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Abstract 

As the construction industry is prone to various hazards, its rate of injuries and fatalities are 

among the highest. As a result, health and safety has emerged as a crucial aspect of any 

construction project. Among occupational injuries, Work-related Musculoskeletal 

Disorders (WMSDs) are reported as the leading cause of disabilities and days away from 

work. WMSDs are not only associated with worker injuries and discomfort but also impose 

high costs, diminish productivity, increase absenteeism, lower quality, and decrease job 

satisfaction. WMSDs can be prevented through ergonomics, which aims to eliminate 

injuries and disorders associated with overuse of muscles, awkward posture, and repeated 

motions, by fitting workplace conditions and job demands to worker capacity. However, 

current practice in workplace design often focuses on productivity improvements rather 

than on enhancing ergonomic safety. This occurs in spite of the fact that, when ergonomic 

principles are not fully implemented, the benefits of increased productivity are likely offset 

by increased medical and workers’ compensation costs as well as lost productivity (e.g., 

absenteeism). Notably, safety and productivity are highly associated, and actions carried 

out to improve performance can adversely or positively impact safety (and vice versa). 

However, current approaches used in construction lack the concurrent integration of both 

production and safety into workplace and operation design and do not fully consider the 

high association between the two. Thus, this study explores an integrated approach to 

workplace and labor operation evaluation and design by incorporating both productivity 

and ergonomic safety into a comprehensive analysis. Such integration enables examination 

of the trade-off between ergonomic risk and productivity of labor operations, which can 

potentially provide a framework for designing work environments where not only WMSDs 
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are prevented but optimum efficiency is also achieved. It also enhances the understanding 

of safety in conjunction with work environments and production plans in the interest of 

human well-being in the workplace. 

To integrate productivity and safety into workplace evaluation and design, the following 

stages must be completed: (1) analysis of ergonomic risks associated with worker activities; 

(2) evaluation of the efficiency of labor operations through motion-level modeling; (3) 

examination of the causal relationship between production tasks and ergonomic behavior in 

construction operations; (4) development of a comprehensive framework that integrates 

data collection, analysis, and results representation while enabling the comparison of 

different operations scenarios in terms of performance and safety.  

To achieve a reliable ergonomic assessment of labor operations, this study uses motion 

capture data in conjunction with 3D modeling of workplaces to enable an automated 

ergonomic and biomechanical analysis of existing and non-existing operations. 

Furthermore, to provide the means to model manual operations at a motion level, the 

integration of Predetermined Motion Time Systems (PMTSs), which enables cycle time 

estimation and efficiency evaluation of manual processes, into simulation modeling is 

examined. Finally, a framework that uses sensing and action recognition for data 

acquisition, biomechanical simulation, and PMTS-based modeling for efficiency and safety 

analysis and worker motion generation, path planning, and as-is modeling for visualization 

and representation of the analysis results is developed. Such a framework enables an 

automated and reliable evaluation of both efficiency and ergonomic safety of labor 

operations simultaneously.  
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Chapter 1 Introduction 

1.1 BACKGROUND AND PROBLEM STATEMENT  

Work-related Musculoskeletal Disorders (WMSDs) have been reported as the leading cause 

of nonfatal occupational injuries resulting in disabilities and days away from work (Bureau 

of Labor Statistics 2016). WMSDs are injuries or disorders of the muscles, nerves, tendons, 

joints, cartilage, and spinal discs (e.g., sprains and strains) in which the working 

environment has contributed significantly to the unhealthy condition of the worker (NIOSH 

1997). WMSDs account for approximately 40% of all lost time claims in Canada (WSIB 

2014), and nearly one million people take time away from work annually for treatment of 

and recovery from WMSD pain in the US (NRCIM 2001). Furthermore, WMSDs impose 

substantial costs to employers due to lost productivity resulting from absenteeism as well as 

increased health care, disability, and workers’ compensation costs. The annual cost of 

WMSDs to the Canadian economy, including direct and indirect costs, is estimated to be 

$20 billion (McGee et al. 2011). Overexertion injuries (e.g., lifting, pushing, pulling, 

holding, carrying) cost employers $13.4 billion every year, in the form of lost productivity 

resulting from WMSDs, in the US (NRCIM 2001). Due to the labor-intensiveness of the 

construction industry, workers are repeatedly exposed to physically challenging manual 

tasks involving forceful exertion and awkward postures. Consequently, workers in the 

construction industry are at an approximately 50% higher risk of suffering from WMSDs 

than workers in other industries (Schneider 2001). WMSDs account for approximately 47% 

of all disabling injury claims in the construction industry in Canada (OHS 2012). 

Despite the high rate of WMSDs in construction, current practice in workplace design often 

focuses on productivity improvements rather than on enhancing health and safety (e.g., 

ergonomics) (Freivalds 2014). When ergonomic precautions are not fully considered, 

however, the benefits of increased productivity are likely offset by the increased medical 

and workers’ compensation costs resulting from WMSDs. Furthermore, safety and 

productivity are highly associated (Hallowell 2011), as actions carried out to improve 

performance can adversely or positively impact safety and vice versa. Ergonomic 

behaviour, in particular, results primarily from physical conditions (e.g., human postures, 
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repetitive movements, duration, and forceful exertion) determined by production tasks (e.g., 

production rate, job procedures, and workplace layout) (Mitropoulos et al. 2005; Freivalds 

2014). However, current approaches used in construction lack the concurrent integration of 

both production and safety into workplace and operation design and do not fully consider 

the high association between the two. Thus, this study explores an integrated approach to 

workplace and operation evaluation and design by incorporating both productivity and 

safety into a comprehensive ergonomic analysis. The goal of this integration is to enable 

examination of the association between ergonomic risk factors and efficiency of labor 

operations, to provide a framework for designing safe and productive work environments.  

1.2 RESEARCH OBJECTIVES  

This study aims to explore an integrated approach to workplace and operation design that 

ensures both increased productivity and safety by examining the impact of modifications in 

operations design on efficiency and ergonomic safety. This is achieved by accomplishing 

the following objectives: 

• Analyze the ergonomic risks associated with human movements using motion 

capture data obtained through the automation of ergonomic assessment and 

biomechanical analysis. This objective enables the development of an automated 

ergonomic approach, which is essential for linking ergonomic evaluation to 

production tasks, to observe the impact of operations scenario changes on 

ergonomic behavior. By automating the process of ergonomic risk level 

identification from human motions, the ergonomic evaluation process becomes 

quicker, simpler to use, and more reliable, allowing various working methods to be 

effectively compared in terms of ergonomic safety. 

• Improve the accuracy of the ergonomic evaluation process to provide a reliable 

assessment of ergonomic risk by investigating the impact of motion capture errors 

on ergonomic analysis results. Since the accurate assessment of ergonomic risks is 

critical for effective analysis of operations, this objective enables the assurance of a 

reliable safety evaluation by (1) examining the inaccuracy associated with the 
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inputs of ergonomic assessment tools and (2) developing methods to decrease the 

impact of this imprecision on analysis results. 

• Evaluate the predetermined motion time system approach for modeling manual 

operations to better understand production factors affecting human movements and 

ergonomic behavior. This objective (1) verifies the suitability of Predetermined 

Motion Time Systems (PMTSs) for modeling and analyzing manual construction 

operations at a motion level and (2) explores the effectiveness of a PMTS-based 

integrated platform that connects simulation models of processes with ergonomic 

analysis.  

• Understand the causal relationship between production tasks and ergonomic 

behavior in construction operations by coupling ergonomic and biomechanical 

simulation with PMTS-based micro motion level simulation. This objective enables 

the articulation of causal relationships between production and ergonomics, which 

is critical for (1) integrating productivity and safety assessment into task planning 

and workplace design and (2) experimenting with various operations scenarios to 

achieve optimum settings. The micro motion level modeling approach enables 

modification of operations production factors as well as the observation of the 

impact of these modifications on the level of ergonomic risks. 

• Develop a framework that integrates the tools and systems used for data collection, 

analysis, and representation. This objective ensures that the different methods of the 

productivity and safety analysis are integrated for the unified, automated, simple-

to-use, and reliable evaluation and design of labor operations. Furthermore, it 

enables the examination of the interconnections between the various systems to 

identify how available approaches can be leveraged to improve the evaluation and 

design process. 
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1.3 RESEARCH METHODOLOGY  

To integrate productivity and safety, labor operations must be studied and analyzed at a 

motion level to enable evaluation of the impact of production task changes and worker 

motions on ergonomic risks. This study uses PMTSs, integrated into discrete-event 

simulation, to enable the evaluation of various scenarios of an operation at a motion level 

and the assessment of simulation model efficiency. Motion capture data are also used for 

biomechanical analysis to reliably evaluate the risk level of various human motions 

potentially taking place in operations. Additionally, visualization of workplace and worker 

motions is used for extracting required inputs of the analysis, facilitating managerial 

decision-making, and communicating and implementing design.  

The objectives of this research are achieved through the following stages:  

1.3.1 Automated ergonomic analysis  

This stage involves the examination of potential of motion capture technologies as 

an emerging data collection method for ergonomic analysis. The objective of this 

stage is to enable the (1) extraction of information required for automated 

ergonomic analysis from motion capture datasets and (2) identification of the 

impact of motion capture errors on ergonomic analysis results. The extraction of 

ergonomic analysis inputs (e.g., postures, frequencies, durations, and speeds of 

actions) from motion capture data (e.g., BVH format) is investigated by converting 

a motion dataset to the defined body configuration of ergonomic tools and deriving 

the inputs (e.g., joint angles) for the ergonomic analysis tools. This approach allows 

for the monitoring and recording of human movements in a digitized form (i.e., 3D 

skeletal models), which serves as a basis for improved understanding of ergonomic 

behavior through accurate and quick assessments. 

Next, a sensitivity analysis of motion capture errors for ergonomic analysis is 

performed. To determine the impact of measurement errors on ergonomic 

assessment and to reflect the errors in the analysis, experiments are conducted to 

propose a stochastic approach for ergonomic analysis. The results can potentially 

provide more realistic information by which to evaluate ergonomic risks with 
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motion sensors and human observation that, inevitably, involve varying degrees of 

measurement and judgment errors. Furthermore, methods and techniques that 

increase the reliability of the ergonomic evaluation process and eliminate the 

subjectiveness of the results are developed. Experiments are subsequently carried 

out to confirm the improvement in the precision of the ergonomic assessment. 

This stage facilitates ergonomic analysis in a field setting by automating the risk 

evaluation processes using motion capture data. The results will also be used at the 

following stages to understand the effect of production processes on human physical 

capacity. 

1.3.2 Motion data-driven biomechanical analysis 

In this stage, biomechanical analysis will be used to assess risk factors that can 

produce excessive physical loads on a worker’s body through a biomechanical 

analysis using motion data collected from job sites. Biomechanical models provide 

a quantitative assessment of the musculoskeletal loads during occupational tasks, 

which help to identify hazardous loading conditions on certain body parts. The 

objective of this phase is to investigate an automated motion capture approach for 

biomechanical analysis to provide a more detailed evaluation of the ergonomic risks 

by comparing forces exerted on different body joints with human capacity. 

Furthermore, this approach enables modification of motion data to achieve 

completely safe motions. This research task is carried out by estimating 

biomechanical analysis inputs from motion capture data by mapping the location of 

body joints from motion data to the body configuration used by biomechanical 

analysis models. The results of this stage will be used as the basis of the 

biomechanical analysis for the integrated workplace design stage. 

1.3.3 Manual operation simulation modeling 

This stage focuses on discrete-event simulation modeling in motion-level processes 

to determine required cycle time, repetitions, and physical loads according to 

various operational scenarios (e.g., working environments, production rates), which 

enables the examination of the impact of operational changes as ergonomic risk 
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mitigation on productivity, and vice versa. First, a framework will be developed to 

observe and define the sequential work breakdown structure of ongoing operations 

at the motion level (e.g., grasp, move, position) based on existing PMTSs. This 

approach divides manual work into basic motion units and, therefore, enables the 

determination of reasonable cycle time, efficient work method, and workplace 

layout, from a given job description. A special purpose simulation (SPS) modeling 

template that facilitates the modeling of the required motions and their sequential 

flows in a hierarchical structure of operations will be developed. Integrating PMTSs 

into simulation will allow for (1) calculation of job efficiency (i.e., actual cycle time 

as a percentage of projected cycle time) solely based on human motions, (2) 

experimentation with various scenarios by modifying working conditions, and, 

ultimately, (3) assessment of each scenario in terms of safety and productivity. This 

task implements simulation modeling for actions performed in a cyclical manner 

during operations, which will serve to evaluate manual operations from the 

productivity perspective. Furthermore, this step of the research is the basis for the 

next stage, which aims to integrate safety and productivity analyses. 

1.3.4 Integrated workplace design 

This stage incorporates the biomechanical simulation models into the developed 

simulation platform to facilitate understanding of the mutual impact between 

production tasks and human behavior from a physical perspective. By linking these, 

the relationship between productivity and safety can be further studied by 

examining the impact of production task attributes (e.g., duration, frequency, 

posture) on both performance and safety. Furthermore, a framework is developed at 

this stage that allows for the linkage of individual components, such as simulation 

models, motion sensing, and visualization tools, to function as a whole. In this 

virtual environment, physical working environments and conditions (e.g., activity 

cycle time, workbench design) are changed within possible ranges to compare 

resulting outcomes of ergonomic and operation analysis (e.g., job efficiency, 

ergonomic risk levels), to identify the extent to which such changes influence 

productivity and safety. Consequently, this stage integrates two different simulation 
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paradigms through which (1) researchers can understand the causal effect of 

production on safety and (2) practitioners can design and plan productive and safe 

workplaces and operations. 

1.4 SCOPE OF RESEARCH 

• To implement some of the proposed methods of this research, construction fabrication 

shops are selected to collect actual data. These fabrication shops encompass physically 

demanding labor operations, comparable to other types of construction, due to the 

similarity of the activities, which leads to high exposures of workers to ergonomic risks. 

The manufacturing setup of these job sites provides a controlled environment that 

enables the collection and experimentation with data of the same labor activity. On the 

other hand, the dynamic nature of construction job sites can also be observed due to the 

constantly changing products that must be fabricated. 

• This study focuses on physical ergonomics, which considers human anthropometric, 

physiological, and biomechanical characteristics associated with physical work systems 

(Mehta 2016) as the main contributor to ergonomic risks in labor-intensive industries 

such as construction. Accordingly, it does not involve cognitive ergonomics where the 

impact of human cognitive abilities (e.g., perception, reasoning) on a system is studied.  

• Various definitions of labor productivity are used in construction practice and research 

depending on the intended application. This study uses time as the basis of defining 

productivity when evaluating existing labor operations and focuses on the duration of a 

labor operation (man-hours in prevalent productivity definitions). Terms such as 

efficiency and performance are sometimes used interchangeably for similar definitions 

in the literature and in industry. 

1.5 THESIS ORGANIZATION  

The remainder of this thesis is organized into the following chapters. Chapter 2 reviews the 

existing literature and previous work carried out as it relates to this study. Chapter 3 

discusses the motion data-driven framework for ergonomic analysis that automates the 

ergonomic and biomechanical analysis process. The proposed approach uses motion data 

from recordings or the virtual model of a jobsite to evaluate the risk factors that can 
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produce excessive physical loads on the human body. Chapter 4 investigates the difficulties 

in visually estimating human postures (e.g., body joint angles) required for ergonomic 

analysis that have led to inconsistent results due to observer subjectiveness. Also, a fuzzy 

logic approach for posture-based ergonomic evaluation tools is introduced that produces 

more accurate results than traditional methods and, hence, helps minimize human errors in 

observation for reliable on-site ergonomic assessment. In Chapter 5, the reliability of 

ergonomic methods are investigated from the input measurement perspective, collected by 

a human observer or motion capture sensors, and the imprecision associated with acquiring 

the required inputs for ergonomic assessment and its impact on the final result of the 

analysis is examined. A stochastic approach is proposed to evaluate the impact of input 

errors on the final result of the ergonomic assessment. Chapter 6 investigates the use of 

PMTSs for modeling manual construction operations for cycle time estimation and 

efficiency evaluation and proposes a motion-level simulation approach by integrating 

PMTS into discrete-event simulation modeling, in turn, providing a reliable and simple-to-

use method of analyzing manual tasks. In Chapter 7, an integrated, comprehensive 

framework that couples simulation modeling, PMTS, ergonomic and biomechanical 

assessment, and workplace visualization to incorporate both productivity and safety 

analysis into the design process is proposed. Chapter 8 builds on Chapter 7 by integrating 

sensing, action recognition, as-is workplace model generation, and human motion 

animation into the comprehensive framework. 
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Chapter 2 Literature Review  

The main objective of this research is to investigate the integration of productivity and 

safety into workplace and operation design by examining the effect of design modifications 

on efficiency and ergonomic safety. Accordingly, prior work examining relationships 

between productivity and safety as well as existing challenges in ergonomic analysis in 

construction are reviewed. Due to their roles in achieving the objective of the research, 

simulation modeling in construction and the applications of PMTSs are also discussed. 

2.1 RELATIONSHIP BETWEEN PRODUCTIVITY AND ERGONOMIC 

SAFETY 

Previous construction studies have provided strong evidence that safety performance is 

correlated to productivity (Hallowell 2011). For example, production demands explicitly 

affect safety performance by generating work pressures that can adversely affect safety 

behavior (Mitropoulos and Cupido 2009; Hinze and Parker 1978; Goldenhar et al. 2003). 

Many advances have been made in accident causation modeling to better understanding the 

complex role of safety in a production system. A systems model (Mitropoulos et al. 2005) 

demonstrates how production can give rise to hazardous situations and unsafe behaviors, 

which combine to increase exposure to accidents. Causal loop diagrams (Rodrigues and 

Williams 1998; Love et al. 1999; Park and Pena-Mora 2003) and regression models 

(Wanberg et al. 2013) show that rework resulting from quality deviations can also cause 

production pressure, which negatively affects safety behavior. Simulation models have also 

been developed to understand safety behavior through scenario-based quantitative analysis 

(Shin et al. 2014; Jiang and Fang 2014). Accident causation models have provided valuable 

insight into the dynamics derived from the interactions between safety and production, 

particularly from psychological perspectives (e.g., pressure). In construction, however, the 

findings of studies focusing on the relationship between performance and safety are 

indecisive (Hallowell 2011). Some practitioners in the construction industry view safety 

management as an additional expense that hinders productivity, as compliance requires 

extensive amount of effort and resources, and argue that traditional safety management 

practices do not add value to production (Hallowell 2011). Thus, some studies have 
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discussed the trade-off between performance and safety (Hinze and Parker 1978; Choudhry 

and Fang 2008; Evans et al. 2005; Probst and Brubaker 2007; Choi et al. 2006). For 

instance, Evans et al. (2005) investigated worker perception of productivity climate and 

concluded that workers who perceived a stronger climate for productivity reported higher 

number of accidents. They surveyed 526 individuals, where more than half of the 

participants responded that there was a negative association between productivity and 

safety since focusing on efficiency increases risky behavior. Furthermore, it has been 

shown that production demand explicitly affects safety performance by generating work 

pressure, which gives rise to hazardous situations that can adversely affect ergonomic 

behavior, together further increasing exposure to accidents (Mitropoulos and Cupido 2009; 

Goldenhar et al. 2003; Mitropoulos et al. 2005). Alternatively, others have demonstrated 

improvements in productivity resulting from safety management strategies, achieved 

through enhanced working conditions and better ergonomics (Hare et al. 2006; Hinze and 

Appelgate 1991; Shikdar and Sawaqed 2003; McLain and Jarrell 2007; Hinze 2006). For 

example, Hinze (2006) theorized the Distraction Theory, which asserts that a worker will 

have higher efficiency if the distraction of a known hazard is minimized and that efficiency 

is reduced when the focus on the distractions posed by the hazards are high. Furthermore, 

although improving working conditions through ergonomics can lead to improved 

efficiency due to higher level of comfort, some safety interventions, such as slower pace of 

work and more rest allowances, can result in lower productivity (Wells et al. 2007). This 

research, therefore, investigates the relationship between productivity and safety in 

workplace design and aims to propose an approach that enables the planning of efficient 

and safe operations concurrently. Despite the vast amount of research focusing on 

improving each of these elements of workplace design (i.e., productivity and safety) 

separately, less attention has been given to investigating the relationship between efficiency 

of manual tasks and ergonomic behavior at a detailed motion level. 

2.2 CHALLENGES IN ERGONOMIC ANALYSIS IN CONSTRUCTION 

In an effort to prevent WMSDs in construction, previous research has focused on 

identifying awkward postures that may contribute to the development of WMSDs. For 

example, Alwasel et al. (2011) applied magneto-resistive sensors to measure body joint 



11 

angles and identify exposure to unsafe postures during construction tasks. Ray and Teizer 

(2012) suggested real-time analysis of construction workers’ posture using a Kinect sensor 

to detect non-ergonomic activities. Li and Lee (2011) introduced a computer-vision-based 

approach to obtain construction workers’ motion data from video and to recognize unsafe 

actions. The posture-based approaches in previous studies have provided valuable insight 

into the use of motion information for ergonomic analysis. However, taking into account 

that WMSDs occur as an interactive process of biomechanical and physiological internal 

responses of the human body to external physical stresses (e.g., posture, exertion, and 

vibration) (Kumar 2001), further research efforts are still required to assess internal loads 

on the human body during construction activities. More importantly, critical factors 

affecting WMSD development include production-related variables such as the level, 

duration, and frequency of loads imposed on tissues (Armstrong et al. 1996), which have 

seldom been studied in the existing body of research. There is thus a need to integrate 

production planning with ergonomic analysis to achieve optimum workplace design.  

Despite previous efforts, the construction industry still faces the following challenges: (1) 

current practices rely heavily on manual observation that not only requires significant time 

and effort, but also involves the subjective judgment of observers; (2) the existing 

assessment methods (e.g., physical demand analysis) may not provide sufficient 

information to identify risk factors for the prevention of reoccurrences; and (3) it is difficult 

to forecast how risk mitigation measures and interventions (e.g., changes in tools or 

workbench configuration) may affect safety and productivity. This research aims to address 

these challenges by providing a means for automated data collection and simulation that 

allows for experimentation with various risk mitigation strategies in a virtual environment. 

2.3 SIMULATION MODELING IN CONSTRUCTION 

Simulation modeling is a very well-known and widely used approach for efficiency 

analysis and productivity improvements in construction (Wang and Halpin 2004). For 

construction projects to be successful, effective planning and scheduling is required, and 

simulation modeling is a valuable construction management tool that enables the analysis 

of construction operations to achieve efficient operations planning (Kamat and Martinez 
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2000). Simulation modeling provides production planners with the opportunity to evaluate 

various scenarios of work processes and to design productive workplaces. In particular, 

discrete-event simulation has proven to be a highly reliable approach for (re)designing and 

analyzing complex, dynamic, and collaborative construction systems (Lu 2003). Discrete-

event simulation has been used for various applications in different phases of construction 

(e.g., Ozcan-Deniz and Zhu 2015; Zhou et al. 2009; Corona-Suárez et al. 2014; Yang et al. 

2012). For over four decades, construction researchers have worked on developing 

simulation modeling tools that can appropriately describe the features of construction 

operations, including its dynamic and random nature. Some of the most commonly used 

simulation platforms include: STROBOSCOPE (Martinez 1996), which is a general 

purpose simulation system designed for the simulation of processes common to 

construction engineering; CYCLONE (Halpin 1977), which is a well-established and 

simple system that is easy to learn, is effective for modeling various simple construction 

operations, and is the basis for a number of construction simulation systems (Sawhney et al. 

1998); and Simphony (AbouRizk and Hajjar 1998), which attempts to simplify and 

standardize the development and utilization of construction Special Purpose Simulation 

(SPS) tools. With advancements in construction simulation, researchers have increasingly 

focused on developing SPS templates. SPS modeling involves building a platform that can 

be used by construction practitioners that are familiar with a specific domain, but not with 

the methods and details of simulation modeling, to model an operation using simplified 

symbolic representations (AbouRizk and Hajjar 1998). Thus, SPS modeling targets a 

specific area (e.g., highway construction) and provides templates and modeling elements 

that enable convenient modeling of projects pertaining to that area. It enables precise 

modeling while requiring less time and effort compared to general purpose simulation due 

to its lower level of complexity and abstraction (Chua and Li 2002). Some examples of SPS 

applications include: tunneling (Ruwanpura et al. 2001), bridge construction (Marzouk et 

al. 2008), tower crane operation (Appleton et al. 2002), construction noise prediction 

(Gannoruwa and Ruwanpura 2007), and workflow analysis (Palaniappan et al. 2007).  

Although many advances have been made in the use of simulation modeling for estimation 

of construction task duration, it has not been adapted to its full potential for modeling 

manual construction operations. In particular, discrete-event simulation can be useful for 
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modeling manual tasks, as it enables modeling human operators as resources of the system 

and can be adjusted to generate appropriate information on time aspects of human work 

(e.g., active and idle time). Given that this type of information is not directly available from 

other pertinent modeling and analysis tools, discrete-event simulation can complement 

these methods to provide reliable analysis outputs without requiring detailed and extensive 

inputs. Furthermore, discrete-event simulation facilitates experimentation with and optimal 

selection of different methods for carrying out manual tasks. Furthermore, the flexibility of 

SPS modeling enables the integration of motion-time standards into simulation 

environments, and its ease-of-use enables the incorporation of manual tasks into models of 

construction operations. Thus, an SPS template containing modeling elements, which 

represent manual construction activities and provide standard duration for manual tasks 

based on available validated motion-time systems (i.e. PMTS), should be developed. 

Furthermore, integrating ergonomic assessment into the PMTS-based SPS can provide 

initial insight into both the efficiency and safety of an operation during its design phase.  

2.4 THEORETICAL BACKGROUND ON PREDETERMINED MOTION TIME 

SYSTEMS 

Different measurement techniques (e.g., time study, work sampling) have evolved to 

estimate the amount of time required to perform a manual task. Among these techniques, 

predetermined motion-time systems, also known as predetermined time systems, have 

gained increasing attention as they address the subjectiveness of time studies for setting 

standards. A PMTS is a structured set of data, procedures, methods, and motion times used 

to study manual tasks and is expressed by describing the motions used to perform a task 

and their previously established standard times (Institute of Industrial Engineers 1983). 

Large samples of various manual tasks have been studied and evaluated by researchers to 

develop a PMTS that can provide the standard time required to carry out a manual activity. 

PMTSs have been commonly used to examine and improve labor productivity (Kuhlang et 

al. 2011; Gupta and Chandrawat 2012; Thakre et al. 2009; Xu et al. 2013; Sun et al. 2009). 

The most commonly used PMTSs include: Modular Arrangement of Predetermined Time 

Standards (MODAPTS) (Heyde 1966), Methods-Time Measurement (MTM) (Maynard et 

al. 1948), and Maynard Operation Sequence Technique (MOST) (Zandin 1980). As an 
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example of a simple PMTS, MODAPTS is developed based on the premise that the time 

required for any body movement can be expressed as a multiple of the time required to 

move a single finger. The time required to move a finger is called a MOD and is equal to 

0.192 seconds. Basic alphanumeric codes (e.g., G=Get, M=Move), which describe the 

nature of the motions, are defined and are combined with an MOD value that represents the 

number of MODs required to perform the motion (e.g., G3, M4). Applying MODAPTS 

requires breaking down a manual activity into its basic motions (e.g., moving hand, 

grasping object, walking) and assigning MOD values to each motion. By adding the MOD 

values, the total number of MODs required is calculated and is converted to seconds to 

derive the standard time required to complete the operation.  

While PMTSs have been successfully adopted for different applications in other industries, 

such as manufacturing, less attention has been given to their potential applications in the 

construction industry. By integrating PMTSs into simulation environments, it is possible to 

conveniently model various manual construction tasks and obtain standard durations for 

different scenarios of carrying out an operation. When simple design data are provided as 

input (e.g., walking distance, bending motion), the simulation engine calculates the 

corresponding standard duration automatically and uses the duration as required time data 

for the simulation model. Computerizing PMTS methods has advantages, such as faster 

application, simplicity of use, consistency of application, and update capabilities (Genaidy 

et al. 1990). Thus, the use and integration of PMTS into simulation can be highly useful for 

exploring manual operations at a motion level.  
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Chapter 3  An Automated Biomechanical Simulation Approach to 

Ergonomic Job Analysis for Workplace Design 1 

3.1 SUMMARY 

One of the most effective approaches to preventing WMSDs is to evaluate ergonomics 

considerations early in the design and construction planning stage before the worker 

encounters the unsafe conditions. However, a lack of tools for identifying potential 

ergonomic risks in a proposed workplace design has led to difficulties in integrating safety 

and health into workplace design practice. In an effort to address this issue, this chapter 

discusses a motion data-driven framework for ergonomic analysis that automates and 

visualizes the evaluation process in a virtual workplace. This is accomplished by coupling 

ergonomic analysis with three-dimensional (3D) virtual visualization of the work 

environment. The proposed approach uses motion data from the 3D model of the jobsite to 

evaluate the risk factors that can produce excessive physical loads on the human body 

through biomechanical analysis. A global risk assessment of musculoskeletal disorders is 

performed on worker motions first, and biomechanical simulation is then used to further 

analyze unsafe motions by estimating internal loads on each selected body joint of the 

worker and redesigning the motion and workplace accordingly. As a case study, several 

tasks taking place in a construction prefabrication shop are modeled and analyzed to 

modify the workplace and ensure improved ergonomic safety.  

3.2 INTRODUCTION 

WMSDs are reported to be the leading cause of non-fatal occupational injuries that may 

lead to temporary or permanent disability (Bureau of Labor Statistics 2008). WMSDs 

account for about 34% of non-fatal injuries resulting in days away from work in the 

construction industry (CPWR 2013), and involve a median of 8 days per person per year 

away from work, compared with 6 days for all nonfatal injury and illness cases (NIOSH 

2004). Despite technological advances in recent years, the construction industry is still 

                                                 
1 A version of this chapter is published as Golabchi, A., Han, S., Seo, J., Han, S., Lee, S., and Al-Hussein, M. 

(2015). “An Automated Biomechanical Simulation Approach to Ergonomic Job Analysis for Workplace 

Design.” Journal of Construction Engineering and Management, 141(8), 04015020. 
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labor-intensive, with workers frequently exposed to manual handling tasks involving 

forceful exertion and awkward postures. Furthermore, construction jobsites are generally 

more hazardous than other work environments (e.g., manufacturing) due to the presence of 

heavy equipment, physically demanding tools, hazardous materials, and rapidly changing 

work conditions, all of which increase the possibility of unsafe actions, human errors, and 

injuries (Abudayyeh et al. 2006). This leads to consistently high rates of work-related 

accidents, injuries and fatalities among construction workers (Lopez and Gilkey 2014). 

However, current practice in workplace design often focuses on productivity improvements 

rather than on enhancing health and safety (e.g., ergonomics) (Freivalds 2014). This 

phenomenon is frequently observed in off-site and modular construction, where production 

line design is mainly focused on improving productivity through better process flow, 

material handling, and factory layout. As mentioned before, when ergonomic precautions 

are not fully considered, the benefits of increased productivity are likely offset by the 

increased medical and workers’ compensation costs resulting from WMSDs. 

In addition, Prevention through Design (PtD) has been considered in construction as an 

important process that enables integrating safety considerations into the design stage and 

can potentially prevent up to half of construction accidents (Toole and Gambatese 2008). 

Adoption of PtD can also provide a great opportunity to mitigate occupational health risks 

such as WMSDs (Nussbaum et al. 2009; Gambatese et al. 2005; Weinstein et al. 2005; 

Hecker and Gambatese 2003). However, one of the challenging issues for the PtD approach 

to health issues is a lack of tools for identifying potential ergonomic risks prior to actual 

work during the design phase (Kim et al. 2008; Nussbaum et al. 2009). To address this 

issue, this chapter proposes an automated ergonomic analysis framework that identifies and 

evaluates the awkward worker postures and motions that can be expected to be involved in 

a proposed workplace design, in a 3D virtual model of the work environment. Integrating 

ergonomic analysis with visualization of the workplace (i) enables the assessment of 

clearance, reachability and visual requirements, as well as postural comfort (Feyen et al. 

2000), and (ii) facilitates communication of ergonomic concerns and design alternatives 

early in the design and planning phases or during redesign for process improvement. The 

proposed framework visualizes and validates ergonomic risks as well as improvements in 

the digital environment that will later be applied on the jobsite. As a case study, manual 
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tasks taking place in a construction prefabrication company are investigated for the purpose 

of modifying the workplace and ensuring improved ergonomic safety. 

3.3 RELATED WORK  

In recent decades, researchers and practitioners have focused on developing effective 

ergonomic assessment models, such as Rapid Entire Body Assessment (REBA) (Hignett 

and McAtamney 2000), Rapid Upper Limb Assessment (RULA) (McAtamney and Corlett 

1993), and Ovako Working posture Assessment System (OWAS) (Karhu et al. 1997). 

However, these assessment models have not been fully adopted yet in construction due to 

the difficulties of practical implementation (Burns et al. 1997). This section thus reviews 

the current state of the literature on workplace design research to identify the challenges 

associated with existing ergonomic analysis methods. 

3.3.1 Overview of Motion Studies in Construction 

Various approaches (e.g., self-evaluations, observation-based methods, and direct 

measurements) have been developed to proactively assess risk factors associated with 

WMSDs (Li and Buckle 1999). Self-reports from workers are used to collect information 

on exposure to physical and psychosocial factors through worker diaries, interviews, and 

questionnaires (David 2005). Observational methods involve a job analyst observing 

working postures and movements in real time or from recorded video to identify hazardous 

actions and classify risk factors (NIOSH 2014). Different types of sensors and electrical 

devices (e.g., goniometric, optical, electromagnetic, and accelerometer-based systems) have 

also been developed and used to define body postures directly. Examples include magneto-

resistive sensors (Alwasel et al. 2011), using a Kinect sensor (Ray and Teizer 2012) and 

applying computer-vision-based methods (Han and Lee 2013). These approaches have 

provided very useful means for using motion information for ergonomic analysis. However, 

the previous studies in construction have mainly focused on monitoring ongoing tasks that 

may cause WMSDs. Further research efforts are thus required to understand how laborers 

perform tasks in a given work environment and how the workplace can be improved to 

minimize awkward postures and motions. Applying ergonomic considerations in the early 

phases of designing a project and planning the tasks may help with risk mitigation and 
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achieve proactive safety management that allows for the prevention of ergonomic injuries 

(Freivalds 2014).  

3.3.2 Overview of Ergonomic Analysis Approaches 

Two main approaches have been developed and implemented to identify and evaluate 

hazard risk factors: (i) ergonomic posture analysis, which is the scientific discipline to 

understand interactions among humans and other elements of a system (e.g., tools, 

equipment, machines and workspace layout) in order to optimize human well-being and 

overall system performance; and (ii) biomechanical analysis, which is the study of human 

motion as a function of body structure to identify causes of injuries and prevent them. 

Ergonomic posture analysis uses assessment models and checklists (e.g., REBA and RULA) 

to evaluate the risks involved in human actions by calculating overall scores indicating the 

level of risk associated with a manual task. This approach typically considers external risk 

factors such as task frequency and duration as well as human postures to provide the global 

risk assessment (i.e. ergonomic risks imposed on the whole body) associated with a posture. 

Biomechanical analysis is performed to assess the internal loads on the worker’s joints and 

analyze musculoskeletal stresses on the joints at risk (Armstrong et al. 1996). 

Biomechanical models help estimate internal forces and moments that cannot easily be 

measured directly by describing the complex musculoskeletal systems of the human body 

(Chaffin et al. 1996). They also provide a quantitative assessment of musculoskeletal loads 

during occupational tasks, which help to identify body parts with hazardous loading 

conditions (Marras and Radwin 2005). Since WMSDs occur as an interactive process of 

biomechanical and physiological internal responses of the human body to external physical 

stresses (Kumar 2001), biomechanical models have been developed and utilized to 

understand and reduce the risk of WMSDs in the work environment (Marras and Radwin 

2005). Recently, several simulation and analysis tools (e.g., 3D SSPP and OpenSim) have 

been developed based on 3D biomechanical modeling to assess the ergonomic risks 

associated with a motion. These tools provide both proactive and reactive analyses of work 

tasks (Seo et al. 2013). 
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Nonetheless, only a few studies in construction have applied both approaches 

simultaneously. Each approach considers different types of factors (e.g., frequency, 

duration, and posture by posture-based ergonomic analysis, and motions by biomechanical 

models) and provides different analysis outcomes (e.g., overall risk levels by ergonomic 

tools, and quantitative risk levels at a body joint level by means of biomechanical models). 

Taking into account that all these factors are determined by production activities, a 

systematic and comprehensive assessment encompassing both approaches can provide 

valuable information to evaluate the risks involved in manual operations and enable 

effective workplace design and task planning. 

3.3.3 Overview of Ergonomic Workplace Design Tools in Other industries 

In other industries (e.g., automobile and manufacturing), computer-aided methods have 

been developed to evaluate the performance of human operators in work environments. 

One approach has been to develop computer-aided design (CAD) platforms with built-in 

ergonomic assessment capabilities, also known as Digital Human Modeling (DHM) 

(Chaffin 2008). Examples include 3DSSPP/AutoCAD (Feyen et al. 2000), SAMMIE 

(Porter et al. 1995), APOLIN (Grobelny et al. 1992), CAAA (Hoekstra 1993), 

Deneb/ERGO (Nayar 1995), ERGOMAN (Mollard et al. 1992), and JACK (Badler et al. 

