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Abstract. Accurate estimation of the transmissibility of an infectious disease is critical to un-4
derstanding disease transmission dynamics and designing effective control strategies. However, it5
has always been difficult to estimate the transmission rates due to the unobservability and multiple6
contributing factors. In this paper, we develop a data-driven inverse method based on discretizations7
of compartmental differential equation models for estimating time-varying transmission rates of in-8
fectious diseases. By developing iteration algorithms for three typical classes of infectious diseases,9
namely a disease with seasonal cycles, a disease with non-seasonal cycles, and a disease with no10
obvious periodicity, we demonstrate that the discrete inverse method is a valuable tool for extracting11
information from available pandemic or epidemic incidence data. We also obtain insights for some12
epidemiological phenomena and issues in concern based on each application. Our method is highly13
intuitive and generates rapid implementation even with multiple years of data instances. In partic-14
ular, it can be used in conjunction with other data-driven technologies, such as machine learning,15
to forecast future disease dynamics based on future policies or human mobility trends, providing16
guidance to public health authorities.17
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1. Introduction. From the emergence of HIV in the 1980s to the recent COVID-21

19 pandemic, we have confronted a surge of catastrophic infectious diseases. Climate22

change, urbanization, global connectivity and fragile public health systems all accel-23

erate the emergence of novel pathogens and cause the diseases to spread faster and24

wider than ever before [8, 10]. In order to mitigate the adverse impacts of infectious25

diseases on public health and economic growth, effective intervention strategies are26

urgently needed when an epidemic or pandemic strikes. This usually necessitates a27

precise estimate of the transmission rates of the diseases.28

The transmission rate is a key important parameter in all compartmental in-29

fectious disease models which measures the transmissibility of the disease among a30

population. Transmissibility can not be observed or recorded directly and it can be31

influenced by many factors that are not easy to be included in a mathematical model,32

which makes the estimation of transmission rates extremely challenging. Our intuition33

about how contagious or deadly an infectious disease is comes from time series data of34

confirmed cases or mortality. However, such epidemiological data do not necessarily35

correlate to the severity of transmissibility and may mislead policymakers. When the36

notified number of new infections is small the disease may have already transmitted37

widely with a high transmission rate, with most people still in the incubation period or38
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2 XIUNAN WANG AND HAO WANG

asymptomatic and hence not being reported. In order to avoid a large-scale outbreak,39

immediate action is required in this situation. When the number of confirmed cases is40

large the transmission rate may be small if most people take more careful protection41

measures due to their awareness. Therefore, it is imperative to develop mathematical42

methodologies for extracting transmission rates from existing disease incidence data,43

with insights gained regarding disease transmission dynamics and the efficiency of44

public health interventions. Fortunately, the increasing availability of data resources45

makes the creation and application of such mathematical strategies possible.46

Recently, several researchers have developed methods to estimate the temporally47

varying transmission rates based on differential equation models. Pollicott, Wang48

and Weiss [27] first introduced an inverse method for computing the continuous-time49

transmission rate by solving β(t) from a Bernoulli differential equation derived from50

the model system. Hadeler [18] and Mubayi et al. [24] extended the method in [27] so51

that it applies to both prevalence and incidence data. Kong, Jin and Wang [19] built52

the inverse method algorithms for a new childhood measles model with applications to53

both pre-vaccination and post-vaccination data. All these works obtain a formula for54

β(t) involving integrals which may require further discretization techniques and could55

become computationally extensive when applied to complex models. Compared to56

the continuous models, discrete models may provide a more reasonable and accurate57

approximation of the disease transmission dynamics since almost all data of infections58

are reported at discrete time points and the change of each compartment size, either59

as a population or as a frequency, is never continuous. In contrast to the “continu-60

ous” inverse methods, in this paper, we propose a highly tractable and fast “discrete”61

inverse method for estimating transmission rates of infectious diseases described by62

multi-compartmental difference equation models including quite complicated ones in63

which the transmission rate is not explicitly involved in the term corresponding to64

notification of new infections. We illustrate the idea by applying the approach to a65

general SIS model and show the applications of the method to three different diseases66

with distinct time series patterns: annual cycle, biennial cycle, and no apparent peri-67

odicity. For the continuous method, we also propose a more convenient way to realize68

the computation faster than those in [19, 27] when the term of notified new infec-69

tions explicitly incorporates the transmission rate. Hopefully, this paper can provide70

hands-on guidance on estimating the transmission rates of various infectious diseases.71

The rest of the paper is organized as follows. In Section 2, we show the deriva-72

tions of the discrete inverse method based on forward, backward and centered Euler73

discretizations as well as the continuous inverse method and compare them in both74

accuracy and speed of computation for a general SIS model. In Section 3, we explain75

how the discrete inverse method works for a flu model based on incidence and vac-76

cination data in the US from 2013 to 2018. In Section 4, we derive the algorithm77

of discrete inverse method for a general age-structured measles model incorporating78

birth and death and apply it to the measles data in London and Manchester, UK79

from 1950 to 1960. In Section 5, we use the discrete inverse method to estimate80

the transmission rate of SARS-CoV-2 Delta variant strain in California, USA from81

August to November 2021. At last, we discuss the advantages, limitations, and wide82

applicability of our method in Section 6.83

2. Estimating the transmission rates from a general SIS model. In this84

section, we derive the continuous inverse method and introduce the new discrete85
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ESTIMATING TRANSMISSIBILITY BY INVERSE METHOD 3

inverse method based on the following general SIS model.86

(2.1)

dS(t)

dt
= −β(t)S(t)I(t)

N
+ γI(t),

dI(t)

dt
=

β(t)S(t)I(t)

N
− γI(t),

87

where S and I represent the susceptible and infected compartments, respectively. The88

total population size is N . γ is the recovery rate. β(t) is the time-varying transmission89

rate.90

2.1. Continuous inverse method. Motivated by [19, Theorem 4], we have the91

following theorem:92

Theorem 2.1. For the SIS model (2.1), given a continuous function ω(t) gen-93

erated from the incidence data, β(t) can be estimated by Nω(t)
S(t)I(t) with I(t) and S(t)94

given by (2.4) and (2.5), respectively.95

Proof. Since β(t)S(t)I(t)
N = ω(t), system (2.1) is equivalent to96

(2.2)

dS(t)

dt
= −ω(t) + γI(t),

dI(t)

dt
= ω(t)− γI(t).

