
SUPPLEMENTARY MATERIALS: DISCRETE INVERSE METHOD
FOR EXTRACTING DISEASE TRANSMISSION RATES FROM

ACCESSIBLE INFECTION DATA∗

XIUNAN WANG† AND HAO WANG‡

Theorem SM0.1. For the SIS model 2.1, given a smooth positive function f(t)
generated from prevalence data, γ > 0, N > 0, β0 > 0, and T > 0, there exists K > 0
such that if β0 < K there is a solution β(t) with β(0) = β0 such that I(t) = f(t) for

0 ≤ t ≤ T if and only if f ′(t)
f(t) > −γ for 0 ≤ t ≤ T .

Proof. Since I(t) = f(t), from the second equation of system (2.1) we have

(SM0.1) S(t) =
N(f ′(t) + γf(t))

β(t)f(t)
.

Substituting (SM0.1) into the first equation of system (2.1) and calculating S′(t) we
get

(SM0.2)
d

dt

(
N(f ′(t) + γf(t))

β(t)f(t)

)
= −β(t)

N(f ′(t) + γf(t))

β(t)f(t)

f(t)

N
+ γf(t).

Simplifying equation (SM0.2) yields the following Bernoulli differential equation for
β(t):

(SM0.3) β′(t)− p(t)β(t)− q(t)β(t)2 = 0,

where

p(t) =
f(t)f ′′(t)− (f ′(t))2

f(t)(f ′(t) + γf(t))
, q(t) =

f(t)f ′(t)

f ′(t) + γf(t)
.

Let x(t) = 1
β(t) . Then equation (SM0.3) can be transformed into the following linear

equation:

(SM0.4) x′(t) + p(t)x(t) + q(t) = 0,

Solving equation (SM0.4) by the method of integrating factors we get

1

β(t)
= x(t) = x(0)e−

∫ t
0
p(τ)dτ − e−

∫ t
0
p(τ)dτ

∫ t

0

e
∫ s
0
p(τ)dτq(s)ds.

We need the condition f ′(t) + γf(t) > 0 to ensure that the denominator of p(t)
and q(t) be nonzero so that a singular solution is prevented.
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To ensure that β(t) is positive, β(0) must satisfy

1

β(0)
>

∫ T

0

e
∫ s
0
p(τ)dτq(s)ds.

A discrete SIS model based on centered Euler discretization is given by the fol-
lowing system:

(SM0.5)
Sn+1 = Sn−1 −

2βnSnIn∆t

N
+ 2γIn∆t,

In+1 = In−1 +
2βnSnIn∆t

N
− 2γIn∆t.

Theorem SM0.2. For the model system (SM0.5), suppose that the initial disease
prevalence data I0, I1 are available and the time series of incidence data yn, n =
0, 1, ...,K are given at equally spaced time step ∆t, then the transmission rates can be
estimated by the following iteration process:

In+1 = 2yn∆t− 2γIn∆t+ In−1,

Sn+1 = N − In+1,

βn =
N(Sn−1 − Sn+1)

2SnIn∆t
+

Nγ

Sn
,

n = 1, 2, ...,K − 1,

and β0 and βK can be approximated by β1 and βK−1, respectively, if the obtained time
series of susceptible and infected compartments as well as transmission rates are all
non-negative, which can be tested numerically.
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Fig. SM0.1. The estimated transmission rates by discrete inverse method based on centered
Euler discretization.
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Fig. SM0.2. Diagram of the flu model (3.1)
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Fig. SM0.3. Weekly reported ILI cases in the US from the 35th week of 2013 to the 34th week
of 2018.
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Fig. SM0.4. Weekly time series of the susceptible, infected, vaccinated and not infected popu-
lations from week 35 of 2013 to week 34 of 2014.
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Fig. SM0.5. Weekly time series of the susceptible, infected, vaccinated and not infected popu-
lations from week 35 of 2014 to week 34 of 2015.
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Fig. SM0.6. Weekly time series of the susceptible, infected, vaccinated and not infected popu-
lations from week 35 of 2015 to week 34 of 2016.
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Fig. SM0.7. Weekly time series of the susceptible, infected, vaccinated and not infected popu-
lations from week 35 of 2016 to week 34 of 2017.
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Fig. SM0.8. Weekly time series of the susceptible, infected, vaccinated and not infected popu-
lations from week 35 of 2017 to week 34 of 2018.

