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Abstract

The Covid pandemic has lasted for over a year influencing everyone’s phys-

ical and emotional well-beings. Our work is aimed at exploring the capability

of various types of functional data clustering methods on the complex Covid

data. We collect the Covid data from the Our World in Data website, where

the data source is maintained by the John Hopkins University. In our study,

we introduce the clustering methods that come from both non-parametric and

model-based families. K-mean alignment method combines curve alignment and

k-mean clustering, where there is no parametric assumptions of distribution. On

the other hand, funHDDC and funFEM model the clustering on the Gaussian

mixture distribution assumptions. funHDDC uses EM-like inference for param-

eters; funFEM is based on the Fisher EM algorithm, which combines Fisher

method and EM algorithm in order to ensure the most discriminant group-

specific subspace. We purposed the sequential clustering technique on the three

stages of pandemic development. Model-based methods show good clustering

stability on each stage compared to the non-parametric method in terms of Ad-

justed Rand Index (ARI). Through the mapping technique, we can conclude the

clusters are very sensitive to the countries having either the most severe Covid

cases or the fewest Covid cases in three algorithms. However, for countries

that do not have the above extreme conditions, their clusters are unclear. The

clustering algorithm, such as funFEM, would downgrade the number of clusters

from three to two and others would show large variance in ARI indicating the

reduction of the clustering stability.

Keywords: K-means; EM; Gaussian mixtures; Functional principal compo-

nent analysis; Fisher EM algorithm (FEM); Sequential clustering
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1 Introduction

The coronavirus pandemic broke out in Dec 2019. Until now, it has become

a long-lasting and large-scale pandemic, which challenge everyone’s physical,

social and emotional well being. To prevent the spread of this pandemic, and

to ensure the safety of public health, the governments all over the world have

been managing to carry out various restrictions and lock down policy.

For example, by the end of May 2020, all the European countries have agreed

to carry out mask policy, which requires people to wear a mask when showing

up in public. Besides, other restrictions may include: restaurants, cafes and

bars can not serve customers indoors; museums, cinemas, gyms and other non-

essential shops are temporarily closed during the lock down period; grocery

stores need to limit the indoor customer capacity in order to ensure the social

distance of 6 feet; except for the medical workers and other essential workers,

all the other employees should work remotely instead of working onsite.

However, along with different phase of this pandemic, countries may have

different choices and attitude towards the restriction policies and this implies

differences in the growth path of this pandemic among countries.

The reaction of the governments varies. Some countries may prefer to imme-

diately implement a strict lock down policy and mask policy to reduce the risk

of exposures and infections. Other countries may choose to relax the lock down

restriction requirement because of the concern of the impact on social function.

During this hard time, our work is motivated by the will to monitor the

growth of this pandemic within each country and to cluster the countries that

have similar pandemic growth paths. Since Dec 2019, we’ve been collecting the

Covid data of countries all over the world. In the end, we collected the data

from 163 countries. The data records the daily growth of active Covid cases

and death cases for each country.

In this thesis, we delve into the research on functional data clustering meth-

ods, including both non-parametric and model-based approaches. They are im-

plemented on the discrete consecutive daily Covid case observations, which can

be considered to have fine grid and have fulfilled the property of the functional

data.
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In section two, we introduce the source of Covid data and its components.

Also, we introduce our work on the preprocessing of the Covid data. The data

preprocessing, especially for the Covid data is quite challenging. Countries may

have different timelines for the Covid case records. Besides, the quality of the

Covid data for each country is different. We purposed several data cleaning and

imputation techniques to solve this problem.

In section three, we introduce the related work of functional data clustering

and the methodology of several clustering methods of our interest. Additionally,

we bring up the idea of sequential functional data clustering, which could capture

the stage by stage changes in the Covid data. In section four and five, we

evaluate the performance of each clustering method and compare across methods

with various clustering procedures.

2 Functional Data

2.1 Covid Data Collection

We collected the Covid-19 data from Our World in Data website, which is a

database trusted by lots of research organizations and media (Science, Nature,

BBC, CNN, etc). This dataset keeps tracking the growth of Covid-19 active

cases and death cases of 209 countries per day since 31 December, 2019.

The Our World in Data website relies on the Covid data from John Hop-

kins University, which is maintained by their team of John Hopkins Center for

Systems Science and Engineering (CSSE). John Hopkins University updates the

Covid data each day by merging the newly collected data from governments and

national organizations all over the world.

At hand the Covid data consists of (1) the cumulative total of Covid cases

and death cases for each country; (2) the number of daily increase Covid cases

and death cases for each country. (3) the number of (1) and (2) scaled by the

country population per million.

2
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2.2 Covid Data Pre-processing

We mainly work on the scaled version of daily increased Covid-19 cases. In this

way we elicit the influence of various population scales across countries, which

makes the daily increased Covid cases an ideal indicator to monitor the growth

of Covid cases.

Within the raw data set, however, not all countries follow the same timeline

and start recording the Covid case at the same time. Some countries begin late

in the middle of March and others may start recording in the early January. In

order to align the timelines, we impute zeros for all the missing days before a

country has non-zero record since December 31, when the data set gets its first

non-zero Covid case recorded.

Not every country was considered in our analysis. If a country starts with

a big number of non-zero record, for example, 100 cases per million recorded at

the first day when a country report finding active Covid cases, then the data

is no longer reliable. We assume that any smoothing methods are not capable

of relieving the great lack of record consistency. Therefore, we delete in total

37 countries with first record larger than 5 cases per million. Most of them are

island countries with small populations.

In general, our Covid data records positive daily increase. However, this is

not always the case. There are correction days which have negative values to

reconcile the previous record mistakes.

To handle this problem, we replace the negative value with the average of

its neighbour positives, and then subtracted the share of this change for all the

days before the correction day, in order to: (1) maintain the monotonic growth

of Covid data; (2) guarantee the magnitude of cumulative case still equivalent

to the unrefined version; (3) implement the correction that allows the revised

data to stay as close as possible to its true growth nature.