1995). Also, the prospect of developing complementary ergonomic software for CAD 

systems has been investigated; examples include MINTAC (Kuusito and Mattila 1990), 

ErgoSHAPE (Launis and Lehtela 1992), HUMAN (Sengupta and Das 1997), RAMSIS 

(Seidl 1997), and ANYBODY (Porter et al. 1995).  

Challenges have been identified in applying these platforms to construction, including the 

following: (i) the use of these systems in construction practice requires additional learning 

of terminology, command structures, and modeling techniques differing from those 

employed in the the CAD systems widely used in the construction industry; (ii) only a few 

of them produce a detail-level of ergonomic risk (e.g., static strength capabilities or back 

compression forces) for the modeled postures and loads, which can play a key role in 

assessing and re-modeling the workplace (Feyen et al. 2000); and (iii) when assessing 

postural comfort, the capabilities of most existing systems appear limited to a designer's 
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subjective judgment regarding awkward postures. In this regard, robust and compatible 

methods are required to carry out objective ergonomic analysis in construction. 

3.4 RESEARCH FRAMEWORK 

This chapter presents a 3D virtual model-based framework for ergonomic job analysis 

which provides a designer with quantitative information regarding the potential ergonomic 

risk involved in current and proposed workplace designs. The 3D modeling of work 

environments is a powerful tool for recreating the complexity of the real jobsite and 

observing workplace evolution over time to detect ergonomic risks that would otherwise be 

difficult to foresee (Cimino et al. 2009). In particular, the increasing prevalence of building 

information modeling (BIM) in the construction industry brings with it the potential to use 

3D modeling for ergonomic analysis purposes. Accordingly, 3D visualization could be an 

effective observation method by which to obtain required information such as motion data, 

job sequences, and process flow without on-site visits. To exploit this opportunity, this 

chapter specifically (1) utilizes motion data built in a 3D environment representing the 

jobsite, (2) employs ergonomic analysis to identify tasks posing injury risks, (3) evaluates 

the risk factors that can produce excessive physical loads on the human body through 

biomechanical analysis, and (4) mitigates the risk factors associated with given tasks to 

improve safety and productivity. As described in Fig. 3-1, the proposed framework is 

established by coupling ergonomic and biomechanical analyses with the 3D virtual model 

of the work environment. The inputs include information pertaining to both operations and 

the physical environment (e.g., workflow, dimensions of materials and tools, worker 

information, and site layout). These inputs are used to develop an accurate 3D virtual 

representation of the work environment. Notably, the data collection process is critical as 

the resulting 3D model contains geometry data which serves as a basis to produce motion 

information for ergonomic analysis. The motion datasets extracted from the virtual models 

are then used for ergonomic and biomechanical analyses. The ergonomic analysis helps to 

identify which workers potentially encounter the given unsafe workplace conditions, and 

eventually to determine whether a task is ergonomically safe or requires further 

modification. For the unsafe tasks requiring further improvement, biomechanical analysis is 

then executed to estimate internal loads on each body joint. The results of the 
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biomechanical analysis are used to improve the motion and redesign the workplace to 

ensure safe and effective design of jobsite components, such as workstations, tools, and 

machines, corresponding to the task requirements. As a result, the linking of ergonomic 

analysis and 3D virtual modeling enables one to analyze and improve human motions in an 

interactive manner. 

 

Figure 3-1 Automated ergonomic analysis framework for workplace design 

3.4.1 Data Acquisition 

Data acquisition is required to gather all the required information describing the work 

environment. The inputs consist of: (1) job sequences and process times of the tasks taking 

place at the site; (2) module information such as dimensions (e.g., length, width, and height) 

of all the components (e.g., equipment) and materials (e.g., sheathing and timbers); (3) 

worker anthropometry data (e.g., sex, height, and weight); (4) tool information (e.g., weight 

of tools to be handled); and (5) physical site layouts of the jobsite. The layout of the site, 

process times of the different tasks, and dimensions of the material and objects are required 

for the 3D model building process, while the worker attributes and weights of tools and 

materials are required to ensure precise creation of the worker models and motions for 
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ergonomic and biomechanical analyses. The data is gathered by acquiring all available 

blueprints and specifications from the company’s management and observing the 

workplace to ensure an accurate representation of the real system is created in the 3D 

virtual environment.  

3.4.2 3D Virtual Model Creation 

Human actions and postures employed to perform a task are affected by the work 

environment. For example, walking distances to carry an object are determined by the 

distance between the initial location of the object and the end position where it is to be 

placed. The height of an object, as another example, determines moving trajectories and 

postures required to hold and carry an object. In this regard, the design of workplaces plays 

a key role in gaining understanding of human movements to prevent ergonomically unsafe 

actions at a jobsite. 

In building accurate models of work environments, the data collected from a job site 

provides necessary information such as geometries of the environment as well as sequential 

order of the tasks. The development of the 3D virtual model thus consists of two procedures: 

(1) creating the 3D geometric model of the jobsite representing the site’s physical layout, 

equipment, tools, and material; and (2) simulating the operation’s procedure to represent 

the sequence of events at the real jobsite. The 3D modeling processes involve not only 

building and visualizing 3D geometric models of the work environment, but also 

developing the motions of 3D workers with tools and material to satisfy task requirements 

according to the modeled workplace (Fig. 3-2a). This motion inference can be the result of 

a post-simulation visualization approach that creates motions through simulation (Han et al. 

2012), or it can be built independently. The present chapter uses Autodesk 3ds Max as the 

modeling platform due to its visualization capabilities. The 3D models of the workers are 

built considering the characteristics of the operators (e.g., sex, height, and weight) to 

represent the real jobsite conditions as accurately as possible.  

After developing the 3D virtual model of the jobsite (Fig. 3-2a), each worker’s motion data 

is extracted in a motion capture data format such as a Biovision Hierarchy (BVH) file (Fig. 

3-2b). The BVH format is a standard ASCII file used to flexibly define body configurations 
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and describe rotational joint data from various motion capture systems to animate bipedal 

characters (see Appendix A). In this process, a human skeleton with information on joint 

angles at each time frame is extracted which can be used to track the movements of the 

skeleton, reflecting the actions of the real character in the jobsite. However, 3ds Max does 

not support the direct extraction of this file type for further analysis. Hence, each 3D 

worker motion is transferred into Autodesk Motion Builder after matching the body 

structures of 3D workers with the body configurations defined for the ergonomic analysis. 

To automate this matching process, a customized system, called ergoSupport, is used in 

MAXScript, which is the built-in scripting language of 3ds Max. Then, the BVH file for 

each 3D worker is automatically generated in Motion Builder. This motion file is used for 

the developed analysis algorithm, as described in the following section. 

 

Figure 3-2 Motion data extraction, (a) 3D virtual model of workplace and (b) sample BVH 

file 

3.4.3 Ergonomic Analysis 

This research uses motion capture data extracted from the virtual model for ergonomic risk 

assessment based on existing ergonomic evaluation methods, such as RULA (McAtamney 

and Corlett 1993). Researchers and practitioners have developed various ergonomic 

assessment methods that provide a standard approach for evaluating the risks involved in 

human actions. These assessment tools are used to calculate overall scores that indicate the 

(a) (b) 
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level of risk associated with the task, based on manual observation. These assessment 

guidelines typically require the user to input the angles between body joints, which are the 

main inputs for the evaluation. However, it is time-consuming and error-prone for a human 

observer to record angles of many body joints for ongoing work. For example, common 

practice is to record videos of workers and then repeatedly rewind and re-view the video to 

calculate all the required angles. The process is also subject to the evaluator’s 

understanding of the task. This chapter thus focuses on the automation of this manual 

process by using motion capture data.  

The motion data (i.e., BVH files) extracted from 3ds Max characterizes human poses using 

3D Euler rotation angles at each body joint. The rotation angles, however, cannot be 

directly input to ergonomic assessment models, since each assessment model may define 

the input data (e.g., joint angles) differently for the analysis. The research presented herein 

thus initially computes 3D positions of body joints simply by calculating a transformation 

matrix composed of the rotation angles and translations available from the BVH format 

(Meredith and Maddock 2001). Then, the position data allows for the calculations of other 

types of data required for a particular ergonomic assessment method in order to provide the 

analysis results, such as overall ergonomic scores. The calculated score implies the final 

recommendation that determines, for example, whether action is safe, further investigation 

required, or action is unsafe. In this research, the motion data is extracted from the virtual 

model; however, motion files (e.g., BVH) extracted from different type of sensors also can 

be analyzed in a similar way, simply by computing 3D positions of joints and inputting 

them into the ergonomic assessment tool. The RULA evaluation method is implemented for 

the case study of this research.  

The RULA system examines biomechanical and postural loading on the whole body with 

particular attention to the neck, trunk and upper limbs (McAtamney and Corlett 1993). The 

result of evaluating a task using an ergonomic analysis method such as RULA is 

determined by calculating a score for each ergonomic risk factor related to a body part and 

combining these scores to obtain a final score. Different body segment positions (e.g., 

trunk, upper arm, and neck) are divided into posture categories, and the corresponding 

score is defined by assigning the body segment to one of these categories. Each posture 
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category represents a certain portion of the range of motion. The number of posture 

categories into which the posture range is partitioned for different body parts in the RULA 

method is shown in Table 3-1. 

Table 3-1 Number of posture categories for the RULA system 

Upper arm Lower arm Wrist 

Flexion Abduction Raised Flexion Lateral bend Flexion 
Radial/ulnar 

deviation 

5 2 2 2 2 3 2 

Neck Trunk Leg 

Flexion Twist 
Lateral 

bend 
Flexion Twist 

Lateral 

bend 
Supported/unsupported 

5 2 2 4 2 2 2 

For example, to determine the score for the flexion of the upper arm, the posture has to be 

classified in one of the five categories shown in Fig. 3-3. Each of these categories 

corresponds to a score that is used to achieve the total score for the upper arm. By 

calculating the corresponding joint angle, the posture category for all the different body 

segments can be identified and scores can be determined.  

 

Figure 3-3 Posture categories for upper arm flexion using RULA 

For instance, to calculate the score of the upper arm using the proposed approach, the 

motion data is used to calculate the angle between the shoulder and the vertical axis. This is 

achieved by defining two vectors: the first vector connects the upper arm joint to the elbow 

joint, and the second vector defines the vertical axis. The coordinates of the first vector are 

calculated by subtracting the coordinates of the destination of the vector (i.e., the 3D 

coordinates of the shoulder joint) from its origin (i.e., 3D coordinates of the forearm joint). 

20o 20o 
<20

o 
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The angle is then calculated in the algorithm based on the dot product theory (Arfken 1985) 

as in Equation 3-1: 

                                                                 X.Y = |X| |Y| cos θ                                             (3-1) 

Where X and Y are the vectors described above; then, the angle between them, θ, is 

calculated using Equation 3-2: 

                                                               θ = cos -1 X.Y / |X| |Y|                                          (3-2) 

The same process is carried out for all the different body segments and joint positions. The 

resulting scores are combined to obtain a final score ranging from 1 to 8. A total score of 1 

or 2 indicates that the posture is ergonomically acceptable and the worker is working in a 

safe posture with no risk of injury, while 3 or 4 specifies that further investigation is needed 

since the worker is performing the task in a posture that could present some risk of injury. 

This score is most likely the result of one part of the body being in a deviated and awkward 

position, so the task should be modified to prevent the risk. A score of 5 or 6 indicates that 

investigation and changes are required soon, and 7 or higher means that the worker is 

exposed to immediate risk and investigation and changes are required promptly. Two other 

inputs for the RULA method are muscle use score and force score. The muscle use score 

variable describes the frequency of the task being performed (e.g., mainly static or repeated 

often) and the force score defines the load associated with the task. Since these two 

variables are recorded based on observation of the tasks, they are simply input into the 

computation as known variables.  

Since other practical ergonomic evaluation systems, such as REBA (Hignett and 

McAtamney 2000), Strain Index (Moore and Garg 1995), and Occupational Repetitive 

Actions Index (OCRA) (Occhipinti 1998), require the same inputs (e.g., joint angles) as the 

RULA system and only differ in the number of posture categories and their emphasis on 

different body parts, they can be conveniently incorporated into the proposed approach. The 

user will have the option to choose the one that most precisely corresponds to the task 

under investigation. 
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3.4.4 Biomechanical Analysis 

Different computerized simulation and analysis tools have been developed to analyze 

human motions based on 3D biomechanical modeling. In this research, the 3D SSPP 

software (Chaffin et al. 2006) developed by the Center of Ergonomics at the University of 

Michigan is used to assess the risk factors that can produce excessive physical loads on the 

worker’s body through a biomechanical analysis using the motion data created previously. 

Fig. 3-4 shows a snapshot of the 3D SSPP environment, which includes the human model 

and its skeletal system, as well as information regarding the forces imposed on the human 

model’s joints based on its posture.  

 

Figure 3-4 3D SSPP motion modeling environment 

For the worker motions that the ergonomic analysis has reported to be ergonomically 

unsafe, a biomechanical analysis is performed to identify body joints with excessive loads. 

In this case, the developed application automatically creates a batch file that can be input 

into 3D SSPP for further analysis (Seo et al. 2014). Biomechanical analysis using a 

simulation tool such as 3D SSPP requires three types of inputs: joint angles, external loads, 

and anthropometry. The latter two inputs can be obtained by observing the task (e.g., 

weight of objects when lifting, and sex and height of human subject), while the body 

configuration of the motion file (in this case from the virtual model) can be slightly 

different from the body configuration that 3D SSPP uses. Since the proposed approach uses 
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the motion data to calculate joint angles, this difference can cause inaccuracy. To address 

this issue, linear estimation of joint positions is applied to map and estimate corresponding 

body joints of these two body types to ensure that the created motion is an accurate 

representation of the original motion. For example, the body joint configuration used in 3D 

SSPP requires location input for the Chest joint located between the Neck joint and the 

Spine joint. However, the body configuration of the motion file extracted previously does 

not include the Chest joint. Since this joint is essentially located on a straight line 

connecting the Neck and the Spine joints, and since its linear distance from these two joints 

does not change, the 3D coordinates of its location can be calculated using linear 

interpolation. Once all three required inputs are calculated, a batch file is created to run 3D 

SSPP that computes loads exerted on each body joint over all the frames. This enables 

precise detection of the movements that cause excessive stress on a joint for the whole 

motion and of the body joint at risk. The motion can then be modified by redesigning the 

task and its surrounding workplace until it is ergonomically safe and all forces are below 

the allowable limit.  

3.4.5 Improved Workplace Design 

After modifying all the unsafe worker motions to create ergonomically acceptable motions, 

these are presented in the 3ds Max model of the workplace. These motions replace the 

corresponding unsafe ones to complete the final 3D virtual model for representation to the 

owner and facility managers. This model includes design data regarding the physical layout 

of the jobsite as well as worker motion data for each activity which can be used for 

visualization purposes, managerial decision making, communication, and training. For the 

case of workplace redesign, the modifications of the work environment and motions can be 

conveniently communicated with all different levels of staff, from managers and 

supervisors to workers, which facilitates implementation of the adjustments. These 

adjustments usually include alterations such as rearranging a work station, 

increasing/decreasing the height of a worktable, or providing more comfortable worker 

postures. 
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3.5 IMPLEMENTATION: CASE STUDY 

The proposed approach is implemented in a production line of a construction modular 

prefabrication company, to investigate the ergonomic risk associated with its operations and 

to propose a new design that minimizes safety risks to workers. Off-site construction 

methods such as modular and prepanelized construction are among the residential 

construction methods used in Edmonton, Canada. There is a high market demand for off-

site construction methods since they offer the advantages of an environmentally-friendly 

process, shorter completion time, and predictable quality and cost. To meet these 

requirements, construction manufacturing companies continually redesign their production 

lines to improve the efficiency of their operations. However, due to the lack of effective 

approaches, in many cases ergonomic considerations are not being applied to workplace 

design and redesign. Despite technological advances, workers in off-site construction still 

perform labor-intensive and physically demanding tasks, including cleaning, assembling, 

loading/unloading material, and operating machines, which results in high rates of work-

related accidents and injuries among these workers. Thus, although the study presented in 

this chapter implements the developed framework in a construction fabrication shop setting, 

it can be similarly applied to any other construction jobsite.  

For the purpose of this research, the process of building floor panels in a fabrication shop is 

modeled and analyzed (Fig. 3-5). The production line consists of four stations where the 

first station involves material preparation and the other three are assembly stations. Two of 

the assembly stations are operated primarily by machines, and the workers’ manual tasks 

involve operating the machines. However, most of the tasks taking place in the last 

assembly station are operated manually and are physically challenging for the workers; 

thus, this chapter mainly focuses on the last assembly station. All the required information 

is collected from the jobsite to build the virtual 3D model of the floor line in 3ds Max. This 

information includes the layout of the facility and equipment, the processing times of 

different tasks, and information pertaining to the materials used. Table 3-2 shows the 

collected information regarding the sheathing and timber used in the production line. Each 

row provides specifications of the given building component handled by the workers at this 

station. Information about the tools used by the workers is also collected which is used to 
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determine the loads imposed on workers while operating them. The main tools used in the 

observed tasks are a nail gun and a cutting tool, which weigh approximately 3.4 kg (7.5 lb) 

and 3.8 kg (8.4 lb), respectively.  

 

Figure 3-5 Sequence of tasks for floor panel production line 

Table 3-2 Specifications of materials used in the production line 

Sheathing List 

Number of 

Pieces 
Width (mm) Height (mm) Length (mm) 

1 1,219.2 22.2 1,593.1 

1 609.6 22.2 535.8 

2 609.6 22.2 1,487.0 

6 1,219.2 22.2 1,593.0 

5 1,219.2 22.2 1,487.0 

Timber List 

Number of 

Pieces 
Length (mm) 

Number of 

Pieces 
Length (mm) 

1 1,070.0 1 425.4 

 1. Deliver material 

(timbers) to station 

using overhead crane 

2. Set timbers 

on work table 

3. Nail timbers 

4. Deliver 

sheathing 

6. Cut lifting holes 

on sheathing 
7. Cut sheathing 

 5. Nail sheathing 
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1 2,975.0 3 368.3 

1 1,593.1 1 149.2 

1 1,486.9 2 9,080.5 

1 609.6 3 7,239.0 

1 504.0 2 7,848.6 

After collecting all the required data, the 3D model of the production line is built in the 3ds 

Max environment by carrying out measurements in the jobsite and using blueprints 

provided by the facility managers in a detailed level. The models are built through thorough 

visual inspection of the as-built conditions, and the models were also reviewed and verified 

by facility management personnel. Fig. 3-6 shows a picture of the real jobsite and a 

screenshot of the virtual environment from the same perspective. The result of this process 

is a 3D model of the jobsite including simulated animation data showing production 

operation.  

 

Figure 3-6 (a) Picture of jobsite and (b) screenshot of virtual model from same perspective 

The sequence of the activities on the floor assembly station is illustrated in Fig. 3-5, which 

also gives snapshots of the virtual model. The sequence starts when the timbers are 

delivered to the station and set on the designated table. While the timbers are being nailed 

together, the sheathing is also delivered. The timbers and sheathing are then assembled and 

nailed to each other to form the floor panel and are transferred to the next workstation for 

cutting.  

(a) (b) 
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The seven work processes shown in Fig. 3-5 include twelve different manual tasks in total. 

After the 3D model of the production line has been built, the motions of the workers are 

added as described above. At this point, visual inspection on the modeled animations is 

performed to confirm that the virtual model constitutes an accurate representation of the 

work environment which can be used for different workplace visualization applications. 

The next step involves extracting these worker motions and performing ergonomic analysis. 

The motions are input into the developed application and the RULA method is used to 

analyze the ergonomic risks in the motions. Table 3-3 reports the results of the ergonomic 

analysis for the twelve manual tasks at the fabrication shop. We also manually analyze the 

risk to compare the proposed motion data-driven approach with human observation. The 

results of the two methods of analysis are found to differ with respect to tasks Nailing 4 and 

Timber Setting. These tasks are further examined to investigate the cause of these errors. It 

is found out that the reason behind the discrepancy for the nailing task is that the 

application has calculated a joint angle of more than 100 degrees for the lower arm from the 

motion data, whereas this angle is considered to be less than 100 degrees in the manual 

analysis. For the timber setting task, the manual analysis has assumed a joint angle greater 

than 20 degrees for the neck joint while the application has calculated the same joint angle 

to be less than 20 degrees. These variations in joint angles lead to slightly different RULA 

final scores. The thorough error analysis reveals that the discrepancy between the 

automated and manual analyses is the result of human error in observing at-risk postures 

and estimating the joint angles. The proposed automated method is thus more accurate and 

robust since it uses precise calculation of joint angles for each time frame of the motion 

data to determine the most awkward posture.  

Table 3-3 RULA results of the automated ergonomic analysis compared with manual 

assessment 

Task Motion Data-driven Approach Manual Analysis 

Nailing 1 Investigate and implement change Investigate and implement change 

Nailing 2 Investigate and implement change Investigate and implement change 

Nailing 3 Investigate and implement change Investigate and implement change 

Nailing 4 Further investigation, change soon Investigate and implement change 

Nailing 5 Investigate and implement change Investigate and implement change 
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Hole cutting Further investigation, change soon Further investigation, change soon 

Frame delivery Further investigation, change may be needed 
Further investigation, change may be 

needed 

Panel delivery Acceptable posture Acceptable posture 

Timber setting Investigate and implement change Further investigation, change soon 

Cutting 1 Further investigation, change may be needed 
Further investigation, change may be 

needed 

Cutting 2 Further investigation, change soon Further investigation, change soon 

Gluing Investigate and implement change Investigate and implement change 

For the tasks for which the automated method reports a RULA result other than ‘acceptable 

posture’ (RULA score higher than 2), further biomechanical analysis is performed to 

investigate the amount of exerted forces on different body joints. This analysis provides 

information on body joints at risk and provides insight for redesigning the workplace to 

achieve ergonomically safe motions. After the proposed method generates the required 

batch file for 3D SSPP analysis, each of these motions are loaded into 3D SSPP and the 

forces and moments on the different body joints are extracted. The back compression load 

and also the percentage of workers capable of performing the task (i.e., strength design 

limit) based on different body joints are plotted on a chart in order to compare the exerted 

loads with the allowable limits. As a result, the time frames when the imposed loads exceed 

the allowable limit can be detected and necessary modifications can be made. Fig. 3-7a 

shows examples of such charts, which represent the biomechanical analysis of the nailing 

task. The chart on the left represents the load on the worker’s back over time and the chart 

on the right represents the Strength Design Limit (SDL) data.  

For this task, the result of the biomechanical analysis indicates a potential risk of back and 

torso injury which is the result of excessive force on the worker’s L5/S1 disc and hip due to 

awkward posture while nailing the timbers (i.e., 3D avatar model in Fig. 3-7a). The 

worker’s knees and ankles are also at risk of injury. To address this unsafe task, the 

workplace is redesigned and the motion reanalyzed to assess the potential risk. The 

workplace adjustments include providing a gap between two adjacent workstations, which 

enables the worker to perform the task while standing. This measure serves to greatly 

reduce the loads on the worker’s body joints. The updated motion results in acceptable 
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forces, as shown in the charts in Fig. 3-7b. Fig. 3-7 also shows the workplace redesign in 

the 3D virtual environment before and after modification.  

The same process is carried out for all the other unsafe motions; the summary is presented 

in Table 3-4. The suggested modifications include (1) training, (2) workstation adjustment, 

(3) equipment change, and (4) work methods (i.e., team work). Specifically, for the tasks 

for which the ergonomic risk is the result of the worker’s awkward posture, worker training 

is proposed which involves informing the worker about the risks associated with the task 

and educating them about the correct posture by performing it in the workplace 

visualization (i.e., Nailing 1, Nailing 3, and Gluing). Workstation adjustments and 

equipment changes include changes to the jobsite such as increasing the height of a work 

table for picking up pieces (i.e., Timber setting), rotating the panels to a vertical position 

for nailing (i.e., Nailing 4 and Nailing 5), and picking a piece of material and moving it 

with a forklift instead of handling it manually (i.e., Cutting 2). In cases where the task is too 

challenging for the worker to perform alone, adding another member of the crew to help 

with handling the task is proposed (i.e., Frame delivery and Cutting 1).  

 

Figure 3-7 Back compression chart, SDL chart, and workplace visualization of the nailing 

task, (a) before modification and (b) after modification 

Table 3-4 Summary of results of biomechanical analysis for unsafe tasks 

Task Before Modification After Modification 
Type of 

Modification 

(a) 

(b) 
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RULA 

Score 

Back 

Compression* 

(N) 

Body 

Joint at 

Risk 

Strength 

Percent 

Capable 

(%) 

RULA 

Score 

Back 

Compression 

(N) 

Strength 

Percent 

Capable 

(%) 

Nailing 1 7 3,996 Knee 58 3 2,743 91 Training 

Nailing 2 7 3,614 Hip 77 2 2,594 92 
Workstation 

adjustment 

Nailing 3 7 3,795 Knee 72 3 2,477 94 Training 

Nailing 4 6 3,394 Ankle 69 2 2,296 92 
Workstation 

adjustment 

Nailing 5 7 3,457 Hip 77 2 2,304 95 
Workstation 

adjustment 

Hole 

cutting 
5 2,184 Hip 82 2 1,932 94 

Equipment 

change 

Frame 

delivery 
3 2,420 Shoulder 81 1 1,971 96 Team work 

Timber 

setting 
7 2,735 Knee 63 2 2,608 93 

Workstation 

adjustment 

Cutting 1 3 2,129 Hip 75 1 2,430 96 Team work 

Cutting 2 6 2,526 Torso 71 2 2,096 95 
Workstation 

adjustment 

Gluing 7 3,562 Hip 73 2 2,682 93 Training 

* Allowable limit for back compression is 3,400 N (Waters et al. 1993). 

3.6 DISCUSSION 

The ergonomic analysis approach described in this chapter provides a quantitative 

evaluation of behavioral risks which is used to ensure ergonomically safe workplace 

design. The biomechanical analysis (e.g., capable strength at body joints in Fig. 3-4, and 

back compression and SDL charts in Fig. 3-7) provides detailed information regarding the 

specific body parts at risk, the exerted forces on the worker’s joints over time, and the 

allowable human capacity. This enables not only identifying the postures that impose the 

highest risk, but also modifying the motion or working environment accordingly. As a 

result of the modification, the RULA score, back compression, and strength percent capable 

for the tasks can be kept within acceptable limits after the re-designing, as shown in Table 

3-4. The proposed approach can thus provide precise information to identify ergonomic 

risks associated with a proposed design to prevent WMSDs before the worker is exposed to 

unsafe conditions. The magnitude, duration, and frequency of the musculoskeletal loads 

exerted on the worker’s joints are the main factors leading to WMSDs (Kilbom et al. 1996), 
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and thus the quantitative assessment of forces exerted on body joints is critical in reducing 

the risks of these disorders. 

This chapter has focused on human motion analysis in a virtual environment to evaluate 

and minimize the ergonomic risks associated with workplace designs. In this chapter, the 

ergonomic analysis has been carried out on motion data created in the 3D visualization 

environment of the jobsite. However, motion datasets (e.g., BVH format) extracted from 

any types of sensors can also be utilized for the proposed analysis, particularly when 

assessing human motions in existing operations. With the ongoing advancements in sensing 

technologies, analysts will be able to accurately record existing motions in different 

working conditions (e.g., outdoor), and such motion capture data can be used in the 

framework developed in this chapter to identify body joints at risk and improve worker 

motions accordingly. Future work can investigate the use of sensing devices to extract 

motion information from existing operations as well as estimating human motions (i.e., 

motion planning) for design alternatives, where motion data is not available. 

It should be noted that this chapter focuses on identifying and preventing ergonomic risk 

factors associated with worker motions and does not consider other types of jobsite safety 

risks. Analyzing jobsite accidents is a complex process as many various factors are 

involved in it. Thus, to perform a complete safety analysis, the framework proposed in this 

chapter should be used in conjunction with analysis of other type of jobsite hazards such as 

fall and struck-by hazards.  

The development of the 3D virtual model of the work environment as described in this 

chapter may necessitate significant time and effort for collecting site information and 

building the 3D model. In today’s construction industry, however, the use of these 3D 

models is increasingly prominent and is becoming a common practice for the design 

process. In particular, building information models, which are being used in major 

construction projects, can be conveniently converted to formats suitable for platforms such 

as 3ds Max. This chapter has attempted to leverage this by developing a specialized 

approach that uses these models as a basis for ergonomic evaluation of the work 

environment. Using virtual visualization of the work environment enables efficient 
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comparisons between operational alternatives and convenient implementation of the 

proposed modifications to evaluate and confirm the safety improvements before applying 

the changes to the real jobsite. The 3D models used in this chapter are created through 

visual inspection of the as-built conditions and are verified by the facility management 

personnel. However, laser scanners and 3D sensing technologies (e.g., 3D reconstruction) 

can be used as well to provide higher geometrical accuracy. 

The application of the proposed approach to on-site construction can also be further 

investigated. The frequent changes of working environments over time in on-site 

construction require a considerable amount of time to update the virtual visualization of the 

worksite, including the 3D model and motion datasets. The use of advanced motion sensing 

technologies and computer vision techniques (e.g., laser scanners, image-based 3D 

reconstruction) can be potential solutions that can automate such modeling processes. As 

combined with the sensing technologies, the framework presented in this chapter may 

facilitate the on-site ergonomic risk assessment that can be adapted to the changing 

conditions of construction sites. 

3.7 CONCLUSION 

This chapter presents an automated approach to jobsite ergonomic safety analysis for 

effective and proactive design of construction jobsites. The proposed framework integrates 

ergonomic analysis with 3D visualization of the workplace to provide production planners 

and designers with the potential ergonomic risk and safety concerns associated with a 

potential design. Particularly, this chapter has: (1) investigated a risk intervention means to 

reduce workers’ at-risk movements in the planning phase that goes beyond the 

observational monitoring of worker motions; (2) presented comprehensive uses of 

ergonomic and biomechanical analyses in conjunction to perform a global risk assessment 

as well as to calculate the forces exerted on body joints to ensure efficient worker safety 

evaluation; and (3) proposed computerized methods using motion capture data, which can 

minimize the involvement of designer’s subjective judgments in determining postural 

comfort. Consequently, this chapter may assist practitioners in considering ergonomic risk 

in their design and planning tasks, and assist researchers to further explore the relationship 
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between workplace design and safety performance. Taking the significance of design-

related accidents into account, this PtD approach to safety may in turn contribute to a 

significant reduction of WMSDs in construction workplaces. 
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Chapter 4  A Fuzzy Logic Approach to Posture-based Ergonomic 

Analysis for Field Observation and Assessment of Construction Manual 

Operations 2 

4.1 SUMMARY 

To prevent ergonomic injuries, proper assessment of ergonomic risk is a key to identifying 

risk factors and modifying work practice in a timely manner, as shown in the previous 

chapter. In field observation, however, difficulties in visually estimating human postures 

(e.g., body joint angles) required for ergonomic analysis have led to inconsistent results due 

to the subjectiveness of observers. This chapter introduces a fuzzy logic approach to 

posture-based ergonomic evaluation tools to address this issue. RULA is selected as a case 

study to describe the fuzzy logic modeling of RULA scoring systems and discuss the 

application to modular construction shops. The results of validation comparing correlations 

with biomechanical analysis—used as a ground truth—reveal that the proposed system can 

produce more accurate results than traditional methods and hence help minimize human 

errors in observation for reliable on-site ergonomic assessment. 

4.2 INTRODUCTION 

Appropriate and efficient ergonomic assessment is critical in efforts to mitigate the 

ergonomic risks involved in worker movements and eventually to reduce the rate of 

WMSDs. To enable proactive risk assessment and control in a jobsite, practitioners and 

researchers have developed different approaches: self-evaluation, observation-based 

methods, and direct measurements (Li and Buckle 1999). Among the three ergonomic risk 

analysis approaches, observation-based methods (i.e., manual observation using ergonomic 

assessment tools) have been the most widely implemented in practice due to their 

simplicity, validity, accessibility, and cost- and time-efficiency (NIOSH 2014; Chiasson et 

al. 2012; Bao et al. 2007; Takala et al. 2010; Kee and Karwowski 2007). Self-evaluation 

methods are generally less accurate and reliable compared to the other methods (David 

                                                 
2 A version of this chapter is published as Golabchi, A., Han, S., and Fayek, A. Robinson (2016). “A Fuzzy 

Logic Approach to Posture-based Ergonomic Analysis for Field Observation and Assessment of Construction 

Manual Operations.” Canadian Journal of Civil Engineering, 43: 294–303. 



40 

2005). On the other hand, despite the potentially higher accuracy of the direct measurement 

techniques, their use still remains challenging due to technology and resource limitations; 

for example, they are usually applied to small population samples, where postures with 

only limited number of joints can be measured simultaneously (Bao et al. 2007). 

Furthermore, the accuracy of these technologies is highly affected by the jobsite conditions 

(e.g., outdoor construction), and some types of sensors (e.g., wearable sensors) limit the 

worker’s ability to freely perform their regular tasks and may result in discomfort. 

Furthermore, direct measurement techniques are generally used to obtain joint angle values 

describing a posture that would later be analyzed using existing ergonomic assessment 

tools. In this regard, ergonomic assessment tools serve as a key to properly identifying and 

evaluating onsite ergonomic risks associated with human postures. Observational methods 

are applied through ergonomic assessment tools which assign scores to manual tasks based 

on body posture, task repetitiveness, and duration. Examples of widely-used tools include 

RULA (McAtamney and Corlett 1993), REBA (Hignett and McAtamney 2000), NIOSH 

lifting guideline (Waters et al. 1993), and Strain Index (SI) (Moore and Garg 1995). 

In field observation, however, the reliability of ergonomic evaluation results is contingent 

upon manual measurement of inputs required for the assessment tools (e.g., body joint 

angles, moving distances). The visual ambiguity in estimating those inputs often makes it 

difficult for a human observer to obtain accurate inputs, leading to inaccurate analysis 

outcomes. Consequently, the accuracy of evaluation results and derived risk intervention 

plans is inherently affected by the subjectiveness towards the evaluator’s inputs. In an effort 

to address this issue, this chapter presents a fuzzy logic-based framework to deal with the 

imprecision of ergonomic assessment inputs caused by human intuition in field observation. 

This framework involves re-modeling the scoring systems of an ergonomic tool. This 

chapter first reviews existing ergonomic assessment tools and discusses the issues 

pertaining to the impact of input errors on analysis results. Then, the proposed ergonomic 

model is presented and validated by comparing the results of the existing tool and proposed 

model with the results obtained from biomechanical analysis. As discussed in Chapter 3, 

biomechanical analysis enables the identification of ergonomic risks by evaluating the 

internal loads imposed on the human body’s joints and is thus regarded as an objective 

assessment method. A case study in which the proposed model is applied to modular 
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construction is also carried out, and the contributions and limitations of the study are 

discussed based on the results.  

4.2.1 Traditional Ergonomic Assessment Tools 

Ergonomic posture analysis is performed using assessment models and checklists in order 

to evaluate the safety risks involved in human actions by calculating overall scores 

indicating the level of risk associated with a manual task. This approach considers human 

postures as well as external risk factors such as task frequency and duration to provide a 

global risk assessment (i.e., ergonomic risks imposed on the human body) associated with a 

posture. The assessment systems typically require inputs pertaining to the posture of the 

worker (e.g., body joint angles), the load being handled by the worker (e.g., weight of 

object being carried), and the frequency of the task (e.g., static, repeated). Using this set of 

inputs, the level of ergonomic risks associated with a manual task is estimated. These 

assessment tools typically define discrete boundaries between ranges of input variables 

(e.g., body joint angle), where inaccurate human perception can lead to discrepancies in the 

analysis results when an observer fails to clearly distinguish the input values close to 

boundaries. Considering the imprecision of the inputs, this discrepancy can yield unreliable 

ergonomic evaluation results. Table 4-1 shows six of the widely used posture-based 

ergonomic assessment tools, as well as the inputs with discrete boundaries for each. 

Table 4-1 Example of inputs with discrete boundaries in ergonomic assessment tools 

Method 
Inputs with discrete 

boundaries 

Range of 

input values 

Number of 

input ranges 

RULA  

(McAtamney and Corlett 

1993) 

Upper arm [-90°  180°] 5 

Lower arm [0°  180°] 3 

Wrist [-90°  90°] 4 

Neck [-45°  90°] 4 

Trunk [60°  120°] 4 

Load 0 lb - 22+ lb 3 

REBA 

(Hignett and McAtamney 

2000) 

Neck [-45°  90°] 3 

Trunk [60°  120°] 5 

Leg (adjustment) [0°  180°] 3 

Upper arm [-90°  180°] 5 

Lower arm [0°  180°] 3 

Wrist [-90°  90°] 3 

Load 0 lb - 22+ lb 3 

The Strain Index Duration of exertion 0% - 100% 5 
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(Moore and Garg 1995) Efforts per minute 0 - 20+ min 5 

Duration of task per day 0 - 8+ hours 5 

NIOSH Lifting Equation 

(Waters et al. 1993) 

Horizontal multiplier 0 in - 25+ in 17 

Vertical multiplier 0 in - 70+ in 16 

Distance multiplier 0 in - 70+ in 13 

Asymmetric multiplier [0°  135°] 10 

Frequency multiplier 0 - 8 hours 6 

OCRA 

(Occhipinti 1998) 

Force multiplier factor 0 – 1 10 

Posture multiplier factor 0 – 1 5 

Recovery multiplier 

factor 
0 – 1 8 

LUBA 

(Kee and Karwowski 

2001) 

Wrist 0° - 60°+ 3 

Elbow 0° - 120°+ 3 

Shoulder 0° - 150°+ 4 

Neck 0° - 45°+ 3 

Back 0° - 60°+ 4 

One of the cases with the highest imprecision of inputs in field observation occurs in 

estimating body joint angles, as required for posture-based ergonomic assessment tools 

(e.g., RULA, REBA, LUBA). Since joint angles are the main inputs for such assessment 

methods, the perception issue on angles close to border ranges can highly affect the 

accuracy and reliability of the final results. This chapter focuses on the RULA method as a 

case study based upon which to discuss the human perception issue with respect to posture 

estimation, as well as to describe the proposed fuzzy logic approach to ergonomic analysis.  

