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Abstract—It is known that a small concentration of polymer
introduced to the boundary layer can produce significant drag
reduction for liquid flows. This effect has been studied extensively
for internal flow and polymer injection in external flow, though
much is still unknown about the underlying mechanism. More
recently, select external flow research has focused on drag reduction
for ships. The present work is a building block towards a practical
methodology for simulating an ablative polymer paint to induce
drag reduction on submarine geometries. Polymer drag reduction
experiments can be closely reproduced by modifying empirical
constants in the simple mixing length turbulence model. Potential
avenues for implementation in standard commercially available CFD
solvers are explored.
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I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) are increasingly
being utilized for seafloor surveying and security in arctic
waters. However, a fundamental limitation of AUVs for such
applications is their limited range and endurance. Hydro-
dynamic drag reduction has been the subject of research
for decades, resulting in several methods suitable for the
AUV application. These include compliant coatings, surface
riblets, transition delay, the application of polymer/surfactant
additives, and gas micro-bubbles [1]. Of these, viscoelastic
polymers are an attractive candidate as they are effective in low
concentrations, and it is anticipated that the low vehicle speeds
in this application do not produce mechanical degradation of
the polymer found at higher shear rates [2], [3]. An ablative
polymer paint has recently received full-scale testing on the
176k DWT PAN BONA bulk carrier, where the drag reduction
effect was shown to be not negligible [4].

Total drag on a submerged object is composed of pressure
and skin friction drag. To simulate the skin friction reduction
that is experienced in polymer solutions, shear stress on the
wall τw = µ∂ u∂ y

∣∣
w

, must be reduced. Modeling this effect
has been approached from two different directions in the liter-
ature depending on the relative concentration: For relatively
high concentrations, it has been approached through shear
viscosity, µ, reduction due to shear-thinning non-Newtonian

behavior. In relatively low concentrations, viscoelastic effects
are believed to dominate through elastic stretching of the
polymer molecule, causing turbulence damping reducing tur-
bulent energy. Attempts have been made to simulate these
rheological effects through the significantly more complex
finitely extensible nonlinear elastic (FENE) equations [5]–[9].
Both manifest in a reduction in τw.

A homogenous polymer concentration is possible for in-
ternal flow, with drag reduction effects scaled with polymer
concentration up to the maximum drag reduction (MDR)
asymptote. Conversely, an ablative polymer dissolving into
the flow provides a range of concentrations across the flow
field. Therefore, modeling the external flow problem has two
components: (1) Accurately tracking the polymer concen-
tration within the flow; a methodology for this has been
proposed in [10]. (2) Modifying the flow field as a function of
polymer concentration to simulate drag reduction. This paper
is a building block towards (2) to determine if accurate drag
reduction can be obtained in zero pressure gradient using
a simple modification of the mixing length model. As well
as exploration of potential avenues for implementation into
available computational fluid dynamics (CFD) models.

II. THEORY & DATASET FOR COMPARISON

It is known that a small concentration of polymer in the
boundary layer can produce significant drag reduction, as first
discovered in 1948 by Toms [11]. This phenomenon has been
studied extensively for internal flow; however, much is still
not understood about the fundamental nature of polymer drag
reduction (PDR). The earliest two-layer models by authors
such as Meyer [12] and Elata et al. [13], represent the influence
of polymer as a thickening of the viscous sublayer and an
upwards shift of the log layer intercept [14]. Improving on
this, Virk [15], [16] contributed a three-layer model that
can be considered classical PDR theory. It was found that
for a sufficiently large polymer concentration, the bound-
ary layer reaches a MDR asymptote, shown in Figure 1a.
Virk found that the MDR followed the logarithmic relation,
u+ = 11.7 ln y+ − 17, and was independent of the chemical
identity of the polymer used [16], [17]. Where u+ = u/u∗,



(a) Virk’s PDR BL. (b) Contemporary PDR BL.

Figure 1: Demonstrating the effect of dilute polymer in the
boundary layer.

y+ = yu∗/ν, and u∗ is the friction velocity. Intermediate
drag reduction between these two extremes is known as a
Newtonian plug, also shown in Figure 1a, having the same
slope, 1/κ, as the Newtonian von Karman law [15]–[17]. This
classically presented relative increase of mean velocity above
the Newtonian law of the wall is the PDR phenomenon [17].