Nevertheless, a big correction number sometimes can be troublesome. For

example, if one country has 200 cumulative cases by the end of March and then

suddenly have a negative correction of 150 cases on April 1st, we would wonder

whether the previous Covid records of this country is trustworthy, since this is a

huge proportion of correction compared to the total cases. In the end, we make
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use of 50% as the threshold. If the absolute value of the negative correction

is larger than that of the 50% of the previous cumulative total, then we would

remove all of the records of this country. In total, we remove 9 countries and

consider their Covid records are less trustworthy.

After following the previous steps, we then smooth and interpolate the data

with a kernel smoother. The smoother applies the classic Gaussian kernel. We

set the bandwidth equals to five, which is the minimum required bandwidth to

smooth out all the missing values within our data set since December 31, 2019.

Kernel smoother ensures positive interpolation of daily case increase and thus

guarantees the monotonically increase of cumulative cases.

Figure 1: Covid Data from Dec 31th 2019 to Nov 13th 2020 after smoothing

2.3 Features of Functional Data

For a single phenomenon, one can have several observations at different time

points in the range (tmin, tmax). For instance, the observation at the jth time

point can be expressed by X(tj), a discrete point taken its value at a multidi-

mensional space.
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However, observations can become more and more consecutive when the grid

gets finer. Then a continuous family defined by X={X(t); t:∈(tmin, tmax)} will

be a good expression of observations considering the high-dimensional aspect of

the data Ferraty and Vieu [2006].

The collected Covid data for each country is observed and recorded day by

day. After data smoothing and interpolation, the Covid data has even finer

grid. Hence, in this paper, we assume it as a functional data set, in which,

theoretically, the variable becomes continuous and can take values in an infinite

dimensional space.

3 The Clustering of Functional Data

Our research is aimed at finding a proper way to cluster countries through

a broad exploration across the existing functional data clustering techniques.

Ideally, a promising clustering technique should be robust, which means the

clustering results will not have a big difference within a large number of exper-

iments. Secondly, it should ensure result interpretability: countries within the

same cluster will share some similarity in the growth feature of Covid cases;

countries in different groups should show distinctive differences.

Unsupervised learning of Covid data is fascinating because of its uncertainty.

There might be no best answer for unsupervised clustering. With the complex

Covid data, the unsupervised clustering would be a more difficult task. In this

case, the evaluation of the clustering results would be quite crucial and we choose

the evaluation metrics from two perspectives, robustness and interpretability.

The robustness would evaluate the consistency of the clustering results in

iterations and the interpretability would evaluate whether the clustering results

have the practical meanings.

In this section, we introduce the methodology of several non-parametric and

model-based functional data clustering techniques. Also, we introduce several

evaluation metrics, including the Adjusted Rand Index(ARI) and the mapping

technique, which evaluate the clustering robustness and interpretability respec-

tively.
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3.1 Related Work of Functional Data Clustering

Theoretically, functional data has infinite dimensional space, which is the main

source of difficulty caused in the modeling process. To solve this problem, one of

the most common solutions is to represent the discrete observations with several

basis functions. The finite dimensional space spanned by the basis function

could transform the functional data clustering problem into a regular model-

based clustering method.

The functional principal component analysis (FPCA) can be an ideal can-

didate for the space representation on account of its interpretability and the

superiority of data presentation Jacques and Preda [2014]. The work of Peng

and Müller [2008] implements the k-means clustering on the principal compo-

nent scores. They first assume the space can be spanned by some basis functions,

then identify the basis function coefficients.

Another way is to treat the coefficients as random variables. The random

variables can have group-specific probability distribution for clusters. funHDDC

purposed by Bouveyron and Jacques [2011] builds up the model of probability

distribution on FPCA scores, as an extension of the High-dimensional data

clustering Bouveyron et al. [2007]. It is also worth to remark funHDDC have

parsimonious assumptions on the principal components variances that offers

different groups of submodels by applying various assumption restrictions. fun-

HDDC computes its coefficients through a EM-like algorithm. While funFEM

purposed by Bouveyron et al. [2015], inherits the idea of funHDDC, it keeps

adding on the Fisher step before the EM steps to ensure the group-specific

functional subspace is the most discriminant. funclust purposed by Jacques and

Preda [2013] is based on the density approximation Delaigle and Hall [2010] of

the functional variables. The parameters in the parametric mixtures models are

also estimated by a EM-like algorithm.

For probabilistic model-based clustering methods, the likelihood-based se-

lection criteria, such as BIC Schwarz [1978] and AIC Akaike [1974] are often

used to evaluate the model fit and to select the optimal model. The funHDDC

algorithm and funFEM algorithm all make use of BIC to choose the optimal

submodel.

Unlike the previous works on model-based functional data clustering, the
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non-parametric clustering, such as k-means alignment clustering method pur-

posed by Sangalli et al. [2010] is also of our interest.

This k-means alignment clustering method first considers to combine curve

alignment with a functional k-means clustering. The curve alignment decouples

the phase variability and amplitude variablility within curve, combined with

the similarity evaluation across curves, it makes the k-means clustering more

efficient.

Except for the k-means and the model-based clustering methods, the hier-

archical clustering Ward [1963] is also very popular. The hierarchical clustering

would start by treating each observation as a separate cluster, then iteratively

merging the most similar clusters together. Considering the complexity of the

implementation of the hierarchy clustering and the limited time, we do not

include the hierarchical clustering method in this paper.

3.2 K-Means Clustering of Functional Data

The proper alignment of curves often plays a key role in the functional data

clustering. Figure 1 shows the growth curves of Covid cases of 163 countries

and their first derivatives. Looking at the derivative curves, there are growth

spurts happened at different times. Some grow quite fast at an early stage and

then quickly slow down; some take their time and do not get a growth spurt

until the middle stage; others, however, start the spurt late but grows at a

increasingly fast pace.

So the questions is: Do the above three groups represent three distinct curve

shapes, or rather some of them follow the same growth path as long as we

properly align them?

