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Using a compressible, three-dimensional resistive magnetohydrodynamic (MHD) computer simulation code, 
wc examine the evolution of standing wave field line resonances (FI•s) in the nightside of the Earth's magneto- 
sphere. The MHD code that is used allows for a full nonlinear description and enables us to follow the evolution 
of FI•s to large amplitude. Wc take as our MHD driver a source of fast-mode waves incident fromthe direction 
of the magnetopause boundary layer. The ambient density and geomagnetic field are such that the fast mode waves 
have turning points at radial distances between 8 and 10 R e in the equatorial plane. The fast-mode angle of inci- 
dence is selected such that tunneling of the wave from the turning point to the resonance point leads to resonant 
mode conversion of energy from compressional waves to shear Alfv6n waves. Wc determine whether kinetic ef- 
fects or finite electron inertia effects arc likely to become important during the nonlinear evolution of the FLRs. 
For this to occur, the FI•s must narrow to the point where the radial scale size is several ion gymradii or less or 
to the point where the equatorial width of the resonance maps to several electron inertia lengths in the polar mag- 
netosphere. It is shown that the resonances do narrow to the point where kinetic effects are likely to bc important 
and that, in contrast to estimates in previously published work indicating that narrowing would take hundreds of 
wave cycles, this occurs within a few cycles of the driver field, consistent with observations of FLRs in the high- 
latitude ionosphere. 

INTRODUCTION 

A fundamental problem associated with magnetohydrodynam- 
ic (MHD) wave propagation in the Earth's magnetosphere con- 
cerns the possibility of mode conversion of compressional MHD 
wave energy to shear Alfv•n waves and, ultimately, to kinetic 
Alfv•n waves or electron inertia waves in association with field 

line resonances (FLRs). If mode conversion to kinetic Alfv•n 
waves or electron inertia waves occurs, a variety of processes are 
possible, including the acceleration of electrons in the parallel 
fields associated with the FLRs; in particular, the FLRs might 
play a role in the formation of certain types of auroral arcs [Ha- 
segawa, 1976; Goertz, 1984]. There is now direct evidence that 
FLRs play an important role in modulating the electron precip- 
tation in auroral arcs [Samson et al., 1991; Xu et aL, 1993]. At 
present, there is no firm evidence that this modulation is due to 
kinetic Alfv•n waves or electron inertia waves, but the possiblity 
of kinetic effects occurring is strong. In order for kinetic effects 
to become important, the FLR must narrow to a point where its 
radial scale size is on the order of several ion gyroradii or less. 
Many high-latitude FLRs are observed on magnetic field lines 
which map to the plasmasheet, where ion gyroradii are on the or- 
der of hundreds of kilometers, and so the resonances must narrow 

to several hundred kilometers or less in the equatorial plane for ion 
gyroradius effects to become important. In the equatorial plane, it 
is unlikely that FLRs will narrow to the point where their radial 
scale size is comparable to the electron inertial length. However, 
electron inertia effects will become important provided the equa- 
torial width of the resonance maps to several electron inertia 
lengths in the polar magnetosphere at altitudes of approximately 
1 Re. In particular, above the auroral ionosphere, electron inertia 
lengths are of the order of 1 km or so, which maps to roughly 50 
km in the equatorial plane, and so conservatively the resonances 
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must narrow down to a few hundred kilometers in the equatorial 
plane for electron inertia effects to play a significant role. 

Losses due to Joule heating of the ionosphere by the FLR will 
broaden the resonance and may prevent mode conversion to kinet- 
ic Alfv•n or electron inertia waves from occurring. Calculations 
using typical dayside and nightside height-integrated conductivi- 
ties and based on simple linear theory of FLRs (see below) indi- 
cate that in both the dayside and nightside regions the widths of 
the resonances should stabilize at values comparable to or less 
than a typical ion gyroradius in the plasmasheet. Satellite mea- 
surements of the radial width of FLRs have found widths as small 

as 0.2 Re [Hughes et al., 1978; Singer et al., 1982]. In order for 
kinetic effects to become important in FLRs in the magneto- 
sphere, it is only necessary for this narrowing to occur within a 
reasonably small number of wave cycles. Experimental observa- 
tions of 1- to 4-mHz FLRs in the auroral ionosphere suggest that 
typical wavetrains associated with incident compressional mode 
energy last for only several cycles [Walker et al., 1992], and so 
narrowing of the FLR must occur within this time frame. Allan 
and Poulter [ 1989] have suggested that it would take on the order 
of several hundred cycles for FLRs to narrow to the point where 
kinetic effects become important, thereby effectively ruling out 
kinetic effects in FLRs in the magnetosphere. Nevertheless, some 
computer studies [lnhester, 1987] and experimental measure- 
ments [Walker et al., 1992] indicate that narrowing occurs much 
more rapidiy than this. Walker et al. [1992] found that a FLR 
measured by HF-radar in the auroral region had narrowed to a lat- 
itudinal width of approximately 40 km within one or two wave cy- 
cles. In fact, the width may have narrowed even further, but the 
radar could not resolve features narrower than 40 kin. A 40-kin 

width in the ionosphere maps to a radial width of approximately 
2000 km in the equatorial plane, which is still rather large for ki- 
ncftc effects to become important, except for more energetic plas- 
mas. Nevertheless, the experimental measurements still point to 
the possibility of kinetic effects if further narrowing occurs. 

In order to address the problem of the evolution of FLRs to 
large amplitudes and very short scales, we have performed com- 
puter simulations which allow for a three-dimensional configura- 
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Fig. 1. A schematic of the MHD waveguide in the equatorial plane of the 
Earth's magnetosphere. 

tion in which the resonances are driven by a monochromatic, 
compressional "pump." An important aspect of our study is that 
we treat the full set of MHD equations, not the linearized equa- 
tions used in other studies [Allan et al., 1986; Inhester, 1987; Lee 
and Lysak, 1991]. Consequently, we are able to deal with possible 
nonlinear effects which might be expected in the vicinity of the 
resonance, where the wave fields can rapidly become large. To the 
best of our knowledge, the results presented here represent the 
first fully three-dimensional treatment of the nonlinear evolution 
of FLRs driven by compressional Alfvtn waves. 