The velocity distributions shown in Figure 1a, thought to
be well understood after 50 years of research, have been
challenged in the last two decades with the advent of laser-
based experiments and direct numerical simulation (DNS)
[18], [19]. White et al. [18] challenged the certainty of the
MDR and the validity of von Karman’s constant with increased
levels of drag reduction because the original empirical fits do
not correlate well with the new data. This contemporary theory
of PDR is demonstrated in Figure 1b, with the significant
change being a blended region in place of the logarithmic
elastic sublayer proposed by Virk [15], [16]. At higher levels
of PDR, it was found that the profile may even exceed the
MDR [18]. White et al. [18] found differences between the
DNS and experimental data at the same percent drag reduction
(%DR), which suggested that there may be a dependence
of κ on Reynolds number or the chemical polymer [19].
Though authors such as Elbing et al. [19] suggest that further
examination through a broader range of Reynolds numbers is
needed before making any conclusions.

Experiments by Warholic et al. [20] suggest that there are
two drag reduction regimes, low drag reduction (LDR) and
high drag reduction (HDR), nominally divided at 40%DR [19],
[21]. White et al. [18] suggests that the LDR/HDR separation
occurs at %DR where the inertially dominated log layer is
eradicated. It has been found that for LDR, the Newtonian κ
remains relatively constant with the intercept constant scaling
linearly with drag reduction up to %DR ≤ 30% as follows,
B = 5 + (0.2)(%DR) [19]. This shifts the profile vertically
as classically assumed, with the drag reduction being deter-
mined by, %DR =

(
τw0
−τw

τw0

)
× 100, where τw0 and τw

are the Newtonian and drag reduced solution shear stresses
respecively. For the HDR regime, it was found that κ did not
remain constant and decreased with increasing %DR, rapidly
driving the logarithmic region’s intercept constant, B, towards
the MDR [18], [19]. Whether the logarithmic region exists or

not in the HDR regime or at what %DR it disappears within
the HDR regime has not been conclusively determined.

The bulk of PDR research focuses on internal flow in pipes
and channels; fewer external flow experiments exist. Elbing et
al. [19], performed boundary layer experiments where polymer
injection over a flat plate is conducted in the U.S. Navy’s
re-circulating 5300m3 William B. Morgan Large Cavitation
Channel (LCC) [22]. Optical particle image velocimetry (PIV)
was used to produce high Reynolds number mean velocity
profiles for near-zero pressure gradient [19] turbulent boundary
layers. The drag force on the plate was measured using skin-
friction balances. These nondimensionalized velocity profiles,
quantified based on %DR by [19] will be used for comparison
in the present research.

III. CFD METHODOLOGY

Simulations in the present research were conducted on
a 2D flat plate domain. The incompressible, steady state,
2D x-momentum, Reynolds-averaged Navier-Stokes (RANS)
equation was solved,

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ νt

∂2u

∂y2
(1)

for a zero pressure gradient flat plate allowing for the presure
term to be conveniently neglected. Equation 1, was then
discretized using a scheme inspired by Schetz and Bowersox
[23], differing in that it is derived for use on a variable y-axis
grid. The velocity convection terms were discretized with a
backwards differencing scheme,
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∂x
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xi,yj
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[
ui,j − ui−1,j

∆x

]
(2)

∂u
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[
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yi,j − yi,j−1

]
(3)

and the molecular viscous dissipation term discretized with a
central differencing scheme,

∂

∂y

(
ν
∂u

∂y
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xi,yj

≈ ν

yi,j+1/2 − yi,j−1/2

(
ui,j+1 − ui,j
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)
. (4)

The discretization scheme indexing is shown in Figure 2.
The RANS eddy viscosity term,

νt = l2m

∣∣∣∣∂u∂y
∣∣∣∣ (5)

when discretized becomes,

νt
∣∣
xi,yj+1/2

≈ l2mi,j+1/2

∣∣ui−1,j+1 − ui−1,j
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(6)

νt
∣∣
xi,yj−1/2

≈ l2mi,j−1/2
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yi−1,j − yi−1,j−1

(7)



Figure 2: Grid diagram of the discretization scheme indexing.

and is modeled with a mixing length turbulence model found
in Versteeg and Malalasekera [24] for a flat plate boundary
layer,

lm =

{
κ y (1− exp(−y+/A)), for y/δBL < 0.09
0.09 δBL, for 0.09 ≤ y/δBL

(8)

with a switching point, selected at 9% of y/δBL [25], for the
uniform distribution. For a Newtonian fluid, the emperical fit
paramaters are κ = 0.41 and A = 26. The RANS turbulent
contribution is discretized as,

∂

∂y

(
νt
∂u

∂y
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xi,yj

≈ 1

(yi,j+1/2 − yi,j−1/2)(
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)
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yi,j − yi,j−1

))
(9)

with νt as defined in Equation 5 to 8.
After a non-trivial amount of algebra Equation 1, discretized

with equations 2 to 9, can be simplified to the following
equation,

− C1(ui,j−1) + C2(ui,j)− C3(ui,j+1) = (ui−1,j). (10)

The Thomas TDMA algorithm [26], as presented in Versteeg
and Malalasekera [24], is used to solve Equation 10.

