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Abstract 

Object-oriented software is increasingly developed through evolutionary processes and, 

as a result, design has become a continuous activity throughout the course of the entire 

development. Understanding the process of a system's design evolution is critical for 

understanding the architecture qualities important to the project and for consistently 

maintaining and further evolving the system. The importance of this research problem is 

evident in the various types of evolution analyses proposed to date. However, in spite of 

the large body of research in this area, there has been no systematic method yet for 

capturing and analyzing changes between subsequent versions of software at the design 

level. In this work, we have developed UMLDiff, a heuristic algorithm for comparing 

logical models of object-oriented software to recognize additions, removals, matches, 

moves, renamings of software design elements and changes to their attributes and 

relations from one version to the next. Based on the design changes reported by UMLDiff, 

we have developed further analyses (a) for recognizing the long-term trends in the 

evolution of individual classes, clusters of classes and the system as a whole, and (b) for 

detecting design-change patterns over a set of related design entities. Through our 

detailed case studies with three real-world software systems of different type and size, we 

have demonstrated that our design-evolution analyses methods, as implemented in our 

tool suite, are accurate and practical and that they can be used to support specific 

development tasks, such as (a) migrating client applications to appropriately use the 

evolving component-framework APIs, and (b) recommending design and code fragment 

for addressing problematic evolution patterns. 
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Chapter 1: Introduction 

The work in this thesis aims to address the problem of supporting object-oriented 

evolutionary development through capturing and analyzing the design-evolution history 

of object-oriented software. As object-oriented software is increasingly developed 

through evolutionary processes, software-engineering research is becoming increasingly 

aware of the need to analyze the by-products of these processes - i.e., software versions 

in repositories, their associated documentation, change requests, etc. - in order to better 

understand and support them. The research presented in this thesis is focusing exactly on 

this issue. 

In this introductory chapter, we formulate the specific research questions examined by 

the thesis, place our work in the context of related research, outline the methodology we 

have adopted for our work, and review the tools we have developed to support this 

methodology and the experimentation we have conducted with these tools to evaluate 

their effectiveness. Finally, we identify the important contributions of this work to the 

field as a whole, and conclude by discussing the organization of the rest of this document. 

1.1 The research problem 

Object-oriented software is increasingly developed using evolutionary development 

processes. Design is no longer a one-time activity; systems, in addition to being 

incrementally designed to fulfill their evolving requirements, have their design 

continuously improved through behavior-preserving restructurings, as refactoring has 

become one of the most important core practices in object-oriented development. 

As a result, at any point in time, the system design is the product of a sequence of 

design-evolution decisions, a fact that should be taken into account in subsequent 

development and maintenance tasks. Some tasks may require that the developer 

understands the evolution trajectory, through which the system design has reached its 

current state and the practices that the system-development team has adopted in the past. 

For example, understanding the types of code restructurings that have been applied in the 

past gives the developers insights regarding the design qualities that are considered 

important for the project, so that they can keep evolving the system consistently. 
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Managers may also be interested in high-level evolution patterns characteristic of desired 

process qualities or symptomatic of problems so that they can better manage the project 

and predict the evolution of other projects in the future. 

Continuous design improvement also poses serious problems for building applications 

that reuse evolving component frameworks. Stable interfaces to a reusable component 

framework isolate the client application from changes to those components. However, the 

new component's versions change their application programming interfaces (APIs), 

sometimes dramatically, which implies a need for client applications to adapt. The 

fundamental challenge lies in the fact that these applications and their underlying 

component frameworks are subject to two independent, asynchronous, and potentially 

conflicting evolution processes. To migrate to a new component's version, the client-

application developers have to understand the nature of component's API changes, their 

plausible replacements and how to use them. 

All of these tasks essentially require answers to the same set of three basic and related 

research questions: 

Research Question 1. How can one precisely and accurately recognize changes to 

a system's design from one version to the next? 

Research Question 2. How can this information be further analyzed to gain insight 

in the rationale behind the system's evolutionary development? 

Research Question 3. How can the identified changes and the analysis results be 

effectively used to support further evolving the system? 

There has been some research towards recognizing software changes. Lexical 

differencing tools [118] view software programs as text documents; they report changes 

at the lexical level in terms of code-line deltas. Such tools are frequently used by 

developers to merge revisions of the system source code. The comparative analysis of 

source-code metrics [20] may also help to infer moves of program entities. Unfortunately, 

source-code metrics do not provide much intuition regarding whether program entities 

has been changed and how. 

There also exist differencing techniques that make use of other types of program 

representations, such as Abstract Syntax Tree (AST) [82,107], program dependency 

graph [47], control flow graph [3,45], and XMI (XML Metadata Interchange) format of 
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UML model [128]. However, these program representations are designed for purposes 

other than understanding and supporting the evolutionary development of software 

system and their results are usually too close to the software representation they adopt 

instead of the design representations intuitive to the developers. Although recent research 

on mining software repositories has shown increasing interests in detecting refactorings 

[23,52,53,100], there still lacks systematic design-evolution analysis of long-lived object-

oriented software about what has changed, how exactly, and why. 

Consistently maintained modification request, change logs, and bug reports, if exist, 

are reliable source of information as to what has been changed and what is the rationale 

behind the change. They have been used to analyze and delay code decay [30], predict 

error-prone parts [39] of the system and infer change effort [38], understand how fast the 

system changes and how stable the system is [10,35,41], reveal co-evolution of design 

elements [9,33,87,110], define system-level evolutionary patterns [7,31,58], and infer the 

nature of individual developer's contributions to the system evolution [62]. Unfortunately, 

more frequently than not, such change documentation is vague, inconsistent or does not 

even exist [13]. 

Although there has been a substantial amount of research in the general area of 

understanding the evolution, i.e., "past", of software, there has been much less work on 

utilizing this understanding to "advising for the future". Several recommendation systems 

have been proposed to locate a component that could be reused [73,109], suggest a 

potential solution to a particular type of bug [17], recommend people who might have 

some expertise on a given problem [64], and present documents and code snippets similar 

to the one currently being edited [44,78,108]. However, these recommendation systems 

do not provide much in-depth analysis of the recommended software artifacts and their 

evolution history; the developers take the burden to draw analogies towards solving their 

current problem. 

In the context of asynchronous API evolution in reuse-based software development, 

several practices [15,42,50,119,121] have emerged to support the specification of 

changes that may impact reuse and their consistent propagation. They rely on additional, 

and potentially substantial, information provided by the component-framework 

developers that document the changes and advise on how to adapt them. However, it is 
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seldom the case that the change documentation and scripts provided with a large 

framework are sufficient for a client-application developer to effectively migrate to the 

changed APIs, in spite of a substantial effort to write and maintain the change 

documentation or scripts on the part of component-framework developer. All too often, 

application developers become lost when trying to reuse a changed API, unsure of how to 

make progress on a migration problem. 

1.2 Methodology 

The objective of this work is to develop a methodology for building an accurate 

understanding of the design evolution of object-oriented software systems and supporting 

their subsequent development and maintenance activities based on this understanding. 

Figure 1-1 depicts the overall process of this work. The three phases of the process are 

discussed in the following section. 

Figure 1-1. Methodology overview 
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1.2.1 UMLDiff 

The input to our methodology is the logical model [56] of object-oriented software 

systems, which concerns classes, the information they may own, the services they can 

deliver, and the associations and relative organization among them. The underlying meta-

model is defined according to the semantics of the UML (Unified Modeling Language) 

model [69]. As per adopted meta-model, a software system is modeled as a directed 

graph G(V, E), where the vertex set V contains model elements and the edge set E 

contains relations among them. Note that this methodology has so far been only applied 

to logical models reverse-engineered from Java source code in this thesis. However, by 

adopting the semantics of the UML model as the meta-model underlying its input 

representations, it is readily applicable to models produced in up-front design, or models 

reverse-engineered from other object-oriented programming language, or a mix of them. 

Given two versions, "before" and "after", of the logical model of an object-oriented 

software system and their corresponding graphs Gbefore(Vbefore, Ebefore) and Gafter(Vafter, 

Eafter), we developed the UMLDiff algorithm for automatically detecting the design 

changes that the system has gone through, as it evolved from one version to the next. 

UMLDiff traverses in parallel the spanning trees of the containment subgraphs of the two 

compared models, descending from one type of model elements to its children types. As 

it does so, it recognizes that a model element ei in the "before" version and an element ê  

of the same type in the "after" version are the "same", i.e., they correspond to the same 

conceptual model element, based on their lexical- and structure-similarity. Once 

UMLDiff has completed mapping the vertex (model element) sets Vbefore and Vafter, it 

proceeds to map the edge (relation) sets Ebefore and Eafter, by comparing the relations of all 

pairs of model elements. Next, UMLDiff detects the redistribution of the semantic 

behavior among operations, in terms of usage dependency changes, and finally computes 

the changes to the attributes of all pairs of mapped model elements. UMLDiff 'produces as 

output a set of design-change facts reporting the various types of design changes it has 

discovered when comparing the two models, i.e., additions, removals, moves, and 

renamings of subsystems, packages, classes, interfaces, attributes and operations, and 

changes to the attributes and relations of these model elements. 

5 



1.2.2 Design-evolution analysis 

UMLDiff is at the core of our methodology; based on the design-change facts it produces, 

we have developed a suite of analyses to study the design-evolution history of object-

oriented systems. 

First, a set of queries have been defined to elicit complex design-change patterns, as 

compositions of elementary design-change facts, such as refactorings [32], aimed towards 

improving the design of the system. The instances of design-change patterns are reported 

in terms of their particular types and their participant model elements and relations. 

Secondly, for an evolving software system with N successive versions, UMLDiff is 

applied N times to recognize the design differences between the (l+l)'h and Ith versions, 

where 0<I <N (supposing there is a virtual version 0 with no entities), resulting in an 

quantitative trail of the design changes that the system classes have suffered throughout 

their evolutionary lifecycle, i.e., in which version it was created, how many signature-

changes it underwent and how many of its member elements were newly added, removed, 

moved, signature-changed in a particular version, and, possible, in which version it was 

deleted. The quantitative report of UMLDiff design changes is then discretized to produce 

a qualitative record of the categorical volatility of each individual class, i.e., discrete 

class-evolution profile, throughout the system's history. Finally, four types of 

longitudinal analyses - phasic analysis [84], gamma analysis [75], optimal matching 

analysis [1], and association rule mining [2] - are applied to the class-evolution profiles 

to recover a high-level abstraction of distinct evolution phases and their corresponding 

styles and to identify class clusters with similar evolution trajectories. 

The design-changes reported by UMLDiff and the subsequent design-evolution 

analyses reveal which parts of a system have changed and how they have changed. 

However, the motivation behind the changes, i.e., why they have changed, cannot be 

precisely inferred through automatic process. To help developers infer the potential intent 

for the changes, we developed an interactive visualization component, which enables a 

compact and local view of otherwise scattered model elements and relations and their 

changes by collecting them together and by eliding irrelevant (non-concern) elements, 

relations, and their changes. This localization has been helpful in gaining insight into the 

rationale behind the system evolution. 
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1.2.3 Design-evolution support 

UMLDiff, the subsequent analyses it enables, and the interactive exploration of evolution 

concerns build an accurate picture of the design evolution of software system and its 

components. We have exploited two areas of supporting the evolutionary development of 

object-oriented software systems based on this evolution knowledge. 

First, we investigated the feasibility of mentoring object-oriented software design and 

its evolution. A set of queries have been defined to recognize potentially problematic 

patterns in the logical model of the system and its evolution history, which violate the 

high-level object-oriented design principles and/or best practices, such as design patterns 

and refactorings, or the development styles previously adopted by the system. Associated 

with each of these queries are the design changes that have been applied to remedy the 

similar problems in the past of the system development. The very process of recognizing 

and reflecting upon the opportunities for specific design changes aimed towards 

improving the system design may help developers draw informed decisions on solving 

their current similar problems. 

Secondly, we tackled the asynchronous API evolution problem in the context of 

reused-based software development. The API changes are automatically recovered with 

the UMLDiff algorithm, given the old and new versions of a component framework. 

When a API migration problem - which is reported by the compiler when building the 

client application with the new component-framework version - is selected, a heuristic 

process searches the logical model and API-change facts of the evolved component 

framework to formulate plausible answers to the three questions facing the client-

application developers: (a) "what changes have been made to the existing component 

APIs?", (b) "what are the plausible replacements of those APIs in the new version of the 

component framework?", and (3) "are there any examples on how exactly these 

replacements are supposed to be used?". Finally, a set of replacement and usage example 

proposals are formulated and presented to the client-application developers, which help 

them migrate their applications to appropriately use the evolved APIs. 

7 



1.3 Tools 

This methodology has been implemented in three related software-engineering tools: 

JDEvAn (Java Design Evolution Analysis), JDEvAn Viewer, and Diff-CatchUp. We 

chose on purpose to implement our methodology on Eclipse, a popular Java development 

IDE, so that it can be tightly integrated within the development environment, and thus 

enable investigating the design-change patterns of object-oriented software evolution, 

exploring the underlying motivations behind them, and supporting future development 

and maintenance activities. 

1.3.1 JDEvAn 

JDEvAn supports the design-evolution analysis of Java software systems. Its main 

features include: 

(a) a component for reverse-engineering logical model from the system's code; 

(b) an implementation of UMLDiff for recovering the elementary design changes from 

one version of the logical model to the next; 

(c) support for inspecting the results of UMLDiff and also editing them in order to 

correct erroneously identified and missed changes; 

(d) a component for detecting various types of simple and composite refactorings; 

(e) a component for producing discrete class-evolution profiles, which are then used 

by third-party tools WinPhaser [43] and Weka toolkit [130] for sequential pattern 

analysis and detecting co-evolution rules; and 

(f) a component for detecting potentially problematic patterns, events, trends in the 

logical model and its evolution history, where some design improvement may be 

applied. 

JDEvAn's front-end is an Eclipse plugin. Its backend repository is a PostgreSQL 

relational database, which stores all the logical model facts, the UMLDiff change facts, 

and the analysis results of the subject system. 
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1.3.2 JDEvAn Viewer 

JDEvAn Viewer provides software developers with an UML-style diagram, which 

supports developers to: inspect the logical models of two compared versions and the 

design-changes between them; explore the neighbourhood and the evolution trace of a 

selected model element; attach comments to model elements, relations and their changes 

to record the hard-earned evolution knowledge; request source code of a selected element; 

and persist the evolution concerns under investigation into files. JDEvAn Viewer has 

been implemented as an Eclipse plugin and it relies on Eclipse GEF (Graphical Editor 

Framework) [117]. It leverages the GEF facilities to provide Undo/Redo and Zoom-

iri/Zoom-out features. 

1.3.3 Diff-CatchUp 

Diff-CatchUp tackles the real problem of unstable APIs of component frameworks. The 

Diff-CatchUp front-end, an Eclipse plugin, allows the client-application developer to 

highlight the code fragments or compilation errors/warnings he wishes to update. In 

response, it identifies the model element of the component API involved in a selected 

migration problem and displays the replacement and usage-example proposals for further 

exploration with the JDEvAn Viewer. Its server hosts a JDEvAn repository regarding the 

logical-model and API-change facts of the evolving component framework, which is 

populated with the JDEvAn tool before Diff-CatchUp can be used. Diff-CatchUp 

searches the JDEvAn repository for the changes to the component APIs, the plausible 

replacements and their potential usage examples. 

1.4 Empirical evaluation 

We used three Java software systems, HTMLUnit [123], JFreeChart [126], and Eclipse 

[116], to evaluate our methodology and the tools that implement it. 

HTMLUnit is a small-size open-source software system for unit testing. We use it in 

evaluation of the effectiveness of UMLDiff algorithm, refactoring-detection queries, 

JDEvAn Viewer, and Diff-CatchUp approach. We use 11 releases in its history from May 

22, 2002 to August 23, 2005. 
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JFreeChart is a medium-size open-source Java class library for generating various 

types of charts. We use it as the subject system of extensive case study to evaluate our 

work, from UMLDiff algorithm to refactoring-detection queries, longitudinal design-

evolution analyses, JDEvAn Viewer, design mentoring, and finally Diff-CatchUp. 

JFreeChart has been developed for more than 6 years. We used in our study 31 major 

releases between the first version 0.5.6, released on December 1 2000, and the version 

1.0.0, released on November 29 2004. It is a substantial and realistic software system and, 

at the same time, it is of a manageable size, possible to inspect manually to establish the 

ground truth for evaluating our work. 

Eclipse is a large-scale industrial framework that has been under development for 

about five years. In this work, Eclipse is mainly used to investigate the refactoring 

practice in the evolution of object-oriented software system and how it should be support. 

At the time of our study, Eclipse has nine releases between the first official version 2.0, 

released on June 27 2002, and the latest version 3.1, which was released on June 27 2005. 

In particular, we chose to compare three pairs of major releases 2.0 and 2.1,2.1.3 and 3.0, 

and 3.0.2 and 3.1, because there were substantial changes between them. According to 

their associated documentation, the remaining versions, 2.1.1, 2.1.2, and 3.0.1, included 

mostly bug fixes and minor modifications and we ignored them in this case study. Eclipse 

consists of three subprojects and in our study. We have focused on the JDT subproject, 

which defines about half of the classes and interfaces of the whole Eclipse platform. 

1.5 Contributions 

This research has resulted in three different types of contributions: 

1. Theoretical contributions: We developed a model-differencing based methodology 

to capture and analyze the design evolution of object-oriented software systems and 

support their evolutionary development, including pair-wise model differencing with 

UMLDiff, the query-based detection of refactorings, longitudinal design-evolution 

analyses, mentoring object-oriented evolutionary development, and API-evolution 

support in reuse-based software development. 

2. System Building: To support this methodology, we built three software engineering 

tools. These tools implemented the whole work described in this thesis. They support 
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the design-evolution analysis of Java software systems and the migration of client 

applications reusing the evolved component framework 

3. Empirical case studies: We conducted three empirical case studies in order to refine 

and evaluate our methodology and the tools that implement it. These studies have 

demonstrated that our approach is applicable and effective in practice. Furthermore, 

we believe the empirical results will be useful to other researchers in the area. 

1.6 Thesis outline 

The rest of this document is organized as follows. Chapter 2 reviews five research areas 

related to this work, i.e., differencing software artefacts, understanding software 

evolution, refactoring practices, supporting API evolution of software systems and 

recommending reusable or similar software artefacts. Chapter 3 describes the underlying 

meta-model assumed by the UMLDiff algorithm and the process by which these models 

are extracted from Java software. It discusses in detail the UMLDiff algorithm and reports 

on our evaluation of its runtime performance, effectiveness and robustness. Chapter 4 

presents our approach to detecting refactorings as compositions of the design changes 

reported by UMLDiff, with which we investigated how refactoring is practiced in the 

evolution of Eclipse and how it should be supported in general. Chapter 5 discusses our 

approach to supporting the migration of client applications to appropriately use the 

evolved APIs of their underlying component frameworks, based on the API changes 

reported by UMLDiff, given the old and new versions of the component frameworks. 

Chapter 6 discusses a suite of automated design-evolution analyses, based on UMLDiff 

change reports, to recover distinct evolution phases and their corresponding evolution 

styles and to identify class clusters with similar evolution trajectories. Chapter 7 

introduces our visualization component and its features, which supports the interactive 

exploration of the logical models UMLDiff compares, the design changes reported by 

UMLDiff, the detected refactorings, and the results of design-evolution analyses. Chapter 

8 discusses the feasibility of design mentoring enabled by UMLDiff-based design-

evolution analysis. In particular, it discusses its ability to uncover design changes aimed 

towards improving the system design and detect the opportunities for such changes. 
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Finally, chapter 9 summarizes the concluding remakes and outlines several interesting 

directions we plan to continue this work. 
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Chapter 2: Related Work 

This research relates to five research themes, i.e., differencing software artefacts, 

analyzing software evolution history, refactoring practices, supporting API evolution of 

software systems and recommending reusable or similar software artefacts, which we 

review in this chapter. 

2.1 Software differencing 

Software differencing techniques rely on comparing various program representations, 

such as code-line [118], source-code metrics [20], Abstract Syntax Tree [82,107], 

program dependency graph [47], control-flow graph [3,45], XML Metadata Interchange 

files of UML models [128], and unique identifiers of model elements [70,115]. 
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Figure 2-1. Eclipse text compare 

Lexical differencing tools, like GNU diff [118], are frequently used by developers, in 

concert with modification requests and bug reports, to reconstruct the changes between 
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subsequent versions of a software module [28,29,30,31]- Figure 2-1 shows the Eclipse 

text-comparison results between two versions of a program1. In the after version, the 

duplicated method value(), which used to be implemented by classes PlainStatement and 

HTMLStatement, was pulled up into their new superclass, Statement. Unfortunately, the 

changes reported by the text-comparison tool are unintuitive: the first line was changed; 

five lines of code were added; a block of code was replaced by a single line. Since lexical 

differencing tools view software programs as text documents, they report changes at the 

lexical level, ignoring the high-level logical-design changes to which they correspond. 

TypeDeclaration 

Modifiers 
'public' 

SimpleName 
* PlainStatement' 

SimplcType 

MethodOeclaration 

Modifiers 
'public' 

Figure 2-2. The partial AST of class PlainStatement 

' The program is excerpted from the version 27 and 28 of the extended refactoring 

example at [129]. We adapt its version 23, 27 and 28 as the running example to illustrate 

C/MLD/^algorithm in Section 3.3.1. 
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1 VarDeclarationFragraent 

SimpleName 
* result' 

I'aluntliesi^cdl-xprcsMoii 1 

Methodlnvocation 

X 
I hisExprcssion SimpleName 

'headctString' 
SimpleName 
'aCustomer' 

Figure 2-3. The partial AST of changed local variable declaration 

The Abstract Syntax Tree (AST) is one view of the structure of a software program. 

Figure 2-2 depicts a partial AST of the class PlainStatement in the before version. Yang 

[107] developed a dynamic-programming tree-matching algorithm, for computing the 

similarity between ASTs. However, ASTs of realistic programs are big, which makes 

general tree-differencing algorithms impractical. Furthermore, they are often redundant. 

For example, Figure 2-3 shows the VarDeclaration Fragment subtree, corresponding to a 

variant of the second local variable declaration - String results = 

(this.headerString(aCustomer)). Although there is no actual semantic difference between the 

two variants, a tree-differencing algorithm, comparing it against the original 

VarDeclarationFragment subtree (the bottom-right corner of Figure 2-2), would report the 

addition of node ParenthesizedExpression (which results in the Methodlnvocation subtree 

being pushed one-level deeper) and the addition of node ThisExpression. AST is a low-

level representation, designed for code compilation, optimization and transformation; 

interpreting AST changes into the higher-level logical changes requires substantial effort. 

For example, the value changes of four tree nodes of type SimpleName (gray highlight in 

Figure 2-2) represent completely different logical changes: (1) the change of 

PlainStatement's superclass; (2) the renaming of the valueO method; (3) the change of the 

associated type of the aCustomer parameter (4) the change in the outgoing usage of the 

method valueO-

There exist other differencing techniques that make use of other types of program 

representations. Semantic Diff [47] operates on a representation of the local dependency 
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graph and works at the intra-procedural level only, as opposed to the system as a whole. 

Horwitz developed a technique [45] for detecting statement-level semantic and textual 

modifications, based on augmented control-flow graphs; this method is applicable to a 

simplified C-like programming language and is not suitable for complex object-oriented 

software systems. 
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Figure 2-4. XML-differencing XMI representation of UML models 
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Object-oriented software systems are better understood in terms of structural and 

behavioral models, such as UML class and sequence models. The UML modeling tools 

often store UML models in XMI (XML Metadata Interchange) format for data-

interchange purposes. XML-differencing algorithms, applied to such easily available 

XMI representations, report changes of XML elements and attributes, ignoring the 

domain-specific semantics of the concepts represented by these elements. Figure 2-4 

shows the partial XML comparison results (by DeltaXML [128]) between the XMI 

representations (exported by ArgoUML [112]) of two versions of the UML class model 

of the program listed in Figure 2-1. The tool reports that two UML:Operation nodes 

(annotation [1]) were modified - their name attributes were changed - and that the 

UML:Operation with name attribute "eachRentalString" (annotation [2]) was removed, 

instead of recognizing that the valueO method was moved to the new superclass Statement. 

Furthermore, a single logical change in the UML model may result in several changes in 

XMI. For example, a generalization change - the superclass of PlainStatement changed 

from Object to Statement - results in three changed XMI nodes (annotation [3]). Finally, 

similar XML element changes may represent completely different logical changes. For 

example, the attribute changes of the two UML: Class elements (annotation [4]) represent 

generalization and usage dependency change respectively. Similar to AST comparison, 

an interpretation step is required to aggregate and abstract the change reports of XML 

comparison tools in terms of higher-level logical changes. 

Several UML modeling tools come with their own UML-differencing methods, such as 

[70,115]. They detect differences between subsequent versions of UML models, as long 

as these models are constructed and manipulated exclusively through the tool that assigns 

persistent identifiers to all model elements. This capability is clearly irrelevant when the 

whole development team does not use the same tool for all their development activities, 

which is usually the case. Furthermore, the persistent identifiers imply only one-to-one 

mapping between model elements, even when many-to-one or one-to-many mappings are 

preferable. For example, reporting that both PlainStatement.valueO and 

HTMLStatement.valueO have been moved to Statement better reflects the intention of the 

change, which is to pull up commonalities from several subclasses into the superclass, 

than reporting that one has been moved and the other has been removed. 
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There has also been some work on comparative analysis of different snapshots of a 

software system for drawing inferences regarding its evolution. Demeyer et al. [20] 

defined four heuristics based on the comparison of source-code metrics of two 

subsequent system snapshots to identify refactoring activities of three general categories. 

Rysselberghe and Demeyer [83] investigated the use of clone detection to identify move 

and renaming refactorings. However, the source-code metrics do not report the details of 

what has or has not been changed. For example, the PlainStatement.valueO and 

Statement.valueO have the same NOM (Number of Message sent in method body [63]) 

metrics. However, the PlainStatement.valueO calls directly PlainStatement's 

header/footer/eachRentalStringO, while Statement.valueO calls the Statement's abstract 

methods that are implemented by the corresponding PlainStatement methods. Ryder's 

group has also worked on comparative analysis of structural changes [82]. They define a 

set of atomic changes derived from the comparison of the abstract syntax trees of 

corresponding classes in two versions of a project. Apiwattanapong et al. [3] use the 

enhanced control-flow graph to model methods of object-oriented programs and identify 

similarities and differences between two methods based-on graph isomorphism. The 

major objective of their work is to analyze the impact of changes on test cases, while our 

work is aimed at recovering higher-level design evolution knowledge. 

All the above differencing techniques rely on various program representations that are 

designed for purposes other than understanding higher-level logical changes of software 

system. However, there has also been some research on analyzing the changes of 

software at the design level. Egyed [27] has investigated a suite of rule- and constraint-

based and transformational comparative methods for checking the consistency of the 

evolving UML diagrams of a software system. Selonen et al. [86] have also developed a 

method for UML transformations, including differencing. Spanoudakis and Kim [91] 

developed a probabilistic message-matching algorithm that detects the overlaps between 

messages that are likely to signify the invocation of operations and check whether the 

overlapping messages violate the consistency rules. However, they cannot surface the 

specific types of changes as reported by UMLDiff and these projects have not explored 

the product of their analyses in service of software evolution understanding and future 

decision making. Godfrey et al., in their BEAGLE system [36,97], use origin analysis to 
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determine the "origin" of "new" files and to detect the merging and splitting of source-

code entities. Origin analysis works at the file-structure level, corresponding to the 

physical model of the software rather than its logical model: it detects old functions as the 

"origin" of new ones based on a combination of clone detection and call-relation 

matching and assumes an interactive step for detecting file merging and splitting. In 

contrast, UMLDiff is fully automated and examines the UML logical model of the system 

to recognize the logical-design evolution of that system. 

2.2 Refactoring 

Refactoring has recently become an integral part of the evolutionary software 

development methodology, such as "Extreme Programming" [8]. The research area of 

refactoring was pioneered by Opdyke [72]. The books of Fowler [32] and Kerievsky [51] 

provide a good overview of the refactorings and how they can be used to accomplish 

architectural and design changes. 

Refactorings are often associated with certain bad smells identified in the software 

system. Fowler lists a dozen of bad smells and informally associates them to refactorings 

[32], which would address the smells if they were applied to the code. Balazinska et al. 

[5] and Ducasse et al. [25] use clone-detection techniques to detect code duplication and 

propose refactorings to eliminate it. Tourwe and Mens [96] rely on logic meta-

programming to specify and detect certain types of bad smells, such as obsolete 

parameters and inconsistent interfaces. Simon et al. [89] use cohesion metrics to measure 

which methods and fields belong together and then, based on this information, they 

propose "move method" and "extract/inline class" refactorings. 

By definition, refactorings are behavior-preserving program transformations. Opdyke's 

Ph.D. thesis [72] lists a set of invariants and preconditions to which a refactoring must 

conform in order to be considered behavior preserving. Mens et al. [66] study the 

application of graph-representation and graph-rewriting techniques to specify and 

determine whether or not a property is preserved when performing refactorings, such as 

pull-up methods. Tip et al. [95] use type constraints to model refactorings dealing with 

generalization and compute the allowable source-code transformations that preserve type 

correctness. 
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Although refactoring is usually a developer-intensive activity, tool support is 

considered crucial. Roberts et al. developed the first tool for providing semi-automatic 

refactoring support, which was implemented in the Refactoring Browser [79]. Modern 

IDEs, such as Eclipse [116] and IntelliJ IDEA [124], offer semi-automatic support for 

most commonly used refactorings. Moore [67] developed a fully automated tool, Guru, 

for the automatic restructuring of inheritance hierarchies and refactoring of methods in 

Selfprogram in order to reduce program size and boost code reuse. 

Refactorings affect the quality of software systems. Demeyer [21] investigated the 

effect of refactorings by replacing conditional branches with polymorphism. Tahvildari 

and Kontogiannis [93] analyzed the impact of refactoring on source metrics to provide 

evidence where a refactoring may improve a system quality, such as maintainability. 

Leitch [59] developed a method for estimating the return-on-investment for a refactoring, 

by estimating, in the event of a function-preserving change to a code-base, the savings in 

future maintenance costs because of the change compared to the effort required to 

perform the change. 

There has also been some work on reverse engineering refactorings by mining 

software repositories. Demeyer et al. [20] defined four heuristics based on the 

comparison of source-code metrics of two subsequent system snapshots to identify 

refactorings of three general categories. Rysselberghe and Demeyer [83] investigated the 

use of clone detection to identify moves and renamings. Godfrey and Zou [36] used 

origin analysis to detect the "merging" and "splitting" of source-code entities. Dig and 

Johnson [22] conducted an empirical study to assess the role of refactorings in API 

migration. Their analysis relies on the changes documented in the release notes shipped 

with software systems. Gorg and Weisgerber [37] analyzed the changes of entity 

signatures in evolution transactions - i.e., changes to a set of files committed at the same 

time by the same developer - to detect refactorings, such as rename method, move class, 

pull-up method. Their approach is sensitive to the "multiple refactorings on the same 

location". 

Refactoring the reused components (library or framework) is often limited by the fear 

of breaking client code. When the breaking API changes happen, the developers of 

component-based applications take the burden of migrating their codes to the new version 
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of reused components. Balaban et al. [4] developed a tool that allows the developers to 

define a mapping specification between legacy classes and their replacements so that 

obsolete library classes (such as Java Vector) can be replaced with their newer 

counterparts (such as Java ArrayList). CatchUp [42] is another attempt to relieve this 

burden by recording the refactorings, such as type renamings, made by the component 

developers within an IDE, such as Eclipse, and then replaying them by the application 

developers on the client code to keep it updated. In the similar vein, Borland 

demonstrated their "Team Refactoring" support for JBuilder [50]. 

We have also been working on this general problem. We first outlined process for 

recognizing refactorings from the design changes reported by UMLDiff in [101] and the 

detailed catalog of refactoring-detection queries was recently discussed in [106]. We 

developed an alternative method for detecting a more limited set of refactorings based on 

metrics and lexical information analysis [85]. In this work, we compared our two 

methods and found that query-based refactoring detection is more accurate - it recognizes 

all documented refactorings and more. Interestingly enough, the not-documented 

refactorings do not appear to be equally effective from a maintainability-improvement 

perspective and might be accidental side-effects of other changes. Next [105], we 

reported in detail on our exploration of the Eclipse evolution history using our query-

based refactoring-detection process and we summarized how refactoring is practiced in 

the Eclipse evolution and we discussed how more systematic support could be developed 

for performing refactorings and for automatically propagating the impact of framework 

refactoring to the applications using it. 

2.3 Software evolution analysis 

A large subset of work in this area involves analyzing the "history" recorded by version-

management systems. Lehman and Belady [58] proposed laws of software evolution after 

analyzing change data from the evolution of the OS/360 operating system. 

Eick et al. [30] developed a process for analyzing the change history of the code, 

which is assumed to reside in a version management system, calculating code-decay 

indices, and predicting the fault potential and change effort through regression analysis. 
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The objective of this research is mainly to support project management so that code 

decay is delayed. 

Barry et al. [7] use software volatility, defined in terms of amplitude, periodicity, and 

dispersion of software changes, to define a set of evolutionary patterns in the lifecycle of 

software systems. Their work shows that systems evolve in different styles; in contrast, 

our phasic analysis focuses on understanding the structural properties of system classes' 

lifecycle behavior and the underlying factors that drive their evolution over time. 

Hassan and Holt [41] and Bianchi et al. [10] claim that information entropy, i.e., the 

amount of uncertainty related to software products, is a good indicator of the degree of 

disorder of its structure. Intuitively, in the context of software evolution, if a software 

system is being modified across all its modules, it has highest entropy, and the software 

maintainers will have a hard time keeping track of all the changes. Their work relies on 

maintenance documentation to keep track of software modifications in order to compute 

information entropy of files that evolved over a period of time. Our class co-evolution 

analysis may provide a good primary input for these system instability analyses. 

Gall et al. [31,33] developed an approach for populating a release-history database that 

combine CVS (Concurrent Version System) data (including CVS deltas produced by 

GNUdiff [11%]) and bug reports maintained in Bugzilla [113]. Queries can then be issued 

to obtain multiple views, including module coupling, that show the evolution of a 

software project. Fischer et al. [31] pointed out the need for investigating high-level 

structural changes to enable more accurate information in their release history database 

than using GNUdiff. 

Shirabad et al. [87] applied inductive-learning algorithms to address the problem of 

detecting the co-updating of two code modules and predicting whether updating a source 

file would necessitate a change in another file. Their chosen inductive-learning methods 

require pre-labelled positive examples of co-updating, i.e., sets of modules that were 

updated for the same change request. Therefore, a lot of effort is required to select and 

extract characteristic features and label training examples, which may significantly affect 

the quality of the learned model. In contrast, our class co-evolution detection is based on 

Apriori association rule mining [2]. 
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The major drawback of this line of research is that it requires high-quality developers' 

comments and change reports recorded in the version-management system. In most real-

world software projects, such comments and reports are inconsistent in their detail and 

sometimes they do not even exist. In contrast, our design-evolution analysis methods are 

based on the automatically detected design changes by UMLDiff between versions of 

system's logical model, without requiring consistently maintained high-quality change 

documentation. 

Another line of research has focused on the visualization of software-process statistics, 

source code metrics, static dependence graphs, CVS-like deltas and their derivatives, etc. 

Eick et al. developed tools [28,29] for visualizing the evolution of software statistics at 

the source-code line level and change data such as developer, size, effort, etc. 

Zimmermann et al. [110] have also developed visualizations of historical data stored in 

a CVS archive to help developers recognize the coupling between fine-grained program 

entities like methods and fields. Bevan [9] defines software instability as a set of related 

artefact elements that have often changed together. She used a static dependence graph to 

visually identify such related software artefacts. 

German and Hindle [35] developed a visualization tool, softChange, that can be used 

to retrieve and visualize information stored in various forms, such as emails, releases 

notes, change logs, etc., and assist the programmers in understanding how software has 

evolved to its current state. 

Lanza [57] describes how to use a simple two-dimensional graph to convey the 

implicit information of software metrics. Based on the visualization of the evolution of 

class metrics (e.g., number of methods and number of instance variables), the evolution 

matrix can be used as an indicator of the evolution phases of the software system and its 

components, similar but more coarse-grained than our taxonomy of the evolution phases 

and styles, thus failing to recognize restructuring activities. 

These visualization approaches adopt a top-down method, which limit their 

applicability due to two important reasons: first, they assume a substantial interpretation 

effort on behalf of their users and second, they do not scale well: they become unreadable 

for large systems with numerous components. In contrast, our design-evolution analyses 

starts with the minimum amount of information about the automatically recovered core 
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evolution concerns and support developers incrementally build up their knowledge about 

what has been changed, how and why. 

The existing approaches [9,33,87,110] to elicit the co-evolution of software artefacts 

produce Boolean association rules, which concerns associations between the change and 

no-change of software artefacts. They have limited explanatory power on why the co-

evolving artefacts are inter-dependent and cannot guide precisely the future development 

of the system. For example, it is hard for these methods to identify fine details of co-

evolution relations, such as the following: "when adding members to class A, class B also 

gets additional members too"; or "when adding members to class A, it is often needed to 

restructure class B's interface". These fine-grained co-evolution rules concern 

associations between different types of changes. Our class co-evolution analysis is based 

on the discrete class-evolution profiles that characterize the categorical change volatility 

of the system classes over time, which allow us to produce four types of co-evolution 

rules: parallel function-extension, parallel refactoring, and parallel function-extension and 

refactoring. 

Several approaches are available to help developers locate and manage source code 

that are scattered throughout the program text. Robillard and Murphy developed FEAT 

tool [80] that supports defining, locating, and analyzing the code implementing one or 

more concerns. Relo [88] monitors the developer's exploration of code within an IDE and 

builds automatically the relevant elements and relations into a centralized view. 

Active Aspect [111] produces interactive graphical models of program structures affected 

by aspects in Aspect!. These approaches support bottom-up exploration of code concerns 

or aspects in the context of program understanding. However, none of them have 

explored the product of their tools in service of software evolution understanding. 

2.4 Supporting API evolution 

Some modern integrated development environments (IDEs), such as Refactoring Browser 

[79], Eclipse [116] and IntelliJ IDEA [124], provide semi-automatic support for applying 

the most commonly used, low-level refactorings, such as rename field and move method 

[32]. Refactoring support within IDEs has made it less cumbersome to improve code 

quality. However, the refactoring engine requires that the complete source code of the 
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refactored system is visible and modifiable by the tool, which is obviously irrelevant in 

the API evolution of reuse-based development, since parts of the system are either not 

accessible or not changeable at the time of refactoring. 

Recently, configuration management systems that support merge of refactored 

branches of a system have been proposed in order to allow teams of developers to share 

refactorings. For example, CMEclipse [114] and MolhadoRef [24] aim at improving the 

configuration-management support for refactorings when merging parallel development 

branches. Those systems do not assume complete source-code access when performing 

refactorings, but they require a common, centralized development infrastructure be used. 

However, in the context of software reuse, the client applications and the component 

frameworks they reuse are usually much more loosely coupled. For example, a library 

may distribute the changes by posting new JAR files on its own website, from which the 

client-application developers download those updates and integrate them on the client 

side. 

A critical problem in the effort to adapt client applications to the interface changes of 

their underlying component frameworks is the precise specification of the interface 

changes of the reusable components and the propagation of these changes to the client-

application source code. Programming-language syntax for explicitly annotating API 

changes, such as the keywords "deprecated" in Java and "obsolete" in Eiffel, may be used 

to indicate the obsolescence of a construct, to discourage developers from further using 

an old version in the presence of a newer one. However, there is no standard language 

support for migrating existing client code, built on the deprecated API. Perkins [76] 

proposes a technique based on method inlining for replacing calls to a deprecated method 

by the method's body, assuming that the deprecated method delegates to its replacement. 

However, Henkel and Diwan [42] found that better tool support is required: deprecated 

entities that are part of the published interfaces are almost never removed, which 

indicates that once an API is published, developers are forced to maintain it. 

When the API of a component is changed, the changes and suggested ways to adapt 

any existing application code to them are usually documented in the new release of the 

component, such as the Eclipse "What is New" [119] or the Microsoft Visual C++ 

"Migrating from Previous Versions" [121]. This approach requires a significant amount 
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of effort by the component developers to produce the documentation in the first place and 

to consistently maintain it over time. However, more often than not, the documentation 

does not tell the whole truth. It may discuss only a subset of the actual API changes that 

the component developers consider important [104]. Furthermore, it may not always 

consistently reflect the actual code. Finally, the documentation is sometimes written in 

very compact - even cryptic - language, not easily understandable by most application 

developers. 

Chow and Notkin [15] developed a system for semi-automatically updating 

applications in response to library changes, which requires the library developer to 

specify the interface changes and how existing application code can be transformed to 

work properly in the face of those changes. The change and transformation specification 

are distributed along with the evolved libraries, which are then used by application 

maintainers to update their applications semi-automatically. This approach shifts the 

burden of upgrading source code for library-interface changes from the application 

developers to the library developers. Its main shortcoming is that it assumes that the 

change and transformation are manually specified for each interface change, which 

requires a substantial effort to write and maintain. Furthermore, the migration process is 

sensitive to the completeness and correctness of the library developer's specifications. 

Henkel and Diwan [42] propose an approach for recording and replaying refactorings, 

based on the existing refactoring support of modern IDEs, such as Eclipse, to support API 

evolution. In a similar vein, Borland demonstrated its "team refactoring" support of 

JBuilder at the JavaOne conference [50]. These approaches relieve the library 

programmer from manually writing change specifications and delegate the error-prone 

work of validating and applying changes to industrial-strength IDEs. However, they 

require that the framework developers and the developers of client applications use same 

refactoring engines so that the recorded refactorings can be interpreted and replayed on 

the client applications. Furthermore, the supported changes are limited to those supported 

by the refactoring engine of a given IDE and these approaches are not aware of the 

refactorings that are manually performed. 

All the above approaches to adapting client applications in response to interface 

changes of reusable components rely on additional, and potentially substantial, work by 

26 



the component-framework developers, whether it is coding to particular standards, or 

learning some new specification language, or using some specific tool. Although the 

client-application developers still have the final decision as to update their source code or 

not, the decision on what can be updated and how is essentially driven by the additional 

information provided by the component-framework developers that document the 

changes and advise on how to adapt them. However, it is seldom the case that the change 

documentation and scripts provided with a large framework are sufficient for a client-

application developer to effectively migrate to the changed APIs, in spite of a substantial 

effort to write and maintain the change documentation or scripts on the part of 

component-framework developer. All too often, application developers become lost when 

trying to reuse a changed API, unsure of how to make progress on a migration problem. 

To ease the responsibility of the component-framework developers and to help the 

application developers find their way, we have developed an approach that uses the 

automatically detected API changes to support the migration of client applications. With 

our approach, the client-application developers decide what they want to update and how 

exactly. They run an automated tool to obtain the interface changes of reusable 

components and the likely ways in which they may update their application in order to 

properly use the evolved component APIs. Next, they may interactively explore the 

changes and suggested updates with the support of our visualization component -

JDEvAn Viewer (see Chapter 7) - so that they are able to better understand the nature of 

the change, its plausible replacements and how to use them. 

2.5 Recommending software artifacts 

There has been some work on discovering a component appropriate for reuse within an 

application. Zaremski and Wing [109] investigated signature matching, such as the 

comparison of the types of a function's input and output parameters in addition to 

function's name, for retrieving reusable software components. Ostertag et al. [73] 

presented an Al-based reusable library system that supports a developer to search library 

components that best meet the given requirements: they relate the software library 

components with manually-defined features and terms through domain analysis; they also 

define manually the weighted subsumer and feature graph over components, based on 
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which component similarity may be computed. The CodeBroker tool [108] monitors the 

declaration of method and the insertion of comments in a text editor and queries a library 

with that information to find components that could be reused instead of a new one being 

created. To determine matches, a developer must properly format comments in the 

program being developed in terms similar to that of reusable components in the library. 

The Strathcona [44] tool avoids the need for writing appropriate comments. Instead, it 

automatically extracts the structural facts about the context of a code fragment of interest 

highlighted by a developer and uses this structural context to heuristically search a 

source-code repository for examples with similar structural context. 

On the other hand, many approaches have been proposed to use the artifacts associated 

with a software project, in addition to source code, to support software maintenance and 

evolution tasks. The version check-in description (such as the author information) may be 

used to generate recommendations of people who might have some expertise on a given 

problem [64]. The developer's communication (such as email, annotations on the code, 

etc.) may be used to present documents similar to the one currently being edited [78]. 

Hipikat [17] offers contextual advice during development by extracting similar situations 

in the history of the system lifecycle. It recommends relevant segments of documentation 

and/or similar code snippets from which the developers can draw analogies towards 

solving their current problem, such as suggesting a potential solution to a particular type 

of bug. We studied software design-mentoring that works at the granularity of design 

level, providing supports on monitoring and mentoring object-oriented software design 

and its evolution. 

All the above approaches focus on recommending examples to reuse from the current 

version of the component framework or offering similar documentation, code snippets or 

design changes from the information stored in a project's archives of a "closed" system to 

aid the developer's evolution task. In contrast, our API-Evolution catch-up approach 

addresses the asynchronous API evolution problem in the context of reuse-based software 

development, which proposes the API replacements and their potential usage examples 

for upgrading client applications in the face of the evolving APIs of the components that 

they reuse. 
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Chapter 3: Model Differencing with UMLDiff 

The first research problem that this thesis addresses is how to accurately and efficiently 

recognize the changes in the system's design as it evolves from one version to the next. 

As discussed in Section 2.1, there exist a number of software differencing techniques 

[3,20,45,47,82,107,118,128], but they rely on program representations that are designed 

for purposes other than capturing higher-level logical design changes of software system. 

We have developed UMLDiff, a heuristic algorithm for automatically detecting the 

changes that the logical design of an object-oriented software system has gone through, 

as the subject system evolved from one version to the next. This algorithm takes as input 

two logical models corresponding to two versions of an object-oriented software system. 

It traverses the two models in parallel, moving from one type of model elements to the 

types they contain; as it does so, it identifies corresponding elements, i.e., model elements 

that correspond to the same conceptual design entity, based on their lexical and structural 

similarity. UMLDiff produces as output a set of design-change facts reporting the various 

types of design changes it has discovered when comparing the two models, i.e., additions, 

removals, moves, and renamings of subsystems, packages, classes, interfaces, attributes 

and operations, and changes to the attributes and relations of these model elements. 

In this chapter, we describe the meta-model assumed by UMLDiff as the underlying 

representation of its input logical models and the process by which these models are 

extracted from Java software. We discuss in detail the algorithm, and the similarity 

heuristics on which it relies to recognize correspondences between the design elements of 

the two compared models. Finally, we report on our experimental evaluation of the 

effectiveness and robustness of the UMLDiff algorithm with the JFreeChart [126] system. 

3.1 The meta-model 

UMLDiff compares logical models of object-oriented software systems. The underlying 

meta-model is defined according to the semantics of the UML metamodel [69]. We 

summarize the UML profile in terms of metaclasses and metarelations, of concern to 

UMLDiff, in Appendix A. 
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Figure 3-1. An example of UML model that t/MUV/Fcompares 

UMLDiff requires as input representations of the system's logical design in terms of 

UML models in the form of the model shown in Figure 3-1. Figure 3-1 diagrammatically 

depicts the UML model of the version 28 of our running example (see Section 3.3.1), in 

terms of instances of model-element metaclasses, relation metaclasses, and meta-

compositions and meta-associations. The instances of model elements are denoted 

"name:metaclass". For example, "Statement:Class" represents an instance of the class 

metaclass, whose name attribute is Statement. The model elements may have other 

attributes, such as visibility, isLeaf, isRoot, isAbstract, deprecated, etc. For example, the 

visibility attribute of operation Customer.getAIIChargeO is public. The isAbstract attribute 

of operation Statement.printFooter(Customer) is true. The model elements are linked to each 

other by instances of relation metaclasses, meta-compositions and meta-associations. For 

example, the model Version28 contains a default package (an instance of 

ElementOwnership meta-composition), which contains a class Customer (the other 

instance of ElementOwnership meta-composition), which declares four operations (four 
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instances of [owner - feature] meta-composition). The operation 

HTMLStatement.printFooter(Customer) is associated with the class String as its return type 

(an instance of [typedParameter - type] meta-association). The operation 

Customer.htmlStatementO instantiates (an instance of Usage«i„stantiate»-) the object 

HTMLStatement. The class PlainStatement is a subclass of the class Statement (an instance 

of generalization). The operation HTMLStatement.printEachRental(Rental) implements (an 

instance of Abstraction«reaihe») the abstract operation Statement.printEachRental(Rental). 

