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� Abstract

With the continuing price�performance improvement of small computers there is growing

interest in looking again at some of the heuristic techniques developed for problem�

solving and planning programs� to see if they can be enhanced or replaced by more

algorithmic methods� The application of raw computing power� while and anathema to

some� often provides better answers than is possible by reasoning or analogy� Thus brute

force techniques form a good basis against which to compare more sophisticated methods

designed to mirror the human deductive process� One source of extra computing power

comes through the use of parallel processing on a multicomputer� an so this aspect is

also covered here�

Here we review the development of heuristic algorithms for application in single�

agent and adversary games� We provide a detailed study of iterative deepening A� and

its many variants� and show how e�ective various enhancements� including the use of

refutation lines and a transposition table� can be� For adversary games a full review

of improved versions of the alpha�beta algorithm �e�g� Principal Variation Search� is

provided and various comparisons made to SSS�� Aspiration Search and Scout� The

importance of memory functions is also brought out� The second half of the paper deals

exclusively with parallel methods not only for single�agent search� but also with a variety

of parallelizations for adversary games� In the latter case there is an emphasis on the

problems that pruning poses in unbalancing the work load� and so the paper covers some

of the dynamic tree�splitting methods that have evolved�

This survey will be of interest to those concerned with fundamental issues in com�

puting� but should be especially appealing to experimentalists who want to explore the

limitations of theoretical models and to extend their utility� Hopefully this will lead to

the development of new theories for dealing with the search of �average trees	�






� Introduction

Problem solving by exhaustive enumeration is a common computational technique that

often relies on a decision tree framework to ensure that all combinations are considered�

Exhaustive approaches can bene�t from a wealth of powerful heuristics to eliminate

unnecessary combinations that do not a�ect the �nal outcome� On the other hand� a

related but slightly more elegant computational model is the state�space approach in

which� from a given initial state of the system and a set of actions �that is� given a

description vector�� the successor states are expanded until solution criteria� such as

reaching a speci�ed goal� are satis�ed� By this means exhaustive enumeration may be

avoided� since selecting an action transforms one state of a system into another� where

perhaps a di�erent set of actions is possible� ultimately reaching a goal state� Thus a

solution is a sequence of actions that converts an initial state into a goal state having a

pre�speci�ed set of properties� A variety of tasks may be posed in this framework� For

example� we can ask for a solution� all solutions� or a minimal cost solution�

Because these state transitions can be described by graphs� which in turn are sup�

ported by a substantial mathematical theory� e�cient methods for solving graph�based

problems are constantly sought� However� many of the most direct classical methods

for �nding optimal solutions� e�g�� dynamic programming 
Bellman and Dreyfus� 
�����

have a common fundamental failing� they cannot handle large problems whose solution

requires many transitions� because they must maintain an exponentially increasing num�

ber of partially expanded states �nodes of the graph� as the search front grows� Since

storage space for intermediate results is often a more serious limitation than inadequate

computing speed� heuristics and algorithms that trade space for time have practical

advantages by �nding solutions that are otherwise unattainable�

To illustrate these points� and to provide insights into the use of a principal variation�

a transposition table and other generally useful aids that can improve search strategies�

we will consider the subdomains of single�agent �one�person� and adversary �two�person�

games� In both cases� solutions can be found by traversing a decision tree that spans

all the possible states in the game� However� di�erent kinds of �solutions	 are sought in

the two subdomains� For single agent games� a solution is described by a path leading

to a goal state� while in the multi�agent case a solution subtree �including all possi�

ble opponent reactions� is needed� Most work has been done for the two�person case�

Although there is a growing interest in multi�agent games 
Luckhardt and Irani� 
����

Korf� 
��
�� this paper will not deal with that generalization�

In single agent and two�person games the order in which the decisions �moves� are
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Figure 
� A sample problem instance of the 
��puzzle

made is not necessarily important� so it is common for identical states to exist at di�erent

places in the decision tree� Under these circumstances such trees might be viewed as

graphs� but �to capitalize on a tree�s intrinsically simpler and more regular structure�

we will initially ignore such duplicated states� Later we will introduce methods that

explicitly recognize and eliminate duplicates� and so reduce the e�ective size of the

search space�

� Single Agent Search

As an example of a single agent search problem consider the N �puzzle game� which has

been a popular test bed for search methods over the last few decades� It is easy to

implement and yet it o�ers a combinatorially large problem space of 
���� � 
��� states

�for the N � 
� case�� The N �puzzle consists of N distinct tiles on a rectangular grid

plus a single �empty tile	 space� The object of the game is to slide the tiles until all are

in speci�ed positions �a goal state�� Figure 
 shows a sample 
��puzzle in which only

the highlighted tiles �� � and �� are out of place�

Humans can be adept at this problem� even when N is large� but solve it without

regard to optimality �least tile movement�� Finding optimal solutions is di�cult since

no polynomial�time algorithm is known� In fact Ratner and Warmuth 

���� proved

that the problem is NP�hard� A simple �exponential� algorithm exists� one which is

general and can be applied to a wide variety of state�space search applications� Called

A� 
Nilsson� 
��
�� it is guaranteed to �nd an optimal solution� but because of its high

memory requirements it can handle only small problems �e�g�� �� � puzzle or smaller��

A more recent variation� Iterative Deepening A� �IDA�� 
Korf� 
����� draws e�ectively

on the notion of successive re�nement and uses an interesting technique that can be

generally employed in tree searches� As we show later the iterative deepening idea has

been around for more than two decades in the computer chess community� where it is

highly developed and enjoys great popularity� In IDA� the iterative technique controls

�



elegantly the growth of memory needed in the expansion of a single�agent game tree�

but in such a way that an optimal solution is still guaranteed�

��� A�

The essence of A� 
Hart et al�� 
���� Nilsson� 
��
� is the use of a heuristic evaluation

function to guide the search by ordering successor states according to estimated cost of

the path �set of transitions� from the start to the goal state� This is possible by using

an evaluation function of the form�

f�n� � g�n� � h�n��

where g�n� is the measured cost of the path from the start state to node n �i�e�� to

the current state� and h�n� is an estimate of the cost of the path from n to the goal

state� If h�n� never overestimates the remaining cost� A� is said to be admissible� it is

guaranteed to �nd an optimal �least cost� solution� and with minimal node expansions�

Dechter and Pearl 

���� proved that� A� never examines a node that can be skipped

by some other algorithm having access to the same heuristic information that A� uses�

The computation of g�n� and h�n� is easily seen from the simple 
��puzzle example

given later in Figure �� Here g�n� is the number of tile movements taken so far to convert

the start state to the current state� and h�n� estimates the distance to the �nal state

by measuring the sum of the Manhattan distances �that is� the sum of the vertical and

horizontal displacements of each tile from its current square to its goal state square�� The

initial �bound	 in Figure � comes from the h value of the root node� and this in turn is

� � 
 � 
 � �� � 
�� being the displacements from their goal position of the highlighted

tiles �� � and ��� respectively� Clearly� the Manhattan distance never overestimates

the number of tile movements required� Hence� optimal solutions are guaranteed with

this heuristic� but� as with most state�space search methods� even an almost perfect

evaluation function will lead to excessive production of partially expanded states�

��� Iterative Deepening A�

By analogy with a technique pioneered in computer chess programs to keep the time cost

of search within reasonable bounds 
Scott� 
����� Korf developed a simple mechanism

to control a single agent search based on the A� evaluation function� and so �nd an

optimal solution by ensuring that no lesser�cost solution exists� Korf�s 

���� Iterative

Deepening A�� IDA� for short� eliminates the need to maintain open�closed lists of state

descriptors� and so has linear space overhead with negligible memory management costs�

�



IDA� performs a series of depth��rst searches with successively increased cost�bounds�

As in A�� the total cost f�n� of a node n is made up of the cost already spent in reaching

that node g�n�� plus the estimated cost of the path to a goal state h�n�� At the begin�

ning� the cost bound is set to the heuristic estimate of the initial state� h�root�� Then�

for each iteration� the bound is increased to the minimum path value that exceeded the

previous bound�

procedure IDA� �n��
bound �� h�n�� f initial cost bound is h�root� g
while not solved do f iterate until solved � � � g

bound �� DFS�n� bound�� f � � � with increased cost bound g
output bound as optimal solution cost�

function DFS �n� bound��
if f�n� � bound

then return f�n�� f path cost exceeds bound g
if h�n� � �

then return solved�
return lowest value of DFS�ni� bound� for all successors ni of n

While this high�level description illustrates the general search scheme� Figure � gives a

re�ned version and shows precisely how the actual node expansion is performed by the

depth��rst�search DFS routine� If successful� DFS returns either the cost of the optimal

solution path� or an updated new bound for the next iteration� otherwise only nodes

with cost less than the speci�ed bound are expanded in the current iteration� When the

estimated completion cost� c�n� ni� � h�ni�� of a path going from node n via successor

ni to a �yet unknown� goal node does not exceed the current cost bound� the search is

recursively deepened by calling DFS on the successor node ni� Otherwise� ni is cut o�

and the node expansion continues with the next successor ni��� Here c�n� ni� is the cost

of moving a tile from n to ni�

Again� illustrating with the N�puzzle� if root represents the start state� a lower bound

on the total solution cost is�

bound � f�root� � h�root��

since g�root� is zero at the start position� so at least bound tile movements are needed�

Thus during the �rst iteration� solutions of cost h�root� are sought� As soon as the

condition

g�n� � h�n� � bound

�



function DFS �n� node� bound� integer�� integer�
begin freturns next cost boundg

if h�n� � � then begin

solved � true� return �� fgoal state foundg
end�
new bound � ��
for each successor ni of n do begin

merit � c�n� ni� � h�ni��
if merit � bound then begin fsearch deeperg

merit � c�n� ni� � DFS �ni� bound� c�n� ni���
if solved then return merit�

end� fpath cost reached bound� cuto�g
if merit � new bound then

new bound � merit� fcost bound for next iterationg
end�
return new bound� freturn next iteration�s boundg

end�

Figure �� Cost bounded depth��rst search �re�ned version�

holds� the search from node n is stopped� In problems of this type g�n� increases

monotonically� so that unless h�n� decreases by an amount equal to g�s increase the

search stops quickly� Thus during each iteration a minimal expansion is done� If no goal

state is found� the cost bound is increased to the smallest of all the g�n� � h�n� values

that exceed the current cost bound� Figure � illustrates the �rst two iterations of an

IDA� search on a simple problem instance� Since none of the nodes in the �rst iteration

is a goal node� a second iteration with an increased cost bound �here �� is needed� As

it turns out� it is not until the �fth iteration �not shown here� that a solution is found�

and then only after a total of �
� node generations�

Note that the pseudo�code in Figure � also includes the cost revision idea of Chakra�

barti et al� 

����� according to which the current estimate f�n� is revised to the smallest

f�m� amongst all tip nodes m that are descendants of n� The revised cost values are

collected in the variable new bound and are recursively backed up to the parent node�

The motivation behind this scheme is to increase the information horizon and therefore to

tighten the bound on the true solution cost f��n�� When memory space is available �e�g�

to hold node information in a hash access table�� the revised cost values can be preserved

and reused later to improve the node expansion order and�or to cut o� subtrees that
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Figure �� First two iterations on a 
��puzzle problem instance

must otherwise be expanded� The pseudo�code in Figure �� however� shows the simple

scheme without a memory table� Here the revised values are only used to determine the

new cost bound for the next iteration�

��� Domains of Applicability

Despite the computation wasted in earlier iterations� IDA� is e�ective when the search

space grows exponentially with increasing cost bounds� This growth rate is called the

heuristic branching factor� bh� and is de�ned as the average node ratio of two consecu�
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tive iterations� Its magnitude depends primarily on the characteristics of the application

�e�g� tree width�� and secondarily on the quality of the heuristic estimate and the e�ec�

tiveness of the search method� For the 
��puzzle� we determined bh � ��� 
Reinefeld and

Marsland� 
��
�� although the tree has an edge branching factor of only be � �� because

there are an average of two successors to each node� Hence� the N�puzzle is one of the

rare applications with bh � be� making it especially amenable for the iterative�deepening

approach� The cost bound is constantly increased by the constant �� which ensures that

all frontier nodes are expanded by at least one extra tree level� and some of them much

farther� Therefore most of the work is done in the last iteration �especially if all the

minimal cost solutions are sought�� and the overhead spent in re�examining the shallow

tree levels does not a�ect the asymptotic growth rate of the total search e�ort� This ob�

servation is con�rmed by Korf 

����� and Stickel and Tyson 

���� showed analytically

that iterative deepening needs only a small constant factor w��w�
� more node expan�

sions than breadth��rst search� when breadth��rst does not eliminate possible duplicate

nodes�

Care must be taken in applications with low heuristic branching factors bh � �� where

iterative deepening might not pay for the increased overhead� In such applications� the

operator costs and�or the heuristic estimate values are typically drawn from a large

domain� so that the cost bound increases only by a small amount� The worst case is

reached when all f �values are unique and monotone� Under such circumstances IDA� is

no longer asymptotically optimal�� It then expands N�N � 
��� nodes 
Patrick et al��


����� where N is the number of node expansions of A�� Whether such extreme cases

occur in practice depends mainly on the domain of the operator costs� As an example�

some traveling salesman problems require real valued operator costs� which make it very

likely that only one frontier node is expanded in each new iteration� Clearly� iterative�

deepening is not e�cient and other search schemes should be applied instead� Rao et al�



��
� identify characteristics of problem domains in which one of iterative�deepening�

best��rst or depth��rst branch�and�bound performs the best�

However there also exist highly re�ned variants of IDA�� that have been especially

designed for applications with low heuristic branching factors� Those enhancements are

based on either a more liberal increase of the cost bound� or on the usage of previously

stored node information in later iterations� The �rst class includes an early proposal of

Stickel and Tyson 

����� named evenly bounded depth��rst search� an iterative deepening

�The proof of IDA��s asymptotic optimality �Korf� ����� has proved to be incomplete � even under

Korf�s original requirements of �nite precision and non�exponential node costs� Mahanti et al� �����a�

provide a new set of necessary and su�cient conditions�

�



with controlled re�expansion� named IDA� CR by Sarkar et al� 

��
�� and the hybrid

iterative�deepening depth��rst branch�and�bound variants DFS� 
Rao et al�� 
��
� and

MIDA� 
Wah� 
��
�� All these schemes attempt to reduce the search overhead by

increasing the cost bound by more than the minimal value� Although some of the early

methods do not guarantee the �rst solution to be optimal� usually a worst case error

can be given� If optimality is still required� the search can be resumed with the solution

cost as a cost bound until the whole iteration is completed� �In domains� where the

cost bound increments are known a priori it would be better to use the next lower cost

bound��

��� Memory Variants

The second class of IDA� enhancements includes memory�bounded search methods�

that use available memory to preserve node information from one iteration to the next�

They make �exible use of all available space� rather than relying on a �xed memory

size �like A��� Of the various proposals� two early schemes are noteworthy� MREC

by Sen and Bagchi 

���� and MA� by Chakrabarti et al� 

����� While di�ering in

detail� both algorithms operate on an explicit search graph that maintains as much node

information from the last iteration as possible� When the memory space is exhausted�

the node expansion strategy changes from best��rst to depth��rst� either by recursively

re�expanding all nodes starting at the root �MREC�� or by further extending the tip

nodes of the explicit search graph �MA��� This slight di�erence makes MREC more

time e�cient �since it does not need an open list�� and MA� more e�cient in terms

of node expansions �since it never re�visits the shallow nodes�� In practice� the node

savings of MA� do not compensate for the time spent in the more complex memory

management� especially since the node savings originally reported by Chakrabarti et al�



���� could not be veri�ed by other researchers 
Mahanti et al�� 
���b��

In summary� these methods � and also the later proposals like Russell�s 

���� SMA�

and IE � maintain an explicit search graph� which is often too expensive� Hashing tables


Reinefeld and Marsland� 
��
� are much preferred in practice� because of their simpler

structure and faster access time� Their main purpose is to eliminate unnecessary search

caused by move transpositions �i�e� di�erent paths ending in the same position�� but they

are also useful in improving the node expansion order� In the 
��puzzle� when a table

of size ���k is used to eliminate transpositions and move cycles� IDA� search is reduced

to about half of the nodes� see Trans in Table 
� Move pre�sorting according to the

table information �Trans�Move� saves an additional � of the expansions� �Note�

�



Search Method Nodes ��� Time

mean std ���

IDA� 
�� 
��

Sort �� �� 

�

PV �� �� ��

History �� �� 
��

Trans �� � ��

Trans�Move �� �� ��

minimal IDA� �� �� �

Table 
� Performance of the IDA� memory variants on the 
��puzzle

here the transposition table entries can hold a variety of information� but most useful is

the best choice� Move� found earlier�� This improvement is more than can be achieved

with a heuristic sorting scheme �Sort�� because the transposition table contains revised

cost values �from deeper tree levels� that are usually better estimates and thus more

valuable�

Another obvious enhancement is to start a new iteration on the most promising

path achieved before� The principal variation in adversary games is the move sequence

actually chosen if both opponents adhere to the minimax principle� In single�agent

search� the principal variation �PV� corresponds to the path that ends in a leaf node

with the lowest h� and largest g�value� that is� the path that has greatest potential to

be nearest to a goal� As can be seen in Table 
� PV reduces the node count by 
� � but

exhibits an undesirably high standard deviation� The history heuristic 
Schae�er� 
���b��

which also proved useful in the domain of two�player games� achieves its performance

by maintaining a score table for every move seen in the search tree� All moves that

are applicable in a given position are then examined in order of their previous success�

In the 
��puzzle� it seems that the history heuristic is not successful �achieving only a

meager � reduction�� because there exist only weak criteria to de�ne the merit of a

move�

In summary� two categories of IDA� re�nements have been identi�ed� heuristics that

improve the node expansion order �Sort� PV� History�� and mechanisms to avoid the

multiple re�expansion of the same nodes �Trans� Trans�Move�� While the former

help only in the last iteration� the latter always reduce the search e�ort � at the cost

of some additional memory space� As a form of lower bound we include in Table 


an entry for �minimal IDA�	� a nondeterministic optimal version that �nds the goal
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Figure �� Relative performance of IDA� enhancements on the 
��puzzle

node immediately at the start of the �nal iteration� Interestingly� all variants involving

Trans examine fewer nodes than this optimal IDA� search�

Figure � shows the performance of the memory variants in a graphical form� Here�

Korf�s 

���� hundred random problem instances are grouped into �ve sets� de�ned by

the ratio of the nodes searched by IDA� in the last iteration to the total nodes� The

problems of the �rst set ����� � are already well ordered for IDA� and it seems hard

to achieve further savings with any of the move ordering heuristics� On the contrary�

in their attempt to further improve the expansion order� History� Sort and PV often

expand more nodes in the end� Only with decreasing tree order �e�g� when more than

