
University of Alberta

Supporting Object-Oriented Evolutionary Development

by Design Evolution Analysis

by

Zhenchang Xing {* '-V\

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

Edmonton, Alberta

Spring 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-45630-9
Our file Notre reference
ISBN: 978-0-494-45630-9

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Object-oriented software is increasingly developed through evolutionary processes and,

as a result, design has become a continuous activity throughout the course of the entire

development. Understanding the process of a system's design evolution is critical for

understanding the architecture qualities important to the project and for consistently

maintaining and further evolving the system. The importance of this research problem is

evident in the various types of evolution analyses proposed to date. However, in spite of

the large body of research in this area, there has been no systematic method yet for

capturing and analyzing changes between subsequent versions of software at the design

level. In this work, we have developed UMLDiff, a heuristic algorithm for comparing

logical models of object-oriented software to recognize additions, removals, matches,

moves, renamings of software design elements and changes to their attributes and

relations from one version to the next. Based on the design changes reported by UMLDiff,

we have developed further analyses (a) for recognizing the long-term trends in the

evolution of individual classes, clusters of classes and the system as a whole, and (b) for

detecting design-change patterns over a set of related design entities. Through our

detailed case studies with three real-world software systems of different type and size, we

have demonstrated that our design-evolution analyses methods, as implemented in our

tool suite, are accurate and practical and that they can be used to support specific

development tasks, such as (a) migrating client applications to appropriately use the

evolving component-framework APIs, and (b) recommending design and code fragment

for addressing problematic evolution patterns.

Acknowledgement

This thesis is the result of five years of work whereby I have been accompanied and

supported by many people. It is a pleasure that I have now the opportunity to express my

gratitude for all of them.

I would like to thank my supervisor Dr. Eleni Stroulia for her supervision, advice, and

guidance throughout the work. Her enthusiasm and integral view on research inspired my

growth as an independent researcher. Besides of being an excellent supervisor, Eleni is a

good friend to me. I am really glad that I have come to get know her in my life.

I would also like to thank the other members of my Ph.D. committee who monitored my

work and took effort in reading and providing me with valuable comments on this thesis:

Dr. J. Nelson Amaral, Dr. H. James Hoover, Dr. Paul G. Sorenson, Dr. Marek Reformat

and Dr. David Notkin. I thank you all.

I am very thankful to my colleagues, Dr. Kenny Wong, Warren Blanchet, Ying Liu,

Curtis Schofield, and Brendan Tansey, for their contributions to this thesis. I would also

like to thank Dr. Gail Murphy, Dr. Hausi A. Muller, Dr. Barbara G. Ryder and Dr.

Daqing Hou for their advices on this research.

I feel a deep sense of gratitude for my father and mother who formed part of my vision

and taught me the good things that really matter in life. I am very grateful for my wife

Jinshu, for her love and patience during the Ph.D. period. I am also grateful for my

father- and mother-in-law and my sister for their loving support. Without their

encouragement and understanding it would have been impossible for me to finish this

work.

Finally, I would like to thank everybody who was important to the successful realization

of this thesis, as well as expressing my apology that I could not mention personally one

by one.

Table of Contents

Chapter 1: Introduction 1

1.1 The research problem 1

1.2 Methodology 4

1.2.1 UMLDiff. 5

1.2.2 Design-evolution analysis 6

1.2.3 Design-evolution support 7

1.3 Tools 8

1.3.1 JDEvAn 8

1.3.2 JDEvAn Viewer 9

1.3.3 Diff-CatchUp 9

1.4 Empirical evaluation 9

1.5 Contributions 10

1.6 Thesis outline 11

Chapter 2: Related Work 13

2.1 Software differencing 13

2.2 Refactoring 19

2.3 Software evolution analysis 21

2.4 Supporting API evolution 24

2.5 Recommending software artifacts 27

Chapter 3: Model Differencing with UMLDiff. 29

3.1 The meta-model 29

3.2 UML model reverse engineering in JDEvAn 31

3.3 Comparing logical models of object-oriented software 33

3.3.1 The running example 33

3.3.2 UMLDiffoverview 34

3.3.3 Similarity metrics 38

3.3.4 Mapping model elements 45

3.3.5 Mapping relations 58

3.3.6 Recognizing behavior redistribution 60

3.3.7 Comparing attributes of mapped model elements 62

3.4 Evaluation 63

3.4.1 C/MLD#effectiveness 63

3.4.2 UMLDiffrobustaess 68

3.4.3 UMLDiff run-time performance 74

3.5 Summary 76

Chapter 4: Query-based Change Pattern Detection 78

4.1 Detecting refactorings with change-pattern queries 79

4.2 Refactoring practice: How it is and how it should be supported 81

4.2.1 The empirical assessment of the design evolution of Eclipse 81

4.2.2 Analysis of the case-study findings 96

4.3 Summary 100

Chapter 5: API-Evolution Support with Diff-CatchUp 102

5.1 An illustrative example 103

5.2 API-evolution catch-up 104

5.2.1 Selecting an API migration problem 105

5.2.2 Determining the changes to a broken API 106

5.2.3 Proposing replacements for a changed API 107

5.2.4 Recommending usage examples of a concerned API 113

5.2.5 Presenting replacement and usage example proposals 116

5.3 Evaluation 117

5.3.1 A usage scenario of the Diff-CatchUp tool 119

5.3.2 The effectiveness of Diff-CatchUp 125

5.4 Threats to validity 127

5.4.1 API changes without syntactic effects 127

5.4.2 The quality of UMLDiff results 128

5.4.3 Availability of "voluntary" migration examples 129

5.5 Summary 131

Chapter 6: Longitudinal Design-Evolution Analysis 132

6.1 Classifying evolution behavior 133

6.2 Analyzing class-evolution phases and styles 137

6.2.1 Phasic analysis 138

6.2.2 Gamma analysis 139

6.2.3 Optimal matching analysis 140

6.3 Detecting co-evolving classes 141

6.4 Evaluation 145

6.4.1 Class-evolution phases 145

6.4.2 Relative order of evolution phases 148

6.4.3 Class-evolution styles 151

6.4.4 Class co-evolution 153

6.5 Summary 160

Chapter 7: Exploring Design Evolution Concerns 162

7.1 The JDEvAn Viewer 163

7.1.1 Presenting design-evolution concern 163

7.1.2 Exploring the neighborhood of a concern 166

7.1.3 Exploring the evolution trace of a concern 168

7.1.4 Attaching user comments 168

7.1.5 Requesting source code 168

7.1.6 Persisting design-evolution concern 169

7.2 Demonstrations 169

7.2.1 Different problems but same solution 169

7.2.2 Same problem but different solutions 171

7.3 Summary 174

Chapter 8: Towards Mentoring Object-Oriented Evolutionary Development 175

8.1 Design mentoring 176

8.2 The JFreeChart pilot study 178

8.2.1 Adherence to "first principles" of object-oriented development 178

8.2.2 Refactorings 182

8.2.3 Contextual project-specific hints 186

8.3 Summary 187

Chapter 9: Conclusions, Contributions and Future Plan 189

9.1 Contributions 190

9.1.1 Theoretical contributions 190

9.1.2 Software engineering tools 192

9.1.3 Empirical case studies 194

9.2 Future Work 194

9.2.1 The software evolution in non-object-oriented paradigms 195

9.2.2 The collaborative production of evolving software systems 195

9.2.3 The knowledge collaboration in software evolution 197

Bibliography 199

Appendix A: UML meta-model 210

Appendix B: Reverse-engineering Java Software 213

Appendix C: JFreeChart 215

Appendix D: HTMLUnit 216

Appendix E: Eclipse 217

Appendix F: Refactoring-Detection Queries 218

F.l The simple "standard" refactorings 218

F.l.l Dealing with containment hierarchy 218

F.1.2 Dealing with generalization 218

F.l.3 Moving features between objects 219

F.1.4 Refactoring class internals 219

F.2 The composite "standard" refactorings 220

F.2.1 Dealing with containment hierarchy 220

F.2.2 Dealing with generalization 221

F.2.3 Moving features between objects 223

F.2.4 Refactoring class internals 223

Appendix G: Refactoring Reports 226

Appendix H: API Migration Problems 227

List of Tables

Table 3-1. The containment hierarchy of UML model elements 35

Table 3-2. The summary of design changes reported by UMLDiff 37

Table 3-3. The UML relations for computing structure similarity 40

Table 3-4. The related model-element sets of Customer.statement()23 and

Customer.plainStatement027 42

Table 3-5. The transitive outgoing usage of Customer.statement()23 and

Customer.plainStatement027 43

Table 3-6. The partial model-element sets V23 and V27 45

Table 3-7. The sets of renaming candidate pairs 49

Table 3-8. The initial not-yet-mapped model elements after the match/renaming

reorganization steps 52

Table 3-9. Mapping relations of the renamed [Customer.statement()23,

Customer.plainStatement027] 59

Table 3-10. Redistribute semantic behavior among operations 61

Table 3-11. UMLDiff result?, at renaming/move threshold 0.3 65

Table 3-12. UMLDiff 'results at renaming/move threshold 0.35 69

Table 3-13. Recognizing renamings with different name-similarity metrics 72

Table 3-14. Recognizing renamings and moves with and without comment-similarity.. 73

Table 3-15. Recognizing operation renamings and moves with/without transitive usage

similarity 73

Table 3-16. The run-time complexity of UMLDiff"in JFreeChart case study 75

Table 3-17. The actual time cost of UMLDiff in JFreeChart case study 76

Table 4-1. Fowler's "standard" refactorings 80

Table 4-2. Rename program entities 82

Table 4-3. Move program entities 85

Table 4-4. Data-type changes that might be wrapped 90

Table 4-5. Containment-hierarchy refactorings in Eclipse evolution 92

Table 4-6. Inheritance-hierarchy refactoring in Eclipse evolution 94

Table 4-7. Class-relationship refactoring in Eclipse evolution 94

Table 4-8. Class-internal refactorings in Eclipse evolution 96

Table 5-1. The Diff-CatchUp actions for adapting different types of API changes 107

Table 5-2. Proposing replacements for a "removed" API 109

Table 5-3. Input parameters for recommending obtain-object usage example 114

Table 5-4. Catch-up the evolution of the three PlotFit-related classes 120

Table 5-5. Replacement proposals for PlotFit.getFitO with full heuristics checking 121

Table 5-6. Replacement proposals for PlotFit.getFitO with only "newly used" heuristic. 121

Table 5-7. The success rate of Diff-CatchUp in the evolution of JFreeChart 126

Table 5-8. The success rate of Diff-CatchUp in the evolution of HTMLUnit 126

Table 6-1. The evolution profile of class CategoryPlot 134

Table 6-2. Classifications of change activities 136

Table 6-3. Transaction database for association-rule mining 144

Table 6-4. The summary of evolution phases in JFreeChart 145

Table 6-5. Pair-wise gamma scores of class Axis 149

Table 6-6. Separation and precedence scores of class Axis 149

Table 6-7. VerticalCategoryAxis vs. HorizontalCategoryAxis 153

Table 6-8. The evolution profiles of VerticalCategoryPlot vs. HorizontalCategoryPlot 154

Table 6-9. VerticalBarRenderer vs. HorizontalBarRenderer 155

Table 6-10. VerticalBarRenderer, VerticalBarRenderer3D, StackedVerticalBarRenderer3D.... 157

Table 7-1. The handles attached to model elements in JDEvAn Viewer 167

Table 7-2. The motivations of refactorings 170

Table A-l. The UML model elements 210

Table A-2. The UML relations among model elements 211

Table A-3. The compositions and associations among model elements 212

Table A-4. UMLDiff-specific tagged values attached to model elements 212

Table B-l. Mapping Java language constructs to UML model elements 213

Table B-2. Mapping Java relations to UML metarelations 213

Table B-3. Mapping Java modifiers to the attributes of UML metaclasses 214

Table B-4. Mapping Java language features to UMLDiff-specific tagged values 214

Table C-l. The number of model element and relation facts of JFreeChart 215

Table C-2. The summary of UMLDiff changes in JFreeChart evolution 215

Table D-l. The number of model element and relation facts of HTMLUnit 216

Table D-2. The summary of UMLDiff changes in HTMLUnit evolution 216

Table E-l. The number of model element facts of Eclipse 217

Table E-2. The number of relation facts of Eclipse 217

Table E-3. The summary of f/MZ-jDzĵ changes in Eclipse evolution 217

Table G-l. The refactorings in the evolution of HTMLUnit, JFreeChart and Eclipse... 226

Table H-l. The summary of API migration problems that Diff-CatchUp is able to handle

227

List of Figures

Figure 1-1. Methodology overview 4

Figure 2-1. Eclipse text compare 13

Figure 2-2. The partial AST of class PlainStatement 14

Figure 2-3. The partial AST of changed local variable declaration 15

Figure 2-4. XML-differencing XMI representation of UML models 16

Figure 3-1. An example of UML model that UMLDiff compares 30

Figure 3-2. The impact of the user-specific renaming and move thresholds 70

Figure 5-1. Diff-CatchUp perspective in Eclipse..... 122

Figure 5-2. Explore PlotFit.getFitO and its replacing APIs with JDEvAn Viewer 124

Figure 5-3. Code differences demonstrating how to replace getFitO with

createMovingAverage(...) 124

Figure 6-1. Refactoring frequency 150

Figure 7-1. A screenshotof JDEvAn Viewer 163

Chapter 1: Introduction

The work in this thesis aims to address the problem of supporting object-oriented

evolutionary development through capturing and analyzing the design-evolution history

of object-oriented software. As object-oriented software is increasingly developed

through evolutionary processes, software-engineering research is becoming increasingly

aware of the need to analyze the by-products of these processes - i.e., software versions

in repositories, their associated documentation, change requests, etc. - in order to better

understand and support them. The research presented in this thesis is focusing exactly on

this issue.

In this introductory chapter, we formulate the specific research questions examined by

the thesis, place our work in the context of related research, outline the methodology we

have adopted for our work, and review the tools we have developed to support this

methodology and the experimentation we have conducted with these tools to evaluate

their effectiveness. Finally, we identify the important contributions of this work to the

field as a whole, and conclude by discussing the organization of the rest of this document.

1.1 The research problem

Object-oriented software is increasingly developed using evolutionary development

processes. Design is no longer a one-time activity; systems, in addition to being

incrementally designed to fulfill their evolving requirements, have their design

continuously improved through behavior-preserving restructurings, as refactoring has

become one of the most important core practices in object-oriented development.

As a result, at any point in time, the system design is the product of a sequence of

design-evolution decisions, a fact that should be taken into account in subsequent

development and maintenance tasks. Some tasks may require that the developer

understands the evolution trajectory, through which the system design has reached its

current state and the practices that the system-development team has adopted in the past.

For example, understanding the types of code restructurings that have been applied in the

past gives the developers insights regarding the design qualities that are considered

important for the project, so that they can keep evolving the system consistently.

1

Managers may also be interested in high-level evolution patterns characteristic of desired

process qualities or symptomatic of problems so that they can better manage the project

and predict the evolution of other projects in the future.

Continuous design improvement also poses serious problems for building applications

that reuse evolving component frameworks. Stable interfaces to a reusable component

framework isolate the client application from changes to those components. However, the

new component's versions change their application programming interfaces (APIs),

sometimes dramatically, which implies a need for client applications to adapt. The

fundamental challenge lies in the fact that these applications and their underlying

component frameworks are subject to two independent, asynchronous, and potentially

conflicting evolution processes. To migrate to a new component's version, the client-

application developers have to understand the nature of component's API changes, their

plausible replacements and how to use them.

All of these tasks essentially require answers to the same set of three basic and related

research questions:

Research Question 1. How can one precisely and accurately recognize changes to

a system's design from one version to the next?

Research Question 2. How can this information be further analyzed to gain insight

in the rationale behind the system's evolutionary development?

Research Question 3. How can the identified changes and the analysis results be

effectively used to support further evolving the system?

There has been some research towards recognizing software changes. Lexical

differencing tools [118] view software programs as text documents; they report changes

at the lexical level in terms of code-line deltas. Such tools are frequently used by

developers to merge revisions of the system source code. The comparative analysis of

source-code metrics [20] may also help to infer moves of program entities. Unfortunately,

source-code metrics do not provide much intuition regarding whether program entities

has been changed and how.

There also exist differencing techniques that make use of other types of program

representations, such as Abstract Syntax Tree (AST) [82,107], program dependency

graph [47], control flow graph [3,45], and XMI (XML Metadata Interchange) format of

2

UML model [128]. However, these program representations are designed for purposes

other than understanding and supporting the evolutionary development of software

system and their results are usually too close to the software representation they adopt

instead of the design representations intuitive to the developers. Although recent research

on mining software repositories has shown increasing interests in detecting refactorings

[23,52,53,100], there still lacks systematic design-evolution analysis of long-lived object-

oriented software about what has changed, how exactly, and why.

Consistently maintained modification request, change logs, and bug reports, if exist,

are reliable source of information as to what has been changed and what is the rationale

behind the change. They have been used to analyze and delay code decay [30], predict

error-prone parts [39] of the system and infer change effort [38], understand how fast the

system changes and how stable the system is [10,35,41], reveal co-evolution of design

elements [9,33,87,110], define system-level evolutionary patterns [7,31,58], and infer the

nature of individual developer's contributions to the system evolution [62]. Unfortunately,

more frequently than not, such change documentation is vague, inconsistent or does not

even exist [13].

Although there has been a substantial amount of research in the general area of

understanding the evolution, i.e., "past", of software, there has been much less work on

utilizing this understanding to "advising for the future". Several recommendation systems

have been proposed to locate a component that could be reused [73,109], suggest a

potential solution to a particular type of bug [17], recommend people who might have

some expertise on a given problem [64], and present documents and code snippets similar

to the one currently being edited [44,78,108]. However, these recommendation systems

do not provide much in-depth analysis of the recommended software artifacts and their

evolution history; the developers take the burden to draw analogies towards solving their

current problem.

In the context of asynchronous API evolution in reuse-based software development,

several practices [15,42,50,119,121] have emerged to support the specification of

changes that may impact reuse and their consistent propagation. They rely on additional,

and potentially substantial, information provided by the component-framework

developers that document the changes and advise on how to adapt them. However, it is

3

seldom the case that the change documentation and scripts provided with a large

framework are sufficient for a client-application developer to effectively migrate to the

changed APIs, in spite of a substantial effort to write and maintain the change

documentation or scripts on the part of component-framework developer. All too often,

application developers become lost when trying to reuse a changed API, unsure of how to

make progress on a migration problem.

1.2 Methodology

The objective of this work is to develop a methodology for building an accurate

understanding of the design evolution of object-oriented software systems and supporting

their subsequent development and maintenance activities based on this understanding.

Figure 1-1 depicts the overall process of this work. The three phases of the process are

discussed in the following section.

Figure 1-1. Methodology overview

4

1.2.1 UMLDiff

The input to our methodology is the logical model [56] of object-oriented software

systems, which concerns classes, the information they may own, the services they can

deliver, and the associations and relative organization among them. The underlying meta-

model is defined according to the semantics of the UML (Unified Modeling Language)

model [69]. As per adopted meta-model, a software system is modeled as a directed

graph G(V, E), where the vertex set V contains model elements and the edge set E

contains relations among them. Note that this methodology has so far been only applied

to logical models reverse-engineered from Java source code in this thesis. However, by

adopting the semantics of the UML model as the meta-model underlying its input

representations, it is readily applicable to models produced in up-front design, or models

reverse-engineered from other object-oriented programming language, or a mix of them.

Given two versions, "before" and "after", of the logical model of an object-oriented

software system and their corresponding graphs Gbefore(Vbefore, Ebefore) and Gafter(Vafter,

Eafter), we developed the UMLDiff algorithm for automatically detecting the design

changes that the system has gone through, as it evolved from one version to the next.

UMLDiff traverses in parallel the spanning trees of the containment subgraphs of the two

compared models, descending from one type of model elements to its children types. As

it does so, it recognizes that a model element ei in the "before" version and an element ê

of the same type in the "after" version are the "same", i.e., they correspond to the same

conceptual model element, based on their lexical- and structure-similarity. Once

UMLDiff has completed mapping the vertex (model element) sets Vbefore and Vafter, it

proceeds to map the edge (relation) sets Ebefore and Eafter, by comparing the relations of all

pairs of model elements. Next, UMLDiff detects the redistribution of the semantic

behavior among operations, in terms of usage dependency changes, and finally computes

the changes to the attributes of all pairs of mapped model elements. UMLDiff 'produces as

output a set of design-change facts reporting the various types of design changes it has

discovered when comparing the two models, i.e., additions, removals, moves, and

renamings of subsystems, packages, classes, interfaces, attributes and operations, and

changes to the attributes and relations of these model elements.

5

1.2.2 Design-evolution analysis

UMLDiff is at the core of our methodology; based on the design-change facts it produces,

we have developed a suite of analyses to study the design-evolution history of object-

oriented systems.

First, a set of queries have been defined to elicit complex design-change patterns, as

compositions of elementary design-change facts, such as refactorings [32], aimed towards

improving the design of the system. The instances of design-change patterns are reported

in terms of their particular types and their participant model elements and relations.

Secondly, for an evolving software system with N successive versions, UMLDiff is

applied N times to recognize the design differences between the (l+l)'h and Ith versions,

where 0<I <N (supposing there is a virtual version 0 with no entities), resulting in an

quantitative trail of the design changes that the system classes have suffered throughout

their evolutionary lifecycle, i.e., in which version it was created, how many signature-

changes it underwent and how many of its member elements were newly added, removed,

moved, signature-changed in a particular version, and, possible, in which version it was

deleted. The quantitative report of UMLDiff design changes is then discretized to produce

a qualitative record of the categorical volatility of each individual class, i.e., discrete

class-evolution profile, throughout the system's history. Finally, four types of

longitudinal analyses - phasic analysis [84], gamma analysis [75], optimal matching

analysis [1], and association rule mining [2] - are applied to the class-evolution profiles

to recover a high-level abstraction of distinct evolution phases and their corresponding

styles and to identify class clusters with similar evolution trajectories.

The design-changes reported by UMLDiff and the subsequent design-evolution

analyses reveal which parts of a system have changed and how they have changed.

However, the motivation behind the changes, i.e., why they have changed, cannot be

precisely inferred through automatic process. To help developers infer the potential intent

for the changes, we developed an interactive visualization component, which enables a

compact and local view of otherwise scattered model elements and relations and their

changes by collecting them together and by eliding irrelevant (non-concern) elements,

relations, and their changes. This localization has been helpful in gaining insight into the

rationale behind the system evolution.

6

1.2.3 Design-evolution support

UMLDiff, the subsequent analyses it enables, and the interactive exploration of evolution

concerns build an accurate picture of the design evolution of software system and its

components. We have exploited two areas of supporting the evolutionary development of

object-oriented software systems based on this evolution knowledge.

First, we investigated the feasibility of mentoring object-oriented software design and

its evolution. A set of queries have been defined to recognize potentially problematic

patterns in the logical model of the system and its evolution history, which violate the

high-level object-oriented design principles and/or best practices, such as design patterns

and refactorings, or the development styles previously adopted by the system. Associated

with each of these queries are the design changes that have been applied to remedy the

similar problems in the past of the system development. The very process of recognizing

and reflecting upon the opportunities for specific design changes aimed towards

improving the system design may help developers draw informed decisions on solving

their current similar problems.

Secondly, we tackled the asynchronous API evolution problem in the context of

reused-based software development. The API changes are automatically recovered with

the UMLDiff algorithm, given the old and new versions of a component framework.

When a API migration problem - which is reported by the compiler when building the

client application with the new component-framework version - is selected, a heuristic

process searches the logical model and API-change facts of the evolved component

framework to formulate plausible answers to the three questions facing the client-

application developers: (a) "what changes have been made to the existing component

APIs?", (b) "what are the plausible replacements of those APIs in the new version of the

component framework?", and (3) "are there any examples on how exactly these

replacements are supposed to be used?". Finally, a set of replacement and usage example

proposals are formulated and presented to the client-application developers, which help

them migrate their applications to appropriately use the evolved APIs.

7

1.3 Tools

This methodology has been implemented in three related software-engineering tools:

JDEvAn (Java Design Evolution Analysis), JDEvAn Viewer, and Diff-CatchUp. We

chose on purpose to implement our methodology on Eclipse, a popular Java development

IDE, so that it can be tightly integrated within the development environment, and thus

enable investigating the design-change patterns of object-oriented software evolution,

exploring the underlying motivations behind them, and supporting future development

and maintenance activities.

1.3.1 JDEvAn

JDEvAn supports the design-evolution analysis of Java software systems. Its main

features include:

(a) a component for reverse-engineering logical model from the system's code;

(b) an implementation of UMLDiff for recovering the elementary design changes from

one version of the logical model to the next;

(c) support for inspecting the results of UMLDiff and also editing them in order to

correct erroneously identified and missed changes;

(d) a component for detecting various types of simple and composite refactorings;

(e) a component for producing discrete class-evolution profiles, which are then used

by third-party tools WinPhaser [43] and Weka toolkit [130] for sequential pattern

analysis and detecting co-evolution rules; and

(f) a component for detecting potentially problematic patterns, events, trends in the

logical model and its evolution history, where some design improvement may be

applied.

JDEvAn's front-end is an Eclipse plugin. Its backend repository is a PostgreSQL

relational database, which stores all the logical model facts, the UMLDiff change facts,

and the analysis results of the subject system.

8

1.3.2 JDEvAn Viewer

JDEvAn Viewer provides software developers with an UML-style diagram, which

supports developers to: inspect the logical models of two compared versions and the

design-changes between them; explore the neighbourhood and the evolution trace of a

selected model element; attach comments to model elements, relations and their changes

to record the hard-earned evolution knowledge; request source code of a selected element;

and persist the evolution concerns under investigation into files. JDEvAn Viewer has

been implemented as an Eclipse plugin and it relies on Eclipse GEF (Graphical Editor

Framework) [117]. It leverages the GEF facilities to provide Undo/Redo and Zoom-

iri/Zoom-out features.

1.3.3 Diff-CatchUp

Diff-CatchUp tackles the real problem of unstable APIs of component frameworks. The

Diff-CatchUp front-end, an Eclipse plugin, allows the client-application developer to

highlight the code fragments or compilation errors/warnings he wishes to update. In

response, it identifies the model element of the component API involved in a selected

migration problem and displays the replacement and usage-example proposals for further

exploration with the JDEvAn Viewer. Its server hosts a JDEvAn repository regarding the

logical-model and API-change facts of the evolving component framework, which is

populated with the JDEvAn tool before Diff-CatchUp can be used. Diff-CatchUp

searches the JDEvAn repository for the changes to the component APIs, the plausible

replacements and their potential usage examples.

1.4 Empirical evaluation

We used three Java software systems, HTMLUnit [123], JFreeChart [126], and Eclipse

[116], to evaluate our methodology and the tools that implement it.

HTMLUnit is a small-size open-source software system for unit testing. We use it in

evaluation of the effectiveness of UMLDiff algorithm, refactoring-detection queries,

JDEvAn Viewer, and Diff-CatchUp approach. We use 11 releases in its history from May

22, 2002 to August 23, 2005.

9

JFreeChart is a medium-size open-source Java class library for generating various

types of charts. We use it as the subject system of extensive case study to evaluate our

work, from UMLDiff algorithm to refactoring-detection queries, longitudinal design-

evolution analyses, JDEvAn Viewer, design mentoring, and finally Diff-CatchUp.

JFreeChart has been developed for more than 6 years. We used in our study 31 major

releases between the first version 0.5.6, released on December 1 2000, and the version

1.0.0, released on November 29 2004. It is a substantial and realistic software system and,

at the same time, it is of a manageable size, possible to inspect manually to establish the

ground truth for evaluating our work.

Eclipse is a large-scale industrial framework that has been under development for

about five years. In this work, Eclipse is mainly used to investigate the refactoring

practice in the evolution of object-oriented software system and how it should be support.

At the time of our study, Eclipse has nine releases between the first official version 2.0,

released on June 27 2002, and the latest version 3.1, which was released on June 27 2005.

In particular, we chose to compare three pairs of major releases 2.0 and 2.1,2.1.3 and 3.0,

and 3.0.2 and 3.1, because there were substantial changes between them. According to

their associated documentation, the remaining versions, 2.1.1, 2.1.2, and 3.0.1, included

mostly bug fixes and minor modifications and we ignored them in this case study. Eclipse

consists of three subprojects and in our study. We have focused on the JDT subproject,

which defines about half of the classes and interfaces of the whole Eclipse platform.

1.5 Contributions

This research has resulted in three different types of contributions:

1. Theoretical contributions: We developed a model-differencing based methodology

to capture and analyze the design evolution of object-oriented software systems and

support their evolutionary development, including pair-wise model differencing with

UMLDiff, the query-based detection of refactorings, longitudinal design-evolution

analyses, mentoring object-oriented evolutionary development, and API-evolution

support in reuse-based software development.

2. System Building: To support this methodology, we built three software engineering

tools. These tools implemented the whole work described in this thesis. They support

10

the design-evolution analysis of Java software systems and the migration of client

applications reusing the evolved component framework

3. Empirical case studies: We conducted three empirical case studies in order to refine

and evaluate our methodology and the tools that implement it. These studies have

demonstrated that our approach is applicable and effective in practice. Furthermore,

we believe the empirical results will be useful to other researchers in the area.

1.6 Thesis outline

The rest of this document is organized as follows. Chapter 2 reviews five research areas

related to this work, i.e., differencing software artefacts, understanding software

evolution, refactoring practices, supporting API evolution of software systems and

recommending reusable or similar software artefacts. Chapter 3 describes the underlying

meta-model assumed by the UMLDiff algorithm and the process by which these models

are extracted from Java software. It discusses in detail the UMLDiff algorithm and reports

on our evaluation of its runtime performance, effectiveness and robustness. Chapter 4

presents our approach to detecting refactorings as compositions of the design changes

reported by UMLDiff, with which we investigated how refactoring is practiced in the

evolution of Eclipse and how it should be supported in general. Chapter 5 discusses our

approach to supporting the migration of client applications to appropriately use the

evolved APIs of their underlying component frameworks, based on the API changes

reported by UMLDiff, given the old and new versions of the component frameworks.

Chapter 6 discusses a suite of automated design-evolution analyses, based on UMLDiff

change reports, to recover distinct evolution phases and their corresponding evolution

styles and to identify class clusters with similar evolution trajectories. Chapter 7

introduces our visualization component and its features, which supports the interactive

exploration of the logical models UMLDiff compares, the design changes reported by

UMLDiff, the detected refactorings, and the results of design-evolution analyses. Chapter

8 discusses the feasibility of design mentoring enabled by UMLDiff-based design-

evolution analysis. In particular, it discusses its ability to uncover design changes aimed

towards improving the system design and detect the opportunities for such changes.

11

Finally, chapter 9 summarizes the concluding remakes and outlines several interesting

directions we plan to continue this work.

12

Chapter 2: Related Work

This research relates to five research themes, i.e., differencing software artefacts,

analyzing software evolution history, refactoring practices, supporting API evolution of

software systems and recommending reusable or similar software artefacts, which we

review in this chapter.

2.1 Software differencing

Software differencing techniques rely on comparing various program representations,

such as code-line [118], source-code metrics [20], Abstract Syntax Tree [82,107],

program dependency graph [47], control-flow graph [3,45], XML Metadata Interchange

files of UML models [128], and unique identifiers of model elements [70,115].

a|»qgiyy- j
istraot o l u f Stata (j d a s s Plainstat enent <

fclio String rUn«(CvitiB«r aCuetoner) {
Znuaeration rentals - aCustenex.getRentalsD :
String result - headerStrmg(aCustoner>;
while (rentals.hasHorcElenentsf>> (

Rental each— (Rental) rentals. nextCleacnt)) ;
result +- eachRentalStrlng(each);

}

")!

abstract String headerstring (Customer aCustoaer);
abstract String £ oats r String (Customer aCustomer};
abstract String eaohRentalString (Rental aRental);

class PlalnStatcawnt mtenda Statement (^
String headerString(Customr aCuat outer) (

return . . .aCustosur-getMasieO . . . ; }
String eaohRentalString(Rental aRental) (

return . . .aRental .getMorlcO.gett i t leo••• +
Strlng.*alueOX<aRental.getCharge<))...;)

String xooterStrlne>(CustoMer aCuatoster) (
return ...String.valueOffaCustoner.setTotalCharge())...

String.valueDf faCuatomr.getTDtelJreauentRenterrointsO))

J

Vi
m

[piss's "nniLStatewent extends Statement J
String headerString(Customer aCustomer) (

return ***aCustaMr.getllane() * • • ;)
String eachRentalStringiRental aRental) (

return ***aBental.getMovle().gettitle()*»* +
String.valuelK(aRental.getCharge()>***;)

String xooterStrlng(Customer aCuat osier) (
return ***Strin«.valueOX(aCustoawr.getTDtalChariie())***

String.valueOf (aCustoausr . getTot&ITreouentRenterPointsO) t

lubiie String valtte(Customer aCustomer) {
Zinsser at ion rentals - aCustomer.getRentals()>
String result - headerStrlng<aCustomer);
i h U c (rentals.hasMorcElements<)> 1

Rental each - (Rental) rentals.nextEles»ent () s
result +- eachRentalString(each)i

result +- ZooterString(aCustts
return result; *);

}

String neaderStrlnglCustomer a Customer) f
return . . .aCustomer.getNameO . . . j }

String eactiRentalStrlng< Rental aRental) {
return . . .aRental .getMosiet>.setTitleO.. . +

String.talneOf (aRental.getChargeO)..,{)
String XooterString(Customer aCustomer) (

return ...String.valueOf < aCustaster .gBtTotalChargef) > . . .
String.ralueOf(aCustoner.gettotalf regnentRenterPolnts()))

class HtMLStatcment (
public String valne(Customer ajOtistenert {

Enumeration rentals - aCustomer.getltentala()t
String result - h*odcrString(aCu*tomer);
while (rentals.heaMoreBlssaentsO): I

Rental each -'. (Rental) rentals.nextClesMUitI
result +- BaohRentalString(saoh)I

> «))
)
String headerstring(Custoner aCustoau*r) (

return •**aCustoner.getssne()***;)
String eachRentalString(Rental aRental) <

return ***aRental.getMovie().gettltlef)*** +
String.*alueOX(aRental.g«tCharge())***;)

String -tooterString(Cu»t™er aCuatowtr) (
return *+*String.valueOX(aCustomer.getTotalCharge(>>***

String.TalueH (aCustomer. getTotalPreguentBenterPolnteO))

Figure 2-1. Eclipse text compare

Lexical differencing tools, like GNU diff [118], are frequently used by developers, in

concert with modification requests and bug reports, to reconstruct the changes between

13

http://aCustoner.se

subsequent versions of a software module [28,29,30,31]- Figure 2-1 shows the Eclipse

text-comparison results between two versions of a program1. In the after version, the

duplicated method value(), which used to be implemented by classes PlainStatement and

HTMLStatement, was pulled up into their new superclass, Statement. Unfortunately, the

changes reported by the text-comparison tool are unintuitive: the first line was changed;

five lines of code were added; a block of code was replaced by a single line. Since lexical

differencing tools view software programs as text documents, they report changes at the

lexical level, ignoring the high-level logical-design changes to which they correspond.

TypeDeclaration

Modifiers
'public'

SimpleName
* PlainStatement'

SimplcType

MethodOeclaration

Modifiers
'public'

Figure 2-2. The partial AST of class PlainStatement

' The program is excerpted from the version 27 and 28 of the extended refactoring

example at [129]. We adapt its version 23, 27 and 28 as the running example to illustrate

C/MLD/^algorithm in Section 3.3.1.

14

1 VarDeclarationFragraent

SimpleName
* result'

I'aluntliesi^cdl-xprcsMoii 1

Methodlnvocation

X
I hisExprcssion SimpleName

'headctString'
SimpleName
'aCustomer'

Figure 2-3. The partial AST of changed local variable declaration

The Abstract Syntax Tree (AST) is one view of the structure of a software program.

Figure 2-2 depicts a partial AST of the class PlainStatement in the before version. Yang

[107] developed a dynamic-programming tree-matching algorithm, for computing the

similarity between ASTs. However, ASTs of realistic programs are big, which makes

general tree-differencing algorithms impractical. Furthermore, they are often redundant.

For example, Figure 2-3 shows the VarDeclaration Fragment subtree, corresponding to a

variant of the second local variable declaration - String results =

(this.headerString(aCustomer)). Although there is no actual semantic difference between the

two variants, a tree-differencing algorithm, comparing it against the original

VarDeclarationFragment subtree (the bottom-right corner of Figure 2-2), would report the

addition of node ParenthesizedExpression (which results in the Methodlnvocation subtree

being pushed one-level deeper) and the addition of node ThisExpression. AST is a low-

level representation, designed for code compilation, optimization and transformation;

interpreting AST changes into the higher-level logical changes requires substantial effort.

For example, the value changes of four tree nodes of type SimpleName (gray highlight in

Figure 2-2) represent completely different logical changes: (1) the change of

PlainStatement's superclass; (2) the renaming of the valueO method; (3) the change of the

associated type of the aCustomer parameter (4) the change in the outgoing usage of the

method valueO-

There exist other differencing techniques that make use of other types of program

representations. Semantic Diff [47] operates on a representation of the local dependency

15

graph and works at the intra-procedural level only, as opposed to the system as a whole.

Horwitz developed a technique [45] for detecting statement-level semantic and textual

modifications, based on augmented control-flow graphs; this method is applicable to a

simplified C-like programming language and is not suitable for complex object-oriented

software systems.

r j | <UML:Class name="Customer" xmi. id="783">

pH <UML: ModelElement.clientDependency >

<UML:Usage xmUdref="1*esP!5§."/>

</UML: ModelElement clientDependency >

</UML:C/ass>

m <UML:Class name="PlainStatement" xmi. id="788">

n j] < UML: GeneralizabhElement generalization >

<UML:Generalization xmi.idref= "Q±47Al"/> [3]
</UML: GeneralizableElernent. generalization >

n <UML Classifier,,feature>

O <UML;Operation xmi.id="?tt793" name='TateeheaderStr ina">ri l

FTi <UML:Bebaviora/Feature.parameter> ... </UML;Beha\/ioralFeature.parameter>

</UML: Operation >
P p <UML:Operation name= "hcadcrStrinqeachRentalStrinq" xmi,id= ":}J¥379<)"> [l]

HZ! <UML;BebavioralFeature.parameter> ... </UML;BebavioralFeature.parameter>

</UML: Operation >

r j j "-'UML:Operation xmi, id-"799" name-"ea&hRentalGtring"s[g]

FJ3 -J UML: Dehavioralreature,parameters ,., •j/UML:Dchav , ioralreature.parameters

^/UML: Operations

</UML: Classifier, feature >

</UML:Class>

r n <UML:Class xmi,id="79C" name="Statement">

E | <UML:Classifier,feature> ... </UML:Classifier,feature>

</UML:Class>

(J <UML:Generalization name="" xmi.id="mA7Al">\$\

Rg <UML;Generalization.child> ... </UML:Generalization.child>

HB < UML: Generalization ,parent>

<UML:Class xmi.idref= "6*g79C"/> T3l [4]
</UML: Generalization .parent>

</UML: Generalization >
P] <UML:Usage xmi.id="9E2A56">

m <UML:Dependency.client> ... </UML:Dependency.client>
Eg] < UML: Dependency. supp/ier>

<UML:C!ass xmi.idref= "?ee79C"/> [4]
</UML: Dependency. supp/ier>

</UML:Usage>

Figure 2-4. XML-differencing XMI representation of UML models

16

Object-oriented software systems are better understood in terms of structural and

behavioral models, such as UML class and sequence models. The UML modeling tools

often store UML models in XMI (XML Metadata Interchange) format for data-

interchange purposes. XML-differencing algorithms, applied to such easily available

XMI representations, report changes of XML elements and attributes, ignoring the

domain-specific semantics of the concepts represented by these elements. Figure 2-4

shows the partial XML comparison results (by DeltaXML [128]) between the XMI

representations (exported by ArgoUML [112]) of two versions of the UML class model

of the program listed in Figure 2-1. The tool reports that two UML:Operation nodes

(annotation [1]) were modified - their name attributes were changed - and that the

UML:Operation with name attribute "eachRentalString" (annotation [2]) was removed,

instead of recognizing that the valueO method was moved to the new superclass Statement.

Furthermore, a single logical change in the UML model may result in several changes in

XMI. For example, a generalization change - the superclass of PlainStatement changed

from Object to Statement - results in three changed XMI nodes (annotation [3]). Finally,

similar XML element changes may represent completely different logical changes. For

example, the attribute changes of the two UML: Class elements (annotation [4]) represent

generalization and usage dependency change respectively. Similar to AST comparison,

an interpretation step is required to aggregate and abstract the change reports of XML

comparison tools in terms of higher-level logical changes.

Several UML modeling tools come with their own UML-differencing methods, such as

[70,115]. They detect differences between subsequent versions of UML models, as long

as these models are constructed and manipulated exclusively through the tool that assigns

persistent identifiers to all model elements. This capability is clearly irrelevant when the

whole development team does not use the same tool for all their development activities,

which is usually the case. Furthermore, the persistent identifiers imply only one-to-one

mapping between model elements, even when many-to-one or one-to-many mappings are

preferable. For example, reporting that both PlainStatement.valueO and

HTMLStatement.valueO have been moved to Statement better reflects the intention of the

change, which is to pull up commonalities from several subclasses into the superclass,

than reporting that one has been moved and the other has been removed.

17

There has also been some work on comparative analysis of different snapshots of a

software system for drawing inferences regarding its evolution. Demeyer et al. [20]

defined four heuristics based on the comparison of source-code metrics of two

subsequent system snapshots to identify refactoring activities of three general categories.

Rysselberghe and Demeyer [83] investigated the use of clone detection to identify move

and renaming refactorings. However, the source-code metrics do not report the details of

what has or has not been changed. For example, the PlainStatement.valueO and

Statement.valueO have the same NOM (Number of Message sent in method body [63])

metrics. However, the PlainStatement.valueO calls directly PlainStatement's

header/footer/eachRentalStringO, while Statement.valueO calls the Statement's abstract

methods that are implemented by the corresponding PlainStatement methods. Ryder's

group has also worked on comparative analysis of structural changes [82]. They define a

set of atomic changes derived from the comparison of the abstract syntax trees of

corresponding classes in two versions of a project. Apiwattanapong et al. [3] use the

enhanced control-flow graph to model methods of object-oriented programs and identify

similarities and differences between two methods based-on graph isomorphism. The

major objective of their work is to analyze the impact of changes on test cases, while our

work is aimed at recovering higher-level design evolution knowledge.

All the above differencing techniques rely on various program representations that are

designed for purposes other than understanding higher-level logical changes of software

system. However, there has also been some research on analyzing the changes of

software at the design level. Egyed [27] has investigated a suite of rule- and constraint-

based and transformational comparative methods for checking the consistency of the

evolving UML diagrams of a software system. Selonen et al. [86] have also developed a

method for UML transformations, including differencing. Spanoudakis and Kim [91]

developed a probabilistic message-matching algorithm that detects the overlaps between

messages that are likely to signify the invocation of operations and check whether the

overlapping messages violate the consistency rules. However, they cannot surface the

specific types of changes as reported by UMLDiff and these projects have not explored

the product of their analyses in service of software evolution understanding and future

decision making. Godfrey et al., in their BEAGLE system [36,97], use origin analysis to

18

determine the "origin" of "new" files and to detect the merging and splitting of source-

code entities. Origin analysis works at the file-structure level, corresponding to the

physical model of the software rather than its logical model: it detects old functions as the

"origin" of new ones based on a combination of clone detection and call-relation

matching and assumes an interactive step for detecting file merging and splitting. In

contrast, UMLDiff is fully automated and examines the UML logical model of the system

to recognize the logical-design evolution of that system.

2.2 Refactoring

Refactoring has recently become an integral part of the evolutionary software

development methodology, such as "Extreme Programming" [8]. The research area of

refactoring was pioneered by Opdyke [72]. The books of Fowler [32] and Kerievsky [51]

provide a good overview of the refactorings and how they can be used to accomplish

architectural and design changes.

Refactorings are often associated with certain bad smells identified in the software

system. Fowler lists a dozen of bad smells and informally associates them to refactorings

[32], which would address the smells if they were applied to the code. Balazinska et al.

[5] and Ducasse et al. [25] use clone-detection techniques to detect code duplication and

propose refactorings to eliminate it. Tourwe and Mens [96] rely on logic meta-

programming to specify and detect certain types of bad smells, such as obsolete

parameters and inconsistent interfaces. Simon et al. [89] use cohesion metrics to measure

which methods and fields belong together and then, based on this information, they

propose "move method" and "extract/inline class" refactorings.

By definition, refactorings are behavior-preserving program transformations. Opdyke's

Ph.D. thesis [72] lists a set of invariants and preconditions to which a refactoring must

conform in order to be considered behavior preserving. Mens et al. [66] study the

application of graph-representation and graph-rewriting techniques to specify and

determine whether or not a property is preserved when performing refactorings, such as

pull-up methods. Tip et al. [95] use type constraints to model refactorings dealing with

generalization and compute the allowable source-code transformations that preserve type

correctness.

19

Although refactoring is usually a developer-intensive activity, tool support is

considered crucial. Roberts et al. developed the first tool for providing semi-automatic

refactoring support, which was implemented in the Refactoring Browser [79]. Modern

IDEs, such as Eclipse [116] and IntelliJ IDEA [124], offer semi-automatic support for

most commonly used refactorings. Moore [67] developed a fully automated tool, Guru,

for the automatic restructuring of inheritance hierarchies and refactoring of methods in

Selfprogram in order to reduce program size and boost code reuse.

Refactorings affect the quality of software systems. Demeyer [21] investigated the

effect of refactorings by replacing conditional branches with polymorphism. Tahvildari

and Kontogiannis [93] analyzed the impact of refactoring on source metrics to provide

evidence where a refactoring may improve a system quality, such as maintainability.

Leitch [59] developed a method for estimating the return-on-investment for a refactoring,

by estimating, in the event of a function-preserving change to a code-base, the savings in

future maintenance costs because of the change compared to the effort required to

perform the change.

There has also been some work on reverse engineering refactorings by mining

software repositories. Demeyer et al. [20] defined four heuristics based on the

comparison of source-code metrics of two subsequent system snapshots to identify

refactorings of three general categories. Rysselberghe and Demeyer [83] investigated the

use of clone detection to identify moves and renamings. Godfrey and Zou [36] used

origin analysis to detect the "merging" and "splitting" of source-code entities. Dig and

Johnson [22] conducted an empirical study to assess the role of refactorings in API

migration. Their analysis relies on the changes documented in the release notes shipped

with software systems. Gorg and Weisgerber [37] analyzed the changes of entity

signatures in evolution transactions - i.e., changes to a set of files committed at the same

time by the same developer - to detect refactorings, such as rename method, move class,

pull-up method. Their approach is sensitive to the "multiple refactorings on the same

location".

Refactoring the reused components (library or framework) is often limited by the fear

of breaking client code. When the breaking API changes happen, the developers of

component-based applications take the burden of migrating their codes to the new version

20

of reused components. Balaban et al. [4] developed a tool that allows the developers to

define a mapping specification between legacy classes and their replacements so that

obsolete library classes (such as Java Vector) can be replaced with their newer

counterparts (such as Java ArrayList). CatchUp [42] is another attempt to relieve this

burden by recording the refactorings, such as type renamings, made by the component

developers within an IDE, such as Eclipse, and then replaying them by the application

developers on the client code to keep it updated. In the similar vein, Borland

demonstrated their "Team Refactoring" support for JBuilder [50].

We have also been working on this general problem. We first outlined process for

recognizing refactorings from the design changes reported by UMLDiff in [101] and the

detailed catalog of refactoring-detection queries was recently discussed in [106]. We

developed an alternative method for detecting a more limited set of refactorings based on

metrics and lexical information analysis [85]. In this work, we compared our two

methods and found that query-based refactoring detection is more accurate - it recognizes

all documented refactorings and more. Interestingly enough, the not-documented

refactorings do not appear to be equally effective from a maintainability-improvement

perspective and might be accidental side-effects of other changes. Next [105], we

reported in detail on our exploration of the Eclipse evolution history using our query-

based refactoring-detection process and we summarized how refactoring is practiced in

the Eclipse evolution and we discussed how more systematic support could be developed

for performing refactorings and for automatically propagating the impact of framework

refactoring to the applications using it.

2.3 Software evolution analysis

A large subset of work in this area involves analyzing the "history" recorded by version-

management systems. Lehman and Belady [58] proposed laws of software evolution after

analyzing change data from the evolution of the OS/360 operating system.

Eick et al. [30] developed a process for analyzing the change history of the code,

which is assumed to reside in a version management system, calculating code-decay

indices, and predicting the fault potential and change effort through regression analysis.

21

The objective of this research is mainly to support project management so that code

decay is delayed.

Barry et al. [7] use software volatility, defined in terms of amplitude, periodicity, and

dispersion of software changes, to define a set of evolutionary patterns in the lifecycle of

software systems. Their work shows that systems evolve in different styles; in contrast,

our phasic analysis focuses on understanding the structural properties of system classes'

lifecycle behavior and the underlying factors that drive their evolution over time.

Hassan and Holt [41] and Bianchi et al. [10] claim that information entropy, i.e., the

amount of uncertainty related to software products, is a good indicator of the degree of

disorder of its structure. Intuitively, in the context of software evolution, if a software

system is being modified across all its modules, it has highest entropy, and the software

maintainers will have a hard time keeping track of all the changes. Their work relies on

maintenance documentation to keep track of software modifications in order to compute

information entropy of files that evolved over a period of time. Our class co-evolution

analysis may provide a good primary input for these system instability analyses.

Gall et al. [31,33] developed an approach for populating a release-history database that

combine CVS (Concurrent Version System) data (including CVS deltas produced by

GNUdiff [11%]) and bug reports maintained in Bugzilla [113]. Queries can then be issued

to obtain multiple views, including module coupling, that show the evolution of a

software project. Fischer et al. [31] pointed out the need for investigating high-level

structural changes to enable more accurate information in their release history database

than using GNUdiff.

Shirabad et al. [87] applied inductive-learning algorithms to address the problem of

detecting the co-updating of two code modules and predicting whether updating a source

file would necessitate a change in another file. Their chosen inductive-learning methods

require pre-labelled positive examples of co-updating, i.e., sets of modules that were

updated for the same change request. Therefore, a lot of effort is required to select and

extract characteristic features and label training examples, which may significantly affect

the quality of the learned model. In contrast, our class co-evolution detection is based on

Apriori association rule mining [2].

22

The major drawback of this line of research is that it requires high-quality developers'

comments and change reports recorded in the version-management system. In most real-

world software projects, such comments and reports are inconsistent in their detail and

sometimes they do not even exist. In contrast, our design-evolution analysis methods are

based on the automatically detected design changes by UMLDiff between versions of

system's logical model, without requiring consistently maintained high-quality change

documentation.

Another line of research has focused on the visualization of software-process statistics,

source code metrics, static dependence graphs, CVS-like deltas and their derivatives, etc.

Eick et al. developed tools [28,29] for visualizing the evolution of software statistics at

the source-code line level and change data such as developer, size, effort, etc.