3.2 UML model reverse engineering in JDEvAn 

The UMLDiff algorithm has been implemented in the JDEvAn tool [125], which also 

implements a Java fact extractor based on the Eclipse Java DOM/AST model. JDEvAn's 

Java fact extractor reverse engineers UML models in the form expected by UMLDiff, 

from Java source code. The mapping of the Java language constructs to UML metaclasses 

and metarelations is described in Appendix B. Our current focus on Java is pragmatic; the 

UMLDiff is not restricted to any specific object-oriented programming language, since its 

meta-model is essentially defined according to the UML semantics. Its design and 

implementation are extendible to software systems developed in other object-oriented 

programming languages, assuming appropriate fact extractors that are able to map 

programming language constructs into UML model elements and relations expected by 

UMLDiff. 

Java software subsystem is not really a Java construct; it is a conceptual element. The 

top-level subsystem corresponds to the model of a system as a whole. Each Operation is 

associated with a Method element, which contains the body of the corresponding Java 

method, constructor, or class initializer. A Method element is not contained in the 

declaring class of its specification operation. The return type of a Java method is treated 

as a special Parameter, whose name and kind attributes are return. A field's initializer is 

modeled as the initValue attribute associated with its corresponding Attribute. Although 

Java requires exceptions to be subclasses of java.lang.Throwable, other programming 

languages, such as C++, allow exceptions to extend arbitrary classes. Therefore, to avoid 

restricting UMLDiff'to the Java particulars, the fact extractor does not explicitly model 

exceptions; instead, at the end of fact extraction process, it marks the classes that appear 

31 



in Usage«se„d», [context - raisedSignal], and [reception - signal] relations as 

exceptions. The fact extractor does not model Receptions either, since operations are 

normally receptions that handle the signals, such as exceptions, in most modern object-

oriented programming languages. Instead, at the end of the fact extraction process, it 

marks the operations that appear in [reception - signal] relations as receptions. Finally, 

the fact extractor ignores three Java specific modifiers, volatile, native, and strictfp, and 

assumes that the classes and interfaces that belong in Java libraries are contained in the 

top-level subsystem. 

Each extracted model element is described in terms of its name, the type of its 

corresponding UML metaclass (as described in Table A-l and Table B-l), its 

corresponding visibility and attribute(s) (as described in Table B-3), and its attached 

UMLDiff-specific tagged values (as described in Table A-4 and Table B-4). The relations 

between model elements are described in tuples of the form (relation, ei, ei), where ej 

and e2 are model elements and relation is a type of UML metarelation, as described in 

Table A-2, Table A-3 and Table B-2, that applies between ei and e2. The number of times 

that a field is read/written, a method/constructor is called, a class is created, and a 

class/interface is used is recorded as the count tag, attached to the corresponding usage 

dependency. 

The name of array types is in the form of "BasetypeQualifiedname.Dimension". The 

name of packages, classes, interfaces and fields is their declared identifier. The name of 

methods and constructors is in the form of "identifier(paramtype_list)". JDEvAn's fact 

extractor also assigns names to anonymous classes, "new supertype_identifier$number"; 

class initializers, "{class_identifier.$number}"; and field initializers, 

"{field_identifier=...}". The "number" is the ordinal number of the anonymous class or 

the class initializer within the enclosing Java class. Finally, a fully qualified prefix is 

added in front of the names of model elements that belong in Java libraries. 

Anonymous classes are a special type of nested classes. They do not explicitly have 

declared identifiers. They are specified along with class creation expression within blocks 

and are then generated by the compiler when parsing expression as the nested classes of 

the class that declares the corresponding block. Thus, an anonymous class is modeled as a 

class whose name="new supertype_identifier$number", visibility=private, 
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isAbstract=false, and isLeaf=true, which is contained by the corresponding enclosing 

class. It is also associated with the corresponding Method element of its declaring 

operation. The Usage«instantiate» dependency between the anonymous class and its 

declaring operation is not modeled. Instead, it is mapped to the direct super type of the 

anonymous class.The fact extractor does not model Java local classes/interfaces, which 

are declared within methods, constructors, or class initializers, because they are rarely 

used in practice. 

The extracted UML models are stored in a PostgreSQL relational database, extended 

with Simon's transitive closure algorithm [90] for computing transitive containment and 

inheritance relations, field read/write, method call, and class/interface usage relations. 

The relational database enables the UMLDiff implementation to work on large-scale 

software projects, such as Eclipse [116]. It also provides the flexibility to infer derivable 

information about model elements and their relations. 

3.3 Comparing logical models of object-oriented software 

In this section, we discuss in detail how UMLDiff maps model elements and their 

relations and compare their attributes. 

3.3.1 The running example 

We will demonstrate how UMLDiff works with a small running example, adapted from 

the versions 23, 27 and 28 of the extended refactoring example at [129]. When the system 

evolves from version 23 to 27, the nested class PlainStatement is extracted from the class 

Customer. The main responsibility of this class is to print out the customer's movie rental 

information in plain text format, which is originally performed by the operation 

Customer.statementO in version 23. In version 27, the operation Customer.statementO 

instantiates a PlainStatement object, to which it delegates this task. Similar changes are 

also made to Customer.htmlStatement0232 and the newly introduced top-level class 

HTMLStatement27 contained in defaultz7 package. Furthermore, the Customer.statementQ23 is 

2 Denotes the model element contained in a particular version. 
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renamed to plainStatement()27 in order to be consistent with htmlStatementO and to more 

clearly convey the intention of the method. 

The main change between versions 27 and 28 is to pull up the operation value() from 

PlainStatement and HTMLStatement to their superclass, Statement. However, to demonstrate 

several UMLDiff key features, we intentionally complicated versions 27 and 28 by 

including the following changes: 

• We renamed the operations getTotalChangeO/getTotalFrequentRenterPointsO of the 

class Customer to getAIIChargeO/getAIIFrequentRenterPoints() respectively and 

changed their visibilities from package to public; 

• We renamed the operations headerStringO/eachRentalStringO/footerStringO of the 

classes Statement/PlainStatement/HTMLStatement to 

printHeaderO/printEachRentalO/printFooterO respectively; 

• In version 27, the class PlainStatement is a nested class of the class Customer, while, 

in version 28, it is moved out from the class Customer and becomes a top-level 

class contained in the default package; 

• In version 27, the operation PlainStatement.footerStringO uses 

String.value(double)/value(int) to convert the double and int values to String, while, in 

version 28, it changes to use Double.toStringO and Integer.toStringO; and 

• In version 28, the operation Customer.plainStatementO is deprecated. 

3.3.2 UMLDiffowerview 

UMLDiff is an UML-semantics-aware differencing algorithm. As per the adopted meta-

model, the software system is modeled as a directed graph G(V, E), where the vertex set 

V contains model elements and the edge set E contains relations among them. Given two 

versions, "before" and "after", of a UML model and their corresponding graphs 

Gbefore(Vbefore, Ebef0re) and Gafter(Vafter, Eafter), UMLDiff essentially maps the two model 

graphs by computing the intersection and margin sets between (Vbefore, Vqfier) and (Ebefore, 

Eafter), in terms of (Vbefore - Vafter) for the removed model elements, {Vbefore <~^ Vafter) for the 

mapped (i.e., matched, renamed, and moved) elements, (Vafter - Vbefore) for the added 

model elements, (Ebefore - Eafter) for the removed relations, (Ebefore ^ Eafter) for the 

matched relations, and (Eafter - Ebefore) for the added relations. 
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Table 3-1. The containment hierarchy of UML model elements 

Type of model element 
Top-level Subsystem 

Subsystem 
Package 
Class 

Interface 

Attribute 
Operation 

Type of the children 
Subsystem and Package 
ProgrammingLanguageDataType 
Class and Interface whose isFromModel=false 
Subsystem and Package 
Package, Class and Interface 
Class and Interface 
Attribute, Operation, Operation«create») Operation «initiaiize» 
Class and Interface 
Operation 
N/A 
Parameter 

UMLDiff first attempts to map the model element sets Vbefore and Vafter. It relies on the 

composition relations to traverse in a breadth-first fashion3 the vertices (model elements) 

of the directed graph of the UML model. The composition relations (instances of three 

meta-compositions - see Table A-3) induce a strict spanning tree of the containment 

subgraph of the system model. The UML semantics guarantees that all model elements 

can be visited by traversing the containment hierarchy starting from the top-level 

subsystem corresponding to the system version and the children of their containing parent 

are unique in terms of their names. The meta-composition defines four logical levels over 

types of model elements: subsystem (including the top-level subsystem) > package > 

(class, interface) > (attribute, operation). The model elements of type subsystem, package, 

class and interface may contain the nested same-type elements. Table 3-1 summarizes the 

containment hierarchy of the UML model elements. Table 3-6 shows the partial 

containment hierarchy of versions 23 and 27 of the model of our running example. 

UMLDiff traverses the containment-spanning trees of the two compared models, 

descending from one logical level to the next, in both trees at the same time. It starts at 

the top-level subsystems that correspond to the two system versions and progresses down 

to subsystems, packages, classes and interfaces, and finally, attributes and operations. 

3 In the rest of this section, all references to "traversals" are implied to be "breadth-first 

traversals". That is, the model elements are processed in First-In-First-Out order. 
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UMLDiff recognizes that a model element e\ in the "before" version and an element e2 of 

the same type in the "after" version are the "same", i.e., they correspond to the same 

conceptual model element, when (a) they have the same or similar name and comment 

(lexical-similarity heuristic), and (b) they have similar relations to other model elements, 

that have the same name and type or have already been established to be mapped 

(structure-similarity heuristic). 

Name similarity is a "safe" indicator that ei and e2 are the same entity: in our 

experience with several case studies, very rarely is a model element removed and a new 

element with the same name but different element type and different behavior is added to 

the system. UMLDiff recognizes same-name model elements of the same type first and 

uses them as initial "landmarks" to subsequently recognize renamed and moved elements. 

When a model element is renamed or moved, as is frequently the case with refactorings, 

its relations to other elements, such as the children elements it contains, the attributes it 

reads/writes, the operations it calls or is called by, etc., tend to remain much the same. 

Therefore, by comparing the relations of two same-type model elements renamings and 

moves can be inferred: if they share "enough" relations to known-to-be-same or same-

name elements of the same type they are the "same", even though their names and/or 

their parent (containing) model elements are different. Whenever two model elements are 

identified as renamings or moves, this knowledge is added to the current landmarks' set 

and is used later on to further match as not-yet-mapped elements. This process continues 

until it reaches the logical-leaf level of the spanning trees and all possible corresponding 

pairs of model elements have been identified. 

Given two renaming or move candidates, UMLDiff computes their structural similarity 

in terms of the intersection of their two related-element sets, i.e., the sets that contain 

same-name of the same type or established-to-be-mapped model elements that are related 

to the two compared candidates with a given type of relation. Therefore, if all or most the 

model elements related to two candidates were also renamed and/or moved and cannot be 

established as "same", the UMLDiff structure-similarity heuristic would fail. If, on the 

other hand, a set of related elements were renamed or moved but enough model elements 

related to the affected set remained the "same", it would be possible to recognize this 

systematic change. 
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UMLDiff applies two techniques, i.e., multiple-rounds-of-renaming-and-move-

identification and propagating-operation-renamings-along-inheritance-hierarchy, to 

propagate the knowledge of established renamings and moves along their usage and 

inheritance relations (see Section 3.3.4.4 and Section 3.3.4.5). Finally, global renamings, 

such as renamings to meet a new naming convention, for example, may be recovered, by 

enabling the user to specify a string transformation - introducing a prefix or appending a 

suffix, or replacing a certain substring - that should be applied to the names of the model 

elements of one of the compared versions, before the differencing process. 

Table 3-2. The summary of design changes reported by UMLDiff 

Element type 
Subsystem & 
Package 
Class & 
Interface 

Operation 

Attribute 

Categories and types of UMLDiff 'changes 
Added, removed, renamed, or moved 

Added, removed, renamed, or moved 
Generalization change of class and interface, and no-longer or new 
interface implementation of class 
No-longer or new outgoing and incoming usage dependencies 
Visibility, modifier, deprecation-status change 
Added, removed, identifier-changed, moved, extracted, or inlined 
Parameter added, removed; parameter type changed 
No-longer or new outgoing attribute read/write, operation call, class 
instantiation; no-longer or new incoming call 
No-longer or new declared, thrown, and caught exception 
Return type change 
Visibility, modifier, deprecation-status change 
Added, removed, renamed, or moved 
No-longer or new read-by and written-by dependencies 
Data type change 
Visibility, modifier, deprecation-status change 

Once UMLDiffhas completed mapping the vertex (model element) sets Vbe/ore and Vaf,er, 

UMLDiff proceeds to map the edge (relation) sets Ebefore and Eafter, by comparing the 

relations of all pairs of model elements (vbe/ore, v'after), where vfl/ter=null if Vbefore is removed 

and Vie/-ore=null if va/(eris added. The relations from (to) a removed model element are all 

removed and the relations from (to) an added model element are all added. For a pair of 

mapped elements (vbe/ore, Vafter), they may have matched, newly added, and/or removed 
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relations. Note that a removed (added) relation between two model elements does not 

indicate any of the elements it relates being removed (added). 

Next, UMLDiff detects the redistribution of the semantic behavior among operations, 

in terms of usage dependency changes, and finally computes the changes to the attributes 

of all pairs of mapped model elements. Table 3-2 summarizes the categories and types of 

design changes reported by UMLDiff. 

The f/MLDf^differencing process is configured through a set of parameters. 

• The LexicalSimilarityMetric specifies which one of three lexical-similarity metrics 

(Char-LCS, Char-Pair, and Word-LCS) will be used by UMLDiff 

• The RenameThreshold and MoveThreshold are the minimum similarity values 

between two model elements in the two compared versions in order for them to be 

considered as the same conceptual element renamed or moved. UMLDiff allows 

multiple rounds (MaxRenameRound and MaxMoveRound) of renaming and move 

identification in order to recover as many renamed and moved entities as possible. 

• The similarity of the comments of the model elements (ConsiderComment-

Similarity) may also be taken into account when comparing two elements, if the 

compared elements have an initial overall similarity value above the MinThreshold; 

this prevents model elements with very low name- and structure-similarity from 

qualifying as renamings or moves just because of their similar comments. 

• The similarity of transitive usage dependencies {ConsiderTransclosureUsage-

Similarity) between two compared operations may also be used to assess their 

structural similarity. 

• At the end of the C/MLD/̂ Tdifferencing process, it can be instructed whether or not 

to compute the usage dependency changes for all model elements and analyze the 

redistribution of operation behavior. 

3.3.3 Similarity metrics 

UMLDiff'relies on two heuristics - lexical and structure similarity - for recognizing the 

conceptually same model elements in the two compared versions of the system model, in 

spite of the fact that they may have been renamed and/or moved. In the following 
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discussion, the term "matched elements" refers to same-name model elements of the 

same type, while "mapped elements" refers to matched, renamed, and moved elements. 

3.3.3.1 Lexical similarity 

The term "lexical similarity" refers to the string similarity between the names of and the 

comments associated with two compared model elements. UMLDiff integrates three 

metrics of string similarity: (a) the longest common character subsequence (Char-LCS); 

(b) the longest common token subsequence (Word-LCS); and (c) the common adjacent 

character pairs (Char-Pair). All these metrics are computationally inexpensive to 

calculate, given the usual length of the names and comments of model elements. They are 

also case insensitive, since it is common to misspell words with the wrong case or to 

modify them with just case changes. They are all applicable to name similarity, while 

only Char-LCS and Word-LCS may be applied to compute comment similarity. 

The name similarity of operations is calculated as the product of their identifier 

similarity and their parameter-list similarity, which is computed as one type of structure 

similarity for operations. The name similarity of packages is computed based on their 

dot-removed names. The comment similarity between two model elements is only 

consulted when both elements have associated comments, the UMLDiff parameter 

ConsiderCommentSimilarity is true, and the initial overall similarity metric between these 

elements is greater than the UMLDiff'parameter MinThreshold. 

The longest common character subsequence (Char-LCS) algorithm [98] is frequently 

used to compare strings. Word-LCS applies the same LCS algorithm, using words instead 

of characters as the basic constituents of the compared strings. The names of model 

elements are split into a sequence of words, using dots, dashes, underscores and case 

switching as delimiters. Comments are split into words using space as delimiters. The 

actual metric used for assessing LCS-similarity is shown in the following equation: 

Char/Word-LCS(si, s2) = 2 * length(LCS(su s2)) / (length(s,)+length(s2)), where LCS() 

and length() is based on either characters or words. 

LCS reflects the lexical similarity between two strings, but it is not very robust to 

changes of word order, which is common when renaming a model element. To address 

this problem, we have defined the third lexical-similarity metric in terms of how many 
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common adjacent character pairs are contained in the two compared strings. The pairs(x) 

function returns the pairs of adjacent characters in a string x. By considering adjacent 

characters, the character ordering information is, to some extent, taken into account. The 

Char-Pair similarity metric, which is a value between 0 and 1, is computed according to 

the following equation: 

Char-Pair(si, S2 ) = 2 * |pairs(si)npairs(s2)| / (|pairs(si)|+|pairs(s2)|). 

3.3.3.2 Structure similarity 

Table 3-3 lists the relations that UMLDiff examines to compute the structure similarity 

between two model elements of the same type. The top-level subsystems, corresponding 

to the two compared versions of a UML logical model, are always assumed to match. The 

structure similarity of subsystems, packages, classes and interfaces is determined by the 

elements they contain, the elements they use, and the elements that use them. The 

structure similarity of attributes is determined by the operations that read and write them 

and their initialization expressions. The structure similarity of operations is determined 

by the parameters they declare, their outgoing usage dependencies (including the 

attributes they read and write, the operations they call, and the classes/interfaces they 

create), and their incoming usage dependencies (including the attributes (through their 

initValue) and the operations that call them). 

Table 3-3. The UML relations for computing structure similarity 

Type of model element 
Top-level subsystem 
Subsystem 

Package 

Class and Interface 

Attribute 

Operation 

Type of relations 
Always match 
[namespace — ownedElement] 
Incoming and outgoing usage 
[namespace - ownedElement] 
Incoming and outgoing usage 
[namespace - ownedElement] and [owner - feature] 
Incoming and outgoing usage 
Usage«read» 
Usage«wr;te» and inherent Attribute.initValue 
[BehaviorFeature - parameter] and [typedParameter - type] 
Outgoing usage: Usage«read», «write»> «cai l»* «instantiate» 

Incoming usage: Usage«can» 
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The structure similarity of two compared elements is a measure of the overlap between 

the sets of elements to which the compared elements are related, according to a given 

relation type. The intersection of the two related-element sets contains the pairs of model 

elements that are related to the compared elements and have already been established to 

be mapped or have the same name and element type. This intersection set effectively 

incorporates knowledge of any "known landmarks" to which both compared model 

elements are related. Given two model elements of the same type, ej and e ,̂ let Setbefore 

and Setafier be their related-element sets, the structure similarity between et and e2 

according to a given group of relations is a normalized value (between 0 and 1) as 

computed in the following equation: 

StructureSimilarity = matchcount / (matchcount + addcount + removecount), where the 

matchcount, addcount, and removecount are the cardinality of [Setbefore r\ Setafter\ [Setafter 

- Setbefore], \Setbefore - Setafter] respectively. 

For a usage dependency, its count tag, which indicates the number of times that it 

appears between the client arid supplier elements, is used to compute its matchcount, 

addcount, and removecount. 

The similarity of the parameters of two compared operations is based on the names and 

types of their parameters. The computation of parameter-list similarity is insensitive to 

the order of parameters. For non-return parameters, if none of the two operations is 

overloading, the matchcount for a pair of same-name parameters is 1. If any of the two 

compared operations is overloading, the types of the two same-name parameters is 

further examined, in order to distinguish the overloading methods from each other, which 

often declare the same name parameters but with different parameter types. In the case of 

overloading, if the same-name parameters have the mapped types, their matchcount is 1; 

otherwise, their matchcount is set at 0.5. For the return parameters, if their types map, the 

matchcount is 1. Otherwise, it is set at 0. If the type of the return parameter of both 

operations is void, the matchcount for the return parameter is set at 0. 

The similarity of the initValue of two compared attributes is computed in the same way 

as the outgoing usage similarity between two operations. The initValue-similarity value is 

added to the overall matchcount of the Usage«wrjte» similarity between two attributes. 
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Take the operations Customer.statement023 and Customer.plainStatement()27 as an example. 

Let us assume that UMLDiff has identified the matched model elements and is in the 

process of identifying renamings. It collects [Customer.statement()23, 

Customer.plainStatement027] as a pair of renaming candidates. Table 3-4 shows the two 

related-element sets of Customer.statement()23 and Customer.plainStatement()27. Note that all 

the incoming and outgoing usages of these two operations, except for 

Customer.statement()23 calling String.valueOf(double)23 twice, happen to be one. We omit the 

count tag attached to such usage dependencies. If a usage dependency appears more than 

once, it is indicated at the end of the usage dependency, such as String.valueOf(double) [2]. 

In the case of comparing Customer.statement()23 and Customer.plainStatement()27, the 

similarity of their parameters is one, their incoming usage similarity is also one, and their 

outgoing usage similarity is zero. 

Table 3-4. The related model-element sets of 

Customer.statement()23 and Customer.plainStatement027 

Type of relations 
Parameter 
Outgoing 

Incoming 

read 
write 
call 

instantiate 
call 

Customer .statementO 
return: String 
Customer, rentals 
null 
Customer. getName() 
Customer.getTotalChargeQ 
Customer.getTotalFreq.. .Points() 
Rental.getMovie() 
Rental.getCharge() 
Movie.getTitle() 
String.valueOf^double) [2] 
String.valueOf(int) 
Vector. elements() 
Enumeration.hasMoreElements() 
Enumeration.nextElement() 

null 
Vids.main(Stringn) 

Customer.plainStatementO 
return: String 
null 
null 
PlainStatement.value() 

PlainStatement 
Vids.main.Stringf]) 

When computing incoming and outgoing usage similarity between two operations, if 

the two compared operations are related to some other model elements but the 

intersection of the two related-element sets is empty, such as the case for the outgoing 

usage of Customer.statement()23 and Customer.plainStatement()27, UMLDiff proceeds to 
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compute the transitive usage similarity between the two compared operations, if its 

ConsiderTransclosureUsageSimilarity parameter is set to true. The transitive usage 

similarity takes into account the model elements related through the transitive-closure of 

the given relation, in addition to the directly related elements. 

Table 3-5 shows the transitive outgoing usage of Customer.statement()23 and 

Customer.plainStatement()27. The transitive usage similarity is still computed as per the 

above structure-similarity equation, but without considering the count tag. The 

matchcount, addcount, and removecount for the transitive outgoing usage similarity 

between Customer.statement()23 and Customer.plainStatement()27 is 23, 6, and 0 respectively. 

Thus, the transitive outgoing usage similarity is 23/(23+6+0)=0.79. 

Table 3-5. The transitive outgoing usage of 

Customer.statement023 and Customer.plainStatement()27 

Type of re 
Outgoing 

ations 
read 

write 
call 

instantiate 

Customer .statementO 
Customer ._rentals 
Customer ._name 
Movie._title 
Movie.daysRented 
Price._price 
Rental._movie 

null 
omit 17 matched operations 

null 

Customer .plainStatementO 
Customer._rentals 
Customer._name 
Movie._title 
Movie._daysRented 
Price._price 
Rental._movie 

null 
omit 17 matched operations 
PlainStatement. value 
PlainStatementheaderStringO 
PlainStatement.each... String() 
PlainStatement.footerString() 
Customer. getRentals() 

PlainStatement 

Determining the similarity when both related model element sets are empty is 

challenging. This case arises, for example, when the operations are not called by any 

other operations. In such cases, setting the structure similarity to be by default 0 or 1 is 

not desirable: without any explicit evidence of similarity, to assume that the structure is 

completely the same or completely different may skew the subsequent result. Therefore, 

in such cases, UMLDiffuses the name similarity with an increasing exponent. The effect 

is dampened as more empty sets are encountered. For example, when computing the 
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structure similarity of two operations in the order of their parameter-list, outgoing usage 

and incoming usage similarities, if the two compared operations declare no parameters, 

have return type void, and have no outgoing and incoming usage dependencies, UMLDiff 

returns name-similarity1 for comparing parameter-list similarity, name-similarity2 for 

outgoing usage similarity, and name-similarity for incoming usage similarity. 

3.3.3.3 Overall similarity assessment 

Given two model elements ej and ê  of the same type, their overall similarity metric, used 

for determining potentially renamed and moved model elements, is computed according 

to the following equation: 

SimilarityMetric = (lexical-similarity + ENStructure-similarity) / (lexical-similarity + 

N), where lexical-similarity = name-similarity + comment-similarity, and N is the 

number of different types of structure similarities computed for a given type of model 

elements as defined in Table 3-3. 

The value of £Nstructure-similarity is adjusted in the following cases. When comparing 

two operations, if anyone of them is overloaded, ENStructure-similarity is multiplied by 

the parameter-list similarity of the compared operations in order to distinguish the 

overloading operations from each other, which often have similar usage dependencies but 

with different parameters. Furthermore, when determining the potential moves of 

attributes and operations, if the declaring classes/interfaces of the compared 

attributes/operations are not related through inheritance, containment, or usage relations, 

the value of SNstructure-similarity is multiplied by the overall similarity metrics of the 

classes in which the compared attributes/operations are declared and then divided by the 

product of the numbers of all the not-yet-mapped model elements with the same name 

(same identifier for operation) and type as the two compared elements. This is designed 

to improve the precision when identifying attribute and operation moves. 

UMLDiff uses two user-defined thresholds (RenameThreshold and MoveThreshold): 

two model elements are considered as the "same" element renamed or moved when their 

overall similarity metric is above the corresponding threshold. If, for a given element in 

the "before" version, there are several potential mappings above the user-specified 

threshold in the "after" version, the one with the highest similarity score is chosen. The 
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higher the threshold is, the stricter the similarity requirement is. The smaller the threshold 

is, the riskier the reported renamings and moves are. 

3.3.4 Mapping model elements 

Table 3-6. The partial model-element sets V23 and V27 

Version23 : Top-level subsystem 
Element 
Version23 

default 

Vids 

Customer 

Children 
Subsystem 
Package 
DataType 
Package 
Class 

Interface 
Class 
Interface 
Operation 
Operation,; 
Attribute 
Class 
Interface 
Operation 

Operation,; 
Attribute 

null 
default 
Strinjsn 
null 
Vids 
Rental 
Movie 
Customer 

null 
null 
null 
main(String[]) 
null 
null 
null 
null 
getName() 

getTotalCharge() 

getTotalPoints() 

htmlStatement() 

statementQ 

Customer(String) 
name 
rentals 

Version27 : Top-level subsystem 
Element 
Version27 

default 

Vids 

Customer 

Children 
Subsystem 
Package 
DataType 
Package 
Class 

Interface 
Class 
Interface 
Operation 
Operation,; 
Attribute 
Class 
Interface 
Operation 

Operatioric 
Attribute 

null 
default 
Stringn 
null 
Vids 
Rental 
Movie 
Customer 

HTMLStatement 
null 
null 
null 
main(String[]) 
null 
null 

PlainStatement 
null 
getName() 

getTotalChargeQ 

getTotalPoints() 

htmlStatement() 

plainStatementQ 

getRentalsQ 

Customer(String) 
name 
rentals 

Given two versions, "before" and "after", of a system model and their corresponding 

directed graphs GbeforeO''before, Ebefore) and GafterfVafter, Eafter), UMLDiff starts with the 

original vertex sets Vbejbre and Vajier that contain all the model elements and the initially 

empty mapped element set. After it finishes mapping the model elements, the mapped 

element set contains all the identified matched, renamed, and moved model elements, and 
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the Vbefore contains all the elements that have been removed and the Vaf,er contains all the 

elements that have been added when the system model evolves. 

Table 3-6 presents the partial model-element sets, V23 and V27, of our running example, 

organized according to their containment hierarchy, "null" entries indicate that there is no 

model element of a given type contained in a particular model element. In the remainder 

of this subsection, we present how UMLDiff identifies same-name (i.e., matched), 

renamed, moved model elements using the running example presented in Section 3.3.1. 

3.3.4.1 "Matched" elements 

UMLDiff assumes that enough model elements remain "matched" between two compared 

versions of the system, which serve as the "initial landmarks" set for recognizing 

renamed and moved elements. The term "matched" refers to two corresponding model 

elements, of the same UML type, contained in a pair of mapped elements, which have the 

same names, although their children, attributes, and relations with other elements may be 

different. 

The very first step of UMLDiff is to identify as many matched model elements as 

possible. It starts at the top-level subsystems of the two compared versions of the system 

model, which are always assumed to match. The pair of the matched top-level 

subsystems is added into the mapped element set as the first pair of mapped elements. 

UMLDiff then progresses along the containment hierarchy of the models, moving from 

one logical level to the next at the same time, from subsystems, to packages, classes and 

interfaces, and finally attributes and operations. Given a pair of mapped model elements 

of the current logical level in the mapped element set, UMLDiff identifies all their 

children of the same type with same names, adds them to the mapped element set as new 

pairs of matched elements, and removes them from the set Vbefore and Vafter respectively. 

The pairs of matched children may be of the current logical level or one level below. The 

process continues until there are no more unprocessed pairs of matched elements of the 

current logical level in the mapped element set and UMLDiff'then progresses down to the 

next logical level. 

Consider, for example, our running example. The matched model elements are of 

regular font and left justified in Table 3-6. In this example, given the matched top-level 
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subsystems, UMLDiff adds their contained same-name default packages into the mapped 

element set. Next, it maps the four same-name classes contained in the default package. 

Given the matched class Customer, it maps the same-name attributes, constructor, and 

operations it declares. Note that there is no mapped nested model element in this simple 

running example. UMLDiff'proceeds directly from the subsystem, to the package level, to 

the class/interface level, and finally to the attribute/operation level. 

UMLDiff may not recover all the pairs of the matched model elements in this round: 

same-name, same-type model elements contained in renamed and moved parent elements 

are also considered as matched, but, at this stage, the renamed and moved model 

elements have not yet been recovered. As the pairs of renamed or moved elements are 

added to the mapped element set, UMLDiff attempts again to identify the same-name, i.e. 

matched, children they contain recursively, starting at the given pair of renamed/moved 

model elements. The only difference is that, instead of traversing the whole containment 

hierarchy from the top-level subsystem, it traverses the subtree of the containment 

hierarchy rooted at the given pair of renamed or moved model elements. 

3.3.4.2 Renamed4 elements 

After UMLDiff has completed its recognition of matched model elements, it proceeds to 

recover the renamed model elements. UMLDiff only considers potential renamings within 

the context of two mapped elements, such as the renaming of an operation within a 

mapped class. Identifying renamings between two arbitrary elements of the same type, 

such as the renaming of an operation that was moved from one class to another and then 

had its identifier renamed, is computationally expensive, since it requires the comparison 

of all the pairs of not-yet-mapped model elements of the same type. Again, UMLDiff 

starts at the matched top-level subsystems of the two compared versions of the system 

model and it traverses all the mapped model elements along the containment-spanning 

trees of the compared model graphs to identify pairs of renamed elements, moving from 

4 The renamings of operations include the changes to their identifiers and/or parameter 

lists. Furthermore, UMLDiff does not consider parameter renamings. 
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one logical level to the next when it has completed traversing all the model elements of 

the current logical level in both spanning trees. 

Note that UMLDiff may not recover all the pairs of the renamed model elements in its 

first round of recognizing the renamed elements due to two reasons. It may miss the pairs 

of renamed elements because their related elements have undergone renamings and/or 

moves as well. Some of these misses may be recovered in the following rounds of 

renaming identification (see Section 3.3.4.4). Furthermore, renamed model elements may 

be contained within moved elements or other not-yet-identified renamed elements. Once 

the pairs of such elements have been added to the mapped element set, UMLDiff attempts 

again to identify the pairs of renamed model elements they contain recursively starting at 

the given pair of moved or newly-identified renamed model elements. 

Given a pair of mapped model elements of the current logical level in the mapped 

element set, UMLDiff first collects all their not-yet-mapped children of the same type and 

formulates sets of renaming candidate pairs. Suppose there are N not-yet-mapped 

elements of a particular type contained in the "before" version of the mapped elements 

and M in the "after" version: UMLDiff generates N sets of renaming candidate pairs, each 

of which contains M pairs. It then identifies the renamed model elements based on their 

lexical and structure similarities, adds the newly identified pairs of renamed elements to 

the mapped element set, and removes them from the Vbefore and Vafter sets. Adding a pair 

of renamed elements to the mapped element set triggers UMLDiff to recursively 

recognize the matched descendants they contain. The pairs of newly identified renamed 

and matched children may be of the current logical level or one level below. The process 

continues until there are no more unprocessed pairs of mapped elements of the current 

logical level in the mapped element set and UMLDiff then progresses down to the next 

logical level. 

For example, when comparing the version 23 and 27 of our running example, the 

matched top-level subsystems contain only a pair of matched default packages. The 

matched default packages contain four matched classes and one not-yet-mapped class, 

HTMLStatement27. Thus, at this point, there are no potential renaming candidate pairs. 

However, when UMLDiff reaches the matched class Customer, it collects the following 

not-yet-mapped children: operation Customer.statement()23, and operations 
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Customer.plainStatement()27 and Customer.getRentals()27 and nested class PlainStatement27. 

Since there are no not-yet-mapped nested classes contained in the class Customer, there 

is no need yet for renaming identification of Customer's nested classes. However, 

UMLDiff formulates one set of operation-renaming candidate pairs (italic font and right 

justified in Table 3-6 and Table 3-8), which contains two pairs of renaming candidates: 

[statements, plainStatement()27] and [statement()23, getRentals()27]. 

The overall similarity of each of these pairs is computed according to the equations 

shown in Section 3.3.3.3, based on their lexical and structure similarities. When 

comparing Customer.statement()23 and Customer.plainStatement027, t/MLD^fcomputes three 

types of structure similarity between them, i.e. parameter list, outgoing usage, and 

incoming usage, which are 1, 0.793, 1 respectively. Their identifier similarity using 

Word-LCS5 is 0.5. Thus, their overall similarity metric is 0.941. The overall similarity 

metric between [statement()23, getRentals()27] is similarly computed to be 0.139. Thus, 

plainStatement()27 is much more similar to statements than getRentals()27. Assuming that 

the RenameThreshold is less than 0.941, the pair [statement()23, plainStatement()27] is 

recognized as an instance of operation renaming. 

Table 3-7. The sets of renaming candidate pairs 

HTMLStatement 
header?6() - ?Header() 

header?() - ?Footer() 

header?()-?Each...() 

footer?() - ?Header() 

footer?() - ?Footer() 

footer?()-?Each...() 

each...?()-?Header() 

each...?0-?Footer() 

each...?()-?Each...() 

value() - ?Header() 

value() - ?Footer() 

value()-?Each...() 

Customer 
getTotalChargeO - getAHChargeO 
getTotalChargeO - getAll...Points() 

getTotal...Points() - getAHChargeO 
getTotal...Points() - getAU...Points() 

Let us now look at the versions 27 and 28 of our running example. They involve much 

more complex changes, including many renamings and moves. Let us first examine 

5 Word-LCS is used for all the lexical-similarity computation in Section 3.3.4. 
6 Replace the suffix "String" and the prefix "print" with "?" to fit these operations in 

table. 
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renamings. Similar to the comparison of versions 23 and 27, UMLDiff first identifies all 

the matched model elements starting from the top-level subsystems. Then it proceeds to 

collect potential renaming candidates and to formulate the sets of renaming candidate 

pairs, such as those shown in Table 3-7 for the matched class HTMLStatement and 

Customer. 

Note that HTMLStatement.value()27 is collected as a renaming candidate at this stage of 

UMLDiffprocess. It is compared against three HTMLStatement.prinfXXX()28 operations but 

it is not found similar to anyone of them; therefore, it will be finally collected as one of 

the potential move candidates (bold font and left justified in Table 3-8). Furthermore, the 

abstract operations, such as those of the class Statement, are not collected as renaming or 

move candidates: since they have no outgoing usage, the identification of their renamings 

or moves tends to be error-prone. UMLDiff ignores them in its renaming and move 

identification process. However, the renamings of the abstract operations may be 

recovered by propagating the knowledge of the identified renamings of their 

implementation operations along the inheritance hierarchy as discussed in Section 3.3.4.5. 

Finally, at this stage, the not-yet-mapped operations of the PlainStatement class are not 

collected as renaming candidates, since the move of the class PlainStatement has not yet 

been identified. However, they will be processed when the move of PlainStatement is 

identified and added to the mapped element set. 

UMLDiff computes the overall similarity metrics of all the pairs of renaming 

candidates contained in a given pair of mapped model elements and selects the pair with 

the highest similarity metric (above the RenameThreshold) to be added to the mapped 

element set as a renaming. It then removes from the candidate sets all other pairs that 

contain the elements of the selected pair. This process continues until there is no pair left. 

For example, if the UMLDiff RenameThreshold parameter is 0.3, then all 12 pairs of 

operation-renaming candidates of the matched HTMLStatement class have sufficiently high 

similarity metric to be qualified for further examination. The pair [eachRentalString023. 

printEachRental()27] ranks highest and is selected as a pair of renamed elements; then all 

other pairs that contain either eachRentalString023 or printEachRental()27 are removed from 

the list. UMLDiff then selects the pair with the highest similarity-metric value in the 

current list until the pair list is empty. 
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3.3.4.3 Moved elements7 

Finally, UMLDiff proceeds to examine those model elements that have not yet been 

identified as matches or renamings and to consider whether they may have been moved 

from one part of the system to another. It first starts at the top-level subsystem of Vbefore 

and traverses all the not-yet-mapped model elements along the containment hierarchy of 

the model, moving from one logical level to the next when there are no more unprocessed 

elements of the current logical level. Thus, UMLDiff first identifies all the potential 

subsystem moves, and then progresses down to package moves, class and interface 

moves, and finally attribute and operation moves. 

When it encounters a not-yet-mapped model element ebefore, UMLDiff collects all the 

not-yet-mapped same-type and same-name (same-identifier for operation) model 

elements in Vafter and forms a set of move candidate pairs, if such elements exist. It then 

computes the overall similarity metrics for all these candidate pairs, selects the pair with 

the highest similarity metric (above the MoveThreshold), and adds it to the mapped 

element set as a pair of moved model elements. Adding a pair of moved elements to the 

mapped element set triggers UMLDiff to recursively recognize their matched and 

renamed descendants. This process continues until all the not-yet-mapped model 

elements of the current logical level have been processed; then UMLDiff proceeds to 

identify the potential moves at one logical level below. 

Note that for operations, UMLDiff uses their identifiers instead of their full signatures 

to collect move candidates, which enables the identification of changes involving 

operation moves with simultaneous parameter-list modifications. Furthermore, the set of 

not-yet-mapped elements may change as the process goes on, because the descendants of 

the newly identified moved elements might be identified as matches and renamings when 

the pairs of moved elements are added to the mapped element set, as discussed for the 

moved PlainStatement class below. Finally, the identified moved elements are only 

removed from Vbefore and Vafter after the whole move recognition step is complete. After 

all the not-yet-mapped elements in Vbefore have been processed, UMLDiff starts at the top-

7 UMLDiff does not consider moves of constructors (i.e., model elements of UML type 

Operation«create»), since it makes no sense to do so. 
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level subsystem of Vaf,er and performs the same tasks as above. This step, together with 

not-immediately-remove-moved-elements-from-element-sets, enables UMLDiff to 

identify many-to-one and one-to-many mapping between moved elements. 

Table 3-8. The initial not-yet-mapped model elements 

after the match/renaming reorganization steps 

Version27: Top-level subsystem 
Element 
Version27 

default 

Customer 

PlainStmt 

HTMLStmt 

Children 
Subsystem 
Package 
DataType 
Package 
Class 
Interface 
Class 
Interface 
Operation 
Operation,, 
Attribute 
Class 
Interface 
Operation 

Operation. 
Attribute 
Class 
Interface 
Operation 
Operationc 

Attribute 

null 
null 
null 
null 
null 
null 
PlainStatement 
null 
null 
null 
null 
null 
null 

headerStringQ 
each...String() 
footerStringO 

valueO 
null 
null 
null 
null 
valueO 
null 
null 

Version28 : Top-level subsystem 
Element 
Version28 

default 

Customer 

PlainStmt 

HTMLStmt 

Statement 

Children 
Subsystem 
Package 
DataType 
Package 
Class 
Interface 
Class 
Interface 
Operation 
Operation,; 
Attribute 
Class 
Interface 
Operation 

Operation,; 
Attribute 
Class 
Interface 
Operation 
Operation,; 
Attribute 
Class 
Interface 
Operation 
Operation,; 
Attribute 

null 
null 
null 
null 
PlainStatement 
null 
null 
null 
null 
null 
null 
null 
null 

printHeaderQ 
printEach...Q 
printFooterQ 

null 
null 
null 
null 
null 
null 
null 
null 
null 
valueO 
null 
null 

Table 3-8 lists all the remaining not-yet-mapped model elements that are still in V27 

and V28 of our running example, after UMLDiff has completed the match and renaming 

recognition steps. Note that the three abstract operations of the Statement class are not 

listed in Table 3-8, since UMLDiff does not consider the moves of the abstract operations, 

52 



which tends to be error-prone due to the non-existence of outgoing usage dependency 

from them. The top-level subsystem, Version27, and its default27 package do not contain 

any not-yet-mapped subsystems or packages. Thus, UMLDiff proceeds to the 

class/interface logical level. When traversing the classes and interfaces, it encounters a 

not-yet-mapped class Customer. PlainStatement27 (bold font and left justified in Table 3-8 

for move candidates). UMLDiff then searches the remaining not-yet-mapped classes 

contained in V28 and retrieves all the classes with the same name. It finds the not-yet-

mapped class PlainStatement28 in the default28 package. Given the moving candidates 

[Customer.PlainStatement27, default.PlainStatement28], UMLDiff computes their similarity 

metric to be 0.6. If the MoveThreshold is lower than 0.6, the pair of 

[Customer.PlainStatement27, default.PlainStatemertas] is added to the mapped element set as a 

moved class. 

Adding the moved class [Customer.PlainStatement27, default.PlainStatement28] to the 

mapped element set triggers UMLDiff to recognize the matched and renamed descendants 

they contain. The class PlainStatement has no matched children, but it has four and three 

not-yet-mapped operations in version 27 and 28 respectively. UMLDiff collects them as 

renaming candidates and identifies three operation renamings (italic font and right 

justified in Table 3-8) that are added to the mapped element set. 

After processing the class PlainStatement, there aren't any not-yet-mapped classes or 

interfaces and UMLDiffproceeds to the attribute/operation level. It encounters the not-

yet-mapped operation HTMLStatement.value()27 and retrieves from Version28 the not-yet-

mapped operation Statement.value()28. UMLDiff computes the overall similarity of the 

candidate move pair [HTMLStatement.value()27, Statement.value028] to be 0.71. The 

[HTMLStatement.value()27,Statement.value028] pair is added to the mapped element set as a 

moved operation, assuming that the MoveThreshold is lower than 0.71. After that, 

UMLDiff encounters the not-yet-mapped operation PlainStatement.value()27. Similarly to 

HTMLStatement.value()27, the pair [PlainStatement.value()27, Statement.value02s] is also 

identified as an operation move. Note that the operations headerStringO, footerStringO, and 

eachRentalStringO of PlainStatement are not encountered as not-yet-mapped elements: they 

are identified as operation renamings when the move of PlainStatement class is recognized, 

which results in them being removed from the initial remaining not-yet-mapped model 
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element sets. After processing all the not-yet-mapped elements in V27, UMLDiff starts 

over at the top-level subsystem of V28, which contributes no more moves in this running 

example. 

When examining attribute/operation move candidates, if their declaring classes 

(interfaces) are related through inheritance, containment, or usage relations, their non-

adjusted structure similarities (see Section 3.3.3.3) are used in the computation of their 

overall similarity. Otherwise, UMLDiff computes the overall similarity metric of their 

declaring classes (parent-similarity) and calculates the product (amount-potential-moves) 

of the numbers of the not-yet-mapped, same-type, same-name model elements as the two 

compared elements in the two compared versions. In this case, the structure similarity of 

the two compared attributes/operations is adjusted as ENstructure-similarity*parent-

similarity/amount-potential-moves. Intuitively, if the source and target classes of the 

moved attribute/operation have no special relation, UMLDiff takes into account the 

contexts from and to which the attributes/operations move: they must be similar enough 

in order for the moves of attributes/operations to make sense. Furthermore, the more the 

potential moves of the same kind are, the less likely it is that any of them will be 

recognized as a valid move. 

Take the [HTMLStatement.value()27, Statement.value()28] as an example: since Statement is 

the superclass of HTMLStatement, the original structure similarity 1.83 is used to compute 

the overall similarity metric, which is 0.71. Let us assume that there is no special relation 

between HTMLStatement and Statement. The overall similarity metric (parent-similarity) of 

[HTMLStatement27, Statement2s] is 0.7 and there are two potential moves of the valueO 

operation. Thus, the structure similarity of [HTMLStatement.valueO, Statement.valueO] that 

is used to compute the overall similarity metric becomes 1.83*0.7/2=1.3, which brings 

the overall similarity metric down to 0.58. 

This technique is designed to improve the precision of attribute/operation moves. For 

example, in an interactive system, many classes implement the Action Listener interface and 

its actionPerformedO operation; in general, these implementations handle different user 

actions and are used in different contexts. However, when some actionPerformedO method 

disappears (usually because its class is removed or has stopped implementing the 

Action Listener interface) and new ones appear between two compared versions of a model, 
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they tend to be reported as pairs of moves, which usually does not make sense. The 

UMLDiff algorithm integrates the above technique to filter out such moves. 

3.3.4.4 Propagating knowledge of identified renamings and moves along usage 

dependency 

UMLDiff computes the structure similarity of two compared model elements in terms of 

the intersection of their two related-element sets. It is sensitive to the order that a set of 

renamed and/or moved model elements are examined, which may result in some 

renamings and moves being missed during a particular round of renaming/move 

identification. On the other hand, the more renamings and moves UMLDiff recovers, the 

larger the current "landmarks" set (i.e., the mapped element set) becomes, and the more 

likely it becomes that UMLDiff'may recover further related renamings and moves. 

Let us look at versions 27 and 28 of our running example. The operations 

Customer.getTotalCharge()27 and Customer.getTotalFrequentRenterPoints()27 and their caller 

operation HTMLStatement.footerString027 and PlainStatement.footerString027 are renamed to 

Customer.getAIICharge()28, Customer.getAIIFrequentRenterPoints()28, 

HTMLStatement.printFooter()28 and PlainStatement.printFooter()28 respectively. 

First, the renaming candidate pair [PlainStatement.footerString027, 

PlainStatement.printFooter()28] is examined after the PlainStatement class has been 

recognized as moved. Furthermore, the renaming candidates [Customer.getTotalCharge()27, 

Customer.getAIICharge()28] may be compared before [HTMLStatement.footerString027, 

HTMLStatement.printFooter()28]; even if the order is reverse, the renaming of 

[HTMLStatement.footerString027, HTMLStatement.printFooter()28] may not be recovered if the 

RenameThreshold is greater than 0.5 (see below). Therefore, at the time of determining 

the mapping between [Customer.getTotalCharge()27, Customer.getAIICharge()28], their 

incoming usage relations may be substantially different to UMLDiff and their incoming 

usage similarity may be 0. However, the operations [getTotalCharge()27, getAIICharge028] 

declare the same parameters and they use the same sets of other model elements; their 

parameter-list similarity and outgoing usage similarity are 1, which brings their overall 

similarity to 0.714, which is sufficiently high. Thus, even without the knowledge of the 

renaming [HTMLStatement.footerString027, HTMLStatement.printFooter()28] and 
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[PlainStatement.footerString()27, PlainStatement.printFooter028], getTotalCharge()27 and 

getAIICharge028 may still be recovered as a renamed pair, at a fairly high 

RenameThreshold. The case of the renaming candidates [getTotalFrequentRenterPoints027, 

getAIIFrequentRenterPoints()28] is similar. 

