/s2, k1/k2 = 9.0 and H1/H2 = 1.0.
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i.e. when the flow is not yet influenced by the finite boundaries of the experimental

tank. From figures 4.7 d and 4.7 e, and in contrast to figure 2 of Goda & Sato

(2011), we find that experimental estimates for Ľg vary considerably depending

on whether measurements are made at or below the interface. For purposes of

comparing the measured and predicted values of Ľg in section 4.5, we restrict

attention to laboratory estimates derived from figures such as figure 4.7 e. The

rationale for this choice shall become obvious in section 4.4.2.

Composite time series (CTS) for measuring filling box time

In experiments where k1/k2 < 1, a single sharp nearly-horizontal boundary ap-

pears between the ambient fluid and that discharged from the plume (see figures

4.3 a,b,c). Therefore and by using the interface detection algorithm described

in section 4.3.2, it is straightforward to measure the time required for this first

front to reach the point of overflow. However, when k1/k2 > 1, figures 4.3 d,e,f

suggest a more convoluted boundary between ambient and contaminated fluid.

Because it is oftentimes difficult to unambiguously identify a first front or to

measure its vertical velocity directly from snapshot images, we choose instead to

focus attention on a composite time series (CTS). The algorithm for constructing

these images is similar to that of section 4.3.2 but replaces, for each time instant,

the intensity at a particular pixel with the column-average pixel intensity in the

interval 0 < x < H (Nicholson & Flynn, 2015). A sample CTS image is shown in

figure 4.7 g. The horizontal lines labeled as t1/t0, t2/t0 and t3/t0 correspond to

the snapshot images shown in panels (a), (b) and (c), respectively. The intensity

index, I, which appears in the colorbar on the right hand side of the CTS image,

and which ranges from 0 to 1, is a surrogate for the fraction of discharged plume

fluid contained within a particular column of pixels. From (3.1) of Shin et al.

(2004), and assuming again that the fluid density scales in proportion to dye

concentration, a formula for I can be given as

I(y, t) =
1

H

∫ H

0

ρ(y, x, t)− ρ∞
ρ0 − ρ∞

dx , (4.4)
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where ρ(y, x, t) is the fluid density at any location (y, x) for a particular time, t.

Thus, a value of I = 0 or 1 indicates, respectively, the presence of only ambient

fluid or only source fluid. The latter value is, of course, never realized: because

of the entrainment of ambient fluid into the plume, I remains strictly less than

unity.

Once the dense fluid reaches the point of overflow, the time rate of increase in

the average fluid density becomes much smaller than at early times. Therefore,

(4.4) suggests that at large times the image intensity I should become nearly

uniform; figure 4.7 g with y/L 6→ 1 indeed displays this behaviour. In the region

close to the sidewall, the lower image intensity is due to sidewall effects, which

allow light from the projector to enter the tank without first passing through

those beads adjacent to the back surface of the tank. In figure 4.7 g the solid

black diagonal line shows the times beyond which the time rate of change of

pixel intensity becomes suitably small. Meanwhile the dashed line indicates the

extension of this solid black line to the point y/L = 1. This point of intersection

defines the time for overflow, which we label as tT .

4.4 Theoretical development

Over 0 < x ≤ H1, the dense plume behaves like in an uniform porous medium

and we can therefore use the formulas presented in Sahu & Flynn (2015) for

estimating key parameters of interest, i.e. the plume volume flux, Q(x), and

reduced gravity, g′(x), averaged over the plume cross-section. The associated

equations respectively read

Q(x) =

[(
16F0k1Λ

πν

)2

αφ1(x+ x0)

]1/4
,

g′(x) =

[(
πF0ν

16k1Λ

)2
1

αφ1(x+ x0)

]1/4
. (4.5)

Here, F0 is the source buoyancy flux, Λ is the line source width, ν is the fluid

viscosity, φ1 is the porosity of the upper layer and α is the dispersivity constant,

which was measured experimentally by Sahu & Flynn (2015) and equals 0.015 cm
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provided Re ≤ O(10) and Pe � O(1). Furthermore, x0 represents a virtual

origin correction that accounts for the finite source volume flux Q0 (> 0) of the

(non-ideal) plume; x0 is given by

x0 =
1

αφ1

(
πν

16F0k1Λ

)2

Q0
4 . (4.6)

Re-iterating from Chapter 2, (4.5) shows that the volume flux of the dense falling

plume increses with the increasing distance from the source. This increase occurs

as a result of the entrainment of external fluid into the falling plume. For the

same reason, the reduced gravity decreases as source fluid moves away from the

source. Moreover, the virtual source location, x0, in (4.6) indicates that the

volume flux at the source cannot be zero in case of real plumes.

From (4.5), we can easily calculate the volume flux, Q1, and mean reduced

gravity, g′1, of the plume at the interface by setting x = H1. Thus

Q1 =

[(
16F0k1Λ

πν

)2

αφ1(H1 + x0)

]1/4
and

g′1 =

[(
πF0ν

16k1Λ

)2
1

αφ1(H1 + x0)

]1/4
. (4.7)

The above results help to specify the inflow conditions for the lower layer plume

and the primary gravity current, the latter of which appears only when k1/k2 > 1.

4.4.1 Permeability ratio k1/k2 < 1

When the dense plume enters a lower layer having permeability k2 > k1, the

qualitative nature of the (primarily vertical) flow remains the same. To describe

the lower layer plume quantitatively, we need to introduce a second virtual origin,

x1, whose magnitude depends on Q1, i.e.

x1 =
1

φ2α

(
πν

16F0k2Λ

)2

Q1
4 =

φ1

φ2

(
k1
k2

)2

(H1 + x0). (4.8)
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Then by adapting (4.5), we can predict the plume volume flux and reduced gravity

as functions of x in the lower layer. Thus

Q(x) =

[(
16F0k2Λ

πν

)2

αφ2(x−H1 + x1)

]1/4
,

g′(x) =

[(
πF0ν

16k2Λ

)2
1

αφ2(x−H1 + x1)

]1/4
, (4.9)

for H1 < x ≤ H. Here H = H1 +H2 is the control volume height. These results

can easily be extended to calculate Q2 and g′2A , the respective values of the plume

volume flux and reduced gravity at the bottom of the control volume, i.e.

Q2 =

[(
16F0k2Λ

πν

)2

αφ2(H2 + x1)

]1/4
,

g′2A =

[(
πF0ν

16k2Λ

)2
1

αφ2(H2 + x1)

]1/4
. (4.10)

After the dense plume reaches this bottom boundary, its subsequent horizontal

motion can be described using the equations for gravity current flow through a

porous medium. Employing the equations of Sahu & Flynn (2015), which are

themselves based on the seminal analysis of Huppert & Woods (1995), it can be

shown that the gravity current front speed is given by

vg =
2λ

3

(
q2S2

t

)1/3

. (4.11)

Here q2 =
Q2

2Λ
and S2 =

k2g
′
2A

νφ2

. Moreover, λ = 2.046 represents the dimensionless

position of the leading edge of the gravity current. Consistent with Sahu &

Flynn (2015), we assume that the time scale associated with plume flow is much

smaller than that of either the horizontal motion of the gravity current or the

vertical motion of the first front, the latter of which is considered below. This

assumption is valid provided L/H ≥ O(1). On this basis, t = 0 corresponds to

the time instant when the dense plume first reaches the bottom of the control

volume.

On further simplification, and recalling that the buoyancy flux, F0 = Q0g
′
0 =
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Q(x)g′(x), is conserved, (4.11) yields

vg =
2λ

3

(
F0k2

2Λνφ2t

)1/3

. (4.12)

The time required for the gravity current to reach the sidewall is therefore

tL =

[(
L

λ

)3
1

q2S2

]1/2
=

[(
L

λ

)3
2Λνφ2

F0k2

]1/2
. (4.13)

Because the plume buoyancy flux is independent of x, vg and tL are independent

of H and, for that matter, Q0. Note finally that at t = tL, the mean height of

the gravity current is given by

h̄tL =
1

λ

(
q22tL
φ3
2S2

)1/3

. (4.14)

Because h̄tL separately depends on Q2 (through q2) and g′2A (through S2), this

mean height does depend on H, unlike vg and tL.

After reaching the sidewalls, the discharged dense fluid forms a deepening

layer of contaminated fluid whose upper boundary, termed the first front by

Baines & Turner (1969), begins advecting upwards. The motion of the first front

can again be determined based on the analysis of Sahu & Flynn (2015). However,

and relative to the rising first front, there appears a sudden decrease of perme-

ability at height h̄ = H2, measured from the bottom of the tank. Consequently,

the timescales associated with the motion of the first front need to be defined

separately in the lower and upper layers.

In the lower layer, at t = tL, the curvature of the first front is dictated by the

shape of the gravity current at the time instant when it collides with the lateral

sidewall. In other words, the initial mean elevation of the first front is given by

(4.14). If tH2 is the time required for the first front to subsequently advect to the

interface, we then require a formula for the mean height, h̄, of the first front over

tL < t < tL + tH2 . The expression in question reads

h̄ = H2 + x1−

(H2 + x1 − h̄tL)3/4 − 3

4

(t− tL)

A

(
16F0k2Λα

1/2

πνφ
3/2
2

)1/2
4/3

. (4.15)
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This result is valid up to the point where h̄ = H2 and shows the correct limiting

behaviour as t→ tL whereby h̄ = h̄tL as specified in (4.14). In the above equation,

A = 2ΛL is the tank cross-sectional area.