Zimmermann et al. [110] have also developed visualizations of historical data stored in

a CVS archive to help developers recognize the coupling between fine-grained program

entities like methods and fields. Bevan [9] defines software instability as a set of related

artefact elements that have often changed together. She used a static dependence graph to

visually identify such related software artefacts.

German and Hindle [35] developed a visualization tool, softChange, that can be used

to retrieve and visualize information stored in various forms, such as emails, releases

notes, change logs, etc., and assist the programmers in understanding how software has

evolved to its current state.

Lanza [57] describes how to use a simple two-dimensional graph to convey the

implicit information of software metrics. Based on the visualization of the evolution of

class metrics (e.g., number of methods and number of instance variables), the evolution

matrix can be used as an indicator of the evolution phases of the software system and its

components, similar but more coarse-grained than our taxonomy of the evolution phases

and styles, thus failing to recognize restructuring activities.

These visualization approaches adopt a top-down method, which limit their

applicability due to two important reasons: first, they assume a substantial interpretation

effort on behalf of their users and second, they do not scale well: they become unreadable

for large systems with numerous components. In contrast, our design-evolution analyses

starts with the minimum amount of information about the automatically recovered core

23

evolution concerns and support developers incrementally build up their knowledge about

what has been changed, how and why.

The existing approaches [9,33,87,110] to elicit the co-evolution of software artefacts

produce Boolean association rules, which concerns associations between the change and

no-change of software artefacts. They have limited explanatory power on why the co-

evolving artefacts are inter-dependent and cannot guide precisely the future development

of the system. For example, it is hard for these methods to identify fine details of co-

evolution relations, such as the following: "when adding members to class A, class B also

gets additional members too"; or "when adding members to class A, it is often needed to

restructure class B's interface". These fine-grained co-evolution rules concern

associations between different types of changes. Our class co-evolution analysis is based

on the discrete class-evolution profiles that characterize the categorical change volatility

of the system classes over time, which allow us to produce four types of co-evolution

rules: parallel function-extension, parallel refactoring, and parallel function-extension and

refactoring.

Several approaches are available to help developers locate and manage source code

that are scattered throughout the program text. Robillard and Murphy developed FEAT

tool [80] that supports defining, locating, and analyzing the code implementing one or

more concerns. Relo [88] monitors the developer's exploration of code within an IDE and

builds automatically the relevant elements and relations into a centralized view.

Active Aspect [111] produces interactive graphical models of program structures affected

by aspects in Aspect!. These approaches support bottom-up exploration of code concerns

or aspects in the context of program understanding. However, none of them have

explored the product of their tools in service of software evolution understanding.

2.4 Supporting API evolution

Some modern integrated development environments (IDEs), such as Refactoring Browser

[79], Eclipse [116] and IntelliJ IDEA [124], provide semi-automatic support for applying

the most commonly used, low-level refactorings, such as rename field and move method

[32]. Refactoring support within IDEs has made it less cumbersome to improve code

quality. However, the refactoring engine requires that the complete source code of the

24

refactored system is visible and modifiable by the tool, which is obviously irrelevant in

the API evolution of reuse-based development, since parts of the system are either not

accessible or not changeable at the time of refactoring.

Recently, configuration management systems that support merge of refactored

branches of a system have been proposed in order to allow teams of developers to share

refactorings. For example, CMEclipse [114] and MolhadoRef [24] aim at improving the

configuration-management support for refactorings when merging parallel development

branches. Those systems do not assume complete source-code access when performing

refactorings, but they require a common, centralized development infrastructure be used.

However, in the context of software reuse, the client applications and the component

frameworks they reuse are usually much more loosely coupled. For example, a library

may distribute the changes by posting new JAR files on its own website, from which the

client-application developers download those updates and integrate them on the client

side.

A critical problem in the effort to adapt client applications to the interface changes of

their underlying component frameworks is the precise specification of the interface

changes of the reusable components and the propagation of these changes to the client-

application source code. Programming-language syntax for explicitly annotating API

changes, such as the keywords "deprecated" in Java and "obsolete" in Eiffel, may be used

to indicate the obsolescence of a construct, to discourage developers from further using

an old version in the presence of a newer one. However, there is no standard language

support for migrating existing client code, built on the deprecated API. Perkins [76]

proposes a technique based on method inlining for replacing calls to a deprecated method

by the method's body, assuming that the deprecated method delegates to its replacement.

However, Henkel and Diwan [42] found that better tool support is required: deprecated

entities that are part of the published interfaces are almost never removed, which

indicates that once an API is published, developers are forced to maintain it.

When the API of a component is changed, the changes and suggested ways to adapt

any existing application code to them are usually documented in the new release of the

component, such as the Eclipse "What is New" [119] or the Microsoft Visual C++

"Migrating from Previous Versions" [121]. This approach requires a significant amount

25

of effort by the component developers to produce the documentation in the first place and

to consistently maintain it over time. However, more often than not, the documentation

does not tell the whole truth. It may discuss only a subset of the actual API changes that

the component developers consider important [104]. Furthermore, it may not always

consistently reflect the actual code. Finally, the documentation is sometimes written in

very compact - even cryptic - language, not easily understandable by most application

developers.

Chow and Notkin [15] developed a system for semi-automatically updating

applications in response to library changes, which requires the library developer to

specify the interface changes and how existing application code can be transformed to

work properly in the face of those changes. The change and transformation specification

are distributed along with the evolved libraries, which are then used by application

maintainers to update their applications semi-automatically. This approach shifts the

burden of upgrading source code for library-interface changes from the application

developers to the library developers. Its main shortcoming is that it assumes that the

change and transformation are manually specified for each interface change, which

requires a substantial effort to write and maintain. Furthermore, the migration process is

sensitive to the completeness and correctness of the library developer's specifications.

Henkel and Diwan [42] propose an approach for recording and replaying refactorings,

based on the existing refactoring support of modern IDEs, such as Eclipse, to support API

evolution. In a similar vein, Borland demonstrated its "team refactoring" support of

JBuilder at the JavaOne conference [50]. These approaches relieve the library

programmer from manually writing change specifications and delegate the error-prone

work of validating and applying changes to industrial-strength IDEs. However, they

require that the framework developers and the developers of client applications use same

refactoring engines so that the recorded refactorings can be interpreted and replayed on

the client applications. Furthermore, the supported changes are limited to those supported

by the refactoring engine of a given IDE and these approaches are not aware of the

refactorings that are manually performed.

All the above approaches to adapting client applications in response to interface

changes of reusable components rely on additional, and potentially substantial, work by

26

the component-framework developers, whether it is coding to particular standards, or

learning some new specification language, or using some specific tool. Although the

client-application developers still have the final decision as to update their source code or

not, the decision on what can be updated and how is essentially driven by the additional

information provided by the component-framework developers that document the

changes and advise on how to adapt them. However, it is seldom the case that the change

documentation and scripts provided with a large framework are sufficient for a client-

application developer to effectively migrate to the changed APIs, in spite of a substantial

effort to write and maintain the change documentation or scripts on the part of

component-framework developer. All too often, application developers become lost when

trying to reuse a changed API, unsure of how to make progress on a migration problem.

To ease the responsibility of the component-framework developers and to help the

application developers find their way, we have developed an approach that uses the

automatically detected API changes to support the migration of client applications. With

our approach, the client-application developers decide what they want to update and how

exactly. They run an automated tool to obtain the interface changes of reusable

components and the likely ways in which they may update their application in order to

properly use the evolved component APIs. Next, they may interactively explore the

changes and suggested updates with the support of our visualization component -

JDEvAn Viewer (see Chapter 7) - so that they are able to better understand the nature of

the change, its plausible replacements and how to use them.

2.5 Recommending software artifacts

There has been some work on discovering a component appropriate for reuse within an

application. Zaremski and Wing [109] investigated signature matching, such as the

comparison of the types of a function's input and output parameters in addition to

function's name, for retrieving reusable software components. Ostertag et al. [73]

presented an Al-based reusable library system that supports a developer to search library

components that best meet the given requirements: they relate the software library

components with manually-defined features and terms through domain analysis; they also

define manually the weighted subsumer and feature graph over components, based on

27

which component similarity may be computed. The CodeBroker tool [108] monitors the

declaration of method and the insertion of comments in a text editor and queries a library

with that information to find components that could be reused instead of a new one being

created. To determine matches, a developer must properly format comments in the

program being developed in terms similar to that of reusable components in the library.

The Strathcona [44] tool avoids the need for writing appropriate comments. Instead, it

automatically extracts the structural facts about the context of a code fragment of interest

highlighted by a developer and uses this structural context to heuristically search a

source-code repository for examples with similar structural context.

On the other hand, many approaches have been proposed to use the artifacts associated

with a software project, in addition to source code, to support software maintenance and

evolution tasks. The version check-in description (such as the author information) may be

used to generate recommendations of people who might have some expertise on a given

problem [64]. The developer's communication (such as email, annotations on the code,

etc.) may be used to present documents similar to the one currently being edited [78].

Hipikat [17] offers contextual advice during development by extracting similar situations

in the history of the system lifecycle. It recommends relevant segments of documentation

and/or similar code snippets from which the developers can draw analogies towards

solving their current problem, such as suggesting a potential solution to a particular type

of bug. We studied software design-mentoring that works at the granularity of design

level, providing supports on monitoring and mentoring object-oriented software design

and its evolution.

All the above approaches focus on recommending examples to reuse from the current

version of the component framework or offering similar documentation, code snippets or

design changes from the information stored in a project's archives of a "closed" system to

aid the developer's evolution task. In contrast, our API-Evolution catch-up approach

addresses the asynchronous API evolution problem in the context of reuse-based software

development, which proposes the API replacements and their potential usage examples

for upgrading client applications in the face of the evolving APIs of the components that

they reuse.

28

Chapter 3: Model Differencing with UMLDiff

The first research problem that this thesis addresses is how to accurately and efficiently

recognize the changes in the system's design as it evolves from one version to the next.

As discussed in Section 2.1, there exist a number of software differencing techniques

[3,20,45,47,82,107,118,128], but they rely on program representations that are designed

for purposes other than capturing higher-level logical design changes of software system.

We have developed UMLDiff, a heuristic algorithm for automatically detecting the

changes that the logical design of an object-oriented software system has gone through,

as the subject system evolved from one version to the next. This algorithm takes as input

two logical models corresponding to two versions of an object-oriented software system.

It traverses the two models in parallel, moving from one type of model elements to the

types they contain; as it does so, it identifies corresponding elements, i.e., model elements

that correspond to the same conceptual design entity, based on their lexical and structural

similarity. UMLDiff produces as output a set of design-change facts reporting the various

types of design changes it has discovered when comparing the two models, i.e., additions,

removals, moves, and renamings of subsystems, packages, classes, interfaces, attributes

and operations, and changes to the attributes and relations of these model elements.

In this chapter, we describe the meta-model assumed by UMLDiff as the underlying

representation of its input logical models and the process by which these models are

extracted from Java software. We discuss in detail the algorithm, and the similarity

heuristics on which it relies to recognize correspondences between the design elements of

the two compared models. Finally, we report on our experimental evaluation of the

effectiveness and robustness of the UMLDiff algorithm with the JFreeChart [126] system.

3.1 The meta-model

UMLDiff compares logical models of object-oriented software systems. The underlying

meta-model is defined according to the semantics of the UML metamodel [69]. We

summarize the UML profile in terms of metaclasses and metarelations, of concern to

UMLDiff, in Appendix A.

29

gatAUFrequentRenterPoints() : Operation

- ^ getAUChargeO; OperaHor

visibility "public

"7y

< valueOf(int) : Operation

I vakieOffdouble): Operation I

print Footer (Customer): Operation

« instanl iate»

I htmlStatementO : Operation r

L i * Customer: Class

plainStatemerit(): Operation

deprecated - t rue
* ualuefCustomer): Operation

Statement: Class

UTT
3t

lava.lang.String; Class I

^ r HTMLStstement: Class

printHeadettCustomer): Operation

-*
printHeaderfCustomer): Operation

tsAbctract =tme

printEachRental(Rentai): Operation

V V
pnrrtFooterfCustomer): Operation

fsAbstract =tme

7S

printEacrtRental(Rental): Operation

teAbstract " t rue

prirttEachRental(RenM): Operation

Vereion28: Top-level Subsystem

- *

printHeader(Customer): Operation I ~r^—
reinstatement: Class

r-H toStringO: Operation I 3 java.lang.DouMe: C lan

printFooterfCustomer}; Operation ->n
j toStrlngO : Operation

java.lang. Integer: Class

Figure 3-1. An example of UML model that t/MUV/Fcompares

UMLDiff requires as input representations of the system's logical design in terms of

UML models in the form of the model shown in Figure 3-1. Figure 3-1 diagrammatically

depicts the UML model of the version 28 of our running example (see Section 3.3.1), in

terms of instances of model-element metaclasses, relation metaclasses, and meta-

compositions and meta-associations. The instances of model elements are denoted

"name:metaclass". For example, "Statement:Class" represents an instance of the class

metaclass, whose name attribute is Statement. The model elements may have other

attributes, such as visibility, isLeaf, isRoot, isAbstract, deprecated, etc. For example, the

visibility attribute of operation Customer.getAIIChargeO is public. The isAbstract attribute

of operation Statement.printFooter(Customer) is true. The model elements are linked to each

other by instances of relation metaclasses, meta-compositions and meta-associations. For

example, the model Version28 contains a default package (an instance of

ElementOwnership meta-composition), which contains a class Customer (the other

instance of ElementOwnership meta-composition), which declares four operations (four

30

instances of [owner - feature] meta-composition). The operation

HTMLStatement.printFooter(Customer) is associated with the class String as its return type

(an instance of [typedParameter - type] meta-association). The operation

Customer.htmlStatementO instantiates (an instance of Usage«i„stantiate»-) the object

HTMLStatement. The class PlainStatement is a subclass of the class Statement (an instance

of generalization). The operation HTMLStatement.printEachRental(Rental) implements (an

instance of Abstraction«reaihe») the abstract operation Statement.printEachRental(Rental).

3.2 UML model reverse engineering in JDEvAn

The UMLDiff algorithm has been implemented in the JDEvAn tool [125], which also

implements a Java fact extractor based on the Eclipse Java DOM/AST model. JDEvAn's

Java fact extractor reverse engineers UML models in the form expected by UMLDiff,

from Java source code. The mapping of the Java language constructs to UML metaclasses

and metarelations is described in Appendix B. Our current focus on Java is pragmatic; the

UMLDiff is not restricted to any specific object-oriented programming language, since its

meta-model is essentially defined according to the UML semantics. Its design and

implementation are extendible to software systems developed in other object-oriented

programming languages, assuming appropriate fact extractors that are able to map

programming language constructs into UML model elements and relations expected by

UMLDiff.

Java software subsystem is not really a Java construct; it is a conceptual element. The

top-level subsystem corresponds to the model of a system as a whole. Each Operation is

associated with a Method element, which contains the body of the corresponding Java

method, constructor, or class initializer. A Method element is not contained in the

declaring class of its specification operation. The return type of a Java method is treated

as a special Parameter, whose name and kind attributes are return. A field's initializer is

modeled as the initValue attribute associated with its corresponding Attribute. Although

Java requires exceptions to be subclasses of java.lang.Throwable, other programming

languages, such as C++, allow exceptions to extend arbitrary classes. Therefore, to avoid

restricting UMLDiff'to the Java particulars, the fact extractor does not explicitly model

exceptions; instead, at the end of fact extraction process, it marks the classes that appear

31

in Usage«se„d», [context - raisedSignal], and [reception - signal] relations as

exceptions. The fact extractor does not model Receptions either, since operations are

normally receptions that handle the signals, such as exceptions, in most modern object-

oriented programming languages. Instead, at the end of the fact extraction process, it

marks the operations that appear in [reception - signal] relations as receptions. Finally,

the fact extractor ignores three Java specific modifiers, volatile, native, and strictfp, and

assumes that the classes and interfaces that belong in Java libraries are contained in the

top-level subsystem.

Each extracted model element is described in terms of its name, the type of its

corresponding UML metaclass (as described in Table A-l and Table B-l), its

corresponding visibility and attribute(s) (as described in Table B-3), and its attached

UMLDiff-specific tagged values (as described in Table A-4 and Table B-4). The relations

between model elements are described in tuples of the form (relation, ei, ei), where ej

and e2 are model elements and relation is a type of UML metarelation, as described in

Table A-2, Table A-3 and Table B-2, that applies between ei and e2. The number of times

that a field is read/written, a method/constructor is called, a class is created, and a

class/interface is used is recorded as the count tag, attached to the corresponding usage

dependency.

The name of array types is in the form of "BasetypeQualifiedname.Dimension". The

name of packages, classes, interfaces and fields is their declared identifier. The name of

methods and constructors is in the form of "identifier(paramtype_list)". JDEvAn's fact

extractor also assigns names to anonymous classes, "new supertype_identifier$number";

class initializers, "{class_identifier.$number}"; and field initializers,

"{field_identifier=...}". The "number" is the ordinal number of the anonymous class or

the class initializer within the enclosing Java class. Finally, a fully qualified prefix is

added in front of the names of model elements that belong in Java libraries.

Anonymous classes are a special type of nested classes. They do not explicitly have

declared identifiers. They are specified along with class creation expression within blocks

and are then generated by the compiler when parsing expression as the nested classes of

the class that declares the corresponding block. Thus, an anonymous class is modeled as a

class whose name="new supertype_identifier$number", visibility=private,

32

isAbstract=false, and isLeaf=true, which is contained by the corresponding enclosing

class. It is also associated with the corresponding Method element of its declaring

operation. The Usage«instantiate» dependency between the anonymous class and its

declaring operation is not modeled. Instead, it is mapped to the direct super type of the

anonymous class.The fact extractor does not model Java local classes/interfaces, which

are declared within methods, constructors, or class initializers, because they are rarely

used in practice.

The extracted UML models are stored in a PostgreSQL relational database, extended

with Simon's transitive closure algorithm [90] for computing transitive containment and

inheritance relations, field read/write, method call, and class/interface usage relations.

The relational database enables the UMLDiff implementation to work on large-scale

software projects, such as Eclipse [116]. It also provides the flexibility to infer derivable

information about model elements and their relations.

3.3 Comparing logical models of object-oriented software

In this section, we discuss in detail how UMLDiff maps model elements and their

relations and compare their attributes.

3.3.1 The running example

We will demonstrate how UMLDiff works with a small running example, adapted from

the versions 23, 27 and 28 of the extended refactoring example at [129]. When the system

evolves from version 23 to 27, the nested class PlainStatement is extracted from the class

Customer. The main responsibility of this class is to print out the customer's movie rental

information in plain text format, which is originally performed by the operation

Customer.statementO in version 23. In version 27, the operation Customer.statementO

instantiates a PlainStatement object, to which it delegates this task. Similar changes are

also made to Customer.htmlStatement0232 and the newly introduced top-level class

HTMLStatement27 contained in defaultz7 package. Furthermore, the Customer.statementQ23 is

2 Denotes the model element contained in a particular version.

33

renamed to plainStatement()27 in order to be consistent with htmlStatementO and to more

clearly convey the intention of the method.

The main change between versions 27 and 28 is to pull up the operation value() from

PlainStatement and HTMLStatement to their superclass, Statement. However, to demonstrate

several UMLDiff key features, we intentionally complicated versions 27 and 28 by

including the following changes:

• We renamed the operations getTotalChangeO/getTotalFrequentRenterPointsO of the

class Customer to getAIIChargeO/getAIIFrequentRenterPoints() respectively and

changed their visibilities from package to public;

• We renamed the operations headerStringO/eachRentalStringO/footerStringO of the

classes Statement/PlainStatement/HTMLStatement to

printHeaderO/printEachRentalO/printFooterO respectively;

• In version 27, the class PlainStatement is a nested class of the class Customer, while,

in version 28, it is moved out from the class Customer and becomes a top-level

class contained in the default package;

• In version 27, the operation PlainStatement.footerStringO uses

String.value(double)/value(int) to convert the double and int values to String, while, in

version 28, it changes to use Double.toStringO and Integer.toStringO; and

• In version 28, the operation Customer.plainStatementO is deprecated.

3.3.2 UMLDiffowerview

UMLDiff is an UML-semantics-aware differencing algorithm. As per the adopted meta-

model, the software system is modeled as a directed graph G(V, E), where the vertex set

V contains model elements and the edge set E contains relations among them. Given two

versions, "before" and "after", of a UML model and their corresponding graphs

Gbefore(Vbefore, Ebef0re) and Gafter(Vafter, Eafter), UMLDiff essentially maps the two model

graphs by computing the intersection and margin sets between (Vbefore, Vqfier) and (Ebefore,

Eafter), in terms of (Vbefore - Vafter) for the removed model elements, {Vbefore <~^ Vafter) for the

mapped (i.e., matched, renamed, and moved) elements, (Vafter - Vbefore) for the added

model elements, (Ebefore - Eafter) for the removed relations, (Ebefore ^ Eafter) for the

matched relations, and (Eafter - Ebefore) for the added relations.

34

Table 3-1. The containment hierarchy of UML model elements

Type of model element
Top-level Subsystem

Subsystem
Package
Class

Interface

Attribute
Operation

Type of the children
Subsystem and Package
ProgrammingLanguageDataType
Class and Interface whose isFromModel=false
Subsystem and Package
Package, Class and Interface
Class and Interface
Attribute, Operation, Operation«create») Operation «initiaiize»
Class and Interface
Operation
N/A
Parameter

UMLDiff first attempts to map the model element sets Vbefore and Vafter. It relies on the

composition relations to traverse in a breadth-first fashion3 the vertices (model elements)

of the directed graph of the UML model. The composition relations (instances of three

meta-compositions - see Table A-3) induce a strict spanning tree of the containment

subgraph of the system model. The UML semantics guarantees that all model elements

can be visited by traversing the containment hierarchy starting from the top-level

subsystem corresponding to the system version and the children of their containing parent

are unique in terms of their names. The meta-composition defines four logical levels over

types of model elements: subsystem (including the top-level subsystem) > package >

(class, interface) > (attribute, operation). The model elements of type subsystem, package,

class and interface may contain the nested same-type elements. Table 3-1 summarizes the

containment hierarchy of the UML model elements. Table 3-6 shows the partial

containment hierarchy of versions 23 and 27 of the model of our running example.

UMLDiff traverses the containment-spanning trees of the two compared models,

descending from one logical level to the next, in both trees at the same time. It starts at

the top-level subsystems that correspond to the two system versions and progresses down

to subsystems, packages, classes and interfaces, and finally, attributes and operations.

3 In the rest of this section, all references to "traversals" are implied to be "breadth-first

traversals". That is, the model elements are processed in First-In-First-Out order.

35

UMLDiff recognizes that a model element e\ in the "before" version and an element e2 of

the same type in the "after" version are the "same", i.e., they correspond to the same

conceptual model element, when (a) they have the same or similar name and comment

(lexical-similarity heuristic), and (b) they have similar relations to other model elements,

that have the same name and type or have already been established to be mapped

(structure-similarity heuristic).

Name similarity is a "safe" indicator that ei and e2 are the same entity: in our

experience with several case studies, very rarely is a model element removed and a new

element with the same name but different element type and different behavior is added to

the system. UMLDiff recognizes same-name model elements of the same type first and

uses them as initial "landmarks" to subsequently recognize renamed and moved elements.

When a model element is renamed or moved, as is frequently the case with refactorings,

its relations to other elements, such as the children elements it contains, the attributes it

reads/writes, the operations it calls or is called by, etc., tend to remain much the same.

Therefore, by comparing the relations of two same-type model elements renamings and

moves can be inferred: if they share "enough" relations to known-to-be-same or same-

name elements of the same type they are the "same", even though their names and/or

their parent (containing) model elements are different. Whenever two model elements are

identified as renamings or moves, this knowledge is added to the current landmarks' set

and is used later on to further match as not-yet-mapped elements. This process continues

until it reaches the logical-leaf level of the spanning trees and all possible corresponding

pairs of model elements have been identified.

Given two renaming or move candidates, UMLDiff computes their structural similarity

in terms of the intersection of their two related-element sets, i.e., the sets that contain

same-name of the same type or established-to-be-mapped model elements that are related

to the two compared candidates with a given type of relation. Therefore, if all or most the

model elements related to two candidates were also renamed and/or moved and cannot be

established as "same", the UMLDiff structure-similarity heuristic would fail. If, on the

other hand, a set of related elements were renamed or moved but enough model elements

related to the affected set remained the "same", it would be possible to recognize this

systematic change.

36

UMLDiff applies two techniques, i.e., multiple-rounds-of-renaming-and-move-

identification and propagating-operation-renamings-along-inheritance-hierarchy, to

propagate the knowledge of established renamings and moves along their usage and

inheritance relations (see Section 3.3.4.4 and Section 3.3.4.5). Finally, global renamings,

such as renamings to meet a new naming convention, for example, may be recovered, by

enabling the user to specify a string transformation - introducing a prefix or appending a

suffix, or replacing a certain substring - that should be applied to the names of the model

elements of one of the compared versions, before the differencing process.

Table 3-2. The summary of design changes reported by UMLDiff

Element type
Subsystem &
Package
Class &
Interface

Operation

Attribute

Categories and types of UMLDiff 'changes
Added, removed, renamed, or moved

Added, removed, renamed, or moved
Generalization change of class and interface, and no-longer or new
interface implementation of class
No-longer or new outgoing and incoming usage dependencies
Visibility, modifier, deprecation-status change
Added, removed, identifier-changed, moved, extracted, or inlined
Parameter added, removed; parameter type changed
No-longer or new outgoing attribute read/write, operation call, class
instantiation; no-longer or new incoming call
No-longer or new declared, thrown, and caught exception
Return type change
Visibility, modifier, deprecation-status change
Added, removed, renamed, or moved
No-longer or new read-by and written-by dependencies
Data type change
Visibility, modifier, deprecation-status change

Once UMLDiffhas completed mapping the vertex (model element) sets Vbe/ore and Vaf,er,

UMLDiff proceeds to map the edge (relation) sets Ebefore and Eafter, by comparing the

relations of all pairs of model elements (vbe/ore, v'after), where vfl/ter=null if Vbefore is removed

and Vie/-ore=null if va/(eris added. The relations from (to) a removed model element are all

removed and the relations from (to) an added model element are all added. For a pair of

mapped elements (vbe/ore, Vafter), they may have matched, newly added, and/or removed

37

relations. Note that a removed (added) relation between two model elements does not

indicate any of the elements it relates being removed (added).

Next, UMLDiff detects the redistribution of the semantic behavior among operations,

in terms of usage dependency changes, and finally computes the changes to the attributes

of all pairs of mapped model elements. Table 3-2 summarizes the categories and types of

design changes reported by UMLDiff.

The f/MLDf^differencing process is configured through a set of parameters.

• The LexicalSimilarityMetric specifies which one of three lexical-similarity metrics

(Char-LCS, Char-Pair, and Word-LCS) will be used by UMLDiff

• The RenameThreshold and MoveThreshold are the minimum similarity values

between two model elements in the two compared versions in order for them to be

considered as the same conceptual element renamed or moved. UMLDiff allows

multiple rounds (MaxRenameRound and MaxMoveRound) of renaming and move

identification in order to recover as many renamed and moved entities as possible.

• The similarity of the comments of the model elements (ConsiderComment-

Similarity) may also be taken into account when comparing two elements, if the

compared elements have an initial overall similarity value above the MinThreshold;

this prevents model elements with very low name- and structure-similarity from

qualifying as renamings or moves just because of their similar comments.

• The similarity of transitive usage dependencies {ConsiderTransclosureUsage-

Similarity) between two compared operations may also be used to assess their

structural similarity.

• At the end of the C/MLD/̂ Tdifferencing process, it can be instructed whether or not

to compute the usage dependency changes for all model elements and analyze the

redistribution of operation behavior.

3.3.3 Similarity metrics

UMLDiff'relies on two heuristics - lexical and structure similarity - for recognizing the

conceptually same model elements in the two compared versions of the system model, in

spite of the fact that they may have been renamed and/or moved. In the following

38

discussion, the term "matched elements" refers to same-name model elements of the

same type, while "mapped elements" refers to matched, renamed, and moved elements.

3.3.3.1 Lexical similarity

The term "lexical similarity" refers to the string similarity between the names of and the

comments associated with two compared model elements. UMLDiff integrates three

metrics of string similarity: (a) the longest common character subsequence (Char-LCS);

(b) the longest common token subsequence (Word-LCS); and (c) the common adjacent

character pairs (Char-Pair). All these metrics are computationally inexpensive to

calculate, given the usual length of the names and comments of model elements. They are

also case insensitive, since it is common to misspell words with the wrong case or to

modify them with just case changes. They are all applicable to name similarity, while

only Char-LCS and Word-LCS may be applied to compute comment similarity.

The name similarity of operations is calculated as the product of their identifier

similarity and their parameter-list similarity, which is computed as one type of structure

similarity for operations. The name similarity of packages is computed based on their

dot-removed names. The comment similarity between two model elements is only

consulted when both elements have associated comments, the UMLDiff parameter

ConsiderCommentSimilarity is true, and the initial overall similarity metric between these

elements is greater than the UMLDiff'parameter MinThreshold.

The longest common character subsequence (Char-LCS) algorithm [98] is frequently

used to compare strings. Word-LCS applies the same LCS algorithm, using words instead

of characters as the basic constituents of the compared strings. The names of model

elements are split into a sequence of words, using dots, dashes, underscores and case

switching as delimiters. Comments are split into words using space as delimiters. The

actual metric used for assessing LCS-similarity is shown in the following equation:

Char/Word-LCS(si, s2) = 2 * length(LCS(su s2)) / (length(s,)+length(s2)), where LCS()

and length() is based on either characters or words.

LCS reflects the lexical similarity between two strings, but it is not very robust to

changes of word order, which is common when renaming a model element. To address

this problem, we have defined the third lexical-similarity metric in terms of how many

39

common adjacent character pairs are contained in the two compared strings. The pairs(x)

function returns the pairs of adjacent characters in a string x. By considering adjacent

characters, the character ordering information is, to some extent, taken into account. The

Char-Pair similarity metric, which is a value between 0 and 1, is computed according to

the following equation:

Char-Pair(si, S2) = 2 * |pairs(si)npairs(s2)| / (|pairs(si)|+|pairs(s2)|).

3.3.3.2 Structure similarity

Table 3-3 lists the relations that UMLDiff examines to compute the structure similarity

between two model elements of the same type. The top-level subsystems, corresponding

to the two compared versions of a UML logical model, are always assumed to match. The

structure similarity of subsystems, packages, classes and interfaces is determined by the

elements they contain, the elements they use, and the elements that use them. The

structure similarity of attributes is determined by the operations that read and write them

and their initialization expressions. The structure similarity of operations is determined

by the parameters they declare, their outgoing usage dependencies (including the

attributes they read and write, the operations they call, and the classes/interfaces they

create), and their incoming usage dependencies (including the attributes (through their

initValue) and the operations that call them).

Table 3-3. The UML relations for computing structure similarity

Type of model element
Top-level subsystem
Subsystem

Package

Class and Interface

Attribute

Operation

Type of relations
Always match
[namespace — ownedElement]
Incoming and outgoing usage
[namespace - ownedElement]
Incoming and outgoing usage
[namespace - ownedElement] and [owner - feature]
Incoming and outgoing usage
Usage«read»
Usage«wr;te» and inherent Attribute.initValue
[BehaviorFeature - parameter] and [typedParameter - type]
Outgoing usage: Usage«read», «write»> «cai l»* «instantiate»

Incoming usage: Usage«can»

40

The structure similarity of two compared elements is a measure of the overlap between

the sets of elements to which the compared elements are related, according to a given

relation type. The intersection of the two related-element sets contains the pairs of model

elements that are related to the compared elements and have already been established to

be mapped or have the same name and element type. This intersection set effectively

incorporates knowledge of any "known landmarks" to which both compared model

elements are related. Given two model elements of the same type, ej and e ,̂ let Setbefore

and Setafier be their related-element sets, the structure similarity between et and e2

according to a given group of relations is a normalized value (between 0 and 1) as

computed in the following equation:

StructureSimilarity = matchcount / (matchcount + addcount + removecount), where the

matchcount, addcount, and removecount are the cardinality of [Setbefore r\ Setafter\ [Setafter

- Setbefore], \Setbefore - Setafter] respectively.

For a usage dependency, its count tag, which indicates the number of times that it

appears between the client arid supplier elements, is used to compute its matchcount,

addcount, and removecount.

The similarity of the parameters of two compared operations is based on the names and

types of their parameters. The computation of parameter-list similarity is insensitive to

the order of parameters. For non-return parameters, if none of the two operations is

overloading, the matchcount for a pair of same-name parameters is 1. If any of the two

compared operations is overloading, the types of the two same-name parameters is

further examined, in order to distinguish the overloading methods from each other, which

often declare the same name parameters but with different parameter types. In the case of

overloading, if the same-name parameters have the mapped types, their matchcount is 1;

otherwise, their matchcount is set at 0.5. For the return parameters, if their types map, the

matchcount is 1. Otherwise, it is set at 0. If the type of the return parameter of both

operations is void, the matchcount for the return parameter is set at 0.

The similarity of the initValue of two compared attributes is computed in the same way

as the outgoing usage similarity between two operations. The initValue-similarity value is

added to the overall matchcount of the Usage«wrjte» similarity between two attributes.

41

Take the operations Customer.statement023 and Customer.plainStatement()27 as an example.

Let us assume that UMLDiff has identified the matched model elements and is in the

process of identifying renamings. It collects [Customer.statement()23,

Customer.plainStatement027] as a pair of renaming candidates. Table 3-4 shows the two

related-element sets of Customer.statement()23 and Customer.plainStatement()27. Note that all

the incoming and outgoing usages of these two operations, except for

Customer.statement()23 calling String.valueOf(double)23 twice, happen to be one. We omit the

count tag attached to such usage dependencies. If a usage dependency appears more than

once, it is indicated at the end of the usage dependency, such as String.valueOf(double) [2].

In the case of comparing Customer.statement()23 and Customer.plainStatement()27, the

similarity of their parameters is one, their incoming usage similarity is also one, and their

outgoing usage similarity is zero.

Table 3-4. The related model-element sets of

Customer.statement()23 and Customer.plainStatement027

Type of relations
Parameter
Outgoing

Incoming

read
write
call

instantiate
call

Customer .statementO
return: String
Customer, rentals
null
Customer. getName()
Customer.getTotalChargeQ
Customer.getTotalFreq.. .Points()
Rental.getMovie()
Rental.getCharge()
Movie.getTitle()
String.valueOf^double) [2]
String.valueOf(int)
Vector. elements()
Enumeration.hasMoreElements()
Enumeration.nextElement()

null
Vids.main(Stringn)

Customer.plainStatementO
return: String
null
null
PlainStatement.value()

PlainStatement
Vids.main.Stringf])

When computing incoming and outgoing usage similarity between two operations, if

the two compared operations are related to some other model elements but the

intersection of the two related-element sets is empty, such as the case for the outgoing

usage of Customer.statement()23 and Customer.plainStatement()27, UMLDiff proceeds to

42

compute the transitive usage similarity between the two compared operations, if its

ConsiderTransclosureUsageSimilarity parameter is set to true. The transitive usage

similarity takes into account the model elements related through the transitive-closure of

the given relation, in addition to the directly related elements.

Table 3-5 shows the transitive outgoing usage of Customer.statement()23 and

Customer.plainStatement()27. The transitive usage similarity is still computed as per the

above structure-similarity equation, but without considering the count tag. The

matchcount, addcount, and removecount for the transitive outgoing usage similarity

between Customer.statement()23 and Customer.plainStatement()27 is 23, 6, and 0 respectively.

Thus, the transitive outgoing usage similarity is 23/(23+6+0)=0.79.

Table 3-5. The transitive outgoing usage of

Customer.statement023 and Customer.plainStatement()27

Type of re
Outgoing

ations
read

write
call

instantiate

Customer .statementO
Customer ._rentals
Customer ._name
Movie._title
Movie.daysRented
Price._price
Rental._movie

null
omit 17 matched operations

null

Customer .plainStatementO
Customer._rentals
Customer._name
Movie._title
Movie._daysRented
Price._price
Rental._movie

null
omit 17 matched operations
PlainStatement. value
PlainStatementheaderStringO
PlainStatement.each... String()
PlainStatement.footerString()
Customer. getRentals()

PlainStatement

Determining the similarity when both related model element sets are empty is

challenging. This case arises, for example, when the operations are not called by any

other operations. In such cases, setting the structure similarity to be by default 0 or 1 is

not desirable: without any explicit evidence of similarity, to assume that the structure is

completely the same or completely different may skew the subsequent result. Therefore,

in such cases, UMLDiffuses the name similarity with an increasing exponent. The effect

is dampened as more empty sets are encountered. For example, when computing the

43

structure similarity of two operations in the order of their parameter-list, outgoing usage

and incoming usage similarities, if the two compared operations declare no parameters,

have return type void, and have no outgoing and incoming usage dependencies, UMLDiff

returns name-similarity1 for comparing parameter-list similarity, name-similarity2 for

outgoing usage similarity, and name-similarity for incoming usage similarity.

3.3.3.3 Overall similarity assessment

Given two model elements ej and ê of the same type, their overall similarity metric, used

for determining potentially renamed and moved model elements, is computed according

to the following equation:

SimilarityMetric = (lexical-similarity + ENStructure-similarity) / (lexical-similarity +

N), where lexical-similarity = name-similarity + comment-similarity, and N is the

number of different types of structure similarities computed for a given type of model

elements as defined in Table 3-3.

The value of £Nstructure-similarity is adjusted in the following cases. When comparing

two operations, if anyone of them is overloaded, ENStructure-similarity is multiplied by

the parameter-list similarity of the compared operations in order to distinguish the

overloading operations from each other, which often have similar usage dependencies but

with different parameters. Furthermore, when determining the potential moves of

attributes and operations, if the declaring classes/interfaces of the compared

attributes/operations are not related through inheritance, containment, or usage relations,

the value of SNstructure-similarity is multiplied by the overall similarity metrics of the

classes in which the compared attributes/operations are declared and then divided by the

product of the numbers of all the not-yet-mapped model elements with the same name

(same identifier for operation) and type as the two compared elements. This is designed

to improve the precision when identifying attribute and operation moves.

UMLDiff uses two user-defined thresholds (RenameThreshold and MoveThreshold):

two model elements are considered as the "same" element renamed or moved when their

overall similarity metric is above the corresponding threshold. If, for a given element in

the "before" version, there are several potential mappings above the user-specified

threshold in the "after" version, the one with the highest similarity score is chosen. The

44

higher the threshold is, the stricter the similarity requirement is. The smaller the threshold

is, the riskier the reported renamings and moves are.

3.3.4 Mapping model elements

Table 3-6. The partial model-element sets V23 and V27

Version23 : Top-level subsystem
Element
Version23

default

Vids

Customer

Children
Subsystem
Package
DataType
Package
Class

Interface
Class
Interface
Operation
Operation,;
Attribute
Class
Interface
Operation

Operation,;
Attribute

null
default
Strinjsn
null
Vids
Rental
Movie
Customer

null
null
null
main(String[])
null
null
null
null
getName()

getTotalCharge()

getTotalPoints()

htmlStatement()

statementQ

Customer(String)
name
rentals

Version27 : Top-level subsystem
Element
Version27

default

Vids

Customer

Children
Subsystem
Package
DataType
Package
Class

Interface
Class
Interface
Operation
Operation,;
Attribute
Class
Interface
Operation

Operatioric
Attribute

null
default
Stringn
null
Vids
Rental
Movie
Customer

HTMLStatement
null
null
null
main(String[])
null
null

PlainStatement
null
getName()

getTotalChargeQ

getTotalPoints()

htmlStatement()

plainStatementQ

getRentalsQ

Customer(String)
name
rentals

Given two versions, "before" and "after", of a system model and their corresponding

directed graphs GbeforeO''before, Ebefore) and GafterfVafter, Eafter), UMLDiff starts with the

original vertex sets Vbejbre and Vajier that contain all the model elements and the initially

empty mapped element set. After it finishes mapping the model elements, the mapped

element set contains all the identified matched, renamed, and moved model elements, and

45

the Vbefore contains all the elements that have been removed and the Vaf,er contains all the

elements that have been added when the system model evolves.

Table 3-6 presents the partial model-element sets, V23 and V27, of our running example,

organized according to their containment hierarchy, "null" entries indicate that there is no

model element of a given type contained in a particular model element. In the remainder

of this subsection, we present how UMLDiff identifies same-name (i.e., matched),

renamed, moved model elements using the running example presented in Section 3.3.1.

3.3.4.1 "Matched" elements

UMLDiff assumes that enough model elements remain "matched" between two compared

versions of the system, which serve as the "initial landmarks" set for recognizing

renamed and moved elements. The term "matched" refers to two corresponding model

elements, of the same UML type, contained in a pair of mapped elements, which have the

same names, although their children, attributes, and relations with other elements may be

different.

The very first step of UMLDiff is to identify as many matched model elements as

possible. It starts at the top-level subsystems of the two compared versions of the system

model, which are always assumed to match. The pair of the matched top-level

subsystems is added into the mapped element set as the first pair of mapped elements.

UMLDiff then progresses along the containment hierarchy of the models, moving from

one logical level to the next at the same time, from subsystems, to packages, classes and

interfaces, and finally attributes and operations. Given a pair of mapped model elements

of the current logical level in the mapped element set, UMLDiff identifies all their

children of the same type with same names, adds them to the mapped element set as new

pairs of matched elements, and removes them from the set Vbefore and Vafter respectively.

The pairs of matched children may be of the current logical level or one level below. The

process continues until there are no more unprocessed pairs of matched elements of the

current logical level in the mapped element set and UMLDiff'then progresses down to the

next logical level.

Consider, for example, our running example. The matched model elements are of

regular font and left justified in Table 3-6. In this example, given the matched top-level

46

subsystems, UMLDiff adds their contained same-name default packages into the mapped

element set. Next, it maps the four same-name classes contained in the default package.

Given the matched class Customer, it maps the same-name attributes, constructor, and

operations it declares. Note that there is no mapped nested model element in this simple

running example. UMLDiff'proceeds directly from the subsystem, to the package level, to

the class/interface level, and finally to the attribute/operation level.

UMLDiff may not recover all the pairs of the matched model elements in this round:

same-name, same-type model elements contained in renamed and moved parent elements

are also considered as matched, but, at this stage, the renamed and moved model

elements have not yet been recovered. As the pairs of renamed or moved elements are

added to the mapped element set, UMLDiff attempts again to identify the same-name, i.e.

matched, children they contain recursively, starting at the given pair of renamed/moved

model elements. The only difference is that, instead of traversing the whole containment

hierarchy from the top-level subsystem, it traverses the subtree of the containment

hierarchy rooted at the given pair of renamed or moved model elements.

3.3.4.2 Renamed4 elements

After UMLDiff has completed its recognition of matched model elements, it proceeds to

recover the renamed model elements. UMLDiff only considers potential renamings within

the context of two mapped elements, such as the renaming of an operation within a

mapped class. Identifying renamings between two arbitrary elements of the same type,

such as the renaming of an operation that was moved from one class to another and then

had its identifier renamed, is computationally expensive, since it requires the comparison

of all the pairs of not-yet-mapped model elements of the same type. Again, UMLDiff

starts at the matched top-level subsystems of the two compared versions of the system

model and it traverses all the mapped model elements along the containment-spanning

trees of the compared model graphs to identify pairs of renamed elements, moving from

4 The renamings of operations include the changes to their identifiers and/or parameter

lists. Furthermore, UMLDiff does not consider parameter renamings.

47

one logical level to the next when it has completed traversing all the model elements of

the current logical level in both spanning trees.

Note that UMLDiff may not recover all the pairs of the renamed model elements in its

first round of recognizing the renamed elements due to two reasons. It may miss the pairs

of renamed elements because their related elements have undergone renamings and/or

moves as well. Some of these misses may be recovered in the following rounds of

renaming identification (see Section 3.3.4.4). Furthermore, renamed model elements may

be contained within moved elements or other not-yet-identified renamed elements. Once

the pairs of such elements have been added to the mapped element set, UMLDiff attempts

again to identify the pairs of renamed model elements they contain recursively starting at

the given pair of moved or newly-identified renamed model elements.

Given a pair of mapped model elements of the current logical level in the mapped

element set, UMLDiff first collects all their not-yet-mapped children of the same type and

formulates sets of renaming candidate pairs. Suppose there are N not-yet-mapped

elements of a particular type contained in the "before" version of the mapped elements

and M in the "after" version: UMLDiff generates N sets of renaming candidate pairs, each

of which contains M pairs. It then identifies the renamed model elements based on their

lexical and structure similarities, adds the newly identified pairs of renamed elements to

the mapped element set, and removes them from the Vbefore and Vafter sets. Adding a pair

of renamed elements to the mapped element set triggers UMLDiff to recursively

recognize the matched descendants they contain. The pairs of newly identified renamed

and matched children may be of the current logical level or one level below. The process

continues until there are no more unprocessed pairs of mapped elements of the current

logical level in the mapped element set and UMLDiff then progresses down to the next

logical level.

For example, when comparing the version 23 and 27 of our running example, the

matched top-level subsystems contain only a pair of matched default packages. The

matched default packages contain four matched classes and one not-yet-mapped class,

HTMLStatement27. Thus, at this point, there are no potential renaming candidate pairs.

However, when UMLDiff reaches the matched class Customer, it collects the following

not-yet-mapped children: operation Customer.statement()23, and operations

48

Customer.plainStatement()27 and Customer.getRentals()27 and nested class PlainStatement27.

Since there are no not-yet-mapped nested classes contained in the class Customer, there

is no need yet for renaming identification of Customer's nested classes. However,

UMLDiff formulates one set of operation-renaming candidate pairs (italic font and right

justified in Table 3-6 and Table 3-8), which contains two pairs of renaming candidates:

[statements, plainStatement()27] and [statement()23, getRentals()27].

The overall similarity of each of these pairs is computed according to the equations

shown in Section 3.3.3.3, based on their lexical and structure similarities. When

comparing Customer.statement()23 and Customer.plainStatement027, t/MLD^fcomputes three

types of structure similarity between them, i.e. parameter list, outgoing usage, and

incoming usage, which are 1, 0.793, 1 respectively. Their identifier similarity using

Word-LCS5 is 0.5. Thus, their overall similarity metric is 0.941. The overall similarity

metric between [statement()23, getRentals()27] is similarly computed to be 0.139. Thus,

plainStatement()27 is much more similar to statements than getRentals()27. Assuming that

the RenameThreshold is less than 0.941, the pair [statement()23, plainStatement()27] is

recognized as an instance of operation renaming.

Table 3-7. The sets of renaming candidate pairs

HTMLStatement
header?6() - ?Header()

header?() - ?Footer()

header?()-?Each...()

footer?() - ?Header()

footer?() - ?Footer()

footer?()-?Each...()

each...?()-?Header()

each...?0-?Footer()

each...?()-?Each...()

value() - ?Header()

value() - ?Footer()

value()-?Each...()

Customer
getTotalChargeO - getAHChargeO
getTotalChargeO - getAll...Points()

getTotal...Points() - getAHChargeO
getTotal...Points() - getAU...Points()

Let us now look at the versions 27 and 28 of our running example. They involve much

more complex changes, including many renamings and moves. Let us first examine

5 Word-LCS is used for all the lexical-similarity computation in Section 3.3.4.
6 Replace the suffix "String" and the prefix "print" with "?" to fit these operations in

table.

49

renamings. Similar to the comparison of versions 23 and 27, UMLDiff first identifies all

the matched model elements starting from the top-level subsystems. Then it proceeds to

collect potential renaming candidates and to formulate the sets of renaming candidate

pairs, such as those shown in Table 3-7 for the matched class HTMLStatement and

Customer.

Note that HTMLStatement.value()27 is collected as a renaming candidate at this stage of

UMLDiffprocess. It is compared against three HTMLStatement.prinfXXX()28 operations but

it is not found similar to anyone of them; therefore, it will be finally collected as one of

the potential move candidates (bold font and left justified in Table 3-8). Furthermore, the

abstract operations, such as those of the class Statement, are not collected as renaming or

move candidates: since they have no outgoing usage, the identification of their renamings

or moves tends to be error-prone. UMLDiff ignores them in its renaming and move

identification process. However, the renamings of the abstract operations may be

recovered by propagating the knowledge of the identified renamings of their

implementation operations along the inheritance hierarchy as discussed in Section 3.3.4.5.

Finally, at this stage, the not-yet-mapped operations of the PlainStatement class are not

collected as renaming candidates, since the move of the class PlainStatement has not yet

been identified. However, they will be processed when the move of PlainStatement is

identified and added to the mapped element set.

UMLDiff computes the overall similarity metrics of all the pairs of renaming

candidates contained in a given pair of mapped model elements and selects the pair with

the highest similarity metric (above the RenameThreshold) to be added to the mapped

element set as a renaming. It then removes from the candidate sets all other pairs that

contain the elements of the selected pair. This process continues until there is no pair left.

For example, if the UMLDiff RenameThreshold parameter is 0.3, then all 12 pairs of

operation-renaming candidates of the matched HTMLStatement class have sufficiently high

similarity metric to be qualified for further examination. The pair [eachRentalString023.

printEachRental()27] ranks highest and is selected as a pair of renamed elements; then all

other pairs that contain either eachRentalString023 or printEachRental()27 are removed from

the list. UMLDiff then selects the pair with the highest similarity-metric value in the

current list until the pair list is empty.

50

3.3.4.3 Moved elements7

Finally, UMLDiff proceeds to examine those model elements that have not yet been

identified as matches or renamings and to consider whether they may have been moved

from one part of the system to another. It first starts at the top-level subsystem of Vbefore

and traverses all the not-yet-mapped model elements along the containment hierarchy of

the model, moving from one logical level to the next when there are no more unprocessed

elements of the current logical level. Thus, UMLDiff first identifies all the potential

subsystem moves, and then progresses down to package moves, class and interface

moves, and finally attribute and operation moves.

When it encounters a not-yet-mapped model element ebefore, UMLDiff collects all the

not-yet-mapped same-type and same-name (same-identifier for operation) model

elements in Vafter and forms a set of move candidate pairs, if such elements exist. It then

computes the overall similarity metrics for all these candidate pairs, selects the pair with

the highest similarity metric (above the MoveThreshold), and adds it to the mapped

element set as a pair of moved model elements. Adding a pair of moved elements to the

mapped element set triggers UMLDiff to recursively recognize their matched and

renamed descendants. This process continues until all the not-yet-mapped model

elements of the current logical level have been processed; then UMLDiff proceeds to

identify the potential moves at one logical level below.

Note that for operations, UMLDiff uses their identifiers instead of their full signatures

to collect move candidates, which enables the identification of changes involving

operation moves with simultaneous parameter-list modifications. Furthermore, the set of

not-yet-mapped elements may change as the process goes on, because the descendants of

the newly identified moved elements might be identified as matches and renamings when

the pairs of moved elements are added to the mapped element set, as discussed for the

moved PlainStatement class below. Finally, the identified moved elements are only

removed from Vbefore and Vafter after the whole move recognition step is complete. After

all the not-yet-mapped elements in Vbefore have been processed, UMLDiff starts at the top-

7 UMLDiff does not consider moves of constructors (i.e., model elements of UML type

Operation«create»), since it makes no sense to do so.

51

level subsystem of Vaf,er and performs the same tasks as above. This step, together with

not-immediately-remove-moved-elements-from-element-sets, enables UMLDiff to

identify many-to-one and one-to-many mapping between moved elements.

