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Abstract

There is a growing trend of using unmanned aerial vehicles (also known as UAVs, uncrewed aerial

vehicles, or drones) to manipulate and interact with their surroundings. The algorithms and tools

used are typically unique to the different tasks performed by UAVs; however, the fundamental UAV

system largely remains consistent. This thesis offers a general quadrotor UAV system capable of

performing multiple tasks dependent on available payloads. The system is empirically developed and

performs localization using ArUco fiducial markers, an inertial measurement unit, and a Kalman

filter. Navigation is achieved using a proportional integral derivative controller, and interfacing

with various payloads is accomplished with a custom-developed universal payload manipulator.

The system is described in detail and demonstrated with real-world experimentation, including the

deployment of an example payload for removing twist caps off sump lubricant reservoirs. Empirical

results show the developed system as an initial functional prototype in ideal conditions, and further

work is required to increase system reliability and functionality for non-ideal scenarios.
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Chapter 1

Introduction

1.1 Background

Unmanned aerial vehicles are aircraft without a human pilot onboard. The first recorded use of
UAVs dates back to 1849, when Austrian soldiers rigged approximately 200 balloons with fuses and
explosives to bomb Venice. Due to changing winds, the operation had only limited success [1, 2];
however, the start of UAV technology had begun.

With the first powered flight of the Wright brothers in 1903 [3] and the start of World War I (WWI)
in 1914, UAVs experienced significant technological advancements. The first major development
was an automatic control system developed by Elmer Sperry and Peter Hewitt in 1916, and in
1917 the United States (US) Navy provided funding to use the technology for a flying bomb [4].
Although the program was cancelled one year later, the project paved the way for the Kettering
Bug. The Kettering Bug worked by calculating the number of required engine revolutions to reach
a target. At the target, the UAV would dive and deliver 82 kg of explosives [5]. However, even
with an automatic stabilization system, testing proved unreliable (it had only 22% accuracy) [5],
and the aircraft was not used for fear of carrying explosives over Allied troops [6]. Both the United
Kingdom and Germany experimented with similar systems at the time [4].

After WWI, the aviation industry began developing rapidly. The first non-stop transatlantic flight
was achieved in 1919 by Alcock and Brown [7], and in 1929 Doolittle achieved the first instruments-
only flight [8]. UAVs also made advancements, such as the first remote-controlled (RC) aircraft
achieving all phases of flight (taking off, maneuvering, and landing) in 1924 [9]. In 1935, the Royal
Navy successfully used RC technology to develop the Queen Bee UAV for anti-aircraft gunnery
target training, leading to the production of nearly 400 of the unmanned aircraft [10].
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During World War II, UAV technology continued to develop in concert with other aerospace tech-
nologies such as jet engines and more complex auto-stabilization systems. One such example was
Germany’s V-1 "buzz bomb", which was capable of speeds up to 640 km/h and a range of up to
250 km [4]. Although still a UAV, this class of vehicle was recategorized as a cruise missile. The
main difference between UAVs and missiles is that a missile is a one-way weapons system, while a
UAV is intended to be reusable (or at least recoverable).

The modern era of UAVs began in 1960, when a U-2 photographic reconnaissance aircraft flown by
US pilot Gary Powers was shot down over the Soviet Union. In the wake of the diplomatic incident
created by the capture of the pilot, the US created a classified unmanned reconnaissance program
named "Red Wagon", which involved retrofitting a target drone for remote controlled photographic
surveillance missions [11]. Seven years later, Israeli intelligence successfully acquired photos using
a reconnaissance UAV during the 1967 Six-Day War; this provided a strategic advantage with no
risk to their pilots [12]. In 1973, the US officially confirmed its use of UAVs in Vietnam [11].
Between 1964 and 1972, the US flew an estimated 3435 UAV missions; notably, 554 UAVs were lost
[13].

As world conflicts continued in the twentieth century, so did the development of UAV systems.
Israel created the first real-time surveillance UAVs and decoy drones in the 1973 Yom Kippur War
to reduce the number of manned aircraft shot down by surface-to-air missiles [15]. In 1994, the US
debuted a new endurance aerial reconnaissance UAV, the MQ-1 Predator. In 2001, the Predator
was modified so that it could carry two AGM-114 Hellfire surface-to-air missiles, thereby becoming
the world’s first "stalk and kill" UAV [14]. The Predator, pictured in Figure 1.1, played a significant
role in Operation Enduring Freedom and paved the way for today’s cutting-edge UAVs. Because
most UAV technological developments have been based on military applications, many of these

Figure 1.1: General Atomics MQ-1 Predator UAV firing a Hellfire Missile [14]
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technologies are shrouded in secrecy and remain classified. However, modern UAV technologies,
when they have been shared or otherwise become publicly known, are still evidently pushing the
boundaries of modern technology. For example, the Defense Advanced Research Projects Agency
(DARPA) AlphaDogfight Trials have demonstrated the capabilities of implementing artificial in-
telligence (AI) control algorithms into an F-16 fighter jet, effectively turning a previously piloted
aircraft into an imposing UAV for aerial dogfights [16].

Multirotors are one of the most widely used UAV platforms by consumers and researchers due
to unique qualities such as their vertical takeoff and landing (VTOL) capability, cost efficiency,
and ability to hover [17]. One of the most common types of multirotors is a quadcopter, whose
development can be traced back to the Bréguet-Richet Gyroplane in 1907. Gyroplane No. 1
was human-piloted and was able to lift approximately 0.5 metres off the ground; however, it was
highly unstable, and required support on all four corners from a ground crew [18]. In 1922, the de
Bothezat helicopter, also known as the Jerome-de Bothezat Flying Octopus, made its first flight
under contract to the US Army Air Service; however, the program was cancelled in 1924 due to
its complexity [19]. In 1924, Oehmichen set a world record in France for his quadcopter design
flying 360 metres in a straight line [20]. In 1939, the world’s first practical helicopter (designed
by Sikorsky) took flight, using a primary rotor for lift and an anti-torque rotor on the tail [21];
however, the quadcopter trend continued into 1956, when the Convertawings Model A Quadrotor
prototype was developed; this prototype demonstrated the ability to control roll, pitch, and yaw by
varying the propellers’ speed [22].

Other quadcopter projects were developed by various militaries in the latter half of the twentieth
century; however, it was not until 1991 that the first consumer quadcopter UAV became readily
available to the public with the release of the Keyence Gyrosaucer II E-570 in Japan [23]. This
breakthrough turned quadcopters into UAVs for the first time, using previously developed mili-
tary technologies such as auto-stabilization and RC control. Eight years later, Draganfly released
a consumer quadrotor UAV, followed by the first multirotor UAV featuring an integrated camera
system in 2001 [24]. The quadcopter became increasingly popular with researchers, in part due to
increasing integration with other complementary technologies; at the 2010 Consumer Electronics
Show (CES) in Las Vegas, Parrot unveiled its AR.Drone, which allowed users to control the quad-
copter UAV from their smartphones [25]. Three years later, DJI released the Phantom quadcopter
UAV, which exploded in popularity. As of October 2019, 77% of all registered UAVs in the US were
DJI products; the next closest competitor was Intel, with 4% [26]. As of September 2020, approxi-
mately 1.2 million UAVs are registered for recreational use in the US, and another half-million are
registered for commercial purposes [27].

With unmanned multirotors making their first appearance in the research world only 20 years ago,
the field is still fairly young [24]. UAV multirotor research was minimal during the initial years, and
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it was not until 2011 that rapid interest started to take hold [28]. Multirotor UAVs are now often
used for visual inspections of hard-to-reach or dangerous areas such as railway infrastructure [29],
bridges [30], and high voltage power lines [31]. Visual inspections, surveillance, and other passive
tasks are now just a subset of what UAVs can do and multirotor UAVs have been developed to
perform active tasks such as manipulating their surrounding environment [32].

Using a UAV to physically interact with an environment is termed "aerial manipulation". Among
nearly 8500 published papers relating to UAVs between 2008 and September 2017, only 1.7% of
them related to aerial manipulation [28]. However, using the same search terms and database as
[28], interest in aerial manipulation was found to have more than doubled (to 4.6%) as of November
2020, and research relating to UAVs is increasing exponentially. Researchers have demonstrated
multirotor UAV capabilities such as the ability to open drawers [33], open doors [34], unscrew light
bulbs [35], interface and rotate valves as in Figure 1.2 [36], acquire water samples [37], have two
UAVs work together to overcome payload restrictions [38], and acquire volcanic rock samples [39],
which shows that aerial robotics is indeed in its golden period [32], or perhaps just entering it.

Figure 1.2: Quadrotor UAV Autonomous Valve Interfacing Task [36]

1.2 Motivation

There is a growing trend to use UAVs for inspection of industrial facilities and infrastructure.
These types of inspections commonly entail remote sensing using cameras for qualitative assessment
[40], photogrammetry [41], and temperature monitoring using thermal imaging cameras [42]. The
benefits of using drones are to reduce risk to inspection personnel near operating equipment, reduce
inspection costs, and improve auditability of archived data [43].

With aging infrastructure, there is an increased need for condition information. Condition infor-
mation provides valuable insight into the current state of an asset and allows for a corresponding
maintenance plan to be implemented [44]. Despite increasing use of UAVs and ground robots to
gather data and samples [45], infrastructure condition information is still commonly gathered man-
ually [46]. Access to equipment to obtain samples can be challenging, with equipment located in
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confined spaces, at remote locations, and at elevated heights. The use of UAVs to acquire samples
from machinery and infrastructure not only reduces risk to workers, but also allows for condition-
based maintenance and frees inspectors to conduct further value-added activities [43].

The main diagnostic approaches for detecting impending machinery failure are elevated tempera-
ture trends, vibration spectral features, and anomalous components detected in lubricant analysis
[47]. To gather the necessary samples for detecting machinery failure, multiple different sensors
and sampling mechanisms are required. Our research group’s previous work demonstrated remote
sensing, monitoring, and data collection using a fixed-wing UAV, but the UAV lacked physical ma-
nipulation of the environment [48]. A multirotor system for the deployment of sensors for condition
monitoring was later conceptualized [49], and the requirements for a UAV to collect vibration data
by deploying a vibration sensor was further expanded on [50]. The main diagnostic approaches for
detecting impending machinery failure and corresponding payloads were addressed with primar-
ily results in [51]. Various other sensors and samplers have been conceptualized and prototyped
[52, 53]; however, creating a reliable platform to deploy the sensors and payloads has yet to be
developed.

Due to the requirement of acquiring multiple different samples for machinery diagnostics, it is chal-
lenging to have a single payload accurately and reliably retrieve the various samples. Suppose a
single UAV could swap between payloads and their corresponding sampling procedure; in that case,
a greater focus can be put into payload development and validation, as the foundation for deploy-
ment is already in place. Similarly, with the previous examples of aerial manipulation presented
[33, 34, 35, 36, 37, 38, 39], each system is capable of a unique specific task. Although the tasks are
vastly different, all systems can be fundamentally broken into mechanical design, localization, and
control. Using the same UAV to unscrew a light bulb or retrieve a volcanic rock sample by varying
the payload and its dedicated firmware turns a niche system into an extremely versatile one. To
develop a versatile aerial payload platform, the system must first localize itself in a given environ-
ment. Once localized, the UAV should be able to maneuver using some control method. Finally,
the UAV will need to interact with payloads and execute the corresponding task the payload was
developed for. The following literature review provides relevant details for the system’s localization,
control, and payload development.

1.3 Literature Review

The following literature review is a general overview of the systems and methods used for local-
ization, control, and payload manipulation. Each following chapter includes additional supporting
literature directly related to the specific methods and technologies used in the research.
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1.3.1 Localization

The first challenge in creating a system capable of interfacing with various payloads is localizing the
UAV in a given environment. Once the UAV is localized, it can navigate to retrieve, manipulate,
and return a payload. Localizing in an outdoor environment is commonly achieved using a Global
Navigation Satellite System (GNSS) [54]. GNSS is a collective term for different types of satellite
navigation systems. One of the most common GNSS is the Navstar Global Positioning System,
commonly termed GPS, which is owned by the United States government. GPS services are a
space-based radio navigation system which provides positioning, navigation, and timing services
[55]. Localization with a GPS requires at least four satellites to be electronically visible from the
receiver. A GPS satellite transmits a radio signal with the current time and position; using the
known speed of radio waves and the delay time between the signal transmission and retrieval, the
distance between the transmitter and receiver can be calculated. Using multiple satellites and
localization algorithms, the precise location of the receiver can be found [56].

GPS is limited by the system’s accuracy and the line of sight between satellites and the receiver.
A well-designed GPS receiver is reported to have a horizontal accuracy of three metres or better
95% of the time [55]. Optimized GPS receivers have reported increased performance, with systems
accurate up to 30 centimetres [57]. Such accuracies are sufficient for tasks that do not require high
precision (such as road vehicle navigation), but are insufficient for many robotic applications [58].
A second limitation of a GPS is noisy or weak signals in obstructed areas. For example, a study
found GPS accuracy to decrease by 29% in young forest conditions (and 50% under closed forest
canopies) compared to clear open skies [59].

To mitigate some of the limitations of GPS, a real-time kinematic (RTK) system can be used.
Using a traditional GPS signal, a second data stream is acquired, with a correction value allowing
for centimetre accuracy [60]. Correction values are received from a fixed base station, which must be
in the receiver’s general area; the closer the receiver and base station, the more accurate the values.
Some RTK implementations have achieved millimetre accuracy; however, even low-cost RTK units
cost hundreds of United States dollars (USD) [61]. Although an RTK system can provide the
desired accuracy, it still struggles in GPS-denied environments.

A more common method for increasing the accuracy of a GPS is to apply signal processing and
state estimation techniques on the raw position data. A popular method is to apply a Kalman filter
[62] especially when fused with additional data streams [63]. One sensor that is commonly fused
with GPS data is a magnetometer. A GPS receiver fundamentally outputs position, and when at
rest, the orientation or heading is unknown. Once the receiver is moving, the heading is found
with an estimator, allowing for a more accurate position estimate. To address the shortcoming of
only receiving an accurate heading with motion, a magnetometer can be used. A magnetometer
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measures the direction and strength of a magnetic field [64]. Measuring the Earth’s magnetic field,
applying calibration corrections, and computing some trigonometric equations will yield a heading,
even when the system is at rest. Because the Earth’s magnetic field is feeble, magnetometers
must be carefully calibrated for reliable data [65]. Earth’s weak magnetic field is also problematic
when operating close to objects containing ferromagnetic materials or generating electromagnetic
fields; the two most common corrections are hard and soft iron distortion [66]. Hard iron distortion
compensates for any permanent magnetic fields from ferromagnetic materials such as a screw or
bolt near the sensor. Soft iron compensation corrects for distortion caused by a material that does
not necessarily generate its own magnetic field.

Many other sensor fusion methods and estimation techniques exist for increasing the reliability and
accuracy of GPS positioning. Proven examples include: laser imaging detection and ranging (lidar)
GPS fusion and estimation using an unscented Kalman filter to aid UAV position estimates in
urban environments [67], an odometer GPS inertial navigation system (INS) using a Kalman filter
to localize robots [68], and an RTK GPS INS wheel odometry vision system using an extended
Kalman filter also to localize a ground robot [69]. However, a GPS is optimized for outdoor use;
even when combined with other sensors, it is not feasible for localizing a UAV for precision tasks in
GPS limited or denied environments. GPS-denied environments are of particular interest, as many
of the previous payloads mentioned are used indoors. Additionally, machinery diagnostics will
require access to hard-to-reach areas or will be surrounded by extensive infrastructure (especially
in Alberta), which will degrade both the accuracy of a GPS signal and magnetometer readings. A
GPS may still be used for certain applications; however, alternative localization techniques must
be considered.

Methods for localizing in GPS-denied environments with high accuracy and reliability can be cat-
egorized into two main groups: ranging and non-ranging [70]. Ranging refers to acquiring distance
information (similar to a GPS), from any number of sensors, including ultrasonic range finders,
lidar sensors, and Bluetooth or Wi-Fi signals. Using the acquired data and known or unknown
location information, a system can be localized with various technologies and methodologies [71].
The acquisition and processing of the signals are fundamental in what is known as simultaneous
localization and mapping (SLAM).

The second type of method for localizing in GPS-denied environments are non-ranging methods,
which primarily use image navigation techniques [70]. Images acquired by a camera contain large
amounts of data. Methods such as optical flow, stereo vision, and detection of fiducial markers
are just a few techniques to acquire localization data. As with ranging techniques, the data and
algorithms used are common in VSLAM (visual simultaneous localization and mapping).

Other alternatives to ranging and non-ranging techniques do exist. For example, an INS system
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does not require external references. Using inertial measurement units (IMUs) to sense motion,
the addition of equations of motion, and dead reckoning, the sensor’s position, orientation, and
velocity can be tracked. The system can be highly accurate in the short term; however, due to dead
reckoning, errors can compound, especially when a model of the environment’s influences is lacking
due to insufficient direct displacement measurements [72].

Each of the methods discussed has advantages and disadvantages, and rarely is one method used
by itself. Data is often acquired from many different sensors and fused with algorithms specific to
an application. A common trend is to use one or more data inputs coupled with an INS. Ranging
examples include using an INS and ultrasonic sensors to successfully localize a micro air vehicle
[73], development of a SLAM algorithm using lidar and an IMU for indoor UAV localization and
mapping [74], and fusion of an ultra-wideband wireless sensor network and IMU to localize a mobile
agent in an indoor setting [75]. Non-ranging examples include the development of an innovative
filter for stereo vision and INS fusion [76], a camera-based colour blob detection algorithm and IMU
fusion algorithm to aid in autonomous UAV quadrotor landings [77], and the comparison of using
optical flow data and state of the art estimation techniques with and without IMU compensation for
UAV flights [78]. Each paper uses a different fusion technique; however, the standard Kalman filter
and its variants-such as the extended Kalman filter (EKF) and unscented Kalman filter (UKF)-are
most common. Lastly, a motion capture system, such as Vicon, is not considered in the present
work, as the technology requires extensive external infrastructure and does not provide a general-use
solution.

1.3.2 Control

Once the UAV is localized within its given environment, a control scheme must be implemented so
the system can be maneuvered to execute a given task. Every task will have different disturbances,
especially when interacting with a given environment. To mitigate an unstable control system and
increase system robustness due to assumptions from the modelling process, various control schemes
and techniques have been proven [79].

A study published in October 2020 considered the Web of Science and Scopus databases and
calculated the percentages related to various control strategies of quadcopter and multirotor UAVs
found in literature over the past five years [79]. Figure 1.3 summarizes the results, and it was noted
in the paper that there is more research with quadrotors than multirotors. In terms of quadrotors,
the proportional integral derivative (PID) controller is the most commonly implemented linear
controller, while the sliding mode and adaptive controller are the most popular nonlinear techniques.
In the realm of multirotors, neural network and fuzzy-based controllers are the most popular control
techniques, although the PID controller remains among the top three most frequently implemented
controllers.
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(A)

(B)

Figure 1.3: Distribution of Various Control Strategies For: (A) Quadrotor, (B) Multirotor [79]

With the PID controller being a popular implemented linear controller for quadrotor and multi-
rotor UAVs, many studies exist in literature [36, 80, 81, 82, 83, 84]. New methods of tuning and
optimizing gains for the PID controller are becoming increasingly popular; such methods include
genetic algorithms [85], particle swarm optimization [86], and artificial neural networks [87]. The
PID controller was also commonly found to be combined with other controllers, such as creating a
fuzzy iterative learning control PID controller [88]. Additional linear control techniques exist such
as the linear quadratic regulator (LQR) controller [89, 90] and the H∞ controller [91, 92]. Due to
the nonlinear nature of multirotors, nonlinear controllers were developed to handle situations where
a linear controller would fail [79].

Examples of popular nonlinear controllers include sliding mode and adaptive controllers, as men-
tioned previously. Specific examples include implementing a quaternion-based third-order sliding
mode controller, which was capable of achieving robust nonlinear performance in numerical simula-
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tions [93]. Another sliding mode controller was implemented with a nonlinear disturbance observer
to overcome parametric uncertainties and exogenous disturbances [94]. Sliding mode controllers
and adaptive controllers have been combined to yield adaptive sliding mode controllers capable of
controlling UAVs with two degree of freedom robotic arms for picking up and delivering objects [95].
Specific implementations of adaptive controllers include stabilizing a quadrotor system carrying a
payload with a varying center of gravity [96], and the design of an observer-based adaptive output
feedback controller for a quadrotor system with bounded uncertainties [97].

Many other controllers exist, and additional examples and implementations include the development
of an auto disturbance rejection controller for a transmission power line inspection UAV [98], a model
predictive controller used on a multirotor UAV with a manipulator for pick and place tasks [99], a
fuzzy fault-tolerant tracking control system capable of handling nonlinear aerodynamic disturbances
and actuator faults [100], and the use of model-based reinforcement learning to implement low-level
control schemes based on experimental training data [101].

1.3.3 Payloads

Interfacing with a given payload requires the transmission of mechanical energy for physically
locating a payload, electrical energy for powering active components of the payload, and a data
communication stream for passing information between the payload and UAV. There are many
modular payload or tool changer designs presented in both industry and literature for ground-based
systems. Computer numerical control (CNC) machines use a variety of automatic tool changers
(ATCs) leading to nearly fully automated workflows with little downtime [102, 103, 104]. ATI
Industrial Automation developed the ATI Robotic Tool Changer for multi-degree of freedom (DOF)
manipulators. The Robotic Tool Changer has more than 30 models, capable of loads ranging from
1.4 kg to 4000 kg even in high-heat or high-vibration environments [105]. A novel wedged lock latch
payload adapter was designed and tested as an alternative to the common taper and ball approach
used in ATI’s design. Experimental results proved the system was capable of handling small service
robotic applications [106]. Payload adapters are also found in space applications. For example,
Jet Propulsion Laboratory (JPL) integrated payload adapters into its all-terrain hex-limbed extra-
terrestrial explorer, allowing any of its legs to select tools from a holster, turning the leg into a 6
DOF manipulator [107].

