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Abstract 

While deep learning has proven to be a powerful new tool for modeling and predicting a wide variety 

of complex phenomena, those models remain incomprehensible black boxes. This is a critical impediment 

to the widespread deployment of deep learning technology, as decades of research have found that users 

simply will not trust (i.e. make decisions based on) a model whose solutions cannot be explained. Fuzzy 

systems, on the other hand, are by design much more easily understood. We propose to create more 

comprehensible deep networks by hybridizing them with fuzzy logic. Our proposed architecture first 

employs a convolutional neural network as an automated feature extractor, and then clusters datasets in 

that feature space using the Fuzzy C- Means (FCM) and Gustafson and Kessel (GK) clustering 

algorithms. After hardening the clusters, we employ a fuzzy version of Rocchio's algorithm to classify the 

data points. We will evaluate our system’s performance on three well-known benchmark datasets 

(MNIST, Fashion MNIST, and CIFAR-10) by comparing our results with most recent published results 

(including state-of-the-art). Finally, we will demonstrate the interpretability of the hybrid system on the 

MNIST dataset. 
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“Do not pursue that of which you have no knowledge. Indeed, the hearing, 

the sight and the heart - about all those [one] will be questioned.” 

 

Quran 17:36 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

To  
 

Muhammad: 

The Messenger of God 
 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

Acknowledgements 

I would like to thank my supervisor Professor Scott Dick for his great support and encouragement 

during my M.Sc. studies. I’m sincerely grateful of his guidance and supervision. God bless him. 

I express my deepest appreciation to my wife, and my mother who are the greatest blessings that I 

have been gifted.  Without their supports, love and prayers I would never be able to conduct this research 

and write this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

Contents 
1 Chapter 1 ............................................................................................................................................... 1 

1.1. Deep Learning .............................................................................................................................. 1 

1.2. Interpretability .............................................................................................................................. 2 

2 Chapter 2 ............................................................................................................................................... 4 

2.1. Representation Learning ............................................................................................................... 4 

2.2. Optimization via Gradient-Descent .............................................................................................. 5 

2.2.1. Stochastic Gradient Descent (SGD) ...................................................................................... 6 

2.3. Artificial Neural Networks ........................................................................................................... 7 

2.3.1. Cortical neuron ...................................................................................................................... 7 

2.3.2. Multi-Layer Perceptrons (MLPs) ........................................................................................... 8 

2.3.3. Back-Propagation................................................................................................................. 10 

2.3.4. Vanishing Gradients ............................................................................................................ 13 

2.4. Convolutional Neural Networks (CNNs) ................................................................................... 14 

2.5. Dimension Reduction ................................................................................................................. 18 

2.5.1. Principle Component Analysis (PCA) ................................................................................. 18 

2.5.2. Uniform Manifold Approximation and Projection (UMAP) ............................................... 19 

2.6. Fuzzy logic.................................................................................................................................. 20 

2.6.1. Fuzzy clustering algorithms ................................................................................................. 21 

2.6.2. Clustering Validity ............................................................................................................... 26 

2.6.3. Neuro-Fuzzy Systems .......................................................................................................... 28 

2.7. Explainable Artificial Intelligence .............................................................................................. 32 

2.7.1. Why eXplainable Artificial Intelligence (XAI)? ................................................................. 32 

2.7.2. Interpretability by Visualization Methods ........................................................................... 33 



vii 

 

3 Chapter 3 ............................................................................................................................................. 35 

3.1. Deep Convolutional Neural Networks ........................................................................................ 35 

3.1.1. CNNs Description ................................................................................................................ 35 

3.1.2. Capacity, Overfitting, Underfitting ...................................................................................... 37 

3.2. Rocchio’s Algorithm .................................................................................................................. 38 

3.3. Fuzzy Classifier .......................................................................................................................... 40 

3.4. Techniques for Finding Saliency Maps ...................................................................................... 42 

3.4.1. Layer-Wise Relevance Propagation (LRP) [97] .................................................................. 42 

3.4.2. Taylor Decomposition [97] .................................................................................................. 46 

3.4.3. Guided Back-propagation [99] ............................................................................................ 47 

3.5. Research Questions for System Evaluation ................................................................................ 50 

4 Chapter 4 ............................................................................................................................................. 52 

4.1. Dataset Description ..................................................................................................................... 52 

4.1.1. MNIST ................................................................................................................................. 52 

4.1.2. Fashion MNIST ................................................................................................................... 53 

4.1.3. CIFAR-10 ............................................................................................................................ 54 

4.2. Experimental Setup ..................................................................................................................... 55 

5 Chapter 5 ............................................................................................................................................. 57 

5.1. Performance on MNIST.............................................................................................................. 57 

5.2. Performance on Fashion MNIST ................................................................................................ 61 

5.3. Performance on CIFAR-10 ......................................................................................................... 65 

6 Chapter 6 ............................................................................................................................................. 68 

6.1. Medoid Representatives .............................................................................................................. 68 



viii 

 

6.1.1. Digit 0 .................................................................................................................................. 70 

6.1.2. Digit 1 .................................................................................................................................. 72 

6.1.3. Digit 2 .................................................................................................................................. 74 

6.1.4. Digit 3 .................................................................................................................................. 75 

6.1.5. Digit 4 .................................................................................................................................. 76 

6.1.6. Digit 5 .................................................................................................................................. 78 

6.1.7. Digit 6 .................................................................................................................................. 79 

6.1.8. Digit 7 .................................................................................................................................. 81 

6.1.9. Digit 8 .................................................................................................................................. 82 

6.1.10. Digit 9 ................................................................................................................................ 84 

6.1.11. Evidence from the CNN .................................................................................................... 86 

6.2. Misclassified Examples .............................................................................................................. 88 

6.2.1. Hard to recognize digits ....................................................................................................... 89 

6.2.2. Incomplete or Corrupted Digits ........................................................................................... 89 

6.2.3. Misclassification process ..................................................................................................... 90 

7 Chapter 7 ........................................................................................................................................... 102 

7.1. Future Directions ...................................................................................................................... 102 

References............................................................................................................................................ 103 

 

 

 

 



ix 

 

List of Figures 
 

Figure 2.1: Conventional face recognition procedure. ............................................................................. 4 

Figure 2.2: Cortical Neurons. .................................................................................................................. 7 

Figure 2.3: An Artificial Neuron. ............................................................................................................ 8 

Figure 2.4: An artificial neural network. ................................................................................................. 8 

Figure 2.5: Signal-flow graph highlighting the details of output neuron j [24]. .................................... 10 

Figure 2.6: Signal-flow graph highlighting the details of output neuron k connected to hidden neuron j 

[24]. ............................................................................................................................................................. 12 

Figure 2.7: φ′ plot. ................................................................................................................................. 14 

Figure 2.8: weight of a deep network. ................................................................................................... 14 

Figure 2.9: LeNet Architecture. ............................................................................................................. 16 

Figure 2.10: ANFIS architecture (adaptive nodes shown with a square and fixed node with a circle 

[34]. ............................................................................................................................................................. 30 

Figure 3.1: Deep Fuzzy architecture for MNIST and Fashion MNIST. ................................................ 35 

Figure 3.2: Fuzzy version of Rocchio’s algorithm ................................................................................ 39 

Figure 3.3: The fuzzy classifier unit. ..................................................................................................... 39 

Figure 3.4: 𝐶𝑁𝑁𝑚𝑒𝑑𝑜𝑖𝑑𝑠 − 1 .............................................................................................................. 41 

Figure 3.5: A multi-layer perceptron’s forward pass [97]. .................................................................... 45 

Figure 3.6: LRP algorithm’s backward pass [97]. ................................................................................. 45 

Figure 4.1: Some samples of MNIST hand writing digit dataset .......................................................... 53 

Figure 4.2: Some samples of Fashion MNIST dataset .......................................................................... 54 

Figure 4.3: Some samples of CIFAR-10 dataset ................................................................................... 54 

Figure 4.4: Trained CNN for CIFAR-10. .............................................................................................. 55 

Figure 5.1: Scatter plots of MNIST dataset in CNN extracted feature space (column 1) and original 

feature space (column 2). (10,000 samples). .............................................................................................. 61 



x 

 

Figure 5.2: Scatter plots of Fashion MNIST dataset in CNN extracted feature space (column 1) and 

original feature space (column 2). (10,000 samples). ................................................................................. 65 

Figure 5.3: Scatter plots of CIFAR-10 dataset in CNN extracted feature space (row 1) and original 

feature space (row 2). (10,000 samples). .................................................................................................... 67 

Figure 6.1: Medoid representatives of each digit................................................................................... 68 

Figure 6.2: Medoid representatives of each digit (continued) ............................................................... 69 

Figure 6.3: Some not understandable (hard to recognize) digits ........................................................... 70 

Figure 6.4: Saliency maps for medoid representative of class 0. ........................................................... 71 

Figure 6.5: Medoid representative of class 0 ......................................................................................... 72 

Figure 6.6: Saliency maps for medoid representative of class 1. ........................................................... 72 

Figure 6.7: Medoid representative of class 1 ......................................................................................... 74 

Figure 6.8: Saliency maps for medoid representative of class 2. ........................................................... 74 

Figure 6.9: Medoid representative of class 2 ......................................................................................... 75 

Figure 6.10: Saliency maps for medoid representative of class 3. ......................................................... 76 

Figure 6.11: Medoid representative of class 3 ....................................................................................... 76 

Figure 6.12: Saliency maps for medoid representative of class 4. ......................................................... 77 

Figure 6.13: Medoid representative of class 4 ....................................................................................... 78 

Figure 6.14: Saliency maps for medoid representative of class 5. ......................................................... 78 

Figure 6.15: Medoid representative of class 5 ....................................................................................... 79 

Figure 6.16: Saliency maps for medoid representative of class 6. ......................................................... 79 

Figure 6.17: Medoid representative of class 6 ....................................................................................... 80 

Figure 6.18: Saliency maps for medoid representative of class 7. ......................................................... 81 

Figure 6.19: Medoid representative of class 7 ....................................................................................... 81 

Figure 6.20: A sample of class 7............................................................................................................ 82 

Figure 6.21: Saliency maps for medoid representative of class 8. ......................................................... 83 

Figure 6.22: Medoid representative of class 8 ....................................................................................... 84 

Figure 6.23: Results of interpretation techniques for medoid representative of class 9. ....................... 85 

Figure 6.24: Medoid representative of class 9 ....................................................................................... 85 



xi 

 

Figure 6.25: Left: A raw input for digit 7, Right: similarity of 7 to 9 ................................................... 88 

Figure 6.26: Some not understandable (hard to recognize) digits ......................................................... 89 

Figure 6.27: Not completely written digits and corrupted images ......................................................... 90 

Figure 6.28: Misclassified Digit. ........................................................................................................... 91 

Figure 6.29: Saliency maps for Figure 6.28 ........................................................................................... 91 

Figure 6.30: Misclassified Digit. ........................................................................................................... 92 

Figure 6.31: Saliency maps for Figure 6.30 ........................................................................................... 93 

Figure 6.32: Results of superimposing Figure 6.30 on medoids of class 0 and 6.................................. 93 

Figure 6.33: Misclassified Digit. ........................................................................................................... 94 

Figure 6.34: Saliency maps for Figure 6.33 ........................................................................................... 95 

Figure 6.35: Results of superimposing Figure 6.33 on medoids of class 1 and 9.................................. 95 

Figure 6.36: Misclassified Digit. ........................................................................................................... 96 

Figure 6.37: Interpretation techniques for Digit Figure 6.36 ................................................................. 96 

Figure 6.38: Results of superimposing Figure 6.36 on medoids of class 2 and 7.................................. 97 

Figure 6.39: Misclassified Digit. ........................................................................................................... 97 

Figure 6.40: Saliency maps for Figure 6.39 ........................................................................................... 98 

Figure 6.41: Results of superimposing Figure 6.39 on medoids of class 6 and 0.................................. 98 

Figure 6.42: Misclassified Digit. ........................................................................................................... 99 

Figure 6.43: Interpretation techniques for Digit Figure 6.42 ................................................................. 99 

Figure 6.44: Results of superimposing Figure 6.42 on medoids of class 6 and 5................................ 100 

Figure 6.45: Misclassified Digit. ......................................................................................................... 100 

Figure 6.46: Interpretation techniques for Digit Figure 6.45 ............................................................... 101 

Figure 6.47: Results of superimposing Figure 6.45 on medoids of class 3, and 5............................... 101 

 

 

 



xii 

 

List of Tables 
 

Table 1: Comparison of our accuracy and most recent accuracies on MNIST. ..................................... 58 

Table 2: Comparison of our accuracy and most recent accuracies on Fashion MNIST. ....................... 61 

Table 3: Comparison of our accuracy and most recent accuracies on CIFAR-10. ................................ 66 

Table 4: Confusion matrix of logit values for medoid representatives. ................................................. 86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

 

Abbreviations 
 

AI Artificial Intelligence 

NLP Natural Language Processing 

CNN Convolutional Neural Network 

SGD Stochastic Gradient Descent 

UMAP Uniform Manifold Approximation and Projection 

FCM Fuzzy C-Means 

GK Gustafson Kessel 

MNIST Mixed National Institute of Standards and Technology 

CIFAR Canadian Institute For Advanced Research 

MLP Multi-Layer Perceptrons 

ReLU Rectified Linear Unit 

LRN Local Response Normalization 

XAI eXplainable Artificial Intelligence 

ANFIS Adaptive Neuro-Fuzzy Inference System 

AHC Agglomerative Hierarchical Clustering 

w.r.t. with respect to 

KLT Karhunen-Loeve Transform 

LRP Layer-wise Relevance Propagation 

FHV Fuzzy HyperVolume 

ANFIS Adaptive Neuro-Fuzzy Inference System 

AHC Agglomerative Hierarchical Clustering 



1 | P a g e  

 

 

1Chapter 1 

Introduction 
 

1.1. Deep Learning 

Machine learning studies algorithms that allow computers to inductively create models to predict, 

classify, and make decisions [1]. For a number of problems, e.g. object recognition, classical 

programming approaches do not lead to effective models but machine learning often does. The recent 

performance of machine learning algorithms has attracted great interest form industry and academia. 

Applications of machine learning include image recognition tasks [2] [3] [4] [5], Natural Language 

Processing (NLP) tasks [6] [7] [8] [9], speech recognition [10] [11] [12], potential drug molecules [13], 

analyzing particle accelerator data [14] [15], content filtering on social media, malware detection, weather 

forecasting, etc. 

Deep learning as a famous sub-field of machine learning have become an extremely active area of 

research, as well as a hot topic in popular science. The term Deep Learning was introduced to the machine 

learning community by Rina Dechter in 1986, [16] and to Artificial Neural Networks (ANNs) by Igor 

Aizenberg and colleagues in 2000, in the context of Boolean threshold neurons [17]. The well-known 

success of AlphaGo in finally unseating champion human players in the ancient Chinese game [18] has 

seemingly become emblematic of deep learning’s promise in the public eye. The demand for deep 

learning in the corporate world is so strong that NVIDIA (the leading maker of GPU platforms for deep 

learning) saw its stock price double in 2017 partly on the strength of that demand [19], valuing the 

company at over USD $154.5 billion in Nov. 2018 [20]. Applications of deep neural networks ranges 

from computer vision and speech recognition to natural language processing [21] [22]. 
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However, deep neural networks are essentailly black boxes. A large-scale deep neural network is a 

densely-interconnected collection of thousands or tens of thousands of simple computational nodes, with 

all of its “learned knowledge” expressed as a distributed pattern of potentially millions of connection 

weights [23]. This model is completely uninterpretable for humans; a critical problem as research shows 

that users will not be willing to entrust such a model with critical decisions [24]. When the model is used 

for medical diagnosis or terrorism detection, for example, predictions cannot be acted upon in blind faith, 

as the consequences may be catastrophic [25]. The demand for an explanation mechanism is a crucial 

element of human-factors engineering for intelligent systems, and this is currently missing from deep 

learning approaches. 

 

1.2. Interpretability 

The interpretability problem is not new to the neural networks field; explanation mechanisms were 

demanded for earlier generations of shallow neural networks as well. One strand of this research focused 

on transforming the distributed knowledge in a network into an interpretable form (often if-then rules); 

see [26] for a discussion. There is a small amount of research continuing this line of investigation in deep 

networks. [27] and [28] investigate rule extraction, while [29] and [30] develop visualization tools. 

Finally, [31] suggests that the saliency of a given pixel in an input image can be determined by estimating 

the change in classifications resulting from its absence. 

Another approach sought to create networks that were interpretable by design; fuzzy neural networks 

(e.g. [32]) and neuro-fuzzy systems (e.g. [33]) were prominent amongst these efforts [34]. It is our 

intention to extend this second approach to deep learning (we will henceforth refer to such architectures 

as “deep fuzzy systems.”) Our overarching research problem is thus to create deep fuzzy systems which 

remain as accurate as existing models, while being substantially more interpretable. In this thesis, our 

objective is to design and evaluate one such deep fuzzy system as a classifier.  

There is little current research in hybrids of fuzzy logic and deep learning, in spite of the fact that 

fuzzy neural networks and neuro-fuzzy systems have been major research topics for over 25 years [34]. 
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Aviles et al. [35] used a combination of an ANFIS ensemble and a recurrent Long-Short Term Memory 

network to estimate contact forces on tissues during remote surgical procedures. Chen et al. report on the 

design of a fuzzy restricted Boltzmann machine in [36]. Zheng et al. extend this architecture to 

Pythagorean fuzzy sets in [37], while Shukla et al. instead extended it to interval type-2 fuzzy sets in [38]. 

A hybrid of Pythagorean fuzzy sets and stacked denoising autoencoders is reported in [39]. Zhou et al. 

[40], and Rajurkar and Verma [41] design stacked TSK fuzzy systems. Tan et al. use fuzzy logic to 

compress a trained CNN in [42]. Fuzzy c-means clustering was used to segment images before passing 

them to a CNN in [43]. However, other than [44] (which uses restricted Boltzmann machines and fuzzy 

modeling for performing probability-based clustering), the combination of deep learning and fuzzy 

clustering is currently unexplored. 

Our contribution in this thesis is to design and evaluate a deep fuzzy classifier that combines two 

famous fuzzy clustering algorithms of Fuzzy C-Means (FCM) [45] and Gustafson-Kessel (GK) clustering 

[46] and a Convolutional Neural Network (CNN) for image classification tasks. The CNN is employed as 

an automated feature extraction engine [21], and FCM/GK is then used to identify fuzzy clusters in the 

derived feature space thus created. Those clusters are then hardened, and Rocchio’s algorithm [47] is used 

to classify new observations. (Note that we could easily modify this classifier for regression and function 

approximation by replacing Rocchio’s algorithm with e.g. the fuzzy nearest-prototypes algorithm [48].) 