As the first front rises, its curvature decreases, i.e. the first front becomes

progressively more horizontal. This levelling process is accelerated close to the

interface due to the added flow resistance associated with advection through the

upper layer, whose permeability is less than that of the lower layer. Heuristically

speaking, it becomes easier for discharged plume fluid to flow outwards than to

flow upwards. To a first approximation, we therefore assume that the first front

is horizontal as it begins to advect through the upper layer. The strength of

this approximation obviously improves with increasing H2 and decreasing k1/k2.

When t = tL + tH2 , h̄ = H2, and (4.15) therefore yields

tH2 =
4

3
A

(
πνφ

3/2
2

16F0k2Λα1/2

)1/2 [
(H2 + x1 − h̄tL)3/4 − x3/41

]
. (4.16)

By extension, the counterpart of (4.15) for the upper layer reads

h̄ = H + x0 −

(H + x0 −H2)3/4 − 3

4

(t− tL − tH2
)

A

(
16F0k1Λα1/2

πνφ
3/2
1

)1/2
4/3

. (4.17)

Equation (4.17) is valid for tL + tH2 < t < tL + tH2 + tH1 where

tH1 =
4

3
A

(
πνφ

3/2
1

16F0k1Λα1/2

)1/2 [
(H + x0 −H2)

3/4 − x3/40

]
, (4.18)

is the time required for the first front to advect over the vertical distance H1.

Thus the total time required for the first front to advect to the level of the source

is tH2 + tH1 .

The variation of h̄ vs. t is presented in figure 4.8 for various k1/k2 assuming

equal upper and lower layer depths. The surface of figure 4.8 shows an obvious

kink, which becomes more pronounced as k1/k2 decreases; the kink reflects the

sudden increase of volume flux experienced by the plume as it enters the lower

layer. Of course, the kink disappears in the limit k1/k2 → 1 in which case the

porous medium becomes uniform so that the value of H1/H2 is irrelevant.
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Figure 4.8: [Colour online] Variation of h̄ with time and k1/k2 for H1/H2 = 1 (see
equations 4.15–4.18).

For the purposes of further comparing the above results with the uniform

porous medium case, let us assume that the control volume consists of a uniform

porous medium where the permeability and porosity are given by the following

depth-weighted average values: km = (H1k1+H2k2)/(H1+H2) and φm = (H1φ1+

H2φ2)/(H1 +H2). In this case, the time required for the gravity currents to reach

the left and right sidewalls is given by

tLm =

[(
L

λ

)3
2Λνφm
F0km

]1/2
. (4.19)

Meanwhile the time required for the first front to advect from the bottom to the

top of the control volume is given by

tHm =
4

3
A

(
πνφ

3/2
m

16F0kmΛα1/2

)1/2 [
(H + xm − h̄tLm)3/4 − x3/4m

]
. (4.20)

Here

xm =
1

φmα

(
πν

16F0kmΛ

)2

Q0
4 and h̄tLm =

1

λ

(
q22νtL
φ2
mkmg

′
m

)1/3

. (4.21)

Furthermore, qm = Qm/2Λ and g′m are calculated using the formulas given in

(4.10) by replacing k2, φ2, x1 and H2 with km, φm, xm and H, respectively. The

dimensionless timescale associated with filling both the upper and lower layers
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Figure 4.9: [Colour online] Variation of t′A vs. k1/k2 based on (4.23) for (a) various
H1/H2 with φ1/φ2 = 1, and (b) various φ1/φ2 with H1/H2 = 1.

can therefore be written as

t′A =
tL + tH1 + tH2

tLm + tHm

. (4.22)

We now recall that the gravity current solutions, and therefore tL and tLm , are

obtained presuming sharp interfaces and a constant source volume flux. If h̄tL

and h̄tLm are respectively removed from (4.16) and (4.20) whereby the details of

the gravity current motion are ignored but the first front is presumed to start

from the very bottom of the control volume, tL and tLm can then be omitted from

(4.22). In other words, and with reference to (4.22), equivalent results for t′A are

obtained by ignoring tL and tLm , but likewise assuming h̄tL and h̄tLm to be zero

when computing tH1 and tHm , respectively. For further simplification, we recall

that the flow is in a Darcy regime and therefore assume either a weak non-ideal

plume source with x0 � H1 and xm � H, or, alternatively, an ideal source with

x0 = xm = 0. In either case, (4.8) shows that x1 =
φ1

φ2

(
k1
k2

)2

H1. Then on

substituting (4.16), (4.18) and (4.20) into (4.22), it can be shown that

t′A =

(
1 + k1

k2
H1

H2

)1/2{(
φ1

φ2

H1

H2

)3/4
+
(
k1
k2

)1/2 [(
1 + φ1

φ2

(
k1
k2

)2
H1

H2

)3/4

−
(
φ1

φ2

(
k1
k2

)2
H1

H2

)3/4
]}

(
k1
k2

)1/2 (
1 + H1

H2

)1/2 (
1 + φ1

φ2

H1

H2

)3/4 .

(4.23)
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The variation of t′A with k1/k2 for various H1/H2 and φ1/φ2 are shown in figure

4.9. Although (4.23) is strictly valid when k1/k2 ≤ 1, we extend t′A to k1/k2 > 1

for reasons that will become obvious below. In panel (a), where φ1/φ2 = 1,

t′A = 1 for all values of H1/H2 when k1/k2 = 1. In this case, there is no difference

between the lower and upper layers. By contrast, the porous medium of panel

(b) is uniform only when both horizontal axis variables equal unity. In either

panel it is observed that t′A increases as k1/k2 decreases: when k1/k2 < 1, (4.5),

shows that the plume volume flux remains very small throughout the upper layer.

This has the effect of increasing tH1 significantly as compared to the case where

the upper layer permeability is km (> k1). This behaviour is consistent with the

time-scales presented in figure 4.8 for H1/H2 = 1, whereby tH1 � tH2 when

k1/k2 � 1. Note, moreover, that the surface of panel (a) shows a peak when the

upper and lower layers are equal in depth. As H1/H2 decreases from unity, the

upper layer becomes thinner such that its influence on tH1 + tH2 decreases, which

further suggests that t′A ≈ 1 as H1/H2 → 0. On the other hand, for H1/H2 > 1

the difference between k1 and km decreases as does t′A, which again approaches

unity as H1/H2 now approaches infinity.

4.4.2 Permeability ratio k1/k2 > 1

As discussed in section 4.3.2, when the permeability of the lower layer is com-

paratively small, the plume fluid discharged at the interface takes the form of a

porous media gravity current flowing over a porous base having an even lower

permeability. While the solution presented by Huppert & Woods (1995) for grav-

ity current flow over an impermeable base has already been used to good effect

in section 4.4.1, we adopt Goda & Sato (2011)’s methodology in approaching the

current problem. An important difference between our work and theirs is that we

consider a control volume with closed boundaries whereas their two-layer porous

medium was infinite in extent. Their solutions are therefore only applicable until

the primary gravity current reaches the sidewall and whatever fluid that drains

from this gravity current has not yet reached the bottom boundary. Using vari-

ables defined in figure 1, we therefore require that Lg < L and b < H2. Thus,
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and by assuming a hydrostatic pressure distribution, the governing equation for

the primary gravity current height, hg(y, t), measured relative to the elevation of

the interface reads

φ1
∂hg
∂t

=
k1g
′
1

ν

∂

∂y

(
hg
∂hg
∂y

)
− w. (4.24)

Here w = w(y, t) is the drainage velocity, whose value depends both on the

primary gravity current height and the draining fluid depth b(y, t) such that

w = φ2
∂b

∂t
=
k2
ν

(
g′2Bb+ g′1hg

b

)
. (4.25)

Note that g′1 and g′2B are the mean reduced gravity of the gravity current and the

draining fluid, respectively. The experimental images of section 4.3 (i.e. figures

4.3 f, 4.4 and 4.6) suggest that g′1 and g′2B are different, however, for analytical

tractability we apply the same sharp interface approximation used by Goda &

Sato (2011) whereby mixing and entrainment are assumed small. Thus g′2B = g′1,

in which g′1 is defined in (4.7). The validity of this approximation is further

discussed below. Setting g′2B = g′1, (4.25) simplifies to

w = φ2
∂b

∂t
=
k2g
′
1

ν

(
1 +

hg
b

)
. (4.26)

Equations (4.24) and (4.26) are subject to the following boundary conditions

k1g
′
1

ν
hg
∂hg
∂y

= −q1 and hg(Lg(t), t) = b(Lg(t), t) = 0 , (4.27)

where q1 =
Q1

2Λ
is the plume volume flux per unit length at the interface. Fur-

thermore hg and b must also satisfy an expression of global volume conservation

such that ∫ Lg(t)

0

[φ1hg(y, t) + φ2b(y, t)] dy = q1t . (4.28)

In contrast to the discussion of section 4.4.1, we now assume that t = 0 corre-

sponds to the instant in time when the plume first reaches the interface.