The ground-based modular payload systems presented may be transferable to a UAV; however,
ground-based manipulators tend to have access to more power, lower mass constraints, and finer
positional accuracy than a UAV such as a multirotor. Therefore, integrating a ground developed
system with a flying system may prove challenging. From a detailed analysis of existing literature
and patents, modular aerial payload designs have been of interest; however, no autonomous working
system was found. A modular payload system for small mobile robots, including UAVs, is conceptu-
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alized in [108]. Only the mechanical shell was shown to be prototyped, with no evidence of electrical
or software prototyping. Additionally, experimental results were non-existent. A universal payload
interface for UAVs focusing on electrical and software design was presented in [109]; however, the
system does not allow for autonomous payload pick-up and drop-off without human intervention.
Northrop Grumman Systems Corp has a patent for a layered architecture for customer payload
systems which uses a modular design of different payloads; however, patent information suggests
payloads are for fixed-wing UAVs and not autonomously swappable [110]. Although only partially
applicable to interfacing with different payloads, systems for automated UAV docking and battery
charging or swapping have been researched with successful results [111, 112, 113, 114].

1.3.4 Aerial Manipulation

Examples of aerial manipulation tasks have already been presented [33, 34, 35, 36, 37, 38, 39];
however, the fundamental challenges and approaches have yet to be discussed. One of the many
challenges with aerial manipulation is controlling the UAV due to interactions with its environment
[32]. UAVs interacting with the environment can be simplified into three main categories [36]:
Momentary coupling (interacting with objects of finite mass in the air that are not fixed to the
surrounding environment); loose coupling (interacting with objects attached to the environment
without securing to the environment, in tasks such as assembling, inserting, pushing, or pulling);
and strong coupling (securing or perching onto fixed objects in the environment and becoming part
of it).

The challenge of executing any of the three coupling types is compensating for the reaction dy-
namics. When a UAV has coupled itself with the surrounding environment, the forces the UAV
experiences interfere with the aerodynamics and associated model of free flight, creating a risk of
the UAV becoming unstable and failing its assigned task [32]. "An analogy is to imagine a scuba
diver turning an underwater valve. The diver contorts his body and aggressively kicks his legs in
order to throw his body weight into turning the valve with his arms. Likewise, a UAV must ’swim’
through air and may have to vector its body in order for the arms to dexterously manipulate an
object" [115].

To address the issue of reaction dynamics and maintain a stable system, different approaches can be
taken. Firstly, a well-designed mechanical system can significantly reduce the influence of reaction
dynamics [28]. Approaches such as soft contact dynamics and smooth actuation of a manipulator
can significantly improve the system’s capability. The planning and modelling of the system is
critical; there are two main approaches, a centralized approach and independent approach [32]. A
centralized approach considers both the UAV and payload to be one system, and the controller treats
everything as such. In an independent approach, the UAV and payload are treated separately, and
the effects of the payload on the UAV (and vice versa) are treated as disturbances. A centralized
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Figure 1.4: Four AEROARMS platforms [116]: (A) multidirectional-thrust hexarotor with a rigidly
attached end effector, (B) multidirectional-thrust octorotor with inspection arm, (C) aerial dual-
arm manipulator with stiff joints, and (D) aerial dual-arm manipulator with compliant joints

approach is simpler to implement than an independent approach; however, an independent approach
tends to yield a more accurate and responsive system [28].

Other challenges exist with aerial manipulation systems, such as localization and control, which were
previously discussed. The single greatest challenge of aerial manipulation is that most designs are
complex mechatronic systems in a relatively new field [28]. Aerial manipulation requires developing
many different subsystems that must all work together for reliable and robust performance. Entire
teams often work together for years to develop an end product such as the AEROARMS Project,
which aims to develop aerial robots with advanced manipulation capabilities for various inspections
and maintenance [116]. Examples of four different AEROARMS platforms can be viewed in Figure
1.4.
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1.4 Research Objectives

The use of UAVs is rapidly increasing in commercial applications and the research community [28].
One branch of UAV research is aerial manipulation, where researchers have demonstrated using
UAVs to physically interact with an environment and achieve tasks such as opening drawers [33]
and acquiring water samples [37]. Reviewing aerial manipulation literature, it was observed that
developed systems were designed for a limited subset of applications. For example, the UAV, which
could acquire water samples, could not open a drawer, although both systems were based on similar
quadcopter specifications. The main difference between systems is the software for localizing and
controlling the UAV, and the UAV’s manipulator. Software can be developed to share technologies
such as localizing and control; however, manipulators are typically rigidly fixed to the UAV and are
not as cross-compatible.

Further review of aerial manipulation literature revealed no developed system capable of localiza-
tion, control, and autonomous payload swapping. Therefore, the presented research aims to develop
a UAV system that can interface with multiple payloads and provide fundamental localization and
control. Developing such a system will allow researchers to use the platform for specific areas of
research while minimizing others. For example, optimized payloads can be developed with limited
knowledge of localization and control theory, or a focus can be placed solely on developing a novel
control system capable of handling future developed payloads. The main benefit of the proposed
system is that the UAV can achieve virtually any task for which it has a payload. On one flight,
the UAV can be conducting a contact inspection; on the next flight, it can be transporting samples
across a job site.

The presented thesis will be empirically completed. Conceptual simulations and models will be
used for early system validation; however, the final presented system will be measured by real-
world results. An empirical thesis was selected because aerial manipulation is a complex system
composed of many parts and fields of study. Without conducting real-world experimentation,
confidence in the proposed system would be low. The development process will begin by selecting a
UAV platform. The localization and control methods will be developed in tandem until a universal
payload system comes to fruition and the development streams are integrated into a final solution.
Upon completing the development, the system’s localization, control, and payload system will be
individually validated for overall performance and further tested as a fully integrated system.

1.5 Thesis Outline

Chapter 1 provided background and motivation for developing an aerial manipulation multirotor
UAV system capable of localization, control, and ability to interface with various payloads. Existing
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literature was reviewed to highlight current technologies and show gaps for the development of the
proposed UAV system.

Chapter 2 supplies the relevant theory for localizing and controlling a UAV system based on ArUco
fiducial markers. The steps of extracting pose information from an image and the required trans-
formation of coordinate frames are outlined. The theory of fusing inertial data to vision data
using a Kalman filter is then discussed. With a localized system, a PID controller with trajectory
generation is conceptualized for maneuvering the UAV in a given environment.

Chapter 3 describes the UAV system and justifies component selection, such as the autopilot, single
board computer, and camera. An outline of the software architecture is provided based on the
theory from Chapter 2. The design of a universal payload is presented, along with a detailed
description of the mechanical, electrical, and software design. The addition of a payload docking
station is discussed.

Chapter 4 outlines the conceptual design and design space of a twist cap manipulator used for
accessing sump lubricant samples. Methods for removing a twist cap are explored with preliminary
models and early experimental results. A final design of the manipulator with integration to the
UAV is then presented, with a focus on mechanical, electrical, and software design.

Chapter 5 presents the experimental results of the UAV system and twist cap payload. Preliminary
testing of simulations and a tethered system is discussed, followed by the developed software’s com-
putational performance, real-world validation of the localization system, results of tuning the PID
controller, and attempts of precisely landing the UAV. Finally, the complete system is demonstrated,
including retrieving a payload and opening a twist cap.

Chapter 6 summarizes the research completed and the resulting findings. Possible future work is
also presented.
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Chapter 2

Localization and Control

2.1 Localization

The first challenge of the proposed system is localizing the UAV in a given environment so that
it can navigate and perform tasks. With endless combinations of sensors and techniques available
to localize a system in a GPS limited or denied environment, a ranging or non-ranging technique
had to be selected. Ultimately, a non-ranging localization technique using fiducial markers was
selected. Fiducial markers were of interest because they allow for a structured environment that
does not rely solely on naturally occurring features. Additionally, the tasks performed by the UAV
can be in proximity of fiducial markers, and other techniques such as GPS or manual control can be
used to navigate the UAV in proximity to the markers. Alternatively, a large area can be mapped
with fiducial markers. The use of fiducial markers is also of interest because it only requires a
lightweight, inexpensive camera looking for standardized markers, and was found to be a successful
strategy gaining popularity with UAV research [80, 81, 82, 117, 118]. Additionally, previous work
had explored the initial framework of such a system [52].

2.1.1 ArUco Library

The Augmented Reality University of Cordoba (ArUco) library [119, 120] was first released in 2014
as a fiducial marker system for camera pose estimation applications such as robot localization and
augmented reality. The estimation of a pose is a fundamental component of localization and provides
the 3D position and orientation of a body in space. The Open Source Computer Vision (OpenCV)
[121] library, which specializes in classic and state-of-the-art real-time computer vision applications,
quickly adopted the original ArUco library as a sub-module, and the two were integrated to make
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use of each other’s developed functions. The integration of the two libraries provided a foundation
of tools to develop a localization system and was selected for two major reasons. Firstly, ArUco had
highly optimized performance compared to other fiducial markers [119]; and secondly, OpenCV’s
advanced algorithms and open-source community provided documentation, examples, and support,
thus reducing development time.

Standard ArUco markers feature an external black border with an inner matrix that encodes a
binary pattern for unique identification. The black border simplifies the marker’s detection in an
image, and the number of bits is governed by the dictionary to which the ArUco marker belongs.
An example of an identified marker can be viewed in Figure 2.1-A.

A limitation of a single ArUco marker is that if any part of the marker is corrupted in an image due
to obstructions, lighting, or otherwise, the detection will fail. Additionally, a single marker will have
a minimum operating distance; should the camera move inside the minimum distance, the marker
will not be detected. Reducing the marker’s size can decrease the minimum operating distance;
however, the larger the marker in the image, the more accurate the pose estimation will be. To
address this shortcoming, an ArUco board can be constructed. An ArUco board is comprised of
multiple ArUco markers where only one marker is required for pose estimation. Any additional
detected markers will further refine the pose estimation, increasing the accuracy. Therefore, an
ArUco board allows for occlusions and is more robust to noise. An example of an ArUco board
under occlusion can be found in Figure 2.1-B. Due to the increased pose estimation accuracy and
reliability, the ArUco board will be used for the described system.

(A) (B)

Figure 2.1: (A) ArUco Marker ID 0 and (B) Occluded ArUco Board, both with Axis Projections
and ID Labelling
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2.1.2 Camera Models and Calibration

To calculate an accurate pose from ArUco markers, it is essential to have a well-calibrated camera.
The ArUco algorithms make use of a pinhole camera model; however, when a camera with a large
field of view (FOV) is used, the pinhole camera model breaks down and no longer holds. To convert
from a large FOV to a pinhole camera model, OpenCV provides a fisheye camera model. The
fisheye camera model is based on [122] and is simplified as follows.

Considering some point m in 3D space, Equation 2.1 describes the mapping of the point from the
world frame to the camera frame. The coordinates of the point in the world reference frame are
stored in rw, and coordinates in the camera reference frame are stored in rc. The rotation matrix
Rcw and translation vector Pcw expresses the point transform from the world frame to the camera
frame.

rc = Rcwrw + Pcw (2.1)

Extracting the elements of rc, the coordinates can be called x, y, and z as in Equation 2.2.

rc =

xy
z

 (2.2)

The pinhole projection coordinates a and b of pointmmakes use of the relations denoted in Equation
2.3, where r is the distance between the image point and the principal point, and θ is the angle
between the principal axis and the incoming ray.

a = x
z

b = y
z

r =
√
a2 + b2

θ = arctan(r)

(2.3)

The fisheye distortion, θd, is modelled in Equation 2.4, and the coefficients k1..4 are intrinsic pa-
rameters specific to the camera and lens combination, which are empirically derived.

θd = θ(1 + k1θ
2 + k2θ

4 + k3θ
6 + k4θ

8) (2.4)

The distorted point coordinates x′ and y′ are then a function of the fisheye distortion and pinhole
projection points as in Equation 2.5.
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(A) (B)

Figure 2.2: (A) Raw Fisheye Image, (B) Pinhole Equivalent Image

x′ = θd
r a

y′ = θd
r b

(2.5)

Lastly, the distorted point coordinates can be converted into pixel coordinates u and v using Equa-
tion 2.6 and additional intrinsic camera parameters including focal lengths fx and fy, optical centers
cx and cy, and the angle α between the horizontal zero axis and point m [123].

u = fx(x′ + αy′) + cx

v = fyy
′ + cy

(2.6)

Using the described model, a fisheye image can be converted to an equivalent pinhole model. The
implementation can be observed in Figure 2.2, where the model successfully undistorted the fisheye
image (Figure 2.2-A) to appear flat (Figure 2.2-B). The cost of the undistortion is a reduction in
FOV. In Figure 2.2, the raw photo had a diagonal FOV of 163◦, while the processed image was
reduced to 128◦.

A visual representation of the pinhole camera model is found in Figure 2.3. The model shares
many similarities to the previously derived fisheye model and is explained in [124]. The distortion-
free projective transformation, which is the basis of the pinhole camera model, is summarized in
Equation 2.7, where Pw is a 3D point in the world frame, and p is the corresponding 2D pixel
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Figure 2.3: Pinhole Camera Model [124]

mapped by a perspective transformation in the image plane. The camera intrinsic parameters A
are stored in a 3x3 matrix, R and t are the rotation and translation describing the transformation
from the world frame to the camera frame, and s is the projective transformation’s arbitrary scaling
and not technically part of the camera model.

s p = A
[
R|t

]
Pw, (2.7)

Both the fisheye and pinhole camera models are highly dependent on the camera’s intrinsic param-
eters. These parameters can be supplied by the manufacturer or are experimentally derived. The
values returned from a calibration are the camera matrix A, as in Equation 2.8, which holds the
focal lengths fx and fy and optical centers cx and cy. The calibration also returns the distortion
coefficients d, which are slightly different depending on if a fisheye, Equation 2.9, or pinhole model,
Equation 2.10, is used. The distortion coefficient array is comprised of empirically derived constants
k and p.

A =

fx 0 cx

0 fy cy

0 0 1

 (2.8)

dfish =
[
k1 k2 k3 k4

]
(2.9)
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Figure 2.4: Example Calibration Images with Labelled IDs

dpin =
[
k1 k2 p1 p2 k3

]
(2.10)

To retrieve the camera matrix and distortion values, an empirical calibration is conducted. The
calibration is initiated by taking photos of a CharUco board, Figure 2.4, in multiple different
orientations with the board filling a majority of the frame. A CharUco board was used over a
traditional chessboard for calibration as the CharUco board is much more versatile, allowing for
partial views.

The calibration algorithms are directly integrated into OpenCV and are based on the work com-
pleted in [125, 126]. A chessboard is the basis of the calibration, as the location where two black
squares touch can be accurately detected in an image. Additionally, the size of the squares is known,
and the squares follow a standard pattern. Using the derived camera models, the known dimen-
sions of the CharUco board, and some additional algorithms outlined in the previous citations, the
intrinsic parameters of the camera can be calculated.

For the work performed in this thesis, 100 photos were captured for one camera calibration. The
image processing uses two sets of intrinsic parameters: a set of parameters provided by the manufac-
turer mapping from fisheye to pinhole, and a set of experimentally determined parameters further
refining from the pinhole model to the ArUco library functions.

2.1.3 Image Processing and Pose Extraction

Before any image processing is conducted, an ArUco dictionary must be established. An ArUco
dictionary is a binary list of markers to be considered in a specific application, and is composed
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3x3 Bits 6x6 Bits

Figure 2.5: ArUco Marker ID 0 with Highlighted Bits

of two import parameters: the total number of markers in the dictionary, and the total number of
bits used to create an ID. Using these two parameters, further detection and correction techniques
can be implemented. Limiting the total number of markers in the dictionary and the number
of bits increases the inter-marker distances, yielding better accuracy and reducing computation
complexity. The cost of fewer bits is less total ID possibilities, so a balance must be considered
for a specific application. A 3x3 bit marker and a 6x6 bit marker with the same ID are shown in
Figure 2.5.

For the work completed in this thesis, a dictionary of 17 markers using 3x3 bits was determined
to be the optimal configuration. Having 17 possible markers allowed for creating a CharUco board
and left room for future marker IDs. A 3x3 bit dictionary was the smallest allowable matrix; a 2x2
system was quickly exhausted due to its limited ID range.

With an established dictionary, the pipeline for detection and identification of an ArUco marker
is displayed in Figure 2.6. The original frame, Figure 2.6-A, is equivalent to an undistorted image
such as the corrected fisheye image in Figure 2.2-B.

Using the original frame, Figure 2.6-A, the image is thresholded as in Figure 2.6-B. Due to the
ArUco markers having a black border, the border can be identified using segmentation. The ArUco
library uses an adaptive method, where each pixel’s intensity is calculated using a predefined window
size. If the intensity is higher than some constant value, the pixel is set to zero; otherwise, it is
set to a value of one. Although the method is not computationally optimal, it is very robust in a
variety of operating conditions.

Using the thresholded image, contours are obtained, as viewed in Figure 2.6-C, using the Suzuki
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Figure 2.6: Detection and Identification Pipeline of ArUco Markers: (A) Original Image, (B)
Thresholded Image, (C) Contour Extraction, (D) Filtered Contours, (E) Single Marker Extraction,
and (F) Single Marker Binarization [130]

and Abe algorithms [127]. A filter then removes small contours associated with irrelevant back-
ground noise. The remaining contours are filtered using the Douglas and Peucker algorithm [128],
which only keeps contours that approximate a four-corner convex polygon, as viewed in Figure
2.6-D.

The final remaining steps are marker extraction and binarization. The contour of interest is first
refined using the pinhole camera model and perspective projection model as seen in Figure 2.6-E.
The contour is then thresholded using Otsu’s method [129]. The binarized image, as seen in Figure
2.6-F, is then sectioned into grids, and the values are compared to the defined dictionary. If the
binarized contour matches the dictionary, the marker is valid and accepted.

With many of the algorithms used, there are customizable filter windows, coefficients, and param-
eters. It was found that a majority of the defaults were sufficient, and only the "Minimum Marker
Perimeter Rate", "Corner Refinement Method", and "Adaptive Threshold Window" parameters
required modifications.

The "Minimum Marker Perimeter Rate" determines the minimum perimeter of the marker. If the

22



parameter is too small, the computational load significantly increases down the pipeline as more
contours have to be considered. However, if the parameter is too large, there is a risk that a marker
contour will be removed before it is accurately identified in a later step. The argument passed to
the algorithm is a ratio of the smallest perimeter of a marker in pixels to the largest pixel dimension
of the input image. The default value is 0.03; however, it was found that a value of 0.05 decreased
computation time without losing detection of markers.

The "Corner Refinement Method" argument is disabled by default, as it consumes computational
resources and is only required for accurate pose estimation. As accurate pose estimation is required;
this parameter was enabled. The function iterates over a region of interest, providing accurate sub-
pixel corner locations previously discretized by the resolution of the camera.

The "Adaptive Threshold Window" consists of multiple additional parameters for setting the num-
ber of windows and their respective size. The default parameters yield three window sizes of 3, 13,
and 23; however, the values were adjusted to have only two window sizes of 9 and 23. Performing
the adaptive thresholding was extremely computationally intensive, and performing the thresh-
olding with three different windows caused the program to become central processing unit (CPU)
bound. Two windows lowered the computation requirements and unbounded the CPU process. The
window sizes were determined empirically by testing a range of window values in different flight
conditions and recording the number of accurately detected markers. A mid-sized and large-sized
window vastly outperformed any combination with a small-sized window. The finals values of 9 and
23 yielded the best overall results; however, adjusting the window size by 20% in either direction
provided comparable results.

With a processed image and the markers corner pixels’ location known, the Perspective-n-Point
(PnP) problem is solved to estimate the pose of the camera. The PnP method uses a set of n
(n ≥ 3) 3D reference points from the world frame and the 2D projections on the image plane to
calculate a pose. The flag for an iterative method based on a Levenberg-Marquardt optimization
was selected in OpenCV’s PnP solving equation. The function with a Levenberg-Marquardt opti-
mization minimizes reprojection error, which is the sum of squared distances between the observed
projections image points and the projected object points [124]. The method provided reliable results
without the need for high computational requirements.

The accuracy of the estimated pose is highly dependent on the size of the marker in an image.
The larger the marker is in an image, the more pixels the marker uses, and the easier it is for
the algorithms to detect corner points and contours. Accurate detection of corner points allows
for precise pose estimation and correct identification of the markers’ IDs. Increasing the camera’s
resolution also increases the estimation’s accuracy because the marker will be comprised of more
pixels; however, there is more data to be processed, which slows the calculations.
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2.1.4 Transformation of Coordinate Frames

The resulting pose from OpenCV’s PnP equation yields a transformation from the marker coor-
dinate system into the camera coordinate system. The derivation and resulting transformation
matrices follow the coordinate systems displayed in Figure 2.7.

Points Xa, Ya, and Za from the ArUco marker expressed in the ArUco frame {a} are projected into
the image plane (u, v) using a perspective projection model Π, the camera intrinsic parameters A,
and the transformation matrix Tca as described in Section 2.1.2. The transformation matrix Tca
expresses points from the ArUco frame with respect to the camera frame {c}. A simplified form of
the equation can be found in Equation 2.11.