To evaluate the system, we have chosen three benchmark datasets: MNIST [49], Fashion MNIST [50], 

and CIFAR-10 [51]. All these three datasets are computer vision datasets. MNIST includes handwritten 

digits gathered by NIST (National Institute of Standards and Technology). Fashion MNIST, which is a 

dataset for clothes classification, serve as a direct drop-in replacement of the original MNIST dataset for 

benchmarking machine learning algorithms. The dataset is labeled with ten classes: t-shirts, trousers, 

pullovers, dresses, coats, sandals, shirts, sneakers, bags, and ankle boots. CIFAR-10 includes images of 

objects. The dataset includes ten classes: airplane, automobile, bird, cat deer, dog, frog, horse, ship, and 

truck. 
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2Chapter 2 

Review 
 

2.1. Representation Learning 

In a broad sense, we may categorize learning in two ways. Learning with a teacher (supervised 

learning) and learning without. In supervised learning (the focus of this thesis), the system uses “learns” 

to assign labels to new examples mimicking the pattern of label assignments in known examples. This 

learning process involves updating a proposed solution in order to optimize an objective function (e.g. the 

distance between the desired targets and actual outputs of the system) [23]. 

 

Figure 2.1: Conventional face recognition procedure. 

Shallow machine learning systems were generally limited to directly learning a solution to the 

optimization problem; they were not able to determine what facets of the problem gave the most insight 

into a solution. This made manual feature extraction an essential part of a learning project. Figure 2.1 
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shows this conventional approach applied to face recognition. As shown this figure, experts needed to 

extract 𝐾 features from an 𝑁 ×  𝑁 input image, and then a classifier (e.g. SVM) performs the recognition 

task [52]. However, the conventional way had some defects. Different tasks require different experts. In 

addition, it’s always time-consuming to find the most appropriate features. The experts also cannot assure 

us that the employed features are the best ones. Representation learning, on the other hand, provides us 

with methods of automatically discovering a better feature space for learning a given dataset [53]. 

Modern learning methods use representation-learning to extract new feature spaces, by applying 

nonlinear transforms to the raw data inputs. Given a set of training data that is not linearly separable, one 

can with high probability transform it into a set that is linearly separable by projecting it into a higher 

dimensional space via some non-linear transformation [54]. Indeed, these functions can make the system 

able to mimic the relation between input and output, i.e., automatic feature extraction [23]. Classification 

of extracted feature space from CNNs with (in essence) Multi-Layer Perceptrons (MLPs) is one well-

known method of deep learning. We will discuss CNNs and MLPs in more detail later in this chapter. 

 

2.2. Optimization via Gradient-Descent 

Viewed as optimization problems, machine learning algorithms usually solve the optimization 

iteratively, rather than deriving a formula [55]. Optimization can be defined as minimizing or maximizing 

some function 𝑓(𝑤) by altering 𝑤. Such a function is called objective function. It’s also called as cost 

function or loss function when we’re minimizing it. (Note that maximization can be accomplished via a 

minimization algorithm by minimizing −𝑓(𝑤).) Cauchy [56] invented the Gradient-Descent algorithm, 

which uses derivatives of the function in order to reach a local minimum. The gradient vector 𝛻𝑓(𝑥0) is 

orthogonal (or perpendicular) to the curve 𝑓(𝑥)  =  𝑦 at the point (𝑥0). We interpret y as the utility of the 

solution (𝑥0) to the optimization problem, and thus 𝑓(𝑥) is a contour or level curve of constant utility for 

the optimization problem. Likewise, the gradient vector 𝛻𝑓(𝑥0, 𝑦0, 𝑧0) is orthogonal to the level surface 

𝑓(𝑥, 𝑦, 𝑧)  =  𝑘 at the point (𝑥0, 𝑦0, 𝑧0). The gradient vector shows the direction of greatest local increase 

of the optimization function at that specific point. Thus, each parameter of f could be updated in the 

direction of the negative gradient, and 𝑓(𝑤) thus moves closer to a local optimum: 
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 𝑤𝑛𝑒𝑤  =  𝑤𝑜𝑙𝑑  −  𝜂𝛻𝑤𝑓(𝑤)  2-1 

 

where 𝑤 is the system parameter. The optimization (or cost) function can be defined in various ways. One 

of the simplest is the sum of squared errors: 

 
𝑓(𝑤) =

1

2𝑛
Σ𝑥 ||𝑌𝑡𝑎𝑟𝑔𝑒𝑡(x) − 𝑌(𝑥,𝑤)||

2
 

 2-2 

where 𝑥 is the input sample, 𝑌 (𝑥, 𝑤) is model’s prediction, and 𝑌𝑡𝑎𝑟𝑔𝑒𝑡(x) is the target label for input 

x. 

2.2.1. Stochastic Gradient Descent (SGD) 

Stochastic Gradient Descent (SGD) [57] is an extension of the Gradient Gescent algorithm. One 

problem in machine learning and especially deep learning is the number of required training samples for 

generalization. Deep learning methods require large training sets in order to generalize. However, this 

will make the model more computationally expensive. The cost function used by a machine learning 

algorithm often decomposes as a sum over training examples of some per-example loss function [55]. For 

example, the negative conditional log-likelihood of the training data can be written as: 

 
𝐽(𝑤) =

1

𝑚
Σ𝑖=1
𝑚 𝐿(𝑥(𝑖), 𝑦(𝑖), 𝑤) 

 2-3 

 

where L is the per-example loss 𝐿(𝑥, 𝑦, 𝑤) = −𝑙𝑜𝑔𝑝(𝑦|𝑥; 𝑤). The required gradient of cost function can 

be calculated as: 

 
∇𝑤𝐽(𝑤) =

1

𝑚
Σ𝑖=1
𝑚 ∇𝑤𝐿(𝑥

(𝑖), 𝑦(𝑖), 𝑤) 
 2-4 

 

Thus, as the training set size increases, the time required for the gradient step becomes prohibitively long. 

SGD instead chooses a mini-batch of examples Β = {𝑥(1), . . . , 𝑥(𝑚
′)} to estimate the direction of the 
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gradient. The mini-batch size 𝑚′ is a relatively small number of examples. The estimation of the gradient 

is then: 

 
∇𝑤𝐽(𝑤) =

1

𝑚
Σ𝑖=1
𝑚 ∇𝑤𝐿(𝑥

(𝑖), 𝑦(𝑖), 𝑤) 
 2-5 

using only examples from the mini-batch B. The stochastic gradient descent algorithm then follows the 

negative estimated gradient for one update, then draws another 𝑚′ examples from the dataset and repeats.  

 

2.3. Artificial Neural Networks 

2.3.1. Cortical neuron 

The human brain includes about 1011 cortical neurons [58] and about 60 trillion connections [59]. 

These neurons connect to each other at specific parts of our brain and implement specific tasks. For 

example, the visual cortex is located at the back of our heads, while the auditory cortex is located at the 

center of brain [23]. By understanding these neurons and how they learn, we can develop bio-inspired 

algorithms [1]. 

 

 

Figure 2.2: Cortical Neurons. 
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Figure 2.3: An Artificial Neuron. 

Figure 2.2 illustrates the shape of a typical brain cell. It receives most of its inputs through dendritic 

spines leading to the cell body. When a neuron “fires” (generates an output pulse) is travels down the 

axon, and crosses to the dendrites of new neurons at synapses. The axon of a neuron is very long and is 

characterized by high electrical resistance and very large capacitance. Thus, the axon may be modeled as 

a resistance-capacitance (RC) transmission line, hence the common use of “cable equation” as the 

terminology for describing signal propagation along an axon. Analysis of this propagation mechanism 

reveals that when a voltage is applied at one end of the axon, it decays exponentially with distance, 

dropping to an insignificant level by the time it reaches the other end. Synapses, or nerve endings, are 

functional units that mediate the interactions between neurons. The most common kind of synapse is a 

chemical synapse, which operates as follows: A presynaptic process liberates a transmitter substance that 

diffuses across the synaptic junction between neurons and then acts on a postsynaptic process. A synapse 

converts a presynaptic electrical signal into a chemical signal and then back into a postsynaptic electrical 

signal. Thus, a neuron generates spikes when it receives enough charge from dendritic inputs and sends 

the spike via its axon. When the spike arrives in the axon, synapses send the information from one neuron 

to other neurons by converting the presynaptic electrical signal into a chemical signal and then back into a 

postsynaptic electrical signal in the recipient’s dendritic tree [23]. 

 

2.3.2. Multi-Layer Perceptrons (MLPs) 

 

Figure 2.4: An artificial neural network. 

Figure 2.3 shows one way of defining an artificial neuron which can act similar to the cortical neurons. 

As shown in this figure, each neuron receives some inputs and uses some weights in order to implement 
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impact level of each input (synapses). Then the overall value 𝑣 passes a function 𝜑. This function 

determines whether a spike should be generated or not. If yes, an output 𝑦 will be created (performing the 

axon’s job); hence, 𝜑 is often called the activation function [23]. These artificial neurons are called 

perceptrons and can be implemented mathematically as follows: 

 𝑣 = Σ𝑖=1
𝑛 𝑥𝑖 × 𝑤𝑖  2-6 

 
𝜑 = {

1, 𝑖𝑓 𝑣 ≥ b
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 2-7 

The bias term b can be considered as a weight with its input = 1, and thus the 𝜑 function can be 

changed to the step function as follows [23]: 

 𝑣 = Σ𝑖=0
𝑛 𝑥𝑖 × 𝑤𝑖  ;   𝑤0 = 𝑏  ,  𝑥0 = 1  2-8 

 
𝜑 = {

1,        𝑖𝑓 𝑣 ≥ 0
0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 2-9 

Figure 2.4 shows how to connect perceptrons together forming a Multi-Layer Perceptron (MLP). In a 

MLP all neurons of a layer are connected to all neurons of its subsequent layer. Thus, these systems are 

called fully connected networks. We have used 𝑤[𝑙]_[𝑖][𝑗] to denote the weight connecting neuron i in 

layer l-1 to neuron j in layer l. The number of neurons in a layer is its “width,” and the number of layers 

in the network is its “depth.” Layers which do not directly connect to system inputs or outputs are called 

“hidden.” 

The problem with using step function as the activation function is that a small change in the weights or 

bias of any single perceptron in the network can sometimes cause the output of that perceptron to 

completely flip, say from 0 to 1. We can overcome this problem by introducing a sigmoidal activation 

function [60]. For example, Logistic neurons have the following activation function: 

 
φ(𝑣) =

1

1 + 𝑒−𝑣
 

 2-10 

 

where v is defined in  2-8. There are other useful activation functions such as Rectified Linear Unit 

(ReLU), tanh, sign, etc. These activation functions can be defined as follows: 
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 𝑅𝑒𝐿𝑈(𝑣) = 𝑚𝑎𝑥(𝑣, 0)  2-11 

 
𝑡𝑎𝑛ℎ(𝑣) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

 2-12 

 
𝑠𝑖𝑔𝑛 = {

1, 𝑖𝑓 𝑣 ≥ 0
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 2-13 

ReLU is the most commonly used activation function in modern deep networks, as it imposes a smaller 

computational burden. It also creates output values of zero, which is highly important in reducing 

overfitting [21]. We will describe overfitting in the METHODOLOGY chapter. 

2.3.3. Back-Propagation 

 

Figure 2.5: Signal-flow graph highlighting the details of output neuron j [23]. 

In this section Back-Propagation [23] method which is one kind of implementing Gradient Descent 

algorithm will be described. Figure 2.5 shows the Signal-flow graph of output neuron j. In order to tune 

the parameters with gradient descent we first we first define the network error as the squared prediction 

error of Eq. (2-2): 
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 𝑒𝑗(𝑛) = 𝑑𝑗(𝑛) − 𝑦𝑗(𝑛)  2-14 

 
𝜖𝑛 =

1

2
𝑒𝑗
2(𝑛) =

1

2
(𝑑𝑗(𝑛) − 𝑦𝑗(𝑛))

2
 

 2-15 

Thus, the total error energy will be: 

 ϵ(𝑛) = Σ𝑗=1
𝑚 ϵ𝑗(𝑛)  2-16 

In order to calculate the gradient for 𝑤𝑗𝑖(𝑛) we use the chain rule: 

 ∂ϵ(𝑛)

∂𝑤𝑗𝑖(𝑛)
=
∂ϵ(𝑛)

∂𝑒𝑗(𝑛)
.
∂𝑒𝑗(𝑛)

∂𝑦𝑗(𝑛)
.
∂𝑦𝑗(𝑛)

∂𝑣𝑗(𝑛)
.
∂𝑣𝑗

∂𝑤𝑗𝑖(𝑛)
 

 2-17 

So: 

 ∂ϵ(𝑛)

∂ϵ𝑗(𝑛)
= 𝑒𝑗(𝑛) 

 2-18 

 ∂𝑒𝑗(𝑛)

∂𝑦𝑗(𝑛)
=

∂

∂𝑦𝑗(𝑛)
(𝑑𝑗(𝑛) − 𝑦𝑗(𝑛)) = −1 

 2-19 

 ∂𝑦𝑗(𝑛)

∂𝑣𝑗(𝑛)
=
∂φ(𝑣𝑗(𝑛))

∂𝑣𝑗(𝑛)
= φ′ (𝑣𝑗(𝑛)) 

 2-20 

 

Note that φ′ (𝑣𝑗(𝑛)) depends on the activation function. 

 𝜕𝑣𝑗

𝜕𝑤𝑗𝑖(𝑛)
=

𝜕

𝜕𝑤𝑗𝑖(𝑛)
Σ(𝑖=1)
𝑚 𝑤𝑗𝑖(𝑛)𝑦𝑖(𝑛) = 𝑦𝑖(𝑛) 

 2-21 

Thus: 

 ∂ϵ(𝑛)

∂𝑤𝑗𝑖(𝑛)
= 𝑒𝑗(𝑛).φ

′ (𝑣𝑗(𝑛)) . 𝑦𝑖(𝑛). (−1) 
 2-22 

So: 

 
Δ𝑤𝑗𝑖(𝑛) = −η.

∂ϵ(𝑛)

∂𝑤𝑗𝑖(𝑛)
= η. 𝑒𝑗(𝑛).φ

′ (𝑣𝑗(𝑛)) . 𝑦𝑖(𝑛) 
 2-23 
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We will define the error gradient at neuron j by: 

 
δ𝑗(𝑛) =

∂ϵ(𝑛)

∂𝑣𝑗(𝑛)
= (−1). 𝑒𝑗(𝑛). φ

′ (𝑣𝑗(𝑛)) 
 2-24 

 Δ𝑤𝑗𝑖(𝑛) = −𝜂. 𝛿𝑗(𝑛). 𝑦𝑖(𝑛)  2-25 

 

So, for an output neuron: 

 𝛿𝑗(𝑛) = [𝑑𝑗(𝑛) − 𝑦𝑗(𝑛)]. 𝜑
′ (𝑣𝑗(𝑛))  2-26 

 

 

 

Figure 2.6: Signal-flow graph highlighting the details of output neuron k connected to hidden neuron j 

[23]. 

Figure 2.6 shows the signal-flow graph when there are hidden neurons. For a hidden neuron, we can 

follow the following steps: 

 
δ𝑗(𝑛) =

∂ϵ(𝑛)

∂𝑣𝑗(𝑛)
=
∂ϵ(𝑛)

∂𝑦𝑗(𝑛)
.
∂𝑦𝑗(𝑛)

∂𝑣𝑗(𝑛)
=
∂ϵ(𝑛)

∂𝑦𝑗(𝑛)
. φ′ (𝑣𝑗(𝑛)) 

 2-27 
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∂ϵ(𝑛)

∂𝑦𝑗(𝑛)
=

∂

∂𝑦𝑗(𝑛)
(
1

2
Σ𝑘  𝑒𝑘

2(𝑛)) =
∂ϵ(𝑛)

∂𝑒𝑘(𝑛)
.
∂𝑒𝑘(𝑛)

∂𝑦𝑗(𝑛)
 

 2-28 

 
= Σ𝑘  [𝑒𝑘(𝑛).

∂𝑒𝑘(𝑛)

∂𝑦𝑗(𝑛)
] = Σ𝑘  [𝑒𝑘(𝑛).

∂𝑒𝑘(𝑛)

∂𝑣𝑘(𝑛)
.
∂𝑣𝑘(𝑛)

∂𝑦𝑗(𝑛)
] 

 2-29 

 
= Σ𝑘  [𝑒𝑘(𝑛). (−1).φ

′(𝑣𝑘(𝑛)).
∂𝑣𝑘(𝑛)

∂𝑦𝑗(𝑛)
] 

 2-30 

These equations will lead to: 

 𝛿𝑗(𝑛) = Σ𝑘  𝑒𝑘(𝑛). (−1). 𝜑
′. 𝑤𝑘𝑗(𝑛) = Σ𝑘  𝛿𝑘(𝑛)𝑤𝑘𝑗(𝑛)  2-31 

 𝛿𝑗(𝑛) = 𝜑
′ (𝑣𝑗(𝑛)) . Σ𝑘  𝛿𝑘𝑤𝑘𝑗 

 2-32 

Thus: 

 Δ𝑤𝑗𝑖(𝑛) = 𝜂. 𝛿𝑖(𝑛). 𝑦𝑖(𝑛)  2-33 

φ′ depends on the activation function. For sigmoid activation function 𝜑′ will be calculated as 

follows: 

 

φ′ (𝑣𝑗(𝑛)) =
𝑒𝑥𝑝 (−𝑣𝑗(𝑛))

(1 + 𝑒𝑥𝑝 (−𝑣𝑗(𝑛)))
2 = 

φ(𝑣𝑗(𝑛)) . [1 − φ(𝑣𝑗(𝑛))] = 𝑦𝑗(𝑛)[1 − 𝑦𝑗(𝑛)] 

 

 

 2-34 

 

 

2.3.4. Vanishing Gradients 

According to  2-32, as the network becomes deeper there will be more terms of 𝜙′ in the error 

calculations. If we suppose that the activation function is sigmoid, φ′ will follow Figure 2.7: 
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Figure 2.7: φ′ plot. 

As shown in Figure 2.7, the maximum of 𝜑 is 0.25. Now suppose the network has 4 hidden layers like 

Figure 2.8. 

 

Figure 2.8: weight of a deep network. 

In order to update w1, the error calculation term will include φ′(𝑦4) ∙ φ′(𝑦3) ∙ φ′(𝑦2) ∙ φ′(𝑦1). 