�� of the node expansions occur in the last iteration�� do these techniques become

more e�ective than pure IDA��

On the other hand� schemes involving a hash table are almost equally e�ective over

the whole range of problems� Use of a basic transposition table �Trans� reduces the







node count by one half� while additional savings are achieved with the successor ordering

techniques Move and History� especially when the tree is poorly ordered� In practice�

one would use the combined version Trans�Move� as Figure � shows�

The use of memory functions has a long history 
Doran and Michie� 
����� but

sometimes they don�t work as well as they should� Consider� for example� bi�directional

search 
Pohl� 
��
� which expands the solution space simultaneously from both the start

state and the goal state� and tries to match states at the search frontiers� In principle

this should work well� but as Pohl points out �both search trees grow almost complete

but separate solution paths� with intersection occurring near one or the other of the end

points	 
Pohl� 
��
��

��� Coping with Incomplete Information

Even though the IDA� memory variants are time e�cient and �exible in their space

requirements� complex problems spawning large search spaces can only be solved with

approximate methods� In an early paper� Pohl 

���� introduced a weight factor w to

the evaluation function f�n� � �
� w� � g�n� � w � h�n� that allows the �focus	 of the

search to vary from pure breadth��rst �w � �� to pure hill climbing �w � 
�� One

important intermediate value� w � ���� gives an admissible A� search� The relation

between e�ciency of search and the accuracy of the heuristic function is discussed and

formally analyzed in Pearl�s book on Heuristics 

���� p� �����

While weighted evaluation functions focus the search process by pruning branches

that are thought to be irrelevant� the tree might still be too large for a complete expan�

sion up to the leaf nodes� In two�player games� it is customary to stop the lookahead

search at some point and back up estimate values� Research in single agent search�

in contrast� has concentrated primarily on �nding optimal solutions� One exception is

Korf�s 

���� Real�Time A� �RTA�� that commits to a decision within a pre�de�ned

time allotment� It does so by performing a lookahead up to a limiting search depth

and backing up the minimum of the frontier node values f�n� to the root� Then the

apparently best move is �physically� made� and the planning process starts again on

the new con�guration� Fortunately� not all frontier nodes must be expanded� With a

monotonic cost function f �that never decreases along a path from the root� all nodes

whose f �value is higher than the lowest f �value encountered on the search frontier so

far can be cut o�� This is analogous to a pruning technique used in two�player games�

so Korf calls it alpha pruning� In the 
��puzzle� alpha pruning allows the search horizon

to be doubled from 
� to �� moves� Moreover� the search horizon achievable with alpha


�



pruning actually increases with increasing branching factor 
Korf� 
���� p� 
����

Weaker solutions can be obtained even faster by applying a sequence of macro oper�

ators 
Korf� 
���� that incrementally solve one subgoal after the other� while leaving the

previously solved subgoals intact� For the 
��puzzle� a table of macros that describes

the primitive moves required to shift a given tile from any initial position to its desti�

nation is needed� but without impairing the position of the remaining tiles �temporary

disorderings are allowed� though�� Note� that no search is required at problem solving

time� since all knowledge is contained in the macro table� Thus� problem solving with

macro operators might be viewed as an extreme form of pre�processing�

� Min�Max Search

So far we have considered how expansion of a game tree can be controlled by an eval�

uation function� and how the major shortcomings �excessive memory requirement� of a

best��rst state�space search can be overcome with a simple iterative depth��rst approach�

In practice� the memory variants of IDA� are perhaps the most practical schemes� They

combine the advantages of a depth��rst search with that of a best��rst search� by sav�

ing a limited amount of node information to improve the node expansion order and to

eliminate irrelevant subtrees�

The advantages of iterative deepening can be seen better through the study of meth�

ods for searching two�person game trees� which represent a struggle between two oppo�

nents who move alternately� Because one side�s gain �typically position or material in

board games� usually re�ects an equivalent loss for the opponent� these problems are

often modeled by an exhaustive minimax search� so called because the �rst player is try�

ing to maximize the gains while the second player �the hostile opponent� is minimizing

them� In a few uninteresting cases the complete game tree is small enough that it can

be traversed and every terminal �tip or leaf� node examined to determine precisely the

value for the �rst player� The results from the leaf nodes are fed back to the root using

the following recursive back�up procedure� Given an evaluation function f�n� which can

measure the value of any leaf node from the �rst player�s view� we get for a leaf node n

MinMax�n� � f�n� � Evaluate�n��

and for any interior node n with successor nodes ni

MinMax�n� �

��
�
max

i
�MinMax�ni�� if n is a Max node

min
i
�MinMax�ni�� if n is a Min node
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A more concise formulation� referred to by Knuth and Moore 

���� as Negamax�

replaces the opponent�s minimization function by an equivalent maximization of the

negation of the successor values� thus achieving a symmetric de�nition�

NegMax�n� � max
i
��NegMax�ni���

Here� all node values are taken from the players point of view� and f�n� is a function

that computes the merit value of a leaf node n for the last player� For a true leaf �with

no successors� the merit value will be thought of as exact or accurate� and without error�

Building exhaustive minimax enumeration trees for di�cult games like chess and

Go is impractical� since they would contain about 
��� or 
���� nodes� respectively� In

these applications� the evaluation function Evaluate�n� can also be used at pseudo�leaf

�frontier or horizon� nodes� where it computes a value that estimates the merit of the

best successor� Again the value will be designated as true or accurate� even though

it is only an estimate �in some more sophisticated search methods 
McAllester� 
����

Rivest� 
���� Anantharaman� 
��
� an attempt is made to account for the uncertainty

in the leaf values�� The sequence of branches from the root to the best pseudo leaf node

is referred to as the principal variation� and the merit value of the leaf node at the end

of the path is the one that is backed up to the root and becomes the minimax value

of the tree� Ballard 

���� on the other hand considers pruning in probabilistic games�

where the issue is whether a branch in the game tree will be taken� rather than any

uncertainty in the leaf values� This interesting study is long overdue for follow�up work�

��� Alpha�Beta

One early paper on computer chess 
Newell et al�� 
���� recognized that a full minimax

search was not essential to determine the value of the tree� Some years later a little

known work by Brudno 

���� provided a theoretical basis for pruning in minimax

search� From these observations� the alpha�beta pruning algorithm was developed� and

it remains today the mainstay for game�tree search� Of course many improvements and

enhancements have been added over the years� and some of these will be explored here�

As pointed out in Knuth and Moore�s classical paper 

����� the alpha�beta algorithm

is a re�ned branch�and�bound method that uses a special backing up rule �the minimax

rule� and employs two bounds rather than one � i�e� one bound for each player� The

bound used at all Max nodes �including the root� is named Alpha� and the bound for the

Min nodes is named Beta� Alpha represents the least value player Max is guaranteed

�no matter how good Min�s moves are�� while Beta is the value Min can expect� at the

very least�
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function ABSearch �n� node� �� �� height� integer�� integer�
begin freturns minimax value of ng

if height � � or n is a leaf then
return Evaluate�n�� fleaf or frontier nodeg

next � SelectSuccessor�n�� fgenerate �rst successorg
estimate � ���
while next �� NULL do

merit � � ABSearch �next� ��� �max��� estimate�� height� 
��
if merit � estimate then begin

estimate � merit� fimproved valueg
if estimate � � then return estimate� fcut�o�g

end�
next � SelectBrother�next�� fgenerate brotherg

end while�
return estimate� freturn the subtree valueg

end�

Figure �� Fail�soft alpha�beta algorithm

In e�ect� the search can be viewed as taking place within a window or range of integer

values Alpha to Beta with the underlying assumption that the value� v� of the tree lies

in that range�

� �v

� �

Clearly if the initial values of Alpha and Beta are �� and �� respectively� the merit

value of the tree will fall within that in�nite range� However� the window will not stay

so wide� it automatically reduces as the move choices are explored and the merits of

the alternatives become clear� This change occurs as Max raises the Alpha bound in

an attempt to maximize its gain� whereas Min reduces Beta when it tries to minimize

Max�s outcome� �The �nal game value is pulled from two sides	� as von Neumann and

Morgenstern 

���� observe in their historical paper that put game theory on a formal

basis�

In ABSearch �see Figure �� the integer parameters � and � represent lower and

upper bounds� and height is the remaining distance �in ply� to the search frontier�

Also� n represents a pointer to the root node of the �sub��tree� and the functions

SelectSuccessor�n� and SelectBrother�n� return the �rst successor and the next brother

of n� respectively� If the minimax value v lies within the ��� ���window� ABSearch re�


�



turns the merit value of the subtree by using a recursive backing up process�

��� Aspiration Search and the Fail�Soft Improvement

One popular enhancement to the alpha�beta algorithm� called aspiration search 
Slate

and Atkin� 
���� Baudet� 
����� arti�cially narrows the ��� ���bounds� hoping to reduce

the search space right from the beginning� by cutting out more of the tree and gambling

that the true merit will still be found�

To be most e�ective� aspiration search should include Fishburn�s 

��
� fail�soft idea�

which returns an approximation of the true minimax value when outside the ��� ���

window� This is achieved by initializing estimate to ��� as Figure � shows� instead of

to the expected lower bound �� Thus� even if the initial ��� ���bounds are too narrow�

so that the search can fail� we will know whether v � estimate � ��

v! estimate � �

�
re�search

or whether � � estimate � v�

� � estimate v!