On the other hand, the outgoing usage similarity of [HTMLStatement.footerString()27, 

HTMLStatement.printFooter()28] is 0.33, when the renaming pairs [getTotalCharge()27, 

getAIICharge()28] and [getTotalFrequentRenterPoints()27, getAIIFrequentRenterPoints028] have 

not yet been recovered, but it increases to 1 if these pairs have already been established as 

renamings before UMLDiff considers the renaming candidate pair 

[HTMLStatement.footerString027, HTMLStatement.printFooter028]. The corresponding overall 

similarity metric of the pair [HTMLStatement.footerString027, HTMLStatement.printFooter()28] 

increases from 0.5 to 0.7, which may push the pair above the RenameThreshold. 

It is computationally expensive to keep track of all related not-yet-mapped model 

elements. Furthermore, as shown in the example, it is not necessary to update the 

similarity metric of two not-yet-mapped model elements as each of its related renamings 

and/or moves is recovered. For example, we only need to re-compute the similarity 

metric of the renaming candidate pair [HTMLStatement.footerString027, 

HTMLStatement.printFooter()28] once after both the renamings of [getTotalCharge()27, 

getAIICharge()28] and [getTotalFrequentRenterPoints()27, getAIIFrequentRenterPoints028] are 

identified. Therefore, at the end of each round of renaming and move identification, 

UMLDiff collects the pairs of not-yet-mapped renaming and move candidates that are 

related, through usage dependencies, to the newly identified renamed and moved model 

elements in the last round and updates their similarity metrics to see if they may be 

qualified this time. 

UMLDiff'may be configured to perform up to MaxRenameRound and MaxMoveRound 

of renaming and move recognition or to continue until there is no more affected potential 

renaming and move candidates that are related to the new instances of renamings and 

moves identified in the last round. Allowing multiple rounds of renaming and move 

identification relieves the impact of the order of the model elements being processed by 

UMLDiff on its final mapping results. 
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3.3.4.5 Propagating identified operation renamings along inheritance hierarchy 

When the move of PlainStatement class is identified, UMLDiff attempts to recover its 

operation renamings (see Section 3.3.4.3). When the pair [PlainStatement.footerString027, 

PlainStatement.printFooter028] is examined, the related operation renamings 

[getTotalCharge()27, getAIIChargeOzs] and [getTotalFrequentRenterPoints()27, 

getAIIFrequentRenterPoints028] have already been identified. However, the overall 

similarity of the pair [PlainStatement.footerString027, PlainStatement.printFooter()28] is 0.475, 

still not sufficiently high, in comparison with the similarity (0.7) of the operation pair 

[HTMLStatement.footerString027, HTMLStatement.printFooter()28], since we intentionally 

introduced more changes to the PlainStatement.printFooter()28 (see Section 3.3.1). It is 

therefore possible that the renaming of [PlainStatement.footerString027, 

PlainStatement.printFooter()28] is not recognized when the renaming of 

[HTMLStatement.footerString027, HTMLStatement.printFooter()28] is, if, for example, the 

RenameThreshold is 0.5. 

However, UMLDiff knows that both HTMLStatement and PlainStatement extend the 

Statement class and their corresponding footerStringO and printFooterO operations 

implement the abstract Statement.footerStringO and Statement.printFooterO operations in the 

two compared versions. Implementing (or overriding) operations must have the same 

signature (i.e., the same identifier and parameter list) as the operations they implement 

(override). Therefore, if any one of them is renamed, all the rest must be renamed as well. 

Based on this definition, UMLDiff propagates the knowledge of the identified operation 

renamings along (both up and down) their implementation (overriding) hierarchy, which 

may result in recognizing the renamings of abstract operations (which are not explicitly 

compared) and the renamings of other implementation (overriding) operations, as yet 

missed. 

For example, based on the identified renaming [HTMLStatement.footerString()27, 

HTMLStatement.printFooter()28], UMLDiff first searches up to the mapped top-most ancestor 

class or interface (Statement in this case) and collects the pair of not-yet-mapped 

operations (the abstract operations [Statement.footerString()27, Statement.printFooter()28]) that 

are implemented (or overridden) by the identified pair of renamed operations and asserts 

them as a pair of renamed operations. And then based on the recovered operation 
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renaming of the top-most ancestor class ([Statement.footerString027, 

Statement.printFooter()28]), UMLDiff searches down all the pairs of the not-yet-mapped 

operations ([PlainStatement.footerString027,PlainStatement.printFooter0z8]) that implement 

(override) them and asserts all of them as pairs of renamed operations. 

3.3.5 Mapping relations 

In Section 3.3.4, we discussed the UMLDiff'process for mapping the elements of two 

UML models corresponding to two versions of an evolving software system. This process 

produces three sets that contain (a) the model elements for which mappings have been 

identified in the two compared versions (i.e., matched, renamed, and moved), (b) the 

removed elements, and (c) the newly introduced elements respectively. UMLDiff then. 

proceeds to map the relations between the model elements, i.e., to map the edge set 

{Ebefore, Eafter) of the model graphs. This process step also produces three relation sets that 

contain (a) the matched relations between the two model elements, (b) the removed 

relations, and (b) the newly introduced relations respectively. 

The UML relations are defined by their types (see Table A-2 and Table A-3) and the 

UML model elements they relate. Given two model elements {ybefore, vafter), where 

Va/-(er=null if Vbefore is removed and Vfte/0re
=null if va^eris added, UMLDiff collects all their 

relations in the two compared models. Two same-type relations of the model elements 

Vbefore and vafter in the two compared versions are matched, if the model elements they 

relate are contained in the mapped model element set, i.e., they map to each other. After 

UMLDiff finishes comparing the relations of all the pairs of the model elements, all 

- unmatched relations that are still contained in Ebefore are assumed to have been removed 

and all unmatched relations in Eafter are assumed to have been added when system 

evolves from the "before" version and the "after". 

Note that the removed model elements contained in {Vbefore - Vafter) and the newly 

added model elements contained in {Vafter - Vbefore) have no counterpart in the compared 

models. The relations from (to) a removed model element are all removed and the 

relations from (to) an added model element are all newly added. For a pair of mapped 

elements {ybefore, vafter), they may have matched, newly added, and/or removed relations. 

A removed (added) relation between the two model elements does not indicate that any of 
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the elements it relates has been removed (added). For usage dependencies, UMLDiff also 

compares their count tag and reports the changes to the number of times they appear 

between the model elements. 

Table 3-9. Mapping relations of the renamed 

[Customer.statement()23, Customer.plainStatement()27] 

Version23 
Relation type 
owner - feature 
Usage« read» 
Incoming 
Usage«caii» 
Outgoing 
Usage«caii» 

U Sage«im tantiate» 

Usage«write» 
U Sage« s end» 
Parameter 
raisedSignal 
Reception 

Instances of relation 
Customer — statement^) 

statomontO, rental 
Vids.main(), statement() 

gtatomont(), getNameQ 

GtatomontQ, gotTotalFr...() 
statement(), getMovie() 

otatomontQ, getTitle() 
statomont(), valueOf(d) [2] 

GtatomontQ, elements() 

null 
null 
null 

statement() - return: Str 
null 
null 

Version27/Version28 
Relation type 
owner - feature 
U sage«rea(i» 
Incoming 
Usage«can» 
Outgoing 
Usage«caii» 

U Sage«in stantiate» 

Usage«wrjte» 
Usage«Send» 
Parameter 
raisedSignal 
Reception 

Instances of relation 
Customer — plainStmt() 

null 
Vids.main(), plainStmt() 

plain.Stat(), valueO 

plainStmtQ. PlainStmJ 
null 
null 

plainStmt() - return:Str 
null 
null 

Table 3-9 lists all the relations of the renamed operation [Customer.statement023, 

Customer.plainStatement027], grouped according to their types. Consider the incoming-call 

relation as an example: the statement()23 and plainStatement()27 operations are called by the 

operations Vids.main(StringO)23 and Vids.main(StringQ)27 respectively, which are matched. 

Thus, the renamed operation [Customer.statement()23, Customer.plainStatement()27] has a 

matched (regular font and right justified in Table 3-9) incoming-call relation. Similarly, 

they have a matched composition relation (both are declared in the matched class 

Customer) and a matched [BehaviorFeature - parameter] relation (both declare a return 

parameter of type String). All the removed relations are highlighted with strikethrough 

lines, while all the newly introduced relations are underlined with dash lines. The 
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renamed operation [Customer.statement()27, Customer.plainStatement028] no longer uses the 

attribute Customer._rentals (a removed Usage«read» relation), but the attributes 

Customer._rentals exist in both versions 23 and 27, i.e., they are matched. Furthermore, 

two (indicated by [2] at the end of the usage dependency) operation calls to 

String.valueOf(double) are removed (a removed outgoing Usage«caii» relation with tag 

count=2) when Customer.statement()23 evolves to Customer.plainStatement027. 

3.3.6 Recognizing behavior redistribution 

Developers, sometimes, redistribute the behavior in the system in order to reorganize the 

inheritance hierarchy, restructure the usage dependencies between objects, or refactor a 

long method. After UMLDiff finishes mapping the model elements and their relations, it 

attempts to detect the redistribution of the behavior among operations, by analyzing the 

removals and additions of Usage«read»/«write»/«caii»/«mstantiate» dependencies of the 

mapped operations and the related removed or added operations along their transitive 

usage and generalization/abstraction relations. 

Behavior redistribution is reported in terms of Extract operation and Inline operation 

changes. Note that our concepts of Extract operation and Inline operation are broader 

than the Extract Method and Inline Method introduced in Fowler's refactoring catalog 

[32], which are limited to refactoring only class internals. 

We discuss in detail how UMLDiff detects operation extraction - operation Mining is 

detected in the same manner. Given two mapped operations [oi,efore, oaf,er] with some 

removed outgoing Usage«rea<t»/«write»/«cai!»/«instantiate» relations originated from 

Obefore, t/MLDzrJ identifies the candidate targets (otarget) of the behavior redistribution, as 

all the newly added operations that have a transitive relation with oafler through the 

relations of Usage«caii» (incoming and outgoing), Generalization (overriding or 

overridden), Abstraction«reaiize>> (implemented by), or a combination of them. We 

consider a removed outgoing usage relation [obefore, ebefore] from Obefore as equal (not 

equivalent to relation match) to a newly added relation [o,argc(, eafter] from one candidate 

target operation, if they are of the same type and the elements [ebefore, eafter] have been 

mapped. If the set of the outgoing usage relations from a candidate target operation otarget 

is a subset of the removed outgoing usage relations from Obefore, or their intersection set is 
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greater than the user-specific threshold, then UMLDiff asserts that otarge,is extracted from 

Obefo re-

Table 3-10. Redistribute semantic behavior among operations 

Version23 
Relation type Instances of relation 

Customer, statement) 
Usage«read» 
Usage«cau » 

statementO, rental 

statement), gotTotalCh... () 
statement(), gotTotalFr...() 

statement(), gctMovioQ 
statementO, gotChargoO 

statement(), valueOf(d) 

statementO, elementsO 
statementO, hasMoreElemsO 
statementO, noxtElement() 

statementO, valueOf(d) 
statementO, valuoOf(int) 

Version28 
Relation type Instances of relation 

Customer.getRentalsO 
Usage«read» getRentals(), rental 

PlainStatement.printHeader() 
Usage«caii» printHeaderO, getNameO 

PlainStatement.printFooterO 
Usage«can» 

Usage«instantiate» 

printFooter(), getAHChargeO 
printFooterO, getAHFreq...O 
printFooterO, Double.toStrO 
printFooterO, Integer.toStr() 
printFooterO, Double 
printFooter, Integer 

PlainStatement.printEachRental() 
Usage«caii» printEachO, getMovieO 

printEach(), getCharge() 
printEachO, getTitleO 
printEachO, valueOf(d) 

PlainStatement.valueO 
Usage«caH» value(), elements() 

value(), hasMoreElementsO 
valueO, nextElementO 
valueO, printHeaderO 
valueO, printFooterO 
valueO, printEachRentalO 

Let us now compare the versions 23 and 28 of our running example. UMLDiff 

identifies the renamed operation [Customer.statement()23, Customer.plainStatementfj28] and 

reports the relation differences as shown in Table 3-9. Since the operation 

Customer.plainStatementO has not changed between versions 27 and 28, Table 3-9 reflects 

the relation changes between its versions 23 and 27 as well as its versions 23 and 28. 

Given the renamed operation [Customer.statement()23, Customer.plainStatement()28], 
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Customer.statement()23 is oi,efore in this example and Customer.plainStatement()28 is oafter, and 

they have some removed outgoing usage relations. UMLDiff then collects all the newly 

added operations (the candidate targets) that have transitive usage and/or 

generalization/abstraction relations with Customer.plainStatement()28. The operation 

Customer.plainStatement()28 calls Statement.value()28, which calls Customer.getRentals()28 and 

the three abstract operations Statement.printHeader028/printFooter028/printEachRental()28, 

which are implemented by PlainStatement.printHeader028/printFooter028/printEachRental0z8 

respectively. Furthermore, Statement.value()28 are implemented by PlainStatement.value()28. 

All these operations are newly introduced in version 28. Thus, the candidate targets of the 

behavior redistribution include Customer.getRentals()28 and 

PlainStatement.printHeader028/printFooter028/printEachRental028/value028. Note that UMLDiff 

ignores the abstract operations, since they have no outgoing usage. 

Table 3-10 lists the removed outgoing usages of the operation Customer.statement()23 

and the candidate target operations and their newly added outgoing usages, when the 

model evolves from version 23 to 28. The outgoing usage relations of the target 

operations Customer.getRentals()28 and PlainStatement.printHeader028/printEachRental()28 are 

the subset of the removed outgoing usage relations of the Customer.statement()23. UMLDiff 

asserts that these three target operations have been extracted from the 

Customer.statement()23. On the other hand, the intersection of the new outgoing usages of 

the target operations PlainStatement.value()28/printFooter()28 and the removed outgoing 

usages of the Customer.statement()23 is not empty. Depending on the user-specific 

threshold, the target operations PlainStatement.value028/printFooter028 may or may not be 

asserted as being extracted from the Customer.statement()23. Clearly, as the system evolved 

from version 23 to 28, the behavior of the operation Customer.statement()23 has been 

redistributed and encapsulated in a separate strategy object in version 28, which is 

defined by the abstract class Statement and its two implementation classes PlainStatement 

and HTMLStatement. 

3.3.7 Comparing attributes of mapped model elements 

Finally, UMLDiff compares the inherent attributes and the tagged values of the mapped 

UML model elements. For the visibility attribute, UMLDiff reports the changes as either 
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of the following: (a) up: the access modifier has become less restrictive in the "after" 

version; (b) down: the access modifier has become more restrictive in the "after" version; 

and (c) match: visibility has not changed. The access modifiers can be private, package, 

protected, or public, in decreasingly restrictive order. For all other attributes and tagged 

values, UMLDiff simply reports whether they are of the same value or not. For example, 

UMLDiff reports that the visibility of the two renamed operations [getTotalCharge()27, 

getAIICharge()28] and [getTotalFrequentRenterPoints()27, getAIIFrequentRenterPoints()28] has 

been changed up from package to public. Furthermore, the deprecation status of the 

matched operation [Customer.plainStatement027, Customer.plainStatement()28] has been 

changed from false to true. 

3.4 Evaluation 

In this section, we used JFreeChart [126] as the subject system of an extensive case study 

that we conducted to evaluate the run-time performance and the effectiveness of UMLDiff 

algorithm. JFreeChart is a class library of a realistic size that has been under active 

development for a long time and has suffered a substantial amount of design changes. At 

the same time, it is of a manageable size, possible to inspect "manually" to establish the 

ground truth for the algorithm's results. Table C-l report the numbers of model element 

and relation facts extracted by JDEvAn's fact extractor during the system lifecycle. Table 

C-2 reports the summary of most interesting design changes (including the changes 

correctly identified by UMLDiff and the missed ones manually added through the 

inspecting session of UMLDiff results with the JDEvAn tool) in the evolution of 

JFreeChart system, which serves as the ground truth, i.e., Mactuai, for evaluating the 

effectiveness of UMLDiff algorithm and the impacts of various factors that can affect the 

UMLDiff quality. 

3.4.1 UMLDifTeffectiveness 

First, let us report on the effectiveness of UMLDiff in identifying renamed, moved and 

otherwise changed mode elements on the basis of their lexical-similarity and structure-

similarity to other entities that have been identified to be the "same" across the two 

compared system versions. In principle, the precision and recall metrics are used to 
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evaluate the quality of such tasks. In the UMLDiff context, given the total number of 

design changes that have occurred between two versions (Mactuai) and the number of 

changes reported by UMLDiff (Mreported), precision is the percentage of the correctly 

reported changes (Mactuai n Mreported)/Mreported and recall is the percentage of changes 

reported (Mactuai n Mreported)/Mac,uai.. 

Precision is easier to evaluate than recall. Once all pairs of successive versions are 

UMLDiffed, we manually inspected, with the support of JDEvAn tool [125], the 

correctness of each instance of changes reported by UMLDiff against the JFreeChart 

source code, the accompanying Javadocs and source-code comments, and a textual 

change log shipped with each major release version. Table 3-11 and Table 3-12 

summarize the changes reported by UMLDiff'when the renaming and move threshold is 

set to 0.3 and 0.35 respectively. The second column of these two tables reports the 

numbers of changes of each type reported by UMLDiff'for JFreeChart. The number of 

correctly identified changes is reported in the third column and the precision percentage 

is reported in the fourth column. 

Recall is harder to assess since it requires knowledge about the total number of 

changes of each type that have actually occurred. To develop an intuition about how 

good the UMLDiff recall is, we first run UMLDiff with a very low threshold for 

renamings, i.e., 0.01. With such a low threshold, UMLDiff is very eager to recognize 

mode elements as renamed and thus we expected to collect all instances of renamings to 

use as the "set of actually renamed elements" to assess renaming recalls in other 

configurations. With the renaming threshold set at 0.01, UMLDiff reports 2945 instances 

of renamed elements; after inspecting each one of them, we established that 2154 are 

correctly identified. In addition, some missed instances of renamings have been manually 

added through the inspecting session of UMLDiff results with JDEvAn tool. Finally, we 

obtained 2180 instances of renamed mode elements. At renaming threshold 0.3, UMLDiff 

reports 2077 correct renaming instances, i.e. adding up the number of correct instances of 

renaming package, renaming class and interface, and renaming field and method. This 

implies that at renaming threshold 0.3, the renaming recall is 2077/2180 (95.3%). What is 

also interesting to note, is that, even at the extremely low renaming threshold 0.01, the 
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UMLDiff renaming precision is 2154/2945 (73.1%) is not too low. This robustness is due 

to UMLDiff's similarity-ranking mechanism. 

Next, we set the renaming threshold at 1 and the move threshold at 0.01. Given this 

very strict criterion for recognizing renamings, only mode elements in the same parent 

context that have the exact same relationships with other known-to-be-same elements are 

identified as renamed. All other not-yet-mapped model elements are examined against 

other not-yet-mapped elements in different parent context: given the very low move 

threshold, UMLDiff is eager to recognize moved elements, based on even the most 

tenuous similarity results. Together with manually-added missed instances of moves, we 

finally obtained 957 instances of moved model elements. At move threshold 0.3, 

UMLDiff reports 936 correct move instances, i.e. adding up the number of correct 

instances of moving class and interface, and moving field and method. Therefore the 

moves recall at the move threshold 0.3 is 936/957 (97.8%). 

Furthermore, we also evaluated qualitatively the UMLDiff results against the release 

notes shipped with each major release of JFreeChart. Most of the changes recorded in 

release change logs can be recovered but with much more detail by UMLDiff. In this 

sense, the design changes reported by UMLDiff can be used to re-document the system 

evolution, which could be very useful to help the developers to capture the API and 

design changes. 

3.4.1.1 When UMLDiffgets confused? 

Table 3-11. UMLDiff 'results at renaming/move threshold 0.3 

Type of changes 
Renamed package 
Renamed class and interface 
Moved class and interface 
Renamed field and method 
Moved field and method 
Data type and return type 
Visibility change 
No-access modifier change 
Generalization change 
Implementation change 
Total 

# reported instances 
29 

128 
306 

2024 
721 
710 
855 
303 
185 

1025 
6286 

# correct instances 
29 

121 
306 

1927 
630 
677 
845 
299 
180 
970 

5984 

Precision 
100% 

94.5% 
100% 

95.2% 
87.3% 
95.4% 
98.8% 
98.7% 
97.3% 
94.6% 
95.2% 
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Even though the precision and recall rates are quite good, it is interesting to understand 

when UMLDiff gets confused. Let us, therefore, review the cases of erroneously reported 

changes. Table 3-11 shows the UMLDiff results with the renaming and move thresholds 

set to 0.3. 

Renamed class and interface: 7 out of 128 class/interface renamings were incorrect. 

2 involved pairs of JUnit test classes and 5 involved demo classes. All mistakenly 

recognized pairs of classes were very similar. The JUnit classes shared methods such as 

suiteO, testEqualO, testCloningO and testSerializationO and the demo classes had methods like 

mainO, createChartO, and createDatasetO. Moreover, the efferent relations of these class 

pairs are also similar. For example, the suiteO methods of the JUnit test classes created an 

instance of TestSuite with parameter TestClass.class and their testSerializationO methods use 

the ByteArrayOutputStream, ObjectOutputSteam, ObjectOutput classes. Finally, none of these 

classes had any afferent relations: the JUnit classes are launched by the JUnit framework, 

and the demo classes are stand-alone Java applications. 

Move class and interface: All reported instances are correct, a few instances are 

missed though. For example, in version 0.9.5, the interface CategoryltemRenderer was 

moved from package com.jrefinery.chart to com.jrefinery.chart.renderer. At the same time, 11 

new methods were added to its original 10 methods, which also changed signatures. 

Furthermore, out of 9 classes that use this interface in both versions, only 3 pairs of them 

were matched. This dramatic change make the moving of interface CategoryltemRenderer 

not recognized by UMLDiff at threshold 0.3. 

Rename field and method/constructor: 97 out of 2024 field and method renamings 

were not correctly identified. Most of them involved get and set methods and the fields 

they access. These methods are simple and short, with few relationships to other entities 

and present a challenge to UMLDiff s structure-similarity heuristic. 

It is important to note here that among the 1927 correctly identified field and method 

renamings, there exist renamings that had no identifier similarity at all, and therefore 

would not have been intuitively recognized by a developer, such as for example, the 

CategoryPlotgetDataAreaO is correctly identified as renamed to calculateAxisSpaceO in 

version 0.9.10. 
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Move field and method: The precision of recognizing moving fields and methods is 

the lowest among all the different types of design changes reported by UMLDijf. 

However, its recall is very good. For example, in version 1.0.0, a superclass 

AbstractPieltemLabelGenerator was extracted from class StandardPieltemLabelGenerator, and 

6 (all possible moves) fields and methods were reported as having moved from the 

subclass to the new superclass. In addition, createltemArrayO is also identified as moving 

to StandardXYSeriesLabelGenerator, which, at closer inspection, is an incorrect one. 

Other errors: The accuracy of the reported changes to data types and return types, no-

access modifiers, visibility, and generalization and abstraction relations is relatively 

higher than that of renamings and moves. The occasional errors are due to: (a) 

erroneously identified renamed and/or moved model elements; (b) missed renamings 

and/or moves; or (c) combined moves and identifier-renamings. If two model elements 

are mistakenly identified as renamed or moved, their different data (return) types, 

modifiers, visibility, and generalization/abstraction relations will also be reported as 

changes. On the other hand, if a renaming and/or move is missed, the model elements 

referring to the renamed/moved element will mistakenly be reported as changed. For 

example, the interface CategoryltemRenderer was not identified as moving to the new 

package com.jrefinery.chart.renderer in version 0.9.5, and, consequently, the type of field 

Tenderer and method getRendererO of class CategoryPlot were identified as changed. In 

addition, the interface implementation of 15 Tenderer classes that implemented the 

CategoryltemRenderer interface were also identified as changed. Finally, since UMLDiff 

does not attempt to identify cases of combined identifier-renamings and moves, if a class 

was renamed and then moved, such as for example, Crosshairlnfo in package 

com.jrefinery.chart in version 0.9.16 and CrosshairState in com.jrefinery.chart.plot in version 

0.9.17, they will be treated as removed and newly added entities which might also result 

in the wrong data (return) type, and inheritance and implementation changes being 

identified. 

Summary: As discussed above, there are three typical situations in which UMLDiff 

may get confused: 
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• UMLDiff is based on lexical-similarity and structure-similarity heuristics. If two 

"irrelevant" model elements have very similar names and relations to other 

elements, they may be erroneously identified as renamings or moves. 

• UMLDiff assumes that enough entities remain the "same" between two compared 

versions. If all or most of the model elements related to two renamed or moved 

elements were also renamed and/or moved, the structure-similarity heuristic may 

fail and thus UMLDiffmay miss the renamings or moves. 

• When two renamed or moved model elements have very few relations with other 

elements, it is difficult for UMLDiff to determine whether or not they represent a 

single conceptual element in the two compared system versions. 

3.4.2 UMLDiffrobusiness 

Next, let us review several factors that can impact the quality (in terms of precision and 

recall) of the renamings and moves reported by UMLDiff. To discuss the impact of each 

particular factor, we fix the others at the values that enable the identification of most 

renaming or move instances. Furthermore, we focus on the renamings and moves of 

classes/interfaces, attributes, and operations, since in our experience with several case 

studies, no subsystem/package renamings and moves were ever erroneously reported or 

missed by UMLDiff. 

3.4.2.1 Renaming and move threshold 

To understand how sensitive UMLDiff is to the choice of the "right" renaming and move 

threshold, we experimented with a few different thresholds. Table 3-12 presents the 

UMLDiff results at renaming and move threshold 0.35. Compared with the results at 

threshold 0.3, six less instances of renamed classes and interfaces are reported: four of 

them are actual class renamings that are not recognized at threshold 0.35, while the other 

two are incorrect instances reported at 0.3 but correctly ignored at threshold 0.35. 

UMLDiff misses the moves of three classes at 0.35 CategoryAxis, CategoryPlotConstants, 

and AbstractRenderer into the corresponding new package in version 0.9.5. For renamed 

field and method, 79 less instances were reported. 29 of them are incorrect instances 

being filtered out at threshold 0.35, while 40 are actual renamings missed at 35%. The 
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other 10 instances are the results of four missed class renamings, also incorrectly ignored 

at this threshold. 

Table 3-12. UMLDiff results at renaming/move threshold 0.35 

Type of changes 
Renamed package 
Renamed class and interface 
Moved class and interface 
Renamed field and method 
Moved field and method 
Data type and return type 
Visibility change 
No-access modifier change 
Generalization change 
Implementation change 
Total 

# reported instances 
29 

122 
303 

1945 
686+14 

682 
841 
296 
186 

1025 
6129 

# correct instances 
29 

117 
303 

1888 
608+14 

662 
836 
295 
178 
962 

5877 

Precision 
100% 

95.1% 
100% 

97.9% 
88.6% 
97.1% 
99.4% 
99.7% 
95.7% 
93.7% 
95.8% 

22 correct instances of moved fields and methods are missed at threshold 0.35, while 

14 fields and methods of missed pairs of renamed and moved classes are identified as 

move. The precision of renamings and moves at threshold 0.35 are slightly better than 

that of threshold 0.3, but as expected, the recalls are slightly lower, 94.5% for renamings 

and 94.6% for moves. Most of disappeared instances for visibility and modifier changes 

are incorrect instances, and thus they get relative bigger increases in precision. Because 

there are seven actual class and interface renamings and moves are not recognized by 

UMLDiff'at 0.35, model elements that refer to these classes and interfaces are considered 

to be changed. This directly results in the slight decrease of precision of changes to 

generalization and abstraction relations. 
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Figure 3-2. The impact of the user-specific renaming and move thresholds 

Figure 3-2 summarizes the overall impact of the user-specific renaming and move 

threshold on the quality of UMLDiff results. We run UMLDiff on JFreeChart with the 

renaming and move thresholds set to 0.1 through 0.9, with 0.1 increment (using the Char-

LCS lexical-similarity metric, with comment-similarity, and transitive-usage-similarity) 

and computed the precision and recall of renamings and moves at each threshold. We 

found that a renaming threshold slightly higher than the move threshold, with both being 

within the 0.3 to 0.5 range, is an effective setting for accurately recognizing both 

renamings and moves. A threshold higher than 0.5 produces results with tenuous 

precision improvement but at a significant cost of recall, while a threshold below 0.3 

produces results with slightly better recall but much worse precision. 

3.4.2.2 Regularity of CVS usage 

We also examined the changes that UMLDiff reported when comparing major releases 

and the changes it reported when comparing intermediate versions in order to assess the 

impact of not having regular and frequent versioning-system updates. To that end, we 
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examined the release versions documented with the major API changes, such as version 

0.8.0 and 0.9.0, or those of lower precision, such as 0.9.16 and 0.9.17. 

For example, the class CombinedXYPIot in version 0.9.0 was identified by UMLDiff &s a 

renaming of class CombinedPlot in version 0.8.0. In fact, the CombinedPlot was renamed 

MultiXYPIot on April 23, 2002 and subsequently it was renamed again CombinedXYPIot on 

May 23, 2002 just before release 0.9.0. Clearly, when UMLDiff only compares the two 

major releases - 0.8.0 on March 22, 2002 and 0.9.0 on June 7, 2002 - the intermediate 

renaming is missed. In general, the smaller the distance between two compared versions, 

the higher the detail of the report is likely to be. 

As another example, the precision of reported renamings between version 0.9.16 and 

0.9.17 is about 90.6%, which is worse than the overall precision 95.2% at renaming 

threshold 0.3. 15 of 159 reported renamings are incorrect, among which 6 are related to 

renaming fields and methods ?ltemLabelGenerator of class AbstractCategory Item Render and 

interface Category Item Renderer to ?ToolTipGenerator, which did not reflect what changes 

were really made, since by checking the source code we know that they were actually 

renamed to ?LabelGenerator. This low precision guides us to further investigate the 

intermediate changes by taking the weekly snapshots between two major releases 0.9.16 

and 0.9.17, which resulted in 12 snapshots from January 9, 2004 to March 26, 2004. 

UMLDiff was applied to these 12 weekly snapshots, which produced more accurate 

results. 5 of 6 wrong instances were corrected, except for baseltemLabelGenerator of 

AbstractCategoryltemRenderer being still identified as renamed to baseToolTipGenerator. 

Clearly, the quality of t/MLD^fresults is affected by the frequency of saving changes 

back to versioning system and the time duration between two compared versions. In 

general, UMLDiff will produce better and more accurate results if the changes are 

properly saved in time and the short time period is used between two compared system 

versions. 

3.4.2.3 £/MLZtfffparameters 

We comparatively evaluated the appropriateness of different lexical-similarity metrics for 

assessing the name similarity of two compared model elements. Table 3-13 summarizes 

the number of identified renaming instances, with different name-similarity metrics and 
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the renaming threshold 0.3. The impact of choosing a particular name-similarity metric 

was most pronounced when recognizing attribute renamings (precision ranging from 

87.5% to 90.1% and recall ranging from 94.6% to 99.7%), in contrast to recognizing 

class/interface renamings and operation renamings with identifier changes, where the 

choices of different name-similarity metrics were almost indistinguishable. Overall, none 

of the three used metrics, Char-LCS, Word-LCS and Char-Pair, is significantly better, 

although the Char-Pair metric seems to produce results with a better balance of precision 

and recall. 

Table 3-13. Recognizing renamings with different name-similarity metrics 

Class and Interface 

Attribute 

Operation 

Overall 

Char-LCS 
Char-Pair 
Word-LCS 
Char-LCS 
Char-Pair 
Word-LCS 
Char-LCS 
Char-Pair 
Word-LCS 
Char-LCS 
Char-Pair 
Word-LCS 

Correct 
123 
123 
123 
295 
290 
280 
794 
792 
793 

1212 
1205 
1196 

Wrong 
48 
47 
47 
42 
33 
31 

126 
116 
118 
216 
196 
196 

Precision 
71.9%s 

72.4% 
72.4% 
87.5% 
89.7% 
90.1% 
86.3% 
87.2% 
87.0% 
84.9% 
86.0% 
85.9% 

Recall 
98.4% 
98.4% 
98.4% 
99.7% 
97.9% 
94.6% 
97.2% 
97.0% 
97.1% 
97.9% 
97.3% 
96.6% 

We examined the effectiveness of the two techniques for propagating the knowledge 

about the identified renamings and moves through usage and inheritance relations. They 

are both useful in increasing the recall of renamings and moves; the corresponding slight 

decrease in precision should not be a major concern, since the users should be able to 

easily recognize and filter out the false positive instances reported. For example, with the 

renaming and move thresholds set to 0.3, about 1.2% of all the operation renamings and 

moves were recovered through second and third rounds of renaming and move 

The low precision of class renaming is due to the large amount (31 out of 48) of 

demo and junit test classes being identified as renamed. Most of them can be prevented 

with higher renaming threshold. 
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recognition; about 7.6% of all the operation renamings were recovered through 

propagating the operation renamings depending on the generalization/abstraction 

relations. Less than 10 instances were erroneously reported due to the application of these 

two techniques. Thus, we believe these two techniques are very effective at recovering 

renamings and moves that would otherwise be missed. 

Table 3-14. Recognizing renamings and moves with and without comment-similarity 

Renamings 

Moves 

Class and Interface 

Attribute 

Operation 

Class and Interface 

Attribute 

Operation 

Without 
With 
Without 
With 
Without 
With 
Without 
With 
Without 
With 
Without 
With 

Correct 
121 
123 
278 
295 

1590 
1696 
296 
299 
186 
200 
343 
375 

Wrong 
36 
48 
26 
42 
62 

129 
0 
0 
5 
9 

25 
58 

Precision 
77.0% 
71.9% 
91.5% 
87.5% 
96.3% 
93.0% 
100% 
100% 

97.4% 
95.7% 
93.2% 
86.7% 

Recall 
96.8% 
98.4% 
94.0% 
99.7% 
91.9% 
98.3% 
95.8% 
96.8% 
83.4% 
89.7% 
80.7% 
88.3% 

Table 3-15. Recognizing operation renamings and moves 

with/without transitive usage similarity 

Operation renamings 

Operation moves 

Without 
with 
Without 
With 

Correct 
1672 
1696 
375 
375 

Wrong 
74 

129 
55 
58 

Precision 
95.8% 
93.0% 
87.2% 
86.7% 

recall 
96.6% 
98.3% 
88.3% 
88.3% 

We evaluated the impact of additional sources of information, i.e. comment and 

transitive usage dependency, on UMLDiJfs accuracy. Table 3-14 and Table 3-15 

summarize the impact of comment similarity and transitive usage similarity on the 

precision and recall of identified renamings and moves of classes/interfaces, attributes, 

and operations. Overall, the comments of model elements and their transitive usage 

dependencies can effectively inform the process to further increase its recall, albeit at a 

small precision cost. Based on the estimated number of changes, the time lapse between 

two compared versions and the need for the more coverage of changes or the more 
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precise results with shorter comparison time, the users may turn on or off these additional 

sources of information when comparing renaming and move candidates. 

3.4.3 UMLDiffrun-time performance 

Finally, let us examine the run-time performance of UMLDiff algorithm. The run-time 

complexity of UMLDiff is determined by the renaming and move recognition process, 

which require the pair-wise comparison of the not-yet-mapped model elements in two 

compared versions of the system model. Through the use of appropriate in-memory data 

structures and efficient database indexing, the run-time complexity of the renaming and 

move recognition process is 0(a*N*M), where N and M are the number of not-yet-

mapped model elements of the same type in two compared versions respectively. 

UMLDiff only attempts to identify the pairs of renamed model elements within the 

context of pairs of the mapped parent elements, and it only identifies the pairs of moved 

elements with same names (same identifiers for operations). In the worst-case scenario, 

when all the not-yet-mapped elements are contained in one pair of mapped parent 

elements or all the not-yet-mapped elements have the same names, the a is equal to 1; in 

the best-case scenario, when all the not-yet-mapped elements are contained in different 

parent elements or all the not-yet-mapped elements have different names, the a is equal 

to 0. In our experience with several case studies, the a is usually very small. 

Table 3-16 summarizes the run-time complexity of UMLDiff when comparing the 

subsequent releases of the JFreeChart system, with RenameThreshold=03 and 

MoveThreshold=03. The column "Versions" indicates that the information summarized 

in a particular row is collected when the system evolved from the version of one row 

above to this version. The columns "N" and "M" list the number of not-yet-mapped 

model elements in the two compared versions. The column "#Comp" lists the number of 

comparisons that UMLDiff performed for identifying the attribute/operation renamings 

and moves. The a is consequently computed as #Comp/(N*M). As shown in the Table 

3-16, the a is very small. Table 3-16 also presents the recalls of attribute/operation 

renamings and moves, which indicates that the UMLDiff is quite effective at recovering 

the reamed and moved model elements by comparing only a very small subset of not-yet-

mapped candidates. 
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Table 3-16. The run-time complexity of UMLDiff'm JFreeChart case study 

Versions 
0.6.0 
0.7.0 
0.7.1 
0.7.2 
0.7.3 
0.7.4 
0.8.0 
0.9.0 
0.9.1 
0.9.2 
0.9.3 
0.9.4 
0.9.5 
0.9.6 
0.9.7 
0.9.8 
0.9.9 
0.9.10 
0.9.11 
0.9.12 
0.9.13 
0.9.14 
0.9.15 
0.9.16 
0.9.17 
0.9.18 
0.9.19 
0.9.20 
0.9.21 
1.0.0 

Attribute/Operation Renamings 
N 

154 
6 

72 
56 
5 

32 
42 

170 
2 

99 
109 
212 
564 

10 
138 
52 

309 
233 

16 
106 
83 

168 
21 
70 

272 
59 

219 
9 

118 
129 

M 
357 
33 

169 
101 
10 
34 
69 

313 
10 
99 

207 
297 
721 
43 

242 
54 

625 
361 
73 

383 
174 
333 
43 
76 

495 
119 
385 
21 

272 
354 

#Comp 
1119 

36 
298 
130 

6 
14 
37 

1519 
2 

1168 
618 

1737 
4842 

35 
213 
24 

3475 
3044 

10 
690 
410 
821 
23 
95 

3389 
230 

3444 
5 

574 
641 

a 
0.05 
0.36 
0.06 
0.06 
0.12 
0.04 
0.04 
0.06 
0.11 
0.29 
0.06 
0.07 
0.02 
0.34 
0.01 
0.01 
0.04 
0.07 
0.02 
0.03 
0.04 
0.02 
0.04 
0.04 
0.06 
0.10 
0.08 
0.08 
0.02 
0.03 

Recall 
0.98 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

0.94 
1.0 

0.97 
0.95 

1.0 
0.97 

1.0 
1.0 
1.0 

0.99 
1.0 
1.0 
1.0 
1.0 

0.96 
1.0 
1.0 

0.94 
1.0 

0.98 
1.0 
1.0 

0.97 

Attribute/Operation moves 
N 

203 
4 

48 
51 

1 
22 
83 

216 
0 

60 
144 
121 
422 

1 
190 
31 

406 
137 

8 
124 

6 
89 
13 
85 

168 
35 

242 
4 

1043 
53 

M 
378 
188 
190 
104 

18 
57 

233 
842 

89 
105 

1003 
406 

1303 
42 

583 
96 

876 
213 
237 
550 
161 
427 
180 
202 
974 
191 
418 

64 
349 
531 

#Comp 
64 
2 

16 
7 
2 

18 
37 

244 
0 
9 

111 
74 

267 
0 

227 
85 

470 
23 
11 

345 
3 

27 
2 

67 
282 

4 
108 

1 
75 
29 

a 
0.002 
0.004 
0.003 
0.003 

0.13 
0.03 

0.004 
0.003 

0 
0.004 
0.001 
0.004 
0.001 

0 
0.004 
0.04 

0.002 
0.001 
0.01 

0.008 
0.005 
0.001 
0.001 
0.008 
0.003 
0.001 
0.002 
0.008 
0.001 
0.002 

Recall 
0.95 

1.0 
1.0 

n/a* 
1.0 
1.0 
1.0 

0.85 
n/a 
1.0 
1.0 

0.70 
1.0 
n/a 

0.92 
1.0 

0.92 
0.30 

1.0 
0.90 

1.0 
0.80 

1.0 
0.98 
0.92 

1.0 
0.92 

n/a 
0.35 

1.0 

Furthermore, the actual time cost of UMLDiffis affected by the size of the system and 

the number of its versions, i.e., the size of JDEvAn database. Table 3-17 summarizes the 

actual time cost of applying UMLDiffto pair-wisely compare subsequent system versions 

of JFreeChart on an Intel Centrino 1.6GHz machine with 768M physical memory. The 

average time required for UMLDiffing two subsequent versions of JFreeChart system is 

about 10-12 minutes. For those releases that have major changes, such as version 0.9.5, 

9 "n/a" indicates that there are no moves of model elements in the compared models. 
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0.9.9, 0.9.19, UMLDiff requires about 30-50 minutes; most of this time is used to detect 

moves and renamings. As shown in Appendix C, UMLDiff"deals with a very large 

information database. Therefore, if major changes were made between two compared 

versions, to determine potential moves and renamings, UMLDiff has to query the 

database for retrieving their corresponding relationships and previously established 

matched pairs of entities, which is a time-consuming process. 

Table 3-17. The actual time cost of UMLDiffin JFreeChart case study 

Compared subsequent versions 
0.5.6 - , 0.7.0 - 0.6.0, 0.7.2 - 0.7.1, 0.7.3 - 0.7.2, 0.7.4 - 0.7.3, 0.8.0 - 0.7.4, 
0.9.1-0.9.0,0.9.6-0.9.5 
0.6.0-0.5.6,0.7.1-0.7.0 
0.9.0 - 0.8.0, 0.9.2 - 0.9.1, 0.9.3 - 0.9.2, 0.9.8 - 0.9.7, 0.9.11 - 0.9.10 
0.9.7 - 0.9.6, 0.9.15 - 0.9.14, 0.9.16 - 0.9.15 
0.9.4 - 0.9.3, 0.9.12 - 0.9.11, 0.9.13 - 0.9.12, 0.9.18 - 0.9.17, 0.9.20 - 0.9.19 
0.9.14 - 0.9.13, 0.9.21 - 0.9.20, 1.0.0 - 0.9.21 
0.9.5-0.9.4,0.9.10-0.9.9 
0.9.9-0.9.8 
0.9.17-0.9.16 
0.9.19-0.9.18 
Total 

Time (mins) 
<1 

2 
4 - 6 
8 - 1 0 
11-14 
16-10 
2 3 - 2 5 
37 
52 
58 
-370 

3.5 Summary 

In this chapter, we described the UMLDiff algorithm for differencing object-oriented 

logical-design models. This algorithm is aware of the UML semantics and compares 

software versions at the design level, so that its results are more directly relevant to the 

evolutionary-development process than either lexical or code-metrics differencing. 

Furthermore, we believe - while recognizing that empirical evaluation is required to 

demonstrate our belief - that its results are more intuitive to developers, compared to 

other structure-differencing algorithms that rely on low-level program representations 

such as ASTs, program-dependency graphs or XML. 

Our experimentation with the algorithm demonstrated that the algorithm is quite 

accurate, when the project uses a consistent versioning scheme; it identifies about 96% of 

the renamed and moved model elements at about 94% of precision in JFreeChart case 
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study. UMLDiff is also robust to the user's choice of parameters, which configure the 

differencing process; it produces results with both good precision and recall at a wide 

range of user-specific renaming and move thresholds; its differencing process can be 

configured according to the estimated amount of design changes, the time lapse between 

two compared versions and the need for the more coverage or precise results. Finally, the 

JDEvAn implementation of the algorithm is practically efficient. 
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Chapter 4: Query-based Change Pattern Detection 

An important kind of change pattern to object-oriented software is refactoring [32,51,72]. 

The goal of refactoring is to improve the design and quality of the software system, 

without affecting its overall functionality and behavior. Recognizing its beneficial impact 

to software design, several modern IDEs [79,116,124] support refactoring, albeit usually 

for simple refactorings. 

In addition to supporting refactoring in forward engineering activities, it is also 

interesting to recognize refactorings, and more generally, structural change patterns, in 

the history of a software project. Recognizing refactorings is important for two main 

reasons. First, since different types of design changes aim to improve different aspects 

and qualities of the system design - e.g., refactorings that collapse class hierarchies 

reduce the system layers and are likely to increase the system performance, while class 

extraction has the opposite effect [49] - the history of the actual changes that a software 

system has suffered is evidence of the qualities relevant to the project that new team 

members should be aware of. Second, the recognition of refactorings to the published 

API of reusable component frameworks is an essential prerequisite for applications that 

need to migrate from earlier versions of the framework to the most recent one. 

Recent research on inferring refactorings in the software evolution history has been 

based on examining change documentation [22], or comparatively analyzing source-code 

metrics [20], or clone detection [23,36,83], or visualization [37]. However, all these 

approaches suffer from some non-trivial disadvantages. More frequently than not, there is 

no consistently maintained change documentation. Aggregate code metrics do not 

provide sufficient information to precisely pinpoint the elements involved in the 

refactoring. Clone detection is not very effective in recognizing "non-local" refactorings 

that involve several entities. Finally, visualization techniques do not scale well as the size 

of the system increases. 

In this chapter, we present our approach to recognizing refactorings. Based on the 

elementary design changes reported by UMLDiff, we have defined queries to 

automatically detect complex design-change patterns, as compositions of elementary 

changes, such as the refactorings [32] listed in Fowler's refactoring catalog. We 
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evaluated our refactoring-detection queries with a detailed case study on the design 

evolution of Eclipse [116]. The objective of this case study has been to (a) examine the 

actual refactoring practice in the context of a realistic framework with substantial 

evolution history and many client applications and (b) to come up with some 

requirements and design suggestions for tools purported to support the practice. 

4.1 Detecting refactorings with change-pattern queries 

The refactorings in Fowler's catalog [32], henceforth also referred to as "standard" 

refactorings, are well known and understood. They are also frequently used in practice. 

Refactorings can be local or global and, sometimes, they may result in many scattered 

low-level changes to the logical model of the system. Although one may still understand 

how the software system has been evolved by examining a set of small, elementary 

changes, such as those reported by UMLDiff, we believe that, by combining the relevant 

elementary changes into change patterns such as refactorings, it becomes easier to 

understand the specific intent of the design evolution and support the subsequent 

development. The instances of these refactorings are recognized from their effects on the 

logical model, in terms of queries of UMLDiff design-change facts. They are reported in 

terms of their types and participants. 

We organize these refactorings in four general categories according to their intention 

and scope, as shown in Table 4-1: those dealing with containment hierarchy, those 

dealing with inheritance hierarchy, those moving features between objects, and those 

refactoring class internals. These refactorings are further characterized as simple or 

composite, depending on the amount of the elementary change facts they involve. 

Appendix F reviews the queries for detecting these refactorings. Appendix G summarizes 

the instance of refactorings these queries reported in the evolution of HTMLUnit [123], 

JFreeChart [126] and Eclipse [116] respectively. 

More generally, our approach is not limited to only the Fowler-catalog refactorings. 

Software developers can define queries to query the design changes, reported by 

UMLDiff and subsequently produced through the discovery of instances of simple or 

composite refactorings, for design-change patterns of their interests. 
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For example, consider the Java deprecation mechanism that is used to evolve APIs by 

supporting backward compatibility and allowing the system to evolve into a better design. 

One may be interested in identifying the model elements that have just stopped being 

deprecated in a latter version, after being tagged as deprecated, since this phenomenon 

may indicate that the developers have given up on moving to a clearer API. Information 

about newly or no longer deprecated element is reported directly by UMLDiff. One may 

also be interested in identifying the classes that have been deprecated and their 

corresponding replacements. A query searching for the class being newly tagged as 

deprecated and being the source of the refactoring extract class may return the candidates 

for further inspection. 

