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Abstract

We study the mass difference between the spin singlet and spin triplet

states of heavy quarkonium. The quarkonium meson is a non-relativistic quark-

antiquark bound-state of quantum chromodynamics (QCD). We set up a match-

ing procedure between the perturbative analysis of the short-distance interac-

tions, and the nonperturbative lattice analysis of the long-distance effects. To

this end, we calculate the part of the corresponding Wilson coefficient in the

continuum QCD region, to first order in the strong coupling constant. We

then improve upon the first order result by all-order resummation of the large

logarithms of the lattice spacing.
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Chapter 1

Introduction

The theoretical study of nonrelativistic heavy quark-antiquark bound states,

or quarkonium, is among the earliest applications of perturbative quantum

chromodynamics (QCD) [1]. Since the quarkonium Bohr radius is smaller than

the confinement scale, where the strong interactions become nonperturbative,

QCD perturbation theory can a priori be applied for the analysis of states

with low quantum numbers. This makes heavy quark-antiquark systems an

ideal laboratory for determining fundamental parameters of QCD, such as the

strong coupling constant αs and the heavy-quark masses mQ. However, in some

cases perturbative QCD fails to accurately describe the experimental data. A

famous example is the so-called. “ηb-mass puzzle”, which currently attracts

a lot of attention from the experimental and theoretical physics communities.

There is a significant discrepancy between the mass of the recently discovered ηb

meson, i.e. the lowest energy spin singlet bound state of bottomonium (bb̄), and

the perturbative QCD predictions for hyperfine splitting (HFS). The resolution

of this puzzle could shed new light on the dynamics of strong interactions, and

may even result in the development of new methods for the quantitative analysis

of heavy quarkonium systems based on first principles. This thesis is a part of

the corresponding theoretical research program.

1



Let us introduce the problem in more detail. HFS is the energy difference

between the spin triplet and spin singlet states, and is caused by the interaction

of the quark spin with the magnetic field generated by the spin of the antiquark

(and vice versa). For bottomonium bb̄, the HFS is given by the mass difference

between the spin-singlet ηb meson and the spin triplet Υ(1S) meson. The ηb

meson has been observed by Babar and Belle collaboration in the radiative

decays of the excited Υ states. Very high accuracy of Υ-spectroscopy allows

for the determination of HFS with only a few MeV error. The results are given

in [2] and [3], and are respectfully

Eexp
hfs = 71.4+2.3

−3.1(stat)± 2.7(syst)MeV, (1.1)

Eexp
hfs = 67.4+4.8

−4.6(stat)± 2.0(syst)MeV. (1.2)

The most accurate theoretical prediction for HFS includes the complete

first-order corrections in αs as well as the resummation of all-order next-to-

leading logarithmic corrections of the form αn+1
s lnn αs. Numerically it gives [4]

EQCD
hfs = 39± 11(th)+9

−8(δαs)MeV, (1.3)

where th stands for the errors that come from higher-order perturbative cor-

rections as well as any nonperturbative effects. The term δαs represents the

inherent uncertainty in αs(MZ) = 0.118 ± 0.003. This result is about two

standard deviations lower than the experimentally measured values.

One possible explanation of the above discrepancy is that perturbative QCD

corrections get contributions from virtual particles with “soft” momentum q ∼

αsmb, which is of order of the inverse Bohr radius. The strong interaction

is characterized by the corresponding running coupling at this scale, and the

effective expansion parameter αs(αsmb) ∼ 1/3, is not very small there. It is

possible therefore, that unknown higher-order perturbative corrections may be
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significant. One way to get control over these higher order corrections is to use

numerical lattice simulations of QCD which are not based on the expansion

in αs. However, existing lattice results do not properly take into account the

contributions of the “hard” virtual momentum, on the order of heavy quark

mass q ∼ mb, which is cut off by the lattice spacing a >> 1/mb. Fortunately the

hard region contribution can be more reliably calculated within perturbation

theory since the corresponding expansion parameter there is almost two times

smaller than in the soft region, αs(mb) ∼ 1/5.

The perturbative calculation of the hard region contribution has to be made

consistent with the lattice simulations. This is accomplished through system-

atic separation of hard and soft effects. The procedure that is used is called

“matching”, wherein the hard contribution is given by the difference between

the full QCD perturbative result, and the same order perturbative contribution

from the momentum region q < 1/a which is already contained in the lattice

simulations. The latter can be evaluated in the standard lattice perturbation

theory.

This work is the first step towards the evaluation of the hard region contri-

bution and presents the calculation of the first order QCD corrections to the

HFS in the scheme relevant for the matching procedure.

The plan of the thesis is as follows. In the next chapter we introduce the

basic theory of Hydrogen-like nonrelativistic bound states in QED and QCD,

where we derive the leading order approximation for HFS within the framework

of non-relativistic quantum mechanics (NRQM). In Chapter 3, we set up a nat-

ural framework within relativistic quantum theory, and show that we not only

recover the leading order HFS result exactly, but systematically incorporate all

other effects to the effective Hamiltonian, order by order. In Chapter 4.1 we

discuss the general approach to the evaluation of the perturbative corrections

from higher order diagrammatic contributions [5]. In Chapter 4.2, we describe

the calculation of the first order QCD corrections to the HFS with the gluon
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mass as the infrared regulator relevant for the matching procedure. Finally

in sections 4.3 and 4.4, we describe the renormalization group improved result

for the corresponding Wilson coefficient, which resums the large logarithms of

the the form αns lnn(mba) to all orders of perturbation theory. Therein we will

incorporate this piece into our calculations and present our final result for this

thesis. The technical details of the calculations are given in the Appendices.
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Chapter 2

Basic Properties of

Hydrogen-like Systems

2.1 Hamiltonian and Quantized Energy Levels

of Hydrogen

The procedure for solving the hydrogen atom can readily be applied to other

systems like positronium and quarkonium. We will present a very brief overview

of the subject matter and then proceed to apply it, with some minor alterations,

to quarkonium in the next chapter. The unfamiliar reader may consult any in-

troductory textbook on quantum mechanics for a more thorough treatment. [6]

The Hamiltonian for the hydrogen atom is of the standard form with a

Coulomb potential

Ĥ = − 1

2me

∇2 + VC(r) : VC(r) ≡ −α
r
, (2.1)

where ∇2 = 1
r
∂
∂r2
r − 1

r2
L̂2 , and me is the mass of the electron. In quantum

mechanics, the structure of the orbital angular momentum is represented by

the lie algebra SO(3). L̂2 is the operator in Hilbert space that, acting on an
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eigenstate, gives the square of the total angular-momentum. Formally, L̂2 is

the quadratic Casimir operator of SO(3) for that Hilbert space

L̂2 = (r̂× p̂) · (r̂× p̂) = −(r×∇) · (r×∇). (2.2)

From the form of the Hamiltonian, we have made explicit that the angular

momentum operator L̂2 commutes, and can be simultaneously diagonalized.

Put another way, the Hamiltonian is spherically symmetric and thus admits

as its angular solutions the eigenfunctions of the angular-momentum operator.

These solutions are the famous spherical harmonics Y l
m(θ, φ),

L̂2 Y l
m(θ, φ) = l(l + 1) Y l

m(θ, φ) ⇒ Ψ(r, θ, φ) ≡ φ(r) Y l
m(θ, φ). (2.3)

Doing the separation of variables in (2.3) and solving, gives the hydrogen wave-

functions

Ψnlm(r, θ, φ) =

√√√√( 2

na0

)3
(n− l − 1)!

2n
[
(n+ 1)!

]3
(

2r

na0

)l[
L2l+1
n−l−1

(
2r

na0

)]
Y l
m(θ, φ) e

− r
na0 ,

(2.4)

where Lpq−p are the associated Laguerre polynomials. The most probable sep-

aration of the electron from the atom’s center in its ground state is known as

the Bohr radius, a0 = 1
αme
≈ 53 pm.

The energy levels of Hydrogen in terms of the quantum number n are

En = − α2

2n2
me ≈ −

13.6eV

n2
. (2.5)
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2.2 Overview of Spin Related Perturbations

2.2.1 Spin-Orbit Coupling

Any particle with spin angular-momentum acts like a magnetic dipole. If an

electron (spin-1
2
) is immersed in a magnetic field, it will feel a torque acting on

it which tends to align its spin orientation(µ̂), parallel to the field. This torque

can be written as ~τ = ~µ× ~B = ~r× ~F , which has the solution ~F = ∇r
(
~µ · ~B(r)

)
.

Integrating the expression provides us with an energy H = −~µ · ~B.

Next, we know from classical electrodynamics that any charge moving rel-

ative to some other charged system sets up a magnetic field. In Hydrogen

we tend to think about the electron as circling around the stationary nucleus.

From the (non-inertial) frame of the electron, the proton appears to be circling

around it, and thus sets up a magnetic field proportional to its apparent orbital

angular-momentum1.

The magnetic moment of the electron is proportional to its spin, thus pro-

ducing the familiar term ~σ · ~B from the Pauli-equation (a non-relativistic limit

for the Dirac-equation in the presence of an electromagnetic field Aµ). This

effect can and has been calculated as a perturbation to the non-relativistic

Hamiltonian, the so-called spin-orbit interaction(S.O.)