�
re�search

The initial search not only determines whether the search fails low or high� but also

provides an upper or lower bound �estimate� for the true minimax value� Aspiration

search builds on the fail�soft mechanism� It initially restricts the ��� ���bounds to a

narrow range �v�� �� v�� �� around an expected tree value� v�� and conducts re�searches

with a properly enlarged window ���� estimate� or �estimate����� as required�

The advantages of working with narrow bounds can be signi�cant� especially for

games where it is easy to estimate v�� An aspiration search gambles that the time

saved by successful searches with narrow windows will more than pay for the re�searches

that follow failure� However� there is ample experimental evidence 
Marsland� 
����

Musczycka and Shinghal� 
���� Kaindl� 
���� to show that use of heuristics to estimate

the search window in aspiration search still does not usually yield a performance com�

parable to the Principal Variation Search �PVS� algorithm 
Marsland and Campbell�


����� The main disadvantage of aspiration search is that the estimate of v� is made

strictly before the search begins� while for PVS the value of v� is continually re�ned

during the search� Thus PVS bene�ts more from application�dependent knowledge that
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Figure �� Staged search of game trees

provides a good move ordering� and with iterative deepening almost guarantees that the

value of the �rst leaf will be a good estimator of the tree�s merit value� Nevertheless

a problem remains� no matter how narrow the initial bounds� nor how good the move

ordering� the size of the minimal game tree still grows exponentially with depth�

��� Approximating Game Trees

In practice� because game trees are so large� one must search a series of approximating

subtrees of length height� based on the code in Figure �� Thus� instead of true leaf

nodes� where the value of the node is known exactly� we have pseudo�leaf or frontier

nodes where the value of the unexplored subtree beyond this horizon is estimated by

a heuristic evaluation function� In the simplest case the approximating tree has a pre�

speci�ed �xed depth� so that all the frontier nodes are at the same distance from the root�

This model is satisfactory for analytical and simulation studies of searching performance�

but it does not re�ect the current state of progress in application domains� For example�

a typical chess program builds its approximating tree with three distinct stages or phases�

as Figure � suggests� From the root all moves are considered up to some �xed depth d

�usually a constant�� but if a node has only a few �one or two� legal successors �e�g� after

a checking move in chess� the length of the path is extended by one ply� Thus the e�ective

length of some paths could be d�d�� �since in practice only one side at a time administers

a series of checks�� Once the nominal depth of the �rst phase is reached� a second phase

extends the search by another constant amount �again forced nodes cause a search

extension�� but at every new node only a selection of the available moves is considered�

This heuristic incorporates the dangerous and discredited practice of forward pruning� It

works here because the exhaustive search layer �nds short term losses �obvious sacri�ces�
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Figure �� Structure of a critical game tree

that lead to long term gains� while the next stage uses forward pruning to eliminate not

only moves that persist in losing� but also seemingly inferior short term continuations�

thus reducing the demands on the third �quiescence search� phase� Although not ad hoc�

this approach is ill�de�ned �although clearly some programmers have superior methods��

but as we shall see it leads naturally to several good possibilities for a probabilistic way

of controlling the width of the search�

The third �quiescent� phase of the search is more dynamic� It is called a quiescence

search� because its purpose is to improve the evaluation estimate of critical frontier

nodes that involve dynamic terms which cannot be measured accurately by the static

evaluation function� In chess these terms include captures� checks� pins and promotions�

It is essential that these quiescence trees be severely restricted in width� only containing

moves that deal with the non�quiescent elements� There have been several studies of

desirable properties of quiescence search� but most noteworthy is the work of Kaindl



���� 
����� the method of singular extensions by Anantharaman et al� 

����� and the

formalization of the null�move heuristic 
Beal� 
�����

In summary� the three�layer search employs algorithmic backward pruning which

is at �rst exhaustive� then uses limited forward pruning of seemingly obvious losing

moves� and �nally a highly directed selective search� Thus the use of heuristics increases

with the depth of search� thereby introducing more uncertainty but extending the depth

�frontier�horizon� along lines of greatest instability� thereby clarifying the outcome�

This approach has many practical advantages and can be used equally e�ectively in

other decision tree applications�

There is as yet no theoretical model for these variable depth search processes� Pre�

vious analytical studies usually restricted themselves to the use of uniform trees �trees
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with exactly W successors at each node and �xed depth� D�� The most commonly

quoted result is that the critical �optimal� game tree has

W dD
�
e �W bD

�
c � 


leaf nodes 
Slagle and Dixon� 
����� This is the fewest nodes that must be examined

by any search algorithm to determine the minimax value� In Knuth and Moore�s 

����

terminology� the minimal or critical game tree is made up of type 
� type � and type

� nodes� although Marsland and Popowich 

���� call these PV� CUT and ALL nodes�

respectively� to make it clearer where cut�o�s may occur� A more recent study considered

the properties of an average game tree� presented formula for the tree size� and showed

how the di�erent nodes types are distributed 
Reinefeld and Marsland� 
�����

Figure � illustrates the general structure of a critical game tree� where the Principal

Variation �the PV nodes� is located in the leftmost path and all alternatives are refuted

with minimal e�ort �the CUT nodes�� Figure � also helps to count the leaf nodes in the

critical game tree� To prove that the minimax value of a game tree is v� at least W bD
�
c

leaf node expansions are needed to show that there exists one subtree �the highlighted

one in Figure �� with a value � v� and at least �W dD
�
e � 
� expansions to show the

inferiority of the remaining W � 
 alternatives at Max nodes along the PV� which have

value � v� Together these two quantities yield the Slagle and Dixon result quoted earlier�

��� Principal Variation Search

An important reason for considering fail�soft alpha�beta is that it leads naturally to more

e�cient implementations� speci�cally Principal Variation Search �PVS�� which uses a

Null Window to eliminate other contenders� or to provide a lower bound for a new

principal variation� The fundamental idea is that as soon as a better move �and bound�

is found� an attempt is made to prove that the remaining alternatives are inferior� A

null window of size ��� � 
���� is used so that no integer value can fall between the

two adjacent bounds� Thus all remaining searches with that window will fail� hopefully

low� proving the inferiority of the move with minimal e�ort� If the null window search

fails high� then the current move is superior to the previously best and the search must

be repeated with the correct bounds� to �nd the proper path and value� along the lines

of Figure ��

Although correct and e�cient� the de�nition of PVS given here is fully recursive�

so it is not easy to distinguish between PV� CUT and ALL nodes� It also provides a

version of the algorithm that is di�cult to parallelize at the places where most work is

to be done� This disadvantage can be overcome by replacing the line
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function PV S �n � node� �� �� height� integer�� integer� ffor PV nodesg
if height � � or n is a leaf then

return Evaluate�n�� fleaf or frontier nodeg
next � SelectSuccessor�n��
best � � PV S �next� ��� ��� height� 
�� fPV nodeg
next � SelectBrother�next��
while next �� NULL do

if best � � then

return best� fCUT nodeg
� � max��� best��
merit � � PV S �next� �� � 
� ��� height� 
��
if merit � best then

if merit � � or merit � �

then best � merit fimproved valueg
else best � � PV S �next� ��� �merit� height� 
�� fre�searchg

next � SelectBrother�next��
end while�
return best� freturn the subtree valueg

end�

Figure �� Principal Variation Search

merit � � PV S �next� �� � 
� ��� height� 
��

by a call to the Null Window Search function given in Figure �� as follows�

merit � �NWS �next� ��� height� 
��

Figure 
� can now be used to show the structure of a typical game tree and provides a

small example of the use of the negamax framework to illustrate exactly how the bounds

are set and how the tree�s merit value is backed up� Here the CUT and ALL nodes are

searched only by NWS� while the two PV nodes leading immediately to the node with

the minimax value of �� are searched �rst by NWS and then re�searched by PVS� Thus

the �gure also shows both the occurrence of a fail�high re�search� and a case where the

leftmost ��rst� branch of a cut node does not produce a cut�o� �e�g� at the CUT node

that is the right successor of the root node��

The original compact formulation encapsulates everything into one routine� and is

precisely the approach taken in an early description 
Marsland� 
���� and in NegaScout


Reinefeld� 
����� The use of the additional NWS routine serves two purposes� �rst this

��



function NWS �n � node� �� height� integer�� integer� ffor ALL and CUT nodesg
if height � � or n is a leaf then

return Evaluate�n�� fleaf or frontier nodeg
next � SelectSuccessor�n��
estimate � ���
while next �� NULL do

merit � �NWS �next� �� � 
� height� 
��
if merit � estimate then

estimate � merit� fimproved valueg
if merit � � then

return estimate� fCUT nodeg
next � SelectBrother�next��

end while�
return estimate� fALL nodeg

end�

Figure �� Null window search function for use with PVS

separation helps in the design of a parallel algorithm� since the parallelization can now

be done at the PV and ALL nodes� and second it makes possible a direct comparison

with Scout 
Pearl� 
�����

��� Scout and its Variants

PVS 
Marsland� 
����� NegaScout 
Reinefeld� 
���� and their predecessor P�Alphabeta


Fishburn� 
��
� emerged from a slightly inferior search scheme� the Scout algorithm


Pearl� 
����� which was invented to simplify the proof of the asymptotic optimality of

ABSearch� The original formulation 
Pearl� 
���� is clumsy and di�cult to implement�

because it requires three separate routines� an evaluation routine to determine the exact

minimax value of a PV node and two boolean test routines to prove alternative subtrees

inferior� Despite Scout�s complex structure� and although it re�expands certain subtrees

several times� Scout proved surprisingly e�cient in test cases� Consequently� fully recur�

sive versions of Scout have been designed 
Marsland� 
���� but particularly interesting

is the NegaScout model 
Reinefeld� 
����� which Kaindl 

���� shows to be more e��

cient than Scout in practice� Theoretical investigations 
Reinefeld and Marsland� 
����

Reinefeld� 
���� con�rm� that NegaScout �NS� expands fewer nodes than ABSearch in

well ordered trees� which are often found in practical applications� Conditions are fa�

�
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Figure 
�� Sample pruning of a minimax tree by PVS�NWS

vorable for NegaScout when only few re�searches are needed in PV nodes �that is� when

the principal variation does not change� and when the best successor in CUT nodes is

found early� as Figure 

 illustrates� In practice� domain�dependent heuristic knowledge

is used to order the node successors before expansion� In chess trees� for example� only


�� CUT node successors are expanded on average before a cut�o� occurs 
Marsland and