Figure 2.7: ArUco, Camera, and Body Coordinate Systems
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uv
1

 = AΠTca

Xa

Ya

Za

 (2.11)

The expanded form of Equation 2.11 can be found in Equation 2.12 where fx and fy are the focal
lengths, and cx and cy are the optical centers of the camera. The rotation matrix is comprised
of rij where i and j denote the rotation matrix index and tx, ty, and tz are the elements of the
translation vector mapping the two coordinate frames.

uv
1

 =

fx 0 cx

0 fy cy

0 0 1


1 0 0 0

0 1 0 0

0 0 1 0



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1



Xa

Ya

Za

1

 (2.12)

Thus, the estimated pose is a combination of the rotation matrix and translation vector, which
transforms a 3D point expressed from the ArUco frame into the camera frame as in Equation
2.13.


Xc

Yc

Zc

1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1



Xa

Ya

Za

1

 =

[
Rca tca

01x3 1

]
Xa

Ya

Za

1

 = Tca


Xa

Ya

Za

1

 (2.13)

The UAV’s body frame {b} is located at the center of gravity (CG) of the UAV. For simplicity, the
body coordinate system is assigned the same orientation as the camera frame. A translation from
the CG to the center of the camera sensor is applied as in Equation 2.14. The variables dx, dy, and
dz are the distances from the CG of the UAV to the center of the camera optical lens in the x, y,
and z directions defined in Figure 2.7.

Tba = TbcTca =


1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

Tca (2.14)

Taking the inverse of the pose Tba will yield the UAV’s position in the ArUco frame. The inverse
is desirable, otherwise small movements in the camera are amplified, making the UAV challenging
to control. The process of inversing reference frames is found in Equation 2.15.
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Tab = T−1ba =

[
Rba tba

01x3 1

]−1
=

[
RTba −RTbatba
01x3 1

]
(2.15)

To retrieve useful information from the UAV pose with respect to the ArUco marker, the trans-
formation matrix Tab is broken into its rotation matrix R and translation vector t as previously
shown in Equation 2.13. The translation vectors are then mapped to match the coordinate system
of Figure 2.8.

Extracting the yaw of the UAV requires processing the rotation matrix. The formalism of the
rotation matrix provided by OpenCV is a ZYX Tait–Bryan representation which was found through
numerical validation. The rotation matrix in its symbolic form can be found in Equation 2.16.

Rab =

cos θ cosψ cosψ sin θ sinφ− cosφ sinψ sinψ sinφ+ cosψ cosφ sin θ

cos θ sinψ cosψ cosφ+ sinψ sin θ sinφ cos sinψ sin θ − cosψ sinφ

− sin θ cos θ sinφ cos θ cosφ

 (2.16)

To retrieve yaw from the ZYX matrix, Equation 2.17 is used. The atan2 function is used in place
of arctan to allocate the resultant angle to the correct quadrant.

ψ = atan2 (r21, r11) (2.17)

Figure 2.8: UAV North, East, Down (NED) Coordinate System
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Lastly, the use of a downward-facing camera instead of a forward-facing camera was due to the
calculation of yaw, as illustrated in Figure 2.9. With the configuration of a downward-facing
camera, yaw is easily calculated, as there is an evident rotation of the four corners of the ArUco
marker. Using a forward-facing camera, yaw is much more challenging to detect because the corner
points’ change will be minimal and more susceptible to error.

(A) (B)

Figure 2.9: ArUco Yaw Calculation Based On Orientation: (A) Downwards Facing Camera vs (B)
Forward Facing Camera

2.1.5 Kalman Filter

To filter the vision data and provide the controller with a reliable data stream, a Kalman filter
[131] was implemented. Low-pass finite impulse response filters, such as a moving average filter
and Olympic filter, were initially explored; however, the benefit of fusing multiple data streams to
increase the pose estimation accuracy outweighed the cost of the increased integration complexity.
Additionally, the Kalman filter allows for inertial navigation should the camera lose sight of an
ArUco marker.

Assuming the UAV pose data stream is linear prevented the requirement of implementing a more
complex Kalman filter derivative such as an extended or unscented Kalman filter. Modelling the
system as linear does introduce some errors; however, it is a close approximation, especially if the
control of the UAV minimizes non-linear movements. The derivation of the model and implemen-
tation of the Kalman filter follows the notation described in [132]. The dynamic and measurement
model are shown in Equations 2.18 and 2.19 respectively. The system’s hidden state and the ob-
servation are denoted as x and y, respectively, where k is some time step, A is the state transition
matrix, and H is the observation model. Q and R are positive-definite noise covariance matrices of
the measurement noise q and process noise r.

27



xk = Ak−1xk−1 + qk−1, qk−1 ∼ N(0, Qk−1) (2.18)

yk = Hxk + rk, rk ∼ N(0, Rk−1) (2.19)

The state transition matrix for filtering yaw is formulated with basic angular kinematics, where it
is assumed there is constant angular acceleration over some time interval. The variables θ, ω, and α̃
represent an angle, angular velocity, and angular acceleration, respectively. The time step remains
k, and dt is the time difference since the last algorithm update.

xk =

[
θk

ωk

]
=

[
θk−1 + ωk−1dt+ 1

2 α̃k−1dt
2

ωk−1 + α̃k−1dt

]
(2.20)

Equation 2.20 can be rearranged and put into the form of Equation 2.21.

xk =

[
θk

ωk

]
=

[
1 dt

0 1

][
θk−1

ωk−1

]
+

[
1
2dt

2

dt

]
α̃k−1 (2.21)

The process noise comes from the angular acceleration, Equation 2.22, where ek−1 is the sensor
noise and α̃k−1 is some unknown controller input of angular acceleration applied to the body.

αk−1 = α̃k−1 + ek−1 (2.22)

Using the relationship in Equation 2.23 [133], the covariance matrix of the process noise can be
found as in Equation 2.24, where B is the coefficient of α̃k−1 from Equation 2.21, I is an identity
matrix, and σe is the standard deviation of the sensor noise.

ek−1 ∼ N(0, I2x2σ
2
e) (2.23)

Q = BΣBT =

[
1
2dt

2

dt

]
I2x2σ

2
e

[
1
2dt

2

dt

]T
=

[
1
4dt

4 0

0 dt2

]
σ2
e (2.24)

The measurement model, Equation 2.25, is trivial to derive where the true values are corrupted by
some measurement noise rθ and rω.
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yk =

[
1 0

0 1

][
θk

ωk

]
+

[
rθ

rω

]
(2.25)

The measurement covariance matrix is comprised of the squared standard deviations, σ, of the noise
for the respective sensor θ and ω, as in Equation 2.26.

R =

[
σ2
θ 0

0 σ2
ω

]
(2.26)

The same approach can be used to filter the positional vision data. The main change occurs in the
formulation of the state transition matrix, which changes from an angular derivation to a linear
derivation. The change is shown in Equation 2.27 which makes use of the variables s, v, and
ã corresponding to linear position, velocity, and acceleration, respectively. The remaining model
derivation follows the same process and is simply a change of variable notation.

xk =

[
sk

vk

]
=

[
sk−1 + vk−1dt+ 1

2 ãk−1dt
2

vk−1 + ãk−1dt

]
(2.27)

2.2 Control

2.2.1 Proportional Integral Derivative (PID) Controller

The presented research focuses on designing a system capable of interacting with various payloads,
not designing a novel controller capable of handling any payload. Therefore, a PID controller was
selected for positioning the UAV; the implementation cost is low, and the design is well-researched.
Additionally, a literature review showed that PID positional controllers are commonly used with
success for quadrotor UAVs [36, 80, 81, 82, 83, 84, 134]. When the UAV is using a payload and
the gains of the PID controller cannot be tuned to yield a stable system, the payload design will
require a separate controller specific to its application.

The PID controller’s basic form can be observed in Equation 2.28, where u is the controller output,
and Kp, Ki, and Kd are gain coefficients for the respective proportional, integral, and derivative
terms, which are a function of error e and time t.

u(t) = Kpe(t) +Ki

∫ t

0

e(t′)dt+Kd
de(t)

dt
(2.28)

With the goal of accurately positioning the UAV to execute some task, the UAV must be able to
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navigate to a set point. To achieve navigation, the UAV uses the coordinate system previously
shown in Figure 2.8. To navigate north, the UAV is given a pitch set point; to navigate east, it is
given a roll set point. The down axis is controlled by a normalized thrust value, where the midpoint
corresponds to a hover. Lastly, the UAV’s yaw is controlled so that the UAV can be orientated
in a configuration that may be required by a payload. Because no magnetometer is used and the
gyroscope drifts, the UAV is given a yaw rate to achieve the desired orientation instead of a hard
set value.

Additional control processing was required in tandem with the PID implementation. The controller
outputs were constrained in order to limit overshoots, increase the controllability of the system,
and attempt to keep a linear system. In addition to constraining the controller outputs, the integral
term was bounded and reset at every mission to prevent integral windup. Similarly, the derivative
term was bounded to limit amplification of noise due to the real-world operating conditions of the
system. To further limit artifacts of noise the derivative term was low-pass filtered.

The final step of implementing the controller was mixing the roll and pitch based on the UAV’s yaw.
For example, if the UAV were orientated 90 degrees relative to the ArUco marker, roll and pitch
control would need to be swapped. Additionally, if the UAV approaches a region of interest with
some non-zero yaw value, the roll and pitch can work together for a smoother response. Mixing the
roll and pitch is achieved by implementing a 2D coordinate transform as in Equation 2.29, where
θ and φ is the new pitch and roll control values, ψ is yaw, and θ′ and φ′ are the original pitch and
control values.

[
θ

φ

]
=

[
cosψ sinψ

− sinψ cosψ

][
θ′

φ′

]
(2.29)

Due to the thesis’s empirical approach, no transfer function or model of the system was developed.
A centralized approach is assumed, since the UAV and any payload will be treated as one object,
and the tuning of the controller will be conducted using the actual hardware.

2.2.2 Trajectory Generation

To smooth the positional control of the UAV and limit overshoots due to large positional errors,
trajectory generation was performed. The trajectory generation was constructed from a 5th order
time series polynomial as in Equation 2.30, which models position, s, as a function of time, t, with
six unknown coefficients A..F .

s(t) = At5 +Bt4 + Ct3 +Dt2 + Et+ F (2.30)
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Taking the first and second derivatives of Equation 2.30 yields velocity, ṡ, and acceleration, s̈,
profiles as in Equations 2.31 and 2.32 respectively.

ṡ(t) = 5At4 + 4Bt3 + 3Ct2 + 2Dt+ E (2.31)

s̈(t) = 20At3 + 12Bt2 + 6Ct+ 2D (2.32)

Substituting start and end times of 0 and T respectively, a 6x6 matrix can be constructed as in
Equation 2.33.



s0

sT

ṡ0

˙sT

s̈0

s̈T


=



0 0 0 0 0 1

T 5 T 4 T 3 T 2 T 1

0 0 0 0 1 0

5T 4 4T 3 3T 2 2T 1 0

0 0 0 2 0 0

20T 3 12T 2 6T 2 0 0





A

B

C

D

E

F


(2.33)

By selecting a time period and initial and end conditions for the position, velocity, and acceleration,
the previously unknown coefficients can be solved and plugged back into Equations 2.30, 2.31, and
2.32. Using Equation 2.30, a list of time-varying positional set points can be calculated, which are
also a function of the desired velocity and acceleration profiles. Using the trajectory as the desired
set points instead of only the endpoints will minimize error in the controller and allow for stable
control of the UAV’s position.

With the relevant theory for localizing and controlling the UAV outlined, a UAV and universal
payload system is developed in the following chapter so that the system can undergo empirical
validation.
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Chapter 3

System Overview

3.1 UAV System Overview

3.1.1 General Configuration

The UAV system, as observed in Figures 3.1 and 3.2, is designed around a 500 mm wheelbase
quadrotor MWC X-Mode Alien frame from Afunta. A quadcopter was selected due to its mechanical
simplicity, ability to hover, and maneuverability. The frame selected is optimized for imaging
applications minimizing obstructions to the camera and providing ample room for mounting sensors,
batteries, and other electronics. Four Emax XA2212 980 KV brushless motors, each paired with
10" x 4.5" MR propellers from HQProp, provide 8.6 N of thrust per motor. The motors receive
three phase power from 20 A Racerstar RS20A V2 electronic speed controllers (ESCs) powered by
a 5000 mAh Goldbat 10042126 three-cell LiPo battery. The battery’s power is distributed to the
ESCs using a PDB-XT60 power distribution board (PDB) from Matek Systems, which includes
a battery elimination circuit (BEC) and DC/DC synchronous buck regulator for powering the
flight controller. A separate Pololu D24V50F5 step-down voltage regulator is used to power the
NVIDIA Jetson Nano single-board computer (SBC). A Pixhawk 4 flight controller from Holybro
was selected as the primary autopilot hardware for the UAV system and includes numerous sensors
and input/output (I/O) ports to interface with ESCs and other electronics. A FrSky X8R remote
control (RC) receiver receives commands from a FrSky Taranis X9D Plus transmitter, facilitating
manual and fail-safe control. Lastly, an NVIDIA Jetson Nano and Intel RealSense T265 tracking
camera is used to process and acquire visual data, and provide the flight controller with additional
controller inputs. A list of all the major components with their respective manufacturer and part
numbers is summarized in Table 3.1.
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Figure 3.1: UAV Top View with Labelled Components

Figure 3.2: UAV Bottom View with Labelled Components
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Table 3.1: UAV Manufacturer Components and Part Numbers

General Component Name Manufacturer Manufacturer Part Number
Frame Afunta HJframe-RB
Battery Goldbat 10042126
Power Distribution Board Matek Systems PDB-XT60
ESCs Racerstar RS20A V2
Brushless Motors EMAX XA2212 980KV
Propellers HQProp MR 10x4.5 CW/CCW
Flight Controller Holybro Pixhawk 4
Receiver FrSky X8R
Voltage Regulator Pololu D24V50F5
Single Board Computer NVIDIA Jetson Nano Developer Kit (B01)
Camera Intel RealSense T265

A majority of the components are standard off-the-shelf parts; however, special consideration was
required to mount and integrate all the parts into one system. Passively dampening the flight con-
troller from vibrations reduced noisy sensor readings and provided more reliable controller outputs.
To dampen vibrations, the mount from [135] was modified to match the mounting pattern of the
UAV frame, and 3D printed using polylactic acid (PLA) filament. The camera was also dampened
from vibrations using rubber grommets and plates supplied with the frame specifically designed
for mounting cameras. To further reduce vibrations, all wires were cut to lengths that minimized
tension on components and reduced the assembly’s total mass. Vibrations in the system were char-
acterized using data logs recorded by the autopilot firmware. The layout of the UAV components
was arranged to keep the center of gravity (CG) about the center of the four propellers. Heavier
components such as the battery and SBC were placed close to the CG and lighter components
were placed further away in order to limit the moment that different components would introduce.
Although the flight controller was not centered about the CG, offsets in the firmware allowed for
corrections in the control algorithms. Custom parts were required for the UAV, including mounting
of the SBC and landing gear extensions. The unpowered system weighs 1.4 kg and typically uses
a 5000 mAh battery, which weighs an additional 0.4 kg. The battery is interchangeable depending
on the mission to be conducted.

Even with a majority of parts being standard, the electrical system required custom wiring. A
flow chart of the system can be observed in Figure 3.3. The battery voltage is distributed to the
entire system from the power distribution board. The regulator in the PDB powers the flight
controller, while the SBC uses its own dedicated voltage regulator. The two regulators are required
because the PDB does not have the capacity to power both the flight controller and SBC. Both
the flight controller and SBC route input power to their peripherals along with the required signal
lines. The flight controller sends motor commands to ESCs, which convert the battery power
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Figure 3.3: UAV Electrical and Signal Diagram

into three-phase electrical power to rotate the motors. Power and signal lines are routed to the
quick connect device, which is further processed in a system of its own. To minimize signal noise,
wires such as ESC signal and ground, as well as servos power, ground, and signal, are twisted
together to improve electromagnetic compatibility. Additionally, all components share a common
ground to prevent ground loops. Connections between the motors and ESCs used gold-plated bullet
connectors to limit resistance and prevent oxidation on the contacts. Instead of semi-permanent
solder connections, connectors were used to allow quick repairs if a motor required replacement or
needed to have its direction reversed. The remaining connections made use of soldered connections
or pre-crimped leads in housings based on the termination point. For example, all PDB connections
were soldered, while connections to the autopilot used JST-GH series connections. The wire gauge
was sized to minimize voltage drops and the total mass of the wiring. Lastly, electronics sensitive
to electromagnetic interference (EMI) such as the microelectromechanical systems (MEMS) sensors
were situated away from the high-current carrying wires (such as ESC power lines), in case any
electromagnetic radiation were to escape the outer wire shielding.

3.1.2 Autopilot Selection and Integration

The Pixhawk 4 flight controller was selected, as the Pixhawk family of boards has been devel-
oped, tested, and iterated since 2013. The Pixhawk 4 is the newest release and features recent
processor and sensor technology from STMicroelectronics, technologyfromBosch, and InvenSense.
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Additionally, the board is designed for reliably controlling autonomous vehicles and only weighs 16
grams.

The Pixhawk 4 is optimized to run PX4 firmware; however, ArduPilot is a similar alternative, with
both systems using Micro Air Vehicle Communication Protocol (MAVLink) messages to stream
telemetry data and execute given commands. MAVLink is a very lightweight messaging protocol
for communicating with drones and communicating between onboard drone components [136]. The
main differences between the two firmware options are open-source licensing, underlying control
schemes and estimators, and extra functionality outside of standard flight.

To simplify communication and control with PX4 or ArduPilot firmware, the MAVSDK software
development kit (SDK) or DroneKit application programming interface (API) is used. Since both
PX4 and ArduPilot use MAVLink commands, the SDK or API are technically interchangeable;
however, the two firmwares use a different number of MAVLink messages, sometimes leading to
cross-compatibility errors. The respective SDK and API filter the messages for the correct firmware
where MAVSDK is optimized for PX4 and DroneKit for ArduPilot. The Python wrapper for
MAVSDK was released in June 2019 and, when tested, was found to have an unreliable performance
for real-time control. MAVSDK’s reliability was found to decrease as data and command rates
increased. Rates of approximately 10 Hz were found to be the fastest acceptable rate without
sacrificing reliability; faster rates caused the SDK to overflow and then crash. Additionally, not all
of the C/C++ functionality had been ported to the Python wrapper, leaving limited development
solutions. Lastly, ArduPilot had more support for advanced control methods than PX4 (such as
ground effect compensation [137]), leading to ArduPilot and DroneKit being the firmware and API
of choice.

Using the vision estimation data and PID control loops, the UAV can be maneuvered by providing
the autopilot with desired inputs. The inputs are encoded in the SET_ATTITUDE_TARGET
MAVLink message, where desired roll and pitch are embedded in a quaternion to control the north
and east axes. Because the magnetometer is deemed unreliable and disabled, yaw cannot be set
directly; instead, yaw rate is used. Finally, to control the down axis, a value between 0 and 1
is computed, where 0.5 is a hover and values above or below correspond to a percentage of a
configurable climb or descent rate, respectively. The setpoints are provided to the flight controller
at 30 Hz, while an internal attitude control loop runs at 400 Hz to keep the UAV level. The
described system makes use of ArduPilot-ArduCopter V4.0.4 firmware.

3.1.3 Single Board Computer Selection

There are two main methods for performing the required computations for controlling the UAV.
The first method is to establish wireless communication between the UAV and a ground station.
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Controller input data is pushed to the ground station, and the required calculations are performed.
The controller output is then transmitted back to the UAV to be executed. The benefit is that such
a system can use computers with ample processing power that will likely not bottleneck the system.
The drawback is that a wireless system is more prone to data loss compared to a wired system.
Additionally, as the UAV and ground station distance increases, larger antennas and power-hungry
amplifiers will be needed to ensure reliable communication and minimal latency. Wireless methods
have proven successful as in [81, 134].

The second method is to perform all the required calculations and processes onboard the UAV.
The main challenge is finding hardware that is physically capable of integrating with the UAV,
in terms of size, mass, and power requirements, while still providing sufficient sensing accuracy
and computation power. The benefit of an onboard processing system is it allows for a standalone
platform that can be deployed by simply powering on the UAV. Onboard, processing has been
validated even with high-speed cameras as in [84].

The method for onboard processing was selected over a ground station for two main reasons. Firstly,
single board computers (SBCs) are capable of functioning as media servers, machine learning plat-
forms, and standalone computers [138, 139], and are relatively inexpensive compared to the cost of
setting up a reliable wireless system and purchasing a ground station computer. Secondly, having a
standalone system allows the UAV to be quickly deployed in virtually any environment and reduces
the number of connections that need to be reliably established.

To meet the onboard processing requirements, six different SBCs were compared, as pictured in
Figure 3.4. The boards selected were the Raspberry Pi 3B+ and 4B; the Odroid C2, C4, and XU4;
and the NVIDIA Jetson Nano. The Raspberry Pi 3B+ and 4B and Odroid C2 and C4 were selected
due to their large user community and affordable price [140, 141]. The Raspberry Pi 4 and Odroid
C4 were newly released at the time of analysis, and their previous versions, the Raspberry Pi 3B+
and Odroid C2, had been used in initial system prototyping. The old boards were considered in the
comparison to quantify the performance increases with the updated hardware. The Odroid XU4 was
added as a new board consideration because it displayed some of the most promising benchmarks
[139]. Lastly, the NVIDIA Jetson Nano was selected for the analysis because it boasted superior
performance and is optimized for computer vision tasks [138].