The results presented in this paper do not include kinetic ef- 
fects, nor is there any background "noise" which would act as a 
seed for the resonances to form Kelvin-Helmholtz vortices in the 

equatorial plane [Rankin et al., 1993] when the resonances have 
grown to large amplitude. These simulations are left for future 

studies, as they add considerable complexity to an already compli- 
cated situation. Our results show that with simulation parameters 
compatible with the measured characteristics of 1- to 4-mHz 
FLRs in the auroral ionosphere, the FLRs narrow rapidly enough 
to allow the possibility of kinetic effects after only a few cycles in 
the wavetrain. Our simulations suggest that kinetic effects are 
likely to be important in FLRs occurring in the Earth's magneto- 
sphere. 

BASIC EQUATIONS AND LINEARIZED SOLUTIONS 

The basic configuration we are attempting to model is shown in 
Figures 1 and 2. A solar wind pressure pulse causes a disturbance 
to propagate antisunward along the magnetopause boundary. The 
disturbance on the boundary layer excites compressional waves, 
which travel toward the Earth until they encounter their turning 
points. Most of the incident compressional wave energy is reflect- 
ed at the turning point, but part of it tunnels toward the resonance 
point where the FLR is excited. In what follows, we examine the 
excitation of FLRs which have turning points on/. shells situated 
at 8 to 10 Rf in the equatorial plane. Although the incident waves 
are broad band, only certain discrete frequencies can produce the 
FLRs which are observed [Harrold and Samson, 1992]. This is 
due to MHD cavity modes being formed between the turning 
points and the outer boundary, possibly the magnetopause. 

Figure 2 shows the geometry of a FLR as described in our Car- 
tesian box model of the magnetosphere. An incident fast-mode 
wave impinges on the plasma from the direction of the magneto- 
pause boundary. The fast mode is refracted by the gradient in the 
Alfv6n velocity until it reaches its turning point, where it is partly 
reflected. At the resonance location, the evanescent field excites a 

shear Alfv6n wave, which is confined along the field line on the 
earthward side of the turning point. The shear waves reflect from 
the ionospheres, and set up a standing wave profile with a large az- 
imuthal magnetic field (B v componen0 antinode (node) at the ion- 
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Fig. 2. Geometry of a FLR in a box model magnetosphere. The figure shows a fast mode impinging on a plasma from the direction 
of the magnetopause. Coordinate x measures radius, y is azimuthal, and z is the field-aligned direction. The Alfv6n velocity profile 

varies approximately as v A (x) = v R (XR/X) 3 in the vicinity of the FLR (with v R - 500km/s and x R -- 8 to 10 R E) and 
plateaus in order to accomodate boundary conditions descibed in the text. This dependence of the Alfv6n profile is valid within a 

region L x - 1R E centered around the resonance position. 
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ospheres (equator) and a velocity field (vy component) antinode 
(node) at the equator (ionospheres). The plateau in the Alfv•n ve- 
locity profile is for numerical purposes only and is used to accom- 
modate the boundary conditions to be discussed later. 

The coupling of MHD compressional wave energy to FLRs is 
described by the full set of magnetohydrodynamic equations 

+Vo (pv) = 0 (1) 8t 

pv+Vo (pvv)+V P+ x (Vx B) = 0 
[t o 

(2) 

Vx Iv xB- BI = O (3) •}t gO 

•}P 

+TVo (Pv)-(T-1)IvoV P---•o(VX B)21 =0.(4) 
Equations (1) to (4) describe the evolution of the plasma densi- 

ty, momentum, magnetic field, and pressure, respectively. All 
symbols have their usual meanings. Equation (4) for the pressure 
was obtained by making use of the energy equation for the plasma 
and the equation of state. The above system of equations is solved 
numerically in a Cartesian geometry by using an alternating-di- 
rection-implicit method [Rankin et al., 1993]. The implicit meth- 
od is necessary in order to avoid restrictively small timesteps and 
to ensure numerical stability when large gradients in the Alfv•n 
velocity are encountered. 

The numerical solution of the nonlinear set of equations above 
will be compared with the results of linear theory. Noting that the 
ambient magnetic field and plasma density are inhomogeneous in 
the x direction (x corresponds to the radial direction), the linear- 
ization of the magnetohydrodynamic equations (1) to (4) above 
leads to a system of two equations which describe the spatial vari- 
ation of the plasma pressure and displacement associated with the 
mode conversion of Alfv•n waves, 

dPT 2 v• • x (5) -- 
ß 

d•x -G ( x) PT 
•xx ro2 _ k2v 2 P0 (6) zA 

In deriving these equations, we have allowed for gradients in 
the x direction and have assumed solutions of the form 

• (x, y, z) = • (x) exp [i (rot- k.y- k.z) ], where • is the plas- 
ma displacement and PT is the t0tal perturbation pressure associ- 
ated with the waves; i.e., PT = p + Bobz/gO' The function G(x) 
is defined by 

d2• x l dFd• x 
+ 

dx 2 Fdx dx 

in which F is defined by 

+ G•x = 0 
(8) 

( ro2 _ k2v 2 zA ) 
F = @0 G ' (9) 

Equation (8) has two turning points at positions x t for which 
G(xt) = 0 and two resonances at positions Xr for which F(x r) = 0. 
The latter correspond to the shear Alfv•n resonance, 

0) 2 - k 2v 2 = 0, and the cusp resonance, 0) 2v 2 - k 2 v 2 v 2 = 0. zA zAs 

In the vicinity of the shear Alfv•n wave resonance, where 

ro2/V2A _ k 2 = 0, the plasma may be considered to be cold, and z 

G = ro2/VA2 - (k 2 + kz2). These approximations enable (8) to be Y 
written as 

1 d•x- ky2•x = O, (10) d 2• x + ( x x; + i T ) •-xx dx 2 - 

in which the imaginary term iT takes into account losses in the 
system, 

Im { e (x r) } 
, (11) 

T = dd_..xRe {œ(Xr) } 
where Rc { e} = ro2/v2 A - (Re { k z} ) 2. The solution to (10) is 
given by 

•x = •0 TM [ky (X-Xr+ iT) I. (12) 
The overall spatial variation of the fields can be determined by 

matching (12) with the outer WKB solutions of (8) and the Airy 
function solution, which is valid at the turning point. The loss term 
in (12) removes the singularity at the resonant point and deter- 
mines the radial scale size of the FLR. To get an estimate for the 
expected scale size of the FLR, it is therefore necessary to consid- 
er the losses in more detail. If we assume that losses are due to 

processes taking place in the ionosphere, where there is a finite 
height-integrated Pedersen conductivity, •; , then k z will be com- 
plex: k z = Re{k z} + Im{kz}, with Re{kz} E_ m x/2L, where 2L is 
the effective length of the field line. The term Im{ kz} determines 
the losses. 