Popowich� 
����� This gives NegaScout and PVS a clear advantage over ABSearch�

NegaScout also introduced an admissible �without error� pruning technique near the

frontier� in contrast to the more speculative razoring method of Birmingham and Kent



���� and the notion of a futility cuto	� best described by Schae�er 

����� The essential

idea behind razoring is that at the last move before the frontier the side to move will be

able to improve the position� and hence the value of the node� In e�ect we assume that

there is always at least one move that is better than simply passing� i�e�� not making a

move� Therefore if the current node merit value already exceeds the ��bound� a cut�o�

is inevitable and the current node cannot be on the principal variation� This heuristic is

widely applicable� but it is prone to serious failure� For example� in chess� where passing

is not allowed� razoring will fail in zugzwang situations� since every move there causes

the value for the moving player to deteriorate� More commonly� when the pieces are

already on �optimal squares	 most moves will appear to lead to inferior positions� This

is especially true when the side to move has a piece newly under attack� The futility

��
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Figure 

� NegaScout vs� ABSearch �width� ��� depth� ��

cuto�� on the other hand� is a little safer� Again at the layer before the frontier� if the

current node value is less than Alpha� only moves that have the potential to raise the

node value above Alpha are of interest� This should include appropriate captures and

all checking moves� It may be futile to consider the rest unless the current node value

is close to Alpha� Abramson 

���� provides an accessible review of razoring and other

control strategies for two�player games�

��� Best�First Search Methods

For two�person games there are several best��rst searches� but they all su�er from the

same excessive demands on memory and heavy overhead in maintenance of supporting

data structures� Nevertheless� the state space searches are interesting on theoretical

grounds and contain ideas that carry over into other domains�

For example� Berliner�s 

���� best �rst B� algorithm returns a two�part evaluation

range with pessimistic and optimistic bounds� Since the real aim is often to �nd the best

choice or move �with only secondary interest in the expected value�� B� uses its bounds

to identify that move� The best move is the one whose pessimistic value is at least equal

to the largest optimistic value of all the alternatives� Note that it is not necessary to

search intensely enough to reduce the range intervals to a single point� just enough to

�nd the best move� thus some search reduction is theoretically possible� Later Palay



���� developed an algorithm called PB� to introduce probability distributions into the

evaluation process�

SSS�� a best��rst algorithm developed by Stockman 

����� is also of special interest�

Closely related to A�� SSS� dominates the alpha�beta algorithm in the sense that it

��
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Figure 
�� Search of strongly ordered trees �width� ��� depth� ��

never visits more leaf nodes� Also� with the change proposed by Campbell in his 
��


thesis �reported later 
Campbell and Marsland� 
����� to alter the order in which the

tree is traversed� SSS� expands a subset of the nodes visited by a normal alpha�beta

search� e�g�� ABSearch �Figure ��� Because SSS� dominates a simple alpha�beta search

hopes were raised that this re�ects a reduced exponential growth rate� Such hopes�

however� were refuted when Roizen and Pearl 

���� showed that SSS� and Alpha�

Beta are asymptotically equivalent� Only in moderate search depths d � �� � � � � �� and

moderate widths w � �� � � � � �� is SSS� of advantage� But this advantage is limited and

reaches a peak at depth d � �� where Alpha�Beta needs a maximum of three times as

many node expansions as SSS��

In an attempt to �nd a version of SSS� that achieves a better storage e�ciency�

two hybrid algorithms� PS� by Marsland and Srimani 

���� and ITERSSS� by Bhat�

tacharya and Bagchi 

���� were invented� They break SSS� into a series of k�partitions

which are searched one at a time� Although the original idea was to form some kind

of iterative broadening 
Ginsberg and Harvey� 
���� for adversary game trees� the end

��



result was a spectrum of search algorithms whose performance matched the range from

SSS� �k � 
� to Alpha�Beta �k � W ��

While impressive node reductions and catchy publications like �A minimax algorithm

better than Alpha�Beta!	 
Stockman� 
���� attracted the attention of the game�playing

community� it was often overlooked that simple depth��rst search algorithms� like PVS

and NegaScout also dominate Alpha�Beta� Moreover� these other algorithms are usually

faster than SSS�� because they are based on a simple recursive depth��rst expansion

scheme borrowed from Alpha�Beta� Even though the structure of these new algorithms

is similar to Alpha�Beta� SSS� does not dominate PVS or NegaScout �there even exist

cases where SSS� examines more nodes than either�� as Reinefeld 

���� proves�

Statistically� most e�cient of all is a variation of SSS�� named DUAL� by Marsland

et al� 

����� which is formed by complementing the actions at the Min and Max nodes�

The duality has the e�ect of performing a directed �left to right� search at the root node

and an SSS� search below that� Thus DUAL� has a lower memory requirement �since it

uses SSS� to search a 
�ply shallower tree�� but otherwise shares the same burdensome

overheads� Its search characteristic resembles that of PVS and NegaScout� with the

nice distinction that there is no need for a re�search� because DUAL� simply resumes

its best��rst node expansion based on the previously acquired information� Although

Reinefeld 

���� has established the dominance over a normal Alpha�Beta search on

theoretical grounds� the statistical performance of these algorithms varies widely� In

particular� SSS� does not do well on bushy trees �average width � ��� of odd depth�

as Figure 
� illustrates for strongly ordered trees 
Marsland and Campbell� 
����� Such

trees are intended to have properties similar to the game trees that arise during a typical

application like chess� yet permit a better comparison than is possible with random data�

SSS� does not do well here because the trees used were not random� in fact� the best

move was searched �rst more than �� of the time� DUAL� is best because of the

directional search at the root� However� both SSS� and DUAL� share A��s problem�

namely that the CPU overhead to maintain the active states is more than �ve times that

required for a depth��rst search 
Marsland et al�� 
����� Thus� lower leaf node counts for

SSS� and DUAL� do not normally translate into faster execution� quite the contrary�

This state of a�airs has recently been alleviated by RecSSS�� a recursive SSS� for�

mulation of Bhattacharya and Bagchi 

����� RecSSS� needs only twice as much time

as Alpha�Beta in searching synthetic game trees of the type described by Marsland et

al� 

����� It does so by allocating all the needed memory right at the beginning of the

search� All memory cells are directly addressed� so that no time�consuming list� queue

or heap management is needed� Thus� the design of RecSSS� follows the lines of INS

��




Reinefeld et al�� 
����� an �informed	 version of NegaScout� that also allocates memory

space in larger chunks� INS turned out to be even faster� and it can reasonably compete

with Alpha�Beta on a CPU�time basis� while allowing �exible use of additional memory�

The memory requirements of RecSSS�� in contrast� are of the same order of magnitude

as that of SSS��

Of the newer techniques� McAllester�s 

���� so called conspiracy number search is

especially interesting� Although this method also makes heavy demands on computer

memory� it is in the class of probabilistic algorithms that attempt to measure the stability

of search� A tree value is more secure �unlikely to change� if several nodes would have

to �conspire	 �all be in error� to change the root value� Application of this method is

still in its infancy� although Schae�er 

���� has provided some working experiences and

Allis et al� 

��
� compare SSS�� alpha�beta� and conspiracy number search for random

trees� Since many game�tree applications require the search of bushy trees �e�g�� chess

and Go� some form of probabilistic basis for controlling the width of search would also

be of great importance�

��	 Iterative Deepening

The main problem with direct searches to pre�speci�ed minimal depth is that they

provide inadequate control over the CPU needs� Since CPU control can be important in

human�computer play� an iterative deepening method was introduced by Scott 

�����

In its early form� rather than embark on a search to depth N�ply �and not knowing how

long it might take�� a succession of searches of length 
�ply� ��ply� ��ply etc� were used

until the allotted time is reached� The best move found during one iteration is used as

the �rst move for the start of the next and so on� Over the following years this idea was

re�ned and elaborated� notably by Slate and Atkin 

����� until by the late ��s several

memory functions were in use to improve the e�ciency of successive iterations� It is this

increased e�ciency that allows an iterative deepening search to pay for itself and� with

memory function help� to be faster than a direct D�ply search�

The simplest enhancement is the use of a refutation table� as presented by Akl and

Newborn 

����� Here� during each iteration� a skeletal set of paths from the root to the

limiting frontier �the tip nodes� is maintained� One of those paths is the best found so

far� and is called the Principal Variation �or Principal Continuation�� The other paths

simply show one way for the opponent to refute them� that is� to show they are inferior�

As part of each iteration these paths are used to start the main alternatives� with the

intention of again proving their inferiority� The bookkeeping required for the refutation

��



table is best described in the book by Levy and Newborn 

�����

��
 Transposition Table Management

More general than the refutation table is the transposition table� which in its simplest

form is a large hash table for storing the results from searches of nodes visited so far�

The results stored consist of� �a� the best available choice from the node� �b� the backed

up value �merit� of the subtree from that node� �c� whether that value is a bound� �d�

the length of the subtree upon which the value is based� As with all hash tables� a

key�lock entry is also required to con�rm that the entry corresponds to the node being

searched� The space needed for the key�lock �eld depends on the size of the search

domain� but �� bits is common� Problems with entry con�ict error were initially dealt

with by Zobrist 

���� when he proposed a hashing method for Go� Much later� the

application to computer chess was revived 
Marsland and Campbell� 
��
�� with further

insights by Nelson 

���� and by Warnock and Wendro� 

�����

The importance of the transposition table is two�fold� Like a refutation table� it can

be used to guide the next iteration� but being bigger it also contains information about

the refutations �killer moves� in subtrees that are not part of the main continuation�

Perhaps of greater importance is the bene�t of information sharing during an iteration�

Consider the case when an entry corresponding to the current subtree is found in the

transposition table� When the length �eld is not less than the remaining depth of search�

it is possible to use the merit value stored in the entry as the value of the subtree from

the node� This circumstance arises often� since transposition of moves is common in

many two�person games� As a result� use of a transposition table reduces the e�ective

size of the tree being searched� In extreme cases� this not only enables a search of less

than the critical game tree� but also extends the search of some variations to almost

double the frontier distance� More common� however� is use of the stored �move	 from

the transposition table� Typically that move was put there during a null window search�

having caused a cut o�� and is re�used to guide the re�search down the refutation line�

Another memory function is the history heuristic table� This is a general method

for identifying �killer moves	� that is� choices that have cut�o� the search at other

places in the tree 
Schae�er� 
����� The method is especially suited to cases where

the choices �moves� at any node are drawn from a �xed set� For instance� without

regard to the pieces� all moves on a chess board can be mapped into a ��x�� table �or

even two tables� one for each player�� Stored in that table would be a measure of how

e�ective each move had been in causing cut�o�s� Schae�er found that simply using the

��
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direct Alpha�Beta

iterative Alpha�Beta

Aspiration

PVS

PVS�Trans
PVS�Ref

PVS�History

PVS�Ref�Trans�History

Figure 
�� Node comparison of alpha�beta enhancements �even depths only�

frequency of prior pruning success is a more powerful means of ordering moves than

using application dependent heuristic knowledge� In turn� move ordering dramatically

improves the e�ciency of directional searches like ABSearch and PV S�

��� Combined Enhancements

The relative e�ciencies of these various alpha�beta enhancements are adequately cap�

tured in Figure 
�� which presents data from a model chess program �Parabelle� search�

ing a suite of test positions� The size of the critical game tree �having W dD
�
e�W bD

�
c�


nodes� with W � ��� in this case� is taken as the 
�� basis for comparison� Figure 
�

shows that under reasonable assumptions PVS is more e�cient than Aspiration search

�although optimal aspiration windows will necessarily do better 
Shams et al�� 
��
���

Further� the memory function assistance of transposition table ��Trans�� refutation

��



table ��Ref� and history table ��History� for re�ordering the moves are additive and

make a signi�cant improvement in performance� Note that the performance graph of the

fully enhanced PVS �PVS�Ref�Trans�History� is linear to the size of the mini�

mal tree� indicating an exponential e�ciency gain with increasing search depths� The

worsening result for the ��ply search by PVS with transposition table �PVS�Trans�

has been attributed to overloading of the small �only �K entries� transposition table


Marsland� 
�����

Although Figure 
� clearly points out the merits of the iterative�deepening enhance�

ments used in adversary game tree searches� it is also instructive to compare this data to

the single�agent searches� shown in Figure �� Using iterative alpha�beta and iterative�

deepening A� as a base method for adversary and single�agent search� respectively� the

enhancements �transposition� history and refutation tables� can be evaluated and their

performance compared� In both domains� the best savings are achieved with a transpo�

sition table ��Trans�� which yields a search reduction of almost �� in the larger trees

�depth � ��� The history heuristic ��History� is more of advantage in adversary game

tree searching� because there exists a clear notion of the �goodness	 of a move� which

is missing in single�agent searches� Also� the refutation tables ��Ref� used in adver�

sary game tree searches are slightly more e�ective than the PV line used in single�agent

search� because they contain information not only about the best move continuation�

but also about the best alternatives to the PV� This slight advantage becomes more

signi�cant in larger trees� where longer subtrees can be pruned�

Combining the enhancements� node reductions of up to �� can be achieved in both

domains� For single�agent search� this is better than can be achieved with an optimal

IDA� search� where one �nds the goal at the beginning of the last iteration �see Table 
��

� Parallel Game�Tree Search

In recent years the increased availability of small low�cost computers has led to an up�

surge of interest in parallel methods for traversing trees and graphs� In the game�tree

case� experience has been gained with a variety of practical implementations� Although

many of the theoretical studies in parallelism focus on a data�ow model� by and large

that model does not account for pragmatic factors like communication and synchroniza�

tion delays that inevitably plague physical systems� and so addresses few of the di�cult

issues� The main problems faced by the designers of parallel tree�search systems are�

��




� How best to exploit the additional resources �e�g� memory and i�o capability� that

may become available with the extra processors�

�� How to distribute the work across the available processors�

�� How to avoid excessive duplication of computation�

Some simple combinatorial problems have no di�culty with point ��� and so� if work

distribution is not a problem� ideal or even anomalously good speedup is possible 
Lai

and Sahni� 
�����

For best performance in game�tree search it is necessary to communicate the improv�

ing estimates of the tree value� This can lead to an �acceleration anomaly	 when the

tree value is found earlier than is possible with a sequential algorithm� However� unipro�

cessor systems have compensating advantages in that the algorithm can be optimized

for best pruning e�ciency� while a competing parallel system may not have the right

information to achieve the same degree of pruning� hence do more work �higher search

overhead�� Further� the very fact that pruning occurs makes it impossible to determine

in advance how big any piece of work �subtree to be searched� will be� leading to a

potentially serious work imbalance and heavy synchronization �waiting for more work�

delays�

The standard basis for comparison is speedup� de�ned by

speedup �
time taken by a sequential single�processor algorithm

time taken by an N�processor system

Although simple� this measure can often be misleading� because it depends on the ef�

�ciency of the uniprocessor implementation� Thus good speedup may merely re�ect a

comparison with an ine�cient sequential method� Using node count instead of elapsed

time� as is common practice in the sequential case� does not help� because it neglects

the important communication and synchronization overheads� On the other hand� poor

speedup clearly identi�es an ine�ective parallel system�

The exponential growth rate of the solution space combined with the dispersion of the

solutions over a wide range of leaf nodes make parallel search algorithms especially sus�

ceptible to anomalous speedup behavior� Clearly� acceleration anomalies are among the

welcome properties� whereas slowdown behavior can be reduced �or completely avoided�

by an appropriate algorithm design� In the following� we speak of superunitary speedup�

�Note that some authors use the term �superlinear� when they really mean �superunitary�� We

distinguish between linear superunitary speedup �when limn�� S�n��n � � and �nite�� and superlinear

speedup �when limn�� S�n��n ���� De�nitions for slowdown behavior �i�e� subunitary and sublinear

speedups� can be derived analogously�

��



when the speedup is greater than the number of additionally employed processors� and

of subunitary speedup when a larger multiprocessor system takes more time to execute

than a smaller one� Let t�n� be the execution time of an algorithm on n processors� and

let n� � n�� We de�ne

superunitary speedup �
t�n��

t�n��
�
n�
n�

subunitary speedup � t�n�� � t�n��

With a careful algorithm design� superunitary speedup should occur more often than

subunitary speedup� Certain implementations do not exhibit serial�to�parallel slowdown�

although superunitary speedup is still possible 
Rao and Kumar� 
���� p� ����� Moreover�

Kal"e and Saletore 

���� present a method that completely avoids any kind of slowdown

behavior in parallel state�space search� This is achieved with a prioritizing scheme that

keeps the node expansion sequence close to that of a corresponding sequential search�

Such methods may yield satisfactory performance for some cases� but in general more

liberal parallel implementations� which exploit better the natural parallelism of the

problem domain� are preferred�

In game playing programs� parallelism is not primarily employed to obtain the answer

any faster� but to get a more reliable result �e�g� based on a deeper search�� Here� the

emphasis lies on scalability instead of speedup� While speedup holds the problem size

constant and increases the system size to get the result earlier� scalability measures the

ability to grow both the problem size and the system size at the same time�

scale�up �
time taken to solve a problem of size s by a single�processor

time taken to solve a problem of size �N � s� by an N�processor system

Ideally� this equation evaluates to 
� The scale�up is then said to be linear�

��� Parallel Single Agent Search

Single agent game tree search seems to be more amenable to parallelization than the

techniques used in adversary games� because a large proportion of the search space must

be fully enumerated � especially when optimal solutions are sought� This can safely be

done in parallel without the risk of missing a cut o�� Although move ordering also saves

nodes expansions� it does not play the same crucial role as in multi�agent game�tree

search� where huge parts of the search space are often pruned near the root� For this

reason� parallel single agent search techniques usually achieve better speedups than their

counterparts in adversary game trees�

�




Most parallel single agent searches are based on A� or IDA�� As in the sequential

case� parallel A� outperforms IDA� on a node count basis� while parallel IDA� needs

only linear storage space and runs faster� In addition� cost e�ective methods exist �e�g�

parallel window search in Sec� ��
��� that determine non�optimal solutions with even

less computing time�

����� Parallel A�

Given N processors� the simplest way to parallelize A� is to let each processor work on

one of the currently best states of the Open list� This approach minimizes the search

overhead� as con�rmed theoretically by Irani and Shih 

���� and in practice by Kumar

et al� 

����� The practical experiments have been run on a shared memory BBN�

Butter�y machine with 
�� processors� where a search overhead of less than � was

observed for the traveling salesman problem�

But elapsed time is more important than the node expansion count� because the

global Open list is accessed before and after each node expansion� and so memory con�

tention becomes a serious bottleneck� It turns out� that the centralized strategy is only

useful in domains where the node expansion time� Texp� is large compared to the time

needed for an Open list access� Tacc� One such application is the LMSK algorithm

�named after its inventors Little� Murty� Sweeney and Karel 

����� for solving the trav�

eling salesman problem� Almost linear time speedups were achieved 
Kumar et al�� 
����

only with up to Texp�Tacc processors� The saturation point lies well below �� when the

Open list entries are maintained in a global linked list structure� A more sophisticated

concurrent heap data structure speeds the Open access� Tacc� which allows to increase

the parallelism to about �� processors� Similar results were derived much earlier by

Mohan 

����� who ran the LMSK algorithm on the hierarchical Cm� multiprocessor

system 
Jones et al�� 
����

Distributed strategies using local Open lists alleviate the memory contention problem�

But again some communication must be provided to allow processors to share the most

promising state descriptors� so that no computing resources are wasted in expanding

inferior states� For this purpose Kumar et al� use a global �Blackboard	 table that

holds state descriptors of the currently best nodes� After selecting a state from its local

Open list� each processor compares its f �value to that of the states contained in the

Blackboard� If the local state is much better or much worse than those stored in the

Blackboard� node descriptors are sent or received� so that all processors are concurrently

exploring states of almost equal heuristic value� With this scheme� a ���fold speedup

��



was achieved on an ���processor BBN Butter�y 
Kumar et al�� 
�����

Although a Blackboard is not accessed as frequently as a global Open list� it still in�

duces memory contention with increasing parallelism� To alleviate this problem� Huang

and Davis 

���� proposed a distributed heuristic search algorithm� PIA�� which works

solely on local data structures� On a uniprocessor� PIA� expands the same nodes as

A�� while in the multiprocessor case� it performs a parallel best��rst node expansion�

The search proceeds by repetitive synchronized iterations� in which processors working

on inferior nodes are stopped and reassigned better nodes� To avoid unproductive wait�

ing at the synchronization barriers� the processors are allowed to perform speculative

processing� Although Huang and Davis 

���� claim that �this algorithm can achieve

almost linear speedup on a large number of processors�	 it has the same disadvantage

as the other parallel A� variants� namely excessive memory requirements�

����� Parallel IDA�

IDA� �Fig� �� has proved to be e�ective� when best��rst schemes cannot be used because

of excessive memory requirements� Not surprisingly it has also been a popular algorithm

to parallelize� Rao et al� 

���� proposed PIDA�� an algorithm with almost linear

speedup� even when solving the 
��puzzle with its trivial node expansion cost� PIDA�

splits the search space into disjoint parts� so that each processor performs a local cost�

bounded depth��rst search on its private portion of the state space� When a process

has �nished its job� it tries to get an unsearched part of the tree from other processors�

When no further work can be obtained� all processors detect global termination and

compute the minimum of the cost bounds� which is used as a new bound in the next

iteration� Note� that superunitary speedup �� N� is possible when a processor �nds

a goal node early in the �nal iteration� In fact� Rao et al� 

���� report an average

superunitary speedup of ���� with � processors on the 
��puzzle� While such impressive

results could not be replicated by others �Rao et al� took a non�representative data set

of 
� instances only�� our PIDA� implementation gave also high �but non�superunitary�

speedups on a Transputer system� Perhaps more important is the all�solution�case where

no superunitary speedup is possible� Here� Rao et al� obtained an average speedup

of ����N with up to N � �� processors on a bus�based multiprocessor architecture

�Sequent Balance �
����� which suggests only low multiprocessing overheads �locking�

work transfer� termination detection and synchronization��

PIDA� employs a task attraction scheme �illustrated in Fig� 
�� for distributing the

work among the processors� When a processor becomes idle� it asks a neighbor for a

��
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search tree of sending processor
before transfering nodes

search tree of receiving processor
after receiving nodes

Figure 
�� Work distribution scheme of PIDA�

piece of the search space� The donor then splits its depth��rst search stack and transfers

to the requester some nodes �subtrees� for parallel expansion� The best splitting strat�

egy depends on the regularity �uniform width and height� of the search tree� although

short subtrees should never be given away� When the tree is most regular �like in the


��puzzle� a coarse grained work transfer strategy can be used �e�g� transferring only

nodes near the root�� otherwise a slice of nodes �e�g� nodes A� B and C in Fig� 
��

should be transferred� The left graph in Figure 
� shows the single speedup results

of PIDA� executed on a Transputer system with the coarse grained work distribution

scheme� We took Korf�s 

���� �fty smallest 
��puzzle problem instances and sorted

them according to the relative search e�ort spent in the last iteration �where the goal is

found�� The straight lines give a quadratic least square �t of the data points� When the

sequential version returns a solution after only few node expansions in the last iteration�

the processor that expands the �left	 tree part in the parallel implementation also �nds

the goal node in about the same time� Hence speedups are consistently less than linear

in the left part of the graph� On the right hand side of the graph� the each game tree is

poorly ordered for sequential node expansion� and one of the parallel processors search�

ing a �right	 subtree will �rst �nd a solution� Since the search is stopped before all of

the left tree parts are examined superlinear speedup is common� Overall� we achieved a

speedup of 
��� with two processors� ���� with four processors and ���� with six proces�
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Figure 
�� Speedup of PIDA� �left� and PWS �right� with � processors

sors� Although this is by no means the maximum achievable performance �little e�ort

was put into tuning our algorithm�� this example demonstrates that PIDA� works for

small systems� The communication cost is neglectable� even though our algorithm runs

only on a uni�directional processor ring �where each message makes a full round through

all processors��

Another parallel IDA� approach borrows from Baudet�s 

���� parallel window method

for searching adversary games �Section ����
�� Powley and Korf 

��
� adapted this

method to single agent search and called it Parallel Window Search �PWS�� Their basic

idea is to simultaneously start as many iterations as there are processors� This works for

a small number or processors� which either expand the tree up to their given thresholds

until a solution is found �and the search is stopped�� or they completely expand their

search space� A global administration scheme then determines the next larger search

bound and node expansion starts over again� Clearly� the solution time is limited by

the time to complete the goal iteration� The better the node ordering� the faster the

execution time� In the extreme case� superunitary speedup can be achieved �e�g�� the

�rst ten problems in Fig� 
��b�� with a good heuristic pre�sorting scheme that shifts the

goal to the �left	 part of the tree� While such domain�dependent sorting schemes are

commonly used in sequential heuristic search� they seem to be almost mandatory for

PWS�

��



Note that the �rst solution found by PWS need not necessarily be optimal� Subop�

timal solutions are often found in searches of poorly ordered trees� There a processor

working with a higher cut�o� bound �nds a goal node in a deeper tree level� while

other processors are still expanding shallower tree parts �that might contain cheaper

solutions�� But according to Powley and Korf� PWS is not primarily meant to compete

with IDA�� but it �can be used to �nd a nearly optimal solution quickly� improve the

solution until it is optimal� and then �nally guarantee optimality� depending on the

amount of time available	 
Powley and Korf� 
��
�� Compared to PIDA� the degree

of parallelism is limited� and it remains unclear� how to apply PWS in domains with

variable cost�bound increases�

In summary� PWS and PIDA� complement each other almost ideally� It seems

natural to combine both methods to a single search scheme that runs PIDA� on groups

of processors administered by a global PWS algorithm�

PWS PIDA�

Scalability limited high

Synchronization Overhead none between iterations

Communication Overhead� negligible little

Solution�Quality limited non�opt� optimal

Superunitary Speedup sometimes sometimes

Subunitary Speedup very seldom very seldom

����� Heuristic Search on SIMD Machines

The largest parallel computers that exist today have a single instruction stream� multi�

ple data stream �SIMD� architecture allowing thousands of simple processing elements

to be connected in an economical way� Hillis� Connection Machine 
Hillis� 
����� as an

example� employs ��� � ����� bit�serial processing elements that operate synchronously

under a single control regime� At any instance� all processors execute the same instruc�

tion �possibly on a di�erent data item�� or no instruction at all� SIMD machines are

designed for �data parallel	 applications� where operations are concurrently applied to

all elements of a large data set� Clearly� tree searching tasks involve processing a group

of data items ��nodes�� and this can be done in parallel� but the number of active nodes

�The amount of communication needed depends on the work distribution scheme� More communi�

cation is needed with a �ne�grained work distribution� while a coarse grained work distribution requires

fewer messages �but may induce unbalanced work load�� Note that the choice of the work distribution

scheme also a�ects the probability of acceleration anomalies�

��



varies dynamically during search� Hence� load balancing poses a major challenge in the

design of e�cient tree searching applications for SIMD machines�

There exist two iterative�deepening searches for SIMD�machines� SIDA� by Powley

et al� 

���� 
��x� and IDPS by Mahanti and Daniels 

����� While di�ering in detail�

both schemes work in a similar way� They initially distribute a set of frontier nodes

to the processors and carry out a series of IDA� iterations on these nodes thereafter�

Each processing element searches its assigned subtree independently in a depth��rst

fashion� When a speci�ed number of processors �nish their subtree and become idle� the

search is stopped and the remaining nodes are redistributed in a load�balancing phase�

Autonomous node expansion phases alternate with load�balancing phases� When all

subtrees have been searched up to the given cost bound� some additional global load

balancing is performed and the next iteration is started with an increased cost bound�

This continues until one processor �nds a goal node�

The two schemes di�er only in subtle details� like� how to best obtain an equally

balanced initial work distribution �e�g� by node contraction�� how to do the load bal�

ancing �e�g� which nodes to share� and when to start a load balancing phase �e�g� static

vs� dynamic triggering�� Powley et al� report speedup factors of ���� and ���� on

a Connection Machine with �K and 
�K processors� which correspond to e�ciencies

��speedup�processors� of �� and �� � Mahanti and Daniels achieved even more fa�

vorable overall e�ciencies of �� and �� with their IDPS implementation on the same

machine� But what has been achieved! A speedup factor of ���� sounds impressive� but

in practice the result is delivered only twelve times faster than on a SUN SparcStation 


� at the cost of ����� additional processing elements� This state of a�airs will even�

tually change when the algorithms have been successfully implemented on faster SIMD

machines� since then the e�ciency �gures ��� and �� � become more important�

Another SIMD search scheme� Parallel�Retracting�A�� PRA� 
Evett et al�� 
�����

builds on A� rather than IDA�� It maps the search space to the processing elements�

so that each node is sent to a unique processor �determined by a hashing function� for

further expansion� By this means� each processor autonomously expands its dedicated

nodes� and also eliminates duplicates without further interrogation� When the private

storage space is exhausted� a node retraction procedure is invoked to reduce the active

nodes� While PRA� examines signi�cantly fewer nodes than IDA� 
Evett et al�� 
����

Table 
�� the search is slowed down by the frequent need for communication and by

time�consuming node�retraction operations�

A brute�force depth��rst search for a �blocks in a box	 puzzle has also been im�

plemented on the Connection Machine 
Frye and Myczkowski� 
����� It rebalances the

��



work�load when the ratio of active to idle processors drops below ���� Since the re�

balancing phases take about �� of the execution time� the overall e�ciency inevitably

drops to less than �� � Unfortunately the paper of Frye and Myczkowski contains no

other speedup measures or e�ciency data�

��� Adversary Games

In the area of two�person games� early simulation studies with a Mandatory Work First

�MWF� scheme 
Akl et al�� 
����� and the PVSplit algorithm 
Marsland and Campbell�


����� showed that a high degree of parallelism was possible� despite the work imbalance

introduced by pruning� Those papers recognized that in many applications� especially

chess� the game�trees tend to be well ordered because of the wealth of move ordering

heuristics that have been developed 
Slate and Atkin� 
���� 
Gillogly� 
���� thus the

bulk of the computation occurs during the search of the �rst subtree� The MWF ap�

proach recognizes that there is a critical tree that must be searched� Since that tree is

well�de�ned and has regular properties �see Fig� ��� it is easy to generate� In their simu�

lation of the MWF method Akl et al� 

���� consider the merits of searching the critical

game tree in parallel� with the balance of the tree being generated algorithmically and

searched quickly by simple tree splitting� Fishburn and Finkel 

���� also favor this

method and provide some analysis� The �rst subtree of the critical game tree has the

same properties as the whole tree� but its maximum height is one less� This so called

principal variation can be recursively split into parts of about equal size for parallel

exploration� PVSplit� an algorithm based on this observation� was proposed and simu�

lated 
Marsland and Campbell� 
����� and later tested 
Marsland and Popowich� 
�����

Even so� static processor allocation schemes like MWF and PVSplit cannot achieve high

levels of parallelism� although PVSplit does very well with up to � processors� MWF

in particular ignores the true shape of the average game tree� and so is at its best with

shallow searches� where the pruning imbalance from the so called �deep cuto�s	 has less

e�ect� Other working experience includes the �rst parallel chess program by Newborn�

who later presented performance results 
Newborn� 
���� 
Newborn� 
����� For practical

reasons Newborn only split the tree down to some pre�speci�ed common depth from the

root �typically ��� where the greatest bene�ts from parallelism can be achieved� This

use of a common depth has been taken up by Hsu 

���� in his proposal for large�scale

parallelism� Limiting depths is also an important part of changing search modes and in

managing transposition tables�

��



����� Parallel Window Search

In an early paper on parallel game�tree search� Baudet 

���� suggests partitioning the

range of the alpha�beta window rather than the tree� In his algorithm� all processors

search the whole tree� but each with a di�erent� non�overlapping� alpha�beta window�

The total range of values is subdivided into p smaller intervals �where p is the number of

processors�� so that approximately one third is covered� The advantage of this method

is that the processor having the true minimax value inside its narrow window will com�

plete more quickly than a sequential algorithm running with a full window� Even the

unsuccessful processors return a result� They determine whether the true minimax value

lies below or above their assigned search window� providing important information for

re�scheduling idle processors until a solution is found�

Its low communication overhead and lack of synchronization needs are among the

positive aspects of Baudet�s approach� On the negative side� however� is the limited

maximal speedup� no matter how many processors are being employed� From Baudet�s



���� data one can estimate a maximum speedup of � to � when using in�nitely many

processors� This is because even in the best case �when the successful processor uses a

minimal window� at least the critical game tree �with W dD
�
e�W bD

�
c�
 leaves� must be

expanded� In practice� parallel window search can be e�ectively employed on systems

with only two or three processors�

����� Advanced Tree�splitting Methods

Results from fully recursive versions of PVSplit were presented for the experimental

Parabelle chess program 
Marsland and Popowich� 
���� and for ParaPhoenix 
Mars�

land et al�� 
����� These results con�rmed the earlier simulations and o�ered some

insight into a major problem� In an N �processor system� N � 
 processors may be idle

for an inordinate amount of time� thus inducing a high synchronization overhead for

large systems� Moreover� the synchronization overhead increases as more processors are

added� accounting for most of the total losses� because the search overhead ��number

of unnecessary node expansions� becomes almost constant for the larger systems� see

Figure 
�� This led to the development of variations that dynamically assign processors

to the search of the principal variation� Notable is the work of Schae�er 

���a�� which

uses a loosely coupled network of workstations� and Hyatt et al��s 

���� implementation

for a shared�memory computer� These dynamic splitting works have attracted growing

attention through a variety of approaches� For example� the results of Feldmann et

al� 

���� show a speedup of 

�� with 
� processors �far exceeding the performance

��
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� � � � � � � � � � � � search

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � comm�

Figure 
�� Overheads for ��Ply Searches in a Chess Program �ParaPhoenix�

of earlier systems� and Felten and Otto 

���� measured a 
�
 speedup on a ��� pro�

cessor hypercube� This latter achievement is noteworthy because it shows an e�ective

way to exploit the ��� times bigger memory that was not available to the uniprocessor�

Use of the extra transposition table memory to hold results of search by other proces�

sors provides a signi�cant bene�t to the hypercube system� thus identifying clearly one

advantage of systems with an extensible address space�

These results show a wide variation not only of methods but also of apparent perfor�

mance� Part of the improvement is accounted for by the change from a static assignment

of processors to the tree search �e�g� PVSplit�� to the dynamic processor re�allocation

schemes of Hyatt et al� 

����� and also Schae�er 

���a�� These later systems dynami�

cally try to identify the ALL nodes of Figure � �where every successor must be searched��

and search them in parallel� leaving the CUT nodes �where only a few successors might

be examined� for serial expansion� The MWF approach �rst recognized the importance

of dividing work at ALL nodes and did this by a parallel search of the critical game tree�

In a similar vein Ferguson and Korf 

���� proposed a �bound�and�branch	 method that

only assigned processors to the left�most child of the tree�splitting nodes where no bound

�subtree value� exists� Their method is equivalent to the static PVSplit algorithm� and

��



yet realizes a speedup of 
� with �� processors for Othello�based alpha�beta trees� More

recently Steinberg and Solomon 

���� addressed this issue with their ER algorithm� and

also considered the performance of di�erent processor tree architectures� Their 
��fold

speedup with 
� processors was obtained through the search of 
��ply trees generated by

an Othello program� They did not consider the e�ects of iterative deepening� nor exploit

the bene�ts of transposition tables� As with similar studies� the fundamental �aw with

speedup �gures is their reliance on a comparison to a particular �but not necessarily

best� uniprocessor solution� If that solution is ine�cient �for example� by omitting the

important node�ordering mechanisms� the speedup �gure may look good� For that rea�

son comparisons with a standard test suite from a widely accepted game is often done�

and should be encouraged� Most of the working experience with parallel methods for

two�person games has centered on the alpha�beta algorithm� Parallel methods for more

node�count e�cient sequential methods� like SSS�� have not been successful 
Vornberger

and Monien� 
����� although potential advantages from the use of heuristic methods

�such as hashing to replace linked lists� have not been fully exploited�

����� Recent Developments

Although there have been several successful implementations involving parallel comput�

ing systems 
Guiliano et al�� 
����� signi�cantly better methods for NP�hard problems

like game�tree search remain elusive� Theoretical studies often concentrate on showing

that linear speedup is possible on worst order game trees� While not wrong� they make

only the trivial point that where exhaustive search is necessary� and where pruning is

impossible� then even simple work distribution methods yield excellent results� The

true challenge� however� is to consider the case of average game trees� or even better the

strongly ordered model �where extensive pruning occurs�� which result in asymmetric

trees and a signi�cant work distribution problem�

Many people have recognized the intrinsic di�culty of searching game trees under

pruning conditions� and one way or another try to recognize dynamically when the

critical game tree assumption is being violated� and hence to re�deploy the processors�

Powley et al� 

���� presented a distributed tree�search scheme� which has been e�ective

for Othello� Similarly Feldmann et al� 

���� introduced the concept of making �young

brothers wait	 to reduce search overhead� and the �helpful master	 scheme to eliminate

the idle time of masters waiting for their slaves� results�

Generalized depth��rst searches 
Korf� 
���� are fundamental to many AI problems�

and Kumar and Rao 

���� have fully explored a method that is well�suited to doing

�




the early iterations of single�agent IDA� search� The unexplored part of the trees are

marked and are dynamically assigned to any idle processor� In principle� this method

�illustrated in Fig� 
�� could also be used for deterministic adversary game trees� Finally

we come to the issue of scalability and the application of massive parallelism� None of

the work discussed so far for game tree search seems to be extensible to arbitrarily many

processors� Nevertheless there have been claims for better methods and some insights

into the extra hardware that may be necessary to do the job� Perhaps most con�dent is

Hsu�s recent thesis 
Hsu� 
����� His project for the re�design of the Deep Thought chess

program is to manufacture a new VLSI processor in large quantity� The original machine

had � or � processors� but two new prototypes with � and �� processors have been built

as a testing vehicle for a 
��� processor system� That design was the major contribution

of the thesis 
Hsu� 
����� and with it Hsu predicts� based on some simulation studies�

a ����fold speedup� No doubt there will be many ine�ciencies to correct before that

comes to pass� but in time we will know if massive parallelism will solve our game�tree

search problems�

��
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