97

Solving the first equation of system (2.2), we get98

(2.3) S(t) = S(0) +

∫ t

0

(−ω(s) + γI(s))ds.99

Solving the second equation of system (2.2) using the method of variation of100

parameters, we obtain101

(2.4) I(t) = I(0)e−γt +

∫ t

0

ω(s)eγ(s−t)ds.102

Substituting (2.4) into equation (2.3), we obtain103

(2.5) S(t) = S(0) +

∫ t

0

(
−ω(s) + γ

(
I(0)e−γs +

∫ s

0

ω(τ)eγ(τ−s)dτ

))
ds.104

For the derivation of the continuous inverse method based on prevalence data,105

see supplementary Theorem SM0.1.106

Remark 2.2. Indeed, when the term of notified new infections explicitly involves107

β(t), it is not necessary to derive the analytic form of the solutions such as those108

obtained in the proof of Theorem 2.1 or in [19] in order to use the continuous inverse109

method to estimate the transmission rate. Instead, we can numerically solve the model110

system using ode45 in MATLAB once we obtain the splined curve of disease incidence111

data. After we get the time series values of the variables we can substitute them into112

the formula for the transmission rate. This will dramatically improve the speed of113

computation. However, if the term of notified new infections does not involve β(t),114

we still need to derive the analytic form of the solutions first in order to apply the115

continuous inverse method, which could be rather complicated (see, e.g., supplementary116

Remarks SM0.3 and SM0.4). In both cases, our discrete inverse method is more117

powerful.118
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2.2. Discrete inverse method. A discrete SIS model based on forward Euler119

discretization can be written120

(2.6)
Sn+1 = Sn − βnSnIn∆t

N
+ γIn∆t,

In+1 = In +
βnSnIn∆t

N
− γIn∆t.

121

By using the similar method as in the proof of [6, Lemma 2] and mathematical122

induction, we have the following lemma:123

Lemma 2.3. Suppose that S0 > 0, I0 > 0 and S0 + I0 = N , then Sn > 0, In > 0124

and Sn + In = N if and only if γ∆t ≤ 1 and βn∆t < (1 +
√
γ∆t)2.125

Theorem 2.4. For the model system (2.6), suppose that the initial disease preva-126

lence data I0 is available and that the time series of incidence data yn, n = 0, 1, ...,K,127

are given at equally spaced time step ∆t, which satisfies γ∆t ≤ 1 and βn∆t <128

(1 +
√
γ∆t)2, then the transmission rates can be estimated by the following iteration129

process:130

(2.7)

In+1 = yn∆t+ (1− γ∆t)In,

Sn+1 = N − In+1,

βn =
N(Sn − Sn+1)

SnIn∆t
+

Nγ

Sn
,

n = 0, 1, ...,K − 1,

131

and βK can be approximated by βK−1. Alternatively, the transmission rates can be132

estimated by133

(2.8) βn =
Nyn

SnIn∆t
, n = 0, 1, ...,K,134

after the time series of S and I are derived.135

Proof. Since βnSnIn
N = yn, n = 0, 1, ...,K, from the second equation of system

(2.6) we have In+1 = yn∆t + (1 − γ∆t)In, n = 0, 1, ...,K − 1. Since γ∆t ≤ 1 and
βn∆t < (1 +

√
γ∆t)2, by Lemma 2.3 we have Sn+1 = N − In+1, n = 0, 1, ...,K − 1.

Substituting Sn+1, Sn and In into the first equation of system (2.6), we can solve for
βn:

βn =
N(Sn − Sn+1)

SnIn∆t
+

Nγ

Sn
, n = 0, 1, ...,K − 1.

Remark 2.5. Theorem 2.4 provides two different ways for estimating the time136

series of transmission rates. The derivation in (2.7) does not depend on whether the137

term of notified new infections explicitly involves βn, and hence, it is especially useful138

when the term representing notified incidence data is not described as β(t)S(t)I(t) or139
β(t)S(t)I(t)

N , etc. (see, e.g., Sections 4 and 5). The advantage of using formula (2.8) is140

that βK (i.e., the transmission rate at the end of the time interval) can also be derived141

from incidence data. However, (2.8) is only applicable when the term of notified new142

infections explicitly involves βn.143

Next, we summarize the inverse method based on backward Euler discretiza-144

tion in parallel to (2.7). For the method based on centered Euler discretization, see145
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supplementary Theorem SM0.2. A discrete SIS model based on backward Euler dis-146

cretization is given by147

(2.9)
Sn+1 = Sn − βn+1Sn+1In+1∆t

N
+ γIn+1∆t,

In+1 = In +
βn+1Sn+1In+1∆t

N
− γIn+1∆t.

148

Theorem 2.6. For the model system (2.9), suppose that the initial disease preva-149

lence data I0 is available and that the time series of incidence data yn, n = 0, 1, ...,K,150

are given at equally spaced time step ∆t, then the transmission rates can be estimated151

by the following iteration process:152

In+1 =
yn+1∆t+ In
1 + γ∆t

,

Sn+1 = N − In+1,

βn+1 =
N(Sn − Sn+1)

Sn+1In+1∆t
+

Nγ

Sn+1
,

n = 0, 1, ...,K − 1,

153

and β0 can be approximated by β1, if the obtained time series of susceptible and infected154

compartments as well as transmission rates are all non-negative, which can be tested155

numerically.156

The proofs of Theorem 2.6 and supplementary Theorem SM0.2 can easily follow157

from that of Theorem 2.4.158

2.3. Comparison of different discrete inverse methods and the contin-159

uous inverse method. Since the total population size does not change for the SIS160

system (2.1), we have S(t) = N − I(t). An Itô stochastic differential equation model161

for the SIS epidemic process is162

(2.10)

dI(t) =

(
β(t)(N − I(t))I(t)

N
− γI(t)

)
dt+

√
β(t)(N − I(t))I(t)

N
+ γI(t)dW (t),163

where W (t) is a Wiener process which depends continuously on t, t ∈ [0,∞).164
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Fig. 2.1. (a) A known time-varying transmission rate β(t) = 1.5 + 0.5 cos πt
5

+ 0.8 sin πt
15

; (b)
1000 sample paths of model (2.10); (c) The average of the 1000 sample paths.

Suppose that the time-varying transmission rate in (2.10) is given by β(t) =165

1.5 + 0.5 cos πt
5 + 0.8 sin πt

15 (see Figure 2.1 (a)). Then we can generate 1000 sample166
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6 XIUNAN WANG AND HAO WANG

paths of new infections per unit time (see Figure 2.1 (b)). Using the average of the167

1000 sample paths of new infections per unit time in Figure 2.1 (c) as the incidence168

data, we estimate the transmission rate by using the discrete inverse method based169

on forward, backward and centered Euler discretizations as well as the continuous170

inverse method. We set N = 8000, γ = 0.5 and take the time step as ∆t = 0.05.171

The continuous inverse method and discrete inverse method based on forward Euler172

and backward Euler discretizations produce almost the same transmission rates for173

the general SIS model as shown in Figure 2.2. However, negative values occur for174

the transmission rates estimated by the discrete inverse method based on centered175

Euler discretization (see supplementary Figure SM0.1). Thus, the centered Euler176

discretization does not work well for model (2.1) with the given time step.
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(a) Using forward Euler discretization
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(b) Using backward Euler discretization
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(c) Using continuous inverse method

Fig. 2.2. The estimated transmission rates: (a) by discrete inverse method based on forward
Euler discretization; (b) by discrete inverse method based on backward Euler discretization; (c) by
continuous inverse method.