4.2.2 Rapid Upper Limb Assessment (RULA)  

As discussed in the previous chapter, RULA is widely accepted as an effective ergonomic 

assessment method due to its simplicity and precision in assessing posture-related loads 

(Levanon et al. 2014; Kee and Karwowski 2007). In RULA, each body segment is 

considered independently and a corresponding score is calculated for the body part based 

on its posture. For each body segment (i.e., upper arm, lower arm, wrist, neck, and trunk), 

the ergonomist assigns the posture to one of the categories proposed by RULA and obtains 

the corresponding score for that body part. The final score, which represents the level of 

risk, is then obtained by combining the scores of different body segments. RULA also 

considers the frequency of the task (i.e., muscle use) and the force exerted on the worker’s 

body. The scores of different body segments are combined with the muscle use and force 

scores and a final score between 1 and 8 is obtained. Lower scores represent ergonomically 
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acceptable postures with very low risk of injury and higher scores indicate exposure to 

immediate risk and the need for prompt investigation and modifications.  

4.2.3 Human Perception Issue in RULA 

The RULA method has been validated by McAtamney and Corlett (1993), who conducted 

an experiment in an ergonomics laboratory environment by analyzing subjects performing a 

data entry operation. The experiment aimed to investigate whether RULA scores 

appropriately reflect the musculoskeletal loads corresponding to the test subjects’ reports of 

pain, ache, or discomfort in the relevant body part. The Chi-Square (X2) statistical test was 

used to determine the association between RULA score and any reported pain, ache, or 

discomfort, and a highly significant association (P < 0.01) was reported. To test RULA’s 

reliability, over 120 ergonomists and engineers were trained to assess motions of operators 

and workers using RULA. A high consistency in RULA scores was found among the 

subjects.  

However, discrepancies occurred in cases where the posture consisted of a body part being 

located at a border between two ranges (McAtamney and Corlett 1993). Although the 

ranges of lower arm were modified from the original version to mitigate this discrepancy, 

the issue still remains for any posture with body segments close to the border of ranges. 

While observing a worker motion to evaluate it using an ergonomic assessment tool such as 

RULA, the evaluator inputs the body segment angles based on approximate estimates rather 

than precise values. However, the RULA system proposes discrete boundaries between the 

angle ranges for the different body parts. This results in discrepancies in the RULA results 

for postures involving body segments close to the angle borders. 

For example, three different postures are created for comparison in a 3D modeling 

environment with exact values of joint angles (Fig. 4-1). Table 4-2 shows the three sets of 

inputs for the RULA method and the resulting RULA score for each. Considering posture I 

and posture II, it can be observed that, although many of the angles and also the exerted 

force are considerably different, the final RULA score is the same. On the other hand, 

inputs of posture II and posture III have very close values, making it difficult for an 

observer to choose between the two, while the RULA score is substantially different. The 
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sharp boundary between the upper arm angle ranges of 20° to 45° and 45° to 90° in Fig. 4-2 

indicates that an upper arm angle of 44° will result in an upper arm score of +2, while an 

upper arm angle of 46° results in an upper arm score of +3. Consequently, the total RULA 

score and corrective plan of action will be different for these two postures. This 

discrepancy occurs due to the inputs selected being close to the border of angle ranges.  

 

Figure 4-1 Postures corresponding to data in Table 4-2 

Table 4-2 RULA scores for three sets of inputs 

Posture Case 
Upper 

Arm 

Lower 

Arm 
Wrist 

Wrist 

Twist 
Neck Trunk Leg 

Muscle 

Use 
Force 

RULA 

score 

Posture I 22° 65° 4° 2 11° 18° 2 0 5 lb 4 

Posture II 44° 98° 14° 2 19° 18° 2 0 21 lb 4 

Posture III 46° 102° 16° 2 21° 22° 2 0 23 lb 7 

For further analysis, Fig. 4-2 shows the change in the RULA Arm & Wrist score, when 

lower arm and wrist angles remain fixed and the upper arm angle changes from -90° to 

180°. As shown in the chart, the discrete boundaries between angle ranges results in sudden 

change of score at border angles (e.g., -20°, 20°). Considering the imprecision of inputs 

caused by human perception, a gradual transition between the scores, rather than an abrupt 

change, will improve the accuracy of the method. Since RULA is being widely used as an 

Posture I Posture II 

 

Posture III 
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efficient ergonomic assessment tool, this chapter aims to improve its reliability by 

addressing the issue of discrepancy at postures with inputs close to borders of ranges.  

 

Figure 4-2 The impact of upper arm posture categories on intermediate results of Arm & 

Wrist score: (a) Upper arm posture categories of RULA (adapted from McAtamney and 

Corlett (1993)), and (b) abrupt change in RULA Arm & Wrist score corresponding to 

change in upper arm angle 

4.3 RESEARCH FRAMEWORK 

This chapter leverages fuzzy logic techniques to model ergonomic assessment tools as 

fuzzy expert systems. Fuzzy logic is an effective way to deal with imprecise and uncertain 

information and reason with ambiguous concepts, as it enables gradual transition between 

different classes of continuous variables with unsharp boundaries (Zadeh 1975). Thus, the 

imprecision of the inputs of ergonomic assessment systems (i.e., body joint angles) and the 

sharp boundary between the posture classifications (i.e., angle ranges) can be incorporated 

into fuzzy logic modeling processes to minimize the human perception issue in estimating 

(a) 

(b) 

Lower Arm = 80° 

Wrist = 7° 

Wrist Twist = 1 

+2 +1 +2 +3 +4 

20o 20o <20o 
20o - 45 o 

45o - 90 o 

>90o 
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joint angles. In the case of posture-based assessment systems, the use of fuzzy logic thus 

enables a steady transition between the scores of different angle ranges of body joints, 

which results in gradual transition of corresponding scores. This approach improves the 

reliability of ergonomic assessment methods by overcoming the limitation of abrupt 

changes in scores. A fuzzy expert system, Fuzzy RULA, is developed based on RULA. 

Fuzzy RULA requires the same set of inputs as RULA (e.g., body joint angles, load) and 

outputs a total assessment score. The performance of the model is assessed by investigating 

its correlation with RULA as well as with biomechanical analysis results, used as a ground 

truth in this research. The correlation between RULA and biomechanical analysis is also 

calculated to compare the performance between Fuzzy RULA and RULA. A sensitivity 

analysis is then carried out to find the system configuration resulting in the highest 

accuracy. The proposed approach is implemented in a construction jobsite to further 

examine its effectiveness and applicability. 

4.3.1 Fuzzy RULA Model Development 

Fuzzy logic is a mathematical tool developed to deal with reasoning that is approximate 

rather than precise (Zadeh 1965). Due to the subjective uncertainty inherit in construction 

operations and decision making processes, fuzzy logic techniques have been increasingly 

used in many applications such as construction knowledge discovery systems (Elwakil and 

Zayed 2014), benchmarking knowledge management of construction firms (Kale and 

Karaman 2011), contractor default prediction (Awad and Fayek 2012), risk assessment (Li 

et al. 2013; Nasirzadeh et al. 2008), and quality assessment of infrastructure projects (Fayek 

and Rodriguez Flores 2010). For the modeling of subjectiveness, a fuzzy expert system 

uses a collection of fuzzy membership functions and if-then rules to imitate the thinking 

process of an expert and reason about data. The rule’s antecedent defines the extent to 

which the rule applies using membership functions, and the conclusion assigns a 

membership function to the output variables. The inference process starts with assigning 

membership grades to the inputs based on the premises of the rules, known as fuzzification. 

The membership degrees in the rule’s premise are then combined, typically using minimum 

or product operators, which is known as inference. The fuzzy subsets assigned to each 

output variable are then combined, usually using s-norm operators, to form a single fuzzy 
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subset in a process known as aggregation. Finally, the fuzzy output set is converted to a 

crisp number through defuzzification. The basic configuration of a fuzzy logic system is 

shown in Fig. 4-3. 

 

Figure 4-3 Configuration of a fuzzy logic system  

The RULA-based fuzzy model developed in this chapter consists of a fuzzy expert system 

with 9 inputs, 4 intermediate variables, 1 final output, 5 rule blocks, 114 membership 

functions, and 371 if-then rules. The structure of the model is shown in Fig. 4-4. 
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Figure 4-4 Structure of the Fuzzy RULA expert system 
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In Fuzzification (Fig. 4-3), membership functions are curves that describe the evaluation 

criteria for inputs and outputs of the fuzzy expert system. They are used to map input 

values to a degree of membership in the fuzzy set. Membership degrees indicate the degree 

of belonging of a value to different terms and range from 0 to 1, with 0 representing non-

membership and 1 representing full membership. Developing membership functions is a 

crucial but also challenging step in developing a fuzzy expert system. Membership 

functions can be developed using different techniques that can be categorized as discrete 

representation and continuous functional form representation (Dissanayake and Fayek 

2007). Examples of discrete representation include pairwise comparison, direct assignment, 

and exemplification. Examples of continuous functional form representation consist of 

heuristically-based, statistically-based, and cluster-based methods (Poveda and Fayek 2009). 

In this chapter, a heuristic method is used to develop the membership functions for the 

input and output variables. As a base case, trapezoidal membership functions are used to 

represent the angle ranges of the inputs as well as the force imposed on the worker, and 

triangular membership functions are used for intermediate variables which represent the 

RULA intermediate scores. The final output variable, RULA total score, is also represented 

by triangular membership functions. Triangular and trapezoidal membership functions are 

used due to efficiency of the computation involved, simplicity of application and 

understanding for different users, and high frequency of use in fuzzy logic modeling 

(Poveda and Fayek 2009). The overlap between adjacent membership functions is designed 

such that the point of intersection has a membership degree of 0.5, which enables gradual 

transition between variables. The point of intersection for the input variables is the border 

angle between two angle ranges for joint angle inputs and the border force for the 

load/force input variable, as shown in Fig. 4-5. For intermediate and output variables, the 

core point of each membership function corresponds to the score that the curve represents.  
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Figure 4-5 Example of point of intersection for upper arm input variable 

In Rule Evaluation (Fig. 4-3), fuzzy expert systems contain a set of if-then rules which 

define the logical reasoning that relates the input variables to the output variables. The 

condition part of a rule is represented by membership functions of the input variables, and 

the conclusion part is represented by membership functions of the output or intermediate 

variables. The basis of the if-then rules for the Fuzzy RULA model are the three scoring 

tables of the RULA system. Fig. 4-6 shows the scoring table for neck, trunk, and leg score 

(McAtamney and Corlett 1993), as well as an example of a rule derived from the table. 

After rule aggregation and as the final step (Defuzzification in Fig. 4-3), membership 

functions of the output (i.e., RULA total score) are used to obtain a crisp value representing 

the final score. Defuzzification is the inverse process of fuzzification, where, based on the 

given fuzzy sets of the output and calculated degrees of membership, a defuzzification 

method (e.g., centroid, bisector, smallest of maximum) is used to select the most accurate 

quantifiable representation of the output. The total Fuzzy RULA score obtained from this 

step defines the level of ergonomic risk associated with the input posture based on the 

RULA interpretation of final scores. 
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Neck 

Posture 

Score 

Trunk Posture Score 

1 2 3 4 5 6 

Legs Legs Legs Legs Legs Legs 

1 2 1 2 1 2 1 2 1 2 1 2 

1 1 3 2 3 3 4 5 5 6 6 7 7 

2 2 3 2 3 4 5 5 5 6 7 7 7 

3 3 3 3 4 4 5 5 6 6 7 7 7 

4 5 5 5 6 6 7 7 7 7 7 8 8 

5 7 7 7 7 7 8 8 8 8 8 8 8 

6 8 8 8 8 8 8 8 9 9 9 9 9 

Figure 4-6 Neck, Trunk, & Leg score table and example of an if-then rule  

4.4 RESULTS AND VALIDATION 

To validate the Fuzzy RULA model, a two-step validation process is carried out. The first 

step is to ensure that Fuzzy RULA has a high correlation with the RULA method. The 

second step involves validating that Fuzzy RULA is a more accurate representation of the 

loads exerted on the worker’s body than is RULA. The base case of the Fuzzy RULA 

expert system is developed using triangular and trapezoidal membership function shapes, 

the minimum t-norm operator for combining the input variables, the product operator for 

implication of the combined input to the output in each rule, the maximum s-norm operator 

for the aggregation of the rules, and the Center of Maximum (CoM) method as the 

defuzzification method. 

4.4.1 Correlation between RULA and Fuzzy RULA 

To study the correlation between RULA and Fuzzy RULA, a correlation analysis is 

performed using the Spearman's rank correlation coefficient (Spearman 1904). The 

Spearman's rank correlation coefficient, also known as Spearman's rho (ρ), is a 

nonparametric measure of statistical dependence between two variables. It is a measure of 

the dependence between two variables, giving a value between +1 and -1, where 1 is total 

positive correlation, 0 is no correlation, and -1 is total negative correlation. To detect a 

simple correlation (r = 0.5) of N observations with a 5% significance level (α = 0.05) test 

and 80% power (β = 0.2), the required sample size is 29 (Lachin 1981). Thus, 29 random 

input data sets (joint angles, muscle use, and force) are generated, and the RULA score and 

Fuzzy RULA score are calculated for each data set. As a result, a Spearman's rank 

If  

 (NeckScore) is 2 and 

 (TrunkScore) is 4 and 

 (LegScore) is 2  

Then  

 (NeckTrunkLeg) is 5 
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correlation coefficient of 0.833 is calculated between the two sets of scores, which indicates 

strong correlation (Mukaka 2012) between the RULA system and Fuzzy RULA.  

4.4.2 Correlation between Fuzzy RULA and biomechanical analysis 

Since biomechanical analysis provides an objective assessment of ergonomic risks 

associated with a posture, the correlation between the Fuzzy RULA model and 

biomechanical analysis is investigated to further study the Fuzzy RULA model’s reliability. 

This correlation is compared with the correlation between the RULA method and 

biomechanical analysis to compare the accuracy of the Fuzzy RULA model with RULA. 

To this end, the 3DSSPP software (Chaffin et al. 2006) is used to assess the loads imposed 

on the body joints, and the compression load on the human’s back is selected to reflect the 

biomechanical forces associated with a posture. The 3DSSPP software enables evaluating 

postures by inputting angle values for the different body segments as well as forces exerted 

on the hands into the analysis environment.  

To perform correlation analysis, the low back compression for each of the 29 postures is 

extracted from 3DSSPP. Spearman’s correlation analysis is performed between the low 

back compression and the corresponding Fuzzy RULA scores, and a correlation coefficient 

of 0.710 is calculated. Furthermore, a correlation coefficient of 0.508 is calculated between 

the low back compression and posture scores obtained from the RULA method. The results 

indicate that RULA holds a moderate correlation with the result of biomechanical analysis 

(i.e., low back compression), while there is a strong correlation between Fuzzy RULA and 

biomechanical analysis.  

4.4.3 Sensitivity Analysis 

A sensitivity analysis is carried out by varying the parameters of the base case model in 

order to determine the configuration yielding the highest accuracy. The parameters changed 

during the analysis include shape of membership functions (linear and s-shape), input 

aggregation methods (minimum, product, minimum/maximum, and minimum/average), 

rule aggregation methods (maximum and bounded sum), and defuzzification methods 

(center of maximum, middle of maximum, fast center of area, and hyper center of 
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maximum). In total, 64 cases are developed, and for each case the Spearman’s correlation 

coefficient between Fuzzy RULA and biomechanical analysis is calculated for the 29 

random postures. The most accurate configuration consists of triangular and trapezoidal 

shaped membership functions, minimum operator for input aggregation, product operator 

for rule implication, bounded sum operator for rule aggregation, and fast center of area for 

defuzzification method. A Spearman correlation coefficient of 0.713 is calculated for this 

configuration. Table 4-3 shows the result of the sensitivity analysis for the 32 cases of 

linear membership function.  

Table 4-3 System configurations for sensitivity analysis 

Scenario # 
MF 

shape 

Fuzzy 

operator 

Inference 

method 

Aggregation 

method 

Defuzzification 

method 

Spearman's 

coefficient 

Base Linear MIN PROD MAX COM 0.709 

1 Linear PROD PROD MAX COM 0.651 

2 Linear MIN PROD BSUM COM 0.712 

3 Linear PROD PROD BSUM COM 0.711 

4 Linear MIN PROD MAX MOM 0.483 

5 Linear PROD PROD MAX MOM 0.483 

6 Linear MIN PROD BSUM MOM 0.579 

7 Linear PROD PROD BSUM MOM 0.628 

8 Linear MIN PROD MAX Fast COA 0.710 

9 Linear PROD PROD MAX Fast COA 0.651 

10 Linear MIN PROD BSUM Fast COA 0.713 

11 Linear PROD PROD BSUM Fast COA 0.711 

12 Linear MIN PROD MAX Hyper COM 0.710 

13 Linear PROD PROD MAX Hyper COM 0.651 

14 Linear MIN PROD BSUM Hyper COM 0.712 

15 Linear PROD PROD BSUM Hyper COM 0.711 

16 Linear MIN/MAX PROD MAX COM 0.424 

17 Linear MIN/AVG PROD MAX COM 0.596 

18 Linear MIN/MAX PROD BSUM COM 0.320 

19 Linear MIN/AVG PROD BSUM COM 0.523 

20 Linear MIN/MAX PROD MAX MOM 0.477 

21 Linear MIN/AVG PROD MAX MOM 0.483 

22 Linear MIN/MAX PROD BSUM MOM 0.290 

23 Linear MIN/AVG PROD BSUM MOM 0.290 

24 Linear MIN/MAX PROD MAX Fast COA 0.424 

25 Linear MIN/AVG PROD MAX Fast COA 0.596 

26 Linear MIN/MAX PROD BSUM Fast COA 0.320 

27 Linear MIN/AVG PROD BSUM Fast COA 0.523 

28 Linear MIN/MAX PROD MAX Hyper COM 0.424 

29 Linear MIN/AVG PROD MAX Hyper COM 0.596 

30 Linear MIN/MAX PROD BSUM Hyper COM 0.320 

31 Linear MIN/AVG PROD BSUM Hyper COM 0.523 

* MF=membership function, MIN=minimum, MAX=maximum, PROD=product, AVG=average, 

BSUM=bounded sum, COM=center of maximum, COA=center of area. 
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4.5 CASE STUDY: APPLICATION IN MODULAR CONSTRUCTION 

A case study is carried out to illustrate the application of these procedures in practice to 

further validate the fuzzy system with motion datasets obtained from an actual site. This 

case study also provides a context for discussing the motivation for this study from a 

practical perspective. In this case study, the developed fuzzy expert system is used to assess 

the ergonomic risks associated with manual activities in a production line of a construction 

modular prefabrication company. Data regarding manual handling tasks are collected from 

the jobsite to perform RULA and Fuzzy RULA assessments as well as biomechanical 

analysis. The Spearman’s correlation is then used to investigate the association between the 

results. 

Off-site modular construction is considered an efficient construction method which is 

environmentally-friendly, entails a shorter completion time, and effectively facilitates 

quality and cost control. Despite technological advances in the construction and 

manufacturing industries, workers in off-site construction perform labor-intensive and 

physically demanding tasks, resulting in high rates of work-related accidents and injuries 

(see Chapter 3). This chapter implements the developed framework in a construction 

fabrication shop setting; it can be similarly applied to other types of construction jobsites. 

In this case study, the manual tasks involved in the process of building floor panels in the 

fabrication shop are investigated; this study builds on the case study of the previous 

chapter. The sequence of the activities starts with delivering timbers to the nailing 

workstation where they are nailed together. The pieces are then nailed to sheathing to form 

the floor panels. These floor panels are transferred to the cutting workstation where 

openings are added. This process consists of twelve different manual tasks in total. Motion 

data of these manual tasks are collected in order to obtain the required input for the RULA, 

Fuzzy RULA, and biomechanical analysis. Specifically, videos of each of the manual 

activities are recorded from the jobsite and analyzed to build the corresponding motion data 

for each activity in a 3D environment representing the jobsite. This process is carried out to 

link ergonomic analysis with 3D virtual modeling, which enables analyzing and improving 

human motions in an interactive manner. To build the 3D virtual model, data pertaining to 

the layout of the jobsite, dimensions of the different material and equipment involved, and 
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processing times of the tasks are collected from the jobsite (see Chapter 3). Also, worker 

anthropometry data and weights of tools and materials are collected to ensure accurate 

representation of the worker models and motions for ergonomic analysis purposes. For 

example, data regarding the tools used by the workers (e.g., nail gun) are collected to 

compute the loads imposed on the workers during the manual tasks. The data are gathered 

by obtaining all available blueprints and specifications of the production line as well as 

visual inspection of the jobsite to ensure the accuracy of the 3D virtual environment, which 

is also reviewed and verified by the facility management personnel. After creating the 3D 

virtual model in Autodesk 3ds Max, each worker’s motion data are extracted in a motion 

capture data format, such as the BVH format. From the motion datasets extracted from the 

virtual model, awkward postures are identified, and the joint angle values for each posture 

are obtained automatically by computing the body joint angles at each time frame from the 

BVH format datasets. These angle values are then used as inputs to perform RULA, Fuzzy 

RULA, and biomechanical analysis as described above. Table 4-4 shows the twelve tasks 

and the results of the RULA and Fuzzy RULA analysis, as well as the back compression 

associated with each task from the biomechanical analysis.  

Table 4-4 Results of ergonomic analysis of manual activities in the production line 

Task RULA Score Fuzzy RULA Score 
Back compression from  

biomechanical analysis (N) 

Timber setting 7 6.04 2829 

Nailing 1 7 6.56 3521 

Nailing 2 7 6.04 3446 

Nailing 3 7 6.30 3479 

Nailing 4 7 5.93 1995 

Nailing 5 7 6.30 3528 

Lifting hole 6 4.88 2470 

Glue 7 6.63 3548 

Frame delivery 4 4.12 1501 

Panel delivery 2 2.22 565 

Cutting 1 3 4.45 1196 

Cutting 2 7 6.20 2145 

A Spearman correlation coefficient of 0.930 is calculated between the Fuzzy RULA results 

of the twelve tasks and the corresponding back compressions, while a Spearman coefficient 

of 0.765 is calculated between the RULA results and the results of biomechanical analysis. 
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A correlation coefficient of 0.832 is also calculated between the RULA and Fuzzy RULA 

results. The results of the case study are consistent with the results of the validation section, 

confirming the higher reliability of the Fuzzy RULA system in analyzing worker motions 

from actual jobsites. 

For biomechanical analysis, significant time and effort are required to build motion models 

of workers, compared to observation-based ergonomic assessment tools such as RULA. 

Unlike the observation-based methods, biomechanical analysis systems are not generally 

used in a field setting to observe and analyze a worker in real time, since detailed posture 

information (e.g., angles at most critical body joints) is required. The high correlation 

between Fuzzy RULA and biomechanical analysis (i.e., 0.930) indicates that occupational 

health and safety practitioners can rely on the results of the Fuzzy RULA model without the 

need to go through further biomechanical analysis to verify the results of ergonomic 

analysis. This facilitates incorporation of ergonomic analysis by construction practitioners 

in the daily operations, which will result in lower rates of WMSDs. 

4.6 DISCUSSION 

The Fuzzy RULA model as proposed in this chapter achieves a correlation of 0.713 with 

biomechanical analysis results through validation with random postures, and a correlation 

of 0.930 in using worker postures collected from a construction jobsite. These correlations 

are higher than the corresponding correlations of traditional RULA (0.508 for random 

postures and 0.765 for jobsite postures). These results imply that the fuzzy logic approach 

to ergonomic analysis is capable of dealing robustly with human perception issues, 

particularly those occurring at close-to-border angles in ergonomic methods. Thus, the 

proposed fuzzy expert system addresses the issue of discrepancy of ergonomic analysis 

results when analyzing body postures with body joint angles close to borders of angle 

ranges defined by the ergonomic assessment tools. Since workers in the construction 

industry perform various manual activities involving unique postures, this chapter provides 

a precise, reliable, and efficient ergonomic assessment method that can be used to analyze 

ergonomic risk in a field setting. 
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There are several potential limitations which further investigation is required to address. 

First, it should be noted that this chapter focuses solely on RULA. The proposed fuzzy 

expert system can be applied in a similar manner to other types of posture-based ergonomic 

evaluation methods (e.g., REBA, LUBA), as they require similar types of inputs to RULA 

but only differ in the number of posture categories or in the body parts to be observed. 

Nevertheless, the membership functions and model parameters selected in this chapter may 

differ from other tools that define the varying input boundaries. The boundaries set 

differently may affect human cognitive systems in recognizing and distinguishing human 

postures. Thus, understanding of human perception is required to properly determine fuzzy 

logic parameters and membership functions.  

Second, other types of ergonomic assessment methods require different inputs (e.g., 

horizontal multiplier in NIOSH lifting equation in Table 4-1) rather than human postures. 

In this case, each boundary of inputs can range narrowly, thereby resulting in a large 

number of membership functions being set. Other types of inputs, such as frequency and 

duration, may not have linear relationships with the final score. Such cases require further 

investigation of the impact of input variances on the output and thorough verification of 

fuzzy logic modeling through the comparison with objective measures of ergonomic risk 

(e.g., biomechanical analysis). 

Third, this chapter uses low back compression imposed on the human body as the measure 

of level of ergonomic risks from the results of biomechanical analysis. Although the back is 

the most commonly injured body part in ergonomic injuries (Work Safe Alberta 2012), it 

should be noted that an increase in the RULA or Fuzzy RULA score does not always result 

in a corresponding increase in the lower back compression. This is due to the fact that the 

methodology for identifying the level of risks is different in the two approaches, and the 

results of the ergonomic evaluation methods also focus on the loads exerted on other body 

joints. This chapter only used the back compression from biomechanical analysis as it more 

appropriately reflects the ergonomic risks compared to other body parts. In future research, 

additional results of biomechanical analysis, including forces exerted on other body joints, 

can be extracted and used for correlation analysis to achieve more comprehensive results. 
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In addition, the Fuzzy RULA expert system, in its current format, requires discrete angle 

and force values as inputs and produces a final RULA score in a deterministic form. 

Although the imprecision inherit in estimating body angles of a posture is considered in the 

proposed model, the user still needs to select only one distinct value for each input (e.g., 

upper arm angle). Since ergonomists use approximate values as the joint angles in 

observation, inputting a range of angles instead of one discrete value may make the 

evaluation process more reliable by providing users with possible variations of the final 

scores. Ranges of the final output may represent the effect of potential human errors, thus 

assisting in appropriate decision making pertaining to the evaluation and mitigation of 

ergonomic risks. This approach can be further investigated in future studies. 

Future work can also include application of fuzzy logic techniques to linguistic types of 

input variables for ergonomic analysis. For instance, Physical Demands Analysis (PDA) is 

another type of ergonomic assessment tools which enables quantifying the physical, 

psychological, and environmental demands of a manual task for proactive management of 

injury prevention or for retroactive assessment of injured workers in returning to work 

(IAPA 2009). This type of analysis is frequently used in practice and involves similar types 

of inputs such as frequency, force, and distance, which may cause the same imprecision of 

input estimation. This method utilizes linguistic variables to describe the severity of a 

physical activity in the observation processes. Thus, fuzzy logic approaches can be studied 

to better address the description of job conditions and requirements in evaluating the 

demands of a physical activity. 

4.7 CONCLUSION  

The continuous improvement of construction safety and health depends on the early 

identification of potential risk and timely mitigation of such at-risk conditions. Reliable 

assessment of ergonomic risk is essential in preventing WMSDs as ergonomic injuries are 

gradually developed over time. Toward this goal, this chapter presents a fuzzy logic 

approach to ergonomic assessment to incorporate perception gaps in differentiating human 

postures into the evaluation mechanism of ergonomic methods. Case study results show 

that a fuzzy expert system for ergonomic evaluation outperforms the traditional method by 



58 

addressing the issue of discrepancy of the results of traditional tools, caused by human 

perception with respect to discrete input boundaries. This chapter thus provides a more 

reliable field tool to identify and prevent unsafe worker postures in manual operations, and 

consequently reduce the rate of WMSDs in construction. 
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Chapter 5  Stochastic Modeling for Assessment of Human Perception and 

Motion Sensing Errors in Ergonomic Analysis 3 

5.1 SUMMARY 

As shown in the previous chapter, despite the wide use of posture-based ergonomic 

evaluation methods, their reliability has not been fully investigated from the input 

measurement perspective, collected by a human observer or motion capture sensors—

which may inevitably contain measurement errors (e.g., human perception errors and 

sensing errors in estimating human postures). Thus, this chapter examines the imprecision 

associated with acquiring the required inputs for ergonomic assessment and investigates its 

impact on the final result of the analysis. The two main methods of obtaining the inputs of 

posture-based evaluation tools, i.e., human observation and recordings of motion sensing 

devices, are examined, and a stochastic approach is proposed to evaluate the impact of the 

input errors on the final result of the ergonomic assessment. Such approach allows 

practitioners and researchers to understand possible ranges of outputs that can be caused by 

observation and measurement errors and to determine allowable tolerance of sensing errors 

required for ergonomic evaluation.  

5.2 INTRODUCTION 

As one of the most effective and widely-used approaches to preventing WMSDs is to 

evaluate and identify ergonomic risk factors at workstations and reduce the exposure to 

these factors through intervention plans, various tools and systems (e.g., posture analysis, 

and motion capture sensors) have been developed and used as guidelines to enable the 

assessment of different manual tasks. One of the main contributing risk factors of WMSDs 

is the human body posture (Takala et al. 2010; Punnett and Wegman 2004; Li and Buckle 

1999), and as mentioned in the previous chapter, many evaluation methods require inputs 

describing posture (e.g., body joint angle values) as part of the analysis. To obtain the 

required inputs for a posture-based ergonomic evaluation, ergonomists can either (1) 

                                                 
3 A version of this chapter is published as Golabchi, A., Han, S., Fayek, A. R., and AbouRizk, S. M. (2017). 

“Stochastic Modeling for Assessment of Human Perception and Motion Sensing Errors in Ergonomic 

Analysis.” Journal of Computing in Civil Engineering, 31(4), 04017010. 
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visually observe the worker’s motions and postures and use their personal judgement for 

estimation of the inputs, or (2) use sensing devices and technologies (e.g., range camera, 

RGB-D sensor) that can automatically extract the inputs from sensor recordings. Observing 

postures for ergonomic evaluation, in real-time or from video recordings, is more prevalent 

in practice as it is simple to implement, flexible, cost-efficient, and does not require 

disruption to the workforce (Li and Buckle 1999). Motion capture technologies have also 

been studied as a method to automate this process and improve its accuracy by directly 

measuring the human postures with a sensor (Ray and Teizer 2012). In any case, the 

reliability of the results of the ergonomic assessment depends on the precision of the inputs 

used for the analysis. In the case of observational approaches, the inputs are prone to 

human error in estimation (e.g., joint angles between body parts), while in the case of using 

sensing devices, instrument errors can lead to unreliability of evaluation results. Thus, this 

chapter investigates the imprecision associated with the inputs of ergonomic evaluation 

tools in estimating human body postures and its impact on the ergonomic analysis output, 

and proposes a stochastic approach to quantify the impact of the input errors on the analysis 

results. 

5.3 PROBLEMS IN POSTURE ESTIMATION 

Ergonomic assessment tools based on observation (e.g., RULA) are frequently used in 

practice as they require limited time and resources, and appropriately fit the needs of 

occupational safety and health practitioners in providing a basis for prioritizing intervention 

plans (David 2005). However, one of the main concerns in using these methods is their lack 

of reliability due to the imprecision of the inputs, which result either from human 

perception errors and the subjectivity towards observer inputs (Burdorf 2010), or from 

instrument errors associated with sensing devices (Li and Buckle 1999). As discussed in the 

previous chapter, the subjectiveness of the assessment methods towards the inputs results 

from the sharp boundaries that these methods consider between the posture classifications 

(i.e., joint angle ranges) for the various body joints. Due to the design of these systems 

using sharp boundaries between posture categories, there can be a sudden jump or drop in 

the assessment results with a small change in the joint angle values used as inputs (Fig. 5-

1).  
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Figure 5-1 Final RULA scores of four postures  

Thus, the reliability of the output of posture-based ergonomic evaluation tools (e.g., RULA, 

REBA, OCRA, etc.) highly depends on the accuracy of the inputs used. The potential 

amount of error associated with acquiring the inputs using visual observation as well as 

motion sensing devices is examined in this chapter, and the impact of the errors on the 

output of ergonomic assessment is also studied.  

5.3.1 Human Errors 

While using posture-based observational ergonomic assessment methods, the ergonomist 

classifies different body joints based on predefined posture categories (NIOSH 2014). 

These body joint positions are usually partitioned into different portions of range of 

motions based on the angles between the body segments. Thus, accurate estimation of the 

(a) (b) (c) (d) 

Total 

RULA 

Score 

Neck, Trunk, Leg Score 

1 2 3 4 5 6 7+ 

Wrist 

and 

Arm 

Score 

1 1 2 3 3 4 5 5 

2 2 2 3 4 4 5 5 

3 3 3 3 4 4 5 6 

4 3 3 3 4 5 6 6 

5 4 4 4 5 6 7 7 

6 4 4 5 6 6 7 7 

7 5 5 6 6 7 7 7 

8+ 5 5 6 7 7 7 7 
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body joint angles is crucial in achieving reliable assessment results. However, this 

estimation typically involves human error as it is difficult to visually measure accurate joint 

angle values while observing a worker carrying out a task. Consequently, the result of the 

evaluation is highly subject to the user inputs (Bhise 2011; David 2005; Lau 2011; Li and 

Buckle 1999; Spielholz et al. 2001).  

An experiment was carried out to further study the imprecision of the estimated joint angle 

values and its impact on the result of ergonomic analysis and risk intervention plans. Fifty 

engineering students were trained on how to use the RULA method and asked to provide 

the inputs for performing a RULA analysis on the three distinct postures shown in Fig. 5-2. 

In this experiment, virtual posture models were created and the exact values for the 

different body joint angles were measured inside the virtual environment. 

Posture 1 Posture 2 Posture 3 

 

 

 

 

 

 

Figure 5-2 Postures used for experimentation  

Fig. 5-3 shows the required inputs for a RULA analysis, which include joint angle values 

describing the human posture. Table 5-1 shows the correct values of the joint angles for the 

three postures of Fig. 5-2, as well as the average and standard deviation of the inputs 

provided by the participants. As shown in Table 5-1, the average of standard deviations for 

all joints in the three postures are 7.16°, 8.91°, and 10.15°, with maximum standard 

deviations of 10.69°, 12.92°, and 15.45°. These figures imply that the imprecision 

associated with the input values is substantial. Table 5-2 shows the impact of this 

imprecision on the result of the RULA analysis (i.e., total RULA score). 



63 

 

Figure 5-3 Inputs required for RULA analysis  

Table 5-1 Parameters of the inputs of the experiment 

Posture Parameter 

Upper 

Arm 

Angle 

Lower 

Arm 

Angle 

Wrist 

Angle 

Neck 

Angle 

Trunk 

Angle 
Mean 

1 

Correct 

angle 
60° 30° 0° 0° 10° - 

Average 54.12° 32.10° 1.63° 6.66° 9.49° - 

Standard 

deviation 
9.82° 10.69° 3.77° 6.97° 4.54° 7.16° 

2 

Correct 

angle 
21° 62° 14° 19° 19° - 

Average 9.80° 63.22° 3.76° 24.20° 18.83° - 

Standard 

deviation 
8.77° 12.92° 5.32° 9.03° 8.53° 8.91° 

3 

Correct 

angle 
−15° 50° 0° 23° 65° - 

Average −1.64° 48.07° 0.55° 31.73° 54.11° - 

Standard 

deviation 
13.51° 15.45° 2.08° 12.98° 6.72° 10.15° 

As Table 5-2 indicates, the impact of the scatter of the inputs on the final results of the 

analysis is substantial. As shown in the table, 76% of the results achieved the correct 

RULA score for posture 1 and only 49% and 46% of the datasets obtained the correct 

Neck Angle 

Upper Arm Angle 

Trunk Angle 

Leg Score 

Lower Arm Angle 

Wrist Angle 

Wrist Twist Score 

Load Score 

Muscle Use Score 
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RULA score for postures 2 and 3, respectively. The reason behind the higher discrepancies 

of posture 2 and posture 3 is that more joint angle values for these two postures are located 

close to the angle boundaries than in the case of posture 1. The results imply that a small 

deviation from the correct angle can result in selection of the wrong input category and, 

consequently, the wrong final score. 