Table 3-8. The initial not-yet-mapped model elements

after the match/renaming reorganization steps

Version27: Top-level subsystem
Element
Version27

default

Customer

PlainStmt

HTMLStmt

Children
Subsystem
Package
DataType
Package
Class
Interface
Class
Interface
Operation
Operation,,
Attribute
Class
Interface
Operation

Operation.
Attribute
Class
Interface
Operation
Operationc

Attribute

null
null
null
null
null
null
PlainStatement
null
null
null
null
null
null

headerStringQ
each...String()
footerStringO

valueO
null
null
null
null
valueO
null
null

Version28 : Top-level subsystem
Element
Version28

default

Customer

PlainStmt

HTMLStmt

Statement

Children
Subsystem
Package
DataType
Package
Class
Interface
Class
Interface
Operation
Operation,;
Attribute
Class
Interface
Operation

Operation,;
Attribute
Class
Interface
Operation
Operation,;
Attribute
Class
Interface
Operation
Operation,;
Attribute

null
null
null
null
PlainStatement
null
null
null
null
null
null
null
null

printHeaderQ
printEach...Q
printFooterQ

null
null
null
null
null
null
null
null
null
valueO
null
null

Table 3-8 lists all the remaining not-yet-mapped model elements that are still in V27

and V28 of our running example, after UMLDiff has completed the match and renaming

recognition steps. Note that the three abstract operations of the Statement class are not

listed in Table 3-8, since UMLDiff does not consider the moves of the abstract operations,

52

which tends to be error-prone due to the non-existence of outgoing usage dependency

from them. The top-level subsystem, Version27, and its default27 package do not contain

any not-yet-mapped subsystems or packages. Thus, UMLDiff proceeds to the

class/interface logical level. When traversing the classes and interfaces, it encounters a

not-yet-mapped class Customer. PlainStatement27 (bold font and left justified in Table 3-8

for move candidates). UMLDiff then searches the remaining not-yet-mapped classes

contained in V28 and retrieves all the classes with the same name. It finds the not-yet-

mapped class PlainStatement28 in the default28 package. Given the moving candidates

[Customer.PlainStatement27, default.PlainStatement28], UMLDiff computes their similarity

metric to be 0.6. If the MoveThreshold is lower than 0.6, the pair of

[Customer.PlainStatement27, default.PlainStatemertas] is added to the mapped element set as a

moved class.

Adding the moved class [Customer.PlainStatement27, default.PlainStatement28] to the

mapped element set triggers UMLDiff to recognize the matched and renamed descendants

they contain. The class PlainStatement has no matched children, but it has four and three

not-yet-mapped operations in version 27 and 28 respectively. UMLDiff collects them as

renaming candidates and identifies three operation renamings (italic font and right

justified in Table 3-8) that are added to the mapped element set.

After processing the class PlainStatement, there aren't any not-yet-mapped classes or

interfaces and UMLDiffproceeds to the attribute/operation level. It encounters the not-

yet-mapped operation HTMLStatement.value()27 and retrieves from Version28 the not-yet-

mapped operation Statement.value()28. UMLDiff computes the overall similarity of the

candidate move pair [HTMLStatement.value()27, Statement.value028] to be 0.71. The

[HTMLStatement.value()27,Statement.value028] pair is added to the mapped element set as a

moved operation, assuming that the MoveThreshold is lower than 0.71. After that,

UMLDiff encounters the not-yet-mapped operation PlainStatement.value()27. Similarly to

HTMLStatement.value()27, the pair [PlainStatement.value()27, Statement.value02s] is also

identified as an operation move. Note that the operations headerStringO, footerStringO, and

eachRentalStringO of PlainStatement are not encountered as not-yet-mapped elements: they

are identified as operation renamings when the move of PlainStatement class is recognized,

which results in them being removed from the initial remaining not-yet-mapped model

53

element sets. After processing all the not-yet-mapped elements in V27, UMLDiff starts

over at the top-level subsystem of V28, which contributes no more moves in this running

example.

When examining attribute/operation move candidates, if their declaring classes

(interfaces) are related through inheritance, containment, or usage relations, their non-

adjusted structure similarities (see Section 3.3.3.3) are used in the computation of their

overall similarity. Otherwise, UMLDiff computes the overall similarity metric of their

declaring classes (parent-similarity) and calculates the product (amount-potential-moves)

of the numbers of the not-yet-mapped, same-type, same-name model elements as the two

compared elements in the two compared versions. In this case, the structure similarity of

the two compared attributes/operations is adjusted as ENstructure-similarity*parent-

similarity/amount-potential-moves. Intuitively, if the source and target classes of the

moved attribute/operation have no special relation, UMLDiff takes into account the

contexts from and to which the attributes/operations move: they must be similar enough

in order for the moves of attributes/operations to make sense. Furthermore, the more the

potential moves of the same kind are, the less likely it is that any of them will be

recognized as a valid move.

Take the [HTMLStatement.value()27, Statement.value()28] as an example: since Statement is

the superclass of HTMLStatement, the original structure similarity 1.83 is used to compute

the overall similarity metric, which is 0.71. Let us assume that there is no special relation

between HTMLStatement and Statement. The overall similarity metric (parent-similarity) of

[HTMLStatement27, Statement2s] is 0.7 and there are two potential moves of the valueO

operation. Thus, the structure similarity of [HTMLStatement.valueO, Statement.valueO] that

is used to compute the overall similarity metric becomes 1.83*0.7/2=1.3, which brings

the overall similarity metric down to 0.58.

This technique is designed to improve the precision of attribute/operation moves. For

example, in an interactive system, many classes implement the Action Listener interface and

its actionPerformedO operation; in general, these implementations handle different user

actions and are used in different contexts. However, when some actionPerformedO method

disappears (usually because its class is removed or has stopped implementing the

Action Listener interface) and new ones appear between two compared versions of a model,

54

they tend to be reported as pairs of moves, which usually does not make sense. The

UMLDiff algorithm integrates the above technique to filter out such moves.

3.3.4.4 Propagating knowledge of identified renamings and moves along usage

dependency

UMLDiff computes the structure similarity of two compared model elements in terms of

the intersection of their two related-element sets. It is sensitive to the order that a set of

renamed and/or moved model elements are examined, which may result in some

renamings and moves being missed during a particular round of renaming/move

identification. On the other hand, the more renamings and moves UMLDiff recovers, the

larger the current "landmarks" set (i.e., the mapped element set) becomes, and the more

likely it becomes that UMLDiff'may recover further related renamings and moves.

Let us look at versions 27 and 28 of our running example. The operations

Customer.getTotalCharge()27 and Customer.getTotalFrequentRenterPoints()27 and their caller

operation HTMLStatement.footerString027 and PlainStatement.footerString027 are renamed to

Customer.getAIICharge()28, Customer.getAIIFrequentRenterPoints()28,

HTMLStatement.printFooter()28 and PlainStatement.printFooter()28 respectively.

First, the renaming candidate pair [PlainStatement.footerString027,

PlainStatement.printFooter()28] is examined after the PlainStatement class has been

recognized as moved. Furthermore, the renaming candidates [Customer.getTotalCharge()27,

Customer.getAIICharge()28] may be compared before [HTMLStatement.footerString027,

HTMLStatement.printFooter()28]; even if the order is reverse, the renaming of

[HTMLStatement.footerString027, HTMLStatement.printFooter()28] may not be recovered if the

RenameThreshold is greater than 0.5 (see below). Therefore, at the time of determining

the mapping between [Customer.getTotalCharge()27, Customer.getAIICharge()28], their

incoming usage relations may be substantially different to UMLDiff and their incoming

usage similarity may be 0. However, the operations [getTotalCharge()27, getAIICharge028]

declare the same parameters and they use the same sets of other model elements; their

parameter-list similarity and outgoing usage similarity are 1, which brings their overall

similarity to 0.714, which is sufficiently high. Thus, even without the knowledge of the

renaming [HTMLStatement.footerString027, HTMLStatement.printFooter()28] and

55

[PlainStatement.footerString()27, PlainStatement.printFooter028], getTotalCharge()27 and

getAIICharge028 may still be recovered as a renamed pair, at a fairly high

RenameThreshold. The case of the renaming candidates [getTotalFrequentRenterPoints027,

getAIIFrequentRenterPoints()28] is similar.

On the other hand, the outgoing usage similarity of [HTMLStatement.footerString()27,

HTMLStatement.printFooter()28] is 0.33, when the renaming pairs [getTotalCharge()27,

getAIICharge()28] and [getTotalFrequentRenterPoints()27, getAIIFrequentRenterPoints028] have

not yet been recovered, but it increases to 1 if these pairs have already been established as

renamings before UMLDiff considers the renaming candidate pair

[HTMLStatement.footerString027, HTMLStatement.printFooter028]. The corresponding overall

similarity metric of the pair [HTMLStatement.footerString027, HTMLStatement.printFooter()28]

increases from 0.5 to 0.7, which may push the pair above the RenameThreshold.

It is computationally expensive to keep track of all related not-yet-mapped model

elements. Furthermore, as shown in the example, it is not necessary to update the

similarity metric of two not-yet-mapped model elements as each of its related renamings

and/or moves is recovered. For example, we only need to re-compute the similarity

metric of the renaming candidate pair [HTMLStatement.footerString027,

HTMLStatement.printFooter()28] once after both the renamings of [getTotalCharge()27,

getAIICharge()28] and [getTotalFrequentRenterPoints()27, getAIIFrequentRenterPoints028] are

identified. Therefore, at the end of each round of renaming and move identification,

UMLDiff collects the pairs of not-yet-mapped renaming and move candidates that are

related, through usage dependencies, to the newly identified renamed and moved model

elements in the last round and updates their similarity metrics to see if they may be

qualified this time.

UMLDiff'may be configured to perform up to MaxRenameRound and MaxMoveRound

of renaming and move recognition or to continue until there is no more affected potential

renaming and move candidates that are related to the new instances of renamings and

moves identified in the last round. Allowing multiple rounds of renaming and move

identification relieves the impact of the order of the model elements being processed by

UMLDiff on its final mapping results.

56

3.3.4.5 Propagating identified operation renamings along inheritance hierarchy

When the move of PlainStatement class is identified, UMLDiff attempts to recover its

operation renamings (see Section 3.3.4.3). When the pair [PlainStatement.footerString027,

PlainStatement.printFooter028] is examined, the related operation renamings

[getTotalCharge()27, getAIIChargeOzs] and [getTotalFrequentRenterPoints()27,

getAIIFrequentRenterPoints028] have already been identified. However, the overall

similarity of the pair [PlainStatement.footerString027, PlainStatement.printFooter()28] is 0.475,

still not sufficiently high, in comparison with the similarity (0.7) of the operation pair

[HTMLStatement.footerString027, HTMLStatement.printFooter()28], since we intentionally

introduced more changes to the PlainStatement.printFooter()28 (see Section 3.3.1). It is

therefore possible that the renaming of [PlainStatement.footerString027,

PlainStatement.printFooter()28] is not recognized when the renaming of

[HTMLStatement.footerString027, HTMLStatement.printFooter()28] is, if, for example, the

RenameThreshold is 0.5.

However, UMLDiff knows that both HTMLStatement and PlainStatement extend the

Statement class and their corresponding footerStringO and printFooterO operations

implement the abstract Statement.footerStringO and Statement.printFooterO operations in the

two compared versions. Implementing (or overriding) operations must have the same

signature (i.e., the same identifier and parameter list) as the operations they implement

(override). Therefore, if any one of them is renamed, all the rest must be renamed as well.

Based on this definition, UMLDiff propagates the knowledge of the identified operation

renamings along (both up and down) their implementation (overriding) hierarchy, which

may result in recognizing the renamings of abstract operations (which are not explicitly

compared) and the renamings of other implementation (overriding) operations, as yet

missed.

For example, based on the identified renaming [HTMLStatement.footerString()27,

HTMLStatement.printFooter()28], UMLDiff first searches up to the mapped top-most ancestor

class or interface (Statement in this case) and collects the pair of not-yet-mapped

operations (the abstract operations [Statement.footerString()27, Statement.printFooter()28]) that

are implemented (or overridden) by the identified pair of renamed operations and asserts

them as a pair of renamed operations. And then based on the recovered operation

57

renaming of the top-most ancestor class ([Statement.footerString027,

Statement.printFooter()28]), UMLDiff searches down all the pairs of the not-yet-mapped

operations ([PlainStatement.footerString027,PlainStatement.printFooter0z8]) that implement

(override) them and asserts all of them as pairs of renamed operations.

3.3.5 Mapping relations

In Section 3.3.4, we discussed the UMLDiff'process for mapping the elements of two

UML models corresponding to two versions of an evolving software system. This process

produces three sets that contain (a) the model elements for which mappings have been

identified in the two compared versions (i.e., matched, renamed, and moved), (b) the

removed elements, and (c) the newly introduced elements respectively. UMLDiff then.

proceeds to map the relations between the model elements, i.e., to map the edge set

{Ebefore, Eafter) of the model graphs. This process step also produces three relation sets that

contain (a) the matched relations between the two model elements, (b) the removed

relations, and (b) the newly introduced relations respectively.

The UML relations are defined by their types (see Table A-2 and Table A-3) and the

UML model elements they relate. Given two model elements {ybefore, vafter), where

Va/-(er=null if Vbefore is removed and Vfte/0re
=null if va^eris added, UMLDiff collects all their

relations in the two compared models. Two same-type relations of the model elements

Vbefore and vafter in the two compared versions are matched, if the model elements they

relate are contained in the mapped model element set, i.e., they map to each other. After

UMLDiff finishes comparing the relations of all the pairs of the model elements, all

- unmatched relations that are still contained in Ebefore are assumed to have been removed

and all unmatched relations in Eafter are assumed to have been added when system

evolves from the "before" version and the "after".

Note that the removed model elements contained in {Vbefore - Vafter) and the newly

added model elements contained in {Vafter - Vbefore) have no counterpart in the compared

models. The relations from (to) a removed model element are all removed and the

relations from (to) an added model element are all newly added. For a pair of mapped

elements {ybefore, vafter), they may have matched, newly added, and/or removed relations.

A removed (added) relation between the two model elements does not indicate that any of

58

the elements it relates has been removed (added). For usage dependencies, UMLDiff also

compares their count tag and reports the changes to the number of times they appear

between the model elements.

Table 3-9. Mapping relations of the renamed

[Customer.statement()23, Customer.plainStatement()27]

Version23
Relation type
owner - feature
Usage« read»
Incoming
Usage«caii»
Outgoing
Usage«caii»

U Sage«im tantiate»

Usage«write»
U Sage« s end»
Parameter
raisedSignal
Reception

Instances of relation
Customer — statement^)

statomontO, rental
Vids.main(), statement()

gtatomont(), getNameQ

GtatomontQ, gotTotalFr...()
statement(), getMovie()

otatomontQ, getTitle()
statomont(), valueOf(d) [2]

GtatomontQ, elements()

null
null
null

statement() - return: Str
null
null

Version27/Version28
Relation type
owner - feature
U sage«rea(i»
Incoming
Usage«can»
Outgoing
Usage«caii»

U Sage«in stantiate»

Usage«wrjte»
Usage«Send»
Parameter
raisedSignal
Reception

Instances of relation
Customer — plainStmt()

null
Vids.main(), plainStmt()

plain.Stat(), valueO

plainStmtQ. PlainStmJ
null
null

plainStmt() - return:Str
null
null

Table 3-9 lists all the relations of the renamed operation [Customer.statement023,

Customer.plainStatement027], grouped according to their types. Consider the incoming-call

relation as an example: the statement()23 and plainStatement()27 operations are called by the

operations Vids.main(StringO)23 and Vids.main(StringQ)27 respectively, which are matched.

Thus, the renamed operation [Customer.statement()23, Customer.plainStatement()27] has a

matched (regular font and right justified in Table 3-9) incoming-call relation. Similarly,

they have a matched composition relation (both are declared in the matched class

Customer) and a matched [BehaviorFeature - parameter] relation (both declare a return

parameter of type String). All the removed relations are highlighted with strikethrough

lines, while all the newly introduced relations are underlined with dash lines. The

59

renamed operation [Customer.statement()27, Customer.plainStatement028] no longer uses the

attribute Customer._rentals (a removed Usage«read» relation), but the attributes

Customer._rentals exist in both versions 23 and 27, i.e., they are matched. Furthermore,

two (indicated by [2] at the end of the usage dependency) operation calls to

String.valueOf(double) are removed (a removed outgoing Usage«caii» relation with tag

count=2) when Customer.statement()23 evolves to Customer.plainStatement027.

3.3.6 Recognizing behavior redistribution

Developers, sometimes, redistribute the behavior in the system in order to reorganize the

inheritance hierarchy, restructure the usage dependencies between objects, or refactor a

long method. After UMLDiff finishes mapping the model elements and their relations, it

attempts to detect the redistribution of the behavior among operations, by analyzing the

removals and additions of Usage«read»/«write»/«caii»/«mstantiate» dependencies of the

mapped operations and the related removed or added operations along their transitive

usage and generalization/abstraction relations.

Behavior redistribution is reported in terms of Extract operation and Inline operation

changes. Note that our concepts of Extract operation and Inline operation are broader

than the Extract Method and Inline Method introduced in Fowler's refactoring catalog

[32], which are limited to refactoring only class internals.

We discuss in detail how UMLDiff detects operation extraction - operation Mining is

detected in the same manner. Given two mapped operations [oi,efore, oaf,er] with some

removed outgoing Usage«rea<t»/«write»/«cai!»/«instantiate» relations originated from

Obefore, t/MLDzrJ identifies the candidate targets (otarget) of the behavior redistribution, as

all the newly added operations that have a transitive relation with oafler through the

relations of Usage«caii» (incoming and outgoing), Generalization (overriding or

overridden), Abstraction«reaiize>> (implemented by), or a combination of them. We

consider a removed outgoing usage relation [obefore, ebefore] from Obefore as equal (not

equivalent to relation match) to a newly added relation [o,argc(, eafter] from one candidate

target operation, if they are of the same type and the elements [ebefore, eafter] have been

mapped. If the set of the outgoing usage relations from a candidate target operation otarget

is a subset of the removed outgoing usage relations from Obefore, or their intersection set is

60

greater than the user-specific threshold, then UMLDiff asserts that otarge,is extracted from

Obefo re-

Table 3-10. Redistribute semantic behavior among operations

Version23
Relation type Instances of relation

Customer, statement)
Usage«read»
Usage«cau »

statementO, rental

statement), gotTotalCh... ()
statement(), gotTotalFr...()

statement(), gctMovioQ
statementO, gotChargoO

statement(), valueOf(d)

statementO, elementsO
statementO, hasMoreElemsO
statementO, noxtElement()

statementO, valueOf(d)
statementO, valuoOf(int)

Version28
Relation type Instances of relation

Customer.getRentalsO
Usage«read» getRentals(), rental

PlainStatement.printHeader()
Usage«caii» printHeaderO, getNameO

PlainStatement.printFooterO
Usage«can»

Usage«instantiate»

printFooter(), getAHChargeO
printFooterO, getAHFreq...O
printFooterO, Double.toStrO
printFooterO, Integer.toStr()
printFooterO, Double
printFooter, Integer

PlainStatement.printEachRental()
Usage«caii» printEachO, getMovieO

printEach(), getCharge()
printEachO, getTitleO
printEachO, valueOf(d)

PlainStatement.valueO
Usage«caH» value(), elements()

value(), hasMoreElementsO
valueO, nextElementO
valueO, printHeaderO
valueO, printFooterO
valueO, printEachRentalO

Let us now compare the versions 23 and 28 of our running example. UMLDiff

identifies the renamed operation [Customer.statement()23, Customer.plainStatementfj28] and

reports the relation differences as shown in Table 3-9. Since the operation

Customer.plainStatementO has not changed between versions 27 and 28, Table 3-9 reflects

the relation changes between its versions 23 and 27 as well as its versions 23 and 28.

Given the renamed operation [Customer.statement()23, Customer.plainStatement()28],

61

Customer.statement()23 is oi,efore in this example and Customer.plainStatement()28 is oafter, and

they have some removed outgoing usage relations. UMLDiff then collects all the newly

added operations (the candidate targets) that have transitive usage and/or

generalization/abstraction relations with Customer.plainStatement()28. The operation

Customer.plainStatement()28 calls Statement.value()28, which calls Customer.getRentals()28 and

the three abstract operations Statement.printHeader028/printFooter028/printEachRental()28,

which are implemented by PlainStatement.printHeader028/printFooter028/printEachRental0z8

respectively. Furthermore, Statement.value()28 are implemented by PlainStatement.value()28.

All these operations are newly introduced in version 28. Thus, the candidate targets of the

behavior redistribution include Customer.getRentals()28 and

PlainStatement.printHeader028/printFooter028/printEachRental028/value028. Note that UMLDiff

ignores the abstract operations, since they have no outgoing usage.

Table 3-10 lists the removed outgoing usages of the operation Customer.statement()23

and the candidate target operations and their newly added outgoing usages, when the

model evolves from version 23 to 28. The outgoing usage relations of the target

operations Customer.getRentals()28 and PlainStatement.printHeader028/printEachRental()28 are

the subset of the removed outgoing usage relations of the Customer.statement()23. UMLDiff

asserts that these three target operations have been extracted from the

Customer.statement()23. On the other hand, the intersection of the new outgoing usages of

the target operations PlainStatement.value()28/printFooter()28 and the removed outgoing

usages of the Customer.statement()23 is not empty. Depending on the user-specific

threshold, the target operations PlainStatement.value028/printFooter028 may or may not be

asserted as being extracted from the Customer.statement()23. Clearly, as the system evolved

from version 23 to 28, the behavior of the operation Customer.statement()23 has been

redistributed and encapsulated in a separate strategy object in version 28, which is

defined by the abstract class Statement and its two implementation classes PlainStatement

and HTMLStatement.

3.3.7 Comparing attributes of mapped model elements

Finally, UMLDiff compares the inherent attributes and the tagged values of the mapped

UML model elements. For the visibility attribute, UMLDiff reports the changes as either

62

of the following: (a) up: the access modifier has become less restrictive in the "after"

version; (b) down: the access modifier has become more restrictive in the "after" version;

and (c) match: visibility has not changed. The access modifiers can be private, package,

protected, or public, in decreasingly restrictive order. For all other attributes and tagged

values, UMLDiff simply reports whether they are of the same value or not. For example,

UMLDiff reports that the visibility of the two renamed operations [getTotalCharge()27,

getAIICharge()28] and [getTotalFrequentRenterPoints()27, getAIIFrequentRenterPoints()28] has

been changed up from package to public. Furthermore, the deprecation status of the

matched operation [Customer.plainStatement027, Customer.plainStatement()28] has been

changed from false to true.

3.4 Evaluation

In this section, we used JFreeChart [126] as the subject system of an extensive case study

that we conducted to evaluate the run-time performance and the effectiveness of UMLDiff

algorithm. JFreeChart is a class library of a realistic size that has been under active

development for a long time and has suffered a substantial amount of design changes. At

the same time, it is of a manageable size, possible to inspect "manually" to establish the

ground truth for the algorithm's results. Table C-l report the numbers of model element

and relation facts extracted by JDEvAn's fact extractor during the system lifecycle. Table

C-2 reports the summary of most interesting design changes (including the changes

correctly identified by UMLDiff and the missed ones manually added through the

inspecting session of UMLDiff results with the JDEvAn tool) in the evolution of

JFreeChart system, which serves as the ground truth, i.e., Mactuai, for evaluating the

effectiveness of UMLDiff algorithm and the impacts of various factors that can affect the

UMLDiff quality.

3.4.1 UMLDifTeffectiveness

First, let us report on the effectiveness of UMLDiff in identifying renamed, moved and

otherwise changed mode elements on the basis of their lexical-similarity and structure-

similarity to other entities that have been identified to be the "same" across the two

compared system versions. In principle, the precision and recall metrics are used to

63

evaluate the quality of such tasks. In the UMLDiff context, given the total number of

design changes that have occurred between two versions (Mactuai) and the number of

changes reported by UMLDiff (Mreported), precision is the percentage of the correctly

reported changes (Mactuai n Mreported)/Mreported and recall is the percentage of changes

reported (Mactuai n Mreported)/Mac,uai..

Precision is easier to evaluate than recall. Once all pairs of successive versions are

UMLDiffed, we manually inspected, with the support of JDEvAn tool [125], the

correctness of each instance of changes reported by UMLDiff against the JFreeChart

source code, the accompanying Javadocs and source-code comments, and a textual

change log shipped with each major release version. Table 3-11 and Table 3-12

summarize the changes reported by UMLDiff'when the renaming and move threshold is

set to 0.3 and 0.35 respectively. The second column of these two tables reports the

numbers of changes of each type reported by UMLDiff'for JFreeChart. The number of

correctly identified changes is reported in the third column and the precision percentage

is reported in the fourth column.

Recall is harder to assess since it requires knowledge about the total number of

changes of each type that have actually occurred. To develop an intuition about how

good the UMLDiff recall is, we first run UMLDiff with a very low threshold for

renamings, i.e., 0.01. With such a low threshold, UMLDiff is very eager to recognize

mode elements as renamed and thus we expected to collect all instances of renamings to

use as the "set of actually renamed elements" to assess renaming recalls in other

configurations. With the renaming threshold set at 0.01, UMLDiff reports 2945 instances

of renamed elements; after inspecting each one of them, we established that 2154 are

correctly identified. In addition, some missed instances of renamings have been manually

added through the inspecting session of UMLDiff results with JDEvAn tool. Finally, we

obtained 2180 instances of renamed mode elements. At renaming threshold 0.3, UMLDiff

reports 2077 correct renaming instances, i.e. adding up the number of correct instances of

renaming package, renaming class and interface, and renaming field and method. This

implies that at renaming threshold 0.3, the renaming recall is 2077/2180 (95.3%). What is

also interesting to note, is that, even at the extremely low renaming threshold 0.01, the

64

UMLDiff renaming precision is 2154/2945 (73.1%) is not too low. This robustness is due

to UMLDiff's similarity-ranking mechanism.

Next, we set the renaming threshold at 1 and the move threshold at 0.01. Given this

very strict criterion for recognizing renamings, only mode elements in the same parent

context that have the exact same relationships with other known-to-be-same elements are

identified as renamed. All other not-yet-mapped model elements are examined against

other not-yet-mapped elements in different parent context: given the very low move

threshold, UMLDiff is eager to recognize moved elements, based on even the most

tenuous similarity results. Together with manually-added missed instances of moves, we

finally obtained 957 instances of moved model elements. At move threshold 0.3,

UMLDiff reports 936 correct move instances, i.e. adding up the number of correct

instances of moving class and interface, and moving field and method. Therefore the

moves recall at the move threshold 0.3 is 936/957 (97.8%).

Furthermore, we also evaluated qualitatively the UMLDiff results against the release

notes shipped with each major release of JFreeChart. Most of the changes recorded in

release change logs can be recovered but with much more detail by UMLDiff. In this

sense, the design changes reported by UMLDiff can be used to re-document the system

evolution, which could be very useful to help the developers to capture the API and

design changes.

3.4.1.1 When UMLDiffgets confused?

Table 3-11. UMLDiff 'results at renaming/move threshold 0.3

Type of changes
Renamed package
Renamed class and interface
Moved class and interface
Renamed field and method
Moved field and method
Data type and return type
Visibility change
No-access modifier change
Generalization change
Implementation change
Total

reported instances
29

128
306

2024
721
710
855
303
185

1025
6286

correct instances
29

121
306

1927
630
677
845
299
180
970

5984

Precision
100%

94.5%
100%

95.2%
87.3%
95.4%
98.8%
98.7%
97.3%
94.6%
95.2%

65

Even though the precision and recall rates are quite good, it is interesting to understand

when UMLDiff gets confused. Let us, therefore, review the cases of erroneously reported

changes. Table 3-11 shows the UMLDiff results with the renaming and move thresholds

set to 0.3.

Renamed class and interface: 7 out of 128 class/interface renamings were incorrect.

2 involved pairs of JUnit test classes and 5 involved demo classes. All mistakenly

recognized pairs of classes were very similar. The JUnit classes shared methods such as

suiteO, testEqualO, testCloningO and testSerializationO and the demo classes had methods like

mainO, createChartO, and createDatasetO. Moreover, the efferent relations of these class

pairs are also similar. For example, the suiteO methods of the JUnit test classes created an

instance of TestSuite with parameter TestClass.class and their testSerializationO methods use

the ByteArrayOutputStream, ObjectOutputSteam, ObjectOutput classes. Finally, none of these

classes had any afferent relations: the JUnit classes are launched by the JUnit framework,

and the demo classes are stand-alone Java applications.

Move class and interface: All reported instances are correct, a few instances are

missed though. For example, in version 0.9.5, the interface CategoryltemRenderer was

moved from package com.jrefinery.chart to com.jrefinery.chart.renderer. At the same time, 11

new methods were added to its original 10 methods, which also changed signatures.

Furthermore, out of 9 classes that use this interface in both versions, only 3 pairs of them

were matched. This dramatic change make the moving of interface CategoryltemRenderer

not recognized by UMLDiff at threshold 0.3.

Rename field and method/constructor: 97 out of 2024 field and method renamings

were not correctly identified. Most of them involved get and set methods and the fields

they access. These methods are simple and short, with few relationships to other entities

and present a challenge to UMLDiff s structure-similarity heuristic.

It is important to note here that among the 1927 correctly identified field and method

renamings, there exist renamings that had no identifier similarity at all, and therefore

would not have been intuitively recognized by a developer, such as for example, the

CategoryPlotgetDataAreaO is correctly identified as renamed to calculateAxisSpaceO in

version 0.9.10.

66

Move field and method: The precision of recognizing moving fields and methods is

the lowest among all the different types of design changes reported by UMLDijf.

However, its recall is very good. For example, in version 1.0.0, a superclass

AbstractPieltemLabelGenerator was extracted from class StandardPieltemLabelGenerator, and

6 (all possible moves) fields and methods were reported as having moved from the

subclass to the new superclass. In addition, createltemArrayO is also identified as moving

to StandardXYSeriesLabelGenerator, which, at closer inspection, is an incorrect one.

Other errors: The accuracy of the reported changes to data types and return types, no-

access modifiers, visibility, and generalization and abstraction relations is relatively

higher than that of renamings and moves. The occasional errors are due to: (a)

erroneously identified renamed and/or moved model elements; (b) missed renamings

and/or moves; or (c) combined moves and identifier-renamings. If two model elements

are mistakenly identified as renamed or moved, their different data (return) types,

modifiers, visibility, and generalization/abstraction relations will also be reported as

changes. On the other hand, if a renaming and/or move is missed, the model elements

referring to the renamed/moved element will mistakenly be reported as changed. For

example, the interface CategoryltemRenderer was not identified as moving to the new

package com.jrefinery.chart.renderer in version 0.9.5, and, consequently, the type of field

Tenderer and method getRendererO of class CategoryPlot were identified as changed. In

addition, the interface implementation of 15 Tenderer classes that implemented the

CategoryltemRenderer interface were also identified as changed. Finally, since UMLDiff

does not attempt to identify cases of combined identifier-renamings and moves, if a class

was renamed and then moved, such as for example, Crosshairlnfo in package

com.jrefinery.chart in version 0.9.16 and CrosshairState in com.jrefinery.chart.plot in version

0.9.17, they will be treated as removed and newly added entities which might also result

in the wrong data (return) type, and inheritance and implementation changes being

identified.

Summary: As discussed above, there are three typical situations in which UMLDiff

may get confused:

67

• UMLDiff is based on lexical-similarity and structure-similarity heuristics. If two

"irrelevant" model elements have very similar names and relations to other

elements, they may be erroneously identified as renamings or moves.

• UMLDiff assumes that enough entities remain the "same" between two compared

versions. If all or most of the model elements related to two renamed or moved

elements were also renamed and/or moved, the structure-similarity heuristic may

fail and thus UMLDiffmay miss the renamings or moves.

• When two renamed or moved model elements have very few relations with other

elements, it is difficult for UMLDiff to determine whether or not they represent a

single conceptual element in the two compared system versions.

3.4.2 UMLDiffrobusiness

Next, let us review several factors that can impact the quality (in terms of precision and

recall) of the renamings and moves reported by UMLDiff. To discuss the impact of each

particular factor, we fix the others at the values that enable the identification of most

renaming or move instances. Furthermore, we focus on the renamings and moves of

classes/interfaces, attributes, and operations, since in our experience with several case

studies, no subsystem/package renamings and moves were ever erroneously reported or

missed by UMLDiff.

3.4.2.1 Renaming and move threshold

To understand how sensitive UMLDiff is to the choice of the "right" renaming and move

threshold, we experimented with a few different thresholds. Table 3-12 presents the

UMLDiff results at renaming and move threshold 0.35. Compared with the results at

threshold 0.3, six less instances of renamed classes and interfaces are reported: four of

them are actual class renamings that are not recognized at threshold 0.35, while the other

two are incorrect instances reported at 0.3 but correctly ignored at threshold 0.35.

UMLDiff misses the moves of three classes at 0.35 CategoryAxis, CategoryPlotConstants,

and AbstractRenderer into the corresponding new package in version 0.9.5. For renamed

field and method, 79 less instances were reported. 29 of them are incorrect instances

being filtered out at threshold 0.35, while 40 are actual renamings missed at 35%. The

68

other 10 instances are the results of four missed class renamings, also incorrectly ignored

at this threshold.

Table 3-12. UMLDiff results at renaming/move threshold 0.35

Type of changes
Renamed package
Renamed class and interface
Moved class and interface
Renamed field and method
Moved field and method
Data type and return type
Visibility change
No-access modifier change
Generalization change
Implementation change
Total

reported instances
29

122
303

1945
686+14

682
841
296
186

1025
6129

correct instances
29

117
303

1888
608+14

662
836
295
178
962

5877

Precision
100%

95.1%
100%

97.9%
88.6%
97.1%
99.4%
99.7%
95.7%
93.7%
95.8%

22 correct instances of moved fields and methods are missed at threshold 0.35, while

14 fields and methods of missed pairs of renamed and moved classes are identified as

move. The precision of renamings and moves at threshold 0.35 are slightly better than

that of threshold 0.3, but as expected, the recalls are slightly lower, 94.5% for renamings

and 94.6% for moves. Most of disappeared instances for visibility and modifier changes

are incorrect instances, and thus they get relative bigger increases in precision. Because

there are seven actual class and interface renamings and moves are not recognized by

UMLDiff'at 0.35, model elements that refer to these classes and interfaces are considered

to be changed. This directly results in the slight decrease of precision of changes to

generalization and abstraction relations.

69

0.9

0.8

0.7

0.6

0.5

0.4

•0.3

0.2

0.1

"^

s

s

0.1 0.2 0.3 0.4 0.5 0.B 0.7 0.8 0.9
Threshold

| Renaming precision Renaming recall Move precision - - - -Move recall I

Figure 3-2. The impact of the user-specific renaming and move thresholds

Figure 3-2 summarizes the overall impact of the user-specific renaming and move

threshold on the quality of UMLDiff results. We run UMLDiff on JFreeChart with the

renaming and move thresholds set to 0.1 through 0.9, with 0.1 increment (using the Char-

LCS lexical-similarity metric, with comment-similarity, and transitive-usage-similarity)

and computed the precision and recall of renamings and moves at each threshold. We

found that a renaming threshold slightly higher than the move threshold, with both being

within the 0.3 to 0.5 range, is an effective setting for accurately recognizing both

renamings and moves. A threshold higher than 0.5 produces results with tenuous

precision improvement but at a significant cost of recall, while a threshold below 0.3

produces results with slightly better recall but much worse precision.

3.4.2.2 Regularity of CVS usage

We also examined the changes that UMLDiff reported when comparing major releases

and the changes it reported when comparing intermediate versions in order to assess the

impact of not having regular and frequent versioning-system updates. To that end, we

70

examined the release versions documented with the major API changes, such as version

0.8.0 and 0.9.0, or those of lower precision, such as 0.9.16 and 0.9.17.

For example, the class CombinedXYPIot in version 0.9.0 was identified by UMLDiff &s a

renaming of class CombinedPlot in version 0.8.0. In fact, the CombinedPlot was renamed

MultiXYPIot on April 23, 2002 and subsequently it was renamed again CombinedXYPIot on

May 23, 2002 just before release 0.9.0. Clearly, when UMLDiff only compares the two

major releases - 0.8.0 on March 22, 2002 and 0.9.0 on June 7, 2002 - the intermediate

renaming is missed. In general, the smaller the distance between two compared versions,

the higher the detail of the report is likely to be.

As another example, the precision of reported renamings between version 0.9.16 and

0.9.17 is about 90.6%, which is worse than the overall precision 95.2% at renaming

threshold 0.3. 15 of 159 reported renamings are incorrect, among which 6 are related to

renaming fields and methods ?ltemLabelGenerator of class AbstractCategory Item Render and

interface Category Item Renderer to ?ToolTipGenerator, which did not reflect what changes

were really made, since by checking the source code we know that they were actually

renamed to ?LabelGenerator. This low precision guides us to further investigate the

intermediate changes by taking the weekly snapshots between two major releases 0.9.16

and 0.9.17, which resulted in 12 snapshots from January 9, 2004 to March 26, 2004.

UMLDiff was applied to these 12 weekly snapshots, which produced more accurate

results. 5 of 6 wrong instances were corrected, except for baseltemLabelGenerator of

AbstractCategoryltemRenderer being still identified as renamed to baseToolTipGenerator.

Clearly, the quality of t/MLD^fresults is affected by the frequency of saving changes

back to versioning system and the time duration between two compared versions. In

general, UMLDiff will produce better and more accurate results if the changes are

properly saved in time and the short time period is used between two compared system

versions.

3.4.2.3 £/MLZtfffparameters

We comparatively evaluated the appropriateness of different lexical-similarity metrics for

assessing the name similarity of two compared model elements. Table 3-13 summarizes

the number of identified renaming instances, with different name-similarity metrics and

71

the renaming threshold 0.3. The impact of choosing a particular name-similarity metric

was most pronounced when recognizing attribute renamings (precision ranging from

87.5% to 90.1% and recall ranging from 94.6% to 99.7%), in contrast to recognizing

class/interface renamings and operation renamings with identifier changes, where the

choices of different name-similarity metrics were almost indistinguishable. Overall, none

of the three used metrics, Char-LCS, Word-LCS and Char-Pair, is significantly better,

although the Char-Pair metric seems to produce results with a better balance of precision

and recall.

Table 3-13. Recognizing renamings with different name-similarity metrics

Class and Interface

Attribute

Operation

Overall

Char-LCS
Char-Pair
Word-LCS
Char-LCS
Char-Pair
Word-LCS
Char-LCS
Char-Pair
Word-LCS
Char-LCS
Char-Pair
Word-LCS

Correct
123
123
123
295
290
280
794
792
793

1212
1205
1196

Wrong
48
47
47
42
33
31

126
116
118
216
196
196

Precision
71.9%s

72.4%
72.4%
87.5%
89.7%
90.1%
86.3%
87.2%
87.0%
84.9%
86.0%
85.9%

Recall
98.4%
98.4%
98.4%
99.7%
97.9%
94.6%
97.2%
97.0%
97.1%
97.9%
97.3%
96.6%

We examined the effectiveness of the two techniques for propagating the knowledge

about the identified renamings and moves through usage and inheritance relations. They

are both useful in increasing the recall of renamings and moves; the corresponding slight

decrease in precision should not be a major concern, since the users should be able to

easily recognize and filter out the false positive instances reported. For example, with the

renaming and move thresholds set to 0.3, about 1.2% of all the operation renamings and

moves were recovered through second and third rounds of renaming and move

The low precision of class renaming is due to the large amount (31 out of 48) of

demo and junit test classes being identified as renamed. Most of them can be prevented

with higher renaming threshold.

72

recognition; about 7.6% of all the operation renamings were recovered through

propagating the operation renamings depending on the generalization/abstraction

relations. Less than 10 instances were erroneously reported due to the application of these

two techniques. Thus, we believe these two techniques are very effective at recovering

renamings and moves that would otherwise be missed.

Table 3-14. Recognizing renamings and moves with and without comment-similarity

Renamings

Moves

Class and Interface

Attribute

Operation

Class and Interface

Attribute

Operation

Without
With
Without
With
Without
With
Without
With
Without
With
Without
With

Correct
121
123
278
295

1590
1696
296
299
186
200
343
375

Wrong
36
48
26
42
62

129
0
0
5
9

25
58

Precision
77.0%
71.9%
91.5%
87.5%
96.3%
93.0%
100%
100%

97.4%
95.7%
93.2%
86.7%

Recall
96.8%
98.4%
94.0%
99.7%
91.9%
98.3%
95.8%
96.8%
83.4%
89.7%
80.7%
88.3%

Table 3-15. Recognizing operation renamings and moves

with/without transitive usage similarity

Operation renamings

Operation moves

Without
with
Without
With

Correct
1672
1696
375
375

Wrong
74

129
55
58

Precision
95.8%
93.0%
87.2%
86.7%

recall
96.6%
98.3%
88.3%
88.3%

We evaluated the impact of additional sources of information, i.e. comment and

transitive usage dependency, on UMLDiJfs accuracy. Table 3-14 and Table 3-15

summarize the impact of comment similarity and transitive usage similarity on the

precision and recall of identified renamings and moves of classes/interfaces, attributes,

and operations. Overall, the comments of model elements and their transitive usage

dependencies can effectively inform the process to further increase its recall, albeit at a

small precision cost. Based on the estimated number of changes, the time lapse between

two compared versions and the need for the more coverage of changes or the more

73

precise results with shorter comparison time, the users may turn on or off these additional

sources of information when comparing renaming and move candidates.

3.4.3 UMLDiffrun-time performance

Finally, let us examine the run-time performance of UMLDiff algorithm. The run-time

complexity of UMLDiff is determined by the renaming and move recognition process,

which require the pair-wise comparison of the not-yet-mapped model elements in two

compared versions of the system model. Through the use of appropriate in-memory data

structures and efficient database indexing, the run-time complexity of the renaming and

move recognition process is 0(a*N*M), where N and M are the number of not-yet-

mapped model elements of the same type in two compared versions respectively.

UMLDiff only attempts to identify the pairs of renamed model elements within the

context of pairs of the mapped parent elements, and it only identifies the pairs of moved

elements with same names (same identifiers for operations). In the worst-case scenario,

when all the not-yet-mapped elements are contained in one pair of mapped parent

elements or all the not-yet-mapped elements have the same names, the a is equal to 1; in

the best-case scenario, when all the not-yet-mapped elements are contained in different

parent elements or all the not-yet-mapped elements have different names, the a is equal

to 0. In our experience with several case studies, the a is usually very small.

Table 3-16 summarizes the run-time complexity of UMLDiff when comparing the

subsequent releases of the JFreeChart system, with RenameThreshold=03 and

MoveThreshold=03. The column "Versions" indicates that the information summarized

in a particular row is collected when the system evolved from the version of one row

above to this version. The columns "N" and "M" list the number of not-yet-mapped

model elements in the two compared versions. The column "#Comp" lists the number of

comparisons that UMLDiff performed for identifying the attribute/operation renamings

and moves. The a is consequently computed as #Comp/(N*M). As shown in the Table

3-16, the a is very small. Table 3-16 also presents the recalls of attribute/operation

renamings and moves, which indicates that the UMLDiff is quite effective at recovering

the reamed and moved model elements by comparing only a very small subset of not-yet-

mapped candidates.

74

Table 3-16. The run-time complexity of UMLDiff'm JFreeChart case study

Versions
0.6.0
0.7.0
0.7.1
0.7.2
0.7.3
0.7.4
0.8.0
0.9.0
0.9.1
0.9.2
0.9.3
0.9.4
0.9.5
0.9.6
0.9.7
0.9.8
0.9.9
0.9.10
0.9.11
0.9.12
0.9.13
0.9.14
0.9.15
0.9.16
0.9.17
0.9.18
0.9.19
0.9.20
0.9.21
1.0.0

Attribute/Operation Renamings
N

154
6

72
56
5

32
42

170
2

99
109
212
564

10
138
52

309
233

16
106
83

168
21
70

272
59

219
9

118
129

M
357
33

169
101
10
34
69

313
10
99

207
297
721
43

242
54

625
361
73

383
174
333
43
76

495
119
385
21

272
354

#Comp
1119

36
298
130

6
14
37

1519
2

1168
618

1737
4842

35
213
24

3475
3044

10
690
410
821
23
95

3389
230

3444
5

574
641

a
0.05
0.36
0.06
0.06
0.12
0.04
0.04
0.06
0.11
0.29
0.06
0.07
0.02
0.34
0.01
0.01
0.04
0.07
0.02
0.03
0.04
0.02
0.04
0.04
0.06
0.10
0.08
0.08
0.02
0.03

Recall
0.98

1.0
1.0
1.0
1.0
1.0
1.0

0.94
1.0

0.97
0.95

1.0
0.97

1.0
1.0
1.0

0.99
1.0
1.0
1.0
1.0

0.96
1.0
1.0

0.94
1.0

0.98
1.0
1.0

0.97

Attribute/Operation moves
N

203
4

48
51

1
22
83

216
0

60
144
121
422

1
190
31

406
137

8
124

6
89
13
85

168
35

242
4

1043
53

M
378
188
190
104

18
57

233
842

89
105

1003
406

1303
42

583
96

876
213
237
550
161
427
180
202
974
191
418

64
349
531

#Comp
64
2

16
7
2

18
37

244
0
9

111
74

267
0

227
85

470
23
11

345
3

27
2

67
282

4
108

1
75
29

a
0.002
0.004
0.003
0.003

0.13
0.03

0.004
0.003

0
0.004
0.001
0.004
0.001

0
0.004
0.04

0.002
0.001
0.01

0.008
0.005
0.001
0.001
0.008
0.003
0.001
0.002
0.008
0.001
0.002

Recall
0.95

1.0
1.0

n/a*
1.0
1.0
1.0

0.85
n/a
1.0
1.0

0.70
1.0
n/a

0.92
1.0

0.92
0.30

1.0
0.90

1.0
0.80

1.0
0.98
0.92

1.0
0.92

n/a
0.35

1.0

Furthermore, the actual time cost of UMLDiffis affected by the size of the system and

the number of its versions, i.e., the size of JDEvAn database. Table 3-17 summarizes the

actual time cost of applying UMLDiffto pair-wisely compare subsequent system versions

of JFreeChart on an Intel Centrino 1.6GHz machine with 768M physical memory. The

average time required for UMLDiffing two subsequent versions of JFreeChart system is

about 10-12 minutes. For those releases that have major changes, such as version 0.9.5,

9 "n/a" indicates that there are no moves of model elements in the compared models.

75

0.9.9, 0.9.19, UMLDiff requires about 30-50 minutes; most of this time is used to detect

moves and renamings. As shown in Appendix C, UMLDiff"deals with a very large

information database. Therefore, if major changes were made between two compared

versions, to determine potential moves and renamings, UMLDiff has to query the

database for retrieving their corresponding relationships and previously established

matched pairs of entities, which is a time-consuming process.

Table 3-17. The actual time cost of UMLDiffin JFreeChart case study

Compared subsequent versions
0.5.6 - , 0.7.0 - 0.6.0, 0.7.2 - 0.7.1, 0.7.3 - 0.7.2, 0.7.4 - 0.7.3, 0.8.0 - 0.7.4,
0.9.1-0.9.0,0.9.6-0.9.5
0.6.0-0.5.6,0.7.1-0.7.0
0.9.0 - 0.8.0, 0.9.2 - 0.9.1, 0.9.3 - 0.9.2, 0.9.8 - 0.9.7, 0.9.11 - 0.9.10
0.9.7 - 0.9.6, 0.9.15 - 0.9.14, 0.9.16 - 0.9.15
0.9.4 - 0.9.3, 0.9.12 - 0.9.11, 0.9.13 - 0.9.12, 0.9.18 - 0.9.17, 0.9.20 - 0.9.19
0.9.14 - 0.9.13, 0.9.21 - 0.9.20, 1.0.0 - 0.9.21
0.9.5-0.9.4,0.9.10-0.9.9
0.9.9-0.9.8
0.9.17-0.9.16
0.9.19-0.9.18
Total

Time (mins)
<1

2
4 - 6
8 - 1 0
11-14
16-10
2 3 - 2 5
37
52
58
-370

3.5 Summary

In this chapter, we described the UMLDiff algorithm for differencing object-oriented

logical-design models. This algorithm is aware of the UML semantics and compares

software versions at the design level, so that its results are more directly relevant to the

evolutionary-development process than either lexical or code-metrics differencing.

Furthermore, we believe - while recognizing that empirical evaluation is required to

demonstrate our belief - that its results are more intuitive to developers, compared to

other structure-differencing algorithms that rely on low-level program representations

such as ASTs, program-dependency graphs or XML.

Our experimentation with the algorithm demonstrated that the algorithm is quite

accurate, when the project uses a consistent versioning scheme; it identifies about 96% of

the renamed and moved model elements at about 94% of precision in JFreeChart case

76

study. UMLDiff is also robust to the user's choice of parameters, which configure the

differencing process; it produces results with both good precision and recall at a wide

range of user-specific renaming and move thresholds; its differencing process can be

configured according to the estimated amount of design changes, the time lapse between

two compared versions and the need for the more coverage or precise results. Finally, the

JDEvAn implementation of the algorithm is practically efficient.

77

Chapter 4: Query-based Change Pattern Detection

An important kind of change pattern to object-oriented software is refactoring [32,51,72].

The goal of refactoring is to improve the design and quality of the software system,

without affecting its overall functionality and behavior. Recognizing its beneficial impact

to software design, several modern IDEs [79,116,124] support refactoring, albeit usually

for simple refactorings.

In addition to supporting refactoring in forward engineering activities, it is also

interesting to recognize refactorings, and more generally, structural change patterns, in

the history of a software project. Recognizing refactorings is important for two main

reasons. First, since different types of design changes aim to improve different aspects

and qualities of the system design - e.g., refactorings that collapse class hierarchies

reduce the system layers and are likely to increase the system performance, while class

extraction has the opposite effect [49] - the history of the actual changes that a software

system has suffered is evidence of the qualities relevant to the project that new team

members should be aware of. Second, the recognition of refactorings to the published

API of reusable component frameworks is an essential prerequisite for applications that

need to migrate from earlier versions of the framework to the most recent one.

Recent research on inferring refactorings in the software evolution history has been

based on examining change documentation [22], or comparatively analyzing source-code

metrics [20], or clone detection [23,36,83], or visualization [37]. However, all these

approaches suffer from some non-trivial disadvantages. More frequently than not, there is

no consistently maintained change documentation. Aggregate code metrics do not

provide sufficient information to precisely pinpoint the elements involved in the

refactoring. Clone detection is not very effective in recognizing "non-local" refactorings

that involve several entities. Finally, visualization techniques do not scale well as the size

of the system increases.

In this chapter, we present our approach to recognizing refactorings. Based on the

elementary design changes reported by UMLDiff, we have defined queries to

automatically detect complex design-change patterns, as compositions of elementary

changes, such as the refactorings [32] listed in Fowler's refactoring catalog. We

78

evaluated our refactoring-detection queries with a detailed case study on the design

evolution of Eclipse [116]. The objective of this case study has been to (a) examine the

actual refactoring practice in the context of a realistic framework with substantial

evolution history and many client applications and (b) to come up with some

requirements and design suggestions for tools purported to support the practice.