The 2D continuity equation,

∂u

∂x
+
∂v

∂y
= 0 (11)

is discretized using Equation 2 and,

∂v

∂y
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xi,yj

≈
[
vi,j − vi,j−1
yi,j − yi,j−1

]
,

resulting in,

(vi,j) = (vi,j−1) + (yi,j − yi,j−1)
(ui−1,j

∆x
− ui,j

∆x

)
.

This first-order marching scheme has been found to provide
excellent performance for a flat plate zero pressure gradient
boundary layer, which has been verified in Figure 3. The

(a) Laminar (b) Turbulent

Figure 3: Verification results for the 2D momentum solver,
with a laminar comparison against the Blasius curve [27] and
turbulent comparison against the standard layer laws [28].
[color]

Figure 4: Flat plate grid topology shown with initial and
boundary conditions. The grid used for simulation in the
following section is more refined than shown here.

laminar performance of the scheme is verified against the flat-
plate Blasius relation [27] (with νt = 0) and in turbulent flow
the universal law of the wall [28], [29],

u+ =
1

Λ

1

3
ln

Λ y+ + 1√
(Λ y+)

2 − Λ y+ + 1
+

1√
3

(
arctan

2 Λ y+ − 1√
3

+
π

6

)]
+

1

4 κ
ln(1 + κ C y+4) (12)

where Λ = 0.127, κ = 0.41, and C = 1.43 × 10−3. The
solver performs excellently against these benchmarks with
a sufficiently fine grid. The higher-order implicit schemes
developed by Parr [30], as shown in Schetz and Bowersox [23],
was also tested for this case but were not found to provide
additional accuracy while also being more computationally
demanding.

Simulations were conducted for a rectangular grid topology,
as shown in Figure 4. The boundary conditions (BC) used are a
no-slip wall and free stream velocity at the top of the domain.
The initial condition (IC) was set to the free stream velocity.

Simulating drag reduction is accomplished through the
modification of the constants κ and A of the mixing length
turbulence model in Equation 8. Lowering κ increases the
slope for the logarithmic region, and increasing A raises



Figure 5: Simulated PDR with experimental boundary layer data for DR 18.2%, 35.2%, 53.5%, and 64.8% digitized from
Elbing et al. [19]. Values of κ and A were fit to the data. [color]

the y-axis intercept. The values of κ and A, as shown in
Figure 5, have been fit to experimental data from Elbing et
al. [19]. Similar mixing length approaches have previously
been employed by Vasetskaya and Ioselevich [31], Spalding
[32], and Hecht [33] for pipe flows; and Dimant and Poreh
[34] for heat transfer in drag-reducing fluids. These authors
created functions by incorporating various flow properties such
as friction velocity, u∗, elongational viscosity, µe, and those of
non-Newtonian power-law fluids such as the power-law index,
n, and flow consistency constant, K, into the mixing length
formula. The present simulations are compared against current
data collected with PIV and skin-friction balances by [19], data
unavailable in the time period of the aforementioned author’s
publications.

IV. RESULTS & DISCUSSION

The boundary layer experimental results of Elbing et al. [19]
have been reproduced in simulation through the adjustment
of empirical constants in the turbulence model, shown in
Figure 5. Accurate reproduction is achieved for 18.2%DR
and 35.2%DR, with the 53.5%DR and 64.8%DR profiles less
accurate.

With the non-dimensional profiles adequately matched and
corresponding constants determined, this allows the boundary
layer and wall velocity to be plotted for an external flow, as
shown in Figure 6. The boundary layer velocity follows the
trend of increased drag reduction, moving the profile towards
that of a laminar profile. This is the result of an overall
decrease in the magnitude of the turbulent eddy viscosity

Figure 6: Velocity profiles in a boundary layer for simulated
PDR at various drag reduction levels. Plot colors are congruent
with Figure 5. [color]

throughout the boundary layer, as shown in Figure 7. The
Reynolds stresses are represented in the RANS equations as
turbulent eddy viscosity, which drive the additional viscous x-
momentum dissipation sustained by turbulent flows; this is
converted to y-momentum through the continuity equation.
Through the general decrease in the magnitude of the eddy



Figure 7: Eddy viscosity for simulated PDR at various drag
reduction levels in a boundary layer. Plot colors are congruent
with Figure 5. [color]

Table I: Comparison of boundary layer experimental and
simulated drag reduction for the correlated constants κ and
A.