Table 5-2 Percentage of participants calculating each RULA score  

Posture 

Correct 

RULA score 

RULA Score 

4 5 6 7 

1 4 76% 16% 8% 0% 

2 5 15% 49% 28% 8% 

3 5 13% 46% 37% 4% 

5.3.2 Instrument Errors 

Motion sensing technologies can be effectively used to obtain the required inputs for 

ergonomic analysis by recording movements of the worker and automatically extracting the 

inputs. This approach eliminates the human error associated with estimating the inputs. 

However, the instrument error and its impact on the result of the analysis can still result in 

discrepancy of the results. Different motion sensing systems have been used to generate 

motion capture data for various applications. In construction, the use of RGB-D sensors has 

gained attention due to its simplicity of use and cost effectiveness (Khosrowpour et al. 

2014; Han et al. 2013; Weerasinghe et al. 2012; Ray and Teizer 2012; Escorcia et al. 2012). 

Thus, this chapter explores the accuracy of an RGB-D sensor, the Microsoft KinectTM 

(Microsoft; Redmond, Washington), as an example of a widely-used motion sensing 

device, and its impact on the results of ergonomic analysis. 

The origin of the instrument error of the Kinect sensor might be from the sensor (e.g., lack 

of calibration), from the environment (e.g., poor lighting), or from the target (e.g., 

reflection from the target’s surface) (Khoshelham 2011). Researchers have examined the 

accuracy of the Kinect by conducting various experiments such as investigating its 
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consistency with laser scanner outputs and more precise sensors. A summary of some 

related studies is shown in Table 5-3. 

Table 5-3 Previous research on the precision of Kinect 

Topic Study Result 

Evaluation of depth 

discrepancy between 

pairs of point clouds 

generated by a Kinect and 

a high-end laser scanner. 

Khoshelham and 

Elberink (2012) 

Less than 3 cm discrepancy for 84% of the point 

pairs. The point spacing in the depth direction is 

about 2, 2.5, and 7 cm at the 1, 3, and 5 m 

distance. 

Rafibakhsh et al. 

(2012) 

Average distance error between the point pairs is 

3.49 cm, and the resolution of the Kinect is about 4 

times less than that of a laser scanner at 1.7 to 3.4 

m distances. 

Stoyanov et al. (2011) 
Kinect’s performance is acceptable within 3.5 m 

distances. 

Investigation of the 

accuracy of motion 

capture data obtained 

using Kinect. 

Livingston et al. (2012) 
Maximum error of 2.7 cm at 4 m distance from 

sensor.  

Fernández-Baena et al. 

(2012) 

Difference in rotation angles of body parts 

between Kinect and Vicon range from 6.78 to 8.98 

degrees for knee, from 5.53 to 9.92 degrees for 

hip, and from 7 to 13 degrees for shoulder. 

Han et al. (2013) 

The average and standard deviation of the 3D 

position error for all body joints are 10.7 cm and 

5.3 cm, compared to Vicon. The average and 

standard deviation of rotation angles are 16.2 and 

18 degrees. 

As shown in Table 5-3, different studies have suggested different measurement errors for 

the Kinect. This may be because of different experimental settings (e.g., distances between 

a sensor and a human subject) and different body postures (e.g., postures with higher or 

lower levels of self-occlusions). These errors could be potentially higher if the effect of 

occlusion, shadowing, and different lighting conditions were also considered. In this 

chapter, the results obtained by Han et al. (2013) are used because: (1) the study provides 

specific average and standard deviation of motion sensing errors for the different body 

joints, (2) the values are obtained by experimenting with motion capture data focused on 

construction activities, (3) and the suggested values are more conservative compared to 

other studies. Han et al. (2013) evaluated the performance of Kinect by comparing its 

recordings with motions recorded by a high accuracy marker-based motion capture system 

(VICON) for a ladder climbing task. Results were reported based on comparison of 3D 



66 

locations of body joints tracked, 3D rotation angles of joints, and impact of sensor accuracy 

on motion analysis. The impact of the suggested error values on the results of ergonomic 

assessment is examined later. 

5.4 STOCHASTIC APPROACH TO ERROR EVALUATION 

The subjectiveness of the ergonomic evaluation systems towards the inputs affects the 

accuracy and reliability of these systems, which is due to the use of sharp boundaries 

between posture categories of inputs. As the final results of the analysis are also discrete 

scores, the imprecision of the inputs results in discrepancy in the outcome of the analysis. 

Thus, an advanced method with less sensitivity to the inputs is needed to reduce the issues 

on sharp boundaries for posture classifications. The measurement error and its impact on 

the output also have to be taken into account when using these tools for assessment of 

postures. To achieve this, the amount of errors associated with different methods of 

acquiring the inputs (i.e., human observation and motion sensing) are first obtained, and the 

effect of these errors on the results of the analysis is then examined using a stochastic 

approach. This is accomplished by generating random errors for body joint locations and 

angles, which enables generation of random postures representative of inputs obtained in 

actual assessments, conducting ergonomic assessment on these postures, and analyzing the 

distribution of the results. The different steps of the study are shown in Fig. 5-4. For the 

case of using inputs from human observation, the error values of the different joint angles 

are obtained through experimentation, as described in the second section of this chapter. 

These values are used to generate random body joint angles and, for each set of generated 

joint angles, the assessment score of the new posture is calculated. This process is repeated 

to ensure generation of sufficient samples for the analysis. Similarly, for the case of motion 

sensing errors, the error values used for different body joints are drawn from prior studies 

on the accuracy of motion capture data, and the results are used to generate new 3D 

locations of different body joints. These 3D positions are then used to calculate the required 

body joint angles and for each set of joint angles the assessment score is computed. 

Furthermore, the fuzzy logic-based approach elaborated in the previous chapter is used to 

examine the distribution of the final assessment scores, as it enables a more accurate 

analysis of the impact of the input errors on the evaluation results compared to the discrete 
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scores resulting from traditional methods. The final result of the analysis enables 

quantifying the subjectiveness of the ergonomic evaluation systems towards the inputs.  

Obtain errors 
for body joint 

angles

Generate 
random body 
joint angles

Calculate 
assessment score 

of posture

Obtain errors of 
3D positions of 

body joints

Prior study on 
calculating 

error of motion 
sensors

Generate new 
3D position for 

each joint

Calculate body 
joint angle 

value

Repeat

Repeat

Experiment 
on human 
estimation 

errors

Input 
acquiring 
method

Human 
observation

Motion 
sensing

 

Figure 5-4 Steps of examining the impact of input errors on result of analysis 

5.4.1 Human Observation Errors  

To examine the imprecision associated with human observation for ergonomic evaluation, 

first an experiment was carried out, as described in the second section. Fifty senior 

undergraduate engineering students were trained for an hour on how to use RULA and 

asked to provide the joint angle values that should be used to carry out a RULA analysis. 

The results of this experiment enable acquiring the deviation of the inputs obtained by 

human observers from actual values. To ensure the errors were the result of the 

participants’ inaccurate estimations of the joint angles for the provided postures, and not of 

other factors such as not knowing how to use RULA or a mistake in calculating the final 

score, all of the intermediate and final scores are recalculated and verified. Thus, the 

standard deviation of the results of the experiment for each body joint can be an indication 

of the potential errors involved in human judgement of the inputs, as the standard 
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deviations are a reliable measure of the variability of the joint angle values (Fraenkel et al. 

1993). After obtaining the error values, the impact of the errors on a RULA and Fuzzy 

RULA analysis is studied by generating ten thousand random joint angle values for each 

body joint, by using the actual value for the joint angles as the average and the standard 

deviations obtained by the experiment (Table 5-1), as conceptually represented in Fig. 5-5. 

This approach ensures that the joint angle values of the random postures represent a reliable 

distribution of the actual inputs obtained by human observers. Posture 3 is selected for the 

analysis as this posture has the highest discrepancy of results among the three postures. For 

each set of the ten thousand inputs, the corresponding RULA and Fuzzy RULA scores are 

then calculated and the result is used to quantify the impact of the errors on the analysis 

outcome by examining the percentage of the correct final scores. The results of the two 

systems (i.e., RULA and Fuzzy RULA) are also compared to study the improved reliability 

associated with applying fuzzy logic techniques.  

 

Figure 5-5 Distribution of inputs are used for a RULA and Fuzzy RULA analysis of ten 

thousand randomly generated postures  
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5.4.2 Motion Sensing Errors 

To study the impact of instrument errors of motion sensing devices on ergonomic 

assessment, the amount of error associated with using these devices is first obtained from 

prior studies, as shown in Table 5-3. The Kinect sensor is used as an example of a 

commonly used motion sensing device, and the error values shown in Table 5-4 (Han et al. 

2013) are selected as the potential errors of the Kinect in estimating the 3D positions of the 

different body joints.  

Table 5-4 Error values used for different body joints (extracted from Han et al. (2013)) 

Error parameter  

Body Part 

Hand Shoulder Forearm Neck Head Chesta 
Middle 

Spinea 

Lower 

Spineb 

Average (cm) 24.3 6.8 12.4 19.0 7.7 10.7 10.7 2.9 

Standard deviation (cm) 12.0 2.3 4.9 1.2 2.3 5.3 5.3 0.5 

a Since the error values for these joints are not provided, the average error value is used. 

b Since the error value for this joint is not provided, the mean error of left and right upper legs are 

used. 

After selecting the amount of errors associated with the motion capture data extracted from 

the Kinect sensor, these error values are used to examine the impact of the errors on the 

result of ergonomic evaluation. To do so, a Kinect recording of the motions of a masonry 

task is used and a random posture is selected from the motion data. From this motion 

capture file, the 3D positions of the different body joints are calculated by using the rotation 

angles and joint offset values of the motion data. These 3D positions are then used to 

calculate new positions for each joint for ten thousand samples. 

To obtain the new 3D position of each joint with a corresponding error value as shown in 

Table 5-4, the spherical coordinate system of each joint is considered. The spherical 

coordinate system is selected since all potential new positions of a joint with a specified 

random error value are located on a sphere around the joint, where the center of the sphere 

is the original location of the joint, and the radius of the sphere is the amount of error. The 

amount of error for each joint is calculated by generating a random error value using the 
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average and standard deviations shown in Table 5-4. This is shown in Fig. 5-6, where the 

global coordinate system for the whole body is shown in red with capital axis labels, and 

the hand’s local spherical coordinate system is shown as an example in green with small 

axis labels. In the figure, r, θ and φ are the radius, polar angle, and azimuthal angle, 

respectively. In generating the new joint positions, the polar and azimuthal angles can take 

any random value between 0 and π and 0 and 2π, respectively. 

 

Figure 5-6 Global and local coordinate systems for error generation 

Once the parameters of the spherical coordinate system for each error point have been 

calculated, the Cartesian coordinates of the joint are calculated using Equations 5-1 to 5-3. 

The new location of the joint for each error is then calculated as the addition of its 

Cartesian coordinates to the coordinates of the origin of the local coordinate system with 

respect to the global coordinate system.  

                                                               x = r sin φ sin θ                                                  (5-1) 

                                                               y = r cos θ                                                          (5-2) 

                                                               z = r cos φ sin θ                                                  (5-3) 

Since the RULA and Fuzzy RULA methods require body joint angles as inputs, the 

calculated 3D positions of the body joints for each posture are used to obtain the required 
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body joint angles. Fig. 5-7 shows the calculation for the lower arm angle as an example. 

The same process is carried out to calculate all the required joint angles, by defining the 

appropriate corresponding vectors. This process is carried out to calculate the joint angle 

values for the 10,000 generated postures to carry out a RULA and Fuzzy RULA analysis.  

 

Figure 5-7 Steps of calculating lower arm angle from 3D coordinates of body joints  

5.5 RESULTS AND DISCUSSION 

The result of RULA and Fuzzy RULA analysis for the ten thousand postures generated for 

the two cases of human observation errors and motion sensing errors are shown in Figures 

5-8 and 5-9 respectively. For convenient understanding and comparison of the results, the 

scores are provided in charts, with the x axis representing the range of scores and the y axis 

representing the percentage of results in that range. For the RULA analysis, the columns 

represent the distribution of results for discrete scores (i.e., 4, 5, 6, and 7), and for the Fuzzy 

RULA analysis, as the scores have continuous values, the columns indicate the distribution 

of results within the specified range. Fig. 5-8 shows the results of analysis for posture 3 

(from Fig. 5-2), with an actual RULA score of 5, while Fig. 5-9 shows the result of the 

analysis for the random posture of a masonry task with a RULA score of 5 for the base 

posture selected. Furthermore, to examine the impact of lower error values (in case of 

higher accuracy of human estimates or motion sensors) and to further explore allowable 

error ranges for ergonomic evaluation, the analysis process for a RULA assessment is 

(x3,y3,z3) 

(x2,y2,z2) 

(x1,y1,z1) 

V2 

V1 

θ 

V1 = (x1- x2,y1-y2,z1-z2) 

V2 = (x3- x2,y3-y2,z3-z2) 

θ = cos−1 V1.V2 / |V1||V2| 
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repeated for error values equal to half (case 1) and also one-fifth (case 2) of the error values 

used as the base case. This is achieved by changing the standard deviation of the body joint 

angles obtained from the experiment for the human observation errors (Table 5-1) to half 

and one-fifth, then generating 10,000 random postures for each case and conducting a 

RULA assessment. In case of motion sensing errors, both the average and standard 

deviation of the error values (Table 5-4) are changed to half and one-fifth and a RULA 

evaluation is carried out on each set of the randomly generated 10,000 postures. The results 

are summarized in Table 5-5 and also visualized in Fig. 5-10. 

 

Figure 5-8 Distribution of RULA and Fuzzy RULA scores for the case of human 

observation errors  
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Figure 5-9 Distribution of RULA and Fuzzy RULA scores for the case of motion sensing 

errors  

Table 5-5 Result of RULA assessment for different error values 

Score 

Human Observation Error Motion Sensing Errors 

Base Case: 

errors from 

experiment 

Case 1: 

Error = 1/2 

of base case 

Case 2: 

Error = 1/5 

of base case 

Base Case: 

errors from 

literature 

Case 1: 

Error = 1/2 

of base case 

Case 2: 

Error = 1/5 

of base case 

3 - - - <1% 1% <1% 

4 15% 5% <1% 23% 22% 13% 

5  

(correct 

score) 

54% 73% 97% 44% 49% 72% 

6 31% 21% 3% 32% 29% 15% 

7 - - - 1% <1% <1% 
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Figure 5-10 Distribution of RULA scores for (a) human observation errors, and (b) motion 

sensing errors  

The results show the impact of errors associated with human observation and motion 

sensors on the results of ergonomic analysis using RULA and Fuzzy RULA. Considering 

the distribution of the results shown in the figures, the following can be concluded:  

(1) As shown in Figures 5-8 and 5-9, Fuzzy RULA is less sensitive to the imprecision of 

the inputs than is RULA. Thus, the subjectiveness of the inputs has a smaller impact on the 

result of a Fuzzy RULA analysis compared to RULA, and therefore the result is more 

reliable. The average of the scores obtained by Fuzzy RULA in case of human error is 5.05 

with a standard deviation of 0.67, which compared to the RULA results of 54% with a 

score of 5, 31% with a score of 6, and 15% with a score of 4, shows the lower 

subjectiveness of Fuzzy RULA towards the deviation of the inputs from the actual values. 

(2) In case of human errors, the percentage of the Fuzzy RULA results is the highest at the 

correct RULA score of the posture (i.e., 5) and decreases as the scores get close to 4 and 6 

(Fig. 5-8). In case of motion sensing errors, the highest percentage of the Fuzzy RULA 

results is the highest at the RULA score of the base posture (i.e., 5), but the percentage also 

increases at scores 4 and 6 (Fig. 5-9). This is due to the fact that considering the large error 

values used, a high portion of the ten thousand random postures has input values that 

correspond to scores closer to 4 and 6 instead of 5 (i.e., combinations of errors in x-, y-, and 

z-axis directions at each body joint). In both cases, the results indicate that Fuzzy RULA 

analysis results in continuous score values that increase as the posture gets closer to discrete 

RULA scores (e.g., 4, 5, 6), and smoothly decrease as the joint angles become closer to 

 
(a) (b) (a) (b) 
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border values. This function addresses the issue of discrepancy of the results at angle values 

close to the borders of posture categories. 

(3) The results of investigating human observation errors and motion sensing errors show 

that the potential inaccuracy of the results of a RULA analysis using both human 

observation and also the Kinect sensor is significant. As Fig. 5-8 shows, the results of the 

analysis imply that there is a 46% chance that the use of human observation for acquiring 

inputs of posture-based ergonomic assessment methods can result in an incorrect RULA 

score. Thus, the correct estimation of inputs by the observer is very important when using 

RULA. Similarly, Fig. 5-9 shows that there is a 56% chance that the use of the Kinect 

sensor for acquiring inputs can result in an incorrect RULA score.  

(4) Table 5-5 and Fig. 5-10 show the results of the RULA analysis using error values less 

than the base case to further examine the subjectiveness of the ergonomic assessment 

results towards the inputs. In case of human motion errors, the results are found to have 

considerably improved for the first case, with the percentage of correct scores increasing 

from 54% to 73%. For the second case, the results can be considered highly reliable, as the 

final scores for 97% of the error cases are estimated correctly. In case of motion sensing 

errors, the results are found not to have improved significantly for the first case, with the 

percentage of correctly estimated results only increasing to 49%. The results of the 

assessment for the second case are more acceptable, as 72% of the final scores are found to 

be correct. While this chapter uses the error values of the Kinect sensor for the base case of 

motion sensing errors, the distribution of the results, shown in Fig. 5-10, provides insight 

into the reliability of the results of ergonomic assessments that use motion sensing devices 

with different accuracy ranges. When using other motion sensing technologies, the 

associated instrument error must similarly be taken into account. The proposed stochastic 

approach thus can help not only with understanding the ranges of errors that can be caused 

by the sensing device, but also with determining the required accuracy of motion sensing 

for certain types of ergonomic assessment. 

Overall, the impact of the errors on available posture-based ergonomic assessment methods 

such as RULA are substantial for both methods of obtaining the inputs, as only 
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approximately half of the generated inputs resulted in the correct RULA scores for the base 

case. This indicates that ergonomic assessments in the construction industry can yield 

unreliable outputs and demonstrates the high potential for misidentifying unsafe postures, 

resulting in elevated rates of WMSDs. To address this issue, evaluation tools with reduced 

sensitivity to the inputs, such as Fuzzy RULA, need to be developed and used in industry. 

Also, ergonomists should consider the subjectivity of these tools in their assessment, 

ensuring that results of the tools are used as rough estimates and guidelines rather than as 

definitive outputs and also, that these tools are used in conjunction with different evaluation 

tools and systems. By quantifying the probability of errors occurring in the ergonomic 

analysis, this chapter brings attention to the importance of accurate measurements and the 

use of high precision motion sensors. The distribution of results, shown in Figures 5-8, 5-9, 

and 5-10, contributes to the understanding of the ranges of score values that are caused by 

input errors and thus allows for defining acceptable precision tolerances for acquiring the 

inputs. Using the proposed approach, safety practitioners can identify the required precision 

for motion sensing technologies for different types of analysis, as well as the body joints 

that have higher impact on the accuracy of the results, and thus achieve acceptable overall 

accuracy through focusing on improving the accuracy of the inputs for particular body 

parts, using other types of sensors (e.g., Inertial Measurement Units (IMUs) for hands), data 

fusion, and etc. 

5.6 CONCLUSION 

This chapter examined the imprecision associated with the inputs used for ergonomic 

evaluation systems, in two cases of human perception errors and motion sensing errors, and 

also explored the impact of this imprecision on the results of ergonomic analysis. The 

findings show that the impact of the inaccuracy of the inputs on the outputs is significant 

and thus emphasize the importance of considering the inaccuracy of the inputs in using any 

ergonomic assessment method. Furthermore, the use of a fuzzy logic-based ergonomic 

evaluation tool and its subjectiveness towards the inputs is studied. The results indicate that 

compared to RULA, Fuzzy RULA is less sensitive to the imprecision of the used inputs and 

is therefore more reliable. Thus, despite the effectiveness of the posture-based ergonomic 

assessment methods, there is a need for tools that are less sensitive to the imprecision of the 
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inputs, as this chapter showed that there is a high probability that the inputs contain 

substantial human observation error or instrument error. The contribution of this chapter is 

in quantifying the effect of these errors on the analysis results using a stochastic approach, 

which enables incorporating the impact of imprecise inputs into the evaluation. This 

understanding is critical in ergonomic risk assessment, as it allows for considering the 

worst case (i.e., requiring immediate mitigation), which could be potentially ignored 

because of the incorrect posture measurement.  
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Chapter 6  Micro-Motion Level Simulation for Efficiency Analysis and 

Duration Estimation of Manual Operations 4 

6.1 SUMMARY 

Due to the labor-intensiveness of the construction industry, accurate estimation of cycle 

time of manual activities is essential for reliable planning and scheduling of operations. 

Labor productivity study is used in current practice to obtain the required cycle time of 

manual tasks. However, the reliability of labor productivity study in estimating durations of 

manual activities is inhibited by its dependence on various factors which change with the 

different working conditions of construction jobsites and the difficulties associated with 

measuring productivity. This chapter thus investigates the use of a PMTS for modeling 

manual construction operations for cycle time estimation and efficiency evaluation. A 

motion-level simulation approach is developed by integrating PMTS into discrete-event 

simulation modeling, providing an automated and simple-to-use method of analyzing 

manual tasks. As a case study, manual construction operations from a construction jobsite 

with different levels of repetitiveness are modelled, and the actual and simulated cycle 

times are compared and analysed.  

6.2 INTRODUCTION 

Considering the labor-intensive nature of construction activities, the efficiency of the 

manual tasks carried out by workers has a significant impact on the success of projects (El-

Gohary and Aziz 2014). Previous research has also shown that labor can account for more 

than half of the total cost of a project (Gomar et al. 2002), and owners and contractors lose 

billions of dollars every year as a result of inefficiencies related to the deployment of labor 

resources (Horner et al. 1989). Given that labor is considered to have the highest risk 

among the main project cost components of construction operations (Hanna et al. 2005), 

accurate estimation of cycle time of manual activities is essential for reliable planning and 

scheduling of processes (Genaidy et al. 1990). Furthermore, in the case of ongoing 

                                                 
4 A version of this chapter is published as Golabchi, A., Han, S., and AbouRizk, S. M. (2016). “Micro-Motion 

Level Simulation for Efficiency Analysis and Duration Estimation of Manual Operations.” Automation in 

Construction, 71: 443–452. 
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operations, reliable evaluation of the efficiency of the involved manual tasks is important in 

assessing and potentially improving productivity.  

In current practice, labor productivity is commonly used in the construction industry in 

order to obtain the required cycle time of manual tasks for production planning and 

operational design. However, labor productivity may not always provide a precise 

estimation of duration of manual activities, as it depends on various factors that change 

based on the given working conditions (Dai et al. 2009; Rojas and Aramvareekul 2003; 

Maloney 1983). Since there is no common productivity measurement standard due to the 

difficulties associated with quantifying it (Goodrum and Haas 2004), productivity rates of 

the same activity are measured by different people using different methods, which results in 

incomparable values as well as in difficulty in defining and estimating productivity (Song 

and AbouRizk 2008). Furthermore, in the case of assessing the efficiency of ongoing 

manual operations, labor productivity cannot be reliably used as a benchmark for 

evaluation, since it merely represents an average figure and does not reflect the physical 

attributes of the manual tasks and the working environment. Due to the abovementioned 

reasons, using labor productivity for obtaining the duration of manual tasks might not result 

in accurate and reliable cycle time estimation and efficiency analysis. On the other hand, 

PMTSs have been developed to provide a standard duration for manual activities by 

characterizing the working method in which a task is carried out. Thus, this chapter 

investigates the use of PMTS for estimating duration of non-existing manual construction 

tasks as well as for evaluating the efficiency of ongoing manual operations.  

To investigate the effectiveness of a PMTS-based approach to estimating cycle time of 

manual construction activities, this chapter uses a motion-level simulation approach that 

integrates PMTS into discrete-event simulation modeling. By doing so, various manual 

activities can be modelled with minimal time and effort and with higher reliability 

compared to manual analysis. After developing the motion-level simulation platform, this 

approach is implemented to model manual operations from an actual construction jobsite, 

in order to study the suitability of the proposed approach in modeling construction tasks for 

cycle time estimation and efficiency evaluation. Manual tasks with different degrees of 
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repetitiveness are selected to examine the reliability of this approach for different types of 

construction activities.  

6.3 RELATED WORK 

This section reviews the challenges inherent in estimating the cycle time of manual 

activities using labor productivity to evaluate its reliability and effectiveness and 

investigate the potential need for a more accurate and efficient approach. The techniques 

currently used in the construction industry for evaluating duration of manual tasks are also 

introduced. Issues related to measuring labor productivity and using it for estimation of 

activity durations, as well as the effectiveness of traditional estimation approaches, are 

discussed as informed by the existing literature on the subject. 

6.3.1 Challenges in Activity Duration Estimation by Labor Productivity 

In estimating the duration of activities, productivity performance from ongoing or past 

projects is a key input commonly used in practice, allowing for predicting the amount of 

resources (e.g., man-hours) needed to complete a given task (Hinze 1998). This relationship 

can be intuitively explained using Equation 6-1, which expresses the most common and 

widely accepted definition of labor productivity in construction (Thomas 2014; Vogl and 

Abdel-Wahab 2014).  

                                                 Labor Productivity =   
Total Output

Total Man−hours
                          (6-1) 

In this equation, the total man-hours can be calculated simply when total output (e.g., 

amount of work) and labor productivity are known, and thus the activity durations can be 

estimated by determining the number of laborers to input. In practice, however, accurate 

measurement and estimation of labor productivity is not easily achieved, since the 

efficiency of manual tasks performed by laborers is affected by various factors. For 

instance, Hwang and Soh (2013) introduced the common challenges of measuring 

productivity in the construction industry and categorized them as industry-related 

challenges, firm-related challenges, and trade-related challenges. Some of the challenges 

include absence of standard productivity measurement method, lack of clear definition of 
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productivity, difficulty in obtaining accurate benchmarks for productivity comparisons, low 

reliability of data recorded, and difficulty in measuring work hours. Previous studies have 

also attempted to identify the different productivity-influencing factors. For example, Dai et 

al. (2009) examined 83 factors affecting productivity and found that those involving tools 

and consumables, material, engineering drawing management, and construction equipment 

are the factors which contribute most to productivity, based on craft workers’ perception of 

productivity. Jarkas and Bitar (2012) identified 45 factors, including clarity of technical 

specifications, labor supervision, design complexity, and construction manager’s leadership. 

Kheirieh and Heravi (2010) sorted various factors into four main categories (i.e., external, 

management, human, and technical), and concluded that weather, management, motivation 

and incentives, tools, planning, and materials are the factors which exert the greatest 

influence on labor productivity. Song and AbouRizk (2008) proposed 17 productivity-

influencing factors, including project type, work scope, draftsperson qualification, and 

overall complexity of work. Previous studies and the diversity of the identified factors 

provide insight into the complexity involved in the estimation of labor productivity in 

construction. Despite the various factors affecting labor productivity, it can provide an 

acceptable estimate for many construction planning applications, especially during the early 

phases such as preliminary design. However, it may not be able to provide reliable 

estimates for the purpose of cycle time calculation and efficiency evaluation for manual 

operation analysis. 

An issue pertaining to determining the amount of work to be done—the datum to be used in 

the productivity calculation (i.e., Total Output in Equation 6-1)—also arises from the fact 

that, in construction, the product to be produced is generally unique, working environments 

are continuously changing, and different workers can be assigned to tasks over time or over 

projects. For example, we cannot assume that the production rate of masonry work in a 

small residential house is equal to that in a high-rise building, even if the tasks are 

performed by the same crew. Even in fabrication shops, where similar tasks are repeatedly 

performed, the production rates for different products can vary based on the slightly 

different amount of work and the work methods required. In this respect, how to quantify 

the output of work can be another issue in the estimation of labor productivity and activity 

duration. Thus, a cycle time estimation approach is required that considers the physical 
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conditions of the jobsite and the details related to carrying out the different manual 

activities involved.  

6.3.2 Traditional Approaches to Determining Activity Durations 

The traditional methods currently used to estimate the duration of manual activities include 

the following: (1) Personal judgment: previous research shows that more than 20% of 

contractors use personal judgment and opinion of estimators for their estimates of 

productivity (Motwani et al. 1995). However, using the estimator’s perception of the time 

required to carry out a manual task renders the results highly subjective and unreliable. In 

many cases, estimators are not sufficiently familiar with work items on projects to enable 

them to provide reliable estimates. In such cases, they can inquire about durations of 

particular tasks from personnel who are more familiar with the given task, such as job 

superintendents. However, job superintendents are often overly optimistic about the time 

required to accomplish tasks (Hinze 1998). Thus, there is a very high degree of uncertainty 

involved in using personal judgment for estimating duration of activities. (2) Published 

productivity data: standard published productivity data, such as RSMeans (2007), can also 

be used as a reference for productivity estimates when there are no other resources 

available. However, the productivity values obtained from these reference guides only 

provide average figures from the industry (Song and AbouRizk 2008), which can vary 

substantially based on the specific working conditions of different projects. (3) Company’s 

historical data: companies can use existing data as the basis for the estimation and 

evaluation of new processes. However, construction companies in most cases lack a formal 

and systematic process for monitoring and recording detailed project data, the result being 

insufficient information for making reliable estimates (Chan and Kaka 2004 ). This is partly 

due to the fact that monitoring construction productivity is time-consuming and costly 

(Motwani et al. 1995). Furthermore, considering the dynamic nature of construction 

jobsites, using prior data may not result in realistic estimates, as the working methods and 

physical settings of the new operation and workplace are not incorporated into the estimate. 

(4) Productivity estimation models: many researchers have focused on developing 

productivity models that aim to analyse the impact of factors affecting labor productivity on 

productivity rates using historical data (Sonmez and Rowings 1998). Examples include the 
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use of techniques such as neural networks (Ezeldin and Sharara 2006; AbouRizk et al. 

2001; Chao and Skibniewski 1994), regression models (Smith 1999), expert systems 

(Christian and Hachey 1995), fuzzy logic (Fayek and Oduba 2005), and statistical analysis 

(Halligan et al. 1994). Despite the effectiveness of previous studies in developing 

productivity models for particular cases, due to the inability to deal with the various 

productivity-influencing factors and their complex relationships the majority of previous 

work has focused on the impact of a single factor, with only a few studies, limited to 

masonry construction, having considered multiple factors (Yi and Chan 2014; Nasirzadeh 

and Nojedehi 2013). Furthermore, the subjectivity of the estimation has an impact on the 

results of many of the productivity models, and most models are limited in their ability to 

adapt to different conditions in new projects (Fayek and Oduba 2005). Finally, the lack of 

reliable, consistent, and comprehensive historical data limits the use of many of the 

advanced productivity estimation techniques (Sonmez and Rowings 1998).  

Despite the value of labor productivity study in applications such as preliminary planning, 

cost allocation, and bidding, this metric may not provide a reliable estimate of the cycle 

time of manual activities for scheduling of operations due to the aforementioned 

limitations. Furthermore, considering the approximation involved in labor productivity as 

well as the different working methods involved in each project, using productivity 

estimates as a benchmark for evaluating the efficiency of ongoing operations may result in 

an unrealistic analysis. Considering the unreliability involved in using labor productivity 

for analysis of manual operations, this chapter investigates the effectiveness of using PMTS 

for modeling manual construction operations for cycle time estimation and efficiency 

evaluation. 

6.4 RESEARCH BACKGROUND 

Due to the importance of the amount of time required to carry out a manual task for 

applications such as production planning and scheduling, assessing different alternatives, 

and efficiency analysis and improvement, measurement techniques (e.g., time study, work 

sampling) have evolved over time to enable estimation of the required durations of manual 

tasks. Among these techniques, predetermined motion-time systems, also known as 
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predetermined time systems, have garnered increasing attention due to their effectiveness, 

as well as to the subjectivity of time studies in setting standards (Genaidy et al. 1990). A 

PMTS is defined as a structured set of data, procedures, methods, and motion times used to 

study manual tasks, and is expressed by describing the motions used to perform a task and 

their previously established standard times (Institute of Industrial Engineers 1983). Large 

samples of various manual tasks have been studied and evaluated by researchers to develop 

a PMTS that can provide the standard time required to carry out a manual activity.  

Despite the wide applications of PMTS in other industries (Kuhlang et al. 2011; Gupta and 

Chandrawat 2012; Thakre et al. 2009; Xu et al. 2013; Sun et al. 2009), they have seldom 

been applied in the construction industry. This is primarily due to the fact that time-and-

motion studies have generally originated in industrial engineering, where production is 

typically carried out in a steady-state environment (Thomas et al. 1990), as opposed to the 

dynamic nature of construction jobsites. While it is true that these systems perform better in 

situations with highly repetitive operations, their effectiveness for estimating the cycle time 

of manual construction operations still needs to be proven. Among the most widely used 

PMTSs (e.g., MODAPTS, MTM, MOST), this chapter uses MODAPTS as an example of a 

simple, effective, and quick approach; however, the proposed approach can also be 

implemented using other available PMTSs. 

MODAPTS is developed based on the premise that the time required for any body 

movement can be expressed as a multiple of the time required to move a single finger. The 

time required to move a finger is called a MOD, and is equal to 0.129 seconds. Basic 

alphanumeric codes (e.g., G = Get, M = Move) are defined which describe the nature of the 

motions and are combined with a MOD value representing the number of MODs required 

to perform the motion (e.g., G3, M4). Applying MODAPTS necessitates breaking down a 

manual activity into its basic motions (e.g., moving hand, grasping object, walking) and 

assigning MOD values to each motion. By adding the MOD values, the total number of 

MODs required is calculated and then converted to seconds. MODAPTS also enables 

consideration of rest allowances, which can be very useful in designing safe work practices. 

Table 6-1 shows the process of obtaining the MODAPTS code and duration of a sample 
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manual task. As shown in the table, the task is broken down into its basic motions, and, for 

each basic motion, the corresponding MODAPTS class and code are identified.  

Table 6-1 MODAPTS code and duration for a sample task  

Action Attribute 
MODAPTS 

motion 
MODAPTS code 

Move hand to reach a 

concrete block 

Hand is moved 30 

cm 
move M4 

Grasp the concrete 

block 

Grasp requires 

visual feedback 
get G3 

Walk while holding 

the block 
Distance is 2 steps walk W10 

Put concrete block on 

table 

Put requires visual 

feedback 
put P2 

Handle block Block weighs 5 kg load L1 

  
MODAPTS 

code: 
M4G3W10P2L1 

  Total MODs: 20 

  Total duration: 20 * 0.129 = 2.58 seconds 

6.5 MICRO-LEVEL MOTION SIMULATION 

To enable simple and effective modeling of manual tasks based on PMTS, a micro-level 

motion simulation approach is proposed. In particular, a Special Purpose Simulation (SPS) 

template is developed which integrates MODAPTS into discrete-event simulation 

modeling. This approach enables automation of the MODAPTS analysis and offers 

advantages such as quick application, high reliability, simplicity of use, and consistency of 

application (Genaidy et al. 1990). Simulation modeling is a very well-known and widely 

used approach for efficiency analysis and productivity improvements (Wang and Halpin 

2004), and, with advancements in construction simulation, researchers have increasingly 

targeted development of SPS templates (see Chapter 2).  

The flexibility of SPS modeling enables integration of PMTS standards into simulation 

environments for more convenient analysis of manual operations. The present study uses 

Simphony (Hajjar and AbouRizk 1999) for this purpose, as it provides a structured 
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approach to developing user-friendly SPS templates. Fig. 6-1 shows different sections of 

Simphony’s user interface. An SPS template is developed for the purpose of this study 

which contains modeling elements that represent manual construction activities and 

provides standard durations of manual tasks based on an available validated motion-time 

system (i.e., MODAPTS). It is also compatible with Simphony’s general-purpose 

simulation interface, which supports the use of these elements in any other simulation 

model of construction processes.  

 

Figure 6-1 Simphony’s user interface 

The steps required in developing a motion-level SPS template are shown in Fig. 6-2. To 

develop the SPS template, the modeling elements of the template are first designed based 

on MODAPTS, and the required inputs and properties of each element are identified. The 

main MODAPTS classes are shown in Table 6-2, along with a description of each. Each 

class has a corresponding modeling element in the developed SPS template which, using 

the input provided by the user (shown in Table 6-2), calculates the corresponding 

MODAPTS duration and uses it as the duration of that manual task. The developed SPS 

template and its modeling elements are designed such that they can be used to represent 

manual tasks without the need for prior knowledge of MODAPTS and the details of its 

implementation.  