4.1 Detecting refactorings with change-pattern queries

The refactorings in Fowler's catalog [32], henceforth also referred to as "standard"

refactorings, are well known and understood. They are also frequently used in practice.

Refactorings can be local or global and, sometimes, they may result in many scattered

low-level changes to the logical model of the system. Although one may still understand

how the software system has been evolved by examining a set of small, elementary

changes, such as those reported by UMLDiff, we believe that, by combining the relevant

elementary changes into change patterns such as refactorings, it becomes easier to

understand the specific intent of the design evolution and support the subsequent

development. The instances of these refactorings are recognized from their effects on the

logical model, in terms of queries of UMLDiff design-change facts. They are reported in

terms of their types and participants.

We organize these refactorings in four general categories according to their intention

and scope, as shown in Table 4-1: those dealing with containment hierarchy, those

dealing with inheritance hierarchy, those moving features between objects, and those

refactoring class internals. These refactorings are further characterized as simple or

composite, depending on the amount of the elementary change facts they involve.

Appendix F reviews the queries for detecting these refactorings. Appendix G summarizes

the instance of refactorings these queries reported in the evolution of HTMLUnit [123],

JFreeChart [126] and Eclipse [116] respectively.

More generally, our approach is not limited to only the Fowler-catalog refactorings.

Software developers can define queries to query the design changes, reported by

UMLDiff and subsequently produced through the discovery of instances of simple or

composite refactorings, for design-change patterns of their interests.

79

For example, consider the Java deprecation mechanism that is used to evolve APIs by

supporting backward compatibility and allowing the system to evolve into a better design.

One may be interested in identifying the model elements that have just stopped being

deprecated in a latter version, after being tagged as deprecated, since this phenomenon

may indicate that the developers have given up on moving to a clearer API. Information

about newly or no longer deprecated element is reported directly by UMLDiff. One may

also be interested in identifying the classes that have been deprecated and their

corresponding replacements. A query searching for the class being newly tagged as

deprecated and being the source of the refactoring extract class may return the candidates

for further inspection.

Table 4-1. Fowler's "standard" refactorings

Category
Dealing with
Containment

Dealing with
Generalization

Moving features
between objects

Refactoring class
Internals

Simple refactorings
Convert inner type to top-level*10

Convert top-level type to inner
Move subsystem/package/class
Pull-up method/field*
Push-down method/field
Pull-up behavior
Push-down behavior
Pull-up constructor body

Move method/field*
Move behavior

Rename subsystem/package*
Rename class/method/field
Add parameter*
Remove parameter*
Information hiding
Generalize type*
Downcast type
Extract method*
Inline method*

Composite refactorings
Extract subsystem/package
Inline subsystem/package

Extract interface*
Extract superclass
Extract subclass*
Inline superclass
Inline subclass
Form template method
Replace inheritance with delegation
Replace delegation with inheritance*
Extract class
Inline class
Die-hard and legacy classes
Introduce factory method
Introduce parameter object
Encapsulate field*
Preserve whole object

10 T h e «*„ i n d i c a t e s t h a t m e state-of-the-art IDEs, such as Eclipse [116], IntelliJ IDEA

[124], support the refactoring.

80

4.2 Refactoring practice: How it is and how it should be

supported

Eclipse is a large-scale industrial framework that has been under development for about

six years. In the process, it has acquired a large user base and a multitude of applications

have been built on it. Eclipse is built as a plugin-based framework. Its users can simply

use it as an IDE, but they can also extend or build their own plugins from the existing

ones. Since version 3.0, Eclipse introduced a concept of a rich client platform, which

allows its users to build stand-alone applications from a subset of plugins. Therefore,

studying the design evolution of Eclipse can help us understand the design requirements

for refactoring-based development environment from the perspectives of both the

component developers and component users.

Eclipse consists of three subprojects and in this case study, we have focused on the

JDT subproject, which defines about half of the classes and interfaces of the whole

Eclipse platform. Clearly, the substantial numbers of program entities (407720), relations

(2220707) and changes (58973) (see Table E-l,Table E-2 and Table E-3) preclude the

existing refactoring-detection approaches from effectively discovering what refactorings

have been made in the evolution of Eclipse. In this section, we describe a detailed case

study on the design evolution of Eclipse with our automatic refactoring-detection queries,

which help us gain insight into the following research questions:

• What proportion of the design changes in the evolution of a system are the results

of refactoring?

• What are the typical refactorings applied in practice?

• Which of these types are "safe" to client applications that reuse the refactored

system?

• What type of support should modern IDEs provide and how might this support be

implemented?

4.2.1 The empirical assessment of the design evolution of Eclipse

First, we describe and assess the empirical data we collect in our study on the design

evolution of Eclipse. We will summarize our findings in next subsection.

81

4.2.1.1 Elementary design changes

First, let us examine seven types of elementary design changes reported by UMLDiff

algorithm. We start our discussion with renamings and moves, which we expect to be the

more benign changes, i.e., changes that are likely to be behavior preserving and therefore

relatively easy to propagate their implications to the client applications of the earlier

version. We then proceed to examine increasingly "suspect" modifications, such as

modifier and visibility changes, data-type changes, inheritance-hierarchy changes, and

entity additions and removals.

4.2.1.1.1 Program-entity renamings

There are 4891 renamings of various types of program entities, including packages,

classes and interfaces, methods11 and fields. Note that 2 moved classes, 1 moved interface,

42 (5+8+29) moved fields, and 264 (19+162+83) moved methods were renamed (marked

with "#") as well as moved. Renamings of packages, classes and interfaces, and fields

involve changes to their identifier. Method renamings may involve changes to the whole

method signature (including identifier and/or parameter list). About 24% (984/4170)

renamed methods had only their identifiers changed.

Table 4-2. Rename program entities

Rename package
Rename class"
Rename interface*
Rename field"
Rename method
Rename constructor
Total

2.1-2.0
1

20
2

107 + 5
559 + 79

120
833

3.0-2.1.3
1

47 + 2
i + ;

274 + 5
1647 +162

315
2455

3.1-3.0.2
0

24
0

199 + 29
1042 + 83

223
1600

Total
2

91+2
3 + 1

580 + 42
3248 + 264

658
4891

Through inspection, we identified several plausible motivations behind renamings:

1. Conformance to a consistent naming scheme;

2. Reflecting the semantics of an internal implementation change to the entity;

1' In our discussion the method changes also include similar changes to constructors,

except for move. UMLDiff docs, not consider the move of constructor.

82

3. Concept merging or splitting; and

4. Maintaining backward compatibility with earlier versions.

A consistent naming scheme improves code readability and understandability,

especially when the identifiers allude to the functions of the program entities. 29

renamings were simply to correct spelling or wrong names resulting from code cutting

and pasting. Some of the renamings were motivated by the adoption of a more

meaningful name for the entity: clearly, fSelectedCU, isOnBuildPathO and

AccessorClassCreator reveal the purposes of the program entities much more clearly than

their precursors fCU, checkJavaElementO and AccessorClass. In other cases, the renamings

were more "syntactic" aiming to simply conform to the adopted naming convention. For

example, 79 fields were renamed to remove the prefix "f'; at the same time, it is

interesting to note that 11 other fields were renamed by adding the same prefix "f'. This

phenomenon may be because different Eclipse plugins adopt different and occasionally

contradictory naming conventions. In another case, 12 fields were capitalized because

they were declared "static" and/or "final", while 6 fields were converted to lowercase

when they stopped being static final constants.

Renamings also reflect implementation changes. For example, the data (return) type of

723 renamed fields (methods) was also changed. In version 3.0, 7 classes

RenameXXXRefactoring were renamed to RenameXXXProcessor, which corresponds to the

introduction of the new concept of processor-based refactoring. In version 3.0, package

org.eclipse.jdt.internal.ui.text.template was renamed to

org.eclipsejdt.internal.ui.text.template.preferences since its two classes related to content-

assist features were extracted to a newly created package, named org.eclipse.jdt.inter-

nal.ui.text.template.contentassist, and it now contained only preferences-related classes.

The member class ProjectCache was created to encapsulate two fields

allPkgFragmentRootsCache and allPkgFragmentsCache, whose role was replaced by a field

of type ProjectCache. Finally, as an example of backward-compatibility renaming,

consider class ASTRewrite, which was renamed to OldASTRewrite that delegates to the new

(with totally different implementation) ASTRewrite in a new package.

The question then becomes: "how easy is to modify the clients of the renamed entities

if they are carried over to the new Eclipse version?"

83

References to entities with only modified identifiers can be automatically updated with

little cost by parsing the source code and scanning the abstract syntax tree (AST). The

case of method signature changes (including parameter-list changes) is a bit more

intricate. The parameter lists of about 16% (654/4170) renamed methods were changed in

some combination of the following three types: (a) a parameter type was renamed or

moved; (b) the parameter order was changed; (c) a parameter was removed. The

combination of these three types of parameter list changes cannot be handled as easily as

simple identifier changes and would require special support by the refactoring IDE and

corresponding refactoring-migration tool.

A small fraction (less than 2% of 4170) of renamed methods changed the parameter

type to its supertype to make the method more general. Such changes would be

transparent to client code at compile time.

In about 58% of method renamings, the parameter list was extended with at least one

additional parameter. In 33% (1352/4170) of the cases, there was only newly added

parameter(s) without removed parameter(s) (but may have other types of parameter list

changes listed above). Such types of changes often indicate that the method delivers some

additional functionality by making use of the additional parameter(s). In the case of

constructors, additional parameter(s) are frequently used to initialize corresponding

newly added field(s). Since additional parameter(s) most commonly indicate new

behavior, these renamings are in effect non-behavior-preserving and should not be

considered as refactorings.

In 25% (1110/4170) of method-renaming cases, the new parameter lists included

newly added parameters as well as removed ones. In some cases, a parameter is replaced

by several others. For example, the method

javadocDuplicatedParamTag(JavadocSingleNameReference) used only a few pieces of

information from its parameter object. It was subsequently renamed to

javadocDuplicatedParamTag(char0,int,int) in version 3.1 to take in just-enough information as

parameters, since it was not concerned with the whole JavadocSingleNameReference object.

There are also cases, such as 6 methods defined in interface ISourceElementRequestor,

where several parameters were replaced by a single parameter, which may be the result of

the introduce parameter object refactoring [32].

84

Finally, there were several types of parameter-type changes, such as replacing a

boolean type with an int or long flags, replacing a primitive type with an object type (e.g.

int with Integer), replacing a type with a collection of that type. In order to regard these

changes as automated refactorings, one would need to invoke a proper wrapper, such as

[4], for the relevant parameters and would also need to know how to access the member

from the wrapper. However, the relevant methods and classes most likely exhibit other

substantial changes, which cannot be expressed in terms of refactorings and would

require that the developers of client applications manually modify their software.

4.2.1.1.2 Program-entity moves

There are 2315 move instances of various types of program entities. We identified several

kinds of moves with different underlying motivations:

... 1. Reorganizing or redistributing the information among different parts of a software

system;

2. Moving responsibilities to eliminate Law-of-Demeter violations;

3. Maintaining backward compatibility with earlier versions;

4. "Implicit" moves

Table 4-3. Move program entities

Move package
Move class
Move interface
Move field
Move method
Total

2.1-2.0
0

18
1

172
196
387

3.0-2.1.3
4

62
6

318
854

1244

3.1-3.0.2
0

31
3

331
319
684

Total
4

111
10

808
1369
2315

For example, in version 3.0, three packages were moved to the new source folder of

jdt.launching plugin; one package org.eclipse.jdt.internal.junit.runner was moved from the

jdt.junit plugin to the newly added plugin jdt.junit.runtime. In version 3.0, the abstract class

SearchPattern was moved from org.eclipse.jdt.interal.core.search to org.eclipse.jdt.core.search

to replace the role of the deprecated interface org.eclipse.jdt.core.search.ISearchPattern. In

version 2.1.3, there were three Util classes scattered in three different packages of the

jdt.core plugin; some of the features they provide were duplicate; in 3.0, their features

85

were moved (merged) into a single Util class. The overall intention of these moves is to

reshape the software system so that it is easier to understand and maintain.

The "Law of Demeter" [60] - "only talk to your friends" - is essentially an object-

oriented formulation of the general "low coupling" software-engineering principle. Often,

moves aim at refactoring entity responsibilities so that this law is not violated. For

example, in version 2.0, JavaBasePreferencePage used to declare a public static method

doubleClickGoeslntoO, which was only called by

PackageExplorerActionGroup.handleDoubleClickO; in 3.0, this method was moved to

PackageExplorerActionGroup and it was made private and no longer declared static. Such

moves often involve the fields and methods defined in one class but are mostly used in

other classes, which is the exact intention of move field/method [32] as described in

Fowler's refactoring catalog. They enhance encapsulation and reduce coupling.

Similarly to renamings, some moves aim at maintaining backward compatibility. For

example, when evolving to version 3.0, the class TextChange was redeveloped. In order to

maintain the backward compatibility, two of its public methods were moved to a new

class TextChangeCompatibility and were declared as static; they were also given one more

parameter of the type TextChange to which they delegate their implementation.

In some cases, moves are "implicit" (e.g., deprecation+delegation) when the "old"

entity is replaced by the "new" entity but the "old" is not removed, instead it simply

delegates to the "new" entity that now implements its logic. For example, in version 3.1,

a new class BasicSearchEngine was extracted from SearchEngine, which has been tagged as

deprecated: 13 fields and methods were moved to BasicSearchEngine; for the remaining 12

public methods, 12 corresponding same-signature methods were declared in

BasicSearchEngine that implement the same logic as their counterparts in SearchEngine,

and SearchEngine simply delegates to BasicSearchEngine for its functionalities.

Finally, in some cases, moves are the integral part of "bigger" refactorings. For

example, 60 (about 50% of 121) class and interface moves are part of 16 "Extract

Package" refactorings (see Section 4.2.1.2.1 for detailed discussion on this subject).

Let us now consider again the issue of the support required to carry the clients of the

moved entities over to the new version.

86

In principle, all types of program entities can be moved. About 76% (1759/2315) of

entities were moved with no other changes made to them. This is not surprising since the

general intention of moving program entities is just to redistribute features in order to

enhance encapsulation, understandability and maintainability, instead of modifying

entities for other purposes. These entity moves represent true behavior-preserving

refactorings and the references to them can be automatically updated (the information

about the context of moved entities may be needed).

However, sometimes, moved methods also experienced changes to their parameter lists.

They may take the "old" home class as an additional parameter, such as

TextChangeCompatibility described above. More frequently, moved entities also undergo

modifier and visibility changes. About 18% (416/2315) of moved entities had their

declared modifiers and/or visibility levels changed (such as PackageExplorerActionGroup

and TextChangeCompatibility discussed above). In 107 cases, their static and/or final status

was toggled. In 331 cases, the visibility was modified. Many of the modifier and

visibility changes can be easily wrapped. Finally, less than 7% of total 2315 moved

entities came with other changes, such as data (return) type change and/or inheritance-

hierarchy change. By closer inspection, they are most likely a sequence of separate (not

inherently related) changes applied to the same program entity, which often require that

the developers of client applications manually update their software.

4.2.1.1.3 Modifier changes

There were 1076 modifier changes (including newly added and removed modifiers) made

to 1064 program entities. About 50% of these changes should not cause compilation

problem or could be easily wrapped.

Java synchronization operations may incur significant performance overhead, which

might affect the applications' performance and behavior. However, an entity newly

declared as synchronized will not cause a compilation failure in its client application. For

entities that changed from being synchronized to not being synchronized, an escape

analysis [14] can be applied to determine where it is safe to replace a synchronized object

with an unsynchronized one. In cases where synchronization cannot be safely removed, a

synchronization wrapper (similar to the Java standard library class java.util.Collections,

87

which is an instance of the Decorator pattern [34]) can be inserted around the object,

which delegates to the given object, but makes the forwarding method synchronized.

An entity newly declared as final may or may not break client applications, depending

on whether the application assigns, overrides, or extends the changed program entity.

Entities that used to be, but are no longer, declared as final should not cause compilation

failures to the client application.

Fields (methods) newly declared as static may cause compiler warnings such as "The

static entity should be accessed in a static way", but should not cause any compilation

problems on client code. For those fields (methods) that are no longer declared as static, a

factory method that returns an instance of the declaring class may be inserted; the

returned instance can then be used to refer to the corresponding instance entities.

It is interesting to note that about 34% modifier changes were made to the program

entities contained in a very small set of entities (about 40). For example, in version 2.1,

26 public fields of JavadocOptionsManager were no longer declared with static; in version

3.0, 25 methods of the class DefaultBindingResolver were newly declared with

synchronized.

4.2.1.1.4 Visibility changes

In our analysis, we found 1842 program entities that changed their visibility: of them,

1091 changed to a less restrictive visibility level and 751 changed to a more restrictive

one.

Object-oriented languages provide explicit support for defining the scope of the

various design elements of a system. Frequently, developers make elements "too

accessible" in the beginning. As the picture of the scope of the valid clients of each

element becomes clearer, the element visibility may be restricted. For example, in about

24% (441/1842) of the visibility-change cases, an entity was made private: in about 70%

of these cases (299/441) there was no incoming usage from outside their corresponding

declaring classes. Most of the others gradually became used only inside their declaring

classes and were finally made private in a subsequent release.

For those entities whose visibility is decreased, the changes may be safe within the

component (such as Eclipse) itself. However, the client applications that depend on those

88

entities may break as a result. In that case, a wrapper (similar to the effect of encapsulate

field refactoring [32]) may be used to provide the access to more restrictive entities.

About 15% (331/2315) of moved entities also changed their visibility. When entities

are pulled up to a superclass or moved to helper or delegate classes, their visibility often

changes to a less restrictive level in order to allow the subclasses or the original class to

access them. When entities are pushed down to a subclass or moved closer to where they

actually get used, their visibility often decreases since they can be accessed within the

declaring scope of the current class. Sometimes, when converting nested types to top-

level, their visibility may increase; on the other hand, when top-level types are converted

to nested types, their visibility often decreases.

Similarly to modifier changes, about 30% of visibility changes to a more restrictive

one were made to the program entities contained in a very small set of entities (about 20).

4.2.1.1.5 Data-type changes

We found 1524 data-type changes (including field data-type and method return-type). 7%

of them (107/1524) were generalizations to a supertype and 6% (85/1524) were

specializations to a subtype.

The clients that are now forced to use a supertype may fail to compile successfully,

depending on whether they access the members that are not visible through the

supertype's interface. In such cases, an explicit downcast that wraps the changed field

(method) may be necessary.

Specializations to subtypes may be the result of the encapsulate downcast refactoring

[32]: for example, when evolving to version 3.1 the return type of

CompilationUnitRewrite.createChangeO was changed from TextChange to

CompilationUnitChange (but createChangefl, returns an instance of CompilationUnitChange in

both versions 3.0.2 and 3.1). Although using a subtype in terms of its supertype will not

cause a compilation failure to the client code, it may behave differently. For example, the

data type of ExceptionBreakpointFilterEditor.fFilterViewer was changed from TableViewer to

CheckBoxTableViewer. But since it is initialized with TableViewer and CheckBoxTableViewer

in 2.0 and 2.1 respectively, the client gets a table viewer with check boxes instead of a

plain table viewer in 2.1.

89

Table 4-4. Data-type changes that might be wrapped

Type of change
String => StringBuffer, StringBuffer => String,
char. 1 -> String
int => long
Type <=> Collection or array of type
Vector => List, Hashtable => Map or HashMap,
Enumeration => Vector,
List => Vector, HashMap => Hashtable
boolean => int or long flags
Total

instances
138

96
24
23

21
302

The above table lists the data-type changes that might be wrapped; there were about

20% (302/1524) changes of these types. A refactoring tool can swap the corresponding

types if there is a specification, such as [4], that can be used for guiding the migration.

Furthermore, about 9% (129/1524) of method changes involved the change of their return

type from void to some type. The clients of these methods can simply ignore the returned

object. Finally, the remaining 60% (901/1524) of data-type changes were too radical to

be considered as refactorings. For example, the return type of method

getChangedClassFilesO was changed from List to ChangedClassFilesVisitor. The field

binaryPath of type String was renamed to binaryFolder of type IContainer.

4.2.1.1.6 Inheritance-hierarchy changes

The inheritance hierarchy of Eclipse is relatively stable. There were 304 instances of

class-inheritance changes in total. 72 XXXMessages classes started extending

org.eclipse.osgi.NLS in version 3.1, and 34 dialog classes changed their superclass to

org.eclipse.jface.dialogs.StatusDialog since the duplicate StatusDialog scattered in several

plugins were finally removed in version 3.1. Among the remaining 198 changes, 90

classes changed to extend a subclass of their previous superclass (76 such subclasses are

newly introduced classes); 32 classes changed to extend the superclass (16 are because

the classes previously extended were removed or inlined in the new version).

There are 466 instances of classes newly implementing an interface. In 186 of these

cases, the interfaces in question were newly introduced. There were 389 cases where a

90

type was changed not to implement an interface any longer (in 203 among them, the

interface in question was also removed).

Although there are some inheritance hierarchy changes resulting from such

refactorings as extract superclass, inline Superclass, or extract interface (see Section

4.2.1.2.2), most of inheritance-hierarchy changes bring about behavior modifications: the

client application may compile fine with the new version, however, it may behave

differently.

4.2.1.1.7 Program-entity additions and deletions

Table E-3 summarizes the newly added and removed public or protected program entities

between compared versions. Clearly, Eclipse grew fast in the past three years. Compared

with the corresponding previous versions, the versions 2.1, 3.0, and 3.1 contain 7127,

14095, and 17343 newly introduced packages, classes and interfaces, fields and

methods/constructors, respectively. In the mean time, a certain amount of public or

protected program entities (much less than the newly introduced entities) were removed,

1298, 4157, and 2455 for version 2.1, 3.0, and 3.1 respectively. The removed public or

protected program entities may cause the application to fail to compile. A small fraction

of newly added or removed program entities are the results of various "Extract..." or

"Inline..." refactorings, as discussed in Section 4.2.1.2. But most of these changes

represent newly introduced API or removed obsolete API.

4.2.1.2 "Bigger" refactorings

In this subsection, we discuss "bigger" refactorings, which are composed of a coherent

series of elementary changes to a set of related entities. Although, in principle,

refactorings should be performed one step at a time, Fowler [32] and Kerievsky [51]

demonstrate how a series of "small" refactorings can lead to the "big" changes, such as

the introduction of design pattern. By looking at a set of changes as a coherent whole, we

may gain a better understanding of the design evolution of a software system and the

refactorings it has suffered, and consequently be in a better position to assess the state-of-

the-art in tool support for the practice.

The refactoring support that Eclipse provides is representative of the state-of-the-art

today. We reviewed the currently available refactoring tools and IDEs

91

(www.refactoring.com/tools.html) and Eclipse supports a superset of the refactorings

supported by each of them. The only interesting exception is IntelliJ IDEA [124], which

supports extract super/subclass and replace inheritance with delegation. Some other

tools also support extract superclass. However, overall, each of these tools supports

fewer types of refactorings than Eclipse.

4.2.1.2.1 Containment-hierarchy refactoring

Large software projects are often organized in terms of subsystems, packages, (nested)

reference types; such organization makes the dependencies among the various

components explicit and makes it easier to identify the use of a component by its implied

container. The developers often restructure the containment hierarchy at different levels.

Table 4-5. Containment-hierarchy refactorings in Eclipse evolution

Type of refactoring
Convert anonymous class to nested
Convert nested type to top-level
Convert top-level type to nested
Move member class to another class
Extract package
Inline package

detected
12
19
20
29
16
3

Eclipse support
V
V
X

V
X

X

The Eclipse plugins work as subsystems that contribute different features to the

platform. A new plugin may be introduced as the appropriate placeholder for features that

were originally placed in other plugins. In version 3.0, three new plugins, jdt.junit.runtime,

Itk.core.refactoring and Itk.ui.refactoring, were split from two existing plugins, jdtjunit and

jdt.ui (the core.refactoring and ui.refactoring folders) respectively; several packages were

either moved or extracted into the new plugins.

Package is one way of grouping together related classes depending on their behavioral

dependencies. When a package has too many classes to be easily understandable and is

not cohesive because these classes are responsible for very different features, a new

package may be extracted to hold some important groups of classes. For example,

org.eclipse.jdt.internal.ui.refactoring.reorg was extracted from

org.eclipse.jdt.internal.ui.refactoring in the same plugin, and

92

http://www.refactoring.com/tools.html

org.eclipse.jdt.internal.formatter.comment in jdt.core was extracted from

org.eclipse.jdt.internal.ui.text.comment in the jdt.ui plugin. Other times, a package is removed

and its contents may be inlined to other package(s). For example, three classes of the

removed package org.eclipsejdt.internal.corext.template were inlined to

org.eclipse.jdt.internal.corext.template.java package.

Java classes and interfaces can define their own nested types. Sometimes, the top-level

types may be converted to nested type of a particular class in order to group together the

relevant classes and make the dependencies among them clear. On the other hand, nested

types may be converted to top-level so that they are available to other classes. In Java,

anonymous classes are widely used to avoid creating a bunch of simple subclasses or

implementations of interfaces. However, when the anonymous classes grow so large that

the code becomes difficult to read or maintain, they may be converted to nested type.

All these changes can be accomplished by various types of refactorings: convert

anonymous class to nested, convert nested (top-level) type to top-level (nested), move

member class, and extract or inline package. Three of them are supported in modern IDEs,

such as Eclipse, while the other three are not explicitly supported.

4.2.1.2.2 Inheritance-hierarchy refactoring

Programming to interfaces and not to implementations is an important tenet of object-

oriented development [34]. A corollary of the programming-to-interfaces principle is the

extract interface refactoring. For example, in version 3.1, a new interface IChangeAdder

was introduced for class JUnitRenameParticipant and its two subclasses

ProjectRenameParticipant and TypeRenameParticipant.

When two (or more) classes share a substantial part of their behaviors, their common

features may be extracted to a superclass. For example, in version 3.1, a superclass

HierarchyRefactoring was extracted (involving 57 fields and methods) from

PullUpRefactoring and PushDownRefactoring. When a class defines features that are only

applicable in some cases, a subclass may be extracted for that subset of features. For

example, a subclass ImportMatchLocatorParser was extracted from MatchLocatorParser,

which holds two methods that are used only for compilation unit.

93

Table 4-6. Inheritance-hierarchy refactoring in Eclipse evolution

Type of refactoring
Pull up field/method
Push down field/method
Extract interface
Extract superclass
Extract subclass
Inline superclass/subclasses

detected
279

53
33
15
4

11

Eclipse support
V
V
V
X

X

X

Collapsing hierarchies is another important refactoring that deals with generalization.

When a superclass does not deliver much functionality or a subclass is not that different

from its superclass, the two may be merged. For example, in version 2.1, the superclass

BufWriter was inlined into subclass VerboseWriter; in version 3.0, three subclasses

MemberTypeDeclaration, LocalTypeDeclaration, and AnonymousLocalTypeDeclaration were

inlined into their superclass TypeDeclartion.

Finally, within the inheritance hierarchy, common fields and methods of subclasses

were pulled up to the superclass, while the fields and methods that were only applicable

to some subclasses were pushed down to them.

4.2.1.2.3 Class-relationship refactoring

Object-oriented systems are designed around classes that model abstractions of real-

world entities. Classes collaborate with each other to deliver the application

functionalities.

Table 4-7. Class-relationship refactoring in Eclipse evolution

Type of refactoring
Extract constant interface
Inline constant interface
Extract class
Inline class

detected
5
2

95
31

Eclipse support
V
X

X

X

In Java, interfaces are often used to define static final constants; the classes may

implement them to access the constants or access them in the static way. For example, in

version 2.0, class JavaPartitionScanner and FasUavaPartitionScanner used to define four

same constants, which were extracted to a new interface I Java Partitions implemented by

94

the two classes in subsequent release 2.1. This refactoring also removed the duplication.

When the constants are only used by a single class and its subclasses, the interface may

be inlined. For example, in version 3.1, the constant interface Bindinglds was removed and

the constants it defined were inlined to the class Binding.

Complex classes are sometimes incohesive because they are responsible for delivering

many responsibilities. Such classes should be simplified by extracting some of their

features into other classes, created for exactly that purpose. The simplified class can then

delegate to the newly created class to deliver its responsibilities. For example, in version

3.0, a new class DeltaProcessingState was extracted from Delta Processor; Delta Processor

newly declared a field of type DeltaProcessingState, to which it delegates the maintenance

of the global state of delta processing.

Another frequent case involves the extraction of helper or utility class. For example,

the helper class RefactoringExecutionStarter was extracted from ReorgMoveAction in version

3.1.

When a class does not have many responsibilities, its features may be inlined. For

example, class ReferenceScopeFactory that used to define a single public method creating

an instance of UavaSearchScope was inlined to JavaSearchScopeFactory in version 3.1.

Sometimes, the helper class may be inlined to the class depending on it. For example,

SuperReferenceFinder was inlined into PullUpRefactoring.

Developers often introduce new entities before they realize that similar features

already exist. In such cases, the inline-class refactoring can be used to remove duplication.

For example, in version 2.1.3, there were three Util classes scattered in three packages; in

version 3.0, they were inlined into a single class.

4.2.1.2.4 Internal class refactoring

Eclipse supports various types of refactorings that reorganize the code within a class,

including, use supertype where possible, introduce factory method, change method

signature, and extract or inline method. We identified a large number of such

refactorings in Eclipse's evolution history. However, Eclipse does not support the

refactorings of information hiding, encapsulate downcast, introduce parameter object,

which also often being applied.

95

Table 4-8. Class-internal refactorings in Eclipse evolution

Type of refactoring
Information hiding
Use supertype when possible
Encapsulate downcast
Introduce factory method
Change method signature
Introduce parameter object

detected
751
177
85
19

4497
4

Eclipse support
X

V
X

V
V
X

On the other hand, Eclipse supports several refactorings that change the code within a

method, such as extract local variable, extract constant, introduce parameter, convert

local variable to field. However, at the current stage, our analysis does not take into

account the statement-level information regarding the usage of local variable so that it

does not support the analysis on these statement-level refactorings.

4.2.1.3 Design-change sequences

Finally, let us look at the program entities that undergo two or more types of changes.

27% (2104/7851) of the modified entities underwent two or more types of changes. We

have already discussed several such cases in Section 4.2.1.1, including renaming program

entities to reflect their data-type change; renaming to conform to a naming convention for

static final fields; moving methods and using an additional parameter of the type of the

"old" home class; moving program entities and changing their visibility correspondingly.

However, by closer inspection, we noticed that in most cases, subsequent

modifications to an entity were not inherently related, such as "bigger" refactorings

discussed in Section 4.2.1.2. For example, in version 3.1, ASTParser.convertO was moved

to class CompilationUnitResolver; its visibility changed from private to public; it was newly

declare with static; its return type was downcast from ASTNode to CompilationUnit; and its

signature was modified to take three more parameters as input.

4.2.2 Analysis of the case-study findings

Conducting this comprehensive study has given us some interesting insights into the

design evolution of object-oriented software system. We discuss them in this subsection.

96

4.2.2.1 Refactoring is a frequent practice

Refactoring is indeed a common activity in the development process of object-oriented

software. In recent years, refactoring has been popularized in object-oriented software

development, especially in the context of agile, lightweight development processes such

as "Extreme Programming" [8]. However, it is not clear how prevalent refactoring is

actually in practice. In our Eclipse-evolution case study, there were 58973 (see Table

E-3) changes reported by UMLDiff. Most of the radical design and implementation

changes were made in the major releases 2.1, 3.0, and 3.1. A considerable amount of new

features were introduced, and many existing features were redeveloped with a totally

different implementation, such as the AST-rewrite feature. We excluded from our

analysis about 75% of all the changes that, according to our understanding - based on

code inspection, the UMLDiff result, the help document, and the Javadocs comments -

represent the introduction of new features or the removal of obsolete API.

When considering the remaining changes, over 70% of them were the results of

refactoring or a sequence of refactorings, including renamings, moves, downcasting or

use of supertype, information hiding, reorganizing containment or inheritance hierarchy,

changing the relationships among classes, and changing the code within a class, as

disused in Section 4.2.1. We cannot know whether they represent changes resulting from

intentional refactorings or they are just accidental. Overall, about 17% of all the changes

(including adding and removing) can be expressed in terms of "standard" refactorings,

which we believe is an indicator that a considerable amount of effort has been spent on

intentionally restructuring the existing system in the evolution of Eclipse.

This is evidence that a refactoring engine would be a valuable functionality for the

development environment in order to provide (semi-)automatic refactoring support to

developers instead of them having to perform refactorings manually.

4.2.2.2 Support is still missing for many types of frequently applied refactorings

Modern IDEs, such as Eclipse, support the most commonly used, low-level refactorings,

including renaming, move, and using supertype. But they do not support encapsulate

downcast and information hiding refactorings, which our case study shows are also

frequently applied. Especially for the information hiding changes, we found out that a

97

class may have several members to hide; manually hiding all of them could be error-

prone.

Eclipse supports moving static fields and methods to a specified type, but it treats

moving instance fields simply as a textual move and the references to the moved instance

fields will not be updated. Furthermore, Eclipse only supports moving instance methods

to types of its parameters or types of fields declared in the same class as the method. The

Eclipse "pull up" and "push down" refactorings support moving instant fields and

methods to their direct superclass or subclass. However, in our case study, instance fields

and methods may be moved to any type, which may or may not be directly related to their

current declaring class.

Eclipse supports some of the "bigger" refactorings discussed in Section 4.2.1.2, but it

lacks support for the refactoring of the containment and inheritance hierarchies and

general class relationships. Suppose, for example, that we want to extract a helper class C

that contains an instance method M declared in D. With current tool support, the

developer may perform the following activities: create a new class C; declare a new field

F of type C in class D; move M to C and then may remove field F. It seems that copy and

paste would be an easier solution. However, as summarized in [54], about 22% of the

copies the developer leaves off-screen references unchanged or only copies part of the

code being distributed within several files.

Based on our findings of the refactorings actually applied to Eclipse throughout its

evolution history, an effective refactoring tool should support the following (in addition

to what are commonly supported in current IDEs):

• information hiding refactoring, such as "hide a group of method in a class",

• more flexible move of instance field and method in terms of object-oriented entity

instead of simply text;

• a refactoring user interface to collect the information about more complex

refactoring tasks, such as those refactoring inheritance-hierarchy.

98

4.2.2.3 The reuse-based software development can benefit from refactoring-

migration tools

Eclipse is built as a plugin-based framework. It is an IDE as well as a software

development kit (SDK). The developers can build their own plugins by extending the

existing ones and then integrate them into Eclipse. Our JDEvAn tool [125] is one of such

plugins we have developed in our research group. Even for such a small-size research

prototype, we have suffered from breaking API changes as the underlying Eclipse

platform evolved.

In the last section, we discussed that over 70% of design changes can be expressed in

terms of refactorings from the perspective of the Eclipse framework developers. To them,

a refactoring, such as move method, affects only the structure of the software and not its

behavior. However, it is simply impossible for Eclipse developer to update all the third-

party plugins built on it when they refactor the code. Thus, to third-party plugin (i.e.,

framework-based client application) developers, such a refactoring may be a breaking

change, which indicates that they have to migrate their code to the new version of Eclipse.

Such migration is often perceived as disturbing.

However, our case study shows that, for over 60% of design changes that may be due

to refactorings, the references to the affected entities in client applications can be

automatically updated by a refactoring-migration tool if the relevant information of

refactored components were properly gathered. This indicates that a refactoring-based

development environment can benefit a lot from refactoring-migration tools, such as

CatchUp [42]. However, the refactorings that CatchUp can record and replay are only

renamings and moves. These account for about 70% of the tedious updating tasks that

may be handled automatically for applications that use the refactored components.

However, there exist several other frequently used low-level refactorings, such as

"information hiding", "encapsulate downcast", which CatchUp cannot support.

Furthermore, refactoring-migration tools are unaware of the impact of "bigger"

refactorings.

99

4.2.2.4 Tools should implement refactorings using the command and composite

patterns

The question then becomes: "What might an appropriate internal representation for

refactorings be, such that it would enable a tool to meet the above requirements?"

As discussed in Section 4.2.1.3, about 27% of all the program entities that have been

modified underwent two or more types of changes, which can be any combination of the

elementary design changes discussed in Section 4.2.1.1. Furthermore, there were about

370 "bigger" refactorings that have been applied to refactor the containment, inheritance,

class relationships and class internals. These "bigger" refactorings are composed of a

series of coherent related structural changes to a set of relevant entities.

These facts imply that a good possible implementation of an automated refactoring

functionality would be to view a design change as a command object: thus, simple

refactoring commands could be composed into larger ones [34] and they could also be

done, undone and replayed. For example, 264 methods (see Table 4-2) moved methods

change their identifiers and/or parameter lists as well. Suppose that a method is moved

and then one of its parameters is removed. These changes can be stringed together as a

MoveMethodCommand followed a RemoveParameterCommand, which are contained in

a CompositeCommand. A memento object [34] may be used to record which parameter is

removed. As another example, consider the "Extract Superclass" refactoring: it can be an

instance of CompositeCommand, composed of a NewClassCommand, a

ModifyClassInheritanceCommand, and several PullUpCommands. A PullUpCommand

can further be an instance of CompositeCommand, which may be composed of a

MoveFieldCommand and a ModifyVisibilityCommand.

The other benefit with command objects is that they can be executed at different times

[34]. The refactoring tool can record the command objects and replay them (if possible)

on the applications that reuse the refactored components. Such "refactoring deferral"

would effectively constitute refactoring migration.

4.3 Summary

In this chapter, we presented our method for detecting refactorings in the evolution

history of an object-oriented software system. Instances of refactorings are detected as

100

compositions of design changes reported by UMLDiff. This method is precise: it reports

the instances of detected refactorings in terms of their particular types and their key

participant elements and relations. It is robust to "multiple-changes-to-same-entity" issue.

This method is general: it is able to recognize a broad range of "standard" refactorings

and it can be extended with special-purpose queries for detecting change patterns of

interest to the user. A refactoring-detection capability, such as ours, could potentially be a

helpful utility: it could recognize design changes to component frameworks when the

refactoring is not support by the refactoring tool or is not applied explicitly through the

tool, which could then be composed and replayed in order to propagate them in the

context of client applications.

101

Chapter 5: API-Evolution Support with Diff-CatchUp

Software reuse simplifies the design of new systems but, at the same time, it implies that

their design and implementation heavily depends on the components they reuse. Stable

interfaces to a reusable component framework (or library) isolate the client application

from changes in those components, under the assumption that the components'

developers limit themselves only to extending - as opposed to changing - the

components' application programming interface (API). In practice, however, this

assumption is frequently violated; the new components' versions change their APIs and,

as a result, the applications that rely on them may fail.

The fundamental challenge in evolving applications built on reusable component

frameworks is the fact that these applications and their underlying component

frameworks are subject to two independent, asynchronous, and potentially conflicting

evolution processes. The scope of the first process is the component framework and is

driven by the need to improve the framework functionality and quality, while maintaining

its generality. The second evolution process is motivated by the more specific

requirements and desired qualities of the application's stakeholders. Although, there

exists extensive software-engineering research on methods and tools for supporting

evolutionary development, such as refactoring in object-oriented software development

[32,51,72], they usually rely on the assumption that the entire software is accessible by

the tool. However, it is simply impossible for component-framework developers to access

and update all the client applications, and it is ill advised for application developers to

modify the components that they reuse - even when they have access to their source code

- because that would essentially defeat the reuse motivation.

This challenge gives rise to the question "How can one specify changes to the reusable

component's APIs that may impact reuse and support their consistent propagation?" API

changes that render components obsolete may be documented through programming-

language syntax or in a framework-specific style [119,121]. However, such

documentation may be incomplete and does not come with any programmatic support for

accommodating the changes in the application code. To our knowledge, there are only

two methods that do support the application developers' migration task: the first assumes

102

that the component developers will provide complete transformation rules for all API-

breaking changes [15] and the second assumes that the component framework and

application developers use the same development environment [42,50] so that the

recorded changes can be interpreted and replayed.

In Chapter 4, we discussed our method for detecting refactorings by querying the

UMLDiff design-change facts and we reported on our study on the pattern of changes in

the evolutionary history of Eclipse [116]. Based on the assessment of empirical data, we

found that more systematic support could be developed for propagating framework API

changes to the applications using it. In this chapter, we present our Diff-CatchUp

approach to tackling the API-evolution problem in the context of reuse-based software

development. This approach assumes that the component framework itself represents

good usage of its evolving APIs. It relies on UMLDiff \o recognize the evolution of the

APIs of a component framework. Once the specific API changes have been identified,

our approach supports the migration of client applications to appropriately use the

evolved APIs, based on "voluntary" working examples of the framework code base. This

approach has been implemented in the Diff-CatchUp tool. We report on two case studies

that we have conducted to evaluate the effectiveness of our approach with its Diff-

CatchUp prototype.

5.1 An illustrative example

Let us consider a developer who is reusing the version 0.9.4 of JFreeChart [126], to

implement a visualization application. Three relevant JFreeChart classes, PlotFit,

LinearPlotFitAlgorithm, and MovingAveragePlotFitAlgorithm, are contained in the

com.jrefinery.chart.data package. In version 0.9.4, these three classes work together to

produce a XYDataset object: first, a PlotFit object is constructed with a XYDataset object

and an instance of either LinearPlotFitAlgorithm or MovingAveragePlotFitAlgorithm, and then, a

modified XYDataset object is produced, which is used to create a chart. When the

developer attempts to build the application with version 0.9.5, the compiler complains

that (a) the import comjrefinery.chart.data cannot be resolved, (b) PlotFit,

LinearPlotFitAlgorithm, and MovingAveragePlotFitAlgorithm cannot be resolved to a type, and

(c) the method getFitQ is undefined for the type PlotFit.

103

http://comjrefinery.chart.data

Looking at the release notes shipped with the new version 0.9.5, the developer can

only find the sentence "introduced new MovingAverage class", which might be relevant

since one of three broken classes is named MovingAveragePlotFitAlgorithm. Unfortunately,

the documentation does not provide any information about what happened to the

com.jrefinery.chart.data package and the PlotFit, LinearPlotFitAlgorithm, and

MovingAveragePlotFitAlgorithm classes, and how the newly introduced MovingAverage class

might be related to the PlotFit-related classes. At this point, the developer is probably

uncertain of the next step needed to complete the migration task.

Let us discuss how our Diff-CatchUp tool can help in this situation. Highlighting the

offending code (e.g., the call to the PlotFit.getFitO method) causes the tool to identify the

broken API involved in the problem (i.e., the PlotFit.getFitO method) and to search the

repository of the evolving JFreeChart library for the changes to this API {UMLDiff

reports that PlotFit.getFitO was removed in version 0.9.5). Next, Diff-CatchUp attempts to

locate plausible replacements for the removed PlotFit.getFitO by examining the methods

that used to call PlotFit.getFitO and are not broken in version 0.9.5 and formulates a set of

replacement proposals for the developer. For example, it suggests that the

MovingAverage.createMovingAverage(XYDataset,...) method may be used to replace the

removed PlotFit.getFitO method since they both declare the same return type. It also

recommends several usage examples, one of which is the

JFreeChartDemoBase.createCombinedAndOverlaidChartlO method, which demonstrates two

ways to obtain a XYDataset object that might be used as the first argument of an

invocation to the replacing method. Upon the developer's request, Diff-CatchUp reports

the textual differences between the versions 0.9.4 and 0.9.5 of the

createCombinedAndOverlaidChartl 0 method, which clearly demonstrate how to migrate the

application code that relies on the old API PlotFit.getFitO so that it uses the replacing API

MovingAverage.createMovingAverage(XYDataset,...).'

5.2 API-evolution catch-up

Our API evolution catch-up approach does not require any additional information

provided by the component developers. The API changes are automatically recovered

with the UMLDiff algorithm, given the old and new versions of a component framework.

104

The client-application developers review the migration problems that they encounter

when building their application with the new version of the component framework, as

reported by the compiler, and select to work on one (Section 5.2.1). In response, the Diff-

CatchUp tool searches the logical-model and API-change facts of the evolving

component framework (a) to determine the changes to the broken API of the offending

component involved in the migration problem (Section 5.2.2), (b) to identify plausible

replacements of the broken API in the new version of the component framework (Section

5.2.3), and (c) to collect examples of how these replacements have been used in the code

to deliver what the broken API used to do (Section 5.2.4). Finally, it proceeds to form and

present specific migration proposals to the developers (Section 5.2.5).

5.2.1 Selecting an API migration problem

When the client-application developers decide to import an evolved component

framework, they have to build their application with the new version of the framework,

which may result in various types of problems being reported. They have to resolve all

the problems before they can successfully build and retest the application. As a first step,

the developer must select some fragment of source code or some compilation

error/warning as the locality of the migration problem to be addressed. Table H-l

summarizes the API migration problems that Diff-CatchUp can currently handle.

Migration problems may be caused by the removal, renaming12, or move of the API

element involved in the problem, changes to its attributes, such as visibility, modifiers,

deprecation-status, and changes to its relation to other elements, such as associated data

type, declared exception, inheritance hierarchy.

As can be seen in Table H-l, the correlation between migration problems and the API

changes that cause them may be many-to-many. Furthermore, data-type compatibility and

polymorphism introduce several technical issues when determining the actual broken API

element involved in a migration problem of "undefined method/constructor/field" and

"parameter mismatch". Resolving such issues may involve a significant amount of

For method/constructor, renaming may involve identifier change and/or parameter

list changes.

105

compiler-related work. Therefore, to obtain the actual broken API element whose change

causes a given migration problem when building the client application with the new

version of a component framework, Diff-CatchUp resorts to a successfully built copy of

the client application with the old version of the component framework. Given a selected

API migration problem, the contextual information about the involved compilation unit

and the start and end positions associated with the problem is extracted, which is then

used to access the copy of the successfully built client application to retrieve the actual

broken API element involved in the migration problem.

5.2.2 Determining the changes to a broken API

Given a broken API element involved in a migration problem, the question becomes to

determine what changes the API has undergone that cause the migration problem. Instead

of resorting to the documentation, change specification, or recorded refactoring scripts

provided by component-framework developers, our approach relies on the API changes

that are automatically recovered by the UMLDiff algorithm.

Let us briefly discuss the UMLDiff algorithm here. Interested readers are referred to

Chapter 3 for the detailed discussion. UMLDiff is a heuristic algorithm for automatically

detecting the changes that the logical design of an object-oriented software system has

gone through, as the subject system evolved from one version to the next. UMLDiff takes

as input two models of the logical design of the system, corresponding to two of its

versions. The underlying meta-model is defined according to the UML semantics [69].

UMLDiff traverses the two models in parallel, moving from one type of model elements

to its children types; as it does so, it identifies corresponding elements, i.e., model

elements that correspond to the same conceptual design entity in two compared models,

based on their lexical and structural similarity. It produces as output a set of change facts

(summarized in Table 3-2), reporting the differences between the two versions of the

logical model in terms of (a) additions, removals, moves, renamings of subsystems,

packages, classes, interfaces, fields and methods/constructors, (b) changes to their

attributes, and (c) changes to the relations among these model elements. When adapting a

client application to the API changes of the underlying component framework, Diff-

CatchUp searches the API-change facts reported by UMLDiff algorithm to determine

106

what changes have been made to the existing component API, which have consequently

resulted in the migration problem.

5.2.3 Proposing replacements for a changed API

At this point in the process, the client-application developers know how the broken API

of a component framework has been changed. The next question is to decide what

plausible replacements to the changed API may exist in the new version of the

component framework. Table 5-1 summarizes the actions that Diff-CatchUp takes for

adapting different types of API changes.

Table 5-1. The Diff-CatchUp actions for adapting different types of API changes

Types of API changes
Renaming or move

"Removal"13

Changes to attribute or relation

Diff-CatchUp actions
Return renaming or move counterpart(s) UMLDiff
identifies
Search logical-model and API-change facts for
replacing APIs
Visualize in JDEvAn Viewer (see Chapter 7) for
further exploration

5.2.3.1 Renamed or moved API

For migration problems caused by the renaming or move of API elements (bold V in

Table H-l), Diff-CatchUp simply returns their counterpart element(s) in the new version,

as identified by UMLDiff, which serve as the plausible replacement(s) to the changed API.

If there are multiple counterpart elements, such as several move-target elements for a

move-source element, these elements are sorted by their UMLDiff overall similarity

metrics. If the application developer is not satisfied with the mapped element

counterparts returned, he can explicitly request the given API element to be processed as

"removed", according to the process detailed in the next subsection.

The "removed" element includes the actually removed element, the deprecated,

visibility-restricted, and class-made-abstract element, and the mapped element that the

developer explicitly request to be processed as removed.

107

5.2.3.2 "Removed"API

For migration problems caused by the removal of API elements (bold V in Table H-l),

Diff-CatchUp searches the logical-model and API-change facts to generate plausible

replacement(s) to the removed API. The deprecation of an API indicates that something

is obsolete and the component developers do not want their users to continue

programming to the old API. Thus, a deprecated API element (italic Vin Table H-l) is

processed in the same way as a removed element. Diff-CatchUp also treats as removed an

element whose visibility is restricted causing the "not visible" problem, and a class that is

made abstract causing the "invalid class instantiation" problem.

Note that the mapping between a "removed" API and its replacements is not

necessarily one-to-one. Several "removed" APIs may have been replaced by a single API,

or a single "removed" API may have a few different substitutions, or the roles of several

APIs may have been replaced by another set. As demonstrated in Section 5.3.1, one

advantage of our approach is that it does not place any constraint on the mappings

between the broken APIs and their plausible replacements; all potential replacements are

selected, ordered by their relevancy, and presented to the developer for consideration.

The underlying intuition to recommending replacing API(s) for a "removed" API is

that the places that a "removed" API used to be used should use its replacing API(s).

Thus, our Diff-CatchUp approach takes the following four steps to propose the

replacement(s) to a "removed" API element E.

1. It collects all the mapped user elements U that used to use E but no longer do so.14

2. It collects as candidates all elements C that U newly uses or continues using.

3. It examines the heuristics (discussed in detail below) between the "removed"

element E and the candidate C, and selects one as a plausible replacement R if the

set of valid heuristics is not empty; if no candidate is qualified with some valid

heuristics, it selects as plausible replacements those candidates that are newly used

byU.

14 The term "use" refers to some types of relationships between two elements, which

are defined in Table 5-2.

108

4. It orders the selected replacements R according to their UMLDiff status, the number

of valid heuristics, and the support of R in terms of the number of user elements

that use R divided by the number of all user elements.

Table 5-2. Proposing replacements for a "removed" API

Element
Class &
Interface

Method &
Constructor

Field

No-longer users
Instantiate
Class usage
Inheritance
Data type
Call

Read (write)

Candidates
Instantiate
Class usage
Inheritance
Data type
Call, read
and write

Call and
read (write)

Plausible replacements
Same name
Inheritance or sibling
Usage dependency
Move of children
Overriding, overloading or same
signature
Declared in same or super- and
subtype, or declared in sibling types
Extract/Inline operation or usage
dependency
Compatible data type
Same name
Declared in same or super- and
subtype, or declared in sibling types
Usage dependency
Compatible data type

Table 5-2 summarizes the relations that Diff-CatchUp examines to collect the mapped

user elements U that no longer use the "removed" API element E (the second column)

and to collect the candidates C that U newly uses or continues using (the third column).