As b progressively increases, the primary gravity current stops moving for-

ward as the influx of dense plume fluid becomes balanced by fluid draining from

the gravity current underside (Goda & Sato, 2011). In other words, as time
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progresses,
hg
b

becomes small and Lg(t) → Ľg, where Ľg is defined by (4.1).

Consequently, or by a trivial rearrangement of (4.1),

q1 = Ľgw = Ľg
k2g
′
1

ν
. (4.29)

Furthermore, as Lg(t)→ Ľg, Goda & Sato (2011) suggest that the gravity current

height varies linearly with y. Converting their non-dimensional height profile,

i.e. given in (3.20) of Goda & Sato (2011), into dimensional form yields

ȟg =

(
k2
k1

)1/2

(Ľg − y) ⇒ ˇ̄hg =

(
k2
k1

)1/2
Ľg
2
, (4.30)

where ˇ̄hg is the mean gravity current height associated with the run-out length of

Ľg. The corresponding time instant, ť, cannot be determined exactly from Goda

& Sato (2011): their figure 2 shows that the run-out length is approached asymp-

totically. For the present purposes, therefore, we associate ť with the moment

when Lg = 0.9Ľg
1. On this basis, and using data from Goda & Sato’s figure 3 a,

it can be shown that

ť =
9.8q1
φ1S2

1

(
k1
k2

)3/2

. (4.31)

At this time instant, the mean draining fluid depth is ˇ̄b. To determine the value

of ˇ̄b, we use (4.28) and infer that

ˇ̄b =
1

φ2

[
q1ť

Ľg
− φ1

(
k2
k1

)1/2
Ľg
2

]
, (4.32)

where the latter term incorporates the mean height of the primary gravity current

at t = ť. Note that the mean draining fluid depth, b̄, continuously increases with

time and the corresponding value of b̄ at t > ť can be determined by simply

replacing ť with t in (4.32).

If ˇ̄b < H2, the additional time required by the draining fluid to reach the lower

impermeable boundary can be estimated from

tB1 =
φ2ΛĽg(H2 − ˇ̄b)

Q1

. (4.33)

1While comparing the predicted and measured values of Ľg in section 4.5, we employ the formula
presented in (4.1), and therefore the above assumption of Lg = 0.9Ľg does not affect our result.
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Figure 4.10: [Colour online] Variation of t′B vs. k1/k2 based on (4.36) for (a) various
H1/H2 with φ1/φ2 = 1, and (b) various φ1/φ2 with H1/H2 = 1.

Thereafter, a secondary gravity current is formed that fills, from the bottom up,

the lower layer with contaminated fluid. Assuming a sharp interface between this

contaminated fluid and the overlying ambient, we can infer the time required

to fill the remaining part of the lower layer with discharged plume fluid. The

corresponding formula reads

tB2 =
2φ2ΛH2(L− Ľg)

Q1

. (4.34)

The total time required to fill the lower layer can then be approximated as tB =

ť + tB1 + tB2 . However, this estimation is valid only if Ľg < L and ˇ̄b < H2. In

cases where Ľg < L but ˇ̄b > H2, the total time required to fill the lower layer

can instead be estimated by treating the lower layer as its own control volume,

where the only inflow is due to the plume at the interface. The formula for the

associated time scale reads

tB =
2φ2ΛLH2

Q1

, (4.35)

provided that H2 � ȟg and a sharp interface assumption is valid. Equation (4.35)

differs from the prediction for tH2 given by (4.16) in two ways: (i) (4.35) ignores

lower layer entrainment whereas (4.16) does not, and (ii) the control volume used

in the derivation of (4.35) is the entire lower layer whereas that considered in the

analysis leading to (4.16) is the portion of the lower layer below the first front.

After filling the lower layer, the interface between the dense and ambient fluids
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is assumed to advect upwards in the form of a first front as shown in figure 4.7 c.

Therefore, to simplify the analysis, we proceed by considering a mean first front

height, h̄, as defined in (4.17). Equation (4.18) can then be used to estimate the

time, tH1 , required to fill the upper layer. Finally the total filling box time for

this configuration with k1/k2 > 1 is given by tB + tH1 .

To find a dimensionless time similar to that given by (4.23), we take the ratio

of tB + tH1 and tHm , the latter of which is defined by (4.20) where, as with the

previous analysis, we assume h̄tLm = 0. After some simplification, it can be

shown that

t′B =

(
1 + k1

k2

H1

H2

)(
3
4

+ φ1
φ2

H1

H2

)
k1
k2

(
φ1
φ2

)1/4 (
1 + φ1

φ2

H1

H2

)3/4 (
H1

H2

)3/4 (
1 + H1

H2

)1/2 . (4.36)

Figure 4.10 shows the variation of t′B vs. k1/k2 for various H1/H2 and φ1/φ2.

Unlike in figure 4.9 where t′A = 1 when k1/k2 = 1 and φ1/φ2 = 1, here we find

that t′B > 1 when k1/k2 = 1 for all values of H1/H2 and φ1/φ2. This anomalous

prediction arises because of the sharp interface assumption used in the deriva-

tion of tB, and therefore t′B. The sharp interface assumption obviously ignores

mixing so that a longer time is needed to render the lower layer contaminated.

Furthermore, (4.7) suggests that Q1 decreases with k1, φ1, H1, therefore in both

panels of figure 4.10 the peaks of t′B coincide with the smallest possible values of

k1/k2 and φ1/φ2 or H1/H2.

4.5 Comparison between theory and experiment

Figure 4.11 shows the mean elevation, h̄, of the first front vs. time for various

k1/k2 < 1. The figure considers the case of equal upper and lower layer depths;

similar results (not shown) apply when H1/H2 6= 1. For each of the three k1/k2

values, the solid curves of figure 4.11 are extracted from the surface of figure 4.8.

Model predictions are verified using experimental data corresponding to differ-

ent source conditions. For a meaningful comparison, the measured mean height

and corresponsing advection time are non-dimensionalized using the control vol-

ume height, H, and corresponding time-sclae, tH . Moreover, the gravity current
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Figure 4.11: First front mean elevation when (a) k1/k2 = 0.04, (b) k1/k2 = 0.11 and
(c) k1/k2 = 0.36. Experimental parameters are specified in table E.2, Appendix E.
Note that H1/H2 = φ1/φ2 = 1.0 in all cases.

height, h̄tL , and time scale, tL, are respectively subtracted so that data from dif-

ferent experiments, organized by permeability ratio, can collapse well with the

theoretical prediction. Figure 4.11 shows that a good agreement is observed in

all cases. More specifically, the experimental data capture the sudden change

of slope experienced when the first front reaches the interface; this effect is ob-

viously more pronounced for smaller values of k1/k2. Indirectly the favourable

comparisons of figure 4.11 verify the predictions for the plume volume flux given

by (4.5) and (4.9) because the first front elevation is determined from Q using a

volume flux balance. Comparing panels (a) and (c), in particular the horizontal

coordinate of the kink, also confirms that as k1/k2 decreases, the fraction of time

required to fill the upper layer increases significantly for fixed height ratio.

When k1/k2 > 1, a well-defined first front does not exist in the lower layer

(see figure 4.3). However, because a pair of gravity currents is generated at the
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Table 4.1: Comparison of the predicted (Ľg) vs. measured (Ľg,1 and Ľg,2) run-out
lengths of the primary gravity current for various H1/H2, Q0 and g′0. In all experiments,
k1/k2 = 9.0. Note that Ľg is defined in (4.1). Moreover, Ľg,1 and Ľg,2 are measured
using HTS images, as shown in figure 4.7 and summarized in section 4.3.2. Further
experimental parameters are specified in tables E.1 and E.2, Appendix E.

Expt no. H1/H2 Q0 (cm3/s) g′0 (cm/s2) Ľg/L Ľg,1/L Ľg,2/L

9 0.5 0.30 29.43 0.134 0.248 0.186
10 0.5 0.80 29.43 0.140 0.471 0.335
11 0.5 0.30 78.48 0.133 0.233 0.231
12 0.5 0.80 78.48 0.134 0.366 0.295
32 1.0 0.25 21.20 0.173 0.422 0.241
33 1.0 0.75 21.20 0.186 0.646 0.402
34 1.0 0.25 82.40 0.172 0.281 0.228
35 1.0 0.75 82.40 0.172 0.385 0.241

interface, we compare measured run-out lengths with the analogue predictions

due to (4.1) in table 4.1. This table is limited to eight entries for the following

reason: when k1/k2 = 2.8, Ľg/L� 1 and when k1/k2 = 25.0 (or when k1/k2 = 9.0

but H1/H2 = 2.0), Ľg/L > 1 – see figure 4.3 d,f. In the former (latter) case,

measurements of Ľg are problematic (impossible), and hence any comparison with

the predictions of section 4.4 is not worthwhile. On the other hand, when k1/k2 =

9.0 and H1/H2 = 0.5 or 1.0, O(0.1) < Ľg/L < 1, and therefore it is possible

to make a comparison with theory. In drawing such a comparison, note that

table 4.1 reports two different experimental values, one measured immediately

above (Ľg,1) the interface and one measured below (Ľg,2), i.e. midway between

the interface and the lower boundary. Drawing such a distinction is necessary

because, as figures 4.7 d,e indicate, but in contrast to figure 2 of Goda & Sato

(2011), measurements of the primary gravity current length are different between

the two layers with Ľg,1 > Ľg,2. Moreover, recall from (4.29) that Ľg is predicted

by balancing the plume volume flux, q1, and the flux of dense fluid draining into

the lower layer from the gravity current underside. Figure 4.7 a suggests that the

volume flux of the draining fluid is associated only with Ľg,2, not Ľg,1. On this

basis, it is more appropriate to compare Ľg vs. Ľg,2.