The most computationally intensive task is working with image data. Therefore, to compare the
boards’ performance, an ArUco marker was placed on an empty illuminated wall. A Logitech
C920 camera was placed at distance intervals of 50, 100, 150, 200, and 250 cm away from the
ArUco marker, and data was then acquired for 10 seconds at each distance increment. The analysis
was repeated for three different camera resolutions of 1920x1080, 1280x720, and 640x480. The
SBC’s dedicated Linux-based operating system was accessed through a headless connection to
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Figure 3.4: Single Board Computers Considered: (A) Raspberry Pi 4B, (B) Odroid C2, (C) NVIDIA
Jetson Nano, (D) Raspberry Pi 3B+, (E) Odroid C4, (F) Odroid XU4

reduce the overhead of rendering a graphical user interface (GUI). The benchmark code was kept
constant between all trails and used one thread for image capturing and the primary thread for pose
estimation. Each board was powered by its recommended power supply. Upon completing the 10
second data acquisition period, the average and standard deviation of the frame rate and pose rate
were calculated. The study results are observed in Figures 3.5 and 3.6 for the image frame rate and
pose calculation rate, respectively. It should be noted that the comparison of the SBCs is a direct
comparison of the boards in their entirety, and not their individual elements such as the operating
system (OS), the amount of random access memory (RAM), and the type of data storage.

The maximum capture rate of the Logitech C920 camera is 30 frames per second (FPS); therefore,
none of the SBCs’ maximum frame rates will exceed 30 FPS (as observed in Figure 3.5). Most of
the boards captured the full 30 FPS at low resolutions; however, as resolution increased, the capture
rate trended downwards. This was expected, as there is more data to be unpacked. None of the
boards could capture 30 FPS at a resolution of 1920x1080, although the Jetson Nano proved the
most capable at 25.8±0.6 FPS, which is approximately 24% faster than the next best performing
board, the Odroid C4. The difference in performance is primarily attributed to the USB hardware
and the processing capability of the SBC of extracting data from the USB port into a usable image
matrix. From the initial benchmark, it is clear that the RPi 3B+ and Odroid C2 are the slowest
boards, which was expected.
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The pose calculation, Figure 3.6, provides a better comparison of computation power. The frame
capture and pose calculations are threaded, meaning that if one calculation has extra clock cycles
available, e.g. waiting for a new frame, other calculations can be performed, and the code does not

Figure 3.5: Capture Rate per Second vs Camera Resolution

Figure 3.6: Pose Calculation per Second vs Camera Resolution
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have to execute sequentially line by line. Therefore, one frame can be analyzed multiple times before
a new frame is captured, explaining how rates above 30 were achieved. Calculating the same pose
multiple times from the same image is useful as the system will be bottlenecked by the camera rate,
which is consistent, and not by the pose estimation, which is highly variable. Additionally, a camera
with a larger field of view will have more data to process, increasing the required computation power
required by the adaptive thresholding algorithms. The Jetson Nano showed superior performance
above all SBCs, even being able to process pose data from 1920x1080 frames at more than 30 times
per second. The Odroid C4 proved to be the closest rival to the NVIDIA Jetson Nano, although
the Jetson Nano’s average pose calculation was approximately 60% faster across resolutions. The
trend of decreasing resolution and faster processing time also becomes more evident across the
boards.

Considering the FOV of the C920 camera, any SBC appears sufficient at a resolution of 640x480.
However, the NVIDIA Jetson Nano and Odroid C4 can achieve approximately the same or better
performance with 200% more pixels, which contributes to potentially a more accurate pose. A res-
olution of 1920x1080 is nearly feasible with the Jetson Nano; however, the capture and processing
rate does not leave options for a wider field of view and provides minimal additional computational
overhead. As anticipated, the newer models of both the Raspberry Pi and Odroid showed increased
performance over their predecessors, which can be correlated to some initial performance issues dur-
ing early development. Ultimately, the NVIDIA Jetson Nano was selected over the Odroid C4 due
to its superior performance at the cost of an 85% larger footprint and 137% weight increase.

3.1.4 Camera Selection

The Logitech C920 HD Pro Webcam was initially selected as the camera of choice, as it was
recommended for image processing applications due to its native encoding of images using the
H.264 format [142]. Encoding in H.264 allows for efficient decoding of captured frames, and the
camera was widely used in the OpenCV community. Additionally, the C920 outperformed its
predecessor, the Logitech C270, in terms of supported resolutions, quality, and capture rate.

The C920 had two limitations that required selecting a new camera to increase the system’s accuracy
and reliability. The first limitation was that the C920 uses a rolling shutter. A rolling shutter scans
across a scene quickly in some predefined pattern to capture the image in sections, which are
subsequently pieced together. The alternative is a global shutter, where the sensor captures the
entire scene at once. A visual comparison example can be found in Figure 3.7, where the filled
squares signify a captured pixel.

The issue with a rolling shutter is this: if during the capturing of an image, the UAV is moving
or vibrating faster than the camera capturing a section of data, the marker corners can belong to
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Figure 3.7: Rolling vs Global Shutter Comparison Example

different time series. Although the corner points belong to different time series, the pose calculation
treats them as one time step, leading to noisy and unreliable data. The phenomenon relates to
motion blur, something that global shutter cameras do not experience.

The second limitation was the field of view of the camera. The C920 has a diagonal FOV of
78◦. At a one metre altitude above ground level, the UAV will only see a 1.4 m x 0.8 m area,
which significantly inhibits the length of UAV trajectories and increases the likelihood of losing the
target.

To address the shortcomings of the C920, the Intel RealSense Tracking Camera T265 was adopted.
The T265 is designed by Intel specifically for robotic applications, including drones, and is much
more than a camera. It includes two fisheye lens sensors, an IMU, and an optimized onboard visual
processing unit (VPU). The VPU runs visual simultaneous localization and mapping (VSLAM)
algorithms. The results are accessible through an SDK and can be fused directly with the Kalman
filter and control algorithms developed. The T265 addresses the two shortcomings of the C920,
as it features two global shutter cameras and an undistorted 128◦ FOV (a 64% increase over the
C920). The T265 also has dedicated mounting points and natively records in grayscale, reducing

Figure 3.8: T265 with Labeled Coordinate Frames [143]
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the need for custom mounting solutions or a colour conversion processing step. The camera, with
its various coordinate frames, can be observed in Figure 3.8.

The one drawback of the T265 camera is that the maximum supported resolution is 848x800. The
higher the frame’s resolution, the more accurate the pose calculation will be as there are more pixels
to analyze. Having two cameras and averaging the pose results allows for an increase in accuracy
but requires twice the calculations. With the camera’s resolution and the previous analysis for
selecting a SBC, approximately 100 pose calculations per second was estimated for one lens. With
a broad field of view and running all pose estimation calculations twice, the pose estimation actually
ran at approximately 40 pose calculations per second. The computation power required to achieve
these rates further validates the selection of the NVIDIA Jetson Nano.

3.1.5 Software Development

The SBCs operating system is the foundation of all the custom-developed software. The system is
fundamentally limited by the capabilities of the OS, such as the scheduler and the overall resources
consumed by the OS. NVIDIA provides an optimized Linux Ubuntu OS for its hardware, centered
around Ubuntu 18.04.5 LTS. Linux is the preferred OS for real-time robotic applications because
it commonly supports ARM and x86 based processors, has low latency, and the overall system
reliability [144].

With an optimized and reliable foundation selected, a programming language was chosen. Many
languages are used in real-time robotic applications, such as MATLAB, C/C++, Python, and
Java. To select one language over another, a balance of performance and ease of development was
considered. For example, C/C++ is a low-level language requiring compiling and careful memory
management when compared to Python. The benefit of the increased complexity is an increase
in performance and control over the developmental process. Ultimately, Python was selected, as
initial testing suggested Python had the best ratio of performance to development complexity.
Additionally, many libraries (such as OpenCV) use a wrapper around the C/C++ code, which
supports simplified development without sacrificing performance. Python 3.6.9 was used because
it was natively installed with NVIDIA’s operating system.

Python requires importing packages, which contain classes consisting of functions and variables
before they are used. A majority of the packages used in the developed code came with the
standard install of Python. Non-standard packages were installed with pip, a package installer for
Python. Lastly, some packages do not have a compatible precompiled binary. To install such a
package, the package had to be compiled directly from the source code. Some packages call on other
packages; however, a list of the directly used packages and their version numbers can be found in
Table 3.2.
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Table 3.2: Used Python Packages (∗Non Standard Package, ∗∗Compiled from Source Code)

Package Version Package Version
datetime 3.6.9 pymavlink∗ 2.4.9
DroneKit∗ 2.9.2 pyrealsense2∗∗ 2.36.0
math 3.6.9 pySerial∗ 3.4
Matplotlib∗ 3.3.1 simdkalman∗ 1.0.1
multiprocessing 3.6.9 statistics 3.6.9
NumPy∗ 1.18.4 struct 3.6.9
openCV∗∗ 4.3.0 threading 3.6.9
pandas∗ 1.1.0 time 3.6.9

The datetime package was used for recording timestamps when logging data. DroneKit is a dedi-
cated Python API for interfacing with MAVLink based autopilots. Math provides access to mathe-
matical functions, and Matplotlib is a plotting library. Multiprocessing is used to spawn processes.
NumPy handles multi-dimensional arrays, matrices, and the mathematical functions associated with
these forms. OpenCV is a computer vision library, and pandas is used for data manipulation and
analysis. Pymavlink handles the streaming of MAVLink data streams. Pyrealsense2 is a Python
wrapper for accessing the T265 camera’s data stream. PySerial allows for interfacing with serial
ports, and simdkalman is an optimized Kalman filter library. Statistics provides statistic-specific
functions not included in the math module. Struct is used for dealing with bytes in the serial
port. Threading is used to spawn threads, and time is used for tracking elapsed time and executing
delays.

The decision to use the previously described packages and write custom scripts was made over
the use of Robot Operating System (ROS) for three main reasons. Firstly, previous work had
been conducted with OpenCV’s ArUco library and DroneKit. The packages were functioning
as expected, and switching to a ROS implementation did not provide any significant advantage.
Secondly, running all software on an SBC, the available computational resources were known to
be limited. Creating custom scripts may increase development time; however, having full control
of development allows for lower latency and more streamlined code. Lastly, there are only three
primary data sources; the autopilot, camera, and quick connect system. There are supported ROS
nodes for interfacing with most of these primary elements, such as ArduPilot, ArUco, and the T265
camera; however, the system is relatively small and easily managed. The addition of new data
sources such as lidar or external IMUs would warrant consideration on how to organize all the data
streams.

Python’s default is to run all code on a single process and thread, meaning code will run one line
at a time. With most code exhibiting blocking tendencies, programs can be significantly slowed
when performing computationally intensive tasks such as manipulating large image matrices or
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(A) (B)

Figure 3.9: (A) Multithreading vs (B) Multiprocessing [145]

waiting for I/O data streams. To address these shortcomings, the multiprocessing and threading
packages were utilized. Multiprocessing allocates processes to a physical computational core and
a separate memory heap, while threads run on cores in the same unique memory heap and are
virtual. Typically, multiprocessing is used for CPU-bound tasks, as an entire core can be dedicated
to a calculation. In contrast, threading is used for I/O bound tasks requiring near-simultaneous
execution. One exception with Python is that threads are not truly concurrent. Python makes use
of a global interpreter lock (GIL), which synchronizes the execution of threads so that only one
thread will execute at a time, thereby ensuring memory is managed safely.

To compare the difference between Python’s multiprocessing and threading packages, a simulation
of a computationally intensive task was executed using both process and threads. The results of
the simulation are found in Figure 3.9. The lines show when a task was being executed, with gaps
showing inactivity. Due to GIL, it can be observed that threads indeed do not run concurrently,
and to complete the four tasks, it took multiprocessing approximately 44% less time than threads
for the given simulation. The processing package is not four times faster than the threading library,
as the relationship is not linear. To share data between processes and memory heaps, a queue is
used. The passing of information in queues adds computational overhead. Additionally, not every
clock cycle is used when executing a computation.

The Jetson Nano uses a quadcore ARM A57 processor. With a quadcore processor, the processor
can spawn at most four processes. Threads can be spawned until the SBC runs out of memory (at 4
GB) or until the tasks start to bottleneck and affect performance. It was found that spawning two
processes, each with four threads, was an optimal configuration through profiling various configura-
tions. The structure of the main program is displayed in Figure 3.10. The OS natively runs across
all four cores, is minimal due to its optimized nature, and is only accessed through the command
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line, mitigating the need for a GUI. The vision core is responsible for all of the pose estimation
and spawns a thread for reading image and sensor data from the T265 camera. Two additional
threads are used to run the pose estimation algorithms for the two cameras. Running each of these
calculations on its own process would speed up results; however, passing large image matrices in a
queue was slower than using two threads. The main thread filters the data with a Kalman filter
and sends the results to the I/O and logging core. The I/O and logging core main thread runs
the PID control algorithms and logs data acquired by the other threads. The remaining threads
acquire and send data such as the acquisition of values from the vision core, communicating with
the autopilot and communicating with the quick connect and its respective payload.

Figure 3.10: Processor and Thread Allocation

3.2 Universal Payload Adapter: The Quick Connect

The quick connect system’s primary goal is to allow the UAV to interface with any payload, turning
a niche system into an extremely versatile one. To interface with various payloads, the system must
mechanically transmit forces such as torque and withstand dynamic loading. Additionally, most
payloads require electrical power. Providing a power source can reduce the complexity and mass
of developed payloads, thereby eliminating batteries and the requirements for step down or boost
converters. The final requirement for a payload adapter is a communication protocol; the payload
needs to be synced with the central control and state estimation algorithms so it knows when to
actuate or begin logging data.

Performing a market study of currently existing technologies, ATI Industrial Automation was found
as an industry leader with more than 30 years of developing state-of-the-art end-effector products
and solutions [105]. ATI developed the ATI Robotic Tool Changer, which allows multi DOF robotic
arms to automatically change end-effectors and other peripheral tooling. The Robotic Tool Changer
has a range of models capable of lifting devices from 1.4 to 4000 kg in a range of dynamic loading
scenarios, including high heat and vibrations.
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The ATI Robotic Tool Changer is pneumatically actuated and comprised of two main parts. The
first part is a male end effector that is fixed on some multi-degree of freedom arm. The second part
is a corresponding female adapter, fixed to some tool. Aligning the male and female parts, a piston-
cylinder in the male adapter is pneumatically actuated, which pushes ball bearings into a race on the
female adapter, a common approach in tool changers [106]. The race is grooved to provide a secure
lock due to the pneumatic actuation. Sensors regulate the piston to ensure that pressure is held,
and rotational torque is transmitted through multiple dowel and pin connections previously aligned
by the actuation device. To release the quick connect system, the piston’s pressure is bled off, and
the actuation arm can remove the male end effector and select the next payload of interest.

Due to the system’s pneumatic nature, at least 550 kPa is required for a sufficient locking force.
Having a compressor on the UAV capable of maintaining the required pressure and locking force
would increase the overall system weight, power requirements, and take up significant space. Ad-
ditionally, the cost of an industrial-grade tool changer and all the required add-ons would quickly
exceed the entire UAV system’s price.

To address the limitations of not using an industrial solution, a custom modified design of the
Robotic Tool Changer was developed. The pneumatic piston-cylinder was swapped for a digital
servo, and eight quarter-inch precision ball bearings distribute the load when engaged in the female
race. Four bolts act as keyways for transmitting torque and double as contact points for transmitting
5 V and up to 3 A of electrical power to a payload. The main housings are 3D printed with PLA
filament and are mounted to fit a pre-existing 64 mm diameter bolt circle in the UAV frame.
The ball bearings are held in place with a stepped hole, and the modified piston is chamfered
to prevent the balls from falling out in the opposing direction. A custom wireless communication
protocol is established using a transceiver. The system is further described in detail in the following
sections.

3.2.1 Mechanical Design

The quick connect is broken into three parts; the actuator, male quick connect, and female quick
connect. Exploded renders of the three parts are found in Figure 3.11.

The actuator, as seen in Figure 3.11-A, is centered around a PLA 3D printed base. A digital Hitec
HS-5645MG ultra torque servo with a standard servo horn is bolted to the 3D printed base. A slot
in the base allows for the servo horn’s actuation to either apply or release pressure on the piston
system.

The male quick connect, as seen in Figure 3.11-B, also features a 3D printed base with a slot for the
servo horn to pass through. Eight 6.35 mm chrome steel ball bearings sit in stepped holes, which
are snapped into place during assembly. A chamfered plunger sits in the center (to prevent the ball
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Figure 3.11: Quick Connect Sub Assemblies Exploded: (A) Actuator, (B) Male Quick Connect,
and (C) Female Quick Connect

bearings from falling out the center of the quick connect) and is actuated by the servo. Four M3
stainless steel bolts have exposed heads and are responsible for transferring torque and providing
power. The nut on the opposing end is soldered and epoxied into place and connected to a voltage
regulator.

The female quick connect, as seen in Figure 3.11-C, 3D printed base is a negative of the male quick
connect. It has a small tolerance for the male quick connect to align and has a recess for the ball
bearings to sit in when actuated. To transfer electrical energy from the UAV to a payload, the
contacts are placed on springs to ensure there is always pressure being applied to the electrical
contact, but not so much pressure that the male and female quick connect cannot stay coupled.
The contact then uses ring terminals crimped to wires to be fed to the payload.

The entire quick connect assembly made use of constant diameters, and mounting bolt patterns
between subassemblies were possible. For example, the actuator and male quick connect bolt
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Figure 3.12: Quick Connect States: (A) Disengaged State, (B) Engaged State

through the UAV frame’s bottom sharing the same bolt circle, which allows for uniform alignment.
Additionally, when the male and female quick connect are engaged, they appear as one part. All
parts were made with chamfers to aid in alignment, and specific tolerances were achieved with
precision settings on a Prusa MK3 printer and a combination of trial and error.

Figure 3.12 shows the system in both a disengaged and engaged state. In a disengaged state, the
servo arm does not pressure the plunger in the male quick connect. With the plunger not engaged,
the ball bearings fall into the quick connect center, allowing the female quick connect to be mated.
Additionally, the springs in the female quick connect push the contacts to their maximum height.
In an engaged state, the servo arm is actuated to be parallel with the bolts in the vertical direction.
Engaging the servo pushes down the plunger and forces the ball bearings into the bearing race
on the female quick connect. Simultaneously, the female quick connects springs are compressed,
making room for the four bolts to transmit rotational torque while also establishing an electrical
contact.

To confirm that the male and female quick connects will stay engaged, and to provide an initial
estimate of the withstandable forces, a free body diagram (FBD) was drawn as in Figure 3.13. The
FBD is used to solve what servo input force F is required to balance the weight L of a payload. The
bearing race’s angle is φ, while the angle of the plunger is θ. The force of friction Ff is a function
of the normal force FN or LN and the static coefficient of friction µs between the PLA parts and
ball bearings. The normal force acting on the ball bearing in the stepped hole is denoted as N .
It is assumed that all forces are evenly distributed across all eight bearings, the system is a static
non-deformable body, and the force from the springs in the electrical contacts are negligible. To
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Figure 3.13: Quick Connect Free Body Diagram

solve for F in terms of L, the forces in the vertical direction must first be summed using the FBD
in Figure 3.13-A and 3.13-C to yield Equations 3.1 and 3.2, respectively.

+ ↑
∑

= −L− LNsinφ+ µsLNcosφ = 0 (3.1)

+ ↑
∑

= −F − FNsinθ + µsFNcosθ = 0 (3.2)

Summing forces from Figure 3.13-B in the horizontal direction yields Equation 3.3.

+−→
∑

= −LNcosφ− µsLNsinφ+ FNcosθ + µsFNsinθ = 0 (3.3)

Using Equations 3.1, 3.2, and 3.3, the three equations can be combined and simplified to yield
Equation 3.4, the minimum required input force for the weight of some payload.

F = L
(cosφ+ µssinφ)(µscosθ − sinθ)
(cosθ + µssinθ)(µscosφ− sinφ)

(3.4)

Using Equation 3.4, variables can be substituted for their actual values. The angle of the plunger, θ,
was set to 25◦, and the bearing race angle, φ, was set to 45◦. The angles were selected using optimal
3D printing performance parameters and by getting the system to fit together physically. A static
coefficient of friction value of 0.2 was selected [146], and the result of the complete substitution is
found in Equation 3.5.

F = 0.365L (3.5)
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For the given geometry and estimated friction, the input force must be approximately 37% that
of the payload weight. An upper theoretical limit of payload mass can be calculated using the
digital HS-5645MG ultra torque servo specifications and the length of the servo arm, which yields
a maximum static payload of 10 kg. In reality, the quick connect was found to hold a maximum of
2.5 kg. The non-deformable body assumption broke down, and parts began to flex with increased
loading, which reduced contact area and resulted in the male and female subassemblies detaching.
Given the UAV’s weight and the available thrust, it is highly unlikely to maximize the quick
connects’ capacity. Therefore, to ensure the UAV does not require more than 70% throttle to
hover, payloads should not exceed 0.65 kg. This mass restriction also provides a safety factor
should a payload have non-rigid elements, leading to a dynamic system.

3.2.2 Electrical Design

The quick connect electrical design consists of two main parts; a means of transferring power from
the battery to a payload, and the hardware for communicating and engaging payloads. A system
diagram for the electrical layout and integration with the remainder of the UAV can be viewed
in Figure 3.14. Electrical energy is acquired from the battery and stepped down using a buck
converter. The regulated voltage is used to power a given payload, the quick connect servo, and
microcontroller. To communicate with the central control algorithms and the autopilot, a serial
port is established between the SBC and microcontroller.

The electrical quick connect system is centered around a custom two-layer 45 mm x 90 mm printed
circuit board (PCB). The PCB was designed to fit at the rear of the UAV, which was previously
wasted space because of the long and narrow geometry. The PCB places all the required components
and connectors onto one board that easily fastens to two mounting points on the UAV frame. The
assembled PCB and a screenshot of the board layout can be viewed in Figure 3.15, and a table of
the components, manufacturer, and part numbers can be found in Table 3.3.