Table 4-1. Fowler's "standard" refactorings 

Category 
Dealing with 
Containment 

Dealing with 
Generalization 

Moving features 
between objects 

Refactoring class 
Internals 

Simple refactorings 
Convert inner type to top-level*10 

Convert top-level type to inner 
Move subsystem/package/class 
Pull-up method/field* 
Push-down method/field 
Pull-up behavior 
Push-down behavior 
Pull-up constructor body 

Move method/field* 
Move behavior 

Rename subsystem/package* 
Rename class/method/field 
Add parameter* 
Remove parameter* 
Information hiding 
Generalize type* 
Downcast type 
Extract method* 
Inline method* 

Composite refactorings 
Extract subsystem/package 
Inline subsystem/package 

Extract interface* 
Extract superclass 
Extract subclass* 
Inline superclass 
Inline subclass 
Form template method 
Replace inheritance with delegation 
Replace delegation with inheritance* 
Extract class 
Inline class 
Die-hard and legacy classes 
Introduce factory method 
Introduce parameter object 
Encapsulate field* 
Preserve whole object 

10 T h e «*„ i n d i c a t e s t h a t m e state-of-the-art IDEs, such as Eclipse [116], IntelliJ IDEA 

[124], support the refactoring. 
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4.2 Refactoring practice: How it is and how it should be 

supported 

Eclipse is a large-scale industrial framework that has been under development for about 

six years. In the process, it has acquired a large user base and a multitude of applications 

have been built on it. Eclipse is built as a plugin-based framework. Its users can simply 

use it as an IDE, but they can also extend or build their own plugins from the existing 

ones. Since version 3.0, Eclipse introduced a concept of a rich client platform, which 

allows its users to build stand-alone applications from a subset of plugins. Therefore, 

studying the design evolution of Eclipse can help us understand the design requirements 

for refactoring-based development environment from the perspectives of both the 

component developers and component users. 

Eclipse consists of three subprojects and in this case study, we have focused on the 

JDT subproject, which defines about half of the classes and interfaces of the whole 

Eclipse platform. Clearly, the substantial numbers of program entities (407720), relations 

(2220707) and changes (58973) (see Table E-l,Table E-2 and Table E-3) preclude the 

existing refactoring-detection approaches from effectively discovering what refactorings 

have been made in the evolution of Eclipse. In this section, we describe a detailed case 

study on the design evolution of Eclipse with our automatic refactoring-detection queries, 

which help us gain insight into the following research questions: 

• What proportion of the design changes in the evolution of a system are the results 

of refactoring? 

• What are the typical refactorings applied in practice? 

• Which of these types are "safe" to client applications that reuse the refactored 

system? 

• What type of support should modern IDEs provide and how might this support be 

implemented? 

4.2.1 The empirical assessment of the design evolution of Eclipse 

First, we describe and assess the empirical data we collect in our study on the design 

evolution of Eclipse. We will summarize our findings in next subsection. 
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4.2.1.1 Elementary design changes 

First, let us examine seven types of elementary design changes reported by UMLDiff 

algorithm. We start our discussion with renamings and moves, which we expect to be the 

more benign changes, i.e., changes that are likely to be behavior preserving and therefore 

relatively easy to propagate their implications to the client applications of the earlier 

version. We then proceed to examine increasingly "suspect" modifications, such as 

modifier and visibility changes, data-type changes, inheritance-hierarchy changes, and 

entity additions and removals. 

4.2.1.1.1 Program-entity renamings 

There are 4891 renamings of various types of program entities, including packages, 

classes and interfaces, methods11 and fields. Note that 2 moved classes, 1 moved interface, 

42 (5+8+29) moved fields, and 264 (19+162+83) moved methods were renamed (marked 

with "#") as well as moved. Renamings of packages, classes and interfaces, and fields 

involve changes to their identifier. Method renamings may involve changes to the whole 

method signature (including identifier and/or parameter list). About 24% (984/4170) 

renamed methods had only their identifiers changed. 

Table 4-2. Rename program entities 

Rename package 
Rename class" 
Rename interface* 
Rename field" 
Rename method 
Rename constructor 
Total 

2.1-2.0 
1 

20 
2 

107 + 5 
559 + 79 

120 
833 

3.0-2.1.3 
1 

47 + 2 
i + ; 

274 + 5 
1647 +162 

315 
2455 

3.1-3.0.2 
0 

24 
0 

199 + 29 
1042 + 83 

223 
1600 

Total 
2 

91+2 
3 + 1 

580 + 42 
3248 + 264 

658 
4891 

Through inspection, we identified several plausible motivations behind renamings: 

1. Conformance to a consistent naming scheme; 

2. Reflecting the semantics of an internal implementation change to the entity; 

1' In our discussion the method changes also include similar changes to constructors, 

except for move. UMLDiff docs, not consider the move of constructor. 
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3. Concept merging or splitting; and 

4. Maintaining backward compatibility with earlier versions. 

A consistent naming scheme improves code readability and understandability, 

especially when the identifiers allude to the functions of the program entities. 29 

renamings were simply to correct spelling or wrong names resulting from code cutting 

and pasting. Some of the renamings were motivated by the adoption of a more 

meaningful name for the entity: clearly, fSelectedCU, isOnBuildPathO and 

AccessorClassCreator reveal the purposes of the program entities much more clearly than 

their precursors fCU, checkJavaElementO and AccessorClass. In other cases, the renamings 

were more "syntactic" aiming to simply conform to the adopted naming convention. For 

example, 79 fields were renamed to remove the prefix "f'; at the same time, it is 

interesting to note that 11 other fields were renamed by adding the same prefix "f'. This 

phenomenon may be because different Eclipse plugins adopt different and occasionally 

contradictory naming conventions. In another case, 12 fields were capitalized because 

they were declared "static" and/or "final", while 6 fields were converted to lowercase 

when they stopped being static final constants. 

Renamings also reflect implementation changes. For example, the data (return) type of 

723 renamed fields (methods) was also changed. In version 3.0, 7 classes 

RenameXXXRefactoring were renamed to RenameXXXProcessor, which corresponds to the 

introduction of the new concept of processor-based refactoring. In version 3.0, package 

org.eclipse.jdt.internal.ui.text.template was renamed to 

org.eclipsejdt.internal.ui.text.template.preferences since its two classes related to content-

assist features were extracted to a newly created package, named org.eclipse.jdt.inter-

nal.ui.text.template.contentassist, and it now contained only preferences-related classes. 

The member class ProjectCache was created to encapsulate two fields 

allPkgFragmentRootsCache and allPkgFragmentsCache, whose role was replaced by a field 

of type ProjectCache. Finally, as an example of backward-compatibility renaming, 

consider class ASTRewrite, which was renamed to OldASTRewrite that delegates to the new 

(with totally different implementation) ASTRewrite in a new package. 

The question then becomes: "how easy is to modify the clients of the renamed entities 

if they are carried over to the new Eclipse version?" 
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References to entities with only modified identifiers can be automatically updated with 

little cost by parsing the source code and scanning the abstract syntax tree (AST). The 

case of method signature changes (including parameter-list changes) is a bit more 

intricate. The parameter lists of about 16% (654/4170) renamed methods were changed in 

some combination of the following three types: (a) a parameter type was renamed or 

moved; (b) the parameter order was changed; (c) a parameter was removed. The 

combination of these three types of parameter list changes cannot be handled as easily as 

simple identifier changes and would require special support by the refactoring IDE and 

corresponding refactoring-migration tool. 

A small fraction (less than 2% of 4170) of renamed methods changed the parameter 

type to its supertype to make the method more general. Such changes would be 

transparent to client code at compile time. 

In about 58% of method renamings, the parameter list was extended with at least one 

additional parameter. In 33% (1352/4170) of the cases, there was only newly added 

parameter(s) without removed parameter(s) (but may have other types of parameter list 

changes listed above). Such types of changes often indicate that the method delivers some 

additional functionality by making use of the additional parameter(s). In the case of 

constructors, additional parameter(s) are frequently used to initialize corresponding 

newly added field(s). Since additional parameter(s) most commonly indicate new 

behavior, these renamings are in effect non-behavior-preserving and should not be 

considered as refactorings. 

In 25% (1110/4170) of method-renaming cases, the new parameter lists included 

newly added parameters as well as removed ones. In some cases, a parameter is replaced 

by several others. For example, the method 

javadocDuplicatedParamTag(JavadocSingleNameReference) used only a few pieces of 

information from its parameter object. It was subsequently renamed to 

javadocDuplicatedParamTag(char0,int,int) in version 3.1 to take in just-enough information as 

parameters, since it was not concerned with the whole JavadocSingleNameReference object. 

There are also cases, such as 6 methods defined in interface ISourceElementRequestor, 

where several parameters were replaced by a single parameter, which may be the result of 

the introduce parameter object refactoring [32]. 

84 



Finally, there were several types of parameter-type changes, such as replacing a 

boolean type with an int or long flags, replacing a primitive type with an object type (e.g. 

int with Integer), replacing a type with a collection of that type. In order to regard these 

changes as automated refactorings, one would need to invoke a proper wrapper, such as 

[4], for the relevant parameters and would also need to know how to access the member 

from the wrapper. However, the relevant methods and classes most likely exhibit other 

substantial changes, which cannot be expressed in terms of refactorings and would 

require that the developers of client applications manually modify their software. 

4.2.1.1.2 Program-entity moves 

There are 2315 move instances of various types of program entities. We identified several 

kinds of moves with different underlying motivations: 

... 1. Reorganizing or redistributing the information among different parts of a software 

system; 

2. Moving responsibilities to eliminate Law-of-Demeter violations; 

3. Maintaining backward compatibility with earlier versions; 

4. "Implicit" moves 

Table 4-3. Move program entities 

Move package 
Move class 
Move interface 
Move field 
Move method 
Total 

2.1-2.0 
0 

18 
1 

172 
196 
387 

3.0-2.1.3 
4 

62 
6 

318 
854 

1244 

3.1-3.0.2 
0 

31 
3 

331 
319 
684 

Total 
4 

111 
10 

808 
1369 
2315 

For example, in version 3.0, three packages were moved to the new source folder of 

jdt.launching plugin; one package org.eclipse.jdt.internal.junit.runner was moved from the 

jdt.junit plugin to the newly added plugin jdt.junit.runtime. In version 3.0, the abstract class 

SearchPattern was moved from org.eclipse.jdt.interal.core.search to org.eclipse.jdt.core.search 

to replace the role of the deprecated interface org.eclipse.jdt.core.search.ISearchPattern. In 

version 2.1.3, there were three Util classes scattered in three different packages of the 

jdt.core plugin; some of the features they provide were duplicate; in 3.0, their features 
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were moved (merged) into a single Util class. The overall intention of these moves is to 

reshape the software system so that it is easier to understand and maintain. 

The "Law of Demeter" [60] - "only talk to your friends" - is essentially an object-

oriented formulation of the general "low coupling" software-engineering principle. Often, 

moves aim at refactoring entity responsibilities so that this law is not violated. For 

example, in version 2.0, JavaBasePreferencePage used to declare a public static method 

doubleClickGoeslntoO, which was only called by 

PackageExplorerActionGroup.handleDoubleClickO; in 3.0, this method was moved to 

PackageExplorerActionGroup and it was made private and no longer declared static. Such 

moves often involve the fields and methods defined in one class but are mostly used in 

other classes, which is the exact intention of move field/method [32] as described in 

Fowler's refactoring catalog. They enhance encapsulation and reduce coupling. 

Similarly to renamings, some moves aim at maintaining backward compatibility. For 

example, when evolving to version 3.0, the class TextChange was redeveloped. In order to 

maintain the backward compatibility, two of its public methods were moved to a new 

class TextChangeCompatibility and were declared as static; they were also given one more 

parameter of the type TextChange to which they delegate their implementation. 

In some cases, moves are "implicit" (e.g., deprecation+delegation) when the "old" 

entity is replaced by the "new" entity but the "old" is not removed, instead it simply 

delegates to the "new" entity that now implements its logic. For example, in version 3.1, 

a new class BasicSearchEngine was extracted from SearchEngine, which has been tagged as 

deprecated: 13 fields and methods were moved to BasicSearchEngine; for the remaining 12 

public methods, 12 corresponding same-signature methods were declared in 

BasicSearchEngine that implement the same logic as their counterparts in SearchEngine, 

and SearchEngine simply delegates to BasicSearchEngine for its functionalities. 

Finally, in some cases, moves are the integral part of "bigger" refactorings. For 

example, 60 (about 50% of 121) class and interface moves are part of 16 "Extract 

Package" refactorings (see Section 4.2.1.2.1 for detailed discussion on this subject). 

Let us now consider again the issue of the support required to carry the clients of the 

moved entities over to the new version. 
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In principle, all types of program entities can be moved. About 76% (1759/2315) of 

entities were moved with no other changes made to them. This is not surprising since the 

general intention of moving program entities is just to redistribute features in order to 

enhance encapsulation, understandability and maintainability, instead of modifying 

entities for other purposes. These entity moves represent true behavior-preserving 

refactorings and the references to them can be automatically updated (the information 

about the context of moved entities may be needed). 

However, sometimes, moved methods also experienced changes to their parameter lists. 

They may take the "old" home class as an additional parameter, such as 

TextChangeCompatibility described above. More frequently, moved entities also undergo 

modifier and visibility changes. About 18% (416/2315) of moved entities had their 

declared modifiers and/or visibility levels changed (such as PackageExplorerActionGroup 

and TextChangeCompatibility discussed above). In 107 cases, their static and/or final status 

was toggled. In 331 cases, the visibility was modified. Many of the modifier and 

visibility changes can be easily wrapped. Finally, less than 7% of total 2315 moved 

entities came with other changes, such as data (return) type change and/or inheritance-

hierarchy change. By closer inspection, they are most likely a sequence of separate (not 

inherently related) changes applied to the same program entity, which often require that 

the developers of client applications manually update their software. 

4.2.1.1.3 Modifier changes 

There were 1076 modifier changes (including newly added and removed modifiers) made 

to 1064 program entities. About 50% of these changes should not cause compilation 

problem or could be easily wrapped. 

Java synchronization operations may incur significant performance overhead, which 

might affect the applications' performance and behavior. However, an entity newly 

declared as synchronized will not cause a compilation failure in its client application. For 

entities that changed from being synchronized to not being synchronized, an escape 

analysis [14] can be applied to determine where it is safe to replace a synchronized object 

with an unsynchronized one. In cases where synchronization cannot be safely removed, a 

synchronization wrapper (similar to the Java standard library class java.util.Collections, 
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which is an instance of the Decorator pattern [34]) can be inserted around the object, 

which delegates to the given object, but makes the forwarding method synchronized. 

An entity newly declared as final may or may not break client applications, depending 

on whether the application assigns, overrides, or extends the changed program entity. 

Entities that used to be, but are no longer, declared as final should not cause compilation 

failures to the client application. 

Fields (methods) newly declared as static may cause compiler warnings such as "The 

static entity should be accessed in a static way", but should not cause any compilation 

problems on client code. For those fields (methods) that are no longer declared as static, a 

factory method that returns an instance of the declaring class may be inserted; the 

returned instance can then be used to refer to the corresponding instance entities. 

It is interesting to note that about 34% modifier changes were made to the program 

entities contained in a very small set of entities (about 40). For example, in version 2.1, 

26 public fields of JavadocOptionsManager were no longer declared with static; in version 

3.0, 25 methods of the class DefaultBindingResolver were newly declared with 

synchronized. 

4.2.1.1.4 Visibility changes 

In our analysis, we found 1842 program entities that changed their visibility: of them, 

1091 changed to a less restrictive visibility level and 751 changed to a more restrictive 

one. 

Object-oriented languages provide explicit support for defining the scope of the 

various design elements of a system. Frequently, developers make elements "too 

accessible" in the beginning. As the picture of the scope of the valid clients of each 

element becomes clearer, the element visibility may be restricted. For example, in about 

24% (441/1842) of the visibility-change cases, an entity was made private: in about 70% 

of these cases (299/441) there was no incoming usage from outside their corresponding 

declaring classes. Most of the others gradually became used only inside their declaring 

classes and were finally made private in a subsequent release. 

For those entities whose visibility is decreased, the changes may be safe within the 

component (such as Eclipse) itself. However, the client applications that depend on those 
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entities may break as a result. In that case, a wrapper (similar to the effect of encapsulate 

field refactoring [32]) may be used to provide the access to more restrictive entities. 

About 15% (331/2315) of moved entities also changed their visibility. When entities 

are pulled up to a superclass or moved to helper or delegate classes, their visibility often 

changes to a less restrictive level in order to allow the subclasses or the original class to 

access them. When entities are pushed down to a subclass or moved closer to where they 

actually get used, their visibility often decreases since they can be accessed within the 

declaring scope of the current class. Sometimes, when converting nested types to top-

level, their visibility may increase; on the other hand, when top-level types are converted 

to nested types, their visibility often decreases. 

Similarly to modifier changes, about 30% of visibility changes to a more restrictive 

one were made to the program entities contained in a very small set of entities (about 20). 

4.2.1.1.5 Data-type changes 

We found 1524 data-type changes (including field data-type and method return-type). 7% 

of them (107/1524) were generalizations to a supertype and 6% (85/1524) were 

specializations to a subtype. 

The clients that are now forced to use a supertype may fail to compile successfully, 

depending on whether they access the members that are not visible through the 

supertype's interface. In such cases, an explicit downcast that wraps the changed field 

(method) may be necessary. 

Specializations to subtypes may be the result of the encapsulate downcast refactoring 

[32]: for example, when evolving to version 3.1 the return type of 

CompilationUnitRewrite.createChangeO was changed from TextChange to 

CompilationUnitChange (but createChangefl, returns an instance of CompilationUnitChange in 

both versions 3.0.2 and 3.1). Although using a subtype in terms of its supertype will not 

cause a compilation failure to the client code, it may behave differently. For example, the 

data type of ExceptionBreakpointFilterEditor.fFilterViewer was changed from TableViewer to 

CheckBoxTableViewer. But since it is initialized with TableViewer and CheckBoxTableViewer 

in 2.0 and 2.1 respectively, the client gets a table viewer with check boxes instead of a 

plain table viewer in 2.1. 
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Table 4-4. Data-type changes that might be wrapped 

Type of change 
String => StringBuffer, StringBuffer => String, 
char. 1 -> String 
int => long 
Type <=> Collection or array of type 
Vector => List, Hashtable => Map or HashMap, 
Enumeration => Vector, 
List => Vector, HashMap => Hashtable 
boolean => int or long flags 
Total 

instances 
138 

96 
24 
23 

21 
302 

The above table lists the data-type changes that might be wrapped; there were about 

20% (302/1524) changes of these types. A refactoring tool can swap the corresponding 

types if there is a specification, such as [4], that can be used for guiding the migration. 

Furthermore, about 9% (129/1524) of method changes involved the change of their return 

type from void to some type. The clients of these methods can simply ignore the returned 

object. Finally, the remaining 60% (901/1524) of data-type changes were too radical to 

be considered as refactorings. For example, the return type of method 

getChangedClassFilesO was changed from List to ChangedClassFilesVisitor. The field 

binaryPath of type String was renamed to binaryFolder of type IContainer. 

4.2.1.1.6 Inheritance-hierarchy changes 

The inheritance hierarchy of Eclipse is relatively stable. There were 304 instances of 

class-inheritance changes in total. 72 XXXMessages classes started extending 

org.eclipse.osgi.NLS in version 3.1, and 34 dialog classes changed their superclass to 

org.eclipse.jface.dialogs.StatusDialog since the duplicate StatusDialog scattered in several 

plugins were finally removed in version 3.1. Among the remaining 198 changes, 90 

classes changed to extend a subclass of their previous superclass (76 such subclasses are 

newly introduced classes); 32 classes changed to extend the superclass (16 are because 

the classes previously extended were removed or inlined in the new version). 

There are 466 instances of classes newly implementing an interface. In 186 of these 

cases, the interfaces in question were newly introduced. There were 389 cases where a 
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type was changed not to implement an interface any longer (in 203 among them, the 

interface in question was also removed). 

Although there are some inheritance hierarchy changes resulting from such 

refactorings as extract superclass, inline Superclass, or extract interface (see Section 

4.2.1.2.2), most of inheritance-hierarchy changes bring about behavior modifications: the 

client application may compile fine with the new version, however, it may behave 

differently. 

4.2.1.1.7 Program-entity additions and deletions 

Table E-3 summarizes the newly added and removed public or protected program entities 

between compared versions. Clearly, Eclipse grew fast in the past three years. Compared 

with the corresponding previous versions, the versions 2.1, 3.0, and 3.1 contain 7127, 

14095, and 17343 newly introduced packages, classes and interfaces, fields and 

methods/constructors, respectively. In the mean time, a certain amount of public or 

protected program entities (much less than the newly introduced entities) were removed, 

1298, 4157, and 2455 for version 2.1, 3.0, and 3.1 respectively. The removed public or 

protected program entities may cause the application to fail to compile. A small fraction 

of newly added or removed program entities are the results of various "Extract..." or 

"Inline..." refactorings, as discussed in Section 4.2.1.2. But most of these changes 

represent newly introduced API or removed obsolete API. 

4.2.1.2 "Bigger" refactorings 

In this subsection, we discuss "bigger" refactorings, which are composed of a coherent 

series of elementary changes to a set of related entities. Although, in principle, 

refactorings should be performed one step at a time, Fowler [32] and Kerievsky [51] 

demonstrate how a series of "small" refactorings can lead to the "big" changes, such as 

the introduction of design pattern. By looking at a set of changes as a coherent whole, we 

may gain a better understanding of the design evolution of a software system and the 

refactorings it has suffered, and consequently be in a better position to assess the state-of-

the-art in tool support for the practice. 

The refactoring support that Eclipse provides is representative of the state-of-the-art 

today. We reviewed the currently available refactoring tools and IDEs 

91 



(www.refactoring.com/tools.html) and Eclipse supports a superset of the refactorings 

supported by each of them. The only interesting exception is IntelliJ IDEA [124], which 

supports extract super/subclass and replace inheritance with delegation. Some other 

tools also support extract superclass. However, overall, each of these tools supports 

fewer types of refactorings than Eclipse. 

4.2.1.2.1 Containment-hierarchy refactoring 

Large software projects are often organized in terms of subsystems, packages, (nested) 

reference types; such organization makes the dependencies among the various 

components explicit and makes it easier to identify the use of a component by its implied 

container. The developers often restructure the containment hierarchy at different levels. 

Table 4-5. Containment-hierarchy refactorings in Eclipse evolution 

Type of refactoring 
Convert anonymous class to nested 
Convert nested type to top-level 
Convert top-level type to nested 
Move member class to another class 
Extract package 
Inline package 

# detected 
12 
19 
20 
29 
16 
3 

Eclipse support 
V 
V 
X 

V 
X 

X 

The Eclipse plugins work as subsystems that contribute different features to the 

platform. A new plugin may be introduced as the appropriate placeholder for features that 

were originally placed in other plugins. In version 3.0, three new plugins, jdt.junit.runtime, 

Itk.core.refactoring and Itk.ui.refactoring, were split from two existing plugins, jdtjunit and 

jdt.ui (the core.refactoring and ui.refactoring folders) respectively; several packages were 

either moved or extracted into the new plugins. 

Package is one way of grouping together related classes depending on their behavioral 

dependencies. When a package has too many classes to be easily understandable and is 

not cohesive because these classes are responsible for very different features, a new 

package may be extracted to hold some important groups of classes. For example, 

org.eclipse.jdt.internal.ui.refactoring.reorg was extracted from 

org.eclipse.jdt.internal.ui.refactoring in the same plugin, and 
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org.eclipse.jdt.internal.formatter.comment in jdt.core was extracted from 

org.eclipse.jdt.internal.ui.text.comment in the jdt.ui plugin. Other times, a package is removed 

and its contents may be inlined to other package(s). For example, three classes of the 

removed package org.eclipsejdt.internal.corext.template were inlined to 

org.eclipse.jdt.internal.corext.template.java package. 

Java classes and interfaces can define their own nested types. Sometimes, the top-level 

types may be converted to nested type of a particular class in order to group together the 

relevant classes and make the dependencies among them clear. On the other hand, nested 

types may be converted to top-level so that they are available to other classes. In Java, 

anonymous classes are widely used to avoid creating a bunch of simple subclasses or 

implementations of interfaces. However, when the anonymous classes grow so large that 

the code becomes difficult to read or maintain, they may be converted to nested type. 

All these changes can be accomplished by various types of refactorings: convert 

anonymous class to nested, convert nested (top-level) type to top-level (nested), move 

member class, and extract or inline package. Three of them are supported in modern IDEs, 

such as Eclipse, while the other three are not explicitly supported. 

4.2.1.2.2 Inheritance-hierarchy refactoring 

Programming to interfaces and not to implementations is an important tenet of object-

oriented development [34]. A corollary of the programming-to-interfaces principle is the 

extract interface refactoring. For example, in version 3.1, a new interface IChangeAdder 

was introduced for class JUnitRenameParticipant and its two subclasses 

ProjectRenameParticipant and TypeRenameParticipant. 

When two (or more) classes share a substantial part of their behaviors, their common 

features may be extracted to a superclass. For example, in version 3.1, a superclass 

HierarchyRefactoring was extracted (involving 57 fields and methods) from 

PullUpRefactoring and PushDownRefactoring. When a class defines features that are only 

applicable in some cases, a subclass may be extracted for that subset of features. For 

example, a subclass ImportMatchLocatorParser was extracted from MatchLocatorParser, 

which holds two methods that are used only for compilation unit. 
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Table 4-6. Inheritance-hierarchy refactoring in Eclipse evolution 

Type of refactoring 
Pull up field/method 
Push down field/method 
Extract interface 
Extract superclass 
Extract subclass 
Inline superclass/subclasses 

# detected 
279 

53 
33 
15 
4 

11 

Eclipse support 
V 
V 
V 
X 

X 

X 

Collapsing hierarchies is another important refactoring that deals with generalization. 

When a superclass does not deliver much functionality or a subclass is not that different 

from its superclass, the two may be merged. For example, in version 2.1, the superclass 

BufWriter was inlined into subclass VerboseWriter; in version 3.0, three subclasses 

MemberTypeDeclaration, LocalTypeDeclaration, and AnonymousLocalTypeDeclaration were 

inlined into their superclass TypeDeclartion. 

Finally, within the inheritance hierarchy, common fields and methods of subclasses 

were pulled up to the superclass, while the fields and methods that were only applicable 

to some subclasses were pushed down to them. 

4.2.1.2.3 Class-relationship refactoring 

Object-oriented systems are designed around classes that model abstractions of real-

world entities. Classes collaborate with each other to deliver the application 

functionalities. 

Table 4-7. Class-relationship refactoring in Eclipse evolution 

Type of refactoring 
Extract constant interface 
Inline constant interface 
Extract class 
Inline class 

# detected 
5 
2 

95 
31 

Eclipse support 
V 
X 

X 

X 

In Java, interfaces are often used to define static final constants; the classes may 

implement them to access the constants or access them in the static way. For example, in 

version 2.0, class JavaPartitionScanner and FasUavaPartitionScanner used to define four 

same constants, which were extracted to a new interface I Java Partitions implemented by 
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the two classes in subsequent release 2.1. This refactoring also removed the duplication. 

When the constants are only used by a single class and its subclasses, the interface may 

be inlined. For example, in version 3.1, the constant interface Bindinglds was removed and 

the constants it defined were inlined to the class Binding. 

Complex classes are sometimes incohesive because they are responsible for delivering 

many responsibilities. Such classes should be simplified by extracting some of their 

features into other classes, created for exactly that purpose. The simplified class can then 

delegate to the newly created class to deliver its responsibilities. For example, in version 

3.0, a new class DeltaProcessingState was extracted from Delta Processor; Delta Processor 

newly declared a field of type DeltaProcessingState, to which it delegates the maintenance 

of the global state of delta processing. 

Another frequent case involves the extraction of helper or utility class. For example, 

the helper class RefactoringExecutionStarter was extracted from ReorgMoveAction in version 

3.1. 

When a class does not have many responsibilities, its features may be inlined. For 

example, class ReferenceScopeFactory that used to define a single public method creating 

an instance of UavaSearchScope was inlined to JavaSearchScopeFactory in version 3.1. 

Sometimes, the helper class may be inlined to the class depending on it. For example, 

SuperReferenceFinder was inlined into PullUpRefactoring. 

Developers often introduce new entities before they realize that similar features 

already exist. In such cases, the inline-class refactoring can be used to remove duplication. 

For example, in version 2.1.3, there were three Util classes scattered in three packages; in 

version 3.0, they were inlined into a single class. 

4.2.1.2.4 Internal class refactoring 

Eclipse supports various types of refactorings that reorganize the code within a class, 

including, use supertype where possible, introduce factory method, change method 

signature, and extract or inline method. We identified a large number of such 

refactorings in Eclipse's evolution history. However, Eclipse does not support the 

refactorings of information hiding, encapsulate downcast, introduce parameter object, 

which also often being applied. 
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Table 4-8. Class-internal refactorings in Eclipse evolution 

Type of refactoring 
Information hiding 
Use supertype when possible 
Encapsulate downcast 
Introduce factory method 
Change method signature 
Introduce parameter object 

# detected 
751 
177 
85 
19 

4497 
4 

Eclipse support 
X 

V 
X 

V 
V 
X 

On the other hand, Eclipse supports several refactorings that change the code within a 

method, such as extract local variable, extract constant, introduce parameter, convert 

local variable to field. However, at the current stage, our analysis does not take into 

account the statement-level information regarding the usage of local variable so that it 

does not support the analysis on these statement-level refactorings. 

4.2.1.3 Design-change sequences 

Finally, let us look at the program entities that undergo two or more types of changes. 

27% (2104/7851) of the modified entities underwent two or more types of changes. We 

have already discussed several such cases in Section 4.2.1.1, including renaming program 

entities to reflect their data-type change; renaming to conform to a naming convention for 

static final fields; moving methods and using an additional parameter of the type of the 

"old" home class; moving program entities and changing their visibility correspondingly. 

However, by closer inspection, we noticed that in most cases, subsequent 

modifications to an entity were not inherently related, such as "bigger" refactorings 

discussed in Section 4.2.1.2. For example, in version 3.1, ASTParser.convertO was moved 

to class CompilationUnitResolver; its visibility changed from private to public; it was newly 

declare with static; its return type was downcast from ASTNode to CompilationUnit; and its 

signature was modified to take three more parameters as input. 

4.2.2 Analysis of the case-study findings 

Conducting this comprehensive study has given us some interesting insights into the 

design evolution of object-oriented software system. We discuss them in this subsection. 
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4.2.2.1 Refactoring is a frequent practice 

Refactoring is indeed a common activity in the development process of object-oriented 

software. In recent years, refactoring has been popularized in object-oriented software 

development, especially in the context of agile, lightweight development processes such 

as "Extreme Programming" [8]. However, it is not clear how prevalent refactoring is 

actually in practice. In our Eclipse-evolution case study, there were 58973 (see Table 

E-3) changes reported by UMLDiff. Most of the radical design and implementation 

changes were made in the major releases 2.1, 3.0, and 3.1. A considerable amount of new 

features were introduced, and many existing features were redeveloped with a totally 

different implementation, such as the AST-rewrite feature. We excluded from our 

analysis about 75% of all the changes that, according to our understanding - based on 

code inspection, the UMLDiff result, the help document, and the Javadocs comments -

represent the introduction of new features or the removal of obsolete API. 

When considering the remaining changes, over 70% of them were the results of 

refactoring or a sequence of refactorings, including renamings, moves, downcasting or 

use of supertype, information hiding, reorganizing containment or inheritance hierarchy, 

changing the relationships among classes, and changing the code within a class, as 

disused in Section 4.2.1. We cannot know whether they represent changes resulting from 

intentional refactorings or they are just accidental. Overall, about 17% of all the changes 

(including adding and removing) can be expressed in terms of "standard" refactorings, 

which we believe is an indicator that a considerable amount of effort has been spent on 

intentionally restructuring the existing system in the evolution of Eclipse. 

This is evidence that a refactoring engine would be a valuable functionality for the 

development environment in order to provide (semi-)automatic refactoring support to 

developers instead of them having to perform refactorings manually. 

4.2.2.2 Support is still missing for many types of frequently applied refactorings 

Modern IDEs, such as Eclipse, support the most commonly used, low-level refactorings, 

including renaming, move, and using supertype. But they do not support encapsulate 

downcast and information hiding refactorings, which our case study shows are also 

frequently applied. Especially for the information hiding changes, we found out that a 
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class may have several members to hide; manually hiding all of them could be error-

prone. 

Eclipse supports moving static fields and methods to a specified type, but it treats 

moving instance fields simply as a textual move and the references to the moved instance 

fields will not be updated. Furthermore, Eclipse only supports moving instance methods 

to types of its parameters or types of fields declared in the same class as the method. The 

Eclipse "pull up" and "push down" refactorings support moving instant fields and 

methods to their direct superclass or subclass. However, in our case study, instance fields 

and methods may be moved to any type, which may or may not be directly related to their 

current declaring class. 

Eclipse supports some of the "bigger" refactorings discussed in Section 4.2.1.2, but it 

lacks support for the refactoring of the containment and inheritance hierarchies and 

general class relationships. Suppose, for example, that we want to extract a helper class C 

that contains an instance method M declared in D. With current tool support, the 

developer may perform the following activities: create a new class C; declare a new field 

F of type C in class D; move M to C and then may remove field F. It seems that copy and 

paste would be an easier solution. However, as summarized in [54], about 22% of the 

copies the developer leaves off-screen references unchanged or only copies part of the 

code being distributed within several files. 

Based on our findings of the refactorings actually applied to Eclipse throughout its 

evolution history, an effective refactoring tool should support the following (in addition 

to what are commonly supported in current IDEs): 

• information hiding refactoring, such as "hide a group of method in a class", 

• more flexible move of instance field and method in terms of object-oriented entity 

instead of simply text; 

• a refactoring user interface to collect the information about more complex 

refactoring tasks, such as those refactoring inheritance-hierarchy. 
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4.2.2.3 The reuse-based software development can benefit from refactoring-

migration tools 

Eclipse is built as a plugin-based framework. It is an IDE as well as a software 

development kit (SDK). The developers can build their own plugins by extending the 

existing ones and then integrate them into Eclipse. Our JDEvAn tool [125] is one of such 

plugins we have developed in our research group. Even for such a small-size research 

prototype, we have suffered from breaking API changes as the underlying Eclipse 

platform evolved. 

In the last section, we discussed that over 70% of design changes can be expressed in 

terms of refactorings from the perspective of the Eclipse framework developers. To them, 

a refactoring, such as move method, affects only the structure of the software and not its 

behavior. However, it is simply impossible for Eclipse developer to update all the third-

party plugins built on it when they refactor the code. Thus, to third-party plugin (i.e., 

framework-based client application) developers, such a refactoring may be a breaking 

change, which indicates that they have to migrate their code to the new version of Eclipse. 

Such migration is often perceived as disturbing. 

However, our case study shows that, for over 60% of design changes that may be due 

to refactorings, the references to the affected entities in client applications can be 

automatically updated by a refactoring-migration tool if the relevant information of 

refactored components were properly gathered. This indicates that a refactoring-based 

development environment can benefit a lot from refactoring-migration tools, such as 

CatchUp [42]. However, the refactorings that CatchUp can record and replay are only 

renamings and moves. These account for about 70% of the tedious updating tasks that 

may be handled automatically for applications that use the refactored components. 

However, there exist several other frequently used low-level refactorings, such as 

"information hiding", "encapsulate downcast", which CatchUp cannot support. 

Furthermore, refactoring-migration tools are unaware of the impact of "bigger" 

refactorings. 
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4.2.2.4 Tools should implement refactorings using the command and composite 

patterns 

The question then becomes: "What might an appropriate internal representation for 

refactorings be, such that it would enable a tool to meet the above requirements?" 

As discussed in Section 4.2.1.3, about 27% of all the program entities that have been 

modified underwent two or more types of changes, which can be any combination of the 

elementary design changes discussed in Section 4.2.1.1. Furthermore, there were about 

370 "bigger" refactorings that have been applied to refactor the containment, inheritance, 

class relationships and class internals. These "bigger" refactorings are composed of a 

series of coherent related structural changes to a set of relevant entities. 

These facts imply that a good possible implementation of an automated refactoring 

functionality would be to view a design change as a command object: thus, simple 

refactoring commands could be composed into larger ones [34] and they could also be 

done, undone and replayed. For example, 264 methods (see Table 4-2) moved methods 

change their identifiers and/or parameter lists as well. Suppose that a method is moved 

and then one of its parameters is removed. These changes can be stringed together as a 

MoveMethodCommand followed a RemoveParameterCommand, which are contained in 

a CompositeCommand. A memento object [34] may be used to record which parameter is 

removed. As another example, consider the "Extract Superclass" refactoring: it can be an 

instance of CompositeCommand, composed of a NewClassCommand, a 

ModifyClassInheritanceCommand, and several PullUpCommands. A PullUpCommand 

can further be an instance of CompositeCommand, which may be composed of a 

MoveFieldCommand and a ModifyVisibilityCommand. 

The other benefit with command objects is that they can be executed at different times 

[34]. The refactoring tool can record the command objects and replay them (if possible) 

on the applications that reuse the refactored components. Such "refactoring deferral" 

would effectively constitute refactoring migration. 

4.3 Summary 

In this chapter, we presented our method for detecting refactorings in the evolution 

history of an object-oriented software system. Instances of refactorings are detected as 
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compositions of design changes reported by UMLDiff. This method is precise: it reports 

the instances of detected refactorings in terms of their particular types and their key 

participant elements and relations. It is robust to "multiple-changes-to-same-entity" issue. 

This method is general: it is able to recognize a broad range of "standard" refactorings 

and it can be extended with special-purpose queries for detecting change patterns of 

interest to the user. A refactoring-detection capability, such as ours, could potentially be a 

helpful utility: it could recognize design changes to component frameworks when the 

refactoring is not support by the refactoring tool or is not applied explicitly through the 

tool, which could then be composed and replayed in order to propagate them in the 

context of client applications. 
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Chapter 5: API-Evolution Support with Diff-CatchUp 

Software reuse simplifies the design of new systems but, at the same time, it implies that 

their design and implementation heavily depends on the components they reuse. Stable 

interfaces to a reusable component framework (or library) isolate the client application 

from changes in those components, under the assumption that the components' 

developers limit themselves only to extending - as opposed to changing - the 

components' application programming interface (API). In practice, however, this 

assumption is frequently violated; the new components' versions change their APIs and, 

as a result, the applications that rely on them may fail. 

The fundamental challenge in evolving applications built on reusable component 

frameworks is the fact that these applications and their underlying component 

frameworks are subject to two independent, asynchronous, and potentially conflicting 

evolution processes. The scope of the first process is the component framework and is 

driven by the need to improve the framework functionality and quality, while maintaining 

its generality. The second evolution process is motivated by the more specific 

requirements and desired qualities of the application's stakeholders. Although, there 

exists extensive software-engineering research on methods and tools for supporting 

evolutionary development, such as refactoring in object-oriented software development 

[32,51,72], they usually rely on the assumption that the entire software is accessible by 

the tool. However, it is simply impossible for component-framework developers to access 

and update all the client applications, and it is ill advised for application developers to 

modify the components that they reuse - even when they have access to their source code 

- because that would essentially defeat the reuse motivation. 

This challenge gives rise to the question "How can one specify changes to the reusable 

component's APIs that may impact reuse and support their consistent propagation?" API 

changes that render components obsolete may be documented through programming-

language syntax or in a framework-specific style [119,121]. However, such 

documentation may be incomplete and does not come with any programmatic support for 

accommodating the changes in the application code. To our knowledge, there are only 

two methods that do support the application developers' migration task: the first assumes 
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that the component developers will provide complete transformation rules for all API-

breaking changes [15] and the second assumes that the component framework and 

application developers use the same development environment [42,50] so that the 

recorded changes can be interpreted and replayed. 

In Chapter 4, we discussed our method for detecting refactorings by querying the 

UMLDiff design-change facts and we reported on our study on the pattern of changes in 

the evolutionary history of Eclipse [116]. Based on the assessment of empirical data, we 

found that more systematic support could be developed for propagating framework API 

changes to the applications using it. In this chapter, we present our Diff-CatchUp 

approach to tackling the API-evolution problem in the context of reuse-based software 

development. This approach assumes that the component framework itself represents 

good usage of its evolving APIs. It relies on UMLDiff \o recognize the evolution of the 

APIs of a component framework. Once the specific API changes have been identified, 

our approach supports the migration of client applications to appropriately use the 

evolved APIs, based on "voluntary" working examples of the framework code base. This 

approach has been implemented in the Diff-CatchUp tool. We report on two case studies 

that we have conducted to evaluate the effectiveness of our approach with its Diff-

CatchUp prototype. 

5.1 An illustrative example 

Let us consider a developer who is reusing the version 0.9.4 of JFreeChart [126], to 

implement a visualization application. Three relevant JFreeChart classes, PlotFit, 

LinearPlotFitAlgorithm, and MovingAveragePlotFitAlgorithm, are contained in the 

com.jrefinery.chart.data package. In version 0.9.4, these three classes work together to 

produce a XYDataset object: first, a PlotFit object is constructed with a XYDataset object 

and an instance of either LinearPlotFitAlgorithm or MovingAveragePlotFitAlgorithm, and then, a 

modified XYDataset object is produced, which is used to create a chart. When the 

developer attempts to build the application with version 0.9.5, the compiler complains 

that (a) the import comjrefinery.chart.data cannot be resolved, (b) PlotFit, 

LinearPlotFitAlgorithm, and MovingAveragePlotFitAlgorithm cannot be resolved to a type, and 

(c) the method getFitQ is undefined for the type PlotFit. 
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Looking at the release notes shipped with the new version 0.9.5, the developer can 

only find the sentence "introduced new MovingAverage class", which might be relevant 

since one of three broken classes is named MovingAveragePlotFitAlgorithm. Unfortunately, 

the documentation does not provide any information about what happened to the 

com.jrefinery.chart.data package and the PlotFit, LinearPlotFitAlgorithm, and 

MovingAveragePlotFitAlgorithm classes, and how the newly introduced MovingAverage class 

might be related to the PlotFit-related classes. At this point, the developer is probably 

uncertain of the next step needed to complete the migration task. 

Let us discuss how our Diff-CatchUp tool can help in this situation. Highlighting the 

offending code (e.g., the call to the PlotFit.getFitO method) causes the tool to identify the 

broken API involved in the problem (i.e., the PlotFit.getFitO method) and to search the 

repository of the evolving JFreeChart library for the changes to this API {UMLDiff 

reports that PlotFit.getFitO was removed in version 0.9.5). Next, Diff-CatchUp attempts to 

locate plausible replacements for the removed PlotFit.getFitO by examining the methods 

that used to call PlotFit.getFitO and are not broken in version 0.9.5 and formulates a set of 

replacement proposals for the developer. For example, it suggests that the 

MovingAverage.createMovingAverage(XYDataset,...) method may be used to replace the 

removed PlotFit.getFitO method since they both declare the same return type. It also 

recommends several usage examples, one of which is the 

JFreeChartDemoBase.createCombinedAndOverlaidChartlO method, which demonstrates two 

ways to obtain a XYDataset object that might be used as the first argument of an 

invocation to the replacing method. Upon the developer's request, Diff-CatchUp reports 

the textual differences between the versions 0.9.4 and 0.9.5 of the 

createCombinedAndOverlaidChartl 0 method, which clearly demonstrate how to migrate the 

application code that relies on the old API PlotFit.getFitO so that it uses the replacing API 

MovingAverage.createMovingAverage(XYDataset,...).' 

5.2 API-evolution catch-up 

Our API evolution catch-up approach does not require any additional information 

provided by the component developers. The API changes are automatically recovered 

with the UMLDiff algorithm, given the old and new versions of a component framework. 
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The client-application developers review the migration problems that they encounter 

when building their application with the new version of the component framework, as 

reported by the compiler, and select to work on one (Section 5.2.1). In response, the Diff-

CatchUp tool searches the logical-model and API-change facts of the evolving 

component framework (a) to determine the changes to the broken API of the offending 

component involved in the migration problem (Section 5.2.2), (b) to identify plausible 

replacements of the broken API in the new version of the component framework (Section 

5.2.3), and (c) to collect examples of how these replacements have been used in the code 

to deliver what the broken API used to do (Section 5.2.4). Finally, it proceeds to form and 

present specific migration proposals to the developers (Section 5.2.5). 

5.2.1 Selecting an API migration problem 

When the client-application developers decide to import an evolved component 

framework, they have to build their application with the new version of the framework, 

which may result in various types of problems being reported. They have to resolve all 

the problems before they can successfully build and retest the application. As a first step, 

the developer must select some fragment of source code or some compilation 

error/warning as the locality of the migration problem to be addressed. Table H-l 

summarizes the API migration problems that Diff-CatchUp can currently handle. 

Migration problems may be caused by the removal, renaming12, or move of the API 

element involved in the problem, changes to its attributes, such as visibility, modifiers, 

deprecation-status, and changes to its relation to other elements, such as associated data 

type, declared exception, inheritance hierarchy. 

As can be seen in Table H-l, the correlation between migration problems and the API 

changes that cause them may be many-to-many. Furthermore, data-type compatibility and 

polymorphism introduce several technical issues when determining the actual broken API 

element involved in a migration problem of "undefined method/constructor/field" and 

"parameter mismatch". Resolving such issues may involve a significant amount of 

For method/constructor, renaming may involve identifier change and/or parameter 

list changes. 

105 



compiler-related work. Therefore, to obtain the actual broken API element whose change 

causes a given migration problem when building the client application with the new 

version of a component framework, Diff-CatchUp resorts to a successfully built copy of 

the client application with the old version of the component framework. Given a selected 

API migration problem, the contextual information about the involved compilation unit 

and the start and end positions associated with the problem is extracted, which is then 

used to access the copy of the successfully built client application to retrieve the actual 

broken API element involved in the migration problem. 

5.2.2 Determining the changes to a broken API 

Given a broken API element involved in a migration problem, the question becomes to 

determine what changes the API has undergone that cause the migration problem. Instead 

of resorting to the documentation, change specification, or recorded refactoring scripts 

provided by component-framework developers, our approach relies on the API changes 

that are automatically recovered by the UMLDiff algorithm. 

Let us briefly discuss the UMLDiff algorithm here. Interested readers are referred to 

Chapter 3 for the detailed discussion. UMLDiff is a heuristic algorithm for automatically 

detecting the changes that the logical design of an object-oriented software system has 

gone through, as the subject system evolved from one version to the next. UMLDiff takes 

as input two models of the logical design of the system, corresponding to two of its 

versions. The underlying meta-model is defined according to the UML semantics [69]. 

UMLDiff traverses the two models in parallel, moving from one type of model elements 

to its children types; as it does so, it identifies corresponding elements, i.e., model 

elements that correspond to the same conceptual design entity in two compared models, 

based on their lexical and structural similarity. It produces as output a set of change facts 

(summarized in Table 3-2), reporting the differences between the two versions of the 

logical model in terms of (a) additions, removals, moves, renamings of subsystems, 

packages, classes, interfaces, fields and methods/constructors, (b) changes to their 

attributes, and (c) changes to the relations among these model elements. When adapting a 

client application to the API changes of the underlying component framework, Diff-

CatchUp searches the API-change facts reported by UMLDiff algorithm to determine 

106 



what changes have been made to the existing component API, which have consequently 

resulted in the migration problem. 

5.2.3 Proposing replacements for a changed API 

At this point in the process, the client-application developers know how the broken API 

of a component framework has been changed. The next question is to decide what 

plausible replacements to the changed API may exist in the new version of the 

component framework. Table 5-1 summarizes the actions that Diff-CatchUp takes for 

adapting different types of API changes. 

Table 5-1. The Diff-CatchUp actions for adapting different types of API changes 

Types of API changes 
Renaming or move 

"Removal"13 

Changes to attribute or relation 

Diff-CatchUp actions 
Return renaming or move counterpart(s) UMLDiff 
identifies 
Search logical-model and API-change facts for 
replacing APIs 
Visualize in JDEvAn Viewer (see Chapter 7) for 
further exploration 

5.2.3.1 Renamed or moved API 

For migration problems caused by the renaming or move of API elements (bold V in 

Table H-l), Diff-CatchUp simply returns their counterpart element(s) in the new version, 

as identified by UMLDiff, which serve as the plausible replacement(s) to the changed API. 

If there are multiple counterpart elements, such as several move-target elements for a 

move-source element, these elements are sorted by their UMLDiff overall similarity 

metrics. If the application developer is not satisfied with the mapped element 

counterparts returned, he can explicitly request the given API element to be processed as 

"removed", according to the process detailed in the next subsection. 