To estimate the radial scale size of the FLR, we will use (12), 
and the boundary conditions at the ionospheres. Assuming that the 
shear Alfv•n waves form a standing wave along z, we can write 
their E x electric field component in the form 

y z s 

G (x) = 002v 2 t.2v 2v 2 (7) -•z s A 

i ( kz z + •b) -i ( kzz + •b) • -irot E x (z, t) = E 0 + e e (13) 

and note that at the ionospheres the following relationship applies: 

in which v is given by v 2 = VA2 + Vs2, where v A is the Alfv•n 
speed and v s is the sound speed. Substitution of (5) into (6) leads 
to the equation 

B x z = +g0•pE, (14) 
where the + signs refer to the northern and southern ionospheres, 
respectively, and where I; represents the height-integrated Ped- 

P 
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ersen conductivity at the ionospheres. Using (14) and the relation- 
ship between E and B from Maxwell's equations, we can write 
down the following equation for the fields at the ionospheres: 

i0o3z :l: g0ZpEx = 0. (15) 

A straightforward application of (13) and (15) leads to expres- 
sions for the real and imaginary parts of k z, and for the phase factor 

-lnlRI 
Im {kz} - 2L 

Re[kz] = O + 2L - 2L 
ß 0 

ß -- «lnIRI - •- 
(16) 

where IRI and 0 are the amplitude and phase, respectively, associ- 
ated with the reflectivity of the ionospheres: 

i0 rn p (17) R= IRl e = I; +I; ' 
rn p 

In (17), Z_ = 1/g,,v A represents the conductivity associated 
with the shearmAlfv6n w•ves. Using (12), the radial dependence of 
E x in the vicinity of the FLR may be shown to be 

ikyE 0 
ex(x) = . (18) 

(Re {e} -ky 2) (X-Xr+iY) 
Takine the modulus and noting that near to the FLR 

o02/v• A (x) - kz2<< ky 2, it is easily seen that E x may be approximat- 
ed as 

E O = •y [ ( X _ Xr ) + •2• (19) 

In a similar fashion, (11), (16) and (17) can be used to find the fol- 
lowing expression for the imaginary term y: 

-1 r Y=- • •'•) -3• 
X = 

where vA(x ) = v 0 (Xo/X) 3 has been assumed. From (20), the 
half-width-half-maximum of the FLR can then be evaluated as 

x r 

In-Xrl = •-•lnIRI. (21) 

This latter expression enables us to estimate the radial width of 
the FLRs, given values for the reflectivity R and the particular L 
shell on which the resonances are situated. For example, a typical 
nightside ionospheric value for Z near to quiet arcs is greater 

P 

than 20 mho, whereas 10 to 20 mho is typical of diffuse aurora. 
Above the ionosphere, v A is typically 10 4 km/s, giving 
I; -0.1mho, and thus for Z = 10 mho we find that 

rn p 

I RI = 0.99. Examining the L shell for which x r = 10R E, we find 
that the full-width-half-maximum (FWHM) of such a FLR is ap- 
proximately 240 km, i.e., approximately 0.04 RE. These values are 
to be compared with the gyroradius of a ~10-keV proton, which 
has been adiabatically heated as it convects toward the Earth from 
the magnetotail. For such a proton, the gyroradius is on the order 
of hundreds of kilometers and thus our estimates of the width of 

the resonances indicate that kinetic effects should be important 
provided that the resonances can narrow rapidly enough and that 
nonlinear processes do not "broaden" the resonances [Rankin et 
al., 1993]. In order to examine this in more detail, we turn to nu- 
merical solutions of the MHD equations. 

FAST MODE DRIVER AND BOUNDARY CONDITIONS 

In order to resonantly excite shear Alfv6n wave FLRs, we must 
have a source of compressional MHD wave energyß In the simula- 
tions this is accomplished by specifying an incident harmonic 
wave field on the boundary of the systemß The y-z plane at x = 0 
represents a boundary in which a source of fast-mode Alfv•n 
waves is incident on the boundary as a result of, for example, solar 
wind pressure pulses impinging on the magnetospheric cavity. We 
assume that the fast-mode waves are monochromatic in order to 

simplify the boundary conditionsß This is a reasonable approxima- 
. tion since the FLRs of interest are cavity modes and have quan- 
tized frequencies [Kivelson and Southwoo& 1986]. The wave 
fields on the boundary are chosen to satisfy the linear dispersion 
relation for a warm plasma. The form of the dispersion relation 
may be obtained from the linearized MHD equations (5) and (6) 
above by replacing derivatives with respect to x by ik For the ,•' 
compressional waves, this leads to a dispersion relauon of the 
form 

.2,2 2 2 2) +to t•zVsV•. = 0 (22) 0o 4 _ 0o2k2 (VA2 + v s ß 
This equation has two solutions for 0o 2 . The positive square 

root is the solution corresponding to the fast mode, 

k 2 ( VA2 + Vs2) 4 v 2 v 2. k 2 0o2 s n z = •2 1+ 1 .... . v 2 +- 2,2• ( A Vs• 

(23) 

If the parameters on the right hand side of (23) are specified at 
x = 0, the frequency of the driver wave is determined. Knowing 
the frequency, the wave fields on the boundary can then be speci- 
fied. The simulation code advances the eight main variables, B, v, 
P, and @. The incident wave fields on the boundary are linear in 
the sense that their amplitude is small relative to the ambient field 
B 0 (B 0 = 20 nT in the simulations to be described below). Under 
this assumption, and using the fast-mode dispersion relation to 
eliminate the shear wave and the slow wave from the incident 

wave fields, a straightforward evaluation of the homogeneous lin- 
eadzed MHD equations leads to a set of relations which specifies 
the fields of the incident wave at x = 0, 

k 

bx = 0o-1XkzEx k 
Y 

(24) 

by = 0o-l kzE x (25) 
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b z = _•o -1 k212 

v x = -B•I•-E x 
Y 

(26) 

(27) 

Vy = -B•IE x (28) 
k 2 v 2 k z I s 

v z = -B•l•yy•o2_k2v2E • z s 

(29) 

P = _o•_ 1PO k212 ø•2v2 s 

In these equations, perturbed quantities appear on the left-hand 

side and B 0 and p0 represent the ambient magnetic field and den- 
sity at x = 0. The perturbed pressure may be evaluated from (30) 

by using the fact that for the wave fields, p = Vs2p. The driver 
electric field E x at x = 0 is chosen to vary sinusoidally in time ac- 

cording to E x = E 0 (t) sin ({at - kyy - kzZ + *b), where Eo(t) is a 
function which varies linearly with time to some specified maxi- 
mum value (corresponding to turning on the driver slowly) and d> 
is a phase factor which depends on the reflection coefficient at the 
ionospheres. 