To figure out these questions, we take advantage of a k-means alignment

clustering approach proposed by Sangalli et al. [2010].
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3.2.1 Warping function and the similarity index

In this section, we first introduce the warping function and the similarity index

defined in the work of Sangalli et al. [2010]. Assume that we have N curves

ci ∈ C, i = 1,....N, C is the set of curve.

In order to align ci and cj , the following similarity index ρ(·, ·) is purposed:

ρ (ci, cj) =
1

d

d∑
p=1

∫
R
c′ip(s)c

′
jp(s)ds√∫

R
c′ip(s)

2ds
√∫

R
c′jp(s)

2ds
, (1)

where cip is the pth component of ci and ci = (ci1, . . . , cid).

In this way, the similarity index averages the cosine values of the angle

between two vectors: the derivative of ci and the derivative of cj . The maximal

value of similarity index will be reached when two curves are identical. The

similarity index is robust for any shifts and dilation, which means ρ (ci, cj) = 1

if cip = Apcjp +Bp.

The choice of warping function is also crucial and should be jointly considered

with the choice of similarity index. The warping function can be defined as:

W = {h : h(s) = ms+ q} , (2)

where the dilation parameter m ∈ R+ and the shift parameter q ∈ R decouple

the phase and amplitude variability within curves.

3.2.2 Domain of attraction and labelling function

Assume we have k template curves ϕ = {ϕ1, . . . , ϕk}, where ϕ ⊂ C and C
represents the set of curves. Define the domain of attraction of a template

curve ϕi as:

∆i(ϕ) =

{
c ∈ C : sup

h∈W
ρ (ϕi, c ◦ h) ≥ sup

h∈W
ρ (ϕj , c ◦ h) , ∀j 6= i

}
(3)
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Then along with the domain of attraction, define the labelling function as:

λ(ϕ, c) = min
{
j : c ∈ ∆j(ϕ)

}
(4)

The value of the labelling function would indicate the choice of one template

over other templates. The template chosen by the labeling function would have

the largest similarity index with curve c compared to other templates. Then

curve c would be aligned to this chosen template and be labelled.

3.2.3 Clustering and alignment steps

The optimization of clustering and alignment can be divided into two steps.

First, find a set of k templates, and a set of warping functions h, such that:

1

N

N∑
i=1

ρ
(
ϕλ(ϕ,ci), ci ◦ hi

)
≥ 1

N

N∑
i=1

ρ
(
ψλ(ψ,ci), ci ◦ gi

)
, (5)

where g is defined as a warping function of another set. This inequality should

be satisfied for any other set of k templates and warping functions.

The next step is in charge of labelling. The curve ci will be labeled by

λ
(
ϕ, ci

)
and then the curve would be aligned to the template ϕλ(ϕ,ci) accord-

ingly.

Ideally, the above two-step optimization steps should solve the problem.

However, the problem in the first step is hard to solve. Hence, the k-means

alignment algorithm iteratively runs two steps. The template identification step

estimates the k templates identified in the previous assignment and alignment

step, then comes back to the assignment and alignment step to align the curves

with the previously estimated k templates.

Iteratively, the algorithm should be able to approach the optimal solution of

k-means alignment-based clustering.
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3.3 The Functional HDDC method

In this section, we introduce functional high-dimensional data clustering (fun-

HDDC) method, which is a model-based clustering algorithm. This functional

version of HDDC method takes advantage of the functional-specific latent mix-

ture model to project the functional data into group-specific subspaces, and

thus improves both the clustering performance and the result interpretability

Bouveyron and Jacques [2011].

Unlike k-means clustering, the model-based method is based on the para-

metric Gaussian mixture model. Considering the infinite dimensional problem,

model-based clustering methods usually first manage to reduce the dimensions.

There are many ways to achieve this goal, such as the discretization of observed

curves, representation of a group of basis or functional principal components

(FPCA).

The discretization of observed curves along the time intervals is often re-

garded as the most straight-forward approach to solve the infinite dimensional

problem. However, after the discretization, sometimes, we may still have more

dimensions than the number of observations, which then turns out to be a

high-dimensional problem. Hence, the idea of High-dimensional data clustering

(HDDC) Bouveyron et al. [2007] is brought up in this case, which transforms

the high-dimensional data into group-specific subspaces.

3.3.1 Data format transformation through basis expansion

The discrete observations for the ith observed curves at j time points can be ex-

pressed as xij = xi (tij). However, in functional form, we assume the observed

curves {x1, . . . , xn} are independent sample trials of a L2 -continuous stochastic

process X = {X(t)}t∈[0,T ]. Hence, the transformation from discrete observa-

tions to the continuous functional curves is necessary Bouveyron and Jacques

[2011].

One way to achieve this is by representing the functional form with a basis

expansion:

X(t) =

p∑
j=1

γj(X)ψj(t), (6)

10



where {ψ1, . . . , ψp} is the basis and γ = (γ1(X), . . . , γp(X)) is a random vector

in Rp. The basis expansion can be estimated through interpolation procedure.

Coefficients, at the following steps, are fitted by the group-specific latent mixture

models.

3.3.2 The group-specific functional latent mixture model

In this section, we introduce the group-specific functional latent mixture model

purposed by Bouveyron and Jacques [2011].

First let us assume that in the kth cluster, we have nk observed curves. Their

coefficients are {γ1, . . . , γnk
} ⊂ Rp. We assume the coefficients are independent

and all of them are of a random vector Γ. We then consider the stochastic process

of the kth cluster can be represented with dk dimensional latent subspace, where

dk ≤ p.

Therefore, let the first dk entries of the basis, {ϕkj}j=1,...,dk
in L2[0, T ] be

the group-specific basis of the latent subspace Ek[0, T ]. We obtain the group-

specific basis through linear transformation:

ϕkj =

p∑
`=1

qk,j`ψ`, (7)

where qk,j` are the elements in the orthogonal p× p matrix Qk.