In table 4.1, we find that measured values for Ľg are larger than their predicted
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counterparts by 39% on average. The likely reason for this discrepancy is as

follows: the prediction for Ľg given by (4.1), is predicated on a sharp interface

assumption. On the other hand, if interfaces are not sharp such that mixing

occurs, this mixing results in a decrease of g′2B , the reduced gravity measured

below the interface. In that case, (4.25) ought to instead yield Ľg = q1ν/k2g
′
2B

.

For reasons discussed previously in section 4.3.2 it is difficult to precisely estimate

g′2B from our current experimental images, however, figures 4.3 f, 4.4, 4.5 and

4.6 b clearly support the notion that mixing leads to a depressed value for g′2B

(i.e. notably below g′1), which, in turn, leads to an under-prediction of Ľg on the

part of (4.1).

In order to compare the variation of the filling box time, tT , with k1/k2,

results are plotted in figure 4.12 for all 50 experiments where panels (a), (b)

and (c) correspond, respectively, to H1/H2 = 0.5, 1.0 and 2.0. The comparison is

made in two steps: first, the dimensionless timescales, t′A and t′B, defined by (4.23)

and (4.36), respectively, are compared with each other, then the comparisons are

drawn against laboratory data.

Although t′A was derived by assuming k1/k2 ≤ 1.0, we extend the (thick) curve

in question into the regime where k1/k2 > 1.0 to examine its applicability for

larger values of the permeability ratio. The extension of t′A to k1/k2 > 1.0 implies,

in effect, that whatever entrainment may be associated with contaminated fluid

draining from the underside of the primary gravity current is comparable to that

associated with a single descending plume. On the other hand, t′B from (4.36) is

predicted using a sharp interface assumption such that any mixing between the

contaminated and ambient fluid is assumed negligible. Thus the thick dashed

and thin solid curves denoting t′A and t′B, respectively, converge for sufficiently

large k1/k2. In this limit, k2 is comparatively small suggesting only a limited

opportunity for entrainment of lower layer ambient fluid on the part of descending

contaminated fluid. The models leading to (4.23) and (4.36) therefore become

effectively the same: in neither case is appreciable mixing below the interface

permitted. Furthermore, we observe a reduced difference between t′A and t′B for

smaller H1/H2. When the lower layer is relatively thin, the contaminated fluid
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has less opportunity to mix with large volumes of ambient fluid before reaching

the lower impermeable boundary. Therefore, and as in the case of large k1/k2,

the plume volume flux deviates little from Q1 for H1 < x < H.

On comparing theory and experiment in figure 4.12, we generally find good

agreement between measured data points and the thick solid curve. By contrast,

when k1/k2 > 1.0, favourable agreement is typically observed only for sufficiently

large H1/H2 and k1/k2 whereby entrainment in the lower layer is expected to

be modest. The divergence of data observed in panel (b) when k1/k2 = 25.0

is primarily because Ľg/L > 1 in these experiments. The lower layer therefore

becomes isolated as in figure 4.3 f, whereby the upper layer fills faster than the

lower layer and it becomes difficult to ascertain when the entire control volume

has become filled with contaminated fluid. There are, in other words, additional

physical effects at play that are not thoroughly accounted by (4.23) and (4.36).

Further examination of these effects is outside the scope of the present study.

4.6 Conclusions

Extending the works of Roes et al. (2014) and Sahu & Flynn (2015, 2016b), filling

box flows in porous media are studied experimentally and analytically to examine

the effects of sudden permeability changes in a rectilinear control volume. The

flow is assumed to be Boussinesq and laminar such that the Pe � O(1) where

Pe is the Péclet number. The buoyant convection is driven by a line source that

spans the width of the control volume and whose effluent is miscible within the

ambient fluid that saturates the porous medium.

Experiments were performed considering as independent variables the perme-

ability (k1/k2) and height (H1/H2) ratios of the upper and lower layers as well

as the source volume flux (Q0) and reduced gravity (g′0). As summarized in Ap-

pendix E, a total of six permeability ratios, namely 0.04, 0.11, 0.36, 2.78, 9.0 and

25.0, were considered in combination with three height ratios, namely 0.5, 1.0

and 2.0. Meanwhile source conditions were varied over the following intervals:

0.25 ≤ Q0 ≤ 0.80 (cm3/s) and 20.0 ≤ g′0 ≤ 80.0 (cm/s2).
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Figure 4.12: Non-dimensional filling box time when (a) H1/H2 = 0.5, (b) H1/H2 = 1.0
and (c) H1/H2 = 2.0. Note that φ1/φ2 = 1.0 in all cases. Discrete data shows the
measured values; the data presented for k1/k2 = 1.0 correspond to Experiments 1, 3,
7 and 8 of Sahu & Flynn (2015, table 1). Experimental data are corrected for finite
source effects by adding the time required for the first front to advect from x = 0 to
x = −x0. Symbols represent the following range of values for Q0 and g′0: (i) circles:
0.20 ≤ Q0 ≤ 0.50 (cm3/s), 25.0 ≤ g′0 ≤ 50.0 (cm/s2), (ii) stars: 0.60 ≤ Q0 ≤ 0.80
(cm3/s), 25.0 ≤ g′0 ≤ 50.0 (cm/s2), (iii) squares: 0.20 ≤ Q0 ≤ 0.50 (cm3/s), 60.0 ≤
g′0 ≤ 80.0 (cm/s2) and (iv) triangles: 0.60 ≤ Q0 ≤ 0.80 (cm3/s), 60.0 ≤ g′0 ≤ 80.0
(cm/s2).
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When k1/k2 < 1.0, the observed flow dynamics are qualitatively similar to

the case of a uniform porous medium, i.e. when k1/k2 = 1. Thus, consistent with

Sahu & Flynn (2015), the filling box flows are dominated by (i) a negatively-

buoyant plume, (ii) oppositely-directed gravity currents that propagate along the

lower impermeable boundary and (iii) a first front that propagates in the vertical

direction towards the source. Accordingly the analytical formulations of Sahu

& Flynn (2015) are adopted when predicting key dynamical parameters e.g. the

time-scales associated with the motion of the gravity currents and first front. In

the present case, however, different permeabilities and virtual source corrections

must be applied for the upper and lower layers.

On the other hand, the experiments with k1/k2 > 1.0 exhibit significantly

different flow dynamics from those relevant to the uniform porous medium case.

The dense plume after reaching the interface divides into two parts. Some of

the plume fluid propagates horizontally outward as a pair of oppositely-directed

(primary) gravity currents. The remaining volume of the plume fluid directly

drains into the lower layer and subsequently creates a pair of (secondary) gravity

currents that propagate along the lower impermeable boundary. The flow of the

primary and secondary gravity currents are distinct one from the other. Because

of continuous drainage from the underside of the primary gravity current, the

motion of the front is irregular, i.e. the front temporary stops after traveling

a horizontal distance Ľg, which decreases with g′0 but increases with k1/k2 and

Q0. Therefore, in several cases, for instance the experiments with k1/k2 = 25.0,

Ľg > L, where L is the horizontal distance of the sidewall from the source. In

such instances, the ambient fluid in the lower layer becomes isolated from that in

the upper layer. Consequently, only a relatively small volume of discharged plume

fluid may infiltrate the lower layer by the time of overflow, defined as the time

at which discharged plume fluid reaches the elevation of the source in the upper

layer. A formula for Ľg, taken from Goda & Sato (2011), is presented in (4.1).

The equation was originally derived by assuming immiscible fluids, and therefore

a sharp interface between the draining fluid and the lower layer ambient fluid.

However the image analysis of section 4.3 shows that significant mixing may arise
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in case of miscible fluids and media with comparatively large φ (here φ ' 0.38

away from the interface). Although it is outside of the scope of the present inquiry

to analytically estimate the degree of mixing, the analysis associated with figure

4.6 suggests that the reduced gravity the draining fluid can be notably smaller

than that of the primary gravity current. Therefore, when considering miscible

fluids, the prediction of Goda & Sato (2011) must be regarded as a lower bound

that is easily exceeded by measured values (table 4.1).

For k1/k2 < 1.0, the time, t′A, required for overflow is given by (4.23). The cor-

responding time, t′B, for the k1/k2 > 1.0 case is given by (4.36). Consistent with

the above remarks, the latter formula ignores any detailed analytical account-

ing for mixing and instead assumes a sharp interface model in the lower layer.