Equations (24) to (30) specify field values corresponding to 
compressional driver waves incident on the boundary from out- 
side of the system. However, in order to permit waves reflected 
from plasma gradients inside the system to leave the simulation 
box, outgoing wave conditions are required. Boundary conditions 
for this can be constructed as follows: Letfix, y,z,t) denote any one 
of the field variables corresponding to the waves, and note that f 
can be written as a superposition of waves traveling in the +x (p) 
and -x (m) directions, respectively. Thus, 

f(x, y, z, t) = fp (x- Vxt, y, z) +fm (x + Vxt, y, z). (31) 
Differentiating these equations with respect to W = x- Vxt and 
• = x + Vxt leads to the following relationships: 

1 

(33) 

The operator on the left-hand side of (32) ignores waves moving 
to the left, letting them leave the system, and this is what is re- 
quired at x = 0, for example, so that (32) at x = 0 can be rewritten 

i}f i}f = 2i}fp (34) •- Vx•xx i)t ' 

The time rate of change on the right-hand side of this equation is 
user specified and is essentially determined by (23). The ampli- 

tudes (fp) of the incident wave fields are specified by (24) to (30). 
The above form of boundary condition is adequate since the excit- 
ed shear Alfv6n waves are trapped in the resonance region inside 
the plasma and there is no flux of these waves across the boundary 
at x = 0. The above boundary condition is specified in space- and 
time-centered fashion for all of the main variables used in the 

MHD code. Boundary conditions are also required at x = Lx, the 
length of the system in the x direction. We simply use a reflecting 
boundary condition there. For numerical purposes, the form of the 
ionospheric boundary condition may be expressed using equa- 
tions identical to (32) and (33), except that the arguments are now 

• = z - Vzt and • = z + Vzt, respectively. At z = 0 we requiref• 
= R fro, where R is the reflection coefficient at the ionosphere 
(cf(17)), and thus (32) and (33) imply that the wave field compo- 
nents at the ionospheres satisfy 

(1 _ R) •)f •)f +R)v -- = o. (35) zi}z 

The boundary condition at z = L, which represents the equato- 
rial plane, uses the symmetry of the field components: the magnet- 

ic field b.l ' is anti-symmetric at the equator, V_L is symn•tric, v 
is anti-symmetric, and b is symmetric. In the y direction, periodic z 
boundary conditions areZused. In the simulation results which fol- 
low, the number of computational zones used corresponds to 100 
in x, 48 in y, and 20 in z. The mesh is nonuniform in x, with a min- 
imum spacing at the resonance position, and is uniform in the oth- 
er two directions. 

RESULTS 

Coupling of MHD wave energy to FLRs may be characterized 
by the parameter shown below [Kivelson and Southwood, 1986; 
Inhester, 1987], 

q = k• (36) 
-22 d -2, 2/3 

( -t• z v•t •xxV A • 

The fractional energy loss per wave cycle is in the range 40 to 50% 
at the resonance point when q is in the range 0.25 to 0.75. In the 
simulations we choose the parameters ky and k z such that q = 0.5. 
This places the coupling coefficient near to its optimum value. In 
reality, there is likely to be present a spectrum of incident wave an- 
gles, but the coupling will be the most efficient when q = 0.5. 
Larger or smaller values of q will imply growth of the FLR over a 
greater interval of time and perhaps a smaller saturation ampli- 
tude. 

The ambient parameters are chosen for comparison with the 
cavity mode FLRs discussed by Harrold and Samson [ 1992]. The 
reader is referred to that paper for a detailed discussion, and in 
particular Figures 2c to 2d of the paper are used to estimate ambi- 
ent quantities at the position of the FLR in the equatorial plane. 
Our results are appropriate to a region centered around the loca- 
tion of a 1.3-mHz FLR at an approximate radial distance of 8 to 
10 R E in the equat{•rial plane. In the vicinity of the FLR, the geo- 
magnetic field strength is approximately 40 nT, the ambient den- 
sity is between 2 and 3 particles/cm -3, and the plasma temperature 
at x = 0 is 1.4 keV (x = 0 is on the antiearthward side of the FLR). 
The Alfv6n velocity profile (Figure 2) has an approximate 1/x 3 
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variation in the vicinity of the FLR (v A - 500km/s at the FLR lo- 
cation), and the ambient density increases from the resonance po- 
sition toward x = 0 in order to accommodate pressure balance (the 
density increases by a factor of three). The density is varied in this 
manner in order to avoid unrealistically high plasma temperatures 
at x = 0 as a result of the demand for pressure balance. This results 
from our choice of a Cartesian geometry; in reality the field line 
curvature would lead to a more realistic pressure balance. Our re- 
sults are not sensitive to these approximations, and in particular 
the local plasma conditions at the position of the FLR are critical 
since the resonance narrows to very short scales. The ambient pro- 
files are uniform near to x = 0 and x = L x (L x ~ 1 R E) in order to 
accommodate the boundary conditions discussed earlier. The 
driver electric field Eo(t) is specified in terms of the dimensionless 
parameter E (t) = (1/vAO) E 0 (t)/B O. This quantity is 
ramped up linearly with time to a constant value over a timescale 
comparable to the Alfv6n transit time to the resonant point. Spe- 

cifically, E (t) = rain (t/ofT , E.....•) , where T 0- Lx/VAO is 
the Alfv6n transit time, ot is a dimensionless parameter which 

takes the value 0.2 in the results to be presented, and Ema x is the 
maximum amplitude of the normalized field. We have used a 
growing waveform for simplicity in order to get fast-mode wave 
energy into the system. Impulsively generated global modes are 
likely to be decaying during part of the timescale for which field 
FLRs are being excited. However, the essential parameter is the 
amount of energy deposited in the resonance region, and it should 
be unimportant whether the excitation waves are growing or 
damping, provided they do not damp too rapidly. 