Let us split the matrix Qk = (qk,j`) = [Uk, Vk] into Uk and Vk, where

U tkUk = Idk , V tkVk = Ip−dk and U tkVk = 0. The dimension of Uk is p by dk and

the dimension of Vk is p by (p− dk).

We assume the corresponding latent expansion coefficients of the group-

specific basis {ϕkj}j=1,...,dk
are also independent and are of a latent random

vector Λ ∈Rdk . The linear transformation between Γ of Rp and Λ of Rdk

therefore is:

Γ = UkΛ + ε, ε ∈ Rp, (8)

where ε is the random noise.
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The assumptions on their distributions are:

Λ ∼ N (mk, Sk) (9)

ε ∼ N (0,Ξk) (10)

Γ ∼ N (µk,Σk) (11)

where Γ and ε all follow multivariate Gaussian density. mk is mean of the

kth group and Sk = diag (ak1, . . . , akdk) is its corresponding covariance matrix.

µk = Ukmk and Σk = UkSkU
t
k + Ξk.

We assume that the Σk satisfies:

∆k = QtkΣkQk = diag (ak1, . . . , akdk , bk, . . . , bk) , (12)

where bk models the noise term and the akj models the variance of the kth

group. The advantage of this model is that it manages the clustering in a

low-dimensional space through group-specific projection, however, the discrim-

inative information is kept by the noise term bk.

The density of γ hence follows a mixture of Gaussian distributions:

p(γ) =
K∑
k=1

πkφ (γ;µk,Σk) (13)

where the prior probability is πk = P (Zk = 1). Zk is equal to 1 if the curve

belongs to the kth group.

3.3.3 EM-based parameter estimation and MAP-based clustering

The parameters akj , bk, Qk and dk are estimated through the iterative EM

steps. The E step calculates the expectation first and the following M step

updates the value of the parameters to maximize the likelihood. However, the

hyper-parameter number of cluster K and the dimension of subspace dk are

left unknown. The hyper-parameters can not be estimated by maximizing the

likelihood. Instead, the intrinsic dimension dk should be chosen through the

threshold of eigenvalues scree. Like the number of cluster K , the threshold can

also be tuned by BIC.
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By maximizing a posteriori (MAP) rule, γi would belong to the group that

has the highest density P (Zik = 1 | γi), where Zik is an indicator for the kth

cluster. If the ith curve belongs to the kth cluster, then Zik = 1.

3.3.4 Parsimonious functional latent mixture models

The orginal functional latent mixture model can be referred as FLM[akjbkQkdk].

Nevertheless the model can be more parsimonious by fixing several parameters to

be common across different classes Bouveyron et al. [2007]. For example, if bk is

common, then the submodel becomes FLM [akjbQkdk]. This submodel assumes

there is no difference between the noise outside the group-specific subspaces.

In the experiments on Covid data, except for the original model, we select five

submodels out of 28 options: FLM[akjbkQkdk], FLM[akjbQkdk], FLM[akbkQkdk],

FLM[abkQkdk], FLM[akbQkdk] and FLM[abQkdk], considering their good perfor-

mance in the clustering of Canadian temperature dataset Bouveyron and Jacques

[2011].

The full model can be represented as FLM[akjbkQkdk]. By assuming the noise

outside groups are common, FLM[akjbQkdk], FLM[akbQkdk] and FLM[abQkdk] are

purposed; on the top of that if we assume the variance across groups are com-

mon, we have FLM[abQk.

In the nested runs, despite initial randomization, we wrap a loop for all of

the six models. Only the model that leads to the minimal BIC value will be

chosen in the end.

3.4 The Discriminative Functional Mixture Model

In this section, we introduce funFEM algorithm. This functional data clus-

tering algorithm is proposed by Bouveyron et al. [2015] on 2015. They adapt

the work of Bouveyron and Brunet [2011] on Fisher discriminative subspace of

functional data in multivariate case so that the funFEM is able to cluster in the

discriminative functional context.
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3.4.1 The discriminative functional mixture model

The functional data clustering is based on the discriminative function mixture

model. At this step, funHDDC and funFEM, they share the similar latent mix-

ture model assumptions. They all assume that the density of curve coefficients

γ follows a mixture of Gaussian distributions and γi would belong to the kth

group that has the highest probability P (Zik = 1 | γi).

3.4.2 Three-step model inference

Unlike funHDDC, funFEM does not make use of the EM algorithm for model

inference. Instead, it takes advantage of F (Fisher) step first to make sure

that the functional subspace F is most discriminant, where F [0, T ] is a latent

subspace, spanned by some basis functions in L2[0, T ].

At the q-1 iteration of E step, the posterior probability is t
(q)
ik = E

[
zik | γi, θ(q−1)

]
.

Conditioned on t
(q)
ik , following the idea of Fisher, this F step determines the ori-

entation matrix U of the most discriminant functional group-specific subspace

F . This discriminant subspace should have maximal between groups variance

while minimal within group variance Fisher [1936].

After the F step, the M step follows. This step maximizes the log-likelihood

Q
(
θ; θ(q−1)

)
= E

[
` (θ; Γ, z1, . . . , zn) | Γ, θ(q−1)

]
conditionally on the orientation

matrix U (q) from F step. The maximization of log-likelihood yields updates for

π
(q)
k , µ

(q)
k , Σ

(q)
k and β

(q)
k at the q(th) iteration.

Finally, the E steps takes advantage of Bayes’ theorem to calculate t
(q)
ik =

P
(
zik = 1 | γi, θ(q)

)
when the ith curve belongs to the kth cluster. The posterior

probabilities t
(q)
ik can be calculated as:

t
(q)
ik =

π
(q)
k φ

(
γi, θ

(q)
k

)
∑K
l=1 π

(q)
l φ

(
γi | θ(q)

l

) , (14)

where θ
(q)
k =

(
π

(q)
k , µ

(q)
k ,Σ

(q)
k , β(q)

)
contains the parameters we updated from

the previous M step.
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3.4.3 Submodels of funFEM

By applying constraints on the parameters of ∆k, we have up to 12 submodels

of funFEM. The full model is DFM[Σkβk]. If we assume that the covariance

matrices Σ1, ..., Σk are common across all the subgroups, then the DFM model

can be simplified to DFM[Σβk]. Besides, the Σk can also be assumed spherical

or diagonal. The spherical constraints can be applied to DFM[αkβk] while the

diagonal constraints can be applied to DFM[αkjβk].