δHs.o. =
µ0

8π

e2

m2
er

3
S · L . (2.6)

As can be seen from the above perturbation, the Hamiltonian no longer com-

mutes individually with ~L and ~S, therefore the operator eigenvalues are no

longer separately conserved. Luckily L2, S2 and ~J = ~L + ~S do commute, al-

lowing us to characterize the states of the now non-degenerate energy levels

(En → En,j), by means of their total angular momentum value and its cus-

1B = µ0I
2r = µ0ev

4πr2 . Then L = m|~r × ~v| ∼ mvr ⇒ B ∼ µ0

4π
e

mr3L .
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tomarily chosen z-component Jz. This non-commutation will also necessarily

appear in the Dirac Hamiltonian as well (see sec. 3.2).

2.2.2 Spin-Spin Coupling

The previous section was intended to act as a segue into the interaction of

interest in this paper. Thus we will first discuss the physical concepts involved

in spin-spin coupling through the viewpoint of non-relativistic quantum me-

chanics. We will then proceed to discuss the interaction in its natural place as

an aspect of quantum field theory (QFT), in the next chapter.

The main idea, starting with hydrogen, is that the nucleus itself constitutes

a magnetic dipole and so sets up another magnetic field1 that is unrelated to

the relative motion of the two particles,

B =
µ0

4πr3

[
(3µp · r̂)r̂ − µp

]
+

2µ0

3
µpδ

3(r). (2.7)

This gives yet another magnetic field for µe to couple to. The proton’s gy-

romagnetic ratio is not simple like the electron’s though, since it is a composite

structure:
µp =

gp e

2mp

Sp , µe = − e

me

Se. (2.8)

It should be noted for later however that, for our purposes in quarkonium, both

particles are elementary fermions and their gyromagnetic ratios differ only in

overall sign. The perturbation then takes the form

δHs.s. =
gp e

2

8πmempc2

[
3(Se · r̂)(Sp · r̂)

r3
−Se · Sp

r3

]
+

gp e
2

3mempc2
Se ·Spδ3(r). (2.9)

This term gives rise to the so-called Hyperfine Splitting. In the case of hydro-

gen, the factor of 1/mp is responsible for the HFS contribution being much less

1see for instance: Griffiths. Introduction to Electrodynamics. Pearson, 3rd edition for a
derivation.
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than the fine structure terms like spin-orbit coupling, owing to the proton mass

being mp ∼ 1800 me. This will not be the case in particles like quarkonium or

positronium, and as such becomes a much more important effect to study. In

any state where the angular momentum is zero (l = 0), the expectation value

of the first term vanishes2. We are thus left with the term proportional to the

delta function

Es.s. = 〈ψ100|δHs.s.|ψ100〉 =
gpe

2

3mempc2
〈Se · Sp〉|ψ100(0)|2. (2.10)

Now at this point, we must realize that the addition of this term to the Hamil-

tonian makes it so that individual spins are no longer conserved. We are thus

left with the problem of finding some spin related quantum numbers that are

conserved, that can also be used to characterize the system. We can start by

writing it out in terms of total angular momentum

S = Se + Sp ⇒ Se · Sp =
1

2
(S2 − S2

e − S2
p). (2.11)

Both particles are spin-1/2, thus S2
1/2 = s(s + 1) = 3/4. This still leaves the

problem of finding out what the quantity S2 is, to which we now turn.

2.3 Addition of Angular Momentum and Re-

sult for HFS

In classical physics we are capable of just adding any number of vectors together

by introducing a coordinate system and projecting the vectors onto each axis, or

a set of basis vectors, and then adding all the components separately. In the case

of quantum mechanics, we can know at most the total magnitude of the angular

momentum vector, and the value of one of its chosen components (typically the

2
∫

(a · r̂)(b · r̂) dcosθ dφ = 4π
3 a · b, which when multiplied by 3 in (2.9), cancels the factor

being subtracted.
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z-component). The other components (say Lx and Ly) do not commute with Lz

and thus we can’t simultaneously diagonalize these components. This leaves

us with an obvious problem: How do we add angular momentum vectors in

quantum mechanics?

In the ground state of quarkonium, the total orbital angular momentum

is zero and we are interested to know how the total spin configuration of the

quark-antiquark system looks. For (anti)quarks of spin-1/2, the z-component

can have only two states (ms = ±1/2). We typically call them spin-up and

spin-down, and represent them | ↑〉 and | ↓〉 respectively.

The complication arises when we wish to know not only the combined z-

spin of both particles, but also the combined vector magnitude, dependant on

the relative orientation of two indeterminate vectors. One can, similarly to

the case of orbital angular momentum introduce rasing and lowering operators

S+ = S+
(1) + S+

(2) and S− = S−(1) + S−(2) then act on all possible states :

| ↑〉| ↑〉, | ↑〉| ↓〉, ... . (2.12)

The result is that the total value of spin ranges from −|s1 + s2| → |s1 + s2| in

integer steps. Specifically, we get three states with total angular momentum

|s = 1;ms = 0,±1〉, called the triplet. We also get one state with total angular-

momentum |s = 0;ms = 0〉 called the singlet.

This can be written symbolically as a set of orthonormal kets:


|1, 1〉 = | ↑↑〉

|1, 0〉 = 1
2

(
| ↑↓〉+ | ↓↑〉

)
|1,−1〉 = | ↓↓〉

 s = 1 , (2.13)
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{
|0, 0〉 = 1

2

(
| ↑↓〉 − | ↓↑〉

) }
s = 0 . (2.14)

We now see how ground-state hydrogen-like atoms have their degeneracy re-

moved. The hyperfine splitting occurs because the spin-spin perturbation takes

on a different value depending on the overall spin configuration. That is to say

that it depends on whether the bound system is in the triplet or singlet con-

figuration. With this understood, we have that

Se · Sp =
1

2
(S2 − S2

e − S2
p) =

1

2
S2 − 3

4
, (2.15)

where S2 = 0 for the singlet, and S2 = 2 for the triplet. Therefore we get

Se · Sp = −3/4 for the singlet, and Se · Sp = 1/4 for the triplet. Then if

we take the difference between the two states in hydrogen, we get the famous

21cm line

Ehfs =
4gp

3mpm2
e c

2 a4
= 5.88× 10−6eV. (2.16)
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Chapter 3

Hyperfine Splitting in

Quarkonium at Leading Order

It was mentioned in the last section that spin-spin coupling has its natural place

in QFT, and this statement is in fact true of spin in general. The Schrodinger

equation makes no mention of spin at all, being a differential operator on a

scalar function. Historically, it had to be added to the theory in an ad-hoc

manner. The Dirac equation is a relativistic wave equation for spin-1
2

particles,

and marks the natural start for a discussion leading to the relativistic scattering

expressions of interest. Of course, a thorough treatment of the subject matter is

far too lengthy to fully expound in this paper. We will present it in a way that

will put the necessary ideas on the table, and will assume a basic familiarity

with the Dirac equation and the Feynman diagram representation of pertur-

bation theory (whether from use in the S-matrix or in correlation functions).

This will give the reader the relevant formalism required to understand the

work presented throughout. We will start by introducing the largest difference

between QED and QCD: colour charge.
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3.1 Colour SU(3)

In studying the interactions of hadrons (baryons and mesons), experimentalists

observed the ∆++ baryon, which has spin S = 3/2 and we now know consists

of three up-quarks [7]. Quarks, like all fermions, carry spin 1/2. Therfore all

three quarks in ∆++ must have their spins aligned, a state which is symmetric

to particle exchange. The baryon’s functional ground state is also described

by a symmetric wave-function. But we know that, in order to satisfy the Pauli

exclusion principle, the overall wave function must be anti-symmetric. It was

suggested therefore that quarks carry another quantum number called colour,

that was yet to be observed.

This hypothesis necessitated individual quarks to carry one of three different

colour charges. The established notation is to label these by the three primary

colours: Red, Green, and Blue (R,G,B) as well as their anti-colour equivalents

(R̄, Ḡ, B̄). The problem was, that in order to have an overall charge of +2e, the

individual quarks must carry a charge of +2/3e, of which there was no evidence.

It did however give an excellent phenomenological explanation of many hadrons

being discovered at the time. Different sets of quark-antiquark pairs formed

different mesons, and combinations of three quarks (antiquarks) formed the

baryons (antibaryons), provided that they were always antisymmetric under

colour SU(3) transformations. The absence of fractionally charged fermions is

a problem to be explained by colour confinement in the section that follows

renormalization group theory.

The details of how colour impacts the evaluation of QCD Green’s functions

and S-matrix elements is given in Appendix C. In this chapter we will study

the tree level scattering amplitude. We compare figure 3.1 with the rule given

in figure C.1, and see that we get a colour factor

g2
s T

a
ijT

a
kl → CF . (3.1)

13



The equivalence follows for the singlet1(i.e. colour invariant) configuration

only. CF ≡ N2
c−1

2Nc
, is the quadratic Casimir operator of the fundamental rep-

resentation, where Nc is the dimension of the SU(Nc) colour algebra. If the

quark-antiquark bound state were in the colour octet configuration, we would

get −1/2Nc = −1/6. One consequence of colour conservation is the implication

that the quark-antiquark colour singlet configuration can exchange a single

virtual-gluon in the colour octet, but they cannot annihilate into one. If they

could annihilate, there would in fact be an additional contribution to the tree

level HFS potential2.