When designing the PCB, a significant focus was placed on having an organized board layout and

Figure 3.14: Quick Connect Electrical and Signal Diagram
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Figure 3.15: Quick Connect PCB: (Left) Assembled Board, (Right) Board Layout with Hidden Fill
Zones

Table 3.3: Quick Connect Major PCB Components

ID Part Name Manufacturer Manufacturer Part Number
A Transceiver Kuman nRF24L01 + 2.4GHz Antenna
B Microcontroller Arduino Arduino Nano v3.0 (A000005)
C Custom PCB JLCPCB -
D Buck Converter NOUVCOO LM2596S (NZ01)
E Quick Connect Servo Connector Molex 0436500300
F Redundant Pin Access - -
G Quick Connect Power Out I Molex 0436500200
H Power In (12 V) Molex 0436500200
I Indicator LEDs - -
J Quick Connect Power Out II Molex 0436500200

proper trace routing. For example, 90-degree traces were eliminated, and vias were minimized,
especially when dealing with high-frequency lines such as the serial peripheral interface (SPI) used
to communicate between the microcontroller and transceiver. Traces were sized according to their
current draw to keep temperatures below 40◦C during peak operating conditions. Additionally,
a copper ground plane was used for overall thermal regulation and to provide a common ground.
Lastly, the entire system and its components went through initial validation using protoboards to
ensure all parts were compatible and that no additional capacitors or resistors would be required
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during commissioning.

Interfacing components of the electrical system were also carefully selected. Molex Micro-Fit 3.0
connectors were used in place of standard servo connectors, as they have locking tabs, are polarized
to prevent accidental mis-mating, and have reduced resistance in contacts, thus creating a more
efficient system. Double-redundant power connections were made where possible in case one line
failed, and parts were soldered, crimped, and/or epoxied to prevent failure due to vibrations common
among flying multirotor UAVs. The final interfacing optimization is the double-redundant polarized
torque and power transfer system. The contacts accepting the positive and negative power are
diagonal from each other. Therefore, regardless of the UAVs orientation, the chance of a short
circuit is extremely low, and there is no need for reverse polarity protection circuits. Additionally,
only one positive and negative contact needs to be made to facilitate power transfer.

An Arduino Nano microcontroller was selected as the main processor because it has a small footprint
and is capable of interfacing with various devices and buses. The buck converter was selected for its
3 A current capacity in a small form factor. It has an efficiency greater than 90%, making it much
more appealing than linear regulators. Additionally, the LM2596S regulator has a variable output
voltage, making it compatible with a variety of payloads. Although not directly part of the PCB, a
digital HS-5645MG ultra torque servo was selected as the primary actuator. The servo was selected
because it is digital, and thus will provide a faster response and be less susceptible to disturbances
than its analog equivalent. Additionally, the servo provides 1 Nm of torque with approximately the
same footprint and mass of lower-torque servos.

The decision to communicate with payloads wirelessly was made primarily from a mechanical per-
spective. Having to align additional contacts for transmitting and receiving lines would increase
system complexity and decrease reliability. Additionally, should the contacts’ resistance be too high
or non-uniform, data could become corrupted and unusable. Specialized robotic mating connectors
such as the ones used in the ATI system are a potential solution; however, parts were found to
be expensive or custom-fabricated. Because the payload and UAV are close to each other, little
consideration was required for antenna sizing or power loss calculations. Bluetooth modules such
as the HC-05, Wi-Fi enabled boards such as the ESP32, and radio transceiver chips such as the
nRF24L01 were all considered for establishing wireless communication. Bluetooth was found to be
unreliable, and the Wi-Fi boards were more than five times the cost of an nRF24L01 transceiver
and three times the cost of an HC-05. The HC-05 Bluetooth was unreliable because paired devices
would often disconnect and would not reestablish connection without cycling power. With initial
prototyping, the transceiver chips were reliable and selected for the final design.
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3.2.3 Software Design

The software design of the quick connect establishes a wired link between the main program running
on the SBC and the quick connect microcontroller. A wireless 2.4 GHz radio connection is then
established between the microcontroller and a given payload. Once all the links are successfully
established, a finite-state machine (FSM) facilitates payload and UAV actions.

The microcontroller requires a low-level language to be controlled; therefore, C/C++ was used for
the developmental process. On the microcontroller, five libraries were used. The Arduino library
provided access to the processor and its respective pinout. The Servo library was used to control the
servo and generate the required modulated pulses, and the SPI library was used to communicate
with the transceiver. The first three libraries are standard Arduino libraries; however, to use
the nRF24L01, two open-source libraries were used [147, 148]. The libraries handle establishing
communication between radios as well as encoding and decoding data with proper checksums and
error handling. A flow chart of the developed system is provided in Figure 3.16.

The quick connect code begins by starting a serial port, starting the radio, and initializing the servo
to be in a disengaged state. The program then runs indefinitely and checks the serial port for a state

Figure 3.16: Quick Connect Microcontroller Program Flow Chart
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provided by the SBC. Based on the acquired input state, a switch statement executes the correct
command. Should the case be to release the quick connect, the servo is given a pulse to move to
a disengaged state. Should the case be to engage a payload, the servo is engaged. A counter is
initiated and will only increment should the payload make electrical contact and the two radios
begin communicating. Once ten successful data packets have been received, the microcontroller
notifies the SBC the payload is engaged and ready for use. The SBC returns the handshake, and
a mission can begin. Should a connection not be established, the SBC can send a termination
command through the serial port forcing the code to return to the main loop. Should an unknown
state be received, the code defaults to clear both the radio and serial port buffer and proceeds to
monitor the serial port for the next command. Commands are encoded as single hexadecimal bytes
because they have low overhead and do not require unpacking for interpretation.

Opposed to the microcontroller code, which runs one line at a time, the main code on the SBC is
running multiple processes and threads. Therefore, the SBC does not always maintain communi-
cation with the quick connect; it only looks to communicate when required, such as engaging or
releasing a payload. The dedicated functions used on the SBC are observable in Figure 3.17. When
the main code on the SBC initiates, it ensures that the quick connect is in a released position so
that the initial state is always known. Otherwise, the procedure for releasing is to send the release
command five times, with a small delay. There is no feedback to guarantee the payload is released;
however, experimental testing proved sending the command at least five times provided a nearly

Figure 3.17: Quick Connect SBC Function Flow Charts
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perfect success rate. When an engage command is sent, a loop waits for confirmation that the
system is ready. Once ready, the SBC completes the handshake with a confirmation of its own.
Should a specified time be exceeded, an exit command can be sent to override the system back to
its main loop.

Once a payload is engaged, commands can be passed from the main program running on the SBC to
the payload, as illustrated in Figure 3.18. The pass-through works by adding an additional switch
case statement, which is assigned an ID. Multiple IDs can be assigned, which allows for multiple
different payloads to be used. Once initiated, the microcontroller reads the serial port and sends
data to the payload if it is useful; otherwise, it skips transmitting and just reads an input. The
input is then sent back to the SBC over the serial port. If an exit command is sent, the loop
breaks and returns to the main loop. The payload communication protocol can be summarized as
a two-way bridge between payloads and the main program.

Figure 3.18: Quick Connect Payload Communication Flow Chart

3.2.4 Payload Docking Station

The UAV cannot reliably position itself with millimetre accuracy. However, should the UAV achieve
centimetre accuracy, a passive system can align the UAV to achieve millimetre accuracy and allow
for the retrieval of a payload using the quick connect system. The passive payload docking station
features a broad white background measuring 120 cm x 90 cm to allow for clear detection of ArUco
markers. An aluminum extrusion structure holds four 3D printed funnels that allow for inaccuracies
of up to 7 cm in the north and east direction and 13◦ of yaw. The entire system is fastened to the
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Figure 3.19: UAV Payload Docking Station with Approaching UAV

ground using clear packing tape to limit the effects on the vision system and prevent the system
from shifting from rotor wash. A photo of the docking station can be observed in Figure 3.19.

With the UAV system’s layout and quick connect development complete, a novel payload is designed
in the following chapter to interface and demonstrate the capabilities of the UAV and its universal
payload system.
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Chapter 4

Payload Development Example

4.1 Conceptual Design

4.1.1 Design Space

With a laboratory focus on machine diagnostics, three primitive designs for sensing elevated temper-
ature trends, vibration spectral features, and retrieving lubricant samples were developed [51, 52].
To demonstrate the quick connect’s full capabilities, a single payload was selected for detailed de-
velopment. A payload for accessing a sump lubricant reservoir was selected, as the scenario is of
general interest. Providing a torque with a UAV is applicable to other use cases, such as opening
doors, twisting process control knobs, and actuating the handwheel of a valve. Additionally, ac-
quiring a lubricant sample at an access port can be achieved with a contact inspection, which is a
reasonably well-researched area [116, 149, 150]. The presented design only focuses on creating an
access point to retrieve a sample; the extraction of a sample is left for a future payload.

There is no standard sump cavity; therefore, the payload design must be functional for a variety
of configurations. Considering the different configurations of sump cavities, a vertically orientated
cap with a right-hand thread appeared to be common. Caps securing the reservoir come in various
shapes and sizes, and are dependent on factors such as the amount of lubricant or type of lubricant.
Circular caps are the most prevalent; accordingly, undoing nonmagnetic caps with diameters ranging
from 25 mm to 100 mm was selected as a primary scenario of interest.

Two main challenges must be addressed in opening and closing a cap. Firstly, the cap must be inter-
faced with; and secondly, a sufficient controlled torque in the axis of cap rotation must be applied.
The following two sections describe the conceptualization for addressing the design problems.
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4.1.2 Cap Manipulation

To interface with various diameter caps, the manipulator must be adaptable, while still being able
to provide sufficient gripping force to prevent slip when a torque is applied. With the benefits
of rapid prototyping, four designs were manufactured (as pictured in Figure 4.1) and empirically
tested.

Each of the manipulators was 3D-printed using polylactic acid (PLA) filament on a Prusa MK3
printer. The multiple parts were assembled with standard stainless steel metric hardware ranging
from M2 to M4. An elastomeric surface was added to each design’s inner contact surfaces to
increase the coefficient of friction between the cap and the manipulator. For active devices, a Hitec
HS-645MG ultra torque servo converted electrical energy to mechanical energy. The servo was
controlled by a PWM signal from a microcontroller and powered by a 5 V regulated supply.

(A) (B)

(C) (D)

Figure 4.1: Prototyped Cap Manipulators: (A) Adaptive Gripper, (B) Static Gripper, (C) Rack
and Pinion Gripper, and (D) Lead Screw Gripper
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The first design, shown in the photograph in Figure 4.1-A, is an adaptive gripper based on the
Robotiq 2F-140 [151]. Originally designed for a variety of picking and placing applications, the
ability to clamp a cap appeared as another adoptable use case for the manipulator. Using the
torque generated by the servo, two gears which are fixed to linkages that actuate the jaws are
rotated. The gripper actuation range spans from 0 mm to 200 mm, and has sufficient gripping force
to grasp a rigid smooth plastic container weighing 1 kg even in dynamic loading scenarios.

The second design, shown in Figure 4.1-B, is a passive device requiring no actuation to achieve a
gripping force. The design was selected due to its overall simplicity, and works by wedging the cap
in the jaws of the gripper. Due to the system’s geometry, the cap auto-aligns itself at the center of
the manipulator. The elastomer surface slightly deforms to further increase the cohesion between
the cap and the gripper. A range of gripper jaw angles was explored empirically; 60◦ was found to
provide the best results for caps in the 25 mm to 100 mm diameter range.

The third design, shown in Figure 4.1-C, actuates a bottom travelling set of jaws fixed to a rack
and pinion. The rack and pinion is driven by a gear train made up of a bidirectional continuous
rotation servo and worm gear assembly. The worm gear drives a worm wheel fixed to two sets of
gears. Each gear set then uses idler gears to alter the rotation direction and make contact with the
rack to transmit the rotational energy into translational energy. Due to the servo’s high torque and
the massive reduction from the worm gear, large clamping forces were achieved. The system can
either open, close, or stay stationary by varying the PWM signal to the servo.

The final design, shown in Figure 4.1-D, shares many similarities to the rack and pinion design;
however, in place of the rack and pinion, a lead screw is implemented. One jaw is held fixed while
the other translates longitudinally as it is fixed to a lead nut. A thrust bearing counteracts the
axial forces and keeps the lead screw secured, while two guide rails keep the system aligned. Similar
to the rack and pinion design, the system also opens, closes, and remains stationary by varying the
input signal to the servo.

Each design was an early conceptual model and could be optimized; therefore, the four designs
were compared qualitatively. The static gripper, Figure 4.1-B, was an optimal design on paper;
however, once the cap was released from the reservoir’s threads, it would only stay in the jaws
approximately 25% of the time. Dropping the cap raised the question as to whether a secondary
mechanism would be required to hold the cap once removed, mitigating the simplicity of the design.
The adaptive gripper, Figure 4.1-A, was highly functional and reliable; however, it lacked gripping
strength compared to the rack and pinion or lead screw design. When comparing the rack and
pinion, Figure 4.1-C, and lead screw, Figure 4.1-D, the lead screw had fewer moving parts, a
greater gripping force, and faster actuation time. Ultimately, the lead screw design was selected for
further development, as it was the most reliable and yielded the best performance.
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4.1.3 Torque Generation

With the selection of the lead screw cap manipulator, a method for applying a torque to the cap
had to be considered. Fixing the UAV to the surrounding environment (i.e., a steel gearbox with
electromagnets) simplifies the problem in terms of controllability. The problem is simplified because
the reaction forces are mechanically constrained, and the focus can be placed on the mechanical
apparatus generating the torque rather than designing a controller. Alternatively, the UAV can
stay airborne and fix itself to the cap stem’s throat, and a secondary device can be used to in-
troduce torque to the cap. Both methods and any derivatives can produce large torques and are
scalable through modifications in mechanical ratios. The constraints with such devices are the
many assumptions made of the surrounding environment, leading to limitations in the system’s
autonomous capabilities. Additionally, the devices may require multiple actuators and systems,
leading to a potentially large and heavy apparatus outside the specifications of the current UAV
and quick connect system.

A methodology to counter fixing the UAV to the surrounding environment was to consider a de-
sign space that uses the four motors already on the quadrotor UAV. The motors’ use allows for
the actuators, or group of actuators, to achieve multiple functions: flight and torque generation.
Although there is a finite amount of torque available, initial estimates projected that the torque
would be sufficient for removing or replacing a cap. Additionally, the design space does not limit
the autonomous capabilities of the payload. For the concept of removing a cap and introducing a
torque with the UAV, it was assumed that the UAV could rigidly fix itself to a cap with the lead
screw manipulator.

Fixed-arm multicopters, such as the quadcopter platform, achieve lift by rotating propellers to gen-
erate thrust and lift. The direction of rotation of a propeller is opposite to that of its neighbour and

Figure 4.2: Free Body Diagram of a Quadcopter While Hovering

60



is the same as its adjacent counterpart, as depicted in Figure 4.2. The staggering of the propeller’s
directions is due to the propeller’s rotation, creating an opposing torque. The staggering of the
propeller rotations creates a system that is in a net neutral state in terms of angular momentum.
Therefore, to unbalance the system and maintain level flight, two non-adjacent propellers must
spin faster than the other pair of non-adjacent propeller pairs. This difference in the rotation will
create a net aerodynamic torque and cause the UAV to rotate in the yaw direction. Using the free
body diagram from Figure 4.2, clockwise yaw is achieved in Equation 4.1, and counterclockwise
yaw is achieved in Equation 4.2, where Fi is the thrust produced by motor i, and is approximately
proportional to the torque generated by a fixed pitch propeller. The relationship is due to the pro-
pellers cutting through the air to create thrust and the corresponding opposing torque; the faster
the motor spins, the greater the thrust, and the greater the opposing torque.

F1 + F3 > F2 + F4 (4.1)

F1 + F3 < F2 + F4 (4.2)

The larger the difference between sets of adjacent propellers, the faster the UAV will yaw, and
the greater the torque. However, the system must maintain enough thrust to keep its altitude as
in Equation 4.3, where Fi remains the thrust produced by some motor i, and mg is the weight
of the UAV. Additional thrust may be required due to disturbances such as wind; however, in an
ideal scenario, a quadcopter will ascend if the summation of forces is greater than the quadcopter’s
weight, and it will descend if the summed forces are less than the weight of the quadcopter.

+ ↑
i∑
4

Fi = mg (4.3)

Should the cap manipulator provide sufficient gripping strength to hold the UAV without aid from a
thrust vector, the maximum ideal torque is achieved when two sets of adjacent motors are operating
at 100% while the other pair remains off. Although ideal, only half of the available motors are used
to generate a torque as the remaining rotors spin the wrong way and would require reconfiguration
to aid in torque generation.

To take advantage of all four actuators, a rotation of the thrust vector was conceptualized. By
having the UAV execute a rolling or pitching motion while secured to a cap by a moment arm, the
UAV can exhibit a torque to the cap. For example, rolling the UAV will transition the vertical
thrust vector to include a horizontal component at an angle φ as pictured in Figure 4.3.
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Figure 4.3: Quadcopter Executing Positive Roll φ for a Counterclockwise Torque

The maximum counterclockwise torque occurs when φ is equal to 90◦; however, the UAV should
still maintain a vertical thrust vector to sustain flight and minimize the load on the moment arm.
The minimal lifting force required is established in Equation 4.4, where Fmaxi is the maximum
thrust produced by motor i, φ is the roll angle, and mg is the weight of the UAV when there is no
acceleration.

+ ↑
i∑
4

Fmaxicos(φ) = mg (4.4)

Using the angle φ, which yields the minimum required lifting force from Equation 4.4, provides the
maximum horizontal force P when substituted into Equation 4.5.

P =
+→

i∑
4

Fmaxi
sin(φ) (4.5)

Using the force P with the length of a moment arm r, the torque τ generated to remove the cap
can be calculated as in Equation 4.6.

τ = r × P (4.6)
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Assuming quasistatic conditions, the generated torque is scalable in this configuration because many
parameters can be changed, such as the minimal hovering force. If some of the vertical load is taken
by the moment arm, then a larger force P can be generated as the angle φ increases. Additionally,
as the length of the moment arm is increased, the torque also increases. The limitation with
this method is the device for applying the torque. Even if it were infinitely strong, the physical
environment in which the UAV could operate would be finite. The space surrounding the cap must
be free of any obstacles whose radius is equal to at least the length of the moment arm plus the
length of the UAV.

A third method is being able to independently rotate each rotor arm with respect to the UAV
body, as observed in Figure 4.4, which turns an under-actuated quadcopter into an over-actuated
machine. Each motor arm is capable of rotating with respect to the body frame B of the UAV while
the body frame moves relative to a fixed ground frame G. Because the selected UAV platform has
fixed arms and a single attachment point for payloads, the method cannot be easily implemented;
however, over-actuated systems have been numerically and experimentally validated [152, 153]. The
benefit of controlling each rotor independently allows for all four motors to produce torque (as in the
second proposed method) while still having a small actuation footprint (as in the first method). The
over-actuated system yields promising results, as it could theoretically sit on the cap and convert
all of the thrust power into torque, thereby yielding a high-density torquing footprint.

Considering the conceptualized models, achieving torque through yawing the UAV was selected as

Figure 4.4: Over-Actuated Quadcopter Concept
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the focus for future development. Fixing the UAV to its environment and having a secondary device
apply a torque was eliminated from consideration; that approach makes too many assumptions
about the surrounding environment, reducing the number of applicable use cases. Rotating the
thrust vector would allow for large torques to be generated; however, a large actuation area is
required, and the system also makes assumptions about its operating environment. The over-
actuated UAV design was eliminated from consideration because it requires a full UAV redesign
and does not focus on payload development. Ultimately, using the UAV’s yaw was selected because
it was the most general solution for multiple environments and was validated in other use cases,
such as actuating a valve [36, 154] and unscrewing a light bulb [35].

4.2 Final Design

The following four sections provide an overview of the cap manipulator’s final design and quan-
tification of the available torque the UAV can produce from executing a yaw maneuver. The first
three sections focus on the design of the cap manipulator. The mechanical section outlines a general
overview of the system, while the electrical section highlights specific component selection and the
respective signals and data streams processed. The software section brings together the mechanical
and electrical sections and explains how the system functions. Finally, torque data is gathered from
the UAV to establish a payload specification.

4.2.1 Mechanical Design

The final mechanical design of the cap manipulator with labelled components can be observed
in Figures 4.5 and 4.6. The design features the custom-designed female quick connect used for
interfacing with the UAV’s universal payload system. A custom PCB communicates with the
UAV using a transceiver, and a microcontroller performs onboard data acquisition, processing, and
control. The majority of the mechanical structure is 3D-printed out of PLA filament and assembled
with stainless steel metric bolts. Two hollow aluminum tubes act as guide rods for the dynamic
jaw, which is driven by a Hitec HSR-2648CR servo attached to a stainless steel 6 mm diameter,
1.33 mm lead pitch, hex start lead screw. Limit switches bound the endpoints of the system, and
the dynamic jaw can travel 95 mm along the lead screw’s length, allowing for manipulation of caps
ranging from 25 mm to 100 mm in diameter.

As with the original design, one jaw (the static jaw) is fixed in place, while the dynamic jaw is
driven longitudinally by a servo fixed to a lead screw. A thrust bearing balances axial forces and
provides a smooth rotation point on the outermost edge. Upon successfully clamping a cap, the
torque produced by yawing the UAV is transferred through the quick connect system and directly to
the grasped cap. An elastomer surface is placed on the inside of the jaws to increase the coefficient
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Figure 4.5: Cap Manipulator Top View with Labelled Components

Figure 4.6: Cap Manipulator Bottom View with Labelled Components
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of friction between the manipulator and a cap of interest. A selection of sensors provides feedback
on how tightly a cap is gripped and keeps the dynamic jaw within its operating conditions.