For a "removed" reference type T, the mapped users U include the methods/constructors

that used to instantiate T, the methods/fields whose return/data type used to be T, and the

reference types that used to use the members declared in T and those types that used to

extend or implement T. The candidates are the classes/interfaces that are related to the

users U with the corresponding type of relationship in the new version. For a "removed"

method or constructor M, the mapped users U are the methods/constructors that used to

call M. The candidate elements include the methods/constructors and fields that U calls,

reads and writes in the new version. For a "removed" field F, the mapped users U are the

methods/constructors that used to read (or write) F. The candidate elements include the

methods/constructors and fields that U calls and reads (or writes) in the new version.

109

Note that the candidates and the subsequently selected plausible replacing APIs are not

necessarily of the same element type as the broken API. For example, a superclass may

be replaced by some of its super-interfaces; instantiating a certain type directly (a

constructor call) may be encapsulated into a method that checks some pre-conditions and

returns the object if everything is correct. Furthermore, for a removed package, our

approach does not propose replacing package(s); instead, it determines the changes that

have been made to the class or interface involved in the problematic import declaration or

qualified name and proposes the replacement(s) for the involved classes and interfaces,

depending on their changes.

Given a set of candidate elements, four sets of heuristics (the fourth column in Table

5-2) are examined to select the most plausible replacing API elements from the identified

candidates. The heuristics examine four different aspects between the broken API

element and the candidate replacing element, including (a) their names, (b) their

inheritance relations, (c) their usage dependencies, and (d) their associations with other

elements (e.g., associated data type). Each set of heuristics may contain one or more

heuristics in a decreasing order of priority. If a high-priority heuristic is true, Diff-

CatchUp stops examining the remaining ones in the set. For example, if a "removed"

class and its candidate replacing class have direct or transitive inheritance relation, Diff-

CatchUp will not examine whether they are sibling classes that share some common

ancestor types. If there is no candidate qualified with some valid heuristics as

replacement, those candidate elements that are newly used by the user elements are

selected as plausible replacing elements, with the assumption that the newly used

elements would most likely be the substitutions to a "removed" API, i.e., "newly used"

heuristic. Let us now review these heuristics for selecting plausible replacing API

elements.

NAME: This is the simplest of the heuristics. Name is a "safe" indicator that the

"removed" API element may be related to its potential replacements, especially when a

consistent and meaningful naming scheme is adopted. For two classes, interfaces, or

fields, Diff-CatchUp simply examines whether they declare the same identifier. For two

methods or constructors, it examines whether one overrides the other directly or

transitively (same-signature and declared in super- and subtype), whether one overloads

110

the other (same-identifier and declared in the same type), or whether they declare same-

signature and are declared in different types with no inheritance relation.

INHERITANCE: Component developers sometimes reorganize inheritance hierarchies,

for example, by extracting superclasses, pushing down (or pulling up) methods, or

forming template methods [32]. Searching along inheritance relations may reveal

replacing elements that are declared in super- or subtypes of a "removed" API. In

addition to elements with direct or transitive inheritance relations, sibling types that share

common ancestor types with the removed element may also be examined. Such sibling

types indicate that the concerned types declare similar interfaces and deliver similar

behavior. The more common ancestors they share, the more similar their interfaces and

behavior is likely to be. The methods and fields that are declared in such types may be

interchangeable.

USAGE: Component developers sometimes restructure the usage dependencies

between objects. Examining the usage dependency between model elements may reveal

what can be used to substitute a "removed" API. For example, a middle-man API is

removed and its users start accessing directly the features that they used to delegate to the

middle man; several small steps are merged into a bigger one that executes these steps

internally instead of within the control of their original users; a method is deprecated and

its body is extracted into a new method to which it delegates. Note that UMLDiff, in its

differencing process, detects the redistribution of the behavior among operations, by

analyzing the removals and additions of usage dependencies of the mapped operations

and the related removed or added operations along their transitive usage and inheritance

relations, and reports such behavior redistribution in terms of extract operation and inline

operation changes. The extract/inline operation change facts, if they exist, are preferred

over the ordinary usage dependency between two methods/constructors.

ASSOCIATION: An association is a declaration of a semantic relation between model

elements, such as the associated data type of a method or field and the declaring type of a

constructor. Diff-CatchUp examines whether the "removed" and potential replacing

methods, constructors, and fields declare compatible data types. APIs that have

compatible data types with a "removed" API may be used to replace the role of the

"removed" API in its users. Note that a constructor does not explicitly declare a return

111

type; instead, its declaring type is used. The compatible data type is defined as the same

type or the super- and subtype (direct or transitive). Currently, our approach does not

handle such compatible types as int and double, character array and String object, etc.

For a "removed" reference type and its potential replacing types, one more special

heuristic, i.e., the move of children element between them is examined, since the new

host of the moved features may be a good substitute for their original declaring type.

Finally, the selected replacements are ranked according to their UMLDiff status, the

number of heuristics that apply to them, and their support. The UMLDiff status of the

replacing element of a "removed" API can be newly added or mapped. Our approach

prefers the newly added replacing elements to the mapped ones. For the replacing

elements with the same UMLDiff status, they are further ordered by the number of their

valid heuristics and their support. Currently, the same weight (i.e., 1) is assigned to all

types of heuristics, which means that any replacing API can have a maximum heuristics

score of 4 in the current implementation. The replacing elements are finally sorted by

their name-similarity with the "removed" API in terms of longest common subsequence

of their names.

5.2.3.3 Changes to attributes or relations

Diff-CatchUp does not attempt to suggest ways to adapt to migration problems (regular "V

in Table H-l) caused by changes to the attributes of model elements or changes to

relations among elements, since it is hard to guess how the application developer wants to

adapt the changed API. For example, a method that used to return a primitive type is

changed to return an object that encapsulates the original primitive value along with

several new values. The application developer may retrieve the original primitive value

from the returned object or may decide to preserve the whole object since the original

value and the other newly added values should be used together. It is difficult for an

automatic process to infer which option is more appropriate in a particular context.

Therefore, Diff-CatchUp simply presents the broken API element and its corresponding

attribute or relationship change to the application developer. The developer can then

interactively explore the neighborhood of the concerned API element through JDEvAn

112

Viewer (see Chapter 7) to build up the knowledge about how the changed API can be

used.

5.2.4 Recommending usage examples of a concerned API

Having formulated a hypothesis regarding the API elements that can potentially replace a

broken API is only part of the story when adapting client application to the API changes

of a component framework. The application developer still needs assistance on how to

use those replacing APIs. Diff-CatchUp does not provide usage examples at class

granularity, i.e., how a class is used by other classes as a whole, since such examples are

too coarse-grained and cannot effectively help the application developer learn how to use

a particular method, constructor, or field declared in that class. Furthermore, not all

proposed replacing methods, constructors, and fields require usage examples, for

example, the move of a static field, the renaming of a method that involves only the

change of its declared identifier or the removal of some parameters. We identify the

following three cases in which usage examples of the concerned API are useful:

1. a non-static method/field - the developer needs to know how to obtain the object of

the declaring type of the relevant method/field in order to refer to it (obtain-object

usage example);

2. a method/constructor declares one or more matched, type-changed and newly

added parameters - the developer needs to know how to obtain the object or value

of the concerned parameter in order to invoke the method/constructor (parameter-

list usage example); and

3. a mapped replacing method/constructor/field of a "removed" API - the developer

needs to know how to migrate from the "removed" API to its replacing API

(replacement usage example).

An API of concern may require several different types of usage examples at the same

time. For example, in the case that a moved non-static method that declares a new

parameter is proposed as a replacing API for some removed method, all the three types of

usage examples may be necessary. The replacement usage example is only applicable to

the mapped replacing APIs of a "removed" method, constructor, or field. However, the

obtain-object and parameter-list usage examples are applicable to a qualified API element,

113

whether it is a replacing API of a renamed, moved, or "removed" API, or it is a usage-

example element. It is important that the developer is able to request further usage

examples for the recommended usage-example elements, in some cases. For example, a

usage example of a replacing API is a moved non-static method. The developer may then

want to know how to get the object of the declaring type of this moved method. As

another example, suppose that the method m() is renamed to take one more parameter of

some type T, all direct usage examples that are recommended take one argument of type T,

which they use to invoke renamed method m(T). These usage examples do not actually

show how to obtain the concerned object of type T. The developer can then iteratively

request more usage examples, until one is found that demonstrates the appropriate ways

to construct the object of type T.

5.2.4.1 Obtain-object usage example

First, let us discuss obtain-object usage examples that demonstrate how to get the

concerned object in order to invoke one of its methods, or reference one of its fields. The

same procedure is used to get the concerned object or value to invoke a method or

constructor with it as one of the method's arguments, which serves as the building block

of parameter-list usage example discussed in 5.2.4.2.

Table 5-3. Input parameters for recommending obtain-object usage example

Concerned API
Method/Field of
case 1
Method/Constructor
ofcase 2

Tnew in new version
Current declaring type

Current type of a parameter

T0id in old version
Previous declaring type if moved,
null otherwise
Previous type of this parameter if
type-changed, null otherwise

Table 5-3 lists the input parameters based on which obtain-object usage examples are

identified. Given an API element (method, constructor, or field) E, all the

methods/constructors M that use (call, read or write) E are collected. Then, all elements

E' (not equal to E) that Muses - the methods that Minvokes, the fields that it references,

the objects that it instantiates, and the parameters that it declares - are examined. If E' is

of the same (sub-) type as the relevant type Tnew of element E, then it is recorded as a

possible way to get the concerned object of type Tnew in order to use E. If Muses one or

114

more such E\ it is selected as one valid obtain-object usage example element with one or

more possible ways to obtain the relevant object. Optionally, if M is mapped and the

relevant type T0u of element E is not null, all the elements that M uses whose associated

type is of the same (sub-) type of T0ui are also collected. This knowledge is used to rank

the recommended obtain-object usage examples.

The obtain-object usage examples are sorted according to the UMLDiff status of the

usage-example element M, the status of the relation between the usage-example element

and the concerned API element E, and the number of effective ways E' to obtain the

concerned object of type Tnew. Furthermore, our approach prefers the mapped usage-

example elements that have the newly added ways to obtain Tnew object and no longer

existing ways to obtain Told object, since they demonstrate how to migrate from the old

API to the new one.

5.2.4.2 Parameter-list usage example

A method or constructor may declare one or more matched, type-changed, and newly

added parameters. Each parameter may have its own set (possibly empty) of obtain-

object usage examples, which consists of distinct usage-example elements that show the

ways to obtain the proper argument for this particular parameter. The sets of obtain-

object usage examples for different parameters may intersect, when one usage-example

element demonstrates how to obtain arguments for more than one parameter. For a

method/constructor, the sets of obtain-object usage examples of its parameters are

merged into a single set of parameter-list usage examples, by combining several obtain-

object usage examples that share the same usage-example element into one parameter-list

usage example. Thus, a parameter-list usage example is composed of obtain-object usage

examples for the corresponding parameters that the developer specifies when requesting

usage example for a method or constructor, which share the common usage-example

element and demonstrate how to invoke a method or constructor with one or more proper

arguments.

For a method/constructor, its parameter-list usage examples are sorted according to the

UMLDiff status of usage-example element, the status of the relation between the usage-

115

example element and the concerned method/constructor, and the number of parameters

whose usage a particular usage example demonstrates.

5.2.4.3 Replacement usage example

Replacement usage examples are relevant only to the mapped replacing APIs of a

"removed" method, constructor, or field, and are meant to show how to migrate

application code from using the "removed" API to its replacing API. Note that, the newly

added replacing APIs of a "removed" API element can be illustrated through the obtain-

object and parameter-list usage examples; they do not need replacement usage example.

Furthermore, some of the replacing APIs of a "removed" element may be qualified for

obtain-object and parameter-list usage examples. In addition to these examples, the

replacement usage examples that demonstrate how these replacing APIs are generally

used can also be provided.

Given a mapped replacing API R of a "removed" element (method, constructor, or

field) E, all the methods/constructors M that use (call, read, or write) R are collected as its

replacement usage examples. Optionally, if the status of Mis mapped, Diff-CatchUp also

examines if M uses the "removed" element £ in the old version. The replacement usage

examples are sorted according to the UMLDiff status of usage-example element M and

the status of the relation between the usage-example element and the replacing API R.

Furthermore, our approach prefers the mapped usage-example elements M that newly use

the replacing API and no longer use the "remove" API, since they demonstrate how to

migrate from the "removed" API to the one that replaces it.

5.2.5 Presenting replacement and usage example proposals

Finally, given the plausible replacing APIs or usage-example elements, a list of migration

proposals is formulated. A replacing API proposal consists of (a) the broken API element,

(b) the replacing API element, (c) the heuristics for why this replacing API element was

selected (a set of textual rationale descriptions), (d) the relevant model elements and

relations collected when examining these heuristics; (e) the user elements and their

relations with the broken API element and the replacing element; and (f) the changes to

all the above elements and relations as reported by UMLDiff.

116

An obtain-object or parameter-list usage example proposal consists of (a) the

concerned API element and its relevant types for which the developer selects to see usage

examples; (b) the usage-example element and its relations with the concerned API; (c)

the elements that represent possible ways to get the concerned object and their relations

with the usage-example element; and (d) the changes to these elements and relations as

reported by UMLDiff.

A replacement usage example consists of (a) the "removed" API element and its

replacing API element; (b) the usage-example element and its relations with the

"removed" and replacing element; and (c) their changes as reported by UMLDiff.

The list of generated replacement and usage example proposals is sorted and returned

to the application developer for inspection. Our approach allows developers to customize

the ordering priorities when inspecting the returned proposals. Furthermore, Diff-

CatchUp is supported with our interactive visualization framework, the JDEvAn Viewer

(see Chapter 7), which illustrates the relevant API elements, relations and their changes

in an UML-style class diagram. JDEvAn Viewer enables developers to inspect the

detailed model and change information and to interactively explore the neighborhood of a

proposal. Focusing on a proposal in the JDEvAn Viewer and exploring its relevant

elements and relations enables a compact and local view of otherwise scattered model

elements and relations and their changes. This localization has been helpful in helping

developers to quickly explore and assess if the proposal is worth examining more closely.

When the developers consider the proposal for a change API to be promising, they can

then request the textual comparison results of the source code of usage-example elements

that demonstrate how to adapt the application source code to properly work with the

changed API.

5.3 Evaluation

In this section, we discuss our evaluation of the effectiveness of our approach for

catching up the API evolution of a component framework and supporting the migration

of client applications that reuse it. We conducted two case studies with two subject

systems with the Diff-CatchUp prototype: HTMLUnit [123] and JFreeChart [126]. The

subject systems both have been developed for several years with multiple major releases.

117

In addition to the core framework/library APIs, each release of the subject system also

includes the corresponding regression tests (e.g., JUnit test suites) and some classes that

demonstrate the typical usage scenarios of the framework/library. The subject systems

have undergone a substantial number of API changes (see Appendix C and Appendix D).

With our design-evolution analysis tool JDEvAn [125], we populated the repositories

for two subject systems respectively, which store the UML logical models of each major

release of the subject system (including the core framework/library APIs and the

accompanied demonstration and testing classes) and the API-change facts reported by

pair-wise differencing subsequent releases with UMLDiff.

Given one of the major releases N of the subject system, we built the demonstration

and testing code15 of the version N with the core framework/library APIs released in the

subsequent version N+l, which resulted in various types of API migration problems

being reported. We then collected all the distinct broken APIs (see Table 5-7 and Table

5-8) involved in the reported migration problems. For each broken API element, we ran

the Diff-CatchUp tool against the repository of the subject system to generate its

corresponding replacement proposals. Finally, we compared the Diff-CatchUp

replacement proposals with the changes that the developers of the subject system actually

made in order to adapt the demonstration and testing code of version N in response to the

core framework/library API changes when the subject system evolved into version N+l.

If the actual change was captured within the Diff-CatchUp top ten replacement proposals

and Diff-CatchUp was able to recommend relevant usage examples, we considered that

the Diff-CatchUp approach would have effectively helped the application developers to

successfully resolve the given migration problem and consequently evolve their

applications in the face of the corresponding interface changes of the subject system.

In Section 5.3.1, we qualitatively describe our use of Diff-CatchUp to support adapting

application code to several API changes when JFreeChart evolved from the version 0.9.4

15 We also attempted to collect the API migration problems from the publicly available

client applications that reuse HTMLUnit or JFreeChart. However, we failed to achieve

that goal since we cannot find such an application that has been well evolved in sync with

the evolution of the subject systems.

118

to 0.9.5. In Section 5.3.2, we discuss the runtime performance of Diff-CatchUp and

quantitatively evaluate the effectiveness of our approach in terms of types and numbers

of distinct broken APIs we encountered in our case studies and the statistics of successful

and failing proposals Diff-CatchUp generates.

5.3.1 A usage scenario of the Diff-CatchUp tool

First, let us discuss in detail how Diff-CatchUp helps resolving the migration problems

discussed in the motivation example of Section 5.1, through which we illustrate the

typical usage scenarios of the tool. In the version 0.9.4 of JFreeChart, there is a

demonstration class BaselmageServlet. When building the BaselmageServlet class of the

version 0.9.4 with the core library APIs of the version 0.9.5, 43 compilation errors and 2

warnings are reported, as shown in the Eclipse's Problems view in Figure 5-1. One of

three "The import com.jrefinery.chart.data cannot be resolved" problems is selected. A

request for "Catchup API Evolution" from the context menu of the Problems view

invokes a Diff-CatchUp search on the JDEvAn repository of JFreeChart, which reports

that the problematic package com.jrefinery.chart.data, which existed up until version 0.9.4,

was removed in version 0.9.5.

Diff-CatchUp next automatically identifies the specific type involved in the given

problematic import declaration, which is the class PlotFit for the selected "import not

found" problem and attempts to catch-up the evolution of the PlotFit class. Similarly, for

the other two "The import com.jrefinery.chart.data cannot be resolved" problems, it

identifies the involved classes to be LinearPlotFitAlgorithm and MovingAveragePlotFitAlgorithm

respectively. Table 5-4 summarizes the changes made to these three broken classes, as

reported by UMLDiff, and the corresponding replacement proposals generated by Diff-

CatchUp.

In version 0.9.4, the PlotFit, LinearPlotFitAlgorithm, and MovingAveragePlotFitAlgorithm

classes work together to produce a XYDataset object. In the subsequent version 0.9.5,

these three classes are all removed. However, the Diff-CatchUp replacement proposals

indicate that the relevant feature does not actually disappear with the removal of these

three classes. Instead, the roles of the classes PlotFit, LinearPlotFitAlgorithm, and

MovingAveragePlotFitAlgorithm appear to be replaced by the newly added class

119

http://com.jrefinery.chart.data
http://com.jrefinery.chart.data
http://com.jrefinery.chart.data

MovingAverage and three matched classes LineFunction2D, DatasetUtilities, and Regression.

These four replacing classes are all contained in a matched package com.jrefinery.data.

They are all newly used by the classes that stopped using the three removed PlotFit-

related classes. For the classes PlotFit and MovingAveragePlotFitAlgorithm, the recommended

replacing classes ranked at the 1st, 6th, and 9th - 17th places are omitted in Table 5-4.

Those classes are contained in com.jrefinery.chart.plot and com.jrefinery.chart.renderer

packages. Package is one way of grouping together related classes according to their

functionalities. Thus, the developer using the Diff-CatchUp tool may conjecture that such

plot- or renderer-related classes should be irrelevant to the PlotFit-related feature or he

may examine them after those classes listed in Table 5-4.

Table 5-4. Catch-up the evolution of the three PlotFit-related classes

Broken classes
PlotFit (Removed)

MovingAveragePlot
FitAlgorithm
(Removed)

LinearPlotFitAlgorit
hm (Removed)

Replacement proposals
Replacing classes
2. MovingAverage
3. KeyedValues2D
4. TimeSeriesCollection
5. LineFunction2D

7. DatasetUtilities
8. Regression

2. MovingAverage
3. KeyedValues2D
4. TimeSeriesCollection
5. LineFunction2D

7. DatasetUtilities
8. Regression

1. MovingAverage
2. LineFunction2D
3. DatasetUtilities
4. Regression

Status
added
added
matched
matched

matched
matched

added
added
matched
matched

matched
matched

added
matched
matched
matched

Heuristics
newly used
newly used
newly used
newly used

newly used
newly used

newly used
newly used
newly used
newly used

newly used
newly used

newly used
newly used
newly used
newly used

Support
0.250
0.125
0.625
0.250

0.125
0.125

0.250
0.125
0.625
0.250

0.125
0.125

0.500
1.000
0.500
0.500

However, knowing that the PlotFit-related feature may be replaced by the classes

MovingAverage, LineFunction2D, DatasetUtilities and Regression is not nearly enough to

successfully migrate the client BaselmageServlet class to use the replacements to deliver

the same or similar functionalities previously implemented by the classes PlotFit,

120

LinearPlotFitAlgorithm, and MovingAveragePlotFitAlgorithm. There are 27 methods available

across these four replacing classes. It is not simple to determine which ones to use and

find the correct sequence of interaction between them. Furthermore, for the removed

classes PlotFit and MovingAveragePlotFitAlgorithm, two more classes in the com.jrefinery.data

package, KeyedValues2D and TimeSeriesCollection, are also recommended by Diff-CatchUp.

Are they relevant to replacing PlotFit-related classes? If so, what roles are they supposed

to play?

Table 5-5. Replacement proposals for PlotFit.getFitO with full heuristics checking

Replacing APIs
1. MovingAverage.createMovingAveragefXYDataset,...)
2. TimeSeriesCollection()
3. DemoDatasetFactory.createHighLowDataset()
4. DatasetUtilities.sampleFunction2D(Function2D,...)
5.JDBCXYDateset(...)

Status
added
matched
renamed
matched
renamed

Heuristics
datatype
data type
data type
data type
data type

Support
0.50
0.67
0.50
0.17
0.17

Table 5-6. Replacement proposals for PlotFit.getFitO with only "newly used" heuristic

Replacing APIs
3. MovingAverage.createMovingAverage(TimeSeries,...)
4. MovingAverage.createMovingAveragefXYDataset,...)
5. TimeSeriesColiectionO
6. TimeSeriesCollection.addSeries(TimeSeries)
8. DemoDatasetFactory.createJPYTimeSeriesO
9. DemoDatasetFactory.createEURTimeSeriesO
12. DemoDatasetFactory.createUSDTimeSeries()
13. LineFunction2D(double,double)
14. Regression.getOLSRegression(XYDataset,int)
19. DatasetUtilities.sampleFunction2D(Function2D,...)

Status
added
added
matched
matched
matched
matched
matched
matched
matched
matched

Heuristics
newly used
newly used
newly used
newly used
newly used
newly used
newly used
newly used
newly used
newly used

Support
0.67
0.50
0.67
0.67
0.50
0.33
0.17
0.17
0.17
0.17

To answer these questions, the developer needs more fine-grained method-level

information in relation to these plausible replacing classes. The key API method relevant

to the old PlotFit-related feature is PlotFit.getFitO- Highlighting a call to PlotFit.getFitO in

the Eclipse's Java editor enables the developer to request Diff-CatchUp support for

determining how it changed from version 0.9.4 to 0.9.5. It turns out that the method

PlotFit.getFitO w^s removed in 0.9.5. Table 5-5 summarizes the replacement proposals that

Diff-CatchUp generates when selecting replacing elements with full heuristics checking,

which recommends a total of 5 methods/constructors that declare the same or compatible

121

data type as the removed PlotFit.getFitO. When Diff-CatchUp selects the replacing

elements based only on "newly used" heuristic, there are a total of 23 recommended

methods and constructors. 10 of them, which are declared in the replacing classes listed

in Table 5-4, are summarized in Table 5-6. The other 13 axis-, plot-, and renderer-related

methods and constructors are omitted in Table 5-6 since they are deemed less relevant to

replacing the removed method PlotFit.getFitO-

Edit &JWLS n-facor Navigate Saare*l rvcmtf *un Mndow hldp

/ / moving avg
Jtoyin^Avejrajg&fJj^ raavg -

new S & v J n j j A v e j n ^ , ^ ^ ;
tnavg.setPeriod(30) ;
J ^ o t r j ^ pf • new PlgitF;it(chartData, wavg) ;
xyData - pf ,j
breaX;

case 22;
/ / l inear Zic
pi - new Pl&SJTijLlcfcttrt
xyData • pl .getFie(J ;
break;

case 0:

«.»J~ '. ^ « i l i i i l i B H H H I 8 ! H

Run As
Debug As
Team
Compare With
Replace With

[.T* edlcom refinery t % B ^ J M J t M I ^ ^ " ' '

™**__ '£• -*LA - S L L 1 _ i...i..nf...jj.-

w s

?SH*t#-i.

The problem entity and the proposed entity declare the same or compatUe datej Query As Removed '
j£ con^jreflneryjlata.TimeSeriesCoflettlon.TimeS<rtefCollection() • ^ ^ ^ ^ ^ • m j n a t c h e d
m cornJ«nneayxhartdemo4)emoDatosetfacti^xreateHighlo¥iDatasetO '~™*enanied|
S confcJreflnery.dbtaJ>ata»etUtilitieMamp*ef :ur»cticii2^ matched

&i com.jrefbieryulataJDBCXYDatasetJOBCXVDataset(CoflnecUon,Strlng) ; renamed

1 0.5

'^SSi^SSSSi&Smi'^"
[9 For added parameter 'source' of the requested operation

3 Calmethod of current type "com. (reflnBry. data. XYDatasat' or Its subtype

\ com.^eflnery.crtart.dei^.DemoDatasetFactory.aeateHghLowOatasetO ' com.jrefinery.data.HtgftowDataset

i 9 Invoke constructor of ajrrent type'o>n.irefr>crY.clata

ccm.reh^Y.dataJlrr»Seri«C

Desjttton_Jk_ **
3 ^ ratal En i t i i i i i rin t

©Axis * • * - - • - -
O UbcCategoryDatMet cannot be resdvs||
9 ft&CategoryM^camot be rescue
O JdbcPieOatasatcannotberesotvedtoa
Q JdbcPleDataset cannot be resolved to a'
© MbtXYDacasat cannot be resolved to «
O JdocXYDacasettamotberesoh^toa
0 UnearPlotFWUgorfhmcemot be resolve
O r*v^vara£oMotf*Alo^lthm cannot t

O PiePfat cannot be resolved to a lypa
O rtaPfc*cannotberwoKwJtoatypa
O PWfoEcamotberesolwdtoatype
O Plot cannot be resolved to a type
O plotBt cannot be resolved to a type
O PfotFK cannot be resolved to a type
O P t o « cannot to resolved to a type
Q TheiTiportcorri.^efinery.chart.ftxiicarit

" " P " " * * i iu u i srtfSMnq, Strfni
O The rootriodset*WB<AnayUs0ts undef
O VabsAxis cannot be resolved to a type »

Figure 5-1. Diff-CatchUp perspective in Eclipse

The generated replacement proposals are returned to the Diff-CatchUp client for

presentation to the developer in the API Proposals view. For a selected proposal, the

developer can ask Diff-CatchUp to recommend its obtain-object, parameter-list, and/or

replacement usage examples, which will be presented in the Usage Examples view.

Figure 5-1 shows a snapshot of the Diff-CatchUp perspective in Eclipse, when the

developer attempts to adapt the application code in response to the removal of the method

122

PlotFit.getFitO. The middle- and bottom-left parts of the perspective show the API

Proposals and Usage Examples views. The API Proposals view shows the broken API

under investigation and the change it underwent, which states

"[removed] [com.jrefinery.data.PlotFit.getFit()]". In addition, the API Proposals view lists

the five replacement proposals of the removed method PlotFit.getFitO- The highest-rank

replacing method MovingAverage.createMovingAverage(XYDataset,...) is selected; its

corresponding table row is expanded to show the textual description of the rationale

("compatible data type" in this case) for why this method is selected. The relevant obtain-

object usage examples for this method are listed in the Usage Examples view. The first

one, JFreeChartDemoBase.createCombinedAndOverlaidChartlO, is selected and expanded; its

rationale indicates that it was recommend because it demonstrates two effective ways to

obtain a XYDataset object, i.e., by calling method

DemoDatasetFactory.createHighLowDatasetO or instantiating a TimeSeriesCollection object,

which can be used as the first argument to invoke the replacing method

MovingAverage.createMovingAverage(XYDataset,...). Note that the method

createHighLowDatasetO and the constructor TimeSeriesCollectionO are two of the proposed

replacing APIs, which indicates that they may not be the direct replacements to

PlotFit.getFitO but they should be highly relevant to properly using the replacing method,

such as MovingAverage.createMovingAverage(XYDataset,...).

When a replacement or usage example proposal is selected in the API Proposals and

Usage Example views, the relevant model elements, relations and their changes, which

are enclosed in the proposal, are visualized in a JDEvAn Viewer. Figure 5-2 shows a

screenshot of the JDEvAn Viewer and its Outline and Properties view when the

developer investigates the replacing method

MovingAverage.createMovingAverage(XYDataset,...) and its usage example

J FreeChartDemoBase.createCombinedAndOverlaidChartl 0 •

123

F?* Eift Nd*.yrf" » w i h FfmX P / i Wk-»Jov. HP?

E , > *

l t« fss i$ i« i
© DemoDatase

LowOataset

Q i jRrraCharCC

JverlaidChartO : JFf eeCfeai*-™ ' • " " f c IpetFitOrNo longer exWinql

tB ;ow.>rftitfy,dvw,i)etKi,t«fvW|

« treateXVCharl(...): ffreediaftg

m.mmmM'
re :***

TimeSertesColection

®
teMovingAverS^Csource: XYDataset, suffix : jave.lsng.Strlng, periodMKseconds: long, sklpMSiseconds : long): XYDatesetl

»<«-«v -:&;»':
ia) d f i com.refJnery.chart.data[No longer existing]

9 & PtotFit[No longer existing]

- § attributes

Q | § operations

- | § reftypes
13 0 com.p-efinery.chart.demo[Watched]

E§ 0 DemoOatasetPactory[Matched]

» © JFre*ChartDenra6ase[Matched]
a — S com.jrefinery.chart.ctefno.sefvtettMatched]

S3- 0 BasBlmageSefvtet[Matched]

Q 0 com.)refinery.data[Matehed]

i£ Q 3 MovingAverageTNewly added]

I D Properties S3

As source
£ As target

Category
ID

Moved entitles
>"'-. MtfrnH', -f11

Parameters
IS Return type

UKDf f statui
Visbfty

'. u . J r -> _

_ V*JJ
I k f u r J r ' t o c , i w g M . » n i : a t i c

3 shown Incoming relations
Method

Opararreter
associated ht>s
No longer exisbng
pubic

MM 1 1 ' « •

Figure 5 2. Explore PlotFiCgetFitQ and its replacing APIs with JDEvAn Viewer

*va Source compare

• aflateCrjrntmdAnr> verlaUChan 0 } p^chartfl 9 Ifm ^

I String domain ° this.resources.getStringCcomb:

I > • r e a t K ^ i h h » d A n L l 6 v w U d C h * a b j f r m f c a r n 9 4/jrc

HighLowDataset highLowDataaec *
DemoDataset Factory. createHighI.owDataset. {)

XYDaCaset aighLowDatasetHA -
HovingAverage.createHovingiverage(highLowData;

5 * 24 * 60 * 60 * 10Q0L, 5 • 24
4

TiweSeries jpy — DemoIiaCagecraccory.ciTeateJPYTiincS

TimeSerieaCollection dataaetO • new TimeSeriesColJ]
datasetQ.addScries(jpy) ;

TisteSeries mav - Moving Aver age. creaceHovtngAverage
TimeSerieaCollection d a t a s e t l - new TimeSeriesColJ
da tase t l . addSer ies (Jpy) :
dataaetl.addSeries(may) ;

~Lr_L. s J ^ i c i e S t r • t!»is._=; c c e s . g e t S t r i n g (i H
Str ing domain " th is . resources .getStr ing("comb§| 1

^//''ce.'ie^la&'e''-K6ying|. Average or Htgh-U>w Datase
HioStowDataiset nighticwData - .

I>ein6l>at.asetractacy.ereate3ampleHigiiLo*Data
HovingAveragePlotritAlgdcichni roavg -

: new HovingAveragcPlotritAlgarithwO ;
nwivg. secPericd (5);
P lo tF i t p± - new PlotFlt(highLowPata, mavg);
XYDataaefe highLgyHAData - pf . g c t F l t Q ;

/ / ca lcu la te Having Average of Time Series
XYDataaefc CiiaeSeries&ata - DemoDatasetFactory,
mavg '•hew HavlngAveragePlotPitAlgorithmf.);
mavg.setPeriod(30Ji
pi - new P i o t f i t (timeSeriesData, ntavgj ;
XYDataset tirocSericsHAPata - p r . q e t F i t () ;

\^mm^mamKMmmBmoammim M' mmmmm^mmmmmm .mj

Figure 5-3. Code differences demonstrating how to

replace getFitQ with createMovingAverage(...)

124

At this point, if the developer believes that

MovingAverage.createMovingAverage(XYDataset,...) is a promising candidate for replacing

PlotFitgetFitO, he may want to examine how its client methods, such as

createCombinedAndOverlaidChart1(), have been modified from using PlotFit.getFitO to using

MovingAverage.createMovingAverage(XYDataset,...). Double-clicking the method

createCombinedAndOverlaidChart1() brings up the Eclipse Compare Dialog, which shows

the textual differences between the versions 0.9.4 and 0.9.5 of this method (see Figure

5-3). The code differences clearly demonstrate how to migrate the application code that

relies on the old API PlotFit.getFitO into using the replacing API

MovingAverage.createMovingAverage(XYDataset,...).

The other replacement proposals are similarly examined. Three APIs emerge as

candidates for replacing the removed PlotFit.getFitO method (highlighted in italic font in

Table 5-5 and Table 5-6): MovingAverage.createMovingAverage(XYDataset,...),

MovingAverage.createMovingAverage(TimeSeries,...), and

DatasetUtilities.sampleFunction2D(Function2D,...). Furthermore, several other proposed APIs,

such as TimeSeriesCollectionO, JDBCXYDatasetO, Regression.getOLSRegresstionO,

createHighLowDatasetO, etc., are also highly relevant. They serve the important auxiliary

roles in order to replace the removed method PlotFit.getFitO. They are used to construct

objects that are necessary to call the replacing methods or to wrap the returned objects of

these methods before they are used.

5.3.2 The effectiveness of Diff-CatchUp

We have evaluated our approach for catching-up and supporting API evolution with two

subject systems, HTMLUnit and JFreeChart. Appendix C and Appendix D report the

numbers of model element and relation facts extracted by JDEvAn fact extractor and the

API changes discovered by UMLDifffor JFreeChart and HTMLUnit respectively.

As shown in Appendix C, our repository contains more than 1,400,000 model facts and

thousands of API-change facts16 for the JFreeChart system. However, because Diff-

CatchUp repository should mainly be accessed far more often than having new model or

6 The changes to usage dependency between model elements are not included.

125

change facts inserted, we have the tables well indexed in the database. Therefore, Diff-

CatchUp typically takes a few seconds to search the repository and form and return the

replacement and usage example proposals. Our case studies indicate that Diff-CatchUp

approach allows the on-line interactive catching-up of API evolution of a component

framework when adapting the client applications that depend on it.

Table 5-7. The success rate of Diff-CatchUp in the evolution of JFreeChart

Type of problem1'
ImportNotFound
UndefinedType+ImportNotFound+UndefinedName
InvalidClassInstantiation
UndefinedMethod/Constructor
ParameterMismatch
UndefinedField+UndefinedName
UsingDeprecatedType
UsingDeprecatedMethod/Constructor
Total

#broken API
17

254
1

180
54
33
3

35
577

#proposal
17

247
1

151
53
29

3
34

535

%
100

97.2
100

83.9
98.1
87.9
100

97.1
92.7

Table 5 8. The success rate of Diff-CatchUp in the evolution of HTMLUnit

Type of problem
UndefinedType
UndefinedMethod/Constructor
ParameterMismatch
UsingDeprecatedType
UsingDeprecatedMethod/Constructor
Total

#broken API
1

11
3
1

10
26

#proposal
1
9
3
0
7

20

%
100

81.8
100

0
70

76.9

Let us now discuss the general effectiveness of our approach in support of catching-up

and assisting API evolution in the context of reuse-based software development. Table

5-7 and Table 5-8 summarize the statistics of applying our Diff-CatchUp approach

(similar to the migration process illustrated in Section 5.3.1) to JFreeChart and

17 As it is currently implemented, our Diff-Catchup tool is able to handle all types of

migration problem listed in Table H-l. All of them have been tested through the mock-up

test cases. However, we only collected the listed types of migration problems in the

evolution history of the two subject systems.

126

HTMLUnit respectively. The "#broken API element" column reports the number of

distinct broken API elements whose changes cause the corresponding type(s) of

migration problems when building the demonstration and testing code of a previous

version with the core library APIs released in the subsequent version. The "#proposal"

column represents the times that our approach successfully generates the replacement

proposals and the usage examples, given such a broken API element. Note that the

migration problems caused by the change to the same underlying broken API element

were only counted once in Table 5-7 and Table 5-8.

We collected in total 577 distinct broken API elements in the JFreeChart case study.

Overall, the case studies suggest that our approach is worthwhile and effective: for about

93% of the broken API elements in the JFreeChart case study, Diff-CatchUp successfully

generates the replacing API elements and the corresponding usage examples that

demonstrate the migration from the old APIs to their replacing ones. The overall success

rate in the HTMLUnit case study is lower (about 77%). However, we consider the

statistics of the HTMLUnit case study less representative than that of the JFreeChart case

study, since HTMLUnit has a much smaller set of broken API elements (only 26).

Furthermore, as illustrated in Section 5.3.1, our approach does not place any constraints

on the mappings between the broken API elements and their plausible replacements. It is

able to handle the cases of one-to-many, many-to-one, or many-to-many mappings. In

addition, the relevant auxiliary APIs to properly use the replacing APIs would most likely

be proposed at the same time.

5.4 Threats to validity

There are several factors that can impact the quality of our Diff-CatchUp approach.

5.4.1 API changes without syntactic effects

Our approach starts with the API migration problems that a compiler generates when

building a client application with the new version of a component framework. The

migration problems are analyzed to determine the broken APIs whose evolution results in

the problem. The compilation errors and warnings are essentially syntactic problems that

the client-application developers have to resolve before they can build their application

127

successfully and retest it with the evolved component framework. The causes of some

syntactic problems may be the results of behavior-preserving refactorings, while others

imply the semantic changes to the broken APIs. For example, additional parameter(s)

most commonly indicate new behavior; declaring a class abstract indicates that it can no

longer be directly instantiated; declaring a field final indicates that it is no longer

changeable. In such cases, our approach is able to help client-application developers

understand the nature of the change and migrate their application accordingly.

However, not all API changes result in syntactic problems being reported. Some of

them may result in the client applications behaving differently. For example, a method

declares two parameters of type integer, which represent the start and end position of a

sequence being processed within the method. In the new version, the method still

declares two parameters of type integer. However, the second parameter changes to

represent the length of a sequence starting at the given start position. If the client-

application developer imports the new version of the method without making any

changes to the application, the code will still compile. However, the application would

most likely behave abnormally, since the interpretation of the second parameter has

changed. In such cases, the client-application developer has to first determine what the

potential broken API is, since it cannot be automatically determined based on

compilation errors and warnings, before they can highlight the code fragment (e.g., a call

to the potential broken method) and request the API evolution catch-up support. In this

particular example, our Diff-CatchUp approach then would most likely report the

concerned method being renamed with the "end" parameter being removed and the

"length" parameter being added, which can eventually guide the modification of the

application to accommodate the interface change of the method.

5.4.2 The quality of UMLDiff rasvAis

Our approach to catching-up API evolution of a component framework relies on the API-

change facts reported by UMLDiff when it compares two subsequent versions of the

system evolution. The renamings and moves that have been erroneously identified or

missed by UMLDiff-will negatively affect our Diff-CatchUp approach. For example, a

method M is removed but it is erroneously identified as renamed. If the method M is

128

involved in an "undefined method" problem, Afs renaming counterpart in the new

version will be recommended as its replacing method based on the erroneous UMLDiff

change fact, which could mislead the developer's effort to adapt the application code to

the removal of the method M. Our evaluation of UMLDiff has shown its precision and

recall to be good in practice. Thus, its negative effects on the Diff-CatchUp's API

migration process should be minor. In addition, an interactive inspection step with the

support of the JDEvAn tool [125] could be injected, which has been done in our case

studies, after the completion of UMLDiffand before staring the API migration process, to

correct the erroneously identified renamings and moves and to identify potentially missed

instances. Finally, our approach allows the developers to explicitly request a mapped API

element to be processed as removed when they deem the mapped counterpart returned by

default inappropriate.

5.4.3 Availability of "voluntary" migration examples

Our approach does not assume the existence of the special handcrafted migration

examples that demonstrate how to evolve application code in response to the interface

changes of a component framework. Instead, our approach relies on the fact that a

component framework embodies "voluntary" migration examples in its evolution history

and thus itself represents good usage of its evolving API.

We have identified four major reasons that cause the Diff-CatchUp failures, especially

in the cases of the undefined problems caused by the removals of methods, constructors,

and fields, i.e., the types of problems for which our Diff-CatchUp approach more

frequently fails to recommend the corresponding replacing APIs.

The first reason is that our approach assumes that some user elements within the new

version of the component framework have been properly migrated to the new APIs, i.e.,

they have stopped using the changed APIs in favor of their corresponding replacements,

thus demonstrating how to migrate from the "old" APIs to their "new" replacements.

Thus, if no such user element exists, Diff-CatchUp will fail to collect any candidates for

replacements. For example, in some cases, the migrated user elements do not use the

replacing APIs directly. Although the transitive usage dependencies between model

elements are available in the underlying logical model, examining all the transitively used

129

elements is time-consuming and generally produces too much noise. Thus, Diff-CatchUp

does not collect replacement candidates transitively along usage dependencies and may

consequently fail to identify a valid demonstration of a replacement. Furthermore, the

API of a component framework may sometimes change dramatically, including removal

of some of its elements and changes to all their relevant elements. In such cases, the

replacing features, including the replacing APIs and their corresponding user elements,

are "completely" new. Consequently, our approach cannot locate any user elements that

are related to the removed APIs and their replacing APIs at the same time, which results

in its failure to generate any proposals.

The heuristics of our Diff-CatchUp approach for selecting most plausible replacing

elements from the potentially large set of candidate elements may also prevent it from

identifying valid replacements. On one hand, they are effective on filtering out irrelevant

elements and generating a short and manageable list of replacement proposals returned to

the developer for further inspection. However, the chances are that there exist no valid

heuristics between the removed APIs and their replacements. Consequently, no candidate

would be selected as plausible replacing element. For the deprecated methods and

constructors, they generally have the usage dependency or even extract/inline operation

relationships with their replacements, which makes the rate of successfully generating

their replacement proposals much higher than that of the undefined methods and

constructors.

Another potential cause for Diff-CatchUp failure to recommend replacements is the

fact that user classes and methods that implement complex functionalities sometimes

become incohesive. They often end up with a multitude of members, many of them used

in multiple different contexts. When all or most of these members are modified, they will

blur the most relevant changes to the concerned broken APIs, which makes it difficult to

select the plausible replacements or rank them higher in the returned list of proposals.

Finally, some APIs are simply removed with no replacements at all. In JFreeChart case

study, 2 removed classes, 7 removed methods and constructors, and 2 removed fields fall

into this category. Our approach may still produce some proposals for them. However,

upon the close inspection through JDEvAn Viewer, a developer can generally determine,

130

without spending too much effort, that the recommended elements are irrelevant and the

broken APIs disappear without replacements.

As discussed above, the existence of the user elements and the amount of changes they

undergo affect the Diff-CatchUp's ability to collect potential candidate elements, select

plausible replacement proposals, and determine the relevancy of the proposals. However,

our experiments with the JFreeChart case study indicate that our assumption holds for

most cases (about 93% overall) and our approach is worthwhile and effective on

generating the replacing API elements and the corresponding usage examples in the face

of the API evolution of a component framework.

5.5 Summary

In this chapter, we discussed our Diff-CatchUp approach to supporting the migration of

client applications to appropriately use the evolved APIs of their underlying component

frameworks. Diff-CatchUp does not require the component-framework developers to

change their development practices and does not constrain the development environments

adopted by the component and client-application developers. Instead, Diff-CatchUp

recognizes the API changes that the reused framework has undergone - as automatically

produced by the UMLDiff algorithm - and uses a set of heuristics to infer plausible

replacements for the offending API that causes the API migration problem and examines

the code base built on the evolved framework to select examples of how the potential

replacements are used.

The Diff-CatchUp approach relies on the fact that a component framework itself

represents good usage of its evolving API and thus is sensitive to the existence of

"voluntary" migration example in its evolution history and the amount of changes they

undergo. However, our evaluation indicates that its assumption holds for most cases and

it is quite effective (over 93% success rate in JFreeChart case study) generating the

replacing API elements and the corresponding usage examples in the face of the API

evolution of a component framework.

131

Chapter 6: Longitudinal Design-Evolution Analysis

In addition to recognizing specific instances of design-change patterns, such as

refactorings, some development tasks require that the developer understands the

evolution trajectory, through which the system design has reached its current state. For

example, when faced with the "shotgun surgery" smell [32], which may be corrected with

the form template method refactoring [32], the developer has to understand how the

classes affected by the "shotgun surgery" have been changing in the past, to decide what

the skeleton, the default and the variant methods of the template-method class should be.

Other tasks imply a need to understand the practices that the system-development team

has adopted in the past. For example, when faced with a complex, non-cohesive class

delivering multiple features, the developer has to decide how many of its features to

extract in a new class. This judgment may depend, to some extent, on the specific ranges

of class-complexity metrics that the developing organization has adopted as acceptable. A

developer, who may be new to the team and may not have experience with the issue,

could make a "right" decision by appealing to the way similar situations have been

resolved in the past evolution history of the project. In addition to developers, managers

are also interested in having an up-to-date mental model of the evolution trajectory of

their projects, in order to abstract evolution patterns characteristic of desired qualities or

symptomatic of problems so that they can better manage the project and predict the

evolution of other projects in the future.

There already exists a substantial body of literature on the general "software-evolution

understanding" topic. A large subset of work [7,30,31,33,41,58,87] in this area involves

analyzing the "history" recorded by version-management systems. Unfortunately, more

frequently than not, such "history" data is sparse and inconsistent [13]. Another line of

research [9,29,35,57,110] has focused on the visualization of software-process statistics,

source code metrics, static dependence graphs, CVS-like deltas and their derivatives, etc.

However, such visualizations do not scale well to handle large systems and require a

substantial interpretation effort on behalf of their users.

In this chapter, we discuss a suite of automated software-evolution analyses, based on

the design changes reported by UMLDiff, to study the longitudinal evolution of object-

132

oriented systems. First, the quantitative report of UMLDiff changes is discretized to

produce a qualitative record of the volatility of the design evolution of each individual

class, i.e., discrete class-evolution profile18, throughout the system's history. Then, four

types of longitudinal analyses - phasic analysis [84], gamma analysis [75], optimal

matching analysis [1], and association rule mining [2] - are applied to the discrete class-

evolution profiles to recover a high-level abstraction of distinct evolution phases and their

corresponding styles and to identify class clusters with similar evolution trajectories.

These longitudinal design-evolution analyses aim at addressing the following general

research questions:

• Are there distinct patterns in the evolution trajectories of classes in object-oriented

software systems?

• What types of inter-dependencies are there among the evolution trajectories of

different classes and what might their implications be for the system's subsequent

development?

6.1 Classifying evolution behavior

For an evolving software system with N successive versions, UMLDiff can be applied N

times to generate the differences between the (I+l)th and /* versions, where 0<7 <N

(supposing there is a virtual version 0 with no entities), resulting in an audit trail of the

design changes that the system classes have suffered throughout their evolutionary

lifecycle. This trail is analyzed to produce a class-evolution profile of length N (at most)

for each individual system class (including interface). The class-evolution profile reports

quantitatively the complete history of changes made to an individual class in each

subsequent system version, i.e., in which version it was created, how many signature-

changes it underwent and how many of its member elements were newly added, removed,

Similarly, subsystem- or system-evolution profiles can be produced. There is no

fundamental difference between them, except for the different granularity of analysis.

The classifications of change activities and the subsequent longitudinal analyses

discussed in this chapter are applicable to all levels of evolution profiles.

133

moved, signature-changed19 in a particular version over its lifespan, and, possible, in

which version it was deleted. Table 6-1 shows the evolution profile of class CategoryPlot

from the JFreeChart case study. Note that this class was originally named BarPlot.

UMLDiff correctly identified the renaming to CategoryPlot at version 0.8.0.

Table 6-1. The evolution profile of class CategoryPlot

BarPlot
BarPlot
BarPlot
BarPlot
BarPlot
CategoryPlot
CategoryPlot
CateqoryPlot
CategoryPlot
CateqoryPlot
CategoryPlot
CategoryPlot
CategoryPlot
CateqoryPlot
CateqoryPlot
CateqoryPlot
CateqoryPlot
CateqoryPlot
CategoryPlot
CategoryPlot
CateqoryPlot

Version
0.5.6
0.6.0
0.7.2
0.7.3
0.7.4
0.8.0
0.9.0
0.9.1
0.9.3
0.9.4
0.9.5
0.9.7
0.9.9
0.9.10
0.9.11
0.9.12
0.9.13
0.9.14
0.9.17
0.9.19
1.0.0

Add
19
11
3
2
0
2

30
2
1
3

52
5

35
42

2
4
8
8
1
7
4

Remove
0
3
0
0
0
0
6
0
0
0

18
0

20
1
0
0
0
5
0

14
2

SigChange
0

19
3
1
1
6
7
1
5
1

25
8

11
14
0
8
9
4
3

40
4

Move
0
0
0
0
0
6

14
0
0
0
4
0

10
11
0
0
0
0
0
0
0

Volatility
Rapidly developing
Intense evolution
Steady-state
Steady-state
Steady-state
Restructuring
Intense evolution
Steady-state
Restructuring
Steady-state
Intense evolution
Restructuring
Intense evolution
Intense evolution
Steady-state
Restructuring
Restructuring
Slowly developing
Steady-state
Intense evolution
Slowly developing

As can be seen from Table 6-1, between any two versions of the system evolution, the

types and amounts of changes may vary greatly. This level of detail and its variability

make it very difficult to discern interesting patterns in the evolution of system classes.

This is why the quantitative class-evolution profiles are discretized.

Signature-changes include renamings and other modifications of signature, such as

visibility and modifier changes of class, interface, field, and method and constructor,

changes of data and return type and changes of inheritance relation.

134

The discretization process is based on two descriptive statistics: quantiles and means.

The quantile is the specific value of a variable that divides the distribution into two parts,

those values greater than the quantile value and those values that are less. That is, p

percent of the values are less than the p% quantile. The a% and b% quantiles (a < b) for

"Addition" and "Removal" are calculated. A continuous value is discretized as "Low" if

it is below a% quantile, "High" if it is above b% quantile, and "Medium" otherwise.

Since the majority of class-version (at least according to our experience) have no

"Added" members (see Section 6.4.1), those class-versions with zero "Addition" are

ignored when computing the "Addition" quantiles. Furthermore, classes with only one

"Addition" account for about 25%-40% of the rest. To alleviate this substantial

imbalance in the input data, these class-versions are ignored as well. For the remaining

class-versions that have two or more "Addition" changes, the 25% (75%) "Addition"

quantiles are computed, and rounded down (up) to get the corresponding integer low a%

(high b%) "Addition" quantiles, which generally fall into the range of 15%-25% quantile

or 75%-85% quantile respectively. "Removal" is treated similarly to "Addition".