Modeling Interface 

Error & Trace Window 
Template 

Palette 

Inputs/ 

Properties 

Scenarios 
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Figure 6-2 Process of developing micro-motion-level simulation 

Table 6-2 Main MODAPTS classes used for SPS template  

Class Description Input 

Move (M) Movement of a finger Moving distance 

Get (G) Grasping an object Ease of grasp 

Put (P) Placing an object Sensory feedback required 

Walk (W) Act of walking  Walking distance 

Load (L) Incorporating weight of objects  Weight of object  

Read (R) Act of reading Length of reading material  

Handwrite (H) Act of writing Number of words written 

Bend and Arise (B) Act of bending and arising Number of times 

MODAPT

S 

Simulation 

Case Study 
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Sit and Stand (S) Act of siting and standing Number of times 

Furthermore, elements representing combined tasks which consist of several basic motions 

are designed to make the template more flexible. An example of a combined task is the act 

of carrying an object, which consists of moving a hand to reach the object (MOVE), 

grasping the object (GET), walking with the object (WALK), moving a hand to place the 

object (MOVE), and placing the object at its destination (PUT). The modeling element 

representing this task and the required inputs are shown in Fig. 6-3. Once the components 

of the template have been designed, it is implemented using object-oriented programming 

to define the simulation behaviour of each element (e.g., calculating the corresponding 

MODAPTS duration for each task). 

 

Figure 6-3 Required inputs for carrying task modeling element 

As an example of the simulation behaviour of the modeling elements, the pseudo code that 

defines the behaviour of the carrying task element is shown in Fig. 6-4. As this task 

combines the basic motions of the WALK, PUT, MOVE, GET, and LOAD classes, the 

corresponding MOD value for the motion corresponding to each of these classes is 

calculated based on the inputs, and the final duration is calculated by converting the total 

How far is the object carried?  
(e.g., 3 m) 
 
How is the object placed at the 
destination? (e.g., at a general 
location, at an exact location) 
 
How much is hand moved to reach 
object at end position?  
(e.g. 5 cm, 30 cm) 
 
How much is hand moved to reach 
object at start position? 
 
How easily can the object be 
grasped? (e.g., simple grasp, 
impeded grasp) 
 
What is the weight of the object? 
(e.g. 5 kg) 
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MOD value to seconds. Finally, the calculated duration is used as the duration of the 

modeling element in the simulation model. The same process is repeated for the other 

modeling elements (e.g., GET, PUT) of the template. 

 

Figure 6-4 Pseudo code for calculating duration of a carrying task element 

To use the modeling elements of the developed template, the elements describing a manual 

activity are added to the modeling interface in the same sequence in which they are carried 

out, and the required inputs for each element are assigned. After adding an element and 

running the model, the simulation engine calculates the required time for that task based on 

MODAPTS each time an entity passes through it, and uses this value as its duration. Fig. 6-

5 shows a sequence of motions for a simple manual task and the corresponding modeling 

elements used in the developed template. 

MOD = 0 
1. WALK class 
Based on the provided distance value, add corresponding MOD value: 
 MOD = MOD + 5 × ((Me.Distance × 100) ÷ 64.5) 
2. PUT class 
Based on the input provided for end position, add corresponding MOD value: 
 If EndPosition = GeneralLocation/WithTidiness/ExactLocation Then 
  MOD = MOD + 0/2/5 
3. MOVE class 
Based on the input provided for revrieval start and end, add corresponding MOD value: 
 If RetrievalStart(or End) = OneInch/TwoInches/…/ThirtyInches Then 
  MOD = MOD + 1/2/…/7 
4. GET class 
Based on the input provided for start grasp, caclulate MOD value: 
 If StartGrasp = SimpleGrasp/ImpededGrasp Then 
  MOD = MOD + 1/3 
5. LOAD class 
Based on the provided weight value, add corresponding MOD value: 
 If weight<2 / 2<weight<6 / 6<weight<8 / … Then 
  MOD = MOD + 1/2/3/… 
Convert MOD value to seconds: 
Duration = MTU * 0.129 
Set calculated duration as the duration of the task 
Engine.ScheduleEvent(entity, TransferOut, Duration) 



90 

 

Figure 6-5 A manual task and its representation using the developed modeling elements 

6.6 CASE STUDY 

The developed SPS modeling template is used to model manual construction tasks from an 

actual steel fabrication construction jobsite to examine the effectiveness of using PMTS for 

cycle time estimation and efficiency evaluation of manual operations. These tasks include 

handling steel plates, handling steel beams, and handling steel ladders. A steel fabrication 

jobsite is selected for the case study since it enables observation and videotaping of the 

tasks with more control over the conditions of the work environment. The tasks mentioned 

above are specifically selected to represent manual construction tasks with three different 

levels of repetitiveness (i.e., highly cyclic, moderately cyclic, and non-cyclic). The 

workstations of the three tasks selected for the case study are shown in Fig. 6-6, and a 

summary of information pertaining to the tasks is shown in Table 6-3. In Table 6-3, the 

main activities carried out by the workers include the actions that are repeated the most 

during a full cycle and can be considered as the main tasks the worker must carry out to 

complete the job. The steel plate handling task mainly involves removing steel plates from 

a cutting machine and carrying them to a work table. The steel beam handling task is 

carried out by a steel worker known as a “steel fitter”. The duty of a fitter is to fit steel 

plates into beams to prepare them for final welding, and this involves various physically 

challenging manual tasks. The task of building steel ladders also involves various manual 

activities such as welding and hammering, as well as working with various tools.  
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Figure 6-6 Workstations for (a) steel plate handling, (b) steel beam handling, and (c) steel 

ladder handling 

For each task, the motions of the worker are observed and videotaped for a full cycle, and 

the durations of all the basic motions are extracted from the video recordings. The number 

of basic motions in Table 6-3 corresponds to the basic classes as defined by MODAPTS. 

For example, a walking action is considered one basic motion irrespective of the number of 

steps taken by the worker, and a carrying element is considered to contain several basic 

motions (including MOVE, GET, PUT, and WALK), although it can be represented by the 

developed simulation template using one modeling element. Other examples of these basic 

motions include grasping a hammer, moving hands to remove welding mask, and placing a 

steel plate on a beam. 

Table 6-3 Summary of information for the observed manual tasks 

Task Main activities 
Level of 

repetitiveness 

Duration of 

full cycle 

(second) 

Number of 

basic 

motions 

Steel plate 

handling 
Carrying steel plates High 774 210 

Steel beam 

handling 

Measuring, 

hammering, 

carrying, grinding, 

and welding 

Medium 989 593 

Steel ladder 

handling 

Welding, 

measuring, and 

hammering 

Low 630 389 

For each basic motion, the duration is recorded in addition to the conditions of the jobsite. 

The type and order of the basic motions carried out are used to obtain the sequence of 

(a) (b) (c) 
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actions that a worker must complete in performing the job in order to ensure a realistic 

simulation model is built. The jobsite conditions also serve as inputs for the simulation 

modeling elements of the developed template as described above. The duration of each 

basic motion is extracted from video recordings to investigate, using the Spearman’s rank 

correlation coefficient (Spearman 1904), the correlation between the actual dataset from the 

jobsite and the corresponding dataset from the simulation. For each of the manual tasks of 

the case study, the Spearman’s correlation coefficient between the actual and MODAPTS 

times is calculated to study the association between the actual durations of basic motions 

and the MODAPTS durations. As an example of the information extracted from the video 

recordings, Table 6-4 shows the data obtained for the plate handling task for three instances 

of plate-carrying, where the first six columns represent the inputs required for the 

MODAPTS analysis and the seventh column shows the resulting MODAPTS duration. The 

MODAPTS code is also obtained manually for random instances of the motions, and the 

corresponding duration is calculated from the code. This validation step is carried out to 

ensure that the manually obtained duration is the same as the duration computed by the 

simulation to confirm that the simulation engine is correctly calculating MODAPTS 

durations. Finally, the last column represents the actual duration at the jobsite. Similar 

inputs are extracted for the basic motions of the other tasks as well. 

Table 6-4 Required information for each instance of plate handling task 

Weight 

of plate 

(kg) 

Walking 

distance 

(m) 

Start 

Grasp 

End 

Position 

Retrieval 

Start 

Retrieval 

End 

MODAPTS 

duration 

(simulation) 

MODAPTS 

Code 

(manual) 

Actual 

duration 

(jobsite) 

9 4.2 
Impeded 

Grasp 

General 

Location 
Six Eighteen 6.063 

M3G3L3W33

M5P0 
6.59 

3 2.6 
Impeded 

Grasp 

With 

Tidiness 
Twelve Six 4.257 

M4G3L1W20

M3P2 
4.91 

9 3.8 
Impeded 

Grasp 

General 

Location 
Six Twelve 5.418 

M3G3L3W29

M4P0 
5.75 

For each task in the case study, two simulation models of the entire cycle are created which 

represent two levels of detail. The first model is built exactly based on the sequence of 

activities that the worker carries out to complete the full cycle. This model is created to 
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examine the difference between the calculated cycle time using MODAPTS and the actual 

cycle time from the jobsite to evaluate the reliability of using PMTS for duration 

estimation. The resulting simulation time is used to calculate the efficiency of the modeling 

process (reflecting the efficiency of the manual operation) using Equation 6-2. Although it 

is beyond the scope of this chapter, this model can be used to identify the inefficiencies of 

the manual operation and to test different scenarios to improve worker productivity. Using 

this model facilitates the efficiency analysis process and can effectively replace manual 

analysis of operations.  

                            Efficiency = (actual time – simulation time) / actual time                    (6-2) 

The second simulation model aims to simplify the representation of the task as much as 

possible using cyclic representations of the activities. Such a model represents the simple 

model that would be created and used for a non-existing instance of a similar task. The 

resulting simulation time is compared with the actual time as well as with the simulation 

time of the first model to examine the effectiveness of using PMTS approaches to represent 

existing and non-existing manual tasks, and also to compare the use of the proposed 

simulation approach in modeling tasks with different levels of repetitiveness. As an 

example, Fig. 6-7 shows six instances of the plate-carrying activity as part of the steel plate 

handling simulation model. The model on the left shows the six activities from the high 

detail model and their main attributes (i.e., inputs), which consist of distinct values. The 

same process can be modelled using a cycle which is repeated six times (low detail model). 

In this case, the attributes of the modeling elements represent the average of the attributes 

of the elements of the high detail model. This difference between the values used for the 

inputs of the elements of the models and the approximation used in representing the 

sequence of activities in the low detail model is the cause of the discrepancy between 

corresponding simulation times. A smaller difference between the simulation times of the 

two models is expected in the case of more cyclic activities. 
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Figure 6-7 Representation of six instances of plate-carrying task in (a) high detail model, 

(b) low detail model 

6.7 RESULTS 

Table 6-5 shows a summary of the results both of extracting the required data from video 

recordings and of running the simulation models for each task. The Spearman’s correlation 

coefficients for each task are shown, representing the correlation between the actual and 

MODAPTS durations for time datasets of basic motions. The efficiency values of each task 

(calculated using Equation 6-2) enable comparisons of the total actual and simulation cycle 

time of the tasks in cases of both high detail and low detail models. The number of 

MODAPTS elements corresponds to the number of different modeling elements used in the 

simulation model representing the task. As the number of modeling elements implies, the 

high detail models are created using the same sequence of motions that the worker carries 

out in the jobsite, whereas the low detail models are created to represent a simple cyclic 

representation of the task for new instances of the operations. To enable better 

understanding and comparison of the high detail and low detail models of each task, Table 

6-6 provides more detailed information about the number of times each modeling element 

is used in the simulation models. The number of times the different modeling elements 

representing the MODAPTS basic motions are used also assists in understanding the 

Distance=1/6 ∑ 𝑙𝑖
6
𝑖=1  

Weight=1/6 ∑ 𝑤𝑖
6
𝑖=1  

 

Duration=1/6 ∑ 𝑑𝑖
6
𝑖=1  

(a) (b) 
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frequency at which each manual activity is performed for a task. Furthermore, this 

information can be used to compare other types of manual tasks with the ones examined in 

this chapter, based on the working methods, to evaluate the applicability of the proposed 

approach to other manual construction operations. 

Table 6-5 Summary of results of case study  

Task 
Correlation 

Coefficient 

Efficiency 
Number of MODAPTS 

elements  

High 

detail 

Low 

detail 
High detail 

Low 

detail 

Steel plate handling 0.91 9.3% 10.59% 53 7 

Steel beam handling 0.94 7.79% 15.47% 443 46 

Steel ladder 

handling 
0.90 5.24% 20.32% 364 34 

Table 6-6 Number of different modeling elements used in each simulation model  

Task 
Modeling elements and number of times used in 

(high detail model, low detail model) 

Steel plate handling CARRY (26,3) – WALK (6,1) – other* (21,3) 

Steel beam handling 
GET (65,5) – PUT (47,1) – MOVE (196,17) – CARRY (25,6) – 

WALK (23,8) – other (87,9) 

Steel ladder handling 
GET (39,4) – PUT (27,3) – MOVE (212,20) – CARRY (3,0) – 

WALK (31,3) – other (52,4) 

* “Other” includes non-MODAPTS elements such as idling and welding 

Fig. 6-8 illustrates the difference between the efficiency values obtained by the high detail 

and low detail simulation models of each task. The dashed arrows in Fig. 6-8 show the 

difference between the efficiency values of the models, which can be used to interpret the 

approximation involved in using the simplified low detail model for non-existing tasks. Fig. 

6-9 also shows the changes in the total actual and simulation times of each task as the task 

proceeds. The final difference between the actual and simulation time of each task 

represents the variance of the total simulation time from the total cycle time recorded at the 

jobsite. 
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Figure 6-8 Efficiency values of the high detail and low detail models of each task in case 

study  

 

Figure 6-9 Changes in actual and simulation time for the three tasks of case study  
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6.8 DISCUSSION  

The results of the case study indicate that the proposed PMTS-based simulation approach 

can provide an effective means of modeling manual operations. The proposed methodology 

can potentially be used for reliable duration estimation and efficiency assessment of manual 

tasks, as well as for safety analysis. The implications of the results for each of these areas, 

as well as the limitations of this chapter, are discussed below. 

6.8.1 Implications for Duration Estimation and Efficiency Evaluation 

The results show that the proposed approach can provide reliable estimates for the 

durations of manual construction activities, especially in the case of cyclic activities. As 

shown in Table 6-5, in the case of highly repetitive tasks there is about a 10% difference in 

the duration of the low detail simulation model and the actual cycle time from the jobsite. It 

should be noted that the efficiency values are calculated before applying rest allowances, 

such that the obtained cycle times will be closer to the actual cycle times after applying 

appropriate allowances. Thus, the low detail model can effectively reflect the manual 

operation, and the resulting cycle time can be reliably used as the duration of the task. The 

small difference between the efficiency of the low detail and high detail models (about 1%) 

also confirms that the simple cyclic representation of repetitive manual operations based on 

PMTS can be used to obtain durations of operations. Furthermore, considering the small 

number of modeling elements required for the low detail models (which indicates the small 

amount of time required to create the models), the difference between the efficiency values 

of the two simulation models of both the moderately repetitive and less repetitive tasks 

(dashed arrows in Fig. 6-8) indicates the suitability of the PMTS-based approach for 

modeling manual operations for most scheduling applications. The approximation of the 

cycle times seems acceptable for most cases of scheduling where there is only general 

information available regarding the conditions of the jobsite and how the tasks will be 

carried out. The high correlation between the datasets of actual and MODAPTS durations 

for all tasks of the case study also points to a strong association between the two datasets 

(Mukaka 2012). The high correlation also implies that available PMTSs provide a means to 
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associate estimated durations with the actual durations of manual activities, which in turn 

enables more accurate planning and scheduling of manual operations.  

Furthermore, by integrating PMTS into simulation modeling, existing manual tasks can be 

conveniently modelled, and the efficiency of the manual operations can be estimated to 

modify and potentially improve the productivity of the operations by testing different 

scenarios. The values obtained using PTMS not only provide a benchmark to which to 

compare the efficiency of manual operations, but also can serve as a basis to modify work 

methods and compare the use of different methods to achieve maximum productivity. As a 

future study, the effectiveness of the proposed approach for improving labor efficiency can 

be examined by assessing various scenarios of operations, and the incorporation of different 

motion and time study techniques (e.g., work-methods study, crew-balance analysis) into 

the analysis can be investigated.  

6.8.2 Potential Implications for Ergonomic Safety Analysis 

As any operation consists of work processes with specific tasks and steps required to 

complete it (Russell and Skibniewski 1990), analysis of manual operations using PMTS can 

provide useful information for ergonomic assessment. Previous studies have shown that 

integrating ergonomic evaluation into PMTS can provide an effective means of accounting 

for ergonomic safety considerations during the design and planning of operations (Laring et 

al. 2002). Considering the detailed analysis of both ongoing and non-existing manual tasks 

which the developed PMTS-based simulation approach enables, incorporating ergonomic 

assessment into the simulation can potentially associate production tasks with ergonomic 

behaviour. This, in turn, permits examination of the relationship between productivity of 

operations and ergonomic safety, which can be highly effective considering the prevalence 

of WMSDs in construction (Inyang 2016). Consequently, manual activities can be designed 

to attain the highest achievable efficiency and safety simultaneously, by testing various 

scenarios of operations in a simple, quick, and reliable manner.  
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6.8.3 Limitations 

This chapter has used MODAPTS as an example of an efficient and simple-to-use PMTS to 

model manual construction operations. Despite obtaining promising results by applying 

MODAPTS, the use of other well-known PMTSs (e.g., MTM, MOST) for modeling of 

manual construction tasks need to be investigated. Given that manual construction activities 

differ significantly in their degree of repetitiveness, comparing the suitability of these 

systems for modeling construction tasks enables selection of the most appropriate system 

based on the working methods and conditions of the jobsite. Since less attention has been 

directed toward the use of these systems in construction, such a comparison has not been 

carried out in previous studies and can be performed as part of a future study. Furthermore, 

this chapter tested the applicability of the proposed approach by implementing it on three 

manual operations with low, medium, and high degrees of repetitiveness. However, further 

verification can be achieved through a more detailed analysis which applies the 

methodology to more diverse construction tasks from different trades and examines the 

reliability of the proposed approach for each task. Finally, given that one of the main 

functions of PMTSs is to improve the productivity of manual tasks, the feasibility of the 

proposed PMTS-based simulation approach in providing an effective automated approach 

to improvement of the efficiency of manual operations can be examined. 

6.9 CONCLUSION 

This chapter has investigated the effectiveness of using PMTSs for modeling manual 

construction operations for cycle time estimation and efficiency evaluation. By developing 

an SPS template, manual tasks with different levels of repetitiveness are modelled from a 

construction jobsite to examine the suitability of the proposed approach in representing 

construction tasks. The findings indicate that a PMTS-based approach can provide reliable 

estimates of the durations of non-existing manual construction activities, and can also be 

used to effectively evaluate the efficiency of ongoing manual tasks to make improvements 

to existing operations. The results show that, in the case of highly repetitive tasks, a 

simplified cyclic model representing the task can provide accurate estimates of durations; in 

the case of less repetitive activities, the approximation involved in the estimates can be 
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considered acceptable for most scheduling applications. Furthermore, correlating actual 

durations of manual tasks with PMTS time sets enables deriving realistic cycle times, 

merely based on inputs describing the general conditions of the jobsite.  
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Chapter 7 A Simulation and Visualization-based Framework of Labor 

Efficiency and Safety Analysis for Prevention through Design and 

Planning 5 

7.1 SUMMARY 

Considering the physically demanding nature of manual tasks in the construction industry, 

an effective approach to mitigating ergonomic risks is to prevent the unsafe working 

conditions proactively during design and planning (i.e. prevention through design), as 

discussed in the Chapter 3. However, there is a lack of approaches for identifying the 

potential ergonomic risks of a proposed design that can effectively address designers’ lack 

of familiarity with ergonomic risks and understanding of the PtD concept and its 

implementation. Furthermore, it is difficult to evaluate the impact of ergonomic 

interventions on productivity and vice versa using the available tools. Thus, an integrated 

approach to PtD is proposed in this chapter by developing a comprehensive framework that 

uses simulation modeling, coupled with PMTSs and ergonomic and biomechanical 

assessment, as well as workplace visualization, to incorporate both productivity and safety 

analysis into the design process.  

7.2 INTRODUCTION 

The construction industry is identified as one of the most unsafe industries around the 

world (Gangolells et al. 2010). Statistics indicate that the construction industry accounts for 

an average of 20% of all workplace fatalities in Canada (Sharpe and Hardt 2006) and 

20.5% of all fatalities in the US (OSHA 2014). Considering the high rate of fatalities and 

injuries in the construction industry, one of the most effective approaches to improving the 

safety of construction workplaces is preventing these injuries proactively from the early 

design stage (Weinstein et al. 2005). Previous studies have linked 42% of fatalities to the 

design for safety concept (Behm 2005). Accordingly, the prevention through design 

                                                 
5 A version of this chapter is submitted as Golabchi, A., Han, S., and AbouRizk, S. M. (2017). “A Simulation 

and Visualization-based Framework of Labor Efficiency and Safety Analysis for Prevention through Design 

and Planning.” Automation in Construction. 
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initiative was implemented by NIOSH, which aims to identify workplace hazards and risks 

during design to prevent and reduce injuries, illnesses and fatalities (Schulte et al. 2008).  

The concept of PtD can be highly effective in mitigating the occupational risks leading to 

WMSDs (Nussbaum et al. 2009). Despite the prevalence of WMSDs in the construction 

industry and the potential of PtD-based approaches to mitigate WMSDs, less attention has 

been given to integrating ergonomic and biomechanical analysis into the design process, 

due to the lack of tools and approaches for identifying and evaluating the potential 

ergonomic risks of a proposed design that can effectively address designers’ lack of 

familiarity with ergonomic risks (Wang et al. 2015; Hecker et al. 2006; Weinstein et al. 

2005) and understanding of the PtD concept and its implementation (Kim et al. 2008; 

Gangolells et al. 2010). It is difficult to assess the biomechanics of a task which is not yet 

observable and without the existence of a physical workplace with the tools available in the 

construction industry. As the literature on PtD has been slow in addressing the technical 

principles of PtD (Toole and Gambatese 2008), more tools and approaches are required to 

enable designers to effectively incorporate ergonomic evaluations into the workplace and 

process design (Gambatese 2008). Furthermore, safety performance is highly correlated to 

productivity (Hallowell 2011) and ergonomic behaviour in particular results primarily from 

physical conditions (e.g., human postures, repetitive movements, duration, forceful 

exertion) determined by production tasks (e.g., production rate, job procedures, and 

workplace layout) (Mitropoulos et al. 2005; Freivalds and Niebel 2014). However, current 

approaches used in construction lack the concurrent integration of both production and 

safety into workplace and operation design and do not fully consider the high association 

between the two, especially in terms of ergonomic risks.  

Thus, due to the lack of effective tools for incorporating ergonomic assessment into the 

design phase of construction operations, and the potentially high impact of actions of 

workplace and production designers on biomechanical exposure (Wells et al. 2007), this 

chapter explores an integrated approach to PtD that incorporates both productivity and 

safety into the design process. The scope of these PtD interventions includes design of 

workplaces (e.g., jobsite layout), operations (e.g., sequence of tasks), equipment and tools 

(e.g., height of workbench), material (e.g., shape and size of concrete blocks), human 
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actions (e.g., body posture) and etc. The trade-off between ergonomic risk and the duration 

of manual activities, as the main element of productivity of manual operations, is also 

examined in this chapter. The proposed micro-level motion simulation approach combines 

discrete-event simulation modeling of manual operations with ergonomic and 

biomechanical modeling of motions, which provides an effective means of evaluating 

various human motions potentially taking place in jobsites. PMTSs are integrated into 

simulation which enables calculating reliable job efficiency, experimenting with different 

scenarios of manual operations, and evaluating each scenario in terms of safety and 

productivity. Visualization of the workplace is also used to enable accurate and convenient 

extraction of the required inputs, facilitate the communication and execution of the design, 

assist with managerial decision-making, and promote training of workers and personnel. 

The proposed framework aims to enable an effective implementation of the safety in design 

concept in conjunction with efficiency analysis, in a simplified and user-friendly manner, 

which can be used by designers, without requiring extensive prior knowledge about the 

technical details of the different components of the system.  

7.3 BACKGROUND 

The concept of design for safety, defined as considering construction safety during the 

design of a project (Behm 2005), is accepted as a critical intervention to enhancing the 

safety of construction workers (Gambatese 2003). The concept dates back to 1985, where 

the International Labor Office (ILO) acknowledged the need for designers to consider 

construction safety in workplace and operation design (ILO 1985). The need for such 

intervention has been increasingly recognized since then (Gambatese et al. 2008). For 

example, 60% of fatal accidents in the construction industry were found to be the results of 

shortcomings in early design and organization of work (Eurofound 1991). Although many 

studies have tried to apply the concept of design for safety, which has recently led to the 

PtD initiative, in different aspects of construction (Zhang et al. 2013; Cooke et al. 2008; 

Gambatese et al. 1997), not many studies have focused on incorporating principles of 

ergonomic safety into construction workplace design. Some researchers in the construction 

industry have worked on adapting ergonomic analysis for improving worker safety and 

preventing injuries using different approaches such as motion sensing and tracking (Chen et 
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al. 2014; Ray and Teizer 2012; Alwasel et al. 2011; Han et al. 2014), assessment tools 

(Buchholz et al. 1996), and participatory ergonomics (Molen et al. 2005; Hess et al. 2004). 

Despite the effectiveness of the previous studies in evaluating ergonomic risks, more 

research is required to investigate the correlation between ergonomic safety and 

productivity of operations from a design perspective, which is critical for effective 

implementation of ergonomic considerations in PtD and taking into account the impact of 

ergonomic interventions on efficiency and vice versa.  

As discussed in Chapter 2, previous research on the correlation between construction 

productivity and safety has shown to be indecisive as some studies have indicated a positive 

correlation between safety and productivity (McLain and Jarrell 2007; Hare et al. 2006; 

Shikdar and Sawaqed 2003) and some have found out a negative correlation between the 

two (Probst and Brubaker 2007; Choudhry and Fang 2008; Choi et al. 2006). In terms of 

ergonomic safety, although improving the working conditions that result in less ergonomic 

risks can lead to improved efficiency due to higher level of comfort, some safety 

interventions suggested by ergonomists and safety practitioners, such as slower pace of 

work and more rest allowances, can also result in lower productivity (Wells et al. 2007). 

Furthermore, production demand affects safety performance as generating work pressure 

that can cause hazardous situations and impact ergonomic behavior. Thus, there is a need 

for tools and approaches that not only incorporate ergonomic considerations into the design 

phase to enable effective and convenient implementation of PtD, but also enable examining 

the impact of modifications in production and ergonomic design on both safety and 

productivity. Therefore, this chapter aims to examine the integration of ergonomics and 

efficiency analysis into the design process and provide a framework for planning efficient 

and safe operations concurrently. 

7.4 RESEARCH FRAMEWORK 

To enable concurrent analysis of the safety and efficiency of operations, this chapter 

suggests a micro-level motion modeling and simulation approach. The proposed framework 

is shown in Fig. 7-1. A proposed design is first visualized to enable reliable measurement 

and observation of the required inputs for the simulation, in addition to enabling effective 
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communication and implementation of the design once it is finalized. Discrete event 

simulation modeling is then used to model the manual operations in a motion level 

(Chapter 6). PMTSs in conjunction with ergonomic assessment methods are incorporated 

into the modeling elements of the developed simulation template, which enables inputting 

data regarding the method of carrying out the manual task and its attributes (e.g., walking 

distance, difficulty of grasping an object) as well as the physical exertion on the body (e.g., 

weight of object, position of arms). The system is developed such that any designer can 

conveniently model manual operations, even without detailed knowledge about the 

mechanics of PMTSs and ergonomic evaluation methods, using simple design data (e.g., 

location of material, shape of equipment, job sequence). The design is then evaluated in 

terms of efficiency and safety and is modified to examine the impact of the various 

attributes and compare different designs and scenarios. Biomechanical analysis is also used 

for the ergonomic safety evaluation to provide a more accurate and reliable analysis of the 

ergonomic risks and facilitate achieving safe motions. Among the different scenarios, the 

optimal design in terms of both safety and efficiency is selected and the visualization of the 

design is used for perception, communication, and implementation of the design. This 

chapter focuses on the integration of the efficiency and safety analysis through simulation 

and visualization, and builds upon previous studies and existing literature for some 

components of the comprehensive framework. The different elements of the system and 

their role in the proposed approach are described in the following sections.  
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Figure 7-1 Framework of motion-level simulation-based workplace design 
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workplace has a major impact on both the efficiency and safety of a manual task. Acquiring 

these inputs in case of existing workplaces requires significant amount of time and effort, 

and in case of non-existing workplaces, which are still in the design stage, it is difficult to 

carry out the analysis without any reference, as it is challenging to perceive the design of a 

non-existing workplace and assess different possible scenarios. Thus, a visual 

representation of the workplace can facilitate extracting the required inputs for analyzing 

the design and also improves the reliability of the inputs. The virtual model can be used for 

obtaining the analysis inputs through direct measurements of quantitative attributes such as 

distances (e.g., walking distance to pick up an object), as well as observation of different 

jobsite components for obtaining qualitative attributes (e.g., body motion required to carry 

out a manual activity) (Guo et al. 2016) and enabling accurate perception of the design (see 

Chapter 3). The 3D representation can also be highly useful in evaluating ergonomic factors 

such as clearance, reach, and visibility. Some advanced tools that can be highly useful in 

the visualization process and have gained attention in the construction industry include 

BIM, for modeling non-existing operations, point cloud models, for modeling existing 

workplaces, and motion capture data, for modeling human motions. These tools, especially 

when used in conjunction, can increase the accuracy and simplify creation of the virtual 

model as well as the analysis process. The proposed comprehensive framework of 

visualization of the design is shown in Fig. 7-2. 
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Figure 7-2 Workplace visualization framework 
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software platforms enable convenient measurement of distances and the 3D visualization 

capabilities enable virtual observation of the workplace for obtaining the qualitative inputs 

required. Furthermore, these models can be transferred into 3D modeling and visualization 

platforms and game engines (e.g., 3ds Max, Unity) for further visualization applications 

and to combine them with human operator models, motion data, and 3D models of other 

objects not existing in the BIM (e.g., equipment, material). The proposed framework 

suggests using Autodesk Revit as the BIM environment and 3ds Max for the final virtual 

representation as examples of effective modeling and visualization platforms, although 

other BIM and visualization environments can be similarly used. To enable the transfer of 

data, the as-designed BIM model is extracted from the BIM platform into the FBX format, 

which is a proprietary file format that enables data exchange and interoperability between 

different digital modeling platforms, and then imported into the 3D virtual environment.  

7.4.1.2 Point Cloud Models 

In case of existing jobsites, the proposed approach to jobsite visualization is to generate 

point cloud representations of the workplace and use it for design improvements, in 

conjunction with BIM and other 3D models. Research in the construction industry has been 

active in developing and using point cloud data (Dimitrov et al. 2016; Han et al. 2015; El-

Omari and Moselhi 2008) and transforming point clouds into 3D models (Tang et al. 2010; 

Perez-Perez et al. 2016; Bosche and Haas 2008). A simple, yet effective, approach is the 

implementation of an image-based 3D reconstruction method that uses simple photographs 

of the jobsite to generate a point cloud model (Fathi and Brilakis 2011; Koutsoudis et al. 

2014; Yang et al. 2013; Remondino and El-Hakim 2006; Dellaert et al. 2000; Debevec 

1996), which can also be used to facilitate extraction of inputs of efficiency and safety 

analysis. Considering the dynamic nature of construction jobsites and the frequent changes 

in the physical settings of workplaces, this approach ensures that the virtual model is an 

accurate reflection of the current conditions of the jobsite. In this approach, photographs are 

taken from the jobsite and using a structure-from-motion algorithm, which utilizes the 

relationship between the locations of key points in different images to recover the 3D shape 

of an object, the 3D reconstruction of the point cloud model is obtained (Guo et al. 2016). 

After creating the point cloud model, it needs to be converted into the file format readable 
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by the 3D visualization environment. By using the VisualSFM (Wu 2011) structure-from-

motion algorithm, a point cloud with PLY format is created, which is a file format for 

storing graphical objects by describing them as a collection of polygons. This file is first 

converted to the XYZ format, which contains information regarding the location of each 

point through its coordinate, by MeshLab (2011) or other similar applications, and 

imported into Autodesk ReCap to apply any modifications desired. It is then exported as an 

RCP file that is supported by both Autodesk Revit and Autodesk 3ds Max and can be used 

as part of the virtual model. 

7.4.1.3 Motion Capture Data 

Since human motions encompass critical information regarding how a manual operation is 

carried out (e.g., posture, duration, frequency), using motion capture data as part of the 

framework not only can increase the accuracy of the analysis but can also be highly useful 

for visualization purposes. In case of existing workplaces, the motion data can be recorded 

using different available sensors. Despite the precision of high-end motion sensors (e.g., 

VICON), they usually cost more and require extensive setup and training. The use of the 

Microsoft Kinect sensor as an example of a cost effective and simple-to-use motion sensor 

(Han et al. 2013) is proposed in the current framework. As recording motions in 

construction jobsites directly can be difficult due to effects of occlusion, lighting 

conditions, shadowing, and distance from subject, and can also interrupt workers’ duties, 

the worker motions can be imitated and recorded in a controlled laboratory environment. 

The resulting motion capture data is in the BVH file format, which is a standard ASCII 

format that defines body configurations and rotations of body joints for each time frame 

and enables animating bipedal characters. After creating the BVH motion file, it is 

imported directly into 3ds Max and attached to the biped model of the worker to animate it. 

In case of non-existing workplaces, the motions can be built either using the same process 

in a laboratory setup or directly inside the 3D modeling environment. This is achieved by 

defining the posture and position of the worker model at different time frames inside the 

virtual model (as described in Chapter 3). In addition to increasing the reliability of the 

efficiency and safety analysis, visualizing the human operator along with motions inside the 

3D virtual representation of the workplace helps the designer substantially in assessing 
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clearance, fit, reach, visibility, and comfort, and can also be used for communication of 

design and training of workers.  

7.4.2 Ergonomic and Biomechanical Analysis 

Mitigating the ergonomic risks of an operation during design and before the workers 

encounter the unsafe conditions is the most effective way of preventing WMSDs. However, 

tools and approaches are required that enable identifying ergonomic risks by a designer not 

familiar with the principles and techniques of ergonomics, on a task not yet observable. 

Thus, this chapter proposes integration of available ergonomic assessment tools into 

discrete-event simulation modeling, that not only provides the designer with a feedback on 

the level of ergonomic risks associated with the design, but also connects the ergonomic 

evaluation with productivity analysis. In particular, the Ovako Working Posture Analysing 

System (OWAS) (Karhu et al. 1977) is used as an example of an effective and prevalent 

ergonomic evaluation system, as it provides a general feedback on the level of safety of a 

task as well as the level of safety for different body joints and also incorporates posture, 

force, and frequency into the evaluation. Other types of ergonomic assessment tools (e.g., 

RULA, REBA, PATH, PEO) can also be similarly used. While evaluating a manual 

operation using OWAS, the designer provides design data for each individual manual task 

that the worker performs. Fig. 7-3 shows the required inputs and the values for a sample 

posture as well as the outputs of an OWAS assessment. A special purpose simulation 

platform is developed inside the Simphony (Hajjar and AbouRizk 1999) simulation 

modeling environment, due to its structured approach to developing easy-to-use templates, 

to integrate ergonomic assessment into the discrete-event simulation. The simulation 

template is developed by designing and creating modeling elements that can represent 

manual construction activities within the simulation environment. The elements are 

programmed through scripts in the C# language such that each manual task is represented 

by a modeling element inside the simulation platform and the designer selects the 

appropriate inputs (shown in Fig. 7-3) for each task. After running the simulation, the 

algorithm behind the simulation engine uses the inputs to calculate the corresponding 

OWAS score and reports on the level of risks for each task as well as the entire operation, 

both for the whole body and for different body joints. This data can be conveniently used to 
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change the manual tasks and examine the impact on ergonomic safety of the workers to 

ensure that the operation is within the acceptable level of risk. 

 

Figure 7-3 Inputs and outputs of an OWAS assessment 

In addition to ergonomic evaluation tools, biomechanical analysis can be used to provide a 
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biomechanical loads (see Chapter 3). After running the simulation model, unsafe motions 

are modeled inside 3DSSPP to modify and achieve safe motions. The results are then used 

to change the design and the simulation model. 3DSSPP also enables loading motion 

capture data to observe the level of risks for the whole manual task which is especially 

useful in case of existing motions. This is achieved by converting a motion capture BVH 

file into a batch file readable by 3DSSPP, which contains data regarding the joint angles, 

external loads, and worker’s anthropometry and loading this file into 3DSSPP (Seo et al. 

2014). After running the model, the loads on different body joints are reported for all time 

frames of the motion file. This output is used to identify postures that cause excessive stress 

on a body joint and modify the motion by redesigning the task until it is ergonomically safe 

(i.e., all loads are within acceptable limit). 

 

Figure 7-4 Sample results of biomechanical analysis for two lifting postures 
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PMTSs is proposed, as they provide a standard duration of a manual task based on the 

motions carried out and enable reliable estimation of the efficiency of a task that does not 

yet exist. Considering the effectiveness of PMTSs in evaluating manual construction 

operations (as described in Chapter 6), this chapter proposes integrating these systems into 

discrete-event simulation and assessing the efficiency of a proposed design, in conjunction 

with safety.  

Among the available PMTSs, the MOST (Zandin 1980) system is used in this chapter to 

experiment with another example of a simple, effective, quick, and reliable approach (Tuan 

et al. 2014; Patil et al. 2004) (see Chapter 6 for implementation of MODAPTS). Fig. 7-5 

shows an example of the MOST inputs required for a simple activity that will represent one 

manual task along with the corresponding output. As described before, a special purpose 

simulation template is developed which contains modeling elements than can represent 

manual activities. In addition to the ergonomic assessment inputs described before, the 

modeling element requires inputs pertaining to how a manual task is carried out (Fig. 7-5). 