Figure 3.1: Colour Factor at Tree level

3.2 The Dirac Equation and Spin

The Schrodinger equation is non-relativistic by nature. This is immediately

obvious from the fact that it is first order in time derivatives but second order

in spatial derivatives. Any relativistically covariant quantum theory must treat

time and space on equal footing, and reduce to the Schrodinger equation in the

appropriate non-relativistic limit. The Dirac equation in momentum space,

where the γµ are the familiar gamma matrices, and m is a fermion mass, is

1The details of projecting out the singlet state are presented in section A.1.2
2There can of course be two gluon (and higher even gluon number)annihilation diagrams.
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(
/p−m

)
ψ = 0 : /p ≡ pµγ

µ. (3.2)

If we multiply this by γ0, and go to position space, we get

i
∂ψ

∂t
= ĤDψ : ĤD ≡ γ0

(
iγ · ∇+m

)
= −iα · ∇+ βm. (3.3)

This defines the free Dirac (or relativistic) Hamiltonian ĤD. The Dirac equa-

tion is a matrix equation and as such ψ(x) = ψα(x), must have four com-

ponents. We know from NR quantum mechanics that fermions like the elec-

tron and the quark have only two spin degrees of freedom. The reason for

a four-spinor is that relativistic quantum theory introduces antiparticles into

the works. Two spin degrees of freedom are for the fermion, and two are for

the antifermion. This is all consistent then, only if two degrees vanish in the

fermion’s rest frame.

In the classical regime where E >> |~p|, so that p ≈ 〈m,~0〉,

(/p∓m) ψ ⇒ m(γ0 ∓ 1) ψ = 0, (3.4)

where the −(+) corresponds to the fermion(anti-fermion). We choose a basis

in which γ0 is diagonal

γ0 =

 1 0

0 −1

 . (3.5)

Then we plug this into (3.4) and get

 0 0

0 1l

 φ

χ

 = 0 &

 1l 0

0 0

 φ

χ

 = 0. (3.6)

Two of the degrees of freedom vanish as predicted, and γ0 ± 1 acts like a

projection operator that picks out the NR physics2. In the rest frame of the
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particle, these will represent the two spin state solutions for the fermion and

antifermion respectively, and we can write them in a familiar notation as

u1, u2 =

 ↑
0

 ,

 ↓
0

 v1, v2 =

 0

↓

 ,

 0

↑

 . (3.7)

For an unspecified four-momentum, the free Dirac equation has four linearly

independent plane-wave solutions:

ur(p) e
−ip·x, vs(p) e

+ip·x r, s = 1, 2. (3.8)

We note that because the new four spinor representation is formed from a direct

sum of two spinor representations, we get an irreducible representation of the

spin operator by diagonally stacking the two dimensional representations of the

spin operator (ubiquitously chosen as the pauli matrices). We then obtain the

spin operator for Dirac theory: Σ = σ⊗ 1l2×2.

Let us now give precise definitions (representations) to the spinors and

matrices we will be using in this paper. The presentation from here on will

follow closely the section on the Breit equation given in Landau and Lifshitz [8].

A useful set of spinors for our purposes are:

us =

 √2m
(
1− p2

8m2c2

)
ws(

σ·p
2mc

)
ws

 , vt =

 √2m
(
σ·p
2mc

)
wt(

1− p2

8m2c2

)
wt

 , (3.9)

where the w’s are 2-spinors. These reduce to the rest frame spinors in the

limit that momentum goes to zero, with the exception that a relativistic spinor

normalization is used (ūu = 2m) and (v̄v = −2m). We will also use the

2Indeed (γ0 − 1)2 = −2(γ0 − 1)
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following representation for the gamma matrices

γ0 =

 1 0

0 −1

 , γ =

 0 σ

−σ 0

 . (3.10)

Now we recall from NRQM that the ad-hoc addition of spin-spin coupling

fouled up commutation relations between the Ĥ and S, and we can now see this

explicitly. For arbitrary momentum, the spinors are energy-eigenstates, but are

not spin-eigenstates. That is, ur and vs are 4-spinors that satisfy (/p−m)ur = 0

and (/p + m)vs = 0, but unless p = pẑ, Σzur(p) 6= mzur(p). This is because

[H,Σ] 6= 0. This should be clear since the Dirac equation introduces spin-orbit

coupling explicitly in the basic spinor and gamma matrix definitions. As one

would expect, the total angular momentum is conserved [H,J ] = [H,Σ+L] =

0. As a result of all this, it is sometimes convenient to use a particle co-

moving quantization, where the spin (anti)parallel to the particle motion is

chosen for diagonolization. This requires introducing a spin helicity operator

Σ · p̂ , which ensures commutation with the Hamiltonian so that the helicity

states are also simultaneously energy-eigenstates. While theoretically possible,

helicity eigen-states are rarely used since the typical plane-wave spinors have

definite physical energy and momentum, which is all that is usually known in

experiment anyways.

3.3 Born Series of Non-Relativistic Scattering

This section will set up the last connection that we will need from NRQM, to

compare with the relativistic results. Consider the time independent Schrodinger

equation with a potential:

− 1

2m
∇2ψ + V (r)ψ = Eψ ⇒

(
∇2 + ε

)
ψ = Ṽ ψ, (3.11)
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where ε ≡ 2mE and Ṽ ≡ 2mV . We start by fourier transforming the equation

with V → 0, and replaced by a delta function source. This gives us the Green’s

function1

G(r) = −
∫

d3k

(2π)3

eik·r

k2 − ε2
= − 1

4π

e±ik·r

|r|
. (3.12)

The sign in the exponent depends on your choice of contour in the integral,

which physically represents either incoming or outgoing scattering waves. From

this we then know the full solution (V 6= 0) to this problem in terms of ψ0 (the

solution to the free equation) is just

ψ(r) = ψ0(r) +

∫
d3r′ G(r− r′)Ṽ (r′)ψ(r′). (3.13)

We can solve this by iteration, and it will be convenient to pull out some ex-

pansion parameter λ from the potential (Ṽ → λṼ ). λ will be some (hopefully)

small parameter, like a coupling constant, that is fixed by the problem

ψ = ψ0 + λ

∫
GṼ ψ0 + λ2

∫ ∫
(GṼ )(GṼ ψ0) + O(λ3). (3.14)

The above series is known as a Born-series expansion, and is a very useful

equation for NR quantum scattering. In a typical experiment we are interested

in the probability amplitude that a particle that is initially far away from

a stationary source (size r′), will scatter off the source and be in the state

ψ. Let us now make the approximation of a plane wave solution (r >> r′)

ψ(r) ≈ eik·r0 + eik·r

r
f(θ, φ). Comparing this with our above expression (3.14),

we can conclude:

f(θ, φ) = − λ

4π

∫
d3r′e−ik·r

′
Ṽ ψ = − λ

4π
〈ψ0|Ṽ |ψ〉. (3.15)

1A thorough treatment of the method of Green’s functions can be found in most textbooks
on partial differential equations, e.g. Myint-U and Debnath’s Linear PDE’s

18



We see that the differential cross section for the process |ψ0〉 → |ψ〉 will be

proportional to the expectation value of the potential squared. We can thus,

up to first order, identify the classical potential that would give rise to the

relativistic scattering amplitude we are going to obtain below.
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3.4 Scattering Interaction

The First order scattering amplitude for a quark and antiquark, with masses

m1 and m2 respectively, can be written as:

Figure 3.2: Tree Level Scattering

Mscatt. = CF [ ūr(p
′
1)γµus(p1) ]Dµν(k

2) [ v̄t(p2)γνvw(p′2) ], (3.16)

where Dµν(k
2) is the gauge-propagator of the QFT. The gauge-propagator

represents the propagation of photons with coupling “e” for QED, or gluons

with coupling “gs” for QCD. We will follow the custom for working in the NR

limit, and use the coulomb gauge

D00 =
g2
s

k2
, Dij = − g2

s

k2 − ω2
k/c

2

(
δij −

kikj
k2

)
. (3.17)

Note that in all of this we are explicitly keeping factors of the speed of light

(c 6= 1), and the reason for this is twofold. First and foremost, an expansion in

1/c will organize the terms, allowing us to see at which stage of the game new

physics, not present in the Schrodinger equation, will appear. If we neglect all

terms of order 1/c and higher(set c→∞), then the spinors reduce to those of

NRQM and we simply get part of the D00 term

Mscatt. = (2m1)(−2m2)(w†rws) V (k) (w†tww) : V (k) = −CF g
2
s

k2
, (3.18)

which is just the Fourier transform of the coulomb potential generalized to
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QCD, where k = p′1 − p1 = p2 − p′21. Just as we suspected for the complete

NR-limit, the coulomb interaction is the only term that appears in the potential.

The second reason for arranging things in terms of 1/c is related to the fact

that radiation appears as an interactive effect in order 1/c3. To have any chance

at describing our system via higher order contributions to the NR-Hamiltonian,

we must keep only terms less than O(1/c3). To be consistent with the order of

the relativistic expansion, we must also include the next term in the expansion

of the relativistic kinetic energy in our Hamiltonian. It is also important to

ensure that we subtract off the rest mass from the energy, as the Hamiltonian

operator is concerned with kinematical degrees of freedom only,

Ĥ0 ψ = (E−m1c
2−m2c

2)ψ : H0 =
p̂1

2

2m1

+
p̂2

2

2m2

− p̂1
4

8m3
1c

2
− p̂1

4

8m3
1c

2
. (3.19)

Let us now write out our scattering amplitude to the required accuracy. We

concisely write just 1,2 and 1′, 2′ to represent both momentum and spin indices.

Therefore we have for example that u1 ≡ ur(p1).