The "removed" element includes the actually removed element, the deprecated, 

visibility-restricted, and class-made-abstract element, and the mapped element that the 

developer explicitly request to be processed as removed. 
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5.2.3.2 "Removed"API 

For migration problems caused by the removal of API elements (bold V in Table H-l), 

Diff-CatchUp searches the logical-model and API-change facts to generate plausible 

replacement(s) to the removed API. The deprecation of an API indicates that something 

is obsolete and the component developers do not want their users to continue 

programming to the old API. Thus, a deprecated API element (italic Vin Table H-l) is 

processed in the same way as a removed element. Diff-CatchUp also treats as removed an 

element whose visibility is restricted causing the "not visible" problem, and a class that is 

made abstract causing the "invalid class instantiation" problem. 

Note that the mapping between a "removed" API and its replacements is not 

necessarily one-to-one. Several "removed" APIs may have been replaced by a single API, 

or a single "removed" API may have a few different substitutions, or the roles of several 

APIs may have been replaced by another set. As demonstrated in Section 5.3.1, one 

advantage of our approach is that it does not place any constraint on the mappings 

between the broken APIs and their plausible replacements; all potential replacements are 

selected, ordered by their relevancy, and presented to the developer for consideration. 

The underlying intuition to recommending replacing API(s) for a "removed" API is 

that the places that a "removed" API used to be used should use its replacing API(s). 

Thus, our Diff-CatchUp approach takes the following four steps to propose the 

replacement(s) to a "removed" API element E. 

1. It collects all the mapped user elements U that used to use E but no longer do so.14 

2. It collects as candidates all elements C that U newly uses or continues using. 

3. It examines the heuristics (discussed in detail below) between the "removed" 

element E and the candidate C, and selects one as a plausible replacement R if the 

set of valid heuristics is not empty; if no candidate is qualified with some valid 

heuristics, it selects as plausible replacements those candidates that are newly used 

byU. 

14 The term "use" refers to some types of relationships between two elements, which 

are defined in Table 5-2. 
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4. It orders the selected replacements R according to their UMLDiff status, the number 

of valid heuristics, and the support of R in terms of the number of user elements 

that use R divided by the number of all user elements. 

Table 5-2. Proposing replacements for a "removed" API 

Element 
Class & 
Interface 

Method & 
Constructor 

Field 

No-longer users 
Instantiate 
Class usage 
Inheritance 
Data type 
Call 

Read (write) 

Candidates 
Instantiate 
Class usage 
Inheritance 
Data type 
Call, read 
and write 

Call and 
read (write) 

Plausible replacements 
Same name 
Inheritance or sibling 
Usage dependency 
Move of children 
Overriding, overloading or same 
signature 
Declared in same or super- and 
subtype, or declared in sibling types 
Extract/Inline operation or usage 
dependency 
Compatible data type 
Same name 
Declared in same or super- and 
subtype, or declared in sibling types 
Usage dependency 
Compatible data type 

Table 5-2 summarizes the relations that Diff-CatchUp examines to collect the mapped 

user elements U that no longer use the "removed" API element E (the second column) 

and to collect the candidates C that U newly uses or continues using (the third column). 

For a "removed" reference type T, the mapped users U include the methods/constructors 

that used to instantiate T, the methods/fields whose return/data type used to be T, and the 

reference types that used to use the members declared in T and those types that used to 

extend or implement T. The candidates are the classes/interfaces that are related to the 

users U with the corresponding type of relationship in the new version. For a "removed" 

method or constructor M, the mapped users U are the methods/constructors that used to 

call M. The candidate elements include the methods/constructors and fields that U calls, 

reads and writes in the new version. For a "removed" field F, the mapped users U are the 

methods/constructors that used to read (or write) F. The candidate elements include the 

methods/constructors and fields that U calls and reads (or writes) in the new version. 
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Note that the candidates and the subsequently selected plausible replacing APIs are not 

necessarily of the same element type as the broken API. For example, a superclass may 

be replaced by some of its super-interfaces; instantiating a certain type directly (a 

constructor call) may be encapsulated into a method that checks some pre-conditions and 

returns the object if everything is correct. Furthermore, for a removed package, our 

approach does not propose replacing package(s); instead, it determines the changes that 

have been made to the class or interface involved in the problematic import declaration or 

qualified name and proposes the replacement(s) for the involved classes and interfaces, 

depending on their changes. 

Given a set of candidate elements, four sets of heuristics (the fourth column in Table 

5-2) are examined to select the most plausible replacing API elements from the identified 

candidates. The heuristics examine four different aspects between the broken API 

element and the candidate replacing element, including (a) their names, (b) their 

inheritance relations, (c) their usage dependencies, and (d) their associations with other 

elements (e.g., associated data type). Each set of heuristics may contain one or more 

heuristics in a decreasing order of priority. If a high-priority heuristic is true, Diff-

CatchUp stops examining the remaining ones in the set. For example, if a "removed" 

class and its candidate replacing class have direct or transitive inheritance relation, Diff-

CatchUp will not examine whether they are sibling classes that share some common 

ancestor types. If there is no candidate qualified with some valid heuristics as 

replacement, those candidate elements that are newly used by the user elements are 

selected as plausible replacing elements, with the assumption that the newly used 

elements would most likely be the substitutions to a "removed" API, i.e., "newly used" 

heuristic. Let us now review these heuristics for selecting plausible replacing API 

elements. 

NAME: This is the simplest of the heuristics. Name is a "safe" indicator that the 

"removed" API element may be related to its potential replacements, especially when a 

consistent and meaningful naming scheme is adopted. For two classes, interfaces, or 

fields, Diff-CatchUp simply examines whether they declare the same identifier. For two 

methods or constructors, it examines whether one overrides the other directly or 

transitively (same-signature and declared in super- and subtype), whether one overloads 
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the other (same-identifier and declared in the same type), or whether they declare same-

signature and are declared in different types with no inheritance relation. 

INHERITANCE: Component developers sometimes reorganize inheritance hierarchies, 

for example, by extracting superclasses, pushing down (or pulling up) methods, or 

forming template methods [32]. Searching along inheritance relations may reveal 

replacing elements that are declared in super- or subtypes of a "removed" API. In 

addition to elements with direct or transitive inheritance relations, sibling types that share 

common ancestor types with the removed element may also be examined. Such sibling 

types indicate that the concerned types declare similar interfaces and deliver similar 

behavior. The more common ancestors they share, the more similar their interfaces and 

behavior is likely to be. The methods and fields that are declared in such types may be 

interchangeable. 

USAGE: Component developers sometimes restructure the usage dependencies 

between objects. Examining the usage dependency between model elements may reveal 

what can be used to substitute a "removed" API. For example, a middle-man API is 

removed and its users start accessing directly the features that they used to delegate to the 

middle man; several small steps are merged into a bigger one that executes these steps 

internally instead of within the control of their original users; a method is deprecated and 

its body is extracted into a new method to which it delegates. Note that UMLDiff, in its 

differencing process, detects the redistribution of the behavior among operations, by 

analyzing the removals and additions of usage dependencies of the mapped operations 

and the related removed or added operations along their transitive usage and inheritance 

relations, and reports such behavior redistribution in terms of extract operation and inline 

operation changes. The extract/inline operation change facts, if they exist, are preferred 

over the ordinary usage dependency between two methods/constructors. 

ASSOCIATION: An association is a declaration of a semantic relation between model 

elements, such as the associated data type of a method or field and the declaring type of a 

constructor. Diff-CatchUp examines whether the "removed" and potential replacing 

methods, constructors, and fields declare compatible data types. APIs that have 

compatible data types with a "removed" API may be used to replace the role of the 

"removed" API in its users. Note that a constructor does not explicitly declare a return 
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type; instead, its declaring type is used. The compatible data type is defined as the same 

type or the super- and subtype (direct or transitive). Currently, our approach does not 

handle such compatible types as int and double, character array and String object, etc. 

For a "removed" reference type and its potential replacing types, one more special 

heuristic, i.e., the move of children element between them is examined, since the new 

host of the moved features may be a good substitute for their original declaring type. 

Finally, the selected replacements are ranked according to their UMLDiff status, the 

number of heuristics that apply to them, and their support. The UMLDiff status of the 

replacing element of a "removed" API can be newly added or mapped. Our approach 

prefers the newly added replacing elements to the mapped ones. For the replacing 

elements with the same UMLDiff status, they are further ordered by the number of their 

valid heuristics and their support. Currently, the same weight (i.e., 1) is assigned to all 

types of heuristics, which means that any replacing API can have a maximum heuristics 

score of 4 in the current implementation. The replacing elements are finally sorted by 

their name-similarity with the "removed" API in terms of longest common subsequence 

of their names. 

5.2.3.3 Changes to attributes or relations 

Diff-CatchUp does not attempt to suggest ways to adapt to migration problems (regular "V 

in Table H-l) caused by changes to the attributes of model elements or changes to 

relations among elements, since it is hard to guess how the application developer wants to 

adapt the changed API. For example, a method that used to return a primitive type is 

changed to return an object that encapsulates the original primitive value along with 

several new values. The application developer may retrieve the original primitive value 

from the returned object or may decide to preserve the whole object since the original 

value and the other newly added values should be used together. It is difficult for an 

automatic process to infer which option is more appropriate in a particular context. 

Therefore, Diff-CatchUp simply presents the broken API element and its corresponding 

attribute or relationship change to the application developer. The developer can then 

interactively explore the neighborhood of the concerned API element through JDEvAn 
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Viewer (see Chapter 7) to build up the knowledge about how the changed API can be 

used. 

5.2.4 Recommending usage examples of a concerned API 

Having formulated a hypothesis regarding the API elements that can potentially replace a 

broken API is only part of the story when adapting client application to the API changes 

of a component framework. The application developer still needs assistance on how to 

use those replacing APIs. Diff-CatchUp does not provide usage examples at class 

granularity, i.e., how a class is used by other classes as a whole, since such examples are 

too coarse-grained and cannot effectively help the application developer learn how to use 

a particular method, constructor, or field declared in that class. Furthermore, not all 

proposed replacing methods, constructors, and fields require usage examples, for 

example, the move of a static field, the renaming of a method that involves only the 

change of its declared identifier or the removal of some parameters. We identify the 

following three cases in which usage examples of the concerned API are useful: 

1. a non-static method/field - the developer needs to know how to obtain the object of 

the declaring type of the relevant method/field in order to refer to it (obtain-object 

usage example); 

2. a method/constructor declares one or more matched, type-changed and newly 

added parameters - the developer needs to know how to obtain the object or value 

of the concerned parameter in order to invoke the method/constructor (parameter-

list usage example); and 

3. a mapped replacing method/constructor/field of a "removed" API - the developer 

needs to know how to migrate from the "removed" API to its replacing API 

(replacement usage example). 

An API of concern may require several different types of usage examples at the same 

time. For example, in the case that a moved non-static method that declares a new 

parameter is proposed as a replacing API for some removed method, all the three types of 

usage examples may be necessary. The replacement usage example is only applicable to 

the mapped replacing APIs of a "removed" method, constructor, or field. However, the 

obtain-object and parameter-list usage examples are applicable to a qualified API element, 
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whether it is a replacing API of a renamed, moved, or "removed" API, or it is a usage-

example element. It is important that the developer is able to request further usage 

examples for the recommended usage-example elements, in some cases. For example, a 

usage example of a replacing API is a moved non-static method. The developer may then 

want to know how to get the object of the declaring type of this moved method. As 

another example, suppose that the method m() is renamed to take one more parameter of 

some type T, all direct usage examples that are recommended take one argument of type T, 

which they use to invoke renamed method m(T). These usage examples do not actually 

show how to obtain the concerned object of type T. The developer can then iteratively 

request more usage examples, until one is found that demonstrates the appropriate ways 

to construct the object of type T. 

5.2.4.1 Obtain-object usage example 

First, let us discuss obtain-object usage examples that demonstrate how to get the 

concerned object in order to invoke one of its methods, or reference one of its fields. The 

same procedure is used to get the concerned object or value to invoke a method or 

constructor with it as one of the method's arguments, which serves as the building block 

of parameter-list usage example discussed in 5.2.4.2. 

Table 5-3. Input parameters for recommending obtain-object usage example 

Concerned API 
Method/Field of 
case 1 
Method/Constructor 
ofcase 2 

Tnew in new version 
Current declaring type 

Current type of a parameter 

T0id in old version 
Previous declaring type if moved, 
null otherwise 
Previous type of this parameter if 
type-changed, null otherwise 

Table 5-3 lists the input parameters based on which obtain-object usage examples are 

identified. Given an API element (method, constructor, or field) E, all the 

methods/constructors M that use (call, read or write) E are collected. Then, all elements 

E' (not equal to E) that Muses - the methods that Minvokes, the fields that it references, 

the objects that it instantiates, and the parameters that it declares - are examined. If E' is 

of the same (sub-) type as the relevant type Tnew of element E, then it is recorded as a 

possible way to get the concerned object of type Tnew in order to use E. If Muses one or 
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more such E\ it is selected as one valid obtain-object usage example element with one or 

more possible ways to obtain the relevant object. Optionally, if M is mapped and the 

relevant type T0u of element E is not null, all the elements that M uses whose associated 

type is of the same (sub-) type of T0ui are also collected. This knowledge is used to rank 

the recommended obtain-object usage examples. 

The obtain-object usage examples are sorted according to the UMLDiff status of the 

usage-example element M, the status of the relation between the usage-example element 

and the concerned API element E, and the number of effective ways E' to obtain the 

concerned object of type Tnew. Furthermore, our approach prefers the mapped usage-

example elements that have the newly added ways to obtain Tnew object and no longer 

existing ways to obtain Told object, since they demonstrate how to migrate from the old 

API to the new one. 

5.2.4.2 Parameter-list usage example 

A method or constructor may declare one or more matched, type-changed, and newly 

added parameters. Each parameter may have its own set (possibly empty) of obtain-

object usage examples, which consists of distinct usage-example elements that show the 

ways to obtain the proper argument for this particular parameter. The sets of obtain-

object usage examples for different parameters may intersect, when one usage-example 

element demonstrates how to obtain arguments for more than one parameter. For a 

method/constructor, the sets of obtain-object usage examples of its parameters are 

merged into a single set of parameter-list usage examples, by combining several obtain-

object usage examples that share the same usage-example element into one parameter-list 

usage example. Thus, a parameter-list usage example is composed of obtain-object usage 

examples for the corresponding parameters that the developer specifies when requesting 

usage example for a method or constructor, which share the common usage-example 

element and demonstrate how to invoke a method or constructor with one or more proper 

arguments. 

For a method/constructor, its parameter-list usage examples are sorted according to the 

UMLDiff status of usage-example element, the status of the relation between the usage-
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example element and the concerned method/constructor, and the number of parameters 

whose usage a particular usage example demonstrates. 

5.2.4.3 Replacement usage example 

Replacement usage examples are relevant only to the mapped replacing APIs of a 

"removed" method, constructor, or field, and are meant to show how to migrate 

application code from using the "removed" API to its replacing API. Note that, the newly 

added replacing APIs of a "removed" API element can be illustrated through the obtain-

object and parameter-list usage examples; they do not need replacement usage example. 

Furthermore, some of the replacing APIs of a "removed" element may be qualified for 

obtain-object and parameter-list usage examples. In addition to these examples, the 

replacement usage examples that demonstrate how these replacing APIs are generally 

used can also be provided. 

Given a mapped replacing API R of a "removed" element (method, constructor, or 

field) E, all the methods/constructors M that use (call, read, or write) R are collected as its 

replacement usage examples. Optionally, if the status of Mis mapped, Diff-CatchUp also 

examines if M uses the "removed" element £ in the old version. The replacement usage 

examples are sorted according to the UMLDiff status of usage-example element M and 

the status of the relation between the usage-example element and the replacing API R. 

Furthermore, our approach prefers the mapped usage-example elements M that newly use 

the replacing API and no longer use the "remove" API, since they demonstrate how to 

migrate from the "removed" API to the one that replaces it. 

5.2.5 Presenting replacement and usage example proposals 

Finally, given the plausible replacing APIs or usage-example elements, a list of migration 

proposals is formulated. A replacing API proposal consists of (a) the broken API element, 

(b) the replacing API element, (c) the heuristics for why this replacing API element was 

selected (a set of textual rationale descriptions), (d) the relevant model elements and 

relations collected when examining these heuristics; (e) the user elements and their 

relations with the broken API element and the replacing element; and (f) the changes to 

all the above elements and relations as reported by UMLDiff. 
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An obtain-object or parameter-list usage example proposal consists of (a) the 

concerned API element and its relevant types for which the developer selects to see usage 

examples; (b) the usage-example element and its relations with the concerned API; (c) 

the elements that represent possible ways to get the concerned object and their relations 

with the usage-example element; and (d) the changes to these elements and relations as 

reported by UMLDiff. 

A replacement usage example consists of (a) the "removed" API element and its 

replacing API element; (b) the usage-example element and its relations with the 

"removed" and replacing element; and (c) their changes as reported by UMLDiff. 

The list of generated replacement and usage example proposals is sorted and returned 

to the application developer for inspection. Our approach allows developers to customize 

the ordering priorities when inspecting the returned proposals. Furthermore, Diff-

CatchUp is supported with our interactive visualization framework, the JDEvAn Viewer 

(see Chapter 7), which illustrates the relevant API elements, relations and their changes 

in an UML-style class diagram. JDEvAn Viewer enables developers to inspect the 

detailed model and change information and to interactively explore the neighborhood of a 

proposal. Focusing on a proposal in the JDEvAn Viewer and exploring its relevant 

elements and relations enables a compact and local view of otherwise scattered model 

elements and relations and their changes. This localization has been helpful in helping 

developers to quickly explore and assess if the proposal is worth examining more closely. 

When the developers consider the proposal for a change API to be promising, they can 

then request the textual comparison results of the source code of usage-example elements 

that demonstrate how to adapt the application source code to properly work with the 

changed API. 

5.3 Evaluation 

In this section, we discuss our evaluation of the effectiveness of our approach for 

catching up the API evolution of a component framework and supporting the migration 

of client applications that reuse it. We conducted two case studies with two subject 

systems with the Diff-CatchUp prototype: HTMLUnit [123] and JFreeChart [126]. The 

subject systems both have been developed for several years with multiple major releases. 
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In addition to the core framework/library APIs, each release of the subject system also 

includes the corresponding regression tests (e.g., JUnit test suites) and some classes that 

demonstrate the typical usage scenarios of the framework/library. The subject systems 

have undergone a substantial number of API changes (see Appendix C and Appendix D). 

With our design-evolution analysis tool JDEvAn [125], we populated the repositories 

for two subject systems respectively, which store the UML logical models of each major 

release of the subject system (including the core framework/library APIs and the 

accompanied demonstration and testing classes) and the API-change facts reported by 

pair-wise differencing subsequent releases with UMLDiff. 

Given one of the major releases N of the subject system, we built the demonstration 

and testing code15 of the version N with the core framework/library APIs released in the 

subsequent version N+l, which resulted in various types of API migration problems 

being reported. We then collected all the distinct broken APIs (see Table 5-7 and Table 

5-8) involved in the reported migration problems. For each broken API element, we ran 

the Diff-CatchUp tool against the repository of the subject system to generate its 

corresponding replacement proposals. Finally, we compared the Diff-CatchUp 

replacement proposals with the changes that the developers of the subject system actually 

made in order to adapt the demonstration and testing code of version N in response to the 

core framework/library API changes when the subject system evolved into version N+l. 

If the actual change was captured within the Diff-CatchUp top ten replacement proposals 

and Diff-CatchUp was able to recommend relevant usage examples, we considered that 

the Diff-CatchUp approach would have effectively helped the application developers to 

successfully resolve the given migration problem and consequently evolve their 

applications in the face of the corresponding interface changes of the subject system. 

In Section 5.3.1, we qualitatively describe our use of Diff-CatchUp to support adapting 

application code to several API changes when JFreeChart evolved from the version 0.9.4 

15 We also attempted to collect the API migration problems from the publicly available 

client applications that reuse HTMLUnit or JFreeChart. However, we failed to achieve 

that goal since we cannot find such an application that has been well evolved in sync with 

the evolution of the subject systems. 
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to 0.9.5. In Section 5.3.2, we discuss the runtime performance of Diff-CatchUp and 

quantitatively evaluate the effectiveness of our approach in terms of types and numbers 

of distinct broken APIs we encountered in our case studies and the statistics of successful 

and failing proposals Diff-CatchUp generates. 

5.3.1 A usage scenario of the Diff-CatchUp tool 

First, let us discuss in detail how Diff-CatchUp helps resolving the migration problems 

discussed in the motivation example of Section 5.1, through which we illustrate the 

typical usage scenarios of the tool. In the version 0.9.4 of JFreeChart, there is a 

demonstration class BaselmageServlet. When building the BaselmageServlet class of the 

version 0.9.4 with the core library APIs of the version 0.9.5, 43 compilation errors and 2 

warnings are reported, as shown in the Eclipse's Problems view in Figure 5-1. One of 

three "The import com.jrefinery.chart.data cannot be resolved" problems is selected. A 

request for "Catchup API Evolution" from the context menu of the Problems view 

invokes a Diff-CatchUp search on the JDEvAn repository of JFreeChart, which reports 

that the problematic package com.jrefinery.chart.data, which existed up until version 0.9.4, 

was removed in version 0.9.5. 

Diff-CatchUp next automatically identifies the specific type involved in the given 

problematic import declaration, which is the class PlotFit for the selected "import not 

found" problem and attempts to catch-up the evolution of the PlotFit class. Similarly, for 

the other two "The import com.jrefinery.chart.data cannot be resolved" problems, it 

identifies the involved classes to be LinearPlotFitAlgorithm and MovingAveragePlotFitAlgorithm 

respectively. Table 5-4 summarizes the changes made to these three broken classes, as 

reported by UMLDiff, and the corresponding replacement proposals generated by Diff-

CatchUp. 

In version 0.9.4, the PlotFit, LinearPlotFitAlgorithm, and MovingAveragePlotFitAlgorithm 

classes work together to produce a XYDataset object. In the subsequent version 0.9.5, 

these three classes are all removed. However, the Diff-CatchUp replacement proposals 

indicate that the relevant feature does not actually disappear with the removal of these 

three classes. Instead, the roles of the classes PlotFit, LinearPlotFitAlgorithm, and 

MovingAveragePlotFitAlgorithm appear to be replaced by the newly added class 
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MovingAverage and three matched classes LineFunction2D, DatasetUtilities, and Regression. 

These four replacing classes are all contained in a matched package com.jrefinery.data. 

They are all newly used by the classes that stopped using the three removed PlotFit-

related classes. For the classes PlotFit and MovingAveragePlotFitAlgorithm, the recommended 

replacing classes ranked at the 1st, 6th, and 9th - 17th places are omitted in Table 5-4. 

Those classes are contained in com.jrefinery.chart.plot and com.jrefinery.chart.renderer 

packages. Package is one way of grouping together related classes according to their 

functionalities. Thus, the developer using the Diff-CatchUp tool may conjecture that such 

plot- or renderer-related classes should be irrelevant to the PlotFit-related feature or he 

may examine them after those classes listed in Table 5-4. 

Table 5-4. Catch-up the evolution of the three PlotFit-related classes 

Broken classes 
PlotFit (Removed) 

MovingAveragePlot 
FitAlgorithm 
(Removed) 

LinearPlotFitAlgorit 
hm (Removed) 

Replacement proposals 
Replacing classes 
2. MovingAverage 
3. KeyedValues2D 
4. TimeSeriesCollection 
5. LineFunction2D 

7. DatasetUtilities 
8. Regression 

2. MovingAverage 
3. KeyedValues2D 
4. TimeSeriesCollection 
5. LineFunction2D 

7. DatasetUtilities 
8. Regression 

1. MovingAverage 
2. LineFunction2D 
3. DatasetUtilities 
4. Regression 

Status 
added 
added 
matched 
matched 

matched 
matched 

added 
added 
matched 
matched 

matched 
matched 

added 
matched 
matched 
matched 

Heuristics 
newly used 
newly used 
newly used 
newly used 

newly used 
newly used 

newly used 
newly used 
newly used 
newly used 

newly used 
newly used 

newly used 
newly used 
newly used 
newly used 

Support 
0.250 
0.125 
0.625 
0.250 

0.125 
0.125 

0.250 
0.125 
0.625 
0.250 

0.125 
0.125 

0.500 
1.000 
0.500 
0.500 

However, knowing that the PlotFit-related feature may be replaced by the classes 

MovingAverage, LineFunction2D, DatasetUtilities and Regression is not nearly enough to 

successfully migrate the client BaselmageServlet class to use the replacements to deliver 

the same or similar functionalities previously implemented by the classes PlotFit, 
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LinearPlotFitAlgorithm, and MovingAveragePlotFitAlgorithm. There are 27 methods available 

across these four replacing classes. It is not simple to determine which ones to use and 

find the correct sequence of interaction between them. Furthermore, for the removed 

classes PlotFit and MovingAveragePlotFitAlgorithm, two more classes in the com.jrefinery.data 

package, KeyedValues2D and TimeSeriesCollection, are also recommended by Diff-CatchUp. 

Are they relevant to replacing PlotFit-related classes? If so, what roles are they supposed 

to play? 

Table 5-5. Replacement proposals for PlotFit.getFitO with full heuristics checking 

Replacing APIs 
1. MovingAverage.createMovingAveragefXYDataset,...) 
2. TimeSeriesCollection() 
3. DemoDatasetFactory.createHighLowDataset() 
4. DatasetUtilities.sampleFunction2D(Function2D,...) 
5.JDBCXYDateset(...) 

Status 
added 
matched 
renamed 
matched 
renamed 

Heuristics 
datatype 
data type 
data type 
data type 
data type 

Support 
0.50 
0.67 
0.50 
0.17 
0.17 

Table 5-6. Replacement proposals for PlotFit.getFitO with only "newly used" heuristic 

Replacing APIs 
3. MovingAverage.createMovingAverage(TimeSeries,...) 
4. MovingAverage.createMovingAveragefXYDataset,...) 
5. TimeSeriesColiectionO 
6. TimeSeriesCollection.addSeries(TimeSeries) 
8. DemoDatasetFactory.createJPYTimeSeriesO 
9. DemoDatasetFactory.createEURTimeSeriesO 
12. DemoDatasetFactory.createUSDTimeSeries() 
13. LineFunction2D(double,double) 
14. Regression.getOLSRegression(XYDataset,int) 
19. DatasetUtilities.sampleFunction2D(Function2D,...) 

Status 
added 
added 
matched 
matched 
matched 
matched 
matched 
matched 
matched 
matched 

Heuristics 
newly used 
newly used 
newly used 
newly used 
newly used 
newly used 
newly used 
newly used 
newly used 
newly used 

Support 
0.67 
0.50 
0.67 
0.67 
0.50 
0.33 
0.17 
0.17 
0.17 
0.17 

To answer these questions, the developer needs more fine-grained method-level 

information in relation to these plausible replacing classes. The key API method relevant 

to the old PlotFit-related feature is PlotFit.getFitO- Highlighting a call to PlotFit.getFitO in 

the Eclipse's Java editor enables the developer to request Diff-CatchUp support for 

determining how it changed from version 0.9.4 to 0.9.5. It turns out that the method 

PlotFit.getFitO w^s removed in 0.9.5. Table 5-5 summarizes the replacement proposals that 

Diff-CatchUp generates when selecting replacing elements with full heuristics checking, 

which recommends a total of 5 methods/constructors that declare the same or compatible 
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data type as the removed PlotFit.getFitO. When Diff-CatchUp selects the replacing 

elements based only on "newly used" heuristic, there are a total of 23 recommended 

methods and constructors. 10 of them, which are declared in the replacing classes listed 

in Table 5-4, are summarized in Table 5-6. The other 13 axis-, plot-, and renderer-related 

methods and constructors are omitted in Table 5-6 since they are deemed less relevant to 

replacing the removed method PlotFit.getFitO-

Edit &JWLS n-facor Navigate Saare*l rvcmtf *un Mndow hldp 

/ / moving avg 
Jtoyin^Avejrajg&fJj^ raavg -

new S & v J n j j A v e j n ^ , ^ ^ ; 
tnavg.setPeriod(30) ; 
J ^ o t r j ^ pf • new PlgitF;it(chartData, wavg) ; 
xyData - pf ,j 
breaX; 

case 22; 
/ / l inear Zic 
pi - new Pl&SJTijLlcfcttrt 
xyData • pl .getFie(J ; 
break; 

case 0: 

«.»J~ '. ^ « i l i i i l i B H H H I 8 ! H 

Run As 
Debug As 
Team 
Compare With 
Replace With 

[.T* edlcom refinery t % B ^ J M J t M I ^ ^ " ' ' 

™**__ '£• -*LA - S L L 1 _ i...i..nf...jj.-

w s 

?SH*t#-i. 

The problem entity and the proposed entity declare the same or compatUe datej Query As Removed ' 
j£ con^jreflneryjlata.TimeSeriesCoflettlon.TimeS<rtefCollection() • ^ ^ ^ ^ ^ • m j n a t c h e d 
m cornJ«nneayxhartdemo4)emoDatosetfacti^xreateHighlo¥iDatasetO '~™*enanied| 
S confcJreflnery.dbtaJ>ata»etUtilitieMamp*ef :ur»cticii2^ matched 

&i com.jrefbieryulataJDBCXYDatasetJOBCXVDataset(CoflnecUon,Strlng) ; renamed 

1 0.5 

'^SSi^SSSSi&Smi'^" 
[ 9 For added parameter 'source' of the requested operation 

3 Calmethod of current type "com. (reflnBry. data. XYDatasat' or Its subtype 

\ com.^eflnery.crtart.dei^.DemoDatasetFactory.aeateHghLowOatasetO ' com.jrefinery.data.HtgftowDataset 

i 9 Invoke constructor of ajrrent type'o>n.irefr>crY.clata 

ccm.reh^Y.dataJlrr»Seri«C 

Desjttton_Jk_ ** 
3 ^ ratal En i t i i i i i rin t 

©Axis * • * - - • - -
O UbcCategoryDatMet cannot be resdvs|| 
9 ft&CategoryM^camot be rescue 
O JdbcPieOatasatcannotberesotvedtoa 
Q JdbcPleDataset cannot be resolved to a' 
© MbtXYDacasat cannot be resolved to « 
O JdocXYDacasettamotberesoh^toa 
0 UnearPlotFWUgorfhmcemot be resolve 
O r*v^vara£oMotf*Alo^lthm cannot t 

O PiePfat cannot be resolved to a lypa 
O rtaPfc*cannotberwoKwJtoatypa 
O PWfoEcamotberesolwdtoatype 
O Plot cannot be resolved to a type 
O plotBt cannot be resolved to a type 
O PfotFK cannot be resolved to a type 
O P t o « cannot to resolved to a type 
Q TheiTiportcorri.^efinery.chart.ftxiicarit 

" " P " " * * i iu u i srtfSMnq, Strfni 
O The rootriodset*WB<AnayUs0ts undef 
O VabsAxis cannot be resolved to a type » 

Figure 5-1. Diff-CatchUp perspective in Eclipse 

The generated replacement proposals are returned to the Diff-CatchUp client for 

presentation to the developer in the API Proposals view. For a selected proposal, the 

developer can ask Diff-CatchUp to recommend its obtain-object, parameter-list, and/or 

replacement usage examples, which will be presented in the Usage Examples view. 

Figure 5-1 shows a snapshot of the Diff-CatchUp perspective in Eclipse, when the 

developer attempts to adapt the application code in response to the removal of the method 
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PlotFit.getFitO. The middle- and bottom-left parts of the perspective show the API 

Proposals and Usage Examples views. The API Proposals view shows the broken API 

under investigation and the change it underwent, which states 

"[removed] [com.jrefinery.data.PlotFit.getFit()]". In addition, the API Proposals view lists 

the five replacement proposals of the removed method PlotFit.getFitO- The highest-rank 

replacing method MovingAverage.createMovingAverage(XYDataset,...) is selected; its 

corresponding table row is expanded to show the textual description of the rationale 

("compatible data type" in this case) for why this method is selected. The relevant obtain-

object usage examples for this method are listed in the Usage Examples view. The first 

one, JFreeChartDemoBase.createCombinedAndOverlaidChartlO, is selected and expanded; its 

rationale indicates that it was recommend because it demonstrates two effective ways to 

obtain a XYDataset object, i.e., by calling method 

DemoDatasetFactory.createHighLowDatasetO or instantiating a TimeSeriesCollection object, 

which can be used as the first argument to invoke the replacing method 

MovingAverage.createMovingAverage(XYDataset,...). Note that the method 

createHighLowDatasetO and the constructor TimeSeriesCollectionO are two of the proposed 

replacing APIs, which indicates that they may not be the direct replacements to 

PlotFit.getFitO but they should be highly relevant to properly using the replacing method, 

such as MovingAverage.createMovingAverage(XYDataset,...). 

When a replacement or usage example proposal is selected in the API Proposals and 

Usage Example views, the relevant model elements, relations and their changes, which 

are enclosed in the proposal, are visualized in a JDEvAn Viewer. Figure 5-2 shows a 

screenshot of the JDEvAn Viewer and its Outline and Properties view when the 

developer investigates the replacing method 

MovingAverage.createMovingAverage(XYDataset,...) and its usage example 

J FreeChartDemoBase.createCombinedAndOverlaidChartl 0 • 

123 



F?* Eift Nd*.yrf" » w i h FfmX P / i Wk-»Jov. HP? 

E , > * 

l t« fss i$ i« i 
© DemoDatase 

LowOataset 

Q i jRrraCharCC 

JverlaidChartO : JFf eeCfeai*-™ ' • " " f c IpetFitOrNo longer exWinql 

tB ;ow.>rftitfy,dvw,i)etKi,t«fvW| 

« treateXVCharl(...): ffreediaftg 

m.mmmM' 
re :*** 

TimeSertesColection 

® 
teMovingAverS^Csource: XYDataset, suffix : jave.lsng.Strlng, periodMKseconds: long, sklpMSiseconds : long): XYDatesetl 

»<«-«v -:&;»': 
ia) d f i com.refJnery.chart.data[No longer existing] 

9 & PtotFit[No longer existing] 

- § attributes 

Q | § operations 

- | § reftypes 
13 0 com.p-efinery.chart.demo[Watched] 

E§ 0 DemoOatasetPactory[Matched] 

» © JFre*ChartDenra6ase[Matched] 
a — S com.jrefinery.chart.ctefno.sefvtettMatched] 

S3- 0 BasBlmageSefvtet[Matched] 

Q 0 com.)refinery.data[Matehed] 

i£ Q 3 MovingAverageTNewly added] 

I D Properties S3 

As source 
£ As target 

Category 
ID 

Moved entitles 
>"'-. MtfrnH', -f11 

Parameters 
IS Return type 

UKDf f statui 
Visbfty 

'. u . J r -> _ 

_ V*JJ 
I k f u r J r ' t o c , i w g M . » n i : a t i c 

3 shown Incoming relations 
Method 

Opararreter 
associated ht>s 
No longer exisbng 
pubic 

MM 1 1 ' « • 

Figure 5 2. Explore PlotFiCgetFitQ and its replacing APIs with JDEvAn Viewer 

*va Source compare 

• aflateCrjrntmdAnr> verlaUChan 0 } p^chartfl 9 Ifm ^ 

I String domain ° this.resources.getStringCcomb: 

I > • r e a t K ^ i h h » d A n L l 6 v w U d C h * a b j f r m f c a r n 9 4/jrc 

HighLowDataset highLowDataaec * 
DemoDataset Factory. createHighI.owDataset. {) 

XYDaCaset aighLowDatasetHA -
HovingAverage.createHovingiverage(highLowData; 

5 * 24 * 60 * 60 * 10Q0L, 5 • 24 
4 

TiweSeries jpy — DemoIiaCagecraccory.ciTeateJPYTiincS 

TimeSerieaCollection dataaetO • new TimeSeriesColJ] 
datasetQ.addScries(jpy) ; 

TisteSeries mav - Moving Aver age. creaceHovtngAverage 
TimeSerieaCollection d a t a s e t l - new TimeSeriesColJ 
da tase t l . addSer ies (Jpy) : 
dataaetl.addSeries(may) ; 

~Lr_L. s J ^ i c i e S t r • t!»is._=; c c e s . g e t S t r i n g ( i H 
Str ing domain " th is . resources .getStr ing("comb§| 1 

^//''ce.'ie^la&'e''-K6ying|. Average or Htgh-U>w Datase 
HioStowDataiset nighticwData - . 

I>ein6l>at.asetractacy.ereate3ampleHigiiLo*Data 
HovingAveragePlotritAlgdcichni roavg -

: new HovingAveragcPlotritAlgarithwO ; 
nwivg. secPericd (5); 
P lo tF i t p± - new PlotFlt(highLowPata, mavg); 
XYDataaefe highLgyHAData - pf . g c t F l t Q ; 

/ / ca lcu la te Having Average of Time Series 
XYDataaefc CiiaeSeries&ata - DemoDatasetFactory, 
mavg '•hew HavlngAveragePlotPitAlgorithmf.); 
mavg.setPeriod(30Ji 
pi - new P i o t f i t (timeSeriesData, ntavgj ; 
XYDataset tirocSericsHAPata - p r . q e t F i t ( ) ; 

\^mm^mamKMmmBmoammim M' mmmmm^mmmmmm .mj 

Figure 5-3. Code differences demonstrating how to 

replace getFitQ with createMovingAverage(...) 

124 



At this point, if the developer believes that 

MovingAverage.createMovingAverage(XYDataset,...) is a promising candidate for replacing 

PlotFitgetFitO, he may want to examine how its client methods, such as 

createCombinedAndOverlaidChart1(), have been modified from using PlotFit.getFitO to using 

MovingAverage.createMovingAverage(XYDataset,...). Double-clicking the method 

createCombinedAndOverlaidChart1() brings up the Eclipse Compare Dialog, which shows 

the textual differences between the versions 0.9.4 and 0.9.5 of this method (see Figure 

5-3). The code differences clearly demonstrate how to migrate the application code that 

relies on the old API PlotFit.getFitO into using the replacing API 

MovingAverage.createMovingAverage(XYDataset,...). 

The other replacement proposals are similarly examined. Three APIs emerge as 

candidates for replacing the removed PlotFit.getFitO method (highlighted in italic font in 

Table 5-5 and Table 5-6): MovingAverage.createMovingAverage(XYDataset,...), 

MovingAverage.createMovingAverage(TimeSeries,...), and 

DatasetUtilities.sampleFunction2D(Function2D,...). Furthermore, several other proposed APIs, 

such as TimeSeriesCollectionO, JDBCXYDatasetO, Regression.getOLSRegresstionO, 

createHighLowDatasetO, etc., are also highly relevant. They serve the important auxiliary 

roles in order to replace the removed method PlotFit.getFitO. They are used to construct 

objects that are necessary to call the replacing methods or to wrap the returned objects of 

these methods before they are used. 

5.3.2 The effectiveness of Diff-CatchUp 

We have evaluated our approach for catching-up and supporting API evolution with two 

subject systems, HTMLUnit and JFreeChart. Appendix C and Appendix D report the 

numbers of model element and relation facts extracted by JDEvAn fact extractor and the 

API changes discovered by UMLDifffor JFreeChart and HTMLUnit respectively. 

As shown in Appendix C, our repository contains more than 1,400,000 model facts and 

thousands of API-change facts16 for the JFreeChart system. However, because Diff-

CatchUp repository should mainly be accessed far more often than having new model or 

6 The changes to usage dependency between model elements are not included. 
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change facts inserted, we have the tables well indexed in the database. Therefore, Diff-

CatchUp typically takes a few seconds to search the repository and form and return the 

replacement and usage example proposals. Our case studies indicate that Diff-CatchUp 

approach allows the on-line interactive catching-up of API evolution of a component 

framework when adapting the client applications that depend on it. 

Table 5-7. The success rate of Diff-CatchUp in the evolution of JFreeChart 

Type of problem1' 
ImportNotFound 
UndefinedType+ImportNotFound+UndefinedName 
InvalidClassInstantiation 
UndefinedMethod/Constructor 
ParameterMismatch 
UndefinedField+UndefinedName 
UsingDeprecatedType 
UsingDeprecatedMethod/Constructor 
Total 

#broken API 
17 

254 
1 

180 
54 
33 
3 

35 
577 

#proposal 
17 

247 
1 

151 
53 
29 

3 
34 

535 

% 
100 

97.2 
100 

83.9 
98.1 
87.9 
100 

97.1 
92.7 

Table 5 8. The success rate of Diff-CatchUp in the evolution of HTMLUnit 

Type of problem 
UndefinedType 
UndefinedMethod/Constructor 
ParameterMismatch 
UsingDeprecatedType 
UsingDeprecatedMethod/Constructor 
Total 

#broken API 
1 

11 
3 
1 

10 
26 

#proposal 
1 
9 
3 
0 
7 

20 

% 
100 

81.8 
100 

0 
70 

76.9 

Let us now discuss the general effectiveness of our approach in support of catching-up 

and assisting API evolution in the context of reuse-based software development. Table 

5-7 and Table 5-8 summarize the statistics of applying our Diff-CatchUp approach 

(similar to the migration process illustrated in Section 5.3.1) to JFreeChart and 

17 As it is currently implemented, our Diff-Catchup tool is able to handle all types of 

migration problem listed in Table H-l. All of them have been tested through the mock-up 

test cases. However, we only collected the listed types of migration problems in the 

evolution history of the two subject systems. 
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HTMLUnit respectively. The "#broken API element" column reports the number of 

distinct broken API elements whose changes cause the corresponding type(s) of 

migration problems when building the demonstration and testing code of a previous 

version with the core library APIs released in the subsequent version. The "#proposal" 

column represents the times that our approach successfully generates the replacement 

proposals and the usage examples, given such a broken API element. Note that the 

migration problems caused by the change to the same underlying broken API element 

were only counted once in Table 5-7 and Table 5-8. 

We collected in total 577 distinct broken API elements in the JFreeChart case study. 

Overall, the case studies suggest that our approach is worthwhile and effective: for about 

93% of the broken API elements in the JFreeChart case study, Diff-CatchUp successfully 

generates the replacing API elements and the corresponding usage examples that 

demonstrate the migration from the old APIs to their replacing ones. The overall success 

rate in the HTMLUnit case study is lower (about 77%). However, we consider the 

statistics of the HTMLUnit case study less representative than that of the JFreeChart case 

study, since HTMLUnit has a much smaller set of broken API elements (only 26). 

Furthermore, as illustrated in Section 5.3.1, our approach does not place any constraints 

on the mappings between the broken API elements and their plausible replacements. It is 

able to handle the cases of one-to-many, many-to-one, or many-to-many mappings. In 

addition, the relevant auxiliary APIs to properly use the replacing APIs would most likely 

be proposed at the same time. 

5.4 Threats to validity 

There are several factors that can impact the quality of our Diff-CatchUp approach. 

5.4.1 API changes without syntactic effects 

Our approach starts with the API migration problems that a compiler generates when 

building a client application with the new version of a component framework. The 

migration problems are analyzed to determine the broken APIs whose evolution results in 

the problem. The compilation errors and warnings are essentially syntactic problems that 

the client-application developers have to resolve before they can build their application 
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successfully and retest it with the evolved component framework. The causes of some 

syntactic problems may be the results of behavior-preserving refactorings, while others 

imply the semantic changes to the broken APIs. For example, additional parameter(s) 

most commonly indicate new behavior; declaring a class abstract indicates that it can no 

longer be directly instantiated; declaring a field final indicates that it is no longer 

changeable. In such cases, our approach is able to help client-application developers 

understand the nature of the change and migrate their application accordingly. 

However, not all API changes result in syntactic problems being reported. Some of 

them may result in the client applications behaving differently. For example, a method 

declares two parameters of type integer, which represent the start and end position of a 

sequence being processed within the method. In the new version, the method still 

declares two parameters of type integer. However, the second parameter changes to 

represent the length of a sequence starting at the given start position. If the client-

application developer imports the new version of the method without making any 

changes to the application, the code will still compile. However, the application would 

most likely behave abnormally, since the interpretation of the second parameter has 

changed. In such cases, the client-application developer has to first determine what the 

potential broken API is, since it cannot be automatically determined based on 

compilation errors and warnings, before they can highlight the code fragment (e.g., a call 

to the potential broken method) and request the API evolution catch-up support. In this 

particular example, our Diff-CatchUp approach then would most likely report the 

concerned method being renamed with the "end" parameter being removed and the 

"length" parameter being added, which can eventually guide the modification of the 

application to accommodate the interface change of the method. 

5.4.2 The quality of UMLDiff rasvAis 

Our approach to catching-up API evolution of a component framework relies on the API-

change facts reported by UMLDiff when it compares two subsequent versions of the 

system evolution. The renamings and moves that have been erroneously identified or 

missed by UMLDiff-will negatively affect our Diff-CatchUp approach. For example, a 

method M is removed but it is erroneously identified as renamed. If the method M is 
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involved in an "undefined method" problem, Afs renaming counterpart in the new 

version will be recommended as its replacing method based on the erroneous UMLDiff 

change fact, which could mislead the developer's effort to adapt the application code to 

the removal of the method M. Our evaluation of UMLDiff has shown its precision and 

recall to be good in practice. Thus, its negative effects on the Diff-CatchUp's API 

migration process should be minor. In addition, an interactive inspection step with the 

support of the JDEvAn tool [125] could be injected, which has been done in our case 

studies, after the completion of UMLDiffand before staring the API migration process, to 

correct the erroneously identified renamings and moves and to identify potentially missed 

instances. Finally, our approach allows the developers to explicitly request a mapped API 

element to be processed as removed when they deem the mapped counterpart returned by 

default inappropriate. 

5.4.3 Availability of "voluntary" migration examples 

Our approach does not assume the existence of the special handcrafted migration 

examples that demonstrate how to evolve application code in response to the interface 

changes of a component framework. Instead, our approach relies on the fact that a 

component framework embodies "voluntary" migration examples in its evolution history 

and thus itself represents good usage of its evolving API. 

We have identified four major reasons that cause the Diff-CatchUp failures, especially 

in the cases of the undefined problems caused by the removals of methods, constructors, 

and fields, i.e., the types of problems for which our Diff-CatchUp approach more 

frequently fails to recommend the corresponding replacing APIs. 

The first reason is that our approach assumes that some user elements within the new 

version of the component framework have been properly migrated to the new APIs, i.e., 

they have stopped using the changed APIs in favor of their corresponding replacements, 

thus demonstrating how to migrate from the "old" APIs to their "new" replacements. 

Thus, if no such user element exists, Diff-CatchUp will fail to collect any candidates for 

replacements. For example, in some cases, the migrated user elements do not use the 

replacing APIs directly. Although the transitive usage dependencies between model 

elements are available in the underlying logical model, examining all the transitively used 
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elements is time-consuming and generally produces too much noise. Thus, Diff-CatchUp 

does not collect replacement candidates transitively along usage dependencies and may 

consequently fail to identify a valid demonstration of a replacement. Furthermore, the 

API of a component framework may sometimes change dramatically, including removal 

of some of its elements and changes to all their relevant elements. In such cases, the 

replacing features, including the replacing APIs and their corresponding user elements, 

are "completely" new. Consequently, our approach cannot locate any user elements that 

are related to the removed APIs and their replacing APIs at the same time, which results 

in its failure to generate any proposals. 

The heuristics of our Diff-CatchUp approach for selecting most plausible replacing 

elements from the potentially large set of candidate elements may also prevent it from 

identifying valid replacements. On one hand, they are effective on filtering out irrelevant 

elements and generating a short and manageable list of replacement proposals returned to 

the developer for further inspection. However, the chances are that there exist no valid 

heuristics between the removed APIs and their replacements. Consequently, no candidate 

would be selected as plausible replacing element. For the deprecated methods and 

constructors, they generally have the usage dependency or even extract/inline operation 

relationships with their replacements, which makes the rate of successfully generating 

their replacement proposals much higher than that of the undefined methods and 

constructors. 

Another potential cause for Diff-CatchUp failure to recommend replacements is the 

fact that user classes and methods that implement complex functionalities sometimes 

become incohesive. They often end up with a multitude of members, many of them used 

in multiple different contexts. When all or most of these members are modified, they will 

blur the most relevant changes to the concerned broken APIs, which makes it difficult to 

select the plausible replacements or rank them higher in the returned list of proposals. 