Supposing values =0.25, the error term will be multiplied by 0.00390625 at most, driving the gradients to 

zero and thus preventing the weights of early layers from being updated [60].  

 

2.4. Convolutional Neural Networks (CNNs) 

In previous sections, we described MLPs and how to train them. We showed how fully-connected 

networks can find required features by utilization of non-linear functions. These neural networks have 

shown their good performance in lots of classification and prediction problems. However, these kinds of 

neural networks have some weaknesses. First is the number of weights. Fully Connected (F.C.) neural 

networks uses lots of parameters in order to connect a layer to its next layer. For example, consider the 

MNIST dataset which includes 28×28 = 784 input pixels. Assuming a hidden layer of 100 neurons, the 

number of weights between the input layer and first hidden layer will be 784 *100 = 78,400 weights. This 

continues when we add more layers. Having such a huge number of parameters will make training 

process slower due to the number of computations. Furthermore, such a large network requires more 
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training samples than a simple network in order not to overfit. Another important defect is that multi-layer 

perceptrons have no invariance with respect to local distortions. Thus, any permutation to the data will not 

affect network’s performance. However, we know that there is important similarity between pixels which 

are near each other. For example, in recognition of objects such as a table in a picture, the pixels of a table 

are more similar to each other than non-table pixels. They have almost same color, and they’re in a 

neighborhood. On the other hand, when there is a huge difference between pixels’ intensities in a 

neighborhood, it means that those pixels can have important information like edges [61]. 

LeCun et al. [61] developed Convolutional Neural Networks (CNNs) for image recognition. The key 

insight behind the CNN is to take advantage of the N-dimensional (N=2, for 2D images) local structure 

surrounding every pixel. Quite obviously, the value (i.e. RGB, or whatever other color space is used) of a 

given pixel is only meaningful to the human eye in relation to the values of the surrounding pixels. There 

is in fact a body of literature indicating that human vision is tuned to recognize scenes having a relatively 

narrow band of spatial statistics (i.e. certain ranges of fractal dimensions); for a discussion see e.g. [62]. 

The CNN takes advantage of this fact by defining “convolutional” layers, in which groups of neurons 

perform distinct convolutions over their input (either an image at the first layer, or the outputs of another 

layer as signals progress deeper into the network) [61]. A convolution operation can be carried out by 

defining a collection of neurons whose spatial extents overlap and cover the entirety of the image, while 

replicating the operation in question. These groups are referred to as planes, and their outputs feature 

maps. Replication of the same operation is achieved simply by constraining the weight vectors for every 

neuron in a plane to be duplicates of each other. The resulting feature map is then the outputs of the given 

convolution, applied to the input image (e.g. edge detection). We expect there will be multiple planes for 

an image, yielding multiple feature maps that will be passed to the next layer. Convolutional layers are 

commonly followed by sub-sampling layers. This will reduce the resolution of the feature map and 

thesensitivity of the output to shifts and distortions [61]. After passing all convolutional operations, sub-

sampling layers, and non-linearities, feature map values of the last convolutional layer are ready to be 

classified by e.g. an MLP. 
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Figure 2.9: LeNet Architecture. 

Figure 2.9 shows the architecture of LeNet [61]. Layer C1 in Figure 2.9 is the first convolutional layer, 

whose inputs are each individual pixel values from the input image. The convolutional layer computes the 

weighted sum of pixels in a window centering by a given pixel followed by a nonlinear function. The 

general form of the convolution operation is: 

 𝑣𝑖𝑗
𝑙 = Σ𝑎=0

𝑚−1Σ𝑏=0
𝑚−1𝑤𝑎𝑏𝑋(𝑖+𝑎)(𝑗+𝑏)

𝑙−1   2-35 

where the convolution window is of size 𝑚×𝑚, 𝑋𝑖𝑗 is the 𝑖𝑗𝑡ℎ pixel in the current sub-image, and 𝑤𝑎𝑏  is 

the weight of the connection between that pixel and the current neuron. The nonlinear function is the 

Logistic function of Eq. (2-10) 

Each convolutional layer can be followed by a sub-sampling (“pooling”) layer, which maps small 

neighborhoods in each feature map output to single pixels. Two common subsampling methods are max-

pooling and mean-pooling. Both these pooling layers consider a kernel size (𝑎 ×  𝑏) , and get their inputs 

through these kernels. In mean pooling (used in [61]) each unit computes the mean of its windowed 

inputs, multiplied by a trainable coefficient, and passing the result through the activation function. Max-

pooling units compute the maximum of their inputs rather than the mean.  2-36 shows the max-pooling 

operation with kernel size of a × b: 

 𝑦𝑖𝑗
𝑙 = max

𝑎
max
𝑏
(𝑋(𝑖+𝑎)(𝑗+𝑏)

𝑙−1 ) ,  𝑎, 𝑏 = (1,… , 𝑘)  2-36 
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 2-37 shows the average pooling operation with kernel size of c × d: 

 𝑦𝑖𝑗
𝑙 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑋(𝑖+𝑐)(𝑗+𝑑)

𝑙−1 ).ω𝑖𝑗 + 𝑏𝑖𝑗,  𝑐, 𝑑 = (1,… , 𝑘)  2-37 

where 𝜔𝑖𝑗  is the trainable weight coefficient, and 𝑏𝑖𝑗  is the bias term of neuron. 

LeNet (Figure 2.9) has three convolutional layers. LeCun et. al [61] add a zero padding to the inputs of 

MNIST and made the image 32 × 32. The first convolutional layer (C1) creates 6 feature maps of 28×28. 

Thus, the filters are of size 5×5 (as 32−5+1 = 28). This is called Valid padding. There’s another padding 

named Same. If LeNet was using Same padding the output of C1 would be of size 32 × 32. Each of these 

paddings have their own advantages. Same padding let’s network to get deeper and deeper while Valid 

padding reduces data dimension and prevents model to over-fit in comparison with Same. LeCun et. al, 

used same padding for only the first Layer (as we can see output of C1 is of size 28×28. Note that the 

inputs of MNIST are of size 28×28). The second layer is S2. This is a mean pooling layer which makes 6 

feature maps of size 14 × 14. Layer C3 makes 16 feature maps. In this layer also, the filter size is 5 × 5 

which results in having 16 feature maps of size 10 × 10. Note that this layer is using Valid padding. Then 

S4 performs another mean pooling and makes 16 feature maps of size 5 × 5. Layer C5 makes 120 feature 

maps by using filters of size 5 × 5. Here the architecture has 120 feature maps of size 1 × 1 which are 

similar to F.C. architectures. Thus, the convolutional layers can connect directly to a MLP. When the last 

convolutional layer is not of size 1×1, we will flatten and serialize the feature map values before passing 

them to the F.C. layers. 

Variants on the CNN architecture often include layers of additional neuron types. Local Response 

Normalization (LRN) layers implement the concept of lateral inhibition from human vision [2]. Lateral 

inhibition is the capacity of an excited neuron to reduce the activity of its neighbors. Lateral inhibition 

disables the spreading of action potentials from excited neurons to neighboring neurons in the lateral 

direction. This creates a contrast in stimulation that allows increased sensory perception. It is also referred 

to as lateral antagonism and occurs primarily in visual processes, but also in tactile, auditory, and even 

olfactory processing [63]. In an artificial neural network, an LRN layer will make a neuron become more 

sensitive as compared to its neighbors. One form of lateral inhibition can be implemented as [2]: 
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𝑏𝑥,𝑦
𝑖 =

𝑎𝑥,𝑦
𝑖

(𝑘 + αΣ
𝑗=𝑚𝑎𝑥(0,𝑖−

𝑛
2
)

𝑚𝑖𝑛(𝑁−1,𝑖+
𝑛
2
)
(𝑎𝑥,𝑦

𝑖 )
2
)

β
 

 2-38 

 

where 𝑎𝑥,𝑦
𝑖  is the activity of a neuron computed by applying kernel i at position (x, y) and then applying 

the ReLU non-linearity. Here N is the total number of kernels in the layer, and n is number of adjacent 

kernel maps at the same spatial position, while k (bias), α (scaling factor), β (exponent) are hyper-

parameters. 

 

2.5. Dimension Reduction 

Many machine learning problems suffer from the curse of dimensionality; the number of possible 

solution configurations increases exponentially as the number of variables increases [55]. Dimension 

reduction techniques attempt to retain information from the dataset that is heuristically believed to be the 

most discriminative. They might be used for dataset compression, speeding up a learning algorithm 

machine learning algorithm, data visualization, etc. Dimension reduction also often helps remove noise 

from the data. Thus, it can help speed up learning by reducing the number of features, and promote 

generalization by preventing overfitting to noise. 

2.5.1. Principle Component Analysis (PCA) 

Principle Component Analysis (PCA) [64] is a well-known dimensionality reduction technique. It is 

also known under different names such as the discrete type of Karhunen-Loeve Transform (KLT) [65]. 

KLT uses Algorithm 1 for data dimension reduction. 

Algorithm 1. KL Transform 

Start: 

Set 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]
𝑇 

Calculate 𝑚 𝑥 = 𝐸𝑥 = [𝑚1,𝑚2, … ,𝑚𝑛]
𝑇 = [𝐸{𝑥1}, 𝐸{𝑥2},… , 𝐸{𝑥𝑛}]

𝑇 
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Calculate covariance matrix C = 𝐸{(𝑥 −𝑚𝑥)(𝑥 −𝑚𝑥)
𝑇
} 

For large enough M: 𝑚𝑥 =
1

𝑀
∑ 𝑥𝑘
𝑀
𝑘=1  

Form 𝐴 from eigenvectors of matrix C.  

Calculate 𝑦 = 𝐴(𝑥 −𝑚𝑥) 

end 

 

PCA projects the input data x into a lower dimensional data spanned by the space of eigenvectors of 

the covariance matrix for a dataset. To obtain k principal components 𝐷 ∈ R𝑘×𝑑 where 𝑑 is number of 

features of the data, we obtain a singular value decomposition 𝑋 = 𝑈Σ𝑉𝑇 ∈ R𝑛×𝑑 giving 𝐷 = 𝑉𝑘
𝑇 ∈

R𝑘×𝑑 , 𝐻 = 𝑈𝑘Σ𝑘 ∈ R
𝑛×𝑘, which consists of the top largest k singular values, and 𝑈𝑘 ∈ R

𝑛×𝑘  𝑎𝑛𝑑 𝑉𝑘 ∈

R𝑘×𝑑are the corresponding singular vectors. The new representation for X is the H. This dimensionality 

reduction can be formulated as: 

 min
𝐷∈R𝑘×𝑑,   𝐻∈R𝑛×𝑘

||𝑋 − 𝐻𝐷||
2

2
  2-39 

 

2.5.2. Uniform Manifold Approximation and Projection (UMAP) 

UMAP (Uniform Manifold Approximation and Projection) [66] is a recent, well-regarded dimension 

reduction algorithm. UMAP uses local manifold approximations and patches together their local fuzzy 

simplicial set representations. UMAP is based on a Riemannian geometry and algebraic topology. It takes 

a topological representation of the high dimensional data. Then, in a similar process, the equivalent 

topological representation of a data can be developed for a low dimensional representation of data. 

UMAP minimizes the cross-entropy between the two topological representations. As far as we know, 

UMAP is the most recent and fastest dimension reduction technique [66]. 

We present Algorithm 2 and Algorithm 3, which summarize the computational pipeline for UMAP. In 

practice the fuzzy topological representation is not fully computed, but rather the objective is optimized 

via negative sampling on the edges of it, and then the corresponding memberships within it are calculated. 

Algorithm 2: FuzzyTop - Fuzzy topological representation of a dataset 
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Start: 

Data: Dataset 𝒟 = {𝑥𝑖}𝑖=1
𝑁 ⊂ R𝑛, number of neighbors �̃� 

Result: Fuzzy topological representation of 𝒟 given by 𝐾𝒟 

 for 𝑖 = 1, 2, . . . , 𝑁 do  
compute (𝒟, 𝑑𝑖) ∈ FinEPMet 

𝑘𝑖 = 𝐹𝑖𝑛𝑆𝑖𝑛𝑔(𝒟, 𝑑𝑖) ∈ sFuzz 
 𝐾𝒟 =⊥𝑖=1

𝑁 𝐾𝑖 
End 

 

 

Algorithm 3. UMAP - Uniform Manifold Approximation and Projection 

Start: 

Data: Dataset 𝒟 = {𝑥𝑖}𝑖=1
𝑁 ⊂ R𝑛, number of neighbors �̃�, embedding 

dimension d, maximum iterations 𝑖𝑚𝑎𝑥, learning rate α  

Result: Low dimensional embedding of D given by 𝒵 = {𝑧𝑖}𝑖=1
𝑁 ⊂ R𝑑 

𝐾𝒟  = FuzzyTop(𝒟, �̃�) 

Initialize 𝒵 ⊂ R𝑑 
𝐾𝒵0= FuzzyTop(𝒵0) 

for 𝜏 =  1, . . . , 𝑖𝑚𝑎𝑥   do  

             𝑙 = 𝐶(𝐾𝒟, 𝐾𝒵τ−1) 

             𝒵 = 𝒵𝜏−1 − 𝛼∇𝒵𝜏−1𝑙 

𝐾𝒵τ  = FuzzyTop(𝒵τ) 
end 

 

In Algorithm 2 FinEPMet, sFuzz, and FinSing function relate to the Fuzzy topological representation 

defined at [66]. 

2.6. Fuzzy logic 

Lotfi Zadeh introduced the concepts of Fuzzy sets [67] with the primary goal of developing a 

framework for representation of uncertain knowledge in 1965. Fuzzy logic [67] makes it possible to 

handle classes and structures with unsharp boundaries. In the second half of the 20th century, many 

scientific concepts, methods, and theories were “fuzzified”. Fuzzification is a transformation that can be 

reconstructed and reflected upon in a scientific manner by appropriately expanding the framework of the 

structuralist view of scientific theories in the philosophy of science. The resulting fuzzy sets can then 

serve as a new modeling tool in scientific theory. Fuzzy sets can represent human perceptions that cannot 

be represented with the sharp boundaries of classical logic. It is able to translate knowledge-based 
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approaches to formal models that are easy to implement. In addition, it is able to work with uncertainties 

within the data by allowing objects to be mathematically modeled by imprecise propositions and 

analyzing them. It allows us to learn a knowledge-based representation of information inherent in the 

data. 

Fuzzy sets deal with imprecise concepts in an exact way. Examples of imprecise expressions could be: 

“a polite person” or “a difficult exam”. Here it is the adjective that relates to something considered 

imprecise, but there are inexact expressions pertaining to other word classes as well such as “at this price, 

the house is a real bargain” [68]. The fuzzy perspective, which differs by introducing an infinite number 

of truth-values along a spectrum between perfect truth and perfect falsity, is one of the simplest ways of 

illustrating the imprecise expressions [69]. 

2.6.1. Fuzzy clustering algorithms 

Fuzzy clustering analysis deals with discovery of structures and groupings within the data, which we 

can interpret by using extracted membership functions. Membership functions then show the relation 

between each sample and clusters. On the other hand, because there is always noise within the data and 

the noise cannot be completely removed, fuzzy analysis can provide us with better interpretability as it 

includes uncertainty in the model [70]. 

Clustering algorithms can be defined as algorithms that identify groups of objects that are more similar 

to each other. Literally, thousands of clustering algorithms has been developed [71]. Fuzzy clustering 

methods do not assign a datum to a specific cluster. There could be outliers, noise and boundary cases. 

These cases may belong to multiple groups and as a results data points do not neatly sort into highly 

compact and separate groupings. As with fuzzy sets, fuzzy clustering resolves this problem by defining 

membership functions for each data point, and the membership value can be a non-zero value for an 

arbitrary number of clusters [72]. 
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2.6.1.1.  Fuzzy C-Means (FCM) 

The Fuzzy C-Means (FCM) algorithm [45] is one the most famous approaches in fuzzy clustering. 

Bezdek developed a fuzzification of the well-known K-Means algorithm in his Ph.D. thesis. FCM 

optimizes the objective function: 

 𝑐𝑜𝑠𝑡 = Σ𝑖=1
𝑛 Σ𝑗=1

𝑐 𝑢𝑖𝑗
𝑚‖𝑥𝑖 − 𝑐𝑗‖

2
  2-40 

Where 𝑐𝑗  is the center of cluster j, 𝑢𝑖𝑗  is the membership value of data point 𝑖 belonging to cluster 𝑗, the 

norm is the Euclidean distance, and 𝑚 is the fuzzifier constant which determines the level of cluster 

fuzziness [73]. A large m may result in small membership values, while small m can result in reaching a 

crisp partitioning. The default value for 𝑚 is commonly set to 2. In Optimizing such an objective function 

can be done by iteratively changing centers and membership functions as follows with Alternating 

Optimization [74]: 

 
𝑣𝑖 =

Σ𝑗=1
𝑛 𝑢𝑖,𝑗

𝑚𝑥𝑗

Σ𝑗=1
𝑛 𝑢𝑖,𝑗

𝑚  
 2-41 

and 

 
𝑢𝑖𝑗 =

1

Σ𝑘=1
𝑐 (

‖𝑥𝑖 − 𝑣𝑗‖
‖𝑥𝑖 − 𝑣𝑘‖

)

2
𝑚−1

 
 2-42 

 

 

Algorithm 4: FCM algorithm 

Start: 

 Initialize membership functions 

Set 𝜖 (termination criterion), and τ (iteration threshold)  
while iteration < τ do 

Update centers using  2-41 

Update Membership functions using  2-42 

Set 𝑒 = ‖𝑢𝑛𝑒𝑤 − 𝑢𝑜𝑙𝑑‖2
2  

if e < 𝜖  then 
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break 

end 

2.6.1.2. Gustafson and Kessel (GK) method 

FCM clusters are hyperspherical. By replacing the Euclidean distance by another metric, FCM can be 

extended to another clustering algorithm which is able to learn ellipsoidal clusters. Gustafson and Kessel 

(GK) [46] developed such an algorithm using the Mahalanobis distance. In the GK algorithm, each cluster 

is characterized by a covariance matrix A, which is necessarily symmetric and positive definite, along 

with the cluster centers. This matrix induces for each cluster a norm of its own ‖𝑥‖𝐴 ≔ √𝑥𝑇𝐴𝑥. In order 

to avoid a minimization of the objective function by matrices with almost zero entries, a constant volume 

of clusters is required; det(A) = 1. GK algorithm will define a constant value ρ for each matrix A and uses 

det(A) = ρ. Thus, the objective function can be represented as follows: 

 𝑐𝑜𝑠𝑡 = Σ𝑗=1
𝑛 Σ𝑖=1

𝑐 𝑢𝑖𝑗
𝑚‖𝑥𝑗 − 𝑣𝑖‖𝐴𝑖

2
− Σ𝑖=1

𝑐 λ𝑖(𝑑𝑒𝑡(𝐴𝑖) − 1) 
 2-43 

where vi is the center of the 𝑖𝑡ℎ  cluster and can be updated by the following equation: 

 
𝑣𝑖 =

Σ𝑗=1
𝑛 𝑢𝑖,𝑗

𝑚𝑥𝑗

Σ𝑗=1
𝑛 𝑢𝑖,𝑗

𝑚  
 2-44 

The covariance matrices A can be also updated using the following equations: 

 𝐴𝑖 = √𝑑𝑒𝑡(𝑆𝑖)
𝑝

𝑆𝑖
−1  2-45 

 𝑆𝑖 = Σ𝑗=1
𝑛 𝑢𝑖,𝑗

𝑚(𝑥𝑗 − 𝑣𝑖)(𝑥𝑗 − 𝑣𝑖)
𝑇

  2-46 

where p is number of features of the dataset. Both GK and FCM algorithms continue iterations of learning 

until reaching a stopping conditions such as ‖𝑢(𝑘 + 1) − 𝑢(𝑘)‖ <  δ or k < n, where n is iteration 

threshold, and δ is termination criterion, and k is the current iteration [70]. 

2.6.1.3. Gath-Geva (GG) method 

The algorithm by Gath and Geva (GG) [75] is an extension of GK algorithm. This algorithm takes size 

and density of clusters into account. Hence, it has better behaviors for irregular features [70]. The 

probabilistic interpretation of GG is shown by: 
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𝑃(𝑋|𝜂) =∑𝑃(𝑋, 𝜂𝑖) =  ∑𝑃(𝜂𝑖)𝑃(𝑋, 𝜂𝑖)

𝑐

𝑖=1

𝑐

𝑖=1

 
 2-47 

Gath and Geva [75] assumed that the normal distribution 𝑁𝑖  with expected value 𝑣𝑖 and covariance 

matrix A𝑖is chosen for generating a datum with prior probability 𝑝𝑖  

 
𝑃(𝑥𝑗|𝜂𝑖) =  

𝑝𝑖

(2π)
𝑝
2√𝑑𝑒𝑡(𝐴𝑖)

𝑒𝑥𝑝 (−
1

2
(𝑥𝑗 − 𝑣𝑖)

𝑇
𝐴𝑖
−1(𝑥𝑗 − 𝑣𝑖)) 

 2-48 

 

where = {𝑥1, 𝑥2, … , 𝑥𝑛} ,  𝑥𝑗 ∈ 𝑅
𝑝, 𝑗 = 1,2, … , 𝑛 is the data matrix. The covariance matrix of cluster 𝑖 is 

A𝑖 ∈ 𝑅
𝑝×𝑝 where p is the dimension of data, c is the number of clusters, 𝑑2(𝑥𝑗, 𝑣𝑖) for GG algorithm is 

chosen to be indirectly proportional to  2-48 which is the posterior probability likelihood function. A 

small distance means a high probability and a large distance means a low probability for membership. GG 

algorithm is based on minimization of the sum of weighted square distances between the data and the 

cluster centers of the objective function: 

 
𝐽𝐺𝐺
𝑚 (𝑈, 𝐴, Σ, 𝑋) =  ∑∑𝜇𝑖𝑗

𝑚

𝑛

𝑗=1

𝑐

𝑖=1

𝑑2(𝑥𝑗, 𝑣𝑖) 
 2-49 

Where the distance will be defined as follows: 

 

𝑑2(𝑥𝑗, 𝑣𝑖) =
(2𝜋)

𝑝
2√|A𝑖|𝑖
𝑝𝑖

 exp [
1

2
(𝑥𝑗 − 𝑣𝑖)

𝑇A𝑖
−1(𝑥𝑗 − 𝑣𝑖)] 

 2-50 

This algorithm can be optimized by alternating optimization [74]. 

 
𝑣𝑖 =

∑ 𝑢𝑖,𝑗
𝑚𝑛

𝑗=1  𝑥𝑗

∑ 𝑢𝑖,𝑗
𝑚𝑛

𝑗=1

 
 2-51 

 

𝐴𝑖 =
Σ𝑗=1
𝑛 𝑢𝑖,𝑗

𝑚(𝑥𝑗 − 𝑣𝑖)(𝑥𝑗 − 𝑣𝑖)
𝑇

Σ𝑗=1
𝑛 𝑢𝑖,𝑗

𝑚  

2-52 

 
𝑝𝑖 =

∑ 𝑢𝑖,𝑗
𝑚𝑛

𝑗=1

∑ ∑ 𝑢𝑙,𝑗
𝑚𝑐

𝑙=1
𝑛
𝑗=1

 
2-53 
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𝑢𝑖𝑗
𝑘 = [∑[

𝑑2(𝑥𝑗, 𝑣𝑖)

𝑑2(𝑥𝑗, 𝑣𝑙)
]

1
𝑚−1

𝑐

𝑙=1

]

−1

 

2-54 

Following algorithm shows the GG algorithm. 

Algorithm 5: GG algorithm 

Start: 

 Initialize the parameters and memberships 

 Set 𝜏 as iteration threshold and 𝜖 total change threshold 

while iteration < τ do 
Update parameters of  2-51, 2-52, 2-53, 2-54 

Set 𝑒 =  
1

𝑐
∑ ||�⃗�𝑛𝑒𝑤 − �⃗�𝑜𝑙𝑑||

2𝑐
𝑖=1  

if e < 𝜖  then 
break 

end 

 

2.6.1.4. Agglomerative Hierarchical Clustering 

Agglomerative Hierarchical Clustering (AHC) methods have been employed in a variety of fields due 

to their usefulness. As usual, 𝑋 =  {𝑥1, . . . , 𝑥𝑁}    is the set of objects. A measure of dissimilarity 𝐷(𝑥, 𝑥′) 

is defined on an arbitrary pair 𝑥, 𝑥′ ∈  𝑋. And    𝐺1, . . . , 𝐺𝐾 are clusters that form the partition of X: 

 

⋃𝐺𝑖

𝐾

𝑖=1

= 𝑋,    𝐺𝑖 ∩ 𝐺𝑗 = ∅,         (i ≠ j) 
2-55 

A set of clusters is defined by ζ = {𝐺1, … , 𝐺𝑘}. K is a given constant and varies as the algorithm 

proceeds. The algorithm starts with 𝐾 =  𝑁, and in each iteration two clusters of the minimum 

dissimilarity are merged, and the number of clusters is reduced by 1: 𝐾 =  𝐾 −  1, and finally all clusters 

are merged into the trivial cluster of 𝑋: 𝐾 =  1. Algorithm 6 presents the Agglomerative Hierarchical 

Clustering algorithm [76]. 
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Algorithm 6: Agglomerative Hierarchical Clustering (AHC) 

Start: 

AHC1. Assume that initial clusters are given by 

𝜁 = {𝐺1, … , 𝐺𝑘}, 𝐺𝑗 = {𝑥𝑗} ⊂ 𝑋 
Set K=N (K is the number of clusters). 

Calculate 𝐷(𝐺, 𝐺’) for all pairs 𝐺, 𝐺′  ∈  𝜁 by 𝐷(𝐺, 𝐺′) = 𝐷(𝑥, 𝑥′) 
AHC2. Search the pair of minimum dissimilarity: 

(𝐺𝑝, 𝐺𝑞) = 𝑎𝑟𝑔 min
𝐺,𝐺′∈𝜁

𝐷(𝐺, 𝐺′) 

let: 

𝑚𝐾 = 𝐷(𝐺𝑝, 𝐺𝑞) = min
𝐺,𝐺′∈𝜁

𝐷(𝐺, 𝐺′) 

Merge: 𝐺𝑟 = 𝐺𝑝 ∩ 𝐺𝑞 

Add  𝐺𝑟  to 𝜁 and delete 𝐺𝑝, 𝐺𝑞  from 𝜁.  
K = K-1 

if K = 1 then  

Go to end. 
AHC3. Update dissimilarity 𝐷(𝐺𝑟, 𝐺′′) for all 𝐺′′ ∈  𝜁  

 Go to AHC2. 

end 

 

2.6.2. Clustering Validity 

One of the major questions in clustering is how to evaluate the clustering result of a particular 

algorithm. The problem is called “cluster validity”. Cluster validity is conducted to achieve three 

objectives [77]: 

1. To compare the output of alternative clustering algorithms for a particular data set 

2. To determine the best number of clusters for a particular data set (for example, the choice of 

parameter c for the FCM). 

3. To determine if a given data set contains any structure (i.e., whether there exists a natural 

grouping of the data set). 

Validity measures of a constrained fuzzy partition fall into three categories: 

1. Membership-based validity measures which calculate certain properties of the membership 

functions in a constrained fuzzy partition. 



27 | P a g e  

 

 

2. Geometry-based validity measures which consider geometrical properties of a cluster as well as 

geometrical relationships between clusters. 

3. Performance-based validity measures which evaluate a fuzzy partition based on its performance 

for a predefined goal. 

The Partition Coefficient [77] measures the degree of fuzziness of clusters. The formula for this validity 

measure, denoted 𝑣𝑝𝑐, is: 

  
𝑣𝑝𝑐 =

1

𝑛
∑∑μ𝐶𝑖(𝑥𝑗)

𝑗𝑖

,  𝑖 = 1,… , 𝑐  𝑗 = 1,… , 𝑛. 
2-56 

𝑣𝑝𝑒 is another membership-based validity measure is the Partition entropy: 

  
𝑣𝑝𝑒 =

−1

𝑛
∑∑[μ𝐶𝑖(𝑥𝑖)𝑙𝑜𝑔𝑎 (μ𝐶𝑖(𝑥𝑗))]

𝑗𝑖

,  𝑖 = 1,… , 𝑐  𝑗 = 1,… , 𝑛. 
2-57 

where 𝑎 ∈  (1,∞) is the logarithmic base. The entropy measure increases as the fuzziness of the partition 

decreases [78]. The two membership-based validity measures are related in the following ways: 

• 𝑣𝑝𝑐  = 1 ⟺ 𝑣𝑝𝑒  = 0 ⟺ the partition is hard. 

• 𝑣𝑝𝑐  = 1/c ⟺ 𝑣𝑝𝑒 = log𝑎(𝑐)  ⟺ μ𝐶𝑖(𝑥𝑗) =
1

𝑐
 for all 𝑖, 𝑗. 

Xie and Beni introduced a validity measure that considers both the compactness of clusters as well as the 

separation between clusters. The basic idea of this validity measure is that the more compact the clusters 

are and the further the separation between clusters, the more desirable the partition. To achieve this 

measure, the Xie-Beni validity index [79] (denoted as 𝑣𝑥𝐵) is defined formally as follows: 

 
𝑣𝑥𝐵 = [∑σ𝑖

𝑖

/𝑛] [1/𝑑𝑚𝑖𝑛
2 ] 

2-58 

where 𝜎𝑖  is the variation of cluster 𝐶𝑖  defined as follows: 

 σ𝑖 =∑[μ𝐶𝑖(𝑥𝑗)]‖𝑥𝑗 − 𝑣𝑖‖
2

𝑗

 2-59 

 



28 | P a g e  

 

 

where n is the cardinality of the data set and 𝑑𝑚𝑖𝑛 is the shortest distance between cluster centers defined 

as: 

 𝑑𝑚𝑖𝑛 = 𝑚𝑖𝑛‖𝑣𝑗 − 𝑣𝑖‖, 𝑖 ≠ 𝑗 2-60 

The first term in 2-58 is a measure of non-compactness, and the second term is a measure of non-

separation. Hence, the product of the two terms reflects the degree to which the clusters in the partition 

are not compact and not well separated. Thus, the lower the cluster index, the better the fuzzy partition is 

[78]. 

Other cluster validity measurement methods include: proportion exponent [80], uniform data 

functional [81], Davies–Bouldin (DB) index [82], Separation index (Dunn’s index) [83], Fuzzy 

HyperVolume (FHV) [75], and hundreds of others. 

2.6.3. Neuro-Fuzzy Systems 

Neuro-fuzzy which refers to combination of artificial neural networks and fuzzy logic, results in a 

hybrid machine learning system that incorporates the human-like reasoning style of fuzzy systems using 

fuzzy sets and a linguistic model consisting of a set of IF-THEN fuzzy rules. The strength of neuro-fuzzy 

systems involves two important requirements in fuzzy modeling: interpretability and accuracy. ANFIS 

[33] (Adaptive Neuro-Fuzzy Inference System) is one the most well-known neuro-fuzzy systems [78]. 

2.6.3.1. ANFIS 

2.6.3.1.1. Fuzzy Inference System 

Fuzzy inference systems are also known as fuzzy-rule-based systems, fuzzy models, fuzzy associate 

memories (FAM), or fuzzy controllers when used as controllers. [33]. A fuzzy system is composed of five 

blocks [33]: 

• A rule base containing a number of fuzzy if-then rules 

• A database which defines the membership functions of the fuzzy sets used in the fuzzy rules 

• A decision-making unit which performs the inference operations on the rules 
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• A fuzzification interface which transforms the crisp inputs into degrees of match with linguistic 

values 

• A defuzzification interface which transform the fuzzy results of the inference into a crisp output. 

Usually, the rule base and the database are jointly referred to the knowledge base. The steps of fuzzy 

reasoning (inference operations upon fuzzy if-then rules) performed by fuzzy inference systems are [5]: 

1. Compare the input variables with the membership functions on the premise part to obtain the 

membership values (or compatibility measure) of each linguistic label. 

2. Combine (through a specific T-norm operator, usually multiplication or min) the membership 

values on the premise part to get firing strength (weight) of each rule. 

3. Generate the qualified consequent (either fuzzy or crisp) of each rule depending on the firing 

strength. 

4. Aggregate the qualified consequents to produce a crisp output. (defuzzification step) 

Most fuzzy inference systems can be classified into three types: 

Type 1 The overall output is the weighted average of each rule’s crisp output induced by the rule’s firing 

strength and output membership functions. The output membership functions used in this scheme must be 

monotonic function [84]. 

Type 2 The overall fuzzy output is derived by applying a “max” operation to the qualified fuzzy outputs. 

Various schemes have been proposed to choose the final crisp output based on the overall fuzzy output; 

some of them are centroid of area, bisector of area, mean of maxima, maximum criterion, etc [85]. 

Type 3 Takagi and Sugeno’s fuzzy if-then rules are used [86]. The output of each rule is a linear 

combination of input variables plus a constant term, and final output is the weighted average of each 

rule’s output. 
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2.6.3.1.2. ANFIS architecture 

 

Figure 2.10: ANFIS architecture (adaptive nodes shown with a square and fixed node with a circle 

[33]. 

ANFIS was designed to be equivalent to a Takagi-Sugeno-Kang (TSK) fuzzy system. For example, 

assume that the system has two inputs x and y and one output z. For a first-order Sugeno fuzzy model 

[87], a rule set containing two fuzzy if-then rules could be the following: 

 𝑅𝑢𝑙𝑒1 ∶  𝑖𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑓1 =  𝑝1𝑥 +  𝑞1𝑦 +  𝑟1, 2-61 

 𝑅𝑢𝑙𝑒2 ∶  𝑖𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑓2 =  𝑝2𝑥 +  𝑞2𝑦 +  𝑟2, 2-62 

The corresponding equivalent ANFIS architecture is as shown in Figure 2.10. In this figure, nodes of a 

layer have similar functions. Here we will be describing the layers: 

Layer 1: Every node 𝑖 in this layer is an adaptive node with a node function: 

 01,𝑖 = μ𝐴𝑖(𝑥) 2-63 

In layer 1, there will be a subset of neurons, that respond to an input dimension. Each neuron implements 

a fuzzy membership function and the neuron in the subset together form a fuzzy partition of that input 

dimension. Here the membership function for A can be any appropriate parameterized membership 

function, such as the generalized bell function: 
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μ𝐴(𝑥) =

1

1 + |(𝑥 − 𝑐𝑖)/𝑎𝑖|
2𝑏𝑖

 
2-64 

where ai, bi, ci is the parameter set. As the values of these parameters change, the bell-shaped function 

varies accordingly, thus exhibiting various forms of membership functions for a fuzzy set A. Parameters 

in this layer are referred to as “premise parameters”. 

Thus, the architecture of Figure 2.10 will use the following equations for the first layer: 

 01,𝑖 = μ𝐴𝑖(𝑥) ,  𝑓𝑜𝑟 𝑖 = 1,2, 2-65 

 01,𝑖 = μ𝐵𝑖−2(𝑦) ,  𝑓𝑜𝑟 𝑖 = 3,4 2-66 

where x (or y) is the input to node 𝑖 and Ai (or Bi−2) is a linguistic label (such as “small” or “large”) 

associated with this node. In other words, 01,𝑖  is the membership grade of a fuzzy set A and it specifies the 

degree to which the given input x (or y) satisfies the quantifier A. 

Layer 2: Every node in this layer is a fixed node labeled Π, whose output is the product of all incoming 

signals. The corresponding equations of Figure 2.10 for this layer will be: 

 02,𝑖 = ω𝑖 = μ𝐴𝑖(𝑥) μ𝐵𝑖(𝑦), 𝑖 = 1,2 2-67 

Each node output represents the firing strength of a fuzzy rule. 

Layer 3: Every node in this layer is a fixed node labeled N. The 𝑖𝑡ℎ node calculates the ratio of the 𝑖𝑡ℎ 

rule’s firing strength to the sum of all rules’ firing strengths: 

 03,𝑖 = ω𝑖̅̅ ̅ = ω𝑖/(ω1 +ω2), 𝑖 = 1,2 2-68 

For convenience, outputs of this layer are called “normalized firing strengths”. 

Layer 4: Every node 𝑖 in this layer is an adaptive node with a node function 

 04,𝑖 = ω𝑖̅̅ ̅𝑓𝑖 = ω𝑖̅̅ ̅(𝑝𝑖⃗⃗⃗⃗ 𝑥 + 𝑞𝑖⃗⃗⃗⃗ 𝑦 + 𝑟𝑖⃗⃗⃗ ) 2-69 

Layer 5: The single node in this layer is a fixed node labeled 𝛴, which computes the overall output as the 

summation of all incoming signals: 
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𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 = 05,𝑖 =∑ω𝑖̅̅ ̅

𝑖

𝑓𝑖 =
∑ ω𝑖𝑓𝑖𝑖

∑ ω𝑖𝑖
 

2-70 

We note that the structure of this adaptive network is not unique; we can combine layers 3 and 4 to obtain 

an equivalent network with only four layers. In the extreme case, we can even shrink the whole network 

into a single adaptive node with the same parameter set. Obviously, the assignment of node functions and 

the network configuration are arbitrary, as long as each node and each layer perform meaningful and 

modular functionalities [33] [78]. 

2.7. Explainable Artificial Intelligence 

Interpretability is defined as the degree to which a human can understand the cause of a decision or 

can consistently predict the model’s result [88] [89]. Another definition of interpretability is Modern deep 

learning systems can match or even exceed human performance in some tasks. However, they are black 

boxes, and thus their decision-making process is sometimes incomprehensible to even human experts in 

the area. For example, consider the 37th move in the second game of the historic Go match between Lee 

Sedol, a top Go player, and AlphaGo [90] built by DeepMind. Another Go expert, Fan Hui, commented, 

“It’s not a human move. I’ve never seen a human play this move.” 

2.7.1. Why eXplainable Artificial Intelligence (XAI)? 

The simple fact is that all of the advances made in AI in the last two decades could be wasted if 

humans cannot trust those algorithms to make decisions at some level. Research has repeatedly shown 

that providing users with an explanation for decisions made by an algorithm is an essential precondition 

to winning user trust [24] [91]. In addition, explanation mechanisms enable other key system 

characteristics [92]: 

• Verifiability: The AI model just infers from the data; any biases in the data are thus faithfully 

reproduced by the model [93]. It is also possible for the model to be incorrect; software is, after all, 

well-known for quality problems. Thus, verification of the system by domain experts is required. 

This, however, is only possible if those experts can understand the model. 
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• Comparative judgements: Interpreting a model will then allow us to compare and contrast different 

models. Distinct models may have the same classification performance, but completely different 

decision-making methods. It is possible that some of those models, while presently reasonable, might 

foreseeably lead to undesired outcomes in the future.  

• Knowledge discovery: As with other data mining algorithms, deep learning can observe data patterns 

not visible to humans. However, in the KDD framework [94], such patterns must then be presented to 

an analyst and integrated into operations. Plainly, this means humans must understand them.  

• Legal compliance: The European Union has issued regulations which implement a “right to 

explanation.” Users can demand an explanation of an algorithmic decision impacting them [95]. 

2.7.2. Interpretability by Visualization Methods 

In this section, we will describe some methods of adding interpretability to the system. The 

methodologies presented below are model-specific approaches that are often used for monitoring the 

learning algorithm, especially in neural networks. They have alsobeen found useful for interpreting 

predictions of neural networks.  

• LRP: Layer-wise relevance propagation (LRP) redistributes the prediction backwards through 

the neural network from the observation using local redistribution rules until it finally assigns a 

relevance score to each input variable [96]. 

• Taylor Decomposition: Taylor decomposition is very similar to Layer-wise relevance 

propagation (LRP) except a different decomposition function (Taylor decomposition) is used for 

redistribution of the predicted value back to the input feature [96]. 

• Sensitivity Analysis: Sensitivity Analysis explains the model’s prediction based on the model’s 

locally evaluated gradient. Similar to partial dependence plots, sensitivity analysis quantifies the 

importance of each input variable (e.g., image pixel) while all other variables are fixed. 

Sensitivity analysis assumes that the most important input features are those to which the 

prediction is most sensitive [97]. 



34 | P a g e  

 

 

• Guided backpropagation: Guided backpropagation is a non-conserving backward propagation 

technique. Similar to the regular backpropagation approach, but in case of guided 

backpropagation, the negative gradients are also suppressed. Negative gradients indicate that 

specific neuron has a negative influence on the class that we are trying to visualize. This way 

guided backpropagation puts weight only on the signals that contribute to the positive class 

scoring [98]. 

• DeconvNet: Like guided backpropagation, deconvolution is also a nonconserving backward 

propagation technique. Unlike guided backpropagation, however, deconvolution relies on max-

pooling layers to direct the propagated signal to the appropriate locations in the image [30] [99] . 

We will describe LRP, Taylor Decomposition, Guided Back-propagation, and DeconvNet methods in 

chapter of PROPOSED ARCHITECTURE in more detail. 
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3Chapter 3 

PROPOSED ARCHITECTURE 
 

3.1. Deep Convolutional Neural Networks 

3.1.1. CNNs Description 

Figure 3.1 shows an example of our proposed architecture. In our design we have combined the 

convolutional layers from [61] with the proposed fuzzy classifier. Layer C1 computes six feature maps 

using a convolutional layer. Each neuron in this layer computes a convolution sum over a filter of size 5 × 

5 following  2-35), using the same padding. Thus, if the input dimensionality is D × D, the feature map 

will be of size D × D. In Figure 3.1, D = 28 (as LeNet is tested on MNIST). Outputs of this layer then 

passes the ReLu activation function of  2-11). Layer S2 then applies the max-pooling operation of  2-36. 

Layer C3 computes 16 feature maps, followed again by ReLU  2-11. 

 

Figure 3.1: Deep Fuzzy architecture for MNIST and Fashion MNIST. 
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At this point, the data path will divide into two parts. For the Deep Fuzzy architecture, the feature 

maps of C3 will be the derived feature space passed to the inputs of the fuzzy classifier; thi sis depicted 

by the dashed line leading to the “Fuzzy Classifier” box. The fuzzy classifier performs fuzzy clustering 

and then applies Rocchio’s algorithm to classify each sample. The other branch leads through a more 

traditional deep network output, which includes S4 as another sub-sampling layer and a fully-connected 

layer of perceptron neurons. Each one computes the weighted sum of its inputs: 

 𝑣𝑗 =∑𝑤𝑖𝑗𝑦𝑖
𝑖

+ 𝑏𝑖 
3-1 

where 𝑦𝑖  is the 𝑖𝑡ℎ  output from Layer S4 (one pixel from one feature map), 𝑤𝑖𝑗  is the weight on the 

connection from that pixel to neuron 𝑗 in the F.C. layer, and 𝑏𝑗  is the bias for neuron 𝑗. This is followed by 

the ReLU activation function, producing the output of the 𝑗𝑡ℎ  neuron in the F.C. layer. Finally, those 

outputs are passed to a fully connected layer of softmax neurons: 

 

𝑦𝑘 =
𝑒𝑥𝑝 (𝑤𝑘

𝑇⃗⃗ ⃗⃗ ⃗⃗ . 𝑌𝐹𝐶⃗⃗ ⃗⃗ ⃗⃗⃗)

∑ 𝑒𝑥𝑝 (𝑤𝑚
𝑇⃗⃗ ⃗⃗ ⃗⃗⃗. 𝑌𝐹𝐶⃗⃗ ⃗⃗ ⃗⃗⃗)

𝑀
𝑚=1

 

3-2 

where 𝑦𝑘  is the k-th network output, 𝑌𝐹𝐶⃗⃗ ⃗⃗ ⃗⃗⃗ is the output vector from the previous F.C. layer, 𝑤𝑘
𝑇⃗⃗ ⃗⃗ ⃗⃗  is the 

transposed weight vector for the k-th softmax neuron, and 𝑀 is the number of neurons in the softamx 

layer. The resulting network outputs are confined to [0,1], and sum to 1 for each network input. 

To train the network, we employed the mini-batching form of stochastic gradient descent, with an 

added momentum term: 

 Δ𝑤𝑖𝑗(𝑛) = η. δ𝑗(𝑛). 𝑥𝑖(𝑛) + α. Δ𝑤𝑖𝑗(𝑛 − 1) 3-3 

 

where ∆𝑤𝑖𝑗(𝑛) is the update for the 𝑖𝑗𝑡ℎ  weight after observing the 𝑛𝑡ℎ  mini-batch of input patterns, 𝜂 is 

the learning rate, 𝛿𝑗(𝑛) is the error gradient for neuron 𝑗, ∆𝑤𝑖𝑗(𝑛 − 1) was the update the 𝑖𝑗𝑡ℎ  weight after 

the previous mini-batch, and 𝛼 is the momentum constant. Our loss function is the cross-entropy: 
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ϵ = −∑𝑑𝑐𝑙𝑜𝑔(𝑝(𝑦𝑐|�⃗�))

𝐶

𝑐=1

 

3-4 

where 𝑑𝑐  is a binary indicator of whether the ground-truth class for the current input �⃗� is 𝑐, and 𝑝 is the 

probability that the output 𝑦𝑐  will be predicted by the deep learner for input �⃗� [23]. In our experiments, we 

first train the full deep convolutional network (CNN and F.C. parts of Figure 3.1), and test it on our 

holdout data. Then, we copy the outputs of Layer C3 for each element of the training and test sets; this 

gives us the feature space and holdout test set we will use for our fuzzy classifier. 

3.1.2. Capacity, Overfitting, Underfitting 

The central challenge in machine learning is to induce a model that generalizes well to new, unseen 

data. We evaluate generalization by measuring performance on an out-of-sample test set; the sum of 

squared errors is a commonly used measure:  

 
𝐸𝑟𝑟𝑜𝑟 =

1

𝑚𝑡𝑒𝑠𝑡
Σ𝑥𝑡𝑒𝑠𝑡‖𝑌𝑡𝑒𝑠𝑡 − 𝑌(𝑥,𝑤)‖

2 
3-5 

where 𝑌𝑡𝑒𝑠𝑡 is the target, 𝑌(𝑥,𝑤) is prediction of the network, 𝑚𝑡𝑒𝑠𝑡 is number of testing samples. 

Achieving good generalization requires, from a practical perspective, accomplishing two related but 

distinct goals: minimizing training error, and minimizing the difference between training and testing 

error. The challenges in doing so can be dubbed underfitting and overfitting. Underfitting occurs when the 

model is not able to obtain a sufficiently low error value on the training set. Overfitting occurs when the 

gap between the training error and test error is too large [55]. In general, these are problems of capacity, 

defined as a model’s ability to approximate a wide variety of input-output functions. Low capacity means 

that the model may not be capable of approximating a function well, while excessive capacity can overfit 

the data. One way of changing a model’s capacity is changing number of input features and parameters. 

Regularization approaches that prune less-useful weights can reduce a parameter set [100], and feature 

selection or reduction usually reduce the number of input features [101]. 

Cross-validation [102] is a technique for assessing how the results of a statistical analysis will 

generalize to an independent data set. The goal of cross-validation is to test the model’s ability to predict 
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new data that was not used, in order to provide an insight on how the model will generalize a dataset. One 

well-known implementation is k-fold cross-validation, which divides the available set of N examples into 

K subsets, where K > 1. (K −1) subsets are used for training and the remaining subset will be used for 

validation [23]. The procedure repeats K times, with each subset used as the validation set exactly once. 

At the end, the population of validation results gives us a (hopefully robust) estimate of generalizability.  

 

3.2. Rocchio’s Algorithm 

In this section we will describe the fuzzy version of Rocchio’s algorithm [47]. This is the standard 

Rocchio’s algorithm, preceded by the extra step of hardening fuzzy clusters into classes. Each data point 

in the training setis “assigned” to the cluster for which it has the highest membership. The hardened 

cluster is then labeled as the class shared by the largest number of examples assigned to it. An example is 

shown in Figure 3.2. In this figure, the data divides into the three classes of Square, Circle, and Triangle. 

20 triangles, 6 squares, and 3 circles are found in cluster1. Because the most common data sample in 

cluster1 is triangle, this cluster will be of class Triangle. With the same procedure, cluster2 is of class 

Circle, and cluster3 is of class Square. Algorithm 6 summarizes classification with Rocchio’s algorithm 

via FCM/GK clustering. 
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Figure 3.2: Fuzzy version of Rocchio’s algorithm 

Algorithm 7: Fuzzy Rocchio’s Algorithm 

Start: 

1. Calculate memberships via FCM/GK training 
Assign data points to clusters according to their membership  

2. Choose the most common label in each cluster as its class  
3. Calculate testing_Memberships via FCM/GK prediction 
4. Assign each data to a class according to its membership 

End 

 

 

Figure 3.3: The fuzzy classifier unit. 



40 | P a g e  

 

 

3.3. Fuzzy Classifier 

Figure 3.3 shows a block diagram of the fuzzy classifier unit. Feature map selection means that either 

all elements of a feature map are selected, or none are; this coherence is important as the classifier is 

intended to be interpretable. This stage omits redundant feature maps to improve classification accuracy. 

Dimension reduction based on PCA or UMAP is then employed as GK clustering requires a matrix 

inversion step; with each selected feature map yielding 196 features (a 14x14 image), clustering in the 

unreduced dataset could be prohibitively slow. The fuzzy clustering is executed, and Rocchio’s algorithm 

used as the classifier.  

The validation process for parameter tuning and testing procedure is presented in Algorithm 8. We use 

a cross-validation design for tuning parameters such as maximum number of iterations, the exponent 

constant, dimension of data or number of components, ρ (in GK), feature selection, etc. Algorithm 9 

presents the fuzzy clustering component (an extension of Algorithm 4). The difference is the usage of 

Mahanabolis distance and co-variance matrix for stretching the axis while running GK. 

Algorithm 8:Fuzzy classifier parameter Tuning with Cross-Validation 

Start: 

trInp, trLabel, valInp, valLabel ← read input data 

selected features ← feature map selection 
input ← DimensionReduction(trInp[selected features]) 
valData ← DimensionReduction(valInp[selected features]) 
centers, memberships = FuzzyClustering (input)  

val_memberships = Fuzzyprediction (centers, valData) 

centerLabels ← Rocchio(trLabel, memberships, centers, input) 

accuracy ← Accuracy(valLabel, centerLabels, val_memberships) 
Tune parameters w.r.t. accuracy 

End 

 

Algorithm 9: Fuzzy clustering algorithms - Training and Prediction 

Start: 

if training then  

Membership initialization 

while iteration < τ do 

Calculate centers 
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Compute the distance  

if GK then 
Use Mahanabolis distance  

else 
Use Euclidean distance  

Update memberships  

if error termination criteria < 𝜖 then 
go to end 

else 

Run the training  phase without updating the centers. 
end 

 

 

Figure 3.4: 𝐶𝑁𝑁𝑚𝑒𝑑𝑜𝑖𝑑𝑠
−1  

Our explanation mechanism starts with the clustering; we identify the medoid element of each cluster, 

and treat it as the cluster representative [103]. We will then map this element back to the original image 

space, identifying the pixels that are most relevant in producing the classifier output. Plotting these as a 

heat map gives us our explanation for that whole cluster of images; we will henceforth refer to this as the 

saliency map for a given output. This process is summarized in Figure 3.4. We will discuss algorithms for 

computing 𝐶𝑁𝑁𝑚𝑒𝑑𝑜𝑖𝑑𝑠
−1   in the next section.  
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3.4. Techniques for Finding Saliency Maps 

With the medoids of the fuzzy clusters identified, we now need to find how each pixel in the original 

feature space contributes to the final classification for each medoid. In this section we will describe three 

well-known methods for this task: Layer-wise Relevance Propagation (LRP), Taylor Decomposition, and 

Guided Backpropagation. I have used [104] toolbox for these methods. 

3.4.1. Layer-Wise Relevance Propagation (LRP) [96] 

The idea of pixel-wise decomposition is to find the contribution of a single pixel of an image 𝑥 with 𝑉 

pixels to the prediction 𝑓(𝑥) made by a classifier 𝑓. The goal is to find to what extent each pixel 

contributes to the classification result (it could be positive or negative). Let the mapping 𝑓: 𝑅𝑣  →  𝑅1, 

𝑓(𝑥)  >  0, denote the learned structure. One approach is to decompose the prediction 𝑓(𝑥) as a sum of 

terms of the separate input dimensions 𝑥𝑑  (i.e. pixels): 

 

𝑓(𝑥) ≈ ∑𝑅𝑑

𝑉

𝑑=1

 

 

3-6 

where 𝑅𝑑 is a quantity called the relevance (discussed below). 𝑅𝑑  <  0 contributes evidence against the 

presence of a structure to be classified while 𝑅𝑑  >  0 contributes evidence for its presence. LRP in its 

general form assumes that the classifier can be decomposed into several layers of computation, with the 

first layer being the inputs and last layer is the real-valued prediction output 𝑓. The 𝑙𝑡ℎ  layer is modeled as 

a vector 𝑧 = (𝑧𝑑
(1))

𝑑=1

𝑣(𝑙)
 with dimensionality 𝑣(𝑙). Layer-wise relevance propagation assumes that we have 

a relevance score 𝑅𝑑
𝑙+1 for each dimension 𝑧𝑑  of the vector 𝑧 at layer 𝑙 + 1. The idea is to find a 

Relevance score of the previous layer 𝑅𝑑
(𝑙)

 for the vector 𝑧 at layer 𝑙. This process continues iteratively 

until the relevances for the inputs are determined. The LRP method supposes that total amount of 

relevance is equal for all layers, and thus: 

 𝑓(𝑥) = ⋯ = ∑ 𝑅𝑑
(𝑙+1)

𝑑∈𝑙+1

=∑𝑅𝑑
(𝑙)

𝑑∈𝑙

=∑𝑅𝑑
(1)

𝑑

 3-7 
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The LRP method makes two assumptions. Firstly, it expresses the layer-wise relevance in terms of 

messages 𝑅𝑖←𝑗
(𝑙,𝑙+1)

 between neurons 𝑖 and 𝑗 which can be sent along each connection. The messages are, 

however, directed from a neuron towards its input neurons (i.e. a backwards pass). Secondly, it defines 

the relevance of any neuron except an output neuron as the sum of incoming messages: 

 𝑅𝑖
(𝑙)
= ∑ 𝑅𝑖←𝑘

(𝑙,𝑙+1)

𝑘: 𝑖 𝑖𝑠 𝑖𝑛𝑝𝑢𝑡 𝑓𝑜𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑘

 3-8 

Note that the output neuron doesn’t have any incoming message. Instead its relevance is defined as 

𝑅(𝑙) = 𝑓(𝑥). Considering 3-7 and 3-8 the layer-wise relevance propagation is given by: 

 𝑅𝑘
(𝑙+1)

= ∑ 𝑅𝑖←𝑘
(𝑙,𝑙+1)

𝑖: 𝑖 𝑖𝑠 𝑖𝑛𝑝𝑢𝑡 𝑓𝑜𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑘

 3-9 

The difference from 3-8 is that 3-9 runs the summation over the input sources while 3-8 performs it on 

sinks. This can be demonstrated using 3-7 as follows: 

            ∑𝑅𝑘
(𝑙+1)

𝑘

=∑ ∑ 𝑅𝑖←𝑘
(𝑙,𝑙+1)

𝑘: 𝑖 𝑖𝑠 𝑖𝑛𝑝𝑢𝑡 𝑓𝑜𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑘𝑖

 

 =∑ ∑ 𝑅𝑖←𝑘
(𝑙,𝑙+1)

𝑖: 𝑖 𝑖𝑠 𝑖𝑛𝑝𝑢𝑡 𝑓𝑜𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑘𝑘

 3-10 

             = ∑𝑅𝑖
(𝑙)

𝑖

 

One interpretation of 3-9 is that the messages 𝑅𝑖←𝑘
(𝑙,𝑙+1)

 are used to distribute the relevance 𝑅𝑘
(𝑙+1)

 of 

neuron 𝑘 onto its input neurons at layer 𝑙. Thus, in order to find the relevances the only required part is to 

be able to calculate the sent messages. These messages can be defined using the activation values and 

weights of the neurons as follows:  

 𝑅𝑖←𝑘
(𝑙,𝑙+1) = 𝑅𝑘

(𝑙+1) 𝑎𝑖𝑤𝑖𝑘
∑ 𝑎ℎ𝑤ℎ𝑘ℎ

 3-11 

As discussed above, in this equation, 𝑅𝑖←𝑘
(𝑙,𝑙+1)

 is the sent message from neuron k to neuron 𝑖, and 𝑅𝑘
(𝑙+1)

is 

the relevance value for neuron k at layer l+1, 𝑎𝑖 is the activation value, and 𝑤𝑖𝑘 is the weight between 
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neuron i and neuron k. If we suppose that the network has 5 layers. Similarly to the backpropagation 

algorithm, the relevance value for the last layer (𝑓(𝑥)) and 3-11 will be used to calculate the messages 

sent from the output neuron 𝑅𝑘
(5)
 to the previous layer neurons. Then, the relevance of each neuron in 

layer 4 (𝑅𝑘
(4)

) can then be calculated using 3-8. Now that relevance values of layer 4 are available, we can 

follow the same procedure to find relevance values of layer 3. The procedure continues until we reach the 

input layer. At that point, the relevance values capture to what extent each input has contributed to the 

decision 𝑓(𝑥). 

An important consideration is that neuron activations and weights in 3-11 can be zero or nearly so, 

possibly creating numerical instabilities. To prevent this, a stabilizer term ∈ is added to the equation, 

yielding: 

 𝑧𝑖𝑗 = 𝑎𝑖𝑤𝑖𝑗 3-12 

 𝑧𝑗 =∑𝑧𝑖𝑗
𝑖

+ 𝑏𝑗 
3-13 

 

𝑅𝑖←𝑗
(𝑙,𝑙+1)

=

{
 

 
𝑧𝑖𝑗

𝑧𝑗 + 𝜖
. 𝑅𝑗

(𝑙+1)
   𝑖𝑓 𝑧𝑗 ≥ 0 

𝑧𝑖𝑗

𝑧𝑗 − 𝜖
. 𝑅𝑗

(𝑙+1)   𝑖𝑓 𝑧𝑗 < 0
 

 

3-14 

By increasing 𝜖 value, the negative and positive relevance values will be more apparent in the resulting 

image [96]. 

Figure 3.5, and Figure 3.6 show a multilayer neural network annotated with the different variables and 

indices describing neurons and weight connections. Algorithm 10 also demonstrates the LRP algorithm. 

As shown in this algorithm, the activations and weights of a layer will be used to calculate the messages, 

and from these messages the relevance for each neuron will be calculated.  
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Figure 3.5: A multi-layer perceptron’s forward pass [96]. 

 

Figure 3.6: LRP algorithm’s backward pass [96]. 

Algorithm 10: LRP algorithm 

Start: 

Input: 𝑅(𝐿) = 𝑓(𝑥) 
for 𝑙 ∈  𝐿 − 1, . . . ,1 do 

𝑅𝑖←𝑗
(𝑙,𝑙+1)  ← as in 3-14 

𝑅𝑖
(𝑙) =∑𝑅𝑖←𝑗

(𝑙,𝑙+1)

𝑗

 

      Output: ∀𝑑:𝑅𝑑
(1)
 

end 
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3.4.2.  Taylor Decomposition [96] 

A first order Taylor approximation can be used as an alternative to 3-6 for a general differentiable real-

valued prediction function f: 

 

𝑓(𝑥) ≈ 𝑓(𝑥0) +∑
∂𝑓

𝜕𝑥(𝑑)
(𝑥0)  (𝑥(𝑑) − 𝑥0(𝑑))

𝑉

𝑑=1

 

3-15 

Here 𝑓(𝑥) is the decision boundary function. In this setup, the choice of a Taylor base point 𝑥0 is a 

free parameter. In case of classification the method looks for points with 𝑓(𝑥0)  =  0, as the contribution 

of each pixel relative to the state of maximal uncertainty of the prediction, because 𝑓(𝑥)  >  0 denotes 

presence and 𝑓(𝑥)  <  0 absence of the learned structure. So, 𝑥0 should be chosen to be a root of the 

predictor 𝑓. 𝑥0 should furthermore be chosen to be close to 𝑥 under the Euclidean norm, as Taylor 

approximation only holds in a neighborhood of x In case of multiple existing roots 𝑥0 with minimal norm, 

they can be averaged or integrated in order to get an average over all these solutions. When 𝑓(𝑥0)  =  0, 

the above simplifies to 

 

𝑓(𝑥) ≈ ∑
∂𝑓

𝜕𝑥(𝑑)
(𝑥0)  (𝑥(𝑑) − 𝑥0(𝑑))

𝑉

𝑑=1

 

3-16 

A first possible explanation of the classification decision 𝑥 →  𝑓(𝑥) can be obtained by Taylor 

expansion at a near root point 𝑥0 of the decision function 𝑓: 

 
𝑅𝑑
(1) = (𝑥 − 𝑥0)(𝑑). (

∂𝑓

∂𝑥(𝑑)
(𝑥0)) 

3-17 

where 𝑅𝑑
(1)

is the relevance for 𝑑𝑡ℎ neuron of 1𝑠𝑡 layer (the input pixels). The derivatives of 3-17 can be 

efficiently calculated using the back-propagation algorithm. This method has been extended to Deep 

Taylor Decomposition in [105]. 
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3.4.3. Guided Back-propagation [98] 

3.4.3.1. Deconvnet [30] 

The deconvolutional network (“deconvnet”) is a visualization technique learned by neurons in higher 

layers of a CNN. Given a high-level feature map, the “deconvnet” inverts the data flow of a CNN. 

Typically, a single neuron is left non-zero in the high-level feature map. Then the resulting reconstructed 

image shows the part of the input image that is most strongly activating this neuron (and hence the part 

that is most discriminative to it). In order to conduct a reconstruction through max-pooling layers this 

method first performs the forward pass calculations to compute “switches” – positions of maxima within 

each pooling region. 

Deconvnet [30] [99] [106] uses unpooling and deconvolution layers as follows: 

• Unpooling: The max pooling operation is non-invertible. However, we can obtain an approximate 

inverse by recording the locations of the maxima within each pooling region in a set of switch 

variables. In the deconvnet, the unpooling operation uses these switches to place the 

reconstructions from the layer above into appropriate locations, preserving the structure of the 

stimulus. Unpooling uses the same kernel of the max-pooling layer and the remaining activations 

are zeroed. 

• Deconvolution: The convnet uses learned filters to convolve the feature maps from the previous 

layer. To invert this, the deconvnet uses transposed versions of the same filters, but applied to the 

rectified maps, not the output of the layer beneath. In practice this means flipping each filter 

vertically and horizontally Projecting down from higher layers uses the switch settings generated 

by the max pooling in the convnet on the way up. As these switch settings are peculiar to a given 

input image, the reconstruction obtained from a single activation thus resembles a small piece of 

the original input image, with structures weighted according to their contribution toward to the 

feature activation. Since the model is trained discriminatively, they implicitly show which parts 

of the input image are discriminative. Note that these projections are not samples from the model, 

since there is no generative process involved. A deconvolutional layer is just the transpose of its 
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corresponding convolutional layer by adding paddings around the pixels and performing 

Deconvolution operations. We can find detailed arithmetic of deconvolution at [107].  

In the following, we will describe how convolution operation works: 

           Input             filter      result  

   

 

                    1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 2 + 8 + 15 = 25 

The deconvolution operation uses the filter and the result to go backward. The simplest description is 

to multiply the output to each weight in the filter and placing the resulted matrix according the indices of 

the weight. Then the adding the results together will create the final result. 

 

      

 

 

                                             Adding them up will result in:  
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The following code can be used to check the results: 

import tensorflow as tf 

import numpy as np 

x = tf.constant(np.array([[ 

    [[25], [31]], 

    [[43], [49]] 

]]), tf.float32) 

myList = [[0,0,0,0],[0,1,0,0],[0,0,2,0],[0,0,0,3],[0,1,2,3]] 

for l in myList: 

    i,j,m,n = l 

    f = tf.constant(np.array([ 

        [[[i]], [[j]]], 

        [[[m]], [[n]]] 

    ]), tf.float32) 

    conv = tf.nn.conv2d_transpose(x, f, output_shape=(1, 3, 3, 1), 

strides=[1, 1, 1, 1], padding='VALID') 

    print(l) 

    with tf.Session() as session: 

        result = session.run(conv) 

        for line in result[0]: 

            for el in line: 

                print(el[0], end=" ") 

            print() 

 

 

• Rectification: The convnet uses ReLU non-linearities, which rectify the feature maps thus 

ensuring the feature maps are always positive. To obtain valid feature reconstructions at each layer (which 

also should be positive), we pass the reconstructed signal through a ReLU non-linearity. 

3.4.3.2. Extension of Deconvnet 

Guided backpropagation extends the deconvolution approach by combining it with a simple technique 

visualizing the part of the image that most activates a given neuron using a backward pass of the 

activation of a single neuron after a forward pass through the network. Simonyan et al. [97] This is a 

visualization of firing strength of each pixel in order to produce a given result at one output neuron. The 

authors showed that this was similar to deconvolutional networks [30] except for the handling of the 

nonlinearity at rectified linear units (ReLUs). Springenberg et al., [98] combined these two approaches 
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into Guided Backpropagation, along with a rule to zero out the importance signal at a neuron if either the 

input or the importance signal are negative. 

3.5. Research Questions for System Evaluation 

In the following, we pose several research questions and design experiments to answer them. In 

general, our designs compare the performance of our deep fuzzy system against the same fuzzy classifier 

in the original image, against the full deep learner, and against recent results in the literature.  

 Any new learning algorithm must offer some improvement on the status quo; our first research 

question is thus RQ1:Does the fuzzy clustering layer improve upon the accuracy of the deep learner it is 

based on? If not, what is the trade-off between the accuracy and interpretability? We will evaluate RQ1 

with a traditional comparison (via out-of-sample accuracy) of the deep fuzzy system against the deep 

learner it is based on. If (as we suspect) the deep fuzzy system is less accurate than the deep learner, this 

experiment also reveals the size of that difference.  

 The next question is whether the deep fuzzy system has in fact given us any advantage over the 

fuzzy system component itself. This yields RQ2: Does the use of automated feature extraction lead to 

improve classification results versus training our fuzzy classifier in the original feature space? RQ2 can 

again be evaluated by comparing the deep fuzzy system against the same fuzzy classifier trained in the 

original image space.   

 We then turn our attention to the wider literature on deep learning; there are many papers that 

investigate our benchmark datasets, and we also need to determine how our deep fuzzy system performs 

against them.  This yields RQ3: Is our proposed architecture comparably accurate to existing deep 

learning systems? Again, this question is answered by comparing our deep fuzzy system to those other 

architectures, including the state-of-the-art (as best we can determine). 

 Our intent is that the deep fuzzy architecture of Figure 2 could be applied to any CNN, not just 

LeNet and its variations. Our next question is RQ4: Can our deep fuzzy architecture be generalized to 

other CNNs? We will examine this question by combining the fuzzy classifier with four different CNNs, 
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and repeating the experiments for RQ1 on each. These four networks include variants on LeNet and 

AlexNet, a CNN with four convolutional layers, and Residual networks. 

 We can also inquire what the impact of different clustering algorithms might be. FCM produces 

hyperspherical clusters, while GK clusters are hyperellipsoidal; is there a performance difference between 

them? (Note that these are only two of the thousands of fuzzy clustering algorithms that have been 

proposed.) This yields RQ5: What is the impact of different clustering algorithms on the deep fuzzy 

system? RQ5 can be evaluated by substituting different fuzzy clustering algorithms in Figure 3, and then 

comparing the resulting deep fuzzy systems using the same design as RQ1.  

 Finally, the prime intent of designing this deep fuzzy system is to obtain a more interpretable 

classifier. We thus pose research question RQ6: Is the deep fuzzy system more interpretable than the 

original deep fuzzy system? Formal experiments to measure a characteristic such as interpretability are 

designing in the psychology literature, and are beyond the scope of the current study. However, we can 

offer a demonstration of our proposed explanation mechanism, and explore how it accounts for both 

correct and erroneous classifications in our data.  
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4Chapter 4 

METHODOLOGY 
 

4.1. Dataset Description 

We have chosen three commonly-used benchmark datasets from the deep learning literature: MNIST 

[49], Fashion MNIST [50], and CIFAR-10 [51].  

4.1.1. MNIST 

MNIST [49] is a collection of grayscale images, each representing one handwritten digit and labeled 

with the correct value. The samples were gathered from roughly 250 individuals; one half are from from 

U.S. Census Bureau employees, while the other half come from high school students. MNIST is pre-

partitioned into 60,000 training samples and 10,000 testing samples; the writers for the two groups are 

disjoint. Each MNIST image is a 28x28 pixel square, centered on the center of mass of the digit pixels. 

These images are constructed from a set of 20x20 pixel square images containing the actual digits, size-

normalized to this bounding box. While the original samples were binary images, the anti-aliasing 

technique used in the normalization introduced gray levels. See [49] for more details. 
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Figure 4.1: Some samples of MNIST hand writing digit dataset 

4.1.2. Fashion MNIST 

Fashion MNIST [50] is a dataset for clothes classification. Fashion MNIST serves as a direct drop-in 

replacement for the original MNIST dataset and shares the same image size and structure of training and 

testing splits with MNIST. Each Fashion MNIST sample is a 28x28 grayscale image, associated with a 

label from one of ten classes (t-shirts, trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags, 

and ankle boots). As discussed in [50] 1) MNIST is too easy to classify. 2) MNIST is overused. 3) 

MNIST cannot represent modern computer vision tasks. Thus, a more challenging and representative 

dataset was needed, and Fashion MNIST fills that need. Figure 4.2 shows some samples of Fashion 

MNIST dataset. 
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Figure 4.2: Some samples of Fashion MNIST dataset 

4.1.3. CIFAR-10 

 

Figure 4.3: Some samples of CIFAR-10 dataset 
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CIFAR-10 [51] is an RGB image dataset, consisting of 60,000 images of size 32×32 in ten classes, 

with 6000 images per class. There are 50,000 training images and 10,000 testing images. The ten 

mutually exclusive classes are airplane, automobile, bird, cat deer, dog, frog, horse, ship, and truck. 

Figure 4.3 shows some samples from CIFAR-10 dataset. 

 

4.2. Experimental Setup 

The existing literature on all three datasets reports results based on a single-split design; for 

comparability we will follow this design, and use the same test sets of 10,000 images as our out-of-

sample evaluation for all three datasets. Our training datasets will be 10,000 examples randomly selected 

from the predefined training sets, to reduce the computation time. For MNIST and Fashion MNIST we 

employ the CNN of Figure 3.1. However, preliminary experiments showed this architecture to perform 

poorly on CIFAR-10, and so we instead use a variant of the CNN in [2] for this dataset; the architecrture 

is depicted in Figure 4.4. Note that we have cropped each sample image to 24 × 24 image. That’s a 

common technique to improve performance on CIFAR-10 [108]. 

 

 

Figure 4.4: Trained CNN for CIFAR-10. 

In Figure 4.4, the 32 × 32 input images come from the CIFAR10 dataset, and are cropped to 24 × 24. 

image. The first convolutional layer computes 64 feature maps of 24 × 24 (Same Padding). After a ReLU 

activation, C1’s output passes through max-pooling and LRN, yielding 64 feature maps of 12 × 12. The 

network repeats this procedure twice more. Then two fully connected layers of perceptron neurons and a 
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softmax layer classify the data. The first F.C. layer has 384 neurons, and the second one includes 192 

neurons. Note that this structure is itself essentially an MLP in itself. 

For both Figure 3.1 and Figure 4.4, we have decided not to optimize the hyper-parameters of the CNN 

component of our design, in order to focus on the impact of the fuzzy component on our results. The 

CNNs are thus trained with a mini-batch size of 128, η = 0.01, α = 0.9. While it may be the case that 

further optimization of the CNN might increase the overall performance of our deep fuzzy classifier, in 

this thesis we are more interested in the contribution of the fuzzy component and the interpretability. As 

discussed before, understanding and right usage of methods which prevent us from overfitting, can have a 

huge impact on system’s performance. We will use L2 Regularization [100], feature map selection 

(feature selection [101]), and cross validation [102] for parameter tuning and improvement of system’s 

performance. 

As described in the question 2 and its answer, we will also get help from scatterplot of the data. All the 

scatterplots in this thesis are using PCA, and they’re showing the 10,000 sample of the data. We have 

chosen this to reach a low-level insight of data shape and understand the difference between the data 

visually. 
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5Chapter 5 

EXPERIMENTAL RESULTS 
 

In this section we will be describing our system’s performance on MNIST, Fashion MNIST, and 

CIFAR-10, and discussing our findings on the six research questions we have defined.  

5.1. Performance on MNIST 

Our out-of-sample test accuracies on MNIST are reported in Table 1. This table divides into two 

sections, Our experiments and Recent published results. The first section demonstrates the performance of 

our deep fuzzy classifiers, deep CNN, and fuzzy classifiers. Note that the deep fuzzy classifier performs 

the classification in the extracted feature space while the conventional fuzzy (named as FCM/GK) will 

classify the data in the original feature space. The second section shows results of other recent methods 

including the state-of-the-art method. 

The “Deep Fuzzy Classifier” (whether Deep FCM or Deep GK) and “Deep Convolutional Neural 

Network” (Deep CNN) entries in Table 1 represent the two data paths discussed in Figure 3.1. Note that 

for all experiments, our training dataset includes 10,000 samples. In the first branch which is training and 

testing the data with Deep CNN, the accuracy is 97.87. Deep FCM and Deep GK could reach 96.92, and 

97.36 respectively. This means that the Fuzzy-based classifiers were not quite as accurate as the full deep 

neural network on MNIST. However, the difference is very small, and there does appear to be an 

important difference in interpretability; the deep fuzzy at this point generates reasonably-interpretable 

clusters in the derived feature space, while the deep network (see Figure 3.1) adds another max-pooling 
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layer, a fully-connected layer of ReLU neurons, and another layer of softmax neurons. These extra layers 

by themselves resemble a variation on the multi-layer perceptron architecture, which is well-known for 

being a black box. Thus, regarding question (1), the proposed architecture not only is performing well 

enough, but it also adds interpretability to MNIST classification. 

Table 1: Comparison of our accuracy and most recent accuracies on MNIST. 

Method 

Number 

of 

Clusters 

Accuracy 

 

Our experiments 

  

DEEP FCM 100 96.92 

DEEP FCM 10 87.63 

DEEP GK 10 96.97 

DEEP GK 100 97.36 

DEEP CNN - 97.87 

FCM 100 84.48 

GK 10 70.92 

GK 100 81.61 

Recent published results 

[109] - 95.0 

[110] - 84.3 

[111] - 99.79 

[112] - 95.0 

 

Regarding research question (2), we have tested our fuzzy clustering in the original feature space 

(pixels in the actual images). Three-dimensional scatterplots of the training data in the original feature 

space and the Layer C3 feature maps are depicted in Figure 5.1, respectively. These figures do suggest 
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that the different classes become better separated in the derived feature space the CNN creates. As we can 

see from Table 1, there is also a substantial difference in accuracy when the fuzzy classifier unit classifies 

the data in original and derived feature spaces. We thus answer in the affirmative: automated feature 

extraction via the CNN did improve our classification accuracy. So, such an architecture will provide 

fuzzy logic with high level CNN’s feature extraction mechanisms. 

To evaluate research question (3), we have identified four recent publications in the deep learning field 

that evaluate their proposals on the MNIST dataset. Xie et al. [110] present a deep embedded clustering 

method that leans feature representations using deep neural networks. Diehl et al. [112] present a spiking 

neural network. Chen et al. [109] present a generative adversarial network that tries to maximize the 

mutual information between a small subset of the latent variables and the observation. Wan et al. [111] 

present a generalization of Dropout that randomly drops weights instead of activations; this is currently 

the best result on MNIST that we are aware of. [111] is known as DropConnect which is an extension of 

Dropout [113] introduced by Hinton et al. The difference between our result with [111] as the best 

available result is fairly small. Note that any research can define a specific model for a dataset, and train 

on it. We can also extend the proposed model to reach higher accuracy. These steps will be implemented 

later. On the other hand, we have showed [109] [110]  which are fairly recent published results ranking 

behind our architecture. Thus, we can claim that deep fuzzy classifier is performing a good job in 

comparison with other recent methods. 

Regarding research question (5), we have provided results of Deep GK and Deep FCM. As shown in 

Table 1, DEEP GK could reach same classification accuracy with 10 clusters while DEEP FCM uses 100 

clusters, and DEEP GK still has higher accuracy. This means that fuzzy clustering method has a high 

impact on the architecture’s performance. 

On the other hand, in the original feature space, GK and FCM classify the data with accuracy of 81.61, 

and 84.48 respectively (with 100 clusters). Considering DEEP GK’s accuracy of 96.97 with only 10 

clusters, and accuracy of 96.92 for DEEP FCM with 100 clusters, the Deep fuzzy classifier (specially 

GK) could play an important role on MNIST. 



60 | P a g e  

 

 

 

 



61 | P a g e  

 

 

Figure 5.1: Scatter plots of MNIST dataset in CNN extracted feature space (column 1) and original 

feature space (column 2). (10,000 samples). 

5.2. Performance on Fashion MNIST 

In this section we will report the experimental results on Fashion MNIST dataset. Table 2 includes our 

out-of-sample test accuracies on this dataset. As shown in Table 2, Deep CNN classifies the data with the 

accuracy of 86.51 while Deep GK and Deep FCM classify the data with 79.60 and 81.71 respectively with 

100 clusters. Deep CNN’s accuracy is 4.8% greater than accuracy of Deep GK. Thus, regarding question 

(1), there’s a trade-off between accuracy and interpretability.  

Table 2: Comparison of our accuracy and most recent accuracies on Fashion MNIST. 

Method 
Number 

of 
Clusters 

Accuracy 

Our experiments 

DEEP FCM 100 79.69 

DEEP FCM 10 64.93 

DEEP GK 10 74.33 

DEEP GK 100 81.71 

DEEP CNN - 86.51 

FCM 10 58.06 

FCM 100 74.24 

GK 10 53.8 

GK 100 73.1 

Recent published results 

[114] - 58.64 

[115] - 90.03 
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[2] - 86.43 

[116] - 96.8 

 

About question (2), comparing results of Deep FCM/GK with FCM/GK we find that the dataset has 

been classified in the extracted feature space better than in the original feature space. Figure 5.2 also 

shows that the data seems easier to classify in the extracted feature space than the original feature space, 

as data points in the original feature space are densely mixed and concentrated at one point, while the 

extracted feature space has been separated them. The difference between accuracies of FCM-based 

classifiers is 5.45, and 8.61 for GK-based classifiers. Thus, although the difference is not very big, we can 

claim that the fuzzy classifier is better to classify the data in extracted feature space than original feature 

space. 

Question (3) asks whether the system’s performance is comparable with other methods or not. We 

have gathered some recent published results on the Fashion MNIST dataset note that it was released in 

2017 [50]. Zeng et al. [116] introduced a deep transfer learning method by integrating the features learned 

from the original images and features of extracted feature space. This paper [116] is currently the state-of-

the-art method for Fashion MNIST classification as far as we know. This method has about 10% 

difference in terms of accuracy with the Deep CNN method, while the deep fuzzy classifier is about 15 

percentage points behind the state-of-the-art. We suspect that substituting a different CNN (e.g. [116]) 

as the feature extractor could substantially increase our accuracy, but that will be a matter for future 

research. We can also explore other clustering methods such as Gath-Geva (GG) clustering [75]. Another 

idea is to substitute Rocchio’s algorithm with another classifier. 

Regarding question (5), we can compare the FCM and GK results to each other. As shown in Table 2, 

Deep GK performs the classification with the accuracy of 74.33 with 10 clusters, while Deep FCM 

reaches 64.93 with the same number of clusters. This is about 10% difference in terms of accuracy. On 

the other hand, Deep GK and Deep FCM are performing similar to each other when we vary number of 
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clusters to 100. However, we should note that interpretability does not come for free; there are often 

tradeoffs between how accurate a deep system works, and how interpretable it is. 
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Figure 5.2: Scatter plots of Fashion MNIST dataset in CNN extracted feature space (column 1) and 

original feature space (column 2). (10,000 samples). 

5.3. Performance on CIFAR-10 

Our last dataset is CIFAR-10. CIFAR-10 which is an RGB dataset, includes pixels of 32 × 32, while 

MNIT and Fashion MNIST include pixels of size 28 × 28. However, when the data comes to the network 

the RGB image will be divided to 3 Red, Green, and Blue images. Thus, the input image is 3×32×32 = 

3072. As discussed before, the data is cropped to 24 × 24 in order to reach better performance. Hence, the 

input data will be of size 3 × 24 × 24 = 1728. 

Table 3, shows our out-of-sample test accuracies on CIFAR-10. Like the previous datasets, results of 

CIFAR-10 also includes two sections. One includes our experimental results while the other one includes 

recently published results. On the CIFAR-10 dataset, Cubuk et al. [117] could outperform other methods 

at Google Brain [118]. Previously we showed that [116] is state-of-the-art method in Fashion MNIST 

classification. [116] will classify CIFAR-10 with accuracy of 74.45%. The reason is Data Augmentation 

methods. [116] uses a Data Augmentation method in order to increase the accuracy for Fashion MNIST, 

and Cubuk et. al [117] introduce new data augmentation for CIFAR-10. These methods can be also 

applied in our method for increasing our accuracy. As shown in Table 3, the Deep CNN accuracy is 80.7. 

Thus, there’s a huge difference between AlexNet and Cubuk et. al [117] performance (98.53%). Thus, the 

low accuracy is coming from CNN’s accuracy, not fuzzy classifier. The difference between our 

experimental results on original feature space and the CNN’s feature space in Table 3 and Figure 5.3 

proves needs of using CNN’s as feature extractors; question (2). As shown in the Table, DEEP GK has 

the accuracy of 67.98% while GK has 28.59% (difference = 39.39 percentage points). Regarding 

question (5), changing FCM to GK has helped the fuzzy classifier to increase its accuracy in both feature 

spaces. Comparing results of Table 3 with Table 1, and Table 2, changing the CNN will not affect the 

results, and the system is able to response for all type of CNNs (question (4)). However, dependent on the 

classification mechanism that a CNN is using, the accuracy of fuzzy system can fall behind it. Figure 4.4 

shows the CNN architecture for CIFAR-10 dataset. As shown in the figure, the classifier unit consists of 
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two fully connected layers and one softmax layer. Such a classifier is complex enough to classify any 

dataset with high accuracy. Nevertheless, as shown in Table 3 our DEEP GK accuracy is not far behind 

the recent published accuracies. (question (3)) 

Table 3: Comparison of our accuracy and most recent accuracies on CIFAR-10. 

Method Number of Clusters Accuracy 

Our experiments 

DEEP FCM 100 59.29 

DEEP FCM 10 49.04 

DEEP GK Max acc. @ 10 74.07 

DEEP GK 100 72.05 

DEEP CNN - 80.7 

FCM 10 22.66 

FCM Max acc. @ 18 31.31 

GK 10 28.59 

Recent published results  

[119] - 79.7 

[120] - 96.53 

[121] - 82.18 

[2] - 89 

[117] - 98.53 
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Figure 5.3: Scatter plots of CIFAR-10 dataset in CNN extracted feature space (row 1) and original 

feature space (row 2). (10,000 samples). 



68 | P a g e  

 

 

6Chapter 6 

Interpretability 
 

6.1. Medoid Representatives 

In this section we will try to answer research question 6: Does using our approach yield a more 

interpretable classifier? In the previous chapters, we talked about how to find representatives of each 

class and evaluated our system on three different datasets. We demonstrated that the Fuzzy clustering 

algorithm will provide us with some medoids for each class (Figure 3.3). The cluster medoid, which is an 

image drawn from the dataset, is the example whose average dissimilarity to all the objects in the cluster 

is minimal. In this chapter, we will explain how to use the saliency maps we have defined and the 

medoids together in order to interpret system’s decision-making process. Figure 6.1 and Figure 6.2 are 

showing the medoid representatives of each class for MNIST dataset. 

 

Figure 6.1: Medoid representatives of each digit 
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Figure 6.2: Medoid representatives of each digit (continued) 
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Figure 6.3: Some not understandable (hard to recognize) digits 

As shown in Figure 6.1 and Figure 6.2, each medoid representative is completely recognizable for 

human beings. However, there are some samples shown in Figure 6.3 that are hard to recognize or not 

understandable for us. Our network has been misclassified them also. The network will classify any input, 

as it’s forced to. However, all classifications will be performed according to the model induced by the 

learning algorithm. Understanding network’s decision making process means not only understanding the 

reasons behind correct classifications, but also the reasons behind misclassifications.  

In the following we will describe our interpretation results using Layer-wise Relevance Propagation 

(LRP), DeepTaylor decomposition, and Guided Back-propagation methods for each digit. Note that we 

have called these three methods as interpretation techniques. In Guided Back-propagation method, white 

and black pixels are showing the most effective pixels on classification. A completely white and a 

completely black pixel have same impact on classification, but different meanings. White ones are the 

pixels that need to be white in the original image, and black ones are the ones that need to be black in the 

original image. Gray pixels don’t impact result of classification so much. However, LRP and Deep Taylor 

methods show both of these kind of pixels (black and white pixels in LRP and Guided Back-Propagation), 

in white. These methods just show to what extend the pixels have been helped the decision-making 

process. The whiter a pixel is, the more impact it has. Thus, the Guided Back-Propagation method may 

give us more detailed interpretations. 

6.1.1. Digit 0 

Figure 6.4 presents the saliency maps created by Guided Back-propagation, Deep Taylor 

decomposition, and LRP for the medoid of class “0.” We highlight what we believe are the most 
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important pixels in those maps in green boxes, while Figure 6.5 presents the medoid itself. Our discussion 

will focus on comparing Figure 6.5 and Figure 6.4 (the same pattern will be followed for subsequent 

digits). We also provide the Logit and softmax output values of the CNN network to the left of the 

saliency maps (this will also be repeated for subsequent figures). 

 

 

Figure 6.4: Saliency maps for medoid representative of class 0. 

Figure 6.4 indicates the most important region in recognizing this input is the curved parts of the input. 

The LRP result shows that the curve part of the input placed at top right and bottom left are playing the 

most important rule. The figure also shows that the middle pixels are not important, but the network is 

extracting edges surrounding the input, i.e. the black pixels around the white ones. Deep Taylor method 

considers the top left curve as the most important part. It’s also recognizing the edges around that curve. 

Guided Back propagation shows that the network thinks a digit 0 should have 3 important curves (showed 

in green windows) and recognizes their edges (the black pixels behind them). 

Logit values, which are the values of the CNN F.C. layer before entering the softmax gate, provide 

additional evidence aiding the interpretation of our results. The logit value for medoid “0” is 23, mapping 

to a probability of 1.0 that the softmax gate produces an output of “0.” This shows that the Fuzzy 

classifier has chosen a good representative for this class. 
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Figure 6.5: Medoid representative of class 0 

6.1.2. Digit 1 

 

Figure 6.6: Saliency maps for medoid representative of class 1. 
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Figure 6.6 presents the saliency maps created by Guided Back-propagation, Deep Taylor 

decomposition, and LRP for medoid “1.” Figure 6.7 presents the raw image of this medoid. As shown in 

Figure 6.6, the important features for recognizing digit 1 are a straight line and the surrounding edges. 

Note that in all methods, the high-importance pixels of the vertical line are almost connected to each 

other; we see this rarely in other digits. The difference between the Guided Backpropagation method and 

Deep Taylor is their focus. The Deep Taylor considers the middle of line as the most important part of 

image, while Guided Backpropagation (and LRP) finds two line at the top and bottom (connecting at the 

middle) of the vertical line. The logit value for this representative is 9.04, mapping to a probability of 1.0 

of outputting class “1.” which gives us almost 100% probability in classification of this representative of 

digit 1 after passing the logit to the softmax gate. This shows that Figure 6.7the fuzzy classifier again 

chose a very strong representative of class “1.”  
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Figure 6.7: Medoid representative of class 1 

6.1.3. Digit 2 

 

Figure 6.8: Saliency maps for medoid representative of class 2. 
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Figure 6.9: Medoid representative of class 2 

Figure 6.8 presents the saliency maps for digit 2, and Figure 6.9 is the medoid image for the class. As 

shown in this figure, Guided back-propagation considers the horizontal tail as the most important region, 

followed by the upper curve, and their edges. Deep Taylor focuses on different regions, which we 

highlight in green boxes. Note that it includes the horizontal tail. The LRP method also shows the top 

right curve and bottom left tail as the most important regions. The logit value for this representative is 

12.84, again meaning class “2” has a probability of 1.0.  

6.1.4. Digit 3 

We present our saliency maps and the medoid image for class “3” in Figure 6.10 and  Figure 6.11, 

respectively. For Digit 3, all of the methods result in very similar images, although Guided back-

propagation highlights the edges better than other methods (this seems to be the case for all digits). All 

methods consider the middle of image which interconnects bottom part and top part of digit 3 together, as 

the most important part, especially the curve that connects the bottom part to the middle. The results also 

show that although the entire top and bottom parts are not highly important, the tailing pixels have 

significant impact on recognizing digit 3 (especially the top part). Note that we may see elements of this 

curve part in digit 8, digit 5, and digit 6 as well. We will see how the network determines digit 3 and digit 

8 (or digit 5 and 6) later; for now, we simply note that the important curve for digit 3 is on the right-hand 

side. The logit value for this medoid is also 17.81, meaning a probability of 1.0 for class “3.” 
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Figure 6.10: Saliency maps for medoid representative of class 3. 

 

Figure 6.11: Medoid representative of class 3 

6.1.5. Digit 4 

 



77 | P a g e  

 

 

Figure 6.12: Saliency maps for medoid representative of class 4. 

Figure 6.12 and Figure 6.13 present the saliency maps and medoid of digit 4 respectively. As shown in 

Figure 6.12, the Deep Taylor method focuses on the vertical line at the left part of the digit, while the 

LRP has focused on the horizontal line, while Guided Backpropagation combines these two lines 

together. Note that the right horizontal line is not considered as the important part of the image. This 

perhaps is how the network discriminates between digit 1 and digit 4. However, if we only focus on these 

two lines and their connection point, the network can mis-classify digit 5 (discussed in the next sub-

section) and digit 4, as we can see a vertical and horizontal line connecting to each other at the middle left 

part of the image in digit 5 too. Here, the Guided backpropagation is showing some parts of right vertical 

line as intermediate important pixels. The Deep Taylor method also uses the vertical right line. But the 

LRP method has focused on the neighborhood of the interconnection point. The logit value for this 

medoid is 10.43, meaning the probability of class “4” is 1.0. 
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Figure 6.13: Medoid representative of class 4 

6.1.6. Digit 5 

 

Figure 6.14: Saliency maps for medoid representative of class 5. 

Regarding digit 5, as shown in Figure 6.14, all of the methods have very similar results, indicating that 

the network uses the top part of digit 5 for the classification. Note that the methods have been also 

extracted edges, black pixels in Guided Back-Propagation. As shown in Figure 6.14, it seems that the 

single most important pixel is the right edge of the right-concave curve at the top of the “5” (black pixel 

in Guided backpropagation, white in LRP), closely followed by the inflection point between the two 

curves. Let’s also consider how Digit 3 could be misclassified as digit 5. As shown in the Figure 6.10, the 

top left tail is more important than the bottom left tail. It seems that the network has learned to determine 

the difference between digit 3 and digit 5 with those pixels in the top left part. The logit value for this 

medoid is 13.24, again giving a probability of 1.0 for class “5.” 



79 | P a g e  

 

 

 

Figure 6.15: Medoid representative of class 5 

6.1.7. Digit 6 

 

Figure 6.16: Saliency maps for medoid representative of class 6. 
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Figure 6.16 presents the saliency maps for digits 6, and Figure 6.17 the medoid image. Again, the 

three methods are very similar to each other. The only difference is their focus. Guided Backpropagation 

and Deep Taylor focus on finding the left line in the image, while LRP focuses more on the curved part. 

For this digit the logit value is 12.46, and so the probability of class “6” is 1.0. 

 

 

Figure 6.17: Medoid representative of class 6 
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6.1.8. Digit 7 

 

Figure 6.18: Saliency maps for medoid representative of class 7. 

 

Figure 6.19: Medoid representative of class 7 
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Figure 6.18 presents our saliency maps for digit 7. All three methods are focusing on the connection 

between an approximately horizontal line and a straight line from top right to bottom left. Note that the 

edges are important for in the horizontal line. Thus, horizontal line not only seems whiter but it also 

includes important edge pixels. We also see that the “horizontal” line actually seems to be two line 

segments, offset from one another. Obviously this is a digitization artifact in the image (see Figure 6.19). 

The logit value is 11.57, giving a probability of 1.0 for class “7.” 

It is now instructive to consider a misclassified digit. Figure 6.20 is another sample from digit 7. This 

sample has been predicted as class “2,” while belonging to class “7.” This sample has a horizontal stroke 

in the middle of the descending line of the “7.” Comparing Figure 6.8 and Figure 6.18, this is likely being 

confused with the lower horizontal tail in class “2.” We will discuss this sample, and others, in greater 

detail in Section 6.2. 

 

Figure 6.20: A sample of class 7 

6.1.9. Digit 8 

Figure 6.21 presents our saliency maps for digit 8, while the medoid image is presented in Figure 6.22.  

According to the methods (especially Guided Back-Propagation and LRP), two important regions are the 
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concave-right curves on the left side of the image, and their intersection at the middle of the digit. In 

addition, the empty regions within the two loops of the “8” are also seen as important – although the left 

half of those regions appear more so.  

 

Figure 6.21: Saliency maps for medoid representative of class 8. 

 



84 | P a g e  

 

 

Figure 6.22: Medoid representative of class 8 

In general, the network appears to consider the left half substantially more important than the right. 

Let us further consider this observation, in light of the saliency maps for other digits. The right-hand side 

of digit 8 includes two curved lines. The top right curve is common in digit 8, digit 2, digit 3, digit 7, digit 

9, and maybe digit 6, 1, and 4. The bottom right curve is also common in digit 8, digit 3, digit 5, and digit 

6. However, the top left part is only common between digit 8, digit 9, and maybe 5. The bottom left part 

is common between digit 6 and digit 8. It thus seems that the left-hand side of digit 8 is more 

discriminative, and that is what the network has picked up on. The logit value of the medoid is 14.34, 

indicating a probability of 1.0 for class “8.” 

 

6.1.10. Digit 9 

Figure 6.23 presents the saliency maps for digit 9, and Figure 6.24 the medoid image. In contradiction 

with other digits, this medoid has been classified with logit value of 7.02, and probability of 0.88, 

indicating the CNN was less certain about this image than the other medoids (although it is still the 

highest probabilitiy) For this digit, Guided Back-Propagation focuses on a diagonal ellipse with an empty 

center. Deep Taylor and LRP also identify this shape, but they focus more on the left side of the image. 

Note that all three methods consider the horizontal line placed at the middle of image significantly 

important. This line appears to be the major difference between 8 and 9 in the top part of the image. 
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Figure 6.23: Results of interpretation techniques for medoid representative of class 9. 

 

Figure 6.24: Medoid representative of class 9 
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6.1.11. Evidence from the CNN 

In order to reach a deeper understanding of network’s behavior, we can use the logit values of the 

softmax layer, shown in Table 4. In this table, rows represent a medoid, and columns represent an output 

neuron. Some cells in Table 4 has been colored as Green, Lime, Magenta, and gray. Green shows the 

highest logit value for each digit; unsurprisingly, these are the correct classifications. The lime cells have 

the highest logit after the green cells. We will discuss these results as follows: 

• Digit 6 is the second-most most similar digit 0 after digit 0, but the gap is immense. The softmax 

function is based on a ratio between exponential functions, in which logit values are the 

exponents. Working from Table 4, logit = 23 → e23 = 9744803446.25, logit = 5.68 → e5.68 = 

292.949429923 →  
9744803446.25

9744803446.25+292.94942
> 0.999. The contribution of the other digits to the 

denominator sum is negligible. 

• Digit 8 is the most similar label to the representative of 1 after digit 1. Again, the difference in 

probabilities is extremely large. 

Table 4: Confusion matrix of logit values for medoid representatives. 

\ neuron 0 1 2 3 4 5 6 7 8 9 

medoid 0 23 -3.36 3.67 0.83 -6.17 3.95 5.68 -1.2 0.95 1.25 

medoid 1 -0.77 9.04 -1.73 -2.3 -2.33 -2.43 0.63 1.47 2.76 -1.26 

medoid 2 1.29 2.77 12.84 4.54 -1.95 -6.81 -5.36 2.89 3.31 -1.33 

medoid 3 0.4 -2.9 2.98 17.81 -5.58 10.97 -4.73 -0.19 0.18 -0.43 

medoid 4 -5.79 -0.28 -2.67 1.85 10.43 1.63 -1.4 2.57 1.09 2.65 

medoid 5 -1.52 -2.8 -2.82 5.74 -2.42 13.24 0.47 -3.02 3.57 2.61 

medoid 6 2.69 -0.6 1.22 -0.78 0.3 -0.04 12.46 -5.6 -1.06 -5.9 

medoid 7 1.44 2.11 3.87 2.79 -3.39 -1.43 -7.55 11.57 -0.56 3.76 

medoid 8 0.61 0.24 3.28 2.93 -4.91 2.23 -2.2 -4.52 14.34 -0.08 

medoid 9 0.7 -0.32 0.77 1.26 2.97 -3.64 -3.73 4.25 3.95 7.02 

 

• Digit 3 is the most similar label to the representative of 2 after digit 2 which looks logical, 

according to the interpretations described before. 
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• Digit 5 is the most similar label to the representative of 3 after digit 3 which looks logical, 

according to the interpretations described before. 

• Digit 9 is the most similar label to the representative of 4 after digit 4 which looks logical. This is 

because in some cases people will write the vertical lines of digit 4 close to each other, or don’t 

write the left line vertically. It’s diagonal in lots of cases. 

• Digit 3 is the most similar label to the representative of 5 after digit 5 which looks logical, 

according to the interpretations described before. 

• Digit 0 is the most similar label to the representative of 6 after digit 6 which looks logical. 

• Digit 2 is the most similar label to the representative of 7 after digit 7. As described in 

interpretation of Figure 6.18 and Figure 6.20, the network considers the top part of digit 7 as the 

most important part of it. Then, the most important part was the leg of this digit. The middle line 

in some examples like Figure 6.20 will be considered as the tail of digit 2. In Figure 6.8 we saw 

that the top part is almost same with digit 3, and the bottom part can be also seen as the middle 

part of digit 3. Thus, the network considers 2 as the most similar digit to medoid of 7, while it 

considers 3 as the most similar digit to medoid of 2. So, the matrix is not symmetric, although in 

some cases (e.g. 5 and 3) the network considers both of them similar to each other. But this might 

not happen always as described. 

• Digit 2 is the most similar label to the representative of 8 after digit 8. Although a human could 

say 3 is the most similar digit to this medoid, we see that because the left side of this medoid is 

more important than its right side, the network considers 2 as the most similar digit after 8. 

• We can see four colors in the row of digit 9. 

• The logit value for digit 4 is 2.97 → exp(2.97) = 19.49191 → softmax =0.01536 

• The logit value for digit 7 is 4.25 → exp(4.25) = 70.10541 → softmax =0.05525 

• The logit value for digit 8 is 3.95 → exp(3.95) = 51.93536 → softmax =0.040932 

• The logit value for digit 9 is 7.02 → exp(7.02) = 1118.7866 → softmax =0.88177 
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Figure 6.25: Left: A raw input for digit 7, Right: similarity of 7 to 9 

As shown, the most similar digit is 7. Figure 6.25 is showing a raw input image of digit 7 on the left 

side. When then manually altered 12 pixels (out of 784) to produce the image on the right side – a 

recognizable digit 9. The network considers 7 as the most similar image to digit 9, as in the training inputs 

of digit 7, there are lots input images like Figure 6.25 which have the tail on left top part of the image (the 

green box). However, the softmax probabilities for Figure 6.24 are 5% digit 7, 4% digit 8, and about 2% 

digit 4. Because the network thinks the top side, especially the vertical line placed at the top right of 

Figure 6.24 is important, digit 4 has low probability here. As we described in Figure 6.12, the most 

important parts for digit 4 were placed on the left side, while Figure 6.23 shows the most important parts 

of digit 9 to be a circle including top and right curves. 

6.2. Misclassified Examples 

In the previous section we introduced medoid representatives of each digit and used our saliency maps 

to find the most important features for classifying each. These explanations should also help to explain 

the network’s misclassifications; we will explore that question in this section. We will examine selected 

misclassifications, to see if our explanations in the previous section account for them as well. We will 

finally show the advantage of using our method in comparison with other methods. 
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6.2.1. Hard to recognize digits 

As previously showed, there are some input samples which are hard to recognize or not 

understandable. Figure 6.3 shows some of these digits. These images are shown below again. Considering 

the saliency maps in the previous section, the predicted classes mostly make sense; the leftmost could be 

mistaken for a “3” if the lower loop was open to the left, the middle left has a strong vertical line in the 

center like a “1,” and the rightmost does strongly resemble a “6.” The right middle is the outlier, but it 

does intersect with the two regions of strong salience in Figure 6.10. 

 

Figure 6.26: Some not understandable (hard to recognize) digits 

6.2.2. Incomplete or Corrupted Digits 

In some cases, the input digits are not written completely or are somehow corrupted. Figure 6.27 

shows some examples of these digits. Let us again consider these in light of the saliency maps. For 

example, the left digit in Figure 6.27 is 1, while the network predicts it as 6. As discussed in Figure 6.16 

the most important part for recognizing digit 6 is to find the curved line at the left part of image. We have 

showed this part in a yellow window. the right bottom gray pixels also make the network more confident 

that the input sample is digit 6 rather than digit 1. If we ask someone, he may also say it is a digit 6, and 

not 1. This input image seems to be corrupted. The digit next to it, is a digit 9 sample. However, the 

network classifies this digit as 7. In this image also, the input image is not complete. The digit has two 

important features of digit 7 which are showed in two yellow windows in the image (the horizontal line 

and leg of Figure 6.19 as discussed in Figure 6.18). The input has even the zigzag lines of digit 7. In 

addition, the digit doesn’t have the important parts of recognizing digit 9 described in Figure 6.23, as two 
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important curves of the top circle are missing. Thus, it’s completely explainable why network is 

classifying the sample as 7 instead of 9. 

 

Figure 6.27: Not completely written digits and corrupted images 

All these 4 images can be interpreted in the same wayOther misclassified digits can show 

interpretability of our system in more details. Thus, we will be discussing our results on some cases that 

are easy to recognize for human, but not for the trained network. This is another feature of our 

explanation system: it exposes some defects of the CNN model, and where it needs some improvements. 

6.2.3. Misclassification process 

In this section we will be interpreting some of the network’s wrong decisions and the reasons behind 

them. Note that Deep CNN’s system’s accuracy is 97.87% which means 213 samples are misclassified. 

We cannot examine every misclassification in detail, and so will only discuss selected ones in this thesis. 

However, the interpretation procedure is similar for all digits and all misclassified samples. 

Fundamentally, we will first compute our three saliency maps, and then compare them with the saliency 

maps for the medoids of both the correct class and the erroneously predicted class. For some of the 

misclassifications, we will also superimpose the misclassified image over those two medoid images.   

We first examine the digit in Figure 6.28; it was been classified as 2 while the ground truth is 7. Figure 

6.29 presents our saliency maps for this image. The most important for the network is the middle of the 

image; this part of image seems more similar to digit 2 rather than digit 7. According to Figure 6.8, the 

network finds a horizontal tail for digit 2. However, for digit 7 (Figure 6.18) the most important parts are 

connecting a horizontal line (placed at top) to a straight line (from top right to bottom left). Thus, the 

network didn’t learn to add the feature of having a horizontal line in the middle of image for digit 7. 
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Figure 6.28: Misclassified Digit. 

 

Figure 6.29: Saliency maps for Figure 6.28 

Next, consider Figure 6.30, classified as 0 while the ground truth is 6. The saliency maps for it are 

presented in Figure 6.31, and show the network focusing on the bottom left part of the digit. However the 
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yellow parallelogram in Figure 6.30 represents the upper open curve of digit 6 from Figure 6.16, which is 

crucial for distinguishing 6 from 0 (form Table 4, neuron 0 does in fact have the second-highest logit 

value for the medoid of “6”). The small size of the highlighted upper curve in Figure 6.30, as well as its 

placement on the upper left of the image, seems to have confused the network, leaving only the central 

ellipse for the network to key in on; this is the defining feature of the “0” medoid in Figure 6.4. Finally, 

let us consider superimposing Figure 6.30 over Figures 6.5 and 6.17 (medoids of “0” and “6”). We use 

intensities of Figure 6.30, and assigned them exclusively to the red channel of a standard 24-bit RGB 

colour image; the green and blue channels are left null, and alpha-blending is set to make the image semi-

transparent. This is then merged onto the existing greyscale images of Figure 6.5 and 6.17. The result is 

presented in Figure 6.32. Clearly, the misclassified sample intersects more with the “0” medoid than the 

“6” medoid. 

 

 

 

Figure 6.30: Misclassified Digit. 
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Figure 6.31: Saliency maps for Figure 6.30 

  

Figure 6.32: Results of superimposing Figure 6.30 on medoids of class 0 and 6. 
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Figure 6.33: Misclassified Digit. 

Figure 6.33 shows another misclassified sample. The written digit is a 9 that is misclassified as 1. 

Figure 6.34 presents the saliency maps for this digit. They are very similar to the maps for medoid “1” in 

Figure 6.6; a vertical line in the center of the image. Examining the logit values for the example, the next 

highest probabilities are for 7, 8, and 9, in that order. Considering those medoids, Figure 6.18 uses two 

straight lines for recognition of 7, and Figure 6.21 connects two curves at the left side of image. Figure 

6.23 focuses on recognizing a big circle placed at top of the image and almost ignores the straight-line 

part. The input image Figure 6.33 shows some, but not all, key features of those three digits, and thus 

assigns these classes low probabilities. When we superimpose the image of Figure 6.33 on the medoids of 

“1” and “9,” we obtain Figure 6.35, and see that the image does overlap better with the medoid of “1” 

than “9.” 
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Figure 6.34: Saliency maps for Figure 6.33 

  

Figure 6.35: Results of superimposing Figure 6.33 on medoids of class 1 and 9. 
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Figure 6.36: Misclassified Digit. 

 

Figure 6.37: Interpretation techniques for Digit Figure 6.36 
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Figure 6.38: Results of superimposing Figure 6.36 on medoids of class 2 and 7. 

Figures 6.36 to 6.38 present a digit 2 that has been misclassified as a 7. The saliency maps in Figure 

6.37 resemble medoid 7 more than medoid 2 – in fact, the Deep Taylor and LRP maps are clearly not a 

recognizable “2” – we suspect the reader will agree these show a digit 7! Most critically, the crucial 

feature of a horizontal line at the bottom of the digit appears to be missing. The superimposition in Figure 

6.38 also bears this out.  

 

Figure 6.39: Misclassified Digit. 
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Figure 6.40: Saliency maps for Figure 6.39 

  
 

  

Figure 6.41: Results of superimposing Figure 6.39 on medoids of class 6 and 0. 

Figure 6.39 – 6.41 present a digit 0 that is misclassified as 6. From the saliency maps, the fit to either 0 

or 6 is not very good. However, the squashed shape of the left side of Figure 6.39 seems more similar to 

the left side of the “6” medoid. The superimposition of Figure 6.41 seems to support this contention.  
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Figure 6.42: Misclassified Digit. 

 

Figure 6.43: Interpretation techniques for Digit Figure 6.42 

Figures 6.42 to 6.44 present a digit 5 that has been misclassified as a 6. The saliency maps in Figure 

6.43 are quite similar to those of the “6” medoid, in particular the long curve at the top of the figure 

connecting to a bottom loop. Figure 6.44 confirms that the sample has covered the most important 
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features of medoid 6, specially the straight-line connecting bottom left to top right. However, this sample 

passes the important edges of digit 5. Note that edges (black pixels in Guided Back-Propagation) must be 

black and white pixels in those locations will have negative results on the classification. 

 

  
Figure 6.44: Results of superimposing Figure 6.42 on medoids of class 6 and 5. 

 

 

Figure 6.45: Misclassified Digit. 
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Figure 6.46: Interpretation techniques for Digit Figure 6.45 

  
Figure 6.47: Results of superimposing Figure 6.45 on medoids of class 3, and 5. 

Finally, consider Figures 6.45 to 6.47, showing a digit 3 misclassified as a 5. The saliency maps in 

Figure 6.446 do seem to resemble a 5 more than a 3; and in particular, the high-impact black pixels from 

Figure 6.14 match black pixels in this digit. Figure 6.47 shows that the raw input is covering both of the 

medoids reasonably well, but matches the highest-strength pixels better for medoid “5.” 
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7Chapter 7 

 Conclusion 
 

In this thesis, we have designed and evaluated a novel deep fuzzy convolutional neural network. Our 

deep fuzzy system uses CNNs to automatically extract features from the input images, and then clusters 

the data in the derived feature space using the FCM and GK clustering algorithms. After hardening the 

clusters, we employ a fuzzy version of Rocchio's algorithm to classify the data points. We evaluated our 

system on three datasets (MNIST, Fashion MNIST, and CIFAR-10) and compared our results with other 

recently published results including state-of-the-art. We demonstrated there’s a trade-off between 

interpretability and accuracy in the deep fuzzy system. We showed that the system is able to the medoid 

image of a class and map this representative backward to the original image space in order to interpret the 

network’s decision-making process. Finally, we examined the network’s decision-making process 

(describing logics behind both right and wrong classifications) using this explanation mechanism. 

7.1. Future Directions 

In the future, we intend to refine our accuracy on Fashion MNIST, and CIFAR-10 by changing the 

CNN feature extractor. We also aim to extend the classifier to regression and function approximation 

problems by replacing Rocchio’s algorithm with other approaches. Another direction is to evaluate our 

system on larger computer vision datasets such as ImageNet, or datasets from other sub-fields of AI such 

as speech recognition, NLP, etc.  
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