Mscatt. = [ ū1′γ
0u1 ][ v̄2γ

0v2′ ]D00 + [ ū1′γ
iu1 ][ v̄2γ

jv2′ ]Dij

= [ u†1′ u1 ][ v†2 v2′ ]D00 + [ ū1′γ
iu1 ][ v̄2γ

jv2′ ]Dij

(3.20)

We insert the expressions for the spinors and gamma matrices [eqn.’s (3.9),(3.10)],

and with some massaging get

u†1′ u1 = (2m1) w∗1′
[
1− k2

8m1c2
+
iσ1 · k× p1

4m1c2

]
w1, (3.21)

ū1′ γ u1 = (1/c)w∗1′
[
iσ1× k + 2p1 + k

]
w1. (3.22)

1From now on in this section, we will deal only with 3-momentum, and so we can let k2

mean k2 without possibility of confusion.
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The terms arising from the anti-particle spinors are very similar(1 → 2 and

k→ −k), thus carrying out the multiplication and simplifying gives the leading

result.

Mscatt. = (2m1)(−2m2)w†1′w
†
2V (p1, p2, k)w1w2′ , (3.23)

where the potential in momentum-space, with higher order terms in 1/c in-

cluded, becomes:

V (p1, p2, k) = −CFg2
s

[
1

k2
− 1

8m1c2
− 1

8m2c2
+

(k · p1)(k · p2)

m1m2k4
− (p1 · p2)

m1m2k2

+
iσ1 · k× p1

4m2
1c

2k2
− iσ2 · k× p2

4m2
2c

2k2
− iσ1 · k× p2

2m1m2c2k2

+
iσ2 · k× p1

2m1m2c2k2
+

(σ1 · k)(σ2 · k)

4m1m2c2k2
− (σ1 · σ2)

4m1m2c2

]
.

(3.24)

We are of course only interested in the spin-spin interaction and thus can limit

our attention to only those terms containing both spin operators (σ1,σ2), which

upon examination is only the last two terms. Performing a Fourier transform

on these two terms we get [8]

Vspin = − CFg
2
s

(16π)m1m2c2

[
σ1 · σ2

r3
− 3

(σ1 · r)(σ2 · r)

r5
− 2

3
σ1 · σ2δ(r)

]
. (3.25)

Putting in Si = 1
2
σi, we obtain precisely the potential that we got from the

perturbation theory of NRQM1. It is quite satisfying to see that not only have

we generated the interaction of interest in the relativistic formalism, but we

have systematically included all other contributions to the potential in this

order.

There are several small modifications that must be made to get the equiv-

1if e→ gs, and we include CF , of course.
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alent of hydrogen’s HFS formula for quarkonium. First of all, both masses

involved in the Hamiltonian are equal. As such, there can be no approximation

of a stationary nucleus. We thus treat this two body problem by reducing it

to a one particle problem of a reduced mass mr, circling around the system’s

center of mass

mr ≡
mQmQ̄

mQ +mQ̄

=
mQ

2
. (3.26)

We can use this in our already derived expression, which we repeat here for

convenience

Es.s. =
2αs

3(mQ/2)2 c2
〈S1 · S2〉|ψ100(0)|2. (3.27)

We also know that |ψ100(0)|2 = 1/π a30, but the analog of the Bohr radius in

heavy quarkonium is → 1/a0 ≈ 1
2
CFmQ c αs. Thus, the leading order result is :

Es.s. =
C4
Fα

4
smQ

3

 −1/4 (singlet)

+3/4 (triplet)

 ⇒ Ehfs =
C4
Fα

4
smQ

3
. (3.28)
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Chapter 4

Radiative Corrections To

Hyperfine splitting

4.1 Hyperfine splitting at NLO

The dynamics of nonrelativistic heavy quark-antiquark bound states is charac-

terized by three different scales:

1. The hard scale of the heavy quark mass mQ

2. The soft scale of the characteristic bound state three-dimensional mo-

mentum mQαs.

3. The ultrasoft scale of the bound state energy mQα
2
s

In order to effectively deal with all the dynamical scales in a systematic

way, the method of nonrelativistic effective theories has been developed [9].

The method creates a natural connection between the quantum field theory

and its appropriate Schrödinger equation from NRQM. The hard and soft glu-

onic fields do not show up as real particles in quarkonium, and therefore they

can be “integrated out”, which induces the effective interactions of the heavy

quarks. These interactions are included into the effective Hamiltonian, which
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describes the evolution of the nonrelativistic quark-antiquark pair in (potential)

NRQCD. These corrections are in terms of both the strong coupling constant,

and heavy quark velocity, to the leading Coulomb approximation. The effective

Hamiltonian valid to N3LO, can be written [5]

H = (2π)3δ(q)

(
p2

mQ

− p4

4m3
Q

)
+ Cc(αs)VC(q) + C1/m(αs)V1/m(q) +

πCFαs
m2
Q

×
[
Cδ(αs) + Cp(αs)

p2 + p′ 2

2q2
+ CS2(αs)S

2 + Cλ(αs)Λ(p,q) + Cc(αs)T (q)

]
.

(4.1)

In the above expression, p and p′ are the spatial momenta of the incoming and

outgoing quarks respectively. The operators, in order of appearance are:

VC(q) = −4πCFαs
q2

, V1/m(q) =
2π2CFαs
mQq

, S =
σ1 + σ2

2
,

Λ(p,q) = i
S · (p× q)

q2
, T (q) = σ1 · σ2 − 3

(q · σ1)(q · σ2)

q2
. (4.2)

In the above, σ1 and σ2 are the spin operators of the quark and antiquark

respectively. The coefficients Ci(αs), known as Wilson coefficients, incorporate

the effects of the hard and soft modes that have been integrated out. They

can be written as a power series in αs(µ), which is renormalized in the MS

scheme. The series coefficients are functions of the mass, momentum transfer,

and renormalization scale. We are interested in the coefficient of the spin-flip

operator responsible for the HFS

CS2 =

[
4

3
+
αs
π
C

(1)

S2 + ...

]
. (4.3)

The first order correction to the HFS is determined by the one-loop correc-

tions to the Coulomb and spin-flip potential. It can be found within the stan-

dard time-independent perturbation theory for the energy levels. The result
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reads [10, 11]:

ENLO
hfs =

C4
Fα

4
smb

3

[
1 +

αs
π

(
7CA

4
ln
(
CFαs

)
− CF

2
+

2π2 − 26

9
nlTF

+
3− 3ln(2)

2
TF +

122− 11π2

18
CA

)]

≈ ELO
hfs

[
1 + αs

(
1.67 ln(αs) + 0.61

)]
, (4.4)

where CA = Nc is the quadratic Casimir operator of the adjoint representation

of colour SU(Nc), “nl” is the number of massless quark flavours, and TF = 1
2

is

the index of the representation. Logarithmically enhanced terms like in (4.4)

are typical for the bound state perturbative series, and can be resummed to

all orders by using the NR renormalization group. The details of the NLL are

also presented in [11]. The numerical value is

EQCD
hfs = 39± 11(th)+9

−8(δαs)MeV, (4.5)

where “th” stands for the errors that come from higher-order perturbative

corrections as well as any nonperturbative effects. The term δαs represents the

uncertainty in the experimental value αs(MZ) = 0.118± 0.003.

4.2 Matching the perturbative and lattice anal-

ysis of HFS

We can now address the main calculations that are carried out in this paper.

The fully perturbative NLO result quoted in (4.5), is approximately two stan-

dard deviations away from the experimentally measured values quoted in the

introduction. It is very reasonable to assume that perturbation theory will give

the correct result for the hard modes of the Wilson coefficient. Upon compari-
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son with the experimental findings however, it must be that due to asymptotic

freedom, the running coupling is too large in the softer region of the calculation

for perturbation theory to obtain a convergent result.

The main idea of our approach is to use perturbation theory only for the

hard contribution to the Wilson coefficient CS2 , which is suppressed by powers

of the reasonably small expansion parameter αs(mQ). The soft contribution is

calculated in lattice NRQCD by numerically evaluating the functional integral

defined on a finite lattice of spacing a >> 1/mQ. This accounts for the strong

interaction effects beyond the region of validity for perturbation theory. The

calculation of the hard and soft regions are therefore performed in completely

different ways. The results from both regions have to be matched, to correctly

reproduce the first-order QCD result. To get the hard contribution to the Wil-

son coefficient consistent with the lattice result, the first-order soft corrections

to the spin flip potential computed in perturbative lattice NRQCD, are sub-

tracted from the first-order continuum QCD result for the Wilson coefficient

CS2 .

The perturbative calculations in the lattice NRQCD, however, are techni-

cally extremely complicated and require the use of specific unphysical infrared

regulators, such as a gluon mass λ, where the momentum transfer is set to

zero. For consistency therefore, we have to adopt the same regulator in the

QCD calculation of CS2 . This calculation is the main goal of this thesis.

The dimensionful parameters that remain are the hard scale νh ∼ mQ, the

soft cutoff νs ∼ 1/a, where a is the finite lattice spacing that is used in the

calculation, and of course the ad hoc gluon mass regulator λ. It is generally

true that the condition ΛQCD << 1/a << mQ is satisfied to ensure that the

calculations are both valid non-relativistically (<< mQ), and capable of being

treated in perturbation theory (>> ΛQCD) for the matching region. In order

to ensure that we can obtain the Wilson coefficient from the region of virtual

momentum of interest 1/a < q < mQ, we apply a subsidiary condition on the
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NRQCD lattice cutoff that says 1/a0 < 1/a. In other words, we arrange it so

that the lattice cutoff is larger than the reciprocal of the Bohr radius a0.