In Figures 3 and 4 we show x-y cuts of the data for the magnetic 
field component By at three positions along z, z = 0 Oust above the 
ionosphere), z ~ If2, and z ~ L (near to the equatorial plane). We 
take as our time unit the number of elapsed wave periods of the 
MHD driver and choose a value for the reflectivity at the iono- 
spheres corresponding to I RI = 0.95. The maximum driver am- 

plitude E.•,,,. at x = 0 corresponds to BymaxlBo = 0.05 for this 
case. As d{•u•'ssed above, reflectivities corresponding I RI -- 0.99 
are more consistent with diffuse aurora. The lower reflectivity re- 
suits being presented here are mainly by way of illustration. Fig- 
ure 3 represents data output from the simulations after 
approximately 2 wave periods, and Figure 4 shows the data output 
after approximately 13 wave periods. It should be remembered 
that By has a node at the equatorial plane and an antinode at the 
ionosphere. The y-dependent sinusoidal nature of the driver field 
at the boundary x = 0 is evident in these figures, as is the excitation 
of a disturbance near to x = Lff2. The latter represents the FLR 
which is secularly growing as a result of mode conversion of the 
fast-mode driver wave. It can be seen that the FLR also has the 

same sinusoidal y and z dependence as the driver wave (By has a 
node at the ionosphere, and an antinode at the equator), indicating 
that the FLR is being excited in the fundamental mode. The 
growth in the amplitude of the resonance saturates shortly after the 
time indicated in Figure 4, corresponding to approximately 14 to 
15 wave periods. This occurs either as the result of nonlinear pro- 
cesses or as a result of the Poynting flux of the Alfv6n waves 
through the ionospheres due to the finite conductivity. 

The Vy velocity component is found to have an identically topo- 
logical form to the By fields shown in Figures 3 and 4, except that 
Vy has a node at the ionosphere and an antinode at the equator. Fig- 
ures 3 and 4 indicate that at early times the amplitude of the FLR 
is small and its width in the x direction is relatively large. As the 
wave amplitude grows, the FLR narrows rapidly with time. In Fig- 
ure 5 (with I RI = 0.95), we show the temporal growth of the 
maximum value of By in the portion of the x-y plane at z = 0 which 
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encompasses the FLR. As discussed above, saturation of the am- 
plitude of the excited waves occurs after an elapsed time of ap- 
proximately 14 wave periods. It can be seen that the peak 
amplitude of the By field of the FLR at saturation is approximately 
0.35 times the value of B o on the boundary at x = 0 (B o is appro- 
priate to values in the equatorial plane of the real magnetosphere), 
corresponding to roughly 15 to 20% of the ambient geomagnetic 
field value at the resonance position. The maximum azimuthal ve- 
locity of the resonance in the equatorial plane is very large, 
amounting to approximately 60 km/s after saturation. These ve- 
locities are compatible with measured values from satellites 
[Mitchell et al., 1990] and values inferred from radar measure- 
ments [Walker, 1980 ]. The large radial shear in the azimuthal ve- 
locities in the equatorial plane, 120 km/s across the resonance, 
makes the resonance susceptible to nonlinear effects such as 
Kelvin-Helmholtz (KH) instabilities. The consequence of these 
large velocity shears will be examined later. 

An important result here is that the FLRs narrow to scales 
where kinetic effects might play a role after only several wave cy- 
cles, an interval which is much shorter than that suggested by Al- 
lan and Poulter [1989]. In the absence of ionospheric 
dissipation, these authors considered a mechanism termed dissi- 
pative phase mixing for determining qualitatively the timescale 
for which kinetic effects are likely to become important. The ti- 
mescale they estimate relies on order-of-magnitude estimates of 
magnetic viscosity and resistivity and leads to the conclusion that 
hundreds of cycles would be required for coupling to kinetic 
Alfv6n waves to become important. This is in contrast to the re- 
suits of Inhester [ 1957], who concluded that kinetic effects might 
become important at earlier times owing to the very small damp- 
ing of FLRs provided by a highly conducting ionosphere. In our 
three-dimensional model, damping is a natural consequence of the 
ionosphere, and the observational constraint of a highly reflecting 
ionosphere brings our predictions of timescales in accord with 
those of Inhester [ 1987]. We shall see later that nonideal MHD 
effects can become important when the scale size of the FLR is an 
order of magnitude larger than the scale lengths associated with 
electron inertia waves. Our calculations are in accord with obser- 

vations of FLRs, which indicate that the actual evolution times- 

cales are on the order of only a few wave periods [Walker et al., 
1992]. We have also studied the evolution of FLRs when a smaller 

amplitude driver (Bymax/B o = 0.01) is imposed at x = 0. The tem- 
poral evolution of the resonance is unaffected; i.e., growth and sat- 
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uration occur after approximately 14 wave periods. However, the 
saturation amplitude of the By field of the resonance is smaller, 
amounting to roughly 8% of Bo. This gives an approximate linear 
scaling of the amplitude of the FLR with the amplitude of the driv- 
er field, at least within the considered range of parameters. This is 
not unexpected, since saturation occurs when the ionospheric 
losses are balanced by the Poynting flux of the driver waves into 
the resonances. 

In Figure 6, we show cuts of the data in the x-y plane near to the 
ionosphere (z = 0) at elapsed times corresponding to 2, 3, 8, and 
14 cycles of the MHD driver. At early times, the FLR has an over- 
all width of approximately 0.4 R E and is observed to grow rapidly 
and narrow significanfiy over a time period of only three or four 
wave cycles. Using Figure 6 we estimate that the FWHM trans- 
verse scale size just as the structure saturates is near to 0.06 R e , 
i.e., in reasonable agreement with (21), although this agreement 
does not necessarily imply that the saturation mechanism deter- 
mining the widths of the resonances can be attributed to linear 
processes. 