Finally, some APIs are simply removed with no replacements at all. In JFreeChart case 

study, 2 removed classes, 7 removed methods and constructors, and 2 removed fields fall 

into this category. Our approach may still produce some proposals for them. However, 

upon the close inspection through JDEvAn Viewer, a developer can generally determine, 
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without spending too much effort, that the recommended elements are irrelevant and the 

broken APIs disappear without replacements. 

As discussed above, the existence of the user elements and the amount of changes they 

undergo affect the Diff-CatchUp's ability to collect potential candidate elements, select 

plausible replacement proposals, and determine the relevancy of the proposals. However, 

our experiments with the JFreeChart case study indicate that our assumption holds for 

most cases (about 93% overall) and our approach is worthwhile and effective on 

generating the replacing API elements and the corresponding usage examples in the face 

of the API evolution of a component framework. 

5.5 Summary 

In this chapter, we discussed our Diff-CatchUp approach to supporting the migration of 

client applications to appropriately use the evolved APIs of their underlying component 

frameworks. Diff-CatchUp does not require the component-framework developers to 

change their development practices and does not constrain the development environments 

adopted by the component and client-application developers. Instead, Diff-CatchUp 

recognizes the API changes that the reused framework has undergone - as automatically 

produced by the UMLDiff algorithm - and uses a set of heuristics to infer plausible 

replacements for the offending API that causes the API migration problem and examines 

the code base built on the evolved framework to select examples of how the potential 

replacements are used. 

The Diff-CatchUp approach relies on the fact that a component framework itself 

represents good usage of its evolving API and thus is sensitive to the existence of 

"voluntary" migration example in its evolution history and the amount of changes they 

undergo. However, our evaluation indicates that its assumption holds for most cases and 

it is quite effective (over 93% success rate in JFreeChart case study) generating the 

replacing API elements and the corresponding usage examples in the face of the API 

evolution of a component framework. 
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Chapter 6: Longitudinal Design-Evolution Analysis 

In addition to recognizing specific instances of design-change patterns, such as 

refactorings, some development tasks require that the developer understands the 

evolution trajectory, through which the system design has reached its current state. For 

example, when faced with the "shotgun surgery" smell [32], which may be corrected with 

the form template method refactoring [32], the developer has to understand how the 

classes affected by the "shotgun surgery" have been changing in the past, to decide what 

the skeleton, the default and the variant methods of the template-method class should be. 

Other tasks imply a need to understand the practices that the system-development team 

has adopted in the past. For example, when faced with a complex, non-cohesive class 

delivering multiple features, the developer has to decide how many of its features to 

extract in a new class. This judgment may depend, to some extent, on the specific ranges 

of class-complexity metrics that the developing organization has adopted as acceptable. A 

developer, who may be new to the team and may not have experience with the issue, 

could make a "right" decision by appealing to the way similar situations have been 

resolved in the past evolution history of the project. In addition to developers, managers 

are also interested in having an up-to-date mental model of the evolution trajectory of 

their projects, in order to abstract evolution patterns characteristic of desired qualities or 

symptomatic of problems so that they can better manage the project and predict the 

evolution of other projects in the future. 

There already exists a substantial body of literature on the general "software-evolution 

understanding" topic. A large subset of work [7,30,31,33,41,58,87] in this area involves 

analyzing the "history" recorded by version-management systems. Unfortunately, more 

frequently than not, such "history" data is sparse and inconsistent [13]. Another line of 

research [9,29,35,57,110] has focused on the visualization of software-process statistics, 

source code metrics, static dependence graphs, CVS-like deltas and their derivatives, etc. 

However, such visualizations do not scale well to handle large systems and require a 

substantial interpretation effort on behalf of their users. 

In this chapter, we discuss a suite of automated software-evolution analyses, based on 

the design changes reported by UMLDiff, to study the longitudinal evolution of object-
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oriented systems. First, the quantitative report of UMLDiff changes is discretized to 

produce a qualitative record of the volatility of the design evolution of each individual 

class, i.e., discrete class-evolution profile18, throughout the system's history. Then, four 

types of longitudinal analyses - phasic analysis [84], gamma analysis [75], optimal 

matching analysis [1], and association rule mining [2] - are applied to the discrete class-

evolution profiles to recover a high-level abstraction of distinct evolution phases and their 

corresponding styles and to identify class clusters with similar evolution trajectories. 

These longitudinal design-evolution analyses aim at addressing the following general 

research questions: 

• Are there distinct patterns in the evolution trajectories of classes in object-oriented 

software systems? 

• What types of inter-dependencies are there among the evolution trajectories of 

different classes and what might their implications be for the system's subsequent 

development? 

6.1 Classifying evolution behavior 

For an evolving software system with N successive versions, UMLDiff can be applied N 

times to generate the differences between the (I+l)th and /* versions, where 0<7 <N 

(supposing there is a virtual version 0 with no entities), resulting in an audit trail of the 

design changes that the system classes have suffered throughout their evolutionary 

lifecycle. This trail is analyzed to produce a class-evolution profile of length N (at most) 

for each individual system class (including interface). The class-evolution profile reports 

quantitatively the complete history of changes made to an individual class in each 

subsequent system version, i.e., in which version it was created, how many signature-

changes it underwent and how many of its member elements were newly added, removed, 

Similarly, subsystem- or system-evolution profiles can be produced. There is no 

fundamental difference between them, except for the different granularity of analysis. 

The classifications of change activities and the subsequent longitudinal analyses 

discussed in this chapter are applicable to all levels of evolution profiles. 
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moved, signature-changed19 in a particular version over its lifespan, and, possible, in 

which version it was deleted. Table 6-1 shows the evolution profile of class CategoryPlot 

from the JFreeChart case study. Note that this class was originally named BarPlot. 

UMLDiff correctly identified the renaming to CategoryPlot at version 0.8.0. 

Table 6-1. The evolution profile of class CategoryPlot 

BarPlot 
BarPlot 
BarPlot 
BarPlot 
BarPlot 
CategoryPlot 
CategoryPlot 
CateqoryPlot 
CategoryPlot 
CateqoryPlot 
CategoryPlot 
CategoryPlot 
CategoryPlot 
CateqoryPlot 
CateqoryPlot 
CateqoryPlot 
CateqoryPlot 
CateqoryPlot 
CategoryPlot 
CategoryPlot 
CateqoryPlot 

Version 
0.5.6 
0.6.0 
0.7.2 
0.7.3 
0.7.4 
0.8.0 
0.9.0 
0.9.1 
0.9.3 
0.9.4 
0.9.5 
0.9.7 
0.9.9 
0.9.10 
0.9.11 
0.9.12 
0.9.13 
0.9.14 
0.9.17 
0.9.19 
1.0.0 

Add 
19 
11 
3 
2 
0 
2 

30 
2 
1 
3 

52 
5 

35 
42 

2 
4 
8 
8 
1 
7 
4 

Remove 
0 
3 
0 
0 
0 
0 
6 
0 
0 
0 

18 
0 

20 
1 
0 
0 
0 
5 
0 

14 
2 

SigChange 
0 

19 
3 
1 
1 
6 
7 
1 
5 
1 

25 
8 

11 
14 
0 
8 
9 
4 
3 

40 
4 

Move 
0 
0 
0 
0 
0 
6 

14 
0 
0 
0 
4 
0 

10 
11 
0 
0 
0 
0 
0 
0 
0 

Volatility 
Rapidly developing 
Intense evolution 
Steady-state 
Steady-state 
Steady-state 
Restructuring 
Intense evolution 
Steady-state 
Restructuring 
Steady-state 
Intense evolution 
Restructuring 
Intense evolution 
Intense evolution 
Steady-state 
Restructuring 
Restructuring 
Slowly developing 
Steady-state 
Intense evolution 
Slowly developing 

As can be seen from Table 6-1, between any two versions of the system evolution, the 

types and amounts of changes may vary greatly. This level of detail and its variability 

make it very difficult to discern interesting patterns in the evolution of system classes. 

This is why the quantitative class-evolution profiles are discretized. 

Signature-changes include renamings and other modifications of signature, such as 

visibility and modifier changes of class, interface, field, and method and constructor, 

changes of data and return type and changes of inheritance relation. 
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The discretization process is based on two descriptive statistics: quantiles and means. 

The quantile is the specific value of a variable that divides the distribution into two parts, 

those values greater than the quantile value and those values that are less. That is, p 

percent of the values are less than the p% quantile. The a% and b% quantiles (a < b) for 

"Addition" and "Removal" are calculated. A continuous value is discretized as "Low" if 

it is below a% quantile, "High" if it is above b% quantile, and "Medium" otherwise. 

Since the majority of class-version (at least according to our experience) have no 

"Added" members (see Section 6.4.1), those class-versions with zero "Addition" are 

ignored when computing the "Addition" quantiles. Furthermore, classes with only one 

"Addition" account for about 25%-40% of the rest. To alleviate this substantial 

imbalance in the input data, these class-versions are ignored as well. For the remaining 

class-versions that have two or more "Addition" changes, the 25% (75%) "Addition" 

quantiles are computed, and rounded down (up) to get the corresponding integer low a% 

(high b%) "Addition" quantiles, which generally fall into the range of 15%-25% quantile 

or 75%-85% quantile respectively. "Removal" is treated similarly to "Addition". 

Because moves and signature-changes appear less frequently than additions and 

removals, the range of values for moves and signature-changes is narrower than the range 

of values for the latter two types of modifications. Therefore, the means of the numbers 

of "Movement" and "Signature-change" are computed and they are discretized into two 

ranges: "High" if they are above the mean and "Low" otherwise. Again, the class-

versions with zero or one "Movement" or "Signature-change" are ignored. Furthermore, 

if a class is moved or renamed in a particular version, its corresponding qualitative value 

of "Movement" or "Signature-change" will be marked as "High", irrespective of changes 

made to its member elements. 

In general, there are four characteristic types of evolutionary behavior that software 

system and its components may exhibit at the design level. First, the design may simply 

not evolve - steady state - during periods of bug fixes, testing and documentation. 

Alternatively, the design may go through restructuring, when design entities are neither 

added nor removed but simply moved or slightly modified. During periods of 

functionality extensions in response to behavioral-change requests the design is bound to 

change with new entities introduced to the system to support the new features and 
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existing entities removed to eliminate the unwanted behaviors. Finally, the design may go 

through phases of intense evolution including both restructuring activities in anticipation 

of new features as well as changes in support of adaptations to the system behavior. 

Table 6-2. Classifications of change activities 

Type 
A 
B 
C 
D 
E 

Combination of labels 
(aH or rH) & (mH or sH) 
(aH or rH) & (mL and sL) 
!(aHorrH)&(mHorsH) 
(aM or rM) & (mL and sL) 
(aL and rL) & (mL and sL) 

Description 
Intense evolution 
Rapidly developing 
Restructuring 
Slowly developing 
Steady-state 

These types of high-level evolution behavior can be recognized in terms of the 

qualitative values characterizing the amount of changes of each type in the class-

evolution profiles. Table 6-2 lists five distinct classifications of evolution behavior, 

distinguishing between five levels of intensity of system classes' evolution. The 

characters a, r, m, and 5 represent addition, removal, movement, and signature-change 

respectively. The subscripts H, M, and L represent High, Medium, and Low respectively. 

According to Table 6-2, a period, defined by a "before" version and an "after" version 

of an evolving software system, is considered to exhibit intense evolution (type-A) when 

a High number of entities are newly created and/or removed in the "after" version, and 

there is also a High number of moved design entities and/or signature-changes. The high 

number of moves and signature-changes implies that many perfective maintenance 

activities are happening during this period. At the same time, the high number of newly 

created and/or removed entities is very likely the result of such maintenance activities, 

such as adding new fields for the restructured class interface, removing deprecated 

methods, etc. It might also be the result of functionality extension. 

Type-C periods correspond to restructuring periods. They contain many maintenance 

activities that result in a High number of moves and signature-changes, while their 

numbers of newly created and/or removed entities remain Medium or Low. 

Type-B and type-D periods correspond to functionality-extension periods with 

different levels of intensity. Neither includes many perfective maintenance changes. 

Type-B periods contain a High number of newly created and/or removed entities. The 
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software system develops rapidly during such periods. Type-D periods, on the other hand, 

contain a Medium number of addition and/or removal changes; the system is slowly 

developing during such periods. 

Finally, type-E periods represent the steady-state periods of system evolution, where 

the number of maintenance changes remains Low and the number of other types of 

changes is also Low. The system changes little during this time. 

These five classifications characterize the volatility of system classes over their 

lifecycle. The discrete evolution profile (composed of a sequence of discrete volatility 

types) of the CategoryPlot class is shown in the last column of Table 6-1. Compared with 

the continuous value profile of CategoryPlot, the discrete view of its profile exhibits 

clearly the phases of the CategoryPlot's evolution, which can then be easily analyzed to 

discern its sequential evolutionary patterns. 

The evolution profile of the CategoryPlot class started with a rapidly developing phase 

in which it was introduced into the system with 19 members. It then was under intense 

development until version 0.6.0, which was followed by five versions with few (or no) 

changes (note that version 0.7.1 is not in the table, since there is no change made to class 

CategoryPlot in that version). This steady-state phase ended at version 0.8.0, in which the 

class interface was refactored, and was then followed by an intense evolution phase until 

version 0.9.0. After that, the class underwent minor changes until version 0.9.5. From 

0.9.5, the class entered its most active period over its lifespan. This continuous intense 

development resulted in the two restructuring phases in version 0.9.12 and 0.9.13. 

CategoryPlot then went into a slowly developing phase, followed by a steady-state phase, 

followed by an intense evolution phase again in version 0.9.19, and finally went stable. 

6.2 Analyzing class-evolution phases and styles 

After the class-evolution profiles have been discretized, a nonparametric sequential 

analysis (phasic analysis) [84] is applied to generate a flexible phase map that is 

composed of the sequence of discrete change activities. Further gamma analysis [75] of 

the class phase maps identifies general ordering relations among the various types of 

phases. Finally, optimal matching analysis [1] is applied to discover clusters of systems 

classes with similar evolution styles. 
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6.2.1 Phasic analysis 

Phasic analysis recognizes distinct phases in the discretized evolution profile of a design 

entity, whether it is the system as a whole or an individual class. Intuitively, a phase 

consists of a consecutive sequence of system versions, all of which exhibit similar 

classifications of change activities. Identifying a phase in a class-evolution profile may 

provide some insight regarding the development goals during the corresponding period. 

Phasic analysis has been widely applied in longitudinal analysis of temporal processes 

of social phenomena. It works with nominal and categorical data and has been 

successfully applied in the study of information-system development [84]. It assumes that 

social behaviors can be described in units larger than individual acts, which can cohere 

into phases or patterns in the developmental path of a social event. These patterns are the 

result of dynamics that drive the changes over time [43]. 

We think of the evolution of software system in analogy to a social event that unfolds 

and changes over time, according to some form of underlying process. Systems evolve to 

fix defects, meet customer-driven functionality enhancements, adapt to changes in the 

deployment environment, and so forth. Thus, we believe that the phasic analysis is a 

promising way to understand the general evolution of software systems and their 

components and to discover how they are born, developed, and terminated, and the 

processes that drive their unfolding. 

We use WinPhaser to apply phasic analysis on the discrete evolution profiles. 

WinPhaser is a set of sequence description and analysis tools [43] for the study of 

sequential data consisting of a time-ordered set of discrete elements. WinPhaser 

generates a flexible phase map from a data sequence consisting of discrete data elements. 

A phase map is composed of a series of coherent units. WinPhaser's flexible phase-

mapping module parses the data sequence into phases of different length based on shifts 

in the data sequence. It labels the phase with the type of predominant elements in that 

phase and identifies noisy periods with no predominant elements as pending phases. 

Therefore, in our use of WinPhaser, there are six different types of phases that can be 

identified in the evolution profiles. They are: Intense evolution, Rapidly developing, 

Restructuring, Slowly developing, Steady-state and Pending. 
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6.2.2 Gamma analysis 

Gamma analysis [75] recognizes recurring patterns in the relative order of phases in an 

evolution profile, such as consistent precedence of a phase type over another. Different 

process models advocate distinctive ordering of activities in the project lifecycle; gamma 

analysis can reveal such consistent relative orderings and thus hint at the adopted process 

model. 

In particular, Gamma analysis provides a measure of the general order of elements in a 

sequence and a measure of the distinctiveness or overlap of element types. It measures 

the proportion of A events that precede or follow B events in a sequence. A pair-wise 

gamma is given by P-Q/P+Q, where P is the count of A events preceding B events and Q 

is the count of B events preceding A events. Gamma analysis of a sequence yields a table 

(see Table 6-5) consisting of pair-wise gamma scores for each possible pair of element 

types. 

Based on the pair-wise gamma analysis, the precedence and separation scores (see 

Table 6-6) are calculated for an element type. The precedence score is given by the mean 

of its pair-wise gamma scores. The precedence score indicates the location of the element 

in the overall ordering of element types and can range from -1 to 1. A score of 1 occurs in 

the beginning of a sequence. A score of -1 occurs at the end of the sequence. The 

separation score for an element type is given by the mean of the absolute value of its pair-

wise gamma scores. It is a measure of the relative distinctiveness of the element type and 

can range from 0 to 1. Separation approaches 1 as a larger proportion of the units of a 

given element type occurs contiguously. An element will obtain a lower separation score 

if it occurs at several widely separated points in a sequence. 

Gamma mapping is the final step in gamma analysis. Precedence and separation scores 

are used to construct gamma maps. Element types are ordered sequentially on the basis of 

precedence scores (from largest to smallest). Phases with separation scores below .50 are 

not clearly separated from other phases. 

Gamma analysis constructs an abstract sequential pattern from a phase map. The 

resulting gamma map is simple enough to be used to qualitatively evaluate the overall 

class evolution against its underlying development process (see Section 6.4.2) or 
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qualitatively cluster a number of system classes according to their evolution patterns at 

this higher-level of abstraction (see Section 6.4.4). 

6.2.3 Optimal matching analysis 

Optimal matching analysis [1] provides a generic tool for sequence comparison when 

each sequence is represented by well-defined elements drawn from an alphabet of a 

relatively small set of (repeating) element types. It can be used to recognize how similar 

the evolution profiles of two (or more) classes are. 

Optimal matching analysis produces an index of the relative "distance" between any 

two sequences. This index is the smallest possible cost of operations of insertion, 

substitution and deletion of sequence elements required to align two sequences, that is, to 

transform one sequence into the other. The more similar the sequences being compared, 

the fewer operations required to align them and the smaller the index of distance or 

dissimilarity. 

Each type of operations should be assigned a cost that represents the difficulty of 

making that change [6]. The cost can be thought of as the perceived unlikelihood of the 

change having arisen at random in whatever process produced the changed element. For 

example, as we discussed in Section 6.1, the steady-state phases of system evolution 

represent the time period in which few changes have been made, while rapidly 

developing phases represent the major function extension and restructuring phases 

represent the system maintenance activities. Therefore, in the cost model for the 

alignment of two phase maps of system evolution, the cost to substitute a restructuring 

phase with a rapidly developing one should be much higher than that to insert a steady-

state phase, since rapidly developing and restructuring are very different type of phases 

by their very nature, but phase type of steady-state is almost equal to nothing. 

Furthermore, there are many possible sets of operations to align any two sequences. The 

dynamic programming algorithm [98] is applied to calculate the least possible cost for the 

alignment. 

A single distance index provides only a numerical value for the dissimilarity between 

two sequences. In and of itself, this index may not be especially interesting. But typically 

a larger set of sequences are compared and the resulting distance matrix can then be 
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subjected to cluster analysis in order to generate a sequence typology, such as different 

types of class-evolution styles discussed in Section 6.4.3. 

6.3 Detecting co-evolving classes 

The class-evolution phases and styles reveal the evolution characteristics of each 

individual class throughout the lifecycle of the system. As software systems evolve over a 

long time, non-trivial and often unintended relationships among system components arise, 

which are frequently undocumented and usually are not easily perceivable in the source 

code. A particularly interesting such relationship is class co-evolution: because of 

implicit design dependencies sets of classes change in "parallel" ways and recognizing 

such co-evolution is crucial in effectively extending and maintaining the system. First, 

the system maintainers may decide to restructure the system in order to eliminate this 

interdependence, thus evolving it into a more modular and less coupled design. 

Alternatively, they may document the interdependence as a predictor of maintenance 

activities, so that, when some of the co-evolving classes have to be modified, the rest of 

the cluster is also examined and retested. 

Given a set of discrete class-evolution profiles, a transaction database is populated, 

which is subsequently data-mined using the Apriori algorithm for association-rule mining 

[2] to elicit class co-evolution rules among two or more classes. In contrast to Boolean 

association rules [9,33,87,110], which concern associations between the change and no-

change of system classes, our class co-evolution rules are fine-grained, which concern 

associations between different types of changes, such as the following: "when adding 

members to class A, class B also gets additional members too"; or "when adding 

members to class A, it is often needed to restructure class B's interface". 

For a software system with N versions, a database with N entries is generated from the 

discrete class-evolution profiles. Each entry T corresponds to a system version and is 

assigned a unique identifier, the version ID (VID); it contains a set of classes that changed 

in that version. The modifications of classes in each entry are represented in terms of 

their volatility classification (as defined in Table 6-2) in the corresponding system 

version: Intense evolution, Rapidly developing, Restructuring, Slowly developing, and 

Steady-state. 
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We programmatically use the implementation of Apriori association-rule mining 

algorithm in the Weka [130] toolkit. Our initial intention was to integrate the Weka 

Apriori implementation within the JDEvAn tool. But this implementation is in-memory 

and does not scale well for medium or large software systems, such as the ones in our 

case studies that involve several dozens of system versions, with thousands of classes, 

with each class-version belonging in one of five types of volatility. This data set can 

easily use up the Java virtual-machine memory. 

To address this scalability issue, we used a data-reduction technique [40] by 

abstracting our original categorical volatilities to a higher conceptual level. More 

specifically, based on the nature of the different types of discrete change activities, when 

constructing the transaction database for class co-evolution analysis, we consider the 

rapidly and slowly developing (Type-B and Type-D) periods as instances of a general 

function-extension category; at the same time, we consider intense-evolution and 

restructuring (Type-A and Type-C) periods as instances of a refactoring category. Since a 

steady-going period indicates that there are few changes, it is ignored (considered as no-

change) when building the class co-evolution database for mining co-evolution patterns. 

Therefore, the volatilities of classes in each database entry fall into three categories: 

function-extension, refactoring, and no-change. 

The reduced representation of the data resulting from this classification-abstraction 

step is smaller in volume while still reflecting the nature of the original data. It reduces 

the memory cost of the Weka's implementation of Apriori association rule mining 

without substantially compromising the effectiveness of the analysis. Nevertheless, the 

risk of running out of memory still exists for large software systems or at low mining 

thresholds. Furthermore, the co-evolution rules that hold at higher conceptual level may 

not hold at lower levels of abstraction. Finally, a post-processing may be necessary to 

infer more details about the discovered rules. To address these issues, OLAP (On-line 

Analytical Processing) [94] may be used, to enable mining multi-level class co-evolution 

rules on large software system. 

We briefly discuss the Apriori association rule-mining algorithm here. Readers are 

referred to the original paper [2] for details. Given a transaction database, the Apriori 

algorithm generates all association rules with at least some user-specified minimum 
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support and confidence. The algorithm involves two sub-problems. First, it generates all 

sets of items (itemsets) that have transaction support above minimum support. The 

support for an itemset is the number of entries that contain the itemset. Itemsets with 

minimum support are called large itemsets and all others are small itemsets. Next, the 

large itemsets are used to generate the desired rules. The general idea is that, if ABCD 

and AB are large itemsets, then the rule AB => CD holds if its confidence, i.e., the ratio 

support(ABCD)/support(AB) is greater than the user-specified minimum confidence. 

Note that the rule will surely have minimum support because ABCD is large. 

The Weka toolkit also supports a significance test on the generated confidence-based 

rules. The confidence-based rules, so-called strong rules, may not be interesting to the 

user, since the antecedent and consequent may be negatively associated, which means 

that the occurrence of one of them may decrease the likelihood of the occurrence of the 

other. The lift [40] metric can be used to measure the statistical dependence (correlation) 

between the occurrences of itemsets. If the lift value of significant test on a strong rule is 

less than one, then the occurrence of the antecedent of the strong rule is negatively 

correlated with (or discourages) the occurrence of the consequent. If the lift value is 

greater than one, then it means the occurrence of the antecedent implies the occurrence of 

the consequent. If the lift value is equal to one, then the antecedent and consequent are 

independent and there is no correlation between them. 

Because the transaction database for class co-evolution analysis is built on the design 

changes reported by UMLDiff, which are classified into the function-extension or 

refactoring categories, mining this database with Apriori produces the following types of 

class co-evolution rules: 

• class function-extension(s) => class function-extension(s) 

• class function-extension(s) => class refactoring(s) 

• class refactoring(s) => class function-extension(s) 

• class refactoring(s) => class refactoring(s) 
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Table 6-3. Transaction database for association-rule mining 

V01 
V02 
V03 
V04 
V05 
V06 
V07 
V08 
V09 
V10 
Vl l 
V12 
V13 
V14 
V15 
V16 
V17 

CI 
D 

T 

D 
T 

D 

C2 
D 

T 
D 

T 

T 

T 

C3 
D 

T 

D 

T 

T 

T 

C4 
D 

T 

T 

T 

T 

C5 

D 
T 

T 

T 

T 

C6 
D 

T 

D 
T 

D 

C7 

D 

T 

T 

D 

C8 
D 

T 

T 

T 

D 

C9 

D 

T 

T 

T 

Let us consider a system with 17 versions, whose final version contains 9 classes, CI 

through C9. Table 6-3 shows the transaction database for this example system in the form 

of a pivot table. For this transactional data, if the minimum support is set to 20% and the 

minimum confidence to 50%, the following co-evolution rules are discovered (with lift 

value of significant test greater than one). 

• C1=D (3) => C6=D (3) [confidence^] 

• C6=D (3) => C1=D (3) [confidence^] 

The number in bracket following the antecedent and consequent of the rule is the 

support value of large itemset. These two rules state that, in three different versions, both 

classes CI and C6 were similarly modified, with new feature additions and/or old feature 

removals. This is essentially evidence that the two classes have parallel function-

"D" represents function-extension, "T" represents refactoring, and empty cell 

represents no-change. 
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extension phases throughout their lifecycle. Additional concrete examples are discussed 

in Section 6.4.4. 

6.4 Evaluation 

In this section, we used JFreeChart [126] as the subject system to evaluate our 

longitudinal design-evolution analysis methods. More specifically, this case study was 

designed to examine the following specific research questions, refining the general 

research questions, stated in the beginning of this chapter: 

• How are classes introduced to, maintained, and eliminated from the system? 

• Are there any consistent order relations among the various class-evolution phases? 

Do they appear periodically? 

• Are there distinct styles of multiple class-evolution trajectories? 

• Are there any interesting inter-dependencies among the evolution trajectories that 

individual classes follow? 

6.4.1 Class-evolution phases 

First, we review the characteristics of the evolution phases of individual system classes. 

In particular, we are interested in "how are classes introduced to, maintained and 

eliminated from the system?" Over the life span of JFreeChart, 1122 classes and 

interfaces (including inner classes and interfaces but not anonymous classes) appeared in 

the system. The evolution profile of each of these classes was analyzed and Table 6-4 

reports the number of different types of phases in their evolution profiles. 

Table 6-4. The summary of evolution phases in JFreeChart 

Start with 
In the middle 
End with 
Remove with 

Intense 
evolution 

9 
87 
15 
11 

Rapidly 
developing 

325 
47 

199 
176 

Restructuring 

15 
654 

16 
9 

Slowly 
developing 

706 
197 
269 
225 

Steady-
state 

67 
1530 
623 

16 

A "Start with" phase is the first phase of the class lifecycle, following its introduction 

to the system. An "End with" phase is the last phase of the class. If a class happens to be 
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removed from the system - either before or at the last version of the system - its "End 

with" phase is also a "Remove with" phase; that is, "Remove with" phases are a subset of 

"End with" phases. All other class lifecycle phases, between the "Start with" and "End 

with" phases of classes are "In the middle" phases. 

6.4.1.1 How are classes introduced into system? 

Most classes (773 out of 1122, about 69%) were introduced into the system with an initial 

slowly developing or steady-state phase. These classes include demo classes (used to 

demonstrate features such as how to use CategoryPlot), JUnit classes, change-event classes 

(encapsulating information about a change to a particular chart) and their corresponding 

listener interfaces, utility classes (with static methods and/or public constants to be used 

by other classes), high-level interfaces, simple classes and subclasses of almost fully 

implemented abstract classes. With few exceptions, these classes were simple, they did 

not incorporate too much application logic, and they did not change much after their 

introduction to the system. 

About 29% (325) classes were introduced into system with a rapidly developing phase. 

They were almost all the core objects of JFreeChart system, which include all the 

important components of a chart object, such as plot, axis, renderer, title, legend, and 

concrete dataset. In general, these classes were much more complex than most of the 

classes introduced with a slowly developing or steady-state phase. They were frequently 

modified over their lifecycle for function extension and/or restructuring. 

6.4.1.2 How do classes evolve after their introduction to the system? 

After their introduction into the system, most classes and interfaces went through steady-

state phases (1530 out of 2509, about 61%). Only a small fraction (244 out of 2509, about 

10%) of phases that classes went through are rapid or slow development phases, 

indicating function extension. Intense evolution and restructuring phases account for the 

rest 30% phases of class evolution. The classes that are introduced later are more likely to 

have intense evolution, rapid development, and restructuring phases. 

Based on this data, it seems that the JFreeChart system classes and interfaces had most 

of their functionalities ready in the beginning of their evolution, and afterwards they were 

sometimes extended with new features, but they were most often restructured to better fit 
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in the whole system. There can be two explanations for this phenomenon. JFreeChart 

may have been developed following a design-driven development process, with a detailed 

requirement analysis and high-level system design upfront. Having made all this analysis 

in the beginning, the JFreeChart developers would know what architecture to adopt, what 

functionalities to support and how to implement them. A more agile development process 

would exhibit a more incremental function-extension development style. On the other 

hand, it could be that distinct modules delivering well-defined features are contributed by 

individual developers, who do their incremental development outside the project 

repository. Once the modules are mature, they are added into system and then they do not 

or rarely evolve any more. This latter type of process would be more in tune with the 

overall open-source development model, where individuals develop "patches" that are 

submitted to the project maintainers and are included only after they have been 

thoroughly tested. 

6.4.1.3 When do classes disappear and where do they go after they are removed? 

Most of the system classes went gradually into a steady state, since about 55% (623 out 

of 1122) of the evolution profiles of classes and interfaces ended up with steady-state 

phases in the most recent system releases. Interestingly, the classes that ended with active, 

rapidly developing, restructuring, and slowly developing phases were mostly removed 

from the system (see the fourth row of Table 6-4). This phenomenon indicates that as 

long as the classes and interfaces still exist in the system, they undergo fewer and fewer 

modifications and eventually become stable. 

Finally, let us look more closely at these fairly rare classes and interfaces that exhibited 

intense evolution or restructuring phases in the beginning and/or at the end of their 

lifecycle. Some of them were "legacy" classes [102]: they were introduced into the 

system as placeholders for fields and methods moved in from other classes. Some were 

"die-hard" classes [102], i.e., they were removed from the system when their 

functionalities were moved out to other classes. These types of classes represent evidence 

of redistribution of functionality or reorganization of the class hierarchy. 

Several distinct types of legacy classes were identified in JFreeChart. Some of them, 

such as ChartPanelConstants, were the product of extracting constants into an interface. 
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Others, such as PlotRenderlno or ObjectTable, were the result of extract class or extract 

superclass refactoring. Finally, yet other legacy classes, such as AxisLocation, were the 

product of even more complex refactorings, such as replace type code with class. 

Several classes, such as Vertical/HorizontalCategoryAxis, Vertical/HorizontalCategoryPlot, 

were removed from system in version 0.9.9. They ended up with intense evolution or 

restructuring phases. These classes exhibited similar evolution profiles to each other as 

discussed in Section 6.4.4. Such evolution similarity implies that the vertical and 

horizontal sibling subclasses of CategoryAxis and CategoryPlot most likely do similar 

things in a similar or even exactly the same manner. In fact, before version 0.9.9, there 

existed parallel Plot, Axis and Renderer hierarchies in the JFreeChart system. This fact 

caused a lot of code duplication into the system, which is among the most common "bad 

smells" in software systems. In version 0.9.9, the JFreeChart developers made some 

important changes to the system design, one of which is to redevelop the Plot, Axis, and 

Renderer hierarchies, which resulted in the above vertical and horizontal axis and plot 

classes becoming die-hard classes. 

We also found several pairs of die-hard and legacy classes, such as Crosshairlnfo in 

version 0.9.16 and CrosshairState in version 0.9.17. These pairs are the results of renaming 

and moving classes and interfaces at the same time. As we have already discussed, to be 

more efficient, UMLDijf ignores synchronous renamings and moves of entities: this 

would require the pair-wise comparison of all the not-yet-mapped model elements, which 

would be very inefficient. However, such renaming-and-moves are very likely to be 

recovered by querying for pairs of die-hard and legacy classes. 

6.4.2 Relative order of evolution phases 

Gamma analysis examines the relative order of the various phase types in the class 

evolution profiles, in order to reveal any consistent relative-ordering relations between 

them. For example, according to the agile-development lifecycle, function-extension 

phases should be interleaved with refactoring phases. If a project follows an agile-

development style, then gamma analysis should reveal that rapidly and/or slowly 

developing phases are followed by intense evolution and/or restructuring phases and they 

appear periodically. 
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Table 6-5. Pair-wise gamma scores of class Axis 

Intense evolution 
Rapidly developing 
Restructuring 
Slowly developing 
Steady-state 

Intense 
evolution 

0.000 
-1.000 
0.750 
0.000 
0.579 

Rapidly 
developing 

1.000 
0.000 
1.000 
1.000 
1.000 

Restructuring 

-0.750 
-1.000 
0.000 

-0.750 
-0.105 

Slowly 
developing 

0.000 
-1.000 
0.750 
0.000 
0.474 

Steady-
state 

-0.579 
-1.000 
0.105 

-0.474 
0.000 

Table 6-6. Separation and precedence scores of class Axis 

Separation 
Precedence 

Intense 
evolution 

0.582 
0.082 

Rapidly 
developing 

1.000 
1.000 

Restructuring 

0.651 
-0.651 

Slowly 
developing 

0.556 
0.056 

Steady-
state 

0.539 
-0.487 

Take the class Axis as an example. The pair-wise gamma scores are computed for each 

possible pair of phase types as shown in Table 6-5. Table 6-6 shows the corresponding 

precedence and separation scores for five phase types. Finally, the gamma map of the 

Axis' evolution profile is: 

<Rapidly developing, Intense evolution, Slowly developing, Steady-state, 

Restructuring>. 

The gamma map displays the phase types in their precedence order. The separation 

scores of all five phase types are greater than 0.50, which means that all these phase types 

are sufficiently distinct from each other. The Gamma map abstracts the overall sequential 

pattern from a phase map. In the case of the Axis class, refactoring (i.e. intense evolution 

or restructuring) phases follow the function-extension (i.e., rapidly or slowly developing) 

phases. In [103], we studied the evolution phases of Mathaino project [92] - a research 

project developed by a single developer using a refactoring-driven process, and we 

observed the similar interweaving phenomena between function-extension and 

refactoring phases at the system level. 

In addition to the relative order of evolution phases of individual system classes, we 

are also concerned with how the two types of evolution phases followed each other for all 

the system classes as a whole. 
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6.4.2.1 How frequently should the classes be refactored in JFreeChart system? 

Refactoring phases are interjected in the system-development lifecycle to keep the system 

design from deteriorating after adaptations in support of function extension. However, in 

practice, different projects inject in their process refactoring phases with different 

frequency. The question then becomes, for a given project how frequently should the 

developers attempt to refactor it? 
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Figure 6-1. Refactoring frequency 

Figure 6-1 summarizes the restructuring frequency of JFreeChart's class evolution. 

The horizontal axis represents the interval between two refactoring phases or the number 

of rapidly developing, slowly developing and steady-going phases before the first 

refactoring phase, while the vertical axis show how many times refactoring are made at a 

particular interval. 

As shown in Figure 6-1, there are 107 times that a refactoring phase immediately 

follows a previous refactoring phase, at interval 0. Note that 9+15 of them are instances 

of classes that start with intense evolution or restructuring phases (see Table 6-4). 

Therefore, there are actually 83 instances of consecutive refactoring phases. In addition, 

there are 139 refactoring phases separated from another refactoring phase with only one 

phase of another type (most frequently a slowly-developing or steady-state one). These 

222 (about 29% out of total 771) close refactoring phases represent almost continuous 
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refactoring work of a small set of related classes over a short time period. For example, in 

JFreeChart, tooltips and label-related features are continuously refactored from version 

0.9.16 to 0.9.20. 

There are 318 refactoring phases that are separated by five or more phases of other 

types. Close inspection revealed that about 190 out of 318 (about 24% of the total 771) 

refactoring phases are the result of three major package splits. This is not surprising, 

given that a phase is considered as "restructuring" as long as the corresponding class is 

renamed or moved in that phase, irrespective of what other types of changes it has also 

suffered. Therefore, only 128 cases (about 16% of total 771) involve refactoring activities 

really far apart of each other. 

In about 30% of the 771 cases, refactoring phases are separated from each other with 

two to four phases of other types. 

Given the consistently frequent refactoring phases in the JFreeChart classes, which 

may be the result of an established practice or even an explicit project policy, a new 

JFreeChart developer would likely be advised to refactor a class, after no more than four 

consecutive function-extension phases. This project-specific advice - although by no 

means definitive — is very important and should be recovered and presented to the 

developers in the context of a particular system. 

6.4.3 Class-evolution styles 

We applied optimal matching analysis to compute the pair-wise similarity of any two 

class evolution profiles in a numerical distance index. The resulting distance matrix was 

then subjected to cluster analysis in order to generate the groups of classes with similar 

evolution styles. This analysis revealed several similarly evolving clusters of classes. 

The first, and most obvious, clusters correspond to the demo and the JUnit test classes. 

As discussed in above section, in general, these classes were simple and they did not 

change much after their introduction into the system. 

There are three much more interesting clusters of classes, each one exhibiting a distinct 

evolution style: shorted-lived classes, idle classes, and active classes. 

Short-lived classes: The characteristic of the clusters of short-lived classes is that they 

exist only in a few versions of the system and then disappear. There exist groups of 
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classes with very short lives, such as for example, ObjectTable and its subclasses that were 

introduced in version 0.9.9 and were removed in the following version 0.9.10, and 

DataSource and its subclasses that existed only in the first version, 0.5.6, and then 

disappeared in version 0.6.0. These classes were actually moved to a related library, 

JCommon [127]. 

The more interesting short-lived classes are such classes as VerticalDateAxis, and 

VerticalColorBarAxis and HorizontalLogarithmicColorBarAxis and VerticalLogarithmicColorBarAxis. 

They were introduced into system in version 0.9.5. They actually contained almost the 

same fields and methods as the classes HorizontalDateAxis and HorizontalColorBarAxis 

respectively. They also exhibited very similar efferent and afferent usage to the 

HorizontalDateAxis and HorizontalColorBarAxis classes respectively. Few changes were made 

to them since their introduction into the system, and these duplicate classes were finally 

removed in version 0.9.9 where the major development was done to redevelop the axis, 

plot, and Tenderer hierarchy to remove the parallel inheritance (see Section 6.4.4). 

Idle classes: The major characteristic of the idle-classes' clusters is that they rarely 

undergo changes after their introduction into system. There were several distinct types of 

idle classes discovered in JFreeChart. First, there were some stand-alone utility classes. 

Second, root abstract classes and interfaces were mostly idle. An exception was the root 

abstract classes of axis, plot, and renderer hierarchies, such as class Axis, CategoryPlot, 

AbstractRenderer, are, in fact, active. Third, concrete subclasses of almost fully-developed 

abstract superclasses tend to be idle. For example, the strategy pattern was applied to the 

needle classes used by the CompassPlot class. The abstract superclass MeterNeedle was 

well-defined and all its subclasses only need to override the drawNeedleO method to 

provide different algorithms to draw different shapes of needles. These subclasses rarely 

changed after they were added to the system. Finally, some features contributed together 

by the same author were rarely modified after they were introduced into system. For 

example, the classes ContourValuePlot, StandardContourToolTipGenerator, ContourEntity, 

ContourToolTipGenerator, and ContourDataset were added in version 0.9.5, contributed by a 

single author who probably tested them thoroughly before adding them to the system. 

Active classes: Active classes keep being modified over their whole lifespan. We 

already discussed the fact that many of the core components of JFreeChart system were 
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active classes. Since JFreeChart is still under active development, it should be normal 

that these core classes are still volatile and undergo substantial modifications. 

6.4.4 Class co-evolution 

Frequently sets of classes exhibit "parallel" evolution profiles, due to hidden inter-

dependencies among them, not necessarily visible when examining their relations at the 

design stage. A simple indicator of the co-evolution symptom can be obtained by 

qualitatively clustering together classes that exhibit similar gamma maps. 

Table 6 7. VerticalCategoryAxis vs. HorizontalCategoryAxis 

(a) Evolution profiles 

Version 
0.5.6 
0.6.0 
0.7.4 
0.9.0 
0.9.3 
0.9.4 
0.9.5 
0.9.7 
0.9.9 

VerticalCateqoryAxis 
Add 

8 
2 
3 
0 
0 
0 
5 
0 
0 

Remove 
0 
0 
0 
0 
0 
0 
1 
0 

10 

SigCha 
0 
0 
1 
0 
0 
2 
5 
1 
0 

Move 
0 
0 
0 
0 
0 
0 
1 
0 
7 

HorizontalCateqoryAxis 
Add 

11 
2 
1 
3 
3 
1 
6 
1 
0 

Remove 
0 
0 
0 
0 
0 
0 
2 
0 

10 

SigCha 
0 
0 
1 
0 
0 
3 
5 
1 
0 

Move 
0 
0 
0 
0 
0 
0 
1 
0 

16 

(b) Gamma maps 

VerticalCategoryAxis 

HorizontalCategoryAxis 

Gamma map 
Slowly developing 
Steady-state 
Restructuring 
Intense evolution 
Rapidly developing 
Slowly developing 
Steady-state 
Restructuring 
Intense evolution 

Consider for example, the classes VerticalCategoryAxis and HorizontalCategoryAxis: their 

evolution profiles are shown in Table 6-7 (a) and their corresponding gamma maps are 

shown in Table 6-7 (b). Inspecting their gamma maps, as a high-level abstraction of their 
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evolutionary patterns, it is evident that their evolution paths are very similar. The only 

difference between their gamma maps is that class HorizontalCategoryAxis started with a 

rapidly developing phase. Next, they both had slowly developing phases, followed by 

steady-state phases, followed by restructuring phases, and they finally ended up with an 

intense evolution phase. 

An exact similar behavior is also found in the plot and renderer hierarchies, as shown 

in Table 6-8 by the evolution profiles of the classes VerticalCategoryPlot and 

HorizontalCategoryPlot. 

Table 6-8. The evolution profiles of VerticalCategoryPlot vs. HorizontalCategoryPlot 

Version 

0.5.6 
0.6.0 
0.7.1 
0.7,2 
0.7.3 
0.7.4 
0.8.0 
0.9.0 
0.9.3 
0.9.5 
0.9.7 
0.9.9 

VerticalCategoryPlot 
Add 

18 
4 

2 
0 
0 
0 
0 
4 
0 
1 
0 
0 

Remove 
0 
0 
0 
0 
0 
0 
3 
3 
0 
5 
0 
9 

SigCha 
0 
7 
6 
1 
1 
1 
4 

10 
5 
2 
1 
0 

Move 
0 
0 
0 
0 
0 
0 
2 
2 
0 
1 
0 
5 

HorizontalCategoryPlot 
Add 

18 
2 
2 
0 
0 
0 
0 
3 
0 
1 
0 
0 

Remove 
0 
1 
0 
0 
0 
0 
2 
2 
0 
3 
0 
9 

SigCha 
0 
4 
4 
1 
1 
1 
4 

12 
5 
2 
1 
0 

Move 
0 
0 
0 
0 
0 
0 
2 
2 
0 
1 
0 
5 

However, such qualitative clustering is likely to miss important distinctions among 

larger collections of complex sequences. In such cases, data-mining technique, such as 

the one discussed in Section 6.3, can be applied to recover and make explicit such 

"hidden knowledge". By applying association-rule mining, we discovered an interesting 

set of co-evolving classes that consists of the (a) CategoryPlot, HorizontalCategoryPlot and 

VerticalCategoryPlot and their subclasses, (b) BarRenderer, VerticalBarRenderer and 

HorizontalBarRenderer and their subclasses, and (c) CategoryAxis, DateAxis, NumberAxis, 

SymbolicAxis and their corresponding horizontal and vertical axis subclasses. We also 

discovered some less remarkable sets of co-evolving classes, such as for example Plot and 

Axis. They exhibit three types of co-evolution: 
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• Function-extension => function-extension 

• Refactoring => refactoring 

• Function-extension => refactoring 

We discuss concrete examples for different types of co-evolution in the following 

subsections. The data-mining algorithm also produced some co-evolution rules of type 

refactoring => function-extension. However, after closely inspecting the participants of 

these co-evolution relationships, we believe that they are most likely accidental. 

6.4.4.1 Parallel function extension 

The system we used in Section 6.3 to illustrate the co-evolution detection process is 

actually a snippet of the evolution profiles of the BarRenderer class and its subclasses. 

Among them, CI is VerticalBarRenderer, and C6 is HorizontalBarRenderer, which are 

responsible for the drawing of bars in horizontal and vertical category plot respectively. 

They are both direct subclasses of the BarRenderer class. Table 6-9 shows their evolution 

profiles side by side. The column (from left to right) represents the number of changes, 

i.e., addition, removal, signature-change and movement (including class move) 

respectively. As we can see, these two classes exhibit almost the exact same types and 

amount of changes in each version. 

Table 6-9. VerticalBarRenderer vs. HorizontalBarRenderer 

Version 
0.6.0 
0.7.1 
0.7.3 
0.8.0 
0.9.0 
0.9.2 
0.9.4 
0.9.5 
0.9.7 
0.9.8 
0.9.9 

VerticalBarRenderer 
Add 

6 
0 
1 
1 
2 
0 
2 
0 
0 
0 
0 

Remove 
0 
0 
0 
0 
0 
0 
0 
2 
0 
0 
6 

SigCha 
0 
1 
0 
3 
2 
1 
0 
5 
2 
1 
.0 

Move 
0 
0 
0 
2 
0 
0 
0 
3 
0 
0 
2 

h 
Add 

6 
0 
1 
1 
2 
0 
2 
2 
0 
0 
0 

orizontalBarRenderer 
Remove 

0 
0 
0 
0 
0 
0 
0 
2 
0 
0 
9 

SigCha 
0 
1 
0 
3 
2 
1 
0 
6 
2 
1 
0 

Move 
0 
0 
0 
2 
0 
0 
0 
1 
0 
0 
1 
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Furthermore, the association-rule mining algorithm produces the following rules with 

high value of support and confidence: 

VerticalBarRenderer=D (3) => HorizontalBarRenderer=D (3) [confidence^ ] 

HorizontalBarRenderer=D (3) => VerticalBarRenderer=D (3) [confidence^] 

These rules indicate that when adding and/or removing features from class 

VerticalBarRenderer, the developer always (the confidence of these rules is equal to one) 

performed similar modifications to the HorizontalBarRenderer class, and vice versa. For 

example, both of them were introduced into the system in version 0.6.0, and they are both 

removed in version 0.9.9. In version 0.9.4, constructors that take as input parameters of 

type CategoryURLGenerator and CategoryToolTipGenerator were added to both classes. In 

version 0.9.9, the methods barWidthsPerCategoryO, hasltemGapsO, and drawRangeMarker() 

were removed from both of them. Clearly, these two sibling classes exhibit the type of 

function-extension => function-extension co-evolution. 