We obtain the first-order QCD correction to the Wilson coefficient by adding

together the contributions of the planar box, the crossed box, and the vertex

diagram. The details of calculation are presented in the appendices, and both

the planar-box and crossed box have been checked by applying expansion by

regions. The results for individual contributions read

C
(1)

S2 |p.b. = CF

[
− 2 + 2ln

(
λ/mQ

)]
, (4.6)

C
(1)

S2 |c.b. = − 2
(
CF − 1

2
CA
)

ln
(
λ/mQ

)
, (4.7)

C
(1)

S2 |F2 =
4

3

[
CF + CA

(
1 + ln

(
λ/mQ

))]
. (4.8)

We must also include the effects of two, two-gluon annihilation box-diagrams,

which contribute [12], C
(1)

S2 |ann. = 2Tf
(

1 − ln(2)
)
. Summing all these coeffi-

cients together we get

C
(1)

S2 = −2

3
CF +

1

3
CA

(
4 + 7ln

(
λ/m

))
+ 2Tf

(
1− ln(2)

)
. (4.9)

The lattice NRQCD result for the first order soft contribution to the Wilson

coefficient can be parameterized as follows

C
(1s)

S2 = Aslat +
7

3
CA ln

(
aλ
)
, (4.10)

where Aslat is a numerical constant. Since the singular infrared behaviour must

be the same in both NRQCD and full QCD, the coefficient of the logarithm of

λ is the same as in full QCD. We leave Aslat as a free parameter in this paper.
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The hard contribution to the Wilson coefficient consistent with the lattice

evaluation of the soft contribution is given by the difference C
(1)

S2 − C(1s)

S2 and

reads

C
(1h)

S2 =

[
− 2

3
CF +

4

3
CA + 2Tf

(
1− ln(2)

)
− Aslat

]
− 7

3
CA ln

(
mQa

)
. (4.11)

The above is the main result for this thesis, and it represents a Wilson coefficient

whose lower cutoff is now precisely the UV cutoff of the lattice simulations.

4.3 Renormalization Group

QCD is a non-abelian gauge theory. As was mentioned briefly in the previous

section, these gauge theories are known to exhibit a property called asymptotic

freedom. In order to appreciate the consequences of this, we must make a brief

detour into some of the more formal complications that arise in higher order

perturbative calculations in QFT.

Quantum Field theories are renowned for requiring regularization of in-

finities, either through a Pauli-Villars momentum cutoff, dimensional regular-

ization, or some other means once loop diagrams are calculated. Systematic

methods for absorbing these infinities into field-strength renormalizations, mass

renormalizations etc. are then chosen based on the specific type of problem at

hand. The basic idea can actually be very simply explained [13].

Let’s say that we have calculated some loop diagram and the diagram for-

mally diverges as we go to the infinite momentum range. This would at first be

very unsettling and indeed was during the infancy of QFT. After some thought

though, we begin to realise that this makes a lot of sense. This is telling us

that our theory isn’t valid beyond a certain range of energies. It may well be

that the theory we are currently using is just an effective limit of some larger

quantum field theory. In any case, let’s say that we get an amplitude that looks
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something like

M = −iλ+ iλ2B ln
(
Λ/µ

)
, (4.12)

where Λ is a Pauli-Villars regulator which indicates the relative momentum at

which our knowledge of the theory breaks down. µ is some kinematical invariant

for the diagram whose specifics are unimportant, and λ is a coupling that is used

in the original perturbative expansion(for example the fine structure “constant”

in QED). We are then faced with the question of what value to give to Λ and

λ in this equation. In other words, we have to give some defining properties to

these quantities. One useful way is to define the renormalized coupling λR, as

the amplitude at some particular value µ = µ0,

−iλR(µ0) = −iλ+ iλ2B ln
(
Λ/µ0

)
. (4.13)

This relation is easily inverted to give −iλ = −iλR − iλ2
RB ln

(
Λ/µ0

)
. Then

putting this into our amplitude (4.12), we now have an equation that expresses

the amplitude for the process of interest at any energy we want based on

measurable quantities only

M = −iλR(µ0) + iλ2
R(µ0) ln(µ0/µ

)
. (4.14)

Now the issue arises when we wish to measure the process at some momen-

tum µ that is vastly different from our experimental reference point µ0. The

renormalized coupling constant may still be small, but we can’t claim the same

thing for the logarithm. This is where the introduction of the renormalization

group becomes invaluable. We want to choose the coupling constant that is ap-

propriate for physics at the scale µ so that the logarithm becomes small again.

In other words we want it in terms of a new coupling

M = −iλR(µ′0) + iλ2
R(µ′0) ln(µ′0/µ

)
. (4.15)
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We thus want to derive an equation that can tell us how the value of the

coupling constant changes as we move to a new scale. A proper treatment of the

subject as a whole requires an explanation of Wilsonian renormalization theory

and the Callan-Symanzik equation, which is beyond the scope of this paper.

For our simple example however it will be sufficient to use a little differential

calculus, and some careful interpretation of the result. Take µ′0 ∼ µ0 + δµ0 for

the moment and subtract eq. (4.14) from (4.15) to get:

µ0
dλR
dµ0

= Bλ2
R. (4.16)

This is known as a renormalization group equation and its solution, which

must be supplemented with initial conditions, tells us how the renormalized

coupling λR changes with the scale of the problem. This completely general

analysis allows us to imagine several interesting situations of note. First, we

can imagine that λ → e2, the electric charge, and that we have chanced upon

the renormalization group equation. The equation tells us how the so-called

“running charge” changes as we go to different energy scales. It so happens that

there is a renormalization group equation for every parameter of a QFT. The

electric charge, for instance, increases as we go to higher interaction energy.

The strong coupling constant (gs) decreases however, and this is precisely the

asymptotic freedom we spoke of earlier.

This stage of the game is precisely where the analysis of Wilson becomes

a vital part of the discourse. It studies how the importance of parameters in

the Lagrangian change with scale. To re-iterate, this is precisely the case with

QED being an “effective” field theory for the true electroweak theory. As we go

to higher energies in QED we find that new operators, previously “irrelevant”,

must be included to accurately describe the phenomena. This new tool, simply

put, allows us to study physics on new scales by resumming the large logs

into these running parameters, and furthermore allows us to study physics at a
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particular scale of interest without needing any information of the full theory

by ”integrating out” these degrees of freedom.

We now have the language necessary to discuss aymptotic freedom. All

non-abelian gauge theories are known to exhibit this property; they are weakly

interacting at high energies where their running coupling decreases, and are

strongly interacting at low energies. The reason that free quarks with colour

charge are never observed is then explained by the asymptotic freedom that

constrains all observable particles to be colourless(i.e. colour invariant), and it

means that at a certain point, usually denoted ΛQCD, the perturbation theory

with which QFT calculations are usually carried out, will break down.

The (solved) QCD renormalization group equation reads [7]

αs(q) =
αs(µ0)

1 +
[
β0αs(µ0)/2π

]
ln(q/µ0)

, (4.17)

where µ0 is the reference scale that provided the initial condition. β0 ≡ 11
3
CA−

4
3
TF nl, is the one loop coefficient of the QCD β-function. At this point it is

traditional to introduce the point ΛQCD by means of the equation

(
β0

2π

)
αs(µ0) ln

(
µ0/ΛQCD

)
= 1, (4.18)

which has been measured through various experiments to be approximately

ΛQCD ∼ 200MeV , and allows the rewriting of (4.17) as:

αs(q) =
2π

β0 ln(q/ΛQCD)
. (4.19)

We can now get a more accurate estimation of our previous result (4.5),

by including the effects of the leading logs. Leading log (LL) corrections come

from inclusion of additional virtual gluon exchanges. As an example, there

were two gluons exchanged in the box diagrams evaluated in this thesis, which

resulted in a logarithmic term to a single power. If we create a ladder structure
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of n-gluons, then there will be logarithmic contributions as lnn−1
(

1
mQa

)
that

result. We thus improve our first order result by resumming, to all-orders,

the large logarithms of the lattice spacing. The leading log result is actually

already known from [14]

CLL
S2 = αs(νh)

[
1 + β̃

(
z−2CA+β0 − 1

)]
, (4.20)

where β̃ = 2β0−7CA

2β0−4CA
, and

z ≡

(
αs(νs)

αs(νh)

)1/β0

=

(
ln
(
mQ/ΛQCD

)
ln
(
1/aΛQCD

) )1/β0

. (4.21)

4.4 Summary

We can add the contribution from (4.21) into our previous result, provided we

remove the one loop log from our original result to avoid double counting

CS2(αs,mQ, a) =

[
− 2

3
CF +

4

3
CA + 2Tf

(
1− ln(2)

)
− Aslat

]

+
4π

3

[
1 + β̃

{(
αs(1/a)

αs(mQ)

)1−2CA

β0
−1

}]
. (4.22)

The above relation constitutes our final result for this thesis. In order to

take the analysis further, we require the calculation of the matching coefficient

ANR, obtained from NRQCD lattice simulations. Upon determination of the

matching coefficient, we can then add this contribution to the result from full

lattice theory, which includes all heavy quark interaction effects up to the lattice

cutoff 1/a. The lattice results for HFS are already known, and can be found

in [15], along with many details of the calculation. Their quoted result for

M(Υ) - M(ηb) is 61(14) MeV, however this doesn’t take into account the hard
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contribution, because the lattice spacing is necessarily finite. The inclusion

of the one loop Wilson coefficient currently alters this value by ≈ −20 MeV.