Treating the lead screw as an ideal screw, the maximum clamping force capable of the system can
be determined by using Equation 4.7, where Fout is the maximum clamping force in N, Tin is the
input torque applied to the lead screw in Nm, and l is the thread lead of the lead screw in m.
According to manufacturer data, the HSR-2648CR servo can produce 0.784 Nm of torque and the
thread lead is 8 mm, which yields a maximum theoretical clamping force of 615 N.

Fout =
Tin2π

l
(4.7)

In reality, screws have large frictional energy losses, and Equation 4.7 should include an efficiency
term η for a realistic estimate. To estimate the efficiency of a lead screw system, the helix angle
α must be calculated as in Equation 4.8, where D is the thread diameter and l is the thread lead,
both requiring the same units. The thread diameter, D, was measured to be 5 mm, and thread
lead, l, is 8 mm, yielding a helix angle of 27◦.

α = arctan
l

πD
(4.8)

To calculate the efficiency η, Equation 4.9 is used, where α is the helix angle previously calculated
in radians and µs is the static coefficient of friction between the lead nut and lead screw. The lead
nut is brass, and the lead screw is stainless steel; therefore, a value of 0.51 was selected [146]. With
the given values, the efficiency was found to be 37%.

η =
tanα

tan(α+ arctanµs)
(4.9)

Applying the efficiency to the ideal screw yields an updated estimated clamping force of 228 N.
Although the efficiency significantly reduced the maximum theoretical clamping force of the system,
a lead screw is self-locking if the efficiency is below 50% [155]. Such a system will not back drive,
allowing the cap to be securely gripped without the need for additional input once contact has been
established.

4.2.2 Electrical Design

The electrical design of the cap manipulator is summarized in Figure 4.7. The quick connect device
provides up to 15 W of power at 5 V and is mainly used by the Arduino Nano microcontroller and
Hitec HSR-2648CR servo. A wireless 2.4 GHz connection is established between Kuman nRF24L01
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Figure 4.7: Cap Manipulator Electrical and Signal Diagram

transceivers onboard the UAV and payload facilitating communication between the systems. The
transceivers interface with their respective microcontroller using SPI communication. The servo’s
current draw is monitored by two current sensors (Allegro MicroSystems ACS723 and Texas Instru-
ments INA181A3) placed in series, which output analog signals read by the microcontroller. The
microcontroller reroutes power from the quick connect to power the two current sensors and other
peripherals such as the transceiver and an Interlink Electronics 30-49649 force sensitive resistor
(FSR). The microcontroller provides a PWM signal to the servo to control the servo’s direction
and, in turn, control whether the dynamic jaw should open or close. Two Gikfun EK1713 limit
switches are placed on the limits of the dynamic jaw’s travel path to provide feedback as to where
the dynamic jaw might be located. Lastly, the FSR provides additional feedback to the system
when contact has been made with a cap.

The cap manipulators electrical design is centered around a custom two-layer 45 mm x 65 mm PCB.
The PCB provides a single location for all the various electrical components to either be placed or
terminated. The assembled PCB and a screenshot of the routed board can be viewed in Figure 4.8,
and a list of the components, manufacturers, and part numbers can be found in Table 4.1.

As with the quick connect PCB design, 90-degree traces were eliminated, vias were minimized,
and traces were sized to keep board temperatures below 40◦C during peak operating conditions. A
copper ground plane was used to establish a common ground between components and aid in overall
thermal regulation, acting as a large heat sink. The board was designed to include mounting holes,
and to validate the system, the entire system was prototyped using a protoboard and breakout
boards before being manufactured.

All physical connections to the board used Molex Micro-Fit 3.0 connectors to keep commonality
between the quick connect and payload. Additionally, the locking tabs, low-resistance contacts and
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Figure 4.8: Cap Manipulator PCB Board: (Left) Assembled Board with Wiring, (Right) Board
Layout with Hidden Fill Zones

Table 4.1: Cap Manipulator Major PCB Components and Peripherals

ID Part Name Manufacturer Manufacturer Part Number
A.1 Connector Molex 0436500200
A.2 Limit Switch I Gikfun EK1713
B.1 Connector Molex 0436500200
B.2 FSR Interlink Electronics 30-49649
C.1 Connector Molex 0436500200
C.2 Limit Switch II Gikfun EK1713
D Transceiver Kuman nRF24L01 + 2.4GHz Antenna
E Custom PCB JLCPCB -
F Power In Connector (5 V) Molex 0436500200
G.1 Connector Molex 0436500300
G.2 Servo Hitec HSR-2648CR
H Microcontroller Arduino Arduino Nano v3.0 (A000005)
I Indicator LEDs - -
J Current Sensor I (Hall) Allegro MicroSystems ACS723LLCTR-05AB-T
K Current Sensor II (Amp) Texas Instruments INA181A3IDBVR

crimps, and polarized casings minimize potential system failures, such as a connector falling out or
a sensor being incorrectly plugged in. Surface mounted components such as capacitors, resistors,
and LEDs were selected in place of through-hole components to minimize failure due to vibrations.
Parts at risk of failing due to vibrations were reinforced with epoxy, such as the servo crimps in
their housing.
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The nRF24L01 transceiver was required in the design due to the communication protocol of the
quick connect. An Arduino Nano microcontroller was selected as the central control unit because
the payloads’ system requirements shared many similarities to the quick connect and would allow for
streamlined development between devices. Additionally, the Arduino Nano has a small footprint
and onboard analog to digital converter (ADC), removing the need for additional components.
Micro limit switches from Gikfun were selected to monitor the manipulator’s endpoints, since the
hardware had a minimal footprint and low mass. The Arduino’s internal pull-up resistors avoided
the need for external circuity to prevent floating switch states. The HSR-2648CR servo was selected
because it is a digital continuous rotation servo. Being digital, the servo provides faster response
times and is less sensitive to disturbances than its analog counterpart. Additionally, the servo
accepts an M3 x 0.5 mm socket head screw for additional holding power when adapting the servo
to the lead screw.

Three sensors were used to provide feedback as to whether a cap has been gripped or released: an
FSR and two current sensors. An FSR is a device that decreases in resistance with an increase
in applied force. The 30-49649 FSR selected from Interlink Electronics is extremely small and
lightweight, giving it the ability to be mounted behind the static jaw’s elastomer surface. The FSR
is not designed for precision measurements; however, it is optimized for touch control, such as when
a cap is pressed into the static jaw. To measure the force applied to an FSR, power, V CC, is
applied to one lead, while the second lead is connected to a grounded resistor R and an ADC. The
combination of the FSR and grounded resistor creates a voltage divider. Converting the raw analog
value to a voltage, VFSR, the FSR’s resistance, RFSR, can be calculated as in Equation 4.10.

RFSR =
(V CC − VFSR)R

VFSR
(4.10)

Using the FSR’s calculated resistance and manufacturer supplied data, the resistance can be equated
to a force. In the clamping manipulator, the FSR is protected by the elastomer surface, causing a
distribution of the applied force and an underestimate of the actual force. Because the FSR is used
as a relative comparison for gripping strength and not for quantitative data collection, there is no
need for correction factors.

Two current sensors monitor the dynamic jaw. An FSR is not used on the dynamic jaw because two
wires are required to read the FSR’s output and would likely be caught in the actuating device. The
first current sensor, an ACS723LLCTR-05AB-T from Allegro MicroSystems, is a precise low-offset
linear hall sensor. As current flows through a copper path inside the integrated circuit (IC), a
magnetic field is generated which is sensed by an integrated hall IC and converted to a proportional
voltage to be read by the microcontroller. The IC required additional circuitry on the PCB,
such as decoupling capacitors to reject power supply noise, output filtering capacitors, and a pull-
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down resistor for selecting bandwidth. The circuitry was added according to the manufacturer’s
recommendations, and a 20 kHz bandwidth was selected for increased low-pass IC filtering and
reduced sensor noise. The full-scale sensor’s range is ±5 A and was advertised to have an error
of ±3%. The raw analog value was mapped to a current measurement, Iload, by converting the
analog value to an equivalent voltage, V , and then compensating for the voltage offset, Voffset, and
applying a sensitivity scaling factor, sens, as observed in Equation 4.11.

Iload =
V − Voffset

sens
(4.11)

A second current sensor was implemented in series with the linear hall sensor to provide a secondary
current data stream. A current sense amplifier, INA181A3IDBVR from Texas Instruments, was
selected and allowed for a more precise selection of the full-scale range. The current sense amplifier
is paired with a current shunt resistor. The resistor is placed in the current path and typically
requires a low resistance, high power rating, and precisely manufactured resistance (16 mΩ, 1 W,
and 1% respectively for the following design). It is essential to have these parameters so that
the resistor does not affect the current flow, can handle large loads, and is accurate enough that
the hardware does not become a significant source of error. The current sense amplifier measures
the voltage across the shunt resistor, which is proportional to the current passing through it, and
amplifies the signal so that an ADC can read it. As with the linear hall sensor, the manufacturer
provides recommendations for external circuitry (such as a decoupling capacitor) and proper routing
techniques (such as Kelvin connections). The current shunt resistor is selected to minimize power
loss, maximize the full-scale sensing range, and maximize accuracy (estimated to be 3%). To
calculate the measured current Iload, the analog value is converted to an equivalent voltage, V ,
which is divided by the resistance, Rsense, of the current shunt resistor, and gain, GAIN , of the
current sense amplifier as in Equation 4.12.

Iload =
V

RsenseGAIN
(4.12)

Current data was recorded for an entire cycle of the dynamic jaw travelling from its outermost limit
switch to the innermost limit switch to observe the two current sensors’ response. The results are
plotted in Figure 4.9. The first observation is that both the ACS723 linear hall effect sensor and
INA181A3 current sense amplifier are extremely noisy, which was concluded to be a function of the
digital servo motor. To filter the signal, a low-pass 50 point moving average filter was implemented.
The number of points provided a useable signal and introduced minimum relative phase lag, which
was empirically compensated for in the conditional arguments of the developed controller. The
ACS723 was found to measure current approximately 40 mA higher than the INA181A3. Because
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both values followed the same trend, and in order to further filter noise, the two sensor values were
averaged to be used as a final value. Lastly, the cyclic current response observed in the plot appeared
to be originating from the servo itself and not from the manipulator’s mechanical assembly.

Figure 4.9: Raw and Filtered Current Readings with Dynamic Jaw Moving From Open to Close

4.2.3 Software Design

The software design of the clamping mechanism includes many similarities to the master quick
connect system. Using a microcontroller, C/C++ was the programming language of choice, and
the same five libraries as the mainboard were used, including the Arduino, Servo, SPI, and two
nRF24L01 libraries. The libraries were used to interface with the Arduino pinout, generate the
signals required to control the servo, and establish communication with the transceiver. The two
nRF24L01 libraries handle the communication between transceivers. The main program running
on the clamping payload features a wireless 2.4 GHz link with the UAV. Using the pass-through
message protocol from the main program running on the SBC, state messages are sent to control
the payload. A flow chart of the main program can be viewed in Figure 4.10 and the open and
close switch cases are expanded on in Figures 4.11 and 4.12 respectively.

The main program begins by initializing the transceiver radio and setting the servo to be in an off
position. An infinite loop reads incoming messages from the radio connected to the upstream SBC.
The received messages are applied to a switch case, with functions to open or close the jaws. The
default case implements a boundary controller which monitors the two limit switches and sets the
servo to actuate in the opposing direction of the activated limit switch. A small half-second delay
ensures that the limit switch is cleared and prevents a spike in the current readings caused by the
servo initially starting up. The servo then returns to a stationary position and sends a message
informing the UAV that it is in a floating state awaiting either an open or close command.
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Figure 4.10: Main Cap Manipulator Code Flow Chart

The open case switch, Figure 4.11, begins by sending the servo a pulse to rotate until the outermost
limit switch is activated. While the outermost limit switch has not been activated, the radio is read
to check if a new command has been sent to close the jaws instead of open them. If true, the servo
is set to an off state, and the program returns to the main loop, awaiting a second confirmation that
the close state should be initiated. If the system does not need to close, then a value is acquired
from the FSR. If the value is approximately zero, a message is sent stating the jaws are released;
otherwise, a floating message is transmitted. Once the switch has been actuated, the servo is set
to an off position, and the program returns to the main loop awaiting a new command.

The close case switch, Figure 4.12, begins by providing the servo with an initial PWM pulse to close
the jaw. As the jaws close, a floating message is sent to the SBC, and the radio is monitored for
incoming messages. If an open message is received, the system stops the servo and returns to the
main loop to await confirmation. Otherwise, the limit switches are monitored, and the boundary
controller is implemented. While the dynamic jaw continues to close, the FSR and current sensors
are monitored. If both the measured current and force exceed their given thresholds, the force at
that instant is saved. The servo is then set to a stopped position, and an integral controller either
increases or decreases the servo’s signal to maintain pressure on the cap in the unlikely case the lead
screw is back driven or there is drift in the PWM signal. In case the integral controller should fail,
the boundary control runs the entire time, preventing the system from over-actuating. A clamped
message is sent to the SBC, and the radio is continuously read to monitor when the system should
return to the main loop.
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Figure 4.11: Open Case Switch Flow Chart (Continued From Figure 4.10)

Figure 4.12: Close Case Switch Flow Chart (Continued From Figure 4.10)
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To further illustrate the clamping process, Figure 4.13 shows the response of gripping a cap. For the
first 7.5 seconds, while the dynamic jaw is closing, the FSR registers zero force, and the measured
current is consistent other than some cyclic noise. At approximately 8 seconds, contact is made with
a cap, and both the force and current readings increase linearly until their respective thresholds are
both met at 10.5 seconds. The servo is then stopped, and the integral controller monitors the error
in actuation force and adjusts the PWM signal to the servo motor to keep a consistent gripping
force. The current drops below 100 mA as the lead screw’s geometry provides the required locking
force, and only minor adjustments are required from the servo. The cap is then securely gripped,
and the UAV can apply a torque to the cap. The speed at which the jaw actuates or retracts is set
empirically and is close to the maximum operating conditions of the servo motor.

Figure 4.13: Clamping Sequence Current and Force Sensor Readings

4.2.4 Control Design

To quantify the maximum torque the UAV can produce by exhibiting a yawing motion, the torsional
platform developed in [156] was used. The torsional platform was initially designed as a novel device
for accurately estimating inertia tensors of objects with complex geometries such as robots. Using
select outputs of the logged data and creating a custom-designed mount, the torsional platform
could measure torque forces generated by the UAV.

To provide an initial benchmark of the maximum yaw torque the UAV can generate, manufac-
turer data provided with the XA2212 980KV brushless motors from EMAX was substituted in
Equation 4.13, where τ is the maximum torque produced by a single motor, P is maximum power
consumption, and w is the maximum angular velocity of the motor.

τ =
P

ω
=

181 W

232π rad/s
= 0.249 Nm (4.13)
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In a quadcopter configuration, two motors work together to provide a maximum torque, which
yields a final theoretical value of 0.498 Nm. The result assumes that the system is 100% efficient in
converting the electrical energy to thrust and torque. The actual efficiency is highly dependent on
various other factors such as propeller efficiency and copper and iron losses in the brushless motor.
To estimate the efficiencies is a non-trivial solution dependent on many factors (such as propeller
advance ratios), and is often experimentally determined. Therefore, the result is an upper bound
to compare against empirical results.

The UAV was fixed to the torsional platform using a shaft collar and custom 3D-printed mount.
The mount was fixed about the center of rotation of the four propellers and bolted directly to
the UAV frame. Four main tests were conducted, including motor ramp and step inputs in both
clockwise and counterclockwise directions. For each test, the experiment was repeated five times
to ensure the results were repeatable and increase the final results’ confidence.

Each motor is controlled by an ESC which converts direct current (DC) power into alternating
current (AC). The ESC converts the DC into AC based on a PWM input signal. For the 20 A
Racerstar RS20A V2 ESCs used, input values range from approximately 1000 to 2000 µs depending
on their calibration values. To generate a ramp input, a 2 µs pulse is incremented every 0.1 seconds
beginning at 975 µs until the ESCs automatically turn off at approximately 2250 µs. The signal is
supplied to a pair of opposite motors while the other pair is unplugged. The results of the clockwise
and counterclockwise ramp inputs can be observed in Figures 4.14 and 4.15, respectively. The data
is trimmed only to show non-zero torque values and to align all the different trials. Additionally,
the counterclockwise results are inverted to become positive torques for ease of comparison.

The ramp experiment results show a slight second order but a mostly linear trend of increasing
torque as the ESC input also increases. The oscillations are due to the torsional platform using
a linear torsion spring, which is required by the apparatus to measure inertia tensors accurately.
The oscillations are relatively small compared with the rest of the data and can be filtered should a
single data point be required. Using the last five seconds of data, where the system is at a steady-
state and holding a maximum torque, the results across all the trials were averaged, which yielded a
torque value of 0.25±0.01 Nm in the clockwise direction and 0.22±0.01 Nm in the counterclockwise
direction. The two directions differ by approximately 13%.

The second input signal is a step impulse. The input to the ESCs is slowly ramped to overcome
inertial, friction, and aerodynamic forces. Once all motors were spinning and non-zero torque was
being registered, the ESC was given its maximum signal. The step was held for 10 seconds before
the motors were stopped and data logging was terminated. Figures 4.16 and 4.17 provide the
results for the clockwise and counterclockwise trials respectively. Data is again trimmed to show
only non-zero torque values, and the counterclockwise results are inverted to be positive.
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Figure 4.14: Clockwise Ramp Input: Torque as a Function of Time

Figure 4.15: Counterclockwise Ramp Input: Torque as a Function of Time (Torque Converted to
Positive)
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The damped oscillatory nature of the linear torsion spring is more evident in the step response
plots than the ramp input plots. The counterclockwise data is consistent between trials, while
the clockwise response trials has some variability between trials. The first clockwise peak and
steady state value is consistent; however, the periods and rate of dampening differ. Because the
experimental setup, input signal, and system did not change between trials, the difference is due
to some performance coupling of the clockwise motors, propellers, and ESCs which does not occur
in the counterclockwise direction. Because the first peak is always consistent between trials, the
largest five values from each trial were averaged to find the maximum impulse torque. The maximum
clockwise value was calculated to be 0.40±0.02 Nm, and the counterclockwise value was 0.45±0.03
Nm. The two directions also differ by approximately 13%; however, the counterclockwise value is
greater than the clockwise direction opposed to the ramp input.

Due to the quick connect system’s current design and the way the torsional platform measures
torque, the impulse torque recorded will not be achievable in practice. The impulse value will not
be achievable, as the UAV can build up angular momentum in the experiment due to the linear
torsional spring and the value recorded is a combination of momentum and rotor torque. In reality,
the system will be static; however, in a future design, a spring clutch-based mechanism can be
implemented, yielding results similar to the torsional platform. Therefore, the ramp test is a more
realistic result of the currently available torque in the system. To further validate the steady-state
ramp numbers, the UAV was again subjected to a step response and was left on until the oscillations
were damped entirely. On average, the clockwise and counterclockwise trials took approximately
30 seconds to dampen fully. Averaging the steady-state values yielded a torque of 0.24±0.01 Nm
and 0.21±0.01 Nm in the clockwise and counterclockwise directions, respectively. The steady-
state values between a step response and ramp input differ by no more than 4%, demonstrating
consistency in the responding variable in different experiments.

The results of all three experiments are summarized in Table 4.2, where µ is the average torque
value and σ is the standard deviation. The measured step response is not feasible with the current
hardware; however, the torque the UAV can introduce has the potential to more than double. The
maximum steady-state torque was approximately 14% greater in the clockwise direction than in
the counterclockwise direction. The difference can be attributed to flex in the airframe, individual
motor performance, thrust blockage, and difference in the propellers’ balance. Overall, the data had
a small standard deviation compared to its nominal value, suggesting confidence in the acquired
values. The experimental data is approximately half of the theoretical estimate of 0.498 Nm,
suggesting an overall system efficiency range of 43% to 48% (assuming the manufacturer’s data
is reliable). In practice, the torque required to release a cap is likely not known. Caps can be
over-tightened, build up resistance due to rust, or have very low resistance if a lubricant is applied
to the threads. The analysis performed is to provide a maximum specification for the payload and
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Figure 4.16: Clockwise Step Input: Torque as a Function of Time

Figure 4.17: Counterclockwise Step Input: Torque as a Function of Time (Torque Converted to
Positive)
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Table 4.2: Experimental Yaw Torque Summary Table

Direction Metric µ σ Units

Clockwise
Ramp Steady State 0.25 0.01 Nm
Step Max 0.40 0.02 Nm
Step Steady State 0.24 0.01 Nm

Counterclockwise
Ramp Steady State 0.22 0.01 Nm
Step Max 0.45 0.03 Nm
Step Steady State 0.21 0.01 Nm

the given UAV so that the system can be applied to tasks within its capabilities.

With the detailed design of the cap manipulator and a functioning UAV and quick connect, the
systems must undergo experimental validation as outlined in the following chapter.
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Chapter 5

Experimental Trials and System
Performance

5.1 Introductory Experimental Testing

Experimental prototyping testing was conducted to observe the complex synergy between the me-
chanical, electrical, and software designs, which would otherwise be challenging to model (especially
the real-world responses). Testing also yielded valuable performance metrics of the developed sys-
tem and the corresponding limitations.

5.1.1 Software in the Loop (SITL) Simulation

To validate the developed PID controller and MAVLink connection with the autopilot, a software in
the loop (SITL) simulation was conducted. The goal of the SITL simulation was not to establish final
gain values, but rather to validate the proposed theory and connection with the autopilot.