Moreover, the submodels may also apply more relaxed constraints on the

noise parameter βk by assuming that it is common across all the groups. For

example, with common noise and diagonal covariance matrices, the funFEM

submodel would be DFM[αkjβ].

In total, there are 12 submodels on account of all the possible constraints. In

all of the following experiments, we will use ”all” model mode, which means for

each run of this clustering algorithm, we will give 12 nested runs, each nested

run will test one specific submodel and returns its BIC value. The submodel

with the smallest BIC value in the end will be chosen.

4 Application to Covid Data

In this section, we lay out the application of three clustering methods to the

Covid dataset, including the evaluation of clustering stability through adjusted

rand index (ARI), the mapping of clustering results and the sequential clustering

techniques.

4.1 Application of k-means alignment method

In this section, we introduce the application of k-means alignment method. This

algorithm is implemented in R package fdakma.

15



4.1.1 Parameter Tuning

There are several parameters that can be tuned in this algorithm: (1) num-

ber of clusters; (2) initial centers; (3) warping methods, of which options are

curve shift and curve dilation; (4) similarity method, of which options are the

measurements of functions’ first derivatives and the measurements of distance

between functions.

Unlike classification problems where a correct label for each class member

is known, the best solution to a proper clustering for the Covid data set is left

unknown. So in this section, we applied the clustering technique with a wide

range of exploration on the parameter tuning, from which we start to approach

the optimal.

Intuitively, we start with three clusters. Looking at the cumulative curves

in Figure 1, their growth paths are of three levels: mild, moderate, aggressive.

If we consider the distinctive spikes we find in the picture of first derivatives,

the number of clusters could be more than three.

In order to align the time lines of curves without spoiling the difference

among curve amplitudes, only the curve shift is allowed in the alignment. We

choose the scaled L2 distance between derivatives for similarity measures, in

order to capture the trend of growth directly.

By default, this algorithm randomizes the initial cluster centers for each

run. We run this clustering jobs 100 times and summarize the results. But the

question arises: How do we estimate the consistency of clustering results in 100

runs?

4.1.2 Adjusted Rand Index

Adjusted Rand Index can be a good measure of clustering consistency. It is

the corrected-for-chance version of the Rand index Vinh et al. [2010]. The

Rand index is named after William M. Rand. He brought up this concept for

evaluating the similarity between two clusters Rand [1971].

Given n elements in one set, at hand we compare two partitions into K
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subgroups: A = {A1, . . . , AK} and B = {B1, . . . , BK}.

The Rand Index is thus defined as:

R =
a+ b

a+ b+ c+ d

where a is the number of pairs in the same subset of A and B; b is the number

of pairs in the different subset of A and B; c and d in turn count the pairs that

are in the different subset of one partition way and the same subset of the other.

Partition A B
A a c
B d b

Table 1: The number of pairs in different subsets of A and B partitions

The numerator of Rand Index evaluates the consistency of clustering in

partition A and partition B. Intuitively, we could get the idea: the larger the

value of Rand Index, the higher the level of similarity between two clustering

results. Adjusted Rand Index(ARI) employs a correction for chance in order

to take into consideration the difference in modeling random clustering, but it

shares the same idea of similarity measurement with Rand Index.

4.1.3 Clustering on the whole Covid data

For each run, we compare the clustering results in pairs. One pair is generated

in each run. So in 100 runs, we have in total 100 pairs and 100 ARI calculating

the similarity of clustering per pair.

Figure 2 uses boxplot to describe the distribution of ARI in 100 runs. The

boxplot on the left shows ARIs computed for Covid case-based clustering. The

median of box is close to 0.5 and the variance is large. Boxplot on the right

shows the ARIs computed for the death case-based clustering. The ARI has a

higher median close to 0.9 and the spread of boxplot gets smaller.
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Figure 2: Boxplot of ARI in 100 runs

In this section, we explore the k-means clustering on the whole timeline of

Covid data. Nevertheless, ARI shows the lack of consistency of this clustering

method. Looking into the derivative curves in Figure 1, there are spikes hard to

align with each other, which may cause difficulty in the curve registration step.

We also did a broad exploration on the choice of cluster numbers. However, from

two clusters to six clusters, neither upgrade or downgrade the cluster complexity

improves the clustering consistency.

So in the next section, we bring up the idea of sequential clustering. Se-

quential clustering divides the whole timeline into three stages. It simplifies the

registration of curves and gains more consistency of clustering at each stage.

4.1.4 Sequential Clustering

In this section, we split the Covid data into three subsets. The timelines for

three stages are: stage one, from 2019-12-31 to 2020-04-30; stage two, from

2020-05-01 to 2020-08-31; stage three, from 2020-09-01 to 2020-11-13.

The partition criteria of stages follows closely to the turning points during

the spread of this pandemic. The stage one ends by the time most of the

countries started to take actions on epidemic prevention and control, such as

the lock down policy, mask policy and the social distance requirement in public

places.

The stage one takes four months. Similarly, the second stage lasts for another

four months. It can be a representative of summertime, when the prevention and

control policies have been implemented: people work from home and students
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have their summer vacations. The third stage can be considered as a activity

recovery phase, where moderately easy control policies are implemented instead.

The box plots in figure 3 and figure 4 display the distribution of ARI in

100 runs at three stages, for Covid case-based clustering and death case-based

clustering, respectively.