Because moves and signature-changes appear less frequently than additions and

removals, the range of values for moves and signature-changes is narrower than the range

of values for the latter two types of modifications. Therefore, the means of the numbers

of "Movement" and "Signature-change" are computed and they are discretized into two

ranges: "High" if they are above the mean and "Low" otherwise. Again, the class-

versions with zero or one "Movement" or "Signature-change" are ignored. Furthermore,

if a class is moved or renamed in a particular version, its corresponding qualitative value

of "Movement" or "Signature-change" will be marked as "High", irrespective of changes

made to its member elements.

In general, there are four characteristic types of evolutionary behavior that software

system and its components may exhibit at the design level. First, the design may simply

not evolve - steady state - during periods of bug fixes, testing and documentation.

Alternatively, the design may go through restructuring, when design entities are neither

added nor removed but simply moved or slightly modified. During periods of

functionality extensions in response to behavioral-change requests the design is bound to

change with new entities introduced to the system to support the new features and

135

existing entities removed to eliminate the unwanted behaviors. Finally, the design may go

through phases of intense evolution including both restructuring activities in anticipation

of new features as well as changes in support of adaptations to the system behavior.

Table 6-2. Classifications of change activities

Type
A
B
C
D
E

Combination of labels
(aH or rH) & (mH or sH)
(aH or rH) & (mL and sL)
!(aHorrH)&(mHorsH)
(aM or rM) & (mL and sL)
(aL and rL) & (mL and sL)

Description
Intense evolution
Rapidly developing
Restructuring
Slowly developing
Steady-state

These types of high-level evolution behavior can be recognized in terms of the

qualitative values characterizing the amount of changes of each type in the class-

evolution profiles. Table 6-2 lists five distinct classifications of evolution behavior,

distinguishing between five levels of intensity of system classes' evolution. The

characters a, r, m, and 5 represent addition, removal, movement, and signature-change

respectively. The subscripts H, M, and L represent High, Medium, and Low respectively.

According to Table 6-2, a period, defined by a "before" version and an "after" version

of an evolving software system, is considered to exhibit intense evolution (type-A) when

a High number of entities are newly created and/or removed in the "after" version, and

there is also a High number of moved design entities and/or signature-changes. The high

number of moves and signature-changes implies that many perfective maintenance

activities are happening during this period. At the same time, the high number of newly

created and/or removed entities is very likely the result of such maintenance activities,

such as adding new fields for the restructured class interface, removing deprecated

methods, etc. It might also be the result of functionality extension.

Type-C periods correspond to restructuring periods. They contain many maintenance

activities that result in a High number of moves and signature-changes, while their

numbers of newly created and/or removed entities remain Medium or Low.

Type-B and type-D periods correspond to functionality-extension periods with

different levels of intensity. Neither includes many perfective maintenance changes.

Type-B periods contain a High number of newly created and/or removed entities. The

136

software system develops rapidly during such periods. Type-D periods, on the other hand,

contain a Medium number of addition and/or removal changes; the system is slowly

developing during such periods.

Finally, type-E periods represent the steady-state periods of system evolution, where

the number of maintenance changes remains Low and the number of other types of

changes is also Low. The system changes little during this time.

These five classifications characterize the volatility of system classes over their

lifecycle. The discrete evolution profile (composed of a sequence of discrete volatility

types) of the CategoryPlot class is shown in the last column of Table 6-1. Compared with

the continuous value profile of CategoryPlot, the discrete view of its profile exhibits

clearly the phases of the CategoryPlot's evolution, which can then be easily analyzed to

discern its sequential evolutionary patterns.

The evolution profile of the CategoryPlot class started with a rapidly developing phase

in which it was introduced into the system with 19 members. It then was under intense

development until version 0.6.0, which was followed by five versions with few (or no)

changes (note that version 0.7.1 is not in the table, since there is no change made to class

CategoryPlot in that version). This steady-state phase ended at version 0.8.0, in which the

class interface was refactored, and was then followed by an intense evolution phase until

version 0.9.0. After that, the class underwent minor changes until version 0.9.5. From

0.9.5, the class entered its most active period over its lifespan. This continuous intense

development resulted in the two restructuring phases in version 0.9.12 and 0.9.13.

CategoryPlot then went into a slowly developing phase, followed by a steady-state phase,

followed by an intense evolution phase again in version 0.9.19, and finally went stable.

6.2 Analyzing class-evolution phases and styles

After the class-evolution profiles have been discretized, a nonparametric sequential

analysis (phasic analysis) [84] is applied to generate a flexible phase map that is

composed of the sequence of discrete change activities. Further gamma analysis [75] of

the class phase maps identifies general ordering relations among the various types of

phases. Finally, optimal matching analysis [1] is applied to discover clusters of systems

classes with similar evolution styles.

137

6.2.1 Phasic analysis

Phasic analysis recognizes distinct phases in the discretized evolution profile of a design

entity, whether it is the system as a whole or an individual class. Intuitively, a phase

consists of a consecutive sequence of system versions, all of which exhibit similar

classifications of change activities. Identifying a phase in a class-evolution profile may

provide some insight regarding the development goals during the corresponding period.

Phasic analysis has been widely applied in longitudinal analysis of temporal processes

of social phenomena. It works with nominal and categorical data and has been

successfully applied in the study of information-system development [84]. It assumes that

social behaviors can be described in units larger than individual acts, which can cohere

into phases or patterns in the developmental path of a social event. These patterns are the

result of dynamics that drive the changes over time [43].

We think of the evolution of software system in analogy to a social event that unfolds

and changes over time, according to some form of underlying process. Systems evolve to

fix defects, meet customer-driven functionality enhancements, adapt to changes in the

deployment environment, and so forth. Thus, we believe that the phasic analysis is a

promising way to understand the general evolution of software systems and their

components and to discover how they are born, developed, and terminated, and the

processes that drive their unfolding.

We use WinPhaser to apply phasic analysis on the discrete evolution profiles.

WinPhaser is a set of sequence description and analysis tools [43] for the study of

sequential data consisting of a time-ordered set of discrete elements. WinPhaser

generates a flexible phase map from a data sequence consisting of discrete data elements.

A phase map is composed of a series of coherent units. WinPhaser's flexible phase-

mapping module parses the data sequence into phases of different length based on shifts

in the data sequence. It labels the phase with the type of predominant elements in that

phase and identifies noisy periods with no predominant elements as pending phases.

Therefore, in our use of WinPhaser, there are six different types of phases that can be

identified in the evolution profiles. They are: Intense evolution, Rapidly developing,

Restructuring, Slowly developing, Steady-state and Pending.

138

6.2.2 Gamma analysis

Gamma analysis [75] recognizes recurring patterns in the relative order of phases in an

evolution profile, such as consistent precedence of a phase type over another. Different

process models advocate distinctive ordering of activities in the project lifecycle; gamma

analysis can reveal such consistent relative orderings and thus hint at the adopted process

model.

In particular, Gamma analysis provides a measure of the general order of elements in a

sequence and a measure of the distinctiveness or overlap of element types. It measures

the proportion of A events that precede or follow B events in a sequence. A pair-wise

gamma is given by P-Q/P+Q, where P is the count of A events preceding B events and Q

is the count of B events preceding A events. Gamma analysis of a sequence yields a table

(see Table 6-5) consisting of pair-wise gamma scores for each possible pair of element

types.

Based on the pair-wise gamma analysis, the precedence and separation scores (see

Table 6-6) are calculated for an element type. The precedence score is given by the mean

of its pair-wise gamma scores. The precedence score indicates the location of the element

in the overall ordering of element types and can range from -1 to 1. A score of 1 occurs in

the beginning of a sequence. A score of -1 occurs at the end of the sequence. The

separation score for an element type is given by the mean of the absolute value of its pair-

wise gamma scores. It is a measure of the relative distinctiveness of the element type and

can range from 0 to 1. Separation approaches 1 as a larger proportion of the units of a

given element type occurs contiguously. An element will obtain a lower separation score

if it occurs at several widely separated points in a sequence.

Gamma mapping is the final step in gamma analysis. Precedence and separation scores

are used to construct gamma maps. Element types are ordered sequentially on the basis of

precedence scores (from largest to smallest). Phases with separation scores below .50 are

not clearly separated from other phases.

Gamma analysis constructs an abstract sequential pattern from a phase map. The

resulting gamma map is simple enough to be used to qualitatively evaluate the overall

class evolution against its underlying development process (see Section 6.4.2) or

139

qualitatively cluster a number of system classes according to their evolution patterns at

this higher-level of abstraction (see Section 6.4.4).

6.2.3 Optimal matching analysis

Optimal matching analysis [1] provides a generic tool for sequence comparison when

each sequence is represented by well-defined elements drawn from an alphabet of a

relatively small set of (repeating) element types. It can be used to recognize how similar

the evolution profiles of two (or more) classes are.

Optimal matching analysis produces an index of the relative "distance" between any

two sequences. This index is the smallest possible cost of operations of insertion,

substitution and deletion of sequence elements required to align two sequences, that is, to

transform one sequence into the other. The more similar the sequences being compared,

the fewer operations required to align them and the smaller the index of distance or

dissimilarity.

Each type of operations should be assigned a cost that represents the difficulty of

making that change [6]. The cost can be thought of as the perceived unlikelihood of the

change having arisen at random in whatever process produced the changed element. For

example, as we discussed in Section 6.1, the steady-state phases of system evolution

represent the time period in which few changes have been made, while rapidly

developing phases represent the major function extension and restructuring phases

represent the system maintenance activities. Therefore, in the cost model for the

alignment of two phase maps of system evolution, the cost to substitute a restructuring

phase with a rapidly developing one should be much higher than that to insert a steady-

state phase, since rapidly developing and restructuring are very different type of phases

by their very nature, but phase type of steady-state is almost equal to nothing.

Furthermore, there are many possible sets of operations to align any two sequences. The

dynamic programming algorithm [98] is applied to calculate the least possible cost for the

alignment.

A single distance index provides only a numerical value for the dissimilarity between

two sequences. In and of itself, this index may not be especially interesting. But typically

a larger set of sequences are compared and the resulting distance matrix can then be

140

subjected to cluster analysis in order to generate a sequence typology, such as different

types of class-evolution styles discussed in Section 6.4.3.

6.3 Detecting co-evolving classes

The class-evolution phases and styles reveal the evolution characteristics of each

individual class throughout the lifecycle of the system. As software systems evolve over a

long time, non-trivial and often unintended relationships among system components arise,

which are frequently undocumented and usually are not easily perceivable in the source

code. A particularly interesting such relationship is class co-evolution: because of

implicit design dependencies sets of classes change in "parallel" ways and recognizing

such co-evolution is crucial in effectively extending and maintaining the system. First,

the system maintainers may decide to restructure the system in order to eliminate this

interdependence, thus evolving it into a more modular and less coupled design.

Alternatively, they may document the interdependence as a predictor of maintenance

activities, so that, when some of the co-evolving classes have to be modified, the rest of

the cluster is also examined and retested.

Given a set of discrete class-evolution profiles, a transaction database is populated,

which is subsequently data-mined using the Apriori algorithm for association-rule mining

[2] to elicit class co-evolution rules among two or more classes. In contrast to Boolean

association rules [9,33,87,110], which concern associations between the change and no-

change of system classes, our class co-evolution rules are fine-grained, which concern

associations between different types of changes, such as the following: "when adding

members to class A, class B also gets additional members too"; or "when adding

members to class A, it is often needed to restructure class B's interface".

For a software system with N versions, a database with N entries is generated from the

discrete class-evolution profiles. Each entry T corresponds to a system version and is

assigned a unique identifier, the version ID (VID); it contains a set of classes that changed

in that version. The modifications of classes in each entry are represented in terms of

their volatility classification (as defined in Table 6-2) in the corresponding system

version: Intense evolution, Rapidly developing, Restructuring, Slowly developing, and

Steady-state.

141

We programmatically use the implementation of Apriori association-rule mining

algorithm in the Weka [130] toolkit. Our initial intention was to integrate the Weka

Apriori implementation within the JDEvAn tool. But this implementation is in-memory

and does not scale well for medium or large software systems, such as the ones in our

case studies that involve several dozens of system versions, with thousands of classes,

with each class-version belonging in one of five types of volatility. This data set can

easily use up the Java virtual-machine memory.

To address this scalability issue, we used a data-reduction technique [40] by

abstracting our original categorical volatilities to a higher conceptual level. More

specifically, based on the nature of the different types of discrete change activities, when

constructing the transaction database for class co-evolution analysis, we consider the

rapidly and slowly developing (Type-B and Type-D) periods as instances of a general

function-extension category; at the same time, we consider intense-evolution and

restructuring (Type-A and Type-C) periods as instances of a refactoring category. Since a

steady-going period indicates that there are few changes, it is ignored (considered as no-

change) when building the class co-evolution database for mining co-evolution patterns.

Therefore, the volatilities of classes in each database entry fall into three categories:

function-extension, refactoring, and no-change.

The reduced representation of the data resulting from this classification-abstraction

step is smaller in volume while still reflecting the nature of the original data. It reduces

the memory cost of the Weka's implementation of Apriori association rule mining

without substantially compromising the effectiveness of the analysis. Nevertheless, the

risk of running out of memory still exists for large software systems or at low mining

thresholds. Furthermore, the co-evolution rules that hold at higher conceptual level may

not hold at lower levels of abstraction. Finally, a post-processing may be necessary to

infer more details about the discovered rules. To address these issues, OLAP (On-line

Analytical Processing) [94] may be used, to enable mining multi-level class co-evolution

rules on large software system.

We briefly discuss the Apriori association rule-mining algorithm here. Readers are

referred to the original paper [2] for details. Given a transaction database, the Apriori

algorithm generates all association rules with at least some user-specified minimum

142

support and confidence. The algorithm involves two sub-problems. First, it generates all

sets of items (itemsets) that have transaction support above minimum support. The

support for an itemset is the number of entries that contain the itemset. Itemsets with

minimum support are called large itemsets and all others are small itemsets. Next, the

large itemsets are used to generate the desired rules. The general idea is that, if ABCD

and AB are large itemsets, then the rule AB => CD holds if its confidence, i.e., the ratio

support(ABCD)/support(AB) is greater than the user-specified minimum confidence.

Note that the rule will surely have minimum support because ABCD is large.

The Weka toolkit also supports a significance test on the generated confidence-based

rules. The confidence-based rules, so-called strong rules, may not be interesting to the

user, since the antecedent and consequent may be negatively associated, which means

that the occurrence of one of them may decrease the likelihood of the occurrence of the

other. The lift [40] metric can be used to measure the statistical dependence (correlation)

between the occurrences of itemsets. If the lift value of significant test on a strong rule is

less than one, then the occurrence of the antecedent of the strong rule is negatively

correlated with (or discourages) the occurrence of the consequent. If the lift value is

greater than one, then it means the occurrence of the antecedent implies the occurrence of

the consequent. If the lift value is equal to one, then the antecedent and consequent are

independent and there is no correlation between them.

Because the transaction database for class co-evolution analysis is built on the design

changes reported by UMLDiff, which are classified into the function-extension or

refactoring categories, mining this database with Apriori produces the following types of

class co-evolution rules:

• class function-extension(s) => class function-extension(s)

• class function-extension(s) => class refactoring(s)

• class refactoring(s) => class function-extension(s)

• class refactoring(s) => class refactoring(s)

143

Table 6-3. Transaction database for association-rule mining

V01
V02
V03
V04
V05
V06
V07
V08
V09
V10
Vl l
V12
V13
V14
V15
V16
V17

CI
D

T

D
T

D

C2
D

T
D

T

T

T

C3
D

T

D

T

T

T

C4
D

T

T

T

T

C5

D
T

T

T

T

C6
D

T

D
T

D

C7

D

T

T

D

C8
D

T

T

T

D

C9

D

T

T

T

Let us consider a system with 17 versions, whose final version contains 9 classes, CI

through C9. Table 6-3 shows the transaction database for this example system in the form

of a pivot table. For this transactional data, if the minimum support is set to 20% and the

minimum confidence to 50%, the following co-evolution rules are discovered (with lift

value of significant test greater than one).

• C1=D (3) => C6=D (3) [confidence^]

• C6=D (3) => C1=D (3) [confidence^]

The number in bracket following the antecedent and consequent of the rule is the

support value of large itemset. These two rules state that, in three different versions, both

classes CI and C6 were similarly modified, with new feature additions and/or old feature

removals. This is essentially evidence that the two classes have parallel function-

"D" represents function-extension, "T" represents refactoring, and empty cell

represents no-change.

144

extension phases throughout their lifecycle. Additional concrete examples are discussed

in Section 6.4.4.

6.4 Evaluation

In this section, we used JFreeChart [126] as the subject system to evaluate our

longitudinal design-evolution analysis methods. More specifically, this case study was

designed to examine the following specific research questions, refining the general

research questions, stated in the beginning of this chapter:

• How are classes introduced to, maintained, and eliminated from the system?

• Are there any consistent order relations among the various class-evolution phases?

Do they appear periodically?

• Are there distinct styles of multiple class-evolution trajectories?

• Are there any interesting inter-dependencies among the evolution trajectories that

individual classes follow?

6.4.1 Class-evolution phases

First, we review the characteristics of the evolution phases of individual system classes.

In particular, we are interested in "how are classes introduced to, maintained and

eliminated from the system?" Over the life span of JFreeChart, 1122 classes and

interfaces (including inner classes and interfaces but not anonymous classes) appeared in

the system. The evolution profile of each of these classes was analyzed and Table 6-4

reports the number of different types of phases in their evolution profiles.

Table 6-4. The summary of evolution phases in JFreeChart

Start with
In the middle
End with
Remove with

Intense
evolution

9
87
15
11

Rapidly
developing

325
47

199
176

Restructuring

15
654

16
9

Slowly
developing

706
197
269
225

Steady-
state

67
1530
623

16

A "Start with" phase is the first phase of the class lifecycle, following its introduction

to the system. An "End with" phase is the last phase of the class. If a class happens to be

145

removed from the system - either before or at the last version of the system - its "End

with" phase is also a "Remove with" phase; that is, "Remove with" phases are a subset of

"End with" phases. All other class lifecycle phases, between the "Start with" and "End

with" phases of classes are "In the middle" phases.

6.4.1.1 How are classes introduced into system?

Most classes (773 out of 1122, about 69%) were introduced into the system with an initial

slowly developing or steady-state phase. These classes include demo classes (used to

demonstrate features such as how to use CategoryPlot), JUnit classes, change-event classes

(encapsulating information about a change to a particular chart) and their corresponding

listener interfaces, utility classes (with static methods and/or public constants to be used

by other classes), high-level interfaces, simple classes and subclasses of almost fully

implemented abstract classes. With few exceptions, these classes were simple, they did

not incorporate too much application logic, and they did not change much after their

introduction to the system.

About 29% (325) classes were introduced into system with a rapidly developing phase.

They were almost all the core objects of JFreeChart system, which include all the

important components of a chart object, such as plot, axis, renderer, title, legend, and

concrete dataset. In general, these classes were much more complex than most of the

classes introduced with a slowly developing or steady-state phase. They were frequently

modified over their lifecycle for function extension and/or restructuring.

6.4.1.2 How do classes evolve after their introduction to the system?

After their introduction into the system, most classes and interfaces went through steady-

state phases (1530 out of 2509, about 61%). Only a small fraction (244 out of 2509, about

10%) of phases that classes went through are rapid or slow development phases,

indicating function extension. Intense evolution and restructuring phases account for the

rest 30% phases of class evolution. The classes that are introduced later are more likely to

have intense evolution, rapid development, and restructuring phases.

Based on this data, it seems that the JFreeChart system classes and interfaces had most

of their functionalities ready in the beginning of their evolution, and afterwards they were

sometimes extended with new features, but they were most often restructured to better fit

146

in the whole system. There can be two explanations for this phenomenon. JFreeChart

may have been developed following a design-driven development process, with a detailed

requirement analysis and high-level system design upfront. Having made all this analysis

in the beginning, the JFreeChart developers would know what architecture to adopt, what

functionalities to support and how to implement them. A more agile development process

would exhibit a more incremental function-extension development style. On the other

hand, it could be that distinct modules delivering well-defined features are contributed by

individual developers, who do their incremental development outside the project

repository. Once the modules are mature, they are added into system and then they do not

or rarely evolve any more. This latter type of process would be more in tune with the

overall open-source development model, where individuals develop "patches" that are

submitted to the project maintainers and are included only after they have been

thoroughly tested.

6.4.1.3 When do classes disappear and where do they go after they are removed?

Most of the system classes went gradually into a steady state, since about 55% (623 out

of 1122) of the evolution profiles of classes and interfaces ended up with steady-state

phases in the most recent system releases. Interestingly, the classes that ended with active,

rapidly developing, restructuring, and slowly developing phases were mostly removed

from the system (see the fourth row of Table 6-4). This phenomenon indicates that as

long as the classes and interfaces still exist in the system, they undergo fewer and fewer

modifications and eventually become stable.

Finally, let us look more closely at these fairly rare classes and interfaces that exhibited

intense evolution or restructuring phases in the beginning and/or at the end of their

lifecycle. Some of them were "legacy" classes [102]: they were introduced into the

system as placeholders for fields and methods moved in from other classes. Some were

"die-hard" classes [102], i.e., they were removed from the system when their

functionalities were moved out to other classes. These types of classes represent evidence

of redistribution of functionality or reorganization of the class hierarchy.

Several distinct types of legacy classes were identified in JFreeChart. Some of them,

such as ChartPanelConstants, were the product of extracting constants into an interface.

147

Others, such as PlotRenderlno or ObjectTable, were the result of extract class or extract

superclass refactoring. Finally, yet other legacy classes, such as AxisLocation, were the

product of even more complex refactorings, such as replace type code with class.

Several classes, such as Vertical/HorizontalCategoryAxis, Vertical/HorizontalCategoryPlot,

were removed from system in version 0.9.9. They ended up with intense evolution or

restructuring phases. These classes exhibited similar evolution profiles to each other as

discussed in Section 6.4.4. Such evolution similarity implies that the vertical and

horizontal sibling subclasses of CategoryAxis and CategoryPlot most likely do similar

things in a similar or even exactly the same manner. In fact, before version 0.9.9, there

existed parallel Plot, Axis and Renderer hierarchies in the JFreeChart system. This fact

caused a lot of code duplication into the system, which is among the most common "bad

smells" in software systems. In version 0.9.9, the JFreeChart developers made some

important changes to the system design, one of which is to redevelop the Plot, Axis, and

Renderer hierarchies, which resulted in the above vertical and horizontal axis and plot

classes becoming die-hard classes.

We also found several pairs of die-hard and legacy classes, such as Crosshairlnfo in

version 0.9.16 and CrosshairState in version 0.9.17. These pairs are the results of renaming

and moving classes and interfaces at the same time. As we have already discussed, to be

more efficient, UMLDijf ignores synchronous renamings and moves of entities: this

would require the pair-wise comparison of all the not-yet-mapped model elements, which

would be very inefficient. However, such renaming-and-moves are very likely to be

recovered by querying for pairs of die-hard and legacy classes.

6.4.2 Relative order of evolution phases

Gamma analysis examines the relative order of the various phase types in the class

evolution profiles, in order to reveal any consistent relative-ordering relations between

them. For example, according to the agile-development lifecycle, function-extension

phases should be interleaved with refactoring phases. If a project follows an agile-

development style, then gamma analysis should reveal that rapidly and/or slowly

developing phases are followed by intense evolution and/or restructuring phases and they

appear periodically.

148

Table 6-5. Pair-wise gamma scores of class Axis

Intense evolution
Rapidly developing
Restructuring
Slowly developing
Steady-state

Intense
evolution

0.000
-1.000
0.750
0.000
0.579

Rapidly
developing

1.000
0.000
1.000
1.000
1.000

Restructuring

-0.750
-1.000
0.000

-0.750
-0.105

Slowly
developing

0.000
-1.000
0.750
0.000
0.474

Steady-
state

-0.579
-1.000
0.105

-0.474
0.000

Table 6-6. Separation and precedence scores of class Axis

Separation
Precedence

Intense
evolution

0.582
0.082

Rapidly
developing

1.000
1.000

Restructuring

0.651
-0.651

Slowly
developing

0.556
0.056

Steady-
state

0.539
-0.487

Take the class Axis as an example. The pair-wise gamma scores are computed for each

possible pair of phase types as shown in Table 6-5. Table 6-6 shows the corresponding

precedence and separation scores for five phase types. Finally, the gamma map of the

Axis' evolution profile is:

<Rapidly developing, Intense evolution, Slowly developing, Steady-state,

Restructuring>.

The gamma map displays the phase types in their precedence order. The separation

scores of all five phase types are greater than 0.50, which means that all these phase types

are sufficiently distinct from each other. The Gamma map abstracts the overall sequential

pattern from a phase map. In the case of the Axis class, refactoring (i.e. intense evolution

or restructuring) phases follow the function-extension (i.e., rapidly or slowly developing)

phases. In [103], we studied the evolution phases of Mathaino project [92] - a research

project developed by a single developer using a refactoring-driven process, and we

observed the similar interweaving phenomena between function-extension and

refactoring phases at the system level.

In addition to the relative order of evolution phases of individual system classes, we

are also concerned with how the two types of evolution phases followed each other for all

the system classes as a whole.

149

6.4.2.1 How frequently should the classes be refactored in JFreeChart system?

Refactoring phases are interjected in the system-development lifecycle to keep the system

design from deteriorating after adaptations in support of function extension. However, in

practice, different projects inject in their process refactoring phases with different

frequency. The question then becomes, for a given project how frequently should the

developers attempt to refactor it?

s
•I

150 r
140 •
130
120 •
110 •
100 •
90 •
80
70 •
60
50 •
40 •
30 •
20 •
10
0 L

0 2 4 6 8 10 12 14 16 18 20 22 24
interval

Figure 6-1. Refactoring frequency

Figure 6-1 summarizes the restructuring frequency of JFreeChart's class evolution.

The horizontal axis represents the interval between two refactoring phases or the number

of rapidly developing, slowly developing and steady-going phases before the first

refactoring phase, while the vertical axis show how many times refactoring are made at a

particular interval.

As shown in Figure 6-1, there are 107 times that a refactoring phase immediately

follows a previous refactoring phase, at interval 0. Note that 9+15 of them are instances

of classes that start with intense evolution or restructuring phases (see Table 6-4).

Therefore, there are actually 83 instances of consecutive refactoring phases. In addition,

there are 139 refactoring phases separated from another refactoring phase with only one

phase of another type (most frequently a slowly-developing or steady-state one). These

222 (about 29% out of total 771) close refactoring phases represent almost continuous

150

refactoring work of a small set of related classes over a short time period. For example, in

JFreeChart, tooltips and label-related features are continuously refactored from version

0.9.16 to 0.9.20.

There are 318 refactoring phases that are separated by five or more phases of other

types. Close inspection revealed that about 190 out of 318 (about 24% of the total 771)

refactoring phases are the result of three major package splits. This is not surprising,

given that a phase is considered as "restructuring" as long as the corresponding class is

renamed or moved in that phase, irrespective of what other types of changes it has also

suffered. Therefore, only 128 cases (about 16% of total 771) involve refactoring activities

really far apart of each other.

In about 30% of the 771 cases, refactoring phases are separated from each other with

two to four phases of other types.

Given the consistently frequent refactoring phases in the JFreeChart classes, which

may be the result of an established practice or even an explicit project policy, a new

JFreeChart developer would likely be advised to refactor a class, after no more than four

consecutive function-extension phases. This project-specific advice - although by no

means definitive — is very important and should be recovered and presented to the

developers in the context of a particular system.

6.4.3 Class-evolution styles

We applied optimal matching analysis to compute the pair-wise similarity of any two

class evolution profiles in a numerical distance index. The resulting distance matrix was

then subjected to cluster analysis in order to generate the groups of classes with similar

evolution styles. This analysis revealed several similarly evolving clusters of classes.

The first, and most obvious, clusters correspond to the demo and the JUnit test classes.

As discussed in above section, in general, these classes were simple and they did not

change much after their introduction into the system.

There are three much more interesting clusters of classes, each one exhibiting a distinct

evolution style: shorted-lived classes, idle classes, and active classes.

Short-lived classes: The characteristic of the clusters of short-lived classes is that they

exist only in a few versions of the system and then disappear. There exist groups of

151

classes with very short lives, such as for example, ObjectTable and its subclasses that were

introduced in version 0.9.9 and were removed in the following version 0.9.10, and

DataSource and its subclasses that existed only in the first version, 0.5.6, and then

disappeared in version 0.6.0. These classes were actually moved to a related library,

JCommon [127].

The more interesting short-lived classes are such classes as VerticalDateAxis, and

VerticalColorBarAxis and HorizontalLogarithmicColorBarAxis and VerticalLogarithmicColorBarAxis.

They were introduced into system in version 0.9.5. They actually contained almost the

same fields and methods as the classes HorizontalDateAxis and HorizontalColorBarAxis

respectively. They also exhibited very similar efferent and afferent usage to the

HorizontalDateAxis and HorizontalColorBarAxis classes respectively. Few changes were made

to them since their introduction into the system, and these duplicate classes were finally

removed in version 0.9.9 where the major development was done to redevelop the axis,

plot, and Tenderer hierarchy to remove the parallel inheritance (see Section 6.4.4).

Idle classes: The major characteristic of the idle-classes' clusters is that they rarely

undergo changes after their introduction into system. There were several distinct types of

idle classes discovered in JFreeChart. First, there were some stand-alone utility classes.

Second, root abstract classes and interfaces were mostly idle. An exception was the root

abstract classes of axis, plot, and renderer hierarchies, such as class Axis, CategoryPlot,

AbstractRenderer, are, in fact, active. Third, concrete subclasses of almost fully-developed

abstract superclasses tend to be idle. For example, the strategy pattern was applied to the

needle classes used by the CompassPlot class. The abstract superclass MeterNeedle was

well-defined and all its subclasses only need to override the drawNeedleO method to

provide different algorithms to draw different shapes of needles. These subclasses rarely

changed after they were added to the system. Finally, some features contributed together

by the same author were rarely modified after they were introduced into system. For

example, the classes ContourValuePlot, StandardContourToolTipGenerator, ContourEntity,

ContourToolTipGenerator, and ContourDataset were added in version 0.9.5, contributed by a

single author who probably tested them thoroughly before adding them to the system.

Active classes: Active classes keep being modified over their whole lifespan. We

already discussed the fact that many of the core components of JFreeChart system were

152

active classes. Since JFreeChart is still under active development, it should be normal

that these core classes are still volatile and undergo substantial modifications.

6.4.4 Class co-evolution

Frequently sets of classes exhibit "parallel" evolution profiles, due to hidden inter-

dependencies among them, not necessarily visible when examining their relations at the

design stage. A simple indicator of the co-evolution symptom can be obtained by

qualitatively clustering together classes that exhibit similar gamma maps.

Table 6 7. VerticalCategoryAxis vs. HorizontalCategoryAxis

(a) Evolution profiles

Version
0.5.6
0.6.0
0.7.4
0.9.0
0.9.3
0.9.4
0.9.5
0.9.7
0.9.9

VerticalCateqoryAxis
Add

8
2
3
0
0
0
5
0
0

Remove
0
0
0
0
0
0
1
0

10

SigCha
0
0
1
0
0
2
5
1
0

Move
0
0
0
0
0
0
1
0
7

HorizontalCateqoryAxis
Add

11
2
1
3
3
1
6
1
0

Remove
0
0
0
0
0
0
2
0

10

SigCha
0
0
1
0
0
3
5
1
0

Move
0
0
0
0
0
0
1
0

16

(b) Gamma maps

VerticalCategoryAxis

HorizontalCategoryAxis

Gamma map
Slowly developing
Steady-state
Restructuring
Intense evolution
Rapidly developing
Slowly developing
Steady-state
Restructuring
Intense evolution

Consider for example, the classes VerticalCategoryAxis and HorizontalCategoryAxis: their

evolution profiles are shown in Table 6-7 (a) and their corresponding gamma maps are

shown in Table 6-7 (b). Inspecting their gamma maps, as a high-level abstraction of their

153

evolutionary patterns, it is evident that their evolution paths are very similar. The only

difference between their gamma maps is that class HorizontalCategoryAxis started with a

rapidly developing phase. Next, they both had slowly developing phases, followed by

steady-state phases, followed by restructuring phases, and they finally ended up with an

intense evolution phase.

An exact similar behavior is also found in the plot and renderer hierarchies, as shown

in Table 6-8 by the evolution profiles of the classes VerticalCategoryPlot and

HorizontalCategoryPlot.

Table 6-8. The evolution profiles of VerticalCategoryPlot vs. HorizontalCategoryPlot

Version

0.5.6
0.6.0
0.7.1
0.7,2
0.7.3
0.7.4
0.8.0
0.9.0
0.9.3
0.9.5
0.9.7
0.9.9

VerticalCategoryPlot
Add

18
4

2
0
0
0
0
4
0
1
0
0

Remove
0
0
0
0
0
0
3
3
0
5
0
9

SigCha
0
7
6
1
1
1
4

10
5
2
1
0

Move
0
0
0
0
0
0
2
2
0
1
0
5

HorizontalCategoryPlot
Add

18
2
2
0
0
0
0
3
0
1
0
0

Remove
0
1
0
0
0
0
2
2
0
3
0
9

SigCha
0
4
4
1
1
1
4

12
5
2
1
0

Move
0
0
0
0
0
0
2
2
0
1
0
5

However, such qualitative clustering is likely to miss important distinctions among

larger collections of complex sequences. In such cases, data-mining technique, such as

the one discussed in Section 6.3, can be applied to recover and make explicit such

"hidden knowledge". By applying association-rule mining, we discovered an interesting

set of co-evolving classes that consists of the (a) CategoryPlot, HorizontalCategoryPlot and

VerticalCategoryPlot and their subclasses, (b) BarRenderer, VerticalBarRenderer and

HorizontalBarRenderer and their subclasses, and (c) CategoryAxis, DateAxis, NumberAxis,

SymbolicAxis and their corresponding horizontal and vertical axis subclasses. We also

discovered some less remarkable sets of co-evolving classes, such as for example Plot and

Axis. They exhibit three types of co-evolution:

154

• Function-extension => function-extension

• Refactoring => refactoring

• Function-extension => refactoring

We discuss concrete examples for different types of co-evolution in the following

subsections. The data-mining algorithm also produced some co-evolution rules of type

refactoring => function-extension. However, after closely inspecting the participants of

these co-evolution relationships, we believe that they are most likely accidental.

6.4.4.1 Parallel function extension

The system we used in Section 6.3 to illustrate the co-evolution detection process is

actually a snippet of the evolution profiles of the BarRenderer class and its subclasses.

Among them, CI is VerticalBarRenderer, and C6 is HorizontalBarRenderer, which are

responsible for the drawing of bars in horizontal and vertical category plot respectively.

They are both direct subclasses of the BarRenderer class. Table 6-9 shows their evolution

profiles side by side. The column (from left to right) represents the number of changes,

i.e., addition, removal, signature-change and movement (including class move)

respectively. As we can see, these two classes exhibit almost the exact same types and

amount of changes in each version.

Table 6-9. VerticalBarRenderer vs. HorizontalBarRenderer

Version
0.6.0
0.7.1
0.7.3
0.8.0
0.9.0
0.9.2
0.9.4
0.9.5
0.9.7
0.9.8
0.9.9

VerticalBarRenderer
Add

6
0
1
1
2
0
2
0
0
0
0

Remove
0
0
0
0
0
0
0
2
0
0
6

SigCha
0
1
0
3
2
1
0
5
2
1
.0

Move
0
0
0
2
0
0
0
3
0
0
2

h
Add

6
0
1
1
2
0
2
2
0
0
0

orizontalBarRenderer
Remove

0
0
0
0
0
0
0
2
0
0
9

SigCha
0
1
0
3
2
1
0
6
2
1
0

Move
0
0
0
2
0
0
0
1
0
0
1

155

Furthermore, the association-rule mining algorithm produces the following rules with

high value of support and confidence:

VerticalBarRenderer=D (3) => HorizontalBarRenderer=D (3) [confidence^]

HorizontalBarRenderer=D (3) => VerticalBarRenderer=D (3) [confidence^]

These rules indicate that when adding and/or removing features from class

VerticalBarRenderer, the developer always (the confidence of these rules is equal to one)

performed similar modifications to the HorizontalBarRenderer class, and vice versa. For

example, both of them were introduced into the system in version 0.6.0, and they are both

removed in version 0.9.9. In version 0.9.4, constructors that take as input parameters of

type CategoryURLGenerator and CategoryToolTipGenerator were added to both classes. In

version 0.9.9, the methods barWidthsPerCategoryO, hasltemGapsO, and drawRangeMarker()

were removed from both of them. Clearly, these two sibling classes exhibit the type of

function-extension => function-extension co-evolution.

6.4.4.2 Parallel refactoring

Let us look at another type of co-evolution. VerticalBarRenderer, VerticalBarRenderer3D and

StackedVerticalBarRenderer3D. VerticalBarRenderer3D extends VerticalBarRenderer and is

responsible for drawing vertical bars with 3D effect. StackedVerticalBarRenderer3D extends

in turn VerticalBarRenderer3D. Table 6-10 lists their evolution profiles. They have

undergone very similar changes, and Apriori mining discovers the following association

rules based on their evolution profiles:

VerticalBarRenderer3D=T (3) => StackedVerticalBarRenderer3D=T (4) [confidence^]

StackedVerticalBarRenderer3D=T (4) => VerticalBarRenderer3D=T (3) [confidence=0.75]

VerticalBarRenderer=T (3) =>

VerticalBarRenderer3D=T (3), StackedVerticalBarRenderer3D=T (4) [confidence^]

These association rules imply that in three out of four times that the interface of class

VerticalBarRenderer3D was modified, die interface of its subclass

StackedVerticalBarRenderer3D was also refactored. In addition, in three out of four times

that the class VerticalBarRenderer was refactored, the interface of its subclasses,

VerticalBarRenderer3D and StackedVertcalerticalBarRenderer3D (indirectly extends) were also

modified.

156

Table 6-10. VerticalBarRenderer, VerticalBarRenderer3D, StackedVerticalBarRenderer3D

Ver

0.6.0
0.7.1
0.7.3
0.8.0
0.9.0
0.9.1
0.9.2
0.9.4

0.9.5
0.9.7
0.9.8
0.9.9

VerticalBarRenderer
Add

6
0
1
1
2
0
0
2

0
0
0
0

Remo
0
0
0
0
0
0
0
0
2

0
0
6

SigC
0
1
0
3

^ 2
0
1
0
5
2
1
0

Move

0
0
0
2
0
0
0
0
3
0
0
2

Vertical BarRenderer3D
Add

5
0
0
0
7
0
0
0

14
2
0
0

Remo

0
0
0
0
0
0
0
0
5
0
0

22

SigC

0
1
0
2
1
0
0
1

10
3
1
0

Move

0
0
0
0
0
0
0
0
1

0
0
1

StackedVerticalBarRenderer3D

Add

5
0
1
0
0
0
0
0
1
0
0
3

Remo

0
0
0
0
0
0
0
0

3
0
0
0

SigC

0
1
0
2
1
0
0
0
6
2
1
6

Move

0
0
0
0
0
0
0
0
2
0
0
0

In particular, in version 0.8.0, VerticalBarRenderer started extending the BarRenderer

class and implementing the Category Item Renderer interface. However, in its previous

version, it extends and implements nothing (that is, extends java.lang.Object). In the same

version, its method drawBarO was renamed to drawCategoryltemO- The drawBarO method of

VerticalBarRenderer3D and StakcedVerticalBarRenderer3D were also renamed to

drawCategoryltemO- Furthermore, depending on inheritance-hierarchy transitive closure,

UMLDiff is able to report that these two subclasses also started implementing the

CategoryltemRenderer interface in version 0.8.0. In addition, all these renderer-related

classes were moved in a newly created package com.jrefinery.chart.renderer in version 0.9.5.

Finally, in version 0.9.7, the signature of the drawltemO method of all these three classes

was modified to take as input a parameter of type KeyedVAIues2DDataset, instead of its

earlier parameter of type CategoryDataset. Moreover, VerticalBarRenderer started to

implement interface java.io.Serializable in version 0.9.7, which affects the interface of its

subclass VerticalBarRenderer3D. Two new methods, readObjectO and writeObjectO, were

added to VerticalBarRenderer3D, and in addition, its field wallPaint was declared to be

transient in this version.

This set of changes indicates the strong re]factoring => refactoring co-evolution

relation between a superclass and its subclasses.

157

6.4.4.3 Parallel function extension and refactoring

Apriori also identified interesting co-evolutions of classes in different parts of the

inheritance hierarchy. The classes in this example are unlike the previous two examples,

in that they have substantially different identifiers that make their "accidental" discovery

even more unlikely. For example:

Plot=D (4) => Axis=T (10) [confidence=0.5]

These are the root abstract classes of the plot and axis hierarchies respectively. All plot

objects implement, directly or indirectly, the methods of the Plot class. Plot objects control

the drawing of Axis objects. They hold the instances of Axis objects and the attributes,

such as location, space, offset, of axis, and delegate the actual drawing to Axis objects.

Therefore, the changes made to the Plot class frequently affect the interface of the Axis

class. For example, in release 0.9.10, two methods that take as input a parameter of type

AxisLocation were removed from the Plot class and corresponding methods that take as

input a RectangleEdge parameter were added. Consequently, several methods in Axis class,

drawQ, getLabelEnclosureO, drawLabelO, reserverSpaceQ, and refreshTicksO had their

signatures changed to use the parameter of RectangleEdge instead of AxisLocation. This is

an example of the function extension in one part of system class model resulting in the

refactoring in some other part of hierarchy.

Such function-extension => refactoring rules indicates an intentional interdependency

between classes, which requires certain classes to be modified in this particular way. In

this sense, the detection of fine-grained class co-evolution can serve as a design-recovery

tool that elicits the implicit (possibly not well-documented or even lost) interdependency

between classes.

6.4.4.4 Discussion on parallel-inheritance co-evolution

The elegance of the data-mining method is that it can quickly bring to surface the

interesting patterns, which can focus the developers' attention directly to a potentially

problematic area.

The parallel refactoring class co-evolution may be necessary, since the developer is

trying to change the class interface, which probably should ripple up to the superclass and

down to the subclasses in order not to break the collaboration with other classes. The

158

function-extension co-evolution between sibling classes may indicate a potentially

intentional co-evolution. The developers should be advised that if they add and/or remove

some features from one of such sibling classes, they probably should also look at the

other one in order to keep the interface consistent.

However, if refactoring the interface or extending the features of some classes often

means that the developers have to perform similar changes in some of its sibling classes,

such as those render classes we discussed in the above sections (please note that the

similar cases exist also for the plot and axis hierarchy), this is most likely a good

indicator that there is something wrong with the design of the involved classes, or even

the overall relevant hierarchy. Such co-evolution means that sibling classes do similar

things in a similar or even exactly the same manner. This would introduce a lot of code

duplication into the system, which is among the most common "bad smells" in software

systems. As the system evolves, it may cause more and more maintenance efforts, since

when a change is necessary, all of them have to change in a similar manner. Even worse,

such hidden relations are easily lost due to the team-member turnover and they are hard

to impart to the new members.

The existence of such large amount of co-evolution within the Plot, Axis, and Renderer

hierarchy strongly suggests that there may exist multiple parallel inheritance hierarchies

in the JFreeChart system, which is validated by the major design changes made for the

release 0.9.9. In version 0.9.9, the JFreeChart developers redesigned the Plot, Axis, and

Renderer hierarchies, which are captured by UMLDiff and our refactoring-detection

process:

• The classes HorizontalCategoryPlot and VerticalCategoryPlot were removed and

became "die-hard" classes [102], i.e., some of their members, such as renderO,

handleClickO, were pulled up into the superclass CategoryPlot. Some methods of the

CategoryPlot class had their parameter list extended with one more parameter of

PlotOrientation type, which was just added in this release.

• OverlaidVerticalCategoryPlot (there is no OverlaidHorizontalCategoryPlot) was renamed

into OverlaidCategoryPlot to keep the naming convention consistent.

• The classes HorizontalCategoryAxis and VerticalCategoryAxis were removed and they

too became die-hard classes. Some of their members were merged into the

159

superclass CategoryAxis. The same changes were made to HorizontalDateAxis and

VerticalDateAxis and their superclass DateAxis.

• Class HorizontalLogarithmicAxis was rename as LogarithmicAxis, and

VerticalLogarithmicAxis was removed. A similar change was made to horizontal and

vertical SymbolicAxis and ColorBarAxis.

• Class HorizontalBarRenderer and VerticalBarRenderer were removed and their

subclasses, Horizontal/VerticallnternalBarRenderer,

HorzontalA/erticalStatisticsBarRenderer, StackedVertical/HorizontalBarRenderer were

merged into IntervalBarRenderer, StatisticalBarRenderer, StackedBarRenderer

respectively, which extend BarRenderer directly in this release. For example, the

VerticallntervalBarRenderer class was renamed to IntervalBarRenderer, and

HorizontallntervalBarRenderer was removed.

All these recovered design changes indicate that the JFreeChart developers became at

some point aware of the existence of separate horizontal and vertical hierarchies, and in

release 0.9.9, they made a great effort to reorganize the Plot, Axis, Renderer hierarchies and

to eliminate the parallel inheritance and to reduce duplicate code. These design changes

constitute evidence of suggestions that our longitudinal design-evolution analysis could

have provided, based on its discovery of design-evolution smells, which could have been

quite helpful.

6.5 Summary

In this chapter, we studied the longitudinal evolution of object-oriented software systems

with three sequential-pattern analyses and the association-rule mining method. These

longitudinal analyses rely on the design changes reported by UMLDiff. Our study showed

that there exist distinct evolution phases with coherent evolution behavior in the

evolution of the system and its classes. They exhibit repetitive patterns in their relative-

order relations, consistent with the adopted development process. The classes

demonstrate distinct evolution styles characteristic of their roles in the system. As

software systems evolve over a long time, non-trivial and often unintended inter-

dependencies among system classes arise, because of implicit design dependency or

evolution smells. These longitudinal analyses facilitate the overall understanding of

160

system evolution, help to recognize system instabilities, and provide support regarding

the scope of future maintenance activities. Together with recognizing design-change

patterns, such as refactorings, they constitute a solid base for mentoring object-oriented

evolutionary development, based on learned experiences from past evolution activities.

161

Chapter 7: Exploring Design Evolution Concerns

Software system usually grows in size and complexity as it evolves over time [58]. The

developers face increasing difficulties in comprehending the system design and its rapid

evolution, since the amount of information is overwhelming. The top-down style of

[29,35,57,110] visualization does not work very well to precisely capture the changes and

their underlying motivations since they generally start with an overview of the whole

subject system and assume their users to be able to drill down to the interesting parts of

the system evolution.

This is why, in our work, we have adopted a bottom-up approach to design-evolution

analysis. First, the elementary design changes are detected by UMLDiff algorithm, based

on which, a suite of longitudinal evolution analysis methods [1,2,75,84] and a set of

refactoring-detection queries are then applied to recognize interesting evolution concerns

(i.e., evolution phases and styles, co-evolving software artifacts, and refactorings) in the

evolution history of individual system classes, clusters of classes and the system as a

whole. In this chapter, we introduce our visualization component - JDEvAn Viewer21.

Given the key participant model elements and relations of an evolution concern, a so-

called core evolution concern, JDEvAn Viewer visualizes them with change tree and

UML class diagram, and it supports developers to interactively create, explore and

maintain the recovered evolution concerns they are interested in.

The software developers start with the minimum amount of information about the core

evolution concerns. Then, they can iteratively augment the core evolution concerns with

the relevant model elements, their relations, and their changes by querying logical models

and their evolution history and by determining which model elements and relationships

returned as part of the queries contribute to the concerns of their interest. In this manner,

they incrementally build up their knowledge about what has been changed, how and why.

Figure 7-1 displays such a snapshot, at some point in our investigation process, of two

sets of co-evolving classes and the refactorings that address these co-evolution smells.

21 The JDEvAn Viewer has been implemented as an Eclipse plugin and it relies on the

Eclipse GEF (Graphical Editor Framework) [117]

162

Figure 7-1. A screenshot of JDEvAn Viewer

7.1 The JDEvAn Viewer

Let us now discuss in detail die features of the JDEvAn Viewer, which enable its users to

create, manipulate and maintain the design-evolution concerns.

7.1.1 Presenting design-evolution concern

JDEvAn Viewer divides the screen into three areas: the main panel visualizes the UML

diagram consisting of the concern elements, relations, and their changes, the bottom-left

Outline view depicts the same diagram in a tree view or thumbnail display, and the

bottom-right Properties sheet displays the detailed properties of the selected element or

relation.

163

The Outline view can switch between tree mode and thumbnail mode, whose main

purpose is to facilitate the navigation of large diagrams. The tree mode presents model

elements and their changes in a containment change tree [104]. The trees are easier to

layout and navigate than the diagrams, which makes it easier to locate an element. The

JDEvAn Viewer synchronizes its main diagram display and its tree outline so that

selecting an element in the outline tree reveals and highlights the corresponding visual

part in the main display, and vice verse. The thumbnail outline shows the thumbnail

display of the main display area, in which the user can drag and move a shadow window

to quickly reveal parts of the main diagram.

In JDEvAn Viewer, all the model elements and relations being visualized are

selectable from either the main display diagram or the tree outline view. When an

element/relation is selected, its detailed model and change information can be inspected

in the Properties view with a [Property, Value] table. Different types of elements and

relations may have slightly different properties sheet. In Figure 7-1, for example, the

renamed class ColorBar is selected. Its corresponding properties sheet lists its element type,

visibility, name, UMLDiff status, unique ID in JDEvAn database, incoming and outgoing

relations from and to other elements, and its location and size in the main display area.

For those properties that have been reported as changed by UMLDiff, the corresponding

value columns are shown in the form of "oldvalue -» newvalue". For example, the

ColorBar class was originally named as HorizontalColorBarAxis. Therefore, the value of its

Name property is "HorizontalColorBarAxis -» ColorBar". The row of properties sheet is

expandable by clicking the plus sign (if applicable) to the left of a particular row. For

instance, by expanding "As source" row, the users can find out the relations originated

from the selected element and the related elements at the other end of the relations.

The main diagram of the JDEvAn Viewer displays part of Has logical models UMLDiff

compares and its comparison results in the form of UML class diagram. In the evolution

concerns shown in Figure 7-1, three packages are under investigation, each of which

contains one or more classes. The classes declare attributes and operations, which are

shown in attribute and operation compartments respectively. The model elements are

decorated with the standard Eclipse icons. The model elements may be related to each

164

other with generalization/abstraction relations and/or usage dependencies. Different types

of relations are visualized with different line styles and arrow heads.