Correspondingly, we find from figure 4.12 that predicted values for t′B generally

over-predict analogue measurements, though the agreement typically improves

with decreasing lower layer depth: as H2 decreases, there is less opportunity for

mixing between the discharged plume fluid and the surrounding ambient. On the

other hand, relatively poor agreement is noted when Ľg/L > 1.0. As remarked

previously, the primary gravity current in this case isolates the lower from the

upper layer whereby overflow may occur before the lower layer is fully or even

moderately contaminated with discharged plume fluid. Furthermore, on com-

paring the measured values with t′A for k1/k2 > 1.0, provided Ľg/L < 1.0, in

figure 4.12, a reasonably good agreement is obtained; the entrainment into the

descending dense fluid is interestingly therefore similar to or slightly larger than

that associated with a single discrete plume.

The derivations of section 4.4.2, when k1/k2 > 1.0, consider several simpli-

fying assumptions, e.g. that of the sharp interface, which are necessary to make

analytical progress in the current work. Determining more precisely the rate of

entrainment of ambient fluid into the dense fluid that drains from the underside

of the primary gravity current is an important topic of future study. Moreover,

the current work assumes a horizontal interface between two permeable media.

However, in real geophysical scenarios, thrust may render such interfaces non-

horizontal and also non-planar. In the near future, we therefore plan to study
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the effects of inclined porous layers in the context of filling box flows.
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Chapter 5

Summary and conclusions

While “filling box” flows have been extensively studied in context of free turbu-

lent plumes since the investigation of Baines & Turner (1969), negligible efforts

have been made for studying them in context of a porous medium. Roes et al.

(2014) studied filling box type flow in a leaky porous medium but focused only on

the long-time behavior. Thus Roes et al. (2014)’s investigation considers steady

conditions wherein the plume volume flux at the first front elevation balances the

outflux of discharged plume fluid through the fissures located at the bottom of

the box. Expanding significantly on this previous work, we herein study the tran-

sient behavior of filling box flows in confined porous media. Two specific cases

are considered: a uniform and a non-uniform porous media. In the former case,

filling box flows are studied both in a rectilinear and in an axisymmetric geom-

etry, whereas in the latter case, filling box flows are studied only in a rectilinear

geometry.

The flow components in the uniform case are divided into three primary

regimes, namely the plume, gravity current and first front. The source of dense

fluid is located at the top of the control volume and creates a negatively-buoyant

plume in an ambient of light fluid. Moreover, the flow is assumed to be in a

Boussinesq, Darcy regime with Péclet number Pe � O(1). For Darcy plumes

with Pe . O(1), a solution describing the plume behavior already exists in the

literature (Wooding, 1963). However, the situation is different for Pe � O(1)

and the self-similar solutions presented in Chapters 2 and 3 are the first of their

kind to the best of our knowledge.
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In Chapter 2 we study filling box flows that originate from a line source in a

rectilinear box, which is filled with a uniform porous medium. By considering the

governing equations for mass and momentum continuity, solute transport and an

equation of state, a self-similar solution is derived for the plume streamfunction

and solute concentration. This self-similar solution is further used to determine

the parameters of particular interest, i.e. the plume volume flux, momentum flux

and reduced gravity, as functions of the source and porous medium parameters

and the distance form the source. We found that the plume volume flux varies as

Q ∝ x1/4, whereas in Wooding’s analysis Q ∝ x1/3. After reaching the horizontal

impermeable boundary, the dense plume spreads laterally outwards in the form of

gravity currents. Although gravity current solutions have been derived previously

by several researchers like Huppert & Woods (1995) and Lyle et al. (2005), the

gravity current problem has not yet been studied in the context of a filling box

flow in which case the inflow to the gravity current is specified by the outflow from

the plume. We adapt the previously derived similarity solution for 2-D gravity

currents (Huppert & Woods, 1995) and couple that with our plume solution.

For prescribed plume volume flux and reduced gravity at x = H, where H is

the control volume height, resulting solution consequently gives the length and

height profile of the gravity current as functions of time, porous medium porosity

and permeability. Once the gravity current reaches the impermeable sidewall, the

discharged dense fluid begins advecting upwards. Initially, the first front, i.e. the

interface between the dense and ambient fluids, has a curved interface, however,

this curvature later disappears and the first front becomes nearly horizontal. We

solve for the spatio-temporal evolution of the first front numerically using a finite

difference scheme in space and time. By considering the mean first front height, h̄,

an analytical solution is also derived by applying a volume flux balance between

the plume and the first front. The resultant formula suggests that the first front

advects upwards in time, t, as (H − h̄) ∝ t4/3. Furthermore, the mean first

front elevation is found to have the same value whether calculated numerically

or analytically.

Similitude laboratory experiments were performed in a rectangular box that
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was filled with uniform beads and tap water. While the tap water served as a

light ambient fluid, salt water was used as a dense source fluid and was supplied

at the top of the box using a line nozzle designed by Roes (2014). During each

experiment, images of the flow field were recorded, and later post-processed in

Matlab. The post-processing of the recorded images gave the measured values

for the parameters of interest, namely the gravity current length and height and

the first front elevation. These measurements were then compared with their

analytical counterparts. This method of comparing theory and experiment is

deemed preferable to one involving a direct assessment of plume properties such as

the plume volume flux because of the significant experimental difficulty associated

with measuring such fluxes e.g. using particle image velocimetry. It should be

noted, however, that parameters such as the first front height are directly related

to the plume volume flux (see e.g. equation 2.43), and so the favorable agreement

seen in figures like figure 2.10 is strong confirmation that the plume model of

Chapter 2 is robust.

Chapter 3 of the thesis includes a theoretical model of filling box flows in

an axisymmetric geometry having a point source. Similar to Chapter 2, here

also the filling box flow is divided into the plume, gravity current and first front

flow regimes. The plume is considered to be in a Boussinesq, Darcy regime with

Pe � O(1) where, again, no known self-similar solution is previously available.

We therefore derive a novel similarity solution for the plume streamfunction and

solute concentration by considering the governing equations for mass and momen-

tum continuity, solute transport and an equation of state. This solution is then

used to evaluate the volume flux, reduced gravity and momentum flux. Contrary

to the case where Pe . O(1), we find that with Pe & O(1), the plume volume

flux also depends on the permeability, viscosity and the source buoyancy flux in

addition to the porosity and the distance from the source.

Regarding the horizontal outflow of the discharged plume fluid at the bottom

boundary, Lyle et al. (2005)’s similarity solution for an axisymmetric gravity

current is used. The plume volume flux and reduced gravity at x = H serve

as inputs for the gravity current problem. Thus the plume and gravity current
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solutions are coupled together and this coupling must be exploited to determine

the propagation of the gravity current. As the gravity current leading edge reaches

the lateral wall of the cylindrical control volume, the contaminated fluid starts

advecting upward towards the source in the form of a deepening layer whose

upper boundary is the first front. Although the first front in this case ought to

have a curved interface, we solve only for its mean elevation by again employing

a volume flux balance. On recalling from the solution of rectilinear geometry

of Chapter 2 that the mean first front elevation has effectively the same value

calculated whether numerically or analytically, it can be assumed that such an

approach where the curvature of the first front is ignored still gives a robust

estimate of the mean elevation.

Apart from deriving solutions for various flow regimes, an analysis is also

presented concerning the maximum amount of source fluid or solute that may be

sequestered without overflow in a porous medium of given properties. We found

that more source fluid can be injected by setting a larger flow rate but smaller

reduced gravity. However, for injecting more solute mass both the source volume

flux and reduced gravity should be made large.

Because in real geophysical scenarios the reservoir permeability and porosity

may not necessarily be uniform, in Chapter 4 a non-uniform medium is con-

sidered. Thereby filling box flows are studied in a two layer porous medium

characterizing the effects of sudden changes in permeability and porosity. Two

configurations are considered: first, a lower permeable medium over a higher per-

meable medium, and vice-versa. The flow behavior obtained in the former con-

figuration is qualitatively similar to that of the uniform porous medium case. For

quantifying the flow parameters, therefore, the analytical solutions from Chapter

2 are employed. We derive formulas for the gravity current length and height, the

first front elevation and the filling box time i.e. the time required by the source

fluid to fill the control volume up to the point of overflow.

In the latter configuration when the higher permeability layer is on top, the

flow pattern observed is qualitatively quite different from the uniform case. The

dense plume, after reaching the interface, splits into two parts. While some frac-
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tion of the plume fluid moves horizontally outwards in the form of a (leaky)

gravity current, the remaining portion flows downwards into the lower layer.

Note that, due to draining along its underside, the interfacial gravity current can

propagate only up to a certain maximum horizontal distance from the source.