Fig. SM0.9. Diagram of the measles model (4.1)

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

Time (weeks from 1950 to 1960)

0

1000

2000

3000

4000

5000

6000

7000

8000

W
e

e
k
ly

 n
e

w
 c

a
s
e

s

(a)

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

Time (weeks from 1950 to 1960)

0

200

400

600

800

1000

1200

1400

1600

1800

W
e

e
k
ly

 n
e

w
 c

a
s
e

s

(b)

Fig. SM0.10. (a) Weekly new cases of measles in London from 1950 to 1960. (b) Weekly new
cases of measles in Manchester from 1950 to 1960.
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Fig. SM0.11. Weekly time series of the measles model variables in London from 1950 to 1960:
(a) Susceptible juvenile compartment; (b) Exposed juvenile compartment; (c) Infectious juvenile
compartment; (d) Recovered and vaccinated juvenile compartment.



SUPPLEMENTARYMATERIALS: ESTIMATING TRANSMISSIBILITY BY INVERSEMETHODSM7

19
50

19
51

19
52

19
53

19
54

19
55

19
56

19
57

19
58

19
59

19
60

0.16

0.18

0.2

0.22

0.24

S
u

s
c
e

p
ti
b

le

(a)

19
50

19
51

19
52

19
53

19
54

19
55

19
56

19
57

19
58

19
59

19
60

0

2

4

6

8

E
x
p

o
s
e

d

10-4 (b)

19
50

19
51

19
52

19
53

19
54

19
55

19
56

19
57

19
58

19
59

19
60

0

0.2

0.4

0.6

0.8

1

In
fe

c
ti
o

u
s

10-3 (c)

19
50

19
51

19
52

19
53

19
54

19
55

19
56

19
57

19
58

19
59

19
60

0.02

0.03

0.04

0.05

0.06
R

e
c
o

v
e

re
d

 a
n

d
 V

a
c
c
in

a
te

d (d)

Fig. SM0.12. Weekly time series of the measles model variables in Manchester from 1950
to 1960: (a) Susceptible juvenile compartment; (b) Exposed juvenile compartment; (c) Infectious
juvenile compartment; (d) Recovered and vaccinated juvenile compartment.

Remark SM0.3. Suppose that the disease incidence data (i.e., the number of
weekly new infections) are known for the measles model (4.1). In order to use the
continuous inverse method to derive the transmission rates of measles from system
(4.1), we can go with the following procedure:

Step 1. Interpolate incidence data with a spline to generate a continuous function
ω(t).

Step 2. Let aE(t) = ω(t). Then E(t) = ω(t)
a .

Step 3. Replace the term aE(t) with ω(t) in the equation for compartment “I” (i.e.,
the third equation of system (4.1)), and solve for I(t) from the resulting equa-
tion. Here we denote the solution as I(t) = fI(ω(t)) since it depends on ω(t).

Step 4. Substitute E(t) = ω(t)
a and I(t) = fI(ω(t)) into the equation for compartment

“E” (i.e., the second equation of system (4.1)), and solve for S(t). Here we
denote the solution as S(t) = fS(β(t), ω(t), ω

′(t)).

Step 5. Substitute S(t) = fS(β(t), ω(t), ω′(t)) and I(t) = fI(ω(t)) into the equa-
tion for compartment “S” (i.e., the first equation of system (4.1)) and solve
for A(t). Here we denote the solution as A(t) = fA(β(t), β

′(t), ω(t), ω′(t),



SM8 XIUNAN WANG AND HAO WANG

ω′′(t)).