The UMLDiffstatas of model elements and relations is visualized by coloring the name

(identifier for operation) of model elements and their relations, which is defined as

follows:

• Black: Matched model elements and relations

• Blue: Newly added model elements and relations

• Red: No longer existing model elements and relations

• Green: Renamed22 model elements

• Grey/Orange: Move-source and move-target elements respectively

• Light grey: Matched usage dependency with decreasing occurrence

• Dark grey: Matched usage dependency with increasing occurrence

The names of removed elements are struck through. The original name of renamed

elements (identifier for operation) is shown with a strikeout line as well. Furthermore, the

matched parameters of operations are initially hidden with "..." placeholder, which can

be expanded and collapsed by clicking the "+" or "-" handle of the placeholder. For

data/return/parameter type, they are shown in black font, following the corresponding

field/method/parameter. If the type changes, the old type is struck through and is

followed by the new type. Visibility and modifier(s) are shown as adornments to the icon

of the model elements, according to the Eclipse Java model convention. If the visibility

and/or modifiers change, they are shown with the original element icon being struck out

followed by the new element icon.

In Figure 7-1, the main diagram view shows three matched packages. The class

HorizontalColorBarAxis is renamed to ColorBar. It no longer implements the interface

ColorBarAxis, which is removed, and no longer extends the class HorizontalNumberAxis,

which is removed as well. Instead, it starts extending the matched class Object. The

renamed class ColorBar declares one new field axis and one new method getAxisO- Its

method doAutoRangeQ is removed. Its method setMaximumAxisValuefJ and

The renamings of operation include the changes to their identifiers and/or parameter

lists.

165

setMinimunAxisValueO are renamed to setMaximunValueO and setMinimunValueO respectively.

However, their parameter lists stay unchanged. The class ObjectTable is newly introduced.

It becomes the new declaring class of the moved field rows and the moved method

getRowCount(), which are originally declared in its two subclasses PaintTable, StrokeTable

and ShapeTable respectively. The matched class NumberAxis is no longer abstract. The

data type of the renamed field ContourPlotDemo.zColorBar changes from the class

NumberAxis to ColorBar.

Finally, the JDEvAn Viewer provides additional information in the form of tooltip

pop-ups when the user browses the diagram. In Figure 7-1, the cursor is pointing to a no

longer existing super-call relationship between the renamed method

ColorBar.setMaximumValue(double) and the matched method

ValueAxis.setMaximumAxisValue(double).

7.1.2 Exploring the neighborhood of a concern

When an element is selected, the set of appropriate handles appears around the selected

element, such as those around the selected class ColorBar shown in Figure 7-1. Table 7-1

summarizes the applicable handles attached to various types of model elements.

The handles allow the users to query the relevant model elements, relations, and their

changes and to interactively include those that most likely contribute to the evolution

concerns of their interest. Thus, the model elements and relations that are visualized in a

particular diagram may be only a very small subset of all the model elements and

relations. For example, in terms of the replace inheritance with delegation refactoring

shown in Figure 7-1, the user would most likely be interested in three

generalization/abstraction relationships originating from the renamed class ColorBar, a

few newly added, removed, and renamed field and methods of ColorBar, and the class

ContourPlotDemo in which the class ColorBar is used.

Left-clicking on a handle adds to the diagram all relevant elements and relations that

the handle is concerned about; right-clicking on a handle pops up a context menu, which

allows the users to selectively add elements and/or relations to the current concern. To

facilitate exploration, the entries of the context menu are grouped by UMLDiff status and

are annotated with the proper icons that represent the UMLDiff status associated with the

166

corresponding elements/relations. The handles and context menus keep the diagram as

simple and clear as possible.

Table 7-1. The handles attached to model elements in JDEvAn Viewer

Handle

G

S

0

I

c

T

M

SN

EF

ET

Model element
Class

Interface
Class
Interface

Class
Operation

Class

Interface
Operation
Attribute
Subsystem
Package
Class
Interface
Attribute
Method
Parameter
Moved element

All

All but the new element

All but the removed
element

Handle usage
The direct superclass and the (direct or transitive) super-
interfaces
The (direct or transitive) superinterfaces
The direct subclasses
The (direct or transitive) subinterfaces and implementation
classes
The classes and interfaces it uses
The attributes it reads and/or writes
The operations it calls
The objects it instantiates
The exceptions it declares, throws, and/or catches
The classes that use it
The operations that instantiate it
The operations that declare, throw, and/or catch it as exception
The classes that use it
The operations that call it
The operations that read and/or write it
The model elements it contains or declares

The declared type

The move source (target) elements of the given move target
(source) element
The similar name elements of the same type, based on regular
expression of the words in the element name
The predecessor elements of the given element in previous
versions
The successor elements of the given element in following
versions

The JDEvAn Viewer leverages the GEF facilities to provide Undo/Redo and Zoom-

in/Zoom-out. All the modifications to the diagram, such as adding elements and relations

into the diagram, removing irrelevant ones, moving and/or resizing elements, bending

connections, etc., are undoable and redoable. This enables the users to explore the

evolution concerns freely.

167

7.1.3 Exploring the evolution trace of a concern

Two special handles - Evolve To (not applicable to removed element) and Evolve From

(not applicable to newly added element) - are available to open a new JDEvAn Viewer

and present the successor (predecessor) elements and their UMLDiff status of the selected

element in a given following (previous) version. These two handles enable developers to

inspect the entire evolution trace of an evolution concern, starting at a particular version,

such as how a set of elements are introduced in the system, what are their states before

refactoring and how they evolve into these states, what benefits the refactoring brings

about, and so on.

7.1.4 Attaching user comments

The JDEvAn Viewer allows developers to attach one ore more comment(s) to model

elements and relations and their changes to record the hard-earned evolution knowledge.

For example, in Figure 7-1, a comment is attached to the generalization/abstraction

changes of the class ColorBar, its newly added field ColorBar.axis, and the field

ContourPlotDemo.zColorBar where the ColorBar is used in order to annotate that these

changes are to replace inheritance reuse with object composition. A comment is also

attached to the new superclass ObjectTable to explain the intention of this extract

superclass refactoring.

7.1.5 Requesting source code

As users investigate the evolution of software system at the design level, a mapping

between the design-level representation and the source code corresponding to each model

element is maintained, which can be requested at any time during the investigation. The

source code contains useful information such as comments and intra-method structure,

which may complement and assist the understanding of the abstract representation. To

access the source code, the users simply double-click on a model element being

visualized. If the selected element is newly added or removed, the Eclipse Java Editor is

shown with the corresponding code fragment highlighted. If the model element is

mapped, the Eclipse Compare Editor or Dialog pops up to show the textual comparison

results of the source code of the double-clicked element.

168

7.1.6 Persisting design-evolution concern

Focusing on a specific evolution concern in the JDEvAn Viewer and exploring its

relevant elements and relations enables a compact and local view of otherwise scattered

model elements and relations by collecting them together and by eliding irrelevant (non-

concern) elements, relations, and their changes. This localization has been helpful in

gaining insight into why the system evolved the way it has. Furthermore, the JDEvAn

Viewer enables its users to persist the evolution concerns under investigation into files,

which can be reloaded and further examined.

As illustrated in next chapter, there are several advantages to documenting hard-earned

knowledge about the evolution history of the software system. First of all, the knowledge

associated with an evolution concern is much more descriptive than that in the change

logs or the release notes. Other users may be able to use the knowledge without needing

to perform all of the time-consuming investigation, which might involve false turns and

the examination of unrelated elements and relations if they start from scratch. More

importantly, a developer performing similar changes, or encountering similar evolution

smells later, can use the documentation to help make the modification in a more

systematic and robust fashion.

7.2 Demonstrations

In this section, we demonstrate, through two pairs of design-evolution concerns from our

HTMLUnit and JFreeChart case studies, how JDEvAn Viewer facilitates the

understanding of the system's design and its evolution. In particular, it helps us capture:

• The different motivations behind the two seemingly similar extract class

refactorings;

• The different design remedies that address the two similar class co-evolution

smells.

7.2.1 Different problems but same solution

The types of refactorings that can be automatically detected constitute the basic building

blocks for accomplishing many other refactoring tasks, listed in Fowler's refactoring

169

catalog [32]. Table 7-2 lists some of these refactorings (right column) and their

corresponding core refactorings (left column), which can be automatically detected by

our refactoring-detection queries. The right-column refactorings do not differ

substantially from their corresponding core refactorings in terms of the effects they bring

on the software entities and relations. In fact, they may even be indistinguishable from

one another in terms of UMLDiff change facts. The fundamental difference between them

lies in their underlying motivation. Although, the motivation behind a particular

refactoring cannot be precisely inferred through automatic process, JDEvAn Viewer can

facilitate the analysis process.

Table 7-2. The motivations of refactorings

Core refactoring
Extract method

Extract class

Extract subclass

Motivations
Replace temp with query
Introduce foreign method
Decompose conditional
Separate query from modifier
Parameterize method
Replace method with method object
Replace data value with object
Duplicate observed data
Replace type code with class
Replace type code with state/strategy
Introduce local extension
Replace type code with subclass
Replace conditional with polymorphism

The refactoring-detection queries return the concrete instances of a particular type of

refactoring and their participants {which parts of a system have changed and how they

have changed). Software developers can then examine the refactoring participants and the

relevant model elements, relations, and their changes with the support of JDEvAn Viewer

and draw their own conclusions regarding the motivation and rationale behind the given

refactoring {why they have changed).

Let us examine two particular instances of extract class refactoring in the evolution of

the HTMLUnit and JFreeChart system respectively. In HTMLUnit, a member class

ResponseEntry is extracted from the class FakeWebConnection, which is used to holds the

status and content information of the connection that used to be defined in

170

FakeWebConnection. In JFreeChart, a final class AxisLocation is extracted, to which the

definition of the possible locations of axes is transferred from the interface AxisConstantS.

From the viewpoint of extract class, there are no substantial differences between the two

instances. They both involve introducing a new class and moving a few fields to it.

However, the underlying motivations are completely different, which can be revealed by

investigating the relevant model elements, relations, and their changes through JDEvAn

Viewer.

In the case of HTMLUnit, the methods that used to modify the moved fields are either

removed, such as setStatus(code:int, message:String), or no longer modify the relevant field

directly, such as setContent(content:String). Instead, the setContent(content:String) starts

delegating to the newly added method setDefaultResponseO, which receives the content

and status information of the connection as parameters and uses them to instantiate the

ResponseEntry object, which in turn set the values of the corresponding fields. The

intention of all these changes is to replace data value with object.

On the other hand, in JFreeChart case, the data type of the moved static final fields

change from int to the newly added class AxisLocation. The constructor of the new class

AxisLocation is private, which means that the AxisLocation cannot be instantiated, except for

the predefined instances BOTTOM, TOP, LEFT, RIGHT. The users of the moved fields, such

as Plot.getOppositeAxisLocationO, still use them as before, but their corresponding return

and/or parameter type changes accordingly. The underlying motivation of this extract

class is to replace type code with class.

7.2.2 Same problem but different solutions

Applying Apriori association-rule mining to class evolution profiles discovers co-

evolution patterns among two or more classes, such as the set of classes

{HorizontalColorBarAxis, HorizontalLogarithmicColorBarAxis, VerticalColorBarAxis,

VerticalLogarithmicColorBarAxis} and the set of classes of {PaintTable, StrokeTable,

ShapeTable} in JFreeChart case study. It seems that these classes suffered from the smell

of "parallel inheritance hierarchies". The set of co-evolving classes essentially focuses

the developer's attention to specific examples where the refactoring should be applicable,

according to textbook [32], which advises informally specific types of refactorings in

171

response to detecting various "smells". But the question then becomes: what is the

appropriate refactoring in the given context of a particular "smell"?

In the case of four ?ColorBarAxis classes, refactoring-detection reports that they

underwent a refactoring of replace inheritance with delegation when the system evolved

from the version 0.9.8 to 0.9.9. The bottom-right part of the main diagram area in Figure

7-1 shows the relevant refactoring participants. The class HorizontalColorBarAxis was

renamed to ColorBar. It stopped extending HorizontalNumberAxis and it started extending

java.lang.Object. In addition, it started declaring a field axis of type ValueAxis, the abstract

ancestor of all ?NumberAxis classes. These changes imply that the ColorBar was no

longer axis, but it can work with any axis objects, conforming to the interfaces defined by

the ValueAxis abstract class. However, in the case of ?Table classes, the JFreeChart

developers applied extract superclass and form template method refactorings to address

the co-evolution smell and reduce the duplicated code. The relevant refactoring

participants are shown in the top-left part of Figure 7-1: a new superclass ObjectTable

was introduced to hold the common features that were pulled up from the existing ?Table

classes; ?Table classes were modified to extend ObjectTable, overriding the default

behavior when necessary.

The choice is essentially between inheritance and composition. Inheritance is a

powerful object-oriented design primitive that enables code and design reuse (i.e. white-

box reuse) when two or more classes have similar features and capabilities. However,

developers often do not notice the commonalities until they have already created some

classes, in which case they have to impose the inheritance hierarchy post facto. In version

0.9.9 the JFreeChart developers were faced with the need to introduce six more

similar ?Table classes, such as FontTable, BooleanTable, NumberTable shown in Figure 7-1.

At this point, however, they must have noticed the commonalities between them and the

three existing ?Table classes. Thus, instead of duplicating the existing code, they

extracted the ObjectTable superclass and made all ?Table classes extend it, overriding the

default behavior when necessary.

In addition to white-box reuse through class inheritance, object-oriented software

engineering also enables black-box reuse through object composition, which allows

classes to reuse objects in terms of their well-defined interfaces, with limited

172

implementation coupling and increased flexibility. However, sometimes, developers

make the "stronger" commitment to white-box reuse when they only need black-box

reuse. The introduction of the four ?ColorBarAxis illustrates a poor choice of class

inheritance vs. object composition. Whenever it comes time to change what these classes

do, all of them have to be modified in a very similar way to accommodate the change.

Furthermore, the inheritance-based reuse also limits the flexibility to draw color bar in

other types (may not even exist at the time the color-bar feature was introduced) of axes,

which may potentially result in the explosion of the class hierarchy and a substantial code

duplication if the developers want to deliver the color bar in all possible combinations of

the axes. This design was subsequently amended with the modification of the ColorBar

class that marked the transition from white-box to black-box reuse.

Clearly, inheritance is the simpler choice for the classes PaintTable, StrokeTable and

ShapeTable, since they share interface as well as behavior. In contrast, the color bar

feature is better accommodated using composition since it is independent of the other

axis-related features.

We finally annotated these two evolution concerns, including evolution traces of these

co-evolving classes and the corresponding instances of refactorings, with the above

conclusion with JDEvAn Viewer's comment node as shown in Figure 7-1, and persisted

all the relevant diagrams as a useful asset in support of future maintenance and evolution

tasks. Such persistent evolution-concerns are much more informative than the textual

change logs and release notes. They point out, not only the key elements of the evolution

effort and the detailed changes they undergo, but also the relevant elements, relations,

their changes, and the hard-earned evolution rationale that motivates the changes. If such

evolution concerns were shipped with the new version of a framework or library, they

would most likely smooth the learning curve that the application developers experience

as they work to migrate their applications to the new version of the framework API.

Application developers would be able to learn what has been changed and how exactly

based on the evolution concerns, without needing to rely on the terse release notes or start

their investigation from the source code. The framework or library developers themselves

may also benefit from the documented concerns when performing similar changes or

encountering similar smells. For example, when they are faced with class co-evolution

173

smells, the developers may compare the situation they have at hand with those

documented, which may help them make the choice between replace inheritance with

delegation and extract superclass and decide which one is more desirable.

7.3 Summary

To enable an intuitive means of communicating all the design changes and evolution

patterns produced by UMLDiff and the subsequent analyses it enables, we developed

JDEvAn Viewer. The JDEvAn Viewer supports the interactive visualization, annotation

and persistence of the recovered evolution concerns. With JDEvAn Viewer, the users can

selectively explore the system's design and its evolution, by localizing the relevant

elements, relations, and their changes of design-evolution concerns and exploring their

neighborhood and evolution traces. It has been helpful in understanding why the system

evolved the way it has. We demonstrated how JDEvAn Viewer helps the developer

examine two seemingly similar evolution concerns and their participants and captures

their completely different underlying software-quality motivations. We plan to conduct

an empirical user study in the future to fully evaluate JDEvAn Viewer's features and

compare the bottom-up evolution concern understanding it enables with the existing top-

down visualization approaches to software evolution understanding.

174

Chapter 8: Towards Mentoring Object-Oriented

Evolutionary Development

Capturing and maintaining the design rationale has been a long-term goal of several

different methods developed in support of different activities in the software lifecycle

[12,26,48,74]. These methods aim at recording and maintaining information about why

developers have made the decisions they have, so that it can be used to ease further

development and improve the quality of future decisions by increasing their consistency

with past decisions. Today, as software is increasingly developed using some

evolutionary lifecycle process, the software design rationale is embedded in the evolution

decisions of the developers, i.e., the changes they have made to the system from its first

version to its current state. Therefore, understanding the system's design rationale

becomes - to some extent - synonymous with recognizing interesting changes in its

design-evolution history. Experts, such as senior designers, often serve the role of the

design mentor, who may supervise and advise junior, less experienced members to help

them understand the design of the system and the rationale behind its evolution history so

that they can maintain and evolve it consistently. Unfortunately, the time of such experts

is so valuable and they are not always available to consult with.

On the other hand, software itself embodies examples of object-oriented design

principles, design and refactoring patterns, and programming hints previously adopted by

the system. Several software recommenders [17,44,73,78,108,109] attempt to relieve the

need of human experts by using information sources associated with the software

development to present relevant software artifacts to the developer's task on hand.

However, the objectives of these recommenders is mainly to facilitate the developer's

programming tasks, such as locating a component that could be reused, suggesting a

potential solution to a particular type of bug, revealing the usage of an API, etc.

In this chapter, we discuss our initial work on monitoring and mentoring object-

oriented software design and its evolution. This design mentor relies on the UMLDiff-

based refactoring detection and design-evolution analyses. In Section 6.4.4.4, we

discussed a real case in which we discovered several instances of class co-evolution and

175

we also found evidence that the project developer acted according to the advice that our

design mentor would have generated, had it been in place during the system's

development. We believe that the very process of recognizing and reflecting upon

problematic design-evolution patterns and concrete examples of their associated design

remedies in the evolutionary history of the software system can help developers reach

informed decisions on their current development and maintenance activities, such as

recommending the redistribution of features based on Law of Demeter [60], or advising

when and where to apply which refactorings. We evaluated the feasibility of such a

design mentor with a real-world pilot study. In particular, we evaluated its ability to

• uncover design changes aimed towards improving the object-oriented design of

software, and

• detect opportunities for such changes.

8.1 Design mentoring

Producing a good design is often a daunting task for novice programmers, and so is

evolving an existing system in a manner consistent with the rationale behind its design

history, since there are few "cut and dry" rules. Good design is subjective; there are few

precise criteria for determining what is correct or what needs to be improved and their

application is contextual. Skilled designers usually have long-term experience designing

and can point to examples of past designs, both good and bad. They are able to point out

problematic patterns in the design model of an artifact and questionable events and trends

in its evolution.

The underlying UML meta-model of our work captures the logical design of object-

oriented software system. The UMLDiff algorithm and the subsequent design-evolution

analyses reveal which parts of the system have changed and how exactly. The interactive

exploration of design-evolution concerns help us infer why they have changed. A set of

queries have been defined to recognize potentially problematic patterns in the UML

logical models of the system and the results of the above analyses. Associated with each

of these queries are the design changes that have been applied to remedy the similar

problems in the past of the system development or general advice on how the design

process could potentially proceed. Clearly, the final arbitrators of whether or not to

176

follow this advice are the developers themselves. However, we believe that the very

process of recognizing and reflecting upon specific interesting designs and design-

evolution examples helps developers draw informed decisions on solving their current

similar problems.

For some design-evolution concerns, such as the same or similar design changes made

in a large amount over a short period of time, there may or may not exist the systematic

theories behind them, but they represent the project-specific evolution knowledge, which

can not be learnt from the textbook. For example, we studied, in Section 6.4.2, the

refactoring frequency in the evolution of JFreeChart system and we discovered that, as a

project-specific advice, a new JFreeChart developer would likely be advised to refactor a

class, after no more than four consecutive function-extension phases. However, more

often than not, such project-specific evolution knowledge is not recorded in the

development log; they usually just exist in the developers' minds, as part of their overall

software-engineering experience with a particular project. However, our design mentor is

able to recover them and present them to developers as a set of contextual advices, which

may be valuable to guide future development and maintenance activities.

Furthermore, our design mentor has taken a broader stance to the problem of advising

software developers. In addition to providing "contextual" project-specific advice based

on the analysis of the system design-evolution history, it is also endowed with knowledge

of object-oriented design principles, design patterns and refactorings. Thus, it can relate

this knowledge to its understanding of the system under development to offer advice on

how to improve the system design based on project independent terms. Design evolution

has to be guided by high-level object-oriented design principles, such as adhere to

consistent meaningful names, do not unnecessarily expose fields and methods, and

comply with the Law of Demeter [60]. At the same time, it is also informed by state-of-

the-art practices, such as extract interface, superclass or class, collapse hierarchies, form

template method, use typesafe-enum objects instead of numeric type codes.

The instances of these design-evolution patterns, when discovered in the evolution of

the software system, indicate that the developers are trying to comply with the well

formulated object-oriented design principles and practices, and they can serve as the

concrete design and design-evolution examples for developers to learn how to design and

177

evolve the object-oriented software in general. For example, in Section 7.2.2, we

discussed how an advice could be offered, based on instances of refactorings in the

project history, to make a choice between replace inheritance with delegation and extract

superclass refactorings in order to correct class co-evolution smell.

8.2 The JFreeChart pilot study

We evaluated the feasibility of the proposed software design mentor with the JFreeChart

system. Based on our own software design and development experience, we defined a set

of queries to recognize potentially problematic patterns before and in version i. The

queries refer to the information regarding the logical models of the subject system of

version m {l<tn<i), the design changes reported by UMLDiff'when comparing version m

to the version m-1, and the results of the various subsequent analyses. Then, we examined

the changes reported by UMLDiff'when comparing version y to version j-1 (/>/) to see if

the changes implied by the problematic patterns discovered by our queries were actually

made. When this was the case, we recorded the corresponding queries as valid heuristic

mentors that advise developers on how to maintain and evolve their system based on the

object-oriented design principles and practices and/or the understanding of the evolution

of the subject system.

8.2.1 Adherence to "first principles" of object-oriented development

In this section, we discuss design changes motivated by high-level principles of object-

oriented design.

8.2.1.1 Adopting a consistent, meaningful naming scheme

The adoption of a consistent and meaningful naming scheme is very important in object-

oriented design. A case in point is the object-oriented method that advocates the

discovery of the system classes from the nouns in the textual requirements specification

of the system, and the various renaming refactorings aimed at improving code readability

and understandability by alluding to the functions of the design entities.

In JFreeChart, many renamings were discovered. For example,

DEFAULT_COLORBAR_THICKNESS_PCT was renamed into the more meaningful

178

DEFAULTJiOLORBAR_THICKNESS_PERCENT. Renamings frequently coincide with more

"substantial" changes to the entity. In version 0.6.0, fields categoryGap, introGap and

trailGap of class BarPlot were renamed to categoryGapPercent, introGapPercent and

trailGapPercent respectively, to reflect the change of these fields' type from type int to type

double. Similarly, in version 0.9.3, method getNormalColorO of class MeterPlotwas renamed

to getNormalPaintO to reflect the fact that its return type was changed from Java. awt.Color to

Java.awt. Paint.

Note that renamings are among the elementary change facts discovered by UMLDiff.

Advice on when to rename and how has to be project specific. One could imagine that

"renaming critique" could be offered based on project-specific naming scheme, such as

"static final constants should be capitalized", or when other similar design changes

happen, such as the data type of an entity changes and the original name of the entity

matches a given regular expression.

8.2.1.2 Programming to interfaces

Programming to interfaces and not to implementations is an important tenet of object-

oriented development [34]. When the client is implemented to be unaware of the internal

implementation of the supplier class, assuming only the specification of its public

behavior interface, enables flexibility in the evolution of the supplier: as long as the

public interface remains the same, modifications to each implementation will not break

its clients.

The design advice here is to not declare fields and methods with particular concrete

classes but rather to commit only to interfaces and abstract classes. The more abstractions

introduced, the more flexibly can the system implementation evolve. The developers of

JFreeChart made efforts to comply with this principle. For example, before version 0.7.3,

the class XYPIot declared four fields (horizontalColors, horizontalLines, verticalColors,

verticalLines) of the concrete Java collection class java.utiLArrayList, which were change to

the interface java.util.List in version 0.7.3. In the same version, the LinePlot's method

getValueAxisO was changed to return the abstract class ValueAxis instead of its subclass

VerticalNumberAxis. Furthermore, in version 0.9.19, the return type of several methods of

179

CategoryPlot and XYPIot was changed from the interface java.util.List to the more general

interface java.util.Collection.

The underlying logical model of our work captures the generalization and abstraction

relationships, including their transitive closure, among classes and interfaces. We have

defined queries to obtain fields, methods and parameters whose associated types are

declared as:

• Concrete classes that implement interfaces

• Specialized interfaces that extend general ones

• Subclasses that extend abstract super classes

These fields, methods and parameters are the candidates that should be examined to

see if the general interfaces or abstract classes could be used. A customizable stop-list is

in place in order to exclude "insignificant" interfaces and classes, such as Action Listener,

Serializable, and java.lang.Object in Java, from being considered.

It is interesting to note that a super interface (or class) sometimes needs first to be

extracted so that the clients can then start using it instead of its implementations (concrete

subclasses). An example will be discussed in Section 8.2.2.1.

8.2.1.3 Favoring composition over inheritance

Object-oriented software engineering enables white-box reuse through class inheritance

and black-box reuse through object composition. Frequently, software teams make the

"stronger" commitment to white-box reuse when they only need black-box reuse. The

result is high coupling among the classes in the inheritance hierarchy, brittleness in the

evolution of the base class, and overriding of unwanted features by the subclasses. Object

composition enables classes to reuse objects in terms of their well-defined interfaces,

with limited implementation coupling and increased flexibility. This is the intent behind

the "favor object composition over class inheritance" tenet [34].

In Section 7.2.2, we discussed a poor choice of class inheritance over object

composition at the time four ?ColorBarAxis classes were introduced, which was

subsequently amended by a replace inheritance with composition refactoring. The

evidence for the need to replace inheritance with composition is the simultaneous

development of "parallel inheritance hierarchies"; this change is easily recognizable

180

through the detection of class co-evolution. Of course, there are many other types of

"symptoms" where composition could be advocated instead of inheritance, such as

subclass inherits many "unwanted" features that are not used at all by its client.

8.2.1.4 Lawof Demeter

The "Law of Demeter (LoD)" [60] - "only talk to your friends" - is a simple style rule for

object-oriented design. It advocates that the methods of a class should only manipulate

the class' own fields and should call methods defined in the class or the classes whose

instances it contains. It is essentially an object-oriented formulation of the general "low

coupling" software-engineering principle.

In our case study, the JFreeChart class coordinates such objects as legend, plot, axis and

dataset in order to draw a chart on a Java 2D graphics device. In the early versions of the

system, it used to delegate the actual drawing to the Plot object it contained. In version

0.5.6, it had four fields, seriesPaint, seriesStroke, seriesOutlinePaint, seriesOutlineStroke that

were representing properties of the plot being drawn. Since they were only accessed by

plot classes, they should, therefore, be accessed from within the Plot object according to

LoD. Indeed, in version 0.6.0, these four fields were moved to the Plot class.

Computing the object form of LoD requires the dynamic analysis of software system.

However, there are some symptoms that can be easily detected in the underlying logical

models in terms of "high coupling" and "low cohesion". For example, we have defined

queries that return the fields and methods defined in one class but are mostly used in

other classes. Such fields and methods often need to be moved in order to enhance

encapsulation and reduce coupling.

8.2.1.5 Information hiding

Object-oriented languages provide explicit support for defining the scope of the various

design elements of a system. Frequently, developers start off with making elements "too

accessible"; as the picture of the scope of the valid clients of each element becomes

clearer, the element's visibility can be restricted.

For example, 519 (about 60% of all the visibility changes, see Table C-2) fields and

methods changed their visibility to private in release version 0.9.4, which clearly

indicates that JFreeChart underwent an information-hiding restructuring, an observation

181

validated by the CVS log statement "fix errors reported by CheckStyle". Checkstyle is a

tool to help programmers write Java code that adheres to the coding standard, such as Sun

Java Specification.

We have defined queries that return design entities, such as fields, methods, nested

classes and interfaces, which are not declared as private but have not been accessed

outside their containing elements. Furthermore, visibility changes are one type of

elementary changes reported by UMLDiff.

8.2.2 Refactorings

Refactoring is one of the most important practices in the agile software-development

process, which aims at improving the design of existing code [32].

8.2.2.1 Extracting interfaces

A corollary of the programming-to-interfaces principle is the extract interface refactoring.

If two or more classes have some stable common behaviors, an interface could be

extracted to include the methods delivering the shared behaviors. In this manner, the

clients of the refactored classes that are interested in their common behaviors can start

depending on the extracted interface, get decoupled from the classes' implementation and

become able to use all implemented classes interchangeably.

We have defined queries that return the classes that declare enough (by enough, we

mean over user-specific threshold) same-signature fields and/or methods. For some of the

returned classes, the number of same signature fields and/or methods remains the same or

changes a little, which indicates that these classes share the stable common interfaces.

Among them, we identified instances of extract interface refactoring in order to comply

with programming-to-interface principle.

For example, classes HorizontalBarRenderer and VerticalBarRenderer declared five same

name fields and methods before version 0.8.0, while in that version, a common interface

CategoryltemRenderer was extracted; the above classes were modified to implement the

new interface and the field Tenderer of their client classes HorizontalCategoryPlot and

VerticalCategoryPlot were pulled up into superclass CategoryPlot that declared it as the type

182

of interface CategoryltemRenderer instead of specialized HorizontalBarRenderer or

VerticalBarRenderer.

We also discovered some other cases of interface extraction. In version 0.7.4, seven

constants of the Axis class were extracted into the newly added interface AxisConstants that

was then implemented by Axis and its subclasses. Similarly, JFreeChartConstants was

extracted from JFreeChart, ChartPanelConstants from ChartPanel and CategoryPlotConstants

from CategoryPlot. The intent for all these changes must have been to enable the use of the

constants by classes other than their original containers. However, further development, it

turned out that these constants were only accessed by the classes that originally contained

them and the developers decided to move them back from the interfaces to the

corresponding classes and remove the corresponding interfaces. We call such classes,

whose features remain in the system even after the classes themselves are removed, die­

hard classes [102].

8.2.2.2 Extracting superclasses

The extract superclass refactoring is advisable when two (or more) classes share a

substantial part of their members, which also seem to be modified together over time.

Again, the instances of classes that share the enough same-signature fields and/or

methods are queried for inspection. But this time we are more interested in those classes

that show the similar evolution profiles, such as, the same name fields and/or methods are

often added to those classes in the same version, which results in the number of same

features increasing over time. This is a good indicator of shot-gun surgery [32], which

can be fixed by such refactorings as extract superclass. An example of extracting

superclass ObjectTable from co-evolving PaintTable, StrokeTable and ShapeTable has

already been discussed in Section 7.2.2.

8.2.2.3 Forming template methods

The template method design pattern [34] is applicable in situations where an algorithm is

defined in a superclass, with its overall process and some of its steps being shared by the

subclasses as-is, some of the steps being used as defaults when the subclasses do not

override them while yet others being overridden or extended by the various subclasses

183

according to their needs. Form template method is one of the complex refactorings

identified in the Fowler catalog [32] to get template method pattern.

We have defined queries that search for the sibling classes that declare methods with

enough (again, user-specific threshold) same usage dependencies, such as field

reads/writes, method calls, and object instantiations, which indicates that these methods

do their job in a similar way. Therefore, they are the candidates for further examination

of forming template methods.

For example, in version 0.9.19, an superclass AbstractCategoryltemLabelGenerator was

extracted from class StandardCategoryltemLabelGenerator, in which generateLabelStringO

was defined as a template method that called the default tooltip and label implementation

defined in method createltemArrayO- The subclasses, StandardCategoryLabelGenerator and

StandardCategoryToolTipGenerator, implemented the interfaces CategoryLabelGenerator and

CategoryToolTipGenerator respectively and called the template method generateLabelStringO.

The other subclasses, such as IntervalCategoryLabelGenerator, overrode createltemArrayO to

provide their specific behaviour.

The class StandardPieltemLabelGenerator had the similar condition to

StandardCategoryltemLabelGenerator. If the JFreeChart developers wanted to restructure

StandardPieltemLabelGenerator later on, the changes made to

StandardCategoryltemLabelGenerator as reported by UMLDiff constituted the contextual

advice on how to accomplish the task.

8.2.2.4 Extracting classes

Complex classes are sometimes incohesive because they are responsible for delivering

many responsibilities. Such classes should be simplified by extracting some of their

features into other classes, created for exactly that purpose. The simplified class can then

delegate to the newly created class to deliver its responsibilities.

For example, in version 0.9.14, a new class RendererState was created. The field info of

type PlotRendererlnfo and the method getlnfoO were extracted from the AbstractRenderer to

the RendererState class. A similar refactoring was also applied to Axis to extract a new

AxisState class. Such state classes were designed to hold state information for Tenderer and

184

axis objects during the drawing process, which enable multiple threads to draw the same

axis to different targets, since each drawing thread maintains its own separate state object.

The symptom motivating extract class refactoring is high class complexity, such as

active classes that have been modified in at least, for example 60%, of the versions

between two specific versions. In such cases, querying for the method sets used by the

class clients may reveal subsets of methods used together which are candidates to become

methods of a new extracted class.

8.2.2.5 Collapsing hierarchies

Collapsing hierarchies is another important refactoring that deals with generalization.

Refactoring hierarchies often involves moving fields and methods or pulling them up into

a newly added or an existing superclass, which, frequently, results in the classes that do

little job or subclasses that are not that different from its superclass. In such cases, the

(sub) classes should be merged to superclass.

For example, in version 0.9.9 JFreeChart was overhauled substantially. UMLDiff

reported the largest number of changes to the system design between any two subsequent

versions in the evolution history of JFreeChart. Several inheritance hierarchies were

collapsed (see Section 6.4.4.4).

Actually, there exist three parallel inheritance hierarchies (Horizontal- and Vertical-

plot, axis, and Tenderer) in the JFreeChart system before version 0.9.9. The horizontal

class and its corresponding vertical one are very similar (or sometimes identical). The

only major difference is that, one set was used for horizontal drawing, the other for

vertical. Such parallel hierarchies make the subsequent changes difficult, since when it

comes time to modify something, you have to change more than one place. This also

results in a large amount of code duplication. The JFreeChart developers became, at some

point, aware of the existence of separate horizontal and vertical hierarchies, and in release

0.9.9, they made a great effort to redesign the Plot, Axis, and Renderer hierarchies.

Parallel hierarchies, symptomatic of strong design interdependencies, can be

discovered through the co-evolution analysis.

185

8.2.2.6 Replacing type code with typesafe-enum object

Numeric type codes are a common feature of procedural programming languages like C.

Frequently, they are assigned as values to named constants to make them more readable.

However, the compiler still sees the underlying number and it may alias it to any other

number with no restrictions to its value range. In this case, there is nothing to force the

named constants to be used; any arbitrary nonsense number can be passed in. A better

alternative in object-oriented software is the typesafe-enum class [11]. The idea is to

replace numeric type code with a class with private constructors; use factory methods to

make sure only valid instances are created and passed around. One such typesafe-enum

class has been discussed in Section 7.2.1. The same type refactorings were applied

several times to produce such typesafe-enum classes as HistogramType, RangeType,

HorizontalAlignment and VerticalAlignment, etc.

Monitoring the use of type code may depend on dynamic analysis, but a simple query

returns all the constant fields of type int that are declared as static and final provides the

developers a good start point to investigate the type code fields.

8.2.3 Contextual project-specific hints

In this section, we discuss some of JFreeChart specific design changes that could be

valuable as contextual evolution knowledge, if properly recorded.

8.2.3.1 Splitting package

We investigated in detail the three major instances of extract package refactorings in

JFreeChart. In version 0.9.4, the package com.jrefinery.chart contained 111 classes and

interfaces. In version 0.9.5, 75 of them were moved into three new packages

com jrefinery.chart.plot, com.jrefinery.chart.axis, and com.jrefinery.chaitrenderer. In version 0.9.7,

17 classes and interfaces were split out from package comjrefinery.chart.data to a new

package com.jrefinery.chart.data.time, but over 90 classes and interfaces were still left in it,

until it was split again in version 0.9.21 to 8 new or existing packages. In version 0.9.21,

47 of 62 classes and interfaces were split out from org.jfree.chart.renderer to

org jfree.chart.renderer.category and org.jfree.chart.renderer.xy respectively.

186

http://comjrefinery.chart.data

These package-splitting activities generally reduced the number of classes and

interfaces contained in each package to about 20-30. This project-specific behavior

essentially constitutes a piece of contextual advice - although by no means definitive -

that indeed, as a general rule:

• It is ok for a package to have -30 classes and interfaces;

• A package should be split into subpackages when it has -100 classes and interfaces;

• Increasing the size of a package over 60 can be flagged as a potential problem,

because it reaches the range of complexity that makes it a splitting candidate.

8.2.3.2 More contextual advices

Other instances of JFreeChart-specific advices that we have recorded are listed as follows:

• Avoid introducing parallel horizontal and vertical Plot, Axis, or Renderer classes

when working on these hierarchies, since a great effort was made in the past to

eliminate them;

• If the constant fields are only used by a single class, do not separate them out;

• When adding new type of plot class, let it handle its own corresponding dataset.

Avoid putting the dataset in the superclass Plot and let the subclasses do the

downcasting;

• New dataset classes should implement interface Serializable and Cloneable;

• Two sets of methods should be provided in the dataset classes. One set for efficient

access, the other for convenience.

8.3 Summary

In this chapter, we discussed our initial work on software design-mentoring, which could

present developers with an advisable course of action, based on learned experiences from

past evolution activities, whether mistakes or successes, especially at the design-level. It

relies on UMLDiff-based refactoring detection and design-evolution analyses. It detects

the opportunities for potential design improvement from the logical model of the system

and its evolution history. Furthermore, it associates with these opportunities design

changes aimed towards addressing similar problems that have been applied in the past of

the system development, as reported by UMLDiff and the refactoring-detection queries.

187

We believe, by reflecting on these problematic patterns and their associated design

remedies, a developer has a better chance to reach decisions on solving their current

problems in a manner consistent with past ones.

188

Chapter 9: Conclusions, Contributions and Future Plan

Object-oriented software is increasingly developed using evolutionary development

process model. Design is a continuous activity throughout the project lifecycle. Design

evolves so that the system may support evolving features and is regularly refactored, as

refactoring has becomes one of the most important core practices in the object-oriented

software development. Although evolutionary development creates new software

development challenges, such as shortened development cycles and increased frequency

of software updates, it also represents new opportunities that, if suitably exploited, may

provide supports to both existing and new development and maintenance activities.

To date, there has been no substantial support for reliably and accurately recognize

design changes that software system has suffered through its evolution. The existing

approaches either rely on low-level program representations that are not designed for

understanding and supporting the design evolution of object-oriented software

[3,20,45,47,82,107,118,128] or they require the high-quality consistently maintained

change documentations [7,30,31,33,41,58,87]. Furthermore, although there has been a

substantial amount of research in the general area of understanding the evolution, i.e.,

"past", of software, there has been much less work on utilizing this understanding to

"advising for the future".

Continuous design improvement also poses serious problems for the asynchronous API

evolution between reusable component frameworks and client application built on them.

Unstable interfaces to a reusable component framework negatively impact reuse, since

they require constantly client applications to adapt. The existing practices

[15,42,50,119,121] rely on additional, and potentially substantial, information provided

by the component-framework developers that document the changes and advise on how

to adapt them. However, it is seldom the case that the change documentation and scripts

provided with a large framework are sufficient for a client-application developer to

effectively migrate to the changed APIs. All too often, application developers become

lost when trying to reuse a changed API, unsure of how to make progress on a migration

problem.

189

9.1 Contributions

This thesis presents a model-differencing based methodology for supporting object-

oriented evolutionary development through capturing and analyzing the design-evolution

history of object-oriented software. In this section, we summarize the contributions of

this work.

9.1.1 Theoretical contributions

The major theoretical contributions of this work are the following:

a) Pair-wise model-differencing: This methodology does not assume the existence of

change documentation consistently maintained in the development process, nor does

it rely on the comparison of low-level program representations, such as code lines,

source code metrics, AST, control-flow graph, or XML. Instead, it relies on an

original model-differencing algorithm, UMLDiff. UMLDiff compares UML logical

models of an object-oriented software system and reports the design changes

regarding additions, removals, moves, and renamings of subsystems, packages,

classes, interfaces, attributes and operations, and changes to the attributes and

relations of these model elements. As the applications developed based on its results

demonstrate, its results are more directly relevant to the design-evolution of object-

oriented software and correspond more closely to the intention of developers'

changes. UMLDiff is sensitive to irregular usage of the versioning system, but with

high precision and recall of design changes when the versioning system is used

regularly. It is also robust to the user's choice of parameters, used to configure the

differencing process.

b) Query-based refadoring detection: Refactorings often result in many scattered low-

level changes to the logical model of the system. One may still understand how the

software system has been refactored by examining a set of small, elementary changes,

such as those reported by UMLDiff, however, by combining the relevant elementary

changes into refactorings, it becomes easier to understand the specific intent of the

design-evolution and support refactoring-aware collaborative development. The

instances of refactorings are recognized from their effects on the logical model, in

190

terms of queries of UMLDiff design-change facts. These queries are precise: they

report the detected refactorings in terms of their particular types and participants.

They are robust to "multiple-changes-to-same-entity" issue. They can be extended for

detecting any structural change pattern of interest to the user. Query-based refactoring

detection enables us to investigate how refactoring is practiced in general and elicit

some high-level design requirement for a refactoring-aware development

environment.

c) API-evolution Catch-up: The Diff-CatchUp approach to adapting client applications

in response to API changes of their underlying component frameworks does not

require any additional work by the component-framework developers. Instead, it

builds on our work on UMLDiff algorithm and refactoring detection. Once the

specific API changes have been identified, not only does it formulate hypotheses for

how the broken API might be replaced but also it collects specific examples of the

hypothesized replacements have been used in order to provide the application

developers with contextual information on the basis of which to evaluate its

proposals. Furthermore, it does not focus on isolated changes but, instead, it aims to

collect all API elements relevant to a particular migration problem. The Diff-CatchUp

approach relies on the fact that a component framework itself represents good usage

of its evolving API and thus is sensitive to the existence of "voluntary" migration

example in its evolution history and the amount of changes they undergo. But its

assumption holds for most cases and it is quite effective generating the replacing API

elements and the corresponding usage examples in the face of the API evolution of a

component framework.

d) Longitudinal design-evolution analyses: The quantitative report of UMLDiff changes

is discretized and classified to produce a qualitative record of the volatile nature of

the design evolution of each individual class throughout the system's history, i.e.,

phases of intensive evolution, rapidly developing, restructuring, slowly development,

or steady-state. These distinct evolution phases allow us, through the application of

sequential-pattern and association-rule mining methods, to study (a) how classes are

introduced into, maintained, and eliminated from the system; (b) the evolution styles

characteristic of the roles of classes in the system; (c) the relative-ordering relations

191

between function-extension and refactoring phases and whether they are consistent

with the adopted development process; and finally, (d) the inter-dependencies among

the evolution trajectories of different classes and their implications for the system's

subsequent development. These analyses facilitate the overall understanding of

system evolution, help to recognize system instabilities, and provide support

regarding the scope of future maintenance activities,

e) Design mentoring: Query-based refactoring-detection and longitudinal design-

evolution analyses constitute a solid base for mentoring object-oriented evolutionary

development, based on learned experiences from past evolution activities. Design

mentoring is our attempt to bridge the gap between "understanding the past" and

"advising for the future". It detects the opportunities for potential design

improvement from the logical model of the system and the results of longitudinal

evolution analyses, guided by object-oriented design principles, design pattern and

refactoring practices, or the development styles previously adopted by the system. It

associates with these opportunities design changes aimed towards addressing similar

problems, as reported by UMLDiff and the refactoring-detection queries that have

been applied in the past of the system development. By reflecting on these

problematic patterns and their associated design remedies, a developer has a better

chance to reach decisions on solving their current problems in a manner consistent

with past ones.

9.1.2 Software engineering tools

To support our theoretical work, we developed three relevant software engineering tools:

a) JDEvAn (Java Design Evolution and Analysis supports design-evolution analysis of

Java software systems. It supports the reverse-engineering of UML models from Java

source code; it provides a practically efficient implementation of UMLDiff algorithm

and supports the inspection of UMLDiff 'results to correct erroneously identified and

missed changes; it allows the developers to query a broad range of pre-defined

"standard" refactorings, and also to define their own queries for any structural change

patterns of their interests; it outputs discrete class-evolution profiles for third-party

sequential-pattern analysis and data mining tools. JDEvAn's front-end is an Eclipse

192

plugin. Its backend repository is a PostgreSQL relational database, which stores all

the model facts, the change facts, and the analysis results.

b) Diff-CatchUp tackles the problem of migrating client applications in the face of

evolving APIs of component frameworks. The Diff-CatchUp front-end, an Eclipse

plugin, allows the client-application developer to highlight the code fragments or

compilation errors/warnings he wishes to update. In response, it identifies the model

element of the component API involved in a selected migration problem and displays

the replacement and usage-example proposals for further exploration with the

JDEvAn Viewer. Its server hosts a JDEvAn repository regarding the logical-model

and API-change facts of the evolving component framework, which is populated with

the JDEvAn tool before Diff-CatchUp can be used. Diff-CatchUp searches the

JDEvAn repository for the changes to the component APIs, the plausible

replacements and their potential usage examples.

c) The JDEvAn Viewer is the visualization component for JDEvAn and Diff-CatchUp. It

enables an intuitive means of communicating all the design changes and evolution

patterns produced by JDEvAn and the replacement and usage-example proposals

generated by Diff-CatchUp. It provides software developers with a UML-style

diagram and supports the interactive visualization, exploration, annotation, and

persistence of JDEvAn and Diff-CatchUp output. JDEvAn Viewer has been

implemented as an Eclipse plugin and it relies on Eclipse GEF (Graphical Editor

Framework) [117]. It leverages the GEF facilities to provide Undo/Redo and Zoom-

in/Zoom-out features.

We intentionally chose to implement our methodology on Eclipse, a popular Java

development IDE, so that it can be tightly integrated within the development environment,

and thus enable investigating the design-change patterns of object-oriented software

evolution, exploring the underlying motivations behind them, and supporting future

development and maintenance activities. These tools are publicly available to download.

They have already been adopted by some users, who rely on them to investigate such

topics as regression testing, model transformation, the detection of code smells, the

correlation between the nature and size of the changes and the resulting bugs, the

relationship between structural model and program refactoring, and so on.

193

9.1.3 Empirical case studies

We conducted three empirical case studies in order to refine and evaluate our

methodology and the tools that implement it. These studies examined three independently

developed software systems, which are of different size and complexity and from

different application domains: HTMLUnit is a small-size open-source software system

for unit testing; JFreeChart is a medium-size open-source Java class library for generating

various types of charts; Eclipse is a large-scale industrial framework that has been under

development for about five years. All of them have been actively developed for a long

period of time and have suffered a substantial amount of design changes.

JFreeChart has been used as the subject system of extensive case study to evaluate all

modules of our work, from UMLDiff algorithm to refactoring-detection queries,

longitudinal design-evolution analyses, JDEvAn Viewer, design mentoring, and finally

Diff-CatchUp. HTMLUnit has been used in evaluation of the effectiveness of UMLDiff

algorithm, refactoring-detection queries, JDEvAn Viewer, and Diff-CatchUp approach.

Eclipse has mainly been used to investigate the refactoring practice in the evolution of

object-oriented software system and how it should be support in general.

These empirical studies have demonstrated that our approach is applicable and

effective in practice. They are important for building confidence and trust in the whole

methodology. Furthermore, all the analysis results are publicly available to download.

We believe they will be useful to other researchers in the area.

9.2 Future Work

Our future work will focus on two essential aspects of modern software development

practices, i.e., evolution and collaboration. First, we would like to apply the model-

differencing based methodology to analyze and support the evolution of software systems

developed in non-object-oriented development paradigms. Second, we want to develop

techniques for supporting the collaborative production of evolving software systems.

Third, we plan to develop methods for improving knowledge collaboration in the

development of long-lived evolving software systems.

194

9.2.1 The software evolution in non-object-oriented paradigms

The core ideas of our research methodology to analyze and support evolutionary software

development are to extract design models above code level, compute the differences

between models, analyze these differences to identify interesting evolution patterns, and

finally use the differences and evolution patterns to support further development. In this

thesis, this methodology has been applied to study the evolution of static structure model

of object-oriented software systems. However, we believe that this methodology is not

restricted to object-oriented paradigm, nor is it restricted to static structure model.

We plan to apply the model-differencing based methodology to study the evolution of

software systems developed in non-object-oriented programming paradigms. Assuming

that the useful high-level models can be extracted, we believe that the combination of

lexical and structure similarities should still apply to detect "meaningful" changes to the

system design structure. However, the effectiveness of these similarity heuristics need to

be thoroughly evaluated as the software development paradigms become more

declarative and less structured.

We would also like to apply this methodology to analyze the evolution of dynamic

models specifying the behavior and interaction of system processes or objects, such as

message sequence chart [18,46], state transition model, or control and data flow diagram.

New set of heuristics need to be developed to detect the "meaningful" changes to these

dynamic models as they evolve over time. We believe that the change report of system

design structure would inform the comparison of dynamic models. On the other hand, the

evolution information of different structure and behavior models can be used to check

their consistencies during system evolution. Furthermore, as different design models

depict different aspects of a system design, the combination of their evolution

information should enable a deeper understanding of the nature and impact of software

evolution and a better support for further development.

9.2.2 The collaborative production of evolving software systems

Our Diff-CatchUp approach tackles the problem of asynchronous API evolution between

the client applications and the component frameworks they reuse. In the future, we would

like to develop more techniques for supporting the collaborative production of evolving

195

software system between design teams, development teams, and testing teams, such as

merging parallel development branches, validating architecture/design compliance, and

analyzing the nature and impact of software changes for selective regression testing.

Software systems are often subject to asynchronous and conflicting evolution from

multiple parties. Today, there are two families of methods supporting the merging of

conflict changes of parallel development branches: state based and operation based [65].

We would like to develop a merging method that combines the strengths of state- and

operation-based merging, i.e., the easy adoption of state-based methods and the robust

conflict detection and resolution of operation-based techniques. Similar to state-based

methods, this merging method requires only a base version and its conflicting revisions to

be merged. But it relies on a model-differencing algorithm, such as UMLDiff developed

in this thesis, which is able to capture evolution operations applied to obtain each of the

revisions from the base version, instead of low-level textual, AST, or dependency-graph

differences between the based version and its revisions. And then it applies operation-

based merging strategies, such as conflict table, to detect and resolve merge conflicts

between these evolution operations. We also plan to apply this merging method to

automatically effectuate the component's API changes in the context of client

applications reusing the evolved components.