6.4.4.2 Parallel refactoring 

Let us look at another type of co-evolution. VerticalBarRenderer, VerticalBarRenderer3D and 

StackedVerticalBarRenderer3D. VerticalBarRenderer3D extends VerticalBarRenderer and is 

responsible for drawing vertical bars with 3D effect. StackedVerticalBarRenderer3D extends 

in turn VerticalBarRenderer3D. Table 6-10 lists their evolution profiles. They have 

undergone very similar changes, and Apriori mining discovers the following association 

rules based on their evolution profiles: 

VerticalBarRenderer3D=T (3) => StackedVerticalBarRenderer3D=T (4) [confidence^ ] 

StackedVerticalBarRenderer3D=T (4) => VerticalBarRenderer3D=T (3) [confidence=0.75] 

VerticalBarRenderer=T (3) => 

VerticalBarRenderer3D=T (3), StackedVerticalBarRenderer3D=T (4) [confidence^] 

These association rules imply that in three out of four times that the interface of class 

VerticalBarRenderer3D was modified, die interface of its subclass 

StackedVerticalBarRenderer3D was also refactored. In addition, in three out of four times 

that the class VerticalBarRenderer was refactored, the interface of its subclasses, 

VerticalBarRenderer3D and StackedVertcalerticalBarRenderer3D (indirectly extends) were also 

modified. 
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Table 6-10. VerticalBarRenderer, VerticalBarRenderer3D, StackedVerticalBarRenderer3D 

Ver 

0.6.0 
0.7.1 
0.7.3 
0.8.0 
0.9.0 
0.9.1 
0.9.2 
0.9.4 

0.9.5 
0.9.7 
0.9.8 
0.9.9 

VerticalBarRenderer 
Add 

6 
0 
1 
1 
2 
0 
0 
2 

0 
0 
0 
0 

Remo 
0 
0 
0 
0 
0 
0 
0 
0 
2 

0 
0 
6 

SigC 
0 
1 
0 
3 

^ 2 
0 
1 
0 
5 
2 
1 
0 

Move 

0 
0 
0 
2 
0 
0 
0 
0 
3 
0 
0 
2 

Vertical BarRenderer3D 
Add 

5 
0 
0 
0 
7 
0 
0 
0 

14 
2 
0 
0 

Remo 

0 
0 
0 
0 
0 
0 
0 
0 
5 
0 
0 

22 

SigC 

0 
1 
0 
2 
1 
0 
0 
1 

10 
3 
1 
0 

Move 

0 
0 
0 
0 
0 
0 
0 
0 
1 

0 
0 
1 

StackedVerticalBarRenderer3D 

Add 

5 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
3 

Remo 

0 
0 
0 
0 
0 
0 
0 
0 

3 
0 
0 
0 

SigC 

0 
1 
0 
2 
1 
0 
0 
0 
6 
2 
1 
6 

Move 

0 
0 
0 
0 
0 
0 
0 
0 
2 
0 
0 
0 

In particular, in version 0.8.0, VerticalBarRenderer started extending the BarRenderer 

class and implementing the Category Item Renderer interface. However, in its previous 

version, it extends and implements nothing (that is, extends java.lang.Object). In the same 

version, its method drawBarO was renamed to drawCategoryltemO- The drawBarO method of 

VerticalBarRenderer3D and StakcedVerticalBarRenderer3D were also renamed to 

drawCategoryltemO- Furthermore, depending on inheritance-hierarchy transitive closure, 

UMLDiff is able to report that these two subclasses also started implementing the 

CategoryltemRenderer interface in version 0.8.0. In addition, all these renderer-related 

classes were moved in a newly created package com.jrefinery.chart.renderer in version 0.9.5. 

Finally, in version 0.9.7, the signature of the drawltemO method of all these three classes 

was modified to take as input a parameter of type KeyedVAIues2DDataset, instead of its 

earlier parameter of type CategoryDataset. Moreover, VerticalBarRenderer started to 

implement interface java.io.Serializable in version 0.9.7, which affects the interface of its 

subclass VerticalBarRenderer3D. Two new methods, readObjectO and writeObjectO, were 

added to VerticalBarRenderer3D, and in addition, its field wallPaint was declared to be 

transient in this version. 

This set of changes indicates the strong re]factoring => refactoring co-evolution 

relation between a superclass and its subclasses. 
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6.4.4.3 Parallel function extension and refactoring 

Apriori also identified interesting co-evolutions of classes in different parts of the 

inheritance hierarchy. The classes in this example are unlike the previous two examples, 

in that they have substantially different identifiers that make their "accidental" discovery 

even more unlikely. For example: 

Plot=D (4) => Axis=T (10) [confidence=0.5] 

These are the root abstract classes of the plot and axis hierarchies respectively. All plot 

objects implement, directly or indirectly, the methods of the Plot class. Plot objects control 

the drawing of Axis objects. They hold the instances of Axis objects and the attributes, 

such as location, space, offset, of axis, and delegate the actual drawing to Axis objects. 

Therefore, the changes made to the Plot class frequently affect the interface of the Axis 

class. For example, in release 0.9.10, two methods that take as input a parameter of type 

AxisLocation were removed from the Plot class and corresponding methods that take as 

input a RectangleEdge parameter were added. Consequently, several methods in Axis class, 

drawQ, getLabelEnclosureO, drawLabelO, reserverSpaceQ, and refreshTicksO had their 

signatures changed to use the parameter of RectangleEdge instead of AxisLocation. This is 

an example of the function extension in one part of system class model resulting in the 

refactoring in some other part of hierarchy. 

Such function-extension => refactoring rules indicates an intentional interdependency 

between classes, which requires certain classes to be modified in this particular way. In 

this sense, the detection of fine-grained class co-evolution can serve as a design-recovery 

tool that elicits the implicit (possibly not well-documented or even lost) interdependency 

between classes. 

6.4.4.4 Discussion on parallel-inheritance co-evolution 

The elegance of the data-mining method is that it can quickly bring to surface the 

interesting patterns, which can focus the developers' attention directly to a potentially 

problematic area. 

The parallel refactoring class co-evolution may be necessary, since the developer is 

trying to change the class interface, which probably should ripple up to the superclass and 

down to the subclasses in order not to break the collaboration with other classes. The 
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function-extension co-evolution between sibling classes may indicate a potentially 

intentional co-evolution. The developers should be advised that if they add and/or remove 

some features from one of such sibling classes, they probably should also look at the 

other one in order to keep the interface consistent. 

However, if refactoring the interface or extending the features of some classes often 

means that the developers have to perform similar changes in some of its sibling classes, 

such as those render classes we discussed in the above sections (please note that the 

similar cases exist also for the plot and axis hierarchy), this is most likely a good 

indicator that there is something wrong with the design of the involved classes, or even 

the overall relevant hierarchy. Such co-evolution means that sibling classes do similar 

things in a similar or even exactly the same manner. This would introduce a lot of code 

duplication into the system, which is among the most common "bad smells" in software 

systems. As the system evolves, it may cause more and more maintenance efforts, since 

when a change is necessary, all of them have to change in a similar manner. Even worse, 

such hidden relations are easily lost due to the team-member turnover and they are hard 

to impart to the new members. 

The existence of such large amount of co-evolution within the Plot, Axis, and Renderer 

hierarchy strongly suggests that there may exist multiple parallel inheritance hierarchies 

in the JFreeChart system, which is validated by the major design changes made for the 

release 0.9.9. In version 0.9.9, the JFreeChart developers redesigned the Plot, Axis, and 

Renderer hierarchies, which are captured by UMLDiff and our refactoring-detection 

process: 

• The classes HorizontalCategoryPlot and VerticalCategoryPlot were removed and 

became "die-hard" classes [102], i.e., some of their members, such as renderO, 

handleClickO, were pulled up into the superclass CategoryPlot. Some methods of the 

CategoryPlot class had their parameter list extended with one more parameter of 

PlotOrientation type, which was just added in this release. 

• OverlaidVerticalCategoryPlot (there is no OverlaidHorizontalCategoryPlot) was renamed 

into OverlaidCategoryPlot to keep the naming convention consistent. 

• The classes HorizontalCategoryAxis and VerticalCategoryAxis were removed and they 

too became die-hard classes. Some of their members were merged into the 
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superclass CategoryAxis. The same changes were made to HorizontalDateAxis and 

VerticalDateAxis and their superclass DateAxis. 

• Class HorizontalLogarithmicAxis was rename as LogarithmicAxis, and 

VerticalLogarithmicAxis was removed. A similar change was made to horizontal and 

vertical SymbolicAxis and ColorBarAxis. 

• Class HorizontalBarRenderer and VerticalBarRenderer were removed and their 

subclasses, Horizontal/VerticallnternalBarRenderer, 

HorzontalA/erticalStatisticsBarRenderer, StackedVertical/HorizontalBarRenderer were 

merged into IntervalBarRenderer, StatisticalBarRenderer, StackedBarRenderer 

respectively, which extend BarRenderer directly in this release. For example, the 

VerticallntervalBarRenderer class was renamed to IntervalBarRenderer, and 

HorizontallntervalBarRenderer was removed. 

All these recovered design changes indicate that the JFreeChart developers became at 

some point aware of the existence of separate horizontal and vertical hierarchies, and in 

release 0.9.9, they made a great effort to reorganize the Plot, Axis, Renderer hierarchies and 

to eliminate the parallel inheritance and to reduce duplicate code. These design changes 

constitute evidence of suggestions that our longitudinal design-evolution analysis could 

have provided, based on its discovery of design-evolution smells, which could have been 

quite helpful. 

6.5 Summary 

In this chapter, we studied the longitudinal evolution of object-oriented software systems 

with three sequential-pattern analyses and the association-rule mining method. These 

longitudinal analyses rely on the design changes reported by UMLDiff. Our study showed 

that there exist distinct evolution phases with coherent evolution behavior in the 

evolution of the system and its classes. They exhibit repetitive patterns in their relative-

order relations, consistent with the adopted development process. The classes 

demonstrate distinct evolution styles characteristic of their roles in the system. As 

software systems evolve over a long time, non-trivial and often unintended inter-

dependencies among system classes arise, because of implicit design dependency or 

evolution smells. These longitudinal analyses facilitate the overall understanding of 
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system evolution, help to recognize system instabilities, and provide support regarding 

the scope of future maintenance activities. Together with recognizing design-change 

patterns, such as refactorings, they constitute a solid base for mentoring object-oriented 

evolutionary development, based on learned experiences from past evolution activities. 
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Chapter 7: Exploring Design Evolution Concerns 

Software system usually grows in size and complexity as it evolves over time [58]. The 

developers face increasing difficulties in comprehending the system design and its rapid 

evolution, since the amount of information is overwhelming. The top-down style of 

[29,35,57,110] visualization does not work very well to precisely capture the changes and 

their underlying motivations since they generally start with an overview of the whole 

subject system and assume their users to be able to drill down to the interesting parts of 

the system evolution. 

This is why, in our work, we have adopted a bottom-up approach to design-evolution 

analysis. First, the elementary design changes are detected by UMLDiff algorithm, based 

on which, a suite of longitudinal evolution analysis methods [1,2,75,84] and a set of 

refactoring-detection queries are then applied to recognize interesting evolution concerns 

(i.e., evolution phases and styles, co-evolving software artifacts, and refactorings) in the 

evolution history of individual system classes, clusters of classes and the system as a 

whole. In this chapter, we introduce our visualization component - JDEvAn Viewer21. 

Given the key participant model elements and relations of an evolution concern, a so-

called core evolution concern, JDEvAn Viewer visualizes them with change tree and 

UML class diagram, and it supports developers to interactively create, explore and 

maintain the recovered evolution concerns they are interested in. 

The software developers start with the minimum amount of information about the core 

evolution concerns. Then, they can iteratively augment the core evolution concerns with 

the relevant model elements, their relations, and their changes by querying logical models 

and their evolution history and by determining which model elements and relationships 

returned as part of the queries contribute to the concerns of their interest. In this manner, 

they incrementally build up their knowledge about what has been changed, how and why. 

Figure 7-1 displays such a snapshot, at some point in our investigation process, of two 

sets of co-evolving classes and the refactorings that address these co-evolution smells. 

21 The JDEvAn Viewer has been implemented as an Eclipse plugin and it relies on the 

Eclipse GEF (Graphical Editor Framework) [117] 
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Figure 7-1. A screenshot of JDEvAn Viewer 

7.1 The JDEvAn Viewer 

Let us now discuss in detail die features of the JDEvAn Viewer, which enable its users to 

create, manipulate and maintain the design-evolution concerns. 

7.1.1 Presenting design-evolution concern 

JDEvAn Viewer divides the screen into three areas: the main panel visualizes the UML 

diagram consisting of the concern elements, relations, and their changes, the bottom-left 

Outline view depicts the same diagram in a tree view or thumbnail display, and the 

bottom-right Properties sheet displays the detailed properties of the selected element or 

relation. 
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The Outline view can switch between tree mode and thumbnail mode, whose main 

purpose is to facilitate the navigation of large diagrams. The tree mode presents model 

elements and their changes in a containment change tree [104]. The trees are easier to 

layout and navigate than the diagrams, which makes it easier to locate an element. The 

JDEvAn Viewer synchronizes its main diagram display and its tree outline so that 

selecting an element in the outline tree reveals and highlights the corresponding visual 

part in the main display, and vice verse. The thumbnail outline shows the thumbnail 

display of the main display area, in which the user can drag and move a shadow window 

to quickly reveal parts of the main diagram. 

In JDEvAn Viewer, all the model elements and relations being visualized are 

selectable from either the main display diagram or the tree outline view. When an 

element/relation is selected, its detailed model and change information can be inspected 

in the Properties view with a [Property, Value] table. Different types of elements and 

relations may have slightly different properties sheet. In Figure 7-1, for example, the 

renamed class ColorBar is selected. Its corresponding properties sheet lists its element type, 

visibility, name, UMLDiff status, unique ID in JDEvAn database, incoming and outgoing 

relations from and to other elements, and its location and size in the main display area. 

For those properties that have been reported as changed by UMLDiff, the corresponding 

value columns are shown in the form of "oldvalue -» newvalue". For example, the 

ColorBar class was originally named as HorizontalColorBarAxis. Therefore, the value of its 

Name property is "HorizontalColorBarAxis -» ColorBar". The row of properties sheet is 

expandable by clicking the plus sign (if applicable) to the left of a particular row. For 

instance, by expanding "As source" row, the users can find out the relations originated 

from the selected element and the related elements at the other end of the relations. 

The main diagram of the JDEvAn Viewer displays part of Has logical models UMLDiff 

compares and its comparison results in the form of UML class diagram. In the evolution 

concerns shown in Figure 7-1, three packages are under investigation, each of which 

contains one or more classes. The classes declare attributes and operations, which are 

shown in attribute and operation compartments respectively. The model elements are 

decorated with the standard Eclipse icons. The model elements may be related to each 
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other with generalization/abstraction relations and/or usage dependencies. Different types 

of relations are visualized with different line styles and arrow heads. 

The UMLDiffstatas of model elements and relations is visualized by coloring the name 

(identifier for operation) of model elements and their relations, which is defined as 

follows: 

• Black: Matched model elements and relations 

• Blue: Newly added model elements and relations 

• Red: No longer existing model elements and relations 

• Green: Renamed22 model elements 

• Grey/Orange: Move-source and move-target elements respectively 

• Light grey: Matched usage dependency with decreasing occurrence 

• Dark grey: Matched usage dependency with increasing occurrence 

The names of removed elements are struck through. The original name of renamed 

elements (identifier for operation) is shown with a strikeout line as well. Furthermore, the 

matched parameters of operations are initially hidden with "..." placeholder, which can 

be expanded and collapsed by clicking the "+" or "-" handle of the placeholder. For 

data/return/parameter type, they are shown in black font, following the corresponding 

field/method/parameter. If the type changes, the old type is struck through and is 

followed by the new type. Visibility and modifier(s) are shown as adornments to the icon 

of the model elements, according to the Eclipse Java model convention. If the visibility 

and/or modifiers change, they are shown with the original element icon being struck out 

followed by the new element icon. 

In Figure 7-1, the main diagram view shows three matched packages. The class 

HorizontalColorBarAxis is renamed to ColorBar. It no longer implements the interface 

ColorBarAxis, which is removed, and no longer extends the class HorizontalNumberAxis, 

which is removed as well. Instead, it starts extending the matched class Object. The 

renamed class ColorBar declares one new field axis and one new method getAxisO- Its 

method doAutoRangeQ is removed. Its method setMaximumAxisValuefJ and 

The renamings of operation include the changes to their identifiers and/or parameter 

lists. 
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setMinimunAxisValueO are renamed to setMaximunValueO and setMinimunValueO respectively. 

However, their parameter lists stay unchanged. The class ObjectTable is newly introduced. 

It becomes the new declaring class of the moved field rows and the moved method 

getRowCount(), which are originally declared in its two subclasses PaintTable, StrokeTable 

and ShapeTable respectively. The matched class NumberAxis is no longer abstract. The 

data type of the renamed field ContourPlotDemo.zColorBar changes from the class 

NumberAxis to ColorBar. 

Finally, the JDEvAn Viewer provides additional information in the form of tooltip 

pop-ups when the user browses the diagram. In Figure 7-1, the cursor is pointing to a no 

longer existing super-call relationship between the renamed method 

ColorBar.setMaximumValue(double) and the matched method 

ValueAxis.setMaximumAxisValue(double). 

7.1.2 Exploring the neighborhood of a concern 

When an element is selected, the set of appropriate handles appears around the selected 

element, such as those around the selected class ColorBar shown in Figure 7-1. Table 7-1 

summarizes the applicable handles attached to various types of model elements. 

The handles allow the users to query the relevant model elements, relations, and their 

changes and to interactively include those that most likely contribute to the evolution 

concerns of their interest. Thus, the model elements and relations that are visualized in a 

particular diagram may be only a very small subset of all the model elements and 

relations. For example, in terms of the replace inheritance with delegation refactoring 

shown in Figure 7-1, the user would most likely be interested in three 

generalization/abstraction relationships originating from the renamed class ColorBar, a 

few newly added, removed, and renamed field and methods of ColorBar, and the class 

ContourPlotDemo in which the class ColorBar is used. 

Left-clicking on a handle adds to the diagram all relevant elements and relations that 

the handle is concerned about; right-clicking on a handle pops up a context menu, which 

allows the users to selectively add elements and/or relations to the current concern. To 

facilitate exploration, the entries of the context menu are grouped by UMLDiff status and 

are annotated with the proper icons that represent the UMLDiff status associated with the 
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corresponding elements/relations. The handles and context menus keep the diagram as 

simple and clear as possible. 

Table 7-1. The handles attached to model elements in JDEvAn Viewer 

Handle 

G 

S 

0 

I 

c 

T 

M 

SN 

EF 

ET 

Model element 
Class 

Interface 
Class 
Interface 

Class 
Operation 

Class 

Interface 
Operation 
Attribute 
Subsystem 
Package 
Class 
Interface 
Attribute 
Method 
Parameter 
Moved element 

All 

All but the new element 

All but the removed 
element 

Handle usage 
The direct superclass and the (direct or transitive) super-
interfaces 
The (direct or transitive) superinterfaces 
The direct subclasses 
The (direct or transitive) subinterfaces and implementation 
classes 
The classes and interfaces it uses 
The attributes it reads and/or writes 
The operations it calls 
The objects it instantiates 
The exceptions it declares, throws, and/or catches 
The classes that use it 
The operations that instantiate it 
The operations that declare, throw, and/or catch it as exception 
The classes that use it 
The operations that call it 
The operations that read and/or write it 
The model elements it contains or declares 

The declared type 

The move source (target) elements of the given move target 
(source) element 
The similar name elements of the same type, based on regular 
expression of the words in the element name 
The predecessor elements of the given element in previous 
versions 
The successor elements of the given element in following 
versions 

The JDEvAn Viewer leverages the GEF facilities to provide Undo/Redo and Zoom-

in/Zoom-out. All the modifications to the diagram, such as adding elements and relations 

into the diagram, removing irrelevant ones, moving and/or resizing elements, bending 

connections, etc., are undoable and redoable. This enables the users to explore the 

evolution concerns freely. 
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7.1.3 Exploring the evolution trace of a concern 

Two special handles - Evolve To (not applicable to removed element) and Evolve From 

(not applicable to newly added element) - are available to open a new JDEvAn Viewer 

and present the successor (predecessor) elements and their UMLDiff status of the selected 

element in a given following (previous) version. These two handles enable developers to 

inspect the entire evolution trace of an evolution concern, starting at a particular version, 

such as how a set of elements are introduced in the system, what are their states before 

refactoring and how they evolve into these states, what benefits the refactoring brings 

about, and so on. 

7.1.4 Attaching user comments 

The JDEvAn Viewer allows developers to attach one ore more comment(s) to model 

elements and relations and their changes to record the hard-earned evolution knowledge. 

For example, in Figure 7-1, a comment is attached to the generalization/abstraction 

changes of the class ColorBar, its newly added field ColorBar.axis, and the field 

ContourPlotDemo.zColorBar where the ColorBar is used in order to annotate that these 

changes are to replace inheritance reuse with object composition. A comment is also 

attached to the new superclass ObjectTable to explain the intention of this extract 

superclass refactoring. 

7.1.5 Requesting source code 

As users investigate the evolution of software system at the design level, a mapping 

between the design-level representation and the source code corresponding to each model 

element is maintained, which can be requested at any time during the investigation. The 

source code contains useful information such as comments and intra-method structure, 

which may complement and assist the understanding of the abstract representation. To 

access the source code, the users simply double-click on a model element being 

visualized. If the selected element is newly added or removed, the Eclipse Java Editor is 

shown with the corresponding code fragment highlighted. If the model element is 

mapped, the Eclipse Compare Editor or Dialog pops up to show the textual comparison 

results of the source code of the double-clicked element. 
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7.1.6 Persisting design-evolution concern 

Focusing on a specific evolution concern in the JDEvAn Viewer and exploring its 

relevant elements and relations enables a compact and local view of otherwise scattered 

model elements and relations by collecting them together and by eliding irrelevant (non-

concern) elements, relations, and their changes. This localization has been helpful in 

gaining insight into why the system evolved the way it has. Furthermore, the JDEvAn 

Viewer enables its users to persist the evolution concerns under investigation into files, 

which can be reloaded and further examined. 

As illustrated in next chapter, there are several advantages to documenting hard-earned 

knowledge about the evolution history of the software system. First of all, the knowledge 

associated with an evolution concern is much more descriptive than that in the change 

logs or the release notes. Other users may be able to use the knowledge without needing 

to perform all of the time-consuming investigation, which might involve false turns and 

the examination of unrelated elements and relations if they start from scratch. More 

importantly, a developer performing similar changes, or encountering similar evolution 

smells later, can use the documentation to help make the modification in a more 

systematic and robust fashion. 

7.2 Demonstrations 

In this section, we demonstrate, through two pairs of design-evolution concerns from our 

HTMLUnit and JFreeChart case studies, how JDEvAn Viewer facilitates the 

understanding of the system's design and its evolution. In particular, it helps us capture: 

• The different motivations behind the two seemingly similar extract class 

refactorings; 

• The different design remedies that address the two similar class co-evolution 

smells. 

7.2.1 Different problems but same solution 

The types of refactorings that can be automatically detected constitute the basic building 

blocks for accomplishing many other refactoring tasks, listed in Fowler's refactoring 
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catalog [32]. Table 7-2 lists some of these refactorings (right column) and their 

corresponding core refactorings (left column), which can be automatically detected by 

our refactoring-detection queries. The right-column refactorings do not differ 

substantially from their corresponding core refactorings in terms of the effects they bring 

on the software entities and relations. In fact, they may even be indistinguishable from 

one another in terms of UMLDiff change facts. The fundamental difference between them 

lies in their underlying motivation. Although, the motivation behind a particular 

refactoring cannot be precisely inferred through automatic process, JDEvAn Viewer can 

facilitate the analysis process. 

Table 7-2. The motivations of refactorings 

Core refactoring 
Extract method 

Extract class 

Extract subclass 

Motivations 
Replace temp with query 
Introduce foreign method 
Decompose conditional 
Separate query from modifier 
Parameterize method 
Replace method with method object 
Replace data value with object 
Duplicate observed data 
Replace type code with class 
Replace type code with state/strategy 
Introduce local extension 
Replace type code with subclass 
Replace conditional with polymorphism 

The refactoring-detection queries return the concrete instances of a particular type of 

refactoring and their participants {which parts of a system have changed and how they 

have changed). Software developers can then examine the refactoring participants and the 

relevant model elements, relations, and their changes with the support of JDEvAn Viewer 

and draw their own conclusions regarding the motivation and rationale behind the given 

refactoring {why they have changed). 

Let us examine two particular instances of extract class refactoring in the evolution of 

the HTMLUnit and JFreeChart system respectively. In HTMLUnit, a member class 

ResponseEntry is extracted from the class FakeWebConnection, which is used to holds the 

status and content information of the connection that used to be defined in 
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FakeWebConnection. In JFreeChart, a final class AxisLocation is extracted, to which the 

definition of the possible locations of axes is transferred from the interface AxisConstantS. 

From the viewpoint of extract class, there are no substantial differences between the two 

instances. They both involve introducing a new class and moving a few fields to it. 

However, the underlying motivations are completely different, which can be revealed by 

investigating the relevant model elements, relations, and their changes through JDEvAn 

Viewer. 

In the case of HTMLUnit, the methods that used to modify the moved fields are either 

removed, such as setStatus(code:int, message:String), or no longer modify the relevant field 

directly, such as setContent(content:String). Instead, the setContent(content:String) starts 

delegating to the newly added method setDefaultResponseO, which receives the content 

and status information of the connection as parameters and uses them to instantiate the 

ResponseEntry object, which in turn set the values of the corresponding fields. The 

intention of all these changes is to replace data value with object. 

On the other hand, in JFreeChart case, the data type of the moved static final fields 

change from int to the newly added class AxisLocation. The constructor of the new class 

AxisLocation is private, which means that the AxisLocation cannot be instantiated, except for 

the predefined instances BOTTOM, TOP, LEFT, RIGHT. The users of the moved fields, such 

as Plot.getOppositeAxisLocationO, still use them as before, but their corresponding return 

and/or parameter type changes accordingly. The underlying motivation of this extract 

class is to replace type code with class. 

7.2.2 Same problem but different solutions 

Applying Apriori association-rule mining to class evolution profiles discovers co-

evolution patterns among two or more classes, such as the set of classes 

{HorizontalColorBarAxis, HorizontalLogarithmicColorBarAxis, VerticalColorBarAxis, 

VerticalLogarithmicColorBarAxis} and the set of classes of {PaintTable, StrokeTable, 

ShapeTable} in JFreeChart case study. It seems that these classes suffered from the smell 

of "parallel inheritance hierarchies". The set of co-evolving classes essentially focuses 

the developer's attention to specific examples where the refactoring should be applicable, 

according to textbook [32], which advises informally specific types of refactorings in 

171 



response to detecting various "smells". But the question then becomes: what is the 

appropriate refactoring in the given context of a particular "smell"? 

In the case of four ?ColorBarAxis classes, refactoring-detection reports that they 

underwent a refactoring of replace inheritance with delegation when the system evolved 

from the version 0.9.8 to 0.9.9. The bottom-right part of the main diagram area in Figure 

7-1 shows the relevant refactoring participants. The class HorizontalColorBarAxis was 

renamed to ColorBar. It stopped extending HorizontalNumberAxis and it started extending 

java.lang.Object. In addition, it started declaring a field axis of type ValueAxis, the abstract 

ancestor of all ?NumberAxis classes. These changes imply that the ColorBar was no 

longer axis, but it can work with any axis objects, conforming to the interfaces defined by 

the ValueAxis abstract class. However, in the case of ?Table classes, the JFreeChart 

developers applied extract superclass and form template method refactorings to address 

the co-evolution smell and reduce the duplicated code. The relevant refactoring 

participants are shown in the top-left part of Figure 7-1: a new superclass ObjectTable 

was introduced to hold the common features that were pulled up from the existing ?Table 

classes; ?Table classes were modified to extend ObjectTable, overriding the default 

behavior when necessary. 

The choice is essentially between inheritance and composition. Inheritance is a 

powerful object-oriented design primitive that enables code and design reuse (i.e. white-

box reuse) when two or more classes have similar features and capabilities. However, 

developers often do not notice the commonalities until they have already created some 

classes, in which case they have to impose the inheritance hierarchy post facto. In version 

0.9.9 the JFreeChart developers were faced with the need to introduce six more 

similar ?Table classes, such as FontTable, BooleanTable, NumberTable shown in Figure 7-1. 

At this point, however, they must have noticed the commonalities between them and the 

three existing ?Table classes. Thus, instead of duplicating the existing code, they 

extracted the ObjectTable superclass and made all ?Table classes extend it, overriding the 

default behavior when necessary. 

In addition to white-box reuse through class inheritance, object-oriented software 

engineering also enables black-box reuse through object composition, which allows 

classes to reuse objects in terms of their well-defined interfaces, with limited 
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implementation coupling and increased flexibility. However, sometimes, developers 

make the "stronger" commitment to white-box reuse when they only need black-box 

reuse. The introduction of the four ?ColorBarAxis illustrates a poor choice of class 

inheritance vs. object composition. Whenever it comes time to change what these classes 

do, all of them have to be modified in a very similar way to accommodate the change. 

Furthermore, the inheritance-based reuse also limits the flexibility to draw color bar in 

other types (may not even exist at the time the color-bar feature was introduced) of axes, 

which may potentially result in the explosion of the class hierarchy and a substantial code 

duplication if the developers want to deliver the color bar in all possible combinations of 

the axes. This design was subsequently amended with the modification of the ColorBar 

class that marked the transition from white-box to black-box reuse. 

Clearly, inheritance is the simpler choice for the classes PaintTable, StrokeTable and 

ShapeTable, since they share interface as well as behavior. In contrast, the color bar 

feature is better accommodated using composition since it is independent of the other 

axis-related features. 

We finally annotated these two evolution concerns, including evolution traces of these 

co-evolving classes and the corresponding instances of refactorings, with the above 

conclusion with JDEvAn Viewer's comment node as shown in Figure 7-1, and persisted 

all the relevant diagrams as a useful asset in support of future maintenance and evolution 

tasks. Such persistent evolution-concerns are much more informative than the textual 

change logs and release notes. They point out, not only the key elements of the evolution 

effort and the detailed changes they undergo, but also the relevant elements, relations, 

their changes, and the hard-earned evolution rationale that motivates the changes. If such 

evolution concerns were shipped with the new version of a framework or library, they 

would most likely smooth the learning curve that the application developers experience 

as they work to migrate their applications to the new version of the framework API. 

Application developers would be able to learn what has been changed and how exactly 

based on the evolution concerns, without needing to rely on the terse release notes or start 

their investigation from the source code. The framework or library developers themselves 

may also benefit from the documented concerns when performing similar changes or 

encountering similar smells. For example, when they are faced with class co-evolution 
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smells, the developers may compare the situation they have at hand with those 

documented, which may help them make the choice between replace inheritance with 

delegation and extract superclass and decide which one is more desirable. 

7.3 Summary 

To enable an intuitive means of communicating all the design changes and evolution 

patterns produced by UMLDiff and the subsequent analyses it enables, we developed 

JDEvAn Viewer. The JDEvAn Viewer supports the interactive visualization, annotation 

and persistence of the recovered evolution concerns. With JDEvAn Viewer, the users can 

selectively explore the system's design and its evolution, by localizing the relevant 

elements, relations, and their changes of design-evolution concerns and exploring their 

neighborhood and evolution traces. It has been helpful in understanding why the system 

evolved the way it has. We demonstrated how JDEvAn Viewer helps the developer 

examine two seemingly similar evolution concerns and their participants and captures 

their completely different underlying software-quality motivations. We plan to conduct 

an empirical user study in the future to fully evaluate JDEvAn Viewer's features and 

compare the bottom-up evolution concern understanding it enables with the existing top-

down visualization approaches to software evolution understanding. 
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Chapter 8: Towards Mentoring Object-Oriented 

Evolutionary Development 

Capturing and maintaining the design rationale has been a long-term goal of several 

different methods developed in support of different activities in the software lifecycle 

[12,26,48,74]. These methods aim at recording and maintaining information about why 

developers have made the decisions they have, so that it can be used to ease further 

development and improve the quality of future decisions by increasing their consistency 

with past decisions. Today, as software is increasingly developed using some 

evolutionary lifecycle process, the software design rationale is embedded in the evolution 

decisions of the developers, i.e., the changes they have made to the system from its first 

version to its current state. Therefore, understanding the system's design rationale 

becomes - to some extent - synonymous with recognizing interesting changes in its 

design-evolution history. Experts, such as senior designers, often serve the role of the 

design mentor, who may supervise and advise junior, less experienced members to help 

them understand the design of the system and the rationale behind its evolution history so 

that they can maintain and evolve it consistently. Unfortunately, the time of such experts 

is so valuable and they are not always available to consult with. 

On the other hand, software itself embodies examples of object-oriented design 

principles, design and refactoring patterns, and programming hints previously adopted by 

the system. Several software recommenders [17,44,73,78,108,109] attempt to relieve the 

need of human experts by using information sources associated with the software 

development to present relevant software artifacts to the developer's task on hand. 

However, the objectives of these recommenders is mainly to facilitate the developer's 

programming tasks, such as locating a component that could be reused, suggesting a 

potential solution to a particular type of bug, revealing the usage of an API, etc. 

In this chapter, we discuss our initial work on monitoring and mentoring object-

oriented software design and its evolution. This design mentor relies on the UMLDiff-

based refactoring detection and design-evolution analyses. In Section 6.4.4.4, we 

discussed a real case in which we discovered several instances of class co-evolution and 
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we also found evidence that the project developer acted according to the advice that our 

design mentor would have generated, had it been in place during the system's 

development. We believe that the very process of recognizing and reflecting upon 

problematic design-evolution patterns and concrete examples of their associated design 

remedies in the evolutionary history of the software system can help developers reach 

informed decisions on their current development and maintenance activities, such as 

recommending the redistribution of features based on Law of Demeter [60], or advising 

when and where to apply which refactorings. We evaluated the feasibility of such a 

design mentor with a real-world pilot study. In particular, we evaluated its ability to 

• uncover design changes aimed towards improving the object-oriented design of 

software, and 

• detect opportunities for such changes. 

8.1 Design mentoring 

Producing a good design is often a daunting task for novice programmers, and so is 

evolving an existing system in a manner consistent with the rationale behind its design 

history, since there are few "cut and dry" rules. Good design is subjective; there are few 

precise criteria for determining what is correct or what needs to be improved and their 

application is contextual. Skilled designers usually have long-term experience designing 

and can point to examples of past designs, both good and bad. They are able to point out 

problematic patterns in the design model of an artifact and questionable events and trends 

in its evolution. 

The underlying UML meta-model of our work captures the logical design of object-

oriented software system. The UMLDiff algorithm and the subsequent design-evolution 

analyses reveal which parts of the system have changed and how exactly. The interactive 

exploration of design-evolution concerns help us infer why they have changed. A set of 

queries have been defined to recognize potentially problematic patterns in the UML 

logical models of the system and the results of the above analyses. Associated with each 

of these queries are the design changes that have been applied to remedy the similar 

problems in the past of the system development or general advice on how the design 

process could potentially proceed. Clearly, the final arbitrators of whether or not to 
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follow this advice are the developers themselves. However, we believe that the very 

process of recognizing and reflecting upon specific interesting designs and design-

evolution examples helps developers draw informed decisions on solving their current 

similar problems. 

For some design-evolution concerns, such as the same or similar design changes made 

in a large amount over a short period of time, there may or may not exist the systematic 

theories behind them, but they represent the project-specific evolution knowledge, which 

can not be learnt from the textbook. For example, we studied, in Section 6.4.2, the 

refactoring frequency in the evolution of JFreeChart system and we discovered that, as a 

project-specific advice, a new JFreeChart developer would likely be advised to refactor a 

class, after no more than four consecutive function-extension phases. However, more 

often than not, such project-specific evolution knowledge is not recorded in the 

development log; they usually just exist in the developers' minds, as part of their overall 

software-engineering experience with a particular project. However, our design mentor is 

able to recover them and present them to developers as a set of contextual advices, which 

may be valuable to guide future development and maintenance activities. 

Furthermore, our design mentor has taken a broader stance to the problem of advising 

software developers. In addition to providing "contextual" project-specific advice based 

on the analysis of the system design-evolution history, it is also endowed with knowledge 

of object-oriented design principles, design patterns and refactorings. Thus, it can relate 

this knowledge to its understanding of the system under development to offer advice on 

how to improve the system design based on project independent terms. Design evolution 

has to be guided by high-level object-oriented design principles, such as adhere to 

consistent meaningful names, do not unnecessarily expose fields and methods, and 

comply with the Law of Demeter [60]. At the same time, it is also informed by state-of-

the-art practices, such as extract interface, superclass or class, collapse hierarchies, form 

template method, use typesafe-enum objects instead of numeric type codes. 

The instances of these design-evolution patterns, when discovered in the evolution of 

the software system, indicate that the developers are trying to comply with the well 

formulated object-oriented design principles and practices, and they can serve as the 

concrete design and design-evolution examples for developers to learn how to design and 
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evolve the object-oriented software in general. For example, in Section 7.2.2, we 

discussed how an advice could be offered, based on instances of refactorings in the 

project history, to make a choice between replace inheritance with delegation and extract 

superclass refactorings in order to correct class co-evolution smell. 

8.2 The JFreeChart pilot study 

We evaluated the feasibility of the proposed software design mentor with the JFreeChart 

system. Based on our own software design and development experience, we defined a set 

of queries to recognize potentially problematic patterns before and in version i. The 

queries refer to the information regarding the logical models of the subject system of 

version m {l<tn<i), the design changes reported by UMLDiff'when comparing version m 

to the version m-1, and the results of the various subsequent analyses. Then, we examined 

the changes reported by UMLDiff'when comparing version y to version j-1 (/>/) to see if 

the changes implied by the problematic patterns discovered by our queries were actually 

made. When this was the case, we recorded the corresponding queries as valid heuristic 

mentors that advise developers on how to maintain and evolve their system based on the 

object-oriented design principles and practices and/or the understanding of the evolution 

of the subject system. 

8.2.1 Adherence to "first principles" of object-oriented development 

In this section, we discuss design changes motivated by high-level principles of object-

oriented design. 

8.2.1.1 Adopting a consistent, meaningful naming scheme 

The adoption of a consistent and meaningful naming scheme is very important in object-

oriented design. A case in point is the object-oriented method that advocates the 

discovery of the system classes from the nouns in the textual requirements specification 

of the system, and the various renaming refactorings aimed at improving code readability 

and understandability by alluding to the functions of the design entities. 

In JFreeChart, many renamings were discovered. For example, 

DEFAULT_COLORBAR_THICKNESS_PCT was renamed into the more meaningful 
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DEFAULTJiOLORBAR_THICKNESS_PERCENT. Renamings frequently coincide with more 

"substantial" changes to the entity. In version 0.6.0, fields categoryGap, introGap and 

trailGap of class BarPlot were renamed to categoryGapPercent, introGapPercent and 

trailGapPercent respectively, to reflect the change of these fields' type from type int to type 

double. Similarly, in version 0.9.3, method getNormalColorO of class MeterPlotwas renamed 

to getNormalPaintO to reflect the fact that its return type was changed from Java. awt.Color to 

Java.awt. Paint. 

Note that renamings are among the elementary change facts discovered by UMLDiff. 

Advice on when to rename and how has to be project specific. One could imagine that 

"renaming critique" could be offered based on project-specific naming scheme, such as 

"static final constants should be capitalized", or when other similar design changes 

happen, such as the data type of an entity changes and the original name of the entity 

matches a given regular expression. 

8.2.1.2 Programming to interfaces 

Programming to interfaces and not to implementations is an important tenet of object-

oriented development [34]. When the client is implemented to be unaware of the internal 

implementation of the supplier class, assuming only the specification of its public 

behavior interface, enables flexibility in the evolution of the supplier: as long as the 

public interface remains the same, modifications to each implementation will not break 

its clients. 

The design advice here is to not declare fields and methods with particular concrete 

classes but rather to commit only to interfaces and abstract classes. The more abstractions 

introduced, the more flexibly can the system implementation evolve. The developers of 

JFreeChart made efforts to comply with this principle. For example, before version 0.7.3, 

the class XYPIot declared four fields (horizontalColors, horizontalLines, verticalColors, 

verticalLines) of the concrete Java collection class java.utiLArrayList, which were change to 

the interface java.util.List in version 0.7.3. In the same version, the LinePlot's method 

getValueAxisO was changed to return the abstract class ValueAxis instead of its subclass 

VerticalNumberAxis. Furthermore, in version 0.9.19, the return type of several methods of 
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CategoryPlot and XYPIot was changed from the interface java.util.List to the more general 

interface java.util.Collection. 

The underlying logical model of our work captures the generalization and abstraction 

relationships, including their transitive closure, among classes and interfaces. We have 

defined queries to obtain fields, methods and parameters whose associated types are 

declared as: 

• Concrete classes that implement interfaces 

• Specialized interfaces that extend general ones 

• Subclasses that extend abstract super classes 

These fields, methods and parameters are the candidates that should be examined to 

see if the general interfaces or abstract classes could be used. A customizable stop-list is 

in place in order to exclude "insignificant" interfaces and classes, such as Action Listener, 

Serializable, and java.lang.Object in Java, from being considered. 

It is interesting to note that a super interface (or class) sometimes needs first to be 

extracted so that the clients can then start using it instead of its implementations (concrete 

subclasses). An example will be discussed in Section 8.2.2.1. 

8.2.1.3 Favoring composition over inheritance 

Object-oriented software engineering enables white-box reuse through class inheritance 

and black-box reuse through object composition. Frequently, software teams make the 

"stronger" commitment to white-box reuse when they only need black-box reuse. The 

result is high coupling among the classes in the inheritance hierarchy, brittleness in the 

evolution of the base class, and overriding of unwanted features by the subclasses. Object 

composition enables classes to reuse objects in terms of their well-defined interfaces, 

with limited implementation coupling and increased flexibility. This is the intent behind 

the "favor object composition over class inheritance" tenet [34]. 

In Section 7.2.2, we discussed a poor choice of class inheritance over object 

composition at the time four ?ColorBarAxis classes were introduced, which was 

subsequently amended by a replace inheritance with composition refactoring. The 

evidence for the need to replace inheritance with composition is the simultaneous 

development of "parallel inheritance hierarchies"; this change is easily recognizable 
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through the detection of class co-evolution. Of course, there are many other types of 

"symptoms" where composition could be advocated instead of inheritance, such as 

subclass inherits many "unwanted" features that are not used at all by its client. 

8.2.1.4 Lawof Demeter 

The "Law of Demeter (LoD)" [60] - "only talk to your friends" - is a simple style rule for 

object-oriented design. It advocates that the methods of a class should only manipulate 

the class' own fields and should call methods defined in the class or the classes whose 

instances it contains. It is essentially an object-oriented formulation of the general "low 

coupling" software-engineering principle. 

In our case study, the JFreeChart class coordinates such objects as legend, plot, axis and 

dataset in order to draw a chart on a Java 2D graphics device. In the early versions of the 

system, it used to delegate the actual drawing to the Plot object it contained. In version 

0.5.6, it had four fields, seriesPaint, seriesStroke, seriesOutlinePaint, seriesOutlineStroke that 

were representing properties of the plot being drawn. Since they were only accessed by 

plot classes, they should, therefore, be accessed from within the Plot object according to 

LoD. Indeed, in version 0.6.0, these four fields were moved to the Plot class. 

Computing the object form of LoD requires the dynamic analysis of software system. 

However, there are some symptoms that can be easily detected in the underlying logical 

models in terms of "high coupling" and "low cohesion". For example, we have defined 

queries that return the fields and methods defined in one class but are mostly used in 

other classes. Such fields and methods often need to be moved in order to enhance 

encapsulation and reduce coupling. 

8.2.1.5 Information hiding 

Object-oriented languages provide explicit support for defining the scope of the various 

design elements of a system. Frequently, developers start off with making elements "too 

accessible"; as the picture of the scope of the valid clients of each element becomes 

clearer, the element's visibility can be restricted. 

For example, 519 (about 60% of all the visibility changes, see Table C-2) fields and 

methods changed their visibility to private in release version 0.9.4, which clearly 

indicates that JFreeChart underwent an information-hiding restructuring, an observation 
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validated by the CVS log statement "fix errors reported by CheckStyle". Checkstyle is a 

tool to help programmers write Java code that adheres to the coding standard, such as Sun 

Java Specification. 

We have defined queries that return design entities, such as fields, methods, nested 

classes and interfaces, which are not declared as private but have not been accessed 

outside their containing elements. Furthermore, visibility changes are one type of 

elementary changes reported by UMLDiff. 

8.2.2 Refactorings 

Refactoring is one of the most important practices in the agile software-development 

process, which aims at improving the design of existing code [32]. 

8.2.2.1 Extracting interfaces 

A corollary of the programming-to-interfaces principle is the extract interface refactoring. 

If two or more classes have some stable common behaviors, an interface could be 

extracted to include the methods delivering the shared behaviors. In this manner, the 

clients of the refactored classes that are interested in their common behaviors can start 

depending on the extracted interface, get decoupled from the classes' implementation and 

become able to use all implemented classes interchangeably. 

We have defined queries that return the classes that declare enough (by enough, we 

mean over user-specific threshold) same-signature fields and/or methods. For some of the 

returned classes, the number of same signature fields and/or methods remains the same or 

changes a little, which indicates that these classes share the stable common interfaces. 

Among them, we identified instances of extract interface refactoring in order to comply 

with programming-to-interface principle. 

For example, classes HorizontalBarRenderer and VerticalBarRenderer declared five same 

name fields and methods before version 0.8.0, while in that version, a common interface 

CategoryltemRenderer was extracted; the above classes were modified to implement the 

new interface and the field Tenderer of their client classes HorizontalCategoryPlot and 

VerticalCategoryPlot were pulled up into superclass CategoryPlot that declared it as the type 
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of interface CategoryltemRenderer instead of specialized HorizontalBarRenderer or 

VerticalBarRenderer. 

We also discovered some other cases of interface extraction. In version 0.7.4, seven 

constants of the Axis class were extracted into the newly added interface AxisConstants that 

was then implemented by Axis and its subclasses. Similarly, JFreeChartConstants was 

extracted from JFreeChart, ChartPanelConstants from ChartPanel and CategoryPlotConstants 

from CategoryPlot. The intent for all these changes must have been to enable the use of the 

constants by classes other than their original containers. However, further development, it 

turned out that these constants were only accessed by the classes that originally contained 

them and the developers decided to move them back from the interfaces to the 

corresponding classes and remove the corresponding interfaces. We call such classes, 

whose features remain in the system even after the classes themselves are removed, die­

hard classes [102]. 

8.2.2.2 Extracting superclasses 

The extract superclass refactoring is advisable when two (or more) classes share a 

substantial part of their members, which also seem to be modified together over time. 

Again, the instances of classes that share the enough same-signature fields and/or 

methods are queried for inspection. But this time we are more interested in those classes 

that show the similar evolution profiles, such as, the same name fields and/or methods are 

often added to those classes in the same version, which results in the number of same 

features increasing over time. This is a good indicator of shot-gun surgery [32], which 

can be fixed by such refactorings as extract superclass. An example of extracting 

superclass ObjectTable from co-evolving PaintTable, StrokeTable and ShapeTable has 

already been discussed in Section 7.2.2. 

8.2.2.3 Forming template methods 

The template method design pattern [34] is applicable in situations where an algorithm is 

defined in a superclass, with its overall process and some of its steps being shared by the 

subclasses as-is, some of the steps being used as defaults when the subclasses do not 

override them while yet others being overridden or extended by the various subclasses 

183 



according to their needs. Form template method is one of the complex refactorings 

identified in the Fowler catalog [32] to get template method pattern. 

We have defined queries that search for the sibling classes that declare methods with 

enough (again, user-specific threshold) same usage dependencies, such as field 

reads/writes, method calls, and object instantiations, which indicates that these methods 

do their job in a similar way. Therefore, they are the candidates for further examination 

of forming template methods. 

For example, in version 0.9.19, an superclass AbstractCategoryltemLabelGenerator was 

extracted from class StandardCategoryltemLabelGenerator, in which generateLabelStringO 

was defined as a template method that called the default tooltip and label implementation 

defined in method createltemArrayO- The subclasses, StandardCategoryLabelGenerator and 

StandardCategoryToolTipGenerator, implemented the interfaces CategoryLabelGenerator and 

CategoryToolTipGenerator respectively and called the template method generateLabelStringO. 

The other subclasses, such as IntervalCategoryLabelGenerator, overrode createltemArrayO to 

provide their specific behaviour. 