177
To evaluate the accuracy of each method, we use the mean absolute error (MAE)

to compute the differences between the assumed transmission rate and those obtained
by the inverse methods. The formula of MAE is given by

MAE =
1

n

n∑
i=1

|zi − xi|,

where xi is the i-th component of the vector of assumed transmission rates, zi is the i-178

th component of the vector of estimated transmission rates, and n is the total number179

of data instances. The comparison of different methods in accuracy and speed is shown180

in Table 2.1, from which we can see that all the three methods generate accurate181

results while the discrete inverse method based on forward Euler discretization is the182

fastest.

Forward Euler Backward Euler Continuous method
MAE 0.0025 0.0074 0.0045
Time elapsed (seconds) 0.0055 0.0064 0.2272

Table 2.1
Comparison of the methods for SIS model in accuracy and speed.

183

3. Application to a disease with seasonal cycles. Seasonality is a ubiq-184

uitous feature of many infectious diseases such as influenza (flu), cholera, malaria,185

dengue fever, etc. In this section, we show how to use the discrete inverse method186

to estimate the transmission rate of flu in the US. Traditional flu models usually187
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adopt an S-I structure without considering the impact of vaccination (see, e.g., [31]).188

However, in the US, about half population gets flu vaccines each year and some vac-189

cinated people can still get infected. Accordingly, we develop a flu model with five190

compartments: susceptible (denoted by S), infected (I), vaccinated but not infected191

(V ), recovered (R) and dead (D). The transmission rate β(t), the vaccination rate192

α(t) and the death rate µ(t) are all time-varying parameters. The total population N193

and the recovery rate γ are assumed to be constant. Since vaccines against influenza194

do not provide complete protection [15], both susceptible and vaccinated individuals195

will enter the infectious compartment after getting infected. The relative risk of infec-196

tion for vaccinated individuals compared to susceptible ones is ϵ. For people who are197

unvaccinated, if they get infected with flu, then their recovery time and the chance198

of death may vary depending on their immunity. So we put vaccinated-infected and199

unvaccinated-infected individuals in one compartment–“I” although the symptoms of200

vaccinated individuals with infection are mild such that almost no death would occur201

and they also recover faster [15]. In other words, we assume that the differences in202

recovery and infection-induced mortality are negligible between vaccinated-infected203

and unvaccinated-infected individuals. The model is given as follows:204

(3.1)

dS(t)

dt
= −β(t)S(t)I(t)

N
− α(t)S(t),

dI(t)

dt
=

β(t)(S(t) + ϵV (t))I(t)

N
− γI(t)− µ(t)I(t),

dV (t)

dt
= α(t)S(t)− ϵβ(t)V (t)I(t)

N
,

dR(t)

dt
= γI(t),

dD(t)

dt
= µ(t)I(t).

205

Since people with uncomplicated flu symptoms typically recover within 7 days206

although cough and malaise can last longer especially in those with lung disease and207

elderly people [15], we assume that the average length of the infectious period is 7208

days, that is, γ = 1 per week. The CDC conducts research every year to evaluate209

how effective the flu vaccines are at protecting people from the virus. While vaccine210

effectiveness varies, recent research demonstrates that flu vaccination reduces the risk211

of flu sickness by 40% to 60% in the general population during seasons when the viruses212

used to manufacture flu vaccines matched well to the majority of circulating ones [15].213

Appropriately, we set ϵ = 0.5. Note that we do not need to estimate the vaccination214

rate α(t) and death rate µ(t) because we can directly use the vaccination and mortality215

data, both of which are available from CDC (see [15]). We collected weekly data216

about new infections, cumulative vaccinated and deaths in the US from week 35 of217

2013 to week 34 of 2018. Since the circulating virus strains are usually different among218

different years [15], we assume that individuals in the “R” compartment are immune219

against the virus strains only in the present flu season year. In addition, considering220

that there is large variations of the total US population in consecutive years, we221

use different total population sizes to estimate the transmission rates for different flu222

seasons. For example, we assume that the population in the 2013-2014 flu season is223

approximately equal to the population in 2013 and that the population in the 2014-224

2015 flu season is approximated by the population in 2014, and so forth. By doing this,225

we can neglect the natural birth and death rate as well as immigration/emigration226
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rate in the model. Table 3.1 gives the values of N for different flu seasons:

2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Population 316129000 319113000 321442000 323100000 325719000

Table 3.1
Total population of the United States for each flu season year.

227

In order to use the continuous inverse method to estimate the transmission rate,
we need to derive an equivalent system which does not explicitly involve β(t). Suppose
that y(t) is the reported number of new infections per unit time at time t which can
be obtained by a spline of the time series of weekly new infections. It follows that

y(t) =
β(t)(S(t) + ϵV (t))I(t)

N
.

The proportion of new infections from the susceptible is S(t)
S(t)+ϵV (t) and the infections228

from the vaccinated account for a proportion of ϵV (t)
S(t)+ϵV (t) . Then the model system229

(3.1) can be approximated by the following system:230

(3.2)

dS(t)

dt
= − S(t)y(t)

S(t) + ϵV (t)
− u(t),

dI(t)

dt
= y(t)− γI(t)− d(t),

dV (t)

dt
= u(t)− ϵV (t)y(t)

S(t) + ϵV (t)
,

dR(t)

dt
= γI(t),

dD(t)

dt
= d(t),

231

where u(t) and d(t) are the splined functions of weekly new vaccinated and new deaths,
respectively. After we numerically solve for S(t), I(t) and V (t) from system (3.2), we
can find the transmission rate:

β(t) =
Ny(t)

(S(t) + ϵV (t))I(t)
.