The effect of the theoretical predictions presented in this paper will depend on

the NRQCD matching coefficient and hence whether the content herein will

improve the agreement with experimental measurements is not a priori known.
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Chapter 5
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Appendix A

Evaluation of Diagrams

A.1 Crossed Box

A.1.1 Setting up the problem and doing the integral

Figure A.1: Crossed Box

The above diagram can be written in the following schematic form ( where the

colour factor is left out, and m = mQ)

iM = ig4
s

∫
d4q

(2π)4

A+Bµqµ + Cµνqµqν
(q2 − λ2)2(q2 − 2mq0 + iε)2

. (A.1)

It will be shown in Section A.3.1 that the only term important for spin is the

term second order in loop momentum Cµνqµqν , i.e. just
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iMspin = ig4
s

∫
d4q

(2π)4

Cµνqµqν
(q2 − λ2)2(q2 − 2mq0 + iε)2

. (A.2)

In order to solve this integral it is simplest to use a simple Feynman parametriza-

tion

1

a2b2
= 3!

∫ 1

0

x(1− x)dx

[a+ (b− a)x]4
, (A.3)

which can be derived by twice differentiating the standard relation

1

ab
=

∫ 1

0

dx

[a+ (b− a)x]2
. (A.4)

So we now have the form

iMspin = 3! ig4
s

∫ 1

0

x(1− x)dx

∫
d4q

(2π)4

Cµνqµqν
[(q2 − λ2) + (−2mq0 + λ2 + iε)x]4

.

(A.5)

In order to bring this into the form of a standard loop integral, we make the

substitution q0 → q′0 = q0 − mx so that q′ 20 − m2x2 = q2
0 − 2mxq0. This

will of course change the numerator but we note that C0i =̃O(~k) and the term

C00(2mxq0) contributes an odd term which drops upon integrating over the

loop momentum.

iMspin = 3! ig4
s

∫ 1

0

x(1− x)dx

∫
d4q

(2π)4

Cµνqµqν + C00m2x2

[q2 − {m2x2 + λ2(1− x)− iεx}]4
.

(A.6)

This integral is now a standard loop integral with the term in the curly brackets

independent of the loop momentum. This can be evaluated by looking it up in

a table ( example: Peskin and Schroeder appendix B), giving:
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iMspin = − g4
s

(4π)2

∫ 1

0

x(1− x)dx

[
−1

2
Cµνgµν

∆
+
C00m2x2

∆2

]
, (A.7)

where ∆ ≡ {m2x2 + λ2(1 − x) − iεx } , and we write Cµνgµν = C00 − Cii for

convenience.

−1
2
C00∆ + C00m2x2

∆2
=

1
2
C00[m2x2 − λ2(1− x) + iεx)]

∆2
, (A.8)

Thus in total the x-integral is:

iMspin = −α
2
s

2

∫ 1

0

x(1− x)dx

[
C00[m2x2 − λ2(1− x) + iεx)]

∆2
+
Cii

∆

]
. (A.9)

It will be simplest to evaluate each of these separately. Starting with the first

term we have

iMa
spin = −α

2
s C

00

2m2

∫ 1

0

dx
[x2 − δ2(1− x)][1− x]x

[x2 + δ2(1− x)− iεx]2
, (A.10)

where the m2 terms, which lead to an overall 1
m2 multiplying the integral, have

been factored out. Finally replacements with the dimensionless constant δ = λ
m

have been done. the details of this integral are not very interesting and we will

simply quote the result

iMa
spin =

α2
s C

00

2m2

(
2 + ln(λ/m)

)
. (A.11)

The second integral is likewise evaluated

iM b
spin = −α

2
s C

ii

2m2

∫ 1

0

dx
(1− x)x

x2 + δ2(1− x)− iεx
=
α2
s C

ii

2m2

(
1 + ln(λ/m)

)
.

(A.12)
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A.1.2 Colour Factors

The qq̄ is necessarily in the colour singlet configuration, which in terms of

standard colour spinor ket notation of red, blue,green can be written simply as

1√
3

[ |rr̄〉+ |bb̄〉+ |gḡ〉]. (A.13)

The reason for writing this expression in such a pedestrian way, is because the

colour calculation will be carried out for a general SU(N) gauge group and it

gives us the form of a general singlet configuration projection operator in order

to carry out the calculation. From the above we see that the general singlet

projector is

|qq̄〉colour =
1√
N

N∑
i=1

|qi〉 |q̄i〉 =
1√
N

N∑
i=1

|ei
q〉 ⊗ |ei

q̄〉, (A.14)

where the column vectors have N components, and a value of one at the position

i and 0 elsewhere. An analogous expression for the post collision particles is

also used |qq̄〉′colour. We can use the rules for an SU(N) gauge group to get the

expression for the colour C̃

C̃ =
1

N
〈qi| T ailT blj |q′j〉 〈q̄′j| T ajmT bmi |q̄i〉 =

1

N
T ailT

b
lj T

a
jmT

b
mi. (A.15)

We will want to commute the matrices in order to simplify, thus matrix notation

will now be used. We have that

C̃ =
1

N
(Ta ·Tb) · (Ta ·Tb), (A.16)

which we can rewrite with the commutator rule: Tb ·Ta = Ta ·Tb − ifabcTc

of the lie-algebra, along with the associativity of matrix multiplication.

Plugging in and using the definition of the quadratic Casimir operator in the

first term,
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C̃ =
1

N
C2
F δ

ijδji − ifabc

N
Ta ·Tc ·Tb = C2

F +
ifabc

N
Ta ·Tb ·Tc. (A.17)

Concentrating on the second term C̃(2nd), we can use the identity

2Ta ·Tb =
1

N
δab1l + (dabd + ifabd)Td

⇒ C̃(2nd) =
ifabc

2N

( 1

N
δab1l + (dabd + ifabd)Td

)
·Tc. (A.18)

Since contracting an antisymmetric tensor with a symmetric one will obviously

give zero, this leaves only

C̃(2nd) = −f
abcfabd

2N
Td ·Tc. (A.19)

Then using one final identity facdf bcd = Nδab, we get in total

C̃ = C2
F −

δcd

2
Td ·Tc

= C2
F −

N

2
CF

= C2
F −

1

2
CACF . (A.20)

We might as well just get the planar box colour factor here too. Examining

Figure A.2 (p.47), it is apparent that we only need to switch the colour matrix

indices on the two middle matrices of the above. This means there is no need

to commute the colour matrix and we just get C2
F .
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A.1.3 Numerator Algebra

The numerator, which was written out in terms of tensors of different rank, is

equivalent to the following.

[ūr(p
′)γµ(/s +m)γνus(p)][v̄t(p̄)γµ(/s′ +m)γνvw(p̄′)] (A.21)

where s = p′ − q and s′ = −p̄+ q. We now use the identity γµ/k = 2kµ − /kγµ,

[ūr(p
′)(2sµ + (−/s +m)γµ)γνus(p)][v̄t(p̄)(2s

′
µ + (−/s′ +m)γµ)γνvw(p̄′)]. (A.22)

Then of course ūs(p
′)[/p′ −m] = 0 and v̄t(p̄)[p̄+m] = 0 , leaving us with

[ūr(2s
µ + /qγ

µ)γνus][v̄t(2s
′
µ − /qγµ)γνvw)]. (A.23)

Now if we enumerate the terms in the first bracket as a,b and the second as c,d;

we can take a closer look and save some work. Any term combined with a(c)

will necessarily come with a factor sµ (s′µ), thus leaving only a single gamma

matrix sandwiched between the spinors. So let’s look at the form of the gamma

matrices to see why this has no interest for us.

γ0 =

 1 0

0 −1

 (A.24)

~γ =

 0 ~σ

−~σ 0

 (A.25)

The first matrix has no pauli matrices and thus contributes nothing to the spin.

The second matrix contains pauli factors but they cross the two top and bottom

components of the 4-spinors and in our non-relativistic approximation do not

contribute. Thus only the term (b,d) will contribute to the spin structure in

our approximation
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−[ūr/qγ
µγνus][v̄t/qγµγνvw)]. (A.26)

We can now use some gamma matrix identities to simplify the expression,

γµγν =
1

2
[γµ, γν ] +

1

2
{γµ, γν} = gµν + σµν , (A.27)

gµνgµν = 4 , gµνσµν = 0. (A.28)

As before we will only be interested in terms that generate spin, so the terms

where the metric has been fully contracted will leave a /q which is just a sum-

mation of a single gamma matrix at a time, and drops as before. Thus we are

left with

−[ūr /q σ
µν us][v̄t /q σµν vw)]. (A.29)

Now the form of σµν is that of a second rank antisymmetric tensor, and as

such can be represented as a two-vector σµν = 〈σ0i, σij〉 = 〈~α, i~Σ〉, where its

covariant equivalent is σµν = 〈−~α, i~Σ〉. Here ~Σ, is just the spin operator double

stacked (a 4D irreducible representation), so that it also covers positron states.

With a couple lines of algebra, you can convince yourself that,

σµνσµν = −2[ ~α1 · ~α2 + ~Σ1 · ~Σ2] . (A.30)

This brings our expression into the form:

2[ūr /q ~α1 us] · [v̄t /q ~α2 vw] + 2[ūr /q ~Σ1 us] · [v̄t /q ~Σ2 vw]

= 2
(

[ūr γ
µ ~α1 us] · [v̄t γν ~α2 vw] + [ūr γ

µ ~Σ1 us] · [v̄t γν ~Σ2 vw]
)
qµqν . (A.31)

This is good, because it tells us right away that the only important piece for

the spin is the tensor term in the integral, as stated in section A. Now again

we are interested in the spin terms, which means we want the ones that have a

Σ matrix sandwiched between the spinors. This means of course that in term
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1 both µ and ν must not be zero, and in the second term they must be zero.