We refer to this distance as the runout length, Ľg. Ľg depends upon the source

parameters and the permeability ratio k1/k2, i.e. the ratio of the upper vs. lower

layer permeabilities. If k1/k2 is sufficiently large or the control volume length,

L, is sufficiently small, Ľg may be greater than L. In that case, the lower layer

becomes isolated and the majority of the fluid discharged by the plume remains

in the upper layer. For an effective filling of a layered porous reservoir, it is

therefore advantageous to have Ľg < L. We use Goda & Sato (2011)’s asymp-

totic solution to analytically determine Ľg. Goda & Sato (2011) derived their

solution considering immiscible fluids, thus assuming a sharp interface between

the draining dense fluid and the lower layer ambient fluid. However, in the cur-

rent investigation miscible fluids are used for experiments, and therefore Goda

& Sato (2011)’s solution shows some discrepancies with our measurements. As a

remedy, instead of applying in (4.26) the reduced gravity of the gravity current as

in Goda & Sato (2011), the reduced gravity of the draining fluid should instead

be considered. Because of entrainment of the ambient fluid into the fluid that

drains from the gravity current, the reduced gravity of the latter is smaller than

that of the gravity current. By substituting one reduced gravity for the other, the

predicted runout length, which varies inversely with the reduced gravity, should

in fact be larger than the prediction of Goda & Sato (2011).

An analytical formulation is also developed for predicting the filling box time.

It is calculated using two different methods that employ the following separate

assumptions: (i) an entrainment of lower ambient fluid into draining dense fluid

equal to that due to laminar plume flow and (ii) the existence of a sharp such

that there is no mixing between the draining and ambient fluids. We found a

significant difference in the associated predictions when k1/k2 ' 1.0. This differ-

ence disappears when k1/k2 � 1.0 in which case the total amount of entrained

fluid in the lower layer is negligible compared to the plume volume flux at the
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interface. Effectively the assumptions considering or neglecting the entrainment

become the same. Measurements from the experiments with smaller k1/k2 show

a good agreement with the former (entrainment-permitting) model. This agree-

ment implies that the amount of entrainment of ambient fluid into the dense fluid

that falls from a point vs. distributed source is quantitatively similar, this in spite

of the numerous important physical differences between localized and distributed

convection. On the other hand, for larger k1/k2 the agreement rather depends

upon Ľg/L. While good agreement is found when Ľg/L < 1.0, in cases when

Ľg/L > 1.0 our models fail to estimate the filling box time because, as discussed

above, the lower layer becomes isolated from the dense fluid. For finding the fill-

ing box time when Ľg/L > 1.0, a Rayleigh-Taylor-Instability problem has to be

solved which is outside the scope of the current thesis and is therefore considered

as future work.

5.1 Primary contributions from the present work

The main findings and contributions of this thesis work can be summarized in

the following major points:

• Filling box flows are studied in the context of confined porous media which,

to our knowledge, has not been studied previously. Analytical solutions are

presented for the associated flows, i.e. the plume, gravity current and first

front. The analytical models are validated using similitude laboratory ex-

periments for rectilinear geometry. However, in case of axisymmetric geom-

etry, only a theoretical model is presented whose result should be validated

experimentally in future.

• Related to the previous bullet, novel similarity solutions are derived for

laminar plumes with line and point sources having Péclet number Pe �

O(1). Particularly in case of a point source, and unlike in the case when

Pe . O(1) (Wooding, 1963), our new formula suggests that the plume

volume flux also depends on the source buoyancy flux, permeability and

viscosity in addition to the porosity and the distance from the source.
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• Filling box flows in a non-uniform porous medium having a sudden change

in porosity and permeability are investigated. Experiments are conducted

for a total of seven permeability ratios ranging from 0.04 to 25.0. We find

that for an effective filling of a layered porous medium, the runout length

of the (interfacial) gravity current should be smaller than the length of the

porous medium.

• An analysis is presented for maximizing the volume of source fluid or mass

of solute sequestered in a reservoir of given parameters by controlling the

source volume flux and reduced gravity. We found that a larger fluid volume

can be injected by increasing the source volume flux and/or decreasing the

source reduced gravity. On the other hand, if it is desired to inject the

maximum solute mass, both the source volume flux and reduced gravity

should be made large.

• Filling box times, i.e. the times required by the dense fluid to reach over-

flow, are estimated and verified using laboratory experiments. We find that

our theoretical predictions show satisfactory agreement with the measured

values for uniform porous medium experiments. In case of a non-uniform

porous medium, good agreement is found only when the runout length is

smaller than that of the porous medium. The theoretical prediction of our

investigation assumes that both layers are entirely contaminated with dense

fluid which, however, is not the case when the former is greater than the

latter. As a result, our model predictions are not in good agreement with

experimental measurements in this case.

5.2 Future work

After solving several critical problems related to filling box flows in porous media,

there are still underlying problems that ought to be pursued in future investiga-

tions. Primary topics for future studies are identified as follows:

• So as to make analytical progress, the current filling box model is studied
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by making some unavoidable assumptions, i.e. Darcy flow and miscibility.

While the first assumption can be controlled by setting the source volume

flux, the second condition depends on the nature of the problem and the

chemical composition of the fluids involved. For example, in carbon seques-

tration the supercritical CO2 and brine are primarily immiscible with each

other (Riaz et al., 2006). Keeping such practical situations on mind, the

above mentioned assumptions should be relaxed and filling box flows can

then be investigated in a non-Darcy regime and/or with immiscible fluids.

Considering again the same example, Huppert & Neufeld (2014) discuss

how for long-time feasibility of carbon sequestration, the residual trapping

of supercritical CO2 in brine-filled aquifers plays as important a role as con-

vective dissolution. Thus, while studying filling box flows in the immiscible

fluid context, interfacial phenomena like residual trapping should be taken

into account.

• The analytical solution derived by Goda & Sato (2011) for the gravity cur-

rent runout length in layered porous media strictly applies only for immis-

cible fluids. On the other hand, the miscible fluid experiments of Chapter 4

show that there is significant entrainment of lower layer fluid into the fluid

that drains from the base of the interfacial gravity current. Not surprisingly

then and because Goda & Sato (2011) assumed a sharp interface between

the former and latter fluids, their prediction does not agree well with our

measurements. In a future investigation, one could quantify the amount of

entrainment experimentally or theoretically, and thereby modify the present

formula for the runout length by employing an empirical or semi-empirical

factor whose value depends upon the amount of entrainment.

• In real geophysical scenarios, permeability and porosity may be highly non-

uniform not only in the vertical direction, but also in the horizontal plane.

In other words, the layered porous strata may not necessarily be horizontal

and the interface between adjacent layers may be inclined at some angle

(Gunn & Woods, 2011; Loubens & Ramakrishnan, 2011). Filling box flows
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can therefore be studied in the context of inclined layered porous media to

determine the effect of such an inclination on parameters like the gravity

current runout length, filling box times etc. The observations from such

a study are expected to differ from the present (symmetric) investigation

in numerous important ways: the dense plume after reaching the interface

should divide unequally into two gravity currents that flow left and right at

different speeds and with different heights and runout lengths. The larger

the inclination angle, the larger should be the fraction of discharged plume

fluid flowing downslope. Moreover, this fraction may also depend upon the

permeability ratio, the plume volume flux and reduced gravity. As a result

of the above asymmetry, the amount of dense fluid draining into the lower

layer should be different on either side of the plume and this is expected

to nontrivially influence the calculation of the filling box time. In future

study, it is therefore important to study filling box flows in a porous medium

with inclined porous layers to investigate the above effects in detail and to

quantify the precise influence of the inclination angle on key parameters of

interest.

• Apart from the analytical studies of filling box flows, numerical modelling

can also be done. The findings from the current research can be used to

validate the base models in numerical simulation, which can then be further

extended to add higher complications, e.g. immiscible fluids.
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Appendix A

Rectilinear plumes in Darcy
regime with Pe . O(1)

A dense plume generating from a line source of width Λ is considered. The flow

is assumed to be in Darcy regime with Péclet number Pe . O(1). Moreover,

the Boussinesq approximation is assumed to be valid. The associated governing

equations therefore read

∂u

∂x
+
∂v

∂y
= 0 , (A.1)

1

ρ0

∂P

∂x
+
ν

k
u =

gρ

ρ0
, (A.2)

1

ρ0

∂P

∂y
+
ν

k
v = 0 , (A.3)

1

φ

(
u
∂C

∂x
+ v

∂C

∂y

)
= Dd

(
∂2C

∂x2
+
∂2C

∂y2

)
, (A.4)

ρ = ρ0(1 + βC) . (A.5)

In the above equations, P is the fluid pressure, u and v are the transport velocities

in vertical and horizontal axes, respectively, ν is the kinematic viscosity, C is the

solute concentration and Dd is the molecular diffusion coefficient. Moreover, ρ

is the fluid density whose value at far-field is ρ0 and β is the solute contraction

coefficient.