In our Cartesian geometry, the scale sizes of the FLR do not 
change along the field lines. In particular, near to the ionosphere 
our scale sizes are actually overestimated by as much as a factor 
of 40 to 50 [Walker, 1980], reflecting the fact that in a dipolar ge- 
ometry the g•magnefic field lines converge near to the iono- 
sphere. Nevertheless, our calculations should be valid in the 
equatorial plane, where the highest-velocity fields are expected. 
Observationally, the scale sizes of the velocity fields of the reso- 
nances in the E and F regions of the ionosphere are 40 km or so 
[Samson et al., 1992a, Walker et al., 1992], and taking into ac- 
count the mapping factor associated with the magnetic field con- 
vergence, this corresponds to a scale size in the equatorial plane of 
-0.4 R e . This is consistent with the early time results predicted by 
our simulations (for reflectivifies between IRI = 0.95 to 0.99) 
but is significanfiy larger than the late time results when the reso- 
nances have grown to large amplitude. However, it is worth point- 
ing out that the observational scale sizes are at the limits of the 
instrumentation and that narrower structures may in fact be form- 
ing. The I to 2 cycles narrowing time observed by Walker et al. 
[1992] may represent only a fraction of the time interval over 
which the FLRs narrow. The actual scale size which results from 

the mode conversion of a solar wind pressure pulse will depend on 
the amplitude and duration of the pulse, the conductivity of the 
ionospheres, and whether nonlinear processes, for example, non- 
linear KH instabilities in the FLRs [Ranla'n et al., 1993], or kinetic 
processes can prevent very small scale sizes from forming. How- 
ever, within the framework of the resistive MHD equations, our 
results indicate that large amplitude FLRs can form relatively eas- 
ily and that narrowing of the structures can occur within the ob- 
served lifetime (typically a few wave cycles) of MHD wave 
events. 

The reflectivity of the ionosphere is a significant parmneter af- 
fecting the amplitude and scale size of FLRs. To investigate this 
latter point, we have repeated the above calculation using a reflec- 
tivity which is consistent with that encountered in the high-lati- 
tude polar ionosphere, namely IR[ = 0.99. Figure 5 also shows 
the growth of the FLR with time for this case. The wave fields 
grow more rapidly than for [RI = 0.95, reflecting the lower loss- 
es through the ionosphere, and saturation occurs at a higher am- 
plitude, i.e., at approximately 0.55 to 0.60 times the ambient 
magnetic field value at the boundary x = 0 (again, in the real mag- 
netosphere, these comparisons with B o are appropriate to values in 
the equatorial plane). The FLRs narrow more rapidly for this case, 
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and the scale size at saturation is somewhat smaller than in Figure 
6d, i.e., the FWHM is approximately 0.03 Rœ as indicated in Fig- 
ure 7. 

DISCUSSION 

The results presented above indicate that large amplitude FLRs, 
with velocity shears on the order of 100 km/s, can be driven over 
relatively short timescales in the equatorial plane of the magneto- 
sphere. It is remarkable that the large amplitudes and very short 
radial spatial scales of these structures do not lead to significant 
deviations from the predictions of linear analysis cf (21). For ex- 
ample, in Figure 8 we show the y-z Fourier amplitude (sampled at 
the x coordinate corresponding to the peak value of the field of the 
FLR) of the By component data after the FLR has saturated at an 
amplitude in the equatorial plane corresponding to approximately 
0.30 to 0.35 times Bo. The Fourier amplitude is calculated accord- 
ing to the formula 

a (x) = la (x, y, z) exp [-i (kyy + kzZ) I dydz. (37) 

0.3 

ky 0 -5 5 10 
-10 kz 

The four peaks in Figure 8 correspond to the fundamental 
modes +2a:/L and +a:/2L, respectively. There is no indication 
that higher-waYvenumber modes are becoming important, since 
they would lead to a broadening of the spectrum or the generation 
of additional peaks in k-space. This is true for the higher reflectiv- 
ity results also. 

The two basic wave modes associated with mode conversion, 

i.e., the compressional and the shear wave, can also be investigat- 
ed using a Fourier analysis of the simulation data. For the case 
here, mode conversion leads to a large growth in the amplitudes of 
By and vy and only a small enhancement of B x and v x, as can be 
seen on examining the linearized MHD equations. The magnetic 
field component B z is specific to the compressional wave and 
should vanish in the region where shear Alfv6n FLRs are excited. 
On the other hand, compressional waves do not carry a field- 
aligned current, whereas shear Alfv6n waves do. Therefore, Jz 
should be strongly peaked in the vicinity of the FLR where shear 
Alfv6n waves are being excited. For example, in Figure 9 we show 
the evolution of the Fourier amplitude of the By component funda- 
mental mode as a function of x and time. It can be seen that the 

mode amplitude is largest at the FLR position and that the funda- 
mental mode becomes increasingly confined to the resonance lo- 
cation as its amplitude increases with time. The resonance is seen 
to be narrow over most of the evolution timescale. There are no 
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Fig. 7. A line from the By data in the x-y plane near to the ionosphere (z = 
0). The elapsed time corresponds to 14 cycles of the fast-mode driver wave. 
The reflectivity of the ionosphere is I RI = 0.99. 

Fig. 8. Fourier transform of the By-component data (normalized to B 0) af- 
ter the FLR has saturated at an amplitude corresponding to approximately 
0.35 times B 0. The four peaks correspond to the fundamental modes 

_.+ 2 •: / L y and -I-•: / L , respectively. 

other significant wavenumber modes excited in the vicinity of the 
FLR, and in particular the amplitude of the next higher-order 
wavenumber mode is almost two orders of magnitude smaller than 
that of the fundamental mode shown in Figure 8. A time slice 
along the sharp ridge in Figure 9 can be compared with the corre- 
sponding curve shown in Figure 5, which contains information 
from all of the wavenumber modes which are present in the sys- 
tem. The differences between these two curves are found to be less 

than 2%. Clearly, the saturation amplitude of the FLR is due to the 
finite Poynting flux into the dissipative ionosphere (as a result of 
the finite conductivity), which just balances the Poynting flux into 
the FLR from the compressional pump. 

Figure 10 shows the change in the phase of the By component 
of the wave across the FLR. The phase change of g predicted by 
linear theory and observed experimentally is clearly present. To 
calculate the phase of the waves, we have assumed that the wave 
profiles do not change in the z direction, which is correct because 
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Fig. 9. Evolution of the Fourier amplitude of the By component fundamen- 
tal wave mode (normalized to B 0) as a function of x and time. 
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Fig. 10. Change in phase of the By component across the FLR. 

the fields are standing waves along z. The phase can then be de- 
fined in terms of the phase of the Fourier amplitude, 

By and Jz 

t ............... 
0.05 [ 

v 0.04 { 

0.02 [ 

•} .... 0•2 .... 0•4 .... 0'.6 .... 0•8 .... 