Next, we estimate the transmission rates by using the discrete inverse method232

based on forward Euler discretization of system (3.2). For each flu season year (start-233

ing from week 35 of the former year), let y[i] be the number of newly infected individ-234

uals in the i-th week, i = 1, 2, ...,K, where K = 53 for the flu season year 2014-2015235

and K = 52 for the other years. Then y[i], i = 1, 2, ...,K, can be approximated by236

the number of patients consulting with influenza like illness (ILI) each week reported237

by CDC [15] (see supplementary Figure SM0.3). We use S[i], I[i], V [i], R[i], D[i]238

to represent the values of variables in model (3.1) in the i-th week, and use u[i] and239

d[i] to represent the number of newly vaccinated and new deaths in the i-th week,240

i = 1, 2, ...,K. We can derive the time series of u[i], i = 1, 2, 3, ...,K, according to241

the data of cumulative vaccinated population and obtain the time series data of d[i],242

i = 1, 2, ...,K, from CDC [15]. For each flu season year, we take the initial values of243

the variables as follows:244
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(i) R[1] ≈ 0 because we assume that recovered individuals in the last flu season245

year is no longer immune to the flu virus strain in the present year;246

(ii) I[1] ≈ the number of new infections in the first week (i.e., in week 35 of the247

former year);248

(iii) D[1] ≈ the number of new flu-related deaths in the first week (i.e., in week249

35 of the former year);250

(iv) V [1] ≈ the cumulative number of vaccines given in the corresponding flu251

season by the end of the first week (i.e., by week 35 of the former year).252

It follows that

S[1] = N − I[1]− V [1]−R[1]−D[1] and β[1] =
Ny[1]

(S[1] + ϵV [1])I[1]
.

With these initial values, we can run the following iteration:253

I[i] = I[i− 1] + y[i− 1]− γI[i− 1]− d[i− 1],254

V [i] = V [i− 1] + u[i− 1]− ϵV [i− 1]y[i− 1]

(S[i− 1] + ϵV [i− 1])
,255

R[i] = R[i− 1] + γI[i− 1],256

D[i] = D[i− 1] + d[i− 1],257

S[i] = N − I[i]−R[i]−D[i]− V [i],258

β[i] =
Ny[i]

(S[i] + ϵV [i])I[i]
,259

260

for i = 2, 3, ...K.261

Figure 3.1 (a) shows the estimated transmission rates for each flu season year.262

In Figure 3.1 (b) we classify the transmission rates using box plots where each box263

corresponds to one flu season. The transmission rates in 2013-2014 have the small-264

est median and variation compared to those in the subsequent years. Although the265

medians in 2016-2017 and 2017-2018 are a little smaller than that in 2015-2016, the266

peak transmission rate and the upper quartile are increasing. The boxes become com-267

paratively longer and longer by years. This could be due to climate change in recent268

years, which makes the transmission rates vary dramatically due to some abnormal269

variations of temperatures and leads to an increasing number of people infected with270

flu in some states. We can see in supplementary Figure SM0.3 that the total number271

of weekly ILI cases keeps increasing since the flu season in 2015 and the peak in 2017-272

2018 is much higher than those peaks in former years. In Figure 3.2 (a) we put these273

transmission rates consecutively from week 35 of 2013 to week 34 of 2018. Figure 3.2274

(b) gives the modulus of Fourier transform of the transmission rate series. We can see275

that the dominant frequency is 1/year, which is consistent with the common opinion276

that flu is a seasonal disease.277

In Figure 3.3, we classify the transmission rates from 2013 to 2018 by month.278

The maximum, upper quartile and median of transmission rates in August are higher279

than those in September. In the fall, with more and more people get vaccinated280

combined with education campaigns such as attention of hygiene habits, the tran-281

mssion rates drop in September. However, as the weather becomes colder, the en-282

vironment becomes increasingly favorable for the transmission of influenza virus so283

that the transmission rates keep increasing in the fall as shown in Figure 3.3. The284

transmission rates are largest in December in terms of the maximum, upper quartile,285
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Fig. 3.1. The transmission rates of flu in the US for each flu season year.
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Fig. 3.2. (a) The transmission rates of flu in the US from week 35 of 2013 to week 34 of 2018.
(b) The modulus of Fourier transform of the transmission rates from week 35 of 2013 to week 34 of
2018.

median, lower quartile and minimum. Thus, public health agencies should take effec-286

tive measures and extra attention against flu in December each year in the US. Some287

non-pharmaceutical interventions, such as recommendation of facial masks, may be288

worth implementing in December. We can also observe that the transmission rates289

start to drop in January and February each year although the temperature is still290

low. This may be because the number of vaccinated population usually arrives at the291

peak around the end of December so that some communities are well protected.292

A comparison of the transmission rates obtained by discrete and continuous in-293

verse methods is shown in Figure 3.4 and the time elapsed for running each algorithm294

for each flu season year is given in Table 3.2. We can see that the curve obtained by295

the continuous method is smoother since it is derived by using the splined functions296

of known data. Although there are some differences in the values of the estimated297

transmission rates, the two methods give the same trends of the transmission rate298

which can provide the same guiding information for policymakers in designing disease299

control measures since what really matters in disease control is to know when the300

transmission rate will increase, when it will decrease, and when it will arrive at a301

peak value.302

4. Application to a disease with non-seasonal cycles. Some infectious dis-303

eases, such as measles and pertussis, can display outbreaks in multi-year intervals304
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Fig. 3.3. The boxplot of transmission rates of flu in the US for each month from 2013 to 2018.

2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Discrete 0.0178 0.0115 0.0123 0.0149 0.0119
Continuous 0.1010 0.1240 0.1270 0.1290 0.1149

Table 3.2
Comparison of the time elapsed (in second) for estimating the transmission rates of flu in the

US by discrete and continuous inverse methods.

rather than annually because the timing of these epidemics is regulated by a com-305

bination of seasonal transmission and various processes determining the size of the306

susceptible compartment in a population, which must be sufficiently large for an out-307

break to occur [23]. In this section, we derive the algorithm of the discrete inverse308

method for estimating the transmission rates of measles, a common childhood infec-309

tious disease with biennial cycles.310

Most existing measles models assume a homogeneous mixing of infections among311

children and adults (see, e.g., [9]) although measles is an obvious childhood disease.312

Motivated by the model in [19], we develop an age-structured measles transmission313

model by assuming that only unvaccinated juvenile population are susceptible to314

measles. We partition the population into two groups: adult (denoted by A) and315

juvenile. The juvenile population consists of four compartments: susceptible (S),316

exposed (E), infectious (I), and recovered/ vaccinated (R). We use the variables to317

represent the frequency or proportion of individuals in each compartment among the318

entire population instead of the population size of each compartment. We consider319

both birth rate (λ) and natural death rate (δ) so that we can estimate the transmission320

rate for multiple years or even longer by using one set of initial values. Considering321

that children normally do not die naturally, we ignore the death rate of the juvenile322

population. Instead, we consider a growth rate (g) for the juvenile population. People323

above the age of 1/g are in the adult group and they are no longer susceptible to324

measles. In addtion, we denote the disease-induced death rate as µ. We assume that325

a proportion p of the new borns are vaccinated against measles. Let the transition326

rate from E to I be aE(t) and that from I to R be vI(t). Then 1/a is the length327

of the incubation period, and 1/v represents the length of the infectious period. We328
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Fig. 3.4. Comparison of the transmission rates of flu in the US estimated by discrete and
continuous inverse methods for each flu season year.

aim to estimate the time-varying transmission rate β(t) by using the discrete inverse329

method. The model is given by the following system of differential equations:330
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(4.1)

dS(t)

dt
= (1− p)λA(t)− β(t)S(t)I(t)− gS(t),

dE(t)

dt
= β(t)S(t)I(t)− aE(t)− gE(t),

dI(t)

dt
= aE(t)− vI(t)− gI(t)− µI(t),

dR(t)

dt
= pλA(t) + vI(t)− gR(t),

dA(t)

dt
= g(S(t) + E(t) + I(t) +R(t))− δA(t).