By combining the momentum equations, (A.2) and (A.3), the fluid pressure

can be eliminated such that

ν

k

(
∂u

∂y
− ∂v

∂x

)
=

g

ρ0

∂ρ

∂y
. (A.6)
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Then a boundary layer approximation is applied which assumes∣∣∣∣∂v∂x
∣∣∣∣� ∣∣∣∣∂u∂y

∣∣∣∣ and

∣∣∣∣∂2C∂x2
∣∣∣∣� ∣∣∣∣∂2C∂y2

∣∣∣∣ . (A.7)

Now a streamfunction, ψ, can be introduced such that

u =
∂ψ

∂y
and v = −∂ψ

∂x
. (A.8)

Substitution of ψ straightforwardly satisfy (A.1), whereas, (A.6) and (A.4) be-

come, respectively,
∂2ψ

∂y2
=
gβk

ν

∂C

∂y
(A.9)

and
∂ψ

∂y

∂C

∂x
− ∂ψ

∂x

∂C

∂y
= Ddφ

∂2C

∂y2
. (A.10)

The above equations suggest a selfsimilar solution of the form

ψ = Ax1/3F(η) , C =
B

x1/3
F ′(η) , (A.11)

where A and B are constants to be determined shortly and η is the selfsimilar

variable that is defined as η =
y

x2/3

[
F0k

(Ddφ)2Λν

]1/3
. By substituting (A.11) into

(A.9), and with some simplification, one can get

B =
Aν

gβk

[
F0k

(Ddφ)2Λν

]1/3
. (A.12)

On the other hand, substitution of (A.11) into (A.10) yields

DdφF0k

Λν
F ′′′ + 1

3
A(FF ′)′ = 0 . (A.13)

For purpose of getting a dimensionless form of (A.13), the constant A should be

defined as

A =

(
DdφF0k

Λν

)1/3

, and therefore B =
1

gβ

(
F 2
0 ν

Λ2Ddφk

)1/3

. (A.14)

Now on integrating (A.13), and recalling that S = 0 at far-field, yields

F ′ = 1

6
(c2 −F2) , (A.15)

which has a solution of the form

F = c tanh

(
1

6
cη

)
. (A.16)

120



Here c is a constant of integration and determined by recalling that the buoyancy

flux, F0, is independent of the vertical coordinate, x, in an unstratified ambient.

Mathematically,

F0 = Λ

∫ ∞
−∞

ug′ dy . (A.17)

Here g′ is the reduced gravity and defined as

g′ = g

(
ρ− ρ0
ρ0

)
= gβC . (A.18)

The last term in (A.18) follows from (A.5). Substitutions of (A.8), (A.11), (A.16)

and (A.18) into (A.17) and some useful cancellation yield c = (9/2)1/3. Finally

on using this derived solution the plume volume flux, Q, can be determined as

Q = Λ

∫ ∞
−∞

u dy =

(
36DdF0kΛ2x

ν

)1/3

. (A.19)

Moreover, the plume momentum flux, M , can be given as

M = Λ

∫ ∞
−∞

u2 dy =
F0k

ν
. (A.20)
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Appendix B

Axisymmetric plumes in Darcy
regime with Pe . O(1)

Making similar assumptions as in Appendix A, the governing equations for a

circular plume generating from a point source can be given as

∂u

∂x
+
∂ur
∂r

= 0 , (B.1)

1

ρ0

∂P

∂x
+
ν

k
u =

gρ

ρ0
, (B.2)

1

ρ0

∂P

∂r
+
ν

k
ur = 0 , (B.3)

1

φ

(
u
∂C

∂x
+ ur

∂C

∂r

)
= Dd

[
∂2C

∂x2
+

1

r

∂

∂r

(
r
∂C

∂r

)]
, (B.4)

ρ = ρ∞(1 + βC) . (B.5)

A boundary layer approximation similar to (A.7) is assumed and a steamfunction,

ψs, is introduced such that

u = −1

r

∂ψs
∂r

and ur =
1

r

∂ψs
∂r

, (B.6)

The momentum equations, (B.2) and (B.3), and solute transport, (B.4), can be

then modified to, respectively,

∂

∂r

(
1

r

∂ψs
∂r

)
=
gβk

ν

∂C

∂r
(B.7)

and
1

r

∂ψs
∂r

∂C

∂x
− 1

r

∂ψs
∂x

∂C

∂r
=
Ddφ

r

∂

∂r

(
r
∂C

∂r

)
. (B.8)
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Further, a self-similar solution of the following form can be obtained for (B.7)

and (B.8)

ψs = AxF(η) , C =
B

x
G(η) , (B.9)

where η =
r

Ddφx

√
F0k

2πν
. Substituting (B.9) into (B.7) gives

G =
1

η
F ′ , (B.10)

provided B is defined as B =
F0A

2πgβ(Ddφ)2
. On the other hand, (B.8) delivers

−F ′(Gη)′ − G ′(F − F ′η) =
Ddφ

A
(G ′η)′ , (B.11)

which also suggests that A = Ddφ. Following (Phillips, 1991), analytical solutions

of (B.10) and (B.11) can be given as

ψs =
3Ddφxη

2

8 + 3
4
η2

, C =
3F0

8πgβDdφx
(
1 + 3

32
η2
)2 . (B.12)

Similar to the discussion of Appendix A, the numerical values of above parame-

ters, i.e. F and G, can be derived by recalling that the buoyancy flux is indepen-

dent of vertical coordinate for an unstratified ambient. Thereby,

F0 = 2π

∫ ∞
0

ug′rdr dθ . (B.13)

The volume flux of the axisymmetric plume can be then straightforwardly given

as

Q = 2π

∫ ∞
0

urdr = 8πDdφx . (B.14)
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Appendix C

Curved interface methodology

In this appendix, we present the details of the numerical technique employed to

solve for the motion of the (curved) first front.

Space and time derivatives are discretized so that (2.41) is replaced by

hn+1
i − hni

∆t
=

S

2∆y2
(hn+1

i−1 h
n
i−1 − 2hn+1

i hni + hn+1
i+1 h

n
i+1) (C.1)

where i and n represent space and time indices, respectively. By symmetry, we

only concern ourselves with the right-hand side of the control volume so that i = 1

corresponds to the box centerline at y = 0 whereas i = L/∆y + 1 = I + 1 corre-

sponds to the position of the right sidewall at y = L. On further simplification

and rearranging, (C.1) becomes,

−(Rhni−1)h
n+1
i−1 + (1 + 2Rhni )hn+1

i − (Rhni+1)h
n+1
i+1 = hni (C.2)

where R =
S∆t

2∆y2
. In matrix form, (C.2) is expressed as


1 + 2Rhn2 −Rhn3 0 0 ... 0

−Rhn2 1 + 2Rhn3 −Rhn4 0 ... 0

. . .

0 ... 0 −RhnI−1 1 + 2RhnI −RhnI+1

0 ... 0 0 −2RhnI 1 + 2RhnI+1





hn+1
2

hn+1
3

hn+1
4

...

hn+1
I−1

hn+1
I

hn+1
I+1


=



hn2 +Rhn1h
n+1
1

hn3

hn4
...

hnI−1

hnI

hnI+1


(C.3)

The additional factor of 2 that appears in matrix entry (I, I − 1) is due to the

application of a “ghost point” (Causon & Mingham, 2010), which is required
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because of the no-flux boundary condition at the sidewalls i.e. ∂h/∂y = 0 when

y = ±L.

Equation (C.3) is solved using a shooting method. Thus an initial guess

is provided for hn+1
1 , whose value is refined through iteration whilst enforcing

volume conservation via (2.40) (Causon & Mingham, 2010). The discrete form

of (2.40) reads

φ∆y
I∑
i=1

[
(hn+1

i+1 + hn+1
i )

2
−

(hni+1 + hni )

2

]
= Qg(H − hn1 )∆t. (C.4)

The left hand side of (C.4), discretized in space, represents the volume displaced

by the advancing first front over time ∆t, whereas the right hand side of the

equation, discretized in time, represents the volume of discharged plume fluid

supplied over the same time interval.

125



Appendix D

Uniform porous medium
experimental details

Table D.1 provides the details of the experiments described in section 2.4. Pa-

rameters such as F0, Re0 and Pe0 are defined previously whereas ReH , the plume

Reynolds number at the bottom of the control volume is estimated from

ReH =
U(H)d0

ν
=

[(
4F0k

π3ν3Λ

)2
α3

φ(H + x0)

]1/4
. (D.1)

The velocity U(x) =
αu(x)

d0
is a characteristic velocity where the transport ve-

locity u(x) is calculated by dividing the plume volume flux by its cross-sectional

area. Thus,

U(x) =
α

d0

Q(x)

Λ[y(η = π)− y(η = −π)]
. (D.2)

Finally the error, ε, is calculated via

ε =
100%

N

(
N∑
1

h̄ex − h̄th
h̄ex

)
, (D.3)

where N is the number of experimental images collected (typically 60) and h̄ex

and h̄th are the time-dependent measured and predicted first front heights. The

value of h̄th, determined from (2.44), directly depends upon the plume volume

flux, Q. Therefore, it is understood that the value of ε obtained using (D.3)

incorporates the deviation of the theoretically predicted volume flux from its

corresponding experimental value.
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Table D.1: A summary of the experimental parameters: bead diameter, d0, permeabil-
ity, k, source volume flux, Q0, source reduced gravity, g′0, source buoyancy flux, F0,
source Reynolds number, Re0, plume Reynolds number at the bottom boundary, ReH
(defined in D.1), source Péclet number, Pe0, and the mean error, ε (defined in D.3).