These inputs enable carrying out a MOST analysis on the task and after running the 

simulation model, the MOST duration for each task is computed and reported. As the level 

of ergonomic risks and the duration for the different tasks and the whole operation is 

reported by the simulation engine, the designer can modify the design to achieve the 

optimum level of both efficiency and safety. As mentioned before, the visualization of the 

workplace will be highly useful in obtaining the correct inputs for the productivity analysis. 

Among the inputs shown in Fig. 7-5, the action distance variable is an example of an input 

that can be obtained through direct measurements inside the virtual model, and body 

motion, gain control, and placement are examples of inputs that can be conveniently 

obtained by observation of the virtual representation of the design. The simulation platform 

is designed such that the designer only needs to select from a list of descriptive inputs for 

each task without requiring extensive knowledge about the principles and components of 

MOST (e.g., general move activity sequence model). Furthermore, incorporating PMTSs 

into simulation enables a quick and reliable efficiency analysis and the design can be 

conveniently modified to examine the impact on efficiency. Furthermore, uncertainty 

associated with inputs can also be incorporated into the design process.   
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Figure 7-5 Inputs and output of a simple manual task using MOST  

7.4.4 Concurrent Safety and Productivity Analysis 

The developed special purpose simulation template contains modeling elements that can be 

used to represent manual construction activities. As mentioned before, after creating a 

simulation model of an operation and running it, the standard duration of each activity 

based on MOST as well as the level of ergonomic risks associated with the activity and the 

whole operation based on OWAS are reported. The use of PMTSs in conjunction with 

ergonomic assessment enables evaluating risk factors early during the design stage before 

unsafe working conditions are encountered. PMTS data also constitutes important 

mechanical exposure information as it deals with types of motions, travel distances, loads 

exerted, etc. On the other hand, discrete-event simulation enables adding time patterns (e.g., 

idle time) to the exposure variables used in PMTSs. As data pertaining to the duration and 

ergonomic safety of the operation is reported concurrently, this information can be used to 

compare the impact of modifications in the design on productivity and safety and observe 

the trade-off between the two. In particular, simulation models of different scenarios of 

carrying out the operation are created by modifying the attributes pertaining to how a task 

is carried out and the result of both productivity and safety analysis are observed. These 

attributes and the required interventions can be categorized as related to: (1) worker 

training (e.g., awkward posture), (2) workplace arrangement (e.g., steel plates too far from 

workstation), (3) tools and equipment (e.g., tools without extension handles), (4) material 
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(e.g., handling objects with unusual shapes), and (5) administrative (e.g., job rotation). To 

enable an effective and systematic approach to developing and evaluating various scenarios 

and designs, the framework represented in Fig. 7-6 is proposed. After developing a 

potential design (i.e. scenario of operations), ergonomic evaluation is carried out by using 

the visualization and simulation model of the operation, as described before. By identifying 

the body joint at risk and the cause of the unsafe conditions, the appropriate intervention is 

determined, and the design is modified accordingly. Biomechanical analysis is also carried 

out to ensure that the new postures are within acceptable limits. This process is repeated 

until all feasible modifications are applied. Using the simulation model, the duration and 

level of ergonomic risks for each design is extracted and compared with other scenarios to 

select the most optimum. In this study, the optimum scenario is selected as the scenario 

with the least total duration that has a safety score above the acceptable limit. The virtual 

model is also updated to reflect the modification of the design. The implementation of the 

analysis is further explained in the case study section.  
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Figure 7-6 Framework for ergonomic evaluation of potential designs 
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blueprints of the jobsite, the virtual model of a masonry operation can be created accurately 

even in case of non-existing operations. The existence of BIM models can also further 

improve the accuracy of the final model and facilitate the visualization process. For the 

purpose of this case study, since the as-designed BIM model does not exist, a BIM model 

containing columns and the floor are created inside Autodesk Revit, using the appropriate 

materials and dimensions, and exported as an FBX file and imported into 3ds Max. After 

importing the BIM model, 3D models of CMUs are created and positioned in the 

designated locations, based on the existing workplace conditions. The 3D model of the 

worker can also be created by adding a biped character, appropriately scaled, inside 3ds 

Max. Any desired skin can be created in 3ds Max and linked to the biped of the worker as a 

mesh. A BVH motion capture data can also be imported and directly linked to this human 

manikin inside 3ds Max. The process of creating the biped character, applying the skin, and 

adding the motion data can also be carried out inside Autodesk Motion Builder, and the 

resulting animated character can be imported into 3ds Max as an FBX model. As Motion 

Builder is specifically designed for working with motions and provides higher flexibility 

for the motion matching process, it is used in this study. Fig. 7-7 shows a snapshot of the 

jobsite as well the corresponding virtual model in 3ds Max. The worker that is observed for 

the case study is shown with a dashed circle. 

 

Figure 7-7 Masonry operation: (a) actual jobsite and (b) virtual representation 

After creating the primary virtual representation of the jobsite, it is used to obtain the inputs 

required for developing the simulation model of the operation. The cyclic nature of the 

(a) (b) 
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masonry tasks enables a simple and precise representation of the operation in the simulation 

environment. The main tasks represented by the developed modeling element include 

applying mortars between CMUs and moving to pick, carry and place CMUs in appropriate 

locations. Table 7-1 shows the inputs of the modeling element representing a CMU 

carrying task along with the list of possible options, as well as the attributes selected to 

model the task of carrying a 13 kg CMU unit from 2 steps away and bending to place it on 

the floor, as an example. As shown in the table, the appropriate inputs, used for the MOST 

and OWAS assessments, are selected from a list of descriptive attributes. 

Table 7-1 Inputs of the manual handling task modeling element 

Attribute Options Input for “Carry CMU Task #2” 

Distance traveled to grasp object Less than 5 cm; 

Within reach; 

1-2 steps; 

3-4 steps; 

5-7 steps; 

8-10 steps 

Within reach 

Distance traveled while carrying the 

object 
1-2 steps 

Distance traveled to return after 

completing task 
1-2 steps 

Body motion required to grasp 

object 
Bend/arise; 

Bend and arise; 

Sit/stand; 

Pass door/climb 

Bend/arise  

Body motion required to place 

object 
Bend/arise 

Weight of object 

Less than 10 kg; 

Between 10 kg and 20 kg; 

More than 20 kg 

Between 10 kg and 20 kg 

Posture of trunk 
Straight; Bent; Twisted; 

Bent and twisted 
Bent 

Posture of arms 

Arms below shoulder; 

One arm above shoulder; 

Both arms above shoulder 

Arms below shoulder 

Posture of legs 

Sitting; Standing; Standing 

knees bent; Squatting; 

Squatting knees bent; 

Kneeling; Walking 

Standing knees bent 

The masonry operation for building two rows of a CMU wall is observed and the 

corresponding simulation model is created. The total duration of the operation from the 

video recordings and the simulation model (i.e., based on MOST) are 578.5 and 549.9 

seconds respectively, which shows the reliability of the simulation model in representing 

actual operations as there is less than 5% difference between the two durations. Besides the 

duration of each manual activity and the whole operation, the simulation engine also reports 
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on the level of ergonomic risks for each activity through the OWAS score. This information 

is represented in Fig. 7-8, where at different time frames, the OWAS score of the ongoing 

manual activity is reported. The acceptable limit for the OWAS score (i.e., a score of 2) is 

also denoted by a dashed line. This graph provides an overview of how safe the operation is 

in general, and enables convenient discovery of unsafe tasks. The average OWAS score for 

the base case is 2.40, which is beyond the allowable limit. 

 

Figure 7-8 Level of ergonomic risks at different time frames for masonry operation 

To further analyze the ergonomic risks of the operation, the simulation engine also reports 

on the safety of the operation for different body joints, by considering the frequency of the 

ergonomic risks in the OWAS computations. This output is presented in Fig. 7-9, where for 

the trunk, arms, and legs, the percentage of time spent at each posture as well as the share 

of each task in each posture is shown. This information can be highly useful in evaluating 

the current design of operation as well as designing new scenarios based on the safety risks 

associated with the current design. For example, the results show that the worker spends a 

lot of time bending or twisting which imposes high stress on his back.  
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Figure 7-9 Distribution of ergonomic risks for (a) trunk, (b) arms, and (c) legs 
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To evaluate the impact of different contributing factors and find the optimum design of the 

workplace and operation, different scenarios of the operation have to be assessed. The 

different proposed scenarios are shown in Fig. 7-10 and the results of ergonomic 

assessment for the whole operation is shown in Table 7-2, indicating the percentage of time 

each OWAS score is obtained during the whole operation as well as the average score of 

the operation. 

 

Figure 7-10 Scenarios of masonry operation design  

 

 

Base case: Worker twists to get CMU since 
CMUs are close to wall. 

Scenario 1: CMUs are moved a step away 
to prevent worker from twisting his back. 

Scenario 2: CMUs are placed on lifting 
pallet to prevent bending. 

Scenario 3: Squatting is proposed instead of 
bending to improve posture. 
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Table 7-2 Results of ergonomic assessment for different scenarios 

OWAS Score 1 2 3 4 
Average 

score 

Percentage of 

score 

Base Case 15.87% 36.51% 39.68% 7.94% 1.4 

Scenario 1 15.87% 46.03% 36.51% 1.59% 2.2 

Scenario 2 30.16% 44.44% 23.81% 1.59% 1.9 

Scenario 3 31.75% 68.25% 0.00% 0.00% 1.6 

As twisting of the trunk is imposing high risk of injury in the base case (i.e., current 

design), the first scenario aims to eliminate the possibility of twisting while picking up and 

placing CMUs. As the twisting occurs due to the small distance between the CMU pile and 

the wall that is being built, the concrete blocks are moved one step further from the wall so 

that the worker has to make complete turns to pick up and place CMUs and cannot twist his 

back. The results of the ergonomic assessment indicate that despite the improvements of the 

first scenario, it is still harmful to the worker’s back due to the high number of bending 

motions while picking up CMUs. To address this issue, the use of a lift pallet or lift table is 

proposed, so that the worker can pick up CMUs at an appropriate height while keeping his 

trunk in a straight posture. As the worker has to place the CMUs at low heights during 

placement of first few rows of the wall, the third scenario suggests a posture modification 

while placing CMUs. To achieve the safest posture to carry out the CMU placement task, a 

biomechanical analysis is carried out, as shown in Fig. 7-11. From biomechanical 

assessment, the low back compression in the current posture is 3,609 N, which is above the 

acceptable limit (3,400 N). After modifying the posture to squatting instead of bending, the 

low back compression is reduced to 2,341 N. Furthermore, the strength percent capable, 

which is an indicator of the biomechanical stress on a particular body joint, for the torso 

and hip joints are improved substantially, as shown in Fig. 7-11. This analysis can be 

highly useful in training the workers on how to carry out different tasks as well.  
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Figure 7-11 Biomechanical analysis on CMU lifting, before and after modification 

The simulation model is adjusted to reflect the modifications in the design and represent the 

new scenarios. The result is shown in Fig. 7-12. As shown in the graph, the duration for the 

three modified designs increases compared to the base case. However, the overall safety of 

the operation is improved. As scenario 1 has an OWAS score above the acceptable limit, its 

implementation is not recommended. Scenario 2 and 3 both have an acceptable level of 

ergonomic risks, but scenario 2 has a lower duration which implies higher efficiency. In 

cases similar to scenarios 2 and 3, the decision regarding selecting between the two 

scenarios depends on the particular case and counts as a managerial decision. Although 

implementing scenario 2 will result in higher productivity, scenario 3 involves lower levels 

of risk and thus the decision should be made based on considering other factors such as 

schedule, cost, availability of resources, etc. In this particular case, as the results of 

ergonomic assessment for the third scenario indicate that there is some stress imposed on 

the worker’s legs, alternating between bending and squatting can potentially be the most 

effective approach from an ergonomic point of view. 
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Figure 7-12 Efficiency vs. safety for different scenarios of masonry operation  

7.6 DISCUSSION 

The results of comparing different scenarios of the masonry operation are shown in Fig 7-

12. As shown in the figure, the proposed approach enables evaluating different scenarios of 

an operation in terms of both productivity and safety. The results show that by modeling 

construction operations in a simulation environment, the efficiency of an operation as well 

as the ergonomic risks associated with it can be evaluated, which is critical in achieving 

highest productivity possible while remaining ergonomically acceptable. The developed 

framework intends to enable modeling and assessing manual operations without requiring 

high levels of expertise in production planning or ergonomics, to facilitate implementation 

of PtD in the construction industry and to provide the means to concurrently assess 

performance and safety. It also provides a new method of examining the trade-off between 

these two important indicators of success of construction projects, and enables researchers 

to formulize the impact of different contributing factors on efficiency and safety of 

different type of manual operations, which can be adapted as practical guidelines in actual 

jobsites.  
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While previous studies on the relationship between productivity and safety have made 

different conclusions regarding the trade-off between the two, depending on the factors 

evaluated and the methodology, the proposed approach of this chapter enables examining 

this association from a physical perspective. The results demonstrate that applying 

ergonomic interventions can both increase and decrease the efficiency of operations based 

on the type of intervention. Thus, different design of workplaces and operations need to be 

assessed to incorporate the impact of physical features related to the workplace and 

operational features related to tasks on ergonomic safety.  

While this chapter uses modeling elements inside a simulation platform to model manual 

operations through PMTSs and ergonomic assessment tools, conducting the simultaneous 

productivity and safety evaluation directly on motion capture data and in an automated 

manner, can further simplify and increase the accuracy of the assessment in case of existing 

manual tasks. This automated analysis can also potentially be linked to the virtual 

representation to reliably reflect the design and will be highly useful for communication of 

design as well as training of workers. While the realistic human motion data created inside 

the virtual model can be highly beneficial for visualization purposes, it can also be 

effectively coupled with more detailed analyses such as human motion planning. 

Considering the ongoing research efforts to capture motion data in construction jobsites 

(Han and Lee 2013; Liu et al. 2016), using motion sensing techniques for real-time 

feedback can also highly increase the applicability of the approach and provide an effective 

means for evaluation and training of construction workers’ performance. Furthermore, 

integrating the impact of fatigue, as an important contributor to the productivity and safety 

of construction operations (Chan 2011), into the simulation framework (Seo et al. 2016) 

can further enhance the accuracy of the analysis.  

7.7 CONCLUSION 

This chapter proposed an integrated approach to prevention through design that evaluates 

the ergonomic safety and efficiency of manual operations concurrently. The developed 

comprehensive framework incorporates PMTSs and ergonomic assessment into simulation 

modeling for efficiency and safety analysis and uses visualization of jobsites to facilitate 
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communication and implementation of workplace design. It also enables integrating 

building information models, point cloud models, motion capture data, and biomechanical 

analysis into the design process to achieve an accurate and effective design. The results of 

implementing the approach to redesign a masonry operation show the effectiveness of 

coupling PMTSs and ergonomic assessment in exploring the trade-off between productivity 

and safety and evaluating different scenarios of operations. The proposed approach enables 

designers and construction practitioners to consider ergonomics in the design process to 

ensure that a proposed design is safe, while also achieving optimum productivity of the 

manual operations involved. 

7.8 ACKNOWLEDGMENTS 

The work presented in this chapter was supported financially by the Natural Sciences and 

Engineering Research Council of Canada (NSERC) and Hanyang University (HY-2016). 

Any opinions, findings, and conclusions or recommendations expressed in this chapter are 

those of the authors and do not necessarily reflect the views of NSERC. 

 

 

 

  



128 

Chapter 8 An Integrated Ergonomics Framework for Evaluation and 

Design of Construction Operations 6 

8.1 SUMMARY 

Labor is one of the most critical resources in the construction industry due to its impact on 

the productivity, safety, quality, and cost of a construction project. Ergonomic assessment, 

as a tool and method for analyzing human activities and their interactions with the 

surrounding environment, is thus crucial for designing operations and workplaces that 

achieve both high productivity and safety. In construction, however, the constantly 

changing work environments and laborious tasks cause traditional approaches to ergonomic 

analysis, such as manual observations and measurements, to require substantial time and 

effort to yield reliable results. Therefore, to simplify and automate the assessment 

processes, this chapter explores the adaptation and integration of various existing methods 

for data collection, analysis, and output representation potentially available for 

comprehensive ergonomic analysis. The proposed framework integrates sensing for data 

collection, action recognition and simulation modeling for productivity and ergonomic 

analysis, and point cloud model generation and human motion animation for output 

visualization. The proposed framework is demonstrated through a case study using data 

from an actual job site. The results indicate that integrating the various techniques can 

facilitate the assessment of manual operations and thereby enhance the implementation of 

ergonomic practices during a construction project by reducing the time, effort, and 

complexity required to apply the techniques.  

8.2 INTRODUCTION 

Because the construction industry is labor-intensive, worker activities can significantly 

affect the success of construction operations. Labor is one of the most crucial and flexible 

resources (Jarkas and Bitar 2011; Muqeem et al. 2012) and has the highest direct impact on 

the outcomes of a project, including time, cost, and quality (Leung et al. 2012). Labor can 

                                                 
6 A version of this chapter is submitted as Golabchi, A., Guo, X., Liu, M., Han, S., Lee, S., and AbouRizk, S. 

M. (2017). “An Integrated Ergonomics Framework for Evaluation and Design of Construction Operations.” 

Advanced Engineering Informatics. 
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account for nearly half the overall costs of a project (El-Gohary and Aziz 2013) and is 

highly associated with construction productivity, which is one of the most important and 

frequently used performance indicators in the industry (CII 2006). Furthermore, labor 

operations in construction involve physically demanding motions and tasks that frequently 

expose workers to risk in their working environments, leading to a rate of injuries and 

fatalities that are among the highest of any industry (Behm 2005; OHS 2017; Zhou et al. 

2015).  

As an approach to human-oriented work design, ergonomics is the study of human 

interactions with the surrounding environment with the intent to improve human safety and 

well-being, as well as productivity (IEA 2017; Dul and Neumann 2009; van Deursen et al. 

2005; Hedge and Sakr 2005). An effective and comprehensive ergonomic analysis involves 

evaluating ongoing operations and proposing modifications and new designs that fit jobs 

and work environments to worker capabilities and limitations. Accordingly, the 

implementation of ergonomic principles can contribute to the success of a construction 

project by providing workers with comfortable working environments in which work 

procedures and tools are designed for safe and productive use. However, conducting an 

ergonomic analysis often requires extensive time and effort to yield reliable results as the 

data collection and evaluation involve human observations and measurements. This is 

particularly true in the dynamic environment of construction job sites, which involve many 

physically demanding manual tasks that create vast amounts of data to collect, analyse, and 

represent (Tak et al. 2011). Furthermore, the variety of tasks and postures required of 

workers necessitates methods for collecting and analyzing data that can address human 

error; the resulting low reliability of the analysis inputs and outputs make completing a 

meaningful ergonomic evaluation difficult (Kadefors and Forsman 2000; David 2005). 

Reliable and detailed visual representations of the analysis outputs can greatly improve the 

implementation of interventions or new workplace designs. Accordingly, the development 

and use of methods to automate, simplify, and increase the accuracy of data collection, 

analysis, and output representation could enable effective and comprehensive ergonomic 

evaluations. Furthermore, integrating such methods into an overall framework would 

potentially enhance the implementation of ergonomic practices at actual construction job 



130 

sites by minimizing the need for experts, decreasing the time and effort required for 

analysis, and reducing the complexity of applying the various methods.  

Therefore, this chapter proposes a framework to integrate different methods used for 

evaluating and designing manual construction operations to achieve a more unified and 

reliable ergonomic analysis. The framework and its modules are presented with a focus on 

linking the different components together. A manual operation at an actual job site is then 

used to implement the proposed approach and evaluate its effectiveness. 

8.3 BACKGROUND 

8.3.1 Limitations of Manual Observation–based Ergonomic Analyses  

A complete ergonomic analysis involves evaluating the motions and postures of workers 

and the physical attributes of a job site to assess current work conditions and propose new 

designs for manual operations (e.g., safe motions) and workplaces (e.g., workstation 

dimensions). To carry out such an assessment, an ergonomist generally needs to complete 

three stages: (i) data collection, (ii) data analysis, and (iii) representation of results.  

For data collection, the ergonomist traditionally observes the subjects (e.g., anthropometry, 

posture), their motions while working (e.g., leaning, bending), and the attributes of the 

work environment (e.g., workbench, tools, equipment). The inputs of an ergonomic 

assessment thus include various types of data, such as the distance between a worker and a 

necessary tool or material or the joint angles between different body joints, which are often 

challenging to observe simultaneously. Typically, an ergonomist visits a job site and 

collects the required data in real-time or uses video recordings to extract the inputs later 

(David 2005). In both cases, such a procedure results in subjectivity in the collected inputs 

introduced by the ergonomist’s personal judgement (see Chapters 4 and 5). Although the 

traditional approach can work effectively in static workplaces, such as offices and 

manufacturing assembly lines, it can produce unreliable data at construction job sites 

because of the variety of manual tasks performed, complexity of exposures, and constantly 

changing work environment (Kadefors and Forsman 2000).  
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After data collection is complete, the ergonomist uses the gathered data to conduct an 

ergonomic evaluation using tools such as ergonomic assessment checklists (e.g., RULA, 

ROSA) and time and motion studies (e.g., MTM2, MOST). To complete this step, the 

ergonomist inputs the data into the tools, which use a set of predefined rules to produce the 

output of the analysis. For example, inputting a worker’s posture (i.e., joint angles) along 

with the frequency and duration of exposure allows posture-based tools to report on the 

level of ergonomic risk associated with a task. Also, using inputs that describe working 

conditions (e.g., walking distance, motions involved), time and motion systems provide the 

standard duration for a task. However, similar to the challenges presented to data collection, 

manual analysis of construction tasks is inefficient because job sites and the motions 

required change every day. 

Following data analysis, the ergonomist represents the gathered data and analysis results to 

illustrate how any modifications should be implemented and address any discovered risks. 

Traditionally, this involves reports that reflect the ergonomist’s conclusions from the 

analysis and state any modifications suggested by the outputs from the checklists and tools 

used. Typically, those reports include only whether the level of ergonomic risk associated 

with a task is acceptable, moderate, or unacceptable based on the inputs provided. Such 

reports are thus limited data representations that do not allow re-evaluation of the proposed 

changes and designs because of the difficulty of assessing a non-observable task on a job 

site that does not yet exist (Laring et al. 2002). Furthermore, the traditional report-based 

approach does not offer managers a tool for practical decision-making, nor does it provide 

an effective means to accurately implement the proposed modifications or train the 

personnel involved. This approach also makes it difficult to effectively assess other 

ergonomic variables (e.g., clearance, vision) when modifying the design of a workplace. 

Thus, the three stages of a thorough ergonomic analysis could be improved by adapting and 

integrating existing methods through automation to enhance different aspects of the 

analysis and connect them to provide a more reliable and simplified assessment. The 

different stages of an evaluation, including data acquisition through sensing, productivity 

and safety analysis of the obtained data, and representation of the results through 

visualization, are shown in Table 8-1. For each stage, the research areas that could be 
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beneficial for manual operation evaluation and workplace design are identified as 

components of the framework, and both the input used for each component and its output 

are shown. The inputs and outputs show the connections among the different elements and 

indicate how data can be transitioned through the different components for an accurate and 

automated analysis. 

Table 8-1 Research areas, inputs, and outputs for different stages of manual operation 

evaluation and design 

Stage Research area Input Output 
Example references 

in research area 

Data acquisition 

(sensing) 

Action 

recognition 

Video/sensor 

recordings 

Type and 

sequence of 

actions 

Akhavian and 

Behzadan (2016), 

Cheng et al. (2013), 

Joshua and 

Varghese (2011) 

Motion capture  
Worker motion 

recordings 

Worker motion-

capture data 

Han and Lee (2013), 

Starbuck et al. 

(2014), Ray and 

Teizer (2012) 

3D 

reconstruction 

Photo/video of job 

site 

As-is point cloud 

model 

Rashidi et al. 

(2015), Fathi and 

Brilakis (2011), Guo 

et al. (2016) 

Analysis 

Simulation 

modeling 
Action recognition 

Operation 

efficiency  

Seo et al. (2016), 

see Chapter 6 

Motion 

generation 

Golabchi et al. 

(2016), Golabchi et 

al. (2015) 

Biomechanical 

analysis 
Motion capture Level of safety 

Seo et al. (2014), 

Mehta and Agnew 

(2010), see Chapter 

3 

Representation 

(visualization) 

Motion 

generation 

Simulation 

modeling 
Worker motions 

Wei et al. (2011), 

Taylor et al. (2007) 

Path planning 
Start and end 

location of motion 

Animation of 

worker motions 

Yao et al. (2010), 

Wu et al. (2007), 

Pettré et al. (2002)  

Visualization 3D reconstruction 
Complete virtual 

model 

Al-Hussein et al. 

(2006), 
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Motion generation 

Budziszewski et al. 

(2011), see Chapter 

3 

As shown in Table 8-1, many researchers have worked on different elements that can 

contribute to an ergonomic evaluation of labor operations and workplace design. However, 

many of the previous studies have focused on methods developed for a different purpose 

(e.g., 3D reconstruction for progress monitoring, action recognition for productivity 

measurements). Thus, further investigation is required to understand the inputs and outputs 

of the existing methods and the potential transition of data among them to enable their 

integration and achieve a comprehensive ergonomic analysis framework. 

8.3.2 Integrated Ergonomic Analysis  

To carry out a thorough ergonomic analysis, information about the effects of physical 

activities on a worker’s body needs to be available. Main contributors to those effects are 

the type, duration, and sequence of manual tasks. Although that information can be 

collected through time studies, they are time-consuming and challenging to conduct for 

many manual construction operations. Furthermore, those data are difficult to gather when 

designing non-existing operations for new or prospective workplaces. As a result, 

ergonomists rely on human judgment and estimates in acquiring data, which can lead to 

unreliable information. This issue can be addressed through linking simulation modeling 

with action recognition. The use of video cameras for action recognition can automatically 

identify the type, duration, and sequence of activities. The results can then be used to create 

a simulation model for the operation that can be used to test any required modifications to 

the operation design. Furthermore, integrating PMTSs into the simulation environment 

allows not-yet-existing scenarios to be conveniently modeled and explored (see Chapter 6). 

Previous research has used sensing devices to identify different types of activities and tasks 

for applications such as operation analysis, work rate measurement, and productivity 

monitoring (Gong et al. 2011; Kim and Caldas 2013; Escorcia et al. 2012). Furthermore, 

simulation modeling has been used extensively in different phases of construction for 

planning, budgeting, design, maintenance, etc. (Ozcan-Deniz and Zhu 2015; Corona-Suárez 

et al. 2014; Yang et al. 2012). However, linking video-based action recognition to PMTS-
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based simulation modeling to enable the reliable and automated creation of simulation 

models for ergonomic analysis has not yet been fully explored.  

Another main contributor to an operation’s level of safety is the posture and motions of the 

workers. While ergonomic and biomechanical tools rely on that information for their 

evaluations, watching a worker carry out the tasks to obtain the required inputs (e.g., body 

joint angles) is time-consuming and produces low-reliability results. The use of motion-

capture data, recorded using sensing devices (e.g., depth sensors), can greatly simplify data 

capture and improve data accuracy (Seo et al. 2014; Han and Lee 2013; Ray and Teizer 

2012). Motion data can also be used in conjunction with 3D models of the work 

environment (Chapter 3) to visualize an operation and provide a virtual platform for 

managerial decision-making, implementation of designs, training, etc. Furthermore, 

connecting motion data with a simulation model of operations can generate the motions of 

proposed operations for the assessment of ergonomic variables such as clearance, visibility, 

fit, and reach. 

Creating an effective and complete virtual model to represent the results of an analysis 

requires 3D models of the different components representing the current conditions of a job 

site. However, given the dynamic nature of construction sites, creating and updating as-is 

models using only 3D modeling tools and software is unfeasible. Therefore, previous work 

has focused on generating point-cloud models of work environments (Golparvar-Fard et al. 

2011; Fathi and Brilakis 2011; El-Omari and Moselhi 2008). Cameras can be simply and 

inexpensively used to create as-is point cloud models of the work environment, replacing 

the need to manually create complicated models. Integrating such a model into a 

visualization environment that includes other components, such as BIM elements and 

worker motions, can provide a robust, reliable, and complete virtual model. Furthermore, 

worker models need to be connected to the other 3D elements in the virtual model to enable 

animating the worker motions along a path that does not collide with other objects and is 

also a realistic representation of worker motions and paths on an actual job site. Thus, there 

is a need to implement an automated path-planning algorithm inside the visualization to 

enable accurate animation of worker models and motions.  
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As there is a high correlation between safety and productivity (Hallowell 2011) and an 

ergonomic analysis works to improve both health and productivity, the effects of safety 

interventions on productivity and vice versa have to be considered for an analysis and 

design to be effective. Integrating methods that can measure productivity (e.g., PMTS-

based simulation modeling) with methods that evaluate safety (e.g., motion capture-based 

ergonomic and biomechanical assessments) and representing them using inclusive virtual 

models (i.e. point cloud models in conjunction with worker motions) will thus enable the 

analysis of different scenarios in terms of both productivity and safety to select the best 

option. 

8.4 METHODS 

This chapter proposes and tests an integrated framework that couples data acquisition and 

visualization with analysis of manual operations to enable an effective evaluation of those 

manual operations for a comprehensive ergonomic analysis. Specifically, the objectives are: 

(1) exploring the data associated with the various sensing, analysis, and visualization 

methods, (2) examining the possibility and applicability of sharing data among those 

different methods, and (3) testing the feasibility and effectiveness of integrating the various 

methods. 

The proposed framework and its components are shown in Fig. 8-1. As shown in the figure, 

the framework is composed of three main modules: simulation, as-is modeling, and safety 

assessment. The analysis starts by gathering information about current conditions of the 

work environment through sensing. Videos of worker activities are recorded, and an action 

recognition process extracts the type, sequence, and duration of tasks and creates a 

simulation model of the operation. The simulation model evaluates the productivity of the 

operation, as well as generating worker motions for animation in the final virtual model. 

Photos or videos of the job site are also used to create an as-is point cloud model of the 

work environment. Other 3D modeling elements are added to that model, and it is used to 

run a path planning algorithm that enables a realistic representation of worker motions in 

the virtual environment. Worker motion data are also captured and used for a precise, 

automated, biomechanical assessment, and worker motions and workplace design are 
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updated based on the results. The outputs of the modules are used to create a complete 

virtual model of the manual operations, which can be used for various visualization 

applications (e.g., communication and implementation of design, decision making, and 

training).  
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Figure 8-1 Framework of integrated analysis of manual operations 
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8.4.1 Simulation Module  

To create a simulation model of a manual operation and analyze its operational efficiency, 

either human observation or sensing methods have to be used to gather the required inputs 

(e.g., types of tasks, activity durations). Human observation typically requires time, effort, 

and expertise and can be subjective. On the other hand, most sensing methods require high-

end sensors that can work only within a specialized infrastructure under the guidance of a 

human expert. To address this issue, the action recognition approach in this chapter uses 

video recordings from ordinary cameras to identify the type, sequence, and duration of 

different manual tasks. The developed action recognition method predicts the activity type 

for each frame (Fig. 8-2) using a feature vector and classifies the vectors to specific activity 

types based on their distance from examples in a training dataset. The feature vector is 

primarily derived from the extracted human silhouette and the pixel-wise direction and 

magnitude (i.e., optical flow) of its movements (Tran and Sorokin 2008). With an initial 

estimate for every frame, the activity sequence is optimized by an enforced temporal 

constraint minimizing the duration of an activity. The duration of each task is also 

calculated using the number of frames and the video’s frame rate. 

 

Figure 8-2 Action recognition from video recordings 

The result of the action recognition process is linked to a discrete-event simulation 

modeling environment called Symphony (Hajjar and AbouRizk 1999). This is achieved by 

first extracting the activity types, their sequence, and their duration and then creating a 

simulation model based on those data, including different modeling elements to represent 
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different tasks, as shown in Fig. 8-3. For cyclic operations, the simulation model includes a 

cycle of the motions and determines the duration of each activity using the average of the 

cyclic durations of each task type from the action recognition. The developed simulation 

model represents the current status of an ongoing operation and is used for two purposes. 

First, it serves as a base model to evaluate different scenarios for an operation (including 

the current practice) in terms of productivity and safety to find the most desirable. This 

process is greatly improved by integrating PMTSs into the simulation environment to 

accurately model potential scenarios (see Chapter 6). Second, it is linked to the motion 

generation component, which creates the complete motion of a worker by pulling from a 

database of captured motions and combining them (Golabchi et al. 2017). This is achieved 

by first generating a trace message based on the simulation, which contains information 

regarding the different motions carried out. This information is then used as input for an 

algorithm that queries basic motions (e.g., get, put, walk) from a database of motion-

capture data and creates the complete motion.  

 

Figure 8-3 Simulation model generation from action recognition results 

8.4.2 As-is Modeling Module 

The as-is modeling module includes two main components. First, the current conditions of 

the existing workplace (structure and objects) have to be modeled. Second, the path that 

each worker’s 3D animation will use in the virtual representation is identified through path 

planning. The two components are further described below. 
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8.4.2.1 Point cloud generation  

The virtual representation of a job site needs to reflect current conditions, including the 

shape, size, and location of building components, equipment, and materials. Since as-

designed CAD and BIM models might not accurately reflect the current, ongoing status of 

the surrounding work environment or temporary structures and objects, point cloud data 

models have emerged as a solution. These models can later be converted into 3D models, 

such as BIM (Hichri et al. 2013). Different tools and approaches can be used for point 

cloud model creation, including image-based approaches, video-based approaches, and 

laser scanners. The use of laser scanners has been thoroughly studied in construction 

(Akinci et al. 2006; Tang et al. 2010; El-Omari and Moselhi 2008). Despite the high 

accuracy of models created using laser scanners, the cost of the scanners and the need for 

experts to implement them can limit their use in practice. Image-based approaches, in 

which a structure from motion algorithm is used to generate a point cloud from ordinary 

photographs (Golparvar-Fard et al. 2011; Fathi and Brilakis 2011; Guo et al. 2016), can be 

used as an alternative approach as they carry no need for special equipment or expertise. 

However, such approaches involve high processing time and require images with high 

overlap to ensure the reliability of the output. Therefore, this chapter uses a video-based 

approach, which can address the issues with both the prior methods. 

To create a point cloud model using the video-based approach, a stereo vision camera is 

used to generate depth data for objects. In other words, every point of an object is recorded 

through the left and right lenses at the same time, and then the videos are rectified (Fusiello 

et al. 2000). Rectification is a transformation process in which two or more images are 

projected onto the same image plane to find the matching points between them. After this 

process, the images from every frame of the recorded videos will be appropriately aligned. 

In Fig. 8-4, if A is the point being analyzed, the projections of point A from the left and 

right views are called A1 and A2, respectively. In the left view, A is described as A1 (x1, 

y1), and in the right view, A is described as A2 (x2, y2). In the original frames, the heights 

of A, A1, and A2 are different (i.e., they are not in same pixel row). Therefore, the epipolar 

plane (the plane containing A, A1, and A2) is not horizontal but triangular. When the 

rectified distance is eliminated, the epipolar plane becomes horizontal. In other words, the 
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3D plane containing A, A1′, and A2′ is transformed into a straight line. Then, the disparity 

between A1 and A2 can be described as (x1-x2, y1-y2). As the distance between the two 

lenses is known, the depth of each point can be calculated based on the proportional 

relationship, and the entire object can be rebuilt as a point cloud model. 

 

Figure 8-4 Image projections and epipolar geometry (a) before and (b) after rectification 

The point cloud generation process is implemented using the procedure described above, 

which requires a video of a job site as input and generates the point cloud model as output. 

Through this simple process, the generated point cloud model reflects the existing 

conditions at a job site. When evaluating different scenarios and representing new designs, 

3D models of other elements, including building components, equipment, material, tools, 

etc., are added by importing the point cloud model, potential BIM elements, and other 3D 

objects into the final visualization platform and positioning them in the correct locations. 

Human models and motions are added to the virtual model at a later stage. 
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8.4.2.2 Worker path planning for virtual modeling 

To realistically represent a human model in a virtual environment, the anthropometric 

properties of the model, an animation of the motions the human carries out, and the path 

that they take inside the 3D model all need to be reflected reliably. The anthropometric 

attributes are considered while creating the skeleton of the 3D model of the human by 

choosing appropriate values for the joint lengths and body-part ratios. The motion is created 

from the sequence of activities and durations in the simulation model and by querying a 

database of motions, as explained above. The path that each worker will take to complete a 

motion also needs to be acquired to provide a reliable representation of activities. Thus, 

path planning needs to be used to predict the paths that workers will take on an actual job 

site and animate them in the virtual model. 

For this purpose, the A* (Yao et al. 2010; Hart et al. 1968) path planning algorithm is 

adapted for its speed and reliability (see Appendix B). In this technique, the start and end 

nodes of the path and the locations of obstacles are the inputs, and the algorithm chooses 

the shortest path from start to finish. It selects the path that minimizes the f(n) function in 

Equation 8-1, where n is the last node on the path, g(n) is the exact cost of the path from the 

starting node to n, and h(n) represents a heuristic estimated cost from n to the final node.  