Figure 3: ARI of case-based k-means clustering at three stages

Figure 4: ARI of death case-based k-means clustering at three stages

The improvement of the case-based clustering consistency in 100 runs is

very straightforward. Also, the sequential clustering allows us to stay tuned

for the cluster change along the three time periods. We pick up the pairs with

the highest ARI value at each stage, then mapping the cluster labels to a real

world map. Figure 5 consists of three cluster maps on the results of the Covid

case-based clustering and death-based clustering at three stages.

At the first stage, we downgrade the number of cluster from three to two.

Less clusters, stronger clustering consistency. This is what we found when

tuning the complexity of our cluster structures.

At the beginning of this pandemic, the situations of most countries are not
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complicated. A small group, which is the countries in red in the map of stage

1, begins this pandemic earlier than the rest of the world (countries in blue).

China on the map is in grey at the first stage, because we do not include

China in the first clustering. China started this pandemic way ahead of the

rest of the world which makes itself difficult to align with. The average ARI

has increased 0.4 with two clusters, which has proved that two clusters can be

a good choice for the clustering at stage one.

The pair with highest ARI shows good consistency in clustering between

runs and can be considered as near optimal solution at each stage. The maps

generated by such pairs also proves its interpret-ability.

In the sequential clustering of Covid cases, the maps are telling stories. At

the first stage, the pandemic first breaks out in the red countries, mostly within

North America and European countries, while countries in the blue cluster are

the majority and are the safer places mostly without the impact of coronavirus.

At the second stage, the number of clusters have been upgraded from two to

three, and blue cluster, used to be the majority, is losing its members. Russia,

India, Argentina, Saudi Arabia and Iraq joined the red cluster; Brazil, even

worse, got into the purple, which indicates this country is facing surprisingly

bad situation with US. Red cluster is in the second place. Countries in red have

better situation than countries in purple but worse than the blue ones. Many

European countries have come back and joined the blue group at this stage,

however, Spain and Sweden are left behind.

At the third stage, the blue cluster still dominates, but the cluster members

keep switching their places. Argentina made its second move, from red to purple,

while Canada, Libya and Iran jump into red. Spain falls into a worse situation,

into purple, along with Peru, Brazil and US, which are the old purple members

for two stages.
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Figure 5: Maps of case-based and death-based k-means clustering at three stages

The maps in figure 6 tell a similar story on the growth of death cases in this

pandemic. As the clustering of active cases and death cases share the same split

of timeline, it is expected that country clusters will be mostly synchronous at
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three stages. Besides, intuitively, we would conclude that countries fall into the

rather worse group in the case-based clustering will have a great chance to stay

within the same level group of the clustering for death.

4.1.5 Confidence Interval of mean ARI

To further mathematically describe the distribution of ARI, we propose the

use of confidence interval for mean ARI. The idea of confidence interval can be

validated by the central limit theorem when the sample size is large enough,

for the central limit theorem indicates that as the sample size gets larger, the

sample mean should be getting approximately normally distributed.

Hence in this section, we first check out the distribution of mean ARI within

40,000 runs. We have three options for sample size: 50, 100 and 200. Out of

40,000 runs, with n = 50, we calculate the mean ARI of 50 samples; with n =

100, we calculate the mean ARI of 100 samples; with n = 200, we calculate the

mean ARI of 100 samples. But it is worth mentioning that the samples are not

entirely independent from each other.

We then visualize the distribution of the mean ARI with different sample size.

The following histograms present the distribution of the mean ARI calculated for

death clustering at three stages. The shapes of the histograms are approximately

symmetric when sample size equals to 200, and thus the histograms prove that

the distribution of the mean ARI satisfies the central limit theorem.

Figure 6: The distribution of mean ARI at the first stage
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Figure 7: The distribution of mean ARI at the second stage

Figure 8: The distribution of mean ARI at the third stage

The following table calculates the confidence interval of mean ARI at three

stages. They are not wide intervals as the variance has been sharply reduced

by taking average of ARI values.

Sample size Stage 1 Stage 2 Stage 3
50 (0.949, 0.956) (0.718, 0.727) (0.795, 0.799)
100 (0.950, 0.955) (0.718, 0.724) (0.796, 0.799)
200 (0.951, 0.954) (0.719, 0.723) (0.796, 0.798)

Table 2: Confidence interval of mean ARI at three stages

There are no overlaps between the intervals of first stage and other stages,

for the lower bound of CI in stage one is higher than 0.9. All of the confidence

intervals are over 0.5, which elaborates the decent clustering stability of the

k-means alignment method.
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4.2 Application of funHDDC to Covid data

In this section, we introduce the application of funHDDC algorithm, which is

implemented in R package funHDDC Schmutz and Bouveyron [2021].

4.2.1 Initial setups and parameter tuning of funHDDC

EM-based algorithms are easy to converge to the local optimal. In our experi-

ment, within each run of this clustering algorithm, there are nested runs with

random initialization of EM. Those nested runs will only keep the parameters

resulting from the largest likelihood than others. The idea is purposed by Bier-

nacki [2004] on 2004 to avoid the convergence to a local optimal.

There are three hyper-parameters that need tuning. The number of cluster

K, the number of basis elements and the value of threshold. K can be 2 or 3

in the tuning process; the number of basis elements has the options of 25, 50

and 100; regarding the threshold, options are 0.1, 0.2 and 0.3. 0.1 is the default

threshold value for funHDDC algorithm.

At the beginning of our research, we carry out a much boarder exploration

across various parameter combos rather than the current parameter tuning plan.

For example, for the number of basis functions, with interval equals to 25, we

have options of 25 number of basis, 50 number of basis, 75 number of basis, all

the way to 200 number of basis. Beyond that we also have 0.05, 0.1, 0.15 ... and

0.3 for threshold tuning. However, this is extremely computational expensive

and there is no big difference between the results with such fine parameter

tuning. In the end, we keep 25, 50 and 100 as the number of basis and 0.1, 0.2

and 0.3 as the thresholds.