Let’s start by simplifying the first term, remembering γi = αiγ0:

Cij qiqj = 2 [u†r γ
i γk us][v

†
t γ

j γk vw]qiqj. (A.32)

We then re-express the gamma product again, and again drop terms like gijgij,

and replace σij matrices by their definition

σij = iεijkΣk, (A.33)

Cij = 2 i2 [u†r ε
ikl Σl

1 us][v
†
t ε

jkm Σm
2 vw]. (A.34)

We simplify as follows :

εiklεjkm = δijδlm − δimδlj,(
δijδlm − δimδlj

)
Σl

1 Σm
2 = δijΣ1 ·Σ2 − Σi

1Σj
2,

Σ = σ ⊗ 12×2.

(A.35)

Now we have that

Cij = 2 [ξ†r ζ
†
t (σi1 σ

j
2 − δijσ1 · σ2)ξsζw]. (A.36)

For later convenience:

Cii = −4 [ξ†r ζ
†
t (σ1 · σ2)ξsζw], (A.37)

where they are now 2-spinors. It should be clear from the above that the second

term ( where µ = ν = 0 ) leads to:

C00 = 2 [ξ†r ζ
†
t (σ1 · σ2)ξsζw]. (A.38)
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A.1.4 Putting It Together

The first section gave us the value of the amplitude in terms of the yet unde-

termined numerator factors and an implied colour factor Next we determined

the colour factor to be C2
F − 1

2
CACF in section A.2. Finally in Section A.3, we

worked through the numerator, completing the tensor reduction analysis to get

simple form factors for the appropriate spin terms. If we write the amplitude

out in all its glory we get

iM c.b.
spin =

C2
F − 1

2
CACF

2m2
α2
s

[
C00

(
2 + ln(λ/m)

)
+Cii

(
1 + ln(λ/m)

)]
. (A.39)
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Figure A.2: Planar Box

A.2 Planar Box

In the planar box, only the denominator and the colour factor change. For the

latter
(
C2
F − 1

2
CACF

)
→ C2

F , while the integral becomes the following

iMspin = ig4
s

∫
d4q

(2π)4

Cµνqµqν
(q2 − λ2)2(q2 − 2mq0 + iε)(q2 + 2mq0 + iε)

. (A.40)

If we’re only considering the spin contribution, the form factors C00 and Cii

are identical to the ones outlined for the crossed box diagram. We can now

immediately use a Feynman parametrization,

1

a2bc
=

∂

∂a

∫ 1

0

∫ x

0

2 dy dx

[a+ (b− a)x+ (c− b)y]3

= 3!

∫ 1

0

dx

∫ x

0

dy
(1− x)

[a+ (b− a)x+ (c− b)y]4
, (A.41)

⇒ iMspin = 3! ig4
s

∫ 1

0

dx

∫ x

0

dy

∫
d4q

(2π)4

(1− x)Cµνqµqν[
(q2 − λ2) + (2mq0 + λ2 + iε)x− 4mq0y

]4
(A.42)

We will make the following change of variable q0 → q′0 = q0 +m(x− 2y)
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→ q′ 2
0 = q2

0 + 2mq0(x− 2y) +m2(x− 2y)2.

iMspin = 3! ig4
s

∫ 1

0

dx

∫ x

0

dy

∫
d4q

(2π)4

(1− x)
[
Cµνqµqν + C00m2(x− 2y)2

][
q2 − {m2(x− 2y)2 + λ2(1− x)− iεx}

]4

= 3! ig4
s

∫ 1

0

dx

∫ x

0

dy

∫
d4q

(2π)4

(1− x)
[
Cµνqµqν + C00m2(x− 2y)2

][
q2 −∆

]4

= − g4
s

4π2

∫ 1

0

dx

∫ x

0

dy (1− x)

[
−1

2
Cµνgµν∆ + C00m2(x− 2y)2

∆2

]

= − α2
s

2m2

∫ 1

0

dx

∫ x

0

dy (1− x)

[
C00[(x− 2y)2 − δ2(1− x) + iεx)]

∆′ 2
+
Cii

∆′

]
,

(A.43)

where ∆′ ≡ (x− 2y)2 + δ2(1− x)− iεx.

Interestingly enough, evaluation of the y-integral in the first term gives

α2
s C

00

2m2

∫ 1

0

dx
(1− x)x

x2 + δ2(1− x)− iεx
, (A.44)

which we know from (A.12) is just

iMa
spin = −α

2
s C

00

2m2

(
1 + ln(λ/m)

)
. (A.45)

Evaluation of the second term is a little more interesting, it is this term that

will give us a singular pole term in 1
λ
, along with another set of logarithmic and

constant terms contributing to the spin. It is nearly identical to the second term

in eqn. (9), except for the extra integral, and missing x-term in the numerator.
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But as we will see these minor changes create large differences in the answers.

iM b
spin = −Cii α

2
s

2m2

∫ 1

0

dx

∫ x

0

dy
1− x

(x− 2y)2 + δ2(1− x)− iεx
(A.46)

= −Cii α
2
s

2m2

∫ 1

0

dx
1− x

δ
√

1− x(1 + iε)
tan−1

(
x

δ
√

1− x(1 + iε)

)
,

(A.47)

the epsilons will be left in until we’re sure there’s no danger of a divergence,

but to save space b ≡ 1 + iε. Evaluation of the x-integral gives

Ibspin = − 1
2
ln(1− iε) +

2

3δ
√
−b2

tanh−1

(
δ2 − 2

2δ
√
−b2

)

+ ln(δ)− 2

3δ
√
−b2

tanh−1

(
δ

2
√
−b2

)
+

1

3
. (A.48)

We can now easily see that the
√
−b2 terms can safely be set to i.

Ibspin = − 2i

3δ
tanh−1

(
i

δ

)
+

2i

3δ
tanh−1

(
−iδ

2

)
+ ln(δ) +

1

3

=
2

3δ

[
tan−1

(
1

δ

)
+ tan−1

(
δ

2

)]
+ ln(δ) +

1

3
, (A.49)

where the identity i tanh−1(z) = tan−1(iz), was used. Now we have that
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tan−1(1/x) =
π

2
− tan−1(x) ∀x : [0, 1)

tan−1(x) ≈ x, x << 1.

Thus upon using the expansion in our expression we get that

Ibspin =
π

3δ
+

2

3δ

(
−δ
2

)
+ ln(δ) +

1

3

=
π

3δ
+ ln(δ)

=
πm

3λ
+ ln

(
λ
m

)
(A.50)

.

So now, all in all, we have

iMp.b.
spin = − C2

F

2m2
α2
s

[
C00
(

1 + ln
(
λ
m

))
+ Cii

( πm
3λ

+ ln
(
λ
m

) )]
, (A.51)

iM c.b.
spin =

C2
F − 1

2
CACF

2m2
α2
s

[
C00

(
2 + ln(λ/m)

)
+ Cii

(
1 + ln(λ/m)

)]
. (A.52)

Plugging in the definitions of the coefficients:

Cii = −4 [ξ†r ζ
†
t (σ1 · σ2)ξsζw] = −8S2 ; C00 = 2 [ξ†r ζ

†
t (σ1 · σ2)ξsζw] = 4S2

V p.b.
spin =

C2
F

m2
α2
s

[
−2 + 2ln

(
λ/m

)
+

4π

3

m

λ

]
S2, (A.53)
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V c.b.
spin = −

C2
F − 1

2
CACF

m2
α2
s

[
2 ln
(
λ/m

)]
S2. (A.54)

The equations (A.53) and (A.54) constitute our final result for these diagrams.

This result will be checked by a more modern analytical technique, known as

expansion by regions, later.

A.3 Pauli Form-Factor

Figure A.3: Non-Abelian Vertex

If we perform this calculation in the background field formulation it will

make things considerably easier to carry out. Following the Feynman rules for

the background formalism [16]

iΓµ ∼
∫
dDk̂

γβ
[
gαβ(2k − q)µ − gµα

(
k + q + 1

ξ
(q − k)

)
β

+ gµβ
(
2q − k + 1

ξ
k
)
α

]
(/p+ /k +m)γα

[(p+ k)2 −m2][(k − q)2 − λ2][k2 − λ2]
.

(A.55)

In the above, constant prefactors have been temporarily omitted in the interest
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of space. Then, in the Feynman gauge the numerator simplifies substantially

iΓµNA(p, p′) = ig3
sC

a
ji

∫
dDk̂

γβ
[
gαβ(2k − q)µ − 2gµαqβ + 2gµβqα

]
(/p+ /k +m)γα

[(p+ k)2 −m2][(k − q)2 − λ2][k2 − λ2]
.

(A.56)

where i
2
CA T

a
ji ≡ Ca

ji. The work of Manohar [17] will be invaluable in this

calculation. The denominator of his calculation of this vertex reads (Eq.’s 31

& 32)

m2(x+ y − 1)2 − q2xy. (A.57)

We can reproduce precisely this denominator in our work if we use the following

Feynman parametrization (working first without the gluon mass)

∫ 1

0

dx

∫ 1−x

0

dy

∫
dDk̂

Nµ

k2 + 2p · k +
[
q2 − 2(q + p) · k

]
x− 2p · ky

. (A.58)

From the above expression it is clear that the necessary change of variables is

k → l = k+[p(1−y)−p′x] . The quantity in the square brackets then goes back

into the denominator squared which gives m2(1−y)2+m2x2−2p·p′x(1−y), then

upon noting that −2p · p′ = q2 − 2m2 we recover the required denominator.