Software developers are often faced with questions throughout the course of software

development regarding how well the implementation matches the system design, whether

the evolved implementation is still compliant with the original design, and whether the

intention of design evolution has been properly implemented. Static architecture/design

compliance checking approaches can be used to address these questions. However, the

existing approaches, such as rule-based compliance checking [71,77], software reflexion

model [16,55,68], and software goal model [99], generally provide only an overview of

high-level (e.g., subsystem-level) inconsistencies between design and code; they are

rarely precise about which classes or methods cause the inconsistencies. We plan to

develop model-differencing based method for the purpose of validating code-to-design

compliance at fine-grained (e.g., method) level. The reported inconsistencies may reveal

detailed information about unintended dependencies, misuse of patterns, breach of

196

architectural styles, and violation of evolution intentions in the system implementation.

They may also be used to update the out-of-date design documents.

Selective regression testing relies on change impact analysis to identify tests that must

be executed after software changes, to determine whether new tests need be created, and

to prioritize the execution of test cases. The existing techniques [81] to selective

regression testing attempt to improve the precision of change impact analysis by

exploring different program representations, but little attention has been paid to the types

of changes used in the analysis. We would like to raise the level of abstraction of

concerned changes, as reported by model-differencing algorithms, when analyzing the

nature and impact of software changes. Such change impact analysis could enable more

reliable test selection, test prioritization, and test augment for selective regression testing.

In addition, it may be used to estimate efforts to migrate client applications to the new

versions of component frameworks. It may also be used to determine potential fault

incidences in the client applications reusing the evolved components and identify changes

responsible for these failures.

9.2.3 The knowledge collaboration in software evolution

As software evolves, it embodies a huge amount of useful information for future

development, such as the quality attributes that are important to the system, the practices

that the development team has adopted in the past, and the decisions that have been made

in different situations, the persons that have expertise on a given task, and the working

examples that the evolved APIs have been used. However, as the information become

immense volumes, it is difficult to retrieve the information that developers want. Our

research on the knowledge collaboration in the development of long-lived evolving

software systems will focus on the sharing and transfer of software evolution knowledge

among software developers. We believe that informed software developers are able to

make intelligent decisions in their further development and maintenance activities.

We would like to develop methods for enhancing the awareness of each other's

expertises, activities, and evolution decisions among software developers. As a starting

point we will continue our work on software design mentoring. The goal is to develop a

software design mentor that can detect anomalies in the system design structure and its

197

evolution history and offer suggestions for solving them by retrieving the past similar

cases and their corresponding remedies. We believe that the analysis of software design

structure and its evolution history, such as change-pattern detection and longitudinal

design evolution analyses developed in this thesis, can uncover design changes aimed

towards improving the system design and dependability and detect opportunities for such

changes. The challenge is to develop an appropriate representation for recording and

maintaining such design evolution knowledge so that a software design mentor can

effectively reason about them and offer suggestions accordingly.

In addition to design structure and its evolution history, other types of information can

be extracted from the development history of software systems, regarding who did what,

how, and more importantly why such development occurred. Such information used to

scatter in different sources, such as version control system, issue tracking system, and the

developer's communication (e.g., emails, instant messages, or postings to newsgroups).

The recent team collaboration products such as Jazz by IBM [120] and Visual Studio

Team System by Microsoft [122] provide a common infrastructure that eases the

management of software development assets across software lifecycle in collaborative

software development. We plan to explore the information accumulated to such a team

collaboration repository and apply information retrieval techniques such as Latent

Semantic Analysis [19] to associate the relevant information with the results of model-

differencing based design evolution analysis. The long-term goal of this research is to

develop an "organization memory" that can provide quick and easy online access to

software evolution knowledge rather than relying on human memory and experience.

198

Bibliography

1. A. Abbott and A. Hyrcak. Measuring resemblance in sequence data: An optimal

matching analysis of musicians' careers. American Journal of Sociology, vol. 96, pp.

144-185, 1990.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. Proceedings

of the 2& International Conference on Very Large Databases, pp. 487-499,

September 1994.

3. T. Apiwattanapong, A. Orso and M.J. Harrold. A differencing algorithm for object-

oriented programs. Proceedings of the I91 International Conference on Automated

Software Engineering, pp. 2-13, 2004.

4. I. Balaban, F. Tip and R. Fuhrer. Refactoring support for class library migration.

Proceedings of the 2(f ACMSIGPLANconference on Object Oriented Programming,

Systems, Languages, and Applications, pp. 265-279, 2005.

5. M. Balazinska, E. Merlo, M. Dagenais, B. Lague and K. Kontogiannis. Advanced

clone-analysis to support object-oriented system refactoring. Proceedings of the 8th

Working Conference on Reverse Engineering, pp. 98-107, 2000.

6. D. Barnard, G. Clarke and N. Duncan. Tree-to-tree correction for document trees.

Technical report 95-375, Queen's University, January 1995.

7. E.J. Barry, C.F. Kemerer and S.A. Slaughter. On the uniformity of software evolution

patterns. Proceedings of the 25' International Conference on Software Engineering,

pp. 106-113,2003.

8. K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,

1999.

9. J. Bevan and E.J. Whitehead. Identification of software instabilities. Proceedings of

the 10th Working Conference on Reverse Engineering, pp. 134-143, 2003.

10. A. Bianchi, D. Caivano, F. Lanubile and G. Visaggio. Evaluating software

degradation through entropy. Proceedings of the 11th International Software Metrics

Symposium, pp. 210-219, 2001.

11. J. Bloch. Effective Java Programming Language Guide. Addison Wesley, 2001.

199

12. J.E. Burge and D.C. Brown. Design rationale for software maintenance. Proceedings

of the 16' International Conference on Automated Software Engineering, pp. 433,

2001.

13. E.J. Chikofsky and J.H. Cross. Reverse engineering and design recovery: A taxonomy.

IEEE Software, pp 13-17, January 1990.

14. J.D. Choi, M. Gupta, M. Serrano, V.C. Sreedhar and S. Midkiff. Escape analysis for

Java. Proceedings of the 14th ACM SIGPLAN Object Oriented Programming,

Systems, Languages, and Applications, pp. 1-19, 1999.

15. K. Chow and D. Notkin. Semi-automatic Update of Applications in Response to

Library Changes. Proceedings of the 12' International Conference of Software

Maintenance, pp. 359-368,1996.

16. A. Christl, R. Koschke and M.A. Storey. Equipping the reflexion method with

automated clustering. Proceedings of the 13' Working Conference on Reverse

Engineering, pp. 89-98,2005.

17. D. Cubranic and G.C. Murphy. Hipikat: Recommending Pertinent Software

Development Artifacts. Proceedings of the 25th International Conference on Software

Engineering, pp. 408-418, May 2003.

18. W. Damm and D. Harel. LSCs: Breathing life into message sequence chants. Formal

Methods in System Design, 2001, 19:45-80.

19. S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer and R. Harshman.

Indexing by latent semantic analysis. Journal of the American Society for Information

Science, 1990,41:391-407.

20. S. Demeyer, S. Ducasse and O. Nierstrasz. Finding refactorings via change metrics.

Proceedings of the 15th ACM SIGPLAN conference on Object Oriented Programming,

Systems, Languages, and Applications, pp. 166-177, 2000.

21. S. Demeyer. Maintainability versus performance: What's the effect of introducing

polymorphism?, Technical Report, Lab on Reengneering, Universiteit Antwerpen,

Belgium, 2002.

22. D. Dig and R. Johnson. The role of refactoring in API evolution. Proceedings of the

21s' International Conference on Software Maintenance, pp. 389-398, 2005.

200

23. D. Dig, C. Comertoglu, D. Marinov and R. Johnson. Automatic detection of

refactorings in evolving components. Proceedings of European Conference on

Object-Oriented Programming, pp. 404-428, 2006.

24. D. Dig, K. Manzoor, R. Johnson and T. Nguyen. Refactoring-aware configuration
th

management for object-oriented programs. Proceedings of the 29 International

Conference on Software Engineering, pp. 427-436, 2007.

25. S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for

detecting duplicated code. Proceedings of the 15th International Conference on

Software Maintenance, pp. 109-118, 1999.

26. A. Dutoit and B. Paech. Rationale management in software engineering. Handbook

on Software Engineeering and Knowledge Engineering, World Scientific, December

2001.

27. A. Egyed. Scalable consistency checking between diagrams - The VmwlNTEGRA

approach. Proceedings of the 16' International Conference on Automated Software

Engineering, 2001.

28. S.G. Eick, J.L. Steffen and E.E. Sumner. SeeSoft—A tool for visualizing line-

oriented software statistics. IEEE Transactions on Software Engineering, 1992,

18(ll):957-968.

29. S.G. Eick, T.L. Graves, A.F. Karr, A. Mockus and P. Schuster. Visualizing software

changes. Software Engineering, 2002, 28(4):396-412.

30. S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron and A. Mockus. Does code decay?

Assessing the evidence from change management data. IEEE Transactions on

Software Engineering, 2001, 27(1): 1-12.

31. M. Fischer, M. Pinzger and H. Gall. Populating a release history database from

version control and bug tracking systems. Proceedings of the 19th International

Conference on Software Maintenance, pp. 23-32, September 2003.

32. M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,

1999.

33. H. Gall, K. Hajek and M. Jazayeri. Detection of logical coupling based on product

release history. Proceedings of the 14th International Conference on Software

Maintenance, pp. 190-198, November 1998.

201

34. E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1994.

35. D.M. German and A. Hindle. Visualizing the evolution of software using softChange.

Proceedings of the 16' International Conference on Software Engineering and

Knowledge Engineering, pp. 336-341, 2004.

36. M. Godfrey and L. Zou. Using origin analysis to detect merging and splitting of

source code entities. IEEE Transactions on Software Engineering, 2005, 31(2): 166-

181.

37. C. Gorg and P. Weigerber. Detecting and visualizing refactorings from software

archives. Proceedings of the 13th International Workshop on Program

Comprehension, pp.205-214, 2005.

38. T.L. Graves and A. Mockus. Inferring change effort from configuration management

databases. Proceedings of the 5' International Symposium on Software Metrics, pp.

267-273, 1998.

39. T.L. Graves, A.F. Karr, J.S. Marron and H. Siy. Predicting fault incidence using

software change history. IEEE Transactions on Software Engineering, 2000,

26(7):653-661.

40. J. Han and M. Kamber. Data mining: concepts and techniques. Morgan Kaufmann,

2000.

41. A.E. Hassan and R.C. Holt. Studying the chaos of code development. Proceedings of

the 10th Working Conference on Reverse Engineering, pp. 123-133, 2003.

42. J. Henkel and A. Diwan. CatchUp! Capturing and replaying refactorings to support

API evolution. Proceedings of the 27' International Conference on Software

Engineering, pp. 274-283, 2005.

43. M.E. Holmes and M.S. Poole. Longitudinal analysis. In S. Duck & B. Montgomery

(Eds.), Studying interpersonal interaction, pp 286-302, 1991.

44. R. Holmes and G. Murphy. Using structural context to recommend source code

examples. Proceedings of the 27' International Conference on Software Engineering,

pp. 117-125,2005.

202

45. S. Horwitz. Identifying the semantic and textual differences between two versions of

a program. Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, pp. 234-246, June 1990.

46. ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC). 1999.

47. D. Jackson and D.A. Ladd. Semantic diff: A tool for summarizing the effects of

modifications. Proceedings of the 9th International Conference on Software

Maintenance, pp. 243-252, September 1994.

48. A. Jarczyk, P. Loeffler and I.F. Shipman. Design rationale for software engineering:

A survey. Proceedings of the 25th Annual IEEE Computer Society Hawaii

Conference on System Sciences, pp. 577-586, January 1992.

49. R. Kazman and L. Bass. Toward deriving software architectures from quality

attributes. Technical Report CMU/SEI-94-TR-10, August 1994.

50. C. Kemper and C. Overbeck. What's New With JBuilder. 2005 JavaOne Conference.

51. J. Kerievsky. Refactoring to Patterns. Addison-Wesley, 2004.

52. M. Kim, D. Notkin and D. Grossman. Automatic inference of structural changes for

matching across program versions. Proceedings of the 29th International Conference

on Software Engineering, pp. 333-343, 2007.

53. S. Kim, K. Pan and J.E. James Whitehead. When functions change their names:

Automatic detection of origin relationships. Proceedings of the 12th Working

Conference on Reverse Engineering, pp. 143-152, 2005.

54. A.J. Ko, H.H. Aung and B.A. Myers. Eliciting design requirements for maintenance-

oriented IDEs: A detailed study of corrective and perfective maintenance tasks.

Proceedings of the 27l International Conference on Software Engineering, pp. 126-

135,2005.

55. R. Koschke and D. Simon. Hierarchical reflexion models. Proceedings of the 10th

Working Conference on Reverse Engineering, pp. 36-45, November 2003.

56. P. Kruchten. The 4+1 view model of architecture. IEEE Software, 1995,12(6):42-50.

57. M. Lanza. The evolution matrix: Recovering software evolution using software

visualization techniques. Proceedings of the 4th International Workshop on Principles

of Software Evolution, pp. 37-42, 2001.

203

58. M.M. Lehman and L.A. Belady. Program evolution-processes of software change.

Academic Press, London, 1985, 538pps.

59. R. Leitch and E. Stroulia. Assessing the maintainability benefits of design

restructuring using dependency analysis. Proceedings of the 9th International

Symposium on Software Metrics, pp.309, 2003.

60. K.J. Lieberherr and I. Holland. Formulations and Benefits of the Law of Demeter.

SIGPLANNotices, 1989, 24(3):67-78.

61. E. Lippe and N. van Oosterom. Operation-based merging. Software Engineering

Notes, 17(5):78-87, 1992.

62. Y. Liu and E. Stroulia. Reverse engineering the process of small novice software

teams. Proceedings, of the 10' Working Conference on Reverse Engineering, pp.

102-112,2003.

63. M. Lorenz and J. Kidd. Object-Oriented Software Metrics: A Practical Approach.

Prentice-Hall, 1994.

64. D.W. McDonald and M.S. Acherman. Expertise Recommender: A Flexible

Recommendation System and Architecture. Proceedings of ACM Conference on

Computer Supported Cooperative Work, pp. 231-240, 2000.

65. T. Mens. A state-of-the-art survey on software merging. IEEE Transactions on

Software Engineering, 2002, 28(5):449-462.

66. T. Mens, S. Demeyer, and D. Janssens. Formalising behaviour preserving program

transformations. In Graph Transformation. 2002, vol. 2505 of Lecture Notes in

Computer Science, pp. 286-301, Springer-Verlag.

67.1. Moore. Automatic inheritance hierarchy restructuring and method refactoring.

Proceedings of the 11th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pp. 235-250, 1996.

68. G.C. Murphy, D. Notkin and K.J. Sullivan. Software reflexion models: Bridging the

gap between design and implementation. IEEE Transactions, on Software

Engineering, 27(4):364-380.

69. OMG Unified Modeling Language Specification, formal/03-03-01, Version 1.5,

(2003), http://www.omg.org.

204

http://www.omg.org

- 70. D. Ohst, M. Welle and U. Kelter. Difference tools for analysis and design documents.

Proceedings of the I9'h International Conference on Software Maintenance, pp. 13-

22, September 2003.

71. R. van Ommering, R. Krikhaar and L. Feijs. Languages for formalizing, visualizing,

and verifying software architectures. Computer Language, 27(1):3-18, April 2001.

72. W.F. Opdyke. Refactoring Object-Oriented Frameworks. Ph.D. Thesis, University of

Illinois at Urbana-Champaign, 1992.

73. E. Ostertag, J. Hendler, R. Prieto-Daz and C. Braun. Computing similarity in a reuse

library system: An Al-based approach. ACM Transactions of Software Engineering

and Methodology, 1992, l(3):205-228.

74. F. Pea-Mora and S. Vadhavkar. Augmenting design patterns with design rationale.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 11,

Cambridge University Press, pp. 93-108,1996.

75. D.C. Pelz. Innovation complexity and the sequence of innovating stages. Knowledge:

Creation, Diffusion, Utilization, 1985(6):261-291.

76. J.H. Perkins. Automatically generating refactorings to support API evolution. A CM

SIGSOFT Software Engineering Notes, 2006, 31(1):111-114.

77. A. Postma. A method for module architecture verification and its application on a

large component-based system. Information & Software Technology, 2003,

45(4):171-194.

78. B.J. Rhodes and T. Starner. Remembrance Agent. Proceedings of the First

International Conference and Exhibition on the practical applications of intelligent

agents and multi-agent technology, pp. 487-495, 1996.

79. D. Roberts, J. Brant and R.E. Johnson. A refactoring tool for Smalltalk. Theory and

Practice of Object System 1997, 3(4):253-263.

80. M.P. Robillard and G.C. Murphy. Concern graphs: Finding and describing concerns

using structural program dependencies. Proceedings of the 24th International

Conference on Software Engineering, pages 406-416, May 2002.

81. G. Rothermel and M.J. Harrold. Analyzing regression test selection techniques. IEEE

Transactions on Software Engineering, 1996, 22(8):529-551.

205

82. B.G. Ryder and F. Tip. Change impact analysis for object-oriented programs.

Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis

for Software Tools and Engineering, pp. 46-53, 2001.

83. F.V. Rysselberghe and S. Demeyer. Reconstruction of successful software evolution

using clone detection. Proceedings International Workshop on Principles of software

Evolution, pp. 126-130, September 2003.

84. R. Sabherwhal and D. Robey. An empirical taxonomy of implementation processes

based on sequences of events in information system development. Organization

Science, vol. 4, pp. 548-576, 1993.

85. C. Schofield, B. Tansey, Z. Xing and E. Stroulia. Digging the development dust for

refactorings. Proceedings of the 14th International Conference on Program

Comprehension, pp. 23-34, June 2006.

86. P. Selonen, K. Koskimies and M. Sakkinen. Transformations between UML diagrams.

Journal of Database Management, 2003, 14(3).

87: J.S. Shirabad, T.C. Lethbridge and S. Matwin. Supporting software maintenance by

mining software update records. Proceedings of the 17th International Conference on

Software Maintenance, pp. 22-31, 2001.

88. V. Sinha, D. Karger, R. Miller. Relo: Helping users manage context during interactive

exploratory visualization of large codebases. Proceedings of IEEE Symposium on

Visual Languages and Human-Centric Computting, pp. 187-194, 2006.

89. F. Simon, F. Steinbruckner and C. Lewerentz. Metrics based refactoring. Proceedings

of the 5th European Conference Software Maintenance and Reengineering, pp. 30-38,

2001.

90. K. Simon. An improved algorithm for transitive closure on acyclic digraphs. Theoretical

Computer Science 58, Automata, Languages and Programming, pp. 376-386, 1986.

91. G. Spanoudakis and H. Kim. Reconciliation of object interaction models.

Proceedings of the 7th International Conference on Object Oriented Information

Systems, pp. 47-58, August 2001.

92. E. Stroulia and R. Kapoor. Metrics of refactoring-based development: An experience

report. Proceedings of the 7th International Conference on Object-Oriented

Information Systems, pp. 113-122, August 2001.

206

93. L. Tahvildari and K. Kontogiannis. A metric-based approach to enhance design

quality through meta-pattern transformations, Proceedings of the 7l European

Conference on Software Maintenance and Reengineering, pp. 183-192, 2003.

94. E. Thomsen. OLAP Solutions: Building Multidimensional Information Systems,

Second Edition. John Wiley & Sons, 2002.

95. F. Tip, A. Kiezun and D. Baumer. Refactoring for generalization using type

constraints. Proceedings of the 18th ACM SIGPLAN Conference on Object Oriented

Programming, Systems, Languages, and Applications, pp. 13-26, 2003.

96. T. Tourwe and T. Mens. Identifying refactoring opportunities using logic meta

programming. Proceedings of International Conference on Software Maintenance

and Re-engineering, pp. 91-100, 2003.

97. Q. Tu and M.W. Godfrey. An integrated approach for studying architectural evolution.

Proceedings of the l(fh International Workshop on Program Comprehension, pp.

127-136,2002.

98. R.A. Wagner and M.J. Fischer. The string-to-string correction problem. Journal of

the ACM, vol. 21, no. 1, pp. 168-173, January 1974.

99. Y. Wang, S. Mcllraith, Y. Yu and J. Mylopoulos. An automated approach to

monitoring and diagnosing requirements. Proceedings of the 22nd IEEE/ACM

International Conference on Automated Software Engineering, pp. 293-302, 2007.

100. P. WeiBgerber and S. Diehl. Identifying refactorings from source-code changes.

Proceedings of the 21s' International Conference on Automated Software Engineering,

pp. 231-240, 2006.

101. Z. Xing and E. Stroulia. Recognizing Refactoring from Change Tree, Proceedings

of REFACE (REFactoring: Achievements, Challenges, Effects) workshop in

conjunction with the 10th Working Conference on Reverse Engineering, November 13,

2003.

102. Z.Xing and E.Stroulia. Understanding class evolution in object-oriented software.

Proceedings of the 12' International Workshop on Program Comprehension, pp. 34-

43, June 2004.

207

103. Z. Xing and E. Stroulia. Understanding phases and styles of object-oriented

systems' evolution. Proceedings of the 20' International Conference on Software

Maintenance, pp. 242-251, 2004.

104. Z.Xing and E.Stroulia. UMLDiff: An algorithm for object-oriented design

differencing. Proceedings of the 2(f International Conference on Automated

Software Engineering, pp. 54-65, November 2005.

105. Z.Xing and E.Stroulia. Refactoring practice: How it is and how it should be

supported - An Eclipse case study. Proceedings of the 22nd International Conference

on Software Maintenance, pp. 458-468, September 2006.

106. Z.Xing and E.Stroulia. Refactoring detection based on UMLDiff change-facts

queries. Proceedings of the 13th Working Conference on Reverse Engineering, pp.

263-274, October 2006.

107. W. Yang. Identifying syntactic differences between two programs. Software -

Practice and Experience, 1991, 21(7):739-755.

108. Y. Ye and G. Fischer. Supporting reuse by delivering task-relevant and

personalized information. Proceedings of the 24' International Conference on

Software Engineering, pp.513-523, 2002.

109. A.M. Zaremski and J.M. Wing. Signature matching: A key to reuse. Proceedings

of 1st ACM SIGSOFT Symposium on the Foundations of Software Engineering, pp.

182-190, 1993.

110. T. Zimmermann, S. Diehl and A. Zeller. How history justifies system architecture

(or not). Proceedings of the 6th International Workshop on Principles of Software

Evolution, pp. 73, 2003.

111. ActiveAspect: http://www.cs.ubc.ca/labs/spl/projects/activeaspect/, 2007.

112. ArgoUML: http://argouml.tigris.org/, 2007.

113. Bugzilla: http://www.bugzilla.org, 2007.

114. CMEclipse: http://www.lucas.lth.se/cm/cmeclipse.shtml, 2007

115. Comparing and merging UML models in IBM Rational Software Architect:

http://www-128.ibm.com/developerworks/rational/library/05/712_comp/, 2007.

116. Eclipse: http://www.eclipse.org, 2007.

117. Eclipse Graphical Editing Framework: http://www.eclipse.org/gef/, 2007.

208

http://www.cs.ubc.ca/labs/spl/projects/activeaspect/
http://argouml.tigris.org/
http://www.bugzilla.org
http://www.lucas.lth.se/cm/cmeclipse.shtml
http://www-128.ibm.com/developerworks/rational/library/05/712_comp/
http://www.eclipse.org
http://www.eclipse.org/gef/

118. Diffiitils: http://www.gnu.org/software/diffiitils/, 2007.

119. Help - Eclipse SDK: http://help.eclipse.org, 2007.

120. IBM Jazz Project: http://www.jazz.net, 2007.

121. MSDN - Microsoft Visual C++: http://msdn2.microsoft.com/en-

us/visualc/aa336429.aspx, 2007.

122. Microsoft Visual Studio Team System: http://msdn.microsoft.com/teamsystem,

2007.

123. HTMLUnit: http://htmlunit.sourceforge.net/, 2007.

124. IntelliJ IDEA: http://www.jetbrains.com/idea/features/refactoring.html, 2007.

125. JDEvAn: http://www.cs.ualberta.ca/~xing/jdevan.html, 2007.

126. JFreeChart: http://www.jfree.org/jfreechart, 2007.

127. JCommon: http://www.jfree.org/jcommon, 2007.

128. Mosell EDM Ltd: http://www.deltaxml.com, 2007.

129. Refactoring example: http://www.cs.unc.edu/~stotts/COMP204/refactor, 2007.

130. Weka: http://www.cs.waikato.ac.nz/~ml/weka, 2007.

209

http://www.gnu.org/software/diffiitils/
http://help.eclipse.org
http://www.jazz.net
http://msdn2.microsoft.com/en-
http://msdn.microsoft.com/teamsystem
http://htmlunit.sourceforge.net/
http://www.jetbrains.com/idea/features/refactoring.html
http://www.cs.ualberta.ca/~xing/jdevan.html
http://www.jfree.org/jfreechart
http://www.jfree.org/jcommon
http://www.deltaxml.com
http://www.cs.unc.edu/~stotts/COMP204/refactor
http://www.cs.waikato.ac.nz/~ml/weka

Appendix A: UML meta-model

Table A-l. The UML model elements

Metaclass
«stereotype»

Subsystem

Package
Class

Interface

DataType
Attribute

Operation
« c r e a t e »
«init ial ize»

Method

Parameter

Exception

Reception

Description

A subsystem is a grouping of model elements that represents
a behavioural unit in a physical system.
A package is a grouping of model elements.
A class declares a collection of attributes, operations and
methods that fully describe the structure and behavior of a set
of objects. A class acts as the namespace for various kinds of
contained elements defined within its scope, including
classes and interfaces.
An interface is a named set of operations that characterize the
behavior of an element.
A data type is a type whose values have no identity.
An attribute is a named piece of the declared state of a
classifier, which refers to a static feature of a model element.
An attribute may have an initValue specifying the value of
the attribute upon initialization.
An operation is a service that can be requested from an object
to effect behavior, which refers to a dynamic feature of a
model element.
A method is the implementation of an operation. It specifies
the algorithm or procedure that effects the results of an
operation.
A parameter is a declaration of an argument to be passed to,
or returned from an operation.
An exception is a signal raised by behavioral features
typically in case of execution faults.
A reception is a behavioral feature and declares that the
classifier containing the feature reacts to the signal
designated by the reception feature.

210

Table A 2 . The UML relations among model elements

Metaclass
«stereotype»

Generalization

Abstraction
« r e a l i z e »

Usage
« c a l l »
«instantiate»
« s e n d »
« r e a d »
« w r i t e »

Association

Description

A generalization is a taxonomic relation between a more
general element (parent) and a more specific element
(child).
An abstraction is a dependency relation that relates two
elements or sets of elements that represent the same
concept at different levels of abstraction.
A usage is a dependency relation in which one element
requires another element (or set of elements) for its full
implementation or operation.

An association is a declaration of a semantic relation
between classifiers that can be of three different kinds: 1)
ordinary association, 2) composite aggregate, and 3)
shareable aggregate. There are three meta-composition and
five ordinary meta-associations defined in the meta-model,
which are described in Table A-3.

211

Table A-3. The compositions and associations among model elements

Metarelation
namespace - ownedElement

owner - feature

BehaviorFeature - parameter

typedParameter - type

typedFeature - type

context -raisedSignal

reception - signal
method - specification

Description
A namespace is a model element that can own other
model elements. The element ownership is used for
unstructured contents such as the contents of a
package or a class declared inside the scope of
another class.
A classifier declares a collection of features. The
features are the inherent semantic parts of a
classifier.
An operation declares an ordered list of parameters.
The parameters are the inherent semantic parts of an
operation.
Designates a classifier to which an argument value
of a parameter must conform. The type must be a
class, interface, or datatype.
Designates a classifier as whose instances are values
of the attribute. The type must be a class, interface,
or datatype.
Designates exceptions that may be raised by
behavioral features, such as operations when
execution faults happen.
Designates reception features that handle the signal.
Designates an operation that the method implements.

Table A-4. UMLDiff-speciRc tagged values attached to model elements

Tagged values
comment

isFromModel

deprecated

overloaded

count

Base metaclass
ModelElement

ModelElement

ModelElement

ModelElement

Usage

Description
Any documentation attached to the model
element.
If the model element is imported from a model
other than the current one, false. Otherwise,
true.
If the model element is obsolete and will be
removed from the model in the future, true.
Otherwise, false.
If the operation is overloaded, true. Otherwise,
false.
The number of times a usage dependency
appears between the client and supplier
elements.

212

Appendix B: Reverse-engineering Java Software

Table B-l. Mapping Java language constructs to UML model elements

Java constructs
Java primitive type
Java array type
Java software subsystem
Java package
Java class
Java interface
Java field
Java method
Java constructor
Java class initializer
Java field initializer
Java parameter
The return type of Java method

UML metaclasses
ProgrammingLanguageDataType
ProgrammingLanguageDataType
Subsystem
Package
Class
Interface
Attribute
Operation
Operation«create»
Operation«i„itiaiize»
Attribute's initValue
Parameter
Parameter whose name='return' and kind=return

Table B-2. Mapping Java relations to UML metarelations

Java relations
Contain
Declare
Method/constructor parameter
extends
implements
newXXX(...)
Use field
Change field value
Method/constructor call
throw statement
Field data type
Parameter type
Method return type

throws clause
catch clause

UML metarelations
meta-composition [namespace - ownedElement]
meta-composition [owner - Feature]
meta-composition [BehaviorFeature - parameter]
Generalization
Abstraction«reaiize»
Usage«jnstantiate»
U sage«read»
Usage«write»
Usage«caii»
U Sage«Send»
meta-association [typedFeature - type]
meta-association [typedParameter - type]
meta-association [typedParameter - type] for the
parameter whose kind=return
meta-association [context - raisedSignal]
meta-association [reception -signal]

213

Table B-3. Mapping Java modifiers to the attributes of UML metaclasses

Java modifiers
public, protected, private
static
final
synchronized
abstract
transient

The attributes of UML metaclasses
visibility of ElementOwnership or Feature
ownerScope=classifier of Feature
isLeaf=true of GeneralizableElement or Operation
concurrency=guarded of Operation
isAbstract=true of GeneralizableElement or Operation
persistence=transitory of Attribute

Table B-4. Mapping Java language features to UMLDifF-speciGc tagged values

Java language features
Javadoc description before block tags
Java construct belongs in the source code
Javadoc contains @deprecate tag
Several methods/constructors with same identifier

UMLDiff-speciRc tagged values
comment
isFromModel=true
deprecated=true
overloaded=true

214

Appendix C: JFreeChart

Table C-l. The number of model element and relation facts of JFreeChart

Model elements
Package
Class
Interface
Field
Method
Constructor
Parameter

Total

698
12866

1686
40829

101311
17908

142635

317933

Relations
Contain
Extend
Implement
Read
Write
Call
Class usage
Class instantiation
Total

205298
13695
9458

154465
61036

416073
165415
94704

1120144

Table C-2. The summary of UMLDiff"changes23 in JFreeChart evolution

Element renaming
Element move24

Extract operation
Inline operation
Data (return) type change
Abstraction«reaiize» change
Generalization change
Visibility change
Other attribute/tagged-value change
Total

2180
957
533
95

1056
1032

186
868
607

7514

The changes to usage dependency between model elements are not included. Same

for HTMLUnit and Eclipse case study.
24 The moved methods may also involve identifier changes. Such instances are

manually added during the inspecting session of UMLDiff results. Same for HTMLUnit

and Eclipse case study.

215

Appendix D: HTMLUnit

Table D-l. The number of model element and relation facts of HTMLUnit

Model elements
Package
Class
Interface
Field
Method
Constructor
Parameter

Total

95
2639

128
3239

23779
2718

11739

44337

Relations
Contain
Extend
Implement
Read
Write
Call
Class usage
Class instantiation
Total

36717
2639
497

10504
3963

74244
17666
11486

157716

Table D-2. The summary of UMLDiffchanges in HTMLUnit evolution

Element renaming
Element move
Extract operation
Inline operation
Data (return) type change
Abstraction«reaiize» change
Generalization change
Visibility change
Total

464
1098
254
27

105
43

135
79

2205

Appendix E: Eclipse

Table E l . The number of model element facts of Eclipse

Package
Class
Interface
Array Type
Field
Method
Constructor
Total

2.0
138

3546
692
562

11440
27623

3929
47930

2.1
144

4326
768
294

14213
33829
4737

58311

2.1.3
144

4332
769
296

14245
33878
4751

58415

3.0
177

5610
935
383

18812
42923

6025
74865

3.0.2
177

5612
935
383

18862
42927

6027
74923

3.1
188

6466
1024
439

29029
49187

6943
93276

Total
968

29892
5123
2357

106601
230367
32412

407720

Table E-2. The number of relation facts of Eclipse

Contain
Extend
Implement
Read
Write
Call
Class usage
Class instantiation
Total

2.0
53623
3253
1449

44583
17781
90924
31658
9915

253186

2.1
65925
4003
1790

54842
21597

117813
39284
12273

317527

2.1.3
66034
4009
1792

54954
21638

117815
39362
12315

317919

3.0
84963
5134
2298

73754
27755

151629
51700
16025

413258

3.0.2
85076
5135
2300

73827
27815

151858
51830
16123

413964

3.1
105162

5921
2596

98120
32648

179775
61594
19037

504853

Total
460783

27455
12225

400080
149234
809814
275428

85688
2220707

Table E-3. The summary of UMLDiffchanges in Eclipse evolution

Type of change
Element renaming
Element move
Visibility change
Data (return) type change
Non-access modifier change
Abstraction«reaiize» change
Generalization change
Entity addition
Entity removal
Total

2.1 - 2.0
809
387
435
245
167
190
33

7127
1298

10691

3.0 - 2.1.3
2285
1244
857
718
484
391
109

14095
4157

24340

3.1-3.0.2
1488
684
550
561
425
274
162

17343
2455

23942

Total
4582
2315
1842
1524
1076
855
304

38565
7910

58973

217

Appendix F: Refactoring-Detection Queries

In this appendix, we review queries implemented in JDEvAn for detecting Fowler-

catalog refactorings [32]

F.l The simple "standard" refactorings

Each of the simple refactorings of Table 4-1 consists of a single elementary design

change reported by UMLDiff. Some of the simple refactorings are the direct output of

UMLDiff, while others take into account the information about the containment context

of the refactored elements. Consider, for example, the extract operation elementary

change: depending on whether the newly extracted method belongs in the same class as

the original, or two classes along an inheritance path, or two unrelated classes, the change

aims at refactoring the class internals, pulling up (pushing down) a behavior into a

superclass (subclass), or moving behavior to a class where it naturally belongs.

F. l . l Dealing with containment hierarchy

The refactorings of move subsystem, package, and class are discovered directly through

the UMLDiff'process.

Given a moved class or interface, if it was originally contained in a class or interface

and has subsequently moved into a package, an instance of convert inner type to top-

level refactoring is reported. The convert top-level type to inner refactorings are

identified with a similar, but inverse, query. The participants of these three types of

refactorings include the moved subsystems, packages, or classes/interfaces and their

containing model elements in two compared versions respectively.

F.1.2 Dealing with generalization

The key elementary changes of the refactorings in this category are the moved methods,

the moved fields, and the extracted/inlined operations. Given such an elementary change,

the generalization and abstraction relationship between the declaring classes or interfaces

of the source and target method/field is examined. If the declaring class or interface of the

218

target method/field is the supertype (direct or transitive) of that of the source

method/field, an instance of pull-up method, pull-up field, or pull-up behavior

refactoring is reported, depending on the type of key elementary change being inspected.

Push-down method, field and behavior refactorings are identified in a way similar to

the corresponding pull-up refactorings, with the difference that the condition must be

revised to read "the declaring class or interface of the target method/field is the subtype

(direct or transitive) of that of the source method/field". The pull-up constructor body

refactoring is a special case of the pull-up behavior refactoring. Instances of this type of

refactoring are recognized through a similar query to pull-up behavior with one more

condition that checks that "both the source and target operations are constructors". The

participants of these five types of refactorings include the refactored methods,

constructors or fields and their declaring classes or interfaces in the two compared

versions respectively.

F.1.3 Moving features between objects

Move method, move field and move behavior refactorings are recognized similarly to

the corresponding pull-up and push-down refactorings above. The only difference is that

they require a different query condition that "the declaring classes or interfaces of the

source and target method/field have no inheritance relation". The refactoring participants

involve the refactored methods, constructors or fields and their declaring classes or

interfaces in the two compared versions respectively.

F.1.4 Refactoring class internals

The nine refactorings in this category are all recognized directly through the UMLDiff

process. Renaming a model element changes its declared name (identifier for

method/constructor). For methods and constructors, their parameter lists can be modified

through adding or removing parameter. The visibility of a model element can be

modified to a more restrictive one (information hiding). The declared types of fields,

method, and parameters can change to a more general (generalize type) or more specific

(downcast type) one.

219

If the declaring types of the extracted (inlined) operations and the operations from (to)

which they are extracted (inlined) are same, then the extract/inline operation refactorings

become the extract method and inline method refactorings described in Fowler's

refactoring catalog [32], which are essentially used to refactor class internals.

F.2 The composite "standard" refactorings

Composite refactorings are recognized as the composition of two or more elementary

changes reported by UMLDiff and/or the instances of simple refactorings discussed in

Section F.l. Although one may still understand how the software system has been

refactored by examining a set of small, primitive or simple changes, we believe that, by

combining the relevant elementary changes and/or simple refactorings into composite

refactorings, it becomes easier to understand the specific intent of the change.

F.2.1 Dealing with containment hierarchy

Extract subsystem and package refactorings redistribute groups of features into newly

introduced subsystems or packages. These refactorings are detected by examining the

UMLDiff status of the original and new containing (direct or transitive) subsystem or

package of the moved model elements and/or the extracted/Mined operations. If the

original containing subsystem or package of the source model element is mapped and the

containing subsystem or package of the target model element is newly added, an instance

of extract subsystem or extract package refactoring is reported. Inline subsystem and

package refactorings merge the contents of one subsystem or package into another. They

are recognized through a similar query to the corresponding extract subsystem/package

refactoring, with the difference that the condition must be revised to read "the original

containing subsystem or package of the source model element is removed and the

containing subsystem or package of the target model element is mapped". The refactoring

participants include the refactored model elements and their corresponding containing

(direct or transitive) subsystem or package in the two compared versions respectively.

220

F.2.2 Dealing with generalization

The extract interface refactoring can be used to bring out the common interface of

several classes or to define the operations that can be requested from an object. Given a

mapped class, which starts implementing a newly introduced interface, if the cardinality

of the intersection set between the methods defined in the new interface and the methods

with the same signatures declared in the mapped class is greater than the user-specified

threshold, an instance of extract interface refactoring is reported.

Note that, for the sake of efficiency, only the most distinct effects of some composite

refactorings on the logic model are examined. In the case of extract interface, it examines

only the amount of the same-signature methods defined and declared in the new interface

and the mapped class respectively. It does not look into such changes as parameter type

change, usage dependency change, etc., in their corresponding user objects.

For an extract interface refactoring, there may exist more than one pair of same-

signature methods defined and declared in the new interface and the mapped class

respectively. Furthermore, there may exist more than one mapped class, which start

implementing the given new interface. The refactoring participants include the mapped

classes, the newly introduced interface, and the pairs of same-signature methods defined

and declared in them respectively.

Extract superclass or subclass and inline superclass or subclass are four refactorings

that result in the reorganization of the class hierarchy. Queries for the instances of these

four types of refactorings are defined based on the results of pull-up and push-down

refactorings. For example, extract superclass refactorings are identified as follows: given

& pull-up field, method, or behavior, if its original declaring class or interface is mapped

and its current declaring class or interface is newly added, an instance of extract

superclass refactoring is reported. For an extract superclass refactoring, there may exist

more than one instance of pull-ups between the original and new declaring classes.

Furthermore, there may exist more than one subclass, whose features are pulled up into

the newly added superclass. The refactoring participants include the mapped subclasses

whose features are pulled up, the newly added superclass, and the pull-up methods, fields

and/or behavior.

221

Inline superclass, extract subclass, and inline subclass refactorings are identified

similarly. They are based on push-downs, push-downs, and pull-ups respectively. For the

inline refactorings, the condition also needs to be revised to read "the original declaring

class or interface is removed and the current declaring class or interface is mapped".

They have a similar set of refactoring participants with extract superclass refactorings.

The intent of form template method refactorings is to pull-up the sequence of

operations in the superclass and allows the subclasses to behave differently through

polymorphism. The query for recognizing this type of refactorings is defined based on the

pull-up method and extract method refactorings: given an instance of pull-up method, if

there exist one or more extracted method in the same subclass as the origin of the pulled-

up method and these extracted methods override and/or implement the methods called by

the pulled-up method that provide the default behavior in the superclass, an instance of

form template method refactoring is reported. For a form template method refactoring,

there may exist more than one pulled-up method (from different sibling subclasses)

whose subclass-specific behaviors are extracted and left in the individual subclasses. The

refactoring participants include the pulled-up methods that define the common sequence

of algorithm, the methods called by the pulled-up method that provide the default

behavior in the superclass, and the extracted methods in the individual subclasses that

override the default behavior and define the subclass-specific features.

The replace inheritance with delegation refactoring aims at favoring object

composition (black-box reuse) over class inheritance (white-box reuse). The intent of

replace deleeation with inheritance is exactly opposite. The former refactoring is

identified as follows: given a mapped class, which no longer extends or implements a

particular type but declares a new field, if the data type of the newly declared field is the

supertype (direct or transitive) of the type that the class no longer extends or implements,

an instance of replace inheritance with delegation refactoring is reported. The refactoring

participants of replace inheritance (delegation) with delegation (inheritance) include the

mapped class, their no longer (new) supertype, and the new (removed) field and its

corresponding data type.

222

F.2.3 Moving features between objects

Extract class and inline class refactorings redistribute the features between objects and

adjust the collaborations among them. We have defined die-hard and lepacv classes

[102102]. A die-hard class is a class that is removed from the system but most of its

functionalities are moved to other classes. An inlined class is a die-hard class. A legacy

class is just the opposite of a die-hard class: it is introduced into the system as a

placeholder for fields, methods, and behavior moved in from other classes. An extracted

class is a legacy class. UMLDiff does not attempt to identify entities that have been

renamed and moved at the same time. However, moving a class or interface and

renaming it at the same time often results in a pair of die-hard and legacy classes being

identified.

The identification of these three refactorings relies on the move method, field and

behavior refactorings. Consider the extract class as an example. If the declaring class of

the source element is mapped and the declaring class of the target element is newly added,

an instance of the extract class refactoring is reported. To recognize inline class

refactorings, the condition becomes "If the declaring class of the source element is

removed and the declaring class of the target element is mapped". The condition to

recognize pairs of die-hard and legacy classes is "If the declaring class of the source

element is removed and the declaring class of the target element is newly added".

For a refactoring of type extract class, inline class or a pair of die-hard and legacy

classes, there may exist more than one instance of method, field and behavior move

between the original and new declaring classes. The refactoring participants of these

three types of refactorings are the refactored methods, constructors or fields, and their

declaring classes or interfaces in the two compared versions respectively.

F.2.4 Refactoring class internals

Let us now discuss how instances of the introduce factory method refactoring are

detected. Given a newly added static method, which instantiates a particular type of

object and whose return type is the type or supertype (direct or transitive) of the objects it

instantiates, if the client method no longer creates the object directly but delegates to the

newly added static method, an instance of introduce factory method refactoring is

223

reported. The participants of this refactoring are the newly added static method, the types

of the object it instantiates, its return type, and the corresponding client methods.

Note that the newly introduced factory methods may instantiate more than one type of

objects, all of which are the subtype (direct or transitive) of its return type. The

refactoring-detection query does not care in which class the factory method is declared.

The factory method may be declared in the class of its return type. However, this may not

always be the case. For example, the factory method may be declared in a separate

factory class. The query for introduce factory method is able to handle such cases.

However, it does not handle the object instantiation through dynamic loading, such as

using Class.forName(String). There is no way to recognize which types of objects are

actually created based on only static analysis.

To detect encapsulate field refactorings the field, its new encapsulation method, and

their client methods are examined. Given a newly added method, which reads (writes for

setter method) the mapped field in the same class and whose return type (one of its

parameter's type for setter method) is same as the data type of field it reads (writes), or

they are related through inheritance, if the client method no longer reads (writes) the field

directly but calls the newly added method to access (change) the value of the field, an

' instance of encapsulate field refactoring is reported.

However, note that the query for encapsulate field refactoring does not check the

visibility of the field changing to the more restrictive one. The most distinct effect of this

refactoring on design is the introduction of the new access method and the usage

dependency changes of the field's client method. In our experience with several case

studies, the developers do forget to hide the encapsulated field sometimes or forget to

update all its client sites so that some of them may still refer to the field directly. This is

also an indicator that an automatic refactoring engine that helps the developers perform

the refactoring and update all the corresponding references is desirable.

Refactorings of type introduce parameter object are to encapsulate several parameters

that often go together into a single object. They are detected by examining the renamed

method or constructor and its removed and newly added parameters and their

corresponding types. Given a renamed method/constructor, which no longer declares

some of its original parameters but declares a new parameter whose type is a newly

224

added class or interface, if the cardinality of the intersection set between the no longer

declared parameters and the fields of the newly added parameter type is greater than the

user-specified threshold, an instance of the refactoring introduce parameter object is

reported, with the renamed method and the newly added type of its new parameter as

refactoring participants.

Preserve whole object refactorings result in sending a complete object as a parameter

of a method call instead of passing some of its fields' values. Such refactorings are

detected by examining the renamed method or constructor, its removed and newly added

parameters and their corresponding types, and the usage dependency changes of the

renamed method and its client method. Given a renamed method, which no longer

declares some parameters but declares a new parameter whose type is a mapped class or

interface, it starts calling some methods, which are no longer called by some of its client

method. If the cardinality of the intersection set between the types of the parameters no

longer declared by the renamed method and the return types of the methods the renamed

method starts calling is greater than the user-specific threshold, an instance of the

refactoring preserve whole object is reported, with the renamed method, its client method,

and the type of its new parameter as the participants.

225

Appendix G: Refactoring Reports

Table G-l. The refactorings in the evolution of HTMLUnit, JFreeChart and Eclipse

Category
Dealing with
containment

Dealing with
generalization

Moving
features
between
objects

Refactoring
class-internals

Type of refactoring
Convert inner type to top-level
Convert top-level to inner
Extract subsystem
Inline subsystem
Extract package
Inline package
Pull-up method/field
Push-doWn method/field
Pull-up behavior
Push-down behavior
Pull-up constructor body
Extract interface
Extract superclass
Extract subclass
Inline superclass
Inline subclass
Form template method
Replace inheritance with delegation
Extract class
Inline class
Die-hard/legacy classes
Convert anonymous class to nested
Move method/field
Move behavior
Deprecation + delegation
Information hiding
Generalize type
Downcast type
Introduce factory method
Introduce parameter object
Encapsulate field
Preserve whole object

HTMLUnit
1
0
0
0
1
4

1008
22

141
6
3
8

119
1
0
*>
£* 1
1

13
2
0
1

32
71
14
7
6

10
0
0
9
0

JFreeChart
1
1
0
0

15
1

315
52

165
7
9

55
11
3
2

23
3
5

34
0
8
0

216
102
83

707
140
54
0
0

182
4

Eclipse
19
20

0+25

0+

16+

3+

279
53
0+

0+

0+

33
15+

4+

4+

T
0+

2
95+

31+

95+

12+

1363
0+

0+

751
177
85
19
4

0+

0+

For the time being, we did not compute the complete set of usage differences for

Eclipse. As a result, the detection of Extract/Inline Operation refactorings was also

disabled. The lack of the usage differences and Extract/Inline Operation results affect the

detection of several types of refactorings, which are marked with "+".

226

A
pp

en
di

x
H

:
A

PI
 M

ig
ra

tio
n

P
ro

bl
em

s

T
ab

le
 H

-l
. T

he
 s

um
m

ar
y

of
 A

P
I

m
ig

ra
ti

on
 p

ro
bl

em
s

th
at

 D
iff

-C
at

ch
U

p
is

 a
bl

e
to

 h
an

dl
e

Pr
ob

le
m

 d
es

cr
ip

tio
n

Im
po

rt
N

ot
Fo

un
d

C
an

no
tlm

po
rt

Pa
ck

ag
e

U
nd

ef
m

ed
T

yp
e

U
nd

ef
in

ed
N

am
e

In
va

lid
C

la
ss

In
st

an
tia

tio
n

Su
pe

rc
la

ss
M

us
tB

eA
C

la
ss

Su

pe
rl

nt
er

fa
ce

M
us

tB
eA

nl
nt

er
fa

ce

U
nd

ef
in

ed
M

et
ho

d/
C

on
st

ru
ct

or

Pa
ra

m
et

er
M

is
m

at
ch

U

nd
ef

in
ed

Fi
el

d
U

si
ng

D
ep

re
ca

te
dT

yp
e

N
ot

V
is

ib
le

T
yp

e
U

si
ng

D
ep

re
ca

te
dM

et
ho

d/
C

on
st

rc
to

r
O

ve
rr

id
in

gD
ep

re
ca

te
dM

et
ho

d
N

ot
V

is
ib

le
M

et
ho

d/
C

on
st

ru
ct

or

O
ve

rr
id

in
gN

on
V

is
ib

le
M

et
ho

d
M

et
ho

dR
ed

uc
es

V
is

ib
ili

ty

U
si

ng
D

ep
re

ca
te

dF
ie

ld

N
ot

V
is

ib
le

Fi
el

d
C

la
ss

E
xt

en
dF

in
al

C
la

ss

Fi
na

lM
et

ho
dC

an
no

tB
eO

ve
rr

id
de

n
C

an
no

tO
ve

ri
de

St
at

ic
M

td
W

ith
ln

st
M

td

C
an

no
tH

id
el

ns
tM

td
W

ith
St

at
ic

M
td

St

at
ic

M
et

ho
dR

eq
ue

st
ed

N

on
St

at
ic

Fi
el

dF
ro

m
St

at
ic

In
vo

ca
tio

n
Fi

na
lF

ie
ld

A
ss

ig
nm

en
t

R
em

ov
al

/R
en

am
in

g/
M

ov
e

of
 e

le
m

en
t

Pa
ck

ag
e

V

V

R
ef

T
yp

e

V

V V

V

V V

V

M
et

ho
d

V

V

Fi
el

d V

V

E
le

m
en

t
at

tr
ib

ut
e

ch
an

ge

V
is

ib
ili

ty

V

V

V

V

V

D
ep

re
ca

tio
n

V

V

V V

M
od

if
ie

rs

V

V

V

V

<
 V

V

V

E
le

m
en

t r
el

at
io

ns
hi

p
ch

an
ge

D

at
at

yp
e

T
hr

ow
s

In
he

ri
ta

nc
e

V

V

V

T
ab

le
 H

-l
. T

he
 s

um
m

ar
y

of
 A

P
I

m
ig

ra
ti

on
 p

ro
bl

em
s

th
at

 D
iff

-C
at

ch
U

p
is

 a
bl

e
to

 h
an

dl
e

(C
on

t')

T
yp

eM
is

m
at

ch

In
co

m
pa

tib
le

R
et

ur
nT

yp
e

Il
le

ga
lC

as
t

In
co

rr
ec

tS
w

itc
hT

yp
e

C
an

no
tT

hr
ow

T
yp

e
U

nh
an

dl
ed

E
xc

ep
tio

n
In

co
m

pE
xp

tln
ln

he
ri

te
dM

td
T

hr
ow

s
In

co
m

pE
xc

ep
tio

nl
nT

hr
ow

sC
la

us
e

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

0
0