4.2.2 Clustering on the whole Covid data

Figure 9 describes the distribution of ARI values in 100 runs both for case-based

clustering and death-based clustering. The number of basis and threshold are

tuned through BIC for each run. In general, the boxplots show extremely high

ARI values (close to 1) when the cluster design is less complex (number of cluster

K = 2). If we increase the number of cluster from two to three, the median
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value of ARI is still close to 1, though the variance has increased due to the

increase of clustering complexity.

Figure 9: ARI values in 100 runs of different number of clusters

4.2.3 Sequential clustering at three stages

To simplify the task for clustering models, the next step remains to be the

discretization of the time intervals into three sequential stages, on which we

carry out the funHDDC method. The timeline is divided into the same three

stages as that of the k-means clustering, so that their results at each stage are

comparable.

Figure 10 and Figure 11 describe the distribution of ARI values in 100 runs of

different number of clusters. Both of them indicate that two clusters and three

clusters are all able to stabilize the clustering model at the first two stages.

They have almost equally satisfactory performance. However, at stage three,

they are losing stability, though the median ARI is still close to 1. In this case,

lower variance might result from higher number of clusters.
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Figure 10: ARI values in 100 runs of two clusters

Figure 11: ARI values in 100 runs of three clusters

Overall, the sequential clustering contributes to the decomposition of cluster-

ing variance into three stages, also at the same time, increase the interpretability

of clustering results. In the next section, we will look into the Covid world maps

generated by the highest ARI value pairs at each stage, in order to approach

the maximal clustering stability.
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4.2.4 Maps of Covid clusters

Figure 12: Maps of case-based and death-based funHDDC clustering at three
stages

If we look into the maps of active case-based clustering at the three stages, we

can tell that in general the maps are mirroring what is happening in real life. At
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stage one, the countries in red are European countries and the United States.

They had a hard time at the beginning of the pandemic. At stage two, the

pandemic is spreading quickly across the borders to Brazil, Argentina, Russia

and India. Brazil is in the worst case, while other countries in blue, such as

China is recovering fast from the attack of the coronavirus. At the third stage,

Russian and many European countries are turning back to blue thanks to the

Covid restriction policies, while US, Brazil and Argentina still struggle with the

most severe Covid cases.

The flags of red and purple in those maps are very similar to the flags we

got from the maps of k-mean clustering. Both of the clustering methods are

very sensitive to the countries suffering with severe Covid cases. The clustering

results of funHDDC show some extent of consistency of that of the k-means

alignment method.

4.3 Application of funFEM to Covid data

Finally in this section, we introduce the application of funFEM algorithm tho the

Covid data. This algorithm is implemented in R package funFEM Bouveyron

[2015].

4.3.1 Parameter tuning

There are two parameters need tuning. One is the number of clusters K, the

other is the number of basis elements. To align with the previous experiments of

funHDDC, options for K are two and three, while the options for the number of

basis are 25, 50 and 100. By default, this algorithm tests 12 submodels in each

run; the initiation of Fisher-EM inference algorithm is random; the maximum

number of iterations before the stop of the Fisher-EM algorithm is 100.

Considering the randomness of clustering, all of the following experiments

will run the clustering algorithm 100 times independently.
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4.3.2 Clustering on the whole Covid data

Given a number of basis, the functional model will converge to the same op-

timum, so that the ARI always equals to 1 in 100 runs. The discriminative

function mixture model has the best fit when the number of basis reaches 100.

Given two initial clusters and three initial clusters, the BIC values are on

the same scale, though the BIC values of K = 2 are always smaller that the BIC

values of K = 3.

The following maps of clusters presents the clustering results on the whole

Covid data.

Clustering K = 2 K = 3
Case -160343 -153854

Death -99737 -90243

Table 3: BIC values under different number of clusters

Figure 13: Maps of case-based clustering and death case-based clustering of the
whole Covid data
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The maps in Figure 13 show that China, Australia and most of the African

countires are in blue, which can also be validated by the previous two clustering

methods. North America and South America are still in the more severe case

compared to the other regions.

4.3.3 Sequential clustering at three stages

The BIC values are comparable between different number of clusters at three

stages. Therefore, on the same scale of goodness of fit, we choose the same

number of clusters previous clustering methods used in order to prepare for the

further comparison among three clustering approaches.

Given a number of basis functions and a fixed timeline, the functional model

again successfully converges to the same optimum in 100 runs. With great

clustering stability, clustering the data by separate chunks no longer decrease

the variance. However, from the cluster maps, the sequential clustering still

help to increase the interpretability across three different time points.

The BIC values at three stages are higher than the BIC values returned by

the clustering on the whole Covid data, which indicates that in terms of goodness

of fit, the sequential clustering no longer improve the fitness of modeling.

Clustering Stage 1 Stage 2 Stage 3
Case -109350 -143929 -143384

Death -57853 -80776 -74900

Table 4: BIC values at three stages

The initial number of clusters set up for the three stages are two, three

and three, respectively. In this way, the results of funFEM could align and

compare with the clustering results of other methods. The maps are visualizing

the clustering result with the highest ARI values out of 100 runs. But it is

worth mentioning that the map in the middle of the second column has only

two clusters, though its initial cluster setup is three. It warns us that sometimes

the cluster downgrade happens in the funFEM and the clustering result does

not always go with the initial setups.

But the following maps in Figure 14 still indicate that a good extent of
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interpretability remains in the sequential clustering process of funFEM. Asian

countries and most of the African countries keep staying in the blue cluster, while

India, European countries and South America countries, such as Argentina, are

jumping across the red group and the purple group.

Figure 14: Maps of case-based and death-based funFEM clustering at three
stages

The sequential maps generated by funFEM can be validated by the previous
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clustering approaches for it remains its sensitivity to the countries having most

significant severe Covid cases, like Brazil, US and Spain.

However, from the visualization of clustering results, generally speaking, we

could only speculate and observe their differences without a proper quantitative

evaluation metric. Therefore, in the next section, we will take advantage of ARI

to quantify changes among three clustering methods.

4.4 Comparison among three clustering methods

In this section, we compare the classification results of three clustering methods.