Expt d0 k Q0 g′0 F0 Re0 ReH Pe0 ε
no. (cm) (×10−4 cm2) (cm3 s−1) (cm s−2) (cm4 s−3) (×103) (%)

1 0.3 0.78 0.20 24.53 4.91 2.14 0.05 1.60 1.65
2 0.3 0.78 0.49 24.53 12.02 5.25 0.08 3.92 4.72
3 0.3 0.78 0.75 24.53 18.39 8.04 0.10 6.00 3.25
4 0.3 0.78 0.90 54.94 49.44 9.64 0.17 7.20 -2.29
5 0.3 0.78 0.18 54.94 9.89 1.93 0.08 1.44 0.21
6 0.3 0.78 0.84 54.94 46.15 9.00 0.17 6.72 1.93
7 0.3 0.78 0.17 85.35 14.51 1.82 0.09 1.36 -3.49
8 0.3 0.78 0.90 85.35 76.81 9.64 0.22 7.20 1.58
9 0.3 0.78 0.53 85.35 45.23 5.68 0.17 4.24 1.98
10 0.5 2.20 0.30 21.09 6.33 5.36 0.10 4.00 -4.27
11 0.5 2.20 0.60 21.09 12.65 10.71 0.15 8.00 -4.85
12 0.5 2.20 1.00 21.09 21.09 17.86 0.19 13.3 -3.48
13 0.5 2.20 1.00 58.86 58.86 17.86 0.32 13.3 1.37
14 0.5 2.20 0.60 58.86 35.32 10.71 0.25 8.00 -4.38
15 0.5 2.20 0.61 94.18 57.45 10.89 0.32 8.13 -4.85
16 0.5 2.20 0.92 94.18 86.64 16.43 0.39 12.26 -3.72
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Appendix E

Layered porous medium
experimental details

Tables E.1, E.2 and E.3 specify the parameters for the 50 experiments that were

performed with the height ratios H1/H2 = 0.5, 1.0 and 2.0, respectively.
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Table E.1: Summary of the experimental parameters for the cases where H1/H2 =
0.5. Here d1 and d2 respectively denote the bead diameters of the upper and lower
layers. Moreover, k1 and k2 respectively denote the permeabilities of the upper and
lower layers. Furthermore, Q0 and g′0 are the source volume flux and reduced gravity.
Horizontal lines separate the experiments with identical permeability ratios. Note that
φ1/φ2 = 1.0 in all cases.

Expt d1 d2 k1 k2 k1/k2 Q0 g′0
no. (cm) (cm) (×10−5 cm2) (×10−5 cm2) (cm3 s−1) (cm s−2)

1 0.1 0.5 0.87 21.80 0.04 0.30 29.43
2 0.1 0.5 0.87 21.80 0.04 0.80 29.43

3 0.1 0.3 0.87 7.84 0.11 0.30 29.43
4 0.1 0.3 0.87 7.84 0.11 0.80 29.43

5 0.3 0.5 7.84 21.80 0.36 0.30 29.43
6 0.3 0.5 7.84 21.80 0.36 0.80 29.43

7 0.5 0.3 21.80 7.84 2.78 0.30 29.43
8 0.5 0.3 21.80 7.84 2.78 0.80 29.43

9 0.3 0.1 7.84 0.87 9.0 0.30 29.43
10 0.3 0.1 7.84 0.87 9.0 0.80 29.43
11 0.3 0.1 7.84 0.87 9.0 0.30 78.48
12 0.3 0.1 7.84 0.87 9.0 0.80 78.48

13 0.5 0.1 21.80 0.87 25.0 0.30 29.43
14 0.5 0.1 21.80 0.87 25.0 0.80 29.43
15 0.5 0.1 21.80 0.87 25.0 0.30 78.48
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Table E.2: As in table E.1 but with H1/H2 = 1.0.

Expt d1 d2 k1 k2 k1/k2 Q0 g′0
no. (cm) (cm) (×10−5 cm2) (×10−5 cm2) (cm3 s−1) (cm s−2)

16 0.1 0.5 0.87 21.80 0.04 0.30 29.43
17 0.1 0.5 0.87 21.80 0.04 0.75 29.43
18 0.1 0.5 0.87 21.80 0.04 0.30 78.48
19 0.1 0.5 0.87 21.80 0.04 0.75 78.48

20 0.1 0.3 0.87 7.84 0.11 0.30 29.43
21 0.1 0.3 0.87 7.84 0.11 0.30 78.48
22 0.1 0.3 0.87 7.84 0.11 0.75 78.48
23 0.1 0.3 0.87 7.84 0.11 0.30 48.07

24 0.3 0.5 7.84 85.35 0.36 0.30 29.43
25 0.3 0.5 7.84 21.09 0.36 0.80 29.43
26 0.3 0.5 7.84 21.09 0.36 0.30 78.48
27 0.3 0.5 7.84 21.09 0.36 0.80 78.48

28 0.5 0.3 21.80 7.84 2.78 0.30 31.39
29 0.5 0.3 21.80 7.84 2.78 0.80 31.39
30 0.5 0.3 21.80 7.84 2.78 0.30 77.49
31 0.5 0.3 21.80 7.84 2.78 0.75 77.49

32 0.3 0.1 21.80 0.87 25.0 0.25 21.20
33 0.3 0.1 21.80 0.87 25.0 0.75 21.20
34 0.3 0.1 21.80 0.87 25.0 0.25 82.40
35 0.3 0.1 21.80 0.87 25.0 0.75 82.40
36 0.3 0.1 7.84 0.87 9.0 0.30 48.07

37 0.5 0.1 7.84 0.87 9.0 0.30 17.16
38 0.5 0.1 7.84 0.87 9.0 0.30 31.39
39 0.5 0.1 7.84 0.87 9.0 0.80 31.39
40 0.5 0.1 7.84 0.87 9.0 0.80 81.42

Table E.3: As in table E.1 but with H1/H2 = 2.0.

Expt d1 d2 k1 k2 k1/k2 Q0 g′0
no. (cm) (cm) (×10−5 cm2) (×10−5 cm2) (cm3 s−1) (cm s−2)

41 0.1 0.5 0.87 21.80 0.04 0.30 23.43
42 0.1 0.5 0.87 21.80 0.04 0.40 23.43

43 0.1 0.3 0.87 7.84 0.11 0.70 43.16

44 0.3 0.5 7.84 21.80 0.36 0.30 29.43
45 0.3 0.5 7.84 21.80 0.36 0.80 29.43

46 0.5 0.3 21.80 7.84 2.78 0.30 43.16
47 0.5 0.3 21.80 7.84 2.78 0.70 43.16

48 0.3 0.1 7.84 0.87 9.0 0.25 43.16
49 0.3 0.1 7.84 0.87 9.0 0.50 43.16

50 0.5 0.1 21.09 7.84 25.0 0.25 43.16
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Appendix F

List of symbols

Table F.1 presents a list of all symbols used in the thesis with their respective

definitions and dimensions.

Table F.1: List of variables.

Symbol Meaning Unit
α dispersivity cm
β solute contraction coefficient cm3/g
η similarity variable -
λ gravity current dimensionless length -
Λ source width (line nozzle length) cm
µ dynamic viscosity g/(cms)
ν kinematic viscosity cm2/s
φ porosity -
φ1, φ2 upper, lower layer porosity -
ρ density g/cm3

ρ0, ρ∞ density g/cm3

τ tortuosity -
ξ similarity variable -
ξN gravity current dimensionless radius -
A control volume, tank cross-section cm2

A1, A2, A3 constants -
b draining fluid depth, plume radius cm
C, C0 solute concentration, source solute con-

centration
g/cm3

C̄ mean solute concentration of plume g/cm3

d0 bead diameter, mean grain size cm
Dd molecular diffusion coefficient cm2/s
D, DL, DT mechanical dispersion coefficient cm2/s
F, F0 buoyancy, source buoyancy cm4/s3

F , G, H similarity functions -
g′0, ḡ

′ source, mean reduced gravity of plume cm/s2
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g′g, g
′
1, g

′
2A reduced gravity of the gravity currents

based on plume
cm/s2

g′2B reduced gravity of the draining fluid cm/s2

h gravity current, first front height cm
h̄, hf mean first front height cm
h̄tL , h̄tR mean gravity current height when it

reaches sidewall
cm

H control volume height cm
H1, H2 upper, lower layer height cm
I image intensity -
k permeability cm2

k1, k2 upper, lower layer permeability cm2

m, n, p, q constants -
L, R control volume horizontal length, radius

from center
cm

Lg gravity current length cm
Ľg gravity current runout length cm
p pressure Pa
Pe Peclet number -
Re Reynolds number -
Q, Q0 volume flux, source volume flux cm3/s
Qg, Q1, Q2 gravity current volume flux cm3/s
qg, q1, q2 gravity current volume flux per unit

length
cm2/s

r radial coordinate cm
rN gravity current radius cm
S Buoyancy parameter cm/s
Sc Scmidt number -
t time s
tP , tH , tL/tR time scales: plume, first front, gravity

current
s

u horizontal velocity, horizontal velocity cm/s
U, Ū mean transport velocity cm/s
Uf mean first front velocity cm/s
v horizontal velocity cm/s
vg gravity current horizontal velocity cm/s
V total volume, gravity current volume cm3

Vg gravity current volume cm3

x vertical coordinate cm
y horizontal coordinate cm
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