X/L x 

Fig. 12. The Fourier amplitude (fundamental mode) of the field-aligned 
current Jz as a function of x at a time when the amplitude of the FLR is al- 
most saturated. Jz is a quantity specific to shear Alfvtn waves. The units for 
By are arbitrary. 

a (x) = la (x)lexp [i phase (x) ], (38) 

and so we see that the phase determines the sign of a field quantity. 
As the resonance is traversed, the phase of By changes by ;• but 
there is no significant change in the phase of B x, which means that 
the polarization is reversed in crossing the resonance point. 

The compressional mode can also be investigated. For exam- 
ple, in Figure 11 we show the evolution of the fundamental mode 
amplitude associated with B z. This field component is specific to 
the compressional mode, and it can be seen that B z vanishes rap- 
idly across the FLR location, emphasizing the absorption of ener- 
gy from one wave type to the other as a result of mode conversion. 
An interesting feature present in Figure 11 is the temporal modu- 
lation of the data on the antiearthward side of the FLR. These 

modulations are spaced at intervals of the Alfvtn wave period. At 
present these modulations remain an unexplained feature of the 
data. They are in fact present in all of the field components but are 
made clear in Figure 11 because the amplitude of B z is small. 

The field-aligned current Jz associated with the fundamental 
mode of the shear Alfvtn waves is displayed in Figure 12. This 
quantity should be zero toward the boundary x = 0 (where the 
waves are essentially compressible) and should have a strong peak 
in the vicinity of the FLR which narrows with time. This behavior 
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Fig. 11. Evolution of the Bz-component Fourier amplitude of the funda- 
mental wave mode (normalized to Bo) as a function of x and time. B z is a 
quantity specific to compressional Aifvtn waves 

is observed in the simulations, and in Figure 12 it is clear that Jz is 
nonzero only across the resonance region. Also shown in Figure 
12 is the corresponding field component By (scaled such that Jz 
and By can be displayed on the same figure). The transition from 
one mode to the other is clear in Figure 12; this also serves to in- 
dicate that processes are being modeled correctly. When the 
growth in the amplitude of the FLR is saturated, the field-aligned 
current corresponds to J -0.07 !.tA/m". Again, taking into ac- 

count geometrical mapping factors, in the actual magnetosphere 
this corresponds to current densities exceeding 3 gA/m near to 
the ionosphere, which is probably large enough to give rise to au- 
roral arcs. 

For completeness, we show the evolution of the B x fundamental 
mode amplitude in Figure 13. This component is common to both 
the shear and compressional modes. Although it is not clear from 
this figure, it can easily be demonstrated that the peak B x field in 
the vicinity of the FLR is growing over the time interval shown on 
the figure, even though B x on the antiearthward side has reached 
steady state. The incoming and reflected compressional waves on 
the antiearthward side reach steady state relatively early in the 
simulation, after the incoming wave amplitude has been ramped 
up in time to its constant value. 

The large velocity shears that are observed in the simulations 
should be sufficient to drive KH instabilities in the equatorial 
plane of the FLR. For example, the growth rate for the KH insta- 
bility [Walker, 1981], assuming a discontinuous change in veloc- 
ity across the region of velocity shear, is given approximately by 

0o i = ky0V 0, where ky 0 represents the wavenumber of the insta- 
bility and v 0 represents the amplitude of the velocity shear re- 

gion. Taking v o = 80 to 100 knds, and a value for ky 0 appropriate 
to a hyperbolic-tangent velocity shear region, for which maximum 

growth is determined by kyoA- 0.6, where 2A is the width of 
the velocity shear region, it is easily calculated that exponential 
growth times for the KH instability are on the order of 70 to 80 s 
for scale sizes corresponding to A - 0.1Rœ. These timescales are 
much shorter than the observed periods of the FLRs, which are 
typically hundreds of seconds. The KH instability does not occur 
in the simulations owing to the absence of a small seed component 
of velocity having an appropriate wavelength for growth. We have 
seen that the absence of nonlinear effects in the simulations pre- 
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vents significantly higher k-modes from occurring. The wave 
numbers for growth of the KH instability are much larger than the 
ky of the FLR [Satnson et al., 1992a, 1992b], and thus the instabil- 
ity cannot easily occur in the simulations. It is possible to artifi- 
cially include a seed for the instability; however, a large increase 
in the number of computational mesh points in the y direction is 
required since the wavelength of the instability is much shorter 
than the corresponding azimuthal wavelength of the FLR. This 
places significant demands on computational resources and is de- 
ferred for future study. Rankin eta/. [ 1993] have shown that the 
occurrence of KH instabilities in a simple model of FLRs can lead 
to broadening of the resonances as a result of formation of nonlin- 
ear vortex structures. However, their simplified model neglected 
coupling to the MHD driver and omitted the azimuthal structure 
of the FLR and the radial dependence of the ambient parameters. 

In using the resistive MHD equations (1) to (4), we have of 
course neglected the finite Larmor radius of ions and the finite in- 
ertia of electrons. Corrections for these quantities become impor- 
tant when the characteristic length scale perpendicular to the 
ambient magnetic field becomes small. In the context of FLRs, ion 
Larmor radius effects are dominant near the equatorial plane when 
the electron thermal speed is greater than the Alfv6n speed [Hase- 
gawa, 1976], whereas at high latitudes the electron inertia length 

()• = c/to.. e) is considerably greater than the ion gyroradius. In 
particular, •e have seen that the radial scale sizes of FLRs in the 
equatorial plane can be smaller than the ion gyroradius of adiabat- 
ically heated protons convecting in from the magnetotail, and if 
we use the mapping factor discussed by Walker [ 1980], which ac- 
counts for the converging magnetic field topology in a dipolar 
magnetosphere, we find that the scale sizes of the FLR can be on 
the order of a few kilometers above the ionosphere. The scale sizes 
at the ionosphere are therefore comparable to the electron inertial 
length, and our MHD model should be modified to include finite 
electron inertia terms in the generalized Ohm's law. These correc- 
tions modify the dispersion relation of shear Alfv6n waves, which 
become dispersive and are referred to as electron inertia Alfv6n 
waves. Electron inertia waves induce parallel electric fields, which 
might lead to the formation of potential structures and the down- 
ward acceleration of electrons above the ionosphere [Seyler, 
1990]. The precipitating electrons may modulate the conductivity 
of plasma near to the ionosphere and play a role in the dynamics 
of discrete aurora [Goertz, 1984]. 