331

Let y[i] be the notification data of new infections, S[i], E[i], I[i], and R[i] represent332

the frequency of susceptible, exposed, infectious, and recovered/vaccinated juvenile333

individuals, respectively, and A[i] the frequency of adult ones in the i-th week, i =334

1, 2, ...,K, where K is the length of the notification data vector. Considering that335

measles are suspected in patients presenting with common symptoms such as rash336

and high fever which appear during the infectious period [14], we can assume that337

aE[i] = y[i]/N [i]. Then E[i] = y[i]/aN [i], i = 1, 2, ...,K, where N [i] represents the338

total population in the i-th week.339

Suppose that we know the initial value of each variable, then we can obtain I[i],340

R[i], A[i] and S[i] by the following iteration process:341

I[i] =I[i− 1] + aE[i− 1]− (v + g + µ)I[i− 1],342

R[i] =R[i− 1] + pλA[i− 1] + vI[i− 1]− gR[i− 1],343

A[i] =A[i− 1] + g(S[i− 1] + E[i− 1] + I[i− 1] +R[i− 1])− δA[i− 1],344

S[i] =1− E[i]− I[i]−R[i]−A[i].345346

for i = 2, 3, ...K.347

Discretizing the first equation of system (4.1), we have348

S[i]− S[i− 1]349

=(1− p)λA[i− 1]− β[i− 1]S[i− 1]I[i− 1]− gS[i− 1], i = 2, 3, ...,K.350351

It follows that352

β[i− 1] =
(1− g)S[i− 1]− S[i] + (1− p)λA[i− 1]

S[i− 1]I[i− 1]
, i = 2, 3, ...,K,353

354

and β[K] ≈ β[K − 1].355

In what follows, we use the above algorithm to estimate the tranmission rate of356

measles in London and Manchester, UK from 1950 to 1960 based on the notification357

data of weekly new cases obtained from [13] (see supplementary Figure SM0.10) with358

a standard correction factor of 92.3% due to a mean reporting rate of 52% for UK359

measles cases [12]. Note that 92.3% = 1/0.52− 1. The metro area populaions of Lon-360

don and Manchester in 1950 are approximately 8361000 and 2422000, respectively.361

Since the metro area populations of these two cities almost have no change in 1950s,362

with the annual changes as low as −0.21% to 0.00% for London (see [20]) and 0.00%363

to 0.04% for Manchester (see [21]), we assume that the birth rate and natural death364

rate are equal: λ = δ = 1/(68.69 × 52) per week, where 68.69 is the average life365
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expectancy of UK in 1950s [22]. According to [37], the majority of disease-induced366

deaths of measles occur among young children with insufficient nourishment or weak-367

ened immunity due to HIV/AIDS and other diseases and usually happen in developing368

countries with low per capita incomes and poor health infrastructures. Since UK is369

a developed country, it is reasonable to assume that µ = 0. Note that in 1950s vac-370

cination has not been carried out in London, which gives p = 0. We take the value371

of a from [7, 26]: a = 1 per week. An infected individual is able to transmit measles372

starting four days before the rash occurs and ending four days after the rash errupts373

[37]. Thus, we can assume that the infecious period is approximately 8 days, that is,374

v = 7/8 per week. Since the infectious period of measles is about 8 days, we estimate375

I[1] to be the sum of the number of reported new cases in the last week of 1949 and376

in the first week of 1950. We assume that R[1] = 1000I[1]. According to [28], the377

population above the age of 16 in UK in 1950 accounts for about 74.3%. Thus, we378

assume that A[1] = 0.743 and S[1] = 0.257− E[1]− I[1]−R[1] for both London and379

Manchester.380

The estimated transmission rates of measles in London and in Manchester com-381

pared with the holiday seasons from 1950 to 1960 are presented in Figure 4.1. Most382

peak values of the transmission rates appear during school terms. In particular, it383

is easy to observe that the transmission rates decrease to a lower level during most384

summer holidays and bounce back to an upper level when the school terms resume.385

Figure 4.2 shows the modulus of the Fourier transform of the transmission rates386

in London and in Manchester from 1950 to 1960. The modulus has two dominant387

frequencies: 1/year and 3/year, which is consistent with the findings of [19]. The388

1/year peak is much higher than the 3/year peak in Figure 4.2 (a) which indicates389

that measles in London is mainly influenced by seasonal factors such as temperature,390

rainfall and humidity. The 3/year peak shows that school terms also play an indis-391

pensable role in the transmission of measles since schools in UK have three terms392

each year: Autumn term (from early September to mid December), Spring term393

(from early January to late March or early April) and Summer term (from mid to394

late April to mid to late July). These terms are separated by Christmas holidays395

(two weeks), Easter holidays (two weeks) and summer holidays (six weeks). There396

is also a mid-term break for each term, which could also be responsible for the dra-397

matic fluctuations of the transmission rates. We observe two comparable dominant398

frequencies for Manchester: 1/year and 3/year. This implies that both seasonal fac-399

tors and school terms influence measles transmission in Manchester and the seasonal400

factors in Manchester do not affect measles transmission as much as that in London.401

This may be because that Manchester has a relative stable high humidity whereas the402

humidity in London varies obviously. The relative humidity in London is lower than403

80% from March to September and higher than 80% from October to February [1]. In404

contrast, the relative humidity is above 80% in Manchester all year round and does405

not show dramatic variation [2]. According to [17], morbidity of measles increases406

when the relative humidity is low and decreases during the period of high relative407

humidity. From Figure 4.2 we can also see that there is more noise in the dominant408

frequencies in Manchester. This may be because the population size in Manchester409

is much smaller than that in London. Thus, the transmission of measles in London410

is mainly driven by seasonal weather conditions whereas the transmission of measles411

in Manchester is affected more by human activities including school terms and some412

other random factors.413

To estimate the probability that the 1/year and 3/ year frequencies observed in414

Figure 4.2 occurred only by chance, we carry out a significance test based on 1000415
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repeated experiments. In each experiment, a time series of weekly new infections416

is created with the reporting rate of each week randomly chosen from [47%, 57%]417

since the mean reporting rate is about 52% [12]. Then the transmission rates are418

estimated based on the created infection data, and Fourier transform is carried out.419

The result in Figure 4.3 indicates that for all the 1000 experiments, there are two420

dominant frequencies for London: 1/year and 3/year, and the 1/year peak is much421

higher than the 3/year peak, whereas there are two comparable dominant frequencies422

for Manchester: 1/year and 3/year.423
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Fig. 4.1. (a) The estimated transmission rate of measles in London from 1950 to 1960. (b)
The estimated transmission rate of measles in Manchester from 1950 to 1960.