Exp. DR Sim. DR Error κ A
- 0% - 0.41 26

18.2% 18.2% 0% 0.359 33.8
35.2% 35.2% 0% 0.329 51.4
53.5% 50.6% 5.42% 0.280 70.0
64.8% 67.4% 4.01% 0.209 100

viscosity, the turbulent profile is driven closer to that of a
laminar profile.

The velocity at the wall, plotted in Figure 6, clearly shows
that for an external flow with constant free stream velocity, the
velocity gradient at the wall must decrease to accommodate
the drag reduction, as U∞ is fixed, unlike in pipe flow where
the centerline velocity may increase. The wall shear stress
decrease is quantified in table I, where the simulated results
are accurate for LDR, nominally divided at %DR ≤ 40, but
deteriorate for the cases of HDR.

The impact of modifying the empirical constants (κ and A)
on the velocity profile and eddy viscosity has been demon-
strated in Figure 6 and 7 respectively. First, the individual
contribution of von Karman’s constant, κ, through a decrease,
results in an increase in the slope of the log layer, 1/κ,
and a reduction in the rate of growth of eddy viscosity,
νt, throughout the log layer. This shifts the maximum point
of νt to larger y+ values, slightly elongating the log layer.
Secondly, increasing the value of A decreases the overall
magnitude of νt. Both reduce the overall magnitude of νt,
essentially allowing the profile to become more similar to
a laminar profile. In the RANS equations, the Reynolds
stresses represented as νt, drive the vertical momentum in
the boundary layer. Thus, the suppression of the Reynolds

stresses, through polymer stretching, is believed to increase the
momentum in the log layer relative to the sublayer [17]. Drag
reduction is often discussed in the literature as an effective
viscosity, which for the present work, must manifest as a
reduction of νt, as shown in Figure 7. Thus, within the context
of the RANS equations the total viscosity is of the form
νtotal = ν + (νt − νeff ). Therefore, a methodology to reduce
νt as a function of polymer concentration will be vital in
simulating an ablative polymer.

One possible approach, in turbulent flow, for available
CFD solvers is the wall function. In CFD simulation, courser
grids that have the first node within the log layer require a
wall function for accurate solutions as the linear differencing
available to fine grids, with the first nodes within the sublayer,
is not available. This function replaces the linear differencing
found in an integrated wall approach with a known solution
derived from the empirical profile of a flat plate boundary
layer. In equation form u∗ is modelled as [25], [35], [36],

u∗ =
[
(u∗vis)

4
+
(
u∗log

)4]1/4
(13)

u∗vis =

√
τw
ρ

(14)

u∗log =
u

1
κ ln(y+) +B

(15)

where the linear u∗vis and non-linear u∗log components are
blended by a 4th power, which is dominated by one subcom-
ponent dependant on the y+ of the first node.

Another possible approach is that of wall roughness. Rough
walls in CFD are modeled through a downward shift in the
y-axis intercept of the log layer [23], [35],

u+ =
1

k
ln(y+) +B −∆B (16)

where ∆B is a function of wall roughness. PDR has the
opposite effect, analogous to the ”smoothing” of an already
effectively smooth wall. In this analogy, PDR is effectively a
negative ∆B.

Using either the wall function or wall roughness method
will give access to the log law constant B, which the present
author has shown to allow for the reproduction of PDR
experiments closely within the LDR regime, which is the
regime of interest for simulations of PDR for AUVs. This
provides a potential avenue for implementation into existing
CFD solver frameworks.

V. CONCLUSION

In the present work, simulations have been performed to
reproduce the experimental PDR results of Elbing et al.
[19] for boundary layers. This was performed by modifying
empirical constants in the simple mixing length turbulence
model. Accurate reproduction at LDR against experimental
results supports that the simulated wall velocity profiles are
adequately accurate to represent polymer drag reduction for
external flows. The present work has confirmed that the
expected decrease in wall shear stress will be reflected in



simulation using this approach. The wall function and wall
roughness models are two potential avenues for implementing
PDR into existing CFD frameworks. The empirical constants
of the log law can be made into functions of local concentra-
tion, κ(C) and/or B(C).
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