Step 6. Substitute A(t) = fA(β(t), β
′(t), ω(t), ω′(t), ω′′(t)) and I(t) = fI(ω(t)) into

the equation for compartment “R” (i.e., the fourth equation of system (4.1))
and solve for R(t). Here we denote the solution as R(t) = fR(β(t), β′(t),
ω(t), ω′(t), ω′′(t)).

Step 7. Substitute A(t) = fA(β(t), β′(t), ω(t), ω′(t), ω′′(t)), S(t) = fS(β(t), ω(t),

ω′(t)), E(t) = ω(t)
a , I(t) = fI(ω(t)) and R(t) = fR(β(t), β

′(t), ω(t), ω′(t),
ω′′(t)) into the equation for compartment “A” (i.e., the last equation of sys-
tem (4.1)). Then we will get an equation about β(t), β′(t) and β′′(t), whose
coefficients involve the known functions ω(t), ω′(t), ω′′(t) and ω′′′(t). Thus,
we can solve for β(t).

Fig. SM0.13. National weekly proportion estimates of SARS-CoV-2 variants−United States,
January 2, 2021−January 22, 2022. Adapted from [SM1].

Fig. SM0.14. Diagram of the COVID-19 model (5.1).
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Fig. SM0.15. Daily confirmed cases of COVID-19 in California from August 1, 2021 to
November 30, 2021.
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Fig. SM0.16. Daily time series of the COVID-19 model variables in California from Au-
gust 1, 2021 to November 30, 2021: (a) Susceptible compartment; (b) Exposed compartment; (c)
Symptomatic infected compartment; (d) Asymptomatic infected compartment; (e) Recovered com-
partment.

Remark SM0.4. Suppose that the disease incidence data (i.e., the number of
daily new infections) are known for the COVID-19 model (5.1). In order to use the



SM10 XIUNAN WANG AND HAO WANG

continuous inverse method to derive the transmission rates of COVID-19 from system
(5.1), we can go with the following procedure:

Step 1. Interpolate incidence data with a spline to generate a continuous function
ω(t).

Step 2. Let (1− p)δE(t) = ω(t). Then E(t) = ω(t)
(1−p)δ .

Step 3. Replace the term (1 − p)δE(t) by ω(t) in the equation for compartment “I”
(i.e., the third equation of system (5.1)), and solve for I(t). Here we denote
the solution as I(t) = fI(ω(t)) since it depends on ω(t).

Step 4. Substitute E(t) = ω(t)
(1−p)δ into the equation for compartment “A” (i.e., the

fourth equation of system (5.1)), and solve for A(t). Here we denote the so-
lution as A(t) = fA(ω(t)).

Step 5. Substitute I(t) = fI(ω(t)), E(t) = ω(t)
(1−p)δ and A(t) = fA(ω(t)) into the equa-

tion for compartment “S” (i.e., the first equation of system (5.1)), and solve
for S(t). Here we denote the solution as S(t) = fS(β(t), ω(t)).

Step 6. Substitute S(t) = fS(β(t), ω(t)), I(t) = fI(ω(t)), E(t) = ω(t)
(1−p)δ and A(t) =

fA(ω(t)) into the equation for compartment “VF ” (i.e., the fifth equation of
system (5.1)), and solve for VF . Here we denote the solution as VF (t) =
fF (β(t), ω(t)).

Step 7. Substitute VF (t) = fF (β(t), ω(t)), I(t) = fI(ω(t)), E(t) = ω(t)
(1−p)δ and A(t) =

fA(ω(t)) into the equation for compartment “VB” (i.e., the sixth equation of
system (5.1)), and solve for VB. Here we denote the solution as VB(t) =
fB(β(t), ω(t)).

Step 8. Substitute S = fS(β(t), ω(t)), VF = fF (β(t), ω(t)), VB = fB(β(t), ω(t)), I =

fI(ω(t)), E = ω(t)
(1−p)δ and A = fA(ω(t)) into the equation for compartment

“E” (i.e., the second equation of system (5.1)). Then we will get an equation
about β(t), whose coefficients involve ω(t) and ω′(t). Thus, we can solve for
β(t).
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