5. Application to a disease without obvious periodicity. Some infectious424

diseases, such as Ebola and COVID-19, do not have obvious periodicity. In this sec-425

tion, we use the discrete inverse method to estimate the transmission rate of SARS-426

CoV-2 Delta varaint in California under imperfect vaccination. Delta was the pre-427

dominant SARS-CoV-2 variant strain circulating at a high proportion in the US from428

August to mid-December 2021 (see supplementary Figure SM0.13). California was429

one of the most seriously affected states in the US during the pandemic.430

Motivated by the models in [36, 35], we propose the following model:431
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Fig. 4.2. (a) Modulus of the Fourier transform of the transmission rate in London from 1950
to 1960. (b) Modulus of the Fourier transform of the transmission rate in Manchester from 1950
to 1960.

Fig. 4.3. Significance test of the spectrum peaks at 1/year and 3/year frequencies based on 1000
time series of notified weekly new cases from 1950 to 1960 with reporting rate randomly chosen from
[47%, 57%]: (a) Modulus of the Fourier transform of the transmission rate in London. (b) Modulus
of the Fourier transform of the transmission rate in Manchester.

(5.1)

dS(t)

dt
= −β(t)

S(t)(I(t) + θEE(t) + θAA(t))

N
− ηF (t)S(t),

dE(t)

dt
= β(t)

(S(t) + ϵFVF (t) + ϵBVB(t))(I(t) + θEE(t) + θAA(t))

N
− δE(t),

dI(t)

dt
= (1− p)δE(t)− µ(t)I(t)− rII(t),

dA(t)

dt
= pδE(t)− rAA(t),

dVF (t)

dt
= ηF (t)S(t)− ηB(t)VF (t)−

β(t)VF (t)ϵF (I(t) + θEE(t) + θAA(t))

N
dVB(t)

dt
= ηB(t)VF (t)−

β(t)VB(t)ϵB(I(t) + θEE(t) + θAA(t))

N
dR(t)

dt
= rII(t) + rAA(t),

dD(t)

dt
= µ(t)I(t).

432
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Here the variables S(t), E(t), I(t), A(t), R(t) and D(t) represent the number of433

susceptible, exposed, symptomatic infectious, asymptomatic infectious, recovered, and434

dead individuals at time t, respectively. In the US, mass vaccination started on435

December 20, 2020, and booster vaccines started to be given on August 13, 2021 when436

Delta variant was the predominant strain. Accordingly, we consider two vaccinated437

compartments in our model: uninfected fully vaccinated without a booster shot (VF )438

and uninfected boosted (VB). The time-dependent parameter β(t) is the transmission439

rate to be estimated. The parameters θE and θA are the relative transmissibilities440

of the exposed and asymptomatic infectious individuals, respectively. The average441

duration of the incubation period is 1/δ. A proportion p of the infected individuals442

are asymptomatic and hence the symptomatic ones occupy 1−p. The recovery rates of443

the symptomatic and asymptomatic infectious individuals are rI and rA, respectively.444

The disease-induced death rate is µ(t). Since we focus on short-term dynamics (from445

August to November 2021), we assume that the total population of the US keeps446

unchanged at N during that period and we do not incorporate a birth rate or a447

natural death rate in the model. The full vaccination rate and the booster vaccination448

rate are ηF (t) and ηB(t), respectively. Since some vaccinated individuals experienced449

breakthrough infections even with a booster shot, we use ϵF and ϵB to represent the450

relative risks of infection for these two vaccinated compartments, respectively.451

People infected with the SARS-CoV-2 Delta variant carry higher viral load and452

become infectious sooner than those infected with the original virus strains, with an453

average of only four days to reach the virus detectable level [33]. Hence, we assume454

that 1/δ = 4. It is estimated that people infected with Delta variant can be contagious455

no more than 10 days if they are mildly ill whereas they can be contagious up to 20456

days if they are moderately or severely ill [33]. Then we assume that 1/rI = 15457

and rA = 1/7. We estimate ϵF and ϵB according to vaccine efficacy. The vaccine458

effectiveness of the Pfizer–BioNTech BNT162b2 mRNA vaccine against Delta variant459

is about 88% after the second dose and 94% after the booster dose [11, 32]. Since most460

people in the US take either Pfizer or Moderna vaccines which have similar efficacy461

[25], we use the vaccine effectiveness of Pfizer to approximate the values of ϵF and462

ϵB which gives ϵF = 1 − 0.88 = 0.12 and ϵB = 1 − 0.94 = 0.06. Preliminary studies463

show that both unvaccinated and fully vaccinated, symptomatic and asymptomatic464

individuals infected with the SARS-CoV-2 Delta variant produce the same amount465

of virus [5]. So we can assume that the transmissibility of asymptomatic infected466

individuals is almost the same as that of symptomatic ones, that is, θA = 1. Besides,467

we assume that θE = 0.1. Since around a quarter to a third of the individuals who468

have experienced breakthrough infections are asymptomatic [30], we set p = 0.25 by469

assuming that the asymptomatic proportion is the same among unvaccinated infected470

population. We take N = 39237836 [3].471

To estimate the time-varying transmission rate, we start by obtaining the time
series of E(t) from the term (1−p)δE(t) which can be approximated by the notification
data of daily confirmed cases obtained from [29] (see supplementary Figure SM0.15).
We use S[i], E[i], I[i], A[i], VF [i], VB [i], R[i] and D[i] to represent the values of the
variables in model (5.1), and y[i] the notification data of daily confirmed cases, on the
i-th day. Then we have

E[i] =
y[i]

(1− p)δ
, i = 1, 2, 3, ...,K,

where K is the length of the time series of notification data. We can obtain the time472

series of new deaths, breakthrough cases, cumulative fully vaccinated and boosted, and473
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estimate the initial values I[1], R[1] from the reported data in [4, 29, 38]. Then we can474

further calculate the time series of D[i], VF [i], VB [i], i = 1, 2, 3, ...,K. We assume that475

A[1] = I[1]/3. It follows that S[1] = N−E[1]−I[1]−A[1]−R[1]−D[1]−VF [1]−VB [1].476