To run the SITL simulation, the ArduCopter firmware was compiled locally on a desktop computer
running Linux Ubuntu 20.04 LTS. The default parameters and model of an Iris quadcopter were
loaded into an ArduPilot supplied simulator and linked to a Gazebo virtual environment. Gazebo
is a well-respected robotics simulator, and the virtual environment, Figure 5.1, was used to aid
in tuning the positional controller by observing the response of the UAV when given different
commands. Although ArduPilot and Gazebo are both open source, the model was treated as a
black box and assumed to be functional, since it is used for unit testing and logic validation. To
streamline the simulation, RTK GPS data was used to simulate ArUco vision data.
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Figure 5.1: Gazebo Simulation Environment

With a configured environment and model, multiple different simulations were conducted. The first
simulation had the UAV take off to an altitude of approximately 100 cm. Once this altitude was
reached, trajectories lasting five seconds with desired set points of 75 cm and 50 cm for the north
and east axes were generated. The trajectory in the down axis was set to last ten seconds and reach
a final altitude of 125 cm. The results of the simulation after tuning can be viewed in Figure 5.2.
The results show that the PID controller is correctly implemented and that the UAV follows the
generated trajectories. There is some overshoot; however, the UAV settles to a steady-state value

Figure 5.2: North East Down Position Controller Simulation Response

81



and achieves centimetre accuracy. The controller could be further tuned for a more optimal rise
and settling time; however, the initial system was validated.

The second simulation conducted was controlling the yaw of the UAV from a 0◦ to 15◦ heading.
No trajectory was used for the control, and the results are observed in Figure 5.3. The UAV’s yaw
responds exceptionally well, and sub-degree accuracy was achieved, further validating the generated
code. The final simulation put the UAV at a 90◦ heading, so roll and pitch were swapped. The
positional controller was reinitialized, and the same desired locations were set. The results aligned
with Figure 5.2, validating the mixing of the controller’s output based on yaw.

Figure 5.3: Yaw Position Controller Simulation Response

5.1.2 Online Testing with Safety Tether

Due to COVID-19 and the closure of our research group’s laboratory, an alternate testing location
had to be found and safeguards put into place. A residential garage was used as a testing facility
for the remaining experimental trials.

During initial autonomous testing, the UAV was tethered as a safety precaution and to prevent
damage in the event of a crash. The system used for tethering the UAV can be observed in Figure
5.4. The system works by constraining the UAV with two lines of paracord. To prevent the UAV
from striking the ground, paracord was tied to the UAV’s top and fed through two pulleys and
then fixed to the ground. A small mass was fixed on the paracord to compensate for the tether’s
mass and prevent it from being caught in the propellers. To prevent the UAV from flying into the
roof, an additional length of paracord was tied to the bottom of the UAV and fixed to the ground.
Both directions of tethers worked in tandem to prevent the UAV from flying away in the lateral
direction. The paracord’s elastic properties and the amount of given slack in the system allowed
for an operating volume of approximately 1.5 m x 1.5 m x 1.5 m.
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(A) (B)

Figure 5.4: UAV Tethering System: (A) System Diagram, (B) Tethered UAV During Flight

Using the software validation from the SITL simulation, the same algorithms were tested on the
hardware to validate the system’s response in a controlled environment. Once all systems were
validated, the control scheme was tuned for the given hardware. As control schemes were tuned,
the tethers constraining the UAV were removed. Even with the addition of the counterbalancing
mass and smooth pulleys, the tethers provided dampening in the control scheme, which yielded
aggressive gains when the UAV was in free flight; however, the tuning brought the UAV to an
initial controllable state.

5.2 Computational Performance

Yappi (Yet another python profiler) was selected to record the computational performance of the
developed software. Yappi was chosen because it supports multithreaded programs, as opposed to
the standard profilers included with Python. Additionally, the Yappi code is written in C, making
it fast and limiting the effect the profiler may have on a program it is analyzing. The profiler
was configured to record CPU time due to the threaded workloads and indeterminacy in function
execution. Built-in functions were included in the profiled results to monitor whether the selected
packages had to be altered or changed entirely. To profile the code, two flights of approximately
30 seconds were conducted (the I/O and logging and vision processes had to be profiled separately
because they run in different memory heaps).

To visualize the raw profiling data, gprof2dot was used to generate visual call graphs. A call graph is
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Figure 5.5: I/O and Logging Call Graph with Highlighted Regions of Interest

a control flow graph that displays the relationships between subroutines. Each box has the function’s
name, the amount of self-time of that function, the total number of calls, and the percentage of
the total amount of CPU time spent in that function compared to the rest of the program. Arrows
show the relationship between functions, and the number beside the arrow represents the number
of times the function interaction was called. The results of profiling the I/O and logging process
can be viewed in Figure 5.5. As there are many interactions and functions, areas of interest were
highlighted for further analysis.

Using a secondary profiling visualizer, KCachegrind, the profiling data relating to Figure 5.5-A
was examined in detail. KCachegrind provides the same graphs as gprof2dot; however, it provides
additional analysis tools. The profiled data was filtered in KCachegrind to have a maximum callee
depth of two to limit the number of root sub-functions that would appear. The minimum node and
call cost were set to 5% to trim the number of functions further and only show those that had a
significant computational contribution to the overall program. The results of the filtered profiled
data are observed in Figure 5.6.

Figure 5.6 is a thread that used approximately 63% of the process’s computation time, and was
automatically spawned by the DroneKit API during the initial connection with the autopilot. The
thread’s main function,mavserial.recv_msg, primarily uses two functions,MAV Link.parse_char
and mavserial.recv, which use approximately 32% and 19% of the process’s computation time
respectively. The sub-functions’ responsibilities are to read the autopilot serial port (running
at 1500000 baud) and then parse the incoming MAVLink messages for relevant data. Due to
the large amounts of data being processed, high computation requirements were expected. Be-
cause the I/O and logging process is not CPU bound, as with the vision process, no changes
were required in the data streaming rates between the autopilot and main program. Lastly, the
mavserial.post_message function is an additional MAVLink function for organizing messages and
consumes approximately 6% of the process’s computation time.
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Figure 5.6: I/O and Logging Detail Figure 5.5-A Call Graph

Using the same filters as previously, the subroutines shown in Figure 5.5-B were converted to
Figure 5.7. The main function is the central function that spawns all processes and threads,
logs data, and is relied upon by the overall system. The function uses approximately 15% of
the process’s computation time. The highest contributing function, at approximately 4%, is the
Controller.positionControl, which runs the PID controller and provides set points to navigate the
UAV. The Controller.sendAttitudeTarget is the second most resource-hungry function at approxi-
mately 3%; it is responsible for sending the calculated set points to the autopilot. A moving average
function provides filtering for a trajectory’s initial values should it be requested, and consumes less
than a percent of the processes computation time; data logging consumes approximately 2%. The
DataFrame.to_csv logging archive function is only executed once a mission is complete. Therefore,
the function does not affect the real-time system.

Figure 5.7: I/O and Logging Detail Figure 5.5-B Call Graph
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Figure 5.6 and 5.7 total process’s computation time sums to approximately 78%. Those in Figure
5.5-C account for the remaining 22% and consist of numerous small functions that primarily occur
during the program initialization. The two largest functions, accounting for a majority of the 22%,
are built-in methods for exchanging data placed in queues and listening for specific messages in
data streams.

The call graphs profiling the vision process are much simpler than the I/O bound process. The
filtered call graph of the main thread can be viewed in Figure 5.8. The main thread consumes
approximately 5% of the second process’s computation time, with most of the CPU clock cycles
being used by the Kalman filter to estimate the vehicle’s pose by fusing the raw positional data
with IMU sensor data. The remaining computation time is used to establish a connection with the
Intel RealSense T265 camera during startup.

The CPU-bound tasks are performed on the remaining three threads of the vision process and are
graphed in Figure 5.9. Although the system is not entirely CPU-bound, the process was running
near maximum capacity. Due to the threads being created manually by the main program, all
resources are traced back to Thread.run. The call graph’s left side shows the resources required
for the T265 to acquire IMU data and the corresponding image frames from the two cameras.
The most taxing function is remap, which converts the fisheye image into a pinhole equivalent
image. The mapping of camera models consumes approximately 29% of the process’s computation
time. Because the developed code uses classes and object-oriented programming, a single group
of functions can be used multiple times. Therefore, on the call graph’s right side, two instances
of V isionPose.run are generated. The program initializes the same class for each of the two
cameras based on the respective lens calibration values. The largest computational consumption

Figure 5.8: Vision Process Main Thread Call Graph
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Figure 5.9: Vision Process Spawned Threads Call Graph

in retrieving a pose is detecting a marker, which consumes approximately 61% of the process’s
computation time. Once a marker is found, the pose estimation is minimal. The call graph for
detecting the markers cannot be analyzed further, as Yappi only monitors Python functions, and
the detectMarkers function is based in C/C++ due to the OpenCV wrapper used. Going through
the OpenCV source code and adjusting ArUco parameters, the adaptive thresholding was found
to have the most considerable contribution on performance; this is why the number of filtering
windows was reduced from the default value of three to two.

Because Python is not truly concurrent from GIL, it is essential to have delays so that other
threads can run and loops do not waste clock cycles. Additionally, having a consistent sampling
rate is important for tuning of controllers and data logging. To achieve desired sampling rates,
a function was written that monitors the time elapsed since it was last executed and then delays
accordingly. When using this method, the system needed to be capable of running above a desired
sampling rate; otherwise, the loop cannot be bound by the delay.

Testing the function proved to be successful; however, the results were more variable than expected.
One example of sampling frequency as a function of flight time can be found in Figure 5.10-A, which
had a desired frequency of 30 Hz and an actual frequency of 29.5±1.3 Hz. The results show that
sometimes a loop takes longer than it should, and no delay can be executed. However, frequencies
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above the desired rate raised questions, and the desired versus actual delay times was plotted as
viewed in Figure 5.10-B. The results show that the desired delay is not always achieved. The
variability leads to both undershooting and overshooting of delay times and the corresponding loop
frequency. Further analysis found that the variability was highly dependent on the OS used due to
catching routines and scheduling of activities [144]. When comparing desired and actual delays for
other operating systems, including Windows 10 and macOS, Linux Ubuntu had the most consistent
performance. Because the deviation of frequency was relatively minimal, and a small number of
outliers would not cause significant issues, the limitation of a non-perfect sampling rate was deemed
acceptable.

(A) (B)

Figure 5.10: (A) Frequency Rate and (B) Actual Sleep Time Versus Requested Sleep Time

5.3 Localization

5.3.1 ArUco Pose Validation

The primary method for localizing the UAV in an environment was the use of ArUco fiducial
markers. Three markers were placed in an array and configured as an ArUco board to allow for
occlusions and increase pose accuracy. The markers’ size was constrained by the payload docking
station’s interior and was sized at 13 cm x 13 cm. Markers were spaced 22 cm apart edge to edge,
so that a marker was located on the two outermost edges of the docking station, with one directly
in the center.

Examples of what the UAV sees during flight can be observed in Figures 5.11 and 5.12. Each Figure
has two sets of images due to the Intel RealSense T265 having two slightly offset lenses. The photos
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Figure 5.11: UAV Vision with Adaptive Threshold Responses at an Altitude of 75 cm

Figure 5.12: UAV Vision with Adaptive Threshold Responses at an Altitude of 11 cm (landing)
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at far left are the equivalent pinhole images after correcting for the fisheye distortion of the camera
lens. The center and far right images are the adaptive thresholded images, with window sizes of
9 and 23 respectively. The results of the adaptive threshold are raw, and no contours are filtered.
The selected filter windows show the adaptive algorithm’s robustness, where shadows are filtered,
and the markers’ contour is detected. Additionally, having multiple different thresholding windows
allows for one window to detect the marker when the other window fails, further increasing the
system’s robustness.

Comparing Figures 5.11 and 5.12, a filter window size of 9 yields thin-walled contours, while a filter
window size of 23 yields much thicker walled contours. Flying further from the markers, Figure
5.11, a greater number of contours are registered than when flying close to the markers, Figure
5.12. The difference is due to the amount of information in the image. Flying further from the
markers, more of the environment is captured and filtered than when landed. In both Figures 5.11
and 5.12, the left and right lenses of the T265 camera, and the corresponding filtered images, yield
similar results. The image set also displays why an ArUco board was selected. When approaching
the target, all three markers are detected, as observed in Figure 5.11, and once landed, Figure 5.12,
only the center marker is detected. Similarly, as the UAV travels further away from the markers in
the north or east direction, the center marker becomes occluded, and the outer markers are used
for the pose calculation.

To validate the raw pose accuracy, the UAV was manually placed at increments of 50 cm from the
docking station. Only the down axis (the distance from the target) was considered in the analysis,
as pose accuracy is highly dependent on the size of the marker in the image frame, which is directly
proportional to the target’s distance from the camera. The remaining axes will exhibit a similar
trend to the down axis, and attempting to precisely measure north, east, or yaw at varying distances
from the target would require precision equipment.

Recording the raw position from the ArUco marker and comparing it to the actual measured position
revealed that the ArUco calculation had centimetre accuracy in the range of 0 cm to 200 cm from
the payload docking station. From 200 cm to 350 cm, the raw values began to exhibit noise and
underestimated the position by an average of 10 cm. The marker became pixelated and no longer
detectable between 350 cm and 400 cm. Due to the constraints of the flight location, an altitude
greater than 200 cm could never be achieved during experiments. Additionally, precise centimetre
accuracy is not required at far distances, as the UAV can navigate closer to the marker to receive
more accurate data. Therefore, the raw values have sufficient accuracy for estimating the UAV’s
position in the available environment.

To ensure that the two cameras of the Intel RealSense T265 were in agreement, a flight was con-
ducted and the raw ArUco pose values were recorded. Plotting the response of the two cameras
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Figure 5.13: Raw ArUco Pose Scatter Plot Comparing the Two Intel RealSense T265 Cameras

against each other created the scatter plot in Figure 5.13. The mean difference, µ, and correspond-
ing standard deviation, σ, between the two cameras are summarized in Table 5.1. Overall, the
two cameras agree, with the worst average difference being -0.64±0.83 cm in the down axis. The
north and east axis average difference is 0.15±1.06 cm and 0.02±0.80 cm, respectively. The trend
is observable in the linear nature of the scatter plot. The yaw’s average difference between cameras
was 0.00±0.32 degrees; however, the deviation is much worse than the positional deviations as ob-
served in the scatter plot, suggesting that angles are more susceptible to noise than translational
measurements. Considering that all the values are raw measurements, there are two data streams,
and no filter has been applied, the foundation for localizing the UAV is well-established.

Table 5.1: Raw ArUco Pose Difference Statistics Between the Two Intel RealSense T265 Cameras

Axis µ σ Units
North 0.15 1.06 cm
East 0.02 0.80 cm
Down -0.64 0.83 cm
Yaw 0.00 0.32 degrees

5.3.2 Kalman Filter Validation

A Kalman filter was implemented to filter outliers, provide a pose estimation if the target was ever
lost, and increase the overall confidence in the localization of the UAV. The system was calibrated
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to ensure the filter was correctly fusing the various data streams and had a correct output. Due to
constrained resources from world events, no advanced methods for obtaining a ground truth (such
as a Vicon motion capture system) could be used. To address this shortcoming, the vision system’s
output was compared to outputs of the flight controller.

The autopilot responses were considered true, as thousands of users have adopted the ArduPilot
firmware across the globe in both industry and research [157, 158]. The autopilot was proven to
work for the given applications, as it can level itself and even follow desired headings and altitudes
when configured with a GPS in an outdoor environment. Although the autopilot’s actual accuracy
with the developed UAV cannot be accurately quantified, the system trends in all the expected
directions qualitatively. Therefore, the autopilot provided the most reliable comparison metric for
the developed localization system.

To acquire data, the UAV was manually controlled to acquire the pose, corresponding filtered data,
and outputs from the flight controller. The UAV was manually controlled instead of running a
control loop with a preprogrammed path to reduce the two systems’ coupling. For example, if the
controller’s input data is unreliable, then the corresponding output will also suffer. Similarly, if
the controller is not tuned to a sufficient level, then it will be challenging to draw conclusions from
the acquired data. Manually controlling the UAV allowed a focus be put on the vision system and
away from the controller. Additionally, manually flying the UAV reduced the risk of a crash when
requesting large inputs from the system.

To validate the developed yaw estimator, the acquired data was compared directly to the autopilot’s
yaw. The autopilot’s internal magnetometer is disabled due to flying indoors within proximity of
hard iron distortions. To mitigate gyroscope drift, the autopilot runs advanced state estimation
techniques such as dual extended Kalman filters, each reading an independent IMU sensor. The
firmware then runs a comparison between the two results and makes compensations where applica-
ble. Additionally, running the UAV for only a short duration limits the buildup of error. Since the
UAV has no reference point without a magnetometer, the yaw is calculated relative to its starting
position and cannot localize as with the fiducial markers.

Data from a flight is plotted in Figure 5.14, where the UAV was put through various yaw maneuvers
such as small- and large-amplitude sinusoidal oscillations, and was maneuvered so that the vision
system momentarily lost sight of the markers. The data was post-processed to remove takeoff and
landing, which provided no marker detection. The data set was also adjusted so the mean value was
centered about zero to compensate for the UAV’s heading not aligning with the markers’ coordinate
system.

At an initial glance, the two systems track each other throughout the flight. The values appear
to have a small constant offset at the beginning and end of the experiment. In contrast, the
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Figure 5.14: Yaw Kalman Filter Validation Using Autopilot as Ground Truth with Highlighted
Regions of Interest

experiment’s center tracked more closely other than a small overshoot during the large oscillations.
The root mean squared error (RMSE) was calculated to quantitatively compare the vision system
with the autopilot, where RMSE is a comparison of how similar two groups of numbers are on
average. To compute RMSE, Equation 5.1 was used, where n is the total number of data points
considered, i is the index for a given array of data, y is the data considered to be true, and ŷ is the
estimated value which is being compared.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5.1)

Computing the RMSE of the two data sets, the Kalman filtered data were found to have a value of
3.83◦ and the raw data a value of 4.02◦. As two yaw values are being compared, the RMSE value
can also be considered the standard error of the estimator. A lower number suggests a better fit of
the data; however, the RMSE values only differ by 5%. The small difference can be attributed to the
highlighted "A" region of Figure 5.14. The highlighted region is one area where the vision system
lost sight of the markers observed by the horizontal dot-dashed line. The Kalman filter responds by
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recognizing that the body’s angular velocity is still rotating, and provides an additional estimate
that follows the autopilot trend. The Kalman filter’s value does not reach the same amplitude of
the autopilot due to the raw data’s weighting and the programming implementation of the vision
system’s class-based method saving the last recorded position. Once the vision system regains
sight of the target, the Kalman filter begins to track with the new data. Recalculating the RMSE
value for the windowed data yielded values of 2.92◦ and 5.12◦ for the Kalman filter and raw data,
respectively, which demonstrates an even better response of the Kalman filter for the given window
then the entire data set. It should also be noted that the Kalman filter removes the high-frequency
edge when the pose was again found.

A final observation is the highlighted "B" region of Figure 5.14. There is an approximately 0.2
second phase lag between the autopilot’s response and the vision system response, which yields win-
dowed RMSE values of 2.18◦ and 2.04◦ for the Kalman filter and raw data, respectively. Although
the raw data is slightly better, the difference is negligible compared to the benefits of prediction and
low-pass filtering the Kalman filter provides. If the lag were compensated for, the inflection points
would track much closer, and RMSE would be further reduced. Because the Kalman filter and raw
data both lag by similar amounts, the latency is likely due to processing the pose estimation and
passing the data between memory heaps.

The autopilot does not return positional data unless it has a GPS; therefore, a relation between
desired input, actual output, and positional data must be established to validate the translation
Kalman filters. To establish the relationship, flights were manually conducted so that low-frequency
oscillations were introduced in each axis independently. The oscillations provided trackable signals
and reduced noise caused by the UAV trying to keep itself level. Since conclusions are to be drawn
from the introduced oscillations, only a subset of data can be considered rather than an entire
flight’s data, as with yaw.

An example data set for validating the north axis is observable in Figure 5.15. The left-hand axis is
the position estimate in centimetres, while the right-hand graph has an axis for both the pitch angle
in degrees and the controller input to the autopilot in microseconds. The windowed data shows two
complete oscillations where the UAV achieved approximately ±10◦ of pitch, corresponding to an
approximately 50 cm amplitude in position. There is a small disturbance in pitch compared to the
other trends, located at the bottom of each trough; however, the four signals appear to reasonably
track each other.

For the given window, the RMSE was computed between the UAV’s pitch and the raw and Kalman
filtered positional data. The controller input was not included in the comparison, as the value is
a desired setpoint rather than a indicator of how the system responded. Before the RMSE value
was calculated, values were normalized to compare the trend instead of mixing units and compar-
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Figure 5.15: North Kalman Filter Validation Using Autopilot Controller Input and Pitch Output
for Comparison

ing degrees with centimetres. The values were normalized in the range of [0, 1] using Equation
5.2, where x is the input data vector to be normalized in the range [a, b]. Using the normalized
values, the RMSE was calculated to be 0.108 and 0.128 for the Kalman filter and raw data, respec-
tively, demonstrating that the Kalman filter’s implementation was an improvement over the raw
data.

xnormalized = (b− a)
x−min(x)

max(x)−min(x)
+ a (5.2)

The translational Kalman filter exhibits the same trends as the yaw filter. When subjected to
missing data, the estimator continues to follow the same trend as the attitude with a slightly
damped response. The phase lag also matches the yaw response being approximately 0.2 seconds
on average, and the Kalman filter provides a smooth response attenuating high-frequency signals.
When comparing the remaining east and down axes, all the responses followed the same trends
due to the same equations of motion and corresponding data streams. Overall, the rotational and
positional Kalman filtered data, when compared to the autopilot, can be used in the system until
more precise validation techniques are available.