                                                             f(n) = g(n) + h(n)                                            (8-1) 

After the 3D model (point cloud or BIM) is created, it is analyzed to extract the coordinates 

of all objects in the model by recording their X and Y coordinates for all points on the Z 

axis, as shown in Fig. 8-5. The size of the matrices with the X and Y coordinates is 

determined by finding the largest distance in each of the X and Y directions among all the 

Z planes and using those values for the corresponding axis.   
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Figure 8-5 Registering the coordinates of all the objects of the 3D model in different planes 

Next, the start and end locations in the virtual model are selected to extract the coordinates. 

Also, based on the Z coordinate of the start and end nodes, the object coordinates need to 

be filtered to find any obstacles in the worker’s path. Thus, the coordinates of obstacles that 

could block the worker’s path, defined by having a Z value between the worker’s foot and 

head, are extracted. Then, the X and Y values of all nodes that represent an obstacle that the 

worker cannot pass (i.e., for the same X and Y, a Z range larger than the height of a step) 

are registered as obstacles. The start, end, and obstacle nodes are then fed into the A* 

algorithm, and the coordinates of the path are extracted. This path is then used to animate a 

human animation in the virtual model by feeding the coordinates into the visualization 

environment, along with the basic motions already attached to the animation. 

8.4.3 Safety Assessment Module 

The biomechanical analysis component of the framework enables the evaluation of an 

operation by examining the loads exerted on the human joints and comparing them to safe 

limits. The results can be used along with the productivity analysis output to improve the 

operation and select an optimal design (see Chapter 7). To carry out an automated 

ergonomic analysis, worker motions need to be extracted from either video recordings (Han 

and Lee 2013) or sensing devices (Han et al. 2013), and then the motion data can be used to 

automatically identify unsafe actions through ergonomic and biomechanical assessments 
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(see Chapter 3). Those results are used to modify the design elements that cause the unsafe 

conditions and ensure representation of safe motions. The captured motions are also used to 

animate the worker model in the final virtual environment to accurately represent current 

conditions. When improving prospective operational scenarios, the motion generation 

element uses pre-recorded motions of ergonomically safe actions to visualize worker 

activities, enabling the use of the virtual representation for safety training applications. The 

safety analysis component and detailed descriptions pertaining to it can be found in Chapter 

3 as well as Golabchi et al. (2016) and Golabchi et al. (2015). 

8.5 CASE STUDY: ILLUSTRATION OF FRAMEWORK IMPLEMENTATION 

The application of the proposed framework and its components is demonstrated by 

implementing it using data from an actual job site. A steel fabrication shop is selected as 

the work environment due to the existence of many manual operations and their importance 

in ensuring safe and productive processes. In particular, the task of handling steel plates is 

observed, recorded, modeled, and analyzed using the proposed integrated approach since its 

productivity is critical in the whole operation and it also involves physically demanding 

activities (e.g., carrying steel plates). This task involves picking up steel plates from a 

cutting machine, carrying them to a worktable, measuring and sorting them, and carrying 

them to storage bins. As the first step, the workstation is recorded using a video camera to 

extract time stamps and activity types using the action recognition component. This data is 

used to create a simulation model representing the existing, ongoing operation. Fig. 8-6 

shows the work setup and samples of the identified worker tasks. 

 

Figure 8-6 Sample actions identified through action recognition 

Measure Walk Pick up Carry 
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From the video recording of the operation, 32 tasks are identified in the four categories of 

walking, picking up, carrying, and measuring (see Appendix C). Since the operation is 

cyclic, after running the action recognition, the most repeated cycle is found and used as the 

correct sequence of activities. Activities not following the correct identified sequence are 

distinguished as outliers and removed. The simulation model of the cycle is then built using 

the average durations for each task, as derived from the action recognition results. Based on 

the 32 tasks identified from the video recording, which includes 4010 data points reflecting 

the video frames from the recording, the error in finding the correct sequence is 7.14%, and 

the error in calculating the correct durations is 8.48%. Fig. 8-7 shows the ground truth and 

predicted activities for the different aspects of the steel plate handling task. 

 

Figure 8-7 Comparison of the ground truth and predicted activity for steel plate handling 

The results of the action recognition are used to create the simulation model that represents 

the current status of the operation. This is achieved with a script that describes the type and 

sequence of activities with timestamps from the action recognition. This simulation model 

serves as the basis for modifying the operation and evaluating different scenarios for 

potential improvement. As described in Chapter 7, integrating PMTSs into the simulation 

environment enables representation of manual activities that do not currently exist. This 

modeling process can be used to analyze the productivity of the current activities and 

improve it by assessing different methods for carrying out the process (e.g., different task 

sequence, more labor resources). Furthermore, the sequence of activities and task durations 

from the simulation model are used to generate motions from a pre-recorded motion-

capture database. As shown in Fig. 8-8, models using PMTSs such as MODAPTS, MTM2, 
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and MOST can be developed and tested from the base simulation model. These three 

systems are widely used and differ in their level of focus (cycle duration, repetitiveness of 

motions, complexity of movements, etc.). As these systems originated in industries other 

than construction, all three are used here to further validate the proposed simulation 

approach. Table 8-2 shows the result of running the simulation model for one cycle of the 

task. The durations are derived from running the simulation models shown in Fig. 8-8, 

using inputs collected from the actual job site. As shown in the figure, the modeling 

elements developed and used for the different PMTSs depend on the system design. For 

example, MODAPTS has a GET element to represent grasping an object, for which the 

input is the complexity of the grasp, and MTM2 has a step element representing a walking 

activity, for which the input is the number of steps taken. Next, the BVH motion of the 

operation is attached to a human model based on the sequence of the tasks from the 

simulation, making it ready for the path planning and visualization phase. 
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Figure 8-8 Simulation model and motion generation using action recognition 
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Table 8-2 Actual vs simulation durations for one cycle of the steel plate handling task 

Average duration 

from job site 

(seconds) 

PMTS-based simulation  Average 

difference 

between actual 

and PMTS-

based 

MODAPS 

duration 

(seconds) 

MTM2 duration 

(seconds) 

MOST duration 

(seconds) 

8.66 8.06 8.42 8.28 4.70% 

To create the 3D representation of the workstation, a 34-second video (1020 frames) of the 

job site is recorded. Using the described process, the point cloud model representing the as-

is conditions is then generated. A snapshot of the point cloud model of the steel plate 

handling workstation is shown in Fig. 8-9. 

 

Figure 8-9 Point cloud model of the steel plate handling workstation 

As an example of the ergonomic and biomechanical analysis for safety evaluation, the 

process of picking up the plates from the machine is demonstrated. As shown in Fig. 8-10, 

this analysis begins by modeling the worker’s posture at any given point during the 

operation and using biomechanical models (Chaffin et al. 2006) to calculate the forces on 

different body joints and compare them to allowable limits (see Chapter 3). Any ergonomic 

concerns can be addressed during this modeling, and the worker’s posture and workplace 

design can be changed, if required, to ensure the tasks are acceptably safe. This process can 
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be carried out using any of several available biomechanical analysis tools and software, 

such as 3DSSPP, openSim, SIMM, or Visual 3D. The 3DSSPP software is used in this 

chapter as it can examine variables such as back compression (load on lower back) and the 

strength-percent capability of different body joints that are useful for assessing the steel 

plate handling task (see Chapter 3). Furthermore, it can effectively visualize and export 

posture modifications and their effects on biomechanical loads. 

 

Figure 8-10 Biomechanical analysis of plate grasping task, (a) current conditions, (b) 

modified posture, added to the point cloud model after improvements 

After creating the point cloud model, it is inserted into the platform for the final virtual 

representation. Autodesk 3ds Max is used as the final platform in this chapter. The point 

cloud can be used in conjunction with any 3D model (such as BIM) to evaluate ongoing 
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operations and alternative scenarios. The human model and the motions attached to it from 

previous steps are also inserted into the visualization and manually aligned at the correct 

locations, along with other 3D models. The path planning algorithm is then used to find the 

best walking path for the worker model. Fig. 8-11 shows a snapshot of part of the virtual 

model with the point cloud, the human model, and other 3D models of equipment and 

material. The figure also shows the sequence for the path planning: by selecting the start 

and end locations, the obstacles are detected, and the shortest path is chosen and used to 

animate the human model. Different scenarios for the steel plate handling operation can 

include using a different cutting machine, adjusting the height of the worktable, relocating 

the bins for the cut plates, and changing the number of plates carried to the bins. The final 

output of the visualization is a complete virtual model representing the physical layout of 

the job site, building elements (e.g., walls, doors), 3D models of equipment, material, tools, 

and human models animating the motions of workers. This virtual model can be used in 

practice to further evaluate the design (e.g., assessing clearance and reach), improve the 

communication and implementation of new designs, train personnel, and more effectively 

manage decision-making. 
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Figure 8-11 Top: virtual model of job site, bottom: path planning, (a) start and end 

locations selected, (b) A* algorithm detects shortest path, (c) worker motions are animated 

along the selected path 

8.6 DISCUSSION 

The implementation of the framework enables an examination of the effectiveness of the 

different components and their strengths and weaknesses and serves as a basis for further 

improvements to the framework. Based on the results, the following implications can be 

drawn. 

(1) The results of implementing the action recognition process are promising. It saves time 

and effort in evaluating ongoing manual operations and improves the accuracy of the 

(a) (b) (c) 
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evaluation. Furthermore, it eliminates the need for an expert in creating and analyzing 

simulation models of manual tasks because the only input is a video recording of the 

manual activity. The error values for the steel plate handling operation are 7.14% and 

8.48% for finding the correct sequence and calculating the correct durations, respectively. 

The accuracy of the action recognition component could potentially be improved by 

extracting refined motion features (e.g., human silhouette with a more accurate contour) 

and training a more robust action classifier (e.g., fed data with a wider distribution over 

motions). The action recognition process is probably most practical when modeling cyclic 

operations, first because a short video of the process can be used to identify the correct 

sequence of activities and average durations (minimizing processing time). Second, as 

noncyclic operations do not contain a fixed sequence, outliers cannot be identified, which 

reduces the reliability of the system. In the proposed framework, the action recognition 

component serves as the basis for the simulation model used for productivity analysis and 

motion generation. However, it could also be used to integrate other applications into the 

framework, such as safety evaluations and worker training. 

(2) The case study shows that the simulation model of the existing operation, created from 

video recordings using action recognition and used alongside a PMTS-based modeling 

platform, enables simple, accurate, and quick evaluation of ongoing activities. The action 

recognition–based simulation model represents the current operations, and the PMTS-based 

model represents the standard time for the operation. As shown in Table 8-2, the actual 

average duration for a cycle of the steel plate handling task is 8.66 seconds, and the 

simulation duration using MODAPTS, MTM2, and MOST is 8.06, 8.42, and 8.28 seconds 

respectively. The difference between the two durations can be used to represent the 

efficiency of the ongoing operation. Furthermore, the PMTS-based simulation enables 

convenient and accurate modeling of alternative scenarios for the operation to find the 

optimal process. Experiments with PMTSs in representing manual tasks, the simplicity of 

adopting them, and the amount of error associated with them indicate the importance of 

such systems in modeling construction operations. 

(3) The generation of point cloud models from a video recording of a job site is a quick and 

simple method for obtaining a reliable 3D representation of current conditions. Since 
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construction sites are dynamic and the status of the work environment changes frequently, 

this method ensures that the 3D virtual model accurately represents the as-is state of the job 

site. It should be noted that the stereo vison system used in this chapter works reliably only 

for a certain size of workstation as the distance between the two lenses is fixed and 

relatively short. With a longer distance between the lenses, the perception level increases, 

and thus the depth perception ability will be higher. One potential solution to the 

boundedness limitation would be building a stereo vision camera with adjustable lenses. 

Considering the conversion and import/export capabilities of existing software, the point 

cloud model connects smoothly to the final visualization model. However, manual 

manipulation is still required, along with scaling, to align the model in its correct position. 

The accuracy and labor-intensity of this process could be improved in further studies by 

using universal coordinate and unit systems and creating a method to automatically register 

different models in the final platform. Overall, the integration of point cloud data, human 

model and motions, and 3D models of equipment, tools, material, etc., resulted in a data-

rich virtual model that could be effectively used for various potential visualization 

applications in construction. 

(4) The path planning component, in conjunction with motion generation, enables an 

automated animation of worker motions, which is important in visualization of manual 

operations. The path planning algorithm eliminated the time and effort required to manually 

set up the animation of the human models and represented the motions in an acceptable and 

realistic scenario of worker activities in prospective work environments. This can be 

particularly useful when considering the existence of more than one worker in a single 

workstation, for which collision avoidance algorithms should also be incorporated. It 

should be noted that this process uses the shortest path between two points, and although it 

is generally safe to assume that workers will usually take the shortest path, this approach 

can be most useful for modeling prospective operations. If an exact representation of 

worker paths is required for an existing operation, it must be observed and recorded at the 

actual job site. Although that information might not be required for most applications, it is 

possible to automate this process using location-aware sensors and devices. This chapter 

used the A* path planning algorithm because of its popularity and accuracy. However, 
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implementing other algorithms and evaluating their effectiveness could be carried out in 

future studies. 

Overall, the results indicate that integrating different sensing, analysis, and visualization 

methods can facilitate the linking of data required for an ergonomic analysis and streamline 

the evaluation and design of safe and productive workplaces. The first benefit is the 

automation and simplicity of the analysis process, which can result in higher adoption of 

ergonomic methods in practice. Second, because the same data is used by several 

components and the initial inputs are gathered using sensing approaches, the results provide 

high reliability and minimal subjectivity. 

8.7 CONCLUSION 

This chapter explores the adaptation and integration of methods to improve different stages 

of ergonomic analyses: data collection, data analysis, and representation of results. 

Improvements are achieved by proposing an overall framework to provide an automated, 

simple, and reliable analysis of manual operations. Specifically, the following framework 

components are investigated: (1) sensing to collect information about job site conditions, 

worker tasks and activities, and human motions; (2) action recognition from video 

recordings for simulation model creation; (3) predetermined motion time systems for 

efficiency evaluation; (4) biomechanical analysis for safety analysis; (4) motion generation 

and worker path planning for realistic animation of worker actions; (5) comprehensive 

virtual visualization for effective representation and implementation of the analysis and 

results. The results from implementing the framework indicate that integrating available 

methods of data collection, analysis, and visualization for labor operations can facilitate an 

inclusive ergonomic analysis. Such integration addresses challenges in traditional 

approaches to ergonomic evaluation: labor-intensity, unreliable results, and time-intensity. 

Considering the physically demanding nature of the manual tasks in the construction 

industry, this integration could result in a higher adoption of ergonomic methods in 

practice, as well as better reliability and reduced subjectivity in analysis results, which will 

lead to safer and more productive construction job sites. 
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Chapter 9 Conclusion  

9.1 RESEARCH SUMMARY AND CONCLUSION  

This research proposes an integrated approach for the evaluation and design of construction 

workplaces and labor operations to enable the simultaneous assessment of process 

productivity and safety and to explore the impact of production tasks and their physical 

demands on worker health and well-being. This is achieved by developing a framework that 

encompasses data acquisition through sensing and 3D modeling, analysis of data by means 

of simulation modeling and biomechanical analysis, and representation of data through 

inclusive visualization. Through this framework, the process of assessing ergonomic risks 

is automated, analysis reliability is improved, efficiency of labor operation is analysed, 

various scenarios of design are evaluated and compared, and the analysis process is 

simplified by linking different contributing components.  

The developed motion data-driven framework for ergonomic evaluation, presented in 

Chapter 3, enables the automation of the ergonomic and biomechanical analysis process 

using motion capture data from existing job sites or virtual models of non-existing 

operations. This approach enables the mitigation of ergonomic workplace risks, 

proactively, to prevent injuries. This is in contrast to the traditional corrective (reactive) 

approach that is most prevalent on construction job sites. The results of implementing the 

framework on a prefabrication shop production line, which included twelve labor tasks, 

indicate that the approach can be effectively used to evaluate risk factors producing 

excessive physical loads on the human body and to propose workplace designs that can 

mitigate risks.  

Common ergonomic assessment tools used in construction rely on human posture 

estimation for the evaluation of ergonomic risks associated with a task. However, 

estimating human postures using visual observation or sensing devices can lead to 

unreliable results due to human and instrument error. Accordingly, a fuzzy logic approach 

for ergonomic evaluation is proposed, in Chapter 4, to address input imprecision. Results of 

the correlation analysis between the developed fuzzy-based method and traditional 

approaches as well as biomechanical analysis demonstrate that the proposed approach 
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produces more accurate results than traditional methods and can, therefore, help minimize 

errors. This correlation is further confirmed by applying the approach on actual manual 

activities from a modular construction shop. Furthermore, a stochastic approach is 

proposed, in Chapter 5, to evaluate the amount and impact of input errors on ergonomic 

assessment results and to enable the incorporation of this impact into the analysis. Results 

of analyzing ten thousand postures generated from a masonry task for cases of human 

observation errors as well as motion sensing errors are used to calculate and compare the 

amount of errors associated with both traditional and proposed methods.  

To evaluate the productivity and ergonomic safety of labor operations from a physical 

perspective, motion level modeling of these operations is proposed. This task is enabled by 

the integration of PMTSs into simulation modeling, examined in Chapter 6. The results of 

implementing the proposed approach on manual tasks of a steel fabrication construction job 

site indicate that integration enables cycle time estimation and efficiency evaluation of 

labor activities in reliable and simple-to-use method. A framework is also proposed in 

Chapter 7 that links simulation modeling, PMTS, ergonomic and biomechanical 

assessment, and workplace visualization, to incorporate both productivity and safety 

analysis into the design process. Implementing the framework on data from a masonry 

operation demonstrates that the integrated framework provides a basis to evaluate and 

compare various labor operations scenarios in terms of both performance and safety, 

allowing for the selection of the most desirable scenario. More components such as sensing, 

action recognition, as-is workplace model generation, and human motion animation are 

added into the framework for further reliability and automation in Chapter 8. 

Experimenting with data from a steel plate handling task indicates that integration of 

different sensing, analysis, and visualization methods can potentially improve the 

ergonomic analysis of manual operations to effectively design efficient and safe 

workplaces. 

Although safety and productivity are an integral part of project management, they have 

rarely been managed concomitantly in practice. This research emphasizes the importance of 

the interactive relationship between safety and productivity in operation planning and 

workplace design. The findings of this research enable an integrated approach to workplace 
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design that ensures both increased productivity and safety by establishing the relationship 

between production tasks and physical demands of tasks and human capacity and well-

being. The developed approach thus enables effective design and planning of workplaces 

and operations by providing reliable feedback regarding the impact of design on safety and 

productivity. In particular, these research results help reveal how production scenarios and 

working environments physically influence the development of WMSDs. This relation has 

often been ignored in daily safety and scheduling management practice, which are typically 

separated on a jobsite. Furthermore, coupling ergonomic analysis with simulation and 

virtual models of operational processes enables application of ergonomic safety 

considerations early in the planning phase or in ongoing operations for continuous 

improvement. The proposed approach not only brings attention to this critical issue from a 

practical perspective but also presents a motion-based simulation framework for the 

integration of ergonomic and productivity analysis from a scientific perspective. The 

findings of this research can contribute to knowledge advancement in safety science by 

articulating the causal relationship between production tasks and ergonomic behavior in 

construction operations. The integrated framework explores an emerging research area 

where already well-established fields (e.g. ergonomics, simulation, and visualization) can 

be integrated for safe and productive task planning and workplace design. Ultimately, this 

research aims to enhance understanding of safety in conjunction with work environments 

and production plans in the interest of human well-being in the workplace. The construction 

industry has some of the highest rates of injuries and WMSDs, and this study aims to 

address the challenge of reducing the rate of WMSDs by focusing on effective and accurate 

automated approaches of ergonomic analysis while ensuring the achievement of the highest 

productivity rate possible. By reducing the number of these injuries and the costs associated 

with them, the construction industry can focus on improving the quality of operations and 

final products.  

9.2 RESEARCH CONTRIBUTION 

The contributions of this research can be summarized as follows: 
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1. Development of a motion data approach for ergonomic and biomechanical 

evaluation that uses recordings of human motion, obtained from sensing devices, as 

input to carry out an assessment using available ergonomic checklists and 

biomechanical models in conjunction with 3D models of a workplace. By 

eliminating the need for human observation, this approach reduces the time and 

effort required to collect and analyze motion information for ergonomic evaluation 

and improves reliability of the results by removing human judgment errors and 

observer subjectivity. Furthermore, the proposed method enables the identification 

and mitigation of ergonomic risks, proactively, during design and planning phases. 

2. Quantification of the impact of errors associated with collecting inputs for 

ergonomic analysis, using human observation or sensing devices, on outputs. Since 

collection of the required data for ergonomic evaluation (e.g., body joint angles) 

inevitably introduces human or instrument errors, quantifying the amount of this 

error, as well as its effect on analysis results, enables incorporation of this impact 

into the analysis, which, ultimately, leads to higher reliability of the evaluation 

process. 

3. Implementation of a fuzzy-based approach to ergonomic assessment on widely-

used ergonomic assessment tools. The developed fuzzy-based method improves the 

reliability of the analysis, compared to traditional methods, by reducing the impact 

of input errors on results. This approach addresses input imprecision as well as the 

discrete boundaries between posture-based ergonomic assessment tools. 

4. Integration of PMTSs into simulation modeling for measurement and improvement 

of labor productivity from a physical perspective. This integration enables a reliable 

and efficient method for assessment of labor performance, both for existing and 

non-existing operations. The developed approach enables the modeling of labor 

activities to estimate the amount of time required to carry out labor operations, in a 

simple and automated manner, without requiring extensive prior knowledge 

regarding the details of PMTSs.  
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5. Development of an integrated framework that enables the examination of different 

labor operations scenarios and the selection of the most feasible in terms of both 

performance and safety. This framework enables the incorporation of different 

methods and tools of productivity and safety analysis for a unified, automated, 

reliable, and easy-to-use evaluation and design of labor operations. It leverages 

sensing for data acquisition, simulation modeling, action recognition, and 

biomechanical assessment for efficiency and safety analysis as well as virtual 

visualization for output representation. Through this integration, the relationship 

between productivity and ergonomic safety can be explored, which enables further 

understanding of the impact of production on biomechanical exposure and vice 

versa. 

9.3 FUTURE WORK 

Based on the findings of this research, the following areas have the potential to be explored 

in further detail:  

• This research has experimented with the use of video recordings for extraction of 

type, sequence, and duration of worker activities through action recognition. With 

the advancements in the field of computer vision, this approach can be extended to 

include a comprehensive analysis of labor operations using merely video 

recordings. The potential system will use video recordings of an operation as input 

and will employ action recognition and machine learning algorithms to 

automatically report on the level of efficiency and safety of the operation. The 

efficiency analysis can be carried out by comparing the activities to standard 

motion time durations (e.g., PMTSs) or a preset benchmark (e.g., a skilled worker) 

and report on the deviations. The safety analysis can also be carried out using a 

skeleton extraction and biomechanical analysis directly from the video recordings, 

which is performed in this research using recordings of motion capture devices 

(e.g., depth sensors). Such system can be extremely useful for evaluation of 

ongoing operations as well as training of new workers. 



161 

• The proposed framework in Chapter 8 links different tools and methods of data 

acquisition, analysis, and output representation to improve the overall process of 

labor operation evaluation and design in construction. As shown before, such 

linkage can improve the analysis process through automation, increased simplicity, 

and improved reliability when compared to using the systems independently. 

However, the different tools and systems are not implemented in a single platform 

and are merely linked. Potentially, a single, virtual visualization platform, which 

has the simulation engine integrated into it enabling the acquisition of inputs of the 

simulation through manipulation the 3D model, can be developed. The 3D model 

itself could support the use of point cloud models, with automated and accurate 

registration at correct locations inside the virtual model. Furthermore, it could 

support animating human models with actual (i.e., recorded) motions for existing 

operations as well as generated motions for non-existing operations. The output of 

such visualization and simulation environment is not only the efficiency and safety 

status of different scenarios and designs of operations and workplaces but also a 

comprehensive visual model that can be used for various visualization applications 

(e.g., communication and implementation of design, decision-making, training of 

personnel). 

• This research has used PMTSs for efficiency evaluation of labor operations. As 

these systems are originated in the manufacturing industry, further research is 

required to experiment with the different available systems (e.g., MTM, MOST, 

MODAPTS) and to evaluate the level of suitability of each for different labor 

activities in the construction industry. Furthermore, research efforts should focus on 

developing potential replacements of existing PMTSs for analyzing non-cyclic 

construction operations using newly customized methods. 

• The ergonomic evaluation is conducted in this research using available ergonomic 

assessment tools (e.g., RULA) as well as biomechanical analysis. Since this 

research has also integrated this evaluation into simulation modeling, adding the 

contribution of fatigue into the analysis process can provide a highly effective tool 
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for investigating the impact of fatigue on both performance and safety in different 

working conditions. 
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Appendix A Sample Motion Capture Data of a Masonry Task 

The following shows the first 10 frames of a masonry operation in the BVH format, 

captured using a Kinect sensor. 

 

HIERARCHY 

ROOT Hip 

{ 

OFFSET 0.0000 0.0000 0.0000 

CHANNELS 6 Xposition Yposition Zposition Xrotation Yrotation Zrotation 

JOINT LowerSpine 

{ 

OFFSET 0.0000 9.7640 -5.2837 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT MiddleSpine 

{ 

OFFSET 0.0000 8.9104 0.4655 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT Chest 

{ 

OFFSET 0.0000 11.0255 -2.4542 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT Neck 

{ 

OFFSET 0.0000 24.8457 -0.5167 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT Head 

{ 

OFFSET -0.0001 14.0307 3.8164 

CHANNELS 3 Xrotation Yrotation Zrotation 

End Site 

{ 

OFFSET 0.0001 19.6043 0.5853 

}}} 

JOINT LClavicle 

{ 

OFFSET 2.5084 23.9774 8.2148 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LShoulder 
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{ 

OFFSET 14.6543 3.4392 -5.5650 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LForearm 

{ 

OFFSET 31.1286 -0.1104 -0.2698 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LHand 

{ 

OFFSET 25.9679 0.0753 -0.1556 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LFinger1 

{ 

OFFSET 10.0644 0.8802 2.7954 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LFinger11 

{ 

OFFSET 3.7646 -0.9180 0.6633 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LFinger12 

{ 

OFFSET 2.5700 -0.6268 0.4530 

CHANNELS 3 Xrotation Yrotation Zrotation 

End Site 

{ 

OFFSET 1.8288 -0.5459 0.2966 

}}}} 

JOINT LFinger2 

{ 

OFFSET 10.2146 1.0165 0.2434 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LFinger21 

{ 

OFFSET 4.6547 0.0130 -0.0275 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LFinger22 

{ 

OFFSET 2.5801 0.0079 -0.0157 

CHANNELS 3 Xrotation Yrotation Zrotation 
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End Site 

{ 

OFFSET 2.3174 -0.1636 0.0031 

}}}} 

JOINT LFinger3 

{ 

OFFSET 9.6805 0.6784 -2.2902 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LFinger31 

{ 

OFFSET 4.2237 -0.2138 -0.2644 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LFinger32 

{ 

OFFSET 2.4069 -0.1211 -0.1512 

CHANNELS 3 Xrotation Yrotation Zrotation 

End Site 

{ 

OFFSET 2.1281 -0.2616 -0.1006 

}}}} 

JOINT LFinger4 

{ 

OFFSET 8.9831 -0.6826 -3.9552 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LFinger41 

{ 

OFFSET 2.5980 -0.5418 -0.7172 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LFinger42 

{ 

OFFSET 1.9051 -0.3967 -0.5262 

CHANNELS 3 Xrotation Yrotation Zrotation 

End Site 

{ 

OFFSET 1.6909 -0.4646 -0.3879 

}}}} 

JOINT LFinger0 

{ 

OFFSET 2.0820 -1.5758 1.5784 
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CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LFinger01 

{ 

OFFSET 3.8763 -1.2730 2.9225 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LFinger02 

{ 

OFFSET 2.5525 -0.9134 1.8390 

CHANNELS 3 Xrotation Yrotation Zrotation 

End Site 

{ 

OFFSET 1.8770 -0.6461 1.2853 

}}}}}}}} 

JOINT RClavicle 

{ 

OFFSET -2.5084 23.9774 8.2148 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT RShoulder 

{ 

OFFSET -14.6569 3.4398 -5.5659 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT RForearm 

{ 

OFFSET -31.1286 -0.1103 -0.2697 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT RHand 

{ 

OFFSET -25.9679 0.0753 -0.1555 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT RFinger1 

{ 

OFFSET -10.0645 0.8803 2.7954 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT RFinger11 

{ 

OFFSET -3.7646 -0.9180 0.6633 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT RFinger12 

{ 
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OFFSET -2.5700 -0.6270 0.4530 

CHANNELS 3 Xrotation Yrotation Zrotation 

End Site 

{ 

OFFSET -1.8288 -0.5459 0.2966 

}}}} 

JOINT RFinger2 

{ 

OFFSET -10.2146 1.0165 0.2434 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT RFinger21 

{ 

OFFSET -4.6547 0.0130 -0.0275 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT RFinger22 

{ 

OFFSET -2.5801 0.0079 -0.0158 

CHANNELS 3 Xrotation Yrotation Zrotation 

End Site 

{ 

OFFSET -2.3174 -0.1636 0.0031 

}}}} 

JOINT RFinger3 

{ 

OFFSET -9.6805 0.6784 -2.2903 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT RFinger31 

{ 

OFFSET -4.2237 -0.2138 -0.2644 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT RFinger32 

{ 

OFFSET -2.4069 -0.1211 -0.1512 

CHANNELS 3 Xrotation Yrotation Zrotation 

End Site 

{ 

OFFSET -2.1281 -0.2617 -0.1006 

}}}} 

JOINT RFinger4 
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{ 

OFFSET -8.9831 -0.6826 -3.9552 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT RFinger41 

{ 

OFFSET -2.5980 -0.5418 -0.7172 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT RFinger42 

{ 

OFFSET -1.9051 -0.3966 -0.5262 

CHANNELS 3 Xrotation Yrotation Zrotation 

End Site 

{ 

OFFSET -1.6909 -0.4646 -0.3879 

}}}} 

JOINT RFinger0 

{ 

OFFSET -2.0820 -1.5757 1.5782 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT RFinger01 

{ 

OFFSET -3.8762 -1.2732 2.9226 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT RFinger02 

{ 

OFFSET -2.5524 -0.9132 1.8389 

CHANNELS 3 Xrotation Yrotation Zrotation 

End Site 

{ 

OFFSET -1.8770 -0.6461 1.2853 

}}}}}}}}}}} 

JOINT RThigh 

{ 

OFFSET -10.4451 4.4136 -0.8609 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT RShin 

{ 

OFFSET -0.8358 -45.4312 0.0000 

CHANNELS 3 Xrotation Yrotation Zrotation 
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JOINT RFoot 

{ 

OFFSET 0.0000 -44.6107 0.0000 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT RToe 

{ 

OFFSET 0.0000 -4.9031 10.2531 

CHANNELS 3 Xrotation Yrotation Zrotation 

End Site 

{ 

OFFSET 0.0000 0.0000 6.8784 

}}}}} 

JOINT LThigh 

{ 

OFFSET 10.4449 4.4139 -0.8609 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LShin 

{ 

OFFSET 0.8359 -45.4315 0.0000 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LFoot 

{ 

OFFSET 0.0000 -44.6107 0.0000 

CHANNELS 3 Xrotation Yrotation Zrotation 

JOINT LToe 

{ 

OFFSET 0.0000 -4.9031 10.2531 

CHANNELS 3 Xrotation Yrotation Zrotation 

End Site 

{ 

OFFSET 0.0000 0.0000 6.8784 

}}}}}} 

MOTION 

Frames: 1017 

Frame Time: 0.0333333000 

 0.0000 93.0786 3.0542 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 

 -5.2795 94.3658 9.6442 -5.239093 -6.778470 -0.288929 0.000000 0.000000

 0.000000 1.441277 0.657149 0.117654 4.803708 2.200731 0.329145 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 -1.299652 -8.064162 2.330212 -4.695020

 0.040239 -13.903050 0.000056 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.732390 -

7.270074 9.131256 3.678756 0.000000 0.041808 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 8.105098 -2.674490

 -4.711806 10.823170 0.000000 0.000000 -6.467505 -3.490339 -1.922673

 0.000000 0.000000 0.000000 9.144205 0.244527 -0.344570 4.337789 0.000000 0.000000 -7.023267

 -0.386311 -0.210218 0.000000 0.000000 0.000000 

 -5.0504 94.2077 9.4176 -3.003538 -5.517326 0.059227 0.000000 0.000000 0.000000

 0.520938 0.389774 0.108827 1.748032 1.305924 0.356421 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 -1.434199 -8.734199 1.880968 -5.273034 0.015117 -

14.703700 0.000130 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.800906 -6.849451

 8.434052 3.821965 0.000000 0.394720 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6.644977 -3.574078

 -4.730481 8.651972 0.000000 0.000000 -5.682435 -2.732128 -1.479724

 0.000000 0.000000 0.000000 6.253869 0.200506 -0.238808 5.950326 0.000001 0.000000 -6.893374

 -1.590924 -0.880024 0.000000 0.000000 0.000000 

 -5.0418 94.1893 9.3192 -2.054201 -4.895230 0.223645 0.000000 0.000000 0.000000

 0.095674 0.274337 0.104146 0.302723 0.912335 0.338009 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 -1.482890 -8.913921 1.429970 -5.520560 0.002517 -

15.038800 0.000012 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.853406 -6.114449

 8.108583 3.921564 0.000000 0.576199 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5.988667 -4.173104

 -4.700416 7.721734 0.000001 0.000000 -5.368329 -2.248690 -1.211486

 0.000000 0.000000 0.000000 4.930072 0.240732 -0.126483 7.077083 0.000001 0.000000 -6.951639

 -2.036657 -1.131879 0.000000 0.000000 0.000000 

 -5.1633 94.2263 9.3873 -2.184353 -4.736959 0.274081 0.000000 0.000000 0.000000

 0.112075 0.289822 0.088923 0.368990 0.966260 0.292794 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 -1.448374 -8.605405 0.940174 -5.447157 0.000000 -

14.946850 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.858249 -4.456949

 7.792002 3.640816 0.000000 0.575568 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6.122910 -4.680088

 -4.705375 7.698927 0.000001 0.000000 -5.822751 -1.357980 -0.744324

 0.000000 0.000000 0.000000 5.152452 0.468001 -0.114627 7.116586 0.000001 0.000000 -7.370264

 -2.209095 -1.237912 0.000000 0.000000 0.000000 

 -5.2784 94.1811 9.5190 -2.681066 -4.732090 0.186450 0.000000 0.000000 0.000000

 0.308021 0.344962 0.072301 1.025151 1.151277 0.233701 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 -1.354569 -8.147396 0.558836 -5.117267 0.000000 -
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14.922720 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.811762 -1.884496

 7.468081 3.132142 0.000000 0.431334 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6.677541 -5.450402

 -4.663344 7.519508 0.000001 0.000000 -6.985749 -0.191111 -0.101238

 0.000000 0.000000 0.000000 6.024736 0.683492 -0.062455 6.089979 0.000001 0.000000 -8.119273

 -2.639307 -1.499191 0.000000 0.000000 0.000000 

 -5.3499 94.1318 9.6412 -3.183373 -4.882113 -0.102738 0.000000 0.000000

 0.000000 0.476674 0.387342 0.058506 1.587578 1.292871 0.182455 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 -1.188841 -7.025325 0.568343 -4.480993

 0.000000 -15.078590 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.831129

 1.595078 7.658758 2.774048 0.000000 0.272379 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 7.352726 -

6.025533 -4.429623 6.986505 0.000001 0.000000 -7.831285 0.527134 0.310377 0.000000 0.000000

 0.000000 6.917890 0.611789 0.200354 4.871453 0.000000 0.000000 -8.613848 -2.851201 -

1.633388 0.000000 0.000000 0.000000 

 -5.3624 94.1623 9.7519 -3.561109 -5.174990 -0.462441 0.000000 0.000000

 0.000000 0.553721 0.410390 0.053766 1.844490 1.369900 0.163828 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 -0.987309 -4.327812 0.771525 -3.704496

 0.000000 -14.963800 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.895982

 5.385617 8.313773 2.498185 0.000000 0.265246 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 7.822098 -

5.678527 -4.146611 6.940464 0.000001 0.000000 -7.472442 1.046444 0.590412 0.000000 0.000000

 0.000000 7.655207 0.272623 0.551489 4.106664 0.000000 0.000000 -8.128202 -2.443989 -

1.393581 0.000000 0.000000 0.000000 

 -5.3665 94.2280 9.8366 -3.844841 -5.564559 -0.707180 0.000000 0.000000

 0.000000 0.581576 0.408539 0.065511 1.937095 1.364197 0.202188 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 -0.824582 -0.344817 0.750216 -3.110878

 0.000000 -14.609880 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.918741

 7.579082 9.123976 2.214621 0.000000 0.362025 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 7.979259 -

5.107505 -4.011339 7.563066 0.000001 0.000000 -6.605837 1.328337 0.729959 0.000000 0.000000

 0.000000 8.327057 -0.130064 0.773367 3.584112 0.000000 0.000000 -6.718050 -1.672149

 -0.928123 0.000000 0.000000 0.000000 

 -5.3853 94.2638 9.8969 -4.109057 -5.761151 -0.786440 0.000000 0.000000

 0.000000 0.592772 0.368735 0.096463 1.973758 1.232922 0.306785 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 -0.738539 3.882816 0.246494 -2.797974 0.000000 -

14.024280 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.900370 6.913108 9.919935

 2.099918 0.000000 0.422518 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 8.223766 -5.588395 -

3.968790 7.627197 0.000001 0.000000 -6.307566 0.690841 0.370843 0.000000 0.000000 0.000000 8.992827 -

0.392696 0.798727 2.892842 0.000000 0.000000 -5.338805 -0.893512 -0.476455 0.000000

 0.000000 0.000000 
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Appendix B Implementation of the A* Algorithm 

The following is an algorithm to implement the A* algorithm in MATLAB. 