Then we can obtain the values of all variables on each day according to the477

following procedure:478

I[i] = I[i− 1] + (1− p)δE[i− 1]− (µ[i− 1] + rI)I[i− 1],479

A[i] = A[i− 1] + pδE[i− 1]− rAA[i− 1],480

R[i] = R[i− 1] + rII[i− 1] + rAA[i− 1],481

S[i] = N − E[i]− I[i]−A[i]−R[i]−D[i]− VF [i]− VB [i],482483

for i = 2, 3, ...K. Adding up the equations for the S, VF and VB compartments, we484

have485

d(S(t) + VF (t) + VB(t))

dt
= −β(t)(S(t) + ϵFVF (t) + ϵBVB(t))(I(t) + θEE(t) + θAA(t))

N
.486

487

Substituting the time series of S[i], VF [i], VB [i], I[i], E[i] and A[i] into the difference488

form of the above equation, we can solve for β[i] as follows:489

β[i− 1] =− N(S[i] + VF [i] + VB [i]− S[i− 1]− VF [i− 1]− VB [i− 1])

((S[i− 1] + ϵFVF [i− 1] + ϵBVB [i− 1])(θEE[i− 1] + θAA[i− 1] + I[i− 1]))
,490

i =2, 3, ...,K,491

β[K] ≈β[K − 1].492493

The estimated transmission rates in California from August 1, 2021 to November494

30, 2021 are shown in Figure 5.1.495
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Fig. 5.1. Transmission rates of COVID-19 in California from August 1, 2021 to November 30,
2021.

Sensitivity analysis can provide important information as to which factors deserve496

more attention in controlling the disease. To calculate the sensitivity index of the497

estimated transmission rates with respect to each constant parameter, we use the498

normalized forward sensitivity index (see, e.g. [16]):499

(5.2) Sensitivity Index (S.I.) =
∂β(t)

∂parameter
· parameter

β(t)
.500
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Since there is no explicit formula of β(t) in terms of each constant parameter,
we use the central difference approximation (see, e.g. [34]) to evaluate the partial
derivatives, that is,

∂β(t)

∂parameter
=

β(t,parameter + h)− β(t,parameter− h)

2h
+O(h2).

Let h = 1% of the parameter value P . Then equation (5.2) becomes501

(5.3) S.I. =
β(t, 1.01P )− β(t, 0.99P )

0.02β(t, P )
.502

We also apply the formula (5.3) to analyze the sensitivity of β(t) with respect to the503

initial conditions and input data. To this end, we replace P with the target initial504

values or time series data in (5.3).505

From Figure 5.2 we can see that the sensitivity indices (S.I.) of β(t) to some506

parameters and data vary with time. The S.I. of β(t) with respect to p, rI , rA, daily507

confirmed cases data, fully vaccinated data, death data and the initial recovered data508

are positive. The S.I. of β(t) to N , θA, and ϵF are negative. The S.I. of β(t) to the509

initial symptomatic and asymptomatic infected data are negative in the beginning510

and β(t) becomes less sensitive to them as time passes. The parameters θE , ϵB , the511

booster vaccination data and the breakthrough cases data almost have no impact on512

β(t). The S.I. of β(t) to δ varies dramatically with time. Note that a positive S.I. does513

not mean that an increase of the related parameter or data will lead to more serious514

transmission of the disease in reality. Take the positive S.I. of the transmission rate to515

the fully vaccinated data as an example. It only indicates that with the same infection516

and death data and the same parameter values, if more people get vaccinated, then517

the transmission rate must be larger. This is because more vaccinated people will518

make fewer people get infected. However, when we calculate the S.I. of β(t) to the519

fully vaccinated data, we fix the infection data as well as other data and parameters520

at the baseline values instead of the true values corresponding to the changed fully521

vaccinated data. A similar analysis can be carried out for the sensitivity results of522

other parameters and data. Compared with other data, the fully vaccinated data have523

stronger influence on β(t). Among all the controllable parameters, rI , rA and p have524

more influence on β(t) which implies the importance of treatment and testing since525

treatment can hopefully improve recovery rate and testing is helpful for identifying526

the asymptomatic ones.527

6. Discussion. In this paper, we developed a new inverse method for deriving528

the daily or weekly transmission rates based on multi-compartmental ordinary differ-529

ential equation models and disease incidence data. The method is essentially using530

forward-Euler discretization of differential equations to generate an iteration process531

to produce time series of variable values and then derive the time series of transmis-532

sion rates from one or more equations of the discretized system. The time step is533

usually one day or one week depending on whether daily or weekly transmission rates534

need to be estimated. Sometimes such discrete systems may suffer from the issue of535

instability due to a too large time step. To check the feasibility of the method, we536

need to verify that the derived transmission rates and compartment variables are all537

non-negative (see e.g., Figures 3.1, 4.1, 5.1 and supplementary Figures SM0.4, SM0.5,538

SM0.6, SM0.7, SM0.8, SM0.11,SM0.12,SM0.16). When the term corresponding to539

notification data of new infections explicitly involves the transmission rate, such as540

in the flu model (3.1), β can be directly derived from the infection term after we get541
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Fig. 5.2. Sensitivity indices of the transmission rates with respect to (a) the parameters and
(b) data and initial conditions in California from August 1, 2021 to November 30, 2021.

time series of the variables. When the term representing notified new infections does542

not involve the transmission rate explicitly, such as in the measles model (4.1) and the543

COVID-19 model (5.1), normally the equation corresponding to the rate of change of544

the susceptible population is needed to derive the transmission rates once the time545

series of all variable values are obtained. Thus, the key step is to construct the time546

series of the susceptible population from those of the other compartments. When it547

involves long-term dynamics (multiple years or decades) under dramatic population548

variations, we can either compute the transmission rates year by year using different549

initial values for different years (see Section 3) or estimate the transmission rates for550

the entire period of interest with one initial value for each variable (see Section 4). A551

birth rate and a natural death rate need to be incorporated for the latter case.552

We introduced the discrete inverse method based on a general SIS model and553

found that the inverse method based on forward Euler discretization is the best in554

both accuracy and speed of computation. We applied the method to extract trans-555

mission rates from notification data of confirmed cases for three diseases: flu, measles556

and COVID-19 which are selected for study according to their different cycles. For557

each application, we discussed insights gained about specific epidemiological issues.558

Based on Fourier transform of the transmission rates for flu in the US, we verified it559

as a seasonal disease. We also found that the transmission rates of flu within each560

year vary dramatically in more recent years. Moreover, the risk of infection with flu561

is highest in Decembers from 2013 to 2018 and protection measures against flu are562

worth taking as early as in August each year in the US. A better exploration for flu563

transmission should be conducted as a regional study within a state, which allows564

for connecting the transmission rates with weather conditions. That requires the col-565

lection and publication of state-wide or county-wide ILI data and vaccination data.566

By comparing the Fourier transforms of the transmission rates of measles in Lon-567

don and Manchester, we found that both seasonal conditions, such as humidity, and568

school terms contribute significantly to the transmission of measles. In Manchester,569

the modulator “school dates” is more important than that in London. In addition,570

the dominant frequencies in London have less noise than those in Manchester because571