5.4 PID Tuning

With the vision system validated, the next step was to tune the PID controller. The fundamental
algorithms were verified with the SITL simulation and further validated on hardware using the
tether system.
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The first axis tuned was the down (thrust) controller, as it was essential to keep the UAV airborne
while tuning the other axis. The tuning effort was minimal, as ArduCopter has an internal altitude
controller. The inputs provided to the autopilot are commands to either ascend, descend, or hover.
The ascend or descend rates are a percentage of a fixed value of 100 cm/s, which was set as a default
parameter in the autopilot and found to be satisfactory. Manually controlling the UAV’s roll, pitch,
and yaw axis, the external down control loop’s proportional and integral terms were adjusted until
the UAV was capable of maintaining its altitude within ±5 cm.

Yaw was the second axis to be tuned. Observing the UAV during a manual controlled flight,
the system was naturally stable and required minimal input from the hand controller to keep a
constant heading; however, the system was still required to rotate to desired set points and be
robust to disturbances. To tune yaw, the proportional term was increased until the system began
to oscillate, at which time the value was reduced by a factor of four and a small amount of integral
was added. Several flights were conducted with slightly higher and lower gains, and the flight logs
were analyzed to find the combination which had the least tracking error and fastest response time.
The yaw controller was found not to need a derivative term, similar to the native ArduCopter yaw
controller. Under normal operating conditions, the controller achieved ±10◦ accuracy or better
when attempting to maintain a fixed heading.

The tuning of the north and east (pitch and roll) axes was an iterative process. While one axis
was unstable, it was extremely challenging to tune the other. Therefore, the axes were tuned
independently, and when one axis was brought to a reasonably controlled state, the other axis
was retuned, should the results become coupled. The general approach for tuning roll and pitch
was to introduce a small step response and observe the output. The proportional term was to be
increased until steady oscillations were observed. Upon observing oscillations, the value was slightly
reduced, and a derivative term was added to critically dampen the oscillations. The process was
repeated until the system response consistently responded to the step response in a desired time.
Steady-state error was then corrected with a relatively small amount of integral control.

Using the proposed approach, the north and east axes were iteratively tuned. After more than 100
flights of dedicated north and east gain tuning, the current UAV configuration and PID controller
were determined to be insufficient to provide robust, consistent centimetre accuracy. Many factors
led to the conclusion; however, the UAV was tuned to be as robust and accurate as possible by
comparing errors and the system response across different combinations of gains.

Figure 5.16 is a plot of the response of a fully tuned north axis being given three individual step
responses during a single flight. The UAV was flown to be within visual proximity of the ArUco
fiducial markers (and remain in proximity after a step response) and was stabilized manually to
provide the system with near-zero initial conditions in terms of velocity and acceleration. The UAV
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Figure 5.16: Three North 30 cm Step Responses During Single Flight

was switched to autonomous mode, the PID controller assumed command, and the step input was
given one second later. In the first step response, the system overshot by 15 cm, and 7.5 seconds
from the initial step, there was an error of approximately 5 cm. The second response had the same
15 cm overshoot and, after 8 seconds, achieved sub centimetre accuracy; however, after 2 seconds,
the system was disturbed and began to oscillate with a 5 cm error. The third step response only
overshot by 7 cm; however, instead of recovering, the system got stuck in continuous oscillations.
When observing plots for the east axis, a very similar trend is observed, although the gains slightly
differ due to the non-symmetrical airframe with varying moments of inertia.

The plot demonstrates the UAV and control scheme’s ability to achieve the desired accuracy at
times; however, it also demonstrates that the system does not always function to satisfactory levels.
Limitations of the system are related to the controller being sensitive to initial conditions. If the
system’s initial conditions strayed too far from zero, the controller could not overcome the body’s
inertia, until there was a large error. Due to the large error and the required compensation angle,
the system would overshoot in the opposing direction, causing undamped oscillations.

An additional challenge was the robustness of the controller. When introducing small disturbances,
the system would return to its desired position; however, the UAV had to maneuver slowly to
prevent the system from becoming unstable. Due to the UAV’s thrust in the enclosed testing area,
the air became highly turbulent and had a noticeable effect on the UAV. Quantifying the turbulent
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air is nontrivial; however, qualitatively, the longer the UAV was in the air, the more challenging it
was to control. The self-generated disturbances are possibly one reason the system is non-uniformly
oscillating in the third step response. Increasing the integral term did not increase robustness, since
the noisy airflow came from random directions, yielding non constant steady-state error.

Overall, the most significant challenge was having the system be responsive enough to handle
disturbances and achieve navigation without increasing gains to a level that put the UAV into a
perpetual oscillation. To achieve the desired response, flight logs were carefully analyzed to see how
the pilot took control of the system once the PID controller had become unstable. The response was
nonlinear, suggesting the need for a more advanced controller should the UAV be used in imperfect
flight conditions.

Comparing the controller’s responses to successful PID implementations in literature [80, 81, 82, 83,
84], the developed system was found to have very similar oscillations and overshoot to the literature
when functioning correctly. Even trends similar to the third response from Figure 5.16 were found
satisfactory for some applications. When comparing the accuracy of the different implementations
in literature, systems that yielded the best accuracy were the smallest UAVs, some of which were
less than half the developed system’s size and mass. Although the developed PID controller did not
function as robustly as predicted, the system achieved centimetre accuracy in ideal scenarios.

In addition to tuning the PID controller gains, various terms were constrained and filtered to aid
in the controller’s response. Bounds were set as extreme points to protect the UAV from crashing,
and were rarely reached. If an extreme point was reached, the system was likely not operating in its
optimal conditions or the system was experiencing artifacts of noise. For example, the derivative
term range was set to limit the derivative term’s contribution when the error suddenly changed,
such as a step response. Additionally, the derivative term was filtered with a low-pass moving
average filter to prevent the amplification of noise which the Kalman filter may have missed, or
in case the sampling frequency became irregular. Integral terms were bounded to reduce integral
windup. A summary of the values and the PID controller’s final gains for each axis can be found
in Table 5.2.

Table 5.2: PID Gain, Bounding, and Filtering Summary Table

Axis P Gain I Gain D Gain Output Range I Range D Range D Filter
North 0.170 0.015 0.080 [-4◦, 4◦] [-200, 200] [-125, 125] n = 5
East 0.160 0.015 0.110 [-4◦, 4◦] [-200, 200] [-125, 125] n = 5
Down 0.002 8E-5 - [0, 1] [-500, 500] - -
Yaw 0.200 0.020 - [-10◦s-1, 10◦s-1] [-500, 500] - -
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5.5 Visual Servoing Landing

With the PID controller tuned to be as functional as possible, the UAV was tasked with demon-
strating its ability to land in the payload docking station. In place of a step response, trajectory
generation was enabled for the north, east, and down axes to smooth the positional controller’s de-
sired set points. The trajectory only used positional data and no velocity or acceleration, as these
were too noisy. Filters were trialled to smooth the velocity and acceleration data; however, the
filters yielded too large of a phase lag to represent the UAV’s kinematics accurately. Additionally,
the UAV was manually controlled to minimize initial velocity and acceleration of the UAV.

As with PID gain tuning, the UAV was manually flown in visual proximity of the ArUco markers and
manually stabilized to approximately zero initial velocity and acceleration conditions. The moment
the UAV was set to autonomous mode, a trajectory was generated, and the UAV was entirely in
control. To quantify the accuracy and repeatably of landing, two fully charged 5000 mAh Goldbat
10042126 three-cell LiPo batteries were flown one at a time until the measured voltage was 3.75
V/cell, which is when the UAV began to underperform. The batteries yielded 18 flights where one
successful landing was made. The results of the successful flight is plotted in Figure 5.17.

The north and east axes had trajectories lasting four seconds in duration, while the down axis
was eight. The theory was that the UAV would arrive at the landing position before it touched

Figure 5.17: UAV Trajectory Tracking and Successful Landing Plot
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down and have enough time to compensate for errors. Both the north and east axes exhibit a
similar flight profile of overshooting their trajectory and then proceeding to have a low-frequency
oscillations about their respective desired point. Once landed in the payload docking station, the
east axis shows zero error; however, the north axis is off by 8 cm. The offset is likely due to
the fiducial marker being lost during the docking process and the UAV saving its last position,
which was incorrect, while the other axes were already correctly aligned. The down axis begins
with an overshoot and then tracks the trajectory with a constant steady-state error until landing.
The overshoot was due to the MAVLink connection not clearing its buffer before switching flight
modes, causing a momentary rise in the throttle. It is not common for the error to occur; however,
the system recovers quickly. Lastly, the heading begins with a 6◦ error, and the control slowly
compensates for it. Nearing the landing, a 12◦ disturbance was introduced, likely due to ground
effect, and the controller quickly compensated before the UAV landed about two seconds later. The
unsuccessful landings display very similar plots to Figure 5.17, but with slightly more error and
larger oscillations. The system was in control for each of the trials; however, it rarely had the ideal
conditions required by the controller to execute a precision landing.

A positional scatter plot of all attempted landings is observed in Figure 5.18. The figure also
includes a photo of one of the unsuccessful landings to provide a visual scale. It should be noted
that the landing locations recorded are where the UAV came to rest and not the original locations
where the UAV touched down. At least a third of the UAV trials bumped into the 3D-printed
funnels or aluminum extrusions, which caused the system to be disturbed and veer out of control
to its final position.

Figure 5.18: Landing Locations Scatter Plot and Failed Landing for Scale
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The majority of the failed landings were concentrated to the upper right of the desired landing
location. There were additional scattered landings that were reasonably accurate in the north axis
but off in the east axis, and there was one outlier that was accurate in the east direction; however,
it had more than a 0.5 meter error in the north direction. Considering all 18 trials, the north error
was calculated to be 4.5±19.4 cm, the east error 13.6±18.1 cm, and the diagonal distance error
26.9±12.4 cm. Although the landings did not achieve the desired accuracy, the system was shown
to be functional.

5.6 Aerial Manipulation

5.6.1 Payload Swapping

The sequence for retrieving or returning a payload begins by landing the UAV in the payload docking
station. The UAV internally monitors the error and location of the UAV, and if the UAV’s pose
error is within a specified tolerance and is below a set altitude, a timer is initiated. A timer is used

Figure 5.19: Payload Retrieval Flight Sequence: (A) Payload to be retrieved, (B) UAV approaching
payload docking station, (C) Engaging Quick Connect and verifying connection, (D) Takeoff and
begin mission
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to ensure the UAV is in its given location and that system noise did not prompt a false response.
Once the timer has exceeded 1.5 seconds, the quick connect engages or releases the payload.

Due to the shortcomings of the implemented PID controller and the corresponding inaccuracy when
landing the UAV, a complete autonomous payload retrieval was not achieved. To demonstrate the
system, a semi-autonomous verification was conducted, as in Figure 5.19. The UAV was manually
flown and landed in the payload docking station. The UAV was then switched to autonomous mode
with the desired set points of the manual landing. As the system achieved its desired position, the
self-checks were completed, and the payload was grasped by the quick connect. Because the quick
connect has indicator LEDs, the system was shown to be ready, and the UAV was again switched
into manual mode and flown from the docking station.

5.6.2 Cap Removal

Similar to the payload swapping experiment, the developed navigation system could not reliably
perform the positioning requirements demanded to remove a cap; therefore, the experiment was
manually performed. Four circular caps measuring 3.9, 5.4, 6.6, and 9.1 cm in diameter were selected
for removal to show the cap manipulator’s spanning capabilities. As with the lack of standardization
of the sump cavity, no standard cap torque specification was found; thus, each cap was tightened
to its reservoir so that fluid would not escape if inverted. The UAV was then placed on the cap,
the manipulator was closed, and the UAV was manually yawed, yielding four successfully removed
caps. Photos of the UAV removing the four caps are observable in Figure 5.20.

During testing, three observations were made about the developed cap manipulator payload system.
Firstly, the threshold for the gripping strength was found to be cap-dependent; what worked for
one cap, elastically deformed another. If the gripper squeezed too tight, the UAV had to fight an
increased release torque, as the normal contact force had also increased. After iterating through the
selected caps, a single threshold value was determined for all four; however, a more extensive study
of the caps should be considered. Otherwise, the manipulator was functional and was confirmed
not to be back driven when the servo was placed in an idle state. While interfaced with the quick
connect, the cap manipulator had sufficient gripping strength to hold the UAV upright on the
cap. The gripping provided the UAV with the maximum torque scenario where only two adjacent
propellers operate, as the remaining propellers do not need to generate lift.

Secondly, the cap manipulator’s designed jaws worked for clamping the four caps in the experiment;
however, on the smallest-diameter cap, the jaws were rubbing on the stem of the reservoir, thereby
increasing friction and making the removal of the cap more challenging. If the cap dimensions
are known ahead of time, the jaws should be dimensioned relative to the cap’s vertical thickness.
The jaws on the manipulator are modular; however, manually changing them before a mission is
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(A) (B)

(C) (D)

Figure 5.20: Cap Removal: (A) Small Diameter 3.9 cm, (B) Medium Diameter 5.4 cm, (C) Large
Diameter 6.6 cm, and (D) Extra Large Diameter 9.1 cm

undesirable. With the quick connect system, multiple versions of the same payload can be developed
and selected as desired, or swapped if the cap removal task fails.

Lastly, the UAV’s maximum torque specifications were experimentally gathered by directly con-
trolling two ESCs with a microcontroller. When connected to the autopilot, the same signal could
not be achieved without modifying the internal control loops. The UAV was always trying to keep
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itself stabilized, and all four motors were constantly running, reducing the maximum torque the
system was capable of producing. Additionally, the coupling dynamics began to interfere with the
standard control loops, causing integral windup and abnormal oscillations while the UAV was fixed
but still given a command to actuate. Once the UAV overcame the initial static friction and began
to rotate the cap, the controller quickly regained stability.

With the UAV, quick connect, and developed payload fully integrated and tested, the following
section will summarize the presented research and make recommendations for future work.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The development of a quadcopter system capable of localizing position and heading based on ArUco
fiducial markers, navigating to desired set points with a PID controller, and interfacing with various
payloads was presented in detail. The development of the system was conducted using an empirical
approach.

The relevant theory and methodology for localizing and controlling a system were first presented,
followed by an overview of the UAV and the mechanical, electrical, and software design of the uni-
versal payload adapter, termed the quick connect. To demonstrate the quick connect’s functionality,
the conceptual and detailed development of an example payload for manipulating sump lubricant
reservoir caps was provided. Finally, the results of experimental trials validating the developed
systems was presented.

The developed software running the localizing and control algorithms was profiled, showing the
system’s computational performance. A multiprocess, multithreaded program was required to bal-
ance the image processing computation requirements with the I/O data streams. The raw ArUco
pose calculation yielded values accurate to centimetre tolerances when within 200 cm of the ArUco
markers; the maximum dimension of the environment flown in. The Kalman filter was validated
using the ArduCopter firmware as ground truth, and the filter sufficiently tracked flight profiles and
estimated states when data was lost. Methods for tuning the PID controller were presented. The
UAV achieved centimetre accuracy in perfect conditions; however, the controller was not robust to
the given environment’s disturbances and had challenges overcoming the UAV’s non-linear dynam-
ics. The results were further observed when the UAV followed a trajectory to land and yielded an
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average error of 26.9±12.4 cm. The UAV was unable to autonomously perform aerial manipulation
tasks due to the response of the controller. Therefore, a semi-autonomous approach was taken to
validate the quick connect’s ability to swap payloads and have the test payload remove caps.

Although the system in its entirety did not meet the demanded performance to swap payloads
and manipulate caps consistently and autonomously, the overall system demonstrated elements
of functionality. The following section outlines recommendations for future work to improve the
overall system; however, the following list provides a summary of the major contributions of this
thesis:

• Fabricated a quadrotor UAV capable of handling small payloads (< 650 grams).

• Designed, constructed, and assembled a universal payload system for transferring translational
and rotational force. The universal payload system supplies electrical power to payloads
and features a custom wireless communication protocol between the main control board and
payload.

• Programmed a vision and inertial navigation system capable of localizing the UAV in a given
environment using fiducial ArUco markers and an inertial measurement unit. A PID control
scheme, including trajectory generation, was capable of manoeuvring the UAV to desired set
points in ideal conditions.

• Demonstrated the quick connect, vision system, and controller capabilities by conducting
experimental trials, including the deployment of an example payload for removing twist caps
off simulated sump lubricant reservoirs.

6.2 Future Work

The present work leads to a number of future topics for technology development and demonstration,
which are outlined in the following remaining sections.

6.2.1 Localization

Localizing the UAV using the Intel RealSense T265 camera and OpenCV ArUco library proved sat-
isfactory for the given environment; however, the vision system can be upgraded to be more efficient
and adaptable to other environments. Because the dual cameras on the T265 agreed, they should
be replaced by a single higher-resolution global shutter camera. The change would yield similar
processing times but allow for increased accuracy, especially when further from a fiducial marker.
The resolution of the camera could be even further increased if processing times were optimized.
Optimization is possible by upgrading the hardware or rewriting the Python code in C/C++, which
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would be fundamentally more efficient. Additionally, many optimal C/C++ libraries do not have
Python packages. For example, the NVIDIA Jetson Nano has image processing algorithms using
Compute Unified Device Architecture (CUDA), which runs on the graphical processing unit (GPU)
and thus frees the CPU to complete other calculations. There is also an updated ArUco library,
which reported between 17 and 40 times faster marker detection than the ArUco approach currently
implemented in OpenCV [130].

The Kalman filter’s implementation assumed the system was linear, when in reality it was not. Im-
plementing an extended Kalman or unscented Kalman filter would better fit the design and provide
more reliable results. Alternatives to the Kalman filter should also be explored. Additionally, the
Kalman filter may benefit from using a different data stream than the T265’s IMU and fusion al-
gorithms. The data being received is preprocessed by closed source software, leading to potentially
undesirable coupling effects. Lastly, the current and future versions of the vision system should be
validated against a reliable ground truth measurement, such as a Vicon motion capture.

6.2.2 Control

The PID controller was the overall limiting factor in achieving the desired functionality of the
system. Future work will require evaluating a candidate control scheme, such as an adaptive or
sliding mode controller, to address the system’s nonlinearities. A potentially quicker solution would
be upgrading the current PID controller with a gain schedule or cascade controller. Due to the
developed program’s objected-oriented nature, future developed controllers can be swapped, and
the main code is not required to be rewritten. An additional method to be tested is to not perform
any control and let the autopilot handle the positioning. The process would require packaging the
local position data to mimic a MAVLink GPS message. Should the correct parameters be set in
the autopilot, the UAV could use the fake GPS data to localize itself, allowing for autopilot-based
navigation. MAVLink messages and control modes in the autopilot must also be explored so a
maximum yaw command can be executed when manipulating a cap.

Additional testing of the UAV should be conducted in alternate environments to monitor the sys-
tem’s response with limited ground effect and external disturbances. Furthermore, the system
should be tested in an outdoor setting to monitor the impact of wind and varying light conditions.
Testing the handoff between GPS and autonomous modes would provide valuable insight into a
given GPS’s error, and the corresponding trajectories needed to be generated. Outdoor testing
would require a Special Flight Operations Certificate (SFOC) due to the system’s autonomous pro-
totype nature; therefore, additional research should be conducted into the proper certifications for
flying in a non-laboratory setting.
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6.2.3 General System and Universal Payload Design

The fundamental quadcopter platform was an early prototype making use of budget materials and
parts. Swapping from plastic injected moulded parts to carbon fibre will decrease overall mass and
increase rigidity. Upgrading the motors and ESCs will also increase the overall responsiveness of the
system. Integrating the electronics of the quick connect and the UAV would yield a more compact
and integrated design. For example, there are three independent 5 V voltage regulators; with a
well-designed PCB and careful selection of components, the same systems could run on a single
regulator. Alternatively, one PCB could be created to hold all electrical components, leading to an
even more compact and optimized design. To further increase the system’s capabilities, an over-
actuated quadcopter design can be explored in which each arm of the UAV can rotate independently
of the others.

The quick connect and actuation system should be manufactured with more robust materials, such
as nylon, to limit deflection and increase the maximum loading specifications of the system. The
design’s physical size is also scalable, and based on future payloads, it can be increased or decreased
to save mass or increase the maximum loading specification. The use of Wi-Fi to communicate
with payloads should be reconsidered, as the payload could communicate directly with the main
program and not have to be passed through the microcontroller. The payload and quick connect
system’s communication protocol should be updated to use MAVLink messages instead of the
custom-developed communication protocol. Having the quick connect and payloads communicate
with MAVLink would allow closer integration with the autopilot and reduce the complexity of
creating a standard for the quick connect system. Similarly, with the recent release of ROS2 and
the increasing trend of using ROS, it is highly recommended to reevaluate the use of ROS with the
UAV system and its devices.

Once the UAV can achieve consistent centimetre positional control, the system should autonomously
validate payload swapping. Similarly, autonomous cap removal and replacement experiments should
be conducted. The cap manipulator worked for the preliminary testing; however, additional work is
required to quantify the jaws’ optimal gripping strength and geometry. With the fundamental UAV
and quick connect system developed, other payloads need to be designed to test the full capabilities
of the localization, control, and quick connect system. Upon completion of laboratory testing, the
system should be demonstrated in controlled real-world environments. With sufficient testing and
implementation of safety procedures and regulations, the system will be ready for full integration
into real-world workflows.
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