 

%START 

%DEFINE MAP ARRAY 

MAX_X=10; 

MAX_Y=10; 

MAX_VAL=10; 

MAP=2*(ones(MAX_X,MAX_Y)); 

  

% Obtain Obstacle, Target and Robot Position 

% Initialize the MAP with input values 

% Obstacle=-1,Target=0,Robot=1,Space=2 

j=0; 

x_val = 1; 

y_val = 1; 

axis([1 MAX_X+1 1 MAX_Y+1]) 

grid on; 

hold on; 

n=0;%Number of Obstacles 

  

% BEGIN Interactive Obstacle, Target, Start Location selection 

pause(1); 

h=msgbox('Please Select the Target using the Left Mouse button'); 

uiwait(h,5); 

if ishandle(h) == 1 

    delete(h); 

end 

xlabel('Please Select the Target using the Left Mouse button','Color','black'); 

but=0; 

while (but ~= 1) %Repeat until the Left button is not clicked 

    [xval,yval,but]=ginput(1); 

end 

xval=floor(xval); 

yval=floor(yval); 
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xTarget=xval;%X Coordinate of the Target 

yTarget=yval;%Y Coordinate of the Target 

  

MAP(xval,yval)=0;%Initialize MAP with location of the target 

plot(xval+.5,yval+.5,'gd'); 

text(xval+1,yval+.5,'Target') 

  

pause(2); 

h=msgbox('Select Obstacles using the Left Mouse button,to select the last obstacle use the Right button'); 

  xlabel('Select Obstacles using the Left Mouse button,to select the last obstacle use the Right 

button','Color','blue'); 

uiwait(h,10); 

if ishandle(h) == 1 

    delete(h); 

end 

while but == 1 

    [xval,yval,but] = ginput(1); 

    xval=floor(xval); 

    yval=floor(yval); 

    MAP(xval,yval)=-1;%Put on the closed list as well 

    plot(xval+.5,yval+.5,'ro'); 

 end%End of While loop 

  

pause(1); 

  

h=msgbox('Please Select the Vehicle initial position using the Left Mouse button'); 

uiwait(h,5); 

if ishandle(h) == 1 

    delete(h); 

end 

xlabel('Please Select the Vehicle initial position ','Color','black'); 

but=0; 

while (but ~= 1) %Repeat until the Left button is not clicked 

    [xval,yval,but]=ginput(1); 

    xval=floor(xval); 
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    yval=floor(yval); 

end 

xStart=xval;%Starting Position 

yStart=yval;%Starting Position 

MAP(xval,yval)=1; 

 plot(xval+.5,yval+.5,'bo'); 

%End of obstacle-Target pickup 

  

%LISTS USED FOR ALGORITHM 

%OPEN LIST STRUCTURE 

%-------------------------------------------------------------------------- 

%IS ON LIST 1/0 |X val |Y val |Parent X val |Parent Y val |h(n) |g(n)|f(n)| 

%-------------------------------------------------------------------------- 

OPEN=[]; 

%CLOSED LIST STRUCTURE 

%-------------- 

%X val | Y val | 

%-------------- 

% CLOSED=zeros(MAX_VAL,2); 

CLOSED=[]; 

  

%Put all obstacles on the Closed list 

k=1;%Dummy counter 

for i=1:MAX_X 

    for j=1:MAX_Y 

        if(MAP(i,j) == -1) 

            CLOSED(k,1)=i;  

            CLOSED(k,2)=j;  

            k=k+1; 

        end 

    end 

end 

CLOSED_COUNT=size(CLOSED,1); 

%set the starting node as the first node 

xNode=xval; 
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yNode=yval; 

OPEN_COUNT=1; 

path_cost=0; 

goal_distance=distance(xNode,yNode,xTarget,yTarget); 

OPEN(OPEN_COUNT,:)=insert_open(xNode,yNode,xNode,yNode,path_cost,goal_distance,goal_distance); 

OPEN(OPEN_COUNT,1)=0; 

CLOSED_COUNT=CLOSED_COUNT+1; 

CLOSED(CLOSED_COUNT,1)=xNode; 

CLOSED(CLOSED_COUNT,2)=yNode; 

NoPath=1; 

% START ALGORITHM 

while((xNode ~= xTarget || yNode ~= yTarget) && NoPath == 1) 

%  plot(xNode+.5,yNode+.5,'go'); 

 exp_array=expand_array(xNode,yNode,path_cost,xTarget,yTarget,CLOSED,MAX_X,MAX_Y); 

 exp_count=size(exp_array,1); 

 %UPDATE LIST OPEN WITH THE SUCCESSOR NODES 

 %OPEN LIST FORMAT 

 %-------------------------------------------------------------------------- 

 %IS ON LIST 1/0 |X val |Y val |Parent X val |Parent Y val |h(n)|g(n)|f(n)| 

 %-------------------------------------------------------------------------- 

 %EXPANDED ARRAY FORMAT 

 %-------------------------------- 

 %|X val |Y val ||h(n) |g(n)|f(n)| 

 %-------------------------------- 

 for i=1:exp_count 

    flag=0; 

    for j=1:OPEN_COUNT 

        if(exp_array(i,1) == OPEN(j,2) && exp_array(i,2) == OPEN(j,3) ) 

            OPEN(j,8)=min(OPEN(j,8),exp_array(i,5));  

            if OPEN(j,8)== exp_array(i,5) 

                %UPDATE PARENTS,gn,hn 

                OPEN(j,4)=xNode; 

                OPEN(j,5)=yNode; 

                OPEN(j,6)=exp_array(i,3); 

                OPEN(j,7)=exp_array(i,4); 
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            end;%End of minimum fn check 

            flag=1; 

        end;%End of node check 

%         if flag == 1 

%             break; 

    end;%End of j for 

    if flag == 0 

        OPEN_COUNT = OPEN_COUNT+1; 

        

OPEN(OPEN_COUNT,:)=insert_open(exp_array(i,1),exp_array(i,2),xNode,yNode,exp_array(i,3),exp_array(i,4

),exp_array(i,5)); 

     end;%End of insert new element into the OPEN list 

 end;%End of i for 

 %END OF WHILE LOOP 

 %Find out the node with the smallest fn  

  index_min_node = min_fn(OPEN,OPEN_COUNT,xTarget,yTarget); 

  if (index_min_node ~= -1)     

   %Set xNode and yNode to the node with minimum fn 

   xNode=OPEN(index_min_node,2); 

   yNode=OPEN(index_min_node,3); 

   path_cost=OPEN(index_min_node,6);%Update the cost of reaching the parent node 

  %Move the Node to list CLOSED 

  CLOSED_COUNT=CLOSED_COUNT+1; 

  CLOSED(CLOSED_COUNT,1)=xNode; 

  CLOSED(CLOSED_COUNT,2)=yNode; 

  OPEN(index_min_node,1)=0; 

  else 

      %No path exists to the Target!! 

      NoPath=0;%Exits the loop! 

  end;%End of index_min_node check 

end;%End of While Loop 

%Once algorithm has run The optimal path is generated by starting of at the 

%last node(if it is the target node) and then identifying its parent node 

%until it reaches the start node. This is the optimal path 
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i=size(CLOSED,1); 

Optimal_path=[]; 

xval=CLOSED(i,1); 

yval=CLOSED(i,2); 

i=1; 

Optimal_path(i,1)=xval; 

Optimal_path(i,2)=yval; 

i=i+1; 

  

if ( (xval == xTarget) && (yval == yTarget)) 

    inode=0; 

   %Traverse OPEN and determine the parent nodes 

   parent_x=OPEN(node_index(OPEN,xval,yval),4);%node_index returns the index of the node 

   parent_y=OPEN(node_index(OPEN,xval,yval),5); 

    

   while( parent_x ~= xStart || parent_y ~= yStart) 

           Optimal_path(i,1) = parent_x; 

           Optimal_path(i,2) = parent_y; 

           %Get the grandparents:-) 

           inode=node_index(OPEN,parent_x,parent_y); 

           parent_x=OPEN(inode,4);%node_index returns the index of the node 

           parent_y=OPEN(inode,5); 

           i=i+1; 

    end; 

 j=size(Optimal_path,1); 

 %Plot the Optimal Path! 

 p=plot(Optimal_path(j,1)+.5,Optimal_path(j,2)+.5,'bo'); 

 j=j-1; 

 for i=j:-1:1 

  pause(.25); 

  set(p,'XData',Optimal_path(i,1)+.5,'YData',Optimal_path(i,2)+.5); 

 drawnow ; 

 end; 

 plot(Optimal_path(:,1)+.5,Optimal_path(:,2)+.5); 

else 
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 pause(1); 

 h=msgbox('Sorry, No path exists to the Target!','warn'); 

 uiwait(h,5); 

end 
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Appendix C Action Recognition Dataset for the Steel Plate Handling Task 

The following shows the results of action recognition from video recordings for one cycle 

of the steel plate handling task.  

 

Ground 
truth 

Predicted 
action 

Correctness 
indicator 

Frame 
id 

Time stamp 
(min) 

Time stamp 
(sec) 

1 1 1 1691 0.0 56.4 

1 1 1 1692 0.0 56.4 

1 1 1 1693 0.0 56.4 

1 1 1 1694 0.0 56.5 

1 1 1 1695 0.0 56.5 

1 1 1 1696 0.0 56.5 

1 1 1 1697 0.0 56.6 

1 1 1 1698 0.0 56.6 

1 1 1 1699 0.0 56.6 

1 1 1 1700 0.0 56.7 

1 1 1 1701 0.0 56.7 

1 1 1 1702 0.0 56.7 

1 1 1 1703 0.0 56.8 

1 1 1 1704 0.0 56.8 

1 1 1 1705 0.0 56.8 

1 1 1 1706 0.0 56.9 

1 1 1 1707 0.0 56.9 

1 1 1 1708 0.0 56.9 

1 1 1 1709 0.0 57.0 

1 1 1 1710 0.0 57.0 

1 1 1 1711 0.0 57.0 

1 1 1 1712 0.0 57.1 

1 1 1 1713 0.0 57.1 

1 1 1 1714 0.0 57.1 

1 1 1 1715 0.0 57.2 

1 1 1 1716 0.0 57.2 

1 1 1 1717 0.0 57.2 

1 1 1 1718 0.0 57.3 

1 1 1 1719 0.0 57.3 

1 1 1 1720 0.0 57.3 

1 1 1 1721 0.0 57.4 

1 1 1 1722 0.0 57.4 

1 1 1 1723 0.0 57.4 

1 1 1 1724 0.0 57.5 

1 1 1 1725 0.0 57.5 

1 1 1 1726 0.0 57.5 
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1 1 1 1727 0.0 57.6 

1 1 1 1728 0.0 57.6 

1 1 1 1729 0.0 57.6 

1 1 1 1730 0.0 57.7 

1 1 1 1731 0.0 57.7 

1 1 1 1732 0.0 57.7 

1 1 1 1733 0.0 57.8 

1 1 1 1734 0.0 57.8 

1 1 1 1735 0.0 57.8 

1 1 1 1736 0.0 57.9 

1 1 1 1737 0.0 57.9 

1 1 1 1738 0.0 57.9 

1 1 1 1739 0.0 58.0 

1 1 1 1740 0.0 58.0 

1 1 1 1741 0.0 58.0 

1 1 1 1742 0.0 58.1 

1 1 1 1743 0.0 58.1 

1 1 1 1744 0.0 58.1 

1 1 1 1745 0.0 58.2 

1 1 1 1746 0.0 58.2 

1 1 1 1747 0.0 58.2 

1 1 1 1748 0.0 58.3 

1 1 1 1749 0.0 58.3 

1 1 1 1750 0.0 58.3 

1 1 1 1751 0.0 58.4 

1 1 1 1752 0.0 58.4 

1 1 1 1753 0.0 58.4 

1 1 1 1754 0.0 58.5 

1 1 1 1755 0.0 58.5 

1 1 1 1756 0.0 58.5 

1 1 1 1757 0.0 58.6 

1 1 1 1758 0.0 58.6 

1 1 1 1759 0.0 58.6 

1 1 1 1760 0.0 58.7 

1 1 1 1761 0.0 58.7 

1 1 1 1762 0.0 58.7 

1 1 1 1763 0.0 58.8 

1 1 1 1764 0.0 58.8 

1 1 1 1765 0.0 58.8 

1 1 1 1766 0.0 58.9 

1 1 1 1767 0.0 58.9 

1 1 1 1768 0.0 58.9 

1 1 1 1769 0.0 59.0 

1 1 1 1770 0.0 59.0 
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1 1 1 1771 0.0 59.0 

1 1 1 1772 0.0 59.1 

1 1 1 1773 0.0 59.1 

1 1 1 1774 0.0 59.1 

1 1 1 1775 0.0 59.2 

1 1 1 1776 0.0 59.2 

1 1 1 1777 0.0 59.2 

1 1 1 1778 0.0 59.3 

1 1 1 1779 0.0 59.3 

1 1 1 1780 0.0 59.3 

1 1 1 1781 0.0 59.4 

1 1 1 1782 0.0 59.4 

1 1 1 1783 0.0 59.4 

1 1 1 1784 0.0 59.5 

1 1 1 1785 0.0 59.5 

1 1 1 1786 0.0 59.5 

1 1 1 1787 0.0 59.6 

1 1 1 1788 0.0 59.6 

1 1 1 1789 0.0 59.6 

1 1 1 1790 0.0 59.7 

1 1 1 1791 0.0 59.7 

1 1 1 1792 0.0 59.7 

1 1 1 1793 0.0 59.8 

1 1 1 1794 0.0 59.8 

1 1 1 1795 0.0 59.8 

1 1 1 1796 0.0 59.9 

1 1 1 1797 0.0 59.9 

1 1 1 1798 0.0 59.9 

1 1 1 1799 0.0 60.0 

1 1 1 1800 1.0 0.0 

1 1 1 1801 1.0 0.0 

1 1 1 1802 1.0 0.1 

1 1 1 1803 1.0 0.1 

1 1 1 1804 1.0 0.1 

1 1 1 1805 1.0 0.2 

1 1 1 1806 1.0 0.2 

1 1 1 1807 1.0 0.2 

1 1 1 1808 1.0 0.3 

1 1 1 1809 1.0 0.3 

1 1 1 1810 1.0 0.3 

1 1 1 1811 1.0 0.4 

1 1 1 1812 1.0 0.4 

1 1 1 1813 1.0 0.4 

1 1 1 1814 1.0 0.5 
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1 1 1 1815 1.0 0.5 

1 1 1 1816 1.0 0.5 

1 1 1 1817 1.0 0.6 

1 1 1 1818 1.0 0.6 

1 1 1 1819 1.0 0.6 

1 1 1 1820 1.0 0.7 

1 1 1 1821 1.0 0.7 

1 1 1 1822 1.0 0.7 

1 1 1 1823 1.0 0.8 

1 1 1 1824 1.0 0.8 

1 1 1 1825 1.0 0.8 

1 1 1 1826 1.0 0.9 

1 1 1 1827 1.0 0.9 

1 1 1 1828 1.0 0.9 

1 1 1 1829 1.0 1.0 

1 1 1 1830 1.0 1.0 

1 1 1 1831 1.0 1.0 

1 1 1 1832 1.0 1.1 

1 1 1 1833 1.0 1.1 

1 1 1 1834 1.0 1.1 

1 1 1 1835 1.0 1.2 

1 1 1 1836 1.0 1.2 

1 1 1 1837 1.0 1.2 

1 1 1 1838 1.0 1.3 

1 1 1 1839 1.0 1.3 

1 1 1 1840 1.0 1.3 

1 1 1 1841 1.0 1.4 

1 1 1 1842 1.0 1.4 

1 1 1 1843 1.0 1.4 

1 1 1 1844 1.0 1.5 

1 1 1 1845 1.0 1.5 

1 1 1 1846 1.0 1.5 

1 1 1 1847 1.0 1.6 

1 1 1 1848 1.0 1.6 

1 1 1 1849 1.0 1.6 

1 1 1 1850 1.0 1.7 

1 1 1 1851 1.0 1.7 

1 1 1 1852 1.0 1.7 

1 1 1 1853 1.0 1.8 

1 1 1 1854 1.0 1.8 

1 1 1 1855 1.0 1.8 

1 1 1 1856 1.0 1.9 

1 1 1 1857 1.0 1.9 

1 1 1 1858 1.0 1.9 
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1 1 1 1859 1.0 2.0 

1 1 1 1860 1.0 2.0 

1 1 1 1861 1.0 2.0 

1 1 1 1862 1.0 2.1 

1 1 1 1863 1.0 2.1 

1 1 1 1864 1.0 2.1 

1 1 1 1865 1.0 2.2 

1 1 1 1866 1.0 2.2 

1 1 1 1867 1.0 2.2 

1 1 1 1868 1.0 2.3 

1 1 1 1869 1.0 2.3 

1 1 1 1870 1.0 2.3 

1 1 1 1871 1.0 2.4 

1 1 1 1872 1.0 2.4 

1 1 1 1873 1.0 2.4 

1 1 1 1874 1.0 2.5 

1 1 1 1875 1.0 2.5 

1 1 1 1876 1.0 2.5 

1 1 1 1877 1.0 2.6 

1 1 1 1878 1.0 2.6 

1 1 1 1879 1.0 2.6 

1 1 1 1880 1.0 2.7 

1 1 1 1881 1.0 2.7 

1 1 1 1882 1.0 2.7 

1 1 1 1883 1.0 2.8 

1 1 1 1884 1.0 2.8 

1 1 1 1885 1.0 2.8 

1 1 1 1886 1.0 2.9 

1 1 1 1887 1.0 2.9 

1 1 1 1888 1.0 2.9 

1 1 1 1889 1.0 3.0 

1 1 1 1890 1.0 3.0 

2 1 0 1891 1.0 3.0 

2 1 0 1892 1.0 3.1 

2 1 0 1893 1.0 3.1 

2 1 0 1894 1.0 3.1 

2 1 0 1895 1.0 3.2 

2 1 0 1896 1.0 3.2 

2 1 0 1897 1.0 3.2 

2 1 0 1898 1.0 3.3 

2 1 0 1899 1.0 3.3 

2 1 0 1900 1.0 3.3 

2 1 0 1901 1.0 3.4 

2 1 0 1902 1.0 3.4 
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2 1 0 1903 1.0 3.4 

2 1 0 1904 1.0 3.5 

2 1 0 1905 1.0 3.5 

2 1 0 1906 1.0 3.5 

2 1 0 1907 1.0 3.6 

2 1 0 1908 1.0 3.6 

2 1 0 1909 1.0 3.6 

2 1 0 1910 1.0 3.7 

2 2 1 1911 1.0 3.7 

2 2 1 1912 1.0 3.7 

2 2 1 1913 1.0 3.8 

2 2 1 1914 1.0 3.8 

2 2 1 1915 1.0 3.8 

2 2 1 1916 1.0 3.9 

2 2 1 1917 1.0 3.9 

2 2 1 1918 1.0 3.9 

2 2 1 1919 1.0 4.0 

2 2 1 1920 1.0 4.0 

2 2 1 1921 1.0 4.0 

2 2 1 1922 1.0 4.1 

2 2 1 1923 1.0 4.1 

2 2 1 1924 1.0 4.1 

2 2 1 1925 1.0 4.2 

2 2 1 1926 1.0 4.2 

2 2 1 1927 1.0 4.2 

2 2 1 1928 1.0 4.3 

2 2 1 1929 1.0 4.3 

2 2 1 1930 1.0 4.3 

2 2 1 1931 1.0 4.4 

2 2 1 1932 1.0 4.4 

2 2 1 1933 1.0 4.4 

2 2 1 1934 1.0 4.5 

2 2 1 1935 1.0 4.5 

2 2 1 1936 1.0 4.5 

2 2 1 1937 1.0 4.6 

2 2 1 1938 1.0 4.6 

2 2 1 1939 1.0 4.6 

2 2 1 1940 1.0 4.7 

2 2 1 1941 1.0 4.7 

2 2 1 1942 1.0 4.7 

2 2 1 1943 1.0 4.8 

2 2 1 1944 1.0 4.8 

2 2 1 1945 1.0 4.8 

2 2 1 1946 1.0 4.9 
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2 2 1 1947 1.0 4.9 

2 2 1 1948 1.0 4.9 

2 2 1 1949 1.0 5.0 

2 2 1 1950 1.0 5.0 

2 2 1 1951 1.0 5.0 

2 2 1 1952 1.0 5.1 

2 2 1 1953 1.0 5.1 

2 2 1 1954 1.0 5.1 

2 2 1 1955 1.0 5.2 

2 2 1 1956 1.0 5.2 

2 2 1 1957 1.0 5.2 

2 2 1 1958 1.0 5.3 

2 2 1 1959 1.0 5.3 

2 2 1 1960 1.0 5.3 

2 2 1 1961 1.0 5.4 

2 2 1 1962 1.0 5.4 

2 2 1 1963 1.0 5.4 

2 2 1 1964 1.0 5.5 

2 2 1 1965 1.0 5.5 

2 2 1 1966 1.0 5.5 

2 2 1 1967 1.0 5.6 

2 2 1 1968 1.0 5.6 

2 2 1 1969 1.0 5.6 

2 2 1 1970 1.0 5.7 

2 2 1 1971 1.0 5.7 

2 2 1 1972 1.0 5.7 

2 2 1 1973 1.0 5.8 

2 3 0 1974 1.0 5.8 

2 3 0 1975 1.0 5.8 

2 3 0 1976 1.0 5.9 

2 3 0 1977 1.0 5.9 

2 3 0 1978 1.0 5.9 

2 3 0 1979 1.0 6.0 

2 3 0 1980 1.0 6.0 

2 3 0 1981 1.0 6.0 

2 3 0 1982 1.0 6.1 

2 3 0 1983 1.0 6.1 

2 3 0 1984 1.0 6.1 

2 3 0 1985 1.0 6.2 

2 3 0 1986 1.0 6.2 

2 3 0 1987 1.0 6.2 

2 3 0 1988 1.0 6.3 

2 3 0 1989 1.0 6.3 

2 3 0 1990 1.0 6.3 



210 

2 3 0 1991 1.0 6.4 

2 3 0 1992 1.0 6.4 

2 3 0 1993 1.0 6.4 

2 3 0 1994 1.0 6.5 

2 3 0 1995 1.0 6.5 

3 3 1 1996 1.0 6.5 

3 3 1 1997 1.0 6.6 

3 3 1 1998 1.0 6.6 

3 3 1 1999 1.0 6.6 

3 3 1 2000 1.0 6.7 

3 3 1 2001 1.0 6.7 

3 3 1 2002 1.0 6.7 

3 3 1 2003 1.0 6.8 

3 3 1 2004 1.0 6.8 

3 3 1 2005 1.0 6.8 

3 3 1 2006 1.0 6.9 

3 3 1 2007 1.0 6.9 

3 3 1 2008 1.0 6.9 

3 3 1 2009 1.0 7.0 

3 3 1 2010 1.0 7.0 

3 3 1 2011 1.0 7.0 

3 3 1 2012 1.0 7.1 

3 3 1 2013 1.0 7.1 

3 3 1 2014 1.0 7.1 

3 3 1 2015 1.0 7.2 

3 3 1 2016 1.0 7.2 

3 3 1 2017 1.0 7.2 

3 3 1 2018 1.0 7.3 

3 3 1 2019 1.0 7.3 

3 3 1 2020 1.0 7.3 

3 3 1 2021 1.0 7.4 

3 3 1 2022 1.0 7.4 

3 3 1 2023 1.0 7.4 

3 3 1 2024 1.0 7.5 

3 3 1 2025 1.0 7.5 

3 3 1 2026 1.0 7.5 

3 3 1 2027 1.0 7.6 

3 3 1 2028 1.0 7.6 

3 3 1 2029 1.0 7.6 

3 3 1 2030 1.0 7.7 

3 3 1 2031 1.0 7.7 

3 3 1 2032 1.0 7.7 

3 3 1 2033 1.0 7.8 

3 3 1 2034 1.0 7.8 
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3 3 1 2035 1.0 7.8 

3 3 1 2036 1.0 7.9 

3 3 1 2037 1.0 7.9 

3 3 1 2038 1.0 7.9 

3 3 1 2039 1.0 8.0 

3 3 1 2040 1.0 8.0 

3 3 1 2041 1.0 8.0 

3 3 1 2042 1.0 8.1 

3 3 1 2043 1.0 8.1 

3 3 1 2044 1.0 8.1 

3 3 1 2045 1.0 8.2 

3 3 1 2046 1.0 8.2 

3 3 1 2047 1.0 8.2 

3 3 1 2048 1.0 8.3 

3 3 1 2049 1.0 8.3 

3 3 1 2050 1.0 8.3 

3 3 1 2051 1.0 8.4 

3 3 1 2052 1.0 8.4 

3 3 1 2053 1.0 8.4 

3 3 1 2054 1.0 8.5 

3 3 1 2055 1.0 8.5 

3 3 1 2056 1.0 8.5 

3 3 1 2057 1.0 8.6 

3 3 1 2058 1.0 8.6 

3 3 1 2059 1.0 8.6 

3 3 1 2060 1.0 8.7 

3 3 1 2061 1.0 8.7 

3 3 1 2062 1.0 8.7 

3 3 1 2063 1.0 8.8 

3 3 1 2064 1.0 8.8 

3 3 1 2065 1.0 8.8 

3 3 1 2066 1.0 8.9 

3 3 1 2067 1.0 8.9 

3 3 1 2068 1.0 8.9 

3 3 1 2069 1.0 9.0 

3 3 1 2070 1.0 9.0 

3 3 1 2071 1.0 9.0 

3 3 1 2072 1.0 9.1 

3 3 1 2073 1.0 9.1 

3 3 1 2074 1.0 9.1 

3 3 1 2075 1.0 9.2 

3 3 1 2076 1.0 9.2 

3 3 1 2077 1.0 9.2 

3 3 1 2078 1.0 9.3 
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3 3 1 2079 1.0 9.3 

3 3 1 2080 1.0 9.3 

3 3 1 2081 1.0 9.4 

3 3 1 2082 1.0 9.4 

3 3 1 2083 1.0 9.4 

3 3 1 2084 1.0 9.5 

3 3 1 2085 1.0 9.5 

3 3 1 2086 1.0 9.5 

3 3 1 2087 1.0 9.6 

3 3 1 2088 1.0 9.6 

3 3 1 2089 1.0 9.6 

3 3 1 2090 1.0 9.7 

3 3 1 2091 1.0 9.7 

3 3 1 2092 1.0 9.7 

3 3 1 2093 1.0 9.8 

3 3 1 2094 1.0 9.8 

3 3 1 2095 1.0 9.8 

3 3 1 2096 1.0 9.9 

3 3 1 2097 1.0 9.9 

3 3 1 2098 1.0 9.9 

3 3 1 2099 1.0 10.0 

3 3 1 2100 1.0 10.0 

4 3 0 2101 1.0 10.0 

4 3 0 2102 1.0 10.1 

4 3 0 2103 1.0 10.1 

4 3 0 2104 1.0 10.1 

4 3 0 2105 1.0 10.2 

4 3 0 2106 1.0 10.2 

4 3 0 2107 1.0 10.2 

4 3 0 2108 1.0 10.3 

4 3 0 2109 1.0 10.3 

4 4 1 2110 1.0 10.3 

4 4 1 2111 1.0 10.4 

4 4 1 2112 1.0 10.4 

4 4 1 2113 1.0 10.4 

4 4 1 2114 1.0 10.5 

4 4 1 2115 1.0 10.5 

4 4 1 2116 1.0 10.5 

4 4 1 2117 1.0 10.6 

4 4 1 2118 1.0 10.6 

4 4 1 2119 1.0 10.6 

4 4 1 2120 1.0 10.7 

4 4 1 2121 1.0 10.7 

4 4 1 2122 1.0 10.7 
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4 4 1 2123 1.0 10.8 

4 4 1 2124 1.0 10.8 

4 4 1 2125 1.0 10.8 

4 4 1 2126 1.0 10.9 

4 4 1 2127 1.0 10.9 

4 4 1 2128 1.0 10.9 

4 4 1 2129 1.0 11.0 

4 4 1 2130 1.0 11.0 

4 4 1 2131 1.0 11.0 

4 4 1 2132 1.0 11.1 

4 4 1 2133 1.0 11.1 

4 4 1 2134 1.0 11.1 

4 4 1 2135 1.0 11.2 

4 4 1 2136 1.0 11.2 

4 4 1 2137 1.0 11.2 

4 4 1 2138 1.0 11.3 

4 4 1 2139 1.0 11.3 

4 4 1 2140 1.0 11.3 

4 4 1 2141 1.0 11.4 

4 4 1 2142 1.0 11.4 

4 4 1 2143 1.0 11.4 

4 4 1 2144 1.0 11.5 

4 4 1 2145 1.0 11.5 

4 4 1 2146 1.0 11.5 

4 4 1 2147 1.0 11.6 

4 4 1 2148 1.0 11.6 

4 4 1 2149 1.0 11.6 

4 4 1 2150 1.0 11.7 

4 4 1 2151 1.0 11.7 

4 4 1 2152 1.0 11.7 

4 4 1 2153 1.0 11.8 

4 4 1 2154 1.0 11.8 

4 4 1 2155 1.0 11.8 

4 4 1 2156 1.0 11.9 

4 4 1 2157 1.0 11.9 

4 4 1 2158 1.0 11.9 

4 4 1 2159 1.0 12.0 

4 4 1 2160 1.0 12.0 

4 4 1 2161 1.0 12.0 

4 4 1 2162 1.0 12.1 

4 4 1 2163 1.0 12.1 

4 4 1 2164 1.0 12.1 

4 4 1 2165 1.0 12.2 

4 4 1 2166 1.0 12.2 



214 

4 4 1 2167 1.0 12.2 

4 4 1 2168 1.0 12.3 

4 4 1 2169 1.0 12.3 

4 4 1 2170 1.0 12.3 

4 4 1 2171 1.0 12.4 

4 4 1 2172 1.0 12.4 

4 4 1 2173 1.0 12.4 

4 4 1 2174 1.0 12.5 

4 4 1 2175 1.0 12.5 

4 4 1 2176 1.0 12.5 

4 4 1 2177 1.0 12.6 

4 4 1 2178 1.0 12.6 

4 4 1 2179 1.0 12.6 

4 4 1 2180 1.0 12.7 

4 4 1 2181 1.0 12.7 

4 4 1 2182 1.0 12.7 

4 4 1 2183 1.0 12.8 

4 4 1 2184 1.0 12.8 

4 4 1 2185 1.0 12.8 

4 4 1 2186 1.0 12.9 

4 4 1 2187 1.0 12.9 

4 4 1 2188 1.0 12.9 

4 4 1 2189 1.0 13.0 

4 4 1 2190 1.0 13.0 

4 4 1 2191 1.0 13.0 

4 4 1 2192 1.0 13.1 

4 4 1 2193 1.0 13.1 

4 4 1 2194 1.0 13.1 

4 4 1 2195 1.0 13.2 

4 4 1 2196 1.0 13.2 

4 4 1 2197 1.0 13.2 

4 4 1 2198 1.0 13.3 

4 4 1 2199 1.0 13.3 

4 4 1 2200 1.0 13.3 

4 4 1 2201 1.0 13.4 

4 4 1 2202 1.0 13.4 

4 4 1 2203 1.0 13.4 

4 4 1 2204 1.0 13.5 

4 4 1 2205 1.0 13.5 

4 4 1 2206 1.0 13.5 

4 4 1 2207 1.0 13.6 

4 4 1 2208 1.0 13.6 

4 4 1 2209 1.0 13.6 

4 4 1 2210 1.0 13.7 



215 

4 4 1 2211 1.0 13.7 

4 4 1 2212 1.0 13.7 

4 4 1 2213 1.0 13.8 

4 4 1 2214 1.0 13.8 

4 4 1 2215 1.0 13.8 

4 4 1 2216 1.0 13.9 

4 4 1 2217 1.0 13.9 

4 4 1 2218 1.0 13.9 

4 4 1 2219 1.0 14.0 

4 4 1 2220 1.0 14.0 

4 4 1 2221 1.0 14.0 

4 4 1 2222 1.0 14.1 

4 4 1 2223 1.0 14.1 

4 4 1 2224 1.0 14.1 

4 4 1 2225 1.0 14.2 

4 4 1 2226 1.0 14.2 

4 4 1 2227 1.0 14.2 

4 4 1 2228 1.0 14.3 

4 4 1 2229 1.0 14.3 

4 4 1 2230 1.0 14.3 

4 4 1 2231 1.0 14.4 

4 4 1 2232 1.0 14.4 

4 4 1 2233 1.0 14.4 

4 4 1 2234 1.0 14.5 

4 4 1 2235 1.0 14.5 

4 4 1 2236 1.0 14.5 

4 4 1 2237 1.0 14.6 

4 4 1 2238 1.0 14.6 

4 4 1 2239 1.0 14.6 

4 4 1 2240 1.0 14.7 

4 4 1 2241 1.0 14.7 

4 4 1 2242 1.0 14.7 

4 4 1 2243 1.0 14.8 

4 4 1 2244 1.0 14.8 

4 4 1 2245 1.0 14.8 

4 4 1 2246 1.0 14.9 

4 4 1 2247 1.0 14.9 

4 4 1 2248 1.0 14.9 

4 4 1 2249 1.0 15.0 

4 4 1 2250 1.0 15.0 

4 4 1 2251 1.0 15.0 

4 4 1 2252 1.0 15.1 

4 4 1 2253 1.0 15.1 

4 4 1 2254 1.0 15.1 
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4 4 1 2255 1.0 15.2 

4 4 1 2256 1.0 15.2 

4 4 1 2257 1.0 15.2 

4 4 1 2258 1.0 15.3 

4 4 1 2259 1.0 15.3 

4 4 1 2260 1.0 15.3 

4 4 1 2261 1.0 15.4 

4 4 1 2262 1.0 15.4 

4 4 1 2263 1.0 15.4 

4 4 1 2264 1.0 15.5 

4 4 1 2265 1.0 15.5 

4 4 1 2266 1.0 15.5 

4 4 1 2267 1.0 15.6 

4 4 1 2268 1.0 15.6 

4 4 1 2269 1.0 15.6 

4 4 1 2270 1.0 15.7 

4 4 1 2271 1.0 15.7 

4 4 1 2272 1.0 15.7 

4 4 1 2273 1.0 15.8 

4 4 1 2274 1.0 15.8 

4 4 1 2275 1.0 15.8 

4 4 1 2276 1.0 15.9 

4 4 1 2277 1.0 15.9 

4 4 1 2278 1.0 15.9 

4 4 1 2279 1.0 16.0 

4 4 1 2280 1.0 16.0 

4 4 1 2281 1.0 16.0 

4 4 1 2282 1.0 16.1 

4 4 1 2283 1.0 16.1 

4 4 1 2284 1.0 16.1 

4 4 1 2285 1.0 16.2 

4 4 1 2286 1.0 16.2 

4 4 1 2287 1.0 16.2 

4 4 1 2288 1.0 16.3 

4 4 1 2289 1.0 16.3 

4 4 1 2290 1.0 16.3 

4 4 1 2291 1.0 16.4 

4 4 1 2292 1.0 16.4 

4 4 1 2293 1.0 16.4 

4 4 1 2294 1.0 16.5 

4 4 1 2295 1.0 16.5 

4 4 1 2296 1.0 16.5 

4 4 1 2297 1.0 16.6 

4 4 1 2298 1.0 16.6 



217 

4 4 1 2299 1.0 16.6 

4 4 1 2300 1.0 16.7 

4 4 1 2301 1.0 16.7 

4 4 1 2302 1.0 16.7 

4 4 1 2303 1.0 16.8 

4 4 1 2304 1.0 16.8 

4 4 1 2305 1.0 16.8 

4 4 1 2306 1.0 16.9 

4 4 1 2307 1.0 16.9 

4 4 1 2308 1.0 16.9 

4 4 1 2309 1.0 17.0 

4 4 1 2310 1.0 17.0 

4 4 1 2311 1.0 17.0 

4 4 1 2312 1.0 17.1 

4 4 1 2313 1.0 17.1 

4 4 1 2314 1.0 17.1 

4 1 0 2315 1.0 17.2 

4 1 0 2316 1.0 17.2 

4 1 0 2317 1.0 17.2 

4 1 0 2318 1.0 17.3 

4 1 0 2319 1.0 17.3 

4 1 0 2320 1.0 17.3 

4 1 0 2321 1.0 17.4 

4 1 0 2322 1.0 17.4 

4 1 0 2323 1.0 17.4 

4 1 0 2324 1.0 17.5 

4 1 0 2325 1.0 17.5 

4 1 0 2326 1.0 17.5 

4 1 0 2327 1.0 17.6 

4 1 0 2328 1.0 17.6 

4 1 0 2329 1.0 17.6 

4 1 0 2330 1.0 17.7 

 

 