London has a larger population than Manchester, which implies that the results for572

London are less sensitive to unexpected factors. The method can also be applied to573

post-vaccination data of measles as a future work. For COVID-19, we estimated the574

transmission rates of the Delta variant strain in California of the USA. The sensitiv-575
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ity analysis results show that the fully vaccinated data, the recovery rates and the576

proportion of asymptomatic infections can all greatly impact the transmission rates,577

which implies the importance of vaccination, treatment and testing in the control of578

COVID-19. Model (5.1) can be modified to include multiple SARS-CoV-2 variant579

strains and applied to smaller regions to mitigate the effect of heterogeneity. In that580

case, regional data and more parameter values need to be known in order to improve581

the accuracy of the estimated transmission rates. Another interesting future work is582

to explore what the obtained β(t) imply if we consider the proportion transition of583

variants in supplementary Figure SM0.13.584

Note that in addition to the notification data of new infections, sometimes we585

also need to incorporate time series data of some other variables in order to make586

the method work. The principle is that as long as relevant data corresponding to587

some term (e.g., cumulative deaths) in a model is available it is always better to use588

the data directly. However, if no data is available, then we need to estimate the589

related parameters (e.g., from published references or medical information) and run590

the iteration algorithm to derive time series of the variable. For the SIS model, we591

only used data of new infections per unit time. For the flu model, we used weekly data592

of new infections, new vaccinated, and new deaths. For the measles model, we used593

weekly data of new infections. For the COVID-19 model, we used data of daily new594

infections, cumulative vaccinated and breakthrough cases, and cumulative deaths.595

Our method is totally data-driven and hypothesis-free in the sense that we do not596

need to make assumptions on the form of the transmission rates. This is different from597

some traditional methods such as the least squares method which typically assumes598

the transmission rates to be constant during a specific time period or to take some599

pre-determined function forms without any validation. In addition to available time600

series of epidemiological data (e.g., incidence, vaccinated, etc.), the only prerequisites601

of our method are the initial values of the variables which can be estimated from602

public health databases, whereas the algorithm of the continuous inverse method in603

[27] requires an estimation of β(0) which is quite challenging or even impossible in604

reality. Another advantage of our discrete inverse method over the continuous version605

in [27] is that we do not need to first interpolate the data with a trigonometric function606

or a spline and we do not need to solve a Bernoulli equation whose coefficients may607

involve higher order derivatives of the smooth function of prevalence data (see, e.g.,608

supplementary Theorem SM0.1). Our iteration algorithm only uses discrete data609

instances without any complicated integrals in the formula for β(t), which greatly610

simplifies the computation process and makes our method much faster in obtaining the611

estimated transmission rates. This advantage is particularly obvious when the disease612

has an incubation period and the incidence term in the equation for the exposed613

compartment is not used as the term corresponding to notification data. For example,614

we assumed that the notified measles incidence frequency data coincide with the time615

series of aE(t) instead of β(t)S(t)I(t) in model (4.1) and we use the term (1−p)δE(t)616

instead of β(t)(S(t)+ϵFVF (t)+ϵBVB(t))(I(t)+θEE(t)+θAA(t))/N as the notification617

term in model (5.1). In these cases, the continuous inverse method in [27] will produce618

a rather complicated expression for β(t), which dramatically reduces the speed of619

computation. From supplementary Remarks SM0.3 and SM0.4, we can imagine how620

laborious it is to apply the continuous inverse method to the measles model (4.1) and621

the COVID-19 model (5.1). In contrast, our method runs fast for all the three models622

even when aE(t) and (1−p)δE(t) are used as the notification terms of new infections623

in models (4.1) and (5.1), respectively. As a byproduct, we suggested a faster method624

to derive the transmission rates with the continuous inverse method by directly using625
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ode45 in MATLAB when the notified new infection terms explicitly depends on β(t)626

(see Remark 2.2). However, it is still a little slower than our discrete inverse method627

based on a comparison for the SIS model and the flu model (see Tables 2.1 and 3.2).628

One promising application of the discrete inverse method is to provide the esti-629

mated transmission rate as the response variable for some machine learning models630

to forecast disease incidence under the impact of some predictor variables such as631

human mobility trends and non-pharmaceutical interventions which affect the trans-632

mission rate either directly or indirectly. This can be realized by developing a hybrid633

model consisting of a mechanistic model and a machine learning model (see, e.g.,634

[36, 35]). When combined with machine learning, an accurate estimation of transmis-635

sion rates allows for effective training which may produce reliable testing/predictions636

and enables the most influential predictor variables to be identified. Derivation of637

transmission rates using the discrete inverse method can also help analyze control638

outcomes in the past to gain experience or learn lessons for taking mitigation mea-639

sures in the future. Different interventions usually lead to different trends in human640

mobility and, as a result, different transmission rates. Thus, policymakers could select641

one set of intervention policies that will control the disease to the best by comparing642

different transmission scenarios under different combinations of future interventions.643

Mechanistic models can do far more than just forecasting disease incidence and644

the discrete inverse method can be applied to a variety of infectious diseases as well.645

In practice, data availability and quality are important for the implementation of our646

method. Data scarcity is a typical problem for newly emerging infectious diseases,647

especially at the initial stage of an epidemic or pandemic. Moreover, the notification648

data may underestimate the actual number of infections if infected people are not di-649

agnosed due to unawareness (e.g., asymptomatic infections) or underdeveloped track-650

ing and testing systems. On the one hand, effective data collection and surveillance651

technologies need to be harnessed, particularly in disadvantaged regions where more652

funding should be targeted. On the other hand, future models must account for un-653

derreporting and missing data in order to facilitate disease transmission mechanisms654

research and inform control strategies. When data on other compartments (such as655

quarantined and hospitalized) are available, the models may be able to provide a more656

accurate estimate of the transmission rates by incorporating extra compartments. Be-657

sides, the discrete inverse method also works when prevalence data are available. In658

that case, we can directly employ a time series of currently infected population to de-659

rive the time series of the other variables. In addition to ordinary differential equation660

models, our method can be applied to difference equations as well since our method661

is basically based on discretized differential equations. It is also intriguing to ap-662

ply the method to some disease models represented by delay differential equations,663

partial differential equations or stochastic differential equations. Furthermore, the664

approach in this paper can be generalized to deduce some time-varying parameters665

of other epidemiological, immunological, ecological and social compartmental mod-666

els based on laboratory or field data, and may be informative in approximating a667

specific function form of the estimated parameter (e.g., the Holling-type functional668

responses), which may be of interest to a broad community that includes not only ap-669

plied mathematicians but also biologists, biomedical engineers, clinicians and others670

with a quantitative mindset.671
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