We first collect the results returned by 100 runs of the application of each

clustering method, then randomly draw a pair of the results from two different

algorithms to calculate the adjusted rand index (ARI). In total, we draw 200

pairs for each comparison across two algorithms.

The following boxplots visualized the spread of ARI of comparison among

three algorithms at three stages. Each row of the boxplot represents the com-

parison at one stage.

The plots indicate that the cross-algorithm calculated ARIs from the pair

K-mean and funHDDC are higher than the other pairs, which means that K-

mean and funHDDC have more similar clustering results than the other pairs

with funFEM. This happens at three stages. At each stage, the ARI calculated

across the clustering result of k-means alignment and funHDDC is over 0.6. So

that we may conclude that overall, there is a moderate similarity between the

clustering results of k-mean alignment and funHDDC methods.
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Figure 15: The comparison of case-based clustering results among three algo-
rithms

Figure 16: The comparison of death case-based clustering results among three
algorithms
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Considering there are randomness within the clustering results of 100 runs,

at the next step, we manage to select the most stable clustering pair of each

algorithm, which is the pair with the highest ARI value in each algorithm, then

calculate the ARI across those pairs of different algorithms. In this way, the

between group comparisons are with less variance.

The following tables of case-based clustering and death-based clustering val-

idate what we have learned in the boxplots. Still, we find out the k-means and

the funHDDC algorithm have the most similar clustering pairs, the ARI values

calculated across the pairs of death clustering of k-means and funHDDC can

be up to 0.86 at the second stage. However, the ARI values with the pairs of

funFEM are still close to zero.

Stage funFEM-funHDDC K-mean-funHDDC K-mean-funFEM
Stage 1 0.08 0.66 0.18
Stage 2 0.48 0.68 0.41
Stage 3 0.47 0.63 0.44

Table 5: Comparison of three methods of case-based clustering at three stages

Stage funFEM-funHDDC K-mean-funHDDC K-mean-funFEM
Stage 1 0.13 0.77 0.2
Stage 2 0.47 0.86 0.45
Stage 3 0.38 0.67 0.37

Table 6: Comparison of three methods of death-based clustering at three stages

One explanation of the low ARI values across other two clusteirng method

and funFEM can be the funFEM sometimes fails to keep three clusters. For

example, at stage two, the clustering result of funFEM shown in the middle

of the second column of figure 14 indicate there are only two clusters. This

situation would make ARI quite low when compared with three-class clustering

results.
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5 Summary & Discussion

Functional data clustering has always been one of the most challenging topics

compared to other clustering problems. The infinite dimension, various func-

tional curve shapes and the curve shifts, all of which can become difficulties

when researchers want to build up a functional data clustering algorithm.

In the past few years, non-parametric clustering method, such as k-means,

and Gaussian mixture model-based clustering methods are quite popular. Re-

searchers are trying to solve the difficulties of functional data clustering from

different perspectives and they all show some strengths on the analysis of cer-

tain classic functional datasets: for example, the Canadian temperature data

and the Berkeley growth study data Ramsay and Silverman [1997].

This year, we have an unprecedentedly large scale and long lasting pandemic.

The Covid data of over 150 countries and the cumulative Covid curves having

over three waves are making it one of the most difficult functional data for

clustering.

In this thesis paper, our contribution is the board survey of different types of

functional data clustering methods on the complex Covid data. It is also worth

mentioning that unlike other labelled functional datasets, the clustering on the

Covid data is unsupervised. The final answer for the clustering is unknown.

Therefore, the difficulties and the questions can be: (1) how to handle the

preprocessing of the complex Covid data; (2) how to evaluate the clustering

performance when there are no labels and no right answers; (3) with the complex

Covid data, which type of algorithms would win the clustering game?

The main contribution of our study is trying to answer and solve the above

questions. Firstly, we purposed a four-step Covid data cleaning process, which

includes: timeline alignment, data consistency check, the data correction check

and the data smoothing. The four steps of the Covid data preprocessing clean all

the irregular Covid records and smooth out every negative Covid case correction.

Secondly, we purpose to evaluate the clustering results from two aspects

in the unsupervised learning: the clustering stability and the clustering result

interpretability. We introduce ARI as the metrics of the clustering stability.
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We also introduced sequential clustering method and mapping to evaluate the

clustering result interpretability. Sequential clustering technique monitors the

changes of clusters along different development stage of this pandemic, and at

the same time, reduces the difficulty of stage by stage clustering compared to

the clustering on the whole timeline.

Thirdly, we select the functional data clustering methods that come from

the very different clustering families. The non-parametric clustering method,

k-means, does not have any parametric distribution assumptions, unlike the

model-based clustering family: funHDDC and funFEM.

In terms of stability, the model-based method funHDDC and funFEM are

better than the k-mean alignment method, though the k-mean method also have

decent ARI values at three stages.

In terms of interpretability, all of the clustering methods have the capability

to recognize countries with severe Covid cases condition, such as the United

States and Spain at the beginning of this pandemic. In the middle stage, Brazil

and Argentina have the red flags. The countries that three clustering methods

find it hard to harmonize are in the fuzzy zone. Neither do they have the Covid

condition as bad as the most severe countries, nor do they have the most clear

Covid condition as China, Australia, and others.

The ARI can be very sensitive to the changes of countries in the fuzzy

zones when comparing the clusteirng results of three algorithms across different

stages. Also, the ARI is quite sensitive to the changes of the number of clusters.

Though the initial number of clusters can be tuned and fixed in each algorithm,

the downgrade of clusters could still happen from time to time in funFEM.

Overall, we find out both non-parametric and model-based clustering method

have decent clustering stability. The clustering stability for death cases are

generally better than that of the active cases. By reducing the number of

clusters, the clustering stability will increase, which can be indicated by a smaller

variance of ARI. All of the three clustering methods can be good indicators to

the countries with red flags. But with more clusters, there will be more countries

classified in the fuzzy zones. The clustering stability would drop down because

of the uncertainty of finding the right cluster for those countries.
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