Finally we see that by including a gluon-mass term we incorporate into the

denominator a term of the form λ2(x + y). Thus inserting this factor into

Manohar’s expression for the non-abelian F2 we get

F g
2 = −αs

4π
CA

∫ 1

0

dx

∫ 1−x

0

dy
2(x+ y)(1− x− y)m2

m2(x+ y − 1)2 − q2xy + λ2(x+ y)
. (A.59)

We are interested only in the limit q → 0, so for us

F g
2 = −αs

4π
CA

∫ 1

0

dx

∫ 1−x

0

dy
2(x+ y)(1− x− y)

(x+ y − 1)2 + λ2

m2 (x+ y)
. (A.60)
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Evaluation of this integral gives us

F g
2 =

αs
4π
CA

[
3 + 2 ln

(
λ/m

)]
+ O(q2/m2). (A.61)

We must add to this the contribution of the abelian vertex, which Schwinger

tells us (up to colour factors) is

F V
2 =

αs
2π

(
CF − 1

2
CA
)

+ O(q2/m2). (A.62)

We can thus write out the final result1

F2 = F V
2 + F g

2

=
αs
2π

[
CF + CA

(
1 + ln

(
λ/m

))]
. (A.63)

1Note that we will have to multiply this result by two when inserting it into the Born
result, to account for the two separate insertions of the vertex corrections
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Appendix B

Expansion By Regions

Expansion by regions is a technique for asymptotic expansion of loop integrals

with several momentum scales [19], [20]. It involves three main steps

� (i) Separate the momentum integral into regions where the loop momen-

tum is characterized by one of the scales.

� (ii) In each region perform Taylor expansion in the parameters that are

small there.

� (iii) Extend the integration limits of each region to the whole virtual

momentum space and use dimensional regularization for IR and UV di-

vergences.

The sum of the contributions of all the regions then recovers the asymptotic

series for the loop integral.

B.1 Application to the Crossed Box Diagram

iM = ig4
s

∫
d4q

(2π)4

Cµνqµqν
(q2 − λ2)2(q2 − 2mq0 + iε)2

(B.1)

53



We will omit the colour factors in this demonstration for brevity. The hard

modes mean setting the gluon mass to zero (λ→ 0), thus

Ihard ≡ ig4
s

∫
ddq

(2π)d
Cµνqµqν

(q2)2(q2 − 2p · q + iε)2
. (B.2)

Then combining this in a Feynman parametrization gives

Ihard = 3! ig4
s

∫ 1

0

dx x(1− x)

∫
ddq

(2π)d
Cµνqµqν[

q2 − 2p · qx
]4

= − α2
s

m2

∫ 1

0

dx x(1− x)
C00 − 1

2
Cµνgµν

x2

=
α2
s

2m2
Cµµ

(
1 +

1

ε

)
. (B.3)

The soft modes are then characterized by m→∞,

Isoft ≡ ig4
s

∫
ddq

(2π)d
Cµνq

µqν

(q2 − λ2)2(2mq0 − iε)2
. (B.4)

We can again use a Feynman-parametrization to get

Isoft = 3! ig4
s

∫ 1

0

dx
x

(1− x)3

∫
ddq

(2π)d
Cµνq

µqν[
q2 − λ2 + 2m( x

1−x)q0

]4 . (B.5)

Then we perform the change of variables to q′0 = q0 +m
(

x
1−x

)
,

Isoft = 3! ig4
s

∫ 1

0

dx
x

(1− x)3

∫
ddq

(2π)d
Cµνq

µqν + C00m2
(

x
1−x

)2[
q2 − λ2 −m2( x

1−x)2
]4 . (B.6)

We carry out the standard loop integral to get

− α
2
s

m2

∫ 1

0

dx

[
x3C00

(1− x)5
[(

x
1−x

)2
+ δ2

]2 − 1
2

[
C00 − Cii

]
x

(1− x)3
[(

1−x
x

)2
+ δ2

]]. (B.7)
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The respective Feynman parameter integrals give

=
α2
s

m2

[
C00
(1

2
+ ln

(
λ/m

)
− 1

ε

)
− 1

2

[
C00 − Cii

](
ln
(
λ/m

)
− 1

ε

)]

=
α2
s

2m2

[
C00 + Cµµ ln

(
λ/m

)
− 1

ε
Cµµ

]
. (B.8)

We add the two regions together, and recover our original result (without the

colour factor)

α2
s

2m2

[
2C00 + Cii + Cµµ ln

(
λ/m

)]
. (B.9)
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B.2 Application to the Planar Box Diagram

iMp.b = ig4
sC

2
F

∫
d4q

(2π)4

Cµνqµqν
(q2 − λ2)2(q2 − 2p · q)(q2 + 2p · q)

(B.10)

The analysis of the planar box is nearly identical, and therefore we will omit

many details, as they add nothing to the discourse. There is a new effect in

the planar box however, that we do wish to address via the expansion.

As before, we take the limit as m → ∞ in the soft region. This gives us

exactly the negative of the crossed box soft region, except that in addition

there are now poles at both +iε and −iε. This means we can no longer adjust

the contour of the integral to remove the pole at q0 = 0. This effect is the

evaluation of Coulomb poles and is typical of threshold expansions. We start

by noticing that this integral will be completely dominated by the pole value

and thus terms of order q2
0 can be dropped without further thought. This new

piece is called the potential contribution, and will give rise to the λ-pole which

was obtained in the original analysis.

Ipotential = − 1

4m2

∫
d4q

(2π)4

Cijqiqj

(~q 2 + λ2)2(q0 + ~q 2

2m
+ iε)(q0 − ~q 2

2m
− iε)

(B.11)

= − iCii

12m2

∫
d3q

(2π)3

~q 2

(~q 2 + λ2)2
(
~q2

m

) (B.12)

= − iCii

12m

4π

(2π)2

∫
d|~q |
2π

~q 2

(~q 2 + λ2)2
(B.13)

= − Cii

2m2

i

(4π)2

πm

3λ
. (B.14)

Thus in total we get exactly the same pole as we got originally,

iMp.b.
pot. = − C2

F

2m2
α2
s

(πm
3λ

)
Cii. (B.15)
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Appendix C

Colour Factors of Feynman

Diagrams

We will be interested in the group SU(N), which is known as the special unitary

group. It is not the purpose of this appendix to give a full account of the details

of the group theory involved, and as such, will include a short introduction that

should serve as a good reminder. The interested reader is referred to the very

readable account in [18].

The group SU(N) has the simple defining properties of containing unitary

operators that have unit norm (i.e. any matrix representation must contain

elements of determinant one). It is also a Lie-group, and thus all elements of the

group can represented as an exponential of a linear combination of generators,

where the exponential is realized by its Taylor series. The generators themselves

form a representation for a local vector space, and as the group is continuous,

it can be shown that all Lie-groups describe a differentiable manifold. To make

this more concrete, we can write

{
∀ Gj ∈ SU(N) ∃ {αi} | Gj = exp (iαiT

i)
}

i = 1, 2, ..., N, (C.1)
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where the T i are the generators which form a basis for the vector space. If we

then form an algebra with these generators under commutation

[
T i , T j

]
= f ijk T k, (C.2)

we obtain a Lie-Algebra for the group1, where summation over k is implied and

the antisymmetric2 f ijk are known as the structure constants. The theory of

QCD is based off the non-abelian gauge theory SU(3), and the quarks and anti-

quarks each take on one of three different possibilities of colour and anticolour:

Red, Green, Blue.

q = R,G,B ; q̄ = R̄, Ḡ, B̄ (C.3)

The colour factors for quark (antiquark) lines are transformed in the funda-

mental representation F (F̄ ) = 3(3̄). A quark and antiquark can scatter of

eachother via the exchange of a gluon between them. By the postulate of

colour conservation, each gluon must carry one unit of colour and one unit of

anticolour. As such we say that the gluons are in the adjoint representation

A = 3 ⊗ 3̄ = 8 ⊕ 1. The colour singlet of the adjoint representation could

potentially be measured as a free particle, being colourless. This possibility

seems to be excluded by experiment, which is why gluons are a colour SU(3)

instead of U(3).

We can give a much more concrete definition to the adjoint representation

through the use of the Jacobi identity. The matrices of the adjoint represen-

tation are given by the structure constants (T a)bc = ifabc, and the proof that

this forms a representation is just a regurgitation of the Jacobi identity where

the matrix elements are written explicitly. The Jacobi identity states that([
A, [B,C]

])
ABC

= 0, where the round brackets indicate the sum of all even

1Strictly speaking, the Lie group is only a continuous group until an algebra is specified
for its generators

2switching i and j in the commutator gives the negative of the original commutator.
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interchanges of the labels ABC. Explicitly: (ABC)ABC = ABC+BCA+CAB,

[
T aij, [T

b
jk, T

c
kl]
]

=
[
T aij, f

bcdT djl
]

= f bcdfadeT ejl. (C.4)

Then applying the symmetric interchange sum and using anti-symmetry of the

structure constants

fadef bcd + f bdef cad − f cdef bad = 0,

−if bcdT dea + [T b, T c]ea = 0 ⇒ [T b, T c]ea = if bcdT dea. (C.5)

With the notation now set, we give the rules for assigning colour to the various

diagrams that arise from terms in the expansion of the interaction part of the

QCD Lagrangian.

Figure C.1: Quark-Gluon Vertex: −igT aij

Figure C.2: 3-Gluon Vertex: −gfabc
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Figure C.3: 4 Gluon Vertex
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