Though a fully nonlinear treatment of mode conversion to elec- 
tron inertia shear Alfv6n waves is beyond the scope of the present 

study, we can obtain some ideas about the possible effects of these 
waves by looking at numerical solutions to a set of lineafized re- 
sistive MHD equations which has been derived using an Ohm's 
law which includes electron inertia effects in the direction of the 

magnetic field lines: 

(E+vxB-•lj) *•. = & I. t0• (39) 

To solve the equations, which will be described elsewhere, we 
assume that the plasma is cold and that the y and z dependences 
are of the form exp (ik. y) exp (ik.z). We keep the dependence on 
the x coordinate as the •lasma is in'homogeneous in this direction. 
The analysis results in a set of five equations which describe the 
evolution of the complex mode amplitudes in the x-t plane. We 
solve these equations numerically using a simple finite-difference 
scheme. The physical configuration is analogous to the nonlinear 
case presented above; i.e., a compressional pump wave enters the 
plasma and excites a FLR at the resonance point. For simplicity, 
we assume that the z-component ambient magnetic field is con- 
stant and that the Alfv6n velocity gradient varies linearly across 
the resonance region owing to variations in the background densi- 
ty. 

In Figure 14, we show the By magnetic field component of the 
waves with and without the inclusion of finite electron inertia. The 

amplitude of the FLR is smaller when finite electron inertia is in- 
cluded, and the resonance is more spatially structured because of 
the dispersive nature of the waves. We also observe a shift of the 
peak of the FLR to the fight. For a fixed k z, this shift is due to the 
dispersive effects which lower the frequency of the electron inertia 

waves: t02 = k 2 2- k2_L3, 2) where k_L is the perpendicular zV•t/(l + , 
wave number. The term in the denominator is larger than unity, 
and therefore the resonant point occurs at a higher Alfv6n veloci- 
ty, which in this case corresponds to a shift to the fight toward low- 
er density. The finite-gyroradius kinetic Alfv6n wave experiences 
an analogous shift but in the opposite direction as its dispersion re- 
lation is •o 2 k 2v 2 2 2 z A ( 1 + is a gyroradius based = k_l_rg), where r s 
on a combination of electron and ion temperatures. The propaga- 
tion of the electron inertia wave away from the resonance position 
leads to an additional loss term, which results in a smaller saturat- 
ed amplitude for the FLR than is predicted by the resistive MHD 
equations. Here, it should be noted that when finite electron inertia 
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Fig. 14. By magnetic field component of the waves as a function of x when 
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effects are absent, saturation in the linear equations is possible be- 
cause of the assumed constant resistivity of the plasma. 

The electron inertia effect clearly leads to a broadening of the 
FLR in Figure 14, and consequently we would expect actual FLRs 
to have widths greater than those that have been estimated using 
our nonlinear MHD simulations. Our preliminary calculations 
show that with finite electron inertia effects, the FLR narrows to a 

width that is roughly 10 times larger than the local value of •. and 
that the final state is a stationary one in which the absorption of en- 
ergy at the resonance point is balanced by energy emitted from the 
resonance in the form of Alfvtn waves which propagate towards 
lower density plasma. Taking 0.1 R E as a typical scale size in the 
equatorial plane for the FLRs predicted by our nonlinear MHD 
simulations, we estimate that the corresponding scale sizes at the 
ionosphere are on the order of 10 km, and since the electron iner- 
tial length near to the ionosphere is approximately 1 or 2 km, finite 
electron inertia effects should have a strong influence on the non- 
linear evolution of FLRs in the Earth's magnetosphere. 

CONCLUSIONS 

Our simulations indicate that large-amplitude FLRs, with ve- 
locity shears on the order of 100 km/s, can be excited in the equa- 
torial plane of the Earth's magnetosphere. The scale sizes of the 
FLRs, and the timescales for narrowing of the resonances to occur, 
are compatible with observations of FLRs in the high latitude po- 
lar ionosphere [Walker et al., 1992]. Narrowing of the resonances 
occurs within only a few cycles of the Alfvtn wave train, and the 
radial scale size can approach 0.1 R E when the amplitudes of the 
FLR have saturated. The scale sizes of the resonances in the equa- 
torial plane are comparable to the ion gyroradius, and accounting 
for magnetic field convergence near to the ionospheres, the scale 
sizes there are comparable to the electron inertia length. This leads 
us to the conclusion that in order to examine FLRs in the 1- to 4- 

mHz range, the generalized Ohms law in the MHD equations must 
be modified to include kinetic effects or effects due to finite elec- 

tron inertia. In fact, we expect that kinetic effects will lead to res- 
onances which are broader than the 0.1 R E value found in these 
studies, since kinetic effects can begin to damp the resonance 
when the resonance scale size is comparable to the gyroradius or 
electron inertial length. We have modified our MHD model to in- 
clude the full set of nonlinear equations describing finite electron 
inertia, and the role played by finite electron inertia in the nonlin- 
ear dynamics of FLRs is currently under investigation. 

In our simulations, the radial scale sizes for the resonances pose 
a very difficult problem for experimenters to verify. Satellite data 
might be used for these measurements, following the methods 
used by Singer et al. [ 1982]. It is not clear, though, that widths as 
narrow as 0.1 R E could be accurately measured, bearing in mind 
temporal and spatial effects as the satellites traverse the resonanc- 
es. It is also not clear that radar measurements in the E-region 
[Walker et al., 1979] or F-region [Walker et al., 1992] can attain 
the desired spatial resolutions, which should be smaller than ap- 
proximately 5 km. One exciting possibility is in the use of optical 
measurements to determine the latitudinal widths of FLRs. Sam- 

son et al. [1991, 1992a] and Xu et al. [1993] have shown that 
FLRs can cause strong modulations in electron precipitation in the 
auroral ionosphere. However, their spatial resolution was too poor 
to determine much about the latitudinal structure of FLRs. If the 

electron precipitation is a direct result of the fields within the 
FLRs, perhaps due to the parallel fields associated with kinetic 
Alfvtn waves or electron inertia waves, then ground-based optical 

measurements of 5577t• and 6300,•, emissions could easily be 
used to determine the structure of the FLRs. 
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