The class StandardPieltemLabelGenerator had the similar condition to 

StandardCategoryltemLabelGenerator. If the JFreeChart developers wanted to restructure 

StandardPieltemLabelGenerator later on, the changes made to 

StandardCategoryltemLabelGenerator as reported by UMLDiff constituted the contextual 

advice on how to accomplish the task. 

8.2.2.4 Extracting classes 

Complex classes are sometimes incohesive because they are responsible for delivering 

many responsibilities. Such classes should be simplified by extracting some of their 

features into other classes, created for exactly that purpose. The simplified class can then 

delegate to the newly created class to deliver its responsibilities. 

For example, in version 0.9.14, a new class RendererState was created. The field info of 

type PlotRendererlnfo and the method getlnfoO were extracted from the AbstractRenderer to 

the RendererState class. A similar refactoring was also applied to Axis to extract a new 

AxisState class. Such state classes were designed to hold state information for Tenderer and 
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axis objects during the drawing process, which enable multiple threads to draw the same 

axis to different targets, since each drawing thread maintains its own separate state object. 

The symptom motivating extract class refactoring is high class complexity, such as 

active classes that have been modified in at least, for example 60%, of the versions 

between two specific versions. In such cases, querying for the method sets used by the 

class clients may reveal subsets of methods used together which are candidates to become 

methods of a new extracted class. 

8.2.2.5 Collapsing hierarchies 

Collapsing hierarchies is another important refactoring that deals with generalization. 

Refactoring hierarchies often involves moving fields and methods or pulling them up into 

a newly added or an existing superclass, which, frequently, results in the classes that do 

little job or subclasses that are not that different from its superclass. In such cases, the 

(sub) classes should be merged to superclass. 

For example, in version 0.9.9 JFreeChart was overhauled substantially. UMLDiff 

reported the largest number of changes to the system design between any two subsequent 

versions in the evolution history of JFreeChart. Several inheritance hierarchies were 

collapsed (see Section 6.4.4.4). 

Actually, there exist three parallel inheritance hierarchies (Horizontal- and Vertical-

plot, axis, and Tenderer) in the JFreeChart system before version 0.9.9. The horizontal 

class and its corresponding vertical one are very similar (or sometimes identical). The 

only major difference is that, one set was used for horizontal drawing, the other for 

vertical. Such parallel hierarchies make the subsequent changes difficult, since when it 

comes time to modify something, you have to change more than one place. This also 

results in a large amount of code duplication. The JFreeChart developers became, at some 

point, aware of the existence of separate horizontal and vertical hierarchies, and in release 

0.9.9, they made a great effort to redesign the Plot, Axis, and Renderer hierarchies. 

Parallel hierarchies, symptomatic of strong design interdependencies, can be 

discovered through the co-evolution analysis. 
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8.2.2.6 Replacing type code with typesafe-enum object 

Numeric type codes are a common feature of procedural programming languages like C. 

Frequently, they are assigned as values to named constants to make them more readable. 

However, the compiler still sees the underlying number and it may alias it to any other 

number with no restrictions to its value range. In this case, there is nothing to force the 

named constants to be used; any arbitrary nonsense number can be passed in. A better 

alternative in object-oriented software is the typesafe-enum class [11]. The idea is to 

replace numeric type code with a class with private constructors; use factory methods to 

make sure only valid instances are created and passed around. One such typesafe-enum 

class has been discussed in Section 7.2.1. The same type refactorings were applied 

several times to produce such typesafe-enum classes as HistogramType, RangeType, 

HorizontalAlignment and VerticalAlignment, etc. 

Monitoring the use of type code may depend on dynamic analysis, but a simple query 

returns all the constant fields of type int that are declared as static and final provides the 

developers a good start point to investigate the type code fields. 

8.2.3 Contextual project-specific hints 

In this section, we discuss some of JFreeChart specific design changes that could be 

valuable as contextual evolution knowledge, if properly recorded. 

8.2.3.1 Splitting package 

We investigated in detail the three major instances of extract package refactorings in 

JFreeChart. In version 0.9.4, the package com.jrefinery.chart contained 111 classes and 

interfaces. In version 0.9.5, 75 of them were moved into three new packages 

com jrefinery.chart.plot, com.jrefinery.chart.axis, and com.jrefinery.chaitrenderer. In version 0.9.7, 

17 classes and interfaces were split out from package comjrefinery.chart.data to a new 

package com.jrefinery.chart.data.time, but over 90 classes and interfaces were still left in it, 

until it was split again in version 0.9.21 to 8 new or existing packages. In version 0.9.21, 

47 of 62 classes and interfaces were split out from org.jfree.chart.renderer to 

org jfree.chart.renderer.category and org.jfree.chart.renderer.xy respectively. 
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These package-splitting activities generally reduced the number of classes and 

interfaces contained in each package to about 20-30. This project-specific behavior 

essentially constitutes a piece of contextual advice - although by no means definitive -

that indeed, as a general rule: 

• It is ok for a package to have -30 classes and interfaces; 

• A package should be split into subpackages when it has -100 classes and interfaces; 

• Increasing the size of a package over 60 can be flagged as a potential problem, 

because it reaches the range of complexity that makes it a splitting candidate. 

8.2.3.2 More contextual advices 

Other instances of JFreeChart-specific advices that we have recorded are listed as follows: 

• Avoid introducing parallel horizontal and vertical Plot, Axis, or Renderer classes 

when working on these hierarchies, since a great effort was made in the past to 

eliminate them; 

• If the constant fields are only used by a single class, do not separate them out; 

• When adding new type of plot class, let it handle its own corresponding dataset. 

Avoid putting the dataset in the superclass Plot and let the subclasses do the 

downcasting; 

• New dataset classes should implement interface Serializable and Cloneable; 

• Two sets of methods should be provided in the dataset classes. One set for efficient 

access, the other for convenience. 

8.3 Summary 

In this chapter, we discussed our initial work on software design-mentoring, which could 

present developers with an advisable course of action, based on learned experiences from 

past evolution activities, whether mistakes or successes, especially at the design-level. It 

relies on UMLDiff-based refactoring detection and design-evolution analyses. It detects 

the opportunities for potential design improvement from the logical model of the system 

and its evolution history. Furthermore, it associates with these opportunities design 

changes aimed towards addressing similar problems that have been applied in the past of 

the system development, as reported by UMLDiff and the refactoring-detection queries. 
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We believe, by reflecting on these problematic patterns and their associated design 

remedies, a developer has a better chance to reach decisions on solving their current 

problems in a manner consistent with past ones. 

188 



Chapter 9: Conclusions, Contributions and Future Plan 

Object-oriented software is increasingly developed using evolutionary development 

process model. Design is a continuous activity throughout the project lifecycle. Design 

evolves so that the system may support evolving features and is regularly refactored, as 

refactoring has becomes one of the most important core practices in the object-oriented 

software development. Although evolutionary development creates new software 

development challenges, such as shortened development cycles and increased frequency 

of software updates, it also represents new opportunities that, if suitably exploited, may 

provide supports to both existing and new development and maintenance activities. 

To date, there has been no substantial support for reliably and accurately recognize 

design changes that software system has suffered through its evolution. The existing 

approaches either rely on low-level program representations that are not designed for 

understanding and supporting the design evolution of object-oriented software 

[3,20,45,47,82,107,118,128] or they require the high-quality consistently maintained 

change documentations [7,30,31,33,41,58,87]. Furthermore, although there has been a 

substantial amount of research in the general area of understanding the evolution, i.e., 

"past", of software, there has been much less work on utilizing this understanding to 

"advising for the future". 

Continuous design improvement also poses serious problems for the asynchronous API 

evolution between reusable component frameworks and client application built on them. 

Unstable interfaces to a reusable component framework negatively impact reuse, since 

they require constantly client applications to adapt. The existing practices 

[15,42,50,119,121] rely on additional, and potentially substantial, information provided 

by the component-framework developers that document the changes and advise on how 

to adapt them. However, it is seldom the case that the change documentation and scripts 

provided with a large framework are sufficient for a client-application developer to 

effectively migrate to the changed APIs. All too often, application developers become 

lost when trying to reuse a changed API, unsure of how to make progress on a migration 

problem. 
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9.1 Contributions 

This thesis presents a model-differencing based methodology for supporting object-

oriented evolutionary development through capturing and analyzing the design-evolution 

history of object-oriented software. In this section, we summarize the contributions of 

this work. 

9.1.1 Theoretical contributions 

The major theoretical contributions of this work are the following: 

a) Pair-wise model-differencing: This methodology does not assume the existence of 

change documentation consistently maintained in the development process, nor does 

it rely on the comparison of low-level program representations, such as code lines, 

source code metrics, AST, control-flow graph, or XML. Instead, it relies on an 

original model-differencing algorithm, UMLDiff. UMLDiff compares UML logical 

models of an object-oriented software system and reports the design changes 

regarding additions, removals, moves, and renamings of subsystems, packages, 

classes, interfaces, attributes and operations, and changes to the attributes and 

relations of these model elements. As the applications developed based on its results 

demonstrate, its results are more directly relevant to the design-evolution of object-

oriented software and correspond more closely to the intention of developers' 

changes. UMLDiff is sensitive to irregular usage of the versioning system, but with 

high precision and recall of design changes when the versioning system is used 

regularly. It is also robust to the user's choice of parameters, used to configure the 

differencing process. 

b) Query-based refadoring detection: Refactorings often result in many scattered low-

level changes to the logical model of the system. One may still understand how the 

software system has been refactored by examining a set of small, elementary changes, 

such as those reported by UMLDiff, however, by combining the relevant elementary 

changes into refactorings, it becomes easier to understand the specific intent of the 

design-evolution and support refactoring-aware collaborative development. The 

instances of refactorings are recognized from their effects on the logical model, in 
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terms of queries of UMLDiff design-change facts. These queries are precise: they 

report the detected refactorings in terms of their particular types and participants. 

They are robust to "multiple-changes-to-same-entity" issue. They can be extended for 

detecting any structural change pattern of interest to the user. Query-based refactoring 

detection enables us to investigate how refactoring is practiced in general and elicit 

some high-level design requirement for a refactoring-aware development 

environment. 

c) API-evolution Catch-up: The Diff-CatchUp approach to adapting client applications 

in response to API changes of their underlying component frameworks does not 

require any additional work by the component-framework developers. Instead, it 

builds on our work on UMLDiff algorithm and refactoring detection. Once the 

specific API changes have been identified, not only does it formulate hypotheses for 

how the broken API might be replaced but also it collects specific examples of the 

hypothesized replacements have been used in order to provide the application 

developers with contextual information on the basis of which to evaluate its 

proposals. Furthermore, it does not focus on isolated changes but, instead, it aims to 

collect all API elements relevant to a particular migration problem. The Diff-CatchUp 

approach relies on the fact that a component framework itself represents good usage 

of its evolving API and thus is sensitive to the existence of "voluntary" migration 

example in its evolution history and the amount of changes they undergo. But its 

assumption holds for most cases and it is quite effective generating the replacing API 

elements and the corresponding usage examples in the face of the API evolution of a 

component framework. 

d) Longitudinal design-evolution analyses: The quantitative report of UMLDiff changes 

is discretized and classified to produce a qualitative record of the volatile nature of 

the design evolution of each individual class throughout the system's history, i.e., 

phases of intensive evolution, rapidly developing, restructuring, slowly development, 

or steady-state. These distinct evolution phases allow us, through the application of 

sequential-pattern and association-rule mining methods, to study (a) how classes are 

introduced into, maintained, and eliminated from the system; (b) the evolution styles 

characteristic of the roles of classes in the system; (c) the relative-ordering relations 
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between function-extension and refactoring phases and whether they are consistent 

with the adopted development process; and finally, (d) the inter-dependencies among 

the evolution trajectories of different classes and their implications for the system's 

subsequent development. These analyses facilitate the overall understanding of 

system evolution, help to recognize system instabilities, and provide support 

regarding the scope of future maintenance activities, 

e) Design mentoring: Query-based refactoring-detection and longitudinal design-

evolution analyses constitute a solid base for mentoring object-oriented evolutionary 

development, based on learned experiences from past evolution activities. Design 

mentoring is our attempt to bridge the gap between "understanding the past" and 

"advising for the future". It detects the opportunities for potential design 

improvement from the logical model of the system and the results of longitudinal 

evolution analyses, guided by object-oriented design principles, design pattern and 

refactoring practices, or the development styles previously adopted by the system. It 

associates with these opportunities design changes aimed towards addressing similar 

problems, as reported by UMLDiff and the refactoring-detection queries that have 

been applied in the past of the system development. By reflecting on these 

problematic patterns and their associated design remedies, a developer has a better 

chance to reach decisions on solving their current problems in a manner consistent 

with past ones. 

9.1.2 Software engineering tools 

To support our theoretical work, we developed three relevant software engineering tools: 

a) JDEvAn (Java Design Evolution and Analysis supports design-evolution analysis of 

Java software systems. It supports the reverse-engineering of UML models from Java 

source code; it provides a practically efficient implementation of UMLDiff algorithm 

and supports the inspection of UMLDiff 'results to correct erroneously identified and 

missed changes; it allows the developers to query a broad range of pre-defined 

"standard" refactorings, and also to define their own queries for any structural change 

patterns of their interests; it outputs discrete class-evolution profiles for third-party 

sequential-pattern analysis and data mining tools. JDEvAn's front-end is an Eclipse 
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plugin. Its backend repository is a PostgreSQL relational database, which stores all 

the model facts, the change facts, and the analysis results. 

b) Diff-CatchUp tackles the problem of migrating client applications in the face of 

evolving APIs of component frameworks. The Diff-CatchUp front-end, an Eclipse 

plugin, allows the client-application developer to highlight the code fragments or 

compilation errors/warnings he wishes to update. In response, it identifies the model 

element of the component API involved in a selected migration problem and displays 

the replacement and usage-example proposals for further exploration with the 

JDEvAn Viewer. Its server hosts a JDEvAn repository regarding the logical-model 

and API-change facts of the evolving component framework, which is populated with 

the JDEvAn tool before Diff-CatchUp can be used. Diff-CatchUp searches the 

JDEvAn repository for the changes to the component APIs, the plausible 

replacements and their potential usage examples. 

c) The JDEvAn Viewer is the visualization component for JDEvAn and Diff-CatchUp. It 

enables an intuitive means of communicating all the design changes and evolution 

patterns produced by JDEvAn and the replacement and usage-example proposals 

generated by Diff-CatchUp. It provides software developers with a UML-style 

diagram and supports the interactive visualization, exploration, annotation, and 

persistence of JDEvAn and Diff-CatchUp output. JDEvAn Viewer has been 

implemented as an Eclipse plugin and it relies on Eclipse GEF (Graphical Editor 

Framework) [117]. It leverages the GEF facilities to provide Undo/Redo and Zoom-

in/Zoom-out features. 

We intentionally chose to implement our methodology on Eclipse, a popular Java 

development IDE, so that it can be tightly integrated within the development environment, 

and thus enable investigating the design-change patterns of object-oriented software 

evolution, exploring the underlying motivations behind them, and supporting future 

development and maintenance activities. These tools are publicly available to download. 

They have already been adopted by some users, who rely on them to investigate such 

topics as regression testing, model transformation, the detection of code smells, the 

correlation between the nature and size of the changes and the resulting bugs, the 

relationship between structural model and program refactoring, and so on. 
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9.1.3 Empirical case studies 

We conducted three empirical case studies in order to refine and evaluate our 

methodology and the tools that implement it. These studies examined three independently 

developed software systems, which are of different size and complexity and from 

different application domains: HTMLUnit is a small-size open-source software system 

for unit testing; JFreeChart is a medium-size open-source Java class library for generating 

various types of charts; Eclipse is a large-scale industrial framework that has been under 

development for about five years. All of them have been actively developed for a long 

period of time and have suffered a substantial amount of design changes. 

JFreeChart has been used as the subject system of extensive case study to evaluate all 

modules of our work, from UMLDiff algorithm to refactoring-detection queries, 

longitudinal design-evolution analyses, JDEvAn Viewer, design mentoring, and finally 

Diff-CatchUp. HTMLUnit has been used in evaluation of the effectiveness of UMLDiff 

algorithm, refactoring-detection queries, JDEvAn Viewer, and Diff-CatchUp approach. 

Eclipse has mainly been used to investigate the refactoring practice in the evolution of 

object-oriented software system and how it should be support in general. 

These empirical studies have demonstrated that our approach is applicable and 

effective in practice. They are important for building confidence and trust in the whole 

methodology. Furthermore, all the analysis results are publicly available to download. 

We believe they will be useful to other researchers in the area. 

9.2 Future Work 

Our future work will focus on two essential aspects of modern software development 

practices, i.e., evolution and collaboration. First, we would like to apply the model-

differencing based methodology to analyze and support the evolution of software systems 

developed in non-object-oriented development paradigms. Second, we want to develop 

techniques for supporting the collaborative production of evolving software systems. 

Third, we plan to develop methods for improving knowledge collaboration in the 

development of long-lived evolving software systems. 
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9.2.1 The software evolution in non-object-oriented paradigms 

The core ideas of our research methodology to analyze and support evolutionary software 

development are to extract design models above code level, compute the differences 

between models, analyze these differences to identify interesting evolution patterns, and 

finally use the differences and evolution patterns to support further development. In this 

thesis, this methodology has been applied to study the evolution of static structure model 

of object-oriented software systems. However, we believe that this methodology is not 

restricted to object-oriented paradigm, nor is it restricted to static structure model. 

We plan to apply the model-differencing based methodology to study the evolution of 

software systems developed in non-object-oriented programming paradigms. Assuming 

that the useful high-level models can be extracted, we believe that the combination of 

lexical and structure similarities should still apply to detect "meaningful" changes to the 

system design structure. However, the effectiveness of these similarity heuristics need to 

be thoroughly evaluated as the software development paradigms become more 

declarative and less structured. 

We would also like to apply this methodology to analyze the evolution of dynamic 

models specifying the behavior and interaction of system processes or objects, such as 

message sequence chart [18,46], state transition model, or control and data flow diagram. 

New set of heuristics need to be developed to detect the "meaningful" changes to these 

dynamic models as they evolve over time. We believe that the change report of system 

design structure would inform the comparison of dynamic models. On the other hand, the 

evolution information of different structure and behavior models can be used to check 

their consistencies during system evolution. Furthermore, as different design models 

depict different aspects of a system design, the combination of their evolution 

information should enable a deeper understanding of the nature and impact of software 

evolution and a better support for further development. 

9.2.2 The collaborative production of evolving software systems 

Our Diff-CatchUp approach tackles the problem of asynchronous API evolution between 

the client applications and the component frameworks they reuse. In the future, we would 

like to develop more techniques for supporting the collaborative production of evolving 
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software system between design teams, development teams, and testing teams, such as 

merging parallel development branches, validating architecture/design compliance, and 

analyzing the nature and impact of software changes for selective regression testing. 

Software systems are often subject to asynchronous and conflicting evolution from 

multiple parties. Today, there are two families of methods supporting the merging of 

conflict changes of parallel development branches: state based and operation based [65]. 

We would like to develop a merging method that combines the strengths of state- and 

operation-based merging, i.e., the easy adoption of state-based methods and the robust 

conflict detection and resolution of operation-based techniques. Similar to state-based 

methods, this merging method requires only a base version and its conflicting revisions to 

be merged. But it relies on a model-differencing algorithm, such as UMLDiff developed 

in this thesis, which is able to capture evolution operations applied to obtain each of the 

revisions from the base version, instead of low-level textual, AST, or dependency-graph 

differences between the based version and its revisions. And then it applies operation-

based merging strategies, such as conflict table, to detect and resolve merge conflicts 

between these evolution operations. We also plan to apply this merging method to 

automatically effectuate the component's API changes in the context of client 

applications reusing the evolved components. 

Software developers are often faced with questions throughout the course of software 

development regarding how well the implementation matches the system design, whether 

the evolved implementation is still compliant with the original design, and whether the 

intention of design evolution has been properly implemented. Static architecture/design 

compliance checking approaches can be used to address these questions. However, the 

existing approaches, such as rule-based compliance checking [71,77], software reflexion 

model [16,55,68], and software goal model [99], generally provide only an overview of 

high-level (e.g., subsystem-level) inconsistencies between design and code; they are 

rarely precise about which classes or methods cause the inconsistencies. We plan to 

develop model-differencing based method for the purpose of validating code-to-design 

compliance at fine-grained (e.g., method) level. The reported inconsistencies may reveal 

detailed information about unintended dependencies, misuse of patterns, breach of 

196 



architectural styles, and violation of evolution intentions in the system implementation. 

They may also be used to update the out-of-date design documents. 

Selective regression testing relies on change impact analysis to identify tests that must 

be executed after software changes, to determine whether new tests need be created, and 

to prioritize the execution of test cases. The existing techniques [81] to selective 

regression testing attempt to improve the precision of change impact analysis by 

exploring different program representations, but little attention has been paid to the types 

of changes used in the analysis. We would like to raise the level of abstraction of 

concerned changes, as reported by model-differencing algorithms, when analyzing the 

nature and impact of software changes. Such change impact analysis could enable more 

reliable test selection, test prioritization, and test augment for selective regression testing. 

In addition, it may be used to estimate efforts to migrate client applications to the new 

versions of component frameworks. It may also be used to determine potential fault 

incidences in the client applications reusing the evolved components and identify changes 

responsible for these failures. 

9.2.3 The knowledge collaboration in software evolution 

As software evolves, it embodies a huge amount of useful information for future 

development, such as the quality attributes that are important to the system, the practices 

that the development team has adopted in the past, and the decisions that have been made 

in different situations, the persons that have expertise on a given task, and the working 

examples that the evolved APIs have been used. However, as the information become 

immense volumes, it is difficult to retrieve the information that developers want. Our 

research on the knowledge collaboration in the development of long-lived evolving 

software systems will focus on the sharing and transfer of software evolution knowledge 

among software developers. We believe that informed software developers are able to 

make intelligent decisions in their further development and maintenance activities. 

We would like to develop methods for enhancing the awareness of each other's 

expertises, activities, and evolution decisions among software developers. As a starting 

point we will continue our work on software design mentoring. The goal is to develop a 

software design mentor that can detect anomalies in the system design structure and its 
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evolution history and offer suggestions for solving them by retrieving the past similar 

cases and their corresponding remedies. We believe that the analysis of software design 

structure and its evolution history, such as change-pattern detection and longitudinal 

design evolution analyses developed in this thesis, can uncover design changes aimed 

towards improving the system design and dependability and detect opportunities for such 

changes. The challenge is to develop an appropriate representation for recording and 

maintaining such design evolution knowledge so that a software design mentor can 

effectively reason about them and offer suggestions accordingly. 

In addition to design structure and its evolution history, other types of information can 

be extracted from the development history of software systems, regarding who did what, 

how, and more importantly why such development occurred. Such information used to 

scatter in different sources, such as version control system, issue tracking system, and the 

developer's communication (e.g., emails, instant messages, or postings to newsgroups). 

The recent team collaboration products such as Jazz by IBM [120] and Visual Studio 

Team System by Microsoft [122] provide a common infrastructure that eases the 

management of software development assets across software lifecycle in collaborative 

software development. We plan to explore the information accumulated to such a team 

collaboration repository and apply information retrieval techniques such as Latent 

Semantic Analysis [19] to associate the relevant information with the results of model-

differencing based design evolution analysis. The long-term goal of this research is to 

develop an "organization memory" that can provide quick and easy online access to 

software evolution knowledge rather than relying on human memory and experience. 
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Appendix A: UML meta-model 

Table A-l. The UML model elements 

Metaclass 
«stereotype» 

Subsystem 

Package 
Class 

Interface 

DataType 
Attribute 

Operation 
« c r e a t e » 
«init ial ize» 

Method 

Parameter 

Exception 

Reception 

Description 

A subsystem is a grouping of model elements that represents 
a behavioural unit in a physical system. 
A package is a grouping of model elements. 
A class declares a collection of attributes, operations and 
methods that fully describe the structure and behavior of a set 
of objects. A class acts as the namespace for various kinds of 
contained elements defined within its scope, including 
classes and interfaces. 
An interface is a named set of operations that characterize the 
behavior of an element. 
A data type is a type whose values have no identity. 
An attribute is a named piece of the declared state of a 
classifier, which refers to a static feature of a model element. 
An attribute may have an initValue specifying the value of 
the attribute upon initialization. 
An operation is a service that can be requested from an object 
to effect behavior, which refers to a dynamic feature of a 
model element. 
A method is the implementation of an operation. It specifies 
the algorithm or procedure that effects the results of an 
operation. 
A parameter is a declaration of an argument to be passed to, 
or returned from an operation. 
An exception is a signal raised by behavioral features 
typically in case of execution faults. 
A reception is a behavioral feature and declares that the 
classifier containing the feature reacts to the signal 
designated by the reception feature. 
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Table A 2 . The UML relations among model elements 

Metaclass 
«stereotype» 

Generalization 

Abstraction 
« r e a l i z e » 

Usage 
« c a l l » 
«instantiate» 
« s e n d » 
« r e a d » 
« w r i t e » 

Association 

Description 

A generalization is a taxonomic relation between a more 
general element (parent) and a more specific element 
(child). 
An abstraction is a dependency relation that relates two 
elements or sets of elements that represent the same 
concept at different levels of abstraction. 
A usage is a dependency relation in which one element 
requires another element (or set of elements) for its full 
implementation or operation. 

An association is a declaration of a semantic relation 
between classifiers that can be of three different kinds: 1) 
ordinary association, 2) composite aggregate, and 3) 
shareable aggregate. There are three meta-composition and 
five ordinary meta-associations defined in the meta-model, 
which are described in Table A-3. 
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Table A-3. The compositions and associations among model elements 

Metarelation 
namespace - ownedElement 

owner - feature 

BehaviorFeature - parameter 

typedParameter - type 

typedFeature - type 

context -raisedSignal 

reception - signal 
method - specification 

Description 
A namespace is a model element that can own other 
model elements. The element ownership is used for 
unstructured contents such as the contents of a 
package or a class declared inside the scope of 
another class. 
A classifier declares a collection of features. The 
features are the inherent semantic parts of a 
classifier. 
An operation declares an ordered list of parameters. 
The parameters are the inherent semantic parts of an 
operation. 
Designates a classifier to which an argument value 
of a parameter must conform. The type must be a 
class, interface, or datatype. 
Designates a classifier as whose instances are values 
of the attribute. The type must be a class, interface, 
or datatype. 
Designates exceptions that may be raised by 
behavioral features, such as operations when 
execution faults happen. 
Designates reception features that handle the signal. 
Designates an operation that the method implements. 

Table A-4. UMLDiff-speciRc tagged values attached to model elements 

Tagged values 
comment 

isFromModel 

deprecated 

overloaded 

count 

Base metaclass 
ModelElement 

ModelElement 

ModelElement 

ModelElement 

Usage 

Description 
Any documentation attached to the model 
element. 
If the model element is imported from a model 
other than the current one, false. Otherwise, 
true. 
If the model element is obsolete and will be 
removed from the model in the future, true. 
Otherwise, false. 
If the operation is overloaded, true. Otherwise, 
false. 
The number of times a usage dependency 
appears between the client and supplier 
elements. 
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Appendix B: Reverse-engineering Java Software 

Table B-l. Mapping Java language constructs to UML model elements 

Java constructs 
Java primitive type 
Java array type 
Java software subsystem 
Java package 
Java class 
Java interface 
Java field 
Java method 
Java constructor 
Java class initializer 
Java field initializer 
Java parameter 
The return type of Java method 

UML metaclasses 
ProgrammingLanguageDataType 
ProgrammingLanguageDataType 
Subsystem 
Package 
Class 
Interface 
Attribute 
Operation 
Operation«create» 
Operation«i„itiaiize» 
Attribute's initValue 
Parameter 
Parameter whose name='return' and kind=return 

Table B-2. Mapping Java relations to UML metarelations 

Java relations 
Contain 
Declare 
Method/constructor parameter 
extends 
implements 
newXXX(...) 
Use field 
Change field value 
Method/constructor call 
throw statement 
Field data type 
Parameter type 
Method return type 

throws clause 
catch clause 

UML metarelations 
meta-composition [namespace - ownedElement] 
meta-composition [owner - Feature] 
meta-composition [BehaviorFeature - parameter] 
Generalization 
Abstraction«reaiize» 
Usage«jnstantiate» 
U sage«read» 
Usage«write» 
Usage«caii» 
U Sage«Send» 
meta-association [typedFeature - type] 
meta-association [typedParameter - type] 
meta-association [typedParameter - type] for the 
parameter whose kind=return 
meta-association [context - raisedSignal] 
meta-association [reception -signal] 
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Table B-3. Mapping Java modifiers to the attributes of UML metaclasses 

Java modifiers 
public, protected, private 
static 
final 
synchronized 
abstract 
transient 

The attributes of UML metaclasses 
visibility of ElementOwnership or Feature 
ownerScope=classifier of Feature 
isLeaf=true of GeneralizableElement or Operation 
concurrency=guarded of Operation 
isAbstract=true of GeneralizableElement or Operation 
persistence=transitory of Attribute 

Table B-4. Mapping Java language features to UMLDifF-speciGc tagged values 

Java language features 
Javadoc description before block tags 
Java construct belongs in the source code 
Javadoc contains @deprecate tag 
Several methods/constructors with same identifier 

UMLDiff-speciRc tagged values 
comment 
isFromModel=true 
deprecated=true 
overloaded=true 
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Appendix C: JFreeChart 

Table C-l. The number of model element and relation facts of JFreeChart 

Model elements 
Package 
Class 
Interface 
Field 
Method 
Constructor 
Parameter 

Total 

698 
12866 

1686 
40829 

101311 
17908 

142635 

317933 

Relations 
Contain 
Extend 
Implement 
Read 
Write 
Call 
Class usage 
Class instantiation 
Total 

205298 
13695 
9458 

154465 
61036 

416073 
165415 
94704 

1120144 

Table C-2. The summary of UMLDiff"changes23 in JFreeChart evolution 

Element renaming 
Element move24 

Extract operation 
Inline operation 
Data (return) type change 
Abstraction«reaiize» change 
Generalization change 
Visibility change 
Other attribute/tagged-value change 
Total 

2180 
957 
533 
95 

1056 
1032 

186 
868 
607 

7514 

The changes to usage dependency between model elements are not included. Same 

for HTMLUnit and Eclipse case study. 
24 The moved methods may also involve identifier changes. Such instances are 

manually added during the inspecting session of UMLDiff results. Same for HTMLUnit 

and Eclipse case study. 
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Appendix D: HTMLUnit 

Table D-l. The number of model element and relation facts of HTMLUnit 

Model elements 
Package 
Class 
Interface 
Field 
Method 
Constructor 
Parameter 

Total 

95 
2639 

128 
3239 

23779 
2718 

11739 

44337 

Relations 
Contain 
Extend 
Implement 
Read 
Write 
Call 
Class usage 
Class instantiation 
Total 

36717 
2639 
497 

10504 
3963 

74244 
17666 
11486 

157716 

Table D-2. The summary of UMLDiffchanges in HTMLUnit evolution 

Element renaming 
Element move 
Extract operation 
Inline operation 
Data (return) type change 
Abstraction«reaiize» change 
Generalization change 
Visibility change 
Total 

464 
1098 
254 
27 

105 
43 

135 
79 
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Appendix E: Eclipse 

Table E l . The number of model element facts of Eclipse 

Package 
Class 
Interface 
Array Type 
Field 
Method 
Constructor 
Total 

2.0 
138 

3546 
692 
562 

11440 
27623 

3929 
47930 

2.1 
144 

4326 
768 
294 

14213 
33829 
4737 

58311 

2.1.3 
144 

4332 
769 
296 

14245 
33878 
4751 

58415 

3.0 
177 

5610 
935 
383 

18812 
42923 

6025 
74865 

3.0.2 
177 

5612 
935 
383 

18862 
42927 

6027 
74923 

3.1 
188 

6466 
1024 
439 

29029 
49187 

6943 
93276 

Total 
968 

29892 
5123 
2357 

106601 
230367 
32412 

407720 

Table E-2. The number of relation facts of Eclipse 

Contain 
Extend 
Implement 
Read 
Write 
Call 
Class usage 
Class instantiation 
Total 

2.0 
53623 
3253 
1449 

44583 
17781 
90924 
31658 
9915 

253186 

2.1 
65925 
4003 
1790 

54842 
21597 

117813 
39284 
12273 

317527 

2.1.3 
66034 
4009 
1792 

54954 
21638 

117815 
39362 
12315 

317919 

3.0 
84963 
5134 
2298 

73754 
27755 

151629 
51700 
16025 

413258 

3.0.2 
85076 
5135 
2300 

73827 
27815 

151858 
51830 
16123 

413964 

3.1 
105162 

5921 
2596 

98120 
32648 

179775 
61594 
19037 

504853 

Total 
460783 

27455 
12225 

400080 
149234 
809814 
275428 

85688 
2220707 

Table E-3. The summary of UMLDiffchanges in Eclipse evolution 

Type of change 
Element renaming 
Element move 
Visibility change 
Data (return) type change 
Non-access modifier change 
Abstraction«reaiize» change 
Generalization change 
Entity addition 
Entity removal 
Total 

2.1 - 2.0 
809 
387 
435 
245 
167 
190 
33 

7127 
1298 

10691 

3.0 - 2.1.3 
2285 
1244 
857 
718 
484 
391 
109 

14095 
4157 

24340 

3.1-3.0.2 
1488 
684 
550 
561 
425 
274 
162 

17343 
2455 

23942 

Total 
4582 
2315 
1842 
1524 
1076 
855 
304 

38565 
7910 

58973 
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Appendix F: Refactoring-Detection Queries 

In this appendix, we review queries implemented in JDEvAn for detecting Fowler-

catalog refactorings [32] 

F.l The simple "standard" refactorings 

Each of the simple refactorings of Table 4-1 consists of a single elementary design 

change reported by UMLDiff. Some of the simple refactorings are the direct output of 

UMLDiff, while others take into account the information about the containment context 

of the refactored elements. Consider, for example, the extract operation elementary 

change: depending on whether the newly extracted method belongs in the same class as 

the original, or two classes along an inheritance path, or two unrelated classes, the change 

aims at refactoring the class internals, pulling up (pushing down) a behavior into a 

superclass (subclass), or moving behavior to a class where it naturally belongs. 

F. l . l Dealing with containment hierarchy 

The refactorings of move subsystem, package, and class are discovered directly through 

the UMLDiff'process. 

Given a moved class or interface, if it was originally contained in a class or interface 

and has subsequently moved into a package, an instance of convert inner type to top-

level refactoring is reported. The convert top-level type to inner refactorings are 

identified with a similar, but inverse, query. The participants of these three types of 

refactorings include the moved subsystems, packages, or classes/interfaces and their 

containing model elements in two compared versions respectively. 

F.1.2 Dealing with generalization 

The key elementary changes of the refactorings in this category are the moved methods, 

the moved fields, and the extracted/inlined operations. Given such an elementary change, 

the generalization and abstraction relationship between the declaring classes or interfaces 

of the source and target method/field is examined. If the declaring class or interface of the 
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target method/field is the supertype (direct or transitive) of that of the source 

method/field, an instance of pull-up method, pull-up field, or pull-up behavior 

refactoring is reported, depending on the type of key elementary change being inspected. 

Push-down method, field and behavior refactorings are identified in a way similar to 

the corresponding pull-up refactorings, with the difference that the condition must be 

revised to read "the declaring class or interface of the target method/field is the subtype 

(direct or transitive) of that of the source method/field". The pull-up constructor body 

refactoring is a special case of the pull-up behavior refactoring. Instances of this type of 

refactoring are recognized through a similar query to pull-up behavior with one more 

condition that checks that "both the source and target operations are constructors". The 

participants of these five types of refactorings include the refactored methods, 

constructors or fields and their declaring classes or interfaces in the two compared 

versions respectively. 

F.1.3 Moving features between objects 

Move method, move field and move behavior refactorings are recognized similarly to 

the corresponding pull-up and push-down refactorings above. The only difference is that 

they require a different query condition that "the declaring classes or interfaces of the 

source and target method/field have no inheritance relation". The refactoring participants 

involve the refactored methods, constructors or fields and their declaring classes or 

interfaces in the two compared versions respectively. 

F.1.4 Refactoring class internals 

The nine refactorings in this category are all recognized directly through the UMLDiff 

process. Renaming a model element changes its declared name (identifier for 

method/constructor). For methods and constructors, their parameter lists can be modified 

through adding or removing parameter. The visibility of a model element can be 

modified to a more restrictive one (information hiding). The declared types of fields, 

method, and parameters can change to a more general (generalize type) or more specific 

(downcast type) one. 
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If the declaring types of the extracted (inlined) operations and the operations from (to) 

which they are extracted (inlined) are same, then the extract/inline operation refactorings 

become the extract method and inline method refactorings described in Fowler's 

refactoring catalog [32], which are essentially used to refactor class internals. 

F.2 The composite "standard" refactorings 

Composite refactorings are recognized as the composition of two or more elementary 

changes reported by UMLDiff and/or the instances of simple refactorings discussed in 

Section F.l. Although one may still understand how the software system has been 

refactored by examining a set of small, primitive or simple changes, we believe that, by 

combining the relevant elementary changes and/or simple refactorings into composite 

refactorings, it becomes easier to understand the specific intent of the change. 

F.2.1 Dealing with containment hierarchy 

Extract subsystem and package refactorings redistribute groups of features into newly 

introduced subsystems or packages. These refactorings are detected by examining the 

UMLDiff status of the original and new containing (direct or transitive) subsystem or 

package of the moved model elements and/or the extracted/Mined operations. If the 

original containing subsystem or package of the source model element is mapped and the 

containing subsystem or package of the target model element is newly added, an instance 

of extract subsystem or extract package refactoring is reported. Inline subsystem and 

package refactorings merge the contents of one subsystem or package into another. They 

are recognized through a similar query to the corresponding extract subsystem/package 

refactoring, with the difference that the condition must be revised to read "the original 

containing subsystem or package of the source model element is removed and the 

containing subsystem or package of the target model element is mapped". The refactoring 

participants include the refactored model elements and their corresponding containing 

(direct or transitive) subsystem or package in the two compared versions respectively. 
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F.2.2 Dealing with generalization 

The extract interface refactoring can be used to bring out the common interface of 

several classes or to define the operations that can be requested from an object. Given a 

mapped class, which starts implementing a newly introduced interface, if the cardinality 

of the intersection set between the methods defined in the new interface and the methods 

with the same signatures declared in the mapped class is greater than the user-specified 

threshold, an instance of extract interface refactoring is reported. 

Note that, for the sake of efficiency, only the most distinct effects of some composite 

refactorings on the logic model are examined. In the case of extract interface, it examines 

only the amount of the same-signature methods defined and declared in the new interface 

and the mapped class respectively. It does not look into such changes as parameter type 

change, usage dependency change, etc., in their corresponding user objects. 

For an extract interface refactoring, there may exist more than one pair of same-

signature methods defined and declared in the new interface and the mapped class 

respectively. Furthermore, there may exist more than one mapped class, which start 

implementing the given new interface. The refactoring participants include the mapped 

classes, the newly introduced interface, and the pairs of same-signature methods defined 

and declared in them respectively. 

Extract superclass or subclass and inline superclass or subclass are four refactorings 

that result in the reorganization of the class hierarchy. Queries for the instances of these 

four types of refactorings are defined based on the results of pull-up and push-down 

refactorings. For example, extract superclass refactorings are identified as follows: given 

& pull-up field, method, or behavior, if its original declaring class or interface is mapped 

and its current declaring class or interface is newly added, an instance of extract 

superclass refactoring is reported. For an extract superclass refactoring, there may exist 

more than one instance of pull-ups between the original and new declaring classes. 

Furthermore, there may exist more than one subclass, whose features are pulled up into 

the newly added superclass. The refactoring participants include the mapped subclasses 

whose features are pulled up, the newly added superclass, and the pull-up methods, fields 

and/or behavior. 
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Inline superclass, extract subclass, and inline subclass refactorings are identified 

similarly. They are based on push-downs, push-downs, and pull-ups respectively. For the 

inline refactorings, the condition also needs to be revised to read "the original declaring 

class or interface is removed and the current declaring class or interface is mapped". 

They have a similar set of refactoring participants with extract superclass refactorings. 

The intent of form template method refactorings is to pull-up the sequence of 

operations in the superclass and allows the subclasses to behave differently through 

polymorphism. The query for recognizing this type of refactorings is defined based on the 

pull-up method and extract method refactorings: given an instance of pull-up method, if 

there exist one or more extracted method in the same subclass as the origin of the pulled-

up method and these extracted methods override and/or implement the methods called by 

the pulled-up method that provide the default behavior in the superclass, an instance of 

form template method refactoring is reported. For a form template method refactoring, 

there may exist more than one pulled-up method (from different sibling subclasses) 

whose subclass-specific behaviors are extracted and left in the individual subclasses. The 

refactoring participants include the pulled-up methods that define the common sequence 

of algorithm, the methods called by the pulled-up method that provide the default 

behavior in the superclass, and the extracted methods in the individual subclasses that 

override the default behavior and define the subclass-specific features. 

The replace inheritance with delegation refactoring aims at favoring object 

composition (black-box reuse) over class inheritance (white-box reuse). The intent of 

replace deleeation with inheritance is exactly opposite. The former refactoring is 

identified as follows: given a mapped class, which no longer extends or implements a 

particular type but declares a new field, if the data type of the newly declared field is the 

supertype (direct or transitive) of the type that the class no longer extends or implements, 

an instance of replace inheritance with delegation refactoring is reported. The refactoring 

participants of replace inheritance (delegation) with delegation (inheritance) include the 

mapped class, their no longer (new) supertype, and the new (removed) field and its 

corresponding data type. 
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F.2.3 Moving features between objects 

Extract class and inline class refactorings redistribute the features between objects and 

adjust the collaborations among them. We have defined die-hard and lepacv classes 

[102102]. A die-hard class is a class that is removed from the system but most of its 

functionalities are moved to other classes. An inlined class is a die-hard class. A legacy 

class is just the opposite of a die-hard class: it is introduced into the system as a 

placeholder for fields, methods, and behavior moved in from other classes. An extracted 

class is a legacy class. UMLDiff does not attempt to identify entities that have been 

renamed and moved at the same time. However, moving a class or interface and 

renaming it at the same time often results in a pair of die-hard and legacy classes being 

identified. 

The identification of these three refactorings relies on the move method, field and 

behavior refactorings. Consider the extract class as an example. If the declaring class of 

the source element is mapped and the declaring class of the target element is newly added, 

an instance of the extract class refactoring is reported. To recognize inline class 

refactorings, the condition becomes "If the declaring class of the source element is 

removed and the declaring class of the target element is mapped". The condition to 

recognize pairs of die-hard and legacy classes is "If the declaring class of the source 

element is removed and the declaring class of the target element is newly added". 

For a refactoring of type extract class, inline class or a pair of die-hard and legacy 

classes, there may exist more than one instance of method, field and behavior move 

between the original and new declaring classes. The refactoring participants of these 

three types of refactorings are the refactored methods, constructors or fields, and their 

declaring classes or interfaces in the two compared versions respectively. 

F.2.4 Refactoring class internals 

Let us now discuss how instances of the introduce factory method refactoring are 

detected. Given a newly added static method, which instantiates a particular type of 

object and whose return type is the type or supertype (direct or transitive) of the objects it 

instantiates, if the client method no longer creates the object directly but delegates to the 

newly added static method, an instance of introduce factory method refactoring is 
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reported. The participants of this refactoring are the newly added static method, the types 

of the object it instantiates, its return type, and the corresponding client methods. 

Note that the newly introduced factory methods may instantiate more than one type of 

objects, all of which are the subtype (direct or transitive) of its return type. The 

refactoring-detection query does not care in which class the factory method is declared. 

The factory method may be declared in the class of its return type. However, this may not 

always be the case. For example, the factory method may be declared in a separate 

factory class. The query for introduce factory method is able to handle such cases. 

However, it does not handle the object instantiation through dynamic loading, such as 

using Class.forName(String). There is no way to recognize which types of objects are 

actually created based on only static analysis. 

To detect encapsulate field refactorings the field, its new encapsulation method, and 

their client methods are examined. Given a newly added method, which reads (writes for 

setter method) the mapped field in the same class and whose return type (one of its 

parameter's type for setter method) is same as the data type of field it reads (writes), or 

they are related through inheritance, if the client method no longer reads (writes) the field 

directly but calls the newly added method to access (change) the value of the field, an 

' instance of encapsulate field refactoring is reported. 

However, note that the query for encapsulate field refactoring does not check the 

visibility of the field changing to the more restrictive one. The most distinct effect of this 

refactoring on design is the introduction of the new access method and the usage 

dependency changes of the field's client method. In our experience with several case 

studies, the developers do forget to hide the encapsulated field sometimes or forget to 

update all its client sites so that some of them may still refer to the field directly. This is 

also an indicator that an automatic refactoring engine that helps the developers perform 

the refactoring and update all the corresponding references is desirable. 

Refactorings of type introduce parameter object are to encapsulate several parameters 

that often go together into a single object. They are detected by examining the renamed 

method or constructor and its removed and newly added parameters and their 

corresponding types. Given a renamed method/constructor, which no longer declares 

some of its original parameters but declares a new parameter whose type is a newly 
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added class or interface, if the cardinality of the intersection set between the no longer 

declared parameters and the fields of the newly added parameter type is greater than the 

user-specified threshold, an instance of the refactoring introduce parameter object is 

reported, with the renamed method and the newly added type of its new parameter as 

refactoring participants. 

Preserve whole object refactorings result in sending a complete object as a parameter 

of a method call instead of passing some of its fields' values. Such refactorings are 

detected by examining the renamed method or constructor, its removed and newly added 

parameters and their corresponding types, and the usage dependency changes of the 

renamed method and its client method. Given a renamed method, which no longer 

declares some parameters but declares a new parameter whose type is a mapped class or 

interface, it starts calling some methods, which are no longer called by some of its client 

method. If the cardinality of the intersection set between the types of the parameters no 

longer declared by the renamed method and the return types of the methods the renamed 

method starts calling is greater than the user-specific threshold, an instance of the 

refactoring preserve whole object is reported, with the renamed method, its client method, 

and the type of its new parameter as the participants. 
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Appendix G: Refactoring Reports 

Table G-l. The refactorings in the evolution of HTMLUnit, JFreeChart and Eclipse 

Category 
Dealing with 
containment 

Dealing with 
generalization 

Moving 
features 
between 
objects 

Refactoring 
class-internals 

Type of refactoring 
Convert inner type to top-level 
Convert top-level to inner 
Extract subsystem 
Inline subsystem 
Extract package 
Inline package 
Pull-up method/field 
Push-doWn method/field 
Pull-up behavior 
Push-down behavior 
Pull-up constructor body 
Extract interface 
Extract superclass 
Extract subclass 
Inline superclass 
Inline subclass 
Form template method 
Replace inheritance with delegation 
Extract class 
Inline class 
Die-hard/legacy classes 
Convert anonymous class to nested 
Move method/field 
Move behavior 
Deprecation + delegation 
Information hiding 
Generalize type 
Downcast type 
Introduce factory method 
Introduce parameter object 
Encapsulate field 
Preserve whole object 

HTMLUnit 
1 
0 
0 
0 
1 
4 

1008 
22 

141 
6 
3 
8 

119 
1 
0 
*> 
£* 1 
1 

13 
2 
0 
1 

32 
71 
14 
7 
6 

10 
0 
0 
9 
0 

JFreeChart 
1 
1 
0 
0 

15 
1 

315 
52 

165 
7 
9 

55 
11 
3 
2 

23 
3 
5 

34 
0 
8 
0 

216 
102 
83 

707 
140 
54 
0 
0 

182 
4 

Eclipse 
19 
20 

0+25 

0+ 

16+ 

3+ 

279 
53 
0+ 

0+ 

0+ 

33 
15+ 

4+ 

4+ 

T 
0+ 

2 
95+ 

31+ 

95+ 

12+ 

1363 
0+ 

0+ 

751 
177 
85 
19 
4 

0+ 

0+ 

For the time being, we did not compute the complete set of usage differences for 

Eclipse. As a result, the detection of Extract/Inline Operation refactorings was also 

disabled. The lack of the usage differences and Extract/Inline Operation results affect the 

detection of several types of refactorings, which